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Preface



0.1	What	you	will	learn
Data	visualization	is	one	of	the	most	important	part	of	data	science.	Many	books
and	courses	present	a	catalogue	of	graphics	but	they	don't	teach	you	which	charts
to	use	according	to	the	type	of	the	data.

In	this	book,	we	start	by	presenting	the	key	graphic	systems	and	packages
available	in	R,	including	R	base	graphs,	lattice	and	ggplot2	plotting	systems.

Next,	we	provide	practical	examples	to	create	great	graphics	for	the	right	data
using	either	the	ggplot2	package	and	extensions	or	the	traditional	R	graphics.

With	this	book,	you	'll	learn:

How	to	quickly	create	beautiful	graphics	using	ggplot2	packages

How	to	properly	customize	and	annotate	the	plots

Type	of	graphics	for	visualizing	categorical	and	continuous	variables

How	to	add	automatically	p-values	to	box	plots,	bar	plots	and	alternatives

How	to	add	marginal	density	plots	and	correlation	coefficients	to	scatter
plots

Key	methods	for	analyzing	and	visualizing	multivariate	data

R	functions	and	packages	for	plotting	time	series	data

How	to	combine	multiple	plots	on	one	page	to	create	production-quality
figures.



0.2	Book	website
The	website	for	this	book	is	located	at	:	http://www.sthda.com/english/.	It
contains	number	of	resources.

http://www.sthda.com/english/


0.3	Executing	the	R	codes	from	the	PDF
For	a	single	line	R	code,	you	can	just	copy	the	code	from	the	PDF	to	the	R
console.

For	a	multiple-line	R	codes,	an	error	is	generated,	sometimes,	when	you	copy
and	paste	directly	the	R	code	from	the	PDF	to	the	R	console.	If	this	happens,	a
solution	is	to:

Paste	firstly	the	code	in	your	R	code	editor	or	in	your	text	editor
Copy	the	code	from	your	text/code	editor	to	the	R	console



0.4	Colophon
This	book	was	built	with	R	3.3.2	and	the	following	packages	:

##													name				version																							source

##	1							bookdown								0.5						Github:rstudio/bookdown

##	2				changepoint						2.2.2																									CRAN

##	3								cowplot	0.8.0.9000						Github:wilkelab/cowplot

##	4										dplyr						0.7.4																									cran

##	5					factoextra		1.0.5.999		local:kassambara/factoextra

##	6					FactoMineR							1.38																									CRAN

##	7									GGally						1.3.0																									CRAN

##	8					ggcorrplot	0.1.1.9000	Github:kassambara/ggcorrplot

##	9								ggforce						0.1.1					Github:thomasp85/ggforce

##	10					ggformula								0.6																									CRAN

##	11					ggfortify						0.4.1																									CRAN

##	12							ggpmisc					0.2.15																									CRAN

##	13								ggpubr		0.1.5.999					Github:kassambara/ggpubr

##	14							lattice				0.20-34																									CRAN

##	15									readr						1.1.1																									cran

##	16	scatterplot3d					0.3-40																									cran

##	17			strucchange						1.5-1																									CRAN

##	18									tidyr						0.7.2																									cran



1	About	the	author
Alboukadel	Kassambara	is	a	PhD	in	Bioinformatics	and	Cancer	Biology.	He
works	since	many	years	on	genomic	data	analysis	and	visualization	(read	more:
http://www.alboukadel.com/).

He	has	work	experiences	in	statistical	and	computational	methods	to	identify
prognostic	and	predictive	biomarker	signatures	through	integrative	analysis	of
large-scale	genomic	and	clinical	data	sets.

He	created	a	bioinformatics	web-tool	named	GenomicScape
(www.genomicscape.com)	which	is	an	easy-to-use	web	tool	for	gene	expression
data	analysis	and	visualization.

He	developed	also	a	training	website	on	data	science,	named	STHDA	(Statistical
Tools	for	High-throughput	Data	Analysis,	www.sthda.com/english),	which
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packages.

He	is	the	author	of	many	popular	R	packages	for:

multivariate	data	analysis	(factoextra,
http://www.sthda.com/english/rpkgs/factoextra),
survival	analysis	(survminer,
http://www.sthda.com/english/rpkgs/survminer/),
correlation	analysis	(ggcorrplot,
http://www.sthda.com/english/wiki/ggcorrplot-visualization-of-a-
correlation-matrix-using-ggplot2),
creating	publication	ready	plots	in	R	(ggpubr,
http://www.sthda.com/english/rpkgs/ggpubr).

Recently,	he	published	three	books	on	data	analysis	and	visualization:

1.	 Practical	Guide	to	Cluster	Analysis	in	R	(https://goo.gl/yhhpXh)
2.	 Practical	Guide	To	Principal	Component	Methods	in	R

(https://goo.gl/d4Doz9)

http://www.alboukadel.com/
http://www.sthda.com/english/rpkgs/factoextra
http://www.sthda.com/english/rpkgs/survminer/
http://www.sthda.com/english/wiki/ggcorrplot-visualization-of-a-correlation-matrix-using-ggplot2
http://www.sthda.com/english/rpkgs/ggpubr
https://goo.gl/yhhpXh
https://goo.gl/d4Doz9


2	R	Basics	for	Data	Visualization



2.1	Introduction
R	is	a	free	and	powerful	statistical	software	for	analyzing	and	visualizing	data.

In	this	chapter,	you'll	learn:

the	basics	of	R	programming	for	importing	and	manipulating	your	data:
filtering	and	ordering	rows,
renaming	and	adding	columns,
computing	summary	statistics

R	graphics	systems	and	packages	for	data	visualization:
R	traditional	base	plots
Lattice	plotting	system	that	aims	to	improve	on	R	base	graphics
ggplot2	package,	a	powerful	and	a	flexible	R	package,	for	producing
elegant	graphics	piece	by	piece.
ggpubr	package,	which	facilitates	the	creation	of	beautiful	ggplot2-
based	graphs	for	researcher	with	non-advanced	programming
backgrounds.
ggformula	package,	an	extension	of	ggplot2,	based	on	formula
interfaces	(much	like	the	lattice	interface)



2.2	Install	R	and	RStudio
RStudio	is	an	integrated	development	environment	for	R	that	makes	using	R
easier.	R	and	RStudio	can	be	installed	on	Windows,	MAC	OSX	and	Linux
platforms.

1.	 R	can	be	downloaded	and	installed	from	the	Comprehensive	R	Archive
Network	(CRAN)	webpage	(http://cran.r-project.org/)

2.	 After	installing	R	software,	install	also	the	RStudio	software	available	at:
http://www.rstudio.com/products/RStudio/.

3.	 Launch	RStudio	and	start	use	R	inside	R	studio.

http://cran.r-project.org/
http://www.rstudio.com/products/RStudio/


2.3	Install	and	load	required	R	packages
An	R	package	is	a	collection	of	functionalities	that	extends	the	capabilities	of
base	R.	To	use	the	R	code	provide	in	this	book,	you	should	install	the	following
R	packages:

tidyverse	packages,	which	are	a	collection	of	R	packages	that	share	the
same	programming	philosophy.	These	packages	include:

readr:	for	importing	data	into	R
dplyr:	for	data	manipulation
ggplot2	and	ggpubr	for	data	visualization.

ggpubr	package,	which	makes	it	easy,	for	beginner,	to	create	publication
ready	plots.

1.	 Install	the	tidyverse	package.	Installing	tidyverse	will	install
automatically	readr,	dplyr,	ggplot2	and	more.	Type	the	following	code	in
the	R	console:

install.packages("tidyverse")

2.	 Install	the	ggpubr	package.

We	recommend	to	install	the	latest	developmental	version	of	ggpubr	as
follow:

if(!require(devtools))	install.packages("devtools")

devtools::install_github("kassambara/ggpubr")

If	the	above	R	code	fails,	you	can	install	the	latest	stable	version	on	CRAN:

install.packages("ggpubr")

3.	 Load	required	packages.	After	installation,	you	must	first	load	the
package	for	using	the	functions	in	the	package.	The	function	library()	is
used	for	this	task.	An	alternative	function	is	require().	For	example,	to
load	ggplot2	and	ggpubr	packages,	type	this:

library("ggplot2")

library("ggpubr")



Now,	we	can	use	R	functions,	such	as	ggscatter()	[in	the	ggpubr	package]	for
creating	a	scatter	plot.

If	you	want	to	learn	more	about	a	given	function,	say	ggscatter(),	type	this	in	R
console:	?ggscatter.



2.4	Data	format
Your	data	should	be	in	rectangular	format,	where	columns	are	variables	and	rows
are	observations	(individuals	or	samples).

Column	names	should	be	compatible	with	R	naming	conventions.	Avoid
column	with	blank	space	and	special	characters.	Good	column	names:
long_jump	or	long.jump.	Bad	column	name:	long	jump.

Avoid	beginning	column	names	with	a	number.	Use	letter	instead.	Good
column	names:	sport_100m	or	x100m.	Bad	column	name:	100m.

Replace	missing	values	by	NA	(for	not	available)

For	example,	your	data	should	look	like	this:

		manufacturer	model	displ	year	cyl						trans	drv

1									audi				a4			1.8	1999			4			auto(l5)			f

2									audi				a4			1.8	1999			4	manual(m5)			f

3									audi				a4			2.0	2008			4	manual(m6)			f

4									audi				a4			2.0	2008			4			auto(av)			f

Read	more	at:	Best	Practices	in	Preparing	Data	Files	for	Importing	into	R

http://www.sthda.com/english/wiki/best-practices-in-preparing-data-files-for-importing-into-r


2.5	Import	your	data	in	R
First,	save	your	data	into	txt	or	csv	file	formats	and	import	it	as	follow	(you	will
be	asked	to	choose	the	file):

library("readr")

#	Reads	tab	delimited	files	(.txt	tab)

my_data	<-	read_tsv(file.choose())

#	Reads	comma	(,)	delimited	files	(.csv)

my_data	<-	read_csv(file.choose())

#	Reads	semicolon(;)	separated	files(.csv)

my_data	<-	read_csv2(file.choose())

Read	more	about	how	to	import	data	into	R	at	this	link:
http://www.sthda.com/english/wiki/importing-data-into-r

http://www.sthda.com/english/wiki/importing-data-into-r


2.6	Demo	data	sets
R	comes	with	several	demo	data	sets	for	playing	with	R	functions.	The	most
used	R	demo	data	sets	include:	USArrests,	iris	and	mtcars.	To	load	a	demo	data
set,	use	the	function	data()	as	follow.	The	function	head()	is	used	to	inspect	the
data.

data("iris")			#	Loading

head(iris,	n	=	3)		#	Print	the	first	n	=	3	rows

##			Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species

##	1										5.1									3.5										1.4									0.2		setosa

##	2										4.9									3.0										1.4									0.2		setosa

##	3										4.7									3.2										1.3									0.2		setosa

To	learn	more	about	iris	data	sets,	type	this:

?iris

After	typing	the	above	R	code,	you	will	see	the	description	of	iris	data	set:	this
iris	data	set	gives	the	measurements	in	centimeters	of	the	variables	sepal	length
and	width	and	petal	length	and	width,	respectively,	for	50	flowers	from	each	of	3
species	of	iris.	The	species	are	Iris	setosa,	versicolor,	and	virginica.



2.7	Data	manipulation
After	importing	your	data	in	R,	you	can	easily	manipulate	it	using	the	dplyr
package	(Wickham	et	al.	2017),	which	can	be	installed	using	the	R	code:
install.packages("dplyr").

After	loading	dplyr,	you	can	use	the	following	R	functions:

filter():	Pick	rows	(observations/samples)	based	on	their	values.
distinct():	Remove	duplicate	rows.
arrange():	Reorder	the	rows.
select():	Select	columns	(variables)	by	their	names.
rename():	Rename	columns.
mutate():	Add/create	new	variables.
summarise():	Compute	statistical	summaries	(e.g.,	computing	the	mean	or
the	sum)
group_by():	Operate	on	subsets	of	the	data	set.

We'll	show	you	how	these	functions	work	in	the	different	chapters	of	this	book.

Note	that,	dplyr	package	allows	to	use	the	forward-pipe	chaining	operator
(%>%)	for	combining	multiple	operations.	For	example,	x	%>%	f	is
equivalent	to	f(x).	Using	the	pipe	(%>%),	the	output	of	each	operation	is
passed	to	the	next	operation.	This	makes	R	programming	easy.



2.8	R	graphics	systems
There	are	different	graphic	packages	available	in	R	for	visualizing	your	data:	1)
R	base	graphs,	2)	Lattice	Graphs	(Sarkar	2016)	and	3)	ggplot2	(Wickham	and
Chang	2017).

In	this	section,	we	start	by	providing	a	quick	overview	of	R	base	and	lattice
plots,	and	then	we	move	to	ggplot2	graphic	system.	The	vast	majority	of	plots
generated	in	this	book	is	based	on	the	modern	and	flexible	ggplot2	R	package.

2.8.1	R	base	graphs

R	comes	with	simple	functions	to	create	many	types	of	graphs.	For	example:

Plot	Types R	base	function
Scatter	plot plot()
Scatter	plot	matrix pairs()
Box	plot boxplot()
Strip	chart stripchart()
Histogram	plot hist()
density	plot density()
Bar	plot barplot()
Line	plot plot()	and	line()
Pie	charts pie()
Dot	charts dotchart()
Add	text	to	a	plot text()

In	the	most	cases,	you	can	use	the	following	arguments	to	customize	the	plot:

pch:	change	point	shapes.	Allowed	values	comprise	number	from	1	to	25.
cex:	change	point	size.	Example:	cex	=	0.8.
col:	change	point	color.	Example:	col	=	"blue".
frame:	logical	value.	frame	=	FALSE	removes	the	plot	panel	border	frame.
main,	xlab,	ylab.	Specify	the	main	title	and	the	x/y	axis	labels	-,

http://www.sthda.com/english/wiki/data-visualization


respectively
las:	For	a	vertical	x	axis	text,	use	las	=	2.

In	the	following	R	code,	we'll	use	the	iris	data	set	to	create	a:

1.	 Scatter	plot	of	Sepal.Length	(on	x-axis)	and	Sepal.Width	(on	y-axis).

2.	 Box	plot	of	Sepal.length	(y-axis)	by	Species	(x-axis)

#	(1)	Create	a	scatter	lot

plot(

		x	=	iris$Sepal.Length,	y	=	iris$Sepal.Width,

		pch	=	19,	cex	=	0.8,	frame	=	FALSE,

		xlab	=	"Sepal	Length",ylab	=	"Sepal	Width"

		)

#	(2)	Create	a	box	plot

boxplot(Sepal.Length	~	Species,	data	=	iris,

								ylab	=	"Sepal.Length",	

								frame	=	FALSE,	col	=	"lightgray")



2.8.2	Lattice	graphics

The	lattice	R	package	provides	a	plotting	system	that	aims	to	improve	on	R	base
graphs.	After	installing	the	package,	whith	the	R	command
install.packages("lattice"),	you	can	test	the	following	functions.

Main	functions	in	the	lattice	package:

Plot	types Lattice	functions
Scatter	plot xyplot()
Scatter	plot	matrix splom()
3D	scatter	plot cloud()
Box	plot bwplot()
strip	plots	(1-D	scatter	plots) stripplot()
Dot	plot dotplot()
Bar	chart barchart()

Read	more	examples	at:	R	base	Graphics	on	STHDA,
http://www.sthda.com/english/wiki/r-base-graphs

http://www.sthda.com/english/wiki/r-base-graphs


Histogram histogram()
Density	plot densityplot()
Theoretical	quantile	plot qqmath()
Two-sample	quantile	plot qq()
3D	contour	plot	of	surfaces contourplot()
False	color	level	plot	of	surfaces levelplot()
Parallel	coordinates	plot parallel()
3D	wireframe	graph wireframe()

Create	a	basic	scatter	plot	of	y	by	x.	Syntax:	y	~	x.	Change	the	color	by
groups	and	use	auto.key	=	TRUE	to	show	legends:

library("lattice")

xyplot(

		Sepal.Length	~	Petal.Length,	group	=	Species,	

		data	=	iris,	auto.key	=	TRUE,	pch	=	19,	cex	=	0.5

		)

The	lattice	package	uses	formula	interface.	For	example,	in	lattice
terminology,	the	formula	y	~	x	|	group,	means	that	we	want	to	plot	the	y
variable	according	to	the	x	variable,	splitting	the	plot	into	multiple	panels
by	the	variable	group.



Multiple	panel	plots	by	groups.	Syntax:	y	~	x	|	group.

xyplot(

		Sepal.Length	~	Petal.Length	|	Species,	

		layout	=	c(3,	1),															#	panel	with	ncol	=	3	and	nrow	=	

1

		group	=	Species,	data	=	iris,

		type	=	c("p",	"smooth"),								#	Show	points	and	smoothed	line

		scales	=	"free"																	#	Make	panels	axis	scales	

independent

		)

2.8.3	ggplot2	graphics

GGPlot2	is	a	powerful	and	a	flexible	R	package,	implemented	by	Hadley
Wickham,	for	producing	elegant	graphics	piece	by	piece.	The	gg	in	ggplot2
means	Grammar	of	Graphics,	a	graphic	concept	which	describes	plots	by	using
a	"grammar".	According	to	the	ggplot2	concept,	a	plot	can	be	divided	into
different	fundamental	parts:	Plot	=	data	+	Aesthetics	+	Geometry

data:	a	data	frame
aesthetics:	used	to	indicate	the	x	and	y	variables.	It	can	be	also	used	to

Read	more	examples	at:	Lattice	Graphics	on	STHDA

http://www.sthda.com/english/wiki/lattice-graphs


control	the	color,	the	size	and	the	shape	of	points,	etc.....
geometry:	corresponds	to	the	type	of	graphics	(histogram,	box	plot,	line
plot,	....)

After	installing	and	loading	the	ggplot2	package,	you	can	use	the	following	key
functions:

Plot	types GGPlot2	functions
Initialize	a	ggplot ggplot()
Scatter	plot geom_point()
Box	plot geom_boxplot()
Violin	plot geom_violin()
strip	chart geom_jitter()
Dot	plot geom_dotplot()
Bar	chart geom_bar()
Line	plot geom_line()
Histogram geom_histogram()
Density	plot geom_density()
Error	bars geom_errorbar()
QQ	plot stat_qq()
ECDF	plot stat_ecdf()
Title	and	axis	labels labs()

The	main	function	in	the	ggplot2	package	is	ggplot(),	which	can	be	used	to
initialize	the	plotting	system	with	data	and	x/y	variables.

The	ggplot2	syntax	might	seem	opaque	for	beginners,	but	once	you
understand	the	basics,	you	can	create	and	customize	any	kind	of	plots	you
want.

Note	that,	to	reduce	this	opacity,	we	recently	created	an	R	package,	named
ggpubr	(ggplot2	Based	Publication	Ready	Plots),	for	making	ggplot
simpler	for	students	and	researchers	with	non-advanced	programming
backgrounds.	We'll	present	ggpubr	in	the	next	section.



For	example,	the	following	R	code	takes	the	iris	data	set	to	initialize	the	ggplot
and	then	a	layer	(geom_point())	is	added	onto	the	ggplot	to	create	a	scatter	plot
of	x	=	Sepal.Length	by	y	=	Sepal.Width:

library(ggplot2)

ggplot(iris,	aes(x	=	Sepal.Length,	y	=	Sepal.Width))+

		geom_point()

#	Change	point	size,	color	and	shape

ggplot(iris,	aes(x	=	Sepal.Length,	y	=	Sepal.Width))+

		geom_point(size	=	1.2,	color	=	"steelblue",	shape	=	21)

Note	that,	in	the	code	above,	the	shape	of	points	is	specified	as	number.	To
display	the	different	point	shape	available	in	R,	type	this:

ggpubr::show_point_shapes()

It's	also	possible	to	control	points	shape	and	color	by	a	grouping	variable	(here,
Species).	For	example,	in	the	code	below,	we	map	points	color	and	shape	to	the
Species	grouping	variable.

#	Control	points	color	by	groups

ggplot(iris,	aes(x	=	Sepal.Length,	y	=	Sepal.Width))+

		geom_point(aes(color	=	Species,	shape	=	Species))

#	Change	the	default	color	manually.

#	Use	the	scale_color_manual()	function

ggplot(iris,	aes(x	=	Sepal.Length,	y	=	Sepal.Width))+

		geom_point(aes(color	=	Species,	shape	=	Species))+



		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))

You	can	also	split	the	plot	into	multiple	panels	according	to	a	grouping	variable.
R	function:	facet_wrap().	Another	interesting	feature	of	ggplot2,	is	the
possibility	to	combine	multiple	layers	on	the	same	plot.	For	example,	with	the
following	R	code,	we'll:

Add	points	with	geom_point(),	colored	by	groups.
Add	the	fitted	smoothed	regression	line	using	geom_smooth().	By	default
the	function	geom_smooth()	add	the	regression	line	and	the	confidence
area.	You	can	control	the	line	color	and	confidence	area	fill	color	by	groups.
Facet	the	plot	into	multiple	panels	by	groups
Change	color	and	fill	manually	using	the	function	scale_color_manual()
and	scale_fill_manual()



ggplot(iris,	aes(x	=	Sepal.Length,	y	=	Sepal.Width))+

		geom_point(aes(color	=	Species))+															

		geom_smooth(aes(color	=	Species,	fill	=	Species))+

		facet_wrap(~Species,	ncol	=	3,	nrow	=	1)+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))

Note	that,	the	default	theme	of	ggplots	is	theme_gray()	(or	theme_grey()),
which	is	theme	with	grey	background	and	white	grid	lines.	More	themes	are
available	for	professional	presentations	or	publications.	These	include:
theme_bw(),	theme_classic()	and	theme_minimal().

