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Preface

Nonparametric statistical methods for simple one- and two-sample problems
have been used for many years; see, for instance, Wilcoxon (1945). In addition
to being robust, when first developed, these methods were quick to compute
by hand compared to traditional procedures. It came as a pleasant surprise in
the early 1960s, that these methods were also highly efficient relative to the
traditional t-tests; see Hodges and Lehmann (1963).

Beginning in the 1970s, a complete inference for general linear models de-
veloped, which generalizes these simple nonparametric methods. Hence, this
linear model inference is referred to collectively as rank-based methods. This
inference includes the fitting of general linear models, diagnostics to check the
quality of the fits, estimation of regression parameters and standard errors,
and tests of general linear hypotheses. Details of this robust inference can be
found in Chapters 3–5 of Hettmansperger and McKean (2011) and Chapter
9 of Hollander and Wolfe (1999). Traditional methods for linear models are
based on least squares fits; that is, the fit which minimizes the Euclidean dis-
tance between the vector of responses and the full model space as set forth by
the design. To obtain the robust rank-based inference another norm is substi-
tuted for the Euclidean norm. Hence, the geometry and interpretation remain
essentially the same as in the least squares case. Further, these robust proce-
dures inherit the high efficiency of simple Wilcoxon tests. These procedures
are robust to outliers in the response space and a simple weighting scheme
yields robust inference to outliers in design space. Based on the knowledge
of the underlying distribution of the random errors, the robust analysis can
be optimized. It attains full efficiency if the form of the error distribution is
known.

This book can be used as a primary text or a supplement for several
levels of statistics courses. The topics discussed in Chapters 1 through 5 or
6 can serve as a textbook for an applied course in nonparametrics at the
undergraduate or graduate level. Chapters 7 and 8 contain more advanced
material and may supplement a course based on interests of the class. For
continuity, we have included some advanced material in Chapters 1-6 and
these sections are flagged with a star (∗). The entire book could serve as a
supplemental book for a course in robust nonparametric procedures. One of
the authors has used parts of this book in an applied nonparametrics course
as well as a graduate course in robust statistics for the last several years.
This book also serves as a handbook for the researcher wishing to implement
nonparametric and rank-based methods in practice.

xiii



xiv Nonparametric Statistical Methods Using R

This book covers rank-based estimation and inference for models ranging
from simple location models to general linear and nonlinear models for uncor-
related and correlated responses. Computation using the statistical software
system R (R Development Core Team 2010) is covered. Our discussion of
methods is amply illustrated with real and simulated data using R. To com-
pute the rank-based inference for general linear models, we use the R package
Rfit of Kloke and McKean (2012). For technical details of rank-based meth-
ods we refer the reader to Hettmansperger and McKean (2011); our book
emphasizes applications and statistical computation of rank-based methods.

A brief outline of the book follows. The initial chapter is a brief overview of
the R language. In Chapter 2, we present some basic statistical nonparametric
methods, such as the one-sample sign and signed-rank Wilcoxon procedures, a
brief discussion of the bootstrap, and χ2 contingency table methods. In Chap-
ter 3, we discuss nonparametric methods for the two-sample problem. This is a
simple statistical setting in which we briefly present the topics of robustness,
efficiency, and optimization. Most of our discussion involves Wilcoxon pro-
cedures but procedures based on general scores (including normal and Win-
sorized Wilcoxon scores) are introduced. Hogg’s adaptive rank-based analysis
is also discussed. The chapter ends with discussion of the two-sample scale
problem as well as a rank-based solution to the Behrens–Fisher problem. In
Chapter 4, we discuss the rank-based procedures for regression models. We
begin with simple linear regression and proceed to multiple regression. Besides
fitting and diagnostic procedures to check the quality of fit, standard errors
and tests of general linear hypotheses are discussed. Bootstrap methods and
nonparametric regression models are also touched upon. This chapter closes
with a presentation of Kendall’s and Spearman’s nonparametric correlation
procedures. Many examples illustrate the computation of these procedures
using R.

In Chapter 5, rank-based analysis and its computation for general fixed
effects models are covered. Models discussed include one-way, two- and k-way
designs, and analysis of covariance type designs, i.e., robust ANOVA and AN-
COVA. The hypotheses tested by these functions are of Type III; that is, the
tested effect is adjusted for all other effects. Multiple comparison procedures
are an option for the one-way function. Besides rank-based analyses, we also
cover the traditional Kruskal–Wallis one-way test and the ordered alternative
problem including Jonckheere’s test. The generalization of the Fligner–Killeen
procedure to the k-sample scale problem is also covered.

Time-to-event analyses form the topic of Chapter 6. The chapter begins
with a discussion of the Kaplan–Meier estimate and then proceeds to Cox’s
proportional hazards model and accelerated failure time models. The robust
fitting methods for regression discussed in Chapter 4 are highly efficient pro-
cedures but they are sensitive to outliers in design space. In Chapter 7, high
breakdown fits are presented for general regression models. These fits can at-
tain up to 50% breakdown. Further, we discuss diagnostics which measure
the difference between the highly efficient fits and the high breakdown fits of
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general linear models. We then consider these fits for nonlinear and time series
models.

Rank-based inference for cluster correlated data is the topic of Chapter
8. The traditional Friedman’s test is presented. Computational algorithms
using R are presented for estimating the fixed effects and the variance com-
ponents for these mixed effects models. Besides the rank-based fits discussed
in Chapters 3–5, other types of R estimates are discussed. These include, for
quite general covariance structure, GEERB estimates which are obtained by
a robust iterated re-weighted least squares type of fit.

Besides Rfit, we have written the R package npsm which includes addi-
tional functions and datasets for methods presented in the first six chapters.
Installing npsm and loading it at the start of each R session should allow the
reader to reproduce all of these analyses. Topics in Chapters 7 and 8 require
additional packages and details are provided in the text. The book itself was
developed using Sweave (Leisch 2002) so the analyses have a high probability
of being reproducible.

The first author would like to thank SDAC in general with particular
thanks to Marian Fisher for her support of this effort, Tom Cook for thought-
ful discussions, and Scott Diegel for general as well as technical assistance. In
addition, he thanks KB Boomer, Mike Frey, and Jo Hardin for discussions on
topics of statistics. The second author thanks Tom Hettmansperger and Simon
Sheather for enlightening discussions on statistics throughout the years. For
insightful discussions on rank-based procedures, he is indebted to many col-
leagues including Ash Abebe, Yusuf Bilgic, Magdalena Niewiadomska-Bugaj,
Kim Crimin, Josh Naranjo, Jerry Sievers, Jeff Terpstra, and Tom Vidmar. We
appreciate the efforts of John Kimmel of Chapman & Hall and, in general,
the staff of Chapman & Hall for their help in the preparation of this book for
publication. We are indebted to all who have helped make R a relatively easy
to use but also very powerful computational language for statistics. We are
grateful for our students’ comments and suggestions when we developed parts
of this material for lectures in robust nonparametric statistical procedures.

John Kloke
Joe McKean





1

Getting Started with R

This chapter serves as a primer for R. We invite the reader to start his or her R
session and follow along with our discussion. We assume the reader is familiar
with basic summary statistics and graphics taught in standard introductory
statistics courses. We present a short tour of the langage; those interested in a
more thorough introduction are referred to a monograph on R (e.g., Chambers
2008). Also, there are a number of manuals available at the Comprehensive
R Archive Network (CRAN) (http://cran.r-project.org/). An excellent
overview, written by developers of R, is Venables and Ripley (2002).

R provides a built-in documentation system. Using the help function i.e.
help(command) or ?command in your R session to bring up the help page
(similar to a man page in traditional Unix) for the command. For example try:
help(help) or help(median) or help(rfit). Of course, Google is another
excellent resource.

1.1 R Basics

Without going into a lot of detail, R has the capability of handling character
(strings), logical (TRUE or FALSE), and of course numeric data types. To
illustrate the use of R we multiply the system defined constant pi by 2.

> 2*pi

[1] 6.283185

We usually want to save the result for later calculation, so assignment is
important. Assignment in R is usually carried out using either the <- operator
or the = operator. As an example, the following code computes the area of a
circle with radius 4/3 and assigns it to the variable A:

> r<-4/3

> A<-pi*r^2

> A

[1] 5.585054

1



2 Nonparametric Statistical Methods Using R

In data analysis, suppose we have a set of numbers we wish to work with, as
illustrated in the following code segment, we use the c operator to combine
values into a vector. There are also functions rep for repeat and seq for
sequence to create patterned data.

> x<-c(11,218,123,36,1001)

> y<-rep(1,5)

> z<-seq(1,5,by=1)

> x+y

[1] 12 219 124 37 1002

> y+z

[1] 2 3 4 5 6

The vector z could also be created with z<-1:5 or z<-c(1:3,4:5). Notice
that R does vector arithmetic; that is, when given two lists of the same length
it adds each of the elements. Adding a scalar to a list results in the scalar
being added to each element of the list.

> z+10

[1] 11 12 13 14 15

One of the great things about R is that it uses logical naming conventions
as illustrated in the following code segment.

> sum(y)

[1] 5

> mean(z)

[1] 3

> sd(z)

[1] 1.581139

> length(z)

[1] 5

Character data are embedded in quotation marks, either single or double
quotes; for example, first<-’Fred’ or last<-"Flintstone". The outcomes
from the toss of a coin can be represented by

> coin<-c(’H’,’T’)
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To simulate three tosses of a fair coin one can use the sample command

> sample(coin,3,replace=TRUE)

[1] "H" "T" "T"

The values TRUE and FALSE are reserved words and represent logical constants.
The global variables T and F are defined as TRUE and FALSE respectively. When
writing production code, one should use the reserved words.

1.1.1 Data Frames and Matrices

Data frames are a standard data object in R and are used to combine several
variables of the same length, but not necessarily the same type, into a single
unit. To combine x and y into a single data object we execute the following
code.

> D<-data.frame(x,y)

> D

x y

1 11 1

2 218 1

3 123 1

4 36 1

5 1001 1

To access one of the vectors the $ operator may be used. For example to
calculate the mean of x the following code may be executed.

> mean(D$x)

[1] 277.8

One may also use the column number or column name D[,1] or D[,’x’]

respectively. Omitting the first subscript means to use all rows. The with

command as follows is another convenient alternative.

> with(D,mean(x))

[1] 277.8

As yet another alternative, many of the modeling functions in R have a data=

options for which the data frame (or matrix) may be supplied. We utilize this
option when we discuss regression modeling beginning in Chapter 4.

In data analysis, records often consist of mixed types of data. The following
code illustrates combining the different types into one data frame.
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> subjects<-c(’Jim’,’Jack’,’Joe’,’Mary’,’Jean’)

> sex<-c(’M’,’M’,’M’,’F’,’F’)

> score<-c(85,90,75,100,70)

> D2<-data.frame(subjects,sex,score)

> D2

subjects sex score

1 Jim M 85

2 Jack M 90

3 Joe M 75

4 Mary F 100

5 Jean F 70

Another variable can be added by using the $ operator for example
D2$letter<-c(’B’,’A’,’C’,’A’,’C’).

A set of vectors of the same type and size can be grouped into a matrix.

> X<-cbind(x,y,z)

> is.matrix(X)

[1] TRUE

> dim(X)

[1] 5 3

Note that R is case sensitive so that X is a different variable (or more generally,
data object) than x.

1.2 Reading External Data

There are a number of ways to read data from an external file into R,
for example scan or read.table. Though read.table and its variants (see
help(read.table)) can read files from a local file system, in the following we
illustrate the use of loading a file from the Internet. Using the command

egData<-read.csv(’http://www.biostat.wisc.edu/~kloke/eg1.csv’)

the contents of the dataset are now available in the current R session. To
display the first several lines we may use the head command:

> head(egData)

X x1 x2 y

1 1 0.3407328 0 0.19320286
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2 2 0.0620808 1 0.17166831

3 3 0.9105367 0 0.02707827

4 4 0.2687611 1 -0.78894410

5 5 0.2079045 0 9.39790066

6 6 0.9947691 1 -0.86209203

1.3 Generating Random Data

R has an abundance of methods for random number generation. The methods
start with the letter r (for random) followed by an abbreviation for the name
of the distribution. For example, to generate a pseudo-random list of data
from normal (Gaussian) distribution, one would use the command rnorm. The
following code segment generates a sample of size n = 8 of random variates
from a standard normal distribution.

> z<-rnorm(8)

Often, in introductory statistics courses, to illustrate generation of data, the
student is asked to toss a fair coin, say, 10 times and record the number of
trials that resulted in heads. The following experiment simulates a class of
28 students each tossing a fair coin 10 times. Note that any text to right of
the sharp (or pound) symbol # is completely ignored by R. i.e. represents a
comment.

> n<-10

> CoinTosses<-rbinom(28,n,0.5)

> mean(CoinTosses) # should be close to 10*0.5 = 5

[1] 5.178571

> var(CoinTosses) # should be close to 10*0.5*0.5 = 2.5

[1] 2.300265

In nonparametric statistics, often, a contaminated normal distribution
is used to compare the robustness of two procedures to a violation of model
assumptions. The contaminated normal is a mixture of two normal distribu-
tions, say X ∼ N(0, 1) and Y ∼ N(0, σ2

c ). In this case X is a standard normal
and both distributions have the same location parameter µ = 0. Let ǫ denote
the probability an observation is drawn from Y and 1 − ǫ denote the proba-
bility an observation is drawn from X . The cumulative distribution function
(cdf) of this model is given by

F (x) = (1− ǫ)Φ(x) + ǫΦ(x/σc) (1.1)
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where Φ(x) is the cdf of a standard normal distribution. In npsm we have
included the function rcn which returns random deviates from this model.
The rcn takes three arguments: n is the samples size (n), eps is the amount
of contamination (ǫ), and sigmac is standard deviation of the contaminated
part (σc). In the following code segment we obtain a sample of size n = 1000
from this model with ǫ = 0.1 and σc = 3.

> d<-rcn(1000,0.1,3)

> mean(d) # should be close to 0

[1] -0.02892658

> var(d) # should be close to 0.9*1 + 0.1*9 = 1.8

[1] 2.124262

1.4 Graphics

R has some of the best graphics capabilities of any statistical software package;
one can make high quality graphics with a few lines of R code. In this book we
are using base graphics, but there are other graphical R packages available,
for example, the R package ggplot2 (Wickham 2009).

Continuing with the classroom coin toss example, we can examine the
sampling distribution of the sample proportion. The following code segment
generates the histogram of p̂s displayed in Figure 1.1.

> phat<-CoinTosses/n

> hist(phat)

To examine the relationship between two variables we can use the plot

command which, when applied to numeric objects, draws a scatterplot. As an
illustration, we first generate a set of n = 47 datapoints from the linear model
y = 0.5x+ e where e ∼ N(0, 0.12) and x ∼ U(0, 1).

> n<-47

> x<-runif(n)

> y<-0.5*x+rnorm(n,sd=0.1)

Next, using the the command plot(x,y) we create a simple scatterplot of x
versus y. One could also use a formula as in plot(y~x). Generally one will
want to label the axes and add a title as the following code illustrates; the
resulting scatterplot is presented in Figure 1.2.

> plot(x,y,xlab=’Explanatory Variable’,ylab=’Response Variable’,

+ main=’An Example of a Scatterplot’)
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FIGURE 1.1
Histogram of 28 sample proportions; each estimating the proportion of heads
in 10 tosses of a fair coin.

There are many options that can be set; for example, the plotting symbol,
the size, and the color. Text and a legend may be added using the commands
text and legend.

1.5 Repeating Tasks

Often in scientific computing a task is to be repeated a number of times.
R offers a number of ways of replicating the same code a number of times
making iterating straightforward. In this section we discuss the apply, for,
and tapply functions.

The apply function will repeatedly apply a function to the rows or columns
of a matrix. For example to calculate the mean of the columns of the matrix
D previously defined we execute the following code:

> apply(D,2,mean)
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FIGURE 1.2
Example usage of the plot command.

x y
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To apply a function to the rows of a matrix the second argument would be
set to 1. The apply function is discussed further in the next section in the
context of Monte Carlo simulations.

A simple example to demonstrate the use of a for loop returns a vector
of length n with the cumulative sum.

> n<-10

> result<-rep(1,n)

> for( i in 1:n ) result[i]<-sum(1:i)

Using for is discouraged in R; a loop generally results in much slower com-
putational time than a vectorized function such as apply.

The function tapply is useful in obtaining summary statistics by cohort.
For example, to calculate the mean score by sex from the D2 data we may use
the tapply command.

> with(D2, tapply(score,sex,mean))
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F M

85.00000 83.33333

A general purpose package for repeated tests for arrays, lists, matrices or data
frames is plyr (Wickham 2011).

1.6 User Defined Functions

The syntax for creating an R function is relatively simple. A brief schematic
for an R function is:

name_of_function <- function( 0 or more arguments ){

... body of function ...

}

where name_of_function contains the newly created function; the paren-
theses after function enclose the arguments of the function; and the
braces { } enclose any number of R statements including function calls.
A call to a user defined function is done in the expected way. E.g.
result<-name_of_function(data,arguments). Usually, the last line of the
body contains a line of what is to be returned. We illustrate these concepts
with the following example which computes the median and interquartile range
of a sample contained in the data vector x. We named it mSummary.

mSummary <- function(x) {

q1 <- quantile(x,.25)

q3 <- quantile(x,.75)

list(med=median(x),iqr=q3-q1)

}

These commands can be typed directly into an R session or copied and pasted
from another file. Alternatively, the function may be sourced. If the function
is in the file mSummary.r in the working directory, this can be accomplished
by the R command source("mSummary.r"). If the file is in another direc-
tory (or folder) then the path to it must be included; the path may be rela-
tive or absolute. For example, if mSummary.r is in the directory Myfunctions

which is a subdirectory of the current working directory then the command is
source("Myfunctions/mSummary.r"). For a simple debugging run, we used
the sample consisting of the first 13 positive integers.

> xsamp <- 1:13

> mSummary(xsamp)
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$med

[1] 7

$iqr

75%

6

Notice a list is returned with two elements: the median (med) and the IQR
(iqr). A function need only be sourced once in an R session.

1.7 Monte Carlo Simulation

Simulation is a powerful tool in modern statistics. Inferences for rank-based
procedures discussed in this book are based, generally, on the asymptotic
distribution of the estimators. Simulation studies allow us to examine their
performance for small samples. Specifically, simulation is used to examine the
empirical level (or power) of rank-based tests of hypotheses or the empirical
coverage of their confidence intervals. Comparisons of estimators are often
based on their empirical relative efficiencies (the ratio of the mean squared
error of the two estimators). Simulation is also used to examine the effect of
violations of model assumptions on the validity of the rank-based inference.
Another inference procedure used in this text is based on the bootstrap. This
is a resampling technique, i.e., a Monte Carlo technique.

R is an excellent tool for simulation studies, because a simulation may be
carried out with only a few lines of code. One way to run a simulation in R
is to generate many samples from a distribution and use the apply function.
For example,

> X<-matrix(rnorm(10*100),ncol=10)

generates a dataset with 100 rows and 10 columns. In the context of simulation,
we think of the rows as distinct samples, each of size n = 10. To calculate the
sample mean of each of the 100 samples, we use the apply function:

> xbar<-apply(X,1,mean)

The mean of each of the rows is calculated and the results are stored in the
vector xbar. If we calculate the variance of the sample means we observe that
it is similar to the theoretical result (σ2/n = 0.1).

> var(xbar)

[1] 0.1143207

We can also do the same thing with the median
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> xmed<-apply(X,1,median)

The relative efficiency is

> var(xbar)/var(xmed)

[1] 0.7146234

Exercise 1.9.4 asks the reader to compare the efficiency of these two estimators
of location when the data are drawn from a t3 distribution.

The level (α) of a statistical test is defined as the probability that the
data support rejection of the null hypothesis when in fact the null hypothesis
is true. The power of a statistical test is defined as the probability that the
data support rejection of the null hypothesis when it is in fact false.

For our simple example, suppose we are interested in testing the null hy-
pothesis that the true mean is 0. Using the 100 samples X, the following code
obtains the empirical α-level of the nominal 5% t-test.

> myttest<-function(data) t.test(data)$p.value

> pval<-apply(X,1,myttest)

> mean(pval<0.05)

[1] 0.09

Exercise 1.9.11 asks the reader to approximate the power of the t-test under
an alternative hypothesis.

1.8 R packages

The developers of R have made it fairly easy to extend R by creating a straight-
forward mechanism to create a package. A package may be developed for a
small number of users or distributed worldwide. Two notable distribution sites
are the Comprehensive R Archive Network (CRAN) and Bioconductor. The
packages hosted at CRAN tend to be for general use while those hosted at
Bioconductor are intended for analyzing high-throughput genomic data. At
the time this book was to go to press the CRAN repository contained over
5500 packages developed by individual users.

We have written two such R packages related to nonparametrics: Rfit
and npsm. Rfit (Kloke and McKean 2012) contains rank-based estimation
and testing procedures for general linear models and is discussed extensively in
Chapters 4 and 5. The package npsm includes many of the additional functions
used in the book which are not already available in Rfit or base R. Most of the
datasets used in this book are available in one of these packages. Both Rfit

and npsm are available at CRAN. By loading npsm along with it’s dependencies
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the reader will have the software tools and data nesessary to work through the
first six chapters of the text. For later chapters, additional packages may be
required and are available through https://github.com/kloke/book. New
methods and features are being added to these packages and information
will be available at that website. We anticipate any new code to be back-
ward compatible to what is presented in this book. Two built-in R functions
that help the user keep all their packages up-to-date are new.packages and
updated.packages.

The install.packages command is a straightforward way to install a
package from CRAN in an R session. For example to install the version of
npsm on CRAN one could use the command

install.packages(’npsm’)

A pop-up window may appear asking the user to select a mirror. Once the
mirror is selected (the user should use one that is close to him or her) R will
then download npsm as well as any required packages, and then perform the
installation. From then on the the package only needs to be loaded into R
once per session using the function library. For example

library(npsm)

will load npsm and any packages on which it depends (e.g. Rfit).

1.9 Exercises

1.9.1. Use the commands seq and rep create the following lists.

1. Even numbers less than 20

2. Odd numbers between 101 and 203

3. 1 3 1 3 1 3 1 3

4. 1 1 1 1 3 3 3 3

1.9.2. Calculate the mean and variance of the following.

1. First 100 integers.

2. Random sample of 50 normal random variates with mean 30
and standard deviation 5.

1.9.3. Use the sample command to simulate a sequence of 10 tosses of a fair
coin. Use ‘H’ to denote heads and ‘T’ to denote tails.

1.9.4. Using a t3 distribution, approximate the relative efficiency of the sam-
ple median to the sample mean. Which estimator is more efficient for t3 data?
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1.9.5. Create a data frame D where the first column is named x and contains
a vector of observed numeric values. Verify that the following commands all
produce the same result.

1. summary(D[1:nrow(D)],’x’])

2. summary(D[,’x’])

3. summary(D[!is.na(D$x),1])

4. summary(D[rep(TRUE,nrow(D)),1])

1.9.6. What is the output for the command:
rep(c(37,39,40,41,42),times=c(2,2,4,1,2))?

1.9.7. A dotplot may be created with the command stripchart by using
the option method=’stack’. Create a dotplot of the data discussed in the
previous exercise using the command stripchart.

1.9.8. A sunflower plot can be useful for visualizing the relationship between
two numeric variables which are either discrete or have been rounded. Use
the R function sunflowerplot to obtain a sunflower plot of the relationship
between height and weight for the baseball data in Rfit.

1.9.9. A diagnostic test of clairvoyance is to declare a person clairvoyant if
they get 8 or more tosses of a fair coin correct out of 10. Determine, either
via simulation or directly, the specificity of the test. That is, in this case,
determine the probability that a person who is guessing is correctly classified
as non-clairvoyant.

1.9.10. Simulate the sampling distribution of the mean of 10 tosses of a fair
die.

1.9.11. Approximate the power of a t-test of H0 : µ = 0 versus HA : µ > 0
when the true mean is µ = 0.5. Assume a random sample of size n = 25 from
a normal distribution with σ = 1. Assume α = 0.05.

1.9.12. Use the commands dnorm, seq, and lines to create a plot of the pdf
of a normal distribution with µ = 50 and σ2 = 10.
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Basic Statistics

2.1 Introduction

In this chapter we present some basic nonparametric statistical procedures
and show their computation in R. We begin with a brief example involv-
ing the distribution-free sign test. Then for the one-sample problem for con-
tinuous data, we present the signed-rank Wilcoxon nonparametric procedure
and review the parametric t procedure. Next, we discuss inference based on
bootstrapping (resampling). In the second part of the chapter, we turn our
attention to discrete data. We discuss inference for the binomial probability
models of the one- and two-sample problems, which we then generalize to
the common goodness-of-fit χ2-tests including the usual tests of homogene-
ity of distributions and independence for discrete random variables. We next
present McNemar’s test for significant change. We close the chapter with a
brief discussion on robustness.

Our discussion focuses on the computation of these methods via R. More
details of these nonparametric procedures can be found in the books by
Hettmansperger and McKean (2011), Higgins (2003), Hollander and Wolfe
(1999). A more theoretical discussion on the χ2 goodness-of-fit tests can be
found in Agresti (2002) or Hogg, McKean, and Craig (2013).

2.2 Sign Test

The sign test requires only the weakest assumptions of the data. For instance,
in comparing two objects the sign test only uses the information that one
object is better in some sense than the other.

As an example, suppose that we are comparing two brands of ice cream,
say Brand A and Brand B. A blindfolded taster is given the ice creams in a
randomized order with a washout period between tastes. His/her response is
the preference of one ice cream over the other. For illustration, suppose that
12 tasters have been selected. Each taster is put through the blindfolded test.
Suppose the results are such that Brand A is preferred by 10 of the tasters,
Brand B by one of the tasters, and one taster has no preference. These data

15
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present pretty convincing evidence in favor of Brand A. How likely is such a
result due to chance if the null hypothesis is true, i.e., no preference in the
brands? As our sign test statistic, let S denote the number of tasters that
prefer Brand A to Brand B. Then for our data S = 10. The null hypothesis
is that there is no preference in brands; that is, one brand is selected over the
other with probability 1/2. Under the null hypothesis, then, S has a binomial
distribution with the probability of success of 1/2 and, in this case, n = 11 as
the number of trials. A two-sided p-value can be calculated as follows.

> 2*dbinom(10,11,1/2)

[1] 0.01074219

On the basis of this p-value we would reject the null hypothesis at the 5%
level. If we make a one-sided conclusion, we would say Brand A is preferred
over Brand B.

The sign test is an example of a distribution-free (nonparametric) test. In
the example, suppose we can measure numerically the goodness of taste. The
distribution of the sign test under the null hypothesis does not depend on the
distribution of the measure; hence, the term distribution-free. The distribution
of the sign test, though, is not distribution-free under alternative hypotheses.

2.3 Signed-Rank Wilcoxon

The sign test discussed in the last section is a nonparametric procedure for
the one-sample or paired problem. Although it requires few assumptions, the
power can be low, for example relative to the t-test at the normal distribution.
In this section, we present the signed-rank Wilcoxon procedure which is a
nonparametric procedure that has power nearly that of the t-test for normal
distributions and it generally has power greater than that of the t-test for
distributions with heavier tails than the normal distribution. More details for
the Wilcoxon signed-rank test can be found in the references cited in Sec-
tion 2.1. We discuss these two nonparametric procedures and the t-procedure
for the one-sample location problem, showing their computation using R. For
each procedure, we also discuss the R syntax for computing the associated
estimate and confidence interval for the location effect.

We begin by defining a location model to set the stage for future discus-
sions. Let X1, X2, . . . , Xn denote a random sample which follows the model

Xi = θ + ei, (2.1)

where, to simplify discussion, we assume that the random errors, e1, . . . , en
are independent and identically distributed (iid) with a continuous probability
density function f(t) which is symmetric about 0. We call this model the
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location model. Under the assumption of symmetry any location measure
(parameter) of Xi, including the mean and median, is equal to θ. Suppose we
are interested in testing the hypotheses

H0 : θ = 0 versus HA : θ > 0. (2.2)

The sign test of the last section is based on the test statistic

S =

n∑

i=1

sign(Xi), (2.3)

where sign(t) = −1, 0, or 1 for t < 0, t = 0, or t > 0, respectively. Let

S+ = #i{Xi > 0}. (2.4)

Then S = 2S+−n. This assumes that none of theXi’s is equal to 0. In practice,
generally observations with value 0 are omitted and the sample size is reduced
accordingly. Note that under H0, S

+ has a binomial distribution with n trials
and probability of success 1/2. Hence, critical values of the test are obtained
from the binomial distribution. Since the null distribution of S does not depend
on f(t), we say that the sign test is distribution-free. Let s+ denote the
observed (realized) value of S+ when the sample is drawn. Then the p-value of
the sign test for the hypotheses (2.2) is PH0(S

+ ≥ s+) = 1−FB(s
+−1;n, 0.5),

where FB(t;n, p) denotes the cdf of a binomial distribution over n trials with
probability of success p (pbinom is the R function which returns the cdf of a
binomial distribution).

The traditional t-test of the hypotheses (2.2) is based on the sum of the
observations.1 The distribution of the statistic T depends on the population
pdf f(x). In particular, it is not distribution-free. The usual form of the test
is the t-ratio

t =
X

s/
√
n
, (2.5)

where X and s are, respectively, the mean and standard deviation of the
sample. If the population is normal then t has a Student t-distribution with
n− 1 degrees of freedom. Let t0 be the observed value of t. Then the p-value
of the t-test for the hypotheses (2.2) is PH0(t ≥ t0) = 1 − FT (t0;n − 1),
where FT (t; ν) denotes the cdf of the Student t-distribution with ν degrees of
freedom (pt is the R function which returns the cdf of a t distribution). This is
an exact p-value if the population is normal; otherwise it is an approximation.

The difference between the t-test and the sign test is that the t-test statistic
is a function of the distances of the sample items from 0 in addition to their
signs. The signed-rank Wilcoxon test statistic, however, uses only the ranks
of these distances. Let R|Xi| denote the rank of |Xi| among |X1|, . . . , |Xn|,

1For comparison purposes, can be written as T =
∑

n

i=1
sign(Xi)|Xi|.
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from low to high. Then the signed-rank Wilcoxon test statistic is

W =

n∑

i=1

sign(Xi)R|Xi|. (2.6)

Unlike the t-test statistic, W is distribution-free under H0. Its distribution,
though, cannot be obtained in closed-form. There are iterated algorithms for
its computation which are implemented in R (psignrank, qsignrank, etc.).
Usually the statistic computed is the sum of the ranks of the positive items,
W+, which is

W+ =
∑

Xi>0

R|Xi| =
1

2
W +

n(n+ 1)

4
. (2.7)

The R function psignrank computes the cdf of W+. Let w+ be the observed
value of W+. Then, for the hypotheses (2.2), the p-value of the signed-rank
Wilcoxon test is PH0 (W

+ ≥ w+) = 1 − FW+(w+ − 1;n), where FW+(x;n)
denotes the cdf of the signed-rank Wilcoxon distribution for a sample of size n.

2.3.1 Estimation and Confidence Intervals

Each of these three tests has an associated estimate and confidence interval
for the location effect θ of Model (2.1). They are based on inversions2 of the
associated process. In this section we present the results and then show their
computation in R. As in the last section, assume that we have modeled the
sample Xi, X2, . . . , Xn as the location model given in expression (2.1).

The confidence intervals discussed below, involve the order statistics of a
sample. We denote the order statistics with the usual notation; that is, X(1)

is the minimum of the sample, X(2) is the next smallest, . . . , and X(n) is the
maximum of the sample. Hence, X(1) < X(2) < · · · < X(n). For example, if
the sample results in x1 = 51, x2 = 64, x3 = 43 then the ordered sample is
given by x(1) = 43, x(2) = 51, x(3) = 64.

The estimator of the location parameter θ associated with sign test is the
sample median which we write as,

θ̂ = median{Xi, X2, . . . , Xn}. (2.8)

For 0 < α < 1, a corresponding confidence interval for θ of confidence
(1 − α)100% is given by (X(c1+1), X(n−c1)), where X(i) denotes the ith order
statistic of the sample and c1 is the α/2 quantile of the binomial distribution,
i.e., FB(c1;n, 0.5) = α/2; see Section 1.3 of Hettmansperger and McKean
(2011) for details. This confidence interval is distribution-free and, hence, has
exact confidence (1 − α)100% for any random error distribution. Due to the
discreteness of the binomial distribution, for each value of n, there is a limited
number of values for α. Approximate interpolated confidence intervals for the
median are presented in Section 1.10 of Hettmansperger and McKean (2011)

2See, for example, Chapter 1 of Hettmansperger and McKean (2011).
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With regard to the t-test, the associated estimator of location is the sample
mean X. The usual confidence interval for θ is (X − tα/2,n−1[s/

√
n], X +

tα/2,n−1[s/
√
n]), where FT (−tα/2,n−1;n−1) = α/2. This interval has the exact

confidence of (1−α)100% provided the population is normal. If the population
is not normal then the confidence coefficient is approximately (1 − α)100%.
Note the t-procedures are not distribution-free.

For the signed-rank Wilcoxon, the estimator of location is the Hodges–
Lehmann estimator which is given by

θ̂W = medi≤j

{
Xi +Xj

2

}
. (2.9)

The pairwise averages Aij = (Xi+Xj)/2, i ≤ j, are called the Walsh averages
of the sample. Let A(1) < · · · < A(n(n+1)/2) denote the orderedWalsh averages.
Then a (1− α)100% confidence interval for θ is

(A(c2+1), A([n(n+1)/2]−c2)),

c2 is the α/2 quantile of the signed-rank Wilcoxon distribution. Provided the
random error pdf is symmetric, this is a distribution-free confidence interval
which has exact confidence (1 − α)100%. Note that the range of W+ is the
set {0, 1, . . . n(n + 1)/2} which is of order n2. So for moderate sample sizes
the signed-rank Wilcoxon does not have the discreteness problems that the
inference based on the sign test has; meaning α is close to the desired level.

2.3.2 Computation in R

The signed-rank Wilcoxon and t procedures can be computed by the intrinsic
R functions wilcox.test and t.test, respectively. Suppose x is the R vector
containing the sample items. Then for the two-sided signed-rank Wilcoxon
test of H0 : θ = 0, the call is

wilcox.test(x,conf.int=TRUE).

This returns the value of the test statistic W+, the p-value of the test,
the Hodges–Lehmann estimate of θ and the distribution-free 95% confi-
dence interval for θ. The t.test function has similar syntax. The default
hypothesis is two-sided. For the one-sided hypothesis HA : θ > 0, use
alternative="greater" as an argument. If we are interested in testing the
null hypothesis H0 θ = 5, for example, use mu=5 as an argument. For, say, a
90% confidence interval use the argument conf.level = .90. For more infor-
mation see the help page (help(wilcox.test)). Although the sign procedure
does not have an intrinsic R function, it is simple to code such a function.
One such R-function is given in Exercise 2.8.7.

Example 2.3.1 (Nursery School Intervention). This dataset is drawn from
a study discussed by Siegel (1956). It involves eight pairs of identical twins
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who are of nursery school age. In the study, for each pair, one is randomly
selected to attend nursery school while the other remains at home. At the
end of the study period, all 16 children are given the same social awareness
test. For each pair, the response of interest is the difference in the twins’
scores, (Twin at School−Twin at Home). Let θ be the true median effect. As
discussed in Remark 2.3.1, the random selection within a pair ensures that
the response is symmetrically distributed under H0 : θ = 0. So the signed-
rank Wilcoxon process is appropriate for this study. The following R session
displays the results of the signed-rank Wilcoxon and the Student t-tests for
one-sided tests of H0 : θ = 0 versus HA : θ > 0.

> school<-c(82,69,73,43,58,56,76,65)

> home<-c(63,42,74,37,51,43,80,62)

> response <- school - home

> wilcox.test(response,alternative="greater",conf.int=TRUE)

Wilcoxon signed rank test

data: response

V = 32, p-value = 0.02734

alternative hypothesis: true location is greater than 0

95 percent confidence interval:

1 Inf

sample estimates:

(pseudo)median

7.75

> t.test(response,alternative="greater",conf.int=TRUE)

One Sample t-test

data: response

t = 2.3791, df = 7, p-value = 0.02447

alternative hypothesis: true mean is greater than 0

95 percent confidence interval:

1.781971 Inf

sample estimates:

mean of x

8.75

Both procedures reject the null hypothesis at level 0.05. Note that the one-
sided test option forces a one-sided confidence interval. To obtain a two-sided
confidence interval use the two-sided option.

Remark 2.3.1 (Randomly Paired Designs). The design used in the nursery
school study is called a randomly paired design. For such a design, the experi-
mental unit is a block of length two. In particular, in the nursery school study,
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the block was a set of identical twins. The factor of interest has two levels or
there are two treatments. Within a block, the treatments are assigned at ran-
dom, say, by a flip of a fair coin. Suppose H0 is true; i.e., there is no treatment
effect. If d is a response realization, then whether we observe d or −d depends
on whether the coin came up heads or tails. Hence, D and −D have the same
distribution; i.e., D is symmetrically distributed about 0. Thus the symmetry
assumption for the signed-rank Wilcoxon test automatically holds.

As a last example, we present the results of a small simulation study.

Example 2.3.2. Which of the two tests, the signed-rank Wilcoxon or the
t-test, is the more powerful? The answer depends on the distribution of the
random errors. Discussions of the asymptotic power of these two tests can be
found in the references cited at the beginning of this chapter. In this example,
however, we compare the powers of these two tests empirically for a particu-
lar situation. Consider the situation where the random errors of Model (2.1)
have a t-distribution with 2 degrees of freedom. Note that it suffices to use a
standardized distribution such as this because the tests and their associated
estimators are equivariant to location and scale changes. We are interested in
the two-sided test of H0 : θ = 0 versus HA : θ 6= 0 at level α = 0.05. The
R code below obtains 10,000 samples from this situation. For each sample, it
records the p-values of the two tests. Then the empirical power of a test is the
proportion of times its p-values is less than or equal to 0.05.

n = 30; df = 2; nsims = 10000; mu = .5; collwil = rep(0,nsims)

collt = rep(0,nsims)

for(i in 1:nsims){

x = rt(n,df) + mu

wil = wilcox.test(x)

collwil[i] = wil$p.value

ttest = t.test(x)

collt[i] = ttest$p.value

}

powwil = rep(0,nsims); powwil[collwil <= .05] = 1

powerwil = sum(powwil)/nsims

powt = rep(0,nsims); powt[collt <= .05] = 1

powert = sum(powt)/nsims

We ran this code for the three situations: θ = 0 (null situation) and the two
alternative situations with θ = 0.5 and θ = 1. The empirical powers of the
tests are:

Test θ = 0 θ = 0.5 θ = 1
Wilcoxon 0.0503 0.4647 0.9203
t 0.0307 0.2919 0.6947

The empirical α level of the signed-rank Wilcoxon test is close to the
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nominal value of 0.05, which is not surprising because it is a distribution-
free test. On the other hand, the t-test is somewhat conservative. In terms of
power, the signed-rank Wilcoxon test is much more powerful than the t-test.
So in this situation, the signed-rank Wilcoxon is the preferred test.

2.4 Bootstrap

As computers have become more powerful, the bootstrap, as well as resampling
procedures in general, has gained widespread use. The bootstrap is a general
tool that is used to measure the error in an estimate or the significance of a
test of hypothesis. In this book we demonstrate the bootstrap for a variety of
problems, though we still only scratch the surface; the reader interested in a
thorough treatment is referred to Efron and Tibshirani (1993) or Davison and
Hinkley (1997). In this section we illustrate estimation of confidence intervals
and p-values for the one-sample and paired location problems.

To fix ideas, recall a histogram of the sample is often used to provide
context of the distribution of the random variable (e.g., location, variability,
shape). One way to think of the bootstrap is that it is a procedure to pro-
vide some context for the the sampling distribution of a statistic. A bootstrap
sample is simply a sample from the original sample taken with replacement.
The idea is that if the sample is representative of the population, or more con-
cretely, the histogram of the sample resembles the pdf of the random variable,
then sampling from the sample is representative of sampling from the popu-
lation. Doing so repeatedly will yield an estimate of the sampling distribution
of the statistic.

R offers a number of capabilities for implementing the bootstrap. We begin
with an example which illustrates the bootstrap computed by the R function
sample. Using sample is useful for illustration; however, in practice one will
likely want to implement one of R’s internal functions and so the library boot

(Canty and Ripley 2013) is also discussed.

Example 2.4.1. To illustrate the use of the bootstrap, first generate a sample
of size 25 from a normal distribution with mean 30 and standard deviation 5.

> x<-rnorm(25,30,5)

In the following code segment we obtain 1000 bootstrap samples and for each
sample we calculate the sample mean. The resulting vector xbar contains the
1000 sample means. Figure 2.1 contains a histogram of the 1000 estimates.
We have also included a plot of the true pdf of the sampling distribution of
X̄; i.e. a N(30, 52/25).

> B<-1000 # number of bootstrap samples to obtain

> xbar<-rep(0,B)
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FIGURE 2.1
Histogram of 1000 bootstrap estimates of the sample mean based on a sample
of size n = 25 from a N(30, 52) distribution. The pdf of a N(30, 1) is overlaid.

> for( i in 1:B ) {

+ xbs<-sample(x,length(x),replace=TRUE)

+ xbar[i]<-mean(xbs)

+ }

The standard deviation of the bootstrap sampling distribution may serve
as an estimate of the standard error of the estimate.

> se.xbar<-sd(xbar)

> se.xbar

[1] 0.9568816

The estimated standard error may then be used for inference. For example,
as we know the distribution of the sample mean is normally distributed, we
can calculate an approximate 95% confidence interval using t-critical values
as follows. We have included the usual t-interval for comparison.

> tcv<-qt(0.975,length(x)-1)

> mean(x)+c(-1,1)*tcv*se.xbar
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[1] 28.12227 31.87773

> mean(x)+c(-1,1)*tcv*sd(x)/sqrt(length(x))

[1] 29.89236 30.10764

2.4.1 Percentile Bootstrap Confidence Intervals

In Example 2.4.1 we presented a simple confidence interval based on a boot-
strap estimate of standard error. Such an estimate requires assumptions on the
sampling distribution of the estimate; for example, that the sampling distri-
bution is symmetric and that the use of t-critical values is appropriate. In this
section we present an alternative, the percentile bootstrap confidence interval,
which is free of such assumptions. Let θ̂ be any location estimator.

Let x = [x1, . . . , xn]
T denote a vector of observations observed from the

distribution F . Let θ̂ denote the estimate of θ based on this sample. Define
the empirical cumulative distribution function of the sample by

F̂n(t) =
1

n

n∑

i=1

I(xi ≤ t). (2.10)

Then a bootstrap sample is a sample taken with replacement from F̂n; i.e.
x∗1, . . . x

∗
n are iid F̂n. Denote this sample by x∗ = [x∗1, . . . , x

∗
n]

T . Let θ̂ = T (x)

be the estimate based on the original sample. Similarly θ̂∗ = T (x∗) is the esti-
mate based on the bootstrap sample. The bootstrap process is repeated a large
number of times, say B, from which we obtain θ̂∗1 , . . . , θ̂

∗
B. Since the empirical

distribution of the bootstrap estimates approximates the sampling distribution
of θ̂ we may use it to obtain an estimate of certainty in our estimate θ̂. To ob-
tain our confidence interval, we order the estimates θ̂∗(1) ≤ θ̂∗(2) ≤, . . . ,≤ θ̂∗(B).

Let m = [α/2 ∗B] then (θ̂∗(m), θ̂
∗
(B−m)) is an approximate (1− α) ∗ 100% con-

fidence interval for θ. That is, the end points of the percentile bootstrap
confidence interval are the α/2 and 1 − α/2 percentiles of the empirical

distribution of the θ̂∗i ’s.
Returning again to our example, let T (x) = 1

n

∑n
i=1 xi. The following code

segment obtains a 95% bootstrap percentile confidence interval.

> quantile(xbar,probs=c(0.025,0.975),type=1)

2.5% 97.5%

28.30090 32.14894

> m<-0.025*1000

> sort(xbar)[c(m,B-m)]
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[1] 28.30090 32.14894

Next we illustrate the use of the boot library to arrive at the same result.

> bsxbar<-boot(x,function(x,indices) mean(x[indices]), B)

> boot.ci(bsxbar)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = bsxbar)

Intervals :

Level Normal Basic

95% (29.89, 30.11 ) (29.89, 30.11 )

Level Percentile BCa

95% (29.89, 30.11 ) (29.89, 30.12 )

Calculations and Intervals on Original Scale

> quantile(bsxbar$t,probs=c(0.025,0.975),type=1)

2.5% 97.5%

29.88688 30.11383

2.4.2 Bootstrap Tests of Hypotheses

In bootstrap testing, the resampling is conducted under conditions that ensure
the null hypothesis, H0, is true. This allows the formulation of a bootstrap p-
value. In this section we illustrate the use of the bootstrap testing procedure by
applying it to the paired and one-sample problems discussed in Sections 2.2–
2.3.

The bootstrap testing procedure for the paired problem is as follows. First
sample with replacement from the set of pairs; then treatment is applied at
random to the pair. Notice this preserves the correlation of the paired design. If
d1, . . . , dn denote the difference based on the original sample data, then in the
bootstrap sample, if the ith pair is selected di and −di each have probability
1
2 of being in the bootstrap sample; hence the null hypothesis is true. Let
T ∗
1 , . . . , T

∗
B be the test statistics based on the B bootstrap samples. These

form an estimate of the null distribution of the test statistic T . The bootstrap
p-value is then calculated as

p-value =
#{T ∗

i ≥ T }
B

.

Example 2.4.2 (Nursery School Intervention Continued). There is more than
one way to to implement the bootstrap testing procedure for the paired prob-
lem, the following is one which utilizes the set of differences.
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> d<-school-home

> dpm<-c(d,-d)

Then dpm contains all the 2n possible differences. Obtaining bootstrap samples
from this vector ensures the null hypothesis is true. In the following we first
obtain B = 5000 bootstrap samples and store them in the vector dbs.

> n<-length(d)

> B<-5000

> dbs<-matrix(sample(dpm,n*B,replace=TRUE),ncol=n)

Next we will use the apply function to obtain the Wilcoxon test statistic for
each bootstrap sample. First we define a function which will return the value
of the test statistic.

> wilcox.teststat<-function(x) wilcox.test(x)$statistic

> bs.teststat<-apply(dbs,1,wilcox.teststat)

> mean(bs.teststat>=wilcox.teststat(d))

[1] 0.0238

Hence, the p-value = 0.0238 and is significant at the 5% level.

For the second problem, consider the one-sample location problem where
the goal is to test the hypothesis

H0 : θ = θ0 versus θ > θ0.

Let x1, . . . , xn be a random sample from a population with location θ. Let
θ̂ = T (x) be an estimate of θ.

To ensure the null hypothesis is true, that we are sampling from a distri-
bution with location θ0, we take our bootstrap samples from

x1 − θ̂ + θ0, . . . , xn − θ̂ + θ0. (2.11)

Denote the bootstrap estimates as θ̂∗1 , . . . , θ̂
∗
B. Then the bootstrap p-value is

given by

#{θ̂∗i ≥ θ̂}
B

.

We illustrate this bootstrap test with the following example.

Example 2.4.3 (Bootstrap test for sample mean). In the following code
segment we first take a sample from aN(1.5, 1) distribution. Then we illustrate
a test of the hypothesis

H0 : θ = 1 versus HA : θ > 1.

The sample size is n = 25.
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> x<-rnorm(25,1.5,1)

> thetahat<-mean(x)

> x0<-x-thetahat+1 #theta0 is 1

> mean(x0) # notice H0 is true

[1] 1

> B<-5000

> xbar<-rep(0,B)

> for( i in 1:B ) {

+ xbs<-sample(x0,length(x),replace=TRUE)

+ xbar[i]<-mean(xbs)

+ }

> mean(xbar>=thetahat)

[1] 0.02

In this case the p-value = 0.02 is significant at the 5% level.

2.5 Robustness∗

In this section, we briefly discuss the robustness properties of the three esti-
mators discussed so far in this chapter, namely, the mean, the median, and
the Hodges–Lehmann estimate. Three of the main concepts in robustness are
efficiency, influence, and breakdown. In Chapter 3, we touch on efficiency,
while in this section we briefly explore the other two concepts for the three
estimators.

The finite sample version of the influence function of an estimator is its
sensitivity curve. It measures the change in an estimator when an outlier is
added to the sample. More formally, let the vector xn = (x1, x2, . . . , xn)

T de-

note a sample of size n. Let θ̂n = θ̂n(xn) denote an estimator. Suppose we add
a value x to the sample to form the new sample xn+1 = (x1, x2, . . . , xn, x)

T

of size n+ 1. Then the sensitivity curve for the estimator is defined by

S(x; θ̂) =
θ̂n+1 − θ̂n
1/(n+ 1)

. (2.12)

The value S(x; θ̂) measures the rate of change of the estimator at the outlier x.
As an illustration consider the sample

{1.85, 2.35,−3.85,−5.25,−0.15, 2.15, 0.15,−0.25,−0.55, 2.65}.

The sample mean of this dataset is −0.09 while the median and Hodges–
Lehmann estimates are both 0.0. The top panel of Figure 2.2 shows the sensi-
tivity curves of the three estimators, the mean, median, and Hodges–Lehmann
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FIGURE 2.2
The top panel shows the sensitivity curves for the mean, median, and Hodges–
Lehmann estimators for the sample given in the text. The bottom panel dis-
plays the influence function of the three estimators.

for this sample when x is in the interval (−20, 20). Note that the sensitivity
curve for the mean is unbounded; i.e., as the outlier becomes large the rate in
change of the mean becomes large; i.e., the curve is unbounded. On the other
hand, the median and the Hodges–Lehmann estimators change slightly as x
changes sign, but their changes soon become constant no matter how large |x|
is. The sensitivity curves for the median and Hodges–Lehmann estimates are
bounded.

While intuitive, a sensitivity curve depends on the sample items. Its the-
oretical analog is the influence function which measures rate of change of the
functional of the estimator. at the probability distribution, F (t), of the ran-
dom errors of the location model. We say an estimator is robust if its influence
function is bounded. Down to a constant of proportionality and center, the
influence functions of the mean, median, and Hodges–Lehmann estimators
at a point x are respectively x, sign(x), and F (x) − 0.5. Hence, the median
and the Hodges–Lehmann estimators are robust, while the mean is not. The
influence functions of the three estimators are displayed in the lower panel
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of Figure 2.2 for a normal probability model. For the median and Hodges–
Lehmann estimators, they are smooth versions of their respective sensitivity
curves.

To briefly define the breakdown point of an estimator, consider again a
sample xn = (x1, x2, . . . , xn)

T from a location model with parameter θ. Let

θ̂ = θ̂(xn) be an estimator of θ. Suppose we contaminate m points in the
sample, so that the sample becomes

x∗
n = (x∗1, . . . , x

∗
m, xm+1, . . . , xn)

T ,

where x∗1, . . . , x
∗
m are the contaminated points. Think of the contaminated

points as very large (nearly ∞) in absolute value. The smallest value of m

so that the value of the estimator θ̂(x∗
n) becomes meaningless is the breaking

point of the estimator and the ratiom/n is called the finite sample breakdown

point of θ̂. If this ratio converges to a finite value, we call this value the
breakdown point of the estimator. Notice for the sample mean that one
point of contamination suffices to make the mean meaningless (as x∗1 → ∞,
x→∞). Hence, the breakdown point of the mean is 0. On the other hand, the
sample median can tolerate almost half of the data being contaminated. In the
limit, its ratio converges to 0.50. So we say that median has 50% breakdown.
The Hodges–Lehmann estimate has breakdown point 0.29; see, for instance,
Chapter 1 of Hettmansperger and McKean (2011).

In summary, the sample median and the Hodges–Lehmann estimator are
robust, with positive breakdown points. The mean is not robust and has break-
down point 0. Of the two, the sample median and the Hodges–Lehmann es-
timator, because of its higher breakdown, it would seem that the median is
preferred. This, however, ignores efficiency between estimators which is dis-
cussed in Chapter 3. Efficiency generally reverses this preference.

2.6 One- and Two-Sample Proportion Problems

For this and the next section, we focus on discrete variables. Recall that X is
a discrete random variable if its range consists of categories. In this section,
we consider discrete random variables whose ranges consist of two categories
which we generally label as failure (0) and success (1). Let X denote such a
random variable. Let p denote the probability of success. Then we say that X
has a Bernoulli distribution with the probability model

x 0 1
P (X = x) 1− p p

It is easy to show that the mean of X is p and that the variance of X is
p(1− p).
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2.6.1 One-Sample Problems

Statistical problems consist of estimating p, forming confidence intervals for
it, and testing hypotheses of the form

H0 : p = p0 versus HA : p 6= p0, (2.13)

where p0 is specified. One sided hypotheses can be similarly formulated.
Let X1, . . . , Xn be a random sample on X . Let S be the total number of

successes in the sample of size n. Then S has a binomial distribution with the
distribution

P (S = j) =

(
n

j

)
pj(1− p)n−j , j = 0, 1, . . . , n. (2.14)

The estimate of p is the sample proportion of successes; i.e.,

p̂ =
S

n
. (2.15)

Based on the asymptotic normality of S, an approximate (1 − α)100% confi-
dence interval for p is

(p̂− zα/2
√
p̂(1− p̂)/n, p̂+ zα/2

√
p̂(1− p̂)/n). (2.16)

Example 2.6.1 (Squeaky Hip Replacements). As a numerical example, De-
vore (2012), page 284, reports on a study of 143 subjects who have obtained
ceramic hip replacements. Ten of the subjects in the study reported that their
hip replacements squeaked. Consider patients who receive such a ceramic hip
replacement and let p denote the true proportion of those whose replacement
hips develop a squeak. Based on the data, we next compute3 the estimate of
p and a confidence interval for it.

> phat<-10/143

> zcv<-qnorm(0.975)

> phat+c(-1,1)*zcv*sqrt(phat*(1-phat)/143)

[1] 0.02813069 0.11172945

Hence, we estimate between roughly 3 and 11% of patients who receive ce-
ramic hip replacements such as the ones in the study will report squeaky
replacements.

Asymptotic tests of hypotheses involving proportions, such as (2.13), are
often used. For hypotheses (2.13), the usual test is to reject H0 in favor of
HA, if |z| is large, where

z =
p̂− p0√

p0(1 − p0)/n
(2.17)

3The base R function prop.test provides a confidence interval which is computed by
inverting the score test.
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Note that z has an asymptotic N(0, 1) distribution under H0, so an equiv-
alent test statistic is based on χ2 = z2. The p-value for a two-sided test is
p-value = P [χ2(1) > (Observed χ2)]. This χ2-formulation is the test and p-
value computed by the R function prop.test with correct=FALSE indicating
that a continuity correction not be applied. The two-sided hypothesis is the
default, but one-sided hypotheses can be tested by specifying the alternative
argument. The null value of p is set by the argument p.

Example 2.6.2 (Left-Handed Professional Ball Players). As an example of
this test, consider testing whether the proportion of left-handed professional
baseball players is the same as the proportion of left-handed people in the
general population, which is about 0.15. For our sample we use the dataset
baseball that consists of observations on 59 professional baseball players,
including throwing hand (‘L’ or ‘R’). The following R segment computes the
test:

> ind<-with(baseball,throw==’L’)

> prop.test(sum(ind),length(ind),p=0.15,correct=FALSE)

1-sample proportions test without continuity correction

data: sum(ind) out of length(ind), null probability 0.15

X-squared = 5.0279, df = 1, p-value = 0.02494

alternative hypothesis: true p is not equal to 0.15

95 percent confidence interval:

0.1605598 0.3779614

sample estimates:

p

0.2542373

Because the p-value of the test is 0.02494, H0 is rejected at the 5% level.

