

�

� �

�

The R Book

�

� �

�

�

� �

�

The R Book

Third Edition

Elinor Jones
University College London, UK

Simon Harden
University College London, UK

Michael J. Crawley
Imperial College London, UK

�

� �

�

This third edition first published 2023
© 2023 John Wiley & Sons Ltd

Edition History: John Wiley & Sons Ltd (1e, 2007; 2e, 2013)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain
permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Elinor Jones, Simon Harden and Michael J. Crawley to be identified as the authors of this work has been asserted in
accordance with law.

Registered Offices
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office
9600 Garsington Road, Oxford, OX4 2DQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard
print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information
relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information
provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things,
any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors
have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties
of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written
sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work
as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or
services the organization, website, or product may provide or recommendations it may make. This work is sold with the
understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein
may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware
that websites listed in this work may have changed or disappeared between when this work was written and when it is read.
Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Jones, Elinor (Associate Professor), author. | Harden, Simon,
author. | Crawley, Michael J., author.

Title: The R book / Elinor Jones, Simon Harden, and Michael J. Crawley.
Description: Third edition. | Hoboken, NJ : Wiley, 2022. | Includes

bibliographical references and index.
Identifiers: LCCN 2022008352 (print) | LCCN 2022008353 (ebook) | ISBN

9781119634324 (cloth) | ISBN 9781119634409 (adobe pdf) | ISBN
9781119634430 (epub)

Subjects: LCSH: R (Computer program language) | Mathematical
statistics–Data processing.

Classification: LCC QA276.45.R3 J662 2022 (print) | LCC QA276.45.R3
(ebook) | DDC 005.5/5–dc23/eng20220528

LC record available at https://lccn.loc.gov/2022008352
LC ebook record available at https://lccn.loc.gov/2022008353

Cover design: Wiley
Cover image: Courtesy of Simon Harden; © enjoynz/Getty Images

Set in 10/12pt HelveticaLTStd by Straive, Chennai, India

http://www.wiley.com/go/permissions
http://www.wiley.com
https://lccn.loc.gov/2022008352
https://lccn.loc.gov/2022008353

�

� �

�

Contents

List of Tables xxi

Preface xxiii

Acknowledgments xxv

About the Companion Website xxvii

1 Getting Started 1

2 Technical Background 17

3 Essentials of the R Language 55

4 Data Input and Dataframes 207

5 Graphics 249

6 Graphics in More Detail 297

7 Tables 359

8 Probability Distributions in R 373

9 Testing 405

10 Regression 439

11 Generalised Linear Models 499

12 Generalised Additive Models 579

13 Mixed-Effect Models 601

14 Non-linear Regression 627

15 Survival Analysis 649

16 Designed Experiments 667

17 Meta-Analysis 699

18 Time Series 715

19 Multivariate Statistics 741

�

� �

�

vi CONTENTS

20 Classification and Regression Trees 761

21 Spatial Statistics 779

22 Bayesian Statistics 799

23 Simulation Models 823

Index 839

�

� �

�

Detailed Contents

List of Tables xxi

Preface xxiii

Acknowledgments xxv

About the Companion Website xxvii

1 Getting Started 1
1.1 Navigating the book 1

1.1.1 How to use this book 1
1.2 R vs. RStudio 3
1.3 Installing R and RStudio 3
1.4 Using RStudio 4

1.4.1 Using R directly via the console 5
1.4.2 Using text editors 5

1.5 The Comprehensive R Archive Network 7
1.5.1 Manuals 7
1.5.2 Frequently asked questions 8
1.5.3 Contributed documentation 8

1.6 Packages in R 8
1.6.1 Contents of packages 9
1.6.2 Finding packages 9
1.6.3 Installing packages 9

1.7 Getting help in R 11
1.7.1 Worked examples of functions 12
1.7.2 Demonstrations of R functions 13

1.8 Good housekeeping 13
1.8.1 Variable types 13
1.8.2 What’s loaded or defined in the current session 14
1.8.3 Attaching and detaching objects 14
1.8.4 Projects 15

1.9 Linking to other computer languages 15
References 15

�

� �

�

viii DETAILED CONTENTS

2 Technical Background 17
2.1 Mathematical functions 17

2.1.1 Logarithms and exponentials 18
2.1.2 Trigonometric functions 19
2.1.3 Power laws 20
2.1.4 Polynomial functions 22
2.1.5 Gamma function 24
2.1.6 Asymptotic functions 25
2.1.7 Sigmoid (S-shaped) functions 27
2.1.8 Biexponential function 28
2.1.9 Transformations of model variables 29

2.2 Matrices 30
2.2.1 Matrix multiplication 31
2.2.2 Diagonals of matrices 32
2.2.3 Determinants 33
2.2.4 Inverse of a matrix 35
2.2.5 Eigenvalues and eigenvectors 36
2.2.6 Solving systems of linear equations using matrices 39

2.3 Calculus 40
2.3.1 Differentiation 40
2.3.2 Integration 41
2.3.3 Differential equations 42

2.4 Probability 45
2.4.1 The central limit theorem 45
2.4.2 Conditional probability 49

2.5 Statistics 50
2.5.1 Least squares 51
2.5.2 Maximum likelihood 51

Reference 53

3 Essentials of the R Language 55
3.1 Calculations 56

3.1.1 Complex numbers 57
3.1.2 Rounding 58
3.1.3 Arithmetic 59
3.1.4 Modular arithmetic 61
3.1.5 Operators 62
3.1.6 Integers 63

3.2 Naming objects 64
3.3 Factors 64
3.4 Logical operations 67

3.4.1 TRUE, T, FALSE, F 68
3.4.2 Testing for equality of real numbers 69
3.4.3 Testing for equality of non-numeric objects 70
3.4.4 Evaluation of combinations of TRUE and FALSE 72
3.4.5 Logical arithmetic 73

3.5 Generating sequences 74
3.5.1 Generating repeats 76
3.5.2 Generating factor levels 77

�

� �

�

DETAILED CONTENTS ix

3.6 Class membership 78
3.7 Missing values, infinity, and things that are not numbers 82

3.7.1 Missing values: NA 83
3.8 Vectors and subscripts 86

3.8.1 Extracting elements of a vector using subscripts 87
3.8.2 Classes of vector 89
3.8.3 Naming elements within vectors 90

3.9 Working with logical subscripts 91
3.10 Vector functions 93

3.10.1 Obtaining tables using tapply () 95
3.10.2 Applying functions to vectors using sapply () 97
3.10.3 The aggregate () function for grouped summary statistics 99
3.10.4 Parallel minima and maxima: pmin and pmax 100
3.10.5 Finding closest values 101
3.10.6 Sorting, ranking, and ordering 102
3.10.7 Understanding the difference between unique () and

duplicated () 104
3.10.8 Looking for runs of numbers within vectors 106
3.10.9 Sets: union (), intersect (), and setdiff () 108

3.11 Matrices and arrays 109
3.11.1 Matrices 111
3.11.2 Naming the rows and columns of matrices 112
3.11.3 Calculations on rows or columns of matrices 113
3.11.4 Adding rows and columns to matrices 115
3.11.5 The sweep () function 117
3.11.6 Applying functions to matrices 119
3.11.7 Scaling a matrix 120
3.11.8 Using the max.col () function 121
3.11.9 Restructuring a multi-dimensional array using aperm () 123

3.12 Random numbers, sampling, and shuffling 126
3.12.1 The sample () function 127

3.13 Loops and repeats 128
3.13.1 More complicated while () loops 131
3.13.2 Loop avoidance 133
3.13.3 The slowness of loops 134
3.13.4 Do not ‘grow’ data sets by concatenation or recursive function calls 135
3.13.5 Loops for producing time series 136

3.14 Lists 138
3.14.1 Summarising lists and lapply () 140
3.14.2 Manipulating and saving lists 142

3.15 Text, character strings, and pattern matching 147
3.15.1 Pasting character strings together 149
3.15.2 Extracting parts of strings 150
3.15.3 Counting things within strings 151
3.15.4 Upper and lower case text 153
3.15.5 The match () function and relational databases 153
3.15.6 Pattern matching 155
3.15.7 Substituting text within character strings 159
3.15.8 Locations of a pattern within a vector 160

�

� �

�

x DETAILED CONTENTS

3.15.9 Comparing vectors using %in% and which () 162
3.15.10 Stripping patterned text out of complex strings 163

3.16 Dates and times in R 164
3.16.1 Reading time data from files 165
3.16.2 Calculations with dates and times 168
3.16.3 Generating sequences of dates 170
3.16.4 Calculating time differences between the rows of a dataframe 173
3.16.5 Regression using dates and times 175

3.17 Environments 177
3.17.1 Using attach () or not! 178
3.17.2 Using attach () in this book 180

3.18 Writing R functions 181
3.18.1 Arithmetic mean of a single sample 181
3.18.2 Median of a single sample 182
3.18.3 Geometric mean 183
3.18.4 Harmonic mean 184
3.18.5 Variance 186
3.18.6 Variance ratio test 187
3.18.7 Using the variance 189
3.18.8 Plots and deparsing in functions 191
3.18.9 The switch () function 192
3.18.10 Arguments in our function 193
3.18.11 Errors in our functions 195
3.18.12 Outputs from our function 196

3.19 Structure of R objects 200
3.20 Writing from R to a file 203

3.20.1 Saving data objects 203
3.20.2 Saving command history 204
3.20.3 Saving graphics or plots 204
3.20.4 Saving data for a spreadsheet 204
3.20.5 Saving output from functions to a file 205

3.21 Tips for writing R code 206
References 206

4 Data Input and Dataframes 207
4.1 Working directory 207
4.2 Data input from files 208

4.2.1 Data input using read.table () and read.csv () 208
4.2.2 Input from files using scan () 210
4.2.3 Reading data from a file using readLines () 213

4.3 Data input directly from the web 215
4.4 Built-in data files 215
4.5 Dataframes 216

4.5.1 Subscripts and indices 220
4.5.2 Selecting rows from the dataframe at random 222
4.5.3 Sorting dataframes 223
4.5.4 Using logical conditions to select rows from the dataframe 229

�

� �

�

DETAILED CONTENTS xi

4.5.5 Omitting rows containing missing values, NA 232
4.5.6 A dataframe with row names instead of row numbers 235
4.5.7 Creating a dataframe from another kind of object 236
4.5.8 Eliminating duplicate rows from a dataframe 239
4.5.9 Dates in dataframes 239

4.6 Using the match () function in dataframes 241
4.6.1 Merging two dataframes 243

4.7 Adding margins to a dataframe 245
4.7.1 Summarising the contents of dataframes 247

5 Graphics 249
5.1 Plotting principles 249

5.1.1 Axes labels and titles 251
5.1.2 Plotting symbols and colours 251
5.1.3 Saving graphics 254

5.2 Plots for single variables 255
5.2.1 Histograms vs. bar charts 255
5.2.2 Histograms 256
5.2.3 Density plots 260
5.2.4 Boxplots 261
5.2.5 Dotplots 262
5.2.6 Bar charts 263
5.2.7 Pie charts 264

5.3 Plots for showing two numeric variables 265
5.3.1 Scatterplot 265
5.3.2 Plots with many identical values 270

5.4 Plots for numeric variables by group 272
5.4.1 Boxplots by group 272
5.4.2 Dotplots by group 274
5.4.3 An inferior (but popular) option 275

5.5 Plots showing two categorical variables 277
5.5.1 Grouped bar charts 277
5.5.2 Mosaic plots 277

5.6 Plots for three (or more) variables 279
5.6.1 Plots of all pairs of variables 279
5.6.2 Incorporating a third variable on a scatterplot 280
5.6.3 Basic 3D plots 281

5.7 Trellis graphics 283
5.7.1 Panel boxplots 285
5.7.2 Panel scatterplots 286
5.7.3 Panel barplots 289
5.7.4 Panels for conditioning plots 290
5.7.5 Panel histograms 291
5.7.6 More panel functions 292

5.8 Plotting functions 293
5.8.1 Two-dimensional plots 293
5.8.2 Three-dimensional plots 295

References 295

�

� �

�

xii DETAILED CONTENTS

6 Graphics in More Detail 297
6.1 More on colour 297

6.1.1 Colour palettes with categorical data 297
6.1.2 The RColorBrewer package 299
6.1.3 Foreground colours 302
6.1.4 Background colours 302
6.1.5 Background colour for legends 303
6.1.6 Different colours for different parts of the graph 304
6.1.7 Full control of colours in plots 305
6.1.8 Cross-hatching and grey scale 307