To	change	the	theme	of	a	given	ggplot	(p),	use	this:	p	+	theme_classic().	To
change	the	default	theme	to	theme_classic()	for	all	the	future	ggplots	during
your	entire	R	session,	type	the	following	R	code:

theme_set(

		theme_classic()

)

Now	you	can	create	ggplots	with	theme_classic()	as	default	theme:

ggplot(iris,	aes(x	=	Sepal.Length,	y	=	Sepal.Width))+

		geom_point()



2.8.4	ggpubr	for	publication	ready	plots

The	ggpubr	R	package	facilitates	the	creation	of	beautiful	ggplot2-based	graphs
for	researcher	with	non-advanced	programming	backgrounds	(Kassambara
2017).

For	example,	to	create	the	density	distribution	of	"Sepal.Length",	colored	by
groups	("Species"),	type	this:

library(ggpubr)

#	Density	plot	with	mean	lines	and	marginal	rug

ggdensity(iris,	x	=	"Sepal.Length",

			add	=	"mean",	rug	=	TRUE,													#	Add	mean	line	and	

marginal	rugs

			color	=	"Species",	fill	=	"Species",		#	Color	by	groups

			palette	=	"jco")																						#	use	jco	journal	color	

palette



Create	a	box	plot	with	p-values	comparing	groups:

#	Groups	that	we	want	to	compare

my_comparisons	<-	list(

		c("setosa",	"versicolor"),	c("versicolor",	"virginica"),

		c("setosa",	"virginica")

)

#	Create	the	box	plot.	Change	colors	by	groups:	Species

#	Add	jitter	points	and	change	the	shape	by	groups

ggboxplot(

		iris,	x	=	"Species",	y	=	"Sepal.Length",

		color	=	"Species",	palette	=	c("#00AFBB",	"#E7B800",	"#FC4E07"),

		add	=	"jitter"

		)+

		stat_compare_means(comparisons	=	my_comparisons,	method	=	

"t.test")

Note	that	the	argument	palette	can	take	also	a	custom	color	palette.	For
example	palette=	c("#00AFBB",	"#E7B800",	"#FC4E07").



Learn	more	on	STHDA	at:	ggpubr:	Publication	Ready	Plots

http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/


2.9	Export	R	graphics
You	can	export	R	graphics	to	many	file	formats,	including:	PDF,	PostScript,
SVG	vector	files,	Windows	MetaFile	(WMF),	PNG,	TIFF,	JPEG,	etc.

The	standard	procedure	to	save	any	graphics	from	R	is	as	follow:

1.	 Open	a	graphic	device	using	one	of	the	following	functions:

pdf("r-graphics.pdf"),
postscript("r-graphics.ps"),
svg("r-graphics.svg"),
png("r-graphics.png"),
tiff("r-graphics.tiff"),
jpeg("r-graphics.jpg"),
win.metafile("r-graphics.wmf"),
and	so	on.

Additional	arguments	indicating	the	width	and	the	height	(in	inches)	of	the
graphics	region	can	be	also	specified	in	the	mentioned	function.

2.	 Create	a	plot

3.	 Close	the	graphic	device	using	the	function	dev.off()

For	example,	you	can	export	R	base	plots	to	a	pdf	file	as	follow:

pdf("r-base-plot.pdf")	

#	Plot	1	-->	in	the	first	page	of	PDF

plot(x	=	iris$Sepal.Length,	y	=	iris$Sepal.Width)

#	Plot	2	--->	in	the	second	page	of	the	PDF

hist(iris$Sepal.Length)

dev.off()

To	export	ggplot2	graphs,	the	R	code	looks	like	this:

#	Create	some	plots

library(ggplot2)

myplot1	<-	ggplot(iris,	aes(Sepal.Length,	Sepal.Width))	+	

		geom_point()



myplot2	<-	ggplot(iris,	aes(Species,	Sepal.Length))	+	

		geom_boxplot()

#	Print	plots	to	a	pdf	file

pdf("ggplot.pdf")

print(myplot1)					#	Plot	1	-->	in	the	first	page	of	PDF

print(myplot2)					#	Plot	2	--->	in	the	second	page	of	the	PDF

dev.off()	

Note	that	for	a	ggplot,	you	can	also	use	the	following	functions	to	export	the
graphic:

ggsave()	[in	ggplot2].	Makes	it	easy	to	save	a	ggplot.	It	guesses	the	type	of
graphics	device	from	the	file	extension.
ggexport()	[in	ggpubr].	Makes	it	easy	to	arrange	and	export	multiple
ggplots	at	once.

See	also	the	following	blog	post	to	save	high-resolution	ggplots

http://www.sthda.com/english/wiki/saving-high-resolution-ggplots-how-to-preserve-semi-transparency


3	Plot	One	Variable



3.1	Introduction
To	visualize	one	variable,	the	type	of	graphs	to	be	used	depends	on	the	type	of
the	variable:

For	categorical	variable	or	grouping	variables.	You	can	visualize	the	count
of	categories	using	a	bar	plot	or	using	a	pie	chart	to	show	the	proportion	of
each	category.
For	continuous	variable,	you	can	visualize	the	distribution	of	the	variable
using	density	plots,	histograms	and	alternatives.

In	this	R	graphics	tutorial,	you'll	learn	how	to:

Visualize	a	categorical	variable	using	bar	plots,	dot	charts	and	pie	charts
Visualize	the	distribution	of	a	continuous	variable	using:

density	and	histogram	plots,
other	alternatives,	such	as	frequency	polygon,	area	plots,	dot	plots,	box
plots,	Empirical	cumulative	distribution	function	(ECDF)	and
Quantile-quantile	plot	(QQ	plots).
Density	ridgeline	plots,	which	are	useful	for	visualizing	changes	in
distributions,	of	a	continuous	variable,	over	time	or	space.
Bar	plot	and	modern	alternatives,	including	lollipop	charts	and
cleveland’s	dot	plots.



3.2	Prerequisites
Load	required	packages	and	set	the	theme	function	theme_pubr()	[in	ggpubr]	as
the	default	theme:

library(ggplot2)

library(ggpubr)

theme_set(theme_pubr())



3.3	One	categorical	variable

3.3.1	Bar	plot	of	counts

Plot	types:	Bar	plot	of	the	count	of	group	levels
Key	function:	geom_bar()
Key	arguments:	alpha,	color,	fill,	linetype	and	size

Demo	data	set:	diamonds	[in	ggplot2].	Contains	the	prices	and	other	attributes	of
almost	54000	diamonds.	The	column	cut	contains	the	quality	of	the	diamonds
cut	(Fair,	Good,	Very	Good,	Premium,	Ideal).

The	R	code	below	creates	a	bar	plot	visualizing	the	number	of	elements	in	each
category	of	diamonds	cut.

ggplot(diamonds,	aes(cut))	+

		geom_bar(fill	=	"#0073C2FF")	+

		theme_pubclean()

Compute	the	frequency	of	each	category	and	add	the	labels	on	the	bar	plot:

dplyr	package	used	to	summarise	the	data
geom_bar()	with	option	stat	=	"identity"	is	used	to	create	the	bar	plot
of	the	summary	output	as	it	is.



geom_text()	used	to	add	text	labels.	Adjust	the	position	of	the	labels	by
using	hjust	(horizontal	justification)	and	vjust	(vertical	justification).
Values	should	be	in	[0,	1].

#	Compute	the	frequency

library(dplyr)

df	<-	diamonds	%>%

		group_by(cut)	%>%

		summarise(counts	=	n())

df

##	#	A	tibble:	5	x	2

##									cut	counts

##							<ord>		<int>

##	1						Fair			1610

##	2						Good			4906

##	3	Very	Good		12082

##	4			Premium		13791

##	5					Ideal		21551

#	Create	the	bar	plot.	Use	theme_pubclean()	[in	ggpubr]

ggplot(df,	aes(x	=	cut,	y	=	counts))	+

		geom_bar(fill	=	"#0073C2FF",	stat	=	"identity")	+

		geom_text(aes(label	=	counts),	vjust	=	-0.3)	+	

		theme_pubclean()

3.3.2	Pie	charts



Pie	chart	is	just	a	stacked	bar	chart	in	polar	coordinates.

First,

Arrange	the	grouping	variable	(cut)	in	descending	order.	This	important	to
compute	the	y	coordinates	of	labels.
compute	the	proportion	(counts/total)	of	each	category
compute	the	position	of	the	text	labels	as	the	cumulative	sum	of	the
proportion.	To	put	the	labels	in	the	center	of	pies,	we'll	use	cumsum(prop)	-
0.5*prop	as	label	position.

df	<-	df	%>%

		arrange(desc(cut))	%>%

		mutate(prop	=	round(counts*100/sum(counts),	1),

									lab.ypos	=	cumsum(prop)	-	0.5*prop)

head(df,	4)

##	#	A	tibble:	4	x	4

##									cut	counts		prop	lab.ypos

##							<ord>		<int>	<dbl>				<dbl>

##	1					Ideal		21551		40.0					20.0

##	2			Premium		13791		25.6					52.8

##	3	Very	Good		12082		22.4					76.8

##	4						Good			4906			9.1					92.5

Create	the	pie	charts	using	ggplot2	verbs.	Key	function:	coord_polar().

ggplot(df,	aes(x	=	"",	y	=	prop,	fill	=	cut))	+

		geom_bar(width	=	1,	stat	=	"identity",	color	=	"white")	+

		geom_text(aes(y	=	lab.ypos,	label	=	prop),	color	=	"white")+

		coord_polar("y",	start	=	0)+

		ggpubr::fill_palette("jco")+

		theme_void()



Alternative	solution	to	easily	create	a	pie	chart:	use	the	function	ggpie()[in
ggpubr]:

ggpie(

		df,	x	=	"prop",	label	=	"prop",

		lab.pos	=	"in",	lab.font	=	list(color	=	"white"),	

		fill	=	"cut",	color	=	"white",

		palette	=	"jco"

)

3.3.3	Dot	charts

Dot	chart	is	an	alternative	to	bar	plots.	Key	functions:

geom_linerange():Creates	line	segments	from	x	to	ymax
geom_point():	adds	dots
ggpubr::color_palette():	changes	color	palette.

ggplot(df,	aes(cut,	prop))	+

		geom_linerange(

				aes(x	=	cut,	ymin	=	0,	ymax	=	prop),	



				color	=	"lightgray",	size	=	1.5

				)+

		geom_point(aes(color	=	cut),	size	=	2)+

		ggpubr::color_palette("jco")+

		theme_pubclean()

Easy	alternative	to	create	a	dot	chart.	Use	ggdotchart()	[ggpubr]:

ggdotchart(

		df,	x	=	"cut",	y	=	"prop",

		color	=	"cut",	size	=	3,						#	Points	color	and	size

		add	=	"segment",														#	Add	line	segments

		add.params	=	list(size	=	2),	

		palette	=	"jco",

		ggtheme	=	theme_pubclean()

)



3.4	One	continuous	variable
Different	types	of	graphs	can	be	used	to	visualize	the	distribution	of	a	continuous
variable,	including:	density	and	histogram	plots.

3.4.1	Data	format

Create	some	data	(wdata)	containing	the	weights	by	sex	(M	for	male;	F	for
female):

set.seed(1234)

wdata	=	data.frame(

								sex	=	factor(rep(c("F",	"M"),	each=200)),

								weight	=	c(rnorm(200,	55),	rnorm(200,	58))

								)

head(wdata,	4)

##			sex	weight

##	1			F			53.8

##	2			F			55.3

##	3			F			56.1

##	4			F			52.7

Compute	the	mean	weight	by	sex	using	the	dplyr	package.	First,	the	data	is
grouped	by	sex	and	then	summarized	by	computing	the	mean	weight	by	groups.
The	operator	%>%	is	used	to	combine	multiple	operations:

library("dplyr")

mu	<-	wdata	%>%	

		group_by(sex)	%>%

		summarise(grp.mean	=	mean(weight))

mu

##	#	A	tibble:	2	x	2

##						sex	grp.mean

##			<fctr>				<dbl>

##	1						F					54.9

##	2						M					58.1



3.4.2	Basic	plots

We	start	by	creating	a	plot,	named	a,	that	we'll	finish	in	the	next	section	by
adding	a	layer.

a	<-	ggplot(wdata,	aes(x	=	weight))

Possible	layers	include:	geom_density()	(for	density	plots)	and
geom_histogram()	(for	histogram	plots).

Key	arguments	to	customize	the	plots:

color,	size,	linetype:	change	the	line	color,	size	and	type,	respectively
fill:	change	the	areas	fill	color	(for	bar	plots,	histograms	and	density	plots)
alpha:	create	a	semi-transparent	color.

3.4.3	Density	plots

Key	function:	geom_density().

1.	 Create	basic	density	plots.	Add	a	vertical	line	corresponding	to	the	mean
value	of	the	weight	variable	(geom_vline()):

#	y	axis	scale	=	..density..	(default	behaviour)

a	+	geom_density()	+

		geom_vline(aes(xintercept	=	mean(weight)),	

													linetype	=	"dashed",	size	=	0.6)

		

#	Change	y	axis	to	count	instead	of	density

a	+	geom_density(aes(y	=	..count..),	fill	=	"lightgray")	+

		geom_vline(aes(xintercept	=	mean(weight)),	

													linetype	=	"dashed",	size	=	0.6,

													color	=	"#FC4E07")



2.	 Change	areas	fill	and	add	line	color	by	groups	(sex):

Add	vertical	mean	lines	using	geom_vline().	Data:	mu,	which	contains	the
mean	values	of	weights	by	sex	(computed	in	the	previous	section).
Change	color	manually:

use	scale_color_manual()	or	scale_colour_manual()	for	changing
line	color
use	scale_fill_manual()	for	changing	area	fill	colors.

#	Change	line	color	by	sex

a	+	geom_density(aes(color	=	sex))	+

		scale_color_manual(values	=	c("#868686FF",	"#EFC000FF"))

#	Change	fill	color	by	sex	and	add	mean	line

#	Use	semi-transparent	fill:	alpha	=	0.4

a	+	geom_density(aes(fill	=	sex),	alpha	=	0.4)	+

						geom_vline(aes(xintercept	=	grp.mean,	color	=	sex),

													data	=	mu,	linetype	=	"dashed")	+

		scale_color_manual(values	=	c("#868686FF",	"#EFC000FF"))+

		scale_fill_manual(values	=	c("#868686FF",	"#EFC000FF"))



3.	 Simple	solution	to	create	a	ggplot2-based	density	plots:	use	ggboxplot()
[in	ggpubr].

library(ggpubr)

#	Basic	density	plot	with	mean	line	and	marginal	rug

ggdensity(wdata,	x	=	"weight",	

										fill	=	"#0073C2FF",	color	=	"#0073C2FF",

										add	=	"mean",	rug	=	TRUE)

					

#	Change	outline	and	fill	colors	by	groups	("sex")

#	Use	a	custom	palette

ggdensity(wdata,	x	=	"weight",



			add	=	"mean",	rug	=	TRUE,

			color	=	"sex",	fill	=	"sex",

			palette	=	c("#0073C2FF",	"#FC4E07"))

3.4.4	Histogram	plots

An	alternative	to	density	plots	is	histograms,	which	represents	the	distribution	of
a	continuous	variable	by	dividing	into	bins	and	counting	the	number	of
observations	in	each	bin.

Key	function:	geom_histogram().	The	basic	usage	is	quite	similar	to



geom_density().

1.	 Create	a	basic	plots.	Add	a	vertical	line	corresponding	to	the	mean	value
of	the	weight	variable:

a	+	geom_histogram(bins	=	30,	color	=	"black",	fill	=	"gray")	+

		geom_vline(aes(xintercept	=	mean(weight)),	

													linetype	=	"dashed",	size	=	0.6)

2.	 Change	areas	fill	and	add	line	color	by	groups	(sex):

Add	vertical	mean	lines	using	geom_vline().	Data:	mu,	which	contains	the
mean	values	of	weights	by	sex.
Change	color	manually:

Note	that,	by	default:

By	default,	geom_histogram()	uses	30	bins	-	this	might	not	be	good
default.	You	can	change	the	number	of	bins	(e.g.:	bins	=	50)	or	the
bin	width	(e.g.:	binwidth	=	0.5)
The	y	axis	corresponds	to	the	count	of	weight	values.	If	you	want	to
change	the	plot	in	order	to	have	the	density	on	y	axis,	specify	the
argument	y	=	..density..	in	aes().



use	scale_color_manual()	or	scale_colour_manual()	for	changing
line	color
use	scale_fill_manual()	for	changing	area	fill	colors.

Adjust	the	position	of	histogram	bars	by	using	the	argument	position.
Allowed	values:	"identity",	"stack",	"dodge".	Default	value	is	"stack".

#	Change	line	color	by	sex

a	+	geom_histogram(aes(color	=	sex),	fill	=	"white",	

																			position	=	"identity")	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800"))	

#	change	fill	and	outline	color	manually	

a	+	geom_histogram(aes(color	=	sex,	fill	=	sex),

																									alpha	=	0.4,	position	=	"identity")	+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800"))	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800"))



3.	 Combine	histogram	and	density	plots:

Plot	histogram	with	density	values	on	y-axis	(instead	of	count	values).
Add	density	plot	with	transparent	density	plot

#	Histogram	with	density	plot

a	+	geom_histogram(aes(y	=	..density..),	

																			colour="black",	fill="white")	+

		geom_density(alpha	=	0.2,	fill	=	"#FF6666")	

					

#	Color	by	groups

a	+	geom_histogram(aes(y	=	..density..,	color	=	sex),	

																			fill	=	"white",

																			position	=	"identity")+

		geom_density(aes(color	=	sex),	size	=	1)	+

		scale_color_manual(values	=	c("#868686FF",	"#EFC000FF"))



4.	 Simple	solution	to	create	a	ggplot2-based	histogram	plots:	use
gghistogram()	[in	ggpubr].

library(ggpubr)

#	Basic	histogram	plot	with	mean	line	and	marginal	rug

gghistogram(wdata,	x	=	"weight",	bins	=	30,	

												fill	=	"#0073C2FF",	color	=	"#0073C2FF",

												add	=	"mean",	rug	=	TRUE)

					

#	Change	outline	and	fill	colors	by	groups	("sex")

#	Use	a	custom	palette

gghistogram(wdata,	x	=	"weight",	bins	=	30,



			add	=	"mean",	rug	=	TRUE,

			color	=	"sex",	fill	=	"sex",

			palette	=	c("#0073C2FF",	"#FC4E07"))

3.4.5	Alternative	to	density	and	histogram	plots

1.	 Frequency	polygon.	Very	close	to	histogram	plots,	but	it	uses	lines	instead
of	bars.

Key	function:	geom_freqpoly().
Key	arguments:	color,	size,	linetype:	change,	respectively,	line
color,	size	and	type.



2.	 Area	plots.	This	is	a	continuous	analog	of	a	stacked	bar	plot.
Key	function:	geom_area().
Key	arguments:

color,	size,	linetype:	change,	respectively,	line	color,	size	and
type.
fill:	change	area	fill	color.

In	this	section,	we'll	use	the	theme	theme_pubclean()	[in	ggpubr].	This	is	a
theme	without	axis	lines,	to	direct	more	attention	to	the	data.	Type	this	to	use	the
theme:

theme_set(theme_pubclean())

Create	a	basic	frequency	polygon	and	basic	area	plots:

#	Basic	frequency	polygon

a	+	geom_freqpoly(bins	=	30)	

#	Basic	area	plots,	which	can	be	filled	by	color

a	+	geom_area(	stat	=	"bin",	bins	=	30,

															color	=	"black",	fill	=	"#00AFBB")



Change	colors	by	groups	(sex):

#	Frequency	polygon:	

#	Change	line	colors	and	types	by	groups

a	+	geom_freqpoly(	aes(color	=	sex,	linetype	=	sex),

																			bins	=	30,	size	=	1.5)	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800"))

#	Area	plots:	change	fill	colors	by	sex

#	Create	a	stacked	area	plots

a	+	geom_area(aes(fill	=	sex),	color	=	"white",	

														stat	="bin",	bins	=	30)	+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800"))



3.	 Dot	plots.	Represents	another	alternative	to	histograms	and	density	plots,
that	can	be	used	to	visualize	a	continuous	variable.	Dots	are	stacked	with
each	dot	representing	one	observation.	The	width	of	a	dot	corresponds	to

As	in	histogram	plots,	the	default	y	values	is	count.	To	have	density	values
on	y	axis,	specify	y	=	..density..	in	aes().



the	bin	width.

Key	function:	geom_dotplot().
Key	arguments:	alpha,	color,	fill	and	dotsize.

Create	a	dot	plot	colored	by	groups	(sex):

a	+	geom_dotplot(aes(fill	=	sex),	binwidth	=	1/4)	+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800"))

4.	 Box	plot:
Create	a	box	plot	of	one	continuous	variable:	geom_boxplot()
Add	jittered	points,	where	each	point	corresponds	to	an	individual
observation:	geom_jitter().	Change	the	color	and	the	shape	of	points
by	groups	(sex)

ggplot(wdata,	aes(x	=	factor(1),	y	=	weight))	+

		geom_boxplot(width	=	0.4,	fill	=	"white")	+

		geom_jitter(aes(color	=	sex,	shape	=	sex),	

														width	=	0.1,	size	=	1)	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800"))	+	

		labs(x	=	NULL)			#	Remove	x	axis	label



5.	 Empirical	cumulative	distribution	function	(ECDF).	Provides	another
alternative	visualization	of	distribution.	It	reports	for	any	given	number	the
percent	of	individuals	that	are	below	that	threshold.