The above inference is based on the asymptotic distribution of S, the
number of successes in the sample. This statistic, though, has a binomial dis-
tribution, (2.14), and inference can be formulated based on it. This includes
finite sample tests and confidence intervals. For a given level α, though, these
confidence intervals are conservative; that is, their true confidence level is at
least (see Section 4.3 of Hogg et al. (2013).) 1 − α. These tests and confi-
dence intervals are computed by the R function binom.test. We illustrate its
computation for the baseball example.

> binom.test(sum(ind),59,p=.15)

Exact binomial test

data: sum(ind) and 59

number of successes = 15, number of trials = 59, p-value = 0.04192

alternative hypothesis: true probability of success is not equal to 0.15
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95 percent confidence interval:

0.1498208 0.3844241

sample estimates:

probability of success

0.2542373

Note that the confidence interval traps p = 0.15, even though the two-sided
test rejects H0. This example illustrates the conservativeness of the finite
sample confidence interval.

2.6.2 Two-Sample Problems

Consider two Bernoulli random variables X and Y with respective proba-
bilities of success p1 and p2. The parameter of interest is the difference in
proportions p1−p2. Inference concerns estimates of this difference, confidence
intervals for it, and tests of hypotheses of the form

H0 : p1 = p2 versus HA : p1 6= p2. (2.18)

Let X1, . . . , Xn1 and Y1, . . . , Yn2 be random samples on X and Y , respec-
tively. Assume that the samples are independent of one another. Section 2.7.4
discusses the paired (dependent) case. The estimate of the difference in pro-
portions is the difference in sample proportions, i.e., p̂1 − p̂2.

It follows that the estimator p̂1− p̂2 has an asymptotic normal distribution.
Based on this, a (1− α)100% asymptotic confidence interval for p1 − p2 is

p̂1 − p̂2 ± zα/2

√
p̂1(1− p̂1)

n1
+
p̂2(1− p̂2)

n2
. (2.19)

For the hypothesis (2.18), there are two test statistics which are used in
practice. The Wald-type test is the standardization of p̂1 − p̂2 based on its
standard error, (the square-root term in expression (2.19)). The more com-
monly used test statistic is the scores test which standardizes under H0. Under
H0 the population proportions are the same; hence the following average

p̂ =
n1p̂1 + n2p̂2
n1 + n2

(2.20)

is an estimate of the common proportion. The scores test statistic is given by

z =
p̂1 − p̂2√

p̂(1− p̂)
√

1
n1

+ 1
n2

. (2.21)

This test statistic is compared with z-critical values. As in the one-sample
problem, the χ2-formulation, χ2 = z2, is often used. We illustrate the R com-
putation of this analysis with the next example.
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Example 2.6.3 (Polio Vaccine). Rasmussen (1992), page 355, discusses one of
the original clinical studies for the efficacy of the Salk polio vaccine which took
place in 1954. The effectiveness of the vaccine was not known and there were
fears that it could even cause polio since the vaccine contained live virus. Chil-
dren with parental written consent were randomly divided into two groups.
Children in the treatment group (1) were injected with the vaccine while those
in the control or placebo group (2) were injected with a biologically inert so-
lution. Let p1 and p2 denote the true proportions of children who get polio in
the treatment and control groups, respectively. The hypothesis of interest is
the two-sided hypothesis (2.18). The following data are taken from Rasmussen
(1992):

Group No. Children No. Polio Cases Sample Proportion
Treatment 200,745 57 0.000284
Control 201,229 199 0.000706

The R function for the analysis is the same function used in the one-sample
proportion problem, namely, prop.test. The first and second arguments are
respectively the vectors c(S1,S2) and c(n1,n2), where S1 and S2 are the
number of successes for the two samples. The default hypotheses are the two-
sided hypotheses (2.18). The following R segment provides the analysis for the
polio vaccine data.

> prop.test(c(57,199),c(200745,201229),correct=FALSE)

2-sample test for equality of proportions without

continuity correction

data: c(57, 199) out of c(200745, 201229)

X-squared = 78.4741, df = 1, p-value < 2.2e-16

alternative hypothesis: two.sided

95 percent confidence interval:

-0.0008608391 -0.0005491224

sample estimates:

prop 1 prop 2

0.0002839423 0.0009889231

The χ2 test statistic has the value 77.3704 with a p-value that is zero to 15
places; hence, the null hypothesis would certainly be rejected. The direction
indicates that the vaccine has been effective.
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2.7 χ
2 Tests

In Section 2.6.1, we discussed inference for Bernoulli (binomial) random vari-
ables; i.e., discrete random variables with a range consisting of two categories.
In this section, we extend this discussion to discrete random variables whose
range consists of a general number of categories. Recall that the tests of
Section 2.6.1 could be formulated in terms of χ2-tests. We extend these χ2

goodness-of-fit tests for the situations of this section. Technical details may
be found in Agresti (2002) or Hogg et al. (2013). Consider a hypothesis (null)
concerning the categories. Then the χ2-test statistic is essentially the sum
over the categories of the squared and standardized differences between the
observed and expected frequencies, where the expected frequencies are formu-
lated under the assumption that the null hypothesis is true. In general, under
the null hypothesis, this test statistic has an asymptotic χ2-distribution with
degrees of freedom equal to the number of free categories (cells) minus the
number of parameters, if any, that need to be estimated to form the expected
frequencies. As we note later, at times the exact null distribution can be used
instead of the asymptotic distribution. For now, we present three general ap-
plications and their computation using R.

2.7.1 Goodness-of-Fit Tests for a Single Discrete Random
Variable

Consider a discrete random variable X with range (categories) {1, 2, . . . , c}.
Let p(j) = P [X = j] denote the the probability mass function (pmf) of the
distribution of X . Suppose the hypotheses of interest are:

H0 : p(j) = p0(j), j = 1, . . . , c versus HA : p(j) 6= p0(j), for some j. (2.22)

Suppose X1, . . . , Xn is a random sample on X . Let Oj = #{Xi = j}. The
statistics O1, . . . Oc are called the observed frequencies of the categories of
X . The observed frequencies are constrained as

∑c
j=1Oj = n; so, there are

essentially c− 1 free cells. The expected frequencies of these categories under
H0 are given by Ej = EH0 [Oj ], where EH0 denotes expectation under the null
hypothesis. There are two cases.

In the first case, the null distribution probabilities, p0(j), are completely
specified. In this case, Ej = np0(j) and the test statistic is given by

χ2 =

c∑

j=1

(Oj − Ej)
2

Ej
. (2.23)

The hypothesis H0 is rejected in favor of HA for large values of χ2. Note that
the vector of observed frequencies, (O1, . . . , Oc)

T has a multinomial distribu-
tion, so the exact distribution of χ2 can be obtained. It is also asymptotically
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equivalent to the likelihood ratio test statistic,4 and, hence, has an asymptot-
ically χ2-distribution with c−1 degrees of freedom under H0. In practice, this
asymptotic result is generally used. Let χ2

0 be the realized value of the statistic
χ2 when the sample is drawn. Then the p-value of the goodness-of-fit test is
1−Fχ2(χ2

0; c−1), where Fχ2 (·; c−1) denotes the cdf of a χ2-distribution with
c− 1 degrees of freedom.

The R function chisq.test computes the test statistic (2.23). The input
consists of the vectors of observed frequencies and the pmf (p0(1), . . . , p0(c))

T .
The uniform distribution (p(j) ≡ 1/c) is the default null distribution. The out-
put includes the value of the χ2-test statistic and the p-value. The return
list includes values for the observed frequencies (observed), the expected
frequencies (expected), and the residuals (residuals). These residuals are
(Oj − Ej)/

√
Ej , j = 1, . . . , c and are often called the Pearson residuals. The

squares of the residuals are the categories’ contributions to the test statistic
and offer valuable post-test information on which categories had large discrep-
ancies from those expected under H0.

Here is a simple example. Suppose we roll a die n = 370 times and we
observe the frequencies (58, 55, 62, 68, 66, 61)T. Suppose we are interested in
testing to see if the die is fair; i.e., p(j) ≡ 1/6. Computation in R yields

> x <- c(58,55,62,68,66,61)

> chifit <- chisq.test(x)

> chifit

Chi-squared test for given probabilities

data: x

X-squared = 1.9027, df = 5, p-value = 0.8624

> round(chifit$expected,digits=4)

[1] 61.6667 61.6667 61.6667 61.6667 61.6667 61.6667

> round((chifit$residuals)^2,digits=4)

[1] 0.2180 0.7207 0.0018 0.6505 0.3045 0.0072

Thus there is no evidence to support the die being unfair.
In the second case for the goodness-of-fit tests, only the form of the null

pmf is known. Unknown parameters must be estimated.5 Then the expected
values are the estimates of Ej based on the estimated pmf. The degrees of
freedom, though, decrease by the number of parameters that are estimated.6

The following example illustrates this case.

4See, for example, Exercise 6.5.8 of Hogg et al. (2013).
5For this situation, generally we estimate the unknown parameters of the pmf by their

maximum likelihood estimators. See Hogg et al. (2013).
6See Section 4.7 of Hogg et al. (2013).



36 Nonparametric Statistical Methods Using R

Example 2.7.1 (Birth Rate of Males to Swedish Ministers). This data is
discussed on page 266 of Daniel (1978). It concerns the number of males in
the first seven children for n = 1334 Swedish ministers of religion. The data
are

No. of Males 0 1 2 3 4 5 6 7
No. of Ministers 6 57 206 362 365 256 69 13

For example, 206 of these ministers had 2 sons in their first 7 children. The
null hypothesis is that the number of sons is binomial with probability of
success p, where success is a son. The maximum likelihood estimator of p is
the number of successes over the total number of trials which is

p̂ =

∑7
j=0 j ×Oj

7× 1334
= 0.5140.

The expected frequencies are computed as

Ej = n

(
7

j

)
p̂j(1 − p̂)7−j .

The values of the pmf can be computed in R. The following code segment
shows R computations of them along with the corresponding χ2 test. As we
have estimated p̂, the number of degrees of freedom of the test is 8−1−1 = 6.

> oc<-c(6,57,206,362,365,256,69,13)

> n<-sum(oc)

> range<-0:7

> phat<-sum(range*oc)/(n*7)

> pmf<-dbinom(range,7,phat)

The estimated probability mass function is given in the following code seg-
ment.

> rbind(range,round(pmf,3))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

range 0.000 1.000 2.00 3.000 4.00 5.000 6.000 7.000

0.006 0.047 0.15 0.265 0.28 0.178 0.063 0.009

The p-value is calculated using pchisq with the correct degress of freedom
(reduced by one due to the estimation of p).

> test.result<-chisq.test(oc,p=pmf)

> pchisq(test.result$statistic,df=6,lower.tail=FALSE)

X-squared

0.4257546
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With a p-value = 0.426 we would not reject H0. There is no evidence to refute
a binomial probability model for the number of sons in the first seven children
of a Swedish minister. The following provides the expected frequencies which
can be compared with the the observed.

> round(test.result$expected,1)

[1] 8.5 63.2 200.6 353.7 374.1 237.4 83.7 12.6

Confidence Intervals

In this section, we have been discussing tests for a discrete random variable
with a range consisting of c categories, say, {1, 2, . . . , c}. Write the distribution
of X as pj = p(j) = P (X = j), j = 1, 2, . . . , c. Using the notation at the
beginning of this section, for a given j, the estimate of pj is the proportion
of sample items in category j; i.e., p̂j = Oj/n. Note that this is a binomial
situation where category j is success and all other categories are failures. Hence
from expression (2.16), an asymptotic (1 − α)100% confidence interval for pj
is

p̂j ± zα/2
√
p̂j(1− p̂j)

n
. (2.24)

Another confidence interval of interest in this situation is for a difference in
proportions, say, pj − pk, j 6= k. This parameter is the difference in two pro-
portions in a multinomial setting; hence, the standard error7 of this estimate
is

SE(p̂j − p̂k) =
√
p̂j + p̂k − (p̂j − p̂k)2

n
. (2.25)

Thus, an asymptotic (1− α)100% confidence interval for pj − pk is

p̂j − p̂k ± zα/2
√
p̂j + p̂k − (p̂j − p̂k)2

n
. (2.26)

Example 2.7.2 (Birth Rate of Males to Swedish Ministers, continued). Con-
sider Example 2.7.1 concerning the number of sons in the first seven children
of Swedish ministers. Suppose we are interested in the difference in the prob-
abilities of all females or all sons. The following R segment estimates this
difference along with a 95% confidence interval, (2.26), for it. The counts for
these categories are respectively 6 and 13 with n = 1334.

> n <- 1334; p0 <- 6/n; p7 <- 13/n

> se <- sqrt((p0+p7-(p0-p7)^2)/n)

> lb <- p0-p7 - 1.96*se; ub <- p0-p7 + 1.96*se

> res<- c(p0-p7,lb,ub)

> res

7See page 363 of Hogg et al. (2013).
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[1] -0.005247376 -0.011645562 0.001150809

Since 0 is in the confidence interval there is no discernible difference in the
proportions at level 0.05.

A cautionary note is needed here. In general, many confidence intervals can
be formulated for a given situation. For example, if there are c categories then
there are

(
c
2

)
possible pairwise comparison confidence intervals. In such cases,

the overall confidence may slip. This is called a multiple comparison problem
(MCP) in statistics. There are several procedures to use. One such procedure
is the Bonferroni procedure. Suppose there are m confidence intervals of
interest. Then if each confidence interval is obtained with confidence coefficient
(1−(α/m)), the simultaneous confidence of all of the intervals is at least 1−α.
See Exercise 2.8.25.

2.7.2 Several Discrete Random Variables

A frequent application of goodness-of-fit tests concerns several discrete ran-
dom variables, say X1, . . . , Xr, which have the same range {1, 2, . . . , c}. The
hypotheses of interest are

H0 : X1, . . . , Xr have the same distribution

HA : Distributions of Xi and Xj differ for some i 6= j. (2.27)

Note that the null hypothesis does not specify the common distribution. In-
formation consists of independent random samples on each random variable.
Suppose the random sample on Xi is of size ni. let n =

∑r
i=1 ni denote the

total sample size. The observed frequencies are

Oij = #{sample items in sample drawn on Xi such that Xi = j},

for i = 1, . . . , r and j = 1, . . . , c. The set of {Oij}s form a r × c matrix of
observed frequencies. These matrices are often referred to as contingency
tables. We want to compare these observed frequencies to the expected fre-
quencies under H0. To obtain these we need to estimate the common distri-
bution (p1, . . . , pc)

T , where pj is the probability that category j occurs. The
nonparametric estimate of pj is

p̂j =

∑r
i=1Oij

n
, j = 1, . . . , c.

Hence, the estimated expected frequencies are Êij = nip̂j . This formula is
easy to remember since it is the row total times the column total over the
total number. The test statistic is the χ2-test statistic, (2.23); that is,

χ2 =

r∑

i=1

c∑

j=1

(Oij − Êij)
2

Êij

. (2.28)
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TABLE 2.1
Contingency Table for Type of Crime and
Alcoholic Status Data.

Crime Alcoholic Non-Alcoholic
Arson 50 43
Rape 88 62
Violence 155 110
Theft 379 300
Coining 18 14
Fraud 63 144

For degrees of freedom, note that each row has c − 1 free cells because the
sample sizes ni are known. Further c− 1 estimates had to be made. So there
are r(c− 1)− (c− 1) = (r− 1)(c− 1) degrees of freedom. Thus, an asymptotic
level α test is to reject H0 if χ2 ≥ χ2

α,(r−1)(c−1), where χ
2
α,(r−1)(c−1) is the α

critical value of a χ2-distribution with (r− 1)(c− 1) degrees of freedom. This
test is often referred to as the χ2-test of homogeneity (same distributions).
We illustrate it with the following example.

Example 2.7.3 (Type of Crime and Alcoholic Status). The contingency ta-
ble, Table 2.1, contains the frequencies of criminals who committed certain
crimes and whether or not they are alcoholics. We are interested in seeing
whether or not the distribution of alcoholic status is the same for each type
of crime. The data were obtained from Kendall and Stuart (1979).
To compute the test for homogeneity for this data in R, assume the contin-
gency table is in the matrix ct. Then the command is chisq.test(ct), as
the following R session shows:

> c1 <- c(50,88,155,379,18,63)

> c2 <- c(43,62,110,300,14,144)

> ct <- cbind(c1,c2)

> chifit <- chisq.test(ct)

> chifit

Pearson’s Chi-squared test

data: ct

X-squared = 49.7306, df = 5, p-value = 1.573e-09

> (chifit$residuals)^2

c1 c2

[1,] 0.01617684 0.01809979

[2,] 0.97600214 1.09202023

[3,] 1.62222220 1.81505693

[4,] 1.16680759 1.30550686
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[5,] 0.07191850 0.08046750

[6,] 19.61720859 21.94912045

The result is highly significant, but note that most of the contribution to the
test statistic comes from the crime fraud. Next, we eliminate fraud and retest.

> ct2 <- ct[-6,]

> chisq.test(ct2)

Pearson’s Chi-squared test

data: ct2

X-squared = 1.1219, df = 4, p-value = 0.8908

These results suggest that conditional on the criminal not committing fraud,
his alcoholic status and type of crime are independent.

Confidence Intervals

For a given category, say, j, it may be of interest to obtain confidence intervals
for differences such as P (Xi = j)−P (Xi′ = j). In the notation of this section,
the estimate of this difference is (Oij/ni)−(Oi′j/ni′), where ni and ni′ are the
respective sums of rows i and i′ of the contingency table. Since the samples on
these random variables are independent, the two-sample proportion confidence
interval given in expression (2.19) can be used. The cautionary note regarding
simultaneous confidence of the last section holds here, also.

2.7.3 Independence of Two Discrete Random Variables

The χ2 goodness-of-fit test can be used to test the independence of two dis-
crete random variables. Suppose X and Y are discrete random variables with
respective ranges {1, 2, . . . , r} and {1, 2, . . . , c}. Then we can write the hy-
pothesis of independence between X and Y as

H0 : P [X = i, Y = j] = P [X = i]P [Y = j] for all i and j versus

HA : P [x = i, Y = j] 6= P [X = i]P [Y = j] for some i and j. (2.29)

To test this hypothesis, suppose we have the observed the random sample
(X1, Y1), . . . , (Xn, Yn) on (X,Y ). We categorize these data into the r× c con-
tingency table with frequencies Oij where

Oij = #1≤l≤n{(Xl, Yl) = (i, j)}.

So the Oijs are our observed frequencies and there are initially rc−1 free cells.
The expected frequencies are formulated under H0. Note that the maximum
likelihood estimates (mles) of the marginal distributions of P [X = i] and
P [Y = j] are the respective statistics Oi·/n and O·j/n. Hence, under H0, the
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mle of P [X = i, Y = j] is the product of these marginal distributions. So the
expected frequencies are

Êij = n
Oi·

n

O·j

n
=
ith row total × jth col. total

total number
, (2.30)

which is the same formula as for the expected frequencies in the test for
homogeneity. Further, the degrees of freedom are also the same. To see this,
there are rc − 1 free cells, and to formulate the expected frequencies we had
to estimate r − 1 + c − 1 parameters. Hence, the degrees of freedom are:
rc − 1 − r − c + 2 = (r − 1)(c − 1). Thus the R code for the χ2-test of
independence is the same as for the test of homogeneity. Several examples are
given in the exercises.

Confidence Intervals

Notice that the sampling scheme in this section consists of one-sample over r×c
categories. Hence, it is the same scheme as in the beginning of this section,
Section 2.7.1. The estimate of each probability pij = P [X = i, Y = j] is
Oij/n and a confidence interval for pij is given by expression (2.24). Likewise,
confidence intervals for differences of the form pij − pi′j′ can be obtained by
using expression (2.26).

2.7.4 McNemar’s Test

McNemar’s test for significant change is used in many applications. The data
are generally placed in a contingency table but the analysis is not the χ2-
goodness-of-fit tests discussed earlier. A simple example motivates the test.
Suppose A and B are two candidates for a political office who are having a
debate. Before and after the debate, the preference, A or B, of each member
of the audience is recorded. Given a change in preference of candidate, we are
interested in the difference in the change from B to A minus the change from
A to B. If the estimate of this difference is significantly greater than 0, we
might conclude that A won the debate.

For notation assume we are observing a pair of discrete random variables
X and Y . In most applications, the ranges of X and Y have two values, say,
{0, 1}.8. In our simple debate example, the common range can be written as
{For A,For B}. Note that there are four categories (0, 0), (0, 1), (1, 0), (1, 1).
Let pij , i, j = 0, 1, denote the respective probabilities of these categories.
Consider the hypothesis

H0 : p01 − p10 = 0 versus HA : p01 6= p10. (2.31)

One-sided tests are of interest, also; for example, in the debate situation,
the claim that B wins the debate is expressed by the alternative HA :

8See Hettmansperger and McKean (1973) for generalizations to more than two categories.
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p01 > p10. Let (X1, Y1), . . . , (Xn, Yn) denote a random sample on (X,Y ).
Let Nij , i, j = 0, 1, denote the respective frequencies of the categories
(0, 0), (0, 1), (1, 0), (1, 1). For convenience, the data can be written in the con-
tingency table

0 1
0 N00 N01

1 N10 N11

The estimate of p01 − p10 is p̂01 − p̂10 = (N01/n) − (N10/n). This is the
difference in two proportions in a multinomial setting; hence, the standard
error of this estimate is given in expression (2.26). For convenience, we repeat
it with the current notation.

SE(p̂01 − p̂10) =
√
p̂01 + p̂10 − (p̂01 − p̂10)2

n
. (2.32)

The Wald test statistic is the z-statistic which is the ratio of p̂01 − p̂10 over
its standard error. Usually, though, a scores test is used. In this case the
squared difference in the numerator of the standard error is replaced by 0, its
parametric value under the null hypothesis. Then the square of the z-scores
test statistic reduces to

χ2 =
(N01 −N10)

2

N01 +N10
. (2.33)

Under H0, this test statistic has an asymptotic χ2-distribution with 1 degree
of freedom. Letting χ2

0 be the realized values of the test statistic once the
sample is drawn, the p-value of this test is 1−Fχ2(χ2

0; 1). For a one-sided test,
simply divide this p-value by 2.

Actually, an exact test is easily formulated. Note that this test is condi-
tioned on the categories (0, 1) and (1, 0). Furthermore, the null hypothesis
says that these two categories are equilikely. Hence under the null hypothesis,
the statistic N01 has a binomial distribution with probability of success 1/2
and N01 +N10 trials. So the exact p-value can be determined from this bino-
mial distribution. While either the exact or the asymptotic p-value is easily
calculated by R, we recommend the exact p-value.

Example 2.7.4 (Hodgkin’s Disease and Tonsillectomy). Hollander and Wolfe
(1999) report on a study concerning Hodgkin’s disease and tonsillectomy. A
theory purports that tonsils offer protection against Hodgkin’s disease. The
data in the study consist of 85 paired observations of siblings. For each pair,
one of the pair have Hodgkin’s disease and the other does not. Whether or
not each had a tonsillectomy was also reported. The data are:

Sibling
Tonsillectomy (0) No Tonsillectomy (1)

Hodgkin’s Tonsillectomy (0) 26 15
Patients No Tonsillectomy (1) 7 37
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If the medical theory is correct then p01 > p10. So we are interested in a one-
sided test. The following R calculations show how easily the test statistic and
p-value (including the exact) are calculated:

> teststat <- (15-7)^2/(15+7)

> pvalue <- (1 - pchisq(teststat,1))/2

> pexact <- 1 - pbinom(14,(15+7),.5)

> c(teststat,pvalue,pexact)

[1] 2.90909091 0.04404076 0.06690025

If the level of significance is set at 0.05 then different conclusions may be
drawn depending on whether or not the exact p-value is used.

Remark 2.7.1. In practice, the p-values for the χ2-tests discussed in this
section are often the asymptotic p-values based on the χ2-distribution. For
McNemar’s test we have the option of an exact p-value based on a binomial
distribution. There are other situations where an exact p-value is an option.
One such case concerns contingency tables where both margins are fixed. For
such cases, Fisher’s exact test can be used; see, for example, Chapter 2 of
Agresti (1996) for discussion. The R function for the analysis is fisher.test.
One nonparametric example of this test concerns Mood’s two-sample median
test (e.g. Hettmansperger and McKean 2011: Chapter 2). In this case, Fisher’s
exact test is based on a hypergeometric distribution.

2.8 Exercises

2.8.1. Verify, via simulation, the level of the wilcox.test when sampling
from a standard normal distribution. Use n = 30 and levels of α =
0.1, 0.05, 0.01. Based on the resulting estimate of α, the empirical level, obtain
a 95% confidence interval for α.

2.8.2. Redo Exercise 2.8.1 for a t-distribution using 1,2,3,5,10 degrees of free-
dom.

2.8.3. Redo Example 2.4.1 without a for loop and using the apply function.

2.8.4. Redo Example 2.3.2 without a for loop and using the apply function.

2.8.5. Suppose in a poll of 500 registered voters, 269 responded that they
would vote for candidate P. Obtain a 90% percentile bootstrap confidence
interval for the true proportion of registered voters who plan to vote for P.

2.8.6. For Example 2.3.1 obtain a 90% two-sided confidence interval for the
treatment effect.
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2.8.7. Write an R function which computes the sign analysis. For example,
the following commands compute the statistic S+, assuming that the sample
is in the vector x.

xt <- x[x!=0]; nt <- length(xt); ind <- rep(0,nt);

ind[xt > 0] <-1; splus <- sum(ind)

2.8.8. Calculate the sign test for the nursery school example, Example 2.3.1.
Show that the p-value for the one-sided sign test is 0.1445.

2.8.9. The data for the nursery school study were drawn from page 79 of
Siegel (1956). In the data table, there is an obvious typographical error. In
the 8th set of twins, the score for the the twin that stayed at home is typed
as 82 when it should be 62. Rerun the signed-rank Wilcoxon and t-analyses
using the typographical error value of 82.

2.8.10. The contaminated normal distribution is frequently used in simulation
studies. A standardized variable, X , having this distribution can be written
as

X = (1− Iǫ)Z + cIǫZ,

where 0 ≤ ǫ < 1, Iǫ has a binomial distribution with n = 1 and probability
of success ǫ, Z has a standard normal distribution, c > 1, and Iǫ and Z are
independent random variables. When sampling from the distribution of X ,
(1−ǫ)100% of the time the observations are drawn from a N(0, 1) distribution
but ǫ100% of the time the observations are drawn from a N(0, c2). These later
observations are often outliers. The distribution of X is a mixture distribution;
see, for example, Section 3.4.1 of Hogg et al. (2013). We say that X has a
CN(c, ǫ) distribution.

1. Using the R functions rbinom and rnorm, write an R function
which obtains a random sample of size n from a contaminated nor-
mal distribution CN(c, ǫ).

2. Obtain samples of size 100 from a N(0, 1) distribution and a
CN(16, 0.25) distribution. Form histograms and comparison box-
plots of the samples. Discuss the results.

2.8.11. Perform the simulation study of Example 2.3.2 when the population
has a CN(16, 0.25) distribution. For the alternatives, select values of θ so
the spread in empirical powers of the signed-rank Wilcoxon test ranges from
approximately 0.05 to 0.90.

2.8.12. The ratio of the expected squared lengths of confidence intervals is
a measure of efficiency between two estimators. Based on a simulation of
size 10,000, estimate this ratio between the Hodges–Lehmann and the sample
mean for n = 30 when the population has a standard normal distribution.
Use 95% confidence intervals. Repeat the study when the population has a
t-distribution with 2 degrees of freedom.
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2.8.13. Suppose the cure rate for the standard treatment of a disease is 0.60.
A new drug has been developed for the disease and it is thought that the cure
rate for patients using it will exceed 0.60. In a small clinical trial 48 patients
having the disease were treated with the new drug and 34 were cured.

(a) Let p be the probability that a patient having the disease is cured
by the new drug. Write the hypotheses of interest in terms of p.

(b) Determine the p-value for the clinical study. What is the decision
for a nominal level of 0.05?

2.8.14. Let p be the probability of success. Suppose it is of interest to test

H0 : p = 0.30 versus HA : p < 0.30.

Let S be the number of successes out of 75 trials. Suppose we reject H0, if
S ≤ 16.

(a) Determine the significance level of the test.

(b) Determine the power of the test if the true p is 0.25.

(c) Determine the power function for the test for the sequence for the
probabilities of success in the set {0.02, 0.03, . . . , 0.35}. Then obtain
a plot of the power curve.

2.8.15. For the situation of Exercise 2.8.13, a larger clinical study was run.
In this study, patients were randomly assigned to either the standard drug or
the new drug. Let p1 and p2 denote the cure rates for patients under the new
drug and the standard drug, respectively. The hypotheses of interest are:

H0 : p1 = p2 versus HA : p1 > p2.

The results of the study are:

Treatment No. of Patients No. Cured
New Drug 200 135
Standard Drug 210 130

(a) Determine the p-value of the scores test (2.21). Conclude at the 5%
level of significance.

(b) Obtain the 95% confidence interval for p1 − p2.
2.8.16. Simulate the power of the Wald and scores type two-sample propor-
tions test for the hypotheses

H0 : p1 = p2 versus HA : p1 > p2.

for the following situation. Assume that population 1 is Bernoulli with p1 =
0.6; population 2 is Bernoulli with p2 = 0.5; the level is α = 0.05; and n1 =
n2 = 50. Recall that the call rbinom(m,n,p) returnsm binomial variates with
distribution bin(n, p).
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2.8.17. In a large city, four candidates (Smith, Jones, Martinelli, and Wagner)
are running for Mayor. A poll was conducted by random dialing with the
following results:

Smith Jones Martinelli Wagner Others
442 208 460 180 205

Using a 95% confidence interval, determine if there is a significant difference
between the two front runners.

2.8.18. In Example 2.7.1 we tested whether or not a dataset was drawn from
a binomial distribution. For this exercise, generate a sample of size n = 500
from a truncated Poisson distribution as illustrated with the following R code:

x <- rpois(500,3)

x[x >= 8] = 7

(a) Obtain a plot of the histogram of the sample.

(b) Obtain an estimate of the sample proportion (phat<-mean(x/7)).

(c) Test to see if the sample has a binomial distribution with n = 7,
(i.e., use the same test as in Example 2.7.1).

2.8.19. Rasmussen (1992) presents the following data on a survey of workers
in a large factory on two variables: their feelings concerning a smoking ban
(Approve, Do not approve, Not sure) and Smoking status (Never smoked, Ex-
smoker, Current smoker). Use the χ2-test to test the independence of these two
variables. Using a post-test analysis, determine what categories contributed
heavily to the dependence.

Approval of the smoking ban
Smoking status Approve Do not approve Not sure
Never smoked 237 3 10
Ex-smoker 106 4 7
Current smoker 24 32 11

2.8.20. The following data are drawn from Agresti (1996). It concerns the
approval ratings of a Canadian prime minister in two surveys. In the first
survey, ratings were obtained on 1600 citizens and then in a second survey, six
months later, the same citizens were resurveyed. The data are tabled below.
Use McNemar’s test to see if given a change in attitude toward the prime
minister, the probability of going from approval to disapproval is higher than
the probability of going from disapproval to approval. Also determine a 95%
confidence interval for the difference of these two probabilities.

Second survey
First survey Approve Disapprove
Approve 794 150
Disapprove 86 570



Basic Statistics 47

2.8.21. Even though the χ2-tests of homogeneity and independence are the
same, they are based on different sampling schemes. The scheme for the test
of independence is one-sample of bivariate data, while the scheme for the test
of homogeneity consists of one-sample from each population. Let C be a con-
tingency table with r rows and c columns. Assume for the test of homogeneity
that the rows contain the samples from the r populations. Determine the (large
sample) confidence intervals for each of the following parameters under both
schemes, where pij is the probability of cell (i, j) occurring. Write R code to
obtain these confidence intervals assuming the input is a contingency table.

1. p11.

2. p11 − p12.

2.8.22. Mendel’s early work on heredity in peas is well known. Briefly, he
conducted experiments and the peas could be either round or wrinkled; yellow
or green. So there are four possible combinations: RY, RG, WY, WG. If his
theory were correct the peas would be observed in a 9:3:3:1 ratio. Suppose the
outcome of the experiment yielded the the following observed data

RY RG WY WG
315 108 101 32

Calculate a p-value and comment on the results.

2.8.23. Suppose there are two ways of making widgets: process A and process
B. Assume there is a reliable way in which to measure the overall quality of
widgets made from either process such that higher value can be measured with
some accuracy.

Suppose that a plant has 25 operators and each operator then makes a
widget of each type in random order. The results are such that process A has
more value than process B for 20 operators, B has more value than A for 3,
and the measurements were not different for 2 operators. These data present
pretty convincing evidence in favor of Process A. How likely is such a result
due to chance if the processes were actually equal in terms of quality?

2.8.24. Conduct a Monte Carlo simulation to approximate the power of the
test discussed in Example 2.4.3 when the true θ = 1.5.

2.8.25. Let 0 < α < 1. Suppose I1 and I2 are respective confidence intervals
for two parameters θ1 and θ2 both with confidence coefficient 1− (α/2); that
is,

Pθi [θi ∈ Ii] = 1− α

2
, i = 1, 2.

Show that the simultaneous confidence for both intervals is at least 1−α, i.e.,

Pθ1,θ2 [{θ1 ∈ I1} ∩ {θ2 ∈ I2}] ≥ 1− α.

Hint: Use the method of complements and Boole’s inequality, P [A ∪ B] ≤
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P (a) + P (B). Extend the argument to m intervals each with confidence co-
efficient 1 − (α/2) to obtain a set of m simultaneous Bonferroni confidence
intervals.



3

Two-Sample Problems

In this chapter, we consider two-sample problems. These are simple but often
used models in practice. Even in more complicated designs, contrasts of in-
terest often involve two levels. So the ideas discussed here carry over to these
designs.

In Sections 3.1–3.2, we discuss the two-sample Wilcoxon procedure. This
includes the usual distribution-free rank test as well as the associated rank-
based estimation, standard errors of estimates, and confidence intervals for the
shift in locations. Wilcoxon procedures are based on the linear score function.
Section 3.2.2 discusses rank-based procedures based on normal scores which
are optimal if the underlying populations have normally distributed errors.
We extend this discussion to general rank scores with a brief consideration of
efficiency in Section 3.5. A Hogg-type adaptive scheme for rank score selection
is presented in Section 3.6. For all of these generalizations, as shown, the
computation of both testing and estimation (including standard errors and
confidence intervals) is easily carried out by the R functions in the packages
Rfit and npsm.

In Section 3.3, rank-based procedures for the two-sample scale problem are
discussed. The Fligner–Kileen rank-based procedure for testing and estimation
in this setting is optimal under normality and, unlike the traditional F -test
based on variances, it possesses both robustness of validity and power for
nonnormal situations. Rank-based procedures for the related Behrens–Fisher
problem (Section 3.4) are also considered. As in other chapters, the focus is
on the R computation of these rank-based procedures.

3.1 Introductory Example

In this section, we discuss the Wilcoxon rank-based analysis for the two-sample
location problem in context of a real example. In this problem, there are two
populations which we want to compare. From each population, we have a
sample and based on these two samples we want to infer whether or not
there is a difference in location between the populations and, if possible, to
measure, with standard error, the difference (size of the effect) between the
populations. The test component of the analysis is the Wilcoxon two-sample

49
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FIGURE 3.1
Mortality rates for white males due to malignant melanoma in the United
States.

rank test and the estimation procedure is based on the associated Hodges–
Lehmann estimate. We discuss the R computation of the analyses.

Example 3.1.1 (Malignant Melanoma). The dataset USmelanoma, from the
package HSAUR2 (Everitt and Hothorn 2014), contains, for each of the 50 states,
variables for mortality rate for death due to malignant melanoma of white
males, latitude, longitude, and an indicator variable denoting whether the
state has an ocean boundary. The primary research questions of interest are:
first is there a difference in mortality for ocean states and non-ocean states, and
second does the difference prevail after adjusting for latitude and longitude?
We address the first question in this chapter and the second question on
adjustment in Chapter 5; see Exercise 5.8.13.

In Figure 3.1 we present comparison boxplots for the states that are ocean
states (yes) and for the states that are non-ocean states (no). There appears
to be an increase in the mortality rate due to malignant melanoma for the
ocean states. The difference in the medians is an estimate of the “shift” in
mortality rate between the the non-ocean and ocean states.

In Table 3.1, results of the tests and the associated estimates of the size
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TABLE 3.1
Estimates of Increase in Mortality Due to Malignant
Melanoma in White Males in the United States.

Test p-value Estimate Std Error
Least Squares 3.60 0.00 31.49 8.55

Wilcoxon 3.27 0.00 31.00 9.26

effect are displayed for the traditional analysis (two-sample t) and the rank-
based analysis (two-sample Wilcoxon). The p-value of the Wilcoxon analysis
indicates that there is a significant difference in mortality rates, (from malig-
nant melanoma), between the non-ocean and ocean states. The mortality rate
is significantly higher in the ocean states. The Wilcoxon estimate of the shift
from non-ocean states to ocean states is about 31 units with standard error 9
units. The results of the traditional LS analysis are similar.

In the next two subsections, we present the Wilcoxon rank-based analysis.
We first discuss testing and then estimation.

3.2 Rank-Based Analyses

For the most part, in this book, we are concerned with the rank-based fitting
of models and testing hypotheses defined in terms of parameters. The roots of
nonparametric methods, though, are distribution free tests, which work well
for both the location model, (3.3), as well as for nonparametric settings. In this
section, we first briefly discuss these procedures in the general nonparametric
setting of stochastic ordering for which these tests are consistent and then
discuss them in terms of the location model.

3.2.1 Wilcoxon Test for Stochastic Ordering of Alternatives

Let X1, . . . , Xn1 denote a random sample from a distribution with the cdf F .
Similarly, let Y1, . . . , Yn2 denote a random sample from a distribution with
the cdf G. Let n = n1 + n2 denote the total sample size. We begin with the
general case which only requires that the response variables be measured on
at least an ordinal scale.

The hypotheses of interest are given by

H0 : F (t) = G(t) vs. HA : F (t) ≤ G(t), (3.1)

where the inequality is strict for at least some t, (in the common support of
both X and Y ). For the alternative, we often say that X is stochastically
larger than Y or that X tends to beat Y . This concept is illustrated by the
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FIGURE 3.2
Plots of stochastic ordering. X is stochastically larger than Y .

cdfs in the left top panel of Figure 3.2. The right panels show the corresponding
pdfs. The bottom panels show a location shift model, which forms a subfamily
of stochastic ordering.

For the discussion in this section, we consider the test based on Wilcoxon
scores. For this test, the samples are combined into one sample and then
ranked from 1 to n, low to high. Let R(Yj) denote the rank of Yj in this
combined ranking. Then the Wilcoxon test statistic is

T =

n2∑

j=1

R(Yj). (3.2)

The command wilcox.test is available in base R and we highlight its use in
this section. For the hypotheses (3.1), the Wilcoxon test rejects H0 for small
values of T . Under H0 the two samples are from the same population; hence,
any subset of ranks is equilikely as any other subset of the same size. For
example, the probability that a subset of n2 rankings is assigned to the Y ’s is(
n
n2

)−1
. Thus the null distribution of T is free of the population distribution

and we say that the Wilcoxon test is distribution-free. Therefore the p-value
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of the Wilcoxon test can be based on the exact distribution of T (by calculating
the distribution of the ranks) or by using a large sample approximation.

Example 3.2.1 (Esophageal Cancer). This example is based on the case-
control study of esophageal cancer in Ile-et-Vilaine, France (Breslow et al.
1980). These data are available in the datasets package. We test the hypoth-
esis that alcohol consumption is the same in the two groups, using as our
dataset a sample of cases and controls.

Figure 3.3 displays a stacked bar chart of ordinal data in this study. The
following code segment illustrates the creation of the graphic.

> library(datasets)

> data(esoph)

> x<-rep(esoph$alcgp,esoph$ncases)

> y<-rep(esoph$alcgp,esoph$ncontrols)

> z<-c(x,y)

> w<-c(rep(1,length(x)),rep(0,length(y)))

> barplot(table(z,w),names.arg=c(’Cases’,’Controls’),

+ legend.text=levels(esoph$alcgp))

Below is the output for the Wilcoxon procedure for testing if the case group
tends to have higher levels of alcohol consumption than the control group. In
this case we use the default settings of a large sample p-value with a continuity
correction. Note that we have converted the data from the original ordered
categorical (or ordinal) data to numeric, as required by the base R function
wilcox.test.

> x<-as.numeric(x)

> y<-as.numeric(y)

> wilcox.test(x,y)

Wilcoxon rank sum test with continuity correction

data: x and y

W = 135611.5, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

The result is highly significant (the cases tend to consume more alcohol).
This result is not surprising based on the bar chart.

3.2.2 Analyses for a Shift in Location

We next discuss the Wilcoxon rank-based analysis for the two-sample location
problem. Let X and Y be continuous random variables. Let F (t) and f(t)
respectively denote the cdf and pdf ofX , andG(t) and g(t) respectively denote
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Stacked bar chart of the esophageal cancer data.

the cdf and pdf of Y . Then we say X and Y follow a location model, if for
some parameter ∆, −∞ < ∆ <∞,

G(t) = F (t−∆) and g(t) = f(t−∆). (3.3)

The parameter ∆ is the shift in location between the random variables Y and
X ; for instance, it is the difference in medians or in means (provided that the
means exist). We can write L(Y ) = L(X + ∆), where L means distribution
of (i.e., in law). The location model assumes, in particular, that the scale
parameters of X and Y are the same.

Consider two independent samples drawn from the location model. Let
X1, . . . , Xn1 be a random sample on a random variable X with cdf and pdf
F (t) and f(t), respectively, and let Y1, . . . , Yn2 be a random sample on a
random variable Y with cdf and pdf F (t−∆) and f(t−∆), respectively. Let
n = n1 + n2 denote the total sample size. Assume that the random samples
are independent of one another. The hypotheses of interest are

H0 : ∆ = 0 versus HA : ∆ 6= 0. (3.4)

One-sided alternatives can also be used. In addition to tests of hypotheses
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we also discuss estimates of the shift parameter ∆; both point estimates and
confidence intervals.

Let R(Yi) denote the rank of Yi among the combined samples, i.e., among
X1, . . . , Xn1 , Y1, . . . , Yn2 . Then the Wilcoxon test statistic is

T =

n2∑

i=1

R(Yi). (3.5)

There is a second formulation of the Wilcoxon test statistic that is often used.
Consider the set of all n1n2 differences {Yj − Xi} and let T+ denote the
number of positive differences, i.e.,

T+ = #i,j{Yj −Xi > 0}. (3.6)

We then have the identity

T+ = T − n2(n2 + 1)

2
. (3.7)

The form (3.6) is usually referred to as the Mann–Whitney test statistic.
In the case of tied observations (ties) in the data, one usually assigns the

average of the ranks that is allotted to these tied observations. For example,
see the following code segment.

> z<-c(12,18,11,5,11,5,11,11)

> rank(z)

[1] 7.0 8.0 4.5 1.5 4.5 1.5 4.5 4.5

For the two-sided hypothesis (3.4) the test rejects H0 for small or large
values of T . As discussed in the last section, T is distribution-free under H0

and, hence, exact critical values can be determined from its distribution. If
the samples are placed in the R vectors x and y, respectively, the R func-
tion wilcox.test(y,x) computes T+ and returns the p-value of the test.
By default the p-value is based on the exact distribution for small samples
(n < 50) and no ties, otherwise it is based on an asymptotic approximation
which we discuss below. The argument exact=FALSE results in the asymp-
totic distribution being used and exact=TRUE results in the exact distribution
being used if no ties are in the data. When obtaining asymptotic p-values,
use of a continuity correction may be overridden by setting the argument
correct=FALSE. The default hypothesis is the two-sided hypothesis. The ar-
gument alternative="less" (alternative="greater") result in testing the
alternative HA : ∆ < 0 (HA : ∆ > 0).

Approximate p-values are based on the asymptotic distribution of T (or
T+). It can be shown that the mean and variance of T under the null hypoth-
esis are given by n2(n+1)/2 and n1n2(n+1)/12, respectively. Furthermore, T
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has an asymptotic normal distribution. Hence, the standardized test statistic
is given by

z =
T − [n2(n+ 1)/2]√
n1n2(n+ 1)/12

. (3.8)

In this formulation, p-values are obtained by using the standard normal dis-
tribution. In the package npsm we have provided the R function rank.test

which computes this standardized form. To set these ideas and illustrate the
R computation, consider the following simple example.

Example 3.2.2 (Generated t5-Data). The following are two samples gener-
ated from a t-distribution with 5 degrees of freedom. The true shift parameter
∆ was set at the value 8. The following code is used to generate the samples.

> x<-round(rt(11,5)*10+42,1)

> y<-round(rt(9,5)*10+50,1)

The sorted data are

> sort(x)

[1] 29.1 31.1 32.4 34.9 41.0 42.6 45.0 47.9 52.5 59.3 76.6

> sort(y)

[1] 40.1 45.8 47.2 48.1 49.5 58.3 58.7 62.0 64.8

We first obtain the analysis based on the wilcox.test function in base R.

> wilcox.test(x,y,exact=TRUE)

Wilcoxon rank sum test

data: x and y

W = 27, p-value = 0.09518

alternative hypothesis: true location shift is not equal to 0

The function wilcox.test uses the T+ (3.6) formulation of the Wilcoxon test
statistic, which for these data has the value 27 with p-value 0.0952. Next we
obtain the analysis based on the rank.test function in npsm.

> rank.test(x,y)

statistic = 1.709409 , p-value = 0.08737528

The results based on rank.test shows that the test statistic is 1.71 with the
p-value 0.0874. The results of the exact and asymptotic analyses are quite
similar; neither would reject the null hypothesis at a 5% level, while both
would be considered significant evidence against the null at a 10% level. Note
wilcox.test(x,y,exact=FALSE,correct=FALSE) provides the same p-value
as rank.test(x,y).
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Often an estimate of the shift parameter ∆ is desired. The estimator of
∆ associated with the Wilcoxon analysis is the Hodges–Lehmann estimator,
which is the median of all pairwise differences:

∆̂W = medi,j{Yj −Xi}. (3.9)

This estimate is obtained by inverting the Wilcoxon test as we discuss in
the next section. Note there are Nd = n1n2 pairwise differences between the
sample of Y s and the sample of Xs. A distribution-free confidence interval
can be constructed from the differences. Let D(1) < D(2) < · · · < D(Nd) be
the ordered differences. If the confidence level is 1− α, take c to be the lower
α/2 critical point of the null distribution of T+, i.e.,

α/2 = PH0 [T
+ ≤ c].

Then the interval (D(c+1), D(n−c)) is a (1−α)100% confidence interval for ∆.
The asymptotic value for c is given by

c =
n1n2

2
− 1

2
− zα/2

√
n1n2(n+ 1)

12
,

which is rounded to nearest integer. It is generally quite close to the actual
value. The R function wilcox.test computes the estimate and confidence
interval. As an illustration, reconsider Example 3.2.2. The following code seg-
ment illustrates the how to obtain a confidence interval for ∆.

> wilcox.test(y,x,conf.int=TRUE)

Wilcoxon rank sum test

data: y and x

W = 72, p-value = 0.09518

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-1.0 18.4

sample estimates:

difference in location

10.4

Note that the confidence interval (−1, 18.4) includes the true ∆ which is 8. The
point estimate is ∆̂ = 10.4. Different confidence levels can be set by changing
the value of the input variable conf.level. For example, use conf.level=.99
for a 99% confidence interval.

Note that we can perform the Wilcoxon test equivalently using the follow-
ing formulation of the Wilcoxon test statistic:

TW =

n2∑

i=1

a[R(Yi)],
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where a(i) = ϕW [i/(n+1)] and ϕ(u) =
√
12[u− (1/2)]. The following identity

is easy to obtain:

TW =

√
12

n+ 1

[
T − n2(n+ 1)

2

]
.

Hence, the statistic TW is a linear function of the ranks and, for instance, its z
score formulation is exactly the same as that of T . We call the function ϕW (u)
a score function and, more specifically, the Wilcoxon score function. We also
call the related scores, aW (i), the Wilcoxon scores.

Normal Scores

Certainly functions other than the linear function can be used and are some-
times advantageous to using Wilcoxon scores as they may be more efficient. In
Section 3.5 we discuss this, offering an optimality result. Later, in Section 3.6,
we present an adaptive scheme which automatically selects an appropriate
score. In this section, we discuss the analysis based on the scores which are
fully asymptotically efficient if the underlying populations are normally dis-
tributed. These scores are call the normal scores.

The normal scores are generated by the function.

ϕns(u) = Φ−1(u), (3.10)

where Φ−1(u) denotes the inverse of the standard normal cumulative distri-
bution function. Letting ans(i) = ϕns[i/(n + 1)], the associated test statistic
is

Tns =

n2∑

i=1

ans[R(Yi)].

Under H0 this test statistic is distribution-free. Usually, the associated z-test
statistic is used. The mean and variance of Tns under the null hypothesis are
0 and

VarH0(Tns) =
n1n2

n− 1

n∑

i=1

a2ns(i),

respectively. Using these moments, an asymptotic level α test of the hypothe-
ses (3.4) is

Reject H0 in favor of HA, if |zns| ≥ zα/2, (3.11)

where

zns =
Tns√

VarH0(Tns)
.

The z-test formulation is computed by the npsm function rank.test. The
following code segment displays the results of the normal scores test for the
data of Example 3.2.2. Notice the normal scores are called by the argument
scores=nscores.

> rank.test(x,y,scores=nscores)



Two-Sample Problems 59

statistic = 1.606725 , p-value = 0.1081147

The standardized test statistic has the value 1.61 with p-value 0.1081.
Estimates and confidence intervals are also available as with rank.test.

The next section discusses the details of the computation, but we illustrate
the use of rank.test to obtain these values.

> rank.test(x,y,scores=nscores,conf.int=TRUE)

statistic = 1.606725 , p-value = 0.1081147

percent confidence interval:

-1.618417 22.41855

Estimate: 10.40007

3.2.3 Analyses Based on General Score Functions

Recall in Section 3.2.2 that besides the Wilcoxon scores, we introduced
the normal scores. In this section, we define scores in general and discuss
them in terms of efficiency. General scores are discussed in Section 2.5 of
Hettmansperger and McKean (2011). A set of rank-based scores is generated
by a function ϕ(u) defined on the interval (0, 1). We assume that ϕ(u) is
square-integrable and, without loss of generality, standardize as

∫ 1

0
ϕ(u) du = 0 and

∫ 1

0
ϕ2(u) du = 1. (3.12)

The generated scores are then aϕ(i) = ϕ[i/(n+ 1)]. Because
∫ 1

0
ϕ(u) du = 0,

we also may assume that the scores sum to 0, i.e.,
∑n

i=1 a[i] = 0. The Wilcoxon

and normal scores functions are given respectively by ϕW (u) =
√
12[u−(1/2)]

and ϕns(u) = Φ−1(u) where Φ−1(u) is the inverse of the standard normal
cumulative distribution function.

For general scores, the associated process is

Sϕ(∆) =

n2∑

j=1

aϕ[R(Yj −∆)], (3.13)

where R(Yj − ∆) denotes the rank of Yj − ∆ among X1, . . . , Xn1 and Y1 −
∆, . . . , Yn2 −∆. A test statistic for the hypotheses

H0 : ∆ = 0 versus HA : ∆ > 0 (3.14)

is Sϕ = Sϕ(0). Under H0, the Xs and Y s are identically distributed. It then
follows that Sϕ is distribution-free. Although exact null distributions of Sϕ can
be numerically generated, usually the null asymptotic distribution is used. The
mean and variance of Sϕ(0) under the null hypothesis are

EH0 [Sϕ(0)] = 0 and σ2
ϕ = VH0 = n1n2

n(n−1)

n∑

i=1

a2ϕ(i). (3.15)
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Furthermore, the null distribution of Sϕ(0) is asymptotically normal. Hence,
our standardized test statistic is

zϕ =
Sϕ(0)

σϕ
. (3.16)

For the hypotheses (3.14), an asymptotic level α test is to reject H0 if zϕ ≥ zα,
where zα is the (1−α) quantile of the standard normal distribution. The two-
sided and the other one-sided hypotheses are handled similarly.

The npsm function rank.test computes this asymptotic test statistic
zϕ along with the corresponding p-value for all the intrinsic scores found
in Rfit. The arguments are the samples, the specified score function, and
the value of alternative which is greater, two.sided, or less for re-
spective alternatives ∆ > 0, ∆ 6= 0, or ∆ < 0. For example, the call
rank.test(x,y,scores=nscores) compute the normal scores asymptotic
test for a two-sided alternative. Other examples are given below.

For a general score function ϕ(u), the corresponding estimator ∆̂ϕ of the
shift parameter ∆ solves the equation

Sϕ(∆)=̇0. (3.17)

It can be shown that the function Sϕ(∆) is a step function of ∆ which steps
down at each difference Yj − Xi; hence, the estimator is easily computed

numerically. The asymptotic distribution of ∆̂ϕ is given by

∆̂ϕ has an approximate N

(
∆, τ2ϕ

√
1

n1
+

1

n2

)
, (3.18)

where τϕ is the scale parameter

τ−1
ϕ =

∫ 1

0

ϕ(u)ϕf (u) du (3.19)

and

ϕf (u) = −
f ′(F−1(u))

f(F−1(u))
. (3.20)

In practice, τϕ must be estimated based on the two samples. We recommend
the Koul, Sievers, and McKean (1987) estimator which is implemented in
Rfit. We denote this estimate by τ̂ϕ. Thus the standard error of the estimate
is

SE(∆̂ϕ) = τ̂ϕ

√
1

n1
+

1

n2
. (3.21)

Based on (3.18), an approximated (1 − α)100% confidence interval for ∆
is

∆̂ϕ ± tα/2,n−2τ̂ϕ

√
1

n1
+

1

n2
, (3.22)
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where tα/2,n−2 is the upper α/2 critical value of a t-distribution1 with n − 2
degrees of freedom.

3.2.4 Linear Regression Model

Looking ahead to the next chapter, we frame the two-sample location problem
as a regression problem. We begin by continuing our discussion of the normal
scores rank-based analysis of the previous section. In particular, we next dis-
cuss the associated estimate of the shift parameter ∆. The rfit function of
the R package Rfit has the built-in capability to fit regression models with a
number of known score functions, including the normal scores. So it is worth-
while to take a few moments to set up the two-sample location model as a
regression model. Let Z = (X1, . . . , Xn1 , Y1, . . . , Yn2)

T . Let c be a n×1 vector
whose ith component is 0 for 1 ≤ i ≤ n1 and 1 for n1 + 1 ≤ i ≤ n = n1 + n2.
Then we can write the location model as

Zi = α+ ci∆+ ei, (3.23)

where e1, . . . , en are iid with pdf f(t). Hence, we can estimate ∆ by fitting this
regression model. If we use the method of least squares then the estimate is
Y −X. If we use the rank-based fit with Wilcoxon scores then the estimate of
∆ is the median of the pairwise differences. If instead normal scores are called
for then the estimate is the estimate associated with the normal scores test.
The following R segment obtains the rank-based normal scores fit for the data
of Example 3.2.2. Notice that scores=nscores calls for the normal scores
rank-based fit. If this call is deleted, the default Wilcoxon fit is computed
instead.

> z <- c(x,y); ci <- c(rep(0,length(x)),rep(1,length(y)))

> fitns <- rfit(z ~ ci,scores=nscores)

> coef(summary(fitns))

Estimate Std. Error t.value p.value

(Intercept) 41.800000 4.422388 9.451907 2.111075e-08

ci 9.500033 5.801869 1.637409 1.189079e-01

Hence, the normal scores estimate of ∆ is 9.5. Notice that the summary table
includes the standard error of the estimate, namely 5.8. Using this, an approx-
imate 95% confidence interval for ∆, based on the upper 0.025 t-critical with
20 degrees of freedom, is (−2.52, 22.52).