6.2 Changing the look of graphics 308
6.2.1 Shape and size of plot 308
6.2.2 Multiple plots on one screen 309
6.2.3 Tickmarks and associated labels 309
6.2.4 Font of text 311

6.3 Adding items to plots 311
6.3.1 Adding text 311
6.3.2 Adding smooth parametric curves to a scatterplot 313
6.3.3 Fitting non-parametric curves through a scatterplot 314
6.3.4 Connecting observations 316
6.3.5 Adding shapes 321
6.3.6 Adding mathematical and other symbols 322

6.4 The grammar of graphics and ggplot2 326
6.4.1 Basic structure 327
6.4.2 Examples 327

6.5 Graphics cheat sheet 330
6.5.1 Text justification, adj 332
6.5.2 Annotation of graphs, ann 332
6.5.3 Delay moving on to the next in a series of plots, ask 332
6.5.4 Control over the axes, axis 332
6.5.5 Background colour for plots, bg 333
6.5.6 Boxes around plots, bty 334
6.5.7 Size of plotting symbols using the character expansion function, cex 334
6.5.8 Changing the shape of the plotting region, plt 335
6.5.9 Locating multiple graphs in non-standard layouts using fig 336
6.5.10 Two graphs with a common X scale but different Y scales using fig 336
6.5.11 The layout function 338
6.5.12 Creating and controlling multiple screens on a single device 340
6.5.13 Orientation of numbers on the tick marks, las 341
6.5.14 Shapes for the ends and joins of lines, lend and ljoin 342
6.5.15 Line types, lty 343
6.5.16 Line widths, lwd 343
6.5.17 Several graphs on the same page, mfrow and mfcol 344
6.5.18 Margins around the plotting area, mar 345
6.5.19 Plotting more than one graph on the same axes, new 346
6.5.20 Outer margins, oma 347
6.5.21 Packing graphs closer together 348
6.5.22 Square plotting region, pty 350

�

� �

�

DETAILED CONTENTS xiii

6.5.23 Character rotation, srt 350
6.5.24 Rotating the axis labels 351
6.5.25 Tick marks on the axes 351
6.5.26 Axis styles 353
6.5.27 Summary 353

References 357

7 Tables 359
7.1 Tabulating categorical or discrete data 359

7.1.1 Tables of counts 359
7.1.2 Tables of proportions 360

7.2 Tabulating summaries of numeric data 362
7.2.1 General summaries by group 362
7.2.2 Bespoke summaries by group 364

7.3 Converting between tables and dataframes 367
7.3.1 From a table to a dataframe 367
7.3.2 From a dataframe to a table 370

Reference 371

8 Probability Distributions in R 373
8.1 Probability distributions: the basics 374

8.1.1 Discrete and continuous probability distributions 374
8.1.2 Describing probability distributions mathematically 374
8.1.3 Independence 375

8.2 Probability distributions in R 376
8.3 Continuous probability distributions 377

8.3.1 The Normal (or Gaussian) distribution 377
8.3.2 The Uniform distribution 380
8.3.3 The Chi-squared distribution 381
8.3.4 The F distribution 382
8.3.5 Student’s t distribution 383
8.3.6 The Gamma distribution 385
8.3.7 The Exponential distribution 386
8.3.8 The Beta distribution 387
8.3.9 The Lognormal distribution 388
8.3.10 The Logistic distribution 389
8.3.11 The Weibull distribution 390
8.3.12 Multivariate Normal distribution 390

8.4 Discrete probability distributions 392
8.4.1 The Bernoulli distribution 392
8.4.2 The Binomial distribution 392
8.4.3 The Geometric distribution 395
8.4.4 The Hypergeometric distribution 397
8.4.5 The Multinomial distribution 398
8.4.6 The Poisson distribution 399
8.4.7 The Negative Binomial distribution 400

8.5 The central limit theorem 402
References 404

�

� �

�

xiv DETAILED CONTENTS

9 Testing 405
9.1 Principles 406

9.1.1 Defining the question to be tested 406
9.1.2 Assumptions 408
9.1.3 Interpreting results 408

9.2 Continuous data 410
9.2.1 Single population average 410
9.2.2 Two population averages 412
9.2.3 Multiple population averages 414
9.2.4 Population distribution 415
9.2.5 Checking and testing for normality 417
9.2.6 Comparing variances 419

9.3 Discrete and categorical data 421
9.3.1 Sign test 421
9.3.2 Test to compare proportions 423
9.3.3 Contingency tables 427
9.3.4 Testing contingency tables 429

9.4 Bootstrapping 431
9.5 Multiple tests 433
9.6 Power and sample size calculations 434
9.7 A table of tests 436
References 437

10 Regression 439
10.1 The simple linear regression model 440

10.1.1 Model format and assumptions 440
10.1.2 Building a simple linear regression model 443

10.2 The multiple linear regression model 446
10.2.1 Model format and assumptions 446
10.2.2 Building a multiple linear regression model 447
10.2.3 Categorical covariates 449
10.2.4 Interactions between covariates 454

10.3 Understanding the output 458
10.3.1 Residuals 458
10.3.2 Estimates of coefficients 459
10.3.3 Testing individual coefficients 459
10.3.4 Residual standard error 460
10.3.5 R2 and its variants 460
10.3.6 The regression F-test 460
10.3.7 ANOVA: Same model, different output 461
10.3.8 Extracting model information 464

10.4 Fitting models 465
10.4.1 The principle of parsimony 465
10.4.2 First plot the data 467
10.4.3 Comparing nested models 468
10.4.4 Comparing non-nested models 470
10.4.5 Dealing with large numbers of covariates 471

10.5 Checking model assumptions 473
10.5.1 Residuals and standardised residuals 473
10.5.2 Checking for linearity 474

�

� �

�

DETAILED CONTENTS xv

10.5.3 Checking for homoscedasticity of errors 476
10.5.4 Checking for normality of errors 476
10.5.5 Checking for independence of errors 478
10.5.6 Checking for influential observations 479
10.5.7 Checking for collinearity 481
10.5.8 Improving fit 483

10.6 Using the model 491
10.6.1 Interpretation of model 491
10.6.2 Making predictions 495

10.7 Further types of regression modelling 497
References 498

11 Generalised Linear Models 499
11.1 How GLMs work 499

11.1.1 Error structure 499
11.1.2 Linear predictor 500
11.1.3 Link function 501
11.1.4 Model checking 502
11.1.5 Interpretation and prediction 506

11.2 Count data and GLMs 507
11.2.1 A straightforward example 508
11.2.2 Dispersion 511
11.2.3 An alternative to Poisson counts 516

11.3 Count table data and GLMs 522
11.3.1 Log-linear models 522
11.3.2 All covariates might be useful 522
11.3.3 Spine plot 534

11.4 Proportion data and GLMs 537
11.4.1 Theoretical background 538
11.4.2 Logistic regression with binomial errors 541
11.4.3 Predicting x from y 544
11.4.4 Proportion data with categorical explanatory variables 545
11.4.5 Binomial GLM with ordered categorical covariates 550
11.4.6 Binomial GLM with categorical and continuous covariates 556
11.4.7 Revisiting lizards 559

11.5 Binary Response Variables and GLMs 560
11.5.1 A straightforward example 562
11.5.2 Graphical tests of the fit of the logistic curve to data 564
11.5.3 Mixed covariate types with a binary response 567
11.5.4 Spine plot and logistic regression 570

11.6 Bootstrapping a GLM 574

References 577

12 Generalised Additive Models 579
12.1 Smoothing example 580
12.2 Straightforward examples of GAMs 583
12.3 Background to using GAMs 588

12.3.1 Smoothing 588
12.3.2 Suggestions for using gam () 588

�

� �

�

xvi DETAILED CONTENTS

12.4 More complex GAM examples 589
12.4.1 Back to Ozone 590
12.4.2 An example with strongly humped data 592
12.4.3 GAMs with binary data 596
12.4.4 Three-dimensional graphic output from gam 598

References 599

13 Mixed-Effect Models 601
13.1 Regression with categorical covariates 601
13.2 An alternative method: random effects 602
13.3 Common data structures where random effects are useful 603

13.3.1 Nested (hierarchical) structures 604
13.3.2 Non-nested structures 604
13.3.3 Longitudinal structures 605

13.4 R packages to deal with mixed effects models 605
13.4.1 The nlme package 605
13.4.2 The lme4 package 606
13.4.3 Methods for fitting mixed models 606

13.5 Examples of implementing random effect models 607
13.5.1 Multilevel data (two levels) 607
13.5.2 Multilevel data (three levels) 611
13.5.3 Designed experiment: split-plot 614
13.5.4 Longitudinal data 617

13.6 Generalised linear mixed models 622
13.6.1 Logistic mixed model 622

13.7 Alternatives to mixed models 625
References 625

14 Non-linear Regression 627
14.1 Example: modelling deer jaw bone length 628

14.1.1 An exponential model for the deer data 629
14.1.2 A Michaelis–Menten model for the deer data 632
14.1.3 Comparison of the exponential and the Michaelis–Menten model 634

14.2 Example: grouped data 634
14.3 Self-starting functions 638

14.3.1 Self-starting Michaelis–Menten model 638
14.3.2 Self-starting asymptotic exponential model 640
14.3.3 Self-starting logistic 642
14.3.4 Self-starting four-parameter logistic 643

14.4 Further considerations 645
14.4.1 Model checking 645
14.4.2 Confidence intervals 647

References 648

15 Survival Analysis 649
15.1 Handling survival data 649

15.1.1 Structure of a survival dataset 649
15.1.2 Survival data in R 652

�

� �

�

DETAILED CONTENTS xvii

15.2 The survival and hazard functions 652
15.2.1 Non-parametric estimation of the survival function 653
15.2.2 Parametric estimation of the survival function 654

15.3 Modelling survival data 655
15.3.1 The data 657
15.3.2 The Cox proportional hazard model 658
15.3.3 Accelerated failure time models 660
15.3.4 Cox proportional hazard or a parametric model? 665

References 665

16 Designed Experiments 667
16.1 Factorial experiments 667

16.1.1 Expanding data 672
16.2 Pseudo-replication 673

16.2.1 Split-plot effects 673
16.2.2 Removing pseudo-replication 675
16.2.3 Derived variable analysis 676

16.3 Contrasts 677
16.3.1 Contrast coefficients 678
16.3.2 An example of contrasts using R 679
16.3.3 Model simplification for contrasts 684
16.3.4 Helmert contrasts 688
16.3.5 Sum contrasts 689
16.3.6 Polynomial contrasts 691
16.3.7 Contrasts with multiple covariates 694

References 698

17 Meta-Analysis 699
17.1 Elements of a meta-analysis 699

17.1.1 Choosing studies for a meta-analysis 700
17.1.2 Effects and effect size 700
17.1.3 Weights 701
17.1.4 Fixed vs. random effect models 701

17.2 Meta-analysis in R 703
17.2.1 Formatting information from studies 703
17.2.2 Computing the inputs of a meta-analysis 703
17.2.3 Conducting the meta-analysis 706

17.3 Examples 707
17.3.1 Meta-analysis Of scaled differences 707

17.4 Meta-analysis of categorical data 711
References 714

18 Time Series 715
18.1 Moving average 715
18.2 Blowflies 717
18.3 Seasonal data 723

18.3.1 Point of view 724
18.3.2 Built in ts () functions 724
18.3.3 Cycles 726
18.3.4 Testing for a time series trend 728

�

� �

�

xviii DETAILED CONTENTS

18.4 Multiple time series 729
18.5 Some theoretical background 730

18.5.1 Autocorrelation 731
18.5.2 Autoregressive models 732
18.5.3 Partial autocorrelation 732
18.5.4 Moving average models 732
18.5.5 More general models: ARMA and ARIMA 733

18.6 ARIMA example 733
18.7 Simulation of time series 735
Reference 739

19 Multivariate Statistics 741
19.1 Visualising data 742
19.2 Multivariate analysis of variance 743
19.3 Principal component analysis 745
19.4 Factor analysis 748
19.5 Cluster analysis 751

19.5.1 k-means 751
19.6 Hierarchical cluster analysis 754
19.7 Discriminant analysis 756
19.8 Neural networks 758
References 760

20 Classification and Regression Trees 761
20.1 How CARTs work 763
20.2 Regression trees 764

20.2.1 The tree package 764
20.2.2 The rpart package 765
20.2.3 Comparison with linear regression 767
20.2.4 Model simplification 769

20.3 Classification trees 771
20.3.1 Classification trees with categorical explanatory variables 771
20.3.2 Classification trees for replicated data 773