For	example,	in	the	following	plots,	you	can	see	that:

about	25%	of	our	females	are	shorter	than	50	inches
about	50%	of	males	are	shorter	than	58	inches

#	Another	option	for	geom	=	"point"

a	+	stat_ecdf(aes(color	=	sex,linetype	=	sex),	

														geom	=	"step",	size	=	1.5)	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800"))+

		labs(y	=	"f(weight)")



6.	 Quantile-quantile	plot	(QQ	plots).	Used	to	check	whether	a	given	data
follows	normal	distribution.

Key	function:	stat_qq().
Key	arguments:	color,	shape	and	size	to	change	point	color,	shape	and
size.

Create	a	qq-plot	of	weight.	Change	color	by	groups	(sex)

#	Change	point	shapes	by	groups

ggplot(wdata,	aes(sample	=	weight))	+

		stat_qq(aes(color	=	sex))	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800"))+

		labs(y	=	"Weight")



Alternative	plot	using	the	function	ggqqplot()	[in	ggpubr].	The	95%	confidence
band	is	shown	by	default.

library(ggpubr)

ggqqplot(wdata,	x	=	"weight",

			color	=	"sex",	

			palette	=	c("#0073C2FF",	"#FC4E07"),

			ggtheme	=	theme_pubclean())



3.4.6	Density	ridgeline	plots

The	density	ridgeline	plot	is	an	alternative	to	the	standard	geom_density()
function	that	can	be	useful	for	visualizing	changes	in	distributions,	of	a
continuous	variable,	over	time	or	space.	Ridgeline	plots	are	partially	overlapping
line	plots	that	create	the	impression	of	a	mountain	range.

This	functionality	is	provided	in	the	R	package	ggridges	(Wilke	2017).

1.	 Installation:

install.packages("ggridges")

2.	 Load	and	set	the	default	theme	to	theme_ridges()	[in	ggridges]:

library(ggplot2)

library(ggridges)

theme_set(theme_ridges())

3.	 Example	1:	Simple	distribution	plots	by	groups.	Distribution	of
Sepal.Length	by	Species	using	the	iris	data	set.	The	grouping	variable
Species	will	be	mapped	to	the	y-axis:



ggplot(iris,	aes(x	=	Sepal.Length,	y	=	Species))	+

		geom_density_ridges(aes(fill	=	Species))	+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))

ggplot(iris,	aes(x	=	Sepal.Length,	y	=	Species))	+

		geom_density_ridges(scale	=	0.9)	

4.	 Example	4:	Visualize	temperature	data.

Data	set:	lincoln_weather	[in	ggridges].	Weather	in	Lincoln,	Nebraska	in
2016.

Create	the	density	ridge	plots	of	the	Mean	Temperature	by	Month	and
change	the	fill	color	according	to	the	temperature	value	(on	x	axis).	A
gradient	color	is	created	using	the	function
geom_density_ridges_gradient()

ggplot(

You	can	control	the	overlap	between	the	different	densities	using	the
scale	option.	Default	value	is	1.	Smaller	values	create	a	separation
between	the	curves,	and	larger	values	create	more	overlap.



		lincoln_weather,	

		aes(x	=	`Mean	Temperature	[F]`,	y	=	`Month`)

		)	+

		geom_density_ridges_gradient(

				aes(fill	=	..x..),	scale	=	3,	size	=	0.3

				)	+

		scale_fill_gradientn(

				colours	=	c("#0D0887FF",	"#CC4678FF",	"#F0F921FF"),

				name	=	"Temp.	[F]"

				)+

		labs(title	=	'Temperatures	in	Lincoln	NE')	

For	more	examples,	type	the	following	R	code:

browseVignettes("ggridges")

3.4.7	Bar	plot	and	modern	alternatives

In	this	section,	we'll	describe	how	to	create	easily	basic	and	ordered	bar	plots
using	ggplot2	based	helper	functions	available	in	the	ggpubr	R	package.	We’ll
also	present	some	modern	alternatives	to	bar	plots,	including	lollipop	charts	and



cleveland’s	dot	plots.

Load	required	packages:

library(ggpubr)

Load	and	prepare	data:

#	Load	data

dfm	<-	mtcars

#	Convert	the	cyl	variable	to	a	factor

dfm$cyl	<-	as.factor(dfm$cyl)

#	Add	the	name	colums

dfm$name	<-	rownames(dfm)

#	Inspect	the	data

head(dfm[,	c("name",	"wt",	"mpg",	"cyl")])

##																																name			wt		mpg	cyl

##	Mazda	RX4																	Mazda	RX4	2.62	21.0			6

##	Mazda	RX4	Wag									Mazda	RX4	Wag	2.88	21.0			6

##	Datsun	710															Datsun	710	2.32	22.8			4

##	Hornet	4	Drive							Hornet	4	Drive	3.21	21.4			6

##	Hornet	Sportabout	Hornet	Sportabout	3.44	18.7			8

##	Valiant																					Valiant	3.46	18.1			6

Create	an	ordered	bar	plot	of	the	mpg	variable.	Change	the	fill	color	by	the
grouping	variable	"cyl".	Sorting	will	be	done	globally,	but	not	by	groups.

ggbarplot(dfm,	x	=	"name",	y	=	"mpg",

										fill	=	"cyl",															#	change	fill	color	by	cyl

										color	=	"white",												#	Set	bar	border	colors	to	

white

										palette	=	"jco",												#	jco	journal	color	palett.	

see	?ggpar

										sort.val	=	"asc",										#	Sort	the	value	in	dscending	

order

										sort.by.groups	=	TRUE,					#	Don't	sort	inside	each	group

										x.text.angle	=	90,											#	Rotate	vertically	x	axis	

texts

										ggtheme	=	theme_pubclean()

										)+

		font("x.text",	size	=	8,	vjust	=	0.5)



Create	a	Lollipop	chart:
Color	by	groups	and	set	a	custom	color	palette.
Sort	values	in	ascending	order.
Add	segments	from	y	=	0	to	dots.	Change	segment	color	and	size.

ggdotchart(dfm,	x	=	"name",	y	=	"mpg",

											color	=	"cyl",																																

											palette	=	c("#00AFBB",	"#E7B800",	"#FC4E07"),	

											sorting	=	"asc",	sort.by.groups	=	TRUE,																							

											add	=	"segments",																												

											add.params	=	list(color	=	"lightgray",	size	=	2),	

											group	=	"cyl",																																

											dot.size	=	4,																																	

											ggtheme	=	theme_pubclean()

											)+

		font("x.text",	size	=	8,	vjust	=	0.5)

To	sort	bars	inside	each	group,	use	the	argument	sort.by.groups	=	TRUE



Read	more:	Bar	Plots	and	Modern	Alternatives

https://goo.gl/eSggcW


3.5	Conclusion
Create	a	bar	plot	of	a	grouping	variable:

ggplot(diamonds,	aes(cut))	+

		geom_bar(fill	=	"#0073C2FF")	+

		theme_minimal()

Visualize	a	continuous	variable:

Start	by	creating	a	plot,	named	a,	that	we'll	be	finished	by	adding	a	layer.

a	<-	ggplot(wdata,	aes(x	=	weight))

Possible	layers	include:

geom_density():	density	plot
geom_histogram():	histogram	plot
geom_freqpoly():	frequency	polygon
geom_area():	area	plot
geom_dotplot():	dot	plot
stat_ecdf():	empirical	cumulative	density	function
stat_qq():	quantile	-	quantile	plot

Key	arguments	to	customize	the	plots:

color,	size,	linetype:	change	the	line	color,	size	and	type,	respectively
fill:	change	the	areas	fill	color	(for	bar	plots,	histograms	and	density	plots)
alpha:	create	a	semi-transparent	color.





4	Plot	Grouped	Data



4.1	Introduction
In	this	chapter,	we	start	by	describing	how	to	plot	grouped	or	stacked	frequencies
of	two	categorical	variables.	Tis	can	be	done	using	bar	plots	and	dot	charts.
You'll	also	learn	how	to	add	labels	to	dodged	and	stacked	bar	plots.

Next	we'll	show	how	to	display	a	continuous	variable	with	multiple	groups.	In
this	situation,	the	grouping	variable	is	used	as	the	x-axis	and	the	continuous
variable	as	the	y-axis.	You'll	learn,	how	to:

Visualize	a	grouped	continuous	variable	using	box	plot,	violin	plots,
stripcharts	and	alternatives.
Add	automatically	t-test	/	wilcoxon	test	p-values	comparing	groups.
Create	mean	and	median	plots	of	groups	with	error	bars



4.2	Prerequisites
Load	required	packages	and	set	the	theme	function	theme_pubclean()	[in
ggpubr]	as	the	default	theme:

library(dplyr)	

library(ggplot2)

library(ggpubr)

theme_set(theme_pubclean())



4.3	Grouped	categorical	variables
Plot	types:	grouped	bar	plots	of	the	frequencies	of	the	categories.	Key
function:	geom_bar().
Demo	dataset:	diamonds	[in	ggplot2].	The	categorical	variables	to	be	used
in	the	demo	example	are:

cut:	quality	of	the	diamonds	cut	(Fair,	Good,	Very	Good,	Premium,
Ideal)
color:	diamond	colour,	from	J	(worst)	to	D	(best).

In	our	demo	example,	we'll	plot	only	a	subset	of	the	data	(color	J	and	D).	The
different	steps	are	as	follow:

Filter	the	data	to	keep	only	diamonds	which	colors	are	in	("J",	"D").
Group	the	data	by	the	quality	of	the	cut	and	the	diamond	color
Count	the	number	of	records	by	groups
Create	the	bar	plot

1.	 Filter	and	count	the	number	of	records	by	groups:

df	<-	diamonds	%>%

		filter(color	%in%	c("J",	"D"))	%>%

		group_by(cut,	color)	%>%

		summarise(counts	=	n())	

head(df,	4)

##	#	A	tibble:	4	x	3

##	#	Groups:			cut	[2]

##					cut	color	counts

##			<ord>	<ord>		<int>

##	1		Fair					D				163

##	2		Fair					J				119

##	3		Good					D				662

##	4		Good					J				307

2.	 Creare	the	grouped	bar	plots:
Key	function:	geom_bar().	Key	argument:	stat	=	"identity"	to	plot
the	data	as	it	is.
Use	the	functions	scale_color_manual()	and	scale_fill_manual()
to	set	manually	the	bars	border	line	colors	and	area	fill	colors.



#	Stacked	bar	plots	of	y	=	counts	by	x	=	cut,

#	colored	by	the	variable	color

ggplot(df,	aes(x	=	cut,	y	=	counts))	+

		geom_bar(

				aes(color	=	color,	fill	=	color),

				stat	=	"identity",	position	=	position_stack()

				)	+

		scale_color_manual(values	=	c("#0073C2FF",	"#EFC000FF"))+

		scale_fill_manual(values	=	c("#0073C2FF",	"#EFC000FF"))

#	Use	position	=	position_dodge()	

p	<-	ggplot(df,	aes(x	=	cut,	y	=	counts))	+

		geom_bar(

				aes(color	=	color,	fill	=	color),

				stat	=	"identity",	position	=	position_dodge(0.8),

				width	=	0.7

				)	+

		scale_color_manual(values	=	c("#0073C2FF",	"#EFC000FF"))+

		scale_fill_manual(values	=	c("#0073C2FF",	"#EFC000FF"))

p



Alternatively,	you	can	easily	create	a	dot	chart	with	the	ggpubr	package:

ggdotchart(df,	x	=	"cut",	y	="counts",

											color	=	"color",	palette	=	"jco",	size	=	3,	

											add	=	"segment",	

											add.params	=	list(color	=	"lightgray",	size	=	1.5),

											position	=	position_dodge(0.3),

											ggtheme	=	theme_pubclean()

											)

Note	that,	position_stack()	automatically	stack	values	in	reverse	order
of	the	group	aesthetic.	This	default	ensures	that	bar	colors	align	with	the
default	legend.	You	can	change	this	behavior	by	using	position	=
position_stack(reverse	=	TRUE).



Or,	if	you	prefer	the	ggplot2	verbs,	type	this:

ggplot(df,	aes(cut,	counts))	+

		geom_linerange(

				aes(x	=	cut,	ymin	=	0,	ymax	=	counts,	group	=	color),	

				color	=	"lightgray",	size	=	1.5,

				position	=	position_dodge(0.3)

				)+

		geom_point(

				aes(color	=	color),

				position	=	position_dodge(0.3),	size	=	3

				)+

		scale_color_manual(values	=	c("#0073C2FF",	"#EFC000FF"))+

		theme_pubclean()

3.	 Add	labels	to	the	dodged	bar	plots:

p	+	geom_text(

		aes(label	=	counts,	group	=	color),	

		position	=	position_dodge(0.8),

		vjust	=	-0.3,	size	=	3.5

)



4.	 Add	labels	to	a	stacked	bar	plots.	3	steps	required	to	compute	the	position
of	text	labels:

Sort	the	data	by	cut	and	color	columns.	As	position_stack()	reverse
the	group	order,	color	column	should	be	sorted	in	descending	order.
Calculate	the	cumulative	sum	of	counts	for	each	cut	category.	Used	as
the	y	coordinates	of	labels.	To	put	the	label	in	the	middle	of	the	bars,
we'll	use	cumsum(counts)	-	0.5	*	counts.
Create	the	bar	graph	and	add	labels

#	Arrange/sort	and	compute	cumulative	summs

	df	<-	df	%>%

		arrange(cut,	desc(color))	%>%

		mutate(lab_ypos	=	cumsum(counts)	-	0.5	*	counts)	

head(df,	4)

##	#	A	tibble:	4	x	4

##	#	Groups:			cut	[2]

##					cut	color	counts	lab_ypos

##			<ord>	<ord>		<int>				<dbl>

##	1		Fair					J				119					59.5

##	2		Fair					D				163				200.5

##	3		Good					J				307				153.5

##	4		Good					D				662				638.0

#	Create	stacked	bar	graphs	with	labels



ggplot(df,	aes(x	=	cut,	y	=	counts))	+

		geom_bar(aes(color	=	color,	fill	=	color),	stat	=	"identity")	+

		geom_text(

				aes(y	=	lab_ypos,	label	=	counts,	group	=	color),

				color	=	"white"

		)	+	

		scale_color_manual(values	=	c("#0073C2FF",	"#EFC000FF"))+

		scale_fill_manual(values	=	c("#0073C2FF",	"#EFC000FF"))	

Alternatively,	you	can	easily	create	the	above	plot	using	the	function
ggbarplot()	[in	ggpubr]:

ggbarplot(df,	x	=	"cut",	y	=	"counts",

										color	=	"color",	fill	=	"color",

										palette	=	c("#0073C2FF",	"#EFC000FF"),

										label	=	TRUE,	lab.pos	=	"in",	lab.col	=	"white",

										ggtheme	=	theme_pubclean()

										)



6.	 Alternative	to	bar	plots.	Instead	of	the	creating	a	bar	plot	of	the	counts,
you	can	plot	two	discrete	variables	with	discrete	x-axis	and	discrete	y-axis.
Each	individual	points	are	shown	by	groups.	For	a	given	group,	the	number
of	points	corresponds	to	the	number	of	records	in	that	group.

Key	function:	geom_jitter().	Arguments:	alpha,	color,	fill,	shape	and	size.

In	the	example	below,	we'll	plot	a	small	fraction	(1/5)	of	the	diamonds	dataset.

diamonds.frac	<-	dplyr::sample_frac(diamonds,	1/5)

ggplot(diamonds.frac,	aes(cut,	color))	+

		geom_jitter(aes(color	=	cut),	size	=	0.3)+

		ggpubr::color_palette("jco")+

		ggpubr::theme_pubclean()



4.4	Grouped	continuous	variables
In	this	section,	we'll	show	to	plot	a	grouped	continuous	variable	using	box	plot,
violin	plot,	strip	chart	and	alternatives.

We'll	also	describe	how	to	add	automatically	p-values	comparing	groups.

In	this	section,	we'll	set	the	theme	theme_bw()	as	the	default	ggplot	theme:

theme_set(

		theme_bw()

)

4.4.1	Data	format

Demo	dataset:	ToothGrowth
Continuous	variable:	len	(tooth	length).	Used	on	y-axis
Grouping	variable:	dose	(dose	levels	of	vitamin	C:	0.5,	1,	and	2
mg/day).	Used	on	x-axis.

First,	convert	the	variable	dose	from	a	numeric	to	a	discrete	factor	variable:

data("ToothGrowth")

ToothGrowth$dose	<-	as.factor(ToothGrowth$dose)

head(ToothGrowth)

##				len	supp	dose

##	1		4.2			VC		0.5

##	2	11.5			VC		0.5

##	3		7.3			VC		0.5

##	4		5.8			VC		0.5

##	5		6.4			VC		0.5

##	6	10.0			VC		0.5

4.4.2	Box	plots

Key	function:	geom_boxplot()
Key	arguments	to	customize	the	plot:



width:	the	width	of	the	box	plot
notch:	logical.	If	TRUE,	creates	a	notched	box	plot.	The	notch
displays	a	confidence	interval	around	the	median	which	is	normally
based	on	the	median	+/-	1.58*IQR/sqrt(n).	Notches	are	used	to
compare	groups;	if	the	notches	of	two	boxes	do	not	overlap,	this	is	a
strong	evidence	that	the	medians	differ.
color,	size,	linetype:	Border	line	color,	size	and	type
fill:	box	plot	areas	fill	color
outlier.colour,	outlier.shape,	outlier.size:	The	color,	the	shape
and	the	size	for	outlying	points.

1.	 Create	basic	box	plots:

Standard	and	notched	box	plots:

#	Default	plot

e	<-	ggplot(ToothGrowth,	aes(x	=	dose,	y	=	len))

e	+	geom_boxplot()

#	Notched	box	plot	with	mean	points

e	+	geom_boxplot(notch	=	TRUE,	fill	=	"lightgray")+

		stat_summary(fun.y	=	mean,	geom	=	"point",

															shape	=	18,	size	=	2.5,	color	=	"#FC4E07")

Change	box	plot	colors	by	groups:

#	Color	by	group	(dose)

e	+	geom_boxplot(aes(color	=	dose))+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))



#	Change	fill	color	by	group	(dose)

e	+	geom_boxplot(aes(fill	=	dose))	+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))

Note	that,	it's	possible	to	use	the	function	scale_x_discrete()	for:

choosing	which	items	to	display:	for	example	c("0.5",	"2"),
changing	the	order	of	items:	for	example	from	c("0.5",	"1",	"2")	to	c("2",
"0.5",	"1")

For	example,	type	this:

#	Choose	which	items	to	display:	group	"0.5"	and	"2"

e	+	geom_boxplot()	+	

		scale_x_discrete(limits=c("0.5",	"2"))

#	Change	the	default	order	of	items

e	+	geom_boxplot()	+



		scale_x_discrete(limits=c("2",	"0.5",	"1"))

2.	 Create	a	box	plot	with	multiple	groups:

Two	different	grouping	variables	are	used:	dose	on	x-axis	and	supp	as	fill	color
(legend	variable).

The	space	between	the	grouped	box	plots	is	adjusted	using	the	function
position_dodge().

e2	<-	e	+	geom_boxplot(

		aes(fill	=	supp),

		position	=	position_dodge(0.9)	

		)	+

		scale_fill_manual(values	=	c("#999999",	"#E69F00"))

e2

Split	the	plot	into	multiple	panel.	Use	the	function	facet_wrap():



e2	+	facet_wrap(~supp)

4.4.3	Violin	plots

Violin	plots	are	similar	to	box	plots,	except	that	they	also	show	the	kernel
probability	density	of	the	data	at	different	values.	Typically,	violin	plots	will
include	a	marker	for	the	median	of	the	data	and	a	box	indicating	the	interquartile
range,	as	in	standard	box	plots.

Key	function:

geom_violin():	Creates	violin	plots.	Key	arguments:
color,	size,	linetype:	Border	line	color,	size	and	type
fill:	Areas	fill	color
trim:	logical	value.	If	TRUE	(default),	trim	the	tails	of	the	violins	to
the	range	of	the	data.	If	FALSE,	don't	trim	the	tails.

stat_summary():	Adds	summary	statistics	(mean,	median,	...)	on	the	violin
plots.

1.	 Create	basic	violin	plots	with	summary	statistics:

#	Add	mean	points	+/-	SD

#	Use	geom	=	"pointrange"	or	geom	=	"crossbar"

e	+	geom_violin(trim	=	FALSE)	+	

		stat_summary(



				fun.data	=	"mean_sdl",		fun.args	=	list(mult	=	1),	

				geom	=	"pointrange",	color	=	"black"

				)

				

#	Combine	with	box	plot	to	add	median	and	quartiles

#	Change	color	by	groups

e	+	geom_violin(aes(fill	=	dose),	trim	=	FALSE)	+	

		geom_boxplot(width	=	0.2)+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))+

		theme(legend.position	=	"none")

2.	 Create	violin	plots	with	multiple	groups:

e	+	geom_violin(

		aes(color	=	supp),	trim	=	FALSE,

		position	=	position_dodge(0.9)	

		)	+

		geom_boxplot(

				aes(color	=	supp),	width	=	0.15,

The	function	mean_sdl	is	used	for	adding	mean	and	standard	deviation.	It
computes	the	mean	plus	or	minus	a	constant	times	the	standard	deviation.
In	the	R	code	above,	the	constant	is	specified	using	the	argument	mult
(mult	=	1).	By	default	mult	=	2.	The	mean	+/-	SD	can	be	added	as	a
crossbar	or	a	pointrange.



				position	=	position_dodge(0.9)

				)	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800"))

4.4.4	Dot	plots

Key	function:	geom_dotplot().	Creates	stacked	dots,	with	each	dot
representing	one	observation.
Key	arguments:

stackdir:	which	direction	to	stack	the	dots.	"up"	(default),	"down",
"center",	"centerwhole"	(centered,	but	with	dots	aligned).
stackratio:	how	close	to	stack	the	dots.	Default	is	1,	where	dots	just
just	touch.	Use	smaller	values	for	closer,	overlapping	dots.
color,	fill:	Dot	border	color	and	area	fill
dotsize:	The	diameter	of	the	dots	relative	to	binwidth,	default	1.