We close this section with the Wilcoxon and normal scores analyses of a
dataset taken from a preclinical study.

Example 3.2.3 (Quail Data). The data for this problem were extracted from

1For a discussion on the appropriateness of t-critical values, see McKean and Sheather
(1991).



62 Nonparametric Statistical Methods Using R

a preclinical study on low density lipids (LDL). Essentially, for this example,
the study consisted of assigning 10 quail to a diet containing an active drug
compound (treated group), which hopefully reduces LDL, while 20 other quail
were assigned to a diet containing a placebo (control group); see Section 2.3
of Hettmansperger and McKean (2011) for a discussion of this preclinical
experiment. At the end of a specified time, the LDL levels of all 30 quail were
obtained. The data are available in the quail2 dataset. A comparison boxplot
of the data is given in Figure 3.4.

The boxplots clearly show an outlier in the treated group. Further, the
plot indicates that the treated group has generally lower LDL levels than the
placebo group. Using the rfit function, we compute the Wilcoxon and normal
scores estimates of ∆ and their standard errors for the Wilcoxon and normal
scores analyses. For comparison purposes we also present these results for the
least squares analysis (LS).

> library(Rfit)

> fit<-rfit(ldl~treat,data=quail2)

> coef(summary(fit))
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FIGURE 3.4
Comparison boxplots of low density lipids cholesterol.
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Estimate Std. Error t.value p.value

(Intercept) 65 4.268982 15.226112 4.487132e-15

treat -14 8.384718 -1.669704 1.061221e-01

> fitns<-rfit(ldl~treat,data=quail2,scores=nscores)

> coef(summary(fitns))

Estimate Std. Error t.value p.value

(Intercept) 65.00000 4.116922 15.788494 1.800598e-15

treat -12.99995 7.669879 -1.694936 1.011828e-01

> fitls<-lm(ldl~treat,data=quail2)

> coef(summary(fitls))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 67.2 5.175630 12.9839273 2.270203e-13

treat -5.0 8.964454 -0.5577585 5.814417e-01

The Wilcoxon and normal scores estimates and standard errors are similar.
The LS estimate, though, differs substantially from the robust fits. The LS
analysis is severely affected by the outlier. Although not significant at the 5%
level, (p-value is 0.1061), the Wilcoxon estimate of shift is much closer to the
boxplots’ difference in medians, −19, than the LS estimate of shift.

3.3 Scale Problem

Besides differences in location, we are often interested in the difference between
scales for populations. Let X1, . . . , Xn1 be a random sample with the common
pdf f [(x − θ1)/σ1] and Y1, . . . , Yn2 be a random sample with the common
pdf f [(y − θ2)/σ2], where f(x) is a pdf and σ1, σ2 > 0. In this section our
hypotheses of interest are

H0 : η = 1 versus HA : η 6= 1, (3.24)

where η = σ2/σ1. Besides discussing rank-based tests for these hypotheses, we
also consider the associated estimation of η, along with a confidence interval
for η. So here the location parameters θ1 and θ2 are nuisance parameters.

As discussed in Section 2.10 of Hettmansperger and McKean (2011), there
are asymptotically distribution-free rank-based procedures for this problem.
We discuss the Fligner–Killeen procedure based on folded, aligned samples.
The aligned samples are defined by

X∗
i = Xi −med{Xl}, i = 1, . . . , n1

Y ∗
j = Yj −med{Yl}, j = 1, . . . , n2. (3.25)
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Next, the folded samples are |X∗
1 |, . . . , |X∗

n1
|, |Y ∗

1 |, . . . , |Y ∗
n2
|. The folded sam-

ples consist of positive items and their logs, essentially, differ by a location
parameter, i.e., ∆ = log(η). This suggests the following log-linear model. De-
fine Zi by

Zi =

{
log |X∗

i | i = 1, . . . , n1

log |Y ∗
i−n1
| i = n1 + 1, . . . , n1 + n2.

Let c be the indicator vector with its first n1 entries set at 0 and its last n2

entries set at 1. Then the log-linear model for the aligned, folded sample is

Zi = ∆ci + ei, i = 1, 2, . . . , n. (3.26)

Our rank-based procedure is clear. Select an appropriate score function
ϕ(u) and generate the scores aϕ(i) = ϕ[i/(n+ 1)]. Obtain the rank-based fit

of Model (5.28) and, hence, the estimator ∆̂ϕ of ∆. The estimator of η is then

η̂ϕ = exp{∆̂ϕ}. For specified 0 < α < 1, denote by (Lϕ, Uϕ) the confidence
interval for ∆ based on the fit; i.e.,

Lϕ = ∆̂ϕ − tα/2τ̂ϕ
√

1
n1

+ 1
n2

and Uϕ = ∆̂ϕ + tα/2τ̂ϕ

√
1
n1

+ 1
n2
.

An approximate (1−α)100% confidence interval for η is (exp{Lϕ}, exp{Uϕ}).
Similar to the estimator η̂ϕ, an attractive property of this confidence interval
is that its endpoints are always positive.

This confidence interval for η can be used to test the hypotheses (3.24);
however, the gradient test is often used in practice. Because the log function
is strictly increasing, the gradient test statistic is given by

Sϕ =

n2∑

j=1

aϕ[R(log(|Y ∗
j |)] =

n2∑

j=1

aϕ[R|Y ∗
j |], (3.27)

where the ranks are over the combined folded, aligned samples. The standard-
ized test statistic is z = (Sϕ − µϕ)/σϕ, where

µϕ = 1
n

∑n
i=1 a(i) = a and σ2

ϕ = n1n2

n(n−1)

∑n
i=1(a(i)− a)2. (3.28)

What scores are appropriate? The case of most interest in applications
is when the underlying distribution of the random errors in Model (5.28) is
normal. In this case the optimal score2 function is given by

ϕFK =

(
Φ−1

(
u+ 1

2

))2

. (3.29)

Hence, the scores are of the form squared-normal scores. Note that these
are light-tail score functions, which is not surprising because the scores are

2See Section 2.10 of Hettmansperger and McKean (2011).
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optimal for random variables which are distributed as log(|W |) where W has
a normal distribution. Usually the test statistic is written as

SFK =

n2∑

j=1

(
Φ−1

(
R|Y ∗

j |
2(n+ 1)

+
1

2

))2

. (3.30)

This test statistic is discussed in Fligner and Killeen (1976) and Section 2.10
of Hettmansperger and McKean (2011). The scores generated by the score
function (3.29) are in npsm under fkscores. Using these scores, straightfor-
ward code leads to the computation of the Fligner–Killeen procedure. We have
assembled the code in the R function fk.test which has similar arguments
as other standard two-sample procedures.

> args(fk.test)

function (x, y, alternative = c("two.sided", "less", "greater"),

conf.level = 0.95)

NULL

In the call, x and y are vectors containing the original samples (not the folded,
aligned samples); the argument alternative sets the hypothesis (default is
two-sided); and conf.level sets the confidence coefficient of the confidence
interval. The following example illustrates the Fligner–Killeen procedure and
its computation.

Example 3.3.1 (Effect of Ozone on Weight of Rats). Draper and Smith
(1966) present an experiment on the effect of ozone on the weight gain of rats.
Two groups of rats were selected. The control group (n1 = 21) lived in an
ozone-free environment for 7 days, while the experimental group (n2 = 22)
lived in an ozone environment for 7 days. At the end of the 7 days, the gain
in weight of each rat was taken to be the response. The comparison boxplots
of the data, Figure 3.5, show a disparity in scale between the two groups.

For this example, the following code segment computes the Fligner–Killeen
procedure for a two-sided alternative. The data are in the dataset sievers.
We first split the groups into two vectors x and y as input to the function
fk.test.

> data(sievers)

> x <- with(sievers,weight.gain[group==’Control’])

> y <- with(sievers,weight.gain[group==’Ozone’])

> fk.test(x,y)

statistic = 2.095976 , p-value = 0.03608434

95 percent confidence interval:

1.002458 5.636436

Estimate: 2.377034
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FIGURE 3.5
Comparison boxplots of weight gain in n1 = 21 controls and n2 = 22 ozone
treated rats.

Hence, the rank-based estimate of η is 2.337 with the 95% confidence interval
of (1.002, 5.636). The standardized Fligner–Killeen test statistic has value 2.09
with the p-value 0.0361 for a two-sided test. Thus there is evidence that rats
exposed to ozone have larger variability in their weight gains than nonexposed
rats.

The score function (3.29) is optimal for scale if the original samples
are from normal populations. Several other score functions are discussed in
Hettmansperger and McKean (2011). For example, the Wilcoxon scores are
optimal for scale if |X | follows a F (2, 2)-distribution.

It is well known that the traditional F -test based on the ratio of sample
variances is generally invalid for nonnormal populations. This can be shown
theoretically as in Section 2.10.2 of Hettmansperger and McKean (2011). On
the other hand, the Fligner–Killeen test is asymptotically distribution-free
over all symmetric error pdfs f(x), and, as the next remark discusses, appears
to be valid for skewed-contaminated normal distributions. We discuss several
pertinent simulation studies next.
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Remark 3.3.1 (Simulation Studies Concerning the FK-Test). Conover et al.
(1983) discuss the results of a large simulation study of tests for scale in the
k-sample problem over many distributions for the random errors. The tradi-
tional Bartlett’s test (usual F -test in the two-sample problem) is well known
to be invalid for nonnormal distributions and this is dramatically shown in
this study. Other methods investigated included several folded, aligned tests.
One that performed very well uses a test statistic similar to (3.30) except that
the exponent is 1 instead of 2. Over symmetric error distributions that test
was valid and showed high empirical power but had some trouble with valid-
ity for asymmetric distributions. However, in a simulation study conducted
by Hettmansperger and McKean (2011), the test based on the test statis-
tic (3.30), (i.e., with the correct exponent 2), (3.30), was empirically valid
over a family of contaminated skewed distributions as well as symmetric error
distributions.

The base R function fligner.test is based on Conover et al. (1983) which
used exponent 1, so the test results will differ from fk.test. Also, fk.test
obtains the associated estimate of effect and a confidence interval which are
not available in fligner.test.

In the presence of different scales, one would probably not want to perform
the usual analysis for a difference in locations. In the next section, we discuss
a rank-based analysis using placements, which is appropriate.

3.4 Placement Test for the Behrens–Fisher Problem

Suppose that we have two populations which differ by location and scale and
we are interested in testing that the locations are the same. To be specific,
assume for this section that

X1, X2, . . . , Xn1 is a random sample on X with cdf F (x)

Y1, Y2, . . . , Yn2 is a random sample on Y with cdf G(x). (3.31)

Let θX and θY denote the medians of the distributions (populations) F (x)
and G(y), respectively. Our two-sided hypothesis of interest is

H0 : θX = θY versus HA θX 6= θY . (3.32)

This is called the Behrens–Fisher problem and the traditional test in this
situation is the two-sample t-test which uses a t-statistic with the Satterth-
waite degrees of freedom correction. This is the default test in the R function
t.test(x,y), where x and y are the R vectors containing the samples. In this
section, we discuss a version of the two-sample Mann–Whitney–Wilcoxon test
which serves as a robust alternative to this approximate t-test.
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The nonparametric procedure that we consider was proposed by Fligner
and Policello (1981); see, also Section 2.11 of Hettmansperger and McKean
(2011) and Section 4.4 of Hollander and Wolfe (1999). It is a modified Mann–
Whitney–Wilcoxon test. For its underlying theory, we further assume that
the cdfs F (x) and G(y) are symmetric; i.e., symmetric about θX and θY ,
respectively. Provided we have sufficient data, an important diagnostic for
checking symmetry is the comparison boxplot of the samples which offers a
graphical check of difference in scales and the symmetry of the distributions.

The test statistic is the Mann–Whitney–Wilcoxon statistic defined in ex-
pression (3.6), which we rewrite here:

T+ = #i,j{Yj −Xi > 0} =
n2∑

j=1

R(Yj)−
n2(n2 + 1)

2
.

Under the symmetry assumption, EH0(T
+) = n1n2/2. Thus the null expecta-

tion of T+ is the same as in the location problem. The null variance, though,
differs from that of the location problem. It is most easily seen in terms of
what are known as the placements.

Let P1, . . . , Pn1 denote the placements of the Xis in terms of the Y -sample,
which is defined as

Pi = #j{Yj < Xi}; i = 1, . . . , n1. (3.33)

In the same way, define the placements of the Yjs in terms of the X-sample
as Q1, . . . , Qn2 where

Qj = #i{Xi < Yj}; j = 1, . . . , n2. (3.34)

Placements are ranks within a sample, but to avoid confusion with the ranks
on the combined samples, the term placement is used. Define

P =
1

n1

n1∑

i=1

Pi Q =
1

n2

n2∑

i=1

Qj

V1 =

n1∑

i=1

(Pi − P )2 V2 =

n2∑

j=1

(Qj −Q)2. (3.35)

Then the standardized test statistic is

Zfp =
T+ − n1n2/2

(V1 + V2 + PQ)1/2
. (3.36)

Under H0, Zfp has an asymptotic standard normal distribution. So, the
Fligner–Policello test of the hypothesis (3.32) is

Reject H0 : θX = θY in favor of HA : θX 6= θY if Zfp ≥ zα/2. (3.37)

This test has asymptotically level α.
For computation of this test npsm provides the R function fp.test. Its use

is illustrated in the following example.
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Example 3.4.1 (Geese). On page 136 of Hollander and Wolfe (1999) a study
of healthy and lead-poisoned geese is discussed. The study involved 7 healthy
geese and 8 lead-poisoned geese. The response of interest was the amount of
plasma glucose in the geese in mg/100 ml of plasma. As discussed in Hollander
and Wolfe (1999), the hypotheses of interest are:

H0 : θL = θH vs. HA : θL > θH , (3.38)

where θL and θH denote the true median plasma glucose values of lead-
poisoned geese and healthy geese, respectively. The data are listed below.
As shown, the R vectors lg and hg contain respectively the responses of the
lead-poisoned and healthy geese. The sample sizes are too small for compar-
ison boxplots, so, instead, the comparison dotplots found in Figure 3.6 are
presented. Using Y as the plasma level of the lead-poisoned geese, the test
statistic T+ = 40 and its mean under the null hypothesis is 28. So there is
some indication that the lead-poisoned geese have higher levels of plasma glu-
cose. The following code segment computes the Fligner–Policello test of the
hypotheses, (3.38), based on npsm function fp.test:

> lg = c(293,291,289,430,510,353,318)

> hg = c(227,250,277,290,297,325,337,340)

> fp.test(hg,lg,alternative=’greater’)

statistic = 1.467599 , p-value = 0.07979545

Hence, for this study, the Fligner–Policello test finds that lead-poisoned geese
have marginally higher plasma glucose levels than healthy geese.

Discussion

In a two-sample problem, when testing for a difference in scale, we recommend
the Fligner–Killeen procedure discussed in the last section. Unlike the tradi-
tional F -test for a difference in scale, the Fligner–Killeen procedure possesses
robustness of validity. Besides the test for scales being the same, the Fligner–
Killeen procedure offers an estimate of the ratio of scales and a corresponding
confidence interval for this ratio. This gives the user a robust disparity mea-
sure (with confidence) for the scales difference in the data, which may be more
useful information then an estimate of the difference in locations. For example,
based on this information, a user may want to estimate the shift in location
after a transformation or to use a weighted estimate of shift based on robust
estimates of scale. If, though, a user wants to test for location differences in
the presence of difference in scales, then we recommend the robust test offered
by the Fligner–Policello procedure.
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FIGURE 3.6
Comparison dotplots of plasma glucose in healthy and toxic geese.

3.5 Efficiency and Optimal Scores∗

In this section, we return to the two-sample location problem, (3.23). We
discuss the optimal score function in the advent that the user knows the
form of the population distributions. In a first reading, this section can be
skipped, but even a brief browsing serves as motivation for the next section
on adaptive score selection schemes. Recently Doksum (2013) developed an
optimality result for the Hodges–Lehmann estimate based on a rank-based
likelihood.

3.5.1 Efficiency

In this subsection, we briefly discuss the robustness and efficiency of the rank-
based estimates. This leads to a discussion of optimizing the analysis by the
suitable choice of a score function.

When evaluating estimators, an essential property is their robustness. In
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Section 2.5, we discussed the influence function of an estimator. Recall that it is
a measure of the sensitivity of the estimator to an outlier. We say an estimator
is robust if its influence function is bounded for all possible outliers.

Consider the rank-based estimator ∆̂ϕ based on the score function ϕ(u).
Recall that its standard deviation is τϕ/

√
n; see expression (3.19). Then for

an outlier at z, ∆̂ϕ has the influence function

IF(z; ∆̂ϕ) = −IX(z)

(
τϕ

n

n1

)
ϕ[(F (z)] + IY (z)

(
τϕ

n

n1

)
ϕ[(F (z)], (3.39)

where IX(z) is 1 or 0 depending on whether z is thought as being from the
sample of Xs or Y s, respectively.3 The indicator IY (z) is defined similarly.
For a rank-based estimator, provided its score function ϕ(u) is bounded, its
influence function is a bounded function of z; hence, the rank-based estimator
is robust. There are a few scores used occasionally in practice, which have
unbounded score functions. In particular, the normal scores, discussed in Sec-
tion 3.5.1, belong to this category; although they are technically robust. In
practice, though, generally scores with bounded score functions are used.

In contrast, the influence function for the LS estimator Y −X of ∆̂ is given
by

IF(z; ∆̂ϕ) = −IX(z)

(
n

n1

)
z + IY (z)

(
n

n2

)
z; (3.40)

which is an unbounded function of z. Hence, the LS estimator is not robust.
We next briefly consider relative efficiency of estimators of ∆ for the two-

sample location model (3.23). Suppose we have two estimators, ∆̂1 and ∆̂2,

such that, for i = 1, 2,
√
n(∆̂i −∆) converges in distribution to the N(0, σ2

i )
distribution. Then the asymptotic relative efficiency (ARE) between the esti-
mators is the ratio of their asymptotic variances; i.e.,

ARE(∆̂1, ∆̂2) =
σ2
2

σ2
1

. (3.41)

Note that ∆̂2 is more efficient than ∆̂1 if this ratio is less than 1. Provided
that the estimators are location and scale equivariant, this ratio is invariant
to location and scale transformations, so for its computation only the form
of the pdf needs to be known. Because they minimize norms, all rank-based
estimates and the LS estimate are location and scale equivariant. Also, all
these estimators have an asymptotic variance of the form κ2{(1/n1)+(1/n2)}.
The scale parameter κ is often called the constant of proportionality. Hence,
in the ARE ratio, the design part (the part in braces) of the asymptotic
variance cancels out and the ratio simplifies to the ratio of the parameters of
proportionality; i.e., the κ2s.

First, consider the ARE between a rank-based estimator and the LS esti-
mator. Assume that the random errors in Model (3.23) have variance σ2 and

3See Chapter 2 of Hettmansperger and McKean (2011).
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TABLE 3.2
AREs Among the Wilcoxon (W), Sign (S), and LS Estimators When the
Errors Have a Contaminated Normal Distribution with σc = 3 and
Proportion of Contamination ǫ

ǫ, (Proportion of Contamination)
0.00 0.01 0.02 0.03 0.05 0.10 0.15 0.25

ARE(W,LS) 0.955 1.009 1.060 1.108 1.196 1.373 1.497 1.616
ARE(S, LS) 0.637 0.678 0.719 0.758 0.833 0.998 1.134 1.326
ARE(W,S) 1.500 1.487 1.474 1.461 1.436 1.376 1.319 1.218

pdf f(t). Then, from the above discussion, the ARE between the rank-based
estimator with score generating function ϕ(u) and the LS estimator is

ARE(∆̂ϕ, ∆̂LS) =
σ2

τ2ϕ
, (3.42)

where τϕ is defined in expression (3.19).
If the Wilcoxon scores are chosen, then τW = [

√
12
∫
f2(t) dt]−1. Hence,

the ARE between the Wilcoxon and the LS estimators is

ARE(∆̂W , ∆̂LS) = 12σ2

[∫
f2(t) dt

]2
. (3.43)

If the error distribution is normal then this ratio is 0.955; see, for example,
Hettmansperger and McKean (2011). Thus, the Wilcoxon estimator loses less
than 5% efficiency to the LS estimator if the errors have a normal distribution.

In general, the Wilcoxon estimator has a substantial gain in efficiency over
the LS estimator for error distributions with heavier tails than the normal dis-
tribution. To see this, consider a family of contaminated normal distributions
with cdfs

F (x) = (1− ǫ)Φ(x) + ǫΦ(x/σc), (3.44)

where 0 < ǫ < 0.5 and σc > 1. If we are sampling from this cdf, then (1 −
ǫ)100% of the time we are sampling from a N(0, 1) distribution while ǫ100%
of the time we are sampling from a heavier tailed N(0, σ2

c ) distribution. For
illustration, consider a contaminated normal with σc = 3. In the first row of
Table 3.2 are the AREs between the Wilcoxon and the LS estimators for a
sequence of increasing contamination. Note that even if ǫ = 0.01, i.e., only 1%
contamination, the Wilcoxon is more efficient than LS.

If sign scores are selected, then τS = [2f(0)]−1. Thus, the ARE between
the sign and the LS estimators is 4σ2f2(0). This is only 0.64 at the normal
distribution, so medians are much less efficient than means if the errors have a
normal distribution. Notice from Table 3.2 that for this mildly contaminated
normal, the proportion of contamination must exceed 10% for the sign esti-
mator to be more efficient than the LS estimator. The third row of the table
contains the AREs between the Wilcoxon and sign estimators. In all of these
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situations of the contaminated normal distribution, the Wilcoxon estimator is
more efficient than the sign estimator.

If the true pdf of the errors is f(t), then the optimal score function is
ϕf (u) defined in expression4 (3.20). These scores are asymptotically efficient;
i.e., achieve the Rao–Cramer lower bound asymptotically similar to maximum
likelihood estimates. For example, the normal scores are optimal if f(t) is a
normal pdf; the sign scores are optimal if the errors have a Laplace (double
exponential) distribution; and the Wilcoxon scores are optimal for errors with
a logistic distribution. The logistic pdf is

f(x) =
1

b

exp {−[x− a]/b}
(1 + exp {−[x− a]/b})2 , −∞ < x <∞, (3.45)

At the logistic distribution the ARE between the sign scores estimator and
the Wilcoxon estimator is (3/4), while at the Laplace distribution this ARE
is (4/3). This range of efficiencies suggests a simple family of score functions
called the Winsorized Wilcoxons. These scores are generated by a nonde-
creasing piecewise continuous function defined on (0, 1) which is flat at both
ends and linear in the middle. As discussed in McKean, Vidmar, and Siev-
ers (1989), these scores are optimal for densities with “logistic” middles and
“Laplace” tails. Four typical score functions from this family are displayed in
Figure 3.7. If the score function is odd about 1/2, as in Panel (a), then it
is optimal for a symmetric distribution; otherwise, it is optimal for a skewed
distribution. Those in Panels (b) and (c) are optimal for distributions which
are skewed right and skewed left, respectively. The type in Panel (d) is opti-
mal for light-tailed distributions (lighter than the normal distribution), which
occasionally are of use in practice. In Rfit, these scores are used via the op-
tions: scores=bentscores4 for the type in Panel (a); scores=bentscores1
for the type in Panel (b); scores=bentscores3 for the type in Panel (c); and
scores=bentscores2 for the type in Panel (d).

In the two-sample location model, as well as in all fixed effects linear mod-
els, the ARE between two estimators summarizes the difference in analyses
based on the estimators. For example, the asymptotic ratio of the squares of
the lengths of the confidence intervals based on the two estimators is their
ARE. Once we have data, we call the estimated ARE between two estimators
the precision coefficient or the estimated precision of one analysis over the
other. For instance, if we use the two rank-based estimators of ∆ based on
their respective score functions ϕ1 and ϕ2 then

Precision(Analysis based on ∆̂1,Analysis based on ∆̂2) =
τ̂2ϕ2

τ̂2ϕ1

. (3.46)

For a summary example of this section, we reconsider the quail data. This
time we select an appropriate score function which results in an increase in
precision (empirical efficiency) over the Wilcoxon analysis.

4See Chapter 2 of Hettmansperger and McKean (2011).
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FIGURE 3.7
Plots of four bent score functions, one of each type as described in the text.

Example 3.5.1 (Quail Data, Continued). The data discussed in Exam-
ple 3.2.3 were drawn from a large study involving many datasets, which was
discussed in some detail in McKean et al. (1989). Upon examination of the
residuals from many of these models, it appeared that the underlying error
distribution is skewed with heavy right-tails, although outliers in the left tail
were not usual. Hence, scores of the type bentscore1 were considered. The
final recommended score was of this type with a bend at u = 3/4, which is
the score graphed in Panel (b) of the above plot. The Rfit of the data, using
these scores, computes the estimate of shift δ in the following code segment:

> mybentscores = bentscores1

> mybentscores@param<-c(0.75,-2,1)

> fit = rfit(z~xmat,scores=mybentscores)

> summary(fit)

Call:

rfit.default(formula = z ~ xmat, scores = mybentscores)

Coefficients:
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Estimate Std. Error t.value p.value

(Intercept) 66.0000 4.1159 16.0355 1.216e-15 ***

xmat -16.0000 7.6647 -2.0875 0.04606 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared (Robust): 0.128132

Reduction in Dispersion Test: 4.11495 p-value: 0.05211

The estimate of tau for the bentscores is

> fit$tauhat

[1] 19.79027

while the estimate of tau for the Wilcoxon scores is

> rfit(z~xmat)$tauhat

[1] 21.64925

In summary, using these bent scores, the rank-based estimate of shift is
∆̂ = −16 with standard error 7.66, which is significant at the 5% level for
a two-sided test. Note that the estimate of shift is closer to the estimate
of shift based on the boxplots than the estimate based on the Wilcoxon
score; see Example 3.2.3. From the code segment, the estimate of the rela-
tive precision (3.46) of the bent scores analysis versus the Wilcoxon analysis
is (19.790/21.649)2 = 0.836. Hence, the Wilcoxon analysis is about 16% less
precise than the bentscore analysis for this dataset.

The use of Winsorized Wilcoxon scores for the quail data was based on
an extensive investigation of many datasets. Estimation of the score function
based on the rank-based residuals is discussed in Naranjo and McKean (1987).
Similar to density estimation, though, large sample sizes are needed for these
score function estimators. Adaptive procedures for score selection are discussed
in the next section.

As we discussed above, if no assumptions about the distribution can be
reasonably made, then we recommend using Wilcoxon scores. The resulting
rank-based inference is robust and is highly efficient relative to least squares
based inference. Wilcoxon scores are the default in Rfit and are used for most
of the examples in this book.

3.6 Adaptive Rank Scores Tests

As discussed in Section 3.5.1, the optimal choice for score function depends
on the underlying error distribution. However, in practice, the true distribu-
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tion is not known and we advise against making any strong distributional
assumptions about its exact form. That said, there are times, after working
with prior similar data perhaps, that we are able to choose a score function
which is appropriate for the data at hand. More often, though, the analyst has
a single dataset with no prior knowledge. In such cases, if hypothesis testing is
the main inference desired, then the adaptive procedure introduced by Hogg
(1974) allows the analyst to first look at the (combined) data to choose an
appropriate score function and then allows him to use the same data to test
a statistical hypothesis, without inflating the type I error rate.

In this section, we present the version of Hogg adaptive scheme for the two-
sample location problem that is discussed in Section 10.6 of Hogg, McKean,
and Craig (2013). Consider a situation where the error distributions are either
symmetric or right-skewed with tail weights that vary from light-tailed to
heavy-tailed. For this situation, we have chosen a scheme that is based on
selecting one of the four score functions in Figure 3.8. In applying the adaptive
scheme to a particular application, other more appropriate score functions can
be selected for the scheme. The number of score functions can also vary.
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FIGURE 3.8
Score functions used in Hogg’s adaptive scheme.

The choice of the score function is made by selector statistics which are
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based on the order statistics of the combined data. For our scheme, we have
chosen two which we label Q1 and Q2, which are

Q1 =
Ū0.05 − M̄0.5

M̄0.5 − L̄0.05
and Q2 =

Ū0.05 − L̄0.05

Ū0.5 − L̄0.5
, (3.47)

where U0.05 is the mean of the Upper 5%,M0.5 is the mean of the Middle 50%,
and L0.05 is the mean of the Lower 5% of the combined sample. Note Q1 is
a measure of skewness and Q2 is a measure of tail heaviness. Benchmarks for
the selectors must also be chosen. The following table shows the benchmarks
that we used for our scheme.

Benchmark Score Selected
Q2 > 7 Sign Scores
Q1 > 1 & Q2 < 7 Bent Score for Right Skewed Data
Q1 ≤ 1 & Q2 ≤ 2 Light Tailed Scores
else Wilcoxon

The R function hogg.test is available in npsm which implements this
adaptive method. This function selects the score as discussed above then ob-
tains the test of H0 : ∆ = 0. It returns the test statistic, p-value, and the
score selected (boldface names in the above table). We illustrate it on several
generated datasets.

Example 3.6.1. The following code generates four datasets and for each the
results of the call to function hogg.test is displayed.

> m<-50

> n<-55

> # Exponential

> hogg.test(rexp(m),rexp(n))

Hogg’s Adaptive Test

Statistic p.value

4.32075 0.21434

Scores Selected: bent

> # Cauchy

> hogg.test(rcauchy(m),rcauchy(n))

Hogg’s Adaptive Test

Statistic p.value

3.56604 0.31145

Scores Selected: bent

> # Normal

> hogg.test(rnorm(m),rnorm(n))
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Hogg’s Adaptive Test

Statistic p.value

2.84318 0.57671

Scores Selected: Wilcoxon

> # Uniform

> hogg.test(runif(m,-1,1),runif(n,-1,1))

Hogg’s Adaptive Test

Statistic p.value

-2.1321 0.2982

Scores Selected: light

Remark 3.6.1. In an investigation of microarray data Kloke et al. (2010)
successfully used Hogg’s adaptive scheme. The idea is that each gene may
have a different underlying error distribution. Using the same score function,
for example the Wilcoxon, for each of the genes may result in low power for any
number of genes, perhaps ones which would have a much higher power with a
more appropriately chosen score function. As it is impossible to examine the
distribution of each of the genes in a microarray experiment an automated
adaptive approach seems appropriate.

Shomrani (2003) extended Hogg’s adaptive scheme to estimation and test-
ing in a linear model. It is based on an initial set of residuals and, hence,
its tests are not exact level α. However, for the situations covered in Al-
Shomrani’s extensive Monte Carlo investigation, the overall liberalness of the
adaptive tests was slight. We discuss Al-Shomrani’s scheme in Chapter 7.
Hogg’s adaptive strategy was recently extended to mixed linear models by
Okyere (2011).

3.7 Exercises

3.7.1. For the baseball data available in Rfit, test the hypothesis of equal
heights for pitchers and fielders.

3.7.2. Verify the estimates in Table 3.1.

3.7.3. Verify equivalence of the Mann–Whitney (3.6) and Wilcoxon (3.5) tests
for the data in Example 3.2.3.

3.7.4. Let T = logS, where S has an F -distribution with degrees of freedom
ν1 and ν2. It can be shown, that the distribution of T is left-skewed, right-
skewed, or symmetric if ν1 < ν2, ν1 > ν2, or ν1 = ν2, respectively.
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(a) Generate two samples of size n = 20 from a logF (1, 0.25) distribu-
tion, to one of the two samples add a shift of size ∆ = 7. Below is
the code to generate the samples.

x <- log(rf(20,1,.25))

y <- log(rf(20,1,.25)) + 7.0

(b) Obtain comparison dotplots of the samples.

(c) Obtain the LS, Wilcoxon, and bentscores1 estimates of ∆ along
with their standard errors.

3.7.5. Write R code which generates data as in Exercise 3.7.4. Then run
a simulation study to estimate the ARE’s among the three estimators: LS,
Wilcoxon, and rank-based estimate using the scores bentscores1; where, the
empirical ARE between two estimators is their ratio of mean square errors.
Use a simulation size of 10,000. Which estimator is best? Which is worst?

3.7.6. Using the function hogg.test, run Hogg’s adaptive scheme of Sec-
tion 3.6 on the data of Exercise 3.7.4.

3.7.7. The truncated normal distribution is implemented in the R package
truncnorm (Trautmann et al. 2014). Simulate two independent samples from
a truncated normal distribution with parameters σ = 1, a = −0.5, b = 0.5;
the last two parameters are the min and max respectively. Set the mean for
one of the populations to be 5 and the other to be 8.

(a) Obtain comparison boxplots of these two samples.

(b) Using the R function hogg.test provided in the package npsm run
the adaptive scheme discussed in Section 3.6 to test for a location
difference using these two samples.

3.7.8. Consider the logistic distribution given in expression (3.45). For this
exercise, consider the standard pdf with parameters a = 0 and b = 1.

(a) Show that the cdf is given by

F (x) =
1

1 + e−x
, −∞ < x <∞.

(b) Show that the inverse of the cdf is

F−1(u) = log

[
u

1− u

]
, 0 < u < 1.

3.7.9. The logistic distribution is implemented in base R (*logis). Using
rlogis obtain a random sample of size 1000 from a logistic distribution with
location 0 and scale 1. Use the R function density to obtain a density estimate
based on this sample and plot it (e.g. plot(density(rlogis(1000))). On the
graph of the estimated density overlay the graph of the true density (3.45) with
parameters a = 0 and b = 1. Comment on the closeness of the fit.
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3.7.10. Write an R function which obtains two independent samples from the
logistic distribution, and then runs Hogg’s adaptive scheme of Section 3.6 on
these data. Have the input to the function be the sample sizes: n and m.

(a) Write R code to simulate Hogg’s adaptive scheme for testing for a
shift in location when sampling from a logistic. Use sample sizes of
n = 20 and m = 25.

(b) Run your simulation in Part (a) 1000 times. Check the p-value for
a 5% test. How many times did the scheme select the Wilcoxon
scores? Obtain a 95% confidence interval for the probability of cor-
rect selection.

3.7.11. Consider the following two samples. The first was generated from
a N(50, 64) distribution while the second was generated from a N(50, 144)
distribution. Thus the ratio of scales is 2.0.

Sample from N(50, 64) distribution.
43.72 58.06 55.57 57.49 64.16 43.49 49.94 49.94 52.58
49.40 38.93 42.65 42.91 46.59 47.88

Sample from N(50, 256) distribution.
77.10 42.94 42.32 53.51 66.79 18.26 38.72 29.04 33.54
61.19 32.87 60.98 59.02 60.68 45.11 43.52 35.44 34.31

(a) Obtain comparison boxplots.

(b) Obtain the analysis based on the Fligner–Killeen procedure to test
for difference in scales for this data. Was the confidence interval
successful in trapping the true ratio of scales given by η = 2.0?

3.7.12. In Remark 3.3.1, we cited the study by Conover et al. (1983) which
shows rather dramatically that the traditional F -test for differences in vari-
ances is generally not valid for nonnormal distributions. The double exponen-
tial (Laplace) was one of the many distributions over which it was invalid.
The pdf of double exponential is given by

f(x) =
1

2
e−|x|, −∞ < x <∞.

(a) Show that the following code generates a sample from this double
exponential distribution.

rlaplace<-function(n){

x<-rexp(n)

ind<-sample(c(-1,1),n,replace=TRUE)

ind*x

}

(b) By running a small simulation study, verify that the Fligner–Killeen
procedure is valid for testing for scale differences when sampling
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from the double exponential distribution. Use sample sizes of n1 =
30 and n2 = 35, and sample under H0; i.e., draw the samples using
the R function rlaplace. Collect the p-values for a two-sided test
for 1000 simulations and verify that the test with level 0.05 is valid.

3.7.13. Consider the data of Exercise 3.7.11. The samples were generated
from the N(50, 64) andN(50, 144) distributions, respectively. Use the Fligner–
Policello test described in Section 3.4 to test for a difference in locations. Recall
by Example 3.4.1 that the npsm function fp.test can be used to perform this
analysis.
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Regression I

4.1 Introduction

In this chapter, a nonparametric, rank-based (R) approach to regression mod-
eling is presented. Our primary goal is the estimation of parameters in a linear
regression model and associated inferences. As with the previous chapters, we
generally discuss Wilcoxon analyses, while general scores are discussed in Sec-
tion 4.4. These analyses generalize the rank-based approach for the two-sample
location problem discussed in the previous chapter. Focus is on the use of the
R package Rfit (Kloke and McKean 2012). We illustrate the estimation, diag-
nostics, and inference including confidence intervals and test for general linear
hypotheses. We assume that the reader is familiar with the general concepts
of regression analysis.

Rank-based (R) estimates for linear regression models were first consid-
ered by Jurečková (1971) and Jaeckel (1972). The geometry of the rank-based
approach is similar to that of least squares as shown by McKean and Schrader
(1980). In this chapter, the Rfit implementation for simple and multiple linear
regression is discussed. The first two sections of this chapter present illustra-
tive examples. We present a short introduction to the more technical aspects
of rank-based regression in Section 4.4. The reader interested in a more de-
tailed introduction is referred to Chapter 3 of Hettmansperger and McKean
(2011).

We also discuss aligned rank tests in Section 4.5. Using the bootstrap
for rank regression is conceptually the same as other types of regression and
Section 4.6 demonstrates the Rfit implementation. Nonparametric Smoothers
for regression models are considered in Section 4.7. In Section 4.8 correlation
is presented, including the two commonly used nonparametric measures of
association of Kendall and Spearman. In succeeding chapters we present rank-
based ANOVA analyses and extend rank-based fitting to more general models.

83
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4.2 Simple Linear Regression

In this section we present an example of how to utilize Rfit to obtain rank-
based estimates of the parameters in a simple linear regression problem. Write
the simple linear regression model as

Yi = α+ xiβ + ei, for i = 1, . . . n (4.1)

where Yi is a continuous response variable for the ith subject or experimental
unit, xi is the corresponding value of an explanatory variable, ei is the error
term, α is an intercept parameter, and β is the slope parameter. Interest is
on inference for the slope parameter β. The errors are assumed to be iid with
pdf f(t). Closed form solutions exist for the least squares (LS) estimates of
(4.1). However, in general, this is not true for rank-based (R) estimation.

For the rest of this section we work with an example which highlights the
use of Rfit. The dataset involved is engel which is in the package quantreg
(Koenker 2013). The data are a sample of 235 Belgian working class house-
holds. The response variable is annual household income in Belgian francs and
the explanatory variable is the annual food expenditure in Belgian francs.

A scatterplot of the data is presented in Figure 4.1 where the rank-based
(R) and least squares (LS) fits are overlaid. Several outliers are present, which
affect the LS fit. The data also appear to be heteroscedastic. The following
code segment illustrates the creation of the graphic.

> library(Rfit)

> data(engel)

> plot(engel)

> abline(rfit(foodexp~income,data=engel))

> abline(lm(foodexp~income,data=engel),lty=2)

> legend("topleft",c(’R’,’LS’),lty=c(1,2))

The command rfit obtains robust R estimates for the linear regression mod-
els, for example (4.1). To examine the coefficients of the fit, use the summary

command. Critical values and p-values based on a Student t distribution with
n− 2 degrees of freedom recommended for inference. For this example, Rfit
used the t-distribution with 233 degrees of freedom to obtain the p-value.

> fit<-rfit(foodexp~income,data=engel)

> coef(summary(fit))

Estimate Std. Error t.value p.value

(Intercept) 103.7667620 12.78877598 8.113893 2.812710e-14

income 0.5375705 0.01150719 46.716038 2.621879e-120

Readers with experience modeling in R will recognize that the syntax is similar
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to using lm to obtain a least squares analysis. The fitted regression equation
is

̂foodexp = 103.767 + 0.538 ∗ income.

A 95% confidence interval for the slope parameter (β) is calculated as 0.538±
1.97 ∗ 0.012 = 0.538± 0.023 or (0.515, 0.56).

Examination of the residuals is an important part of the model building
process. The raw residuals are available via the command residuals(fit),
though we will focus on Studentized residuals. Recall that Studentized residu-
als are standardized so that they have an approximate (asymptotic) variance
1. In Figure 4.2, we present a residual plot as well as a normal probability plot
of the Studentized residuals. The following code illustrates the creation of the
graphic.

> rs<-rstudent(fit)

> yhat<-fitted.values(fit)

> par(mfrow=c(1,2))

> qqnorm(rs)

> plot(yhat,rs)
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FIGURE 4.1
Scatterplot of Engel data with overlaid regression lines.
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FIGURE 4.2
Diagnostic plots for Engel data.

Outliers and heteroscedasticity are apparent in the residual and normal prob-
ability plots in Figure 4.2.

4.3 Multiple Linear Regression

Rank-based regression offers a complete inference for the multiple linear re-
gression. In this section we illustrate how to use Rfit to obtain estimates,
standard errors, inference and diagnostics based on an R fit of the model

Yi = α+ β1xi1 + . . . βpxip + ei for i = 1, . . . n (4.2)

where β1, . . . , βp are regression coefficients, Yi is a continuous response vari-
able, xi1, . . . , xip are a set of explanatory variables, ei is the error term, and
α is an intercept parameter. Interest is on inference for the set of parameters
β1, . . . βp. As in the simple linear model case, for inference, the errors are as-
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sumed to be iid with pdf f . Closed form solutions exist for the least squares
(LS), however the R estimates must be solved iteratively.

4.3.1 Multiple Regression

In this subsection we discuss a dataset from Morrison (1983: p.64) (c.f.
Hettmansperger and McKean 2011). The response variable is the level of free
fatty acid (ffa) in a sample of prepubescent boys. The explanatory variables
are age (in months), weight (in pounds), and skin fold thickness. In this sub-
section we illustrate the Wilcoxon analysis and in Exercise 4.9.3 the reader is
asked to redo the analysis using bent scores. The model we wish to fit is

ffa = α+ β1age + β2weight + β3skin + error. (4.3)

We use Rfit as follows to obtain the R fit of (4.3)

> fit<-rfit(ffa~age+weight+skin,data=ffa)

and a summary table may be obtained with the summary command.

> summary(fit)

Call:

rfit.default(formula = ffa ~ age + weight + skin, data = ffa)

Coefficients:

Estimate Std. Error t.value p.value

(Intercept) 1.4900402 0.2692512 5.5340 2.686e-06 ***

age -0.0011242 0.0026348 -0.4267 0.6720922

weight -0.0153565 0.0038463 -3.9925 0.0002981 ***

skin 0.2749014 0.1342149 2.0482 0.0476841 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared (Robust): 0.3757965

Reduction in Dispersion Test: 7.42518 p-value: 0.00052

Displayed are estimates, standard errors, and Wald (t-ratio) tests for each
of the individual parameters. The variable age is nonsignificant, while weight
and skin fold thickness are. In addition there is a robust R2 value which
can be utilized in a manner similar to the usual R2 value of LS analysis;
here R2 = 0.38. Finally a test of all the regression coefficients excluding the
intercept parameter is provided in the form of a reduction in dispersion
test. In this example, we would reject the null hypothesis and conclude that
at least one of the nonintercept coefficients is a significant predictor of free
fatty acid.

The reduction in dispersion test is analogous to the LS’s F-test based on
the reduction in sums of squares. This test is based on the reduction (drop)
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in dispersion as we move from the reduced model (full model constrained by
the null hypothesis) to the full model. As an example, for the free fatty acid
data, suppose that we want to test the hypothesis:

H0 : βage = βweight = 0 versus HA : βage 6= 0 or βweight 6= 0. (4.4)

Here, the reduced model contains only the regression coefficient of the pre-
dictor skin, while the full model contains all three predictors. The following
code segment computes the reduction in dispersion test, returning the F test
statistic (see expression (4.15)) and the corresponding p-value:

> fitF<-rfit(ffa~age+weight+skin,data=ffa)

> fitR<-rfit(ffa~skin,data=ffa)

> drop.test(fitF,fitR)

Drop in Dispersion Test

F-Statistic p-value

1.0768e+01 2.0624e-04

The command drop.testwas designed with the functionality of the command
anova in traditional analyses in mind. In this case, as the p-value is small, the
null hypothesis would be rejected at all reasonable levels of α.

4.3.2 Polynomial Regression

In this section we present an example of a polynomial regression fit using Rfit.
The data are from Exercise 5 of Chapter 10 of Higgins (2003). The scatterplot
of the data in Figure 4.3 reveals a curvature relationship between MPG (mpg)
and speed (sp). Higgins (2003) suggests a quadratic fit and that is how we
proceed. That is, we fit the model

speed = α+ β1mpg + β2mpg2 + error.

To specify a squared term (or any function of the data to be interpreted
arithmetically) use the I function:

> summary(fit<-rfit(sp~mpg+I(mpg^2),data=speed))

Call:

rfit.default(formula = sp ~ mpg + I(mpg^2), data = speed)

Coefficients:

Estimate Std. Error t.value p.value

(Intercept) 160.7246773 6.4689781 24.8455 < 2.2e-16 ***

mpg -2.1952729 0.3588436 -6.1176 3.427e-08 ***

I(mpg^2) 0.0191325 0.0047861 3.9975 0.000143 ***

---
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FIGURE 4.3
Scatterplot of miles per gallon vs. top speed.

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared (Robust): 0.5419925

Reduction in Dispersion Test: 46.74312 p-value: 0

Note that the quadratic term is highly significant. The residual plot, Fig-
ure 4.4, suggests that there is the possibility of heteroscedasticity and/or out-
liers; however, there is no apparent lack of fit.

Remark 4.3.1 (Model Selection). For rank-based regression, model selection
can be performed using forward, backwards, or step-wise procedures in the
same way as in ordinary least squares. Procedures for penalized rank-based
regression have been developed by Johnson and Peng (2008). In future versions
of Rfit we plan to include penalized model selection procedures.



90 Nonparametric Statistical Methods Using R

100 110 120 130

−
1

0
0

1
0

2
0

3
0

4
0

fitted(fit)

re
s
id

(f
it
)

FIGURE 4.4
Residual plot based on the quadratic fit of the Higgins’ data.

4.4 Linear Models∗

In this section we provide a brief overview of rank-based methods for linear
models. Our presentation is by no means comprehensive and is included simply
as a convenient reference. We refer the reader interested in a thorough treat-
ment to Chapters 3–5 of Hettmansperger and McKean (2011). This section
uses a matrix formulation of the linear model; readers interested in application
can skip this and the next section.

4.4.1 Estimation

In this section we discuss rank-based (R) estimation for linear regression mod-
els. As is the case with most of the modeling we discuss in this book, the ge-
ometry is similar to least squares. Throughout we are interested in estimation
and inference on the slope parameters in the following linear model

Yi = α+ β1xi1 + . . .+ βpxip + ei for i = 1, . . . , n. (4.5)
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For convenience we rewrite (4.5) as

Yi = α+ xT
i β + ei for i = 1, . . . , n, (4.6)

where Yi is a continuous response variable, xi is the vector of explanatory
variables, α is the intercept parameter, β is the vector of regression coefficients,
and ei is the error term. For formal inference, the errors are assumed to be iid
with continuous pdf f(t) and finite Fisher information. Additionally, there are
design assumptions that are the same as those for the least squares analysis.

Rewrite (4.6) in matrix notation as follows

Y = α1+Xβ + e (4.7)

where Y = [Y1, . . . , Yn]
T is a n × 1 vector of response variable, X =

[x1, . . . ,xn]
T is an n × p design matrix, and e = [e1, . . . , en]

T is an n × 1
vector of error terms. Recall that the least squares estimator is the minimizer
of Euclidean distance between Y and Ŷ LS = Xβ̂LS. To obtain the R es-
timator, we use a different measure of distance, Jaeckel’s (1972) dispersion
function, which is given by:

D(β) = ‖Y −Xβ‖ϕ, (4.8)

where ‖ · ‖ϕ is a pseudo-norm defined as

‖u‖ϕ =
n∑

i=1

a(R(ui))ui, (4.9)

the scores are generated as a(i) = ϕ
(

i
n+1

)
, and ϕ is a nondecreasing score

function defined on the interval (0, 1). Any of the score functions discussed
in the previous chapter for the two-sample location problem can be used in a
linear model setting and, therefore, in any of the models used in the remainder
of this book. An adaptive procedure for the regression problem is discussed in
Section 7.6.

It follows that D(β), (4.8), is a convex function of β and provides a robust
measure of distance between Y and Xβ. The R estimator of β is defined as

β̂ϕ = Argmin‖Y −Xβ‖ϕ. (4.10)

Note that closed form solutions exist for least squares, however, this is not
the case for rank estimation. The R estimates are obtained by minimizing a
convex optimization problem. In Rfit, the R function optim is used to obtain
the estimate of β.

It can be shown, see for example Hettmansperger and McKean (2011), that
the solution to (4.10) is consistent with the asymptotically normal distribution
given by

β̂ϕ∼̇N
(
β, τ2ϕ(X

TX)−1
)
, (4.11)
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where τϕ is the scale parameter which is defined in expression (3.19). Note
that τϕ depends on the pdf f(t) and the score function ϕ(u). In Rfit, the
Koul, Sievers, and McKean (1987) consistent estimator of τϕ is computed.

The intercept parameter, α, is estimated separately using a rank-based
estimate of location based on the residuals yi − xT

i β̂ϕ. Generally the median
is used, which is the default in Rfit , and which we denote by α̂. It follows
that α̂ and β̂ϕ are jointly asymptotically normal with the variance-covariance
matrix

V α̂,β̂ϕ
=

[
κn −τ2ϕx′(X ′X)−1

−τ2ϕ(X ′X)−1x τ2ϕ(X
′X)−1

]
, (4.12)

where κn = n−1τ2S + τ2ϕx
′(X ′X)−1x. The vector x is the vector of column

averages of X and τS is the scale parameter1 1/[2f(0)]. The consistent esti-
mator of τS , discussed in Section 1.5 of Hettmansperger and McKean (2011),
is implemented in Rfit.

4.4.2 Diagnostics

Regression diagnostics are an essential part of the statistical analysis of any
data analysis problem. In this section we discuss Studentized residuals. Denote
the residuals from the full model fit as

êi = Yi − α̂− xiβ̂. (4.13)

Then the Studentized residuals are defined as

êi
s(êi)

where s(êi) is the estimated standard error of êi discussed in Chapter 3 of
Hettmansperger and McKean (2011). In Rfit, the command rstudent is used
to obtain Studentized residuals from an R fit of a linear model.

4.4.3 Inference

Based on the asymptotic distribution of β̂ϕ, (4.11), we present inference for
the vector of parameters β. We discuss Wald type confidence intervals and
tests of hypothesis. In addition to these procedures, R-analyses offer the drop
in dispersion test which is an analog of the traditional LS test based on the
reduction in sums of squares. An estimate of the scale parameter τϕ is needed
for inference and the Koul et al. (1987) estimator is implemented in Rfit.

From (4.11), Wald tests and confidence regions/intervals can easily be

obtained. Let se(β̂j) denote the standard error of β̂j . That is se(β̂j) =

τ̂ϕ

(
XTX

)−1/2

jj
where

(
XTX

)−1

jj
is the jth diagonal element of

(
XTX

)−1

.

1See Section 3.5 of Hettmansperger and McKean (2011).
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An approximate (1 − α) ∗ 100% confidence interval for βj is

β̂j ± t1−α/2,n−p−1se(β̂j).

A Wald test of the hypothesis

H0 : Mβ = 0 versus HA : Mβ 6= 0 (4.14)

is to reject H0 if

(Mβ̂ϕ)
T [M(XTX)−1MT ]−1(Mβ̂)/q

τ̂2ϕ
> F1−α,q,n−p−1

where q = dim(M).
Similar to the reduction in the sums of squares test of classical regression,

rank-based regression offers a drop in dispersion test. Let ΩF denote the
full model space; i.e., the range (column space) of the design matrix X for
the full Model (4.7). Let D(FULL) denote the minimized value of the disper-

sion function when the full model (4.7) is fit. That is, D(FULL) = D(β̂ϕ).
Geometrically, D(FULL) is the distance between the response vector y and
the space ΩF . Let ΩR denote the reduced model subspace of ΩF ; that is,
ΩR = {v ∈ ΩF : v = Xβ and Mβ = 0}. Let D(RED) denote the minimum
value of the dispersion function when the reduced model is fit; i.e., D(RED) is
the distance between the response vector y and the space ΩR. The reduction
in dispersion is RD = D(RED)−D(FULL). The drop in dispersion test is a
standardization of the reduction in dispersion which is given by

Fϕ =
RD/q

τ̂/2
. (4.15)

An approximate level α test is to reject H0 if

Fϕ =
RD/q

τ̂/2
> F1−α,q,n−p−1. (4.16)

The default ANOVA and ANCOVA Rfit analyses described in Chapter 5
use Type III general linear hypotheses (effect being tested is adjusted for all
other effects). The Wald type test satisfies this by its formulation. This is
true also of the drop in dispersion test defined above; i.e., the reduction in
dispersion is between the reduced and full models. Of course, the reduced
model design matrix must be computed. This is easily done, however, by
using a QR-decomposition of the row space of the hypothesis matrix M ; see
page 210 of Hettmansperger and McKean (2011). For default tests, Rfit uses
this development to compute a reduced model design matrix for a specified
matrix M . In general, the Rfit function redmod(xmat,amat) computes a
reduced model design matrix for the full model design matrix xfull and the
hypothesis matrix amat. For traditional LS tests, the corresponding reduction
in sums-of-squares is often refereed to as a Type III sums-of-squares.



94 Nonparametric Statistical Methods Using R

4.4.4 Confidence Interval for a Mean Response

Consider the general linear model (4.7). Let x0 be a specified vector of the
independent variables. Although we need not assume finite expectation of the
random errors, we do in this section, which allows us to use familiar notation.
In practice, a problem of interest is to estimate η0 = E(Y |x0) for a specified
vector of predictors x0. We next consider solutions for this problem based on
a rank-based fit of Model (4.7). Denote the rank-based estimates of α and β

by α̂ and β̂.
The estimator of η0 is of course

η̂0 = α̂+ xT
0 β̂. (4.17)

It follows that η̂0 is asymptotically normal with mean η0 and variance, using
expression (4.12),

v0 = Var(η̂0) = [1 xT
0 ]V̂ α̂,β̂ϕ

[
1
x0

]
. (4.18)

Hence, an approximate (1 − α)100% confidence interval for η0 is

η̂0 ± tα/2,n−p−1

√
v̂0, (4.19)

where v̂0 is the estimate of v0, (τS and τϕ are replaced respectively by τ̂S and
τ̂ϕ).

Using Rfit this confidence interval is easily computed. Suppose x0 contain
the explanatory variables for which we want to estimate the mean response.
The following illustrates how to obtain the estimate and standard error, from
which a confidence interval can be computed. Assume the full model fit has
been obtained and is in fit (e.g. fit<-rfit(y~X)).

x10 <- c(1,x0)

st.err <- sqrt( t(x10)%*%vcov(fit)%*%x10 )

eta0 <- t(x10)%*%fit$coef

We illustrate this code with the following example.

Example 4.4.1. The following responses were collected consecutively over
time. For convenience take the vector of time to be t <- 1:15.

t 1 2 3 4 5 6 7 8
y 0.67 0.75 0.74 -5.57 0.76 2.42 0.16 1.52

t 9 10 11 12 13 14 15
y 2.91 2.74 12.65 5.45 4.81 4.17 3.88

Interest centered on the model for linear trend, y = α+βt+e, and in estimating
the expected value of the response for the next time period t = 16. Using
Wilcoxon scores and the above code, Exercise 4.9.7 shows that predicted value
at time 16 is 5.43 with the 95% confidence interval (3.38, 7.48). Note in practice
this might be considered an extrapolation and consideration must be made as
to whether the time trend will continue.
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There is a related problem consisting of a predictive interval for Y0 a new
(independent of Y ) response variable which follows the linear model at x0.
Note that Y0 has mean η0. Assume finite variance, σ2, of the random errors.
Then Y0 − η̂ has mean 0 and (asymptotic) variance σ2 + v0, where v0 is given
in expression (4.19). If in addition we assume that the random errors have a
normal distribution, then we could assume (asymptotically) that the difference
Y0 − η̂ is normally distributed. Based on these results a predictive interval is
easily formed. There are two difficult problems here. One is the assumption of
normality and the second is the robust estimation of σ2. Preliminary Monte
Carlo results show that estimation of σ by MAD of the residuals leads to
liberal predictive intervals. Also, we certainly would not recommend using the
sample variance of robust residuals. Currently, we are investigating a bootstrap
procedure.