20.4 Looking for patterns 775
References 777

21 Spatial Statistics 779
21.1 Spatial point processes 779

21.1.1 How can we check for randomness? 781
21.1.2 Models 785
21.1.3 Marks 790

21.2 Geospatial statistics 793
21.2.1 Models 794

References 798

22 Bayesian Statistics 799
22.1 Components of a Bayesian Analysis 800

22.1.1 The likelihood (the model and data) 800
22.1.2 Priors 801
22.1.3 The Posterior 802

�

� �

�

DETAILED CONTENTS xix

22.1.4 Markov chain Monte Carlo (MCMC) 803
22.1.5 Considerations for MCMC 803
22.1.6 Inference 805
22.1.7 The Pros and Cons of going Bayesian 806

22.2 Bayesian analysis in R 806
22.2.1 Installing JAGS 807
22.2.2 Running JAGS in R 807
22.2.3 Writing BUGS models 808

22.3 Examples 810
22.3.1 MCMC for a simple linear regression 810
22.3.2 MCMC for longitudinal data 814

22.4 MCMC for a model with binomial errors 818
References 821

23 Simulation Models 823
23.1 Temporal dynamics 823

23.1.1 Chaotic dynamics in population size 823
23.1.2 Investigating the route to chaos 825

23.2 Spatial simulation models 826
23.2.1 Meta-population dynamics 826
23.2.2 Coexistence resulting from spatially explicit (local) density dependence 829
23.2.3 Pattern generation resulting from dynamic interactions 834

23.3 Temporal and spatial dynamics: random walk 837
References 838

Index 839

�

� �

�

�

� �

�

List of Tables

Table 1.1 Libraries used in this book that come supplied as part of the base package of R 8

Table 1.2 Task Views on CRAN 10

Table 3.1 Mathematical functions 61

Table 3.2 Common operators 62

Table 3.3 Logical and relational operations 67

Table 3.4 Data types 80

Table 3.5 Vector functions 94

Table 3.6 Format codes for dates and times 167

Table 3.7 Escape sequences for use with cat () 199

Table 4.1 Correctly set out dataset for importing into a dataframe 216

Table 4.2 Dataset that will not form a dataframe correctly 217

Table 4.3 Dataset that will form a dataframe correctly 217

Table 4.4 Selecting parts of a dataframe called df_dummy 223

Table 5.1 Plotting single variables 255

Table 6.1 Orientation and sizes of labels 310

Table 6.2 Drawing mathematical expressions in text 323

Table 6.3 Graphical parameters and their default values 354

Table 8.1 Some commonly used probability distributions supported by R 376

Table 9.1 Tests used in Chapter 9 436

Table 10.1 Functions for various regression models 497

Table 10.2 Frequently used functions to extract information about regression models 498

Table 11.1 Common members of the exponential family 501

�

� �

�

xxii LIST OF TABLES

Table 14.1 Useful non-linear functions 628

Table 14.2 Useful non-linear self-starting functions 639

Table 15.1 Common parametric forms of the survival and hazard functions 654

Table 17.1 Data from Study A 711

�

� �

�

Preface

R is the most powerful tool in the known universe for carrying out statistical analysis, and it’s free!
This book is aimed at those who wish to carry out such work – exploring, plotting, and modelling
data – but who do not have much experience in R and/or statistics. R is described from scratch
with instructions for loading and getting going with the software in Chapter 1 and a description of its
essential elements in Chapter 3. Later chapters discuss statistical methods and are written so that
they can be used either as a beginner’s guide or as a reference manual on particular procedures in
R. The theory behind the analyses is covered in enough depth, we hope, to make it comprehensible
but without overburdening the reader with too much mathematics. The datasets used to illustrate
various analyses are available at https://www.wiley.com/go/jones/therbook3e.

Using R has become far simpler with the introduction of RStudio, which is also free (other editors
are available). RStudio provides a friendly front end and easy access to tools, all of which seem
a long way from R’s original rather forbidding command prompt. This book assumes the use of
RStudio rather than using R directly, but the code presented will work using the latter setup too.

While there is still the usual hurdle of getting to know powerful software, the benefits, particularly
in graphics and modelling, far outweigh the effort. Academic papers in many disciplines routinely
use and report results using R. In addition, the open-source nature of the software means that users
have added extra functionality by writing packages to broaden R’s capabilities. There are currently
over 18,000 packages that, together with useful links and information, can be found at the official
R distribution site, CRAN: https://cran.r-project.org/.

This book is contingent upon the existence of R. Those involved are too numerous to mention,
but we are hugely grateful to all involved in its creation and continuing evolution. When you use R,
R packages (e.g. spatstat), and RStudio, please cite them. Up-to-date citation details for each
of these can be found by typing the following in R, respectively:

citation ()
citation ("spatstat")
RStudio.Version ()

Elinor Jones
Simon Harden

Michael J. Crawley
August 2022

https://www.wiley.com/go/jones/therbook3e.
https://cran.r-project.org/

�

� �

�

�

� �

�

Acknowledgments

This book would not exist without its previous editions so thanks, firstly, to the originating author,
Michael J. Crawley.

It has been a pleasure to revise The R Book to create this third edition. We are very grateful to
Professor Crawley for allowing us to use materials from previous versions, including his fantastic
array of datasets that make a welcome return in this edition.

Finally, we would like to thank the Department of Statistical Science at University College London
for giving us time and space to complete the book during a difficult period for everybody.

Elinor Jones
Simon Harden

August 2022

�

� �

�

�

� �

�

About the Companion Website

This book is accompanied by a companion website.

www.wiley.com/go/jones/therbook3e

This website include: Datasets

www.wiley.com/go/jones/therbook3e

�

� �

�

�

� �

�

1
Getting Started

1.1 Navigating the book

The material covered in this book has been arranged by topic. The first few chapters cover the
essentials, including basic technical knowledge (Chapter 2), the fundamentals of R (Chapter 3),
and data handling in R (Chapter 4). Subsequent chapters deal with statistical procedures, including
graphics (Chapters 5 and 6), statistical testing (Chapter 9), and common statistical models (from
Chapter 10).

To make navigating the book easier, the following conventions will be used:

• New terms are highlighted in bold when first used;

• R functions and function arguments written in-line are highlighted in red, for example the plot ()
function and the pch argument (note the use of the round brackets when referring to functions);

• Stand-alone R code is written in red, with output in blue, for example:

1+3

[1] 4

• Datasets, variable names, model names, and so on, are written in typewriter font;

• R packages (see Section 1.6) are highlighted in blue, for example MASS.

1.1.1 How to use this book

This book is intended to serve a wide audience from complete beginners through to those in need
of an R reference manual. Below, we offer advice on how to use the book depending on level of
experience in statistics and computing.

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

2 THE R BOOK

Beginner in both computing and statistics

The book is structured principally with such a reader in mind. There are six key things to learn:
how to arrange data, how to read data into R, how to check data once within R, how to select an
appropriate analysis, how to interpret the output, and how to present the analysis for publication. A
thorough understanding of the basics is essential before trying to do the more complicated things,
so we recommend studying Chapters 3 to 4 carefully to begin with. Do all of the exercises that are
illustrated in the text on your own computer.

Now comes the hard part, which is selecting the right statistics to use. Model choice is extremely
important and is the thing that will develop most with experience. Don’t be afraid to ask for expert
help with this. Never do an analysis that is more complicated than it needs to be, so start by reading
about graphical representations of data (Chapters 5 and 6). Sometimes this is all that’s needed.

Student needing help with project work

A good understanding of variable types is key (broadly, variables are either numeric or categorical,
see Section 1.8.1). An analysis of a dataset will depend – at least in part – on the type of variables in
the dataset and the research question of interest. Does the research question point to a particular
‘response’ variable, and if so, what type of variable is this?

From here, the first port of call is to plot or tabulate the data, depending on the nature of the
variables (see Chapters 5–7). That might be enough in itself, or further statistical analyses might
be needed. For example, if the response variable (if any) is a count, consider using hypothesis
tests (Chapter 9), tables (Chapter 7), or possibly a model (Chapter 11). If the response variable
is a continuous measure (e.g. a weight), then consider using hypothesis tests (Chapter 9), or a
regression model (Chapter 10).

Done some R and some statistics, but keen to learn more of both

The best plan is to skim quickly through the introductory material in case there is anything new to
be learned. It is a good idea to read Chapter 3 on the fundamentals of the R language and Chapters
5 and 6 on graphics. Much of the rest of the book is organised by analysis type making it easy to
jump to the relevant chapter.

Done regression, but want to learn more advanced statistical modelling

For readers who have experience of regression in another language, the best plan is to go directly
to Chapters 10 and 11 to see how the output from linear models is handled by R. Familiarity with
data input and dataframes is essential (Chapter 4), then the chapters on more advanced modelling
should be accessible.

Experienced in statistics, but a beginner in R

The first thing is to get a thorough understanding of dataframes and data input to R, so start with
Chapter 4. Then, chapters on statistical modelling should be accessible. It is a good idea to browse,
for example Chapters 9 (Testing) and 10 (Regression) to understand the output from R. Working
through Chapters 5 and 6 will provide the foundations of graphics in R.

�

� �

�

GETTING STARTED 3

Experienced in computing, but a beginner in R

Well-written R code is highly intuitive and very readable. The most unfamiliar parts of R are likely
to be the way it handles functions and the way it deals with environments. It is impossible to antic-
ipate the order in which more advanced users are likely to encounter material and hence want to
learn about specific features of the language, but vectorised calculations, subscripts on dataframes,
function-writing and suchlike are bound to crop up early (Chapter 3). When faced with an unfamiliar
name in some code, just type the name immediately after a question mark; for example to find out
more about the rnbinom () function, type:

?rnbinom

Recognizing mathematical functions is quite straightforward because of their names and the fact
that their arguments are enclosed in round brackets (). Subscripts on objects have square brackets
[]. Multi-line blocks of R code are enclosed within curly brackets { }. The idea of lists might be new,
or applying functions to lists; elements within lists have double square brackets [[]].

Look at the sections at the start of Chapter 3 as a starting point. The index is probably the most
sensible entry point for queries about specifics.

Familiar with statistics and computing, but need a friendly reference manual

For information about a topic, use the chapter list and the Detailed Contents to find the most
appropriate section. For aspects of the R language, look at the sections mentioned at the start of
Chapter 3. Spending time browsing the contents of general material such as Chapters 5 and 6 on
graphics is a good idea.

Get used to R’s help pages. Each R function has a help page which can be accessed by typing a
question mark followed directly by the function name. To find out what all the graphics parameters
mean, for instance, just type:

?par

1.2 R vs. RStudio

R is a powerful open-source software for statistical computing (R Core Team, 2021). It can be used
directly, or for a more pleasing user experience, can be used via the RStudio interface which is freely
available (RStudio Team, 2020). We strongly recommend using RStudio rather than R directly as
it makes managing workspace easy and avoids some of R’s rather cumbersome features. The rest
of the book will assume the use of RStudio, but all code presented will work – and provide identical
results – if used in ‘native’ R instead.

We will generally write ‘R’ instead of ‘RStudio’ throughout this book.

1.3 Installing R and RStudio

You will need to install both R and RStudio. Both will run under Windows, a number of flavours of
Linux (more for R than for RStudio so check the links below) and even Apple’s Mac OS X.

�

� �

�

4 THE R BOOK

First download and install R. Note that this needs to be done first before attempting to download
RStudio.

• Go to the CRAN project webpage https://cran.r-project.org/mirrors.html and choose the closest
CRAN site to you (e.g. Imperial College London). It doesn’t matter too much which of these is
chosen if several are close by;

• Select the link for Download R for … , for your operating system;

• Follow the instructions, noting that the default set-up is perfectly adequate.

Now download RStudio.

• Go to the RStudio webpage https://rstudio.com/products/rstudio/download/#download and select
the ‘Download’ for RStudio Desktop. The free version is generally adequate and is certainly so
for this book.

• Follow the instructions. At some point you’ll be asked to locate where R has been installed.
Remember that RStudio is just an R interface.

Rather than downloading R and RStudio, there is the option of accessing the software online via
RStudio Cloud (https://www.rstudio.com/products/cloud/). There are some advantages to using
RStudio online, for example when working on a group project. However, for individual use, it is
likely that downloading R and RStudio is the best way forward.

1.4 Using RStudio

Once installed, open RStudio. The screen is divided into three parts as in Figure 1.1.