As	for	violin	plots,	summary	statistics	are	usually	added	to	dot	plots.

1.	 Create	basic	dot	plots:

#	Violin	plots	with	mean	points	+/-	SD

e	+	geom_dotplot(

		binaxis	=	"y",	stackdir	=	"center",

		fill	=	"lightgray"

		)	+	

		stat_summary(



				fun.data	=	"mean_sdl",	fun.args	=	list(mult=1),	

				geom	=	"pointrange",	color	=	"red"

				)

#	Combine	with	box	plots

e	+	geom_boxplot(width	=	0.5)	+	

		geom_dotplot(

				binaxis	=	"y",	stackdir	=	"center",

				fill	=	"white"

				)	

#	Dot	plot	+	violin	plot	+	stat	summary

e	+	geom_violin(trim	=	FALSE)	+

		geom_dotplot(

				binaxis='y',	stackdir='center',

				color	=	"black",	fill	=	"#999999"

				)	+

		stat_summary(

				fun.data="mean_sdl",		fun.args	=	list(mult=1),	

				geom	=	"pointrange",	color	=	"#FC4E07",	size	=	0.4

				)



2.	 Create	dot	plots	with	multiple	groups:

#	Color	dots	by	groups

e	+	geom_boxplot(width	=	0.5,	size	=	0.4)	+

		geom_dotplot(

				aes(fill	=	supp),	trim	=	FALSE,

				binaxis='y',	stackdir='center'

		)+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800"))

#	Change	the	position	:	interval	between	dot	plot	of	the	same	group

e	+	geom_boxplot(

		aes(color	=	supp),	width	=	0.5,	size	=	0.4,

		position	=	position_dodge(0.8)

		)	+

		geom_dotplot(

				aes(fill	=	supp,	color	=	supp),	trim	=	FALSE,

				binaxis='y',	stackdir='center',	dotsize	=	0.8,

				position	=	position_dodge(0.8)

		)+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800"))+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800"))



4.4.5	Stripcharts

Stripcharts	are	also	known	as	one	dimensional	scatter	plots.	These	plots	are
suitable	compared	to	box	plots	when	sample	sizes	are	small.

Key	function:	geom_jitter()
key	arguments:	color,	fill,	size,	shape.	Changes	points	color,	fill,	size
and	shape

1.	 Create	a	basic	stripchart:

Change	points	shape	and	color	by	groups
Adjust	the	degree	of	jittering:	position_jitter(0.2)



Add	summary	statistics:

e	+	geom_jitter(

		aes(shape	=	dose,	color	=	dose),	

		position	=	position_jitter(0.2),

		size	=	1.2

		)	+

		stat_summary(

				aes(color	=	dose),

				fun.data="mean_sdl",		fun.args	=	list(mult=1),	

				geom	=	"pointrange",		size	=	0.4

				)+

		scale_color_manual(values	=		c("#00AFBB",	"#E7B800",	"#FC4E07"))

2.	 Create	stripcharts	for	multiple	groups.	The	R	code	is	similar	to	what	we
have	seen	in	dot	plots	section.	However,	to	create	dodged	jitter	points,	you
should	use	the	function	position_jitterdodge()	instead	of
position_dodge().

e	+	geom_jitter(

		aes(shape	=	supp,	color	=	supp),	

		position	=	position_jitterdodge(jitter.width	=	0.2,	dodge.width	=	

0.8),

		size	=	1.2

		)	+

		stat_summary(

				aes(color	=	supp),

				fun.data="mean_sdl",		fun.args	=	list(mult=1),	

				geom	=	"pointrange",		size	=	0.4,

				position	=	position_dodge(0.8)



				)+

		scale_color_manual(values	=		c("#00AFBB",	"#E7B800"))

4.4.6	Sinaplot

sinaplot	is	inspired	by	the	strip	chart	and	the	violin	plot.	By	letting	the
normalized	density	of	points	restrict	the	jitter	along	the	x-axis,	the	plot	displays
the	same	contour	as	a	violin	plot,	but	resemble	a	simple	strip	chart	for	small
number	of	data	points	(Sidiropoulos	et	al.	2015).

In	this	way	the	plot	conveys	information	of	both	the	number	of	data	points,	the
density	distribution,	outliers	and	spread	in	a	very	simple,	comprehensible	and
condensed	format.

Key	function:	geom_sina()	[ggforce]:

library(ggforce)

#	Create	some	data

d1	<-	data.frame(

		y	=	c(rnorm(200,	4,	1),	rnorm(200,	5,	2),	rnorm(400,	6,	1.5)),

		group	=	rep(c("Grp1",	"Grp2",	"Grp3"),	c(200,	200,	400))

		)

#	Sinaplot

ggplot(d1,	aes(group,	y))	+

		geom_sina(aes(color	=	group),	size	=	0.7)+



		scale_color_manual(values	=		c("#00AFBB",	"#E7B800",	"#FC4E07"))

4.4.7	Mean	and	median	plots	with	error	bars

In	this	section,	we'll	show	how	to	plot	summary	statistics	of	a	continuous
variable	organized	into	groups	by	one	or	multiple	grouping	variables.

Note	that,	an	easy	way,	with	less	typing,	to	create	mean/median	plots,	is
provided	in	the	ggpubr	package.	See	the	associated	article	at:	ggpubr-Plot
Means/Medians	and	Error	Bars

Set	the	default	theme	to	theme_pubr()	[in	ggpubr]:

theme_set(ggpubr::theme_pubr())

1.	 Basic	mean/median	plots.	Case	of	one	continuous	variable	and	one
grouping	variable:

Prepare	the	data:	ToothGrowth	data	set.

df	<-	ToothGrowth

df$dose	<-	as.factor(df$dose)

head(df,	3)

##				len	supp	dose

##	1		4.2			VC		0.5

http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/


##	2	11.5			VC		0.5

##	3		7.3			VC		0.5

Compute	summary	statistics	for	the	variable	len	organized	into	groups	by
the	variable	dose:

library(dplyr)

df.summary	<-	df	%>%

		group_by(dose)	%>%

		summarise(

				sd	=	sd(len,	na.rm	=	TRUE),

				len	=	mean(len)

		)

df.summary

##	#	A	tibble:	3	x	3

##					dose				sd			len

##			<fctr>	<dbl>	<dbl>

##	1				0.5		4.50		10.6

##	2						1		4.42		19.7

##	3						2		3.77		26.1

Create	error	plots	using	the	summary	statistics	data.	Key	functions:
geom_crossbar()	for	hollow	bar	with	middle	indicated	by	horizontal
line
geom_errorbar()	for	error	bars
geom_errorbarh()	for	horizontal	error	bars
geom_linerange()	for	drawing	an	interval	represented	by	a	vertical
line
geom_pointrange()	for	creating	an	interval	represented	by	a	vertical
line,	with	a	point	in	the	middle.

Start	by	initializing	ggplot	with	the	summary	statistics	data:
-	Specify	x	and	y	as	usually	-	Specify	ymin	=	len-sd	and	ymax	=	len+sd	to	add
lower	and	upper	error	bars.	If	you	want	only	to	add	upper	error	bars	but	not	the
lower	ones,	use	ymin	=	len	(instead	of	len-sd)	and	ymax	=	len+sd.

#	Initialize	ggplot	with	data

f	<-	ggplot(

		df.summary,	

		aes(x	=	dose,	y	=	len,	ymin	=	len-sd,	ymax	=	len+sd)

		)



Possible	error	plots:

Create	simple	error	plots:

#	Vertical	line	with	point	in	the	middle

f	+	geom_pointrange()

#	Standard	error	bars

f	+	geom_errorbar(width	=	0.2)	+

		geom_point(size	=	1.5)

Create	horizontal	error	bars.	Put	dose	on	y	axis	and	len	on	x-axis.	Specify	xmin



and	xmax.

#	Horizontal	error	bars	with	mean	points

#	Change	the	color	by	groups

ggplot(

		df.summary,	

		aes(x	=	len,	y	=	dose,	xmin	=	len-sd,	xmax	=	len+sd)

		)	+

		geom_point(aes(color	=	dose))	+

		geom_errorbarh(aes(color	=	dose),	height=.2)+

		theme_light()

Add	jitter	points	(representing	individual	points),	dot	plots	and	violin	plots.
For	this,	you	should	initialize	ggplot	with	original	data	(df)	and	specify	the
df.summary	data	in	the	error	plot	function,	here	geom_pointrange().

#	Combine	with	jitter	points

ggplot(df,	aes(dose,	len))	+

		geom_jitter(

				position	=	position_jitter(0.2),	color	=	"darkgray"

				)	+	

		geom_pointrange(

				aes(ymin	=	len-sd,	ymax	=	len+sd),

				data	=	df.summary

				)

#	Combine	with	violin	plots

ggplot(df,	aes(dose,	len))	+

		geom_violin(color	=	"darkgray",	trim	=	FALSE)	+	

		geom_pointrange(

				aes(ymin	=	len-sd,	ymax	=	len+sd),



				data	=	df.summary

				)

Create	basic	bar/line	plots	of	mean	+/-	error.	So	we	need	only	the
df.summary	data.

1.	 Add	lower	and	upper	error	bars	for	the	line	plot:	ymin	=	len-sd
and	ymax	=	len+sd.

2.	 Add	only	upper	error	bars	for	the	bar	plot:	ymin	=	len	(instead	of
len-sd)	and	ymax	=	len+sd.

#	(1)	Line	plot

ggplot(df.summary,	aes(dose,	len))	+

		geom_line(aes(group	=	1))	+

		geom_errorbar(	aes(ymin	=	len-sd,	ymax	=	len+sd),width	=	0.2)	+

		geom_point(size	=	2)

#	(2)	Bar	plot

ggplot(df.summary,	aes(dose,	len))	+

		geom_bar(stat	=	"identity",	fill	=	"lightgray",	

Note	that,	for	line	plot,	you	should	always	specify	group	=	1	in	the
aes(),	when	you	have	one	group	of	line.



											color	=	"black")	+

		geom_errorbar(aes(ymin	=	len,	ymax	=	len+sd),	width	=	0.2)	

For	line	plot,	you	might	want	to	treat	x-axis	as	numeric:

df.sum2	<-	df.summary

df.sum2$dose	<-	as.numeric(df.sum2$dose)

ggplot(df.sum2,	aes(dose,	len))	+

		geom_line()	+

		geom_errorbar(	aes(ymin	=	len-sd,	ymax	=	len+sd),width	=	0.2)	+

		geom_point(size	=	2)



Bar	and	line	plots	+	jitter	points.	We	need	the	original	df	data	for	the	jitter
points	and	the	df.summary	data	for	the	other	geom	layers.

1.	 For	the	line	plot:	First,	add	jitter	points,	then	add	lines	+	error
bars	+	mean	points	on	top	of	the	jitter	points.

2.	 For	the	bar	plot:	First,	add	the	bar	plot,	then	add	jitter	points	+
error	bars	on	top	of	the	bars.

#	(1)	Create	a	line	plot	of	means	+	

#	individual	jitter	points	+	error	bars	

ggplot(df,	aes(dose,	len))	+

		geom_jitter(	position	=	position_jitter(0.2),

															color	=	"darkgray")	+	

		geom_line(aes(group	=	1),	data	=	df.summary)	+

		geom_errorbar(

				aes(ymin	=	len-sd,	ymax	=	len+sd),

				data	=	df.summary,	width	=	0.2)	+

		geom_point(data	=	df.summary,	size	=	2)

#	(2)	Bar	plots	of	means	+	individual	jitter	points	+	errors

ggplot(df,	aes(dose,	len))	+

		geom_bar(stat	=	"identity",	data	=	df.summary,

											fill	=	NA,	color	=	"black")	+

		geom_jitter(	position	=	position_jitter(0.2),

															color	=	"black")	+	

		geom_errorbar(

				aes(ymin	=	len-sd,	ymax	=	len+sd),

				data	=	df.summary,	width	=	0.2)	



2.	 Mean/median	plots	for	multiple	groups.	Case	of	one	continuous	variable
(len)	and	two	grouping	variables	(dose,	supp).

Compute	the	summary	statistics	of	len	grouped	by	dose	and	supp:

library(dplyr)

df.summary2	<-	df	%>%

		group_by(dose,	supp)	%>%

		summarise(

				sd	=	sd(len),

				len	=	mean(len)

		)



df.summary2

##	#	A	tibble:	6	x	4

##	#	Groups:			dose	[?]

##					dose			supp				sd			len

##			<fctr>	<fctr>	<dbl>	<dbl>

##	1				0.5					OJ		4.46	13.23

##	2				0.5					VC		2.75		7.98

##	3						1					OJ		3.91	22.70

##	4						1					VC		2.52	16.77

##	5						2					OJ		2.66	26.06

##	6						2					VC		4.80	26.14

Create	error	plots	for	multiple	groups:

1.	 pointrange	colored	by	groups	(supp)

2.	 standard	error	bars	+	mean	points	colored	by	groups	(supp)

#	(1)	Pointrange:	Vertical	line	with	point	in	the	middle

ggplot(df.summary2,	aes(dose,	len))	+

		geom_pointrange(

				aes(ymin	=	len-sd,	ymax	=	len+sd,	color	=	supp),

				position	=	position_dodge(0.3)

				)+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800"))

#	(2)	Standard	error	bars

ggplot(df.summary2,	aes(dose,	len))	+

		geom_errorbar(

				aes(ymin	=	len-sd,	ymax	=	len+sd,	color	=	supp),

				position	=	position_dodge(0.3),	width	=	0.2

				)+

		geom_point(aes(color	=	supp),	position	=	position_dodge(0.3))	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800"))	



Create	simple	line/bar	plots	for	multiple	groups.

1.	 Line	plots:	change	linetype	by	groups	(supp)

2.	 Bar	plots:	change	fill	color	by	groups	(supp)

#	(1)	Line	plot	+	error	bars

ggplot(df.summary2,	aes(dose,	len))	+

		geom_line(aes(linetype	=	supp,	group	=	supp))+

		geom_point()+

		geom_errorbar(

				aes(ymin	=	len-sd,	ymax	=	len+sd,	group	=	supp),



					width	=	0.2

				)

#	(2)	Bar	plots	+	upper	error	bars.

ggplot(df.summary2,	aes(dose,	len))	+

		geom_bar(aes(fill	=	supp),	stat	=	"identity",

											position	=	position_dodge(0.8),	width	=	0.7)+

		geom_errorbar(

				aes(ymin	=	len,	ymax	=	len+sd,	group	=	supp),

				width	=	0.2,	position	=	position_dodge(0.8)

				)+

		scale_fill_manual(values	=	c("grey80",	"grey30"))



Create	easily	plots	of	mean	+/-	sd	for	multiple	groups.	Use	the	ggpubr
package,	which	will	automatically	calculate	the	summary	statistics	and
create	the	graphs.

library(ggpubr)

#	Create	line	plots	of	means

ggline(ToothGrowth,	x	=	"dose",	y	=	"len",	

							add	=	c("mean_sd",	"jitter"),

							color	=	"supp",	palette	=	c("#00AFBB",	"#E7B800"))

#	Create	bar	plots	of	means

ggbarplot(ToothGrowth,	x	=	"dose",	y	=	"len",	

										add	=	c("mean_se",	"jitter"),

										color	=	"supp",	palette	=	c("#00AFBB",	"#E7B800"),

										position	=	position_dodge(0.8))



Use	the	standard	ggplot2	verbs,	to	reproduce	the	line	plots	above:

#	Create	line	plots

ggplot(df,	aes(dose,	len))	+

		geom_jitter(

				aes(color	=	supp),

				position	=	position_jitter(0.2)

				)	+	

		geom_line(

				aes(group	=	supp,	color	=	supp),

				data	=	df.summary2

				)	+

		geom_errorbar(

				aes(ymin	=	len-sd,	ymax	=	len+sd,	color	=	supp),

				data	=	df.summary2,	width	=	0.2

				)+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800"))

4.4.8	Add	p-values	and	significance	levels

In	this	section,	we’ll	describe	how	to	easily	i)	compare	means	of	two	or	multiple
groups;	ii)	and	to	automatically	add	p-values	and	significance	levels	to	a	ggplot
(such	as	box	plots,	dot	plots,	bar	plots	and	line	plots,	…).

Key	functions:



compare_means()	[ggpubr	package]:	easy	to	use	solution	to	performs	one
and	multiple	mean	comparisons.
stat_compare_means()	[ggpubr	package]:	easy	to	use	solution	to
automatically	add	p-values	and	significance	levels	to	a	ggplot.

The	most	common	methods	for	comparing	means	include:

Methods R	function Description
T-test t.test() Compare	two	groups	(parametric)
Wilcoxon	test wilcox.test() Compare	two	groups	(non-parametric)
ANOVA aov()	or	anova() Compare	multiple	groups	(parametric)
Kruskal-Wallis kruskal.test() Compare	multiple	groups	(non-parametric)

1.	 Compare	two	independent	groups:

Compute	t-test:

library(ggpubr)

compare_means(len	~	supp,	data	=	ToothGrowth,

														method	=	"t.test")

##	#	A	tibble:	1	x	8

##					.y.	group1	group2						p		p.adj	p.format	p.signif	method

##			<chr>		<chr>		<chr>		<dbl>		<dbl>				<chr>				<chr>		<chr>

##	1			len					OJ					VC	0.0606	0.0606				0.061							ns	T-test

Create	a	box	plot	with	p-values.	Use	the	option	method	=	"t.test"	or
method	=	"wilcox.test".	Default	is	wilcoxon	test.

#	Create	a	simple	box	plot	and	add	p-values

p	<-	ggplot(ToothGrowth,	aes(supp,	len))	+

		geom_boxplot(aes(color	=	supp))	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800"))

p	+	stat_compare_means(method	=	"t.test")

#	Display	the	significance	level	instead	of	the	p-value

#	Adjust	label	position

p	+	stat_compare_means(

		aes(label	=	..p.signif..),	label.x	=	1.5,	label.y	=	40

		)
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2.	 Compare	two	paired	samples.	Use	ggpaired()	[ggpubr]	to	create	the
paired	box	plot.

ggpaired(ToothGrowth,	x	=	"supp",	y	=	"len",

									color	=	"supp",	line.color	=	"gray",	line.size	=	0.4,

									palette	=	"jco")+

		stat_compare_means(paired	=	TRUE)



3.	 Compare	more	than	two	groups.	If	the	grouping	variable	contains	more
than	two	levels,	then	pairwise	tests	will	be	performed	automatically.	The
default	method	is	"wilcox.test".	You	can	change	this	to	"t.test".

#	Perorm	pairwise	comparisons

compare_means(len	~	dose,		data	=	ToothGrowth)

##	#	A	tibble:	3	x	8

##					.y.	group1	group2								p				p.adj	p.format	p.signif			

method

##			<chr>		<chr>		<chr>				<dbl>				<dbl>				<chr>				<chr>				

<chr>

##	1			len				0.5						1	7.02e-06	1.40e-05		7.0e-06					****	

Wilcoxon

##	2			len				0.5						2	8.41e-08	2.52e-07		8.4e-08					****	

Wilcoxon

##	3			len						1						2	1.77e-04	1.77e-04		0.00018						***	

Wilcoxon

#	Visualize:	Specify	the	comparisons	you	want

my_comparisons	<-	list(	c("0.5",	"1"),	c("1",	"2"),	c("0.5",	"2")	)

ggboxplot(ToothGrowth,	x	=	"dose",	y	=	"len",

										color	=	"dose",	palette	=	"jco")+	

		stat_compare_means(comparisons	=	my_comparisons)+	

		stat_compare_means(label.y	=	50)																			



4.	 Multiple	grouping	variables:

(1/2).	Create	a	multi-panel	box	plots	facetted	by	group	(here,	"dose"):

#	Use	only	p.format	as	label.	Remove	method	name.

ggplot(ToothGrowth,	aes(supp,	len))	+

		geom_boxplot(aes(color	=	supp))+

		facet_wrap(~dose)	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800"))	+

		stat_compare_means(label	=	"p.format")



(2/2).	Create	one	single	panel	with	all	box	plots.	Plot	y	=	"len"	by	x	=
"dose"	and	color	by	"supp".	Specify	the	option	group	in
stat_compare_means():

ggplot(ToothGrowth,	aes(dose,	len))	+

		geom_boxplot(aes(color	=	supp))+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800"))	+

		stat_compare_means(aes(group	=	supp),	label	=	"p.signif")

Paired	comparisons	for	multiple	groups:

#	Box	plot	facetted	by	"dose"

p	<-	ggpaired(ToothGrowth,	x	=	"supp",	y	=	"len",

										color	=	"supp",	palette	=	"jco",	

										line.color	=	"gray",	line.size	=	0.4,

										facet.by	=	"dose",	short.panel.labs	=	FALSE)

#	Use	only	p.format	as	label.	Remove	method	name.

p	+	stat_compare_means(label	=	"p.format",	paired	=	TRUE)



Read	more	at:	Add	P-values	and	Significance	Levels	to	ggplots
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4.5	Conclusion
1.	 Visualize	the	distribution	of	a	grouped	continuous	variable:	the

grouping	variable	on	x-axis	and	the	continuous	variable	on	y	axis.