4.5 Aligned Rank Tests∗

An aligned rank test is a nonparametric method which allows for adjustment
of covariates in tests of hypotheses. In the context of a randomized experiment
to assess the effect of some intervention one might want to adjust for baseline
covariates in the test for the intervention. In perhaps the simplest context of
a two-sample problem, the test is based on the Wilcoxon rank sum from the
residuals of a robust fit of a model on the covariates. Aligned rank tests were
first developed by Hodges and Lehmann (1962) for use in randomized block
designs. They were developed for the linear model by Adichie (1978); see also
Puri and Sen (1985) and Chiang and Puri (1984). Kloke and Cook (2014)
discuss aligned rank tests and consider an adaptive scheme in the context of
a clinical trial.

For simplicity, suppose that we are testing a treatment effect and each
subject is randomized to one of k treatments. For this section consider the
model

Yi = α+wT
i ∆+ xT

i β + ei (4.20)

wherewi is a (k−1)×1 incidence vector denoting the treatment assignment for
the ith subject, ∆ = [∆2, . . . ,∆K ]T is a vector of unknown treatment effects,
xi is a p×1 vector of (baseline) covariates, β is a vector of unknown regression
coefficients, and ei denotes the error term. The goal of the experiment is to
test

H0 : ∆ = 0. (4.21)

In this section we focus on developing an aligned rank tests for
Model (4.20). We write the model as

Y = α1+W∆+Xβ + e = α1+Zb+ e. (4.22)
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Then the full model gradient is

S(b) = ZTa(R(Y − Zb)).

First, fit the reduced model

Y = α1+Xβ + e.

Then plug the reduced model estimate b̂r = [0T β̂
T

r ]
T into the full model:

S(b̂r)=̇

[
W Ta(R(Y −Xβ̂r))

0

]
.

Define Ŝ1 = W Ta(R(Y −Xβ̂r)) as the first k − 1 elements of S(b̂r). Then
the aligned rank test for (4.21) is based on the test statistic

Ŝ
T

1 [W
TW −W THXW ]−1Ŝ1 = Ŝ

T

1 [W
THX⊥W ]−1Ŝ1

where HX is the projection matrix onto the space spanned by the columns of
X. For inference, this test statistic should compared to χ2

K−1 critical values.
In the package npsm, we have included the function aligned.test which

performs the aligned rank test.
A simple simulated example illustrates the use of the code.

> k<-3 # number of treatments

> p<-2 # number of covariates

> n<-10 # number of subjects per treatment

> N<-n*k # total sample size

> y<-rnorm(N)

> x<-matrix(rnorm(N*p),ncol=p)

> g<-rep(1:k,each=n)

> aligned.test(x,y,g)

statistic = 1.083695 , p-value = 0.5816726

4.6 Bootstrap

In this section we illustrate the use of the bootstrap for rank-based (R) re-
gression. Bootstrap approaches for M estimation are discussed in Fox and
Weisberg (2011) and we take a similar approach. While it is not difficult to
write bootstrap functions in R, we make use of the boot library. Our goal
is not a comprehensive treatment of the bootstrap, but rather we present an
example to illustrate its use.
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In this section we utilize the baseball data, which is a sample of 59 profes-
sional baseball players. For this particular example we regress the weight of a
baseball player on his height.

To use the boot function, we first define a function from which boot can
calculate bootstrap estimates of the regression coefficients:

> boot.rfit<-function(data,indices) {

+ data<-data[indices,]

+ fit<-rfit(weight~height,data=data,tau=’N’)

+ coefficients(fit)[2]

+ }

Next use boot to obtain the bootstrap estimates, etc.

> bb.boot<-boot(data=baseball,statistic=boot.rfit,R=1000)

> bb.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = baseball, statistic = boot.rfit, R = 1000)

Bootstrap Statistics :

original bias std. error

t1* 5.714278 -0.1575826 0.7761589

Our analysis is based on 1000 bootstrap replicates.
Figure 4.5 shows a histogram of the bootstrap estimates and a normal

probability plot.

> plot(bb.boot)

Bootstrap confidence intervals are obtained using the boot.ci command.
In this segment we obtain the bootstrap confidence interval for the slope pa-
rameter.

> boot.ci(bb.boot,type=’perc’,index=1)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = bb.boot, type = "perc", index = 1)

Intervals :

Level Percentile

95% ( 3.75, 7.00 )

Calculations and Intervals on Original Scale
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FIGURE 4.5
Bootstrap plots for R regression analysis for modeling weight versus height of
the baseball data.

Exercise 4.9.4 asks the reader to compare the results with those obtained using
large sample inference.

4.7 Nonparametric Regression

In this chapter we have been discussing linear models. Letting Yi and xi =
[xi1, . . . , xip]

T denote the ith response and its associated vector of explanatory
variables, respectively, these models are written as

Yi = α+ β1xi1 + β2xi2 + · · ·+ βpxip + ei, i = 1, . . . , n. (4.23)

Note that these models are linear in the regression parameters βj j = 1, . . . p;
hence, the name linear models. Next consider the model

Yi = β1 exp{α+ β2xi1 + β3xi3}+ ei, i = 1, . . . , n. (4.24)
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This model is not linear in the parameters and is an example of a nonlinear
model. We explore such models in Section 7.7. The form of Model (4.24) is still
known. What if, however, we do not know the functional form? For example,
consider the model

Yi = g(xi) + ei, i = 1, . . . , n, (4.25)

where the function g is unknown. This model is often called a nonparamet-
ric regression model. There can be more than one explanatory variable xi,
but in this text we only consider one predictor. As with linear models, the
goal is to fit the model. The fit usually shows local trends in the data, find-
ing peaks and valleys which may have practical consequences. Further, based
on the fit, residuals are formed to investigate the quality of fit. This is the
main topic of this section. Before turning our attention to nonparametric re-
gression models, we briefly consider polynomial models. We consider the case
of unknown degree, so, although they are parametric models, they are not
completely specified.

4.7.1 Polynomial Models

Suppose we are willing to assume that g(x) is a sufficiently smooth function.
Then by Taylor’s Theorem, a polynomial may result in a good fit. Hence,
consider polynomial models of the form

Yi = α+β1(xi−x)+β2(xi−x)2+ · · ·+βp(xi−x)p+ei, i = 1, . . . , n, (4.26)

Here x is centered as shown in the model. A disadvantage of this model is
that generally the degree of the polynomial is not known. One way of dealing
with this unknown degree is to use residual plots based upon iteratively fitting
polynomials of different degrees to determine a best fit; see Exercise 4.9.10 for
such an example.

To determine the degree of a polynomial model, Graybill (1976) suggested
an algorithm based on testing for the degree. Select a large (super) degree
P which provides a satisfactory fit of the model. Then set p = P , fit the
model, and test βp = 0. If the hypothesis is rejected, stop and declare p to be
the degree. If not, replace p with p − 1 and reiterate the test. Terpstra and
McKean (2005) discuss the results of a small simulation study which confirmed
the robustness of the Wilcoxon version of this algorithm. The npsm package
contains the R function polydeg which performs this Wilcoxon version. We
illustrate its use in the following example based on simulated data. In this
section, we often use simulated data to check how well the procedures fit the
model.

Example 4.7.1 (Simulated Polynomial Model). In this example we simulated
data from the the polynomial g(x) = 10−3x−3x2+x3. One-hundred x values
were generated from a N(0, 3)-distribution while the added random noise, ei,
was generated from a t-distribution with 2 degrees of freedom and with a
multiplicative scale factor of 15. The data are in the set poly. The next code
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segment shows the call to polydeg and the resulting output summary of each
of its steps, consisting of the degree tested, the drop in dispersion test statistic,
and the p-value of the test. Note that we set the super degree of the polynomial
to 5.

> deg<-polydeg(x,y,5,.05)

> deg$coll

Deg Robust F p-value

5 2.331126 0.1301680

4 0.474083 0.4927928

3 229.710860 0.0000000

> summary(deg$fitf)

Call:

rfit.default(formula = y ~ xmat)

Coefficients:

Estimate Std. Error t.value p.value

(Intercept) 9.501270 3.452188 2.7522 0.007077 **

xmatxc -7.119670 1.247642 -5.7065 1.279e-07 ***

xmat -1.580433 0.212938 -7.4220 4.651e-11 ***

xmat 1.078679 0.045958 23.4707 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared (Robust): 0.7751821

Reduction in Dispersion Test: 110.3375 p-value: 0

Note that the routine determined the correct degree; i.e., a cubic. Based on
the summary of the cubic fit, the 95% confidence interval for the leading
coefficient β3 traps its true value of 1. To check the linear and quadratic
coefficients, the centered polynomial must be expanded. Figure 4.6 displays the
scatterplot of the data overlaid by the rank-based fit of the cubic polynomial
and the associated Studentized residual plot. The fit appears to be good which
is confirmed by the random scatter of the Studentized residual plot. This
plot also identifies several large outliers in the data, as expected, because the
random errors follow a t-distribution with 2 degrees of freedom.

4.7.2 Nonparametric Regression

There are situations where polynomial fits will not suffice; for example, a
dataset with many peaks and valleys. In this section, we turn our attention to
the nonparametric regression model (4.25) and consider several nonparametric
procedures which fit this model. There are many references for nonparametric
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FIGURE 4.6
For the polynomial data of Example 4.7.1: The top panel displays the scatter-
plot overlaid with the Wilcoxon fit and the lower panel shows the Studentized
residual plot.

regression models. An informative introduction, using R, is Chapter 11 of
Faraway (2006); for a more authoritative account see, for example, Wood
(2006). Wahba (1990) offers a technical introduction to smoothing splines
using reproducing kernel Hilbert spaces.

Nonparametric regression procedures fit local trends producing, hopefully,
a smooth fit. Sometimes they are called smoothers. A simple example is
provided by a running average of size 3. In this case the fit at xi is (Yi−1 +
Yi + Yi+1)/3. Due to the non-robustness of this fit, often the mean is replaced
by the median.

The moving average can be thought of as a weighted average using the
discrete distribution with mass sizes of 1/3 for the weights. This has been
generalized to using continuous pdfs for the weighting. The density function
used is called a kernel and the resulting fit is called a kernel nonparametric
regression estimator. One such kernel estimator, available in base R, is the
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Nadaraya–Watson estimator which is defined at x by

f̂h(x) =
1

nh

n∑

i=1

wi∑n
j=1 wj

Yi, (4.27)

where the weights are given by

wi =
1

h
K

(
x− xi
h

)
(4.28)

and the kernel K(x) is a continuous pdf. The parameter h is called the band-
width. Notice that h controls the amount of smoothing. Values of h too large
often lead to overly smoothed fits, while values too small lead to overfitting
(a jagged fit). Thus, the estimator (4.27) is quite sensitive to the bandwidth.
On the other hand, it is generally not as sensitive to the choice of the kernel
function. Often, the normal kernel is used. An R function that obtains the
Nadaraya–Watson smoother is the function ksmooth.

The following code segment obtains the ksmooth fit for the polynomial
dataset of Example 4.7.1. In the first fit (top panel of Figure 4.7) we used
the default bandwidth of h = 0.5, while in the second fit (lower panel of the
figure) we set h at 0.10. We omitted the scatter of data to show clearly the
sensitivity of the estimator (smooth) to the bandwidth setting. For both fits,
in the call, we requested the normal kernel.

> par(mfrow=c(2,1))

> plot(y~x,xlab=expression(x),ylab=expression(y),pch=" ")

> title("Bandwidth 0.5")

> lines(ksmooth(x,y,"normal",0.5))

> plot(y~x,xlab=expression(x),ylab=expression(y),pch=" ")

> lines(ksmooth(x,y,"normal",0.10))

> title("Bandwidth 0.10")

The fit with the smaller bandwidth, 0.10, is much more jagged. The fit with
the default bandwidth shows the trend, but notice the “artificial” valley it
detected at about x = 6.3. In comparing this fit with the Wilcoxon cubic
polynomial fit this valley is due to the largest outlier in the data, (see the
Wilcoxon residual plot in Figure 4.6). The Wilcoxon fit was not impaired by
this outlier.

The sensitivity of the fit to the bandwidth setting has generated a sub-
stantial amount of research on data-driven bandwidths. The R package sm

(Bowman and Azzalini 2014) of nonparametric regression and density fits de-
veloped by Bowman and Azzalini contain such data-driven routines; see also
Bowman and Azzalini (1997) for details. These are also kernel-type smoothers.
We illustrate its computation with the following example.

Example 4.7.2 (Sine Cosine Model). For this example we generated n = 197
observations from the model

yi = 5 sin(3x) + 6 cos(x/4) + ei, (4.29)
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FIGURE 4.7
For the polynomial data of Example 4.7.1: The top panel displays the scatter-
plot overlaid with the ksmooth fit using the bandwidth set at 0.5 (the default
value) while the bottom panel shows the fit using the bandwidth set at 0.10.

where ei are N(0, 100) variates and xi goes from 1 to 50 in increments
of 0.25. The data are in the set sincos. The appropriate sm function is
sm.regression. It has an argument h for bandwidth, but if this is omitted a
data-driven bandwidth is used. The fit is obtained as shown in the following
code segment (the vectors x and y contain the data). The default kernel is
the normal pdf and the option display="none" turns off the automatic plot.
Figure 4.8 displays the data and the fit.

> library(sm)

> fit <- sm.regression(x,y,display="none")

> fit$h ## Data driven bandwidth

[1] 4.211251

> plot(y~x,xlab=expression(x),ylab=expression(y))

> with(fit,lines(estimate~eval.points))

> title("sm.regression Fit of Sine-Cosine Data")
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FIGURE 4.8
Scatterplot overlaid with sm.regression for the data of Example 4.7.2.

Note that the procedure estimated the bandwidth to be 4.211.

The smoother sm.regression is not robust. As an illustration, consider
the sine-cosine data of Example 4.7.2. We modified the data by replacing y187
with the outlying value of 800. As shown in Figure 4.9, the sm.regression

fit (solid line) of the modified data is severely impaired in the neighborhood
of the outlier. The valley at x = 36 has essentially been missed by the fit.
For ease of comparison, we have also displayed the sm.regression fit on the
original data (broken line), which finds this valley.

A smoother which has robust capabilities is loess which was developed
by Cleveland et al. (1992). This is a base R routine. Briefly, loess smooths
at a point xi via a local linear fit. The percentage of data used for the local
fit is the analogue of the bandwidth parameter. The default percentage is
75%, but it can be changed by using the argument span. Also, by default,
the local fitting procedure is based on a weighted least squares procedure.
As shown by the broken line fit in Figure 4.10, for the modified sine-cosine
data, loess is affected in the same way as the sm fit; i.e., it has missed the
valley at x = 36. Setting the argument family="symmetric" in the call to
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FIGURE 4.9
Scatterplot of modified data (y137 = 800) overlaid with sm.regression fit
(solid line). For comparison, the sm.regression fit (broken line) on the orig-
inal data is also shown.

loess, though, invokes a robust local linear model fit. This is the solid line
in Figure 4.10 which is very close to the sm fit based on the original data.
Exercise 4.9.18 asks the reader to create a similar graphic. The following code
segment generates Figure 4.10; the figure demonstrates the importance in
obtaining a robust fit in addition to a traditional fit. We close this section
with two examples using real datasets.

Example 4.7.3 (Old Faithful). This dataset concerns the eruptions of Old
Faithful, which is a geyser in Yellowstone National Park, Wyoming. The
dataset is faithful in base R. As independent and dependent variables, we
chose respectively the duration of the eruption and the waiting time between
eruptions. In the top panel of Figure 4.11 we display the data overlaid with
the loess fit. There is an increasing trend, i.e., longer eruption times lead to
longer waiting times between eruptions. There appear to be two groups in the
plot based on lower or higher duration of eruption times. As the residual plot
shows, the loess fit has detrended the data.
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FIGURE 4.10
Scatterplot of modified data (y137 = 800) overlaid with loess fit (solid line).
For comparison, the sm.regression fit (broken line) on the original data is
also shown. Note that for clarity, the outlier is not shown.

Example 4.7.4 (Maximum January Temperatures in Kalamazoo). The
dataset weather contains weather data for the month of January for Kalama-
zoo, Michigan, from 1900 to 1995. For this example, our response variable is
avemax which is the average maximum temperature in January. The top panel
of Figure 4.12 shows the response variable over time. There seems to be little
trend in the data. The lower panel shows the loess fits, local LS (solid line)
and local robust (broken line). The fits are about the same. They do show a
slight pattern of a warming trend between 1930 and 1950.

4.8 Correlation

In a simple linear regression problem involving a response variable Y and a
predictor variable X , the fit of the model is of main interest. In particular,
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FIGURE 4.11
Top panel is the scatterplot of Old Faithful data, waiting time until the next
eruption versus duration of eruption, overlaid with the loess fit. The bottom
panel is the residual plot based on the loess fit.

we are often interested in predicting the random variable Y in terms of x and
we treat x as nonstochastic. In certain settings, though, the pair (X,Y ) is
taken to be a random vector and we are interested in measuring the strength
of a relationship or association between the random variables X and Y . By
no association, we generally mean that the random variables X and Y are
independent, so the basic hypotheses of interest in this section are:

H0 : X and Y are independent versus HA : X and Y are dependent.
(4.30)

For this section, assume that (X,Y ) is a continuous random vector with
joint cdf and pdf F (x, y) and f(x, y), respectively. Recall that X and Y are
independent random variables if their joint cdf factors into the product of
the marginal cdfs; i.e., F (x, y) = FX(x)FY (y) where FX(x) and FY (y) are
the marginal cdfs of X and Y , respectively. In Section 2.7 we discussed a
χ2 goodness-of-fit test for independence when X and Y are discrete random
variables. For the discrete case, independence is equivalent to the statement
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FIGURE 4.12
Top panel shows scatterplot of average maximum January temperature in
Kalamazoo, MI, over the years from 1900 to 1995. Lower panel displays the
local LS (solid line) and the local robust (broken line) loess fits.

P (X = x, Y = y) = P (X = x)P (Y = y) for all x and y. In fact, the null
expected frequencies of the χ2 goodness-of-fit test statistic are based on this
statement.2 In the continuous case, we consider measures of association
between X and Y . We discuss the traditional Pearson’s measure of associa-
tion (the correlation coefficient ρ) and two popular nonparametric measures
(Kendall’s τK and Spearman’s ρS).

Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) denote a random sample of size n on
the random vector (X,Y ). Using this notation, we discuss the estimation,
associated inference, and R computation for these measures. Our discussion
is brief and many of the facts that we state are discussed in detail in most
introductory mathematical statistics texts; see, for example, Chapters 9 and
10 of Hogg et al. (2013).

2For the continuous case, this statement is simply 0 = 0, so the χ2 goodness-of-fit test
is not an option.
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4.8.1 Pearson’s Correlation Coefficient

The traditional correlation coefficient between X and Y is the ratio of the
covariance between X and Y to the product of their standard deviations, i.e.,

ρ =
E[(X − µX)(Y − µY )]

σXσY
, (4.31)

where µX , σX and µY , σY are the respective means and standard deviations of
X and Y . The parameter ρ requires, of course, the assumption of finite variance
for both X and Y . It is a measure of linear association between X and Y . It
can be shown that it satisfies the properties: −1 ≤ ρ ≤ 1; ρ = ±1 if and only
if Y is a linear function of X (with probability 1); and ρ > (<) 0 is associated
with a positive (negative) linear relationship between Y and X . Note that if
X and Y are independent then ρ = 0. In general, the converse is not true.
The contrapositive, though, is true; i.e., ρ 6= 0⇒ X and Y are dependent.

Usually ρ is estimated by the nonparametric estimator. The numerator is
estimated by the sample covariance, n−1

∑n
i=1(Xi − X)(Yi − Y ), while the

denominator is estimated by the product of the sample standard deviations
(with n, not n− 1, as divisors of the sample variances). This simplifies to the
sample correlation coefficient given by

r =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2 ·∑n
i=1(Yi − Y )2

. (4.32)

Similarly, it can be shown that r satisfies the properties: −1 ≤ r ≤ 1; r = ±1
if there is a deterministic linear relationship for the sample (Xi, Yi); and r >
(<) 0 is associated with a positive (negative) linear relationship between Yi
and Xi. The estimate of the correlation coefficient is directly related to simple
least squares regression. Let σ̂x and σ̂y denote the respective sample standard
deviations of X and Y . Then we have the relationship

r =
σ̂x
σ̂y
β̂, (4.33)

where β̂ is the least squares estimate of the slope in the simple regression of Yi
on Xi. It can be shown that, under the null hypothesis,

√
nr is asymptotically

N(0, 1). Inference for ρ can be based on this asymptotic result, but usually
the t-approximation discussed next is used.

If we make the much stronger assumption that the random vector (X,Y )
has a bivariate normal distribution, then the estimator r is the maximum
likelihood estimate (MLE) of ρ. Based on expression (4.33) and the usual
t-ratio in regression, under H0, the statistic

t =

√
n− 2 r√
1− r2

(4.34)

has t-distribution with n− 2 degrees of freedom; see page 508 of Hogg et al.
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(2013). Thus a level α test of the hypotheses (4.30) is to reject H0 in favor
of HA if |t| > tα/2,n−2. Furthermore, for general ρ, it can be shown that
log[(1+r)/(1−r)] is approximately normal with mean log[(1+ρ)/(1−ρ)]. Based
on this, approximate confidence intervals for ρ can be constructed. In practice,
usually the strong assumption of bivariate normality cannot be made. In this
case, the t-test and confidence interval are approximate. For computation in
R, assume that the R vectors x and y contain the samples X1, . . . , Xn and
Y1, . . . , Yn, respectively. Then the R function cor.test computes this analysis;
see Example 4.8.1 below. If inference is not needed the function cor may be
used to just obtain the estimate.

4.8.2 Kendall’s τK

Kendall’s τK is the first nonparametric measure of association that we discuss.
As above, let (X,Y ) denote a jointly continuous random vector. Kendall’s
τK is a measure of monotonicity between X and Y . Let the two pairs of
random variables (X1, Y1) and (X2, Y2) be independent random vectors with
the same distribution as (X,Y ). We say that the pairs (X1, Y1) and (X2, Y2)
are concordant or discordant if

sign{(X1 −X2)(Y1 − Y2)} = 1 or sign{(X1 −X2)(Y1 − Y2)} = −1,

respectively. Concordant pairs are indicative of increasing monotonicity be-
tween X and Y , while discordant pairs indicate decreasing monotonicity.
Kendall’s τK measures this monotonicity in a probability sense. It is defined
by

τK = P [sign{(X1 −X2)(Y1 − Y2)} = 1]− P [sign{(X1 −X2)(Y1 − Y2)} = −1].
(4.35)

It can be shown that −1 ≤ τK ≤ 1; τK > 0 indicates increasing mono-
tonicity; τK < 0 indicates decreasing monotonicity; and τK = 0 reflects
neither monotonicity. It follows that if X and Y are independent then
τK = 0. While the converse is not true, the contrapositive is true; i.e.,
τK 6= 0⇒ X and Y are dependent.

Using the random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn), a straightfor-
ward estimate of τK is simply to count the number of concordant pairs in the
sample and subtract from that the number of discordant pairs. Standardiza-
tion of this statistic leads to

τ̂K =

(
n

2

)−1∑

i<j

sign{(Xi −Xj)(Yi − Yj)} (4.36)

as our estimate of τK . Since the statistic τ̂K is a Kendall’s τK based on the
empirical sample distribution, it shares the same properties; i.e., τ̂K is be-
tween −1 and 1; positive values of τ̂K reflect increasing monotonicity; and
negative values reflect decreasing monotonicity. It can be shown that τ̂K is
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an unbiased estimate of τK . Further, under the assumption that X and Y
are independent, the statistic τ̂K is distribution-free with mean 0 and vari-
ance 2(2n + 5)/[9n(n − 1)]. Tests of the hypotheses (4.30) can be based on
the exact finite sample distribution. Tie corrections for the test are available.
Furthermore, distribution-free confidence intervals3 for τK exist. R computa-
tion of the inference for Kendall’s τK is obtained by the function cor.test

with method="kendall"; see Example 4.8.1. Although this R function does
not compute a confidence interval for τK , in Section 4.8.4 we provide an R
function to compute the percentile bootstrap confidence interval for τK .

4.8.3 Spearman’s ρS

In defining Spearman’s ρS , it is easier to begin with its estimator. Consider the
random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn). Denote by R(Xi) the rank of
Xi among X1, X2, . . . , Xn and likewise define R(Yi) as the rank of Yi among
Y1, Y2, . . . , Yn. The estimate of ρS is simply the sample correlation coefficient
with Xi and Yi replaced respectively by R(Xi) and R(Yi). Let rS denote this
correlation coefficient. Note that the denominator of rS is a constant and that
the sample mean of the ranks is (n+1)/2. Simplification leads to the formula

rS =

∑n
i=1(R(Xi)− [(n+ 1)/2])(R(Yi)− [(n+ 1)/2])

n(n2 − 1)/12
. (4.37)

This statistic is a correlation coefficient, so it is between ±1, It is ±1 if there is
a strictly increasing (decreasing) relation between Xi and Yi; hence, similar to
Kendall’s τ̂K , it estimates monotonicity between the samples. It can be shown
that

E(rS) =
3

n+ 1
[τK + (n− 2)(2γ − 1)],

where γ = P [(X2 −X1)(Y3 − Y1) > 0]. The parameter that rS is estimating
is not as easy to interpret as the parameter τK .

If X and Y are independent, it follows that rS is a distribution-free statistic
with mean 0 and variance (n−1)−1. We accept HA : X and Y are dependent
for large values of |rS |. This test can be carried out using the exact distribu-
tion or approximated using the z-statistic

√
n− 1rS . In applications, however,

similar to expression (4.34), the t-approximation4 is often used, where

t =

√
n− 2rS√
1− r2S

. (4.38)

There are distribution-free confidence intervals for ρS and tie corrections5 are
available. The R command cor.test with method="spearman" returns the

3See Chapter 8 of Hollander and Wolfe (1999).
4See, for example, page 347 of Huitema (2011).
5See Hollander and Wolfe (1999).
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analysis based on Spearman’s rS . This computes the test statistic and the
p-value, but not a confidence interval for ρS . Although the parameter ρS is
difficult to interpret, nevertheless confidence intervals are important for they
give a sense of the strength (effect size) of the estimate. As with Kendall’s τK ,
in Section 4.8.4, we provide an R function to compute the percentile bootstrap
confidence interval for ρS .

Remark 4.8.1 (Hypothesis Testing for Associations). In general, let ρG de-
note any of the measures of association discussed in this section. If ρG 6= 0 then
X and Y are dependent. Hence, if the statistical test rejects ρG = 0, then we
can statistically accept HA that X and Y are dependent. On the other hand,
if ρG = 0, then X and Y are not necessarily independent. Hence, if the test
fails to accept HA, then we should not conclude independence between X and
Y . In this case, we should conclude that there is not significant evidence to
refute ρG = 0.

4.8.4 Computation and Examples

We illustrate the R function cor.test in the following example.

Example 4.8.1 (Baseball Data, 2010 Season). Datasets of major league base-
ball statistics can be downloaded at the site baseballguru.com. For this
example, we investigate the relationship between the batting average of a
full-time player and the number of home runs that he hits. By full-time we
mean that the batter had at least 450 official at bats during the season. These
data are in the npsm dataset bb2010. Figure 4.13 displays the scatterplot of
home run production versus batting average for full-time players. Based on
this plot there is an increasing monotone relationship between batting average
and home run production, although the relationship is not very strong.

In the next code segment, the R analyses (based on cor.test) of Pearson’s,
Spearman’s, and Kendall’s measures of association are displayed.

> with(bb2010,cor.test(ave,hr))

Pearson’s product-moment correlation

data: ave and hr

t = 2.2719, df = 120, p-value = 0.02487

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.02625972 0.36756513

sample estimates:

cor

0.2030727

> with(bb2010,cor.test(ave,hr,method="spearman"))
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FIGURE 4.13
Scatterplot of home runs versus batting average for players who have at least
450 at bats during the 2010 Major League Baseball Season.

Spearman’s rank correlation rho

data: ave and hr

S = 234500, p-value = 0.01267

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.2251035

> with(bb2010,cor.test(ave,hr,method="kendall"))

Kendall’s rank correlation tau

data: ave and hr

z = 2.5319, p-value = 0.01134

alternative hypothesis: true tau is not equal to 0

sample estimates:
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tau

0.1578534

For each of the methods the output contains a test statistic and associated
p-value as well as the point estimate of the measure of association. Pearson’s
also contains the estimated confidence interval (95% by default). For exam-
ple the results from Pearson’s analysis give r = 0.203 and a p-value of 0.025.
While all three methods show a significant positive association between home
run production and batting average, the results for Spearman’s and Kendall’s
procedures are somewhat stronger than that of Pearson’s. Based on the scat-
terplot, Figure 4.13, there are several outliers in the dataset which may have
impaired Pearson’s r. On the other hand, Spearman’s rS and Kendall’s τ̂K
are robust to the effects of the outliers.

The output for Spearman’s method results in the value of rS and the
p-value of the test. It also computes the statistic

S =

n∑

i=1

[R(Xi)−R(Yi)]2.

Although it can be shown that

rS = 1− 6S

n2 − n ;

the statistic S does not readily show the strength of the association, let alone
the sign of the monotonicity. Hence, in addition, we advocate forming the z
statistic or the t-approximation of expression (4.38). The latter gives the value
of 2.53 with an approximate p-value of 0.0127. This p-value agrees with the
p-value calculated by cor.test and the value of the standardized test statistic
is readily interpreted. See Exercise 4.9.16.

As with the R output for Spearman’s procedure, the output for Kendall’s
procedure includes τ̂K and the p-value of the associated test. The results of
the analysis based on Kendall’s procedure indicate that there is a signifi-
cant monotone increasing relationship between batting average and home run
production, similar to the results for Spearman’s procedure. The estimate of
association is smaller than that of Spearman’s, but recall that they are esti-
mating different parameters. Instead of a z-test statistic, R computes the test
statistic T which is the number of pairs which are monotonically increasing.
It is related to τ̂K by the expression

T =

{(
n

2

)
[1 + τ̂K ]

}
/2.

The statistic T does not lend itself easily to interpretation of the test. Even
the sign of monotonicity is missing. As with the Spearman’s procedure, we
recommend also computing the standardized test statistic; see Exercise 4.9.17.
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In general, a confidence interval yields a sense of the strength of the rela-
tionship. For example, a “quick” standard error is the length of a 95% confi-
dence interval divided by 4. The function cor.test does not compute confi-
dence intervals for Spearman’s and Kendall’s methods. We have written an R
function, cor.boot.ci, which obtains a percentile bootstrap confidence inter-
val for each of the three measures of association discussed in this section. Let
B = [X,Y ] be the matrix with the samples of Xi’s in the first column and
the samples of Yi’s in the second column. Then the bootstrap scheme resam-
ples the rows of B with replacement to obtain a bootstrap sample of size n.
This is performed nBS times. For each bootstrap sample, the estimate of the
measure of association is obtained. These bootstrap estimates are collected
and the α/2 and (1 − α/2) percentiles of this collection form the confidence
interval. The default arguments of the function are:

> args(cor.boot.ci)

function (x, y, method = "spearman", conf = 0.95, nbs = 3000)

NULL

Besides Spearman’s procedure, bootstrap percentile confidence inter-
vals are computed for ρ and τK by using respectively the arguments
method="pearson" and method="kendall". Note that (1 − α) is the confi-
dence level and the default number of bootstrap samples is set at 3000. We
illustrate this function in the next example.

Example 4.8.2 (Continuation of Example 4.8.1). The code segment below
obtains a 95% percentile bootstrap confidence interval for Spearman’s ρS .

> library(boot)

> with(bb2010,cor.boot.ci(ave,hr))

2.5% 97.5%

0.05020961 0.39888150

The following code segment computes percentile bootstrap confidence intervals
for Pearson’s and Kendall’s methods.

> with(bb2010,cor.boot.ci(ave,hr,method=’pearson’))

2.5% 97.5%

0.005060283 0.400104126

> with(bb2010,cor.boot.ci(ave,hr,method=’kendall’))

2.5% 97.5%

0.02816001 0.28729659



116 Nonparametric Statistical Methods Using R

TABLE 4.1
Estimates and Confidence Intervals for the Three Methods.
The first three columns contain the results for the original
data, while the last three columns contain the results for the
changed data.

Original Data Outlier Data
Est LBCI UBCI Est2 LBCI2 UBCI2

Pearson’s 0.20 0.00 0.40 0.11 0.04 0.36
Spearman’s 0.23 0.04 0.40 0.23 0.05 0.41
Kendall’s 0.16 0.03 0.29 0.16 0.04 0.29

To show the robustness of Spearman’s and Kendall’s procedures, we
changed the home run production of the 87th batter from 32 to 320; i.e.,
a typographical error. Table 4.1 compares the results for all three procedures
on the original and changed data.6

Note that the results for Spearman’s and Kendall’s procedures are essen-
tially the same on the original dataset and the dataset with the outlier. For
Pearson’s procedure, though, the estimate changes from 0.20 to 0.11. Also,
the confidence interval has been affected.

4.9 Exercises

4.9.1. Obtain a scatterplot of the telephone data. Overlay the least squares
and R fits.

4.9.2. Write an R function which given the results of a call to rfit returns
the diagnostic plots: Studentized residuals versus fitted values, with ±2 hor-
izontal lines for outlier identification; normal q− q plot of the Studentized
residuals, with ±2 horizontal lines outliers for outlier identification; histogram
of residuals; and a boxplot of the residuals.

4.9.3. Consider the free fatty acid data.

(a) For the Wilcoxon fit, obtain the Studentized residual plot and q−q
plot of the Studentized residuals. Comment on the skewness of the
errors.

(b) Redo the analysis of the free fatty acid data using the bent scores
(bentscores1). Compare the summary of the regression coefficients
with those from the Wilcoxon fit. Why is the bent score fit more
precise (smaller standard errors) than the Wilcoxon fit?

6These analyses were run in a separate step so they may differ slightly from those already
reported.
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4.9.4. Using the baseball data, calculate a large sample confidence interval
for the slope parameter when regressing weight on height. Compare the results
to those obtained using the bootstrap discussed in Section 4.6.

4.9.5. Consider the following data:

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
y −7 0 5 9 −3 −6 18 8 −9 −20 −11 4 −1 7 5

Consider the simple regression model: Y = β0 + β1x+ e.

(a) For Wilcoxon scores, write R code which obtains a sensitivity
curve of the rfit of the estimate of β1, where the sensitivity curve
is the difference in the estimates of β1 between perturbed data and
the original data.

(b) For this exercise, use the above data as the original data. Let β̂1
denote the Wilcoxon estimate of slope based on the original data.
Then obtain 9 perturbed datasets using the following sequence of
replacements to y15: −995,−95,−25,−5, 5, 10, 30, 100, 1000. Let β̂1j
be the Wilcoxon fit of the jth perturbed dataset for j = 1, 2, . . . , 9.
Obtain the sensitivity curve which is the plot of β̂1j − β̂1 versus the
jth replacement value for y15.

(c) Obtain the sensitivity curve for the LS fit. Compare it with the
Wilcoxon sensitivity curve.

4.9.6. For the simple regression model, the estimator of slope proposed by
Theil (1950) is defined as the median of the pairwise slopes:

β̂T = med{bij}

where bij = (yj − yi)/(xj − xi) for i < j.

(a) Write an R function which takes as input a vector of response
variables and a vector of explanatory variables and returns the Theil
estimate.

(b) For a simple regression model where the predictor is a continu-
ous variable, write an R function which computes the bootstrap per-
centile confidence interval for the slope parameter based on Theil’s
estimate.

(c) Show that Theil’s estimate reduces to the the Hodges–Lehmann
estimator for the two-sample location problem.

4.9.7. Consider the data of Example 4.4.1.

(a) Obtain a scatterplot of the data.
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(b) Obtain the Wilcoxon fit of the linear trend model. Overlay the fit
on the scatterplot. Obtain the Studentized residual plot and normal
q−q plots. Identify any outliers and comment on the quality of fit.

(c) Obtain a 95% confidence interval for the slope parameter and
use it to test the hypothesis of 0 slope.

(d) Estimate the mean of the response when time has the value 16
and find the 95% confidence interval for it which was discussed in
Section 4.4.4.

4.9.8. Bowerman et al. (2005) present a dataset concerning the value of a
home (x) and the upkeep expenditure (y). The data are in qhic. The variable
x is in $1000’s of dollars while the y variable is in $10’s of dollars.

(a) Obtain a scatterplot of the data.

(b) Use Wilcoxon Studentized residual plots, values of τ̂ , and values of
the robust R2 to decide whether a linear or a quadratic model fits
the data better.

(c) Based on your model, estimate the expected expenditures (with a
95% confidence interval) for a house that is worth $155,000.

(d) Repeat (c) for a house worth $250,000.

4.9.9. Rewrite the aligned.test function to take an additional design matrix
as its third argument instead of group/treatment membership. That is, for the
model Y = α1+X1β1 +X2β2 + e, test the hypothesis H0 : β2 = 0.

4.9.10. Hettmansperger and McKean (2011) discuss a dataset in which the
dependent variable is the cloud point of a liquid, a measure of degree of crys-
tallization in a stock, and the independent variable is the percentage of I-8
in the base stock. For the readers’ convenience, the data can be found in the
dataset cloud in the package npsm.

(a) Scatterplot the data. Based on the plot, is a simple linear regression
model appropriate?

(b) Show by residual plots of the fits that the linear and quadratic
polynomials are not appropriate but that the cubic model is.

(c) Use the R function polydeg, with a super degree set at 5, to deter-
mine the degree of the polynomial. Compare with Part (b).

4.9.11. Devore (2012) discusses a dataset on energy. The response variable is
the energy output in watts while the independent variable is the temperature
difference in degrees K. A polynomial fit is suggested. The data are in the
dataset energy.

(a) Scatterplot the data. What degree of polynomial seems suitable?

(b) Use the R function polydeg, with a super degree set at 6, to deter-
mine the degree of the polynomial.
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(c) Based on a residual analysis, does the polynomial fit of Part (b)
provide a good fit?

4.9.12. Consider the weather dataset, weather, discussed in Example 4.7.4.
One of the variables is mean average temperature for the month of January
(meantmp).

(a) Obtain a scatterplot of the mean average temperature versus the
year. Determine the warmest and coldest years.

(b) Obtain the loess fit of the data. Discuss the fit in terms of years,
(were there warm trends, cold trends?).

4.9.13. As in the last problem, consider the weather dataset, weather. One
of the variables is total snowfall (in inches), totalsnow, for the month of
January.

(a) Scatterplot total snowfall versus year. Determine the years of max-
imal and minimal snowfalls.

(b) Obtain the local LS and robust loess fits of the data. Compare the
fits.

(c) Perform a residual analysis on the robust fit.

(d) Obtain a boxplot of the residuals found in Part (c). Identify the
outliers by year.

4.9.14. In the discussion of Figure 4.7, the nonparametric regression fit by
ksmooth detects an artificial valley. Obtain the locally robust loess fit of this
dataset (poly) and compare it with the ksmooth fit.

4.9.15. Using the baseball data, obtain the scatterplot between the variables
home run productions and RBIs. Then compute the Pearson’s, Spearman’s,
and Kendall’s analyses for these variables. Comment on the plot and analyses.

4.9.16. Write an R function which computes the t-test version of Spearman’s
procedure and returns it along with the corresponding p-value and the estimate
of ρS .

4.9.17. Repeat Exercise 4.9.16 for Kendall’s procedure.

4.9.18. Create a graphic similar to Figure 4.10.

4.9.19. Recall that, in general, the three measures of association estimate
different parameters. Consider bivariate data (Xi, Yi) generated as follows:

Yi = Xi + ei, i = 1, 2, . . . , n,

where Xi has a standard Laplace (double exponential) distribution, ei has a
standard N(0, 1) distribution, and Xi and ei are independent.
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(a) Write an R script which generates this bivariate data. The supplied
R function rlaplace(n) generates n iid Laplace variates. For n =
30, compute such a bivariate sample. Then obtain the scatterplot
and the association analyses based on the Pearson’s, Spearman’s,
and Kendall’s procedures.

(b) Next write an R script which simulates the generation of these bi-
variate samples and collects the three estimates of association. Run
this script for 10,000 simulations and obtain the sample averages of
these estimates, their corresponding standard errors, and approxi-
mate 95% confidence intervals. Comment on the results.

4.9.20. The electronic memory game Simon was first introduced in the late
1970s. In the game there are four colored buttons which light up and produce
a musical note. The device plays a sequence of light/note combinations and
the goal is to play the sequence back by pressing the buttons. The game starts
with one light/note and progressively adds one each time the player correctly
recalls the sequence.7

Suppose the game were played by a set of statistics students in two classes
(time slots). Each student played the game twice and recorded his or her
longest sequence. The results are in the dataset simon.

Regression toward the mean is the phenomenon that if an observation
is extreme on the first trial it will be closer to the average on the second trial.
In other words, students that scored higher than average on the first trial
would tend to score lower on the second trial and students who scored low on
the first trial would tend to score higher on the second.

(a) Obtain a scatterplot of the data.

(b) Overlay an R fit of the data. Use Wilcoxon scores. Also overlay the
line y = x.

(c) Obtain an R estimate of the slope of the regression line as well as
an associated confidence interval.

(d) Do these data suggest a regression toward the mean effect?

7The game is implemented on the web. The reader is encouraged to use his or her favorite
search engine and try it out.
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ANOVA and ANCOVA

5.1 Introduction

In this chapter, the R functions in the packages Rfit and npsm for the com-
putation of fits and inference for standard rank-based analyses of variance
(ANOVA)1 and analysis of covariance (ANCOVA) type designs are discussed.
These include one-way, two-way, and k-way crossed designs that are covered
in Sections 5.2–5.4. Both tests of general linear hypotheses and estimation
of effects with standard errors and confidence intervals are emphasized. We
also briefly present multiple comparison procedures (MCP), in particular a ro-
bust Tukey–Kramer procedure, illustrating their computation via the package
Rfit . We also consider the R computation of several traditional nonparamet-
ric methods for these designs including the Kruskal–Wallis (Section 5.2.2) and
the Jonckheere–Terpstra tests for ordered alternatives (Section 5.6). In the
last section, the generalization of the Fligner–Kileen procedure of Chapter 3
to the k-sample scale problem is presented. The rank-based analyses covered
in this chapter are for fixed effect models. Ranked-based methods and their
computation for mixed (fixed and random) models form the topic of Chapter
8.

As a cursory reading, we suggest Section 5.2 and the two-way design ma-
terial of Section 5.3, and the ordered alternative methods of Section 5.6. As
usual, our emphasis is on how to easily compute these rank-based procedures
using Rfit. Details of the robust rank-based inference for these fixed effect
models are discussed in Chapter 4 of Hettmansperger and McKean (2011).

5.2 One-Way ANOVA

Suppose we want to determine the effect that a single factor A has on a re-
sponse of interest over a specified population. Assume that A consists of k
levels or treatments. In a completely randomized design (CRD), n subjects
are randomly selected from the reference population and ni of them are ran-

1Though could be named ANODI for rank-based analysis.
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domly assigned to level i, i = 1, . . . k. Let the jth response in the ith level be
denoted by Yij , j = 1, . . . , ni, i = 1, . . . , k. We assume that the responses are
independent of one another and that the distributions among levels differ by
at most shifts in location.

Under these assumptions, the full model can be written as

Yij = µi + eij j = 1, . . . , ni , i = 1, . . . , k , (5.1)

where the eijs are iid random variables with density f(x) and distribution
function F (x) and the parameter µi is a convenient location parameter for
the ith level, (for example, the mean or median of the ith level). This model
is often referred to as a one-way design and its analysis as a one-way analysis
of variance (ANOVA). Generally, the parameters of interest are the effects
(pairwise contrasts),

∆ii′ = µi′ − µi, i 6= i′, 1, . . . , k. (5.2)

We can express the model in terms of these simple contrasts. As in the R lm

command, we reference the first level. Then the Model (5.1) can be expressed
as

Yij =

{
µ1 + e1j j = 1, . . . , n1

µ1 +∆i1 + eij j = 1, . . . , ni, i = 2, . . . , k.
(5.3)

Let ∆ = (∆21,∆31, . . . ,∆k1)
′. Upon fitting the model a residual analysis

should be conducted to check these model assumptions. As the full model fit
is based on a linear model, the diagnostic procedures discussed in Chapter 4
are implemented for ANOVA and ANCOVA models as well.

Observational studies can also be modeled this way. Suppose k independent
samples are drawn, one from each of k populations. If we assume further that
the distributions of the populations differ by at most a shift in locations then
Model (5.1) is appropriate. Usually, in the case of observational studies, it
is necessary to adjust for covariates. These analyses are referred to as the
analysis of covariance and are discussed in Section 5.4.

The analysis for the one-way design is usually a test of the hypothesis that
all the effects, ∆i’s, are 0, followed by individual comparisons of levels. The
hypothesis can be written as

H0 : µ1 = · · · = µk versus HA : µi 6= µi′ for some i 6= i′. (5.4)

Confidence intervals for the simple contrasts ∆ii′ can be used for the pairwise
comparisons. We next briefly describe the general analysis for the one-way
model and discuss its computation by Rfit.

A test of the overall hypothesis (5.4) is based on a reduction in dispersion
test, first introduced in (4.4.3). For Rfit, assume that a score function ϕ has
been selected; otherwise, Rfit uses the default Wilcoxon score function. As
discussed in Section 5.3, let ∆̂ϕ be the rank-based estimate of ∆ when the full

model, (5.1), is fit. Let Dϕ(FULL) = D(∆̂ϕ) denote the full model dispersion,
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i.e., the minimum value of the dispersion function when this full model is fit.
The reduced model is the location model

Yij = µ+ eij j = 1, . . . , ni , i = 1, . . . , k. (5.5)

Because the dispersion function is invariant to location, the minimum dis-
persion at the reduced model is the dispersion of the observations; i.e.,
D(0) which we call Dϕ(RED). The reduction in dispersion is then RDϕ =
Dϕ(RED) − Dϕ(FULL) and, hence, the drop in dispersion test statistic is
given by

Fϕ =
RDϕ/(k − 1)

τ̂ϕ/2
, (5.6)

where τ̂ϕ is the estimate of scale discussed in Section 3.1. The approximate
level α test rejects H0, if Fϕ ≥ Fα,k−1,n−k. The traditional LS test is based on
a reduction of sums of squares. Replacing this by a reduction in dispersion the
test based on Fϕ can be summarized in an ANOVA table much like that for
the traditional F -test; see page 298 of Hettmansperger and McKean (2011).
When the linear Wilcoxon scores are used, we often replace the subscript ϕ
by the subscriptW ; that is, we write the Wilcoxon rank-based F -test statistic
as

FW =
RDW /(k − 1)

τ̂W /2
. (5.7)

The Rfit function oneway.rfit computes the robust rank-based one-way
analysis. Its arguments are the vector of responses and the corresponding
vector of levels. It returns the value of the test statistic and the associated
p-value. We illustrate its computation with an example.

Example 5.2.1 (LDL Cholesterol of Quail). Hettmansperger and McKean
(2011), page 295, discuss a study which investigated the effect that four drug
compounds had on the reduction of low density lipid (LDL) cholesterol in
quail. The drug compounds are labeled as I, II, III, and IV. The sample size
for each of the first three levels is 10 while 9 quail received compound IV.
The boxplots shown in Figure 5.1 attest to a difference in the LDL levels over
treatments.

Using Wilcoxon scores, the results of oneway.rfit are:

> robfit = with(quail,oneway.rfit(ldl,treat))

> robfit

Call:

oneway.rfit(y = ldl, g = treat)

Overall Test of All Locations Equal

Drop in Dispersion Test

F-Statistic p-value
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FIGURE 5.1
Plots for LDL cholesterol of quail example.

3.916371 0.016404

Pairwise comparisons using Rfit

data: ldl and treat

2 3 4

1 - - -

2 1.00 - -

3 0.68 0.99 -

4 0.72 0.99 0.55

P value adjustment method: none

The Wilcoxon test statistic has the value FW = 3.92 with p-value 0.0164.
Thus the Wilcoxon test indicates that the drugs differ in their lowering of
cholesterol effect. In contrast to the highly significant Wilcoxon test of the
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hypothesis (5.4), the LS-based F -test statistic has value 1.14 with the p-value
0.3451. In practice, using the LS results, one would not proceed with com-
parisons of the drugs with such a large p-value. Thus, for this dataset, the
robust and LS analyses would have different practical interpretations. Also,
the coefficient of precision, (3.46), for this data between the Wilcoxon and LS
analyses is σ̂2/τ̂2 = 2.72. Hence, the Wilcoxon analysis is much more precise.

The resulting q−q plot (see right panel of Figure 5.1) of the Studentized
Wilcoxon residuals indicates that the random errors eij have a skewed distri-
bution. R fits based on scores more appropriate than the Wilcoxon for skewed
errors are discussed later.

5.2.1 Multiple Comparisons

The second stage of an analysis of a one-way design consists of pairwise com-
parisons of the treatments. The robust (1 − α)100% confidence interval to
compare the ith and ith′ treatments is given by

∆̂ii′ ± tα/2,n−1τ̂

√
1

ni
+

1

ni′
. (5.8)

Often there are many comparisons of interest. For example, in the case of all
pairwise comparisons

(
k
2

)
confidence intervals are required. Hence, the overall

family error rate is usually of concern. Multiple comparison procedures (MCP)
try to control the overall error rate to some degree. There are many robust
versions of MCPs from which to choose. The summary function associated
with oneway.rfit computes three of the most popular of such procedures.
Assuming that the fit of the full model is in robfit, the syntax of the command
is summary(robfit,method="none"). The argument of method produces the
following MCPs:

method="none" No adjustment made
method="tukey" Tukey–Kramer
method="bonferroni" Bonferroni

We give a brief description of these procedures, followed by an example using
Rfit .

A protected least significant difference procedure (PLSD) consists of test-
ing the hypothesis (5.4) at a specified level α. If H0 is rejected then the
comparisons are based on the confidence intervals (5.8) with confidence coef-
ficient 1−α. On the other hand, if H0 is not rejected then the analysis stops.
Although this procedure does not control the overall family rate of error, the
initial F -test offers protection, which has been confirmed (See, for example,
McKean et al. (1989)) in simulation studies.

For the Tukey–Kramer procedure, Studentized range critical values replace
the t-critical values in the intervals (5.8). When the traditional procedure is
used, the random errors have a normal distribution, and the design is balanced
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then the Tukey–Kramer procedure has family error rate α. When either of
these assumptions fail then the Tukey–Kramer procedure has a family error
rate approximately equal to α.

The Bonferroni procedure depends on the number of comparisons made.
Suppose there are l comparisons of interest, then the Bonferroni procedure uses
the intervals (5.8) with the critical value tα/(2l),n−k. The Bonferroni procedure

has overall family rate≤ α. If all pairwise comparisons are desired then l =
(
k
2

)
.

Example 5.2.2 (LDL Cholesterol of Quail, Continued). For the quail data,
we selected the Tukey–Kramer procedure for all six pairwise comparisons. The
Rfit computation is:

> summary(robfit,method="tukey")

Multiple Comparisons

Method Used tukey

I J Estimate St Err Lower Bound CI Upper Bound CI

1 1 2 -25.00720 8.26820 -47.30572 -2.70868

2 1 3 -3.99983 8.26820 -26.29835 18.29869

3 1 4 -5.00027 8.49476 -27.90982 17.90928

4 2 3 21.00737 8.26820 -1.29115 43.30589

5 2 4 20.00693 8.49476 -2.90262 42.91648

6 3 4 -1.00044 8.49476 -23.91000 21.90911

The Tukey–Kramer procedure declares that the Drug Compounds I and II are
statistically significantly different.

5.2.2 Kruskal–Wallis Test

Note that Model (5.1) generalizes the two-sample problem of Chapter 2 to k-
samples. In this section, we discuss the Kruskal–Wallis test of the hypotheses
(5.4) which is a generalization of the two-sample MWW test.

Assume then that Model (5.1) holds for the responses Yij , j = 1, . . . ni and
i = 1, . . . , k. As before let n =

∑n
i=1 ni denote the total sample size. Let Rij

denote the rank of the response Yij among all n observations; i.e., the ranking
is done without knowledge of treatment. Let Ri denote the average of the
ranks for sample i. The test statistic H is a standardized weighted average of
the squared deviations of the Ri from the average of all ranks (n+ 1)/2. The
test statistic is

H =
12

n(n+ 1)

n∑

i=1

ni

(
Ri −

n+ 1

2

)2

. (5.9)

The statistic H is the Kruskal–Wallis test statistic; see Kruskal and Wallis
(1952). Under H0 H is distribution-free and there are some tables available
for its exact distribution.2 It also has an asymptotic χ2-distribution with k−1

2See Chapter 6 of Hollander and Wolfe (1999).
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degrees of freedom under H0. The R command is kruskal.test. Assume the
responses are in one vector x, and the group or treatment assignments are
vector g, then the call is kruskal.test(x,g). In addition a formula can
be used as in kruskal.test(x~g). We illustrate the computation with the
following example.

Example 5.2.3 (Mucociliary Efficiency). Hollander and Wolfe (1999), page
192, discuss a small study which assessed the mucociliary efficiency from the
rate of dust in the three groups: normal subjects, subjects with obstructive
airway disease, and subjects with asbestosis. The responses are the mucociliary
clearance half-times of the subjects. The sample sizes are small: n1 = n3 = 5
and n2 = 4. Hence, n = 14. The data are given in the R vectors normal,
obstruct, and asbestosis in the following code segment which computes
the Kruskal–Wallis test.

> normal <- c(2.9,3.0,2.5,2.6,3.2)

> obstruct <- c(3.8,2.7,4.0,2.4)

> asbestosis <- c(2.8,3.4,3.7,2.2,2.0)

> x <- c(normal,obstruct,asbestosis)

> g <- c(rep(1,5),rep(2,4),rep(3,5))

> kruskal.test(x,g)

Kruskal-Wallis rank sum test

data: x and g

Kruskal-Wallis chi-squared = 0.7714, df = 2, p-value = 0.68

Based on this p-value, there do not appear to be differences among the groups
for mucociliary efficiency.

Corrections for ties for the Kruskal–Wallis test are discussed in Hollander
and Wolfe (1999) and kruskal.test does make such adjustments in its cal-
culation. As discussed in Hettmansperger and McKean (2011), the Kruskal–
Wallis test is asymptotically equivalent to the drop in dispersion test (5.6)
using Wilcoxon scores.3

5.3 Multi-Way Crossed Factorial Design

For a Multi-way or k-way crossed factorial experimental design, the Rfit func-
tion raov computes the rank-based ANOVA for all 2k−1 hypotheses, including

3This equivalence extends to local alternatives; hence, the Kruskal–Wallis and the drop
in dispersion tests have the same asymptotic efficiency. In particular, for normal errors the
relative efficiency of these tests relative to the traditional LS test is 0.955.
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the main effects and interactions of all orders. These are the hypotheses in a
standard ANOVA table for a k-way design. The design may be balanced or
unbalanced. For simplicity, we briefly discuss the analysis in terms of a cell
mean (median) model; see Hocking (1985) for details on the traditional LS
analysis and Chapter 4 of Hettmansperger and McKean (2011) for the rank-
based analysis. For clarity, we first discuss a two-way crossed factorial design
before presenting the k-way design.