Figure 1.1 RStudio windows. RStudio, PBC

https://cran.r-project.org/mirrors.html
https://rstudio.com/products/rstudio/download/#download
https://www.rstudio.com/products/cloud/
https://www.rstudio.com/products/cloud/

�

� �

�

GETTING STARTED 5

On the left is the console, numbered 1 in Figure 1.1. This is R. All code will be passed to the
console where it will be executed, and numerical output will also be displayed here. The console
displays the version number of R, its date, and version name (always comedic).

In the top right-hand corner is the workspace, numbered 2 in Figure 1.1. This is the control centre
and gives an at-a-glance overview of what has been done so far in the session.

The bottom right corner, numbered 3 in Figure 1.1, hosts a number of things. Switch between
them by clicking on the relevant tabs:

• Files: Shows the accessible file directories (more on this in Section 1.8.4);

• Plots: This is where plots and other graphics will be displayed;

• Packages: Lists packages that have been installed and provides functionality for installing others
(more on this in Section 1.6);

• Help: As the name might suggest, help with various functions or procedures can be found here
(more on this in Section 1.7);

• Viewer: Used for viewing local web content.

1.4.1 Using R directly via the console

Before exploring further, we’ll return to the console. Below the header – which contains useful infor-
mation about version number, citation, and a health warning – is a blank line with a > symbol in the
left-hand margin. This is called the prompt and is R’s way of saying ‘What now?’. Commands can
be typed in directly here, though we suggest a more efficient way of working via text editors (see
Section 1.4.2).

To begin with, we can use the console as a calculator, for example typing in the following com-
mand then pressing enter on the keyboard to execute the command (for neatness, we don’t present
the > at the start of each line of code in this book):

2 + 3

[1] 5

When working, a + is sometimes displayed at the left-hand side of the screen instead of >. This
means that the last command typed is incomplete. The most common cause of this is forgetting
one or more brackets. If what’s missing is clear (e.g. a final right-hand bracket), then just type the
missing character and press enter, at which point the command will execute. If a mistake has been
made, then press the Esc key and the command line prompt > will reappear. Use the Up arrow key
to scroll through previous commands, then use the Left and Right arrow keys to navigate to the
mistake and correct it.

1.4.2 Using text editors

Writing commands in the console directly is rarely a good idea. It is good practice to keep a
record of the code we use, which makes correcting mistakes, updating analyses, or just run-
ning the command(s) again very easy. RStudio has a built-in text editor to store and execute
code.

�

� �

�

6 THE R BOOK

Figure 1.2 RStudio windows with text editor. RStudio, PBC

A failsafe way of opening a blank text editor, which doesn’t depend on the operating system of
your machine, is to go to File, then New File, then R Script. It will appear in the top left hand corner
as in Figure 1.2.

The text editor is where we write commands, using a new line for each one. Click the text editor
to activate it, before writing the following:

2 + 3
3 * 6
exp (2)

To run commands, highlight the relevant lines and click ‘Run’ (top right corner of the text editor)
or press Ctrl and Enter, simultaneously. Output will be displayed in the console (bottom left). For
readability, output will be shown directly beneath each of the relevant command throughout this
book like this:

2 + 3

[1] 5

3 * 6

[1] 18

exp (2)

[1] 7.389056

�

� �

�

GETTING STARTED 7

The commands so far request calculations to be performed, but we can also define objects (see
Chapter 3 for details), for example a is assigned (<-) the value 5 while we define b to be ln(10):

a <- 5
b <- log (10)

When we run this, we notice two things:

• there is no output in the console (because all we’ve done is define two objects);

• the Environment tab in the workspace has been populated with the definitions of a and b.

It is helpful to understand that R is an object-orientated programming (OOP) language: it is based
on applying actions (commands) on objects. For example, a dataset which we load into R (see
Chapter 4) will be considered by R as an object. Any action applied (e.g. finding the mean for each
variable in the dataset) will be an action on a particular object (the dataset in this case). An object
doesn’t have to be a dataset, however, as we saw above.

The best way to learn R and RStudio is to play with them. The introduction here gives a very brief
overview but is in no way complete. A good place to start is with RStudio cheatsheets https://www
.rstudio.com/resources/cheatsheets/.

1.5 The Comprehensive R Archive Network

CRAN https://cran.r-project.org/ is the first port of call for everything to do with R. It is from here
that you download and install R (see Section 1.3), find contributed packages to solve particular
problems (see Section 1.6), find the answers to frequently asked questions, read about the latest
developments, get programming tips, and much more besides.

It is well worth browsing through The R Journal, accessible via the CRAN webpage. This is the
refereed journal of the R project for statistical computing. It features short- to medium-length articles
covering topics that might be of interest to users or to developers of R, including

• Add-on packages: Short introductions to or reviews of R extension packages.

• Changes in R: Details of recent changes to R.

• Applications: Demonstrating how a new or existing technique can be applied in an area of cur-
rent interest using R, providing a fresh view of such analyses in R that is of benefit beyond the
specific application.

1.5.1 Manuals

There are several manuals available on CRAN, for example (descriptions are taken from the
webpage):

• An Introduction to R gives an introduction to the language and how to use R for doing statistical
analysis and graphics.

• A draft of the R Language Definition, which documents the language per se – that is, the objects
that it works on, and the details of the expression evaluation process, which are useful to know
when programming R functions. This is perhaps the most important of all the manuals.

https://www.rstudio.com/resources/cheatsheets/
https://www.rstudio.com/resources/cheatsheets/
https://cran.r-project.org/

�

� �

�

8 THE R BOOK

• Writing R Extensions covers how to create your own packages, write R help files, and use the
foreign language (C, C + +, Fortran, …) interfaces.

• Data Import/Export describes the import and export facilities available either in R itself or via
packages which are available from CRAN.

• R Installation and Administration, which is self-explanatory.

These manuals are also available in RStudio by going to the Help tab in the bottom right-hand
corner and clicking the ‘home’ icon.

The most useful part of the site, however, is the Search facility. This is a good starting point for
investigating the contents of most of the R documents, functions, and searchable mail archives.

1.5.2 Frequently asked questions

R has three collections of answers to FAQs:

• the R FAQ, which contains useful information for users on all platforms (Linux, Mac, Unix,
Windows);

• the R Mac OS X FAQ for all users of Apple operating systems;

• the R Windows FAQ for all users of Microsoft operating systems.

Read the first of these, plus the appropriate one for your platform.

1.5.3 Contributed documentation

This contains a wide range of longer (more than 100 pages) and shorter manuals, tutorials, and
exercises provided by users of R. You should browse these to find the ones most relevant to your
needs.

1.6 Packages in R

A lot can be done with R or RStudio ‘straight out of the box’, also known as base-R. Table 1.1 lists
some of the packages that come supplied as part of the base-R installation.

Table 1.1 Libraries used in this book that come supplied as part of the base package of R.

Package name Functionality

lattice graphics for panel plots or trellis graphs
MASS package associated with Venables and Ripley’s book entitled Modern Applied

Statistics using S-PLUS
mgcv generalised additive models
nlme mixed-effects models (both linear and nonlinear)
nnet feed-forward neural networks and multinomial log-linear models
spatial functions for kriging and point pattern analysis
survival survival analysis, including penalised likelihood

�

� �

�

GETTING STARTED 9

However, there is a huge community of R users who contribute to its functionality via packages.
A package contains additional functionality for R that can be loaded during a session. Navigating
contributed packages can be tricky simply because there are so many of them, and the name of
the package is not always as indicative of its function as one might hope.

Viewing existing packages can be done in RStudio by clicking on the Packages tab. Clicking the
box next to a package loads it. A far better way of loading a package is to do so via the library ()
function, which also means we have it as part of our code. For example, to load the MASS package
(Venables and Ripley, 2002), which has a wide range of useful functions and datasets, type:

library (MASS)

See Section 1.6.3 for information on installing new packages.

1.6.1 Contents of packages

It is easy to use the help function to discover the contents of library packages. Supposing that we
wanted to find out about the contents of the spatial package, we’d type:

library (help = spatial)

This brings up general information about the package in a new tab of the text editor in RStudio,
including a list of all the functions and data sets.

To find out how to use, say, Ripley’s K (kfn ()) from spatial, we load the package and then
use ? to query the function:

library (spatial)
?Kfn

1.6.2 Finding packages

There is no comprehensive cross-referenced index of packages, but there is a very helpful fea-
ture called ‘Task Views’ on the CRAN website, which explains the packages available under a
limited number of usefully descriptive headings. Click on Task Views to see bundles of packages
assembled by topic. Currently, there are 40 Task Views on CRAN as listed in Table 1.2.

Click on the Task View to get an annotated list of the packages available under any particular
heading. If Base-R doesn’t cover your needs, it is highly likely that a package exists that does.

1.6.3 Installing packages

The base package does not contain some of the libraries referred to in this book, but installing these
is very simple.

It is best to install packages using the install.packages () function, as shown below, rather
than doing so via RStudio’s Packages tab (therein, click on install, then search for the package
needed). The packages used in this book are

install.packages ("akima")
install.packages ("boot")

�

� �

�

10 THE R BOOK

Table 1.2 Task Views on CRAN

Bayesian Bayesian Inference
ChemPhys Chemometrics and Computational Physics
ClinicalTrials Clinical Trial Design, Monitoring, and Analysis
Cluster Cluster Analysis & Finite Mixture Models
Databases Databases with R
DifferentialEquations Differential Equations
Distributions Probability Distributions
Econometrics Computational Econometrics
Environmetrics Analysis of Ecological and Environmental Data
ExperimentalDesign Design of Experiments (DoE) & Analysis of Experimental Data
ExtremeValue Extreme Value Analysis
Finance Empirical Finance
FunctionalData Functional Data Analysis
Genetics Statistical Genetics
Graphics Graphic Displays & Dynamic Graphics & Graphic Devices & Visualization
HighPerformanceComputing High-Performance and Parallel Computing with R
Hydrology Hydrological Data and Modeling
MachineLearning Machine Learning & Statistical Learning
MedicalImaging Medical Image Analysis
MetaAnalysis Meta-Analysis
MissingData Missing Data
ModelDeployment Model Deployment with R
Multivariate Multivariate Statistics
NaturalLanguageProcessing Natural Language Processing
NumericalMathematics Numerical Mathematics
OfficialStatistics Official Statistics & Survey Methodology
Optimization Optimization and Mathematical Programming
Pharmacokinetics Analysis of Pharmacokinetic Data
Phylogenetics Phylogenetics, Especially Comparative Methods
Psychometrics Psychometric Models and Methods
ReproducibleResearch Reproducible Research
Robust Robust Statistical Methods
SocialSciences Statistics for the Social Sciences
Spatial Analysis of Spatial Data
Survival Survival Analysis
TeachingStatistics Teaching Statistics
TimeSeries Time Series Analysis
Tracking Processing and Analysis of Tracking Data
WebTechnologies Web Technologies and Services
gR gRaphical Models in R

install.packages ("BSDA")
install.packages ("car")
install.packages ("coda")
install.packages ("DescTools")
install.packages ("deSolve")
install.packages ("EMT")

�

� �

�

GETTING STARTED 11

install.packages ("geoR")
install.packages ("ggplot2")
install.packages ("lme4")
install.packages ("metafor")
install.packages ("nlstools")
install.packages ("PerformanceAnalytics")
install.packages ("plotly")
install.packages ("predictmeans")
install.packages ("psych")
install.packages ("R2jags")
install.packages ("RColorBrewer")
install.packages ("rpart")
install.packages ("SemiPar")
install.packages ("spatstat")
install.packages ("spdep")
install.packages ("stringr")
install.packages ("tree")

Installing a package doesn’t load it! The library () function needs to be used to load an installed
package.

1.7 Getting help in R

Help with R-related problems is easy to come by. If the name of the function you want help with
is known, just type a question mark ? at the command line prompt followed by the name of the
function. For example, to get help on the read.table () function, type:

?read.table

The help page can then be viewed in the bottom right corner in RStudio.
Sometimes the precise name of the function isn’t known, but general subject area is (e.g. data

input in this case). Use the help.search () function (without a question mark) with the query in
double quotes like this:

help.search ("data input")

and (with any luck) the names of the R functions associated with this query will be displayed. Then
use, for example ?read.table to get detailed help.