The	possible	ggplot2	layers	include:

geom_boxplot()	for	box	plot
geom_violin()	for	violin	plot
geom_dotplot()	for	dot	plot
geom_jitter()	for	stripchart
geom_line()	for	line	plot
geom_bar()	for	bar	plot

Examples	of	R	code:	start	by	creating	a	plot,	named	e,	and	then	finish	it	by
adding	a	layer:

ToothGrowth$dose	<-	as.factor(ToothGrowth$dose)

e	<-	ggplot(ToothGrowth,	aes(x	=	dose,	y	=	len))

2.	 Create	mean	and	median	plots	with	error	bars:	the	grouping	variable	on



x-axis	and	the	summarized	continuous	variable	(mean/median)	on	y-axis.

Compute	summary	statistics	and	initialize	ggplot	with	summary	data:

#	Summary	statistics

library(dplyr)

df.summary	<-	ToothGrowth	%>%

		group_by(dose)	%>%

		summarise(

				sd	=	sd(len,	na.rm	=	TRUE),

				len	=	mean(len)

		)

#	Initialize	ggplot	with	data

f	<-	ggplot(

		df.summary,	

		aes(x	=	dose,	y	=	len,	ymin	=	len-sd,	ymax	=	len+sd)

		)

Possible	error	plots:

3.	 Combine	error	bars	with	violin	plots,	dot	plots,	line	and	bar	plots:

#	Combine	with	violin	plots

ggplot(ToothGrowth,	aes(dose,	len))+

		geom_violin(trim	=	FALSE)	+

		geom_pointrange(aes(ymin	=	len-sd,	ymax	=	len	+	sd),



																		data	=	df.summary)

#	Combine	with	dot	plots

ggplot(ToothGrowth,	aes(dose,	len))+

		geom_dotplot(stackdir	=	"center",	binaxis	=	"y",

															fill	=	"lightgray",	dotsize	=	1)	+

		geom_pointrange(aes(ymin	=	len-sd,	ymax	=	len	+	sd),

																		data	=	df.summary)

#	Combine	with	line	plot

ggplot(df.summary,	aes(dose,	len))+

		geom_line(aes(group	=	1))	+

		geom_pointrange(aes(ymin	=	len-sd,	ymax	=	len	+	sd))

#	Combine	with	bar	plots

ggplot(df.summary,	aes(dose,	len))+

		geom_bar(stat	=	"identity",	fill	=	"lightgray")	+

		geom_pointrange(aes(ymin	=	len-sd,	ymax	=	len	+	sd))



4.6	See	also
ggpubr:	Publication	Ready	Plots.	https://goo.gl/7uySha
Facilitating	Exploratory	Data	Visualization:	Application	to	TCGA	Genomic
Data.	https://goo.gl/9LNsRi
Add	P-values	and	Significance	Levels	to	ggplots.	https://goo.gl/VH7Yq7
Plot	Means/Medians	and	Error	Bars.	https://goo.gl/zRwAeV

https://goo.gl/7uySha
https://goo.gl/9LNsRi
https://goo.gl/VH7Yq7
https://goo.gl/zRwAeV


5	Plot	Two	Continuous	Variables



5.1	Introduction
Scatter	plots	are	used	to	display	the	relationship	between	two	continuous
variables	x	and	y.	In	this	article,	we'll	start	by	showing	how	to	create	beautiful
scatter	plots	in	R.

We'll	use	helper	functions	in	the	ggpubr	R	package	to	display	automatically	the
correlation	coefficient	and	the	significance	level	on	the	plot.

We'll	also	describe	how	to	color	points	by	groups	and	to	add	concentration
ellipses	around	each	group.	Additionally,	we'll	show	how	to	create	bubble
charts,	as	well	as,	how	to	add	marginal	plots	(histogram,	density	or	box	plot)	to
a	scatter	plot.

We	continue	by	showing	show	some	alternatives	to	the	standard	scatter	plots,
including	rectangular	binning,	hexagonal	binning	and	2d	density	estimation.
These	plot	types	are	useful	in	a	situation	where	you	have	a	large	data	set
containing	thousands	of	records.

R	codes	for	zooming	in	scatter	plot	are	also	provided.	Finally,	you'll	learn	how	to
add	fitted	regression	trend	lines	and	equations	to	a	scatter	plot.

http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/


5.2	Prerequisites
1.	 Install	cowplot	package.	Used	to	arrange	multiple	plots.	Will	be	used	here

to	create	a	scatter	plot	with	marginal	density	plots.	Install	the	latest
developmental	version	as	follow:

devtools::install_github("wilkelab/cowplot")

2.	 Install	ggpmisc	for	adding	the	equation	of	a	fitted	regression	line	on	a
scatter	plot:

install.packages("ggpmisc")

3.	 Load	required	packages	and	set	ggplot	themes:

Load	ggplot2	and	ggpubr	R	packages
Set	the	default	theme	to	theme_minimal()	[in	ggplot2]

library(ggplot2)

library(ggpubr)

theme_set(

		theme_minimal()	+

				theme(legend.position	=	"top")

		)

4.	 Prepare	demo	data	sets:

Dataset:	mtcars.	The	variable	cyl	is	used	as	grouping	variable.

#	Load	data

data("mtcars")

df	<-	mtcars

#	Convert	cyl	as	a	grouping	variable

df$cyl	<-	as.factor(df$cyl)

#	Inspect	the	data

head(df[,	c("wt",	"mpg",	"cyl",	"qsec")],	4)

##																		wt		mpg	cyl	qsec

##	Mazda	RX4						2.62	21.0			6	16.5

http://www.sthda.com/english/wiki/r-built-in-data-sets#mtcars-motor-trend-car-road-tests


##	Mazda	RX4	Wag		2.88	21.0			6	17.0

##	Datsun	710					2.32	22.8			4	18.6

##	Hornet	4	Drive	3.21	21.4			6	19.4



5.3	Basic	scatter	plots
Key	functions:

geom_point():	Create	scatter	plots.	Key	arguments:	color,	size	and	shape
to	change	point	color,	size	and	shape.
geom_smooth():	Add	smoothed	conditional	means	/	regression	line.	Key
arguments:

color,	size	and	linetype:	Change	the	line	color,	size	and	type.
fill:	Change	the	fill	color	of	the	confidence	region.

b	<-	ggplot(df,	aes(x	=	wt,	y	=	mpg))

#	Scatter	plot	with	regression	line

b	+	geom_point()+

		geom_smooth(method	=	"lm")	

					

#	Add	a	loess	smoothed	fit	curve

b	+	geom_point()+

		geom_smooth(method	=	"loess")	



Change	the	point	shape,	by	specifying	the	argument	shape,	for	example:

b	+	geom_point(shape	=	18)

To	see	the	different	point	shapes	commonly	used	in	R,	type	this:

ggpubr::show_point_shapes()

Create	easily	a	scatter	plot	using	ggscatter()	[in	ggpubr].	Use	stat_cor()

To	remove	the	confidence	region	around	the	regression	line,	specify	the
argument	se	=	FALSE	in	the	function	geom_smooth().



[ggpubr]	to	add	the	correlation	coefficient	and	the	significance	level.

#	Add	regression	line	and	confidence	interval

#	Add	correlation	coefficient:	stat_cor()

ggscatter(df,	x	=	"wt",	y	=	"mpg",

										add	=	"reg.line",	conf.int	=	TRUE,				

										add.params	=	list(fill	=	"lightgray"),

										ggtheme	=	theme_minimal()

										)+

		stat_cor(method	=	"pearson",	

											label.x	=	3,	label.y	=	30)	



5.4	Multiple	groups
Change	point	colors	and	shapes	by	groups.
Add	marginal	rug:	geom_rug().

#	Change	color	and	shape	by	groups	(cyl)

b	+	geom_point(aes(color	=	cyl,	shape	=	cyl))+

		geom_smooth(aes(color	=	cyl,	fill	=	cyl),	method	=	"lm")	+

		geom_rug(aes(color	=cyl))	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))

#	Remove	confidence	region	(se	=	FALSE)

#	Extend	the	regression	lines:	fullrange	=	TRUE

b	+	geom_point(aes(color	=	cyl,	shape	=	cyl))	+

		geom_rug(aes(color	=cyl))	+

		geom_smooth(aes(color	=	cyl),	method	=	lm,	

														se	=	FALSE,	fullrange	=	TRUE)+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))+

		ggpubr::stat_cor(aes(color	=	cyl),	label.x	=	3)



Split	the	plot	into	multiple	panels.	Use	the	function	facet_wrap():

b	+	geom_point(aes(color	=	cyl,	shape	=	cyl))+

		geom_smooth(aes(color	=	cyl,	fill	=	cyl),	

														method	=	"lm",	fullrange	=	TRUE)	+

		facet_wrap(~cyl)	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))	+

		theme_bw()

Add	concentration	ellipse	around	groups.	R	function	stat_ellipse().	Key
arguments:



type:	The	type	of	ellipse.	The	default	"t"	assumes	a	multivariate	t-
distribution,	and	"norm"	assumes	a	multivariate	normal	distribution.
"euclid"	draws	a	circle	with	the	radius	equal	to	level,	representing	the
euclidean	distance	from	the	center.
level:	The	confidence	level	at	which	to	draw	an	ellipse	(default	is
0.95),	or,	if	type="euclid",	the	radius	of	the	circle	to	be	drawn.

b	+	geom_point(aes(color	=	cyl,	shape	=	cyl))+

		stat_ellipse(aes(color	=	cyl),	type	=	"t")+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))

Instead	of	drawing	the	concentration	ellipse,	you	can:	i)	plot	a	convex	hull	of	a
set	of	points;	ii)	add	the	mean	points	and	the	confidence	ellipse	of	each	group.
Key	R	functions:	stat_chull(),	stat_conf_ellipse()	and	stat_mean()	[in
ggpubr]:

#	Convex	hull	of	groups

b	+	geom_point(aes(color	=	cyl,	shape	=	cyl))	+

		stat_chull(aes(color	=	cyl,	fill	=	cyl),	

													alpha	=	0.1,	geom	=	"polygon")	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))	+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))	

#	Add	mean	points	and	confidence	ellipses

b	+	geom_point(aes(color	=	cyl,	shape	=	cyl))	+



		stat_conf_ellipse(aes(color	=	cyl,	fill	=	cyl),	

																				alpha	=	0.1,	geom	=	"polygon")	+

		stat_mean(aes(color	=	cyl,	shape	=	cyl),	size	=	2)	+	

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))	+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))	

Easy	alternative	using	ggpubr.	See	this	article:	Perfect	Scatter	Plots	with
Correlation	and	Marginal	Histograms

#	Add	group	mean	points	and	stars

ggscatter(df,	x	=	"wt",	y	=	"mpg",

										color	=	"cyl",	palette	=	"npg",

										shape	=	"cyl",	ellipse	=	TRUE,	

http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/79-plot-meansmedians-and-error-bars/


										mean.point	=	TRUE,	star.plot	=	TRUE,

										ggtheme	=	theme_minimal())

#	Change	the	ellipse	type	to	'convex'

ggscatter(df,	x	=	"wt",	y	=	"mpg",

										color	=	"cyl",	palette	=	"npg",

										shape	=	"cyl",

										ellipse	=	TRUE,	ellipse.type	=	"convex",

										ggtheme	=	theme_minimal())



5.5	Add	point	text	labels
Key	functions:

geom_text()	and	geom_label():	ggplot2	standard	functions	to	add	text	to	a
plot.
geom_text_repel()	and	geom_label_repel()	[in	ggrepel	package].
Repulsive	textual	annotations.	Avoid	text	overlapping.

First	install	ggrepel	(ìnstall.packages("ggrepel")),	then	type	this:

library(ggrepel)

#	Add	text	to	the	plot

.labs	<-	rownames(df)

b	+	geom_point(aes(color	=	cyl))	+

		geom_text_repel(aes(label	=	.labs,		color	=	cyl),	size	=	3)+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))



#	Draw	a	rectangle	underneath	the	text,	making	it	easier	to	read.

b	+	geom_point(aes(color	=	cyl))	+

		geom_label_repel(aes(label	=	.labs,		color	=	cyl),	size	=	3)+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))





5.6	Bubble	chart
In	a	bubble	chart,	points	size	is	controlled	by	a	continuous	variable,	here	qsec.
In	the	R	code	below,	the	argument	alpha	is	used	to	control	color	transparency.
alpha	should	be	between	0	and	1.

b	+	geom_point(aes(color	=	cyl,	size	=	qsec),	alpha	=	0.5)	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))	+

		scale_size(range	=	c(0.5,	12))		#	Adjust	the	range	of	points	size



5.7	Color	by	a	continuous	variable
Color	points	according	to	the	values	of	the	continuous	variable:	"mpg".
Change	the	default	blue	gradient	color	using	the	function
scale_color_gradientn()	[in	ggplot2],	by	specifying	two	or	more	colors.

b	+	geom_point(aes(color	=	mpg),	size	=	3)	+

		scale_color_gradientn(colors	=	c("#00AFBB",	"#E7B800",	

"#FC4E07"))



5.8	Add	marginal	density	plots
The	function	ggMarginal()	[in	ggExtra	package]	(Attali	2017),	can	be	used	to
easily	add	a	marginal	histogram,	density	or	box	plot	to	a	scatter	plot.

First,	install	the	ggExtra	package	as	follow:	install.packages("ggExtra");
then	type	the	following	R	code:

#	Create	a	scatter	plot

p	<-	ggplot(iris,	aes(Sepal.Length,	Sepal.Width))	+

		geom_point(aes(color	=	Species),	size	=	3,	alpha	=	0.6)	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))

#	Add	density	distribution	as	marginal	plot

library("ggExtra")

ggMarginal(p,	type	=	"density")

#	Change	marginal	plot	type

ggMarginal(p,	type	=	"boxplot")

One	limitation	of	ggExtra	is	that	it	can't	cope	with	multiple	groups	in	the	scatter
plot	and	the	marginal	plots.

A	solution	is	provided	in	the	function	ggscatterhist()	[ggpubr]:



library(ggpubr)

#	Grouped	Scatter	plot	with	marginal	density	plots

ggscatterhist(

		iris,	x	=	"Sepal.Length",	y	=	"Sepal.Width",

		color	=	"Species",	size	=	3,	alpha	=	0.6,

		palette	=	c("#00AFBB",	"#E7B800",	"#FC4E07"),

		margin.params	=	list(fill	=	"Species",	color	=	"black",	size	=	

0.2)

		)

#	Use	box	plot	as	marginal	plots

ggscatterhist(

		iris,	x	=	"Sepal.Length",	y	=	"Sepal.Width",

		color	=	"Species",	size	=	3,	alpha	=	0.6,

		palette	=	c("#00AFBB",	"#E7B800",	"#FC4E07"),

		margin.plot	=	"boxplot",

		ggtheme	=	theme_bw()

		)





5.9	Continuous	bivariate	distribution
In	this	section,	we'll	present	some	alternatives	to	the	standard	scatter	plots.	These
include:

Rectangular	binning.	Rectangular	heatmap	of	2d	bin	counts
Hexagonal	binning:	Hexagonal	heatmap	of	2d	bin	counts.
2d	density	estimation

1.	 Rectangular	binning:

Rectangular	binning	is	a	very	useful	alternative	to	the	standard	scatter	plot	in	a
situation	where	you	have	a	large	data	set	containing	thousands	of	records.

Rectangular	binning	helps	to	handle	overplotting.	Rather	than	plotting	each
point,	which	would	appear	highly	dense,	it	divides	the	plane	into	rectangles,
counts	the	number	of	cases	in	each	rectangle,	and	then	plots	a	heatmap	of	2d	bin
counts.	In	this	plot,	many	small	hexagon	are	drawn	with	a	color	intensity
corresponding	to	the	number	of	cases	in	that	bin.

Key	function:	geom_bin2d():	Creates	a	heatmap	of	2d	bin	counts.	Key
arguments:	bins,	numeric	vector	giving	number	of	bins	in	both	vertical	and
horizontal	directions.	Set	to	30	by	default.

2.	 Hexagonal	binning:	Similar	to	rectangular	binning,	but	divides	the	plane
into	regular	hexagons.	Hexagon	bins	avoid	the	visual	artefacts	sometimes
generated	by	the	very	regular	alignment	of	`geom_bin2d().

Key	function:	geom_hex()

3.	 Contours	of	a	2d	density	estimate.	Perform	a	2D	kernel	density	estimation
and	display	results	as	contours	overlaid	on	the	scatter	plot.	This	can	be	also
useful	for	dealing	with	overplotting.

Key	function:	geom_density_2d()

Create	a	scatter	plot	with	rectangular	and	hexagonal	binning:



#	Rectangular	binning

ggplot(diamonds,	aes(carat,	price))	+

		geom_bin2d(bins	=	20,	color	="white")+

		scale_fill_gradient(low	=		"#00AFBB",	high	=	"#FC4E07")+

		theme_minimal()

#	Hexagonal	binning

ggplot(diamonds,	aes(carat,	price))	+

		geom_hex(bins	=	20,	color	=	"white")+

		scale_fill_gradient(low	=		"#00AFBB",	high	=	"#FC4E07")+

		theme_minimal()

Create	a	scatter	plot	with	2d	density	estimation:

#	Add	2d	density	estimation

sp	<-	ggplot(iris,	aes(Sepal.Length,	Sepal.Width))	+

		geom_point(color	=	"lightgray")

sp	+	geom_density_2d()



				

#	Use	different	geometry	and	change	the	gradient	color

sp	+	stat_density_2d(aes(fill	=	..level..),	geom	=	"polygon")	+

		scale_fill_gradientn(colors	=	c("#FFEDA0",	"#FEB24C",	"#F03B20"))



5.10	Zoom	in	a	scatter	plot
Key	function:	facet_zomm()	[in	ggforce]	(Pedersen	2016).
Demo	data	set:	iris.	The	R	code	below	zoom	the	points	where	Species	==
"versicolor".

library(ggforce)

ggplot(iris,	aes(Petal.Length,	Petal.Width,	colour	=	Species))	+

		geom_point()	+

		ggpubr::color_palette("jco")	+	

		facet_zoom(x	=	Species	==	"versicolor")+

		theme_bw()

To	zoom	the	points,	where	Petal.Length	<	2.5,	type	this:

ggplot(iris,	aes(Petal.Length,	Petal.Width,	colour	=	Species))	+

		geom_point()	+

		ggpubr::color_palette("jco")	+	

		facet_zoom(x	=	Petal.Length	<	2.5)+

		theme_bw()



5.11	Add	trend	lines	and	equations
In	this	section,	we'll	describe	how	to	add	trend	lines	to	a	scatter	plot	and	labels
(equation,	R2,	BIC,	AIC)	for	a	fitted	lineal	model.

1.	 Load	packages	and	create	a	basic	scatter	plot	facetted	by	groups:

#	Load	packages	and	set	theme

library(ggpubr)

library(ggpmisc)

theme_set(

		theme_bw()	+

				theme(legend.position	=	"top")

		)

#	Scatter	plot

p	<-	ggplot(iris,	aes(Sepal.Length,	Sepal.Width))	+

		geom_point(aes(color	=	Species),	size	=	3,	alpha	=	0.6)	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))	+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))+

		facet_wrap(~Species)

2.	 Add	regression	line,	correlation	coefficient	and	equantions	of	the	fitted
line.	Key	functions:

stat_smooth()	[ggplot2]
stat_cor()	[ggpubr]
stat_poly_eq()[ggpmisc]

formula	<-	y	~	x

p	+	

		stat_smooth(	aes(color	=	Species,	fill	=	Species),	method	=	"lm")	

+

		stat_cor(aes(color	=	Species),	label.y	=	4.4)+

		stat_poly_eq(

				aes(color	=	Species,	label	=	..eq.label..),

				formula	=	formula,	label.y	=	4.2,	parse	=	TRUE)



3.	 Fit	polynomial	equation:

Create	some	data:

set.seed(4321)

x	<-	1:100

y	<-	(x	+	x^2	+	x^3)	+	rnorm(length(x),	mean	=	0,	sd	=	mean(x^3)	/	

4)

my.data	<-	data.frame(x,	y,	group	=	c("A",	"B"),	

																						y2	=	y	*	c(0.5,2),	block	=	c("a",	"a",	"b",	

"b"))

Fit	polynomial	regression	line	and	add	labels:

#	Polynomial	regression.	Sow	equation	and	adjusted	R2

formula	<-	y	~	poly(x,	3,	raw	=	TRUE)

p	<-	ggplot(my.data,	aes(x,	y2,	color	=	group))	+

		geom_point()	+

		geom_smooth(aes(fill	=	group),	method	=	"lm",	formula	=	formula)	

+

		stat_poly_eq(

				aes(label	=		paste(..eq.label..,	..adj.rr.label..,	sep	=	

"~~~~")),

				formula	=	formula,	parse	=	TRUE

				)

ggpar(p,	palette	=	"jco")



Note	that,	you	can	also	display	the	AIC	and	the	BIC	values	using
..AIC.label..	and	..BIC.label..	in	the	above	equation.

Other	arguments	(label.x,	label.y)	are	available	in	the	function
stat_poly_eq()	to	adjust	label	positions.

For	more	examples,	type	this	R	code:	browseVignettes("ggpmisc").