5.3.1 Two-Way

Let A and B denote the two factors in a two-way design with levels a and b,
respectively. Let Yijk define the response for the kth replication at levels i and
j of factors A and B, respectively. Then the full model can be expressed as

Yijk = µij + eijk, k = 1, . . . , nij , i = 1, . . . , a; j = 1, . . . , b, (5.10)

where eijk are iid random variables with pdf f(t). Since the effects of interest
are contrasts in the µij ’s, these parameters can be either cell means or medians,
(actually any location functional suffices). We refer to this model as the cell
mean or cell median model. We assume that all nij ≥ 1 and at least one
nij exceeds 1. Let n =

∑∑
nij denote the total sample size.

For the two-waymodel, the three hypotheses of interest are the main effects
hypotheses and the interaction hypothesis.4 For the two-way model (5.10)
these hypotheses are:

H0A : µ1· = · · · = µa· vs. H1A : µi· 6= µi′·, for i 6= i′ (5.11)

H0B : µ·1 = · · · = µ·b vs. H1B : µ·j 6= µ·j′ , for j 6= j′ (5.12)

H0AB : γ11 = γ12 · · · = γab vs. H1AB : γij 6= γi′j′ , (i, j) 6= (i′, j′) (5.13)

where γij are the interaction parameters

γij = µij − µi· − µ·j + µ··.

µi· =
1
b

∑b
j=1 µij , µ·j = 1

a

∑a
j=1 µij , and µ·j = 1

ab

∑b
i=1

∑a
j=1 µij . The func-

tion raov computes the drop in dispersion tests for each of these hypotheses
as illustrated in the next example.

Example 5.3.1 (Serum LH Data). Hollander and Wolfe (1999) discuss a 2×5
factorial design for a study to determine the effect of light on the release of
luteinizing hormone (LH). The factors in the design are: light regimes at two
levels (constant light and 14 hours of light followed by 10 hours of darkness)
and a luteinizing release factor (LRF) at 5 different dosage levels. The response
is the level of luteinizing hormone (LH), nanograms per ml of serum in blood
samples. Sixty rats were put on test under these 10 treatment combinations,

4We have chosen Type III hypotheses which are easy to interpret even for severely
unbalanced designs. Details of how Rfit performs this procedure are given in Section 5.5.
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six rats per combination. The data are in the dataset serumLH. We first obtain
the robust rank-based ANOVA for these data. The command is raov and its
syntax is shown in the output which follows.

> raov(serum~light+lrfdose+light*lrfdose,data = serumLH)

Robust ANOVA Table

DF RD Mean RD F p-value

light 1 1642.4580 1642.4580 58.397963 5.976252e-10

lrfdose 4 3027.6748 756.9187 26.912415 6.150414e-12

light:lrfdose 4 451.4822 112.8706 4.013138 6.710855e-03

We also obtained the LS-based ANOVA.

> summary(aov(serum~light+lrfdose+light*lrfdose,data = serumLH))

Df Sum Sq Mean Sq F value Pr(>F)

light 1 242189 242189 40.223 6.41e-08 ***

lrfdose 4 545549 136387 22.652 1.02e-10 ***

light:lrfdose 4 55099 13775 2.288 0.0729 .

Residuals 50 301055 6021

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that the analyses differ critically. The robust ANOVA clearly detects
the interaction with p-values less that 0.01; while, interaction is not significant
at a 5% level for the LS analysis, the p-value NA For both analyses, the average
main effects are highly significant. If the level of significance was set at 0.05,
then the two analyses would lead to different practical interpretations.

Next we examine the residuals by plotting them in a normal q−q plot;
these are based on the R fit of the full model using Wilcoxon scores. The
normal q−q plot of this fit is shown in the left panel of Figure 5.2. It is clear
from this plot that the errors have much heavier tails than those of a normal
distribution.

The empirical measure of precision (3.46) is σ̂2/τ̂2W = 1.9. Based on the
q−q plot this large value is not surprising. The right panel in Figure 5.2 is
an interaction plot of profiles based on a Wilcoxon fit. That is, in this case,
we have plotted the profiles for the light regimes over the LRF levels, using
the cell estimates based on the Wilcoxon fit. It is clear from this plot that
interaction of the factors is present, which agrees with the robust test for
interaction. The corresponding profile plot (not shown) based on cell sample
means is similar, although the outliers caused some distortion.

5.3.2 k-Way

Consider a general k-way factorial design with factors 1, 2, . . . , k having the
levels l1, l2, . . . , lk, respectively. Let Yi1i2···ik,j be the jth response at levels
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FIGURE 5.2
Plots for analysis of serum data.

i1 i2 · · · ik of factors 1, 2, . . . , k where 1 ≤ i1 ≤ l1, 1 ≤ i2 ≤ l2, . . . , and
1 ≤ ik ≤ lk and 1 ≤ j ≤ ni1i2···ik . Let n =

∑
ni1i2···ik denote the total sample

size. Choose a location functional µ (can be the mean or median). Then the
full model is

yi1i2···ik,j = µi1i2···ik + ei1i2···ik,j , (5.14)

where the errors ei1i2···ik,j are iid with cdf F (t) and pdf f(t).
For this model there are 2k− 1 hypotheses of interest. These include the k

main effect hypotheses and the interaction hypotheses of all orders. Using the
algorithms found in Hocking (1985), the corresponding hypotheses matrices
are obtained and, hence, the appropriate reduced model design matrices can
be computed. An illustrative example follows.

Example 5.3.2 (Plank Data). Abebe et al. (2001) discuss a dataset result-
ing from a three-way layout for a neurological experiment in which the time
required for a mouse to exit a narrow elevated wooden plank is measured. The
response is the log of time to exit. Interest lies in assessing the effects of three
factors: the Mouse Strain (Tg+, Tg-), the mouse’s Gender (female, male), and
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the mouse’s Age (Aged, Middle, Young). The design is a 2 × 2 × 3 factorial
design. The data are in the npsm dataset plank.

Using raov, we computed the tests for main effects, as well as the sec-
ond order and third order interactions. For comparison, we also obtained the
corresponding LS-based tests.

> raov(response~strain:gender:age, data = plank)

Robust ANOVA Table

DF RD Mean RD F p-value

strain 1 4.4220740 4.4220740 13.7693442 0.0005040186

gender 1 1.9841358 1.9841358 6.1781529 0.0161864481

age 2 0.8305464 0.4152732 1.2930674 0.2831040113

strain:gender 1 0.5014476 0.5014476 1.5613950 0.2170562268

strain:age 2 1.3058129 0.6529064 2.0330038 0.1412200992

gender:age 2 2.3842111 1.1921055 3.7119486 0.0311241534

strain:gender:age 2 0.3592335 0.1796167 0.5592861 0.5750170259

> fit.ls = lm(response~strain:gender:age, data = plank)

> anova(fit.ls)

Analysis of Variance Table

Response: response

Df Sum Sq Mean Sq F value Pr(>F)

strain:gender:age 11 28.431 2.5847 2.1414 0.03311 *

Residuals 52 62.765 1.2070

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

If the nominal level is α = 0.05, then, based on the rank-based ANOVA, the
factors strain and gender are significant, but, so is the factor age because of
its significant two-way interaction with gender. In contrast, based on the LS
ANOVA, only the factor strain is significant. Thus practical interpretations
would differ for the two analyses.

For diagnostic checks of the model, the Rfit function raov returns the
Rfit of the full model in the value fit. Using this value, we computed the
Wilcoxon Studentized residuals. Figure 5.3 displays the normal q−q plot and
the residual plot based on these residuals. The q−q plot suggests an error
distribution with very thick tails. Other than the outliers, the residual plot
reveals no serious lack of fit in the model.

The difference in the Wilcoxon and LS analyses are due to these outliers.
Our empirical measure of efficiency is σ̂2/τ̂2W = 2.93, which indicates that the
Wilcoxon analysis is almost 3 times more efficient than the LS analysis on this
dataset.
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FIGURE 5.3
Diagnostic plots for plank data analysis.

5.4 ANCOVA*

It is common to collect additional information (e.g. demographics) in an exper-
iment or study on the experimental units. When this information is included
in the model to test for a treatment or group effect it can be considered an
analysis of covariance (ANCOVA). The goal of these covariates is to ac-
count for variation in the response variables. These analyses are often called
adjusted analyses. Absent a priori information of which covariates are im-
portant, a model selection procedure can be implemented with the response
on the covariates; i.e., treatment is included in the model after the covariates
are selected. In this section, we discuss this adjusted analysis for rank-based
procedures. Covariate variables are sometimes referred to as concomitant vari-
ables. The monograph by Huitema (2011) offers an informative discussion of
the traditional ANCOVA, while Chapter 4 of Hettmansperger and McKean
(2011) presents the rank-based ANCOVA which we discuss.

For notation, consider a one-way experimental design with k different treat-
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ment combinations with cell sample sizes ni, i = 1, . . . k. The discussion easily
generalizes to other ANOVA designs. Suppose there are m covariate variables.
Let Yij denote the response for the jth subject in the ith cell and let xij de-
note the associated m× 1 vector of covariates for this subject. Let Y denote
the n × 1 vector of the responses Yij . Let the matrix W denote the n × k
cell-mean model design matrix and let the matrix X denote the n×m matrix
of covariates. Then symbolically we can write the model as

Y = Wµ+Xβ + e, (5.15)

where µ is the k × 1 vector of means (medians) and β is the m × 1 vector
of covariate parameters. This is the adjusted model and inference for the
experimental effects (linear functions of µ) proceeds similar to the inference
discussed in Sections 5.2–5.3, except that the inference is adjusted by the
covariates. We can also test to see if the covariates make a difference; i.e., test
that β = 0. At times, this is of interest.

A major assumption, though, behind the adjusted model (5.15) is that
the relationship between the covariates and the response variable is the same
at each treatment combination. Thus, before considering adjusted inference,
we usually test for no interaction between the experimental design and the
covariates. Let Z be the n×km matrix whose columns are the multiplications,
componentwise, of the columns of W and X. Then the full model is

Y = Wµ+Xβ +Zγ + e, (5.16)

where γ is the km × 1 vector of interaction parameters. Note that under
Model (5.16) each treatment combination has its own linear model with the
covariates.

The hypothesis of homogeneous slopes (the linear models of all treatments
combinations are the same) is

HOI : γ = 0 versus HAI : γ 6= 0 (5.17)

Note that studies are often not powered to detect a difference in slopes and a
failure to reject the hypothesis (5.17) does not mean the slopes are necessarily
the same. If hypotheses (5.17) is rejected, then inference on the effects will
often be quite misleading; see, for example, the scatterplot of two groups
found in Example 5.4.1. In such cases, confidence intervals for simple contrasts
between groups at specified factor values can be carried out. These are often
called pick-a-point analyses.5

5.4.1 Computation of Rank-Based ANCOVA

For the general one-way or k-way ANCOVA models, we have written R func-
tions which compute the rank-based ANCOVA analyses which are included in
the R package npsm. We first discuss the computation of rank-based ANCOVA
when the design is a one-way layout with k groups.

5See Huitema (2011) and Watcharotone (2010).
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Computation of Rank-Based ANCOVA for a One-Way Layout

For one-way ANCOVA models, we have written two R functions which make
use of Rfit to compute a rank-based analysis of covariance. The function
onecovaheter computes the test of homogeneous slopes. It also computes a
test of no treatment (group) effect, but this is based on the full model of
heterogeneous slopes. It should definitely not be used if the hypothesis of ho-
mogeneous slopes is rejected. The second function onecovahomog assumes that
the slopes are homogeneous and tests the hypothesis of no treatment effect;
this is the adjusted analysis of covariance. It also tests the hypotheses that
the covariates have a nonsignificant effect. The arguments to these functions
are: the number of groups (the number of cells of the one-way design); a n× 2
matrix whose first column contains the response variable and whose second
column contains the responses’ group identification; and the n×m matrix of
covariates. The functions compute the analysis of covariances, summarizing
the tests in ANCOVA tables. These tables are also returned in the value tab
along with the full model fit in fit. For the function onecovahomog the full
model is (5.15), while for the function onecovaheter the full model is (5.16).
We illustrate these functions with the following example.

Example 5.4.1 (Chateau Latour Wine Data). Sheather (2009) presents a
dataset drawn from the Chateau Latour wine estate. The response variable is
the quality of a vintage based on a scale of 1 to 5 over the years 1961 to 2004.
The predictor is end of harvest, days between August 31st and the end of
harvest for that year, and the factor of interest is whether or not it rained at
harvest time. The data are in latour in the package npsm. We first compute
the test for homogeneous slopes.

> data = latour[,c(’quality’,’rain’)]

> xcov = cbind(latour[,’end.of.harvest’])

> analysis = onecovaheter(2,data,xcov,print.table=T)

Robust ANCOVA (Assuming Heterogeneous Slopes) Table

df RD MRD F p-value

Groups 1 0.8830084 0.8830084 2.395327 0.129574660

Homog Slopes 1 2.8012494 2.8012494 7.598918 0.008755332

Based on the robust ANCOVA table, since the p-value is less than 0.01,
there is definitely an interaction between the groups and the predictor. Hence,
the test in the first row for treatment effect should be ignored.

To investigate this interaction, as shown in the left panel of Figure 5.4, we
overlaid the fits of the two linear models over the scatterplot of the data. The
dashed line is the fit for the group “rain at harvest time,” while the solid line
is the fit for the group “no rain at harvest time.” For both groups, the quality
of the wine decreases as the harvest time increases, but the decrease is much
worse if it rains. Because of this interaction the tests in the first two rows of the
ANCOVA table are not of much interest. Based on the plot, interpretations
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from confidence intervals on the difference between the groups at days 25 and
50 would seem to differ.
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FIGURE 5.4
The left panel is the scatterplot of the data of Example 5.4.1. The dashed line
is the fit for the group “rain at harvest time” and the solid line is the fit for
the group “no rain at harvest time.” The right panel is the normal probability
plot of the Wilcoxon Studentized residuals.

If we believe the assumption of equal slopes is a reasonable one, then
we may use the function onecovahomog which takes the same arguments as
onecovaheter.

Computation of Rank-Based ANCOVA for a k-Way Layout

For the k-way layout, we have written the Rfit function kancova which com-
putes the ANCOVA. Recall that the full model for the design is the cell mean
(median) model. Under heterogeneous linear models, each cell in the model has
a distinct linear model. This is the full model, Model 5.16, for testing homo-
geneous slopes. This function also computes the adjusted analysis, assuming
that the slopes are homogeneous; that is, for these hypotheses the full model
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is Model 5.15. So these adjusted tests should be disregarded if there is reason
to believe the slopes are different, certainly if the hypothesis of homogeneous
slopes is rejected. For the adjusted tests, the standard hypotheses are those of
the main effects and interactions of all orders as described in Section 5.3. A
test for all covariate effects that are null is also computed. We illustrate this
function in the following two examples.

Example 5.4.2. For this illustration we have simulated data from a 2 × 3
layout with one covariate. Denote the factors by A and B, respectively. It is a
null model; i.e., for the data simulated, all effects were set at 0. The data are
displayed by cell in the following table. The first column in each cell contains
the response realizations while the second column contains the corresponding
covariate values.

Factor A Factor B
B(1) B(2) B(3)

4.35 4.04 0.69 2.88 4.97 3.4
5.19 5.19 4.41 5.3 6.63 2.91
4.31 5.16 7.03 2.96 5.71 3.79

A(1) 5.9 1.43 4.14 5.33 4.43 3.53
4.49 3.51 3.73 4.93

5.29 5.22
5.75 3.1
5.65 3.89

4.93 3.22 6.15 3.15 6.02 5.69
5.1 4.73 4.94 2.01 4.27 4.2
4.52 2.79 6.1 3.01 4.3 2.57

A(2) 5.53 5.63 4.93 3.87 4.47 3.75
4.21 3.88 5.3 4.47 6.07 2.62
5.65 3.85

We use this example to describe the input to the function kancova. The design
is a two-way with the first factor at 2 levels and the second factor at 3 levels.
The first argument to the function is the vector of levels c(2,3). Since there
are two factors, the second argument is a matrix of the three columns: vector
of responses, Yikj ; level of first factor i; and level of second factor j. The third
argument is the matrix of corresponding covariates. The data are in dataset
acov231. The following code segment computes the rank-based ANCOVA.

> levs = c(2,3);

> data = acov231[,1:3];

> xcov = matrix(acov231[,4],ncol=1)

> temp = kancova(levs,data,xcov)

Robust ANCOVA Table

All tests except last row is with homogeneous slopes

as the full model. For the last row the full model is

with heteroscedastic slopes.
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df RD MRD F p-value

1 , 0 1 0.21806168 0.21806168 0.46290087 0.5022855

0 , 1 2 0.09420198 0.04710099 0.09998588 0.9051964

1 , 1 2 1.21200859 0.60600430 1.28642461 0.2932631

Covariate 1 0.13639223 0.13639223 0.28953313 0.5950966

Hetrog regr 5 2.33848642 0.46769728 0.98946073 0.4476655

The rank-based tests are all nonsignificant, which agrees with the null model
used to generate the data.

Example 5.4.3 (2 × 2 with Covariate). Huitema (2011), page 496, presents
an example of a 2× 2 layout with a covariate. The dependent variable is the
number of novel responses under controlled conditions. The factors are type
of reinforcement (Factor A at 2 levels) and type of program (Factor B at 2
levels); hence there are four cells. The covariate is a measure of verbal fluency.
There are only 4 observations per cell for a total of n = 16 observations.
Since there are 8 parameters in the heterogeneous slope model, there are
only 2 observations per parameter. Hence, the results are tentative. The data
are in the dataset huitema496. Using the function kancova with the default
Wilcoxon scores, the following robust ANCOVA table is computed.

> levels = c(2,2);

> y.group = huitema496[,c(’y’,’i’,’j’)]

> xcov = huitema496[,’x’]

> temp = kancova(levels,y.group,xcov)

Robust ANCOVA Table

All tests except last row is with homogeneous slopes

as the full model. For the last row the full model is

with heteroscedastic slopes.

df RD MRD F p-value

1 , 0 1 5.6740175 5.6740175 6.0883935 0.031261699

0 , 1 1 0.4937964 0.4937964 0.5298585 0.481873895

1 , 1 1 0.1062181 0.1062181 0.1139752 0.742017556

Covariate 1 12.2708792 12.2708792 13.1670267 0.003966071

Hetrog regr 3 8.4868988 2.8289663 4.2484881 0.045209629

The robust ANCOVA table indicates heterogeneous slopes, so we plotted
the four regression models next as shown in Figure 5.5. The rank-based test of
homogeneity of the sample slopes agrees with the plot. In particular, the slope
for the cell with A = 2, B = 2 differs from the others. Again, these results are
based on small numbers and thus should be interpreted with caution. As a
pilot study, these results may serve in the conduction of a power analysis for
a larger study.

The rank-based tests computed by these functions are based on reductions
of dispersion as we move from reduced to full models. Hence, as an alternative
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FIGURE 5.5
Scatterplot of the data of Example 5.4.3. The number 1 represents observations
from the cell with A = 1, B = 1, 2 represents observations from the cell with
A = 1, B = 2, 3 represents observations from the cell with A = 2, B = 1, and
4 represents observations from the cell with A = 2, B = 2.

to these functions, the computations can also be obtained using the Rfit

functions rfit and drop.test with only a minor amount of code. In this
way, specific hypotheses of interest can easily be computed, as we show in the
following example.

Example 5.4.4 (Triglyceride and Blood Plasma Levels). The data for this ex-
ample are drawn from a clinical study discussed in Hollander andWolfe (1999).
The data consist of triglyceride levels on 13 patients. Two factors, each at two
levels, were recorded: Sex and Obesity. The concomitant variables are chylomi-
crons, age, and three lipid variables (very low-density lipoproteins (VLDL),
low-density lipoproteins (LDL), and high-density lipoproteins (HDL)). The
data are in the npsm dataset blood.plasma. The next code segment displays
a subset of it.

> head(blood.plasma)

Total Sex Obese Chylo VLDL LDL HDL Age
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[1,] 20.19 1 1 3.11 4.51 2.05 0.67 53

[2,] 27.00 0 1 4.90 6.03 0.67 0.65 51

[3,] 51.75 0 0 5.72 7.98 0.96 0.60 54

[4,] 51.36 0 1 7.82 9.58 1.06 0.42 56

[5,] 28.98 1 1 2.62 7.54 1.42 0.36 66

[6,] 21.70 0 1 1.48 3.96 1.09 0.23 37

The design matrix for the full model to test the hypotheses of no interaction
between the factors and the covariates would have 24 columns, which, with
only 13 observations, is impossible. Instead, we discuss the code to compute
several tests of hypotheses of interest. The full model design matrix consists
of the four dummy columns for the cell means and the 5 covariates. In the
following code segment this design matrix is in the R matrix xfull while the
response, total triglyceride, is in the column Total of blood.plasma. The
resulting full model fit and its summary are given by:

> fitfull = rfit(blood.plasma[,’Total’]~xfull-1)

> summary(fitfull)

Call:

rfit.default(formula = blood.plasma[, "Total"] ~ xfull - 1)

Coefficients:

Estimate Std. Error t.value p.value

xfull00 8.59033 9.30031 0.9237 0.407938

xfull01 -3.00427 8.32005 -0.3611 0.736297

xfull10 -12.61631 10.11257 -1.2476 0.280234

xfull11 -11.58851 10.32710 -1.1221 0.324605

xfullChylo 1.74111 0.53220 3.2715 0.030745 *

xfullVLDL 2.87822 0.41674 6.9064 0.002305 **

xfullLDL 3.79748 2.77105 1.3704 0.242433

xfullHDL -11.46968 4.61116 -2.4874 0.067674 .

xfullAge 0.24942 0.13359 1.8671 0.135284

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared (Robust): 0.9655414

Reduction in Dispersion Test: 14.01015 p-value: 0.01108

> dfull = disp(fitfull$betahat, xfull, fitfull$y, fitfull$scores)

> dfull

[,1]

[1,] 26.44446

The last line is the minimum value of the dispersion function based on the fit
of the full model. The one hypothesis of interest discussed in Hollander and
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Wolfe is whether or not the three lipid covariates (VLDL, LDL, and HDL)
are significant predictors. The answer appears to be “yes” based on the above
summary of the Rfit of the full model. The following code performs a formal
test using the hypothesis matrix hmat:

> hmat = rbind(c(rep(0,5),1,rep(0,3)),

+ c(rep(0,6),1,rep(0,2)),

+ c(rep(0,7),1,rep(0,1)))

> hmat

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0 0 0 0 0 1 0 0 0

[2,] 0 0 0 0 0 0 1 0 0

[3,] 0 0 0 0 0 0 0 1 0

> xred1 = redmod(xfull,hmat)

> fitr1 = rfit(blood.plasma[,’Total’]~xred1-1)

> drop.test(fitfull,fitr1)

Drop in Dispersion Test

F-Statistic p-value

10.407321 0.023246

Hence, based on this p-value (0.0232), it seems that the lipid variables are
related to triglyceride levels. The next few lines of code test to see if the
factor sex has an effect on triglycerides.

> hmat=rbind(c(1,1,-1,-1,rep(0,5)))

> xred3 = redmod(xfull,hmat)

> fitr3 = rfit(blood.plasma[,’Total’]~xred3-1)

> drop.test(fitfull,fitr3)

Drop in Dispersion Test

F-Statistic p-value

21.79352 0.00953

Based on the p-value of 0.0095, it appears that the factor sex also has an effect
on triglyceride levels. Finally, consider the effect of obesity on triglyceride level.

> hmat=rbind(c(1,-1,1,-1,rep(0,5)))

> xred2 = redmod(xfull,hmat)

> fitr2 = rfit(Total~xred2-1)

> drop.test(fitfull,fitr2)

Drop in Dispersion Test

F-Statistic p-value

11.580682 0.027201

Thus, the rank-based test for obesity results in the test statistic 11.58 with
p-value 0.0272.
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5.5 Methodology for Type III Hypotheses Testing∗

In this section, we briefly describe how Rfit obtains Type III hypotheses for
the two-way and k-way designs. Consider first the hypotheses for the two-way
design which are given in expressions (5.11)–(5.13). For our discussion, assume
that the data are stacked as the n× 1 vector Y by cell and row-by-row in row
order; i.e., in terms of the subscripts ijk, k runs the fastest and i runs the
slowest. Let µ denote the corresponding ab × 1 vector of parameters and let
W denote the n× ab incidence matrix. Then the full model can be written as
Y = Wµ+ e, where e denotes the vector of random errors.

For the two-waymodel, the three hypotheses of interest are the main effects
hypotheses and the interaction hypothesis given respectively by (5.11)–(5.13).
Following Hocking (1985) the hypotheses matrices M can easily be computed
in terms of Kronecker products. For a positive integer s, define the augmented
matrix

∆s = [Is−1 − 1s−1], (5.18)

where Is−1 is the identity matrix of order s− 1 and 1s−1 denotes a vector of
(s− 1) ones. For our two-way design with A at a levels and B at b levels, the
hypothesis matrices of average main effects and interaction are given by

For Hypothesis (5.11): MA = ∆a ⊗
1

b
1T
b

For Hypothesis (5.12): MB =
1

a
1T
a ⊗∆b

For Hypothesis (5.13): MA×B = ∆a ⊗∆b,

where ⊗ denotes the Kronecker product. Based on these hypothesis matrices,
Rfit computes6 reduced model design matrices.

Hypothesis matrices for higher order designs can be computed7 similarly.
For example, suppose we have the four factors A,B,C and D with respec-
tive levels a, b, c and d. Then the hypotheses matrices to test the interaction
between B and D and the 4-way interaction are respectively given by

MB×D =
1

a
1T
a ⊗∆b ⊗

1

c
1cT ⊗∆d

MA×B×C‘B×D = ∆a ⊗∆b ⊗∆c ⊗∆d.

The corresponding reduced model design matrices can be easily computed to
obtain the tests of the hypotheses.

6See page 209 of Hettmansperger and McKean (2011).
7See Hocking (1985).
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5.6 Ordered Alternatives

Consider again the one-way ANOVAmodel, Section 5.2 with k levels of a factor
or k treatments. The full model is given in expression (5.1). As in Section 5.2,
let Yij denote the jth response in sample i for j = 1, . . . , ni and i = 1, . . . , k,
and let µi denote the mean or median of Yij . In this section, suppose that a
certain ordering of the means (centers) is a reasonable alternative to consider;
that is, assume that the hypotheses are

H0 : µ1 = · · · = µk vs. HA : µ1 ≤ µ2 ≤ · · · ≤ µk, (5.19)

with at least one strict inequality in HA. There are several procedures de-
signed to test these hypotheses. One of the most popular procedures is the
distribution-free Jonckheere–Terpstra test. The test statistic is the sum of
pairwise Mann–Whitney statistics over samples u < v. That is, let

Uuv = #1≤j≤nu,1≤l≤nv
{Yju < Ylv}, 1 ≤ u < v ≤ k. (5.20)

Then the Jonckheere–Terpstra test statistic is defined by

J =

k−1∑

u=1

k∑

v=2

Uuv. (5.21)

The null hypothesis H0 is rejected in favor of HA, ordered alternatives, for
large values of J .

The statistic J is distribution-free and there are some tables8 for its crit-
ical values in the literature. Often the asymptotic standardized test statistic
is used. The mean and variance under the null hypothesis as well as the stan-
dardized test statistic of J are given by

EH0(J) =
n2 −∑k

i=1 n
2
i

4

VH0(J) =
n2(2n+ 3)−∑k

i=1 n
2
i (2ni + 3)

72

zJ =
J − EH0(J)√

VH0(J)
. (5.22)

An asymptotic level 0 < α < 1 test is to reject H0 if zJ ≥ zα.
In the case of tied observations, the contribution to Uuv, (5.20), is one-half.

That is, if Yju = Ylv then instead of the contribution of 0 to Uuv as expression
(5.20) dictates for this pair, the contribution is one-half. If there are many
ties then the tie correction to the variance9 should be used. Included in npsm

8See Section 6.2 of Hollander and Wolfe (1999).
9See page 204 of Hollander and Wolfe (1999).
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FIGURE 5.6
Comparison boxplots of three samples of Example 5.6.1.

is the function jonckheere. This software adjusts the null variance for ties,
returning the test statistic and its asymptotic p-value. We illustrate its use in
the following example.

Example 5.6.1 (Knowledge of Performance). Hollander and Wolfe (1999)
discuss a study on workers whose job was a repetitive task. It was thought
that knowledge of performance would improve their output. So 18 workers
were randomly divided into three groups A, B and C. Group A served as a
control. These workers were given no information about their performance.
The workers in Group B received some information about their performance,
while those in Group C were given detailed information on their performance.
The response was the number of parts each worker produced in the speci-
fied amount of time. The data appear in the next table. Figure 5.6 shows
comparison boxplots of the samples.

Parts Produced
Group A 40 35 38 43 44 41
Group B 38 40 47 44 40 42
Group C 48 40 45 43 46 44
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The alternative hypothesis is HA : µA ≤ µb ≤ µc with at least one strict
inequality, where µi is the mean output for a worker in Group i. In the next
code segment, the arguments in the call jonckheere(response,indicator)
are the vector of responses and the vector of group indicators.

> jonckheere(response,indicator)

Jonckheere ExpJ VarJ P

79.00000000 54.00000000 150.28676471 0.02071039

With the p-value=0.0207 there is evidence to support the alternative hypoth-
esis, confirming the boxplots.

As the reader is asked to show in Exercise 5.8.3, for the data of the last
example, the Kruskal–Wallis test statistic has the value H = 4.362 with p-
value 0.1130, which is not significant at the 5% level. The Kruskal–Wallis
test is generally less powerful than the Jonckheere–Terpstra test for ordered
alternatives; for verification see the small study requested in Exercise 5.8.10.

There are other distribution-free tests for ordered alternatives. One such
procedure is based on Spearman’s correlation coefficient rs defined in expres-
sion (4.37). For its application, using the above notation, let Xij = i, i.e., the
group indicator. Then the test10 is based on Spearman’s correlation coefficient
between Xij and Yij . This test is distribution-free. For inference, recall that
under the null distribution, zs =

√
nrs is asymptotically N(0, 1). Hence, zs

can be used as a standardized test statistic. A degree of freedom correction11,
though, makes use of the standardized test statistic ts which is defined by

ts =
rs√

(1− r2s)/(n− 2)
. (5.23)

We use the test statistics ts in the next code segment to compute this Spear-
man procedure for the data in the last example.

> cor.test(indicator,response,method="spearman",

+ continuity=FALSE,exact=FALSE,alternative=’greater’)

Spearman’s rank correlation rho

data: indicator and response

S = 488.4562, p-value = 0.01817

alternative hypothesis: true rho is greater than 0

sample estimates:

rho

0.4959172

10See Tryon and Hettmansperger (1973) and McKean et al. (2001) for details.
11See page 347 of Huitema (2011).
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Thus the tests based on Spearman’s ρS and the Jonckheere–Terpstra are es-
sentially in agreement for this example.

McKean et al. (2001) developed a bootstrap procedure for the Spearman
procedure. Note that rs is an estimate of association and the confidence in-
terval is a measure of the strength of this association.

5.7 Multi-Sample Scale Problem

A general assumption in fixed-effects ANOVA-ANCOVA is the homogeneity
of scale of the random errors from level (group) to level (group). For two levels
(samples), we discussed the Fligner–Killeen test for homogeneity of scale in
Section 3.3. This test generalizes immediately to the k-level (sample) problem.

For discussion, we use the notation of the k-cell (sample) model in Sec-
tion 5.2 for the one-way ANOVA design. For this section, our full model is
Model (5.1) except that the pdf of random errors for the jth level is of the
form fj(x) = f [(x − θj)/σj ]/σj , where θj is the median and σj > 0 is a scale
parameter for the jth level, j = 1, . . . , k. A general hypothesis of interest is
that the scale parameters are the same for each level, i.e.,

H0 : σ1 = · · · = σk versus HA : σj 6= σj′ for some j 6= j′. (5.24)

Either this could be the hypothesis of interest or the hypothesis for a pre-test
on homogeneous scales in the one-way ANOVA location model.

The Fligner–Killeen test of scale for two-samples, (3.30), easily generalizes
to this situation. As in Section 3.3, define the folded-aligned sample as

Y ∗
ij = Yij −medj′{Yij′}, j = 1, . . . , ni : i = 1, . . . , k. (5.25)

Let n =
∑n

i=1 ni denote the total sample size and let Rij = R|Y ∗
ij | denote the

rank of the absolute values of these items, from 1 to n. Define the scores a∗(i)
as

a(l) =

[
Φ−1

(
l

2(n+ 1)
+

1

2

)]2

a =
1

n

n∑

l=1

a(l)

a∗(l) = a(l)− a. (5.26)

Then the Fligner–Killeen test statistic is

QFK =
n− 1∑n

l=1(a
∗(l))2

k∑

i=1





ni∑

j=1

a∗(Rij)





2

. (5.27)
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An approximate level α-test12 is based on rejecting H0 if QFK ≥ χ2
α(k − 1).

As in Section 3.3, we can obtain rank-based estimates of the difference in
scale. Let Zij = log(|Y ∗

i1|). and let ∆1i = log(σi/σ1), for i = 2, . . . , k, where,
without loss of generality, we have referenced the first level. Using ∆11 = 0,
we can write the log-linear model for the aligned, folded sample as

Zij = ∆∗
1i + eij , j = 1, . . . ni, i = 1, 2, . . . , k. (5.28)

As discussed in Section 3.3, the scores defined in expression (3.29) are ap-
propriate for the rank-based fit of this model. Recall that they are optimal,
when the random errors of the original samples are normally distributed. As
discussed in Section 3.3, exponentiation of the regression estimates leads to
estimation (and confidence intervals) for the ratio of scales η1i = σi/σ1.

The function fkk.test is a wrapper which obtains the R fit and analysis
for this section. We demonstrate it in the following example.

Example 5.7.1 (Three Generated Samples). For this example, we gener-
ated three samples (rounded) from Laplace distributions. The samples have
location and scale (5, 1), (10, 4), and (10, 8) respectively. Hence in the above
notation, η21 = 4 and η31 = 8. A comparison boxplot of the three samples is
shown in Figure 5.7.

The following code segment computes the Fligner–Killeen test for these
three samples. Note the response variables are in the vector response and the
vector indicator is a vector of group membership.

> fkk.test(response,indicator)

Table of estimates and 95 percent confidence intervals:

estimate ci.lower ci.upper

xmatas.factor(iu)2 3.595758 0.9836632 13.14421

xmatas.factor(iu)3 8.445785 2.5236985 28.26458

Test statistic = 8.518047 p-value = 0.0141361

Hence, based on the results of the test, there is evidence to reject H0. The
estimates of η21 and η31 are close to their true values. The respective confidence
intervals are (0.98, 13.14) and (2.52, 28.26).

5.8 Exercises

5.8.1. Hollander and Wolfe (1999) report on a study of the length of YOY
gizzard shad fish at four different sites of Kokosing Lake in the summer of
1984. The data are:

12See page 105 of Hájek and Šidák (1967).
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Site 1 Site 2 Site 3 Site 4
46 42 38 31
28 60 33 30
46 32 26 27
37 42 25 29
32 45 28 30
41 58 28 25
42 27 26 25
45 51 27 24
38 42 27 27
44 52 27 30

Let µi be the true mean length of YOY gizzard shad at site i.

(a) Use the rank-based Wilcoxon procedure, (5.7), to test the hypoth-
esis of equal means.

(b) Based on Part (a), use Fisher’s least significance difference to per-
form a multiple comparison on the differences in the means. As
discussed in Hollander and Wolfe, YOY gizzard shad are eaten by
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FIGURE 5.7
Comparison boxplots of three samples.
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game fish and for this purpose smaller fish are better. In this regard,
based on the MCP analysis, which sites, if any, are preferred?

5.8.2. For the study discussed in Example 5.2.3, obtain the analysis based
on the Wilcoxon test using FW , (5.7). Then obtain the MCP analysis us-
ing Tukey’s method. Compare this analysis with the Kruskal–Wallis analysis
presented in the example.

5.8.3. For the data of Example 5.6.1 determine the value of the Kruskal–
Wallis test and its p-value.

5.8.4. For a one-way design, instead of using the oneway.rfit function, the
rank-based test based on FW , expression (5.7), can be computed by the Rfit
functions rfit and drop.test.

(a) Suppose the R vector y contains the combined samples and the R
vector ind contains the associated levels. Discuss why following two
code segments are equivalent:
oneway.rfit(y,ind) and
fit<-rfit(y~factor(ind)); drop.test(fit)

(b) Verify this equivalence for the data in Example 5.2.1.

5.8.5. Write an R script which compares empirically the power between the
rank-based test based on FW and the corresponding LS test for the following
situation: 4 samples of size 10; location centers 10, 11, 12, and 15; and the
random errors 3 ∗ eij where the eij are iid with the common t-distribution
having 3 degrees of freedom. Use a simulation size of 1000 and the level α =
0.05.

5.8.6. In Exercise 5.8.5, we simulated the empirical power of the rank-based
and LS tests for a specific situation. For this exercise, check the validity of the
rank-based and LS tests; i.e., set the location centers to be the same.

5.8.7. Suppose that we want a descriptive plot for a one-way design. Compar-
ison boxplots are one such plot; however, if the level sample sizes ni are small
then these plots can be misleading (quartiles and, hence, lengths of boxplots,
can be adversely affected by a few outliers). Hence, for ni ≤ 10, we recommend
comparison dotplots instead of boxplots. Consider the following data from a
one-way design.

Level 1 66 45 42 53 71
Level 2 38 53 47 23 42 50
Level 3 82 26 95 70 80 82 75

(a) Obtain the comparison dotplots for the above data.

(b) Compute the Fligner–Killeen test of equal scales for these data.
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5.8.8. Miliken and Johnson (1984) discuss a study pertaining to an unbal-
anced 2 × 3 crossed factorial design. For convenience, we present the data
below. For their LS analysis, Milliken and Johnson recommend Type III hy-
potheses. As discussed in Section 5.5, the rank-based analysis based on the
Rfit function raov obtains tests based on Type III hypotheses. The R func-
tion lm, however, does not. In this exercise, we show how to easily obtain LS
analyses for Type III hypotheses using the functions redmod and cellx from
Rfit . For the data, the factors are labeled T and B and the responses are
tabled as:

B1 B2 B3

T1 19 24 22
20 26 25
21 25

T2 25 21 31
27 24 32

24 33

The code below assumes that the response and indicator vectors are:

resp = c(19, 20, 21, 24, 26, 22, 25, 25, 25, 27, 21, 24, 24,

31, 32, 33)

a = c(rep(1,8),rep(2,8))

b = c(1, 1, 1, 2, 2, 3, 3, 3, 1, 1, 2, 2, 2, 3, 3, 3)

(a) First obtain the analysis for interaction and main effects using the
Rfit function raov. The hypotheses of this analysis are of Type III.

(b) The following script will obtain the LS Type III analysis for Factor
T:

fitls <- lm(resp ~factor(a):factor(b))

cell <- rep(1:6,each=3)

cellmean <- cellx(cell)

ha <- c(1,1,1,-1,-1,-1)

xa <- redmod(cellmean,ha)

lmred <- lm(resp ~ xa)

anova(lmred,fitls)

Run this code and show that the LS test statistic computes to F =
30.857. Notice that this differs from the LS ANOVA based on fitls.

(c) Write code and run it for the LS Type III analysis of Factor B.

Hint: the hypothesis matrix hb has two rows.

(d) Write code and run it for the LS Type III analysis of interaction.

Hint: the hypothesis matrix hint has two rows. Notice that it agrees
with the LS ANOVA based on fitls.
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5.8.9. Page 436 of Hollander and Wolfe (1999), presents part of a study on
the effects of cloud seeding on cyclones; see Wells and Wells (1967) for the
original reference. For the reader’s convenience, the data are contained in the
dataset SCUD. The first column is an indicator for Control (2) or Seeded (1);
column 2 is the predictor M , the geostrophic meridional circulation index;
and column 3 is the response RI which is a measure of precipitation.

(a) Obtain a scatterplot of RI versusM . Use different plotting symbols
for the Control and Seeded. Add the rank-based fits of the linear
models for each. Comment on the plot.

(b) Using a rank-based analysis, test for homogeneous slopes for the
two groups.

(c) If homogeneous slopes is“accepted”in (b), use a rank-based analysis
to test for homogeneous groups.

(d) The test in Part (c) is adjusted forM . Is this adjustment necessary?
Test at level α = 0.05.

5.8.10. Using a simulation study investigate the powers of the Jonckheere–
Terpstra test and the Kruskal–Wallis test for the following situation: Samples
of size 10 from four normal populations each having variance 1 and with the
respective means of µ1 = 0, µ2 = 0.45, µ3 = .90, and µ4 = 1.0. Use the level
of α = 0.05 and a simulation size of 10,000.

5.8.11. In reading through Section 5.6 on ordered alternatives, the reader
may have noticed the simplicity of the test based on Spearman’s ρS over the
test using the Jonckheere–Terpstra test statistic. Is it as powerful? As a partial
answer, this exercise provides some empirical evidence. One may use cor.test
to obtain a test based on Spearman’s ρ. See, for example, the following code.

group <- c(rep(1,ni),rep(2,ni),rep(3,ni),rep(4,ni))

y1 <- rnorm(ni,0,1);y2 <- rnorm(ni,.15,1);

y3 <- rnorm(ni,.35,1); y4 <- rnorm(ni,.55,1)

y <- c(y1,y2,y3,y4)

cor.test(group,y,method=’spearman’,

continuity=FALSE,exact=FALSE,alternative=’less’)

(a) Determine the situation (distributions, alternative, etc.) which the
above code simulates.

(b) Based on the above situation, run a simulation to compare the em-
pirical powers of the Jonckheere–Terpstra test and Spearman’s ρ.

(c) Run a simulation where the error distribution is a t-distribution
with 3 degrees of freedom.

(d) Run a simulation where the error distribution is a χ2-distribution
with 1.5 degrees of freedom.
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5.8.12. Besides simplicity, another advantage of the test based Spearman’s ρS
over the Jonckheere–Terpstra is that the estimate of ρS is an easily understood
correlational measure. In this setting, it offers a measure of the “strength” of
the relationship. Use the function cor.boot.ci to obtain a bootstrap confi-
dence interval.

5.8.13. Consider the malignant melanoma data in Example 3.1.1. See if the
association found there still holds after adjusting for latitude and longitude.
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Time to Event Analysis

6.1 Introduction

In survival or reliability analysis the investigator is interested in time to an
event of interest as the outcome variable. Often in a clinical trial the goal is
to evaluate the effectiveness of a new treatment at prolonging survival; i.e.
to extend the time to the event of death. It is usually the case that at the
end of followup a portion of the subjects in the trial have not experienced
the event; for these subjects the outcome variable is censored. Similarly,
in engineering studies, often the lifetimes of mechanical or electrical parts
are of interest. In a typical experimental design, lifetimes of these parts are
recorded along with covariates (including design variables). Often the lifetimes
are called failure times, i.e., times until failure. As in a clinical study, at the
end of the experiment, there may be parts which are still functioning (censored
observations).

In this chapter we discuss standard nonparametric and semiparametric
methods for analysis of time to event data. In Section 6.2, we discuss the
Kaplan–Meier estimate of the survival function for these models and asso-
ciated nonparametric tests. Section 6.3 introduces the proportional hazards
analysis for these models, while in Section 6.4 we discuss rank-based fits of
accelerated failure time models, which include proportional hazards models.
We illustrate our discussion with analyses of real datasets based on compu-
tation by R functions. For a more complete introduction to survival data we
refer the reader to Chapter 7 of Cook and DeMets (2008) or to the monograph
by Kalbfleisch and Prentice (2002). Therneau and Grambsch (2000) provide
a thorough treatment of modeling survival data using SAS and R/S.

6.2 Kaplan–Meier and Log Rank Test

Let T denote the time to an event. Assume T is a continuous random vari-
able with cdf F (t). The survival function is defined as the probability that a
subject survives until at least time t; i.e., S(t) = P (T > t) = 1− F (t). When
all subjects in the trial experience the event during the course of the study,
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TABLE 6.1
Survival Times (in months) for Treatment of
Pulmonary Metastasis.

11 13 13 13 13 13 14 14 15 15 17

so that there are no censored observations, an estimate of S(t) may be based
on the empirical cdf. However, in most studies there are a number of subjects
who are not known to have experienced the outcome prior to the study com-
pletion. Kaplan and Meier (1958) developed their product-limit estimate as an
estimate of S(t) which incorporates information from censored observations.
In this section we briefly discuss estimates of the survival function and also
illustrate them via small samples. The focus, however, is on the R syntax for
analysis. We describe how to store time to event data and censoring in R,
as well as computation of the Kaplan–Meier estimate and the log-rank test –
which is a standard test for comparing two survival distributions.

We begin with a brief overview of survival data as well as simple examples
which illustrate the calculation of the Kaplan–Meier estimate.

Example 6.2.1 (Treatment of Pulmonary Metastasis). In a study of the
treatment of pulmonary metastasis arising from osteosarcoma, survival time
was collected; the data are provided in Table 6.1.
As there are no censored observation an estimate of the survival function at
time t is

Ŝ(t) =
#{ti > t}

n
(6.1)

which is based on the empirical cdf. Because of the low number of distinct
time points the estimate (6.1) is easily calculated by hand which we briefly
illustrate next. Since n = 11, the result is

Ŝ(t) =





1 0 ≤ t < 11
10
11 11 ≤ t < 13
5
11 13 ≤ t < 14
3
11 14 ≤ t < 15
1
11 15 ≤ t < 17

0 t ≥ 17.

The estimated survival function is plotted in Figure 6.1.

Though (6.1) aids in the understanding of survival functions, it is not often
useful in practice. In most clinical studies, at the end of followup there are
subjects who have yet to experience the event being studied. In this case, the
Kaplan–Meier product limit estimate is used which we describe briefly next.
Suppose n experimental units are put on test. Let t(1) < . . . < t(k) denote the
ordered distinct event times. If there are censored responses, then k < n. Let
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FIGURE 6.1
Estimated survival curve (Ŝ(t)).

ni = #subjects at risk at the beginning of time t(i) and di = #events occurring
at time t(i) (i.e., during that day, month, etc.). The Kaplan–Meier estimate
of the survival function is defined as

Ŝ(t) =
∏

t(i)≤t

(
1− di

ni

)
. (6.2)

Note that when there is no censoring (6.2) reduces to (6.1). To aid in inter-
pretation, we illustrate the calculation in the following example.

Example 6.2.2 (Cancer Remission: Time to Relapse.). The data in Table 6.2
represent time to relapse (in months) in a cancer study. Notice, based on the

TABLE 6.2
Time in Remission (in months) in Cancer Study.

Relapse 3 6.5 6.5 10 12 15
Lost to followup 8.4
Alive and in remission at at end of study 4 5.7 10
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TABLE 6.3
Illustration of the Kaplan–Meier Estimate.

t n d 1− d/n S(t)
3 10 1 9/10 = 0.9 0.9

6.5 7 2 5/7 = 0.71 0.9*0.71 = 0.64
10 4 1 3/4 = 0.75 0.64*0.75 = 0.48
12 2 1 1/2 = 0.5 0.48*0.5 = 0.24
15 1 1 0/1 = 0.0 0

top row of the table, that there are k = 5 distinct survival event times. Table
6.3 illustrates the calculation of of the Kaplan–Meier estimate for this dataset.

Often a study on survival involves the effect that different treatments have
on survival time. Suppose we have r independent groups (treatments). Let H0

be the null hypothesis that the distributions of the groups are the same; i.e.,
the population survival functions are the same. Obviously, overlaid Kaplan–
Meier survival curves provide an effective graphical comparison of the times
until failure of the different treatment groups. A nonparametric test that is
often used to test for a difference in group survival times is the log-rank test.
This test is complicated and complete details can be found, for example, in
Kalbfleisch and Prentice (2002). Briefly, as above, let t1 < t2 < · · · < tk be
the distinct failure times of the combined samples. Then at each time point
tj , it can be shown that the number of failures in Group i conditioned on the
total number of failures has a distribution-free hypergeometric distribution
under H0. Based on this a goodness-of-fit type test statistic (called the log-
rank test) can be formulated which has a χ2-distribution with r−1 degrees of
freedom under H0. The next example illustrates this discussion for the time
until relapse of two groups of patients who had survived a lobar intracerebral
hemorrhage.

Example 6.2.3 (Hemorrhage Data). For demonstration we use the hemor-
rhage data discussed in Chapter 6 of Dupont (2002). The study population
consisted of patients who had survived a lobar intracerebral hemorrhage and
whose genotype was known. The outcome variable was the time until recur-
rence of lobar intracerebral hemorrhage. The investigators were interested in
examining the genetic effect on recurrence as there were three common alleles
e2, e3, and e4. The analysis was focused on the effect of homozygous e3/e3
(Group 1) versus at least one e2 or e4 (Group 2). The data are available at
the author’s website. The following code segment illustrates reading the data
into R and converting it to a survival dataset which includes censoring infor-
mation. Many of the functions for survival data are available in the R package
survival (Therneau 2013).

> with(hemorrhage,Surv(round(time,2),recur))
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[1] 0.23 1.05+ 1.22 1.38+ 1.41 1.51+ 1.58+ 1.58 3.06 3.32

[11] 3.52 3.55 4.04+ 4.63+ 4.76 8.08+ 8.44+ 9.53 10.61+ 10.68+

[21] 11.86+ 12.32 13.27+ 13.60+ 14.69+ 15.57 16.72+ 17.84+ 18.04+ 18.46+

[31] 18.46+ 18.46+ 18.66+ 19.15 19.55+ 19.75+ 20.11+ 20.27+ 20.47+ 24.77

[41] 24.87 25.56+ 25.63+ 26.32+ 26.81+ 28.09 30.52+ 32.95+ 33.05+ 33.61

[51] 34.99+ 35.06+ 36.24+ 37.03+ 37.52 37.75+ 38.54+ 38.97+ 39.16+ 40.61+

[61] 42.22+ 42.41+ 42.78+ 42.87 43.27+ 44.65+ 45.24+ 46.29+ 46.88+ 47.57+

[71] 53.88+

In the output are survival times (in months) for 71 subjects. However, one
subject’s genotype information is missing and is excluded from analysis. Of
the remaining 70 subjects, 32 are in Group 1 and 38 are in Group 2. A +
sign indicates a censored observation; meaning that at that point in time
the subject had yet to report recurrence. The study could have ended or
the subject could have been lost to followup. Kaplan–Meier estimates are
available through the command survfit. The resulting estimates may then
be plotted, as is usually the case for Kaplan–Meier estimates, as the following
code illustrates. If confidence bands are desired, one may use the conf.type

option to survfit. Setting conf.type=’plain’ returns the usual Greenwood
(1926) estimates.

> fit<-with(hemorrhage, survfit(Surv(time,recur)~genotype))

> plot(fit,lty=1:2,

+ ylab=’Probability of Hemorrhage-Free Survival’,

+ xlab=’Time (in Months)’

+ )

> legend(’bottomleft’,c(’Group 1’, ’Group 2’),lty=1:2,bty=’n’)

As illustrated in Figure 6.2, patients that were homozygous e3/e3 (Group 1)
seem to have significantly greater survival.

> with(hemorrhage, survdiff(Surv(time,recur)~genotype))

Call:

survdiff(formula = Surv(time, recur) ~ genotype)

n=70, 1 observation deleted due to missingness.

N Observed Expected (O-E)^2/E (O-E)^2/V

genotype=0 32 4 9.28 3.00 6.28

genotype=1 38 14 8.72 3.19 6.28

Chisq= 6.3 on 1 degrees of freedom, p= 0.0122

Note that the log-rank test statistic is 6.3 with p-value 0.0122 based on a null
χ2-distribution with 1 degree of freedom. Thus the log-rank test confirms the
difference in survival time of the two groups.
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FIGURE 6.2
Plots of Kaplan–Meier estimated survival distributions.

6.2.1 Gehan’s Test

Gehan’s test, (see Higgins (2003)), sometimes referred to as the Gehan–
Wilcoxon test, is an alternative to the log-rank test. Gehan’s method is a
generalization of the Wilcoxon procedure discussed in Chapter 3. Suppose
in a randomized controlled trial subjects are randomized to one of two treat-
ments, say, with survival times represented by X and Y . Represent the sample
as X1, . . . , Xn1 and Y1, . . . , Yn2 with a censored observation denoted by with a
plus sign, X+

i , for example. Only unambiguous pairs of observations are used.
Not used are ambiguous observations such as when an observed X is greater
than a censored Y (Xi > Y +

j ) or when both observations are censored. The
test statistic is defined as the number of times each of the X clearly beats Y
minus the number of times Y clearly beats X . Let S1 denote the set of uncen-
sored observations, S2 denote the set of observations for which X is censored
and Y is uncensored, and S3 denote the set where Y is censored and X is
uncensored. Then Gehan’s test statistic can be represented as

U =
(
#S1{Xi > Yj}+#S2{X+

i ≥ Yj}
)
−
(
#S1{Yj > Xi}+#S3{Y +

j ≥ Xi}
)
.
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TABLE 6.4
Survival Times (in days) for Undergoing Standard Treatment (S) and
a New Treatment (N).

S 94 180+ 741 1133 1261 382 567+ 988 1355+
N 155 375 951+ 1198 175 521 683+ 1216+

Example 6.2.4 (Higgins’ Cancer Data). Example 7.3.1 of Higgins (2003)
describes an experiment to assess the effect of a new treatment relative to a
standard. The data are in the dataset cancertrt, but for convenience the data
are also given in Table 6.4. We illustrate the computation of Gehan’s test based
on the npsm function gehan.test. There are three required arguments to the
function: the survival time, an indicator variable indicating that the survival
time corresponds to an event (and is not censored), and a dichotomous variable
representing one of two treatments; see the output of the args function below.

> args(gehan.test)

function (time, event, trt)

NULL

We use the function gehan.test next on the cancertrt dataset.

> with(cancertrt,gehan.test(time,event,trt))

statistic = -0.6071557 , p-value = 0.5437476

The results agree with those in Higgins. The two-sided p-value = 0.5437 which
is not significant. As a final note, using the survdiff function with rho=1 gives
the Peto–Peto modification of the Gehan test.

6.3 Cox Proportional Hazards Models

As in the last section, let T denote the time until the event of an experimental
unit. Let x denote the corresponding p× 1 vector of covariates. Assume that
T is a continuous random variable with respective pdf and cdf denoted by f(t)
and F (t). Let S(t) = 1− F (t) denote the survival time of T . Let T0 denote a
baseline response; i.e., a response in the absence of all covariate effects.

The hazard function of T , which is often interpreted as the instantaneous
chance of the event (death), is defined as

h(t) =
f(t)

S(t)
;

see expression (6.7) for a formal definition. For a simple but much used
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example, assume that T0 has the exponential distribution with pdf f(t) =
λ0 exp{−λ0t), t > 0. Then it is easy to show that the hazard function of T0
has the constant value of λ0. The proportional hazards model assumes that
the hazard function of T is given by

λ(t;x) = λ0e
βTx (6.3)

where x is a p× 1 vector of covariates and β is a p× 1 vector of parameters.
Note that the hazard function of T is proportional to that of T0.

To illustrate these ideas, assume that T0 has constant hazard λ0. Suppose
the only covariate is an indicator variable w which is either 0 or 1 depending on
whether a subject is not treated or treated. Assuming a proportional hazards
model, the hazard function of T is given by

λ(t;w) = λ0e
w∆. (6.4)

The hazard ratio of the experimental treatment relative to the control is then
e∆. That is, ∆ has the interpretation of log hazard; a value < 1 (less haz-
ardous) favors the experimental treatment and a value > 1 (more hazardous)
favors the control. Further examples are given in Section 7.4.2 of Cook and
DeMets (2008).

The proportional hazards model developed by (Cox 1972) is a semipara-
metric model which does not necessarily specify the hazard function; only the
relative effect of covariates is estimated. In the simple case under discussion it
can be used to estimate the parameter ∆ as shown in the following example.