Other useful functions are find () and apropos (). The find () function indicates what
package something is in

find ("lowess")

[1] "package:stats"

�

� �

�

12 THE R BOOK

while apropos () returns a character vector giving the names of all objects in the search list that
match a (potentially partial) enquiry:

apropos ("lm")

[1] ".colMeans" ".lm.fit"
[3] "anova.lme" "colMeans"
[5] "confint.lm" "contr.helmert"
[7] "contr.Helmert" "dummy.coef.lm"
[9] "extract.lme.cov" "extract.lme.cov2"
[11] "getAllMethods" "glm"
[13] "glm.control" "glm.convert"
[15] "glm.fit" "glm.nb"
[17] "glmmPQL" "KalmanForecast"
[19] "KalmanLike" "KalmanRun"
[21] "KalmanSmooth" "kappa.lm"
[23] "lm" "lm.fit"
[25] "lm.gls" "lm.influence"
[27] "lm.ridge" "lm.wfit"
[29] "lme" "lme.formula"
[31] "lme.lmList" "lmeControl"
[33] "lmeStruct" "lmList"
[35] "lmList.formula" "lmsreg"
[37] "lmwork" "loglm"
[39] "loglm1" "marginalModelPlot"
[41] "marginalModelPlots" "model.matrix.lm"
[43] "nlm" "nlme"
[45] "nlme.formula" "nlme.nlsList"
[47] "nlmeControl" "nlmeStruct"
[49] "nlminb" "panel.lmline"
[51] "plot.lme" "predict.glm"
[53] "predict.lm" "Predict.matrix.soap.film"
[55] "prepanel.lmline" "residuals.glm"
[57] "residuals.lm" "rlm"
[59] "simulate.lme" "summary.glm"
[61] "summary.lm" "USRegionalMortality"

There is a huge world-wide R user network. An Internet search of a problem is likely to point to a
solution if the above approaches don’t help.

1.7.1 Worked examples of functions

To see a worked example, just type the function name (e.g. linear models, lm ())

example (lm)

which provides an example of the printed and graphical output produced by the lm () function.

�

� �

�

GETTING STARTED 13

1.7.2 Demonstrations of R functions

These can be useful for seeing the range of things that R can do. Try the following to get a flavour
of what’s on offer:

demo (persp)
demo (graphics)
demo (Hershey)
demo (plotmath)

1.8 Good housekeeping

1.8.1 Variable types

It is sometimes tempting to dive straight into data analysis without much thought, but before we
embark on any data work it is vital to understand the type of variables that we have in our dataset.
Choosing suitable statistical methods depends on the type of data you have. Taking time to classify
each variable is therefore worthwhile: it isn’t always obvious as we’ll see.

Broadly, variables are classified as numeric (or quantitative) or categorical (or qualitative) vari-
ables. This two-class system hides some important variable features that we should consider.

• A numeric variable can be continuous or discrete.

– A continuous variable can take any value within a given interval, for example height, total
precipitation, Olympic 100 m times.

– A discrete variable can only take particular (numeric) values, for example the number of adults
in a household, age in years, and number of daily cases of a virus.

• A categorical variable can be nominal or ordinal.

– A nominal variable consists of unordered categories, for example favourite colour, brand of
trainers, and gender.

– An ordinal variable consists of ordered categories, for example letter grade achieved on an
exam (e.g. from A to F), a customer’s rating of service (e.g. ‘poor’, ‘average’, and ‘good’), a
patient’s pain rating from 0 (no pain) to 10 (worst possible pain).

Most of the examples given are straightforward, but a few deserve special attention. Take the num-
ber of daily cases of a virus, for example. It is clear that this should be a discrete variable because
it can only take whole numbers 0, 1, 2, … (we can’t have, say, 10.462 cases!). Though this is
undeniably discrete, we could face difficulty if daily cases varies considerably from no cases to
many thousands. With such a vast range of possible values, we might consider treating this variable
as continuous instead. This could potentially make an analysis simpler, which is not a bad thing.

It may seem surprising that a patient’s pain rating from 0 to 10 is classified as an ordinal (categor-
ical) variable. The possible values are numbers so why isn’t this a discrete variable? The numbers
here are merely labels for underlying categories, and not meaningful in themselves. Though it would
be slightly odd to do so, we could equivalently ask a patient to classify their pain from 100 to 110
instead, or ask them to identify the pain using labels such as ‘no pain’, ‘very mild pain’, all the way up
to ‘worst possible pain’. This would extract the same information from the patients and reveals that

�

� �

�

14 THE R BOOK

there is nothing special about the numeric labels we initially applied to the categories. The moral of
the story here is don’t jump to the conclusion that any variable with quantitative values is actually
numeric.

Once we have a good hold of the variable types in our dataset, we can start thinking about how
to approach any analysis.

1.8.2 What’s loaded or defined in the current session

To see what variables have been created in the current session, type:

objects ()

The Environment tab in RStudio also lists everything that has been imported or created. To see
which packages and dataframes are currently attached (see Section 1.8.3):

search ()

1.8.3 Attaching and detaching objects

It is sometimes desirable to attach an object, such as a dataset. For example, if we wanted to the
mean of a numeric variable, say myvar, which sits inside a (loaded) dataset called mydata, we
would have to instruct R to look inside mydata to find myvar by using the $ symbol (read it as ‘look
inside the object mydata and find myvar):

mean (mydata$myvar)

where, of course, the function mean () computes the arithmetic mean. This can get quite cumber-
some.

We could attach () mydata so that we don’t have to do this. By attaching the dataset, its
contents become visible to R so that we don’t have to specify that myvar is located inside mydata:

attach (mydata)
mean (myvar)
detach (mydata)

Attaching objects comes with a serious health warning. It can get very messy and easily lead to
mistakes. Once an object is attached, it should be detached as soon as possible using detach
(mydata) in our example. The detach () command does not make the dataset disappear; it
just means that the variables within it are no longer accessible directly by name.

It may also be necessary to remove particular objects created using rm (). That way, the Envi-
ronment in RStudio doesn’t get unnecessarily cluttered:

x <- 5
y <- exp(4)
objects ()
rm (x, y)
objects ()

�

� �

�

GETTING STARTED 15

To get rid of everything, including all datasets, type:

rm (list = ls ())

but be absolutely sure that you really want to be as draconian as this before executing the command.
There is no going back.

1.8.4 Projects

It is a good idea to keep files relating to a particular piece of work together. An RStudio project is a
good way of doing this. A project is just a folder containing relevant files which are not necessarily
all R-related (e.g. code, data, files, notes), together with an .RProj file.

Opening the .RProj file automatically sets the working directory to the project folder, which
is more efficient than setting it manually each time RStudio is loaded. The working directory is the
folder that R searches to find files (see Section 4.1). A list of files in the project can be seen under
the Files tab in the bottom right corner in RStudio.

Creating a basic RStudio project is very simple. In RStudio, go to File, then New Project … then
choose New Directory followed by New Project. Now choose to create a new directory from scratch
or use an existing folder. The (new) project folder contains an .RProj file. Alternatively, use the
Project menu in the top right corner of RStudio to do the same.

The project can be opened by double clicking on the .RProj file within the newly created project
folder, or by using File then Open Project in RStudio.

1.9 Linking to other computer languages

Advanced users can employ the functions .C and .Fortran to provide a standard interface to
compiled code that has been linked into R, either at build time or via dyn.load. They are primarily
intended for compiled C and Fortran code, respectively, but the .C function can be used with other
languages which can generate C interfaces, for example C++. The .Internal and .Primitive
interfaces are used to call C code compiled into R at build time. Functions .Call and .External
provide interfaces which allow compiled code (primarily compiled C code) to manipulate R objects.

It can be very time-consuming to get these links to work. A particular problem to bear in mind
is that if variables are specified as integers in the lower-level language, then they will need to be
specified as such in R before being passed to the C or Fortran code.

References

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical
Computing. Vienna, Austria. https://www.R-project.org/.

RStudio Team. (2020). Rstudio: Integrated development environment for R. RStudio, PBC. Boston, MA.
http://www.rstudio.com/.

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (Fourth) [ISBN 0-387-95457-0].
Springer. https://www.stats.ox.ac.uk/pub/MASS4/.

https://www.R-project.org/
http://www.rstudio.com/
https://www.stats.ox.ac.uk/pub/MASS4/

�

� �

�

�

� �

�

2
Technical Background

2.1 Mathematical functions

There are a number of definitions and rules that we will use frequently in the book. Let’s assume
that we have a variable x, i.e. x could take a range of possible values, and a constant b:

• xb is x raised to the power b. If b is an integer or whole number, then xb is x multiplied by itself
b times;

• e = 2.718 28 … , representing exponential, is a number that is probably more important than 𝜋 =
3.141 59 … to mathematicians. We will frequently come across expressions such as ex which is
just e raised to the power x, or the exponential function of x;

• A function is just something that takes a number, or set of numbers, as an input and produces
another number as an output. For instance, the function ln(x) is the inverse of raising x to the
power e so that ln(ex) = x or eln(x) = x. This is a form of logarithm (the natural logarithm), origi-
nally invented to simplify multiplying and dividing large numbers;

• ln(xb) = b ln(x);

• x−b = 1
xb ;

• x
1
b is the bth root of x so, for instance, x

1
2 =

√
x;

• It is often interesting to know what happens when x → 0 or x → ∞, and there are some rules that
will help us with that

– x0 = 1 for any finite value of x;
– 1x = 1;
– ∞+ x = ∞ for any x;
– 1

∞ = 0;

– If x > 1, then x∞ = ∞ so, in particular, e∞ = ∞;
– If 0 < x < 1, then x∞ = 0 so, in particular, e−∞ = 1

e∞
= 1

∞ = 0.

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

18 THE R BOOK

A common mathematical notation that we will use is, for example [a,b). This represents the
interval between a and b, but where a is included in the interval (closed at a) but b is not
(open at b). We will now have a look at some key mathematical functions, and how they are
used in R.

2.1.1 Logarithms and exponentials

A typical natural logarithmic equation might be

y = a ln(bx), (2.1)

where a,b are constants. At school, we are often introduced to logarithms to base 10, and we use
the function log(): here, the base is e, and to be completely clear about that we use ln(). Since e to
the power of anything is the inverse of taking natural logarithms, we can re-organise equation (2.1)
as follows:

y
a
= ln(bx)

e
y
a = eln(bx)

e
y
a = bx

x = e
y
a

b
.

Sometimes we will use exp(), rather than e to refer to the exponential function.
Let’s have a look at the simple functions y = ln(x) and z = ex for x in the range [0,10], i.e. the

range from 0 to 10, in steps of 0.01, in Figure 2.1:

x <- seq (0, 10, 0.01)
plot (x, exp (x), ylab = 'y', type = "l", col = hue_pal ()(2)[1])
plot (x, log (x), ylab = 'z', type = "l", col = hue_pal ()(2)[2])

We can see that R uses exp (x) to represent e to the power x (so the value for e itself is exp (1))
and log () for natural logarithms (i.e. ln()). We can use the latter function for logarithms with any
base with, for instance, log (6, base = 10). Now

log (0)

[1] -Inf

However, R, sensibly, does not attempt to plot that value. It’s also useful to know that

log (1)

[1] 0

�

� �

�

TECHNICAL BACKGROUND 19

0 2 4 6 8 10

0
50

00
10

 0
00

15
 0

00
20

 0
00

x

0 2 4 6 8 10

x

y

(b) z = In(x)(a) y = ex
–4

–3
–2

–1
0

1
2

z

Figure 2.1 Plots of continuous functions

2.1.2 Trigonometric functions

We usually meet trigonometric functions in the context of right-angled triangles with an angle 𝜃, the
most common being:

• sin(𝜽) ∶ This equals the ratio: (length of side adjacent to 𝜃)/(length of hypotenuse). The
hypotenuse is the longest side of the triangle;

• cos(𝜽) ∶ This is (length of side opposite 𝜃)/(length of hypotneuse);

• tan(𝜽) ∶ Or: (length of side adjacent to 𝜃)/(length of side opposite 𝜃).

R does not use degrees for angles but radians. It may seem strange to define one radian as
57.295 78 degrees, but all becomes clear if we remember that 360 degrees (one whole revolution
of an angle) is equal to 2𝜋 radians:

360 / (2 * pi)

[1] 57.29578

We can plot the three functions over the range [0,2𝜋] to give Figure 2.2:

x <- seq (0, 2 * pi, 0.01)
sinx <- sin (x)
cosx <- cos (x)

�

� �

�

20 THE R BOOK

0 1 2 3 4 5 6

–3
–2

–1
0

1
2

3

x

sin(x)
cos(x)
tan(x)

Figure 2.2 Plot of common trigonometric functions

tanx <- tan (x)
plot (x, sinx, ylim = c (-3, 3), ylab = "", type = "l", col = hue_pal ()(3)[1])
lines (x, cosx, col = hue_pal ()(3)[2])
lines (x, tanx, col = hue_pal ()(3)[3])
legend (2, 3, legend = c ("sin (x)", "cos (x)", "tan (x)"), lwd = rep (1, 3),

col = hue_pal ()(3), bty = "n")

The first two lines are sometimes referred to as a sine wave and a cosine wave. The tan(x) plot
heads off to ∞ as x tends to 𝜋

2
and 3𝜋

2
. As x gets little bigger than those two points, tan(x) re-emerges

at −∞. The vertical lines ‘join’ those two points.
We will also on occasion use the inverse of the sin() function, known as the arcsin() or, in R,

asin (). As usual with inverse functions, this means that

arcsin(sin(𝜃)) = 𝜃.