5.12	Conclusion
1.	 Create	a	basic	scatter	plot:

b	<-	ggplot(mtcars,	aes(x	=	wt,	y	=	mpg))

Possible	layers,	include:

geom_point()	for	scatter	plot
geom_smooth()	for	adding	smoothed	line	such	as	regression	line
geom_rug()	for	adding	a	marginal	rug
geom_text()	for	adding	textual	annotations

2.	 Continuous	bivariate	distribution:

c	<-	ggplot(diamonds,	aes(carat,	price))

Possible	layers	include:

geom_bin2d():	Rectangular	binning.
geom_hex():	Hexagonal	binning.



geom_density_2d():	Contours	from	a	2d	density	estimate



5.13	See	also
ggpubr:	Publication	Ready	Plots.	https://goo.gl/7uySha
Perfect	Scatter	Plots	with	Correlation	and	Marginal	Histograms.
https://goo.gl/3o4ddg

https://goo.gl/7uySha
https://goo.gl/3o4ddg


6	Plot	Multivariate	Continuous	Data



6.1	Introduction
Here,	multivariate	data	are	data	that	contains	3	or	more	variables.

When	you	have	only	three	continuous	variables	in	your	data	set,	you	can	create	a
3d	scatter	plot.

For	a	small	data	set	with	more	than	three	variables,	it's	possible	to	visualize	the
relationship	between	each	pairs	of	variables	by	creating	a	scatter	plot	matrix.
You	can	also	perform	a	correlation	analysis	between	each	pairs	of	variables.

For	a	large	multivariate	data	set,	it	is	more	difficult	to	visualize	their
relationships.	Discovering	knowledge	from	these	data	requires	specific
techniques.	Multivariate	analysis	(MVA)	refers	to	a	set	of	techniques	used	for
analyzing	a	data	set	containing	multiple	variables.

Among	these	techniques,	there	are:

Cluster	analysis	for	identifying	groups	of	observations	with	similar	profile
according	to	a	specific	criteria.
Principal	component	methods,	which	consist	of	summarizing	and
visualizing	the	most	important	information	contained	in	a	multivariate	data
set.

In	this	chapter	we	provide	an	overview	of	methods	for	visualizing	multivariate
data	sets.

http://www.sthda.com/english/articles/25-cluster-analysis-in-r-practical-guide/
http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/


6.2	Demo	data	set	and	R	package
library("magrittr")	#	for	piping	%>%

head(iris,	3)

##			Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species

##	1										5.1									3.5										1.4									0.2		setosa

##	2										4.9									3.0										1.4									0.2		setosa

##	3										4.7									3.2										1.3									0.2		setosa



6.3	Create	a	3d	scatter	plot
You	can	create	a	3d	scatter	plot	using	the	R	package	scatterplot3d	(Ligges,
Maechler,	and	Schnackenberg	2017),	which	contains	a	function	of	the	same
name.

Install:	install.packages("scatterplot3d")

Create	a	basic	3d	scatter	plot:

library(scatterplot3d)

scatterplot3d(

		iris[,1:3],	pch	=	19,	color	=	"steelblue",

			grid	=	TRUE,	box	=	FALSE,

			mar	=	c(3,	3,	0.5,	3)								

		)

See	more	examples	at:	http://www.sthda.com/english/wiki/3d-graphics

http://www.sthda.com/english/wiki/3d-graphics


6.4	Create	a	scatter	plot	matrix
To	create	a	scatter	plot	of	each	possible	pairs	of	variables,	you	can	use	the
function	ggpairs()	[in	GGally	package,	an	extension	of	ggplot2](Schloerke	et	al.
2016)	.	It	produces	a	pairwise	comparison	of	multivariate	data.

Install:	install.packages("GGally")

Create	a	simple	scatter	plot	matrix.	The	plot	contains	the:
Scatter	plot	and	the	correlation	coefficient	between	each	pair	of
variables
Density	distribution	of	each	variable

library(GGally)

library(ggplot2)

ggpairs(iris[,-5])+	theme_bw()



Create	a	scatter	plot	matrix	by	groups.	The	plot	contains	the	:
Scatter	plot	and	the	correlation	coefficient,	between	each	pair	of
variables,	colored	by	groups
Density	distribution	and	the	box	plot,	of	each	continuous	variable,
colored	by	groups

p	<-	ggpairs(iris,	aes(color	=	Species))+	theme_bw()

#	Change	color	manually.

#	Loop	through	each	plot	changing	relevant	scales

for(i	in	1:p$nrow)	{

		for(j	in	1:p$ncol){

				p[i,j]	<-	p[i,j]	+	

								scale_fill_manual(values=c("#00AFBB",	"#E7B800",	

"#FC4E07"))	+

								scale_color_manual(values=c("#00AFBB",	"#E7B800",	

"#FC4E07"))		

		}

}

p



An	alternative	to	the	function	ggpairs()	is	provided	by	the	R	base	plot	function
chart.Correlation()	[in	PerformanceAnalytics	packages].	It	displays	the
correlation	coefficient	and	the	significance	levels	as	stars.

For	example,	type	the	following	R	code,	after	installing	the
PerformanceAnalytics	package:

#	install.packages("PerformanceAnalytics")

library("PerformanceAnalytics")

my_data	<-	mtcars[,	c(1,3,4,5,6,7)]

chart.Correlation(my_data,	histogram=TRUE,	pch=19)





6.5	Correlation	analysis
Recall	that,	correlation	analysis	is	used	to	investigate	the	association	between
two	or	more	variables.	Read	more	at:	Correlation	analyses	in	R.

1.	 Compute	correlation	matrix	between	pairs	of	variables	using	the	R	base
function	cor()

2.	 Visualize	the	output.	Two	possibilities:
Use	the	function	ggcorrplot()	[in	ggcorplot	package].	Extension	to
the	ggplot2	system.	See	more	examples	at:
http://www.sthda.com/english/wiki/ggcorrplot-visualization-of-a-
correlation-matrix-using-ggplot2.
Use	the	function	corrplot()	[in	corrplot	package].	R	base	plotting
system.	See	examples	at:	http://www.sthda.com/english/wiki/visualize-
correlation-matrix-using-correlogram.

Here,	we'll	present	only	the	ggcorrplot	package	(Kassambara	2016),	which	can
be	installed	as	follow:	install.packages("ggcorrplot").

library("ggcorrplot")

#	Compute	a	correlation	matrix

my_data	<-	mtcars[,	c(1,3,4,5,6,7)]

corr	<-	round(cor(my_data),	1)

#	Visualize

ggcorrplot(corr,	p.mat	=	cor_pmat(my_data),

											hc.order	=	TRUE,	type	=	"lower",

											color	=	c("#FC4E07",	"white",	"#00AFBB"),

											outline.col	=	"white",	lab	=	TRUE)

http://www.sthda.com/english/wiki/correlation-analyses-in-r
http://www.sthda.com/english/wiki/ggcorrplot-visualization-of-a-correlation-matrix-using-ggplot2
http://www.sthda.com/english/wiki/visualize-correlation-matrix-using-correlogram


In	the	plot	above:

Positive	correlations	are	shown	in	blue	and	negative	correlation	in	red
Variables	that	are	associated	are	grouped	together.
Non-significant	correlation	are	marked	by	a	cross	(X)



6.6	Principal	component	analysis
Principal	component	analysis	(PCA)	is	a	multivariate	data	analysis	approach	that
allows	us	to	summarize	and	visualize	the	most	important	information	contained
in	a	multivariate	data	set.

PCA	reduces	the	data	into	few	new	dimensions	(or	axes),	which	are	a	linear
combination	of	the	original	variables.	You	can	visualize	a	multivariate	data	by
drawing	a	scatter	plot	of	the	first	two	dimensions,	which	contain	the	most
important	information	in	the	data.	Read	more	at:	https://goo.gl/kabVHq

Demo	data	set:	iris
Compute	PCA	using	the	R	base	function	prcomp()
Visualize	the	output	using	the	factoextra	R	package	(an	extension	to
ggplot2)	(Kassambara	and	Mundt	2017)

library("factoextra")

my_data	<-	iris[,	-5]	#	Remove	the	grouping	variable

res.pca	<-	prcomp(my_data,	scale	=	TRUE)

fviz_pca_biplot(res.pca,	col.ind	=	iris$Species,

																palette	=	"jco",	geom	=	"point")

https://goo.gl/kabVHq


In	the	plot	above:

Dimension	(Dim.)	1	and	2	retained	about	96%	(73%	+	22.9%)	of	the	total
information	contained	in	the	data	set.
Individuals	with	a	similar	profile	are	grouped	together
Variables	that	are	positively	correlated	are	on	the	same	side	of	the	plots.
Variables	that	are	negatively	correlated	are	on	the	opposite	side	of	the	plots.



6.7	Cluster	analysis
Cluster	analysis	is	one	of	the	important	data	mining	methods	for	discovering
knowledge	in	multidimensional	data.	The	goal	of	clustering	is	to	identify	pattern
or	groups	of	similar	objects	within	a	data	set	of	interest.	Read	more	at:
http://www.sthda.com/english/articles/25-cluster-analysis-in-r-practical-guide/.

This	section	describes	how	to	compute	and	visualize	hierarchical	clustering,
which	output	is	a	tree	called	dendrogram	showing	groups	of	similar	individuals.

Computation.	R	function:	hclust().	It	takes	a	dissimilarity	matrix	as	an
input,	which	is	calculated	using	the	function	dist().
Visualization:	fviz_dend()	[in	factoextra]
Demo	data	sets:	USArrests

Before	cluster	analysis,	it's	recommended	to	scale	(or	normalize)	the	data,	to
make	the	variables	comparable.	R	function:	scale(),	applies	scaling	on	the
column	of	the	data	(variables).

library(factoextra)

USArrests	%>%

		scale()	%>%																											#	Scale	the	data

		dist()	%>%																												#	Compute	distance	matrix

		hclust(method	=	"ward.D2")	%>%								#	Hierarchical	clustering

		fviz_dend(cex	=	0.5,	k	=	4,	palette	=	"jco")	#	Visualize	and	cut	

																																														#	into	4	groups

http://www.sthda.com/english/articles/25-cluster-analysis-in-r-practical-guide/


A	heatmap	is	another	way	to	visualize	hierarchical	clustering.	It’s	also	called	a
false	colored	image,	where	data	values	are	transformed	to	color	scale.	Heat	maps
allow	us	to	simultaneously	visualize	groups	of	samples	and	features.	You	can
easily	create	a	pretty	heatmap	using	the	R	package	pheatmap.

In	heatmap,	generally,	columns	are	samples	and	rows	are	variables.	Therefore
we	start	by	scaling	and	then	transpose	the	data	before	creating	the	heatmap.

library(pheatmap)

USArrests	%>%

		scale()	%>%																		#	Scale	variables

		t()	%>%																						#	Transpose	

		pheatmap(cutree_cols	=	4)				#	Create	the	heatmap



Multivariate	data	Heatmap



6.8	Conclusion
For	a	multivariate	continuous	data,	you	can	perform	the	following	analysis	or
visualization	depending	on	the	complexity	of	your	data:

3D	scatter	plot	:	scatterplot3d()	[scatterplot3d]
Create	a	scatter	plot	matrix:	ggpairs	[GGally]
Correlation	matrix	analysis	and	visualization:	cor()[stats]	and	ggcorrplot()
[ggcorrplot]	for	the	visualization.
Principal	component	analysis:	prcomp()	[stats]	and	fviz_pca()	[factoextra]
Cluster	analysis:	hclust()	[stats]	and	fviz_dend()	[factoextra]



7	Visualizing	Multivariate
Categorical	Data



7.1	Introduction
To	visualize	a	small	data	set	containing	multiple	categorical	variables,	you	can
create	either	a	bar	plot,	a	balloon	plot	or	a	mosaic	plot.

For	a	large	multivariate	categorical	data,	you	need	specialized	techniques
dedicated	to	categorical	data	analysis,	such	as	simple	and	multiple
correspondence	analysis.	These	methods	make	it	possible	to	visualize	the
association	between	a	large	number	of	categorical	variables.

Here,	we'll	describe	simple	examples	of	graphs	for	visualizing	the	frequency
distribution	of	categorical	variables	contained	in	small	contingency	tables.

http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/


7.2	Prerequisites
Load	required	R	packages	and	set	the	default	theme:

library(ggplot2)

library(ggpubr)

theme_set(theme_pubr())



7.3	Bar	plots	of	contingency	tables
Demo	data	set:	HairEyeColor	(distribution	of	hair	and	eye	color	and	sex	in	592
statistics	students)

Prepare	and	inspect	the	data:

data("HairEyeColor")

df	<-	as.data.frame(HairEyeColor)

head(df)

##				Hair			Eye		Sex	Freq

##	1	Black	Brown	Male			32

##	2	Brown	Brown	Male			53

##	3			Red	Brown	Male			10

##	4	Blond	Brown	Male				3

##	5	Black		Blue	Male			11

##	6	Brown		Blue	Male			50

Create	the	bar	graph:
Hair	color	on	x-axis
Change	bar	fill	by	Eye	color
Split	the	graph	into	multiple	panel	by	Sex

ggplot(df,	aes(x	=	Hair,	y	=	Freq))+

		geom_bar(

				aes(fill	=	Eye),	stat	=	"identity",	color	=	"white",

				position	=	position_dodge(0.9)

				)+

		facet_wrap(~Sex)	+	

		fill_palette("jco")





7.4	Balloon	plot
Balloon	plot	is	an	alternative	to	bar	plot	for	visualizing	a	large	categorical	data.
We'll	use	the	function	ggballoonplot()	[in	ggpubr],	which	draws	a	graphical
matrix	of	a	contingency	table,	where	each	cell	contains	a	dot	whose	size	reflects
the	relative	magnitude	of	the	corresponding	component.

Demo	data	sets:	Housetasks	(a	contingency	table	containing	the	frequency	of
execution	of	13	house	tasks	in	the	couple.)

housetasks	<-	read.delim(

		system.file("demo-data/housetasks.txt",	package	=	"ggpubr"),

		row.names	=	1

		)

head(housetasks,	4)

##												Wife	Alternating	Husband	Jointly

##	Laundry					156										14							2							4

##	Main_meal			124										20							5							4

##	Dinner							77										11							7						13

##	Breakfeast			82										36						15							7

Create	a	simple	balloon	plot	of	a	contingency	table.	Change	the	fill	color	by
the	values	in	the	cells.

ggballoonplot(housetasks,	fill	=	"value")+

		scale_fill_viridis_c(option	=	"C")



Visualize	a	grouped	frequency	table.	Demo	data	set:	HairEyeColor.	Create
a	multi-panel	plot	by	Sex

df	<-	as.data.frame(HairEyeColor)

ggballoonplot(df,	x	=	"Hair",	y	=	"Eye",	size	=	"Freq",

														fill	=	"Freq",	facet.by	=	"Sex",

														ggtheme	=	theme_bw())	+

		scale_fill_viridis_c(option	=	"C")





7.5	Mosaic	plot
A	mosaic	plot	is	basically	an	area-proportional	visualization	of	observed
frequencies,	composed	of	tiles	(corresponding	to	the	cells)	created	by	recursive
vertical	and	horizontal	splits	of	a	rectangle.	The	area	of	each	tile	is	proportional
to	the	corresponding	cell	entry,	given	the	dimensions	of	previous	splits.

Mosaic	graph	can	be	created	using	either	the	function	mosaicplot()	[in
graphics]	or	the	function	mosaic()	[in	vcd	package].	Read	more	at:	Visualizing
Multi-way	Contingency	Tables	with	vcd.

Example	of	mosaic	plot:

library(vcd)

mosaic(HairEyeColor,	shade	=	TRUE,	legend	=	TRUE)	

https://cran.r-project.org/web/packages/vcd/vignettes/strucplot.pdf




7.6	Correspondence	analysis
Correspondence	analysis	can	be	used	to	summarize	and	visualize	the	information
contained	in	a	large	contingency	table	formed	by	two	categorical	variables.

Required	package:	FactoMineR	for	the	analysis	and	factoextra	for	the
visualization

library(FactoMineR)

library(factoextra)

res.ca	<-	CA(housetasks,	graph	=	FALSE)

fviz_ca_biplot(res.ca,	repel	=	TRUE)

From	the	graphic	above,	it's	clear	that:

Housetasks	such	as	dinner,	breakfeast,	laundry	are	done	more	often	by	the
wife
Driving	and	repairs	are	done	more	frequently	by	the	husband

Read	more	at:	Correspondence	analysis	in	R

https://goo.gl/7CnpXq


8	Plot	Time	Series	Data



8.1	Introduction
In	this	chapter,	we	start	by	describing	how	to	plot	simple	and	multiple	time
series	data	using	the	function	geom_line().	Next,	we	show	how	to	set	date	axis
limits	and	add	trend	smoothed	line	to	a	time	series	graphs.	Finally,	we	introduce
some	extensions	to	the	ggplot2	package	for	easily	handling	time	series	objects.



8.2	Basic	ggplot	of	time	series
Plot	types:	line	plot	with	dates	on	x-axis
Demo	data	set:	economics	[ggplot2]	time	series	data	sets	are	used.

In	this	section	we'll	plot	the	variables	psavert	(personal	savings	rate)	and
uempmed	(number	of	unemployed	in	thousands)	by	date	(x-axis).

Load	required	packages	and	set	the	default	theme:

library(ggplot2)

theme_set(theme_minimal())

#	Demo	dataset

head(economics)

##	#	A	tibble:	6	x	6

##									date			pce				pop	psavert	uempmed	unemploy

##							<date>	<dbl>		<int>			<dbl>			<dbl>				<int>

##	1	1967-07-01			507	198712				12.5					4.5					2944

##	2	1967-08-01			510	198911				12.5					4.7					2945

##	3	1967-09-01			516	199113				11.7					4.6					2958

##	4	1967-10-01			513	199311				12.5					4.9					3143

##	5	1967-11-01			518	199498				12.5					4.7					3066

##	6	1967-12-01			526	199657				12.1					4.8					3018

Create	basic	line	plots

#	Basic	line	plot

ggplot(data	=	economics,	aes(x	=	date,	y	=	pop))+

		geom_line(color	=	"#00AFBB",	size	=	2)

#	Plot	a	subset	of	the	data

ss	<-	subset(economics,	date	>	as.Date("2006-1-1"))

ggplot(data	=	ss,	aes(x	=	date,	y	=	pop))	+	

		geom_line(color	=	"#FC4E07",	size	=	2)



Control	line	size	by	the	value	of	a	continuous	variable:

ggplot(data	=	economics,	aes(x	=	date,	y	=	pop))	+

		geom_line(aes(size	=	unemploy/pop),	color	=	"#FC4E07")



8.3	Plot	multiple	time	series	data
Here,	we'll	plot	the	variables	psavert	and	uempmed	by	dates.	You	should	first
reshape	the	data	using	the	tidyr	package:	-	Collapse	psavert	and	uempmed
values	in	the	same	column	(new	column).	R	function:	gather()[tidyr]	-	Create
a	grouping	variable	that	with	levels	=	psavert	and	uempmed

library(tidyr)

library(dplyr)

df	<-	economics	%>%

		select(date,	psavert,	uempmed)	%>%

		gather(key	=	"variable",	value	=	"value",	-date)

head(df,	3)

##	#	A	tibble:	3	x	3

##									date	variable	value

##							<date>				<chr>	<dbl>

##	1	1967-07-01		psavert		12.5

##	2	1967-08-01		psavert		12.5

##	3	1967-09-01		psavert		11.7

#	Multiple	line	plot

ggplot(df,	aes(x	=	date,	y	=	value))	+	

		geom_line(aes(color	=	variable),	size	=	1)	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800"))	+

		theme_minimal()

#	Area	plot

ggplot(df,	aes(x	=	date,	y	=	value))	+	

		geom_area(aes(color	=	variable,	fill	=	variable),	

												alpha	=	0.5,	position	=	position_dodge(0.8))	+



		scale_color_manual(values	=	c("#00AFBB",	"#E7B800"))	+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800"))



8.4	Set	date	axis	limits
Key	R	function:	scale_x_date()

#	Base	plot	with	date	axis

p	<-	ggplot(data	=	economics,	aes(x	=	date,	y	=	psavert))	+	

					geom_line(color	=	"#00AFBB",	size	=	1)

p

#	Set	axis	limits	c(min,	max)

min	<-	as.Date("2002-1-1")

max	<-	NA

p	+	scale_x_date(limits	=	c(min,	max))



8.5	Format	date	axis	labels
Key	function:	scale_x_date().

To	format	date	axis	labels,	you	can	use	different	combinations	of	days,	weeks,
months	and	years:

Weekday	name:	use	%a	and	%A	for	abbreviated	and	full	weekday	name,
respectively
Month	name:	use	%b	and	%B	for	abbreviated	and	full	month	name,
respectively
%d:	day	of	the	month	as	decimal	number
%Y:	Year	with	century.
See	more	options	in	the	documentation	of	the	function	?strptime

#	Format	:	month/year

p	+	scale_x_date(date_labels	=	"%b/%Y")



8.6	Add	trend	smoothed	line
Key	function:	stat_smooth()

p	+	stat_smooth(

		color	=	"#FC4E07",	fill	=	"#FC4E07",

		method	=	"loess"

		)



8.7	ggplot2	extensions	for	ts	objects
The	ggfortify	package	is	an	extension	to	ggplot2	that	makes	it	easy	to	plot	time
series	objects	(Horikoshi	and	Tang	2017).	It	can	handle	the	output	of	many	time
series	packages,	including:	zoo::zooreg(),	xts::xts(),	timeSeries::timSeries(),
tseries::irts(),	forecast::forecast(),	vars:vars().

Another	interesting	package	is	the	ggpmisc	package	(Aphalo	2017),	which
provides	two	useful	methods	for	time	series	object:

stat_peaks()	finds	at	which	x	positions	local	y	maxima	are	located,	and
stat_valleys()	finds	at	which	x	positions	local	y	minima	are	located.