Example 6.3.1 (Hemorrhage data example, Continued). As a first example,
we again consider Example 6.2.3 concerning the hemorrhage data from the
previous section. Using the function coxph from the survival package we
obtain an estimate ∆ and corresponding inference.

> fit<-coxph(Surv(time,recur)~genotype,data=hemorrhage)

> summary(fit)

Call:

coxph(formula = Surv(time, recur) ~ genotype, data = hemorrhage)

n= 70, number of events= 18

(1 observation deleted due to missingness)

coef exp(coef) se(coef) z Pr(>|z|)

genotype 1.3317 3.7874 0.5699 2.337 0.0195 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

genotype 3.787 0.264 1.239 11.57
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Concordance= 0.622 (se = 0.065 )

Rsquare= 0.09 (max possible= 0.851 )

Likelihood ratio test= 6.61 on 1 df, p=0.01015

Wald test = 5.46 on 1 df, p=0.01946

Score (logrank) test = 6.28 on 1 df, p=0.01219

From the output we see ∆̂ = 1.3317 which indicates an increased risk for Group
2, those with heterozygous genotype. We also observe the estimated risk of
hemorrhage for being heterozygous (Group 2) is 3.787 over being homozygous
(Group 1). A 95% confidence interval is also given as (1.239, 11.57). Notice
that the value of the score test statistics is the same as from the last section.

More generally, assume that the baseline hazard function is λ0(t). Assume
that the hazard function of T is

λ(t;x) = λ0(t)e
βTx.

Notice that the hazard ratio of two covariate patterns (e.g. for two subjects)
is independent of baseline hazard

λ(t;x1)

λ(t;x2)
= eβ(x1−x2).

We close this section with the following example concerning an investigation
with treatment at two levels and several covariates.

Example 6.3.2 (DES for treatment of prostate cancer). The following ex-
ample is taken from Collett (2003); data are available from the publisher’s
website. Under investigation in this clinical trial was the pharmaceutical agent
diethylstilbestrol DES; subjects were assigned treatment to 1.0 mg DES (treat-
ment = 2) or to placebo (treatment = 1). Covariates include age, serum
hemoglobin level, size, and the Gleason index.

In Exercise 6.5.2 the reader is asked to obtain the full model fit for the Cox
proportional hazards model. Several of the explanatory variables are nonsignif-
icant, though in practice one may want to include important risk factors such
as age in the final model. For demonstration purposes, we have dropped age
and shb from the model. As discussed in Collett (2003), the most important
predictor variables are size and index.

> f2<-coxph(Surv(time,event=status)~as.factor(treatment)+size+index,

+ data=prostate)

> summary(f2)

Call:

coxph(formula = Surv(time, event = status) ~ as.factor(treatment) +

size + index, data = prostate)
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n= 38, number of events= 6

coef exp(coef) se(coef) z Pr(>|z|)

as.factor(treatment)2 -1.11272 0.32866 1.20313 -0.925 0.3550

size 0.08257 1.08608 0.04746 1.740 0.0819 .

index 0.71025 2.03450 0.33791 2.102 0.0356 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

as.factor(treatment)2 0.3287 3.0426 0.03109 3.474

size 1.0861 0.9207 0.98961 1.192

index 2.0345 0.4915 1.04913 3.945

Concordance= 0.873 (se = 0.132 )

Rsquare= 0.304 (max possible= 0.616 )

Likelihood ratio test= 13.78 on 3 df, p=0.003226

Wald test = 10.29 on 3 df, p=0.01627

Score (logrank) test = 14.9 on 3 df, p=0.001903

These data suggest that the Gleason Index is a significant risk factor of mortal-
ity (p-value=0.0356). Size of tumor is marginally significant (p-value=0.0819).
Given that ∆̂ = −1.11272 < 1 it appears that DES lowers risk of mortality;
however, the p-value = 0.3550 is nonsignificant.

6.4 Accelerated Failure Time Models

In this section we consider analysis of survival data based on an accelerated
failure time model. We assume that all survival times are observed. Rank-
based analysis with censored survival times is considered in Jin et al. (2003).

Consider a study on experimental units (subjects) in which data are col-
lected on the time until failure of the subjects. Hence, the setup for this sec-
tion is the same as in the previous two sections of this chapter, with time until
event replaced by time until failure. For such an experiment or study, let T
be the time until failure of a subject and let x be the vector of associated
covariates. The components of x could be indicators of an underlying experi-
mental design and/or concomitant variables collected to help explain random
variability. Note that T > 0 with probability one. Generally, in practice, T
has a skewed distribution. As in the last section, let the random variable T0
denote the baseline time until failure. This is the response in the absence of
all covariates.

In this section, let g(t;x) and G(t;x) denote the pdf and cdf of T , re-
spectively. In the last section, we introduced the hazard function h(t). A more
formal definition of the hazard function is the limit of the rate of instantaneous
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failure at time t; i.e.,

h(t;x) = lim
∆t↓0

P [t < T ≤ t+∆t|T > t;x]

∆t

= lim
∆t↓0

g(t;x)∆t

∆t(1 −G(t;x) =
g(t;x)

1−G(t;x) . (6.5)

Models frequently used with failure time data are the log-linear models

Y = α+ xTβ + ǫ, (6.6)

where Y = logT and ǫ is random error with respective pdf and cdf f(s) and
F (s). We assume that the random error ǫ is free of x. Hence, the baseline
response is given by T0 = exp{ǫ}. Let h0(t) denote the hazard function of T0.
Because

T = exp{Y } = exp{α+xTβ+ǫ} = exp{α+xTβ} exp{ǫ} = exp{α+xTβ}T0,

it follows that the hazard function of T is

hT (t;x) = exp{−(α+ xTβ)}h0(exp{−(α+ xTβ)}t). (6.7)

Notice that the effect of the covariate x either accelerates or decelerates the
instantaneous failure time of T ; hence, log-linear models of the form (6.6) are
generally called accelerated failure time models.

If T0 has an exponential distribution with mean 1/λ0, then the hazard
function of T simplifies to:

hT (t;x) = λ0 exp{−(α+ xTβ)}; (6.8)

i.e., Cox’s proportional hazard function given by expression (6.3) of the last
section. In this case, it follows that the density function of ǫ is the extreme-
valued pdf given by

f(s) = λ0e
s exp {−λ0es} , −∞ < s <∞. (6.9)

Accelerated failure time models are discussed in Kalbfleisch and Prentice
(2002). As a family of possible error distributions for ǫ, they suggest the gen-
eralized log F family; that is, ǫ = logT0, where down to a scale parameter, T0
has an F -distribution with 2m1 and 2m2 degrees of freedom. In this case, we
say that ǫ = log T0 has a GF (2m1, 2m2) distribution. Kalbfleisch and Prentice
discuss this family form1,m2 ≥ 1; while McKean and Sievers (1989) extended
it to m1,m2 > 0. This provides a rich family of distributions. The distribu-
tions are symmetric for m1 = m2; positively skewed for m1 > m2; negatively
skewed for m1 < m2; moderate to light-tailed for m1,m2 > 1; and heavy
tailed for m1,m2 ≤ 1. For m1 = m2 = 1, ǫ has a logistic distribution, while as
m1 = m2 → ∞ the limiting distribution of ǫ is normal. Also, if one of mi is
one while the other approaches infinity, then the GF distribution approaches
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an extreme valued-distribution, with pdf of the form (6.9). So at least in the
limit, the accelerated GF models encompass the proportional hazards models.
See Kalbfleisch and Prentice (2002) and Section 3.10 of Hettmansperger and
McKean (2011) for discussion.

The accelerated failure time models are linear models so the rank-based fit
and associated inference using Wilcoxon scores can be used for analyses. By a
prudent choice of a score function, though, this analysis can be optimized. We
next discuss optimal score functions for these models and show how to com-
pute analyses based on the them using Rfit. We begin with the proportional
hazards model and then discuss the scores for the generalized logF -family.

Suppose a proportional hazard model is appropriate, where the baseline
random variable T0 has an exponential distribution with mean 1/λ0. Then ǫ
has the extreme valued pdf given by (6.9). Then as shown in Exercise 6.5.5 the
optimal rank-based score function is ϕ(u) = −1− log(1− u), for 0 < u < 1. A
rank-based analysis using this score function is asymptotically fully efficient.
These scores are in the package npsm under the name logrankscores. The
left panel of Figure 6.3 contains a plot of these scores, while the right panel
shows a graph of the corresponding extreme valued pdf, (6.9). Note that the
density has very light right-tails and much heavier left-tails. To guard against
the influence of large (absolute) observations from the left-tails, the scores are
bounded on the left, while their behavior on the right accommodates light-
tailed error structure. The scores, though, are unbounded on the right and,
hence, the resulting R analysis is not bias robust. In the sensitivity analysis
discussed in McKean and Sievers (1989), the R estimates based on these scores
were much less sensitive to outliers than the maximum likelihood estimates.
Similar to the normal scores, these log rank scores appear to be technically
bias robust.

We illustrate the use of these scores in the next example.

Example 6.4.1 (Simulated Exponential Data). The data for this model are
generated from a proportional hazards model with λ = 1 based on the code
eps <- log(rexp(10)); x=1:10; y = round(4*x+eps,digits=2). The ac-
tual data used are given in Exercise 6.5.11. Using Rfit with the log-rank score
function, we obtain the fit of this dataset:

> fit <- rfit(y~x,scores=mylogrank)

> summary(fit)

Call:

rfit.default(formula = y ~ x, scores = mylogrank)

Coefficients:

Estimate Std. Error t.value p.value

(Intercept) -1.60687 1.49251 -1.0766 0.313

x 4.19125 0.22496 18.6310 7.107e-08 ***

---
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FIGURE 6.3
Log-rank score function.

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared (Robust): 0.9287307

Reduction in Dispersion Test: 104.2504 p-value: 1e-05

Note that the true slope of 4 is included in the approximate 95% confidence
interval 4.19± 2.31 · 0.22.

Next, suppose that the random errors in the accelerated failure time model,
(6.6), have down to a scale parameter, a GF (2m1, 2m2) distribution. Then as
shown on page 234 of Hettmansperger and McKean (2011) the optimal score
function is

ϕm11,m2(u) =
m1m2[exp{F−1(u)} − 1]

m2 +m1 exp{F−1(u)} , m1 > 0,m2 > 0, (6.10)

where F is the cdf of ǫ. Note, for all values ofm1 and m2, these score functions
are bounded over the interval (0, 1); hence, the corresponding R analysis is
biased robust. These scores are called the generalized log-F scores (GLF). The
software npsm contains the necessary R code logfscores to add these scores
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FIGURE 6.4
GLF scores for various settings of m1 and m2.

to the class of scores. For this code, we have used the fact that the pth quantile
of the F2m1,2m2 cdf satisfies

q = exp{F−1
ǫ (p)} where q = F−1

2m1,2m2
(p).

The default values are set at m1 = m2 = 1, which gives the Wilcoxon scores.
Figure 6.4 shows the diversity of these scores for different values of m1 and
m2. It contains plots of four of the scores. The upper left corner graph displays
the scores for m1 = 1 and m2 = 20. These are suitable for error distributions
which have moderately heavy (heaviness of a logistic distribution) left-tails
and very light right-tails. In contrast, the scores for m1 = 1 and m2 = 0.10
are appropriate for moderately heavy left-tails and very heavy right-tails. The
lower left panel of the figure is a score function designed for heavy tailed and
symmetric distributions. The final plot, m1 = 5 and m2 = 0.8, are appropri-
ate for moderate left-tails and heavy right-tails. But note from the degree of
downweighting that the right-tails for this last case are clearly not as heavy
as for the two cases with m2 = 0.10.

The next example serves as an application of the log F -scores.
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FIGURE 6.5
Log failure times of the insulation fluid versus the voltage stress.

Example 6.4.2 (Insulating Fluid Data). Hettmansperger and McKean
(2011) present an example involving failure time (T ) of an electrical insu-
lating fluid subject to seven different levels of voltage stress (x). The data are
in the dataset insulation. Figure 6.5 shows a scatterplot of the log of failure
time (Y = logT ) versus the voltage stress. As voltage stress increases, time
until failure of the insulating fluid decreases. It appears that a simple linear
model suffices. In their discussion, Hettmansperger and McKean recommend
a rank-based fit based on generalized log F -scores with m1 = 1 and m2 = 5.
This corresponds to a distribution with left-tails as heavy as a logistic distribu-
tion and right-tails lighter than a logistic distribution; i.e., moderately skewed
left. The following code-segment illustrates computation of the rank-based fit
of these data based on this log F -score.

> myscores <- logfscores

> myscores@param=c(1,5)

> fit <- rfit(logfail~voltstress,scores=myscores)

> summary(fit)

Call:
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rfit.default(formula = logfail ~ voltstress, scores = myscores)

Coefficients:

Estimate Std. Error t.value p.value

(Intercept) 63.9596 6.5298 9.795 5.324e-15 ***

voltstress -17.6624 1.8669 -9.461 2.252e-14 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared (Robust): 0.5092232

Reduction in Dispersion Test: 76.78138 p-value: 0

> fit$tauhat

[1] 1.572306

Not surprisingly, the estimate of the slope is highly significant. As a check on
goodness-of-fit, Figure 6.6 presents the Studentized residual plot and the q−q
plot of the Studentized residuals versus the quantiles of a log F -distribution
with the appropriate degrees of freedom 2 and 10. For the q− q plot, the
population quantiles are the quantiles of a log f -distribution with 2 and 10
degrees of freedom. This plot is fairly linear, indicating1 that an appropriate
choice of scores was made. The residual plot indicates a good fit. The outliers
on the left are mild and, based on the q−q plot, follow the pattern of the log
F -distribution with 2 and 10 degrees of freedom.

6.5 Exercises

6.5.1. Using the data discussed in Example 6.2.4:

(a) Obtain a plot of the Kaplan–Meier estimates for the two treat-
ment groups.

(b) Obtain the p-value based on the log-rank statistic.

(c) Obtain the p-value based on the Peto–Peto modification of the
Gehan statistic.

6.5.2. Obtain full model fit of the prostate cancer data discussed in Exam-
ple 6.3.2. Include age, serum haemoglobin level, size, and Gleason index. Com-
ment on the similarity or dissimilarity of the estimated regression coefficients
to those obtained in Example 6.3.2.

1See the discussion in Section 3.10 of Hettmansperger and McKean (2011).
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FIGURE 6.6
The top panel contains the Studentized residual plot of the rank-based fit
using generalized log F -scores with 2 and 10 degrees of freedom. The bottom
panel shows the q−q plot of Studentized residuals versus log F -scores with 2
and 10 degrees of freedom.

6.5.3. For the dataset hodgkins, plot Kaplan–Meier estimated survival curves
for both treatments. Note treatment code 1 denotes radiation of affected node
and treatment code 2 denotes total nodal radiation.

6.5.4. To simulate survival data, often it is useful to simulate multiple time
points. For example the time to event and the time to end of study. Then,
events occurring after the time to end of study are censored. Suppose the time
to event of interest follows an exponential distribution with mean 5 years and
the time to end of study follows an exponential distribution with a mean of
1.8 years. For a sample size n = 100 simulate survival times from this model.
Plot the Kaplan–Meier estimate.

6.5.5. Show that the optimal rank-based score function is ϕ(u) = −1−log(1−
u), for 0 < u < 1 for random variables which have an extreme valued distri-
bution (6.9). In this case, the generated scores are called the log-rank scores
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6.5.6. Consider the dataset rs. This is simulated data from a simple regression
model with the true slope parameter at 0.5. The first column is the indepen-
dent variable x while the second column is the dependent variable y. Obtain
the following three fits of the model: least squares, Wilcoxon rank-based, and
rank-based using logfscores with m1 = 1 and m2 = 0.10.

(a) Scatterplot the data and overlay the three fits.

(b) Obtain Studentized residual plots of all three fits.

(c) Based on Parts (a) and (b) which fit is worst?

(d) Compare the two rank-based fits in terms of precision (estimates
of τϕ). Which fit is better?

6.5.7. Generate data from a linear model with log-F errors with degrees of
freedom 4 and 8 using the following code

n <- 75; m1 <- 2; m2 <- 4; x<-rnorm(n,50,10)

errs1 <- log(rf(n,2*m1,2*m2)); y1 <- x + 30*errs1

(a) Using logfscores, obtain the optimal scores for this dataset.

(b) Obtain side-by-side plots of the pdf of the random errors and
the scores. Comment on the plot.

(c) Fit the simple linear model for this data using the optimal
scores. Obtain a residual analysis including a Studentized residual
plot and a normal q−q plot. Comment on the plots and the quality
of the fit.

(d) Obtain a histogram of the residuals for the fit in part (b). Over-
lay the histogram with an estimate of the density and compare it
to the plot of the pdf in part (a).

(e) Obtain a summary of the fit of the simple linear model for this
data using the optimal scores. Obtain a 95% confidence interval for
the slope parameter β. Did the interval trap the true parameter?

(f) Use the fit to obtain a confidence interval for the expected value
of y when x = 60.

6.5.8. For the situation described in Exercise 6.5.7, obtain a simulation study
comparing the mean squared errors of the estimates of slope using fits based
on Wilcoxon scores and the optimal scores. Use 10,000 simulations.

6.5.9. Consider the failure time data discussed in Example 6.4.2. Recall that
the generalized log F -scores with 2m1 = 2 and 2m2 = 10 degrees of freedom
were used to compute the rank-based fit. The Studentized residuals from this
fit were then used in a q−q plot to check goodness-of-fit based on the strength
of linearity in the plot, where the population quantiles were obtained from a
log F -distribution with 2 and 10 degrees of freedom. Obtain the rank-based fits
based on the Wilcoxon scores, normal scores, and log F -scores with 2m1 = 10
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and 2m2 = 2. For each, obtain the q−q plot of Studentized residuals using as
population quantiles the normal distribution, the logistic distribution, and the
log F -distribution with 10 and 2 degrees of freedom, respectively. Compare
the plots. Which, if any, is most linear?

6.5.10. Suppose we are investigating the relationship between a response Y
and an independent variable x. In a planned experiment, we record responses
at r values of x, x1 < x2 < · · · < xr. Suppose ni independent replicates are
obtained at xi. Let Yij denote the response for the jth replicate at xi. Then
the model for a linear relationship is

Yij = α+ xijβ + eij , i = 1, . . . , r; j = 1, . . . , ni. (6.11)

In this setting, we can obtain a lack-of-fit test. For this test, the null hy-
pothesis is Model (6.11). For the alternative, we take the most general model
which is a one-way design with r groups; i.e., the model

Yij = µi + eij , i = 1, . . . , r; j = 1, . . . , ni, (6.12)

where µi is the median (or mean) of the ith group (responses at xi). The rank-
based drop in dispersion is easily formulated to test these hypotheses. Select
a score function ϕ. Let D(RED) denote the minimum value of the dispersion
function when Model (6.11) is fit and let D(FULL) denote the minimum value
of the dispersion function when Model (6.12) is fit. The Fϕ test statistic is

Fϕ =
[D(RED)−D(FULL)]/(r − 2)

τ̂ϕ
.

This test statistic should be compared with F -critical values having r− 2 and
n− r degrees of freedom, where n =

∑
i ni is the total sample size. In general

the drop in dispersion test is computed by the function drop.test. Carry out
this test for the data in Example 6.4.2 using the log F -scores with 2m1 = 2
and 2m2 = 10 degrees of freedom.

6.5.11. The data for Example 6.4.1 are:

x 1 2 3 4 5 6 7 8 9 10
y 2.84 6.52 6.87 16.43 18.17 25.24 28.15 31.65 36.37 38.84

(a) Using Rfit, verify the analysis presented in Example 6.4.1.

(b) Obtain Studentized residuals from the fit. Comment on the residual
plot.

(c) Obtain the q−q plot of the sorted residuals of Part (b) versus the
quantiles of the random variable ε which is distributed as the log of
an exponential. Comment on linearity in the q−q plot.
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Regression II

7.1 Introduction

In Chapter 4 we introduced rank-based fitting of linear models using Rfit.
In this chapter, we discuss further topics for rank-based regression. These
include high breakdown fits, diagnostic procedures, weighted regression, non-
linear models, and autoregressive time series models. We also discuss optimal
scores for a family of skew normal distributions and present an adaptive pro-
cedure for regression estimation based on a family of Winsorized Wilcoxon
scores.

Let Y = [y1, . . . , yn]
T denote an n×1 vector of responses. Then the matrix

version of the linear model, (4.2), is

Y = α1+Xβ + e (7.1)

where X = [x1, . . . ,xn]
T is an n × p design matrix, and e = [e1, . . . , en]

T is
an n× 1 vector of error terms. Assume for discussion that f(t) and F (t) are
the pdf and cdf of ei, respectively. Assumptions differ for the various sectional
topics.

Recall from expression (4.10) that the rank-based estimator β̂ϕ is the

vector that minimizes the rank-based distance between Y and Xβ; i.e., β̂ϕ is
defined as

β̂ϕ = Argmin‖y −Xβ‖ϕ, (7.2)

where the norm is defined by

‖v‖ϕ =

n∑

i=1

a[R(yi − xT
i β)](yi − xT

i β), v ∈ Rn, (7.3)

and the scores a(i) = ϕ[i/(n+1)] for a specified score function ϕ(u) defined on
the interval (0, 1) and satisfying the standardizing conditions given in (3.12).

Note that the norm is invariant to the intercept parameter; but, once β is
estimated, the intercept α is estimated by the median of the residuals. That
is,

α̂ = medi{yi − xT
i β̂ϕ}. (7.4)

The rank-based residuals are defined by

êi = yi − α̂− xT
i β̂ϕ, i = 1, 2, . . . , n. (7.5)

173
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Recall that the joint asymptotic distribution of the rank-based estimates is
multivariate normal with the covariance structure as given in (4.12).

As discussed in Chapter 3, the rank-based estimates are generally highly
efficient estimates. Further, as long as the score function is bounded, the in-
fluence function of β̂ϕ is bounded in the Y -space (response space). As with
LS estimates, though, the influence function is unbounded in the x-space (fac-
tor space). In the next section, we present a rank-based estimate which has
bounded influence in both spaces and which can attain the maximal 50%
breakdown point.

7.2 High Breakdown Rank-Based Fits

High breakdown rank-based (HBR) estimates were developed by Chang et al.
(1999) and are fully discussed in Section 3.12 of Hettmansperger and McKean
(2011). To obtain HBR fits of linear models, a suite of R functions (ww) was
developed by Terpstra andMcKean (2005). We use a modified version, hbrfit,
of ww to compute HBR fits.1

The objective function for HBR estimation is a weighted Wilcoxon disper-
sion function given by

‖v‖HBR =
∑

i<j

bij |vi − vj | (7.6)

where bij ≥ 0 and bij = bji. The HBR estimator of β minimizes this objective
function, which we denote by

β̂HBR = Argmin‖y −Xβ‖HBR. (7.7)

As with the rank-based estimates the intercept α is estimated as the median
of the residuals; that is,

α̂ = medi{yi − xT β̂HBR}. (7.8)

As shown in Chapter 3 of Hettmansperger and McKean (2011), if all the
weights are one (i.e., bij ≡ 1) then ‖ · ‖HBR is the Wilcoxon norm. Thus
the question is, what weights should be chosen to yield estimates which are
robust to outliers in both the x- and y-spaces? In Section 7.2.1, we discuss
the HBR weights implemented in hbrfit which achieve 50% breakdown. For
now, though, we illustrate their use and computation with several examples.

Stars Data

In this subsection we present an example to illustrate the usage of the weighted
Wilcoxon code hbrfit to compute HBR estimates. This example uses the

1See https://github.com/kloke/book for more information.
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FIGURE 7.1
Scatterplot of stars data.

stars dataset which is from Rousseeuw et al. (1987). The data are from an
astronomy study on the star cluster CYG OB1. The cluster contains 47 stars.
Measurements were taken on light intensity and temperature. The response
variable is log light intensity and the explanatory variable is log temperature.
As is apparent in the scatterplot displayed in Figure 7.1 there are several
outliers: there are four stars with lower temperature and higher light intensity
than the other members of the cluster. These four stars are labeled giant stars
in this dataset. The others are labeled main sequence stars, except for the two
with log temperature 3.84 and 4.01 which are between the giant and main
sequence stars.

In Figure 7.2, the Wilcoxon (WIL), high breakdown (HBR), and least
squares (LS) fits are overlaid on the scatterplot. As seen in Figure 7.2, both
the least squares and Wilcoxon fit are affected substantially by the outliers;
the HBR fit, however, is robust.

The HBR fit is computed as

> fitHBR<-hbrfit(stars$light ~ stars$temperature)

As we have emphasized throughout the book the use of residuals, in particular
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FIGURE 7.2
Scatterplot of stars data with fitted regression lines overlaid.

Studentized residuals, are essential to the model building process. Studentized
residuals are available through the command rstudent. In addition, a set of
diagnostic plots can be obtained using diagplot. For HBR fit of the stars
data, Figure 7.3 displays these diagnostic plots, which resulted from the code:

> diagplot(fitHBR)

Note from these plots in Figure 7.3 that the Studentized residuals of the HBR
fit clearly identify the 4 giant stars. They also identify the two stars between
the giant and main sequence stars.

Finally, we may examine the estimated regression coefficients and their
standard errors in the table of regression coefficients with the command
summary; i.e.,

> summary(fitHBR)

Call:

hbrfit(formula = stars$light ~ stars$temperature)

Coefficients:
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FIGURE 7.3
Diagnostic plots based on the HBR fit of the stars data.

Estimate Std. Error t.value p.value

(Intercept) -3.46917 1.64733 -2.1059 0.04082 *

stars$temperature 1.91667 0.38144 5.0248 8.47e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Wald Test: 25.24853 p-value: 1e-05

The estimate of intercept is −3.47 (se = 1.65). The estimate of slope is 1.92
(se = 0.38). Critical values based on a t-distribution with n− p− 1 degrees of
freedom are recommend for inference; for example p-values in the coefficients
table for the stars data are based on a t45 distribution. Also displayed is a
Wald test of H0 : β = 0.

7.2.1 Weights for the HBR Fit

Let Xc be the centered design matrix. For weights it seems reasonable to
downweight points far from the center of the data. The traditional distances
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are the leverage values hi = n−1 + x′
ci(X

′
cXc)

−1xci, where xci is the vec-
tor of the ith row of Xc. Because the leverage values are based on the LS
variance-covariance scatter matrix, they are not robust. The weights for the
HBR estimate make use of the high breakdown minimum covariance deter-
minant, MCD, which is an ellipsoid in p-space that covers about half of the
data and yet has minimum determinant. Rousseeuw and Van Driessen (1999)
present a fast computational algorithm for it. Let V and vc denote respec-
tively the MCD and the center of the MCD. The robust distances and weights

are respectively vni = (xci−vc)
′V −1(xci−vc) and wi = min

{
1, c

vni

}
, where c

is usually set at the 95th percentile of the χ2(p) distribution. Note that “good”

points generally have weight 1. The estimator β̂
∗
(7.7) of β obtained with

these weights is called a generalized R (GR) estimator. In general, this GR
estimator has a bounded influence function in both the Y and the x-spaces
and a positive breakdown. It can be computed using the suite of R functions
ww with wts = "GR".

Note that the GR estimate downweights “good” points as well as “bad”
points of high leverage. Due to this indiscriminate downweighting the GR
estimator is less efficient than the Wilcoxon estimator. At times, the loss in
efficiency can be severe. The HBR weights also use the MCD to determine
weights in the x-space. Unlike the GR weights, though, residual information
from the Y -space is also used. These residuals are based on the the least
trim squares (LTS) estimate which is Argmin

∑h
i=1[Y − α − x′β]2(i) where

h = [n/2]+1 and (i) denotes the ith ordered residual. This is a high breakdown
initial estimate; see Rousseeuw and Van Driessen (1999). Let ê0 denote the
residuals from this initial fit.

Define the function ψ(t) by ψ(t) = 1, t, or − 1 according as t ≥ 1,
−1 < t < 1, or t ≤ −1. Let σ be estimated by the initial scaling estimate

MAD = 1.483 medi|ê(0)i −medj{ê(0)j }| . Letting Qi = (xi− vc)
′V −1(xi−vc),

define

mi = ψ

(
b

Qi

)
= min

{
1,

b

Qi

}
.

Consider the weights

b̂ij = min

{
1,

cσ̂

|ê(0)i |
σ̂

|ê(0)j |
min

{
1,

b

Q̂i

}
min

{
1,

b

Q̂j

}}
, (7.9)

where b and c are tuning constants. Following Chang et al. (1999), b is set at
the upper χ2

.05(p) quantile and c is set as

c = [med{ai}+ 3MAD{ai}]2,

where ai = ê
(0)
i /(MAD · Qi). From this point of view, it is clear that these

weights downweight both outlying points in factor space and outlying re-
sponses. Note that the initial residual information is a multiplicative factor in
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the weight function. Hence, a good leverage point will generally have a small
(in absolute value) initial residual which will offset its distance in factor space.
These are the weights used for the HBR fit computed by hbrfit.

In general, the HBR estimator has a 50% breakdown point, provided the
initial estimates used in forming the weights also have a 50% breakdown point.
Further, its influence function is a bounded function in both the Y and the x-
spaces, is continuous everywhere, and converges to zero as (x∗, Y ∗) get large in

any direction. The asymptotic distribution of β̂HBR is asymptotically normal.

As with all high breakdown estimates, β̂HBR is less efficient than the Wilcoxon
estimates but it regains some of the efficiency loss of the GR estimate. See
Section 3.12 of Hettmansperger and McKean (2011) for discussion.

7.3 Robust Diagnostics

Diagnostics are an essential part of any analysis. The assumption of a model is
a very strong statement and should not be taken lightly. As we have stressed
throughout the book, diagnostic checks should be made to confirm the ade-
quacy of the model and check the quality of fit. In this section, we explore
additional diagnostics based on both highly efficient and high breakdown ro-
bust fits. These diagnostics are primarily concerned with the determination of
highly influential points on the fit.

For motivation, we consider a simple dataset with two predictors and n =
30 data points. The scatterplot of the columns of the two-dimensional (p = 2)
design matrix, X, is shown in Figure 7.4. The values of the x’s are drawn from
uniform distributions. The design matrix and observations are in the dataset
diagdata.

Consider the four points in the upper-right corner of the plot, which are
the 27th through 30th data points. As the following two sets of responses show,
these points are potentially influential points on fits. The first set of responses
is drawn from the model

Yi = 5xi1 + 5xi2 + ei, (7.10)

where e1, . . . , en were drawn independently from a N(0, 1) distribution. We
label this the “good” dataset. For this set the responses for cases 27 through
30 are respectively 7.001, 7.397, 9.191, and 8.269), which follow the model.
To form the second set of responses, we negated these four responses; i.e., the
observations for cases 27 though 30 are respectively −7.001,−7.397,−9.191,
and −8.269, which of course do not follow the model. We label this second
set, the “bad” dataset. We obtain the LS, Wilcoxon, and HBR fits of the two
models, summarizing them in Table 7.1.

On the good dataset all three fits agree. On the bad dataset both the LS
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FIGURE 7.4
Scatterplot of the columns of the design matrix for the simple example.

and Wilcoxon fits were impaired while the HBR fit exhibited robustness. Thus
the 27th through 30th data points are potentially influential points.

Note first that traditional diagnostic procedures are generally not efficient
at these tasks. Their geometry is based on the Euclidean norm which is sen-
sitive to outlying points in the x-space. For example, for this simple dataset,
the vector of column means of the design matrix is (0.369, 0.399), while the

TABLE 7.1
Estimates of the Regression for the Simple
Datasets (good and bad).

Intercept X1 X2
LS Good Data 0.12 4.45 4.74
Wil Good Data 0.10 4.42 4.64
HBR Good Data -0.11 4.62 4.91
LS Bad Data 5.56 -4.49 -5.96
Wil Bad Data 6.07 -4.59 -5.83
HBR Bad Data -0.11 4.55 4.79
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vector of column medians is (0.148, 0.38). Hence, the outliers have influenced
the center of design based on the mean. The leverage values for the four out-
lying points are respectively 0.192, 0.193, 0.183, and 0.181. Note that these
are less than the usual benchmark for points of high leverage which is given
by 2(p + 1)/n = 0.2. Thus, if the leverage rule is followed strictly, these four
points would not have been identified.

Traditional delete-one diagnostics are often used to check the quality of the
fit. For example, consider the diagnostic DFFITSi which is the standardized
change in the LS fitted value for case i when case i is deleted; see Belsley et al.
(1980). For datasets containing a cluster of outliers in the X-space, though,
when one of the cases in the cluster is deleted there are still the remaining
cases in the cluster which will impair the LS fit in the same way as in the
LS fit based on all the data. Hence, DFFITSi will generally be small and the
points will not be detected. For the simple dataset, the values of DFFITS27
through DFFITS30 are respectively −0.517,−0.583,−0.9, and −0.742. Since
the benchmark is 2

√
(p+ 1)/n = 0.632, Cases 27 and 28 are not detected as

influential points. The other two cases are detected but they are borderline.
For example, Case 7, which is not a point of concern, has the DFFITS value
of 0.70. Hence, for this example, the diagnostic DFFITSi has not been that
successful.

Note that for this simple example, the HBR estimates remain essentially
the same for both the “good” and “bad” datasets. We now present diagnostics
based on the HBR estimates and the robust distances and LTS residuals that
are used to form the HBR weights. These diagnostics are robust and are
generally successful in detecting influential cases and in detecting differences
between highly efficient and high breakdown robust fits.

7.3.1 Graphics

In general, consider a linear model of the form (7.1). In Section 7.2, we defined
the robust distances

√
Qi, where Qi = (xi − vc)

′V −1(xi − vc), i = 1, . . . , n,
V is the minimum covariance determinant (MCD), and vc is the center of the
ellipsoid V . Recall that these were used to obtain the weights in the HBR fit,
see expression (7.9). Another part of these weights utilizes the standardized
residuals based on the LTS fit. Rousseeuw and van Zomeren (1990) proposed
as a diagnostic, the plot of these standardized residuals versus the robust
distances. For the simple example with the set of bad responses, this plot is
found in Figure 7.5. Note that the 4 influential cases are clearly separated from
the other cases. Hence, for this example, the diagnostic plot was successful.
The next segment of R code obtains the robust distances, standardized LTS
residuals, and the diagnostic plot shown in Figure 7.5. The observations for the
second set of data (bad data) are in the R vector ybad while the design matrix
is in the R matrix x. Some caution is necessary here, because standardized
residuals are not corrected for locations of the residuals in the X-space as
Studentized residuals are.
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FIGURE 7.5
Standardized LTS residuals versus robust distances for the simple example
with bad responses.

> rsdfitlts <- ltsreg(x,ybad)$resid

> srsd <- rsdfitlts /mad(rsdfitlts )

> rdis <- sqrt(robdistwts(x,ybad)$robdis2)

> plot(rdis,srsd,xlab="Robust distance",

+ ylab="LTS standardized residual")

> title(main="Standardized LTS Residuals vs. Robust Distances")

7.3.2 Procedures for Differentiating between Robust Fits

Recall that for the simple dataset with bad responses the differences between
the Wilcoxon and HBR fits are readily apparent; see Table 7.1. We next discuss
a set of formal diagnostics based on the difference between fits; see2 McKean
et al. (1996a). Consider a general linear model, say Model (7.1). The difference
between estimates includes the intercept, so, for this section, let bT = (α,βT )
denote the combined parameters. Then the difference between the HBR and

2See, also McKean and Sheather (2009).
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Wilcoxon regression estimates is the vector b̂D = b̂W − b̂HBR. An effective
standardization is the estimate of the variance-covariance of b̂W . A statistic
which measures the total difference between the fits is

TDBETAS = b̂
T

DÂ
−1

W b̂D, (7.11)

where AW is the asymptotic Wilcoxon covariance matrix for linear models.
Large values of TDBETAS indicate a discrepancy between the fits. A useful
cutoff value is (4(p+ 1)2)/n.

If TDBETASR exceeds its benchmark then usually we want to deter-
mine the individual cases causing the discrepancy between the fits. Let ŷW,i

and ŷHBR,i denote the respective Wilcoxon and HBR fits for the ith case. A
Studentized statistic which detects the observations that differ in fit is

CFITSi = (ŷR,i − ŷHBR,i)/
√
n−1τ̂2S + hc,iτ̂2. (7.12)

An effective benchmark for CFITSi is 2
√
(p+ 1)/n. Note that the standard-

ization of CFITSi accounts for the location of the ith case in the X-space.
The objective of the diagnostic CFITS is not outlier deletion. Rather the

intent is to identify the few critical data points for closer study, because these
points are causing discrepancies between the highly efficient and high break-
down fits of the data. In this regard, the proposed benchmarks are meant as
a heuristic aid, not a boundary to some formal critical region.

In the same way, the difference between the LS fit and either the Wilcoxon
or HBR fits can be investigated. In general, though, we are interested in the
difference between a highly efficient robust fit and a high breakdown robust
fit. In all comparison cases, the standardization of the diagnostics is with the
variance-covariance matrix of the Wilcoxon fit. For computation, the func-
tion fitdiag, in the collection hbrfit, computes these diagnostics for the
Wilcoxon, HBR, GR, LS, and LTS fits. Its argument est specifies the differ-
ence to compute; for example, if est=c("WIL","HBR") then the diagnostics be-
tween the Wilcoxon and HBR fits are computed, while est=c("LTS","WIL")
computes the diagnostics between the Wilcoxon and LTS fits. Besides the
diagnostics, the associated benchmarks are returned.

From the computation, the value of TDBETAS is 43.93 which far exceeds
the benchmark of 1.2; hence, the diagnostic has been successful. Even more
importantly, though, is that the diagnostic CFITS in Figure 7.6 clearly flags
the four influential cases. These are the points at the bottom right corner of the
plot. In reading plots, such as the CFITS plot, the large gaps are important.
In this case, the four influential points clearly stand out and are the ones to
investigate first. As the reader is asked to show, Exercise 7.9.5, for this dataset
with the set of good responses, TDBETAS is less than its benchmark and none
of the CFITS values, in absolute value, exceed their benchmark.

Example 7.3.1 (Fit Diagnostics for Stars Data). The next code segment
computes the robust distances and the diagnostics for the difference between
the Wilcoxon and HBR fits of the stars data, discussed in Section 7.2.
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FIGURE 7.6
Plot of the changes in fits (CFITS) between the Wilcoxon and HBR fits for
the simple dataset with the set of bad responses. The horizontal lines are set
at the benchmark.

> dwilhbr = fitdiag(stars$temperature,stars$light,est=c("WIL","HBR"))

> tdbetas <- round(c(dwilhbr$tdbeta,dwilhbr$bmtd),digits=2)

> rdis <- sqrt(robdistwts(stars$temperature,stars$light)$robdis2)

The diagnostic TDBETAS has the value 67.92 which greatly exceeds its
benchmark of 0.34. Thus numerically indicating that the HBR and Wilcoxon
fits differ. The CFITS plot, right panel of Figure 7.7, clearly shows the four
giant stars (Cases 11, 20, 30, and 34). It also finds the two stars between
the giant stars and the main sequence stars, namely Cases 7 and 14. The
robust distance plot conveys similar information. For the record, the diagnostic
TDBETAS for the difference in fits between the Wilcoxon and LTS fits is
265.39, which far exceeds the benchmark.

The following generated dataset illustrates the curvature problem for high
breakdown fits.

Example 7.3.2 (Curvature Data). Hettmansperger and McKean (2011),
page 267, consider a simulated quadratic model with N(0, 1) random errors
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FIGURE 7.7
Robust distance plots and CFITS plot between HBR and Wilcoxon fits, stars
data.

and absolute contaminated normal xs. The model is Y = 5.5|x|−0.6x2+e. The
scatterplot of the data overlaid with the Wilcoxon and HBR fits are shown in
Figure 7.8. The Wilcoxon and HBR estimates are:

> summary(fitwil)

Call:

rfit.default(formula = y ~ xmat)

Coefficients:

Estimate Std. Error t.value p.value

(Intercept) -0.665013 0.421598 -1.5774 0.1232

xmatx 5.946872 0.326518 18.2130 <2e-16 ***

xmat -0.652514 0.045484 -14.3462 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Scatterplot of quadratic data overlaid with fits.

Multiple R-squared (Robust): 0.842278

Reduction in Dispersion Test: 98.795 p-value: 0

> summary(fithbr)

Call:

hbrfit(formula = y ~ xmat)

Coefficients:

Estimate Std. Error t.value p.value

(Intercept) 0.175941 0.371664 0.4734 0.6387183

xmatx 4.796202 0.463747 10.3423 1.819e-12 ***

xmat -0.373726 0.098066 -3.8110 0.0005065 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Wald Test: 220.5558 p-value: 0

As the summary of coefficients and the scatterplot show the Wilcoxon and
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FIGURE 7.9
Plot of CFITS between HBR and Wilcoxon fits, quadratic data.

HBR fits differ. The Wilcoxon fit follows the model while the HBR fit did not
detect the curvature as well as the Wilcoxon fit. For the Wilcoxon and HBR
fits, the value of TDBETAS is 67.637 with benchmark 0.9; so the diagnostics
on the difference of the two fits agrees with this assessment. Figure 7.9 shows
the corresponding plot of the diagnostic CFITS.

The points corresponding to the largest absolute change in CFITS are at
the region of most curvature in the quadratic model.

As in the last example, high breakdown fits may be impaired, if curvature
occurs “far” from the robust center of the data; see McKean et al. (1994)
for a study on this concern for polynomial models. In the last example, the
diagnostic CFITS did pinpoint this region.

7.3.3 Concluding Remarks

As the examples in this and the last sections show, in the case of messy
datasets, influential points in the x-space can have a negative impact on highly
efficient robust fits as well as LS fits. Hence, the use of diagnostics is recom-
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mended for detecting influential points and measuring their effect on highly
efficient robust fits. In practice, if influential points are detected and found
to have a negative impact on a highly efficient robust fit then we recommend
using the inference based on high breakdown robust fits, such as the HBR fit.
Usually, influential points in the x-space are signs of a poor design. For obser-
vational data, though, this often cannot be helped. Note, also, that such points
can be part of a planned experiment such as experiments designed to detect
curvature. The diagnostics discussed in this section are helpful for assessing
the better fit for such cases.

7.4 Weighted Regression

For a linear model, weighted regression can be used, for example, when vari-
ances are heteroscedastic or for problems that can be solved by iterated
reweighted procedures (least squares or rank-based). We begin with a gen-
eral discussion that includes a simple R function which computes weighted
rank-based estimates using Rfit .

Consider the linear model with Y as an n× 1 vector of responses and X

as the n× p design matrix. Write the model as

Y = α1+Xβ + e = X1b+ e, (7.13)

where X1 = [1 X] and b = (α,β′)′. We have placed the subscript 1 on the
matrix X1 because it contains a column of ones (intercept). Let W be an
n×n matrix of weights. For example, if the covariance matrix of e is Σ, then
the weight matrix that yields homogeneous variances is W = Σ−1/2, where
Σ−1/2 is the usual square root of a positive definite matrix, (of course, in
practice W needs to be estimated). The weighted model is:

WY = WX1b+We.

For easier notation, let Y ∗ = WY , X∗ = WX1, and e∗ = We. The matrix
X∗ does not have a subscript 1 because generally the weights eliminate the
intercept. Then we can write the model as

Y ∗ = X∗b+ e∗. (7.14)

Let Ω∗ be the column space of X∗. This is our subspace of interest.
As mentioned above, usually in Model (7.14) there is no longer an intercept

parameter; i.e., we have a case of regression through the origin. This is an
explicit assumption for the following discussion; that is, we assume that the
column space ofX∗ does not contain a column of ones. Because the rank-based
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estimators minimize a pseudo-norm we have

‖Y ∗ −X∗β‖ϕ =

n∑

i=1

a(R(y∗i − x∗′
i β))(y

∗
i − x∗′

i β) (7.15)

=
n∑

i=1

a(R(y∗i − (x∗
i − x∗)′β))(y∗i − (x∗

i − x∗)′β)

=

n∑

i=1

a(R(y∗i − α− (x∗
i − x∗)′β))(y∗i − α− (x∗

i − x∗)′β),

where x∗
i is the ith row of X∗ and x∗ is the vector of column averages of

X∗. Hence, based on this result, the estimator of the regression coefficients
based on the R fit of Model (7.14) is estimating the regression coefficients of

the centered model, i.e., the model with the design matrix Xc = X∗ −X∗.
Thus the rank-based fit of the vector of regression coefficients is in the column
space of Xc, not the column space of X∗.

Dixon and McKean (1996) proposed the following3 solution. Assume that
(7.14) is the true model, but first obtain the rank-based fit of the model:

Y ∗ = 1α1 +X∗b+ e∗ = [1 X∗]

[
α1

b

]
+ e∗, (7.16)

where the true α1 is 0. Let U1 = [1 X∗] and let ΩU1 denote the column

space of U1. Let Ŷ U1 = 1α̂1 +X∗b̂ denote the R fitted value based on the
fit of Model (7.16), where, as usual, the intercept parameter α1 is estimated
by the median of the residuals of the rank-based fit. Note that the subspace
of interest Ω∗ is a subspace of Ω1, i.e., Ω∗ ⊂ ΩU1 . Secondly, project this

fitted value onto the desired space Ω∗; i.e., let Ŷ
∗
= HΩ∗ Ŷ U1 , where HΩ∗ =

X∗(X∗′X∗)−1X∗′. Thirdly, and finally, estimate b by solving the equation

X∗b̂ = Ŷ
∗
, (7.17)

that is, b̂
∗

= (X∗′X∗)−1X∗′Ŷ U1 . This is the rank-based estimate for
Model (7.17).

The asymptotic variance of b̂
∗
is given by

AsyVar(b̂
∗
) = τ2S(X

∗′X∗)−1X∗′H1X
∗(X∗′X∗)−1

+τ2ϕ(X
∗′X∗)−1X∗′HXc

X∗(X∗′X∗)−1, (7.18)

where H1 and HXc
are the projection matrices onto a column of ones and

the column space of Xc, respectively.
We have written an R function which obtains the weighted rank-based fit.

The function has the following arguments

3See, also, Page 287 of Hettmansperger and McKean (2011).
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> args(wtedrb)

function (x, y, wts = diag(rep(1, length(y))), scores = wscores)

NULL

where y and x are the R vector of responses and design matrix, respec-
tively. These responses and design matrix are the non-weighted values as in
Model (7.13). The weights are in the matrix wts with the default as the iden-
tity matrix. The scores option allows for different scores to be used with the
Wilcoxon scores as the default. Values returned are: fitted values ($yhatst),
residuals ($ehatst), estimate of regression coefficients ($bstar), standard er-
rors of estimates ($se), and estimated covariance matrix of estimates ($vc).

The two main applications for the function wtedrb are:

1. Models of the form (7.13) for which a weighted regression is desired.
Let W denote the weight matrix. Then the model to be fitted is
given in expression (7.14). In this case the matrix X∗ is the design
matrix argument for the function wtedrb and the matrix W is the
weight matrix. It is assumed that a vector of ones is not in the
column space of X∗.

2. A regression through the origin is desired. In this case, the
model is

Y = Xβ + e = U1b+ e, (7.19)

where the column space of X does not contain a vector of ones
while that of U1 does. For this model, the design matrix argument
is X and there is no weight matrix; i.e., the default identity matrix
is used. Some cautionary notes on using this model are discussed in
Exercise 7.9.9.

Exercise 7.9.10 discusses a weighted regression. The next example serves as
an illustration of regression through the origin.

Example 7.4.1 (Crystal Data). Hettmansperger and McKean (2011) discuss
a dataset4 where regression through the origin was deemed important. The
response variable y is the weight of a crystalline form of a certain chemical
compound and the independent variable x is the length of time that the crystal
was allowed to grow. For convenience, we display the data in Table 7.2.

The following code segment computes the rank-based fit of this model (the
responses are in the vector y and the vector for the independent variable is in
x). Note that x is the designed matrix used and that there is no weight argu-
ment (the default identity matrix is used). Figure 7.10 contains the scatterplot
of the data overlaid by the rank-based fit.

> wtedfit <- wtedrb(x,y)

> wtedfit$bstar

4See Graybill and Iyer (1994) for initial reference for this dataset.
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TABLE 7.2
Crystal Data.

Time (hours) 2 4 6 8 10 12 14
Weight (grams) 0.08 1.12 4.43 4.98 4.92 7.18 5.57
Time (hours) 16 18 20 22 24 26 28
Weight (grams) 8.40 8.881 10.81 11.16 10.12 13.12 15.04

[,1]

[1,] 0.5065172

> wtedfit$se

[1] 0.02977037

The rank-based estimate of slope is 0.507 with a standard error of 0.030; hence,
the result is significantly different from 0.

Remark 7.4.1. Weighted rank-based estimates can be used to fit general
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FIGURE 7.10
Scatterplot of the Crystal data overlaid by the rank-based fit.
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linear models where the variance of the random errors is an n × n matrix
Σ > 0. In this case the weight matrix is Σ−1/2, where Σ−1/2 = ΓΛ−1/2Γ′ and
Λ and Γ are respectively the diagonal matrix of eigenvalues and eigenvectors
of Σ. Generally in practice, Σ has to be estimated; see Bilgic (2012) for such
an iterated reweighted procedure for hierarchical linear models. Dixon and
McKean (1996) and Carroll and Ruppert (1982) developed robust (R and
M, respectively) for iteratively estimating the regression coefficients and the
weights when Σ is diagonal and the form of the heteroscedasticity is known;
for example, when scale varies directly with response.

7.5 Linear Models with Skew Normal Errors

The family of skew normal distributions consists of left and right skewed
distributions along with the normal distribution. The pdfs in this family are
of the form

f(x;α) = 2φ(x)Φ(αx), (7.20)

where the parameter α satisfies −∞ < α <∞ and φ(x) and Φ(x) are the pdf
and cdf of a standard normal distribution, respectively. If a random variable
X has this pdf, we say that X has a standard skew normal distribution with
parameter α and write X ∼ SN(α). If α = 0, then X has a standard normal
distribution. Further X is distributed left skewed if α < 0 and right skewed
if α > 0. This family of distributions was introduced by Azzalini (1985), who
discussed many of its properties. We are interested in using this family of
distributions for error distributions in the linear model,

Yi = f(xi;β) + ei, i = 1, 2, . . . , n, (7.21)

where e = bǫi, where ǫi ∼ SN(α), for some −∞ < α < ∞, and the scale pa-
rameter b > 0. We next discuss rank-based fits and inference for such models;
see McKean and Kloke (2014) for more information.

Since these fits are scale equivariant, there is no need to estimate the scale
parameter b. Likewise, for inference on the vector of parameters β there is no
need to estimate the shape parameter α. Wilcoxon scores could be used or the
bent scores designed for skewed error distributions. However, to get an idea of
what scores to consider, we next discuss the optimal scores for a specified α.

To obtain the optimal rank-based scores, because of equivariance, we need
only the form (down to scale and location) of the pdf. So for the derivation
of the scores, assume that the random variable X ∼ SN(α) with pdf (7.20).
Then as Exercise 7.9.12 shows:

−f
′(x;α)

f(x;α)
= x− αφ(αx)

Φ(αx)
. (7.22)
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Denote the inverse of the cdf of X by F−1(u;α). Then the optimal score
function for X is

ϕα(u) = F−1(u;α)− αφ(αF−1(u;α))

Φ(αF−1(u;α))
. (7.23)

For all values of α, this score function is strictly increasing over the interval
(0, 1); see Azzalini (1985). As expected, for α = 0, the scores are the normal
scores introduced in Chapter 3. Due to the first term on the right-side of ex-
pression (7.23), all the score functions in this family are unbounded, indicating
that the skew normal family of distributions is light-tailed. Thus the influence
functions of the rank-based estimators based on scores in this family are un-
bounded in the Y -space and, hence, are not robust. Recall in our discussion of
the normal scores (α = 0), which are optimal for normal pdfs, that the corre-
sponding rank-based estimator is technically robust. The sensitivity analysis
of Section 7.5.1 confirms this technical robustness for the skew normal scores,
also.

We also need the derivative of (7.23) to complete the installation of these
scores in scores. Let l(x) denote the function defined in expression (7.22).
Then as Exercise 7.9.14 shows, the derivative of the optimal score function is

ϕ′
α(u) = l′[F−1(u;α)]

1

2φ[F−1(u;α)]Φ[αF−1(u;α)]
, (7.24)

where

l′(x) = 1 +
α2φ(αx)[αxΦ[αF−1(u;α)] + φ(αx)]

Φ2(αx)
.

Hence, to install this class of scores in Rfit, we only need the computation
of the quantiles F−1(u;α). Azzalini (2014) developed the R package sn which
computes the quantile function F−1(u;α) and, also, the corresponding pdf and
cdf. The command qsn(u,alpha=alpha) returns F−1(u;α), for 0 < u < 1. We
have added the class skewns to the book package npsm. Figure 7.11 displays
these skew normal scores for α = −7, 1, and 5 in the right panels of the figure
and the corresponding pdf in the left panels.

Note that the pdf for α = −7 is left skewed while those for positive α values
are right skewed. Unsurprisingly, the pdf for α = 1 is closer to symmetry than
the pdfs of the others. The score function for the left-skewed pdf emphasizes
relatively the right-tails over the left-tails, while the reverse is true for the
right-skewed pdfs.

7.5.1 Sensitivity Analysis

For the sensitivity analysis, we generated n = 50 observations from a linear
model of the form yi = xi + ei, where xi has a N(0, 1) distribution and ei has
a N(0, 102) distribution. The xis and eis are all independent. The generated
data can be found in the data file sensxy. We added outliers of the form

y50 ← y50 +∆, (7.25)
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FIGURE 7.11
These plots display the pdfs of the three skew normal distributions with shape
parameter α = −7, 1, and 5, along with the corresponding optimal scores.

where ∆ ranges through the values in the top row of Table 7.3. For an estimator
β̂, its sensitivity curve at ∆ is

S(∆; β̂) = β̂ − β̂(∆), (7.26)

where β̂ and β̂(∆) denote the estimates of β on the original and modified
data (7.25), respectively. We obtained sensitivity curves for the estimators:
Wilcoxon, normal scores, skew normal (α = 3), skew normal (α = 5), skew
normal (α = 7), and maximum likelihood estimates (mle). The mles were
computed by the package sn. The following code segment illustrates setting
of the parameter in skewns:

> s5 <- skewns; s5@param <- c(5)

That is, we first obtain a copy of the skew normal scores object (skewns) and
then we set the value of the α parameter to 5.

For all values of ∆, the changes in all of the the rank-based estimates were
less than 0.004. Thus the rank-based skew-normal estimators, including the
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normal scores estimator, exhibited technical robustness for this study. On the
other hand, the mle was sensitive to the values of ∆. We show these changes
in Table 7.3; hence, for this study, the mle was not robust.

TABLE 7.3
Values of the Sensitivity Function for the mle.

∆ 0 20 40 60 80 100 1000 2000
mle 0.00 −0.07 −0.07 −0.00 0.12 0.30 −5.80 −6.32

7.5.2 Simulation Study

We conclude this section with the results of a small simulation study concern-
ing rank-based procedures based on skew normal scores. The model simulated
is

yi = β0 + βxi + θci + ei, (7.27)

where xi is distributed N(0, 1); ei is distributed from a selected error distri-
bution; i = 1, . . . , 100; the xis and eis are all independent; and the variable
ci is a treatment indicator with values of either 0 or 1. We selected two error
distributions for the study. One is a skew normal distribution with shape pa-
rameter α = 5 while the other is a contaminated version of a skew normal.
The contaminated errors are of the form

ei = (1− Iǫ,i)Wi + Iǫ,iVi, (7.28)

where Wi has a skew normal distribution with shape parameter α = 5, Vi has
N(µc = 10, σ2

c = 36) distribution, Iǫ,i has a binomial (1, ǫ = 0.15) distribution,
and Wi, Vi, and Iǫ,i are all independent. This contaminated distribution is
skewed with heavy right-tails. The design is slightly unbalanced with n1 = 45
and n2 = 55. Without loss of generality β, θ, and β0 were set to 0.