If we try that in R with, say, 𝜃 = 𝜋, we get

asin (sin (pi))

[1] 1.224606e-16

This is not zero. It arises as R uses approximations for its trigonometric functions. Whenever we see
numbers this small in R, we should treat them as 0, unless we are specifically looking for extremely
small measurements.

2.1.3 Power laws

There is an important family of two-parameter mathematical functions of the form

y = axb,

�

� �

�

TECHNICAL BACKGROUND 21

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

x

xb

b = –2
b = –1
b = 0
b = 0.5
b = 1
b = 2

Figure 2.3 Power law plots for various values of b and a = 1

known as power laws. Depending on the value of the power, b, the relationship can take one of
six broad forms as illustrated in Figure 2.3, where we will assume a = 1 for simplicity:

x <- seq (0, 2, 0.01)
plot (x, 1 / x^2, type = "l", ylab = expression (x^b), col = hue_pal ()(6)[1],

ylim = c (0, 4))
lines (x, 1 / x, col = hue_pal ()(6)[2])
abline (h = 1 , col = hue_pal ()(6)[3])
lines (x, x^0.5, col = hue_pal ()(6)[4])
lines (x, x, col = hue_pal ()(6)[5])
lines (x, x^2, col = hue_pal ()(6)[6])
legend (0.9, 4, bty = "n",

legend = c ("b = -2", "b = -1", "b = 0", "b = 0.5", "b = 1", "b = 2"),
col = hue_pal ()(6), lwd = 1)

The set of functions where b < 0 can be turned into probability distributions (see Chapter 8) over
[1,∞) by a suitable choice for a, so that the function integrates to 1 over the interval: that is why
two examples are shown with b < 0. However, in order for there to be a finite mean, we require that
b < −2, and for a finite variance, b < −3.

These functions are useful in a wide range of disciplines. The parameters a and b are easy to
estimate from data because the function is linearised by a log–log transformation:

log(y) = log(axb) = log(a) + b log(x),

so that on log–log axes, the intercept is log(a) and the slope is b. These are often called allometric
relationships because when b = 1 the proportion of x that becomes y varies directly with x.

An important empirical relationship from ecological entomology that has applications in a wide
range of statistical analysis is known as Taylor’s power law. It has to do with the relationship
between the variance and the mean of a sample. In elementary statistical models, the variance is
assumed not to depend upon the mean. In field data, however, Taylor found that variance increased
with the mean according to a power law, such that on log–log axes, the data from most systems
fell above a line through the origin with slope = 1 (the pattern shown by data that are Poisson

�

� �

�

22 THE R BOOK

distributed, where the variance is equal to the mean) and below a line through the origin with a
slope of 2. Taylor’s power law states that for a particular system:

• the log of the variance (log (variance)) is a linear function of the log of the mean (log (mean));

• the scatter about this straight line is small;

• the slope of the regression of log (variance) against log (mean) is greater than 1 and less than 2;

• the parameter values of the log–log regression are fundamental characteristics of the system.

2.1.4 Polynomial functions

Polynomial functions are functions in which x may appear several times, each time raised to a
different power, for instance:

y = a + bx + cx2 + · · · + zxn.

They are useful for describing curves with humps, inflections, or local maxima for a particular range
of values of x. So in [0,10], Figure 2.4 shows the following examples:

• Decelerating: The curve increases but increasingly more slowly. The formula is y = 5x − 0.2x2;

• Humped: The formula is y = 5x − 0.4x2;

(c) Inflection point (d) Local maximum and minimum

(a) Decelerating (b) Humped

Figure 2.4 Polynomial plots

�

� �

�

TECHNICAL BACKGROUND 23

• Inflection point: The formula is y = 2 + 4x − 0.6x2 + 0.4x3;

• Local maximum and minimum: The formula is 2 + 4x + 2x2 − 0.6x3 + 0.04x4.

x <- seq (0, 10, 0.01)
y = 5 * x - 0.2 * x^2
plot (x, y, type = "l", col = hue_pal ()(4)[1], xaxt = "n", yaxt = "n")
y = 5 * x - 0.4 * x^2
plot (x, y, type = "l", col = hue_pal ()(4)[2], xaxt = "n", yaxt = "n")
y = 2 + 4 * x - 0.6 * x^2 + 0.04 * x^3
plot (x, y, type = "l", col = hue_pal ()(4)[3], xaxt = "n", yaxt = "n")
y = 2 + 4 * x + 2 * x^2 - 0.6 * x^3 + 0.04 * x^4
plot (x, y, type = "l", col = hue_pal ()(4)[4], xaxt = "n", yaxt = "n")

Inverse polynomials are an important class of functions which are suitable for setting up gener-
alised linear models with Gamma errors and inverse link functions (see Chapter 11), for instance:

1
y
= a + bx + cx2 + · · · + zxn.

Figure 2.5 shows the following examples:

• Michaelis–Menten: The formula is y = x
2+5x

;

(a) Michaelis–Menten (b) Shallow hump

(c) Steep hump (d) Asymptotic exponential

Figure 2.5 Inverse polynomial plots

�

� �

�

24 THE R BOOK

• Shallow hump: The formula is y = 1
x−2+4∕x

;

• Steep hump: The formula is y = 1
x2−2+4∕x

.

x <- seq (0, 10, 0.01)
y = x / (2 + 5 * x)
plot (x, y, type = "l", col = hue_pal ()(3)[1], xaxt = "n", yaxt = "n")
y = 1 / (x - 2 + 4 / x)
plot (x, y, type = "l", col = hue_pal ()(3)[2], xaxt = "n", yaxt = "n")
y = 1 / (x^2 - 2 + 4 / x)
plot (x, y, type = "l", col = hue_pal ()(3)[3], xaxt = "n", yaxt = "n")

Note that there are two ways of parameterising the Michaelis–Menten equation:

y = ax
1 + bx

y = x
c + dx

.

For a practical use of these equations, see Section 14.1.2. In the first case, the asymptotic value of
y (as x → ∞) is a∕b and in the second it is 1∕d.

2.1.5 Gamma function

The Gamma function (sometimes abbreviated to Γ) is a key component of the Gamma distribution
(see Section 8.3.6) but is also an important function in its own right. It extends the factorial ()
function to non-integer values:

factorial (6)

[1] 720

gamma (7)

[1] 720

gamma (7.5)

[1] 1871.254

So 6 factorial = 6 × 5 × 4 × 3 × 2 × 1 and, as we can see, the gamma () function returns exactly
the same value, but we have to insert a number one larger, i.e. gamma (t + 1) = factorial
(t). However, the gamma () function also works on other numbers that are not integers. It is
defined as follows:

Γ(t) = ∫
∞

0
xt−1e−x dx.

The function looks like Figure 2.6 in [0.2,4]:

�

� �

�

TECHNICAL BACKGROUND 25

1 2 3 4

1
2

3
4

5
6

t

ga
m

m
a(

t)

Figure 2.6 Gamma function

t <- seq (0.2 ,4, 0.01)
plot (t, gamma (t),type = "l", col = hue_pal ()(2)[1])
abline (h = 1, lty = 2, col = hue_pal ()(2)[2])

We can see that Γ(t) = 1 for t = 1,2. This makes sense as Γ(2) = 1! = 1 = 0! = Γ(1). Incidentally,
in R factorial () has been defined to be the same as gamma () and so:

factorial (6.5)

[1] 1871.254

2.1.6 Asymptotic functions

An asymptotic function of x is a function that approaches a fixed value as x → ∞. For instance

y = ax
1 + bx

,

which has a different name in almost every scientific discipline. For example, in biochemistry it is
called Michaelis–Menten, and shows reaction rate as a function of enzyme concentration; in ecology
it is called Holling’s disc equation and shows predator feeding rate as a function of prey density. The
graph (see Figure 2.5a for an example) passes through the origin and rises with diminishing returns
to an asymptotic value at which increasing the value of x does not lead to any further increase in y.

Another common function is the asymptotic exponential:

y = a(1 − e−bx).

This, too, is a two-parameter model (a and b), and in many cases, the two functions would describe
data equally well. An example is shown in Figure 2.5d.

Let us work out the behaviour at the limits of our two asymptotic functions, starting with the
asymptotic exponential. For x = 0 we have:

y = a(1 − e−b×0) = a(1 − e0) = a(1 − 1) = a × 0 = 0,

�

� �

�

26 THE R BOOK

so the graph goes through the origin. At the other extreme, for x = ∞, we have

y = a(1 − e−b×∞) = a(1 − e−∞) = a(1 − 0) = a × 1 = a,

which demonstrates that the relationship is asymptotic, and that the asymptotic value of y is a.
Turning to the Michaelis–Menten equation, at x = 0 the limit is easy:

y = a × 0
1 + b × 0

= 0
1 + 0

= 0
1
= 0.

However, determining the behaviour at the limit x = ∞ is somewhat more difficult, because we end
up with y = ∞∕(1 +∞) = ∞∕∞, which you might imagine is always going to be 1 no matter what
the values of a and b. In fact, there is a special mathematical rule for this case, called l’Hospital’s
rule: when you get a ratio of infinity to infinity, you work out the ratio of the derivatives to obtain the
behaviour at the limit. The numerator is ax so its derivative with respect to x is a. The denominator
is 1 + bx so its derivative with respect to x is 0 + b = b. The ratio of the derivatives is a∕b, and this
is the asymptotic value of the Michaelis–Menten function.

We might be in the situation where we have some data which we believe fits either of the two
asymptotic functions described above and we want to estimate the values of the parameters, a and
b. We can transform the Michaelis–Menten function so that we can fit a linear model or straight
line, providing an easy way of estimation. However, that process is not possible for the asymptotic
exponential function and an alternative approach must be found (see Section 14.1.1).

For the Michaelis–Menten function, we use the reciprocal transformation:

1
y
= 1 + bx

ax
.

At first glance, this appears to be no great help. But we can separate the terms on the right because
they have a common denominator. Then we can cancel the xs, like this:

1
y
= 1

ax
+ bx

ax
= 1

ax
+ b

a
.

So if we put Y = 1∕y, X = 1∕x, A = 1∕a, and C = b∕a, we arrive at

Y = AX + C,

which is linear: C is the intercept and A is the slope. So to estimate the values of a and b from data,
we would transform both x and y to reciprocals, plot a graph of 1∕y against 1∕x, carry out a linear
regression to estimate the intercept and slope, then back-transform, to get

a = 1
A

b = aC.

Suppose that we knew that the graph of the Michaelis–Menten function passed through the two
points (0.2,44.44) and (0.6,70.59). How do we work out the values of the parameters a and b?
First, we calculate the four reciprocals. The slope of the linearised function, A, is the change in 1∕y
divided by the change in 1∕x:

A <- (1 / 44.44 - 1 / 70.59) / (1 / 0.2 - 1/0.6)
a <- 1 / A
a

[1] 399.875

�

� �

�

TECHNICAL BACKGROUND 27

Now we rearrange the equation and use one of the points (say x = 0.2, y = 44.44) to get the value
of b:

b = 1 / 0.2 * (a * 0.2 / 44.44 - 1)
b

[1] 3.998088

2.1.7 Sigmoid (S-shaped) functions

One of the simplest S-shaped functions is the two-parameter logistic function which plays an
important role in Generalised Linear Models (see Chapter 11):

y = ea+bx

1 + ea+bx
= 1

e−(a+bx) + 1
.

We can see that for a value of x, y must lie between zero and one.
The three-parameter logistic function allows y to vary on any positive scale:

y = a
be−(cx) + 1

.

The intercept is a∕(1 + b), the asymptotic value is a and the initial slope is measured by c. An
example with respective parameters 100, 90, and 1 is shown in Figure 2.7a.

The four-parameter logistic function has asymptotes at the left (a) and right (b) hand ends of
the x axis and scales (c) the response to x about the midpoint (d), where the curve has its inflexion:

y = a + b − a
ec(d−x) + 1

.

An example with parameters 20, 100, 0.8, and 3 is shown in Figure 2.7b. A reversed or negative
sigmoid function has c < 0.

An asymmetric S-shaped curve much used in demography and life insurance work is the
Gompertz growth model,

y = aebecx.