Here,	we'll	show	how	to	easily:

Visualize	a	time	series	object,	using	the	data	set	AirPassengers	(monthly
airline	passenger	numbers	1949-1960).
Identify	shifts	in	mean	and/or	variance	in	a	time	series	using	the
changepoint	package.
Detect	jumps	in	a	data	using	the	strucchange	package	and	the	data	set	Nile
(Measurements	of	the	annual	flow	of	the	river	Nile	at	Aswan).
Detect	peaks	and	valleys	using	the	ggpmisc	package	and	the	data	set	lynx
(Annual	Canadian	Lynx	trappings	1821–1934).

First,	install	required	R	packages:

install.packages(

		c("ggfortify",	"changepoint",

				"strucchange",	"ggpmisc")

)

Then	use	the	autoplot.ts()	function	to	visualize	time	series	objects,	as	follow:

library(ggfortify)

library(magrittr)	#	for	piping	%>%

#	Plot	ts	objects

autoplot(AirPassengers)



#	Identify	change	points	in	mean	and	variance

AirPassengers	%>%

		changepoint::	cpt.meanvar()	%>%		#	Identify	change	points

		autoplot()

#	Detect	jump	in	a	data

strucchange::breakpoints(Nile	~	1)	%>%

		autoplot()



Detect	peaks	and	valleys:

library(ggpmisc)

ggplot(lynx,	as.numeric	=	FALSE)	+	geom_line()	+	

		stat_peaks(colour	=	"red")	+

		stat_peaks(geom	=	"text",	colour	=	"red",	

													vjust	=	-0.5,	x.label.fmt	=	"%Y")	+

		stat_valleys(colour	=	"blue")	+

		stat_valleys(geom	=	"text",	colour	=	"blue",	angle	=	45,

															vjust	=	1.5,	hjust	=	1,		x.label.fmt	=	"%Y")+

		ylim(-500,	7300)



9	Facets:	Multi-Panels	GGPlot



9.1	Introduction
This	chapter	describes	how	to	create	a	multi-panel	ggplots	or	facets.	Facets
divide	a	ggplot	into	subplots	based	on	the	values	of	one	or	more	categorical
variables.	There	are	two	main	functions	for	faceting:	facet_grid()	and
facet_wrap()



9.2	Prerequisites
Load	required	packages	and	set	the	theme	function	theme_light()	[ggplot2]	as
the	default	theme:

library(ggplot2)

theme_set(

		theme_light()	+	theme(legend.position	=	"top")

		)

Create	a	box	plot	filled	by	groups:

#	Load	data	and	convert	dose	to	a	factor	variable

data("ToothGrowth")

ToothGrowth$dose	<-	as.factor(ToothGrowth$dose)

#	Box	plot

p	<-	ggplot(ToothGrowth,	aes(x	=	dose,	y	=	len))	+	

		geom_boxplot(aes(fill	=	supp),	position	=	position_dodge(0.9))	+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800"))

p



9.3	Split	the	plot	into	a	matrix	of	panels
The	following	functions	can	be	used	for	facets:

p	+	facet_grid(supp	~	.):	Facet	in	vertical	direction	based	on	the	levels	of
supp	variable.
p	+	facet_grid(.	~	supp):	Facet	in	horizontal	direction	based	on	the	levels	of
supp	variable.
p	+	facet_grid(dose	~	supp):	Facet	in	horizontal	and	vertical	directions
based	on	two	variables:	dose	and	supp.
p	+	facet_wrap(~	fl):	Place	facet	side	by	side	into	a	rectangular	layout

1.	 Facet	with	one	discrete	variable:	Split	by	the	levels	of	the	group	"supp"

#	Split	in	vertical	direction

p	+	facet_grid(supp	~	.)

#	Split	in	horizontal	direction

p	+	facet_grid(.	~	supp)



2.	 Facet	with	two	discrete	variables:	Split	by	the	levels	of	the	groups	"dose"
and	"supp"

#	Facet	by	two	variables:	dose	and	supp.

#	Rows	are	dose	and	columns	are	supp

p	+	facet_grid(dose	~	supp)

#	Facet	by	two	variables:	reverse	the	order	of	the	2	variables

#	Rows	are	supp	and	columns	are	dose

p	+	facet_grid(supp	~	dose)



Note	that,	you	can	use	the	argument	margins	to	add	additional	facets	which
contain	all	the	data	for	each	of	the	possible	values	of	the	faceting	variables

p	+	facet_grid(dose	~	supp,	margins=TRUE)

3.	 Facet	scales

By	default,	all	the	panels	have	the	same	scales	(scales="fixed").	They	can	be
made	independent,	by	setting	scales	to	free,	free_x,	or	free_y.



p	+	facet_grid(dose	~	supp,	scales='free')

4.	 Facet	labels:	The	argument	labeller	can	be	used	to	control	the	labels	of
the	panels.

p	+	facet_grid(dose	~	supp,	labeller=label_both)

The	appearance	of	facet	labels	can	be	modified	as	follow	:

#	Change	facet	text	font.	Possible	values	for	the	font	style:

		#'plain',	'italic',	'bold',	'bold.italic'.

p	+	facet_grid(dose	~	supp)+

				theme(strip.text.x	=	element_text(size=12,	color="red",

																																						face="bold.italic"),

										strip.text.y	=	element_text(size=12,	color="red",

																																						face="bold.italic"))

#	Change	the	apperance	of	the	rectangle	around	facet	label

p	+	facet_grid(dose	~	supp)+

	theme(strip.background	=	element_rect(color="black",	

fill="#FC4E07",	

																																							size=1.5,	linetype="solid"))



5.	 facet_wrap:	Facets	can	be	placed	side	by	side	using	the	function
facet_wrap()	as	follow	:

p	+	facet_wrap(~	dose)

p	+	facet_wrap(~	dose,	ncol=2)





9.4	See	also
Create	and	Customize	Multi-panel	ggplots:	Easy	Guide	to	Facet.
https://goo.gl/eRKHV7

https://goo.gl/eRKHV7


10	Arrange	Multiple	GGPlot	on	One
Page



10.1	Introduction
This	chapter	describes,	step	by	step,	how	to	combine	multiple	ggplot	on	one
page,	as	well	as,	over	multiple	pages,	using	helper	functions	available	in	the
ggpubr	R	package.	We'll	also	describe	how	to	export	the	arranged	plots	to	a	file.



10.2	Prerequisites
Load	required	packages	and	set	the	theme	function	theme_pubr()	[in	ggpubr]	as
the	default	theme:

library(ggplot2)

library(ggpubr)

theme_set(theme_pubr())



10.3	Arrange	on	one	page
Create	some	basic	plots	as	follow:

#	0.	Define	custom	color	palette	and	prepare	the	data

my3cols	<-	c("#E7B800",	"#2E9FDF",	"#FC4E07")

ToothGrowth$dose	<-	as.factor(ToothGrowth$dose)

#	1.	Create	a	box	plot	(bp)

p	<-	ggplot(ToothGrowth,	aes(x	=	dose,	y	=	len))

bxp	<-	p	+	geom_boxplot(aes(color	=	dose))	+

		scale_color_manual(values	=	my3cols)

#	2.	Create	a	dot	plot	(dp)

dp	<-	p	+	geom_dotplot(aes(color	=	dose,	fill	=	dose),	

																							binaxis='y',	stackdir='center')	+

		scale_color_manual(values	=	my3cols)	+	

		scale_fill_manual(values	=	my3cols)

#	3.	Create	a	line	plot

lp	<-	ggplot(economics,	aes(x	=	date,	y	=	psavert))	+	

		geom_line(color	=	"#E46726")	

Combine	multiple	ggplot	on	one	page.	Use	the	function	ggarrange()
[ggpubr	package],	a	wrapper	around	the	function	plot_grid()	[cowplot
package].	Compared	to	plot_grid(),	ggarange()	can	arrange	multiple	ggplots
over	multiple	pages.

figure	<-	ggarrange(bxp,	dp,	lp,

																				labels	=	c("A",	"B",	"C"),

																				ncol	=	2,	nrow	=	2)

figure





10.4	Annotate	the	arranged	figure
Key	R	function:	annotate_figure()	[in	ggpubr].

annotate_figure(

		figure,

		top	=	text_grob("Visualizing	len",

																		color	=	"red",	face	=	"bold",	size	=	14),

		bottom	=	text_grob("Data	source:	\n	ToothGrowth",	color	=	"blue",

																					hjust	=	1,	x	=	1,	face	=	"italic",	size	=	10),

		left	=	text_grob("Fig	arranged	using	ggpubr",

																			color	=	"green",	rot	=	90),

		right	=	"I'm	done,	thanks	:-)!",

		fig.lab	=	"Figure	1",	fig.lab.face	=	"bold"

		)



10.5	Change	column	and	row	span	of	a	plot
We'll	use	nested	ggarrange()	functions	to	change	column/row	span	of	plots.	For
example,	using	the	R	code	below:

the	line	plot	(lp)	will	live	in	the	first	row	and	spans	over	two	columns
the	box	plot	(bxp)	and	the	dot	plot	(dp)	will	be	first	arranged	and	will	live	in
the	second	row	with	two	different	columns

ggarrange(

		lp,																#	First	row	with	line	plot

		#	Second	row	with	box	and	dot	plots

		ggarrange(bxp,	dp,	ncol	=	2,	labels	=	c("B",	"C")),	

		nrow	=	2,	

		labels	=	"A"							#	Label	of	the	line	plot

		)	





10.6	Use	shared	legend	for	combined	ggplots
To	place	a	common	unique	legend	in	the	margin	of	the	arranged	plots,	the
function	ggarrange()	[in	ggpubr]	can	be	used	with	the	following	arguments:

common.legend	=	TRUE:	place	a	common	legend	in	a	margin
legend:	specify	the	legend	position.	Allowed	values	include	one	of	c("top",
"bottom",	"left",	"right")

ggarrange(

		bxp,	dp,	labels	=	c("A",	"B"),

		common.legend	=	TRUE,	legend	=	"bottom"

		)



10.7	Mix	table,	text	and	ggplot2	graphs
In	this	section,	we'll	show	how	to	plot	a	table	and	text	alongside	a	chart.	The	iris
data	set	will	be	used.

We	start	by	creating	the	following	plots:

1.	 a	density	plot	of	the	variable	"Sepal.Length".	R	function:	ggdensity()	[in
ggpubr]

2.	 a	plot	of	the	summary	table	containing	the	descriptive	statistics	(mean,	sd,
...	)	of	Sepal.Length.

R	function	for	computing	descriptive	statistics:	desc_statby()	[in
ggpubr].
R	function	to	draw	a	textual	table:	ggtexttable()	[in	ggpubr].

3.	 a	plot	of	a	text	paragraph.	R	function:	ggparagraph()	[in	ggpubr].

We	finish	by	arranging/combining	the	three	plots	using	the	function	ggarrange()
[in	ggpubr]

#	Density	plot	of	"Sepal.Length"

#::::::::::::::::::::::::::::::::::::::

density.p	<-	ggdensity(iris,	x	=	"Sepal.Length",	

																							fill	=	"Species",	palette	=	"jco")

#	Draw	the	summary	table	of	Sepal.Length

#::::::::::::::::::::::::::::::::::::::

#	Compute	descriptive	statistics	by	groups

stable	<-	desc_statby(iris,	measure.var	=	"Sepal.Length",

																						grps	=	"Species")

stable	<-	stable[,	c("Species",	"length",	"mean",	"sd")]

#	Summary	table	plot,	medium	orange	theme

stable.p	<-	ggtexttable(stable,	rows	=	NULL,	

																								theme	=	ttheme("mOrange"))

#	Draw	text

#::::::::::::::::::::::::::::::::::::::

text	<-	paste("iris	data	set	gives	the	measurements	in	cm",

														"of	the	variables	sepal	length	and	width",

														"and	petal	length	and	width,	respectively,",

														"for	50	flowers	from	each	of	3	species	of	iris.",

													"The	species	are	Iris	setosa,	versicolor,	and	



virginica.",

													sep	=	"	")

text.p	<-	ggparagraph(text	=	text,	face	=	"italic",	size	=	11,	

color	=	"black")

#	Arrange	the	plots	on	the	same	page

ggarrange(density.p,	stable.p,	text.p,	

										ncol	=	1,	nrow	=	3,

										heights	=	c(1,	0.5,	0.3))



10.8	Arrange	over	multiple	pages
If	you	have	a	long	list	of	ggplots,	say	n	=	20	plots,	you	may	want	to	arrange	the
plots	and	to	place	them	on	multiple	pages.	With	4	plots	per	page,	you	need	5
pages	to	hold	the	20	plots.

The	function	ggarrange()	[ggpubr]	provides	a	convenient	solution	to	arrange
multiple	ggplots	over	multiple	pages.	After	specifying	the	arguments	nrow	and
ncol,ggarrange()`	computes	automatically	the	number	of	pages	required	to	hold
the	list	of	the	plots.	It	returns	a	list	of	arranged	ggplots.

For	example	the	following	R	code,

multi.page	<-	ggarrange(bxp,	dp,	lp,	bxp,

																								nrow	=	1,	ncol	=	2)

returns	a	list	of	two	pages	with	two	plots	per	page.	You	can	visualize	each	page
as	follow:

multi.page[[1]]	#	Visualize	page	1

multi.page[[2]]	#	Visualize	page	2

You	can	also	export	the	arranged	plots	to	a	pdf	file	using	the	function
ggexport()	[ggpubr]:

ggexport(multi.page,	filename	=	"multi.page.ggplot2.pdf")

See	the	PDF	file:	Multi.page.ggplot2



10.9	Export	the	arranged	plots
R	function:	ggexport()	[in	ggpubr].

Export	the	arranged	figure	to	a	pdf,	eps	or	png	file	(one	figure	per	page).

ggexport(figure,	filename	=	"figure1.pdf")

It's	also	possible	to	arrange	the	plots	(2	plot	per	page)	when	exporting	them.

Export	individual	plots	to	a	pdf	file	(one	plot	per	page):

ggexport(bxp,	dp,	lp,	bxp,	filename	=	"test.pdf")

Arrange	and	export.	Specify	nrow	and	ncol	to	display	multiple	plots	on	the	same
page:

ggexport(bxp,	dp,	lp,	bxp,	filename	=	"test.pdf",

									nrow	=	2,	ncol	=	1)



10.10	See	also
ggplot2	-	Easy	Way	to	Mix	Multiple	Graphs	on	The	Same	Page.
https://goo.gl/WrieY4

https://goo.gl/WrieY4


11	Customize	GGPlot
In	this	chapter,	we'll	show	how	to	change	the	global	appearance	of	a	ggplot.



11.1	Prerequisites
1.	 Load	packages	and	set	the	default	theme:

library(ggplot2)

library(ggpubr)

theme_set(

		theme_pubr()	+

				theme(legend.position	=	"right")

		)

2.	 Create	a	box	plot	(bxp)	and	a	scatter	plot	(sp)	that	we'll	customize	in	the
next	section:

Box	plot	using	the	ToothGrowth	dataset:

#	Convert	the	variable	dose	from	numeric	to	factor	variable

ToothGrowth$dose	<-	as.factor(ToothGrowth$dose)

bxp	<-	ggplot(ToothGrowth,	aes(x=dose,	y=len))	+

		geom_boxplot(aes(color	=	dose))	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))

Scatter	plot	using	the	cars	dataset

sp	<-	ggplot(cars,	aes(x	=	speed,	y	=	dist))	+	

		geom_point()



11.2	Titles	and	axis	labels
Key	function:	labs().	Used	to	change	the	main	title,	the	subtitle,	the	axis	labels
and	captions.

1.	 Add	a	title,	subtitle,	caption	and	change	axis	labels

bxp	<-	bxp	+	labs(title	=	"Effect	of	Vitamin	C	on	Tooth	Growth",

														subtitle	=	"Plot	of	length	by	dose",

														caption	=	"Data	source:	ToothGrowth",

														x	=	"Dose	(mg)",	y	=	"Teeth	length")

bxp

2.	 Change	the	appearance	of	titles

Key	functions:	theme()	and	element_text():

theme(

		plot.title	=	element_text(),

		plot.subtitle.title	=	element_text(),

		plot.caption	=	element_text()

)



Arguments	of	the	function	element_text()	include:
color,	size,	face,	family:	to	change	the	text	font	color,	size,	face
("plain",	"italic",	"bold",	"bold.italic")	and	family.
lineheight:	change	space	between	two	lines	of	text	elements.
Number	between	0	and	1.	Useful	for	multi-line	plot	titles.
hjust	and	vjust:	number	in	[0,	1],	for	horizontal	and	vertical
adjustement	of	titles,	respectively.

hjust	=	0.5:	Center	the	plot	titles.
hjust	=	1:	Place	the	plot	title	on	the	right
hjust	=	0:	Place	the	plot	title	on	the	left

Examples	of	R	code:
Center	main	title	and	subtitle	(hjust	=	0.5)
Change	color,	size	and	face

bxp	+	theme(

		plot.title	=	element_text(color	=	"red",	size	=	12,	

																												face	=	"bold",	hjust	=	0.5),

		plot.subtitle	=	element_text(color	=	"blue",	hjust	=	0.5),

		plot.caption	=	element_text(color	=	"green",	face	=	"italic")

)

3.	 Case	of	long	titles.	If	the	title	is	too	long,	you	can	split	it	into	multiple	lines
using	\n.	In	this	case	you	can	adjust	the	space	between	text	lines	by
specifying	the	argument	lineheight	in	the	theme	function



element_text():

bxp	+	labs(title	=	"Effect	of	Vitamin	C	on	Tooth	Growth	\n	in	

Guinea	Pigs")+

		theme(plot.title	=	element_text(lineheight	=	0.9))



11.3	Axes:	Limits,	Ticks	and	Log

11.3.1	Axis	limits	and	scales

3	Key	functions	to	set	the	axis	limits	and	scales:

1.	 Without	clipping	(preferred).	Cartesian	coordinates.	The	Cartesian
coordinate	system	is	the	most	common	type	of	coordinate	system.	It	will
zoom	the	plot,	without	clipping	the	data.

sp	+	coord_cartesian(xlim	=	c(5,	20),	ylim	=	(0,	50))

2.	 With	clipping	the	data	(removes	unseen	data	points).	Observations	not	in
this	range	will	be	dropped	completely	and	not	passed	to	any	other	layers.

#	Use	this

sp	+	scale_x_continuous(limits	=	c(5,	20))	+	

		scale_y_continuous(limits	=	c(0,	50))

#	Or	this	shothand	functions

sp	+	xlim(5,	20)	+	ylim(0,	50)

3.	 Expand	the	plot	limits	to	ensure	that	a	given	value	is	included	in	all	panels
or	all	plots.

#	set	the	intercept	of	x	and	y	axes	at	(0,0)

sp	+	expand_limits(x	=	0,	y	=	0)

Note	that,	scale_x_continuous()	and	scale_y_continuous()	remove	all
data	points	outside	the	given	range	and,	the	coord_cartesian()	function
only	adjusts	the	visible	area.

In	most	cases	you	would	not	see	the	difference,	but	if	you	fit	anything	to
the	data	the	functions	scale_x_continuous()	/	scale_y_continuous()
would	probably	change	the	fitted	values.



#	Expand	plot	limits

sp	+	expand_limits(x	=	c(5,	50),	y	=	c(0,	150))

Examples	of	R	code:

#	Default	plot

print(sp)

#	Change	axis	limits	using	coord_cartesian()

sp	+	coord_cartesian(xlim	=c(5,	20),	ylim	=	c(0,	50))

#	set	the	intercept	of	x	and	y	axis	at	(0,0)

sp	+	expand_limits(x	=	0,	y	=	0)

11.3.2	Log	scale

Key	functions	to	set	a	logarithmic	axis	scale:

1.	 Scale	functions.	Allowed	value	for	the	argument	trans:	log2	and	log10.



sp	+	scale_x_continuous(trans	=	"log2")

sp	+	scale_y_continuous(trans	=	"log2")

2.	 Transformed	cartesian	coordinate	system.	Possible	values	for	x	and	y	are
"log2",	"log10",	"sqrt",	...

sp	+	coord_trans(x	=	"log2",	y	=	"log2")

3.	 Display	log	scale	ticks.	Make	sens	only	for	log10	scale:

sp	+	scale_y_log10()	+	annotation_logticks()

Example	of	R	code

#	Set	axis	into	log2	scale

#	Possible	values	for	trans	:	'log2',	'log10','sqrt'

sp	+	scale_x_continuous(trans	=	'log2')	+

		scale_y_continuous(trans	=	'log2')

#	Format	y	axis	tick	mark	labels	to	show	exponents

require(scales)

sp	+	scale_y_continuous(

		trans	=	log2_trans(),

		breaks	=	trans_breaks("log2",	function(x)	2^x),

		labels	=	trans_format("log2",	math_format(2^.x))

		)

Note	that,	the	scale	functions	transform	the	data.	If	you	fit	anything	to	the
data	it	would	probably	change	the	fitted	values.

An	alternative	is	to	use	the	function	coord_trans(),	which	occurs	after
statistical	transformation	and	will	affect	only	the	visual	appearance	of
geoms.



11.3.3	Axis	Ticks:	Set	and	Rotate	Text	Labels

Start	by	creating	a	box	plot:

bxp	<-	ggplot(ToothGrowth,	aes(x=dose,	y=len))	+

		geom_boxplot(aes(color	=	dose))	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))+

		theme(legend.position	=	"none")

1.	 Change	the	style	and	the	orientation	angle	of	axis	tick	labels.	For	a
vertical	rotation	of	x	axis	labels	use	angle	=	90.