For procedures, we selected 7 rank-based procedures based on skew normal
scores with the respective values of α set at 2, 3, . . . , 8; the Wilcoxon proce-
dure; and the mle procedure. Hence, the asymptotically efficient rank-based
procedure (score with α = 5) is one of the selected procedures. The empiri-
cal results presented are the empirical AREs, which for each estimator is the
ratio of the empirical mean-square error (MSE) of the mle to the empirical
MSE of the estimator; hence, values of this ratio less than 1 are favorable to
the mle while values greater than 1 are favorable to the estimator. Secondly,
we present the empirical confidence coefficients for nominal 95% confidence
intervals. For all the procedures, we chose asymptotic confidence intervals of
the form β̂ ± 1.96SE(β̂). We used a simulation size of 10,000.

The results are presented in Table 7.4. For the skew normal errors, for
both parameters β and θ, all the rank-based estimators except the Wilcoxon
estimator are more efficient than the mle estimator. Note that the most ef-
ficient estimator for both β and θ is the rank-based estimator based on the
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TABLE 7.4
Summary of Results of Simulation Study of Rank-Based Procedures
and the Maximum Likelihood Procedure for the Skew Normal
Distribution with Shape α = 5 and a Skew Normal Contaminated
Distribution.

Skew Normal Errors Contaminated Errors
β θ β θ

Proced. ARE Conf. ARE Conf. ARE Conf. ARE Conf.
rb α = 2 1.02 0.96 1.04 0.96 6.61 0.98 10.84 0.98
rb α = 3 1.09 0.96 1.11 0.96 7.43 0.97 12.24 0.98
rb α = 4 1.13 0.96 1.15 0.96 7.79 0.97 12.91 0.98
rb α = 5 1.14 0.96 1.16 0.96 7.85 0.96 13.10 0.97
rb α = 6 1.13 0.95 1.16 0.96 7.73 0.96 13.02 0.97
rb α = 7 1.11 0.95 1.14 0.95 7.49 0.95 12.72 0.97
rb α = 8 1.09 0.95 1.12 0.95 7.17 0.95 12.30 0.96
rb Wil. 0.78 0.95 0.79 0.95 4.70 0.96 7.56 0.97
mle 1.00 0.93 1.00 0.93 1.00 0.96 1.00 0.99

score function with α = 5; although, the result is not significantly different
than the results for a few of the nearby (α close to 5) rank-based estimators.
In terms of validity, the empirical confidences of all the rank-based estimators
are close to the nominal confidence of 0.95. In this study the mle is valid, also.

For the contaminated error distribution, the rank-based estimators are
much more efficient than the mle procedure. Further, the estimator with scores
based on α = 5 is still the most empirically powerful in the study. It has em-
pirical efficiency of 785% relative to the mle for β and 1310% for θ. All the
rank-based procedures based on skew normal scores display technical robust-
ness in this study. Even the Wilcoxon procedure is over 400% more efficient
than the mle.

7.6 A Hogg-Type Adaptive Procedure

Score selection was discussed in Section 3.5.1 for the two-sample problem. The
two-sample location model, though, is a linear model (see expression (3.23));
hence, the discussion on scores in Chapter 3 pertains to regression models
of this chapter also. Thus, for Model (7.1) if we assume that the pdf of the
distribution of the errors is f(t) = f0[(t− a)/b], where f0 is known and a and
b are not, then the scores generated by the score function

ϕf0(u) = −
f ′
0(F

−1
0 (u))

f0(F
−1
0 (u))

; (7.29)
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lead to fully efficient rank-based estimates (asymptotically equivalent to maxi-
mum likelihood estimates). For example, if we assume that the random errors
of Model (7.1) are normally distributed then rank-based fits based on nor-
mal scores are asymptotically equivalent to LS estimates. Other examples are
discussed in Sections 7.5 and 3.5.1. Further, a family of score functions for
log-linear models is discussed in Section 6.4.

Suppose, though, that we do not know the form. Based on the derivation
of the optimal scores (7.29) given in Hettmansperger and McKean (2011),
estimates based on scores “close” to the optimal scores tend to have high
efficiency. A practical approach is to select a family of score functions which
are optimal for a rich class of distributions and then use a data driven“selector”
to choose a score from this family for which to obtain the rank-based fit of
the linear model. We call such a procedure a data driven adaptive scheme.
This is similar to Hogg’s adaptive scheme for the two-sample problem (see
Section 3.6), except our interest here is in obtaining a good fit of the linear
model and not in tests concerned with location parameters.

Adaptive schemes should be designed for the problem at hand. For exam-
ple, perhaps it is clear that only right skewed distributions for the random
errors need to be considered. In this case, the family of scores should include
scores appropriate for right skewed distributions.

For discussion, we consider a generic Hogg-type adaptive scheme designed
for light to heavy tailed distributions which can be symmetric or skewed (both
left and right). The scheme utilizes the class of bent (Winsorized Wilcoxons)
scores discussed in detail in Section 3.5.1. As discussed in Chapter 3, the four
types of bent scores are appropriate for our family of distributions of interest.
For example, consider the bentscores4. These are optimal for distribution
with a “logistic”middle and “exponential” tails. Scores corresponding to heav-
ier tailed distributions have larger intervals where the score function is flat.
Such scores are optimal for symmetric distributions if the bends are at c and
1− c, for 0 < c < (1/2); else, they are optimal for skewed distributions. If the
distribution has a longer right than left tail then correspondingly the optimal
score will have a longer flat interval on the right than on the left.

For our scheme, we have selected the nine bent scores which are depicted
in Figure 7.12. The scores in the first column are for left skewed distributions,
those in the second column are for symmetric distributions, while those in the
third column are for right skewed distributions. The scores in the first row are
for heavy tailed distributions, those in the second row are for moderate tailed
distributions, and those in the third row are for light tailed distributions.

Recall that our goal is to fit a linear model; hence, the section of the
score must be based on the residuals from an initial fit. For the initial fit,
we have have chosen to use the Wilcoxon fit. Wilcoxon scores are optimal
for the logistic distribution which is symmetric and of moderate tail weight,
slightly heavier tails than those of a normal distribution. Let ê = (ê1, . . . , ên)

T ,
denote the vector of Wilcoxon residuals. As a selector, we have chosen the pair
of statistics (Q1, Q2) proposed by Hogg. These are defined in expression (3.47)
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FIGURE 7.12
The nine bent scores for the generic Hogg-type adaptive scheme.

of Chapter 3. For the reader’s convenience, we restate them here:

Q1 =
Ū0.05 − M̄0.5

M̄0.5 − L̄0.05
and Q2 =

Ū0.05 − L̄0.05

Ū0.5 − L̄0.5
, (7.30)

where U0.05 is the mean of the Upper 5%, M0.5 is the mean of the Middle
50%, and L0.05 is the mean of the Lower 5% of the residuals ê. Recall that
Q1 is a measure of skewness while Q2 is a measure of tail heaviness.

Cutoff values for the selection are required. In an investigation of this
adaptive scheme for linear models, based on large simulation studies, Shomrani
(2003) developed the following cutoff values:

clq1 = 0.36 + (0.68/n)

cuq1 = 2.73− (3.72/n)

clq2 =

{
2.17− (3.01/n) n < 25
2.24− (4.68/n) n ≥ 25

cuq2 =

{
2.63− (3.94/n) n < 25
2.95− (9.37/n) n ≥ 25
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Note that the scores are numbered 1 through 9 in Figure 7.12. Using these
numbers, the scheme’s selected score is:

Q1 ≤ clq1, Q2 ≤ clq2 Select Score #1

Q1 ≤ clq1, clq2 < Q2 ≤ cuq2 Select Score #2

Q1 ≤ clq1, Q2 > cuq2 Select Score #3

clq1 < Q1 ≤ cuq1, Q2 ≤ clq2 Select Score #4

clq1 < Q1 ≤ cuq1, clq2 < Q2 ≤ cuq2 Select Score #5

clq1 < Q1 ≤ cuq1, Q2 > cuq2 Select Score #6

Q1 > cuq1, Q2 ≤ clq2 Select Score #7

Q1 > cuq1, clq2 < Q2 ≤ cuq2 Select Score #8

Q1 > cuq1, Q2 > cuq2 Select Score #9 (7.31)

(7.32)

We have written an auxiliary R function adaptor which computes this
adaptive scheme. The response vector Y and design matrix X form the input
while the output includes both the initial (Wilcoxon) and selected fits, the
scores selected and, for convenience, the number of the selected score. We
illustrate its computation with the following examples.

Example 7.6.1 (Adaptive Scheme on Generated Exponential Errors). The
first example consists of simulated data. We consider a regression model with
two predictors each having a N(0, 1) distribution and with sample size n = 40.
For an error distribution, we chose an exponential distribution. We set all
regression coefficients to 0, so that the model generated is:

yi = 0 + 0 · xi1 + 0 · xi2 + ei.

The following code segment computes the adaptive scheme for this dataset. It
shows the respective summaries of the selected score fit and the Wilcoxon fit.
The data are in the dataset adapteg.

> adapt <- adaptor(xmat,y)

> summary(adapt$fitsc)

Call:

rfit.default(formula = y ~ xmat, scores = sc, delta = delta,

hparm = hparm)

Coefficients:

Estimate Std. Error t.value p.value

(Intercept) 0.607964 0.220940 2.7517 0.009127 **

xmat1 -0.082683 0.095334 -0.8673 0.391372

xmat2 0.028687 0.098423 0.2915 0.772319

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared (Robust): 0.02974727

Reduction in Dispersion Test: 0.5672 p-value: 0.57197

> adapt$iscore

[1] 9

> summary(adapt$fitwil)

Call:

rfit.default(formula = y ~ xmat, delta = delta, hparm = hparm)

Coefficients:

Estimate Std. Error t.value p.value

(Intercept) 0.63612 0.22885 2.7796 0.008503 **

xmat1 -0.13016 0.14136 -0.9208 0.363142

xmat2 0.10842 0.14594 0.7429 0.462239

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared (Robust): 0.04619702

Reduction in Dispersion Test: 0.89604 p-value: 0.41686

> precision <- (adapt$fitsc$tauhat/adapt$fitwil$tauhat)^2

> precision

[1] 0.4547999

In this case the adaptive scheme correctly chose score function #9; i.e., it
selected the score for right-skewed error distributions with heavy tails. The
ratio of the squared τ̂ ’s (the selected score function to the Wilcoxon score
function) is 0.456; hence the selected fit is more precise in terms of standard
errors than the Wilcoxon fit.

For our second example we chose a real dataset.

Example 7.6.2 (Free Fatty Acid Data). In this dataset (ffa), the response
is the free fatty acid level of 41 boys while the predictors are age (in months),
weight (lbs), and skin fold thickness. It was initially discussed on page 64
of Morrison (1983) and more recently in Kloke and McKean (2012). The
Wilcoxon Studentized residual and q− q plots are shown in the top panels
of Figure 7.13. Note that the residual plot indicates right skewness which is
definitely confirmed by the q−q plot. For this dataset, our adaptive scheme
selected score function #8, bentscores2, with bend at c = 0.75, (moderately
heavy tailed and right-skewed), which confirms the residual plot. The bottom
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panels of Figure 7.13 display the Studentized residual and q−q plots based on
the fit from the selected scores.

For the next code segment the R matrix xmat contains the three predictors
while the R vector ffalev contains the response. The summaries of both the
initial Wilcoxon fit and the selected score fit are displayed along with the value
of the precision.

> adapt <- adaptor(ffalev,xmat)

> summary(adapt$fitwil)

Call:

rfit.default(formula = y ~ xmat, delta = delta, hparm = hparm)

Coefficients:

Estimate Std. Error t.value p.value

(Intercept) 1.4900402 0.2692512 5.5340 2.686e-06 ***

xmatage -0.0011242 0.0026348 -0.4267 0.6720922

xmatweight -0.0153565 0.0038463 -3.9925 0.0002981 ***
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FIGURE 7.13
Wilcoxon (top pair) and the selected score (bottom pair) Studentized residual
plots for Example 7.6.2.
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xmatskinfold 0.2749014 0.1342149 2.0482 0.0476841 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared (Robust): 0.3757965

Reduction in Dispersion Test: 7.42518 p-value: 0.00052

> summary(adapt$fitsc)

Call:

rfit.default(formula = y ~ xmat, scores = sc, delta = delta,

hparm = hparm)

Coefficients:

Estimate Std. Error t.value p.value

(Intercept) 1.41842877 0.23879002 5.9401 7.569e-07 ***

xmatage -0.00078542 0.00232485 -0.3378 0.737394

xmatweight -0.01538936 0.00339386 -4.5345 5.882e-05 ***

xmatskinfold 0.32728635 0.11842685 2.7636 0.008856 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared (Robust): 0.397609

Reduction in Dispersion Test: 8.14063 p-value: 0.00027

> precision <- (adapt$fitsc$tauhat/adapt$fitwil$tauhat)^2

> precision

[1] 0.778572

Note that the precision estimate is 0.779, so the analysis based on the selected
score is more precise than the initial Wilcoxon analysis. For example, the
regression coefficient for the predictor skin fold thickness is highly significant
for the bent score fit; while, for the Wilcoxon fit it is significant at the 5%
level.

Remark 7.6.1. Kapenga and McKean (1989) and Naranjo and McKean
(1997) developed estimators for the score function ϕ(u) based on residuals
from a fit of the linear model. These and several other adaptive schemes in-
cluding the Hogg-type scheme discussed above were compared in a large Monte
Carlo study by Shomrani (2003). These schemes are ultimately for fitting the
linear model and they are all based on residuals. So not surprisingly, their as-
sociated inference is somewhat liberal. In Al-Shomrani’s study, however, the
Hogg-type scheme was less liberal than the other schemes in the study. In
general the Hogg-type scheme outperformed the others in terms of validity
and empirical power. Okyere (2011) extended the Hogg-type scheme to mixed
linear models.
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7.7 Nonlinear

In this section we present example code to obtain Wilcoxon estimates for the
general nonlinear regression problem. The model that we consider is

yi = f(θ;xi) + ei (7.33)

where θ is a k × 1 vector of unknown parameters, yi is a response variable,
and xi is a p× 1 vector of explanatory variables.

As a simple working example consider the simple nonlinear model

f(θ;xi) = exp{θxi}, i = 1, . . . , n. (7.34)

Suppose the errors are normally distributed. Setting n = 25, θ = 0.5, and using
uniformly distributed x’s, a simulated example of this model is generated by
the next code segment. Figure 7.14 displays a scatterplot of the data.

> n<-25

> theta<-0.5

> x<-runif(n,1,5)

> f<-function(x,theta) { exp(theta*x) }

> y<-f(x,theta)+rnorm(n,sd=0.5)

The rank-based fit of Model (7.33) is based on minimizing the same norm
that was used for linear models. That is, for a specified score function ϕ(u),
the rank based estimate of θ is

θ̂ϕ = Argmin‖Y − f(θ;x)‖ϕ, (7.35)

where Y is the n× 1 vector and the components of f(θ;x) are the f(θ;xi)s.
For the traditional LS estimate, the squared-Euclidean norm is used instead of
‖·‖ϕ. The properties of the rank-based nonlinear estimator were developed by
Abebe and McKean (2007). More discussion of these rank-based estimates can
be found in Section 3.14 of Hettmansperger and McKean (2011), including the
estimator’s influence function. Based on this influence function, the rank-based
estimator is robust in the Y -space but not in the x-space. The nonlinear HBR
estimator developed by Abebe and McKean (2013) is robust with bounded
influence in both the Y -space and the x-spaces. As in the case of linear models,
the HBR estimator minimizes the weighted Wilcoxon norm; we recommend
the high breakdown weights given in expression (7.9).

In this section, we discuss the Wilcoxon fit of a nonlinear model. The
discussion for the HBR fit is in Section 7.7.4. We begin by discussing a simple
Newton algorithm for the estimator and its subsequent computation using
Rfit. For nonlinear fitting, the usual computational algorithm is a Gauss–
Newton type procedure, which is based on a Taylor series expansion of f(θ;x).
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FIGURE 7.14
Scatterplot of the simulated data based on Model 7.34.

Let θ̂
(0)

be an initial estimate of θ. The Jacobian at θ is the n× k matrix

J(θ) =

[
∂fi(θ)

∂θj

]
. (7.36)

The expansion of f(θ) about θ̂
(0)

is

f(θ) ≈ f(θ̂(0)
) + J(θ̂

(0)
)∆, (7.37)

where ∆ = θ − θ̂
(0)

. Hence, an approximation to the norm is

‖Y − f(θ)‖ϕ ≈ ‖{[Y − f(θ̂
(0)

)]− J(θ̂(0)
)∆(θ)}‖ϕ. (7.38)

Note that the quantity within the braces on the right side defines a linear
model with the the quantity in brackets serving as the dependent variable,

J(θ̂
(0)

) serving as the design matrix, and ∆(θ) serving as the vector of re-

gression coefficients. For this linear model, let ∆̂ be the rank-based estimate
of ∆. Then the first step estimate of θ is

θ̂
(1)

= θ̂
(0)

+ ∆̂. (7.39)
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Usually at this point of the algorithm, convergence is tested based on the
relative increments in the estimates and the dispersion function. If convergence

has not been achieved then θ̂
(0)

is replaced by θ̂
(1)

and the next step proceeds
similar to the first step.

Often there is no intercept in the nonlinear model. In this case, the steps
in the above algorithm consist of regressions through the origin. For rank-
based estimation this is handled by the adjustment described in Section 7.4.
Our R code for the ranked-based nonlinear fit, discussed in Section 7.7.2,
automatically makes this adjustment. First, we discuss implementation of the
rank-based nonlinear procedure.

7.7.1 Implementation of the Wilcoxon Nonlinear Fit

Consider the rank-based fit of the general nonlinear model (7.33) using

Wilcoxon scores. Let θ̂W denote the estimator (7.35). As shown in Abebe and
McKean (2007), under general conditions, the asymptotic variance-covariance

matrix of θ̂W is given by

τ2W
(
J(θ))T J(θ)

)−1
, (7.40)

where J(θ) is the Jacobian evaluated at the true vector of parameters θ and
τW is the scale parameter given in expression (3.19). The only difference for
the asymptotic variance of the LS estimator is that the variance of the random
errors, σ2, replaces τ2W . Hence, the asymptotic relative efficiency (ARE) of the
Wilcoxon estimator relative to the LS estimator is σ2/τ2W ; i.e., the same ARE
as in linear models. In particular, at normal errors this relative efficiency is
0.955.

Provided the Jacobian is a continuous function of θ, J(θ̂W )T J(θ̂W ) is a
consistent estimator of J(θ)TJ(θ). Further, the same estimator of τW that
we used in the linear model case (Koul et al. (1987)) but here based on the

residuals êW = Y − f(θ̂W ;x) is a consistent estimator of τ . Thus, the vector

of standard errors of θ̂W is

SE(θ̂W ) = Diagonal

{[
τ̂2WJ(θ̂W )TJ(θ̂W )−1

]1/2}
. (7.41)

Note for future reference, these standard errors are essentially the standard
errors of the approximate linear model on the last step of the Gauss–Newton
algorithm.

7.7.2 R Computation of Rank-Based Nonlinear Fits

We have written R software for the computation of the nonlinear rank-based
estimates which utilizes the Gauss–Newton algorithm described above. Cur-
rently, it has options for the Wilcoxon and HBR fits. The function is wilnl
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and is included in the package rbnl.5 Its defining R statement with default
values is

wilnl = function(x,y,theta0,fmodel,jmodel,numstp=50,

eps=.001,wts.type="WIL",

intest="HL",intercept=FALSE)

Definitions of these arguments are:

• y is the n× 1 vector of responses and x is the n× p matrix of predictors.

• theta0 is the initial estimate (starting value) of θ. The routine assumes it
to be a k × 1 matrix.

• fmodel and jmodel are user supplied R functions, one for the model and
the other for the Jacobian. The arguments to these functions are matrices.
These are described most easily by the ensuing discussion of examples.

• numstp and eps are the total number of Newton steps and the tolerance for
stopping, respectively.

• wts.type="WIL" or wts.type="HBR" obtain, respectively, in this case, the
Wilcoxon or the HBR rank-based nonlinear fits.

• The rank-based algorithm uses an estimate of a (pseudo) intercept. It
is either the Hodges–Lehmann estimate, intest="HL" or the medium,
intest="MED". We recommend the default value intest="HL", which gen-
erally leads to more efficient estimates, unless the data are highly skewed.
In the later case we recommend the medium.

• Generally, nonlinear models do not have an intercept parameter. For such
models, set the argument int at its default value, i.e., int="NO". Occasion-
ally, models do contain an intercept and, for these models, set int the value
int="YES". For models containing an intercept, one column of the Jacobian
matrix consists of ones. In the user supplied Jacobian function, make this
the first column of the Jacobian.

The returned list file includes the following items of interest: the estimate of
θ, $coef; the standard errors of the estimates, $se; the estimate of the scale
parameter τ , $tauhat; the residuals, $resid; and the results of each step,
$coll, (the step values of θ and ‖θ‖22).

The user supplied functions are most easily described by discussing a few
examples. Consider first the simple working model (7.34). Recall that the
nonlinear function is f(θ, x) = exp{θx}. The arguments are matrices x and
theta. In the example x is 25 × 1 and theta is 1 × 1. The following model
function, expmod, suffices:

expmod <- function(x,theta){ exp(x%*%theta) }

5See https://github.com/kloke/book for more information.
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For the Jacobian there is only one partial derivative given by ∂f/∂θ =
x exp{θx}. Hence our Jacobian function, expjake, is

expjake <- function(x,theta){ x*exp(x%*%theta) }

The analysis of a simple dataset follows in the next example.

7.7.3 Examples

Example 7.7.1 (Computation of Rank-Based Estimates for Model (7.34)).
The following rounded data are a generated realization of the Model (7.34).

x 4.4 4.3 1.4 2.2 3.1 4.2 2.0 3.1 4.0 1.9 2.9 1.4 3.2
y 8.4 8.4 1.8 3.2 4.3 7.6 3.3 4.8 7.5 2.4 4.0 1.9 6.0
x 2.5 4.4 3.6 4.3 1.5 1.0 4.1 1.1 1.9 4.0 1.1 2.2
y 3.6 8.5 5.3 8.8 1.4 1.8 7.1 1.4 2.9 7.3 2.6 2.3

For the following code segment, the 25× 1 matrix x contains the x values
while the vector y contains the y values. As a starting value, the true parameter
θ = 0.5 is used. For comparison, we computed the LS fit of this nonlinear model
using the R function nls.

> expmod <- function(x,theta){ exp(x%*%theta) }

> expjake <- function(x,theta){ x*exp(x%*%theta) }

> fitwil <- wilnl(x,y,0.5,expmod,expjake)

> fitwil

Call:

wilnl(x = x, y = y, theta0 = 0.5, fmodel = expmod,

jmodel = expjake)

Coefficients:

[,1]

[1,] 0.49042

> summary(fitwil)

Call:

wilnl(x = x, y = y, theta0 = 0.5, fmodel = expmod,

jmodel = expjake)

Coefficients:

Estimate Std. Error t.value

[1,] 0.4904200 0.0050235 97.625

Number of iterations: 2
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> fitls <- nls(y~exp(x*theta),start=list(theta=0.5))

> summary(fitls)

Formula: y ~ exp(x * theta)

Parameters:

Estimate Std. Error t value Pr(>|t|)

theta 0.491728 0.004491 109.5 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4636 on 24 degrees of freedom

Number of iterations to convergence: 2

Achieved convergence tolerance: 5.876e-06

The Wilcoxon and LS results are quite similar which is to be expected since
the error distribution selected is normal. The Wilcoxon algorithm converged
in three steps.

For a second example, we altered this simple model to include an intercept.

Example 7.7.2 (Rank-Based Estimates for Model (7.34) with an Intercept).
Consider the intercept version of Model (7.34); i.e., f(θ;x) = θ1 + exp{θ2x}.
For this example we set θ1 = 2. We use the same data as in the last example,
except that 2 is added to all the components of the vector y. The code segment
follows. Note that both the model and Jacobian functions have been altered to
include the intercept. As starting values, we chose the true parameters θ1 = 2
and θ2 = 0.5.

> y <- y + 2

> expmod <- function(x,theta){ theta[1]+exp(x%*%theta[2]) }

> expjake <- function(x,theta){ cbind(rep(1,length(x[,1])),

+ x*exp(x%*%theta[2])) }

> fitwil = wilnl(x,y,as.matrix(c(2,.5),ncol=1), expmod,

+ expjake,intercept=TRUE)

> fitwil

Call:

wilnl(x = x, y = y, theta0 = as.matrix(c(2, 0.5), ncol = 1),

fmodel = expmod, jmodel = expjake, intercept = TRUE)

Coefficients:

[,1]

[1,] 2.0436573

[2,] 0.4887782

> summary(fitwil)
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Call:

wilnl(x = x, y = y, theta0 = as.matrix(c(2, 0.5), ncol = 1),

fmodel = expmod, jmodel = expjake, intercept = TRUE)

Coefficients:

Estimate Std. Error t.value

[1,] 2.0436573 0.1636433 12.489

[2,] 0.4887782 0.0080226 60.925

Number of iterations: 2

Note that the Wilcoxon estimate of the intercept is close to the true value
of 2. For both parameters, the asymptotic 95% confidence intervals (±1.96SE)
trap the true values.

The 4 Parameter Logistic Model

The 4 parameter logistic is a nonlinear model which is often used in pharma-
ceutical science for dose-response situations. The function is of the form

y =
a− d

1 + (x/c)b
+ d, (7.42)

where x is the dose of the drug and y is the response. The exponent b is as-
sumed to be negative; hence, as x→ 0 (0 concentration) y → d and as x→∞
(full concentration) y → a. So a and d are the expected values of the response
under minimum and maximum concentration of the drug, respectively. It fol-
lows that the value of (a+ d)/2 is the 50% response rate and that this occurs
at x = c. In terms of biological assays, the value c is called the IC50, the
amount of concentration of the drug required to inhibit a biological process
by 50%. See Crimin et al. (2012) for discussion of this model and the robust
Wilcoxon fit of it.

Usually in pharmaceutical science the dose of the drug is in log base 10
units. Also, this is an intercept model. Let z = log10 x and, to isolate the
intercept, let s = a−d. Then the 4 parameter logistic model can be equivalently
expressed as

Yi =
s

1 + exp{b[zi log(10)− log(c)]} + d+ ei, i = 1, 2, . . . , n. (7.43)

In this notation, as z → −∞, E(Yi) → d and as z → ∞, E(Yi) → a. Fig-
ure 7.15 shows the LS and Wilcoxon fits of this model for a realization of the
model discussed in Example 7.7.3. From this scatterplot of the data, guessti-
mates of the asymptotes a and d and the IC50 c are readily obtained for
starting values. For the Jacobian, the four partial derivatives of the model
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function f are given by

∂f

∂d
= 1

∂f

∂s
=

1

1 + exp{b[zi log(10)− log(c)]}
∂f

∂c
= s {1 + exp{b[zi log(10)− log(c)]}}−2

×
{
b

c
exp{b[z log(10)− log(c)]}

}

∂f

∂b
= −s {1 + exp{b[zi log(10)− log(c)]}}−2

×{[z log(10)− log(c)] exp{b[z log(10)− log(c)]}} (7.44)

In the next example, we obtain the robust fit of a realization of Model 7.43.

Example 7.7.3 (The 4 Parameter Logistic). We generated a realization of
size n = 24 from Model (7.43) with doses ranging from 0.039 to 80 with two
repetitions at each dose. The data are in the set eg4parm. For this situation,
normal random errors with standard deviation one were generated. The pa-
rameters were set at a = 10, b = −1.2, c = 3, and d = 110; hence, s = −100.
The scatterplot of the data is displayed in Figure 7.15. The functions for the
model and the Jacobian are displayed in the next code segment. This is fol-
lowed by the computation of the LS and Wilcoxon fits. These fits are overlaid
on the scatterplot of Figure 7.15. The segment of code results in a comparison
of the LS and Wilcoxon estimates of the coefficients and their associated stan-
dard errors. Note that the parameter s was fit, so a transformation is needed
to obtain the estimates and standard errors of the original parameters.

> func <- function(z,theta){

+ d = theta[1]; s = theta[2]; c = theta[3]; b = theta[4]

+ func <- (s/(1 + exp(b*(z*log(10) - log(c))))) + d

+ func

+ }

> jake = function(z,theta){

+ d = theta[1]; s = theta[2]; c = theta[3]; b = theta[4]

+ xp = 1 + exp(b*(z*log(10) - log(c)))

+ fd = 1; fs = 1/xp

+ fc = s*(xp^(-2))*((b/c)*exp(b*(z*log(10) - log(c))))

+ fb = -s*(xp^(-2))*((z*log(10) - log(c))*exp(b*(z*log(10) - log(c))))

+ jake = cbind(fd,fs,fc,fb); jake

+ }

> fitwil = wilnl(z,y, theta0,func,jake,intercept=TRUE)

> summary(fitwil)

Call:

wilnl(x = z, y = y, theta0 = theta0, fmodel = func,

jmodel = jake, intercept = TRUE)
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Coefficients:

Estimate Std. Error t.value

fd 105.81755 5.60053 18.8942

-95.07300 10.31646 -9.2157

3.55830 0.83385 4.2673

-1.81164 0.68261 -2.6540

Number of iterations: 7

> fitls <- nls(y~(s/(1 + exp(b*(z*log(10) - log(c))))) + d,

+ start=list( b =-1.2, c = 3,d = 110,s = -100))

> summary(fitls)

Formula: y ~ (s/(1 + exp(b * (z * log(10) - log(c))))) + d

Parameters:

Estimate Std. Error t value Pr(>|t|)

b -2.1853 0.8663 -2.523 0.020230 *

c 3.0413 0.6296 4.831 0.000102 ***

d 105.4357 5.4575 19.319 2.09e-14 ***

s -93.0179 9.2404 -10.066 2.83e-09 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 16.02 on 20 degrees of freedom

Number of iterations to convergence: 11

Achieved convergence tolerance: 4.751e-06

> resid = fitwil$residuals

> yhat = fitwil$fitted.values

> ehatls <- summary(fitls)$resid

> yhatls <- y -ehatls

Note that the LS fit has been impacted by the outlier with the log10 dose at
approximately 0.7. The LS function nls interchanged the order of the coeffi-
cients. The standard errors of the LS estimates are slightly less.

To demonstrate the robustness of the Wilcoxon fit, we changed the last
response item from 11.33 to 70.0. The summary of the Wilcoxon and LS fits
follows, while Figure 7.16 contains the scatterplot of the data and the overlaid
fits.

> summary(fitwil)

Call:

wilnl(x = z, y = y, theta0 = theta0, fmodel = func,

jmodel = jake, intercept = TRUE)
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FIGURE 7.15
Scatterplot of 4 parameter logistic data overlaid by Wilcoxon (W) and least
squares (LS) nonlinear fits.

Coefficients:

Estimate Std. Error t.value

fd 105.01857 6.08552 17.2571

-89.58696 10.53863 -8.5008

3.35834 0.81774 4.1068

-2.20656 1.03166 -2.1388

Number of iterations: 3

> summary(fitls)

Formula: y ~ (s/(1 + exp(b * (z * log(10) - log(c))))) + d

Parameters:

Estimate Std. Error t value Pr(>|t|)

b -6.4036 9.2048 -0.696 0.49464

c 2.9331 0.7652 3.833 0.00104 **
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d 101.9051 5.7583 17.697 1.10e-13 ***

s -79.1769 9.2046 -8.602 3.73e-08 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 19.8 on 20 degrees of freedom

Number of iterations to convergence: 32

Achieved convergence tolerance: 7.87e-06

>
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FIGURE 7.16
Scatterplot of 4 parameter logistic changed data overlaid by Wilcoxon (W)
and least squares (LS) nonlinear fits.

As Figure 7.16 shows, the LS fit was impaired by the outlier. The LS
estimates of the parameters a and d changed by over a standard error and
the LS estimate for b changed by 3 standard errors. On the other hand, the
change in the Wilcoxon estimates was much less.
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7.7.4 High Breakdown Rank-Based Fits

As we mentioned earlier the Wilcoxon nonlinear estimator is much less sensi-
tive to outliers in the response Y -space than the LS estimators, but, similar
to LS, it is sensitive to outliers in the factor x-space. The weighted Wilcoxon
HBR estimator, though, is not sensitive to such outliers. For Model (7.33),
this estimator is given by

θ̂HBR = Argmin‖Y − f(θ;x)‖HBR, (7.45)

where ‖·‖HBR is the weighted norm given in expression (7.6). In our discussion,
we use the high breakdown weights discussed in Section 7.2. Under general
conditions, Abebe and McKean (2013) developed the asymptotic properties of

the estimator θ̂HBR including its asymptotic variance-covariance matrix. The
Newton-type algorithm discussed for the rank-based estimators above works
for the HBR estimator, also.

Computation of the HBR estimator is handled by the function wilnl using
wts="HBR" as the argument for weights. As with the Wilcoxon nonlinear es-
timator, a consistent estimator of the variance-covariance matrix of the HBR
estimator is obtained from the last linear step. The adjustment for the regres-
sion through the origin is handled similar to the Wilcoxon nonlinear estimator
and, as with the Wilcoxon, the intercept estimator can be either the median of
the residuals int="MED" or the Hodges–Lehmann int="HL". We demonstrate
the computation for the our simple working example.

Example 7.7.4 (HBR Estimator for Example 7.7.1). The following code
segment uses the same data as in Example 7.7.1. In particular the 25 × 1 R
matrix x contains the independent variable and the 25×1 R vector y contains
the dependent variable.

> expmod <- function(x,theta){ exp(x%*%theta) }

> expjake <- function(x,theta){ x*exp(x%*%theta) }

> fithbr = wilnl(x,y,0.5,expmod,expjake,wts.type="HBR")

> fithbr$coef

[,1]

[1,] 0.4904202

>

For this data there are no outliers in the x-space, so the HBR and Wilcoxon
fits coincide. To demonstrate the robustness of the HBR estimator to outliers
in factor space, we changed the last value of x from 2.3 to 8.0. The results are

> x[25,1] <- 8.0

> fitwil <- wilnl(x,y,0.5,expmod,expjake,wts.type="WIL")

> fitwil$coef
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[,1]

[1,] 0.2864679

> fithbr <- wilnl(x,y,0.5,expmod,expjake,wts.type="HBR")

> fithbr$coef

[,1]

[1,] 0.488722

> fitls <- nls(y~exp(x*theta),start=list(theta=0.5))

> fitls$coef

NULL

Note that the Wilcoxon estimate of θ changed (absolutely) by 0.2, while
the HBR estimate remained about the same. Also, the LS fit did not converge.

The diagnostics, TDBETAS and CFITS, which differentiate among the LS,
Wilcoxon, and HBR fits that were discussed for linear models in Section 7.3
extend straightforwardly to nonlinear models, including their benchmarks; see
Abebe and McKean (2013) for details.

7.8 Time Series

Let {Xt} be a sequence of random variables observed over time, t = 1, 2, . . .,
n. A regression model frequently used in practice is the autoregressive model.
This is a time series model where the observation at time t is a function of past
observations plus some random noise. In this section, we discuss rank-based
procedures for general order p autoregressive models. A related model consists
of a linear model with random errors that follow a time series. Some discussion
on robust procedures for these types of models is discussed in Section 6.6.3 of
Hettmansperger and McKean (2011).

We say that Xt follows an autoregressive time series of order p, Xt ∼
AR(p), if

Xt = φ0 + φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + et

= φ0 + Y ′
t−1φ+ et, t = 1, 2, . . . , n (7.46)

where p ≥ 1, Y t−1 = (Xt−1, Xt−2, . . . , Xt−p)
′, φ = (φ1, φ2, . . . , φp)

′, and Y 0

is an observable random vector independent of e. The stationarity assumption
requires that the solutions to the following equation,

xp − φ1xp−1 − φ2xp−2 − · · · − φp = 0 (7.47)
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lie in the interval (−1, 1); see, for example, Box et al. (2008). We further
assume that the components of e, et, are iid with cdf F (x) and pdf f(x),
respectively.

Model (7.47) is a regression model with the tth response given by Xt and
the tth row of the design matrix given by (1, Xt−1, . . . , Xt−p), t = p+1, . . . , n.
Obviously the time series plot, Xt versus t, is an important first diagnostic.
Also lag plots of the form Xt versus Xt−j are informative on the order p of
the autoregressive series. We discuss determination of the order later.

As in Chapter 3, let ϕ(u) denote a general score function which generates
the score aϕ(i) = ϕ[i/(n+ 1)], i = 1, . . . , n. Then the rank-based estimate of
φ is given by

φ̂ = ArgminDϕ(φ)

= Argmin

n∑

t=p+1

aϕ[R(Xt − Y ′
t−1φ)](Xt − Y ′

t−1φ), (7.48)

where R(Xt−Y ′
t−1φ) denotes the rank of Xt−Y ′

t−1φ among X1−Y ′
0φ, . . .,

Xn − Y ′
n−1φ. Koul and Saleh (1993) developed the asymptotic theory for

these rank-based estimates. Outlying responses, though, also appear on the
right side of the model; hence, error distributions with even moderately heavy
tails produce outliers in factor space (points of high leverage). With this in
mind, the HBR estimates of Section 7.2 should also be fitted. The asymptotic
theory for the HBR estimators for Model (7.46) was developed by Terpstra
et al. (2000) and Terpstra et al. (2001); see, also, Chapter 5 of Hettmansperger
and McKean (2011) for discussion.

The rank-based and HBR fits of the AR(p) are computed by Rfit. As
simulations studies have confirmed, the usual standard errors from regression
serve as good approximations to the asymptotic standard errors. Also, Terp-
stra et al. (2003) developed Studentized residuals for rank-based fits based on
an AR(1) model. They showed, though, that Studentized residuals from the
rank-based fit of the regression model were very close approximations to the
AR(1) Studentized residuals. In this section, we use the regression Studentized
residuals. We have written a simple R function, lagmat, which returns the de-
sign matrix given the vector of responses and the order of the autoregressive
series. We illustrate this discussion with a simple example of generated data.

Example 7.8.1 (Generated AR(2) Data). In this example we consider a
dataset consisting of n = 50 variates generated form an AR(2) model with
φ1 = 0.6, φ2 = −0.3, and random noise which followed a Laplace distribution
with median 0 and scale parameter 10. The time series is plotted in the upper
panel of Figure 7.17. The following R code segment obtains the Wilcoxon fit
of the AR(2) model.

> data <- lagmat(ar2,2)

> x <- data[,1]

> lag1 <- data[,2]
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> lag2 <- data[,3]

> wil <- rfit(x ~ lag1 + lag2)

> summary(wil)

Call:

rfit.default(formula = x ~ lag1 + lag2)

Coefficients:

Estimate Std. Error t.value p.value

(Intercept) -2.44173 2.97252 -0.8214 0.415731

lag1 0.70101 0.12115 5.7864 6.474e-07 ***

lag2 -0.36302 0.12280 -2.9563 0.004943 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared (Robust): 0.399343

Reduction in Dispersion Test: 14.95899 p-value: 1e-05

> studresids <- rstudent(wil)

Note that the estimates of φ1 and φ2 are respectively 0.70 and −0.36 which
are close to their true values of 0.6 and −0.3. With standard errors of 0.12,
the corresponding 95% confidence intervals trap these true values. The lower
panel of Figure 7.17 displays the plot of the Studentized Wilcoxon residuals.
At a few time points the residual series is outside of the ±2 bounds, but these
are mild discrepancies. The largest in absolute value has the residual value of
about −4 at time 8. We next compute the HBR fit of the AR(2) model and
obtain the diagnostic TDBETAS between the Wilcoxon and HBR fits.

> hbr <- hbrfit(x~cbind(lag1,lag2))

> summary(hbr)

Call:

hbrfit(formula = x ~ cbind(lag1, lag2))

Coefficients:

Estimate Std. Error t.value p.value

(Intercept) -2.37583 2.92632 -0.8119 0.421133

cbind(lag1, lag2)lag1 0.70400 0.13865 5.0774 7.107e-06 ***

cbind(lag1, lag2)lag2 -0.36436 0.10811 -3.3704 0.001549 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Wald Test: 13.52353 p-value: 3e-05

> dnost <- fitdiag(cbind(lag1,lag2),x,est=c("WIL","HBR"))

> c(dnost$tdbeta,dnost$bmtd)
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FIGURE 7.17
The upper panel shows the time series plot of the generated AR(2) data, while
the lower panel is a plot of the Studentized Wilcoxon residuals from the fit of
the AR(2) model.

[1] 0.001607918 0.750000000

Notice that the HBR fit is quite close to the Wilcoxon fit. This is confirmed
by TDBETAS which has the value 0.002 (the benchmark is 0.75).

There are essentially two type of outliers for time series. The first type are
the innovative outliers (IO). These can occur when the error distribution
has heavy-tails. If an outlier occurs at time t (|et| is large), then this generally
leads to a response outlier, Xt, at time t, i.e., an outlier on the left-side of
the model. In subsequent times it appears on the right-side and becomes in-
corporated into the model. These IO outliers generally lead to good points of
high leverage. The dataset generated in Example 7.8.1 illustrates IO outliers.
Additive outliers are a second type of outliers. These are patched into the
series by a contaminating process, often leading to bad leverage points; see
page 413 of Terpstra et al. (2001) for details. Both types of outliers occur in
practice. For this reason, we recommend fitting both highly efficient and high
breakdown rank-based estimates to the series and using the diagnostic TD-
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BETAS to see if the fits differ. Terpstra et al. (2001) performed a large Monte
Carlo study of rank-based and M estimates of time series involving both types
of outliers. In all of the situations they simulated, the rank-based estimates
either performed the best or nearly best over all procedures considered.

7.8.1 Order of the Autoregressive Series

In practice, before fitting the autoregressive time series model, (7.46), we must
decide on its order p. One approach consists of subsequent fitting of models
beginning with a model of large order. As discussed in Terpstra et al. (2001)
for rank-based procedures, a more precise statement of the algorithm is:
First select a value of P of maximal order; i.e., the residual analysis shows that
the model fits well. Next, select a level α for the testing. Then the algorithm
is given by

(0) Set p = P .

(1) While p > 0, fit Model (7.46) with order p.

(2) Let φ2 = (φp, . . . , φP )
′. Then use the Wald test procedure to test H0 :

φ2 = 0 versus HA : φ2 6= 0.

(3) If H0 is rejected then stop and declare p to be the order; otherwise, set
p = p− 1 and go to (1).

We return to the last example and use this algorithm to determine the order
of the AR model based on the HBR fit.

Example 7.8.2 (Generated AR(2) Data, Continued). We have written a R
function, arorder, to implement the above algorithm. The sequential testing
is based on rank-basedWald’s test ofAφ = 0 whereA is the constraint matrix
as described in Step 2 of the algorithm. The user must select a maximum order
of the AR model. For the example we have selected maxp=4. Besides this, as
shown in the code segment, the estimates and the covariance matrix of the
estimates are inputted. It returns the stepwise results of the algorithm. We
illustrate its use for the HBR fit.

> data <- lagmat(ar2,4)

> x <- data[,1]

> xmat <- data[,2:(4+1)]

> hbr <- hbrfit(x~xmat)

> varcov = vcov(hbr,details=T)

> est <- hbr$coef

> alg <- arorder(length(x),4,est,varcov)

> alg$results

[,1] [,2] [,3]

4 0.8331220 0.366707515
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3 0.4832491 0.620244664

2 4.6797785 0.006679725

In this case, the algorithm correctly identifies the order of the autoregressive
series which is 2.

A rank-based adaption of Graybill’s algorithm performed well in a simula-
tion study by Terpstra and McKean (2005). A similar algorithm for the order
of a polynomial regression model was discussed in Section 4.7.1.

7.9 Exercises

7.9.1. To see the effect on fits that “good” and “bad” points of high leverage
can have, consider the following dataset:

x 1 2 3 4 5 6 7 8 9 10 20
y 5 7 6 14 14 25 29 33 31 41 75
y2 5 7 6 14 14 25 29 33 31 41 20

The point x = 20 is a point of high leverage. The data for y (rounded) are
realizations from the model y = 4x + e, where e has a N(0, 9) distribution.
Hence, the the value of y follows the model and is a “good” point of high
leverage. Notice that y2 is the same as y, except the last component of y2 has
been changed to 20 and, thus, is a “bad” point of high leverage.

(a) Obtain the scatterplot for x and y, the Wilcoxon and HBR fits, and
overlay these fits on the scatterplot.

(b) Obtain the scatterplot for x and y2, the Wilcoxon and HBR fits,
and overlay these fits on the scatterplot.

(c) Comment on the differences among the fits and plots.

7.9.2. Consider the datasets in Exercise 7.9.1.

(a) Using the function fitdiag, obtain the diagnostics TDBETAS and
CFITS for the set x and y. Plot CFITS versus Case. Comment.

(b) Next obtain the diagnostics and plot for the set x and y2. Comment.

7.9.3. There is some loss of efficiency when using the HBR fit instead of the
Wilcoxon for “good”data. Verify this for a simulation of the model y = 4x+e,
where e has a N(0, 625) distribution and x = 1 : 20, using 10,000 simulations.

7.9.4. Using the set up Exercise 7.9.3, check the validity of the 95% confidence
intervals for β1 obtained by the Wilcoxon and HBR fits.
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7.9.5. Obtain the Wilcoxon and HBR fits for the simple “good” set of data
discussed at the beginning of Section 7.3. Then determine the diagnostics
TDBETAS and CFITS. Is there a difference in fits? Next obtain the plot of
robust distances and TDBETAS between the LTS fit and the Wilcoxon fit.
Comment.

7.9.6. Hawkins et al. (1984) presented a simulated dataset consisting of 75
data points and three predictors. The first 14 points are outliers in the X-
space while the remaining 61 points follow a linear model. Of the 14 outliers,
the first 10 do not follow the model while the next 4 do follow the model. The
dataset is in the hawkins.

(a) Obtain the Wilcoxon fit and plot its Studentized residuals versus
Case number. Comment.

(b) Obtain the HBR fit and plot its Studentized residuals versus Case
number. Comment.

(c) Obtain the diagnostics TDBETAS and CFITS between the HBR
and Wilcoxon fits. Plot CFITS versus Case. Did the diagnostics
discern the embedded outlier structure for this dataset?

7.9.7. Use the bonds data to examine the relationship between the bid prices
for US treasury bonds (BidPrice) and the size of the bond’s periodic pay-
ment rate (CouponRate). Consider BidPrice as the response variable and
CouponRate as the explanatory variable. Obtain the Wilcoxon and HBR fits of
this dataset. Using Studentized residuals and the diagnostics TDBETAS and
CFITS, show the heteroscedasticity and determine the outliers. See Sheather
(2009) for discussion on the “bow tie” pattern in the residual plot. The data
are in the dataset bonds.

7.9.8. Hamilton (1992) presents a dataset concerning the number of acciden-
tal oil spills (x) at sea and the amount of oil loss (y) in millions of metric tons
for the years 1973–1975. The data are:

1 2 3 4 5 6 7
x 36.00 48.00 45.00 29.00 49.00 35.00 65.00
y 84.50 67.10 188.00 204.20 213.10 260.50 723.50

8 9 10 11 12 13
x 32.00 33.00 9.00 17.00 15.00 8.00
y 135.60 45.30 1.70 387.80 24.20 15.00

Hamilton suggests a regression through the origin model for this data.

(a) Obtain the scatterplot y versus x and overlay the the rank-based
and LS fits of the regression through the origin models.

(b) Obtain the residual plots and q− q plots of the fits in Part (a).
Comment on which fit is better.
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(c) Obtain a 95% confidence interval for the slope parameter based on
the rank-based fit.

7.9.9. In using a regression through the origin model, one assumes that the
intercept parameter is 0. This is a strong assumption. If there is little or no
data with x relatively near 0, this is a form of extrapolation and there is little
evidence for which to verify the assumption. One simple diagnostic check is
to fit an intercept model, also, and then to compare the two fits.

(a) For the data in Exercise 7.9.8, besides the rank-based fit of the
regression through the origin model, obtain the rank-based fit of
the intercept model. Overlay these fits on the scatterplot of the
data. Which, if any, fit is better? Why?

(b) One check for the assumption of a 0 intercept is to use a confidence
interval for the intercept as a diagnostic confirmation. Obtain the
confidence interval for the rank-based fit.

(c) The fallacy in Part (b), of course, is that it may be a form of ex-
trapolation as discussed at the beginning of this exercise. Is this
extrapolation a concern for this problem? Why?

7.9.10. One form of heteroscedasticity that occurs in regression models is
when the observations are collected over time and the response varies with
time. Good statistical practice dictates plotting the responses and other vari-
ables versus time, if time may be a factor. Consider the following data:

1 2 3 4 5 6 7 8 9 10
x 46 37 34 30 33 24 30 49 54 47
y 132 105 94 71 84 135 10 132 148 132
x 24 33 42 50 47 55 25 44 38 53
y 67 105 104 132 142 130 60 133 204 163

(a) Scatterplot the data. Obtain the the Wilcoxon fit and the residual
plot. Do the data appear to be heteroscedastic?

(b) These data were collected over time. For such cases, it is best to plot
the residuals versus time. Obtain this plot for our dataset (Wilcoxon
residuals versus time, t<-1:20). Comment on the heteroscedastic-
ity.

(c) Assume the response varies directly with time; i.e., Var(ei) = iσ2,
where ei denotes the random error for the ith case. Appropriate
weights in this case are: diag(1/i), where i<-1:20. Use the func-
tion wtedrb to fit the data with these weights. Remember to use the
design matrix xmat<-cbind(rep(1,20),x), where x is the vector
containing the x’s.

(d) Compare the precision of fits in parts (a) and (c).
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7.9.11. Consider a model where the responses vary directly with time order
of the observations:

Yi = 5− 3xi + ei for i = 1, . . . 20

where the explanatory variables (x1, . . . , x20) are generated from a standard
normal distribution and the errors (e1, . . . , e20) are generated from a contam-
inated normal distribution with ǫ = 0.2 and σ = 9. Run a simulation compar-
ing the usual Wilcoxon fit with the weighted Wilcoxon fit using the weights
diag(1/t). Remember to use the design matrix xmat<-cbind(rep(1,20),x)

for the weighted Wilcoxon fit. Comment on the simulation, in particular ad-
dress the following.

(a) Empirical mean square errors for the estimates of the slope param-
eter β1 = −3.

(b) Validity of 95% confidence intervals for the slope parameter β1 =
−3.

7.9.12. Assuming X ∼ SN(α) for some −∞ < α <∞, obtain the derivation
of expression (7.22).

7.9.13. As in Figure 7.11, obtain the plots of the pdfs and their associated
scores for α = 1, 2, . . . , 10. Comment on the trends in the plots as α increases.

7.9.14. Assuming X ∼ SN(α) for some −∞ < α <∞, show that the deriva-
tive of the optimal scores satisfies expression (7.24). of expression (7.22).

7.9.15. Simulate 50 observations from the model

Yi = 0.01 ∗ xi1 + 0.15 ∗ xi2 + 0 ∗ xi3 + ei,

where xi1, xi2 are deviates from a standard normal distribution and ei ∼
SN(−8).

(a) Obtain the rank-based fit of these data using skew normal scores
with α = −8. Obtain confidence intervals for the 3 (nonintercept)
regression parameters. Did the confidence intervals trap the true
values?

(b) Obtain the Studentized residuals for the fit obtained in Part (a).
Using these residuals obtain the residual plot and the normal q−q
plot. Comment on the fit.

(c) Obtain the Wilcoxon fit of these data. What is the estimated pre-
cision of fit in Part (a) over the Wilcoxon fit?

7.9.16. On Page 204, Bowerman et al. (2005) present a dataset concerning
sales prices of houses in a city in Ohio. The variables are: y is the sale price
in $10,000; x1 is the total square footage; x2 is the number of rooms; x3 is
the number of bedrooms; and x4 is the age of the house at the time data were
collected. The sample size is n = 63. For the reader’s convenience the data are
in the dataset homesales. Consider the linear model y = α+

∑4
i=1 xiβi + e.
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(a) Use the Hogg-type adaptive scheme discussed in Section 7.6 on these
data; i.e., use the function adaptor. Which score function did it
select?

(b) Comment on the estimated regression coefficients as to significance
and what they mean in terms of the problem.

(c) Fit the model using the selected score function in Part (a).

(d) Using the Studentized residuals from Part (b), perform a residual
analysis which includes at least a residual plot and a q− q plot.
Identify all outliers.

(e) Based on your analysis in (d), what, if any, other models would you
fit to these data?

7.9.17. Apply the Hogg-type adaptive scheme of Section 7.6 to data of Exer-
cise 6.5.6. Compare the selected fit with that of the rank-based fits obtained
in Exercise 6.5.6. Which of the three is best in terms of precision?

7.9.18. For the data of Exercise 6.5.7, run the adaptive analysis of Section 7.6.
Which score function did it select?

7.9.19. Bowerman et al. (2005) discuss the daily viscosity measurements of a
manufactured chemical product XB-77-5 for a series of 95 days. Using tradi-
tional methods, they determined that the best autoregressive model for this
data had order 2. For the reader’s convenience, we have placed this data in
the dataset viscosity.

(a) Plot this time series data.

(b) As in Example 7.8.1, using the Wilcoxon scores, determine the order
of the autoregressive series for this data. Use as the maximum order,
p = 4. Do the results agree with the order determined by Bowerman
et al. (2005)?

(c) Obtain the Wilcoxon fit for the autoregressive model using the or-
der determined in the last part. Obtain confidence intervals for the
autoregressive parameters.

(d) Write the model expression for the unknown observation at time
t = 96. Using the fitted model in Part (c), predict the expected
viscosity for Day 96.

(e) Determine a confidence interval for the E(y96); see Section 4.4.4.

(f) Continue parts (d) and (e) for the observations at times 97 and 98.

7.9.20. For the time series in Exercise 7.9.19, assume that the order of the
autoregressive model is 2. Compute the diagnostic TDBETAS between the
Wilcoxon and HBR fits. Obtain the plot of the corresponding diagnostic
CFITS versus time also. Comment on the diagnostics.
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7.9.21. Seber and Wild (1989) present a dataset for the nonlinear model of
the form y = f(x; θ) + e, where

f(x; θ) =
θ1x

θ2 + x
.

The response y is the enzyme velocity in an enzyme-catalyzed chemical re-
action and x denotes the concentration of the substrate. The 12 data points
are:

x 2.00 2.00 0.67 0.67 0.40 0.40
y 0.0615 0.0527 0.0334 0.0258 0.0138 0.0258
x 0.29 0.29 0.22 0.22 0.20 0.20
y 0.0129 0.0183 0.0083 0.0169 0.0129 0.0087

(a) Obtain a scatterplot of the data.

(b) Write the R functions for the model and the Jacobian.

(c) Using θ0 = (.1, 1.8) as the initial estimate, obtain the Wilcoxon fit
of the model. Obtain 95% confidence intervals for θ1 and θ2.

(d) Overlay the scatterplot with the fitted model.

(e) Obtain a residual plot and a q−q plot of the residuals. Comment
on the quality of the fit.

7.9.22. Obtain the HBR fit of the nonlinear model discussed in Exercise
7.9.21. Then change let y1 = y2 = 0.04. Obtain both the Wilcoxon and HBR
fits for this changed data. Which fit changed less?

7.9.23. The dataset gamnl contains simulated data from the nonlinear model

f(x; θ) = θθ12 x
θ1−1e−θ2x.

The first and second columns of the data contain the respective x’s and y’s.

(a) Obtain a scatterplot of the data.

(b) Write the R functions for the model and the Jacobian.