An example with parameters 50, −5, and −0.08 is shown in Figure 2.7c The shape of the function
depends on the signs of the parameters b and c. If they are both negative, we have a positive curve,
while if b is negative and c positive, then we have a reversed sigmoid. An example of the latter with
parameters 100, −1, and 0.2 is given in Figure 2.7d.

The code for all four plots is

x <- seq (0, 10, 0.01)
y <- 100 / (1 + 90 * exp(-1 * x))
plot (x, y, type = "l", col = hue_pal ()(4)[1])
y <- 20 +100 / (1 + exp (0.8 * (3 - x)))
plot (x, y, ylim = c (0,140), type = "l", col = hue_pal ()(4)[2])
x <- seq (0, 100, 0.1)
y <- 50 * exp (-5 * exp (-0.08 * x))
plot (x, y, type = "l", col = hue_pal ()(4)[3])

�

� �

�

28 THE R BOOK

(a) Three-parameter logistic (b) Four-parameter logistic

(c) Positive Gompertz (d) Negative Gompertz

Figure 2.7 Sigmoid plots

x <- seq (-200, 100, 0.1)
y <- 100 * exp (-exp (0.02 * x))
plot (x, y, type = "l", col = hue_pal ()(4)[4])

2.1.8 Biexponential function

The biexponential function is a useful four-parameter non-linear function, which is the sum of two
exponential functions of x:

y = aebx + cedx.

Various shapes depend upon the signs of the parameters b, c, and d (a is assumed to be positive):
Figure 2.8a shows c positive, b and d negative (it is the sum of two exponential decay curves, so
the fast decomposing material disappears first, then the slow, to produce two different phases);
Figure 2.8b shows c and d positive, b negative (this produces an asymmetric U-shaped curve);
Figure 2.8c shows c negative, b and d positive (this can, but does not always, produce a curve with
a hump); and Figure 2.8d shows b and c positive, d negative. When b, c, and d are all negative
(not illustrated), the function is known as the first-order compartment model in which a drug
administered at time 0 passes through the system with its dynamics affected by three physiological
processes: elimination, absorption, and clearance. The code for all four plots is

x <- seq (0, 10, 0.01)
biexp_plot <- function (a, b, c, d, i) {

�

� �

�

TECHNICAL BACKGROUND 29

(a) +–+– (b) +–++

(c) ++–+ (d) +++–

Figure 2.8 Biexponential plots

y <- a * exp (b * x) + c *exp (d * x)
plot (x, y, type = "l", col = hue_pal ()(4)[i])

}
biexp_plot (10, -0.8, 10, -0.05, 1)
biexp_plot (10, -0.8, 10, 0.05, 2)
biexp_plot (200, 0.2, -1, 0.7, 3)
biexp_plot (200, 0.05, 300, -0.5, 4)

2.1.9 Transformations of model variables

When we build statistical models, we typically denote the variable that we are interested in, the
response or outcome variables by y, and the variables which might affect that outcome, the covari-
ates, explanatory or predictors by x. More details can be found in Chapter 10. If we can create
a linear (i.e. straight line/plane) relationship between the response and predictors, then building a
model is very straightforward. Often, we can transform x and/or y to make the relationship linear
(if not then see Chapter 14). We have seen some examples in this chapter and here are some
more:

• log(y) against x for exponential relationships;

• log(y) against log(x) for power functions;

�

� �

�

30 THE R BOOK

• ey against x for logarithmic relationships;

• 1∕y against 1∕x for asymptotic relationships;

• log(p∕(1 − p)) against x for proportion data.

There are other transformations that are useful for stabilising the variance of y against different
values of x:

•
√

y to stabilize the variance for count data;

• arcsin(y) to stabilize the variance of percentage data.

2.2 Matrices

Matrices are a useful tool in mathematics and statistics as they allow us to gather together and then
manipulate large amounts of data in a relatively straightforward way. In this section, we will go over
the basics and show how easy it is to use matrices in R. A matrix is just an array of numbers set
out in n rows and m columns. We refer to the entry in the rth row and cth column by the coordinates
(r,c).

Let’s create our first matrix, A. We usually use capital letters for matrices, in R:

A <- matrix (c (1, 0, 4, 2, -1, 1), nrow = 3)
A

[,1] [,2]
[1,] 1 2
[2,] 0 -1
[3,] 4 1

There are a few things worth noting:

• the first thing we put into the matrix () function are the data. The default setting is that they
will be read into the matrix by going down the columns. This can be changed by the argument
byrow = T;

• we only have to specify the number of rows (or columns). R knows there are six pieces of data
and so 6∕3 = 2 must be the number of columns;

• we can set up an empty matrix which has NA everywhere using matrix (nrow = 3, ncol
= 2). This can then be filled as the result of some procedure;

• in RStudio, A is shown in the top right-hand corner box and any matrix can be seen in a more
pleasing layout by clicking on its entry there or by typing View (A);

• we can create names for the rows or columns of a matrix, or view any already there using
rownames () or colnames (), respectively.

More details on matrices in R can be found in Section 3.11.

�

� �

�

TECHNICAL BACKGROUND 31

Our second matrix, B, will have the numbers of rows and columns from A swapped round:

B <- matrix (c (1, -1, 2, 1, 1, 0), ncol = 3)
B

[,1] [,2] [,3]
[1,] 1 2 1
[2,] -1 1 0

This is a 2 × 3 matrix, i.e. 2 rows and 3 columns.

2.2.1 Matrix multiplication

To multiply one matrix by another matrix, we must have the same number of columns in the first
matrix as we do rows in the second. The process is to take each row of the first matrix and multiply
it element-wise with every column of the second matrix, summing the result. So to start: put the first
row of A side by side with the first column of B:

A[1,]

[1] 1 2

B[,1]

[1] 1 -1

and work out the element-wise products:

A[1,] * B[,1]

[1] 1 -2

then add up those products

sum (A[1,] * B[,1])

[1] -1

to give the entry in (1,1) of the product matrix. To find the entry in (1,2), i.e. row 1, column 2, we
do the same but with the second column of B:

sum (A[1,] * B[,2])

[1] 4

�

� �

�

32 THE R BOOK

To get the entries in the second row of the product matrix, we begin with the second row of A and
carry out the same calculations with all the columns of B, etc. Fortunately, R does all the hard work
using the matrix multiplication operator %*% to create AB:

A %*% B

[,1] [,2] [,3]
[1,] -1 4 1
[2,] 1 -1 0
[3,] 3 9 4

This is a 3 × 3 matrix. More generally, if A is a n1 × n2 matrix and B a n2 × n3 matrix, then AB will
be a n1 × n3 matrix: the n2s, which must be the same, cancel out. In our example, therefore, BA will
be a 2 × 2 matrix:

B %*% A

[,1] [,2]
[1,] 5 1
[2,] -1 -3

So, in general, AB ≠ BA.

2.2.2 Diagonals of matrices

Square matrices, with the same number of rows and columns will have a main diagonal. To create
a diagonal matrix of 3 rows and 3 columns, with 1s on the diagonal we use the diag () function
like this:

C <- diag (1, nrow = 3, ncol = 3)
C

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

Matrices with 1s down the diagonal and 0s elsewhere are known as identity or unit matrices and
usually denoted by I or, to be specific here, I3. We can alter the values of the diagonal elements of
a matrix like, so

diag (C) <- 1:3
C

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 2 0
[3,] 0 0 3

�

� �

�

TECHNICAL BACKGROUND 33

We can extract a vector containing the diagonal elements of a matrix:

diag (C)

[1] 1 2 3

If we have two variables x and y, each with five elements, then we can create a variance–
covariance matrix (an example is given in the multivariate distribution in Section 8.3.12) and extract
the diagonal, which contains the variances of x and y:

M <- cbind (x = 1:5, y = rnorm(5))
diag (cov (M))

x y
2.5000000 0.3694207

2.2.3 Determinants

Determinants are a useful way of summarising a square matrix in just one number. For instance if
we have

A =
[

a b
c d

]
,

then the determinant, sometimes given as |A| is defined as follows:

det(A) = a ∗ d − b ∗ c.

Slightly more complicatedly, and using the standard matrix notation, if

A =
⎡⎢⎢⎣

a11 a12 a13
a21 a22 a23
a31 a32 a23

⎤⎥⎥⎦ ,
then the determinant of A is defined to be

det(A) = a1

|||| a22 a23
a32 a33

|||| − a12

|||| a21 a23
a32 a33

|||| + a13

|||| a21 a22
a31 a32

|||| .
We can then apply the formula for a 2 × 2 matrix to give

det A = a11a22a33 − a11a23a32 + a12a23a31 − a12a21a33 + a13a21a32 − a13a22a31.

Similar formulae apply for larger matrices.
Let’s take a numerical example:

A =
⎡⎢⎢⎣

1 2 3
2 1 1
4 1 2

⎤⎥⎥⎦ .

�

� �

�

34 THE R BOOK

This has determinant

det(A) = (1 × 1 × 2) − (1 × 1 × 1) + (2 × 1 × 4) − (2 × 2 × 2) + (3 × 2 × 1) − (3 × 1 × 4)

= 2 − 1 + 8 − 8 + 6 − 12 = −5.

And in R:

A <- matrix (c (1, 2, 4, 2, 1, 1, 3, 1, 2), nrow = 3)
A

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 1 1
[3,] 4 1 2

det (A)

[1] -5

One neat thing about determinants is that if a row or a column of a matrix is multiplied by a scalar, 𝜆,
then the value of the resulting determinant is also multiplied by 𝜆 (since a factor 𝜆 will appear in each
of the products). For instance, here is the bottom row of A multiplied by 3:

B <- A
B[3,] <- 3 * B[3,]
B

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 1 1
[3,] 12 3 6

det (B)

[1] -15

If all the elements of a row or a column are zero, then the determinant is also zero. Again, if all the
corresponding elements of any two rows or columns are equal, then det(A) = 0. This final point can
be taken one step further: in order for the determinant to be not zero (see Section 2.2.4 for why this
is important) no two rows or columns can be a multiple of each other. For example:

C <- A
C[,2] <- 4 * C[,1]
C

[,1] [,2] [,3]
[1,] 1 4 3

�

� �

�

TECHNICAL BACKGROUND 35

[2,] 2 8 1
[3,] 4 16 2

det (C)

[1] 0

2.2.4 Inverse of a matrix

The operation of division is not defined for matrices. However, for a square matrix, A, with a non-zero
determinant (non-singular), a multiplicative inverse matrix denoted by A−1 can be defined. This
multiplicative inverse is unique and has the property that

A−1A = AA−1 = I,

where I is the identity matrix. This is analogous to numbers: if a ≠ 0, then aa−1 = 1. If A is a square
matrix for which |A| = 0, the matrix inverse is defined by the relationship:

A−1 =
adj(A)|A| ,

where the adjoint matrix of A (adj(A)) is the matrix of cofactors of A. The cofactors of A are com-
puted as Aij = (−1)i+jMij, where Mij are the minors of the elements aij (these are the determinants
of the matrices of A from which row i and column j have been deleted). Probably best to forget
all that as R will do the work for us. The properties of the inverse matrix can be laid out for two
non-singular square matrices, A and B, of the same size or order as follows:

(AB)−1 = B−1A−1

(A−1)′ = (A′)−1

(A−1)−1 = A

|A| = 1|A−1| ,
where A′ is the conjugate or transpose of A: a′

ij
= aji for all i and j (it is like reflecting A in a mirror

down its main diagonal and the function in R is t ()).
Finding an inverse is straightforward in R using the A defined in Section 2.2.3:

solve (A)

[,1] [,2] [,3]
[1,] -0.2 0.2 0.2
[2,] 0.0 2.0 -1.0
[3,] 0.4 -1.4 0.6

solve (solve (A))

�

� �

�

36 THE R BOOK

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 1 1
[3,] 4 1 2

We will see why the function is called solve in Section 2.2.6. For larger matrices, particularly those
with non-integer values and close to non-singular, R may well have rounding issues which can turn
into major problems with the solution: in that case it might be worth investigating specialist matrix
libraries such as matlib.

2.2.5 Eigenvalues and eigenvectors

This section refers to terms that are not used explicitly elsewhere in the book. However, they are
carrying out all the work behind the scenes in principal component analysis in Section 19.3. Here
we examine a useful example of interest in itself. Consider a square matrix, A, a scalar, 𝜆, and a
vector v then 𝜆 is an eigenvalue and v an eigenvector of A if:

Av = 𝜆v.

In fact, in general, an n × n matrix A will have eigenvalues 𝜆1, 𝜆2, … , 𝜆n, each with a corre-
sponding eigenvector v1, v2, … , vn. They are a method of structuring the information held in a
matrix.

Here is an example from population ecology. The matrix L shows the demography of different
age classes: the top row shows fecundity (the number of females born per female of each age) and
the sub-diagonals show survival rates (the fraction of one age class that survives to the next age
class). When these numbers are constants, the matrix is known as the Leslie matrix. In the absence
of density dependence, the constant parameter values in L will lead either to exponential increase
in total population size (if 𝜆1 > 1) or exponential decline (if 𝜆1 < 1) once the initial transients in age
structure have damped away. Once exponential growth has been achieved, then the age structure,
as reflected by the proportion of individuals in each age class, will be a constant. This is the first
eigenvector.

Let’s start with the Leslie matrix:

L <- matrix (c (0, 0.7, 0, 0, 6, 0, 0.5, 0, 3, 0, 0, 0.3, 1, 0, 0, 0), nrow = 4)
L

[,1] [,2] [,3] [,4]
[1,] 0.0 6.0 3.0 1
[2,] 0.7 0.0 0.0 0
[3,] 0.0 0.5 0.0 0
[4,] 0.0 0.0 0.3 0

The top row contains the age-specific fecundities (e.g. 2-year-olds produce six female offspring
per year), and the sub-diagonal contains the survivorships (e.g. 70% of 1-year-olds become
2-year-olds). Now the population sizes at each age go in a column vector, v, which we have
defined as a matrix for clarity.

�

� �

�

TECHNICAL BACKGROUND 37

v <- matrix (c (45, 20, 17, 3), ncol = 1)
v

[,1]
[1,] 45
[2,] 20
[3,] 17
[4,] 3

Population sizes next year in each of the four age classes are obtained by matrix multiplication:

L %*% v

[,1]
[1,] 174.0
[2,] 31.5
[3,] 10.0
[4,] 5.1

We can check this the long way. For instance, the number of juveniles next year (the first element
of v) is the sum of all the babies born last year:

45 * 0 + 20 * 6 + 17 * 3 + 3 * 1

[1] 174

Now we can simulate the population dynamics over a period long enough (say, 40 generations)
for the age structure to approach stability. If the population growth rate 𝜆 is > 1, the population will
increase exponentially, once the age structure has stabilised. We will investigate this and produce
Figure 2.9:

0 10 20 30 40

0
5

10
15

20
25

30
35

Age

ln
(p

op
ul

at
io

n)

Juveniles
1−year olds
2−year olds
3−year olds

Figure 2.9 Age profile

�

� �

�

38 THE R BOOK

age_profile <- matrix (nrow = 40, ncol = 4)
for (i in 1:40) {
v <- L %*% v
age_profile[i,] <- v

}
matplot (1:40, log (age_profile), type = "l", xlab = "age",

ylab = "ln (population)", col = hue_pal ()(4))
legend (5, 35, legend = c ("juveniles", "1-year olds", "2-year olds",

"3-year olds"),
col = hue_pal ()(4),lty = 1:4)

We can see that after some initial transient fluctuations, the age structure has more or less stabilised
by year 20 (the lines are parallel). By year 40, the population is growing exponentially in size,
multiplying by a constant of 𝜆 each year (the y-axis is the ln of population sizes).

The population growth rate, 𝜆, is approximated by the ratio of total population sizes in the 40th
and 39th years:

sum (age_profile[40,]) / sum (age_profile[39,])

[1] 2.164035

and the approximate stable age structure is obtained from the 40th value of v, reweighted so that it
sums to one:

age_profile[40,] / sum (age_profile[40,])

[1] 0.709769309 0.230139847 0.052750539 0.007340305

The exact values of the population growth rate and the stable age distribution are obtained by matrix
algebra: they are the first eigenvalue and its corresponding eigenvector, respectively. We use the
function eigen () applied to the Leslie matrix, L, like this:

eigen (L)

eigen() decomposition
$values
[1] 2.1694041+0.0000000i -1.9186627+0.0000000i -0.1253707+0.0975105i
[4] -0.1253707-0.0975105i

$vectors
[,1] [,2] [,3]

[1,] 0.949264118+0i -0.93561508+0i -0.01336028-0.03054433i
[2,] 0.306298338+0i 0.34134741+0i -0.03616819+0.14241169i
[3,] 0.070595039+0i -0.08895451+0i 0.36511901-0.28398118i
[4,] 0.009762363+0i 0.01390883+0i -0.87369452+0.00000000i

[,4]

�

� �

�

TECHNICAL BACKGROUND 39

[1,] -0.01336028+0.03054433i
[2,] -0.03616819-0.14241169i
[3,] 0.36511901+0.28398118i
[4,] -0.87369452+0.00000000i

The first eigenvalue is 2.1694 (compared with our empirical approximation of 2.1640 after 40 years).
The stable age distribution is given by the first eigenvector (column 1, above), which we need to
turn into proportions:

eigen (L)$vectors[,1] / sum (eigen (L)$vectors[,1])

[1] 0.710569659+0i 0.229278977+0i 0.052843768+0i 0.007307597+0i

This compares with our approximation (above) in which the proportion in the first age class was
0.709 77 after 40 years (rather than 0.710 57).

This is a specific example of a more general result linking eigenvalues and eigenvectors to the
equilibrium distributions of Markov chains.

2.2.6 Solving systems of linear equations using matrices

Suppose we have two linear equations containing two unknown variables that we can reorganise
so that they are laid out in a similar fashion:

3x + 4y = 12

x + 2y = 8. (2.2)

Then, we can use the function solve () to find the values of the variables if we provide it with two
matrices:

• a square matrix A containing the coefficients of the variables (3, 4, 1, 2), laid out as above;

• a column vector k containing the known values (12 and 8).

We set the two matrices up like this (column-wise, as usual), and solve:

A <- matrix (c (3, 1, 4, 2), nrow = 2)
k <- matrix (c (12, 8), nrow = 2)
solve (A, k)

[,1]
[1,] -4
[2,] 6

It is easy to check that the solution is correct, but why is it? If we think of the variables as a vector,
say v, then we can rewrite equation (2.2) as follows:

Av = k,

�

� �

�

40 THE R BOOK

and we can then multiply each side of that equation by A−1, on the left, to give

v = A−1k.

That also explains why the function for the inverse of a matrix, as we discussed in Section 2.2.4 is
called solve (). The same technique can be used in much larger sets of simultaneous equations,
as long as we use the same number of equations as unknown variables.

2.3 Calculus

R does understand the principles of calculus, differentiation, and integration, and it uses them
behind the scenes in a number of areas such as non-linear modelling (see Chapter 14). R can
also carry out simple symbolic operations in differentiation and estimate the values of integrals. We
will examine these here, as well as looking at how R can estimate the solutions to some differential
equations.

2.3.1 Differentiation

If we have a function f() so that
y = f(x),

then the derivative, dy
dx

, is just the gradient of our function f(), and we can then insert any value of x
to find the specific gradient at that point. Here is a simple example where we want to differentiate
2x3 and then evaluate the result at x = 1,2,3:

D (expression (2 * x^3), "x")

2 * (3 * x^2)

dxy <- deriv (~ 2 * x^3, "x")
eval (dxy, envir = list (x = 1:3))

[1] 2 16 54
attr(,"gradient")

x
[1,] 6
[2,] 24
[3,] 54

The first line gives the derivative in symbols, i.e. 6x2, although it leaves it to us to simplify. The
second line then creates an R object containing the derivative. Finally, the third line evaluates both
the original expression and the derivative (or gradient) at the points we requested. So, for instance,
2 × 33 = 54 and, also, 6 × 32 = 54. Here are some more examples of symbolic derivatives:

D (expression (log (x)), "x")

1/x

D (expression (a * exp (-b * x)), "x")

�

� �

�

TECHNICAL BACKGROUND 41

-(a * (exp(-b * x) * b))

D (expression (a / (1 + b * exp (-c * x))), "x")

a * (b * (exp(-c * x) * c))/(1 + b * exp(-c * x))^2

trig_exp <- expression (sin (x + 2 * y))
D (trig_exp, "x")

cos(x + 2 * y)

D (trig_exp, "y")

cos(x + 2 * y) * 2

In trig_exp, we have created a function of two variables, x and y, and then (partially) differentiated
with respect to each of them. There are more examples in help (deriv).

2.3.2 Integration

The R function, integrate () can estimate the area under various curves. For instance, if
we want to work out the probability under the standard Normal curve between two points, say
(−1.96,1.96):

integrate (dnorm, lower = -1.96, upper = 1.96)

0.9500042 with absolute error < 1e-11

pnorm (1.96) - pnorm (-1.96)

[1] 0.9500042

The second line, representing the usual approach, is discussed in Section 8.3.1 along with a more
detailed analysis of the distribution.

Or we can define our own function and estimate the area under that

our_fn <- function (x) {
exp (-x)

}
integrate (our_fn, lower = 0, upper = Inf)

1 with absolute error < 5.7e-05

Rather neatly, as shown in Figure 2.10, the shaded area under the inverse exponential function,
e−x, for positive x, is just 1, plus or minus a little bit as the answer has been estimated rather than
derived mathematically.

�

� �

�

42 THE R BOOK

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Figure 2.10 e−x

x <- seq (0, 20, 0.01)
y <- exp (-x)
plot (x, y, type = "l", col = hue_pal ()(2)[1])
polygon (x = c (0, x, 20), y = c (0, y, 0), col = hue_pal ()(2)[2], border = NA)

2.3.3 Differential equations

There are a number of packages for solving differential equations in R. We will look at a relatively
simple example using deSolve (Soetaert et al., 2010), without discussing in any technical detail
what is going on.

library (deSolve, quietly = T)

The example involves a simple resource-limited plant herbivore interaction, where v is vege-
tation and n is herbivore population. We need to specify two ordinary differential equations:
one for the change in vegetation over time (dv

dt
) and one doing the same for the herbivore

population (dn
dt

):

dV
dt

= rv
(

K − v
K

)
− bvn

dN
dt

= cvn − dn.

The steps involved in solving these ODEs in R are as follows:

• define a function (called phmodel () in this case) containing the equations;

– write the vegetation equation as dv using with;
– write the herbivore equation as dn using with;
– combine these vectors into a list called result;

�

� �

�

TECHNICAL BACKGROUND 43

• generate a time series over which to solve the equations in times;

• set the parameter values in parameters;

• set the starting values for v and n in initial;

• use ode () to create a matrix with the time series of v and n in output.

None of this is at all complicated, but there are lots of steps, so it looks a bit daunting.
First, we write the function called which tells R the structure of the two equations, showing how

the change in each population is related to the functional and numerical responses:

phmodel <- function (t, state, parameters) {
with (as.list (c (state, parameters)), {
dv <- r * v * (K - v) / K - b * v * n
dn <- c * v * n - d * n
result <- c (dv, dn)
list (result)

}
)

}

The final curly bracket ends the function, the plain right bracket closes the with () function and
the penultimate curly bracket ends the definition of the equations.

To run the model, we need to create a vector of times over which to calculate the population
dynamics:

times <- seq (0, 500)

then define the numeric values of the five parameters (these values will determine the behaviour of
the two populations):

parameters <- c (r = 0.4, K = 1000, b = 0.02, c = 0.01, d = 0.3)

and set the initial conditions (plant= 50 and herbivores= 10):

initial <- c (v = 50, n = 10)

That is the end of the preliminaries.
Solving the equations could not be easier. The important function is ode () (ordinary differential

equation solver). The function takes four arguments: the starting values, the vector of times, the
function containing the equations, and the list containing the parameter values:

phm_output <- ode (y = initial, time = times, func = phmodel, parms = parame-
ters)

�

� �

�

44 THE R BOOK

0 100 200 300 400 500

0
10

20
30

40
50

60

Time

A
bu

nd
an

ce

Plant
Herbivore

Figure 2.11 Plant herbivore interaction

The output object is a matrix with three columns: time, plant abundance (v), and herbivore
abundance (n):

head (phm_output)

time v n
[1,] 0 50.00000 10.00000
[2,] 1 58.29220 12.75106
[3,] 2 62.99695 17.40172
[4,] 3 60.70065 24.09264
[5,] 4 50.79407 31.32860
[6,] 5 37.68312 36.12636

We can plot the two time series together to give Figure 2.11:

plot (phm_output[,1], phm_output[,2], ylim = c (0, max (phm_output[,2:3])),
type = "l", ylab = "abundance", xlab = "time", col = hue_pal ()(2)[1])

lines (phm_output[,1], phm_