#	Rotate	x	and	y	axis	text	by	45	degree

#	face	can	be	"plain",	"italic",	"bold"	or	"bold.italic"

bxp	+	theme(axis.text.x	=	element_text(face	=	"bold",	color	=	

"#993333",	

																											size	=	12,	angle	=	45),

										axis.text.y	=	element_text(face	=	"bold",	color	=	"blue",		

																											size	=	12,	angle	=	45))

#	Remove	axis	ticks	and	tick	mark	labels

bxp	+	theme(

		axis.text.x	=	element_blank(),	#	Remove	x	axis	tick	labels

		axis.text.y	=	element_blank(),	#	Remove	y	axis	tick	labels

		axis.ticks	=	element_blank()			#	Remove	ticks	

		)	



To	adjust	the	postion	of	the	axis	text,	you	can	specify	the	argument	hjust	and
vjust,	which	values	should	be	comprised	between	0	and	1.

2.	 Change	axis	lines:
Remove	the	y-axis	line
Change	the	color,	the	size	and	the	line	type	of	the	x-axis	line:

bxp	+	theme(	

		axis.line.y	=	element_blank(),

		axis.line	=	element_line(

				color	=	"gray",	size	=	1,	linetype	=	"solid"

				)

		)



3.	 Customize	discrete	axis.	Use	the	function	scale_x_discrete()	or
scale_y_discrete()	depending	on	the	axis	you	want	to	change.

Here,	we'll	customize	the	x-axis	of	the	box	plot:

#	Change	x	axis	label	and	the	order	of	items

bxp	+	scale_x_discrete(name	="Dose	(mg)",	

																				limits	=	c("2","1","0.5"))

#	Rename	/	Change	tick	mark	labels

bxp	+	scale_x_discrete(breaks	=	c("0.5","1","2"),

								labels	=	c("D0.5",	"D1",	"D2"))

#	Choose	which	items	to	display

bxp	+	scale_x_discrete(limits	=	c("0.5",	"2"))

4.	 Customize	continuous	axis.	Change	axis	ticks	interval.

#	Default	scatter	plot

sp	<-	ggplot(cars,	aes(x	=	speed,	y	=	dist))	+	

		geom_point()

sp

#	Break	y	axis	by	a	specified	value

#	a	tick	mark	is	shown	on	every	50

sp	+	scale_y_continuous(breaks=seq(0,	150,	50))

#	Tick	marks	can	be	spaced	randomly

sp	+	scale_y_continuous(breaks=c(0,	50,	65,	75,	150))





11.4	Legends:	Title,	Position	and	Appearance
Start	by	creating	a	box	plot	using	the	ToothGrowth	data	set.	Change	the	box	plot
fill	color	according	to	the	grouping	variable	dose.

library(ggplot2)

ToothGrowth$dose	<-	as.factor(ToothGrowth$dose)

bxp	<-	ggplot(ToothGrowth,	aes(x	=	dose,	y	=	len))+	

		geom_boxplot(aes(fill	=	dose))	+

		scale_fill_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))

11.4.1	Change	legend	title	and	position

1.	 Legend	title.	Use	labs()	to	changes	the	legend	title	for	a	given	aesthetics
(fill,	color,	size,	shape,	.	.	.	).	For	example:

Use	p	+	labs(fill	=	"dose")	for	geom_boxplot(aes(fill	=	dose))
Use	p	+	labs(color	=	"dose")	for	geom_boxplot(aes(color	=	dose))
and	so	on	for	linetype,	shape,	etc

2.	 Legend	position.	The	default	legend	position	is	"right".	Use	the	function
theme()	with	the	argument	legend.position	to	specify	the	legend
position.

Allowed	values	for	the	legend	position	include:	"left",	"top",	"right",	"bottom",
"none".

Legend	loction	can	be	also	a	numeric	vector	c(x,y),	where	x	and	y	are	the
coordinates	of	the	legend	box.	Their	values	should	be	between	0	and	1.	c(0,0)
corresponds	to	the	"bottom	left"	and	c(1,1)	corresponds	to	the	"top	right"
position.	This	makes	it	possible	to	place	the	legend	inside	the	plot.

Examples:

#	Default	plot

bxp

#	Change	legend	title	and	position



bxp	+

		labs(fill	=	"Dose	(mg)")	+

		theme(legend.position	=	"top")

11.4.2	Change	the	appearance	of	legends

Change	legend	text	color	and	size
Change	the	legend	box	background	color

To	remove	legend,	use	p	+	theme(legend.position	=	"none").



#	Change	the	appearance	of	legend	title	and	text	labels

bxp	+	theme(

		legend.title	=	element_text(color	=	"blue",	size	=	10),

		legend.text	=	element_text(color	=	"red")

		)

#	Change	legend	background	color,	key	size	and	width

bxp	+	theme(

		#	Change	legend	background	color

		legend.background	=	element_rect(fill	=	"darkgray"),

		legend.key	=	element_rect(fill	=	"lightblue",	color	=	NA),

		#	Change	legend	key	size	and	key	width

		legend.key.size	=	unit(1.5,	"cm"),

		legend.key.width	=	unit(0.5,"cm")	

		)

11.4.3	Rename	legend	labels	and	change	the	order	of



items

#	Change	the	order	of	legend	items

bxp	+	scale_x_discrete(limits=c("2",	"0.5",	"1"))

#	Edit	legend	title	and	labels	for	the	fill	aesthetics

bxp	+	scale_fill_manual(

		values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"),

		name	=	"Dose",	

		breaks	=	c("0.5",	"1",	"2"),

		labels	=	c("D0.5",	"D1",	"D2")

		)

Other	manual	scales	to	set	legends	for	a	given	aesthetic:



#	Color	of	lines	and	points

scale_color_manual(name,	labels,	limits,	breaks)

#	For	linetypes

scale_linetype_manual(name,	labels,	limits,	breaks)

#	For	point	shapes

scale_shape_manual(name,	labels,	limits,	breaks)

#	For	point	size

scale_size_manual(name,	labels,	limits,	breaks)

#	Opacity/transparency

scale_alpha_manual(name,	labels,	limits,	breaks)



11.5	Themes	gallery
Start	by	creating	a	simple	box	plot:

bxp	<-	ggplot(ToothGrowth,	aes(x	=	factor(dose),	y	=	len))	+	

		geom_boxplot()

11.5.1	Use	themes	in	ggplot2	package

Several	simple	functions	are	available	in	ggplot2	package	to	set	easily	a	ggplot
theme.	These	include:

theme_gray():	Gray	background	color	and	white	grid	lines.	Put	the	data
forward	to	make	comparisons	easy.
theme_bw():	White	background	and	gray	grid	lines.	May	work	better	for
presentations	displayed	with	a	projector.
theme_linedraw():	A	theme	with	black	lines	of	various	widths	on	white
backgrounds,	reminiscent	of	a	line	drawings.
theme_light():	A	theme	similar	to	theme_linedraw()	but	with	light	grey
lines	and	axes,	to	direct	more	attention	towards	the	data.

bxp	+	theme_gray(base_size	=	14)	

bxp	+	theme_bw()

bxp	+	theme_linedraw()

bxp	+	theme_light()



theme_dark():	Same	as	theme_light	but	with	a	dark	background.	Useful	to
make	thin	coloured	lines	pop	out.
theme_minimal():	A	minimal	theme	with	no	background	annotations
theme_classic():	A	classic	theme,	with	x	and	y	axis	lines	and	no	gridlines.
theme_void():	a	completely	empty	theme,	useful	for	plots	with	non-
standard	coordinates	or	for	drawings.

bxp	+	theme_dark()	

bxp	+	theme_minimal()

bxp	+	theme_classic()

bxp	+	theme_void()



Note	that,	additional	themes	are	availbale	in	the	ggthemes	R	package.

https://cran.r-project.org/web/packages/ggthemes/vignettes/ggthemes.html


11.6	Background	color	and	grid	lines
Create	a	simple	box	plot:

p	<-	ggplot(ToothGrowth,	aes(factor(dose),	len))	+

		geom_boxplot()

Change	the	panel	background	(1)	and	the	plot	background	(2)	colors:

#	1.	Change	plot	panel	background	color	to	lightblue

#	and	the	color	of	major/grid	lines	to	white

p	+	theme(

		panel.background	=	element_rect(fill	=	"#BFD5E3",	colour	=	

"#6D9EC1",

																																size	=	2,	linetype	=	"solid"),

		panel.grid.major	=	element_line(size	=	0.5,	linetype	=	'solid',

																																colour	=	"white"),	

		panel.grid.minor	=	element_line(size	=	0.25,	linetype	=	'solid',

																																colour	=	"white")

		)

#	2.	Change	the	plot	background	color	(not	the	panel)

p	+	theme(plot.background	=	element_rect(fill	=	"#BFD5E3"))



11.7	Add	background	image	to	ggplot2	graphs
1.	 Import	the	background	image.	Use	either	the	function	readJPEG()	[in
jpeg	package]	or	the	function	`readPNG()[in	png	package]	depending	on
the	format	of	the	background	image.

2.	 Combine	a	ggplot	with	the	background	image.	R	function:
background_image()	[in	ggpubr].

#	Import	the	image

img.file	<-	system.file(file.path("images",	"background-

image.png"),

																								package	=	"ggpubr")

img	<-	png::readPNG(img.file)

#	Combine	with	ggplot

library(ggpubr)

ggplot(iris,	aes(Species,	Sepal.Length))+

		background_image(img)+

		geom_boxplot(aes(fill	=	Species),	color	=	"white",	alpha	=	0.5)+

		fill_palette("jco")



11.8	Colors
A	color	can	be	specified	either	by	name	(e.g.:	"red")	or	by	hexadecimal	code
(e.g.	:	"#FF1234").	In	this	section,	you	will	learn	how	to	change	ggplot	colors	by
groups	and	how	to	set	gradient	colors.

0.	 Set	ggplot	theme	to	theme_minimal():

theme_set(

		theme_minimal()	+

				theme(legend.position	=	"top")

		)

1.	 Initialize	ggplots	using	the	iris	data	set:

#	Box	plot

bp	<-	ggplot(iris,	aes(Species,	Sepal.Length))

#	Scatter	plot

sp	<-	ggplot(iris,	aes(Sepal.Length,	Sepal.Width))

2.	 Specify	a	single	color.	Change	the	fill	color	(in	box	plots)	and	points	color
(in	scatter	plots).

#	Box	plot

bp	+	geom_boxplot(fill	=	"#FFDB6D",	color	=	"#C4961A")	

#	Scatter	plot

sp	+	geom_point(color	=	"#00AFBB")



3.	 Change	colors	by	groups.

You	can	change	colors	according	to	a	grouping	variable	by:

Mapping	the	argument	color	to	the	variable	of	interest.	This	will	be	applied
to	points,	lines	and	texts
Mapping	the	argument	fill	to	the	variable	of	interest.	This	will	change	the
fill	color	of	areas,	such	as	in	box	plot,	bar	plot,	histogram,	density	plots,	etc.

It's	possible	to	specify	manually	the	color	palettes	by	using	the	functions:



scale_fill_manual()	for	box	plot,	bar	plot,	violin	plot,	dot	plot,	etc
scale_color_manual()	or	scale_colour_manual()	for	lines	and	points

#	Box	plot

bp	<-	bp	+	geom_boxplot(aes(fill	=	Species))	

bp	+	scale_fill_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))

#	Scatter	plot

sp	<-	sp	+	geom_point(aes(color	=	Species))	

sp	+	scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	

"#FC4E07"))



Find	below,	two	color-blind-friendly	palettes,	one	with	gray,	and	one	with	black
(source:	http://jfly.iam.u-tokyo.ac.jp/color/).

#	The	palette	with	grey:

cbp1	<-	c("#999999",	"#E69F00",	"#56B4E9",	"#009E73",

										"#F0E442",	"#0072B2",	"#D55E00",	"#CC79A7")

#	The	palette	with	black:

cbp2	<-	c("#000000",	"#E69F00",	"#56B4E9",	"#009E73",

										"#F0E442",	"#0072B2",	"#D55E00",	"#CC79A7")

4.	 Use	viridis	color	palettes.	The	viridis	R	package	provides	color	palettes
to	make	beautiful	plots	that	are:	printer-friendly,	perceptually	uniform	and
easy	to	read	by	those	with	colorblindness.	Key	functions

http://jfly.iam.u-tokyo.ac.jp/color/


scale_color_viridis()	and	scale_fill_viridis()

library(viridis)

#	Gradient	color

ggplot(iris,	aes(Sepal.Length,	Sepal.Width))+

		geom_point(aes(color	=	Sepal.Length))	+

		scale_color_viridis(option	=	"D")

#	Discrete	color.	use	the	argument	discrete	=	TRUE

ggplot(iris,	aes(Sepal.Length,	Sepal.Width))+

		geom_point(aes(color	=	Species))	+

		geom_smooth(aes(color	=	Species,	fill	=	Species),	method	=	"lm")	

+	

		scale_color_viridis(discrete	=	TRUE,	option	=	"D")+

		scale_fill_viridis(discrete	=	TRUE)	



5.	 Use	RColorBrewer	palettes.	Two	color	scale	functions	are	available	in
ggplot2	for	using	the	colorbrewer	palettes:

scale_fill_brewer()	for	box	plot,	bar	plot,	violin	plot,	dot	plot,	etc
scale_color_brewer()	for	lines	and	points

For	example:

#	Box	plot

bp	+	scale_fill_brewer(palette	=	"Dark2")

#	Scatter	plot

sp	+	scale_color_brewer(palette	=	"Dark2")



To	display	colorblind-friendly	brewer	palettes,	use	this	R	code:

library(RColorBrewer)

display.brewer.all(colorblindFriendly	=	TRUE)



6.	 Other	discrete	color	palettes:
Scientific	journal	color	palettes	in	the	ggsci	R	package.	Contains	a
collection	of	high-quality	color	palettes	inspired	by	colors	used	in
scientific	journals,	data	visualization	libraries,	and	more.	For	example:

scale_color_npg()	and	scale_fill_npg():	Nature	Publishing
Group
scale_color_aaas()	and	scale_fill_aaas():	American
Association	for	the	Advancement	of	Science
scale_color_lancet()	and	scale_fill_lancet():	Lancet
journal
scale_color_jco()	and	scale_fill_jco():	Journal	of	Clinical
Oncology

Wes	Anderson	color	palettes	in	the	wesanderson	R	package.
Contains	16	color	palettes	from	Wes	Anderson	movies.

For	example:



#	jco	color	palette	from	the	ggsci	package

bp	+	ggsci::scale_fill_jco()

#	Discrete	color	from	wesanderson	package

library(wesanderson)

bp	+	scale_fill_manual(

		values	=	wes_palette("GrandBudapest1",	n	=	3)

		)

You	can	find	more	examples	at	ggsci	package	vignettes	and	at	wesanderson

https://cran.r-project.org/web/packages/ggsci/vignettes/ggsci.html
https://github.com/karthik/wesanderson


github	page

7.	 Set	gradient	colors.	For	gradient	colors,	you	shoud	map	the	map	the
argument	color	and/or	fill	to	a	continuous	variable.	In	the	following
example,	we	color	points	according	to	the	variable:	Sepal.Length.

ggplot(iris,	aes(Sepal.Length,	Sepal.Width))+

		geom_point(aes(color	=	Sepal.Length))	+

		scale_color_gradientn(colours	=	c("blue",	"yellow",	"red"))+

		theme(legend.position	=	"right")

8.	 Design	and	use	the	power	of	color	palette	at	https://goo.gl/F5g3Lb

https://goo.gl/F5g3Lb


11.9	Points	shape,	color	and	size
1.	 Common	point	shapes	available	in	R:

ggpubr::show_point_shapes()+

		theme_void()

2.	 Change	ggplot	point	shapes.	The	argument	shape	is	used,	in	the	function
geom_point()	[ggplot2],	for	specifying	point	shapes.

It's	also	possible	to	change	point	shapes	and	colors	by	groups.	In	this	case,
ggplot2	will	use	automatically	a	default	color	palette	and	point	shapes.	You	can
change	manually	the	appearance	of	points	using	the	following	functions:

scale_shape_manual()	:	to	change	manually	point	shapes
scale_color_manual()	:	to	change	manually	point	colors
scale_size_manual()	:	to	change	manually	the	size	of	points

Note	that,	the	point	shape	options	from	pch	21	to	25	are	open	symbols	that
can	be	filled	by	a	color.	Therefore,	you	can	use	the	fill	argument	in
geom_point()	for	these	symbols.



Create	a	scatter	plot	and	change	points	shape,	color	and	size:

#	Create	a	simple	scatter	plot

ggplot(iris,	aes(Sepal.Length,	Sepal.Width))	+

		geom_point(shape	=	18,	color	=	"#FC4E07",	size	=	3)+

		theme_minimal()

#	Change	point	shapes	and	colors	by	groups

ggplot(iris,	aes(Sepal.Length,	Sepal.Width))	+

		geom_point(aes(shape	=	Species,	color	=	Species),	size	=	3)	+

		scale_shape_manual(values	=	c(5,	16,	17))	+

		scale_color_manual(values	=	c("#00AFBB",	"#E7B800",	"#FC4E07"))+

		theme_minimal()	+

		theme(legend.position	=	"top")





11.10	Line	types
1.	 Common	line	types	available	in	R:

ggpubr::show_line_types()+

		theme_gray()

2.	 Change	line	types.	To	change	a	single	line,	use	for	example	linetype	=
"dashed".

In	the	following	R	code,	we'll	change	line	types	and	colors	by	groups.	To	modify
the	default	colors	and	line	types,	the	function	scale_color_manual()	and
scale_linetype_manual()	can	be	used.

#	Create	some	data.

#	#	Compute	the	mean	of	`len`	grouped	by	dose	and	supp

library(dplyr)

df2	<-	ToothGrowth	%>%

		group_by(dose,	supp)	%>%

		summarise(len.mean	=	mean(len))

df2

##	#	A	tibble:	6	x	3

##	#	Groups:			dose	[?]

##					dose			supp	len.mean



##			<fctr>	<fctr>				<dbl>

##	1				0.5					OJ				13.23

##	2				0.5					VC					7.98

##	3						1					OJ				22.70

##	4						1					VC				16.77

##	5						2					OJ				26.06

##	6						2					VC				26.14

#	Change	manually	line	type	and	color	manually

ggplot(df2,	aes(x	=	dose,	y	=	len.mean,	group	=	supp))	+

		geom_line(aes(linetype	=	supp,	color	=	supp))+

		geom_point(aes(color	=	supp))+

		scale_linetype_manual(values=c("solid",	"dashed"))+

		scale_color_manual(values=c("#00AFBB","#FC4E07"))



11.11	Rotate	a	ggplot
Key	functions:

coord_flip():	creates	horizontal	plots
scale_x_reverse()	and	scale_y_reverse():	reverse	the	axis

#	Horizontal	box	plot

ggplot(ToothGrowth,	aes(factor(dose),	len))	+

		geom_boxplot(fill	=	"lightgray")	+

		theme_bw()	+

		coord_flip()

#	Reverse	y	axis

ggplot(mtcars,	aes(mpg))+

		geom_density(fill	=	"lightgray")	+

		xlim(0,	40)	+

		theme_bw()+

		scale_y_reverse()



11.12	Plot	annotation

11.12.1	Add	straight	lines

Key	R	functions:

geom_hline(yintercept,	linetype,	color,	size):	add	horizontal	lines
geom_vline(xintercept,	linetype,	color,	size):	add	vertical	lines
geom_abline(intercept,	slope,	linetype,	color,	size):	add	regression	lines
geom_segment():	add	segments

Create	a	simple	scatter	plot:

Creating	a	simple	scatter	plot

sp	<-	ggplot(data	=	mtcars,	aes(x	=	wt,	y	=	mpg))	+	

		geom_point()+theme_bw()

Add	straight	lines	and	segments

#	Add	horizontal	line	at	y	=	2O;	and	vertical	line	at	x	=	3

sp	+	geom_hline(yintercept	=	20,	linetype	=	"dashed",	color	=	

"red")	+	

		geom_vline(xintercept	=	3,	color	=	"blue",	size	=	1)

#	Add	regression	line

sp	+	geom_abline(intercept	=	37,	slope	=	-5,	color="blue")+

		labs(title	=	"y	=	-5X	+	37")

#	Add	a	vertical	line	segment	from

#	point	A(4,	15)	to	point	B(4,	27)

sp	+	geom_segment(x	=	4,	y	=	15,	xend	=	4,	yend	=	27)



Add	arrows,	curves	and	rectangles:

#	Add	arrow	at	the	end	of	the	segment

require(grid)

sp	+	geom_segment(x	=	5,	y	=	30,	xend	=	3.5,	yend	=	25,

																	arrow	=	arrow(length	=	unit(0.5,	"cm")))

#	Add	curves

sp	+	geom_curve(aes(x	=	2,	y	=	15,	xend	=	3,	yend	=	15))

#	Add	rectangles

ggplot(data	=	mtcars,	aes(x	=	wt,	y	=	mpg))	+	

		geom_rect(xmin	=	3,	ymin	=	-Inf,	xmax	=	4,	ymax	=	Inf,

												fill	=	"lightgray")	+

		geom_point()	+	theme_bw()



11.12.2	Text	annotation

Key	ggplot2	function:

geom_text():	adds	text	directly	to	the	plot
geom_label():	draws	a	rectangle	underneath	the	text,	making	it	easier	to
read.
annotate():	useful	for	adding	small	text	annotations	at	a	particular	location
on	the	plot
annotation_custom():	Adds	static	annotations	that	are	the	same	in	every
panel

#	Add	text	at	a	particular	coordinate

sp	+	annotate("text",	x	=	3,	y	=	30,	

														label	=	"Scatter	plot",

														color	=	"red",	fontface	=	2)
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