(c) For starting values, the model suggests taking the log of both sides
of the model expression and then fit a linear model; but since some
of the y values are negative use log(y + 2).

(d) Obtain the Wilcoxon fit of the model and 95% confidence intervals
for θ1 and θ2.

(e) Overlay the scatterplot with the fitted model.

(f) Obtain a residual plot and a q−q plot of the residuals. Comment
on the quality of the fit.
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7.9.24. Devore (2012) presents a dataset on the wear life for solid film lubri-
cant. We consider the model

Yi =
θ1

xθ21ix
θ3
2i

+ ei,

where Yi the wear life in hours of a Mil-L-8937-type film, xi1 is load in psi,
and xi2 is the speed of the film in rpm. The data are the result of a 3 × 3
crossed design with three replicates and are in dataset wearlife.

(a) Write the R functions for the model and the Jacobian.

(b) For starting values, as the model suggests, take logs of both sides.
Show that θ1 = 36, 000, θ2 = 1.15, and θ3 = 1.24 are reasonable
starting values.

(c) Obtain the Wilcoxon fit and find 95% confidence intervals for each
of the parameters.

(d) Obtain the residual versus fitted values plot and the normal q−q
plot of the residuals. Comment on the quality of the fit.

(e) Obtain a scatterplot of xi1 versus xi2. There are, of course, 9 treat-
ment combinations. At each combination, plot the predicted wear
life based on the fitted model. Obtain 95% confidence intervals for
these predictions. Discuss the plot in terms of the model.
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Cluster Correlated Data

8.1 Introduction

Often in practice, data are collected in clusters. Examples include block de-
signs, repeated measure designs, and designs with random effects. Generally,
the observations within a cluster are dependent. Thus the independence as-
sumption of fixed effects linear models breaks down. These models generally
include fixed effects, also. Inference (estimation, confidence intervals, and tests
of linear hypotheses) for the fixed effects is often of primary importance.

Several rank-based approaches have been considered for analyzing cluster-
correlated data. Kloke, McKean, and Rashid (2009) extended the rank-based
analysis for linear models discussed in Chapters 4–5 to many cluster models
which occur in practice. In their work, the authors, in addition to developing
general theory for cluster-correlated data, develop the application of a simple
mixed model with one random effect and an arbitrary number of fixed effects
and covariates. Kloke and McKean (2011) discuss a rank-based based analysis
when the blocks have a compound symmetric variance covariance structure.

In this chapter we illustrate extensions of the rank-based methods dis-
cussed in earlier chapters to data which have cluster-correlated responses. For
our purpose we consider an experiment done over a number of blocks (clusters)
where the observations within a block are correlated. We begin (Section 8.2)
by discussing Friedman’s nonparametric test for a randomized block design. In
Section 8.3, we present the rank-based analysis of Kloke, McKean, and Rashid
(2009). Besides tests of general linear hypotheses, this analysis includes esti-
mation with standard errors of fixed effects as well as diagnostic procedures
to check the quality of fit. Section 8.4 offers a discussion of robust estimation
of variance components. These estimates are also used in the estimation of
standard errors and in the Studentized residuals. We end the chapter with
a discussion of rank-based procedures for general estimation equation (GEE)
models which in terms of assumptions are the most general. Computation by
R and R packages of these analyses is highlighted throughout the chapter.

For this chapter we use a common notation which we provide now. Suppose
we have m blocks or clusters. Within the kth cluster there are nk measure-
ments. We may model the ith measurement within the kth cluster as

Yki = α+ xT
kiβ + eki for k = 1, . . .m, i = 1, . . . , nk, (8.1)
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where xki is a vector of covariates. The errors between clusters are assumed
to be independent and the errors within a block are assumed to be correlated.

At times, dependent data fit into a multivariate frame-work; i.e., a multi-
variate multiple regression model. In this edition, we have not covered rank-
based procedures for multivariate analysis. We refer the reader to Chapter 6
of Hettmansperger and McKean (2011) and Oja (2010) for discussions of these
procedures.

8.2 Friedman’s Test

The first nonparametric test for cluster-correlated data was developed by
Friedman (1937). The goal is to compare the effect of n treatments. Each
treatment is applied to each of m experimental units or clusters. In this test a
separate ranking is calculated for each of the clusters. The rankings are then
averaged for each of the treatments and then compared. If there is a large
difference between the average rankings the null hypothesis of no treatment
effect is rejected.

Suppose we have n treatments andm clusters each of size n. Suppose all the
treatments are randomly assigned once within a cluster. Let Ykj denote the
measurement (response) for the jth treatment within cluster (experimental
unit) k. Assume the model is

Ykj = α+ βj + bk + ǫkj , k = 1, . . . ,m, j = 1, . . . , n, (8.2)

where α is an intercept parameter, βj is the jth treatment effect, bk is the
random effect due to cluster k, and ǫkj is the jkth random error. Assume that
the random errors are iid and are independent of the random effects.

Let Rkj denote the rank of Ykj among Yk1, . . . , Ykn. Let

R̄·j =

∑m
k=1Rkj

m
.

The test statistic is given by

T =
12m

n(n+ 1)

n∑

j=1

(
R·j −

n+ 1

2

)2

.

Under H0, the test statistic T has an asymptotic χ2
n−1 distribution. We illus-

trate the R computation of Friedman’s test with the following example.

Example 8.2.1 (Rounding First Base). This example is discussed in Hollan-
der and Wolfe (1999). In the game of baseball, three methods were evaluated
for rounding first base (for an illustration see Figure 7.1 of Hollander and
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Wolfe 1999). Label these methods as round out, narrow angle, and wide an-
gle. Each method was evaluated twice for each ofm = 22 baseball players. The
average time of the two runs are in the dataset firstbase. Hence, there are
22 blocks (clusters) and one fixed effect (method of base rounding) at three
levels. The R function friedman.test can take either a numeric data matrix,
separate arguments for the response vector, the group vector, and the block
vector or a formula.

> friedman.test(as.matrix(firstbase))

Friedman rank sum test

data: as.matrix(firstbase)

Friedman chi-squared = 11.1429, df = 2, p-value = 0.003805

Hence, the difference between methods of rounding first base is significant.
Friedman’s test is for an overall difference in the methods. Note that it offers
no estimate of the effect size between the different methods. Using the rank-
based analysis discussed in the next section, we can both test the overall
hypothesis and estimate the effect sizes, with standard errors.

8.3 Joint Rankings Estimator

Kloke et al. (2009) showed that rank-based analysis can be extended to cluster-
correlated data. In this section we summarize these methods and present ex-
amples which illustrate the computation; as we demonstrate the function to
determine the fit is jrfit and there are, in addition, several of the standard
linear model helper functions.

Assume an experiment is done over m blocks or clusters. Note that we
use the terms block and cluster interchangeably. Let nk denote the number
of measurements taken within the kth block. Let Yki denote the response
variable for the ith experimental unit within the kth block; let xki denote the
corresponding vector of covariates. Note that the design is general in that xki

may contain, for example, covariates, baseline values, or treatment indicators.
The response variable is then modeled as

Yki = α+ xT
kiβ + eki for k = 1, . . . ,m, i = 1, . . . , nk, (8.3)

where α is the intercept parameter, β is a p × 1 vector of unknown param-
eters, and eki is an error term. We assume that the errors within a block
are correlated (i.e. eki & eki′) but the errors between blocks are independent
(i.e. eki & ek′j). Further, we assume that eki has pdf and cdf f(x) and F (x),
respectively. Now write model (8.3) in block vector notation as

Y k = α1nk
+Xkβ + ek. (8.4)
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where 1nk
is an nk × 1 vector of ones and Xk = [xk1 . . .xknk

]T is a nk × p
design matrix and ek = [ek1, . . . eknk

]T is a nk × 1 vector of error terms. Let
N =

∑m
k=1 nk denote the total sample size. Let Y = (Y T

1 , . . . ,Y
T
m)T be

the N × 1 vector of all measurements (responses) and consider the matrix
formulation of the model as

Y = α1N +Xβ + e (8.5)

where 1N is an N ×1 vector of ones and X = [XT
1 . . .X

T
m]T is a N ×p design

matrix and e = [eT1 , . . . e
T
m]T is a N × 1 vector of error terms. Since there is

an intercept in the model, we may assume (WLOG) that X is centered.
Select a set of rank scores a(i) = ϕ[i/(N + 1)] for a nondecreasing score

function ϕ which is standardized as usual, (
∫
ϕ(u) du = 0 and

∫
ϕ2(u) du =

1). As with Rfit, the default score function for jrfit is the Wilcoxon, i.e.,
ϕ(u) =

√
12[u− (1/2)]. Then the rank-based estimator of β is given by

β̂ϕ = Argmin‖y −Xβ‖ϕ where ‖v‖ϕ =

N∑

t=1

a(R(vt))vt, v ∈ RN , (8.6)

is Jaeckel’s dispersion function.
For formal inference, Kloke et al. (2009) develop the asymptotic distribu-

tion of the β̂ϕ under the assumption that the marginal distribution functions
of the random vector ek are the same. This includes two commonly assumed
error structures: exchangeable within-block errors as well as the components
of ek following a stationary time series, such as autoregressive of general order.
This asymptotic distribution of β̂ is given by

β̂ϕ∼̇Np

(
β, τ2ϕ(X

TX)−1

(
m∑

k=1

XT
kΣϕk

Xk

)
(XTX)−1

)

where Σk = var(ϕ(F (ek))) and F (ek) = [F (ek1), . . . , F (eknk
)]T . To estimate

τϕ, jrfit uses the estimator purposed by Koul et al. (1987).

8.3.1 Estimates of Standard Error

In this section we discuss several approaches to estimating the standard error
of the R estimator defined in (8.6). Kloke et al. (2009) develop the inference
under the assumption of exchangeable within-block errors; Kloke and McKean
(2013) considered two additional estimates and examined the small sample
properties of each.

Let V =
(∑m

k=1 X
T
kΣϕk

Xk

)
. Let σij be the (i, j)th element of Σϕk. That

is σij = cov(ϕ(F (e1i)), ϕ(F (e1j))).

Compound Symmetric

Kloke et al. (2009) discuss estimates of Σϕk when the within block errors are
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exchangeable. Under the assumption of exchangeable errors Σϕk reduces to
compound symmetric; i.e., Σϕk = [σij ] where

σij =

{
1 if i = j

ρϕ if i 6= j

and ρϕ = cov(ϕ(F (e11)), ϕ(F (e12))). An estimate of ρϕ is

ρ̂ϕ =
1

M − p

m∑

k=1

∑

i>j

a(R(êki))a(R(êkj))

where M =
∑m

k=1

(
nk

2

)
.

One advantage of this estimate is that it requires estimation of only one
additional parameter. A main disadvantage is that it requires the somewhat
strong assumption of exchangeability.

Empirical

A natural estimate of Σϕ is the unstructured variance-covariance matrix using
the sample correlations. To simplify notation, let aki = a(R(êki)). Estimate
σij with

σ̂ij =

m∑

k=1

(aki − ā·i)(akj − ā·j)

where ā·i =
∑m

k=1 aki.
The advantage of this estimator is that it is general and makes no ad-

ditional simplifying assumptions. In simulation studies, Kloke and McKean
(2013) demonstrate that the sandwich estimator discussed next works at least
as well for large samples as this empirical estimate.

Sandwich Estimator

Another natural estimator of V is the sandwich estimator, which for the prob-
lem at hand is defined as

m

m− p

m∑

k=1

XT
k a(R(êk))a(R(êk))

TXk.

Kloke and McKean (2013) demonstrate that this estimate works well for large
samples and should be used when possible. The advantage of this estimator
is that it does not require additional assumptions. For very small sample
sizes, though, it may lead to biased, often conservative, inference. Simulation
studies, however, suggest that when m ≥ 50 the level is close to α. See Kloke
and McKean (2013) for more details. The sandwich estimator is the default
in jrfit.
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8.3.2 Inference

Simulation studies suggest using t a distribution for tests of hypothesis of the
form

H0 : βj = 0 versus HA : βj 6= 0.

Specifically, when the standard error (SE) is based on the estimate of the
compound symmetric structure, we may reject the null hypothesis at level α
provided ∣∣∣∣∣

β̂j

SE(β̂j)

∣∣∣∣∣ > tα,N−p−1−1.

On the other hand, if the sandwich estimator is used, (Section 8.3.1), we test
the hypothesis using df = m. That is, we reject the null hypothesis at level α
if ∣∣∣∣∣

β̂j

SE(β̂j)

∣∣∣∣∣ > tα,m.

These inferences are the default when utilizing the summary functions of jrfit.
We illustrate this discussion with the following examples.

8.3.3 Examples

In this section we present several examples. The first is a simulated example
for which we illustrate the package jrfit. Following that, we present several
real examples.

Simulated Dataset

To fix ideas, we present an analysis of a simulated dataset utilizing both
the compound symmetry and sandwich estimators discussed in the previous
section.

The setup is as follows:

> m<-160 # blocks

> n<-4 # observations per block

> p<-1 # baseline covariate

> k<-2 # trtmnt groups

First, we set up the design and simulate a baseline covariate which is
normally distributed.

> trt<-as.factor(rep(sample(1:k,m,replace=TRUE),each=n))

> block<-rep(1:m,each=n)

> x<-rep(rnorm(m),each=n)

Next, we set the overall treatment effect to be ∆ = 0.5, so that we can form
the response as follows. We simulate the block effects from a t-distribution
with 3 degrees of freedom and the random errors from a t-distribution with 5
degrees of freedom. Note that the assumption for exchangeable errors is met.
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> delta<-0.5

> w<-trt==2

> Z<-model.matrix(~as.factor(block))

> e<-rt(m*n,df=5)

> b<-rt(m,df=3)

> y<-delta*w+Z%*%b+e

Note the regression coefficient for the covariate was set to 0.
First we analyze the data with the compound symmetry assumption. The

three required arguments to jrfit are the design matrix, the response vec-
tor, and the vector denoting block membership. In future releases we plan to
incorporate a model statement as we have done in Rfit similar to the one in
friedman.test.

> library(jrfit)

> X<-cbind(w,x)

> fit<-jrfit(X,y,block,var.type=’cs’)

> summary(fit)

Coefficients:

Estimate Std. Error t-value p.value

1.395707 0.165898 8.4130 2.636e-16 ***

w 0.256514 0.252201 1.0171 0.3095

x 0.083595 0.130023 0.6429 0.5205

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Notice, by default the intercept is displayed in the output. If the inference
on the intercept is of interest then set the option int to TRUE in the jrfit

summary function. The cell medians model can also be fit as follows.

> library(jrfit)

> W<-model.matrix(~trt-1)

> X<-cbind(W,x)

> fit<-jrfit(X,y,block,var.type=’cs’)

> summary(fit)

Coefficients:

Estimate Std. Error t-value p.value

trt1 1.395707 0.165898 8.4130 2.636e-16 ***

trt2 1.652221 0.168449 9.8085 < 2.2e-16 ***

x 0.083595 0.130023 0.6429 0.5205

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Next we present the same analysis utilizing the sandwich estimator.
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> X<-cbind(w,x)

> fit<-jrfit(X,y,block,var.type=’sandwich’)

> summary(fit)

Coefficients:

Estimate Std. Error t-value p.value

1.395707 0.164288 8.4955 1.294e-14 ***

w 0.256514 0.247040 1.0383 0.3007

x 0.083595 0.113422 0.7370 0.4622

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> X<-cbind(W,x)

> fit<-jrfit(X,y,block,var.type=’sandwich’)

> summary(fit)

Coefficients:

Estimate Std. Error t-value p.value

trt1 1.395707 0.164288 8.4955 1.294e-14 ***

trt2 1.652221 0.166176 9.9426 < 2.2e-16 ***

x 0.083595 0.113422 0.7370 0.4622

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

For this example, the results of the analysis based on the compound symmetry
method and the analysis based on the sandwich method are quite similar.

Crabgrass Data

Cobb (1998) presented an example of a complete block design concerning the
weight of crabgrass. The fixed factors in the experiment were the density of
the crabgrass (four levels) and the levels (two) of the three nutrients nitrogen,
phosphorus, and potassium. So p = 6. Two complete blocks of the experiment
were carried out, so altogether there are N = 64 observations. In this exper-
iment, block is a random factor. Under each set of experimental conditions,
crabgrass was grown in a cup. The response is the dry weight of a unit (cup)
of crabgrass, in milligrams. The R analysis of these data were first discussed
in Kloke et al. (2009).

The model is a mixed model with one random effect

Yki = α+ xT
kiβ + bk + ǫki for k = 1, 2 and j = 1, . . . , 32.

The example below illustrates the rank-based analysis of these data using
jrfit.

> library(jrfit)

> data(crabgrass)
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FIGURE 8.1
Plot of fitted values vs. Studentized residuals for crabgrass data.

> x<-crabgrass[,1:6]; y<-crabgrass[,7]; block<-crabgrass[,8]

> fit<-jrfit(x,y,block,v1=tcs)

> rm(x,y,block)

> summary(fit)

Coefficients:

Estimate Std. Error t-value p.value

28.31823 2.77923 10.1892 0.009495 **

N 39.87865 3.45475 11.5431 0.007422 **

P 10.96732 4.25586 2.5770 0.123335

K 1.59380 3.91480 0.4071 0.723357

D1 24.08362 1.17606 20.4782 0.002376 **

D2 7.95646 0.50716 15.6882 0.004038 **

D3 3.26657 7.46598 0.4375 0.704443

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Based on the summary of the fit, the factors nitrogen and density are
significant. The Studentized residual plot based on the Wilcoxon fit is given
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in Figure 8.1. Note the one large outlier in this plot. As discussed in Cobb
(1998) and Kloke et al. (2009) this outlier occurred in the data. It impairs the
traditional analysis of the data but has little effect on the robust analysis.

Electric Resistance Data

Presented in Stokes et al. (1995), these data are from an experiment to deter-
mine if five electrode types performed similarly. Each electrode type (etype)
was applied to the arm of 16 subjects. Hence there are 16 blocks and one fixed
factor at 5 levels.

The classical nonparametric approach to addressing the question of a dif-
ference between the electrode types is to use Friedman’s test (Friedman 1937),
which is the analysis that Stokes et al. (1995) used. As discussed in Section 8.2,
Friedman’s test is available in base R via the function friedman.test. We il-
lustrate its use with the electrode dataset available in jrfit.

> library(jrfit)

> friedman.test(resistance~etype|subject,data=eResistance)

Friedman rank sum test

data: resistance and etype and subject

Friedman chi-squared = 5.4522, df = 4, p-value = 0.244

From the comparison boxplots presented in Figure 8.2 we see there are
several outliers in the data.

First we consider a cell medians model where we estimate the median
resistance for each type of electrode. There the model is yki = µi + bk + eki
where µi represents the median resistance for the ith type of electrode, bk is
the kth subject (random) effect, and eki is the error term encompassing other
variability. The variable etype is a factor from which we create the design
matrix.

> x<-model.matrix(~eResistance$etype-1)

> fit<-jrfit(x,eResistance$resistance,eResistance$subject)

> summary(fit)

Coefficients:

Estimate Std. Error t-value p.value

eResistance$etype1 123.998 55.733 2.2248 0.040827 *

eResistance$etype2 211.002 53.894 3.9151 0.001234 **

eResistance$etype3 158.870 56.964 2.7890 0.013137 *

eResistance$etype4 106.526 53.817 1.9794 0.065241 .

eResistance$etype5 109.004 51.219 2.1282 0.049213 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> muhat<-coef(fit)

> muhat
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FIGURE 8.2
Comparison boxplots of resistance for five different electrode types.

eResistance$etype1 eResistance$etype2 eResistance$etype3

123.9983 211.0017 158.8703

eResistance$etype4 eResistance$etype5

106.5256 109.0038

As the sample size is small, we will perform our inference assuming com-
pound symmetry. Note, in practice, this can be a strong assumption and may
lead to incorrect inference. However, given the nature of this experiment there
is likely to be little carry-over effect; hence, we feel comfortable with this as-
sumption.

Coefficients:

Estimate Std. Error t-value p.value

eResistance$etype1 123.998 52.674 2.3541 0.0212262 *

eResistance$etype2 211.002 52.674 4.0058 0.0001457 ***

eResistance$etype3 158.870 52.674 3.0161 0.0035080 **

eResistance$etype4 106.526 52.674 2.0223 0.0467555 *

eResistance$etype5 109.004 52.674 2.0694 0.0420014 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Generally, however, we are interested in the effect sizes of the various elec-
trodes. Here the model is yki = α+∆i + bk + eki where ∆i denotes the effect
size. We set ∆1 = 0 so that the first electrode type is the reference and the
others represent median change from the first.

We may estimate the effect sizes directly or calculate them from the esti-
mated cell medians as illustrated in the following code segment.

> x<-x[,2:ncol(x)]

> fit<-jrfit(x,eResistance$resistance,eResistance$subject,var.type=’cs’)

> summary(fit)

Coefficients:

Estimate Std. Error t-value p.value

123.994 52.473 2.3630 0.02076 *

eResistance$etype2 87.013 33.567 2.5922 0.01148 *

eResistance$etype3 34.218 33.567 1.0194 0.31134

eResistance$etype4 -17.977 33.567 -0.5356 0.59387

eResistance$etype5 -14.988 33.567 -0.4465 0.65654

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> muhat[2:5]-muhat[1]

eResistance$etype2 eResistance$etype3 eResistance$etype4 eResistance$etype5

87.00340 34.87196 -17.47268 -14.99450

Next we illustrate a Wald test of the hypothesis that there is no effect due
to the different electrodes; i.e.,

H0 : ∆i = 0 for all k = 2, . . . , 5 versus HA : ∆i 6= 0 for some k = 2, . . . , 5.

> est<-fit$coef[2:5]

> vest<-fit$varhat[2:5,2:5]

> tstat<-t(est)%*%chol2inv(chol(vest))%*%est/4

> df2<-length(eResistance$resistance)-16-4-1

> pval<-pf(tstat,4,df2,lower.tail=FALSE)

> pval

[,1]

[1,] 0.01374127

Note that the overall test for effects is highly significant (p = 0.0137). This is
a much stronger result than that of Friedman’s test which was nonsignificant
with p-value 0.2440.

8.4 Robust Variance Component Estimators

Consider a cluster-correlated model with a compound symmetry (cs) variance-
covariance structure; i.e., a simple mixed model. In many applications, we
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are interested in estimating the variance components and/or the random ef-
fects. For several of the fitting procedures discussed in this chapter, under cs
structure, the iterative fitting of the fixed effects depends on estimates of the
variance components. Even in the case of the JR fit of Section 8.3, variance
components estimates are needed for standard errors and for the Studentiza-
tion of the residuals. In this section, we discuss a general procedure for the
estimation of the variance components and then focus on two procedures, one
robust and the other highly efficient.

Consider then the cluster-correlated model (8.3) of the last section. Under
cs structure we can write the model as

Yki = α+ xT
kiβ + bk + ǫki, k = 1, . . . ,m, i = 1, . . . , nk, (8.7)

where ǫki’s are iid with pdf f(t), bk’s are iid with pdf g(t), and the ǫki’s and the
bk’s are jointly independent of each other. Hence, the random error for the fixed
effects portion of Model (8.7) satisfies eki = bk + ǫki. Although we could write
the following discussion in terms of a general scale parameter (functional) and
avoid the assumption of finite variances, for easier interpretation we simply
use the variances. The variance components are:

σ2
b = Var(bk)

σ2
ǫ = Var(ǫki)

σ2
t = σ2

b + σ2
ǫ

ρ =
σ2
b

σ2
b + σ2

ǫ

(8.8)

The parameter ρ is often called the intraclass correlation coefficient, while
the parameter σ2

t is often denoted as the total variance.
We discuss a general procedure for the estimation of the variance compo-

nents based on the residuals from a fit of the fixed effects. Let θ̂ and η̂ be
respectively given location and scale estimators. Denote the residuals of the
fixed effects fit by êki = Yki − α̂ − xT β̂. Then for each cluster k = 1, . . . ,m,
consider the pseudo model

êki = bk + ǫki, i = 1, . . . , nk. (8.9)

Predict bk by
b̂k = θ̂(êk1, . . . , êknk

). (8.10)

This estimate is the prediction of the random effect. Then estimate the vari-
ance of bk by the variation of the random effects, i.e.,

σ̂2
b = η̂2(b̂1, . . . , b̂m). (8.11)

For estimation of the variance of ǫki, consider Model (8.9), but now move the
prediction of the random effect to the left-side; that is, consider the model

êki − b̂k = ǫ̂ki, i = 1, . . . , nk. (8.12)
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Then our estimate of the variance of ǫki is given by

σ̂2
ǫ = η̂2(ê11 − b̂1, . . . , êmnm

− b̂m). (8.13)

Expressions (8.11) and (8.13) lead to our estimates of total variance given by
σ̂2
t = σ̂2

b + σ̂2
ǫ and, hence, our estimate of intraclass correlation coefficient as

ρ̂ = σ̂2
b/σ̂

2
t .

Groggel (1983) and Groggel et al. (1988) proposed these estimates of the
variance components except the mean is used as the location functional and
the sample variance as the scale functional. Assuming that the estimators are
consistent estimators for the variance components in the case of iid errors,
Groggel showed that they are also consistent for the same parameters when
they are based on residuals under certain conditions. Dubnicka (2004) and
Kloke et al. (2009) obtained estimates of the variance components using the
median and MAD as the respective estimators of location and scale. Since
these estimators are consistent for iid errors they are consistent for our model
based on the JR fit. The median and MAD comprise our first procedure for
variance component estimation and we label it as the MM procedure. As
discussed below, we have written R functions which compute these estimates.

Although robust, simulation studies have shown, not surprisingly, that the
median and MAD have low efficiency; see Bilgic (2012). A pair of estimators
which have shown high efficiency in these studies are the Hodges–Lehmann
location estimator and the rank-based dispersion estimator based on Wilcoxon
scores. Recall from Chapter 1 that the Hodges–Lehmann location estimator
of a sample X1, . . . , Xn is the median of the pairwise averages

θ̂HL = medi≤j

{
Xi +Xj

2

}
. (8.14)

This is the estimator associated with the signed-rank Wilcoxon scores. It is a
consistent robust estimator of its functional for asymmetric as well as sym-
metric error distributions. The associated scale estimator is the dispersion
statistic given by

D̂(X) =

√
π

3n

n∑

i=1

ϕ

[
R(Xi)

n+ 1

]
Xi, (8.15)

where ϕ(u) =
√
12[u− (1/2)] is the Wilcoxon score function. Note that D(X)

is just a standardization of the norm, (4.8), of X. It is a consistent estimator
of its functional for iid random errors as well as residuals; see Chapter 3 of
Hettmansperger and McKean (2011). With the multiplicative factor

√
π/3 in

expression (8.14), D̂(X) is a consistent estimator of σ provided that Xi is
normally distributed with standard deviation σ. Although more efficient than
MAD at the normal model, the statistic D̂(X) has an unbounded influence
function in the Y -space; see Chapter 3 of Hettmansperger and McKean (2011)
for discussion. Hence, it is not robust. We label the procedure based on the
Hodges–Lehmann estimator of location and the dispersion function estimator
of scale the DHL method.
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The R function vee computes these variance component estimators for
median-MAD (mm) and the HL-disp (dhl) procedures. The input to each
consists of the residuals and the vector which identifies the center or cluster.
The function returns the vector of variance component estimates and the
estimates (predictions) of the random effects. We illustrate their use in the
following example.

Example 8.4.1 (Variance Component Estimates). For the example we gen-
erated a dataset for a mixed model with a treatment effect (2 levels) and
a covariate. The data are over 10 clusters each with a cluster size of 10;
i.e., m = 10, ni ≡ 10, and n = 100. The errors ǫki are iid N(0, 1) while
the random effects are N(0, 3). Hence, the intraclass correlation coefficient
is ρ = 3/(1 + 3) = 0.75. All fixed effects were set at 0. The following code
segment computes the JR fit of the mixed model and the median-MAD and
HL-dispersion variance component estimators. For both variance component
estimators, we show the estimates σ̂2

ǫ and σ̂2
b .

> m<-10 # number of blocks

> n<-10 # number number

> k<-2 # number of treatments

> N<-m*n # total sample size

> x<-rnorm(N) # covariate

> w<-sample(c(0,1),N, replace=TRUE) # treatment indicator

> block<-rep(1:m,n) # m blocks of size n

> X<-cbind(x,w)

> Z<-model.matrix(~as.factor(block)-1)

> b<-rnorm(m,sd=3)

> e<-rnorm(N)

> y<-Z%*%b+e

> fit<-jrfit(X,y,block)

> summary(fit)

Coefficients:

Estimate Std. Error t-value p.value

-1.959030 2.835237 -0.6910 0.5053

x -0.098897 0.370353 -0.2670 0.7949

w 0.172955 0.766447 0.2257 0.8260

> vee(fit$resid,fit$block,method=’mm’)

$sigb2

[1] 22.85784

$sige2

[1] 0.6683255

> vee(fit$resid,fit$block)
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$sigb2

[,1]

[1,] 16.42025

$sige2

[,1]

[1,] 0.9971398

Exercises 8.7.8–8.7.10 discuss the results of this example and two simulation
investigations of the methods median-MAD and HL-dispersion for variance
component estimation.

Of the two variance component methods of estimation, due to its robust-
ness, we recommend the median-MAD procedure.

8.5 Multiple Rankings Estimator

A rank-based alternative to using the JR estimator of Section 8.3 is to use
the MR estimator developed by Rashid et al. (2012). MR stands for multi-
ple rankings as it utilizes a separate ranking for each cluster; while the JR
estimator uses the rankings of the entire dataset or the joint rankings.

The model is the same as 8.3 which we repeat here for reference

Yki = α+ xT
kiβ + eki for k = 1, . . . ,m, i = 1, . . . , nk. (8.16)

The objective function is the sum of m separate dispersion functions each
having a separate ranking given by

D(β) =

m∑

k=1

Dk(β) (8.17)

where Dk(β) =
∑nk

i=1 a(Rk(Yki − xT
kiβ))(Yki − xT

kiβ) and Rk(Yki − xT
kiβ) is

the ranking of Yki − xT
kiβ among Yk1 − xT

k1β, . . . , Yknk
− xT

knk
β.

For asymptotic theory of the rank-based fit, we need only assume that
the distribution of the random errors have finite Fisher information and that
the density is absolutely continuous; see Hettmansperger and McKean (2011:
Section 3.4) for discussion. In particular, as with the JR fit, the errors may
have an asymmetric distribution or a symmetric distribution. Unlike the JR
fit, though, for the MR fit each cluster can have its own score function.

The MR fit obtains the estimates of the fixed effects of the model while it
is invariant to the random effects. The invariance of the MR estimate to the
random effects is easy to see. Because the rankings are invariant to a constant
shift, we have for center k that

Rj(Yki − α− bk − xT
kiβ) = Rj(Yki − α− xT

kiβ).



Cluster Correlated Data 243

Because the scores sum to 0, for each center, it follows that the objective func-
tion DMR, and thus the MR estimator, are invariant to the random effects.

Rashid et al. (2012) show that the MR estimate is asymptotic normal with
mean β and variance

τ2V MR = τ2

(
m∑

k=1

XT
kXk

)−1

(8.18)

where the scale parameter τ is given by expression (3.19). If Wilcoxon scores
are used, this is the usual parameter

τ =

[√
12

∫
f(x)2 dx

]−1

, (8.19)

where f(x) is the pdf of random errors eijl. In expression (8.19), we are as-
suming that the same score function is used for each cluster. If this is not
the case, letting τk denote the scale parameter for cluster k, the asymptotic
covariance matrix is (

∑m
k=1 X

T
kXk/τk)

−1.
Model (8.16) assumes that there is no interaction between the center and

the fixed effects. Rashid et al. (2012), though, developed a robust test for this
interaction based on rank-based estimates which can be used in conjunction
with the MR or JR analyses.

Estimation of Scale

A consistent estimator of the scale parameter τ can be obtained as follows.
For the kth center, form the vector of residuals rMR with components

rMR,ki = yki − xT
kiβ̂MR. (8.20)

Denote by τ̂k the estimator of τ proposed by Koul et al. (1987) for each
of the m clusters. Note these estimates are invariant to the random effects.
Furthermore, it is a consistent estimator of τ . As our estimator of τ , we take
the average of these estimators, i.e.,

τ̂MR =
1

m

m∑

k=1

τ̂j , (8.21)

which is consistent for τ . Here we assume that the same score function is used
for each cluster. If this is not the case, then, as noted above, each 1/τ̂k appears
within the sum in expression (8.18).

Inference

Inference based on the MR estimate can be done in the same way as with
other linear models discussed in this book. For example, Wald type tests and
confidence intervals based on the MR estimates can be formulated in the
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same way as those based on the JR fit discussed in Section 8.3. Another
test statistic, not readily available for the JR procedures, is based on the
reduction of dispersion in passing from the reduced to the full model. Denote
the reduction in dispersion by

RDMR = DMR(β̂MR,R)−DMR(β̂MR,F ). (8.22)

Large values of RDMR are indicative of a lack of agreement between the
collected data and the null hypothesis. As shown in Rashid et al. (2012),
under H0

D∗
MR = RDMR

τ̂MR/2 converges in distribution to the χ2(q) distribution. (8.23)

A nominal α decision rule is to reject H0 in favor of HA, if D
∗
MR > χ2

α(q)
where q is the number of constraints.

The drop-in-dispersion test was discussed in Section 4.4.3 and is analogous
to the likelihood test statistic −2logΛ in maximum likelihood procedure and
has similar interpretation. The use of a measure of dispersion to assess the
effectiveness of a model fit to a set of data is common in regression analysis.

The code to compute the MR estimate is in the R package1 mrfit. In the
following example, the code segment demonstrates the analysis based on this
R function.

Example 8.5.1 (Triglyceride Levels). The dataset gly4gen is a simulated
dataset similar to an actual trial. Lipid levels for the patients were measured
at specified times. The response variable of interest is the change in triglyceride
level between the baseline and the week 4 visit. Five treatment groups were
considered. The study was conducted at two centers. Centers form the random
block effect. Group 1 is referenced.

> data(gly4gen)

> X<-with(gly4gen,model.matrix(~as.factor(group)-1))

> X<-X[,2:5]

> y<-gly4gen$diffgly4

> block<-gly4gen$center

> fit<-mrfit(X,y,block,rfit(y~X)$coef[2:5])

> summary(fit)

Coefficients:

Estimate Std. Error t-ratio

Xas.factor(group)2 0.28523 0.29624 0.96283

Xas.factor(group)3 -2.41176 0.29624 -8.14118

Xas.factor(group)4 33.03831 0.29238 112.99851

Xas.factor(group)5 26.11310 0.29624 88.14797

Notice for this simulated data, the triglyceride levels of Groups 3 through 5
differ significantly from Group 1.

1See https://github.com/kloke/book for more information.
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8.6 GEE-Type Estimator

As in the previous sections of this chapter, we consider cluster-correlated data.
Using the same notation, let Yki denote the ith response in the kth cluster,
i = 1, . . . , nk and k = 1, . . . ,m, and let xki denote the corresponding p × 1
vector of covariates. For the kth cluster, stack the responses and covariates
into the respective nk × 1 vector Y k = (Yk1, . . . , Yknk

)T and nk × p matrix
Xk = (xT

k1, . . . ,x
T
knk

)T .
In the earlier sections of this chapter, we considered mixed (linear and

random) models for Y k. For formal inference, these procedures require that
the marginal distributions of the random error vectors for the clusters have
the same distribution. In this section, we consider generalized linear models
(glm)for cluster-correlated data. For our rank-based procedures, this assump-
tion on the marginal distribution of the random error vector is not required.

Assume that the distribution of Yki is in the exponential family; that is,
the pdf of Yki is of the form

f(yki) = exp{[ykiθki − a(θki) + b(yki)]φ}. (8.24)

It easily follows that E[Yki] = a′(θki) and Var[Yki] = a′′(θki)/φ. The covariates
are included in the model using a specified function h in the following manner

θki = h(xT
kiβ).

The function h is called the link function. Often the canonical link is used
where h is taken to be the identity function; i.e., the covariates are linked to
the model via θki = xT

kiβ. The Hessian plays an important role in the fitting
of the model. For the kth cluster it is the nk × p matrix defined by

Dk =
∂a′(θk)

∂β
=

[
∂a′(θki)

∂βj

]
, (8.25)

where i = 1, . . . , nk, j = 1, . . . , p, and θk = (θk1, . . . , θknk
)T .

If the responses within a cluster are independent then the above model
is a generalized linear model. We are interested, though, in the cases where
there is dependence within a cluster, which often occurs in practice. For the
GEE estimates, we do not require the specific covariance of the responses, but,
instead, we specify a dependence structure as follows. For cluster k, define the
nk × nk matrix V k by

V k = A
1/2
k Rk(α)A

1/2
k /φ, (8.26)

whereAk is a diagonal matrix with positive elements on the diagonal,Rk(α) is
a correlation matrix, and α is a vector of parameters. The matrix V k is called
the working covariance matrix of Y k, but it need not be the covariance



246 Nonparametric Statistical Methods Using R

matrix of Y k. For example, in practice, Ak and R are not infrequently taken
to be the identity matrices. In this case, we say the covariance structure is
working independence.

Liang and Zeger (1986) develop an elegant fit of this model based on a set of
generalized estimating equations (GEE) which lead to an iterated reweighted
least squares (IRLS) solution. As shown by Abebe et al. (2014), each step of
their solution minimizes the Euclidean norm for a nonlinear problem. Abebe
et al. (2014) developed an analogous rank-based solution that leads to an IRLS
robust solution.

Next, we briefly describe Abebe et al.’s solution. Assume that we have
selected a score function ϕ(u) which is odd about 1/2; i.e.,

ϕ(1− u) = −ϕ(u). (8.27)

The Wilcoxon score function satisfies this property as do all score functions
which are appropriate for symmetric error distributions. As discussed in Re-
mark 8.6.1 this can be easily modified for score functions which do not satisfy
(8.27). Suppose further that we have specified the working covariance matrix

V and that we also have a consistent estimate V̂ of it. Suppose for cluster k

that V̂ k is the current estimate of the matrix V k. Let Y ∗
k = V̂

−1/2

k Y k and

let gki(β) = cTi a
′(θk), where c

T
i is the ith row of V̂

−1/2

k . Then the rank-based
estimate for the next step minimizes the norm

D(β) =

m∑

k=1

nk∑

i=1

ϕ[R(Y ∗
ki − gki(β))/(n+ 1)][Y ∗

ki − gki(β)]. (8.28)

We next write the rank-based estimator as a weighted LS estimator.
Let eki(β) = Y ∗

ki − gki(β) denote the (k, i)th residual and let mr(β) =
med(k,i){eki(β)} denote the median of all the residuals. Then, because the
scores sum to 0 we have the identity,

DR(β) =

m∑

k=1

nk∑

i=1

ϕ[R(eki(β))/(n+ 1)][eki(β)−mr(β)]

=

m∑

rki=1

nk∑

i=1

ϕ[R(eki(β))/(n+ 1)]

eki(β)−mr(β)
[eki(β)−mr(β)]

2

=

m∑

k=1

nk∑

i=1

wki(β)[eki(β)−mr(β)]
2 , (8.29)

where wki(β) = ϕ[R(eki(β))/(n + 1)]/[eki(β) −mr(β)] is a weight function.
We set wki(β) to be the maximum of the weights if eki(β)−mr(β) = 0. Note
that by using the median of the residuals in conjunction with property (8.27)
ensures that the weights are positive.

Remark 8.6.1. To accommodate other score functions besides those that
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satisfy (8.27) quantiles other than the median can easily be used. For example,
all rank-based scores are nondecreasing and sum to 0. Hence there are both
negative and positive scores. So for a given situation with sample size n, replace
the median mr with the i′th quantile where a(i′) ≤ 0 and a(j) > 0 for j ≥ i′.
Then the ensuing weights will be nonnegative.

Expression (8.29) establishes a sequence of IRLS estimates
{
β̂
(j)
}
, j =

1, 2, . . ., which satisfy the general estimating equations (GEE) given by

m∑

k=1

DT
k V̂

−1/2

k Ŵ kV̂
−1/2

k

[
Y k − a′

k(θ)−m∗
r

(
β̂
(j)
)]

= 0. (8.30)

see Abebe et al. (2014) for details. We refer to these estimates as GEE rank-
based estimates, (GEERB).

Also, a Gauss–Newton type algorithm can be developed based on the es-
timating equations (8.30). Since ∂a′

k(θ)/∂β = Dk, a first-order expansion of

a′
k(θ) about the jth step estimate β̂

(j)
is

a′
k(θ) = a′

k(θ̂
(j)

) +DK

(
β − β̂

(j)
)
.

Substituting the right side of this expression for a′
k(θ) in expression (8.30)

and solving for β̂
(j+1)

yields

β̂
(j+1)

= β̂
(j)

+

[
m∑

k=1

DT
k V̂

−1/2

k Ŵ kV̂
−1/2

k Dk

]−1

×
m∑

k=1

DT
k V̂

−1/2

k Ŵ kV̂
−1/2

k

[
Y k − a′

k(θ̂
(j)

)−m∗
r

(
β̂
(j)
)]
.

Abebe et al. (2014) developed the asymptotic theory for these rank-
based GEERB estimates under the assumption of continuous responses. They
showed that under regularity conditions, the estimates are asymptotically nor-
mal with mean β and with the variance-covariance matrix given by

{
m∑

k=1

DT
k V

−1/2
k WkV

−1/2
k Dk

}−1{ m∑

k=1

DT
k V

−1/2
k Var(ϕ†

k)V
−1/2
k Di

}

×
{

m∑

k=1

DT
kV

−1/2
k WkV

−1/2
k Dk

}−1

, (8.31)

whereϕ†
k denotes the nk×1 vector (ϕ[R(e†k1)/(n+1)], . . . , ϕ[R(e†knk

)/(n+1)])T

and e†knk
is defined by the following expressions:

Y†
k = V

−1/2
k Yk = (Y †

k1, . . . , Y
†
knk

)T

G†
k(β) = V

−1/2
k a′i(θ) = [g†ki]

e†ki = Y †
ki − g

†
ki(β). (8.32)
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A practical implementation of inference the GEERB estimates is discussed in
Section 8.6.4. As discussed in Abebe et al. (2014), the GEERB estimates are
robust in the Y space (provided the score function is bounded) but not robust
in the X space. We are currently developing a HBR GEE estimator which has
robustness in both spaces and, also, has high breakdown.

The GEE estimates are quite flexible. The exponential family is a large
family of distributions that is often used in practice. The choices of the link
functions and working variance-covariance structures allow a large variety of
models from which to choose. As shown in expression (8.31), the asymptotic
covariance matrix of the estimate takes into account each of these choices;
that is, the link function determines the Hessian matrices Dk, (8.25); the
working covariance structure determines the matrices V k, (8.26); and the pdf
is reflected in the factor in the middle set of braces. We provided R code to
compute GEERB estimates based on the Gauss–Newton step described above.
The main driver is the R function geerfit which is included in the package2

rbgee. It can be easily modified to compute different options. In the next
several subsections, we discuss the weights, link functions, and the working
covariance structure, and our R functions associated with these items. We
discuss some of the details of R code in the next three subsections which are
followed by an illustrative example.

We have only recently developed geerfit so we caution the reader that it
is an experimental version and updates are likely.

8.6.1 Weights

The R function wtmat(Dmat,eitb,med=TRUE,scores=wscores) computes the
weights, where eitb is the vector of current residuals and Dmat is the current
Hessian matrix. If the option med is set to TRUE then it is assumed that the
score function is odd about 1

2 and the median of the current residuals is used
in the calculation of the weights as given in expression (8.29). If med is FALSE
then the percentile discussed in Remark 8.6.1 is used. These are calculated at
the current residuals, making use of the Hessian matrix D, (8.25).

8.6.2 Link Function

The link function connects the covariance space to the distribution of the
responses. Note that it affects the fitting algorithm in its interaction with the
vectors ak(θk), (8.24), and the Hessian matrices Dk, (8.25). We have set the
default link to a linear model. Thus, in the routine getAp, for cluster k and
with β(j) as the current estimate of β, the vector a′

k(θk) is set to Xkβ
(j)

and, in the routine getD, the matrix Dk is set to Xk. For other link functions
these routines have to be changed.

2See https://github.com/kloke/book for more information.
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8.6.3 Working Covariance Matrix

The working covariance matrix V , (8.26), is computed in the function veemat.
Currently there are three options available: working independence, “WI”; com-
pound symmetry (exchangeable), “CS”; and autoregressive order 1, “AR”. De-
fault is set at compound symmetry. For the compound symmetry case, this
function also sets the method for computing the variance components. Cur-
rently, there are two options: the MAD-median option, “MM”, and the dis-
persion and Hodges–Lehmann estimator, “DHL.” The default option is the
MAD-median option. Recall that the MAD-median option results in robust
estimates of the variance components.

8.6.4 Standard Errors

Abebe et al. (2014) performed several Monte Carlo studies of procedures to
standardize the GEEBR in terms of validity. One procedure involved esti-
mation of the asymptotic variance-covariance matrix, (8.31), of GEEBR es-
timators, using the final estimates of the matrices V , W , and D. For clus-
ter k, a simple moment estimator of Var(ϕ†

k) based on residuals is discussed
in Abebe et al. (2014). The resulting estimator of the asymptotic variance-
covariance matrix in the Monte Carlo studies, though, appeared to lead to a
liberal inference. In the studies, a first-order approximation to the asymptotic
variance-covariance matrix appeared to lead to a valid inference. The first-
order approximation involves replacing the weight matrix Ŵ by τ̂−1I, where
τ̂ is the estimator of τ , and the matrix Var(ϕ†

k) by Ik. In our R function the
indicator of the variance covariance procedure is the variable varcovst. The
default setting is varcovst=="var2"which results is this approximation while
the setting "var1 results in the estimation of the asymptotic form. The third
setting, "var3" is a hybrid of the two where just W is approximated. This is
similar to a sandwich type estimator.

8.6.5 Examples

The driver of our GEERB fit R function at defaults settings is:

geerfit(xmat, y, center, scores = wscores, geemod = ”LM”,

structure = ”CS”, substructure = ”MM”,

med = TRUE, varcovst = ”var2”,

maxstp = 50, eps = 0.00001, delta = 0.8, hparm = 2).

The function geerfit assumes that y and xmat are sorted by center. The
HBR version is under development and, hence, currently not available.

The routine returns the estimates of the regression coefficients and their
standard errors and t-ratios, along with the variance-covariance estimator and
the history (in terms of estimates) of the Newton steps. We illustrate the
routine with two examples.
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Example 8.6.1. For this example, we simulated data with 5 clusters each of
size 10. The covariance structure is compound symmetrical with the variances
set at σ2

ε = 1 and σ2
b = 3, so that the intraclass coefficient is ρ = 0.75. The

random errors and random effects are normally distributed, N(0, 1), with the
true β set at (0.5, 0.35, 0.0)T . There are 3 covariates which were generated from
a standard normal distribution. The data can be found in the dataset eg1gee.
The following R segment loads the data and computes the Wilcoxon GEE
fit. We used the default settings for the GEERB fit. In particular, compound
symmetry was the assumed covariance structure and the variance component
estimates are returned in the code.

> xmat<- with(eg1gee,cbind(x1,x2,x3))

> gwfit <- geerfit(xmat,y,block)

> gwfit$tab

Est SE t-ratio

x1 0.54067723 0.1118348 4.83460610

x2 -0.01492029 0.1576557 -0.09463847

x3 -0.20872498 0.1300584 -1.60485548

> vc <- gwfit$vc

> vc

[1] 2.2674708 1.0457868 1.2216840 0.4612129

> rho <- vc[2]/vc[1]

> rho

[1] 0.4612129

The GEERB estimates of the three components of β are 0.541,−0.015, and −
0.209. Based on the standard error of the estimates, the true value of each
component of β̂ is trapped within the respective 95% confidence interval. The
estimates of the variance components are σ̂2

t = 2.267, σ̂2
b = 1.046, σ̂2

ǫ = 1.222,
and ρ̂ = 0.461.

We next change the data so that y11 = 53 instead of 1.53 and rerun the
fits:

> y[1] <- 53

> gwfit <- geerfit(xmat,y,block)

> gwfit$tab

Est SE t-ratio

x1 0.6069074818 0.1491861 4.068123565

x2 -0.0006604922 0.2119288 -0.003116575

x3 -0.3447768897 0.1454904 -2.369756997

> gwfit$vc
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[1] 2.1359250 0.6595324 1.4763927 0.3087807

There is little change in the estimate of β, verifying the robustness of the
GEERB estimator.

Example 8.6.2 (Rounding Firtsbase, Continued). Recall that in Exam-
ple 8.2.1 three methods (round out, narrow angle, and wide angle) for round-
ing first base were investigated. Twenty-two baseball players served as blocks.
The responses are their average times for two replications of each method.
Thus the design is a randomized block design. In Example 8.2.1, the data are
analyzed using Friedman’s test which is significant for treatment effect. Fried-
man’s analysis, though, consists of only a test. In contrast, we next discuss
the rank-based analysis based on the GEERB fit. In addition to a test for over
all treatment effect, it offers estimates (with standard errors) of size effects,
estimates of the variance components, and a residual analysis for checking
quality of fit and in determining outliers. We use a design matrix which refer-
ences the first method. The following code provides the Wald test, based on
the fit, which tests for differences among the three methods:

> fit <- geerfit(xm,y,center)

> beta <- fit$tab[,1]

> tst <- t(beta)%*%solve(fit$varcov)%*%beta/2

> pv <- 1-pchisq(tst,2)

> c(tst,pv)

[1] 6.36264299 0.04153074

The Wald test is significant at the 5% level. With Friedman’s method, this
would be the end of the analysis. Let µi denote the mean time of method i. The
effects of interest are the differences between these means. Because method
1 is referenced, the summary of the fit (fit$tab) provides the inference for
µ3 − µ1 and µ2 − µ1. However, the next few lines of code yield the complete
inference for comparison of the methods. The summary is displayed in Table
8.1.

> h <- matrix(c(-1,1),ncol=2); e32 <- h%*%beta

> se32 <- sqrt(h%*%fit$varcov%*%t(h))

> t32 <- e32/se32; c(e32,se32,t32)

[1] -0.07826494 0.02271888 -3.44492906

Based on the Table 8.1, method 3 significantly differs from the other two
methods while methods 1 and 2 do not differ significantly. Hence, overall,
method 3 (rounding first base using a wide angle) results in the quickest
times. The top panel of Figure 8.3 displays comparison boxplots of the three
methods. Outliers are prevalent. The bottom panel shows the q−q plot of the
residuals based on the GEERB fit. Notice that three outliers clearly stand
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TABLE 8.1
Summary Table of Effects for the Firstbase
Data.

Effect Est. SE t-ratio
mu2 minus mu1 -0.02 0.03 -0.69
mu3 minus mu1 -0.10 0.03 -2.92
mu3 minus mu2 -0.08 0.02 -3.44

out. A simple inspection of the residuals shows that these outliers correspond
to the times of baseball player #22. He appears to be the slowest runner. The
rank-based estimates of the variance components are:

> fit$vc

[1] 0.013402740 0.012364328 0.001038412 0.922522403

The estimate of the intraclass correlation coefficient is 0.92, indicating a strong
correlation of running times within players over the three methods.
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FIGURE 8.3
Comparison boxplots of the three methods and the q−q plot of the residuals
based on the GEERB fit.
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8.7 Exercises

8.7.1. Transform the firstbase data frame into a vector and create categori-
cal variables for treatment (rounding method) and subject. Obtain the results
from friedman.test using these data objects.

8.7.2. Referring to Exercise 8.7.1 obtain estimates of the cell medians for each
of the rounding methods. Also obtain estimates of the standard errors of these
estimates of location using both a compound symmetry estimate as well as
the sandwich estimate. Discuss.

8.7.3. It is straightforward to generate data from the simple mixed model.
Write a function which generates a sample of size m of blocks each of size n
which variance components σb and σǫ. Assume normal errors.

8.7.4. Extend 8.7.3 to include errors of a t distribution.

8.7.5. Extend 8.7.3 to allow for different block sizes.

8.7.6. On page 418, Rasmussen (1992) discusses a randomized block design
concerned with the readings of four thermometers for melting point of hydro-
quinone. Three technicians were used as a blocking factor (each technician
obtained measurements for all four thermometers). The data are presented
next.

MeltPt Therm. Tech. MeltPt Therm. Tech.
174.0 1 1 171.5 3 1
173.0 1 2 171.0 3 2
173.5 1 3 173.0 3 3
173.0 2 1 173.5 4 1
172.0 2 2 171.0 4 2
173.0 2 3 172.5 4 3

(a) Let the R vectors y, ind, block contain respectively the melting
points, thermometers, and blocks. Argue that the following R code
obtains the JR fit of the full model:

xmat<-cellx(ind); x2 <-xmat[,2:4]; fit <- jrfit(x2,y,block)

(b) Obtain the summary of the above fit. Notice that the first ther-
mometer was referenced. Discuss what the regression coefficients
are estimating. Do there seem to be any differences in the ther-
mometers?

(c) Obtain residual and normal q−q plots of the Studentized residuals.
Are there any outliers? Discuss the quality of fit.
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(d) Argue that the following code obtains the Wald’s test of no differ-
ences among the parameters. Is this hypothesis rejected at the 5%
level?

beta<-fit$coef; b<-beta[2:4]; vc <- fit$varhat[2:4,2:4]

tst <- t(b)%*%solve(vc)%*%b/3; pv<-1-pf(tst,3,4)

8.7.7. Rasmussen (1992) (page 442) discusses a study on emotions. Each
of eight volunteers were requested to express the emotions fear, happiness,
depression, and calmness. At the time of expression, their skin potentials in
millivolts were measured; hence, there are 32 measurements in all. The data
can be found in the dataset emotion.

(a) Discuss an appropriate model for the data and obtain a rank-based
fit of it.

(b) Using Studentized residuals check quality of fit.

(c) Test to see if there is a significant difference in the skin potential of
the four emotions. Conclude at the 5% level.

(d) Obtain a 95% for the shift between the emotions fear and calmness.

(e) Obtain a 95% for the shift between the emotions depression and
calmness.

8.7.8. Consider the results of the jrfit in Example 8.4.1. Obtain 95% confi-
dence intervals for the fixed effects coefficients. Did they trap the true values?

8.7.9. Run a simulation of size 10,000 on the model simulated in Exam-
ple 8.4.1. In the simulations, collect the estimates of the variance components
σ2
b and σ2

ǫ for both the median-MAD and the HL-dispersion methods. Obtain
the empirical mean square errors. Which method, if any, performed better
than the other?

8.7.10. Repeat Exercise 8.7.9, but for this simulation, use the t-distribution
with 2 degrees of freedom for both the random errors ǫki and the random
effects bk.
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Nonparametric Statistical Methods Using R covers traditional nonparamet-
ric methods and rank-based analyses, including estimation and inference for 
models ranging from simple location models to general linear and nonlinear 
models for uncorrelated and correlated responses. The authors emphasize ap-
plications and statistical computation. They illustrate the methods with many 
real and simulated data examples using R, including the packages Rfit and 
npsm.

The book first gives an overview of the R language and basic statistical con-
cepts before discussing nonparametrics. It presents rank-based methods for 
one- and two-sample problems, procedures for regression models, computa-
tion for general fixed-effects ANOVA and ANCOVA models, and time-to-event 
analyses. The last two chapters cover more advanced material, including high 
breakdown fits for general regression models and rank-based inference for 
cluster correlated data.
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• Explains how to apply and compute nonparametric methods, such as 

Wilcoxon procedures and bootstrap methods
• Describes various types of rank-based estimates, including linear, 

nonlinear, time series, and basic mixed effects models 
• Illustrates the use of diagnostic procedures, including studentized 
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• Provides the R packages on CRAN, enabling you to reproduce all of the 

analyses
• Includes exercises at the end of each chapter for self-study and 

classroom use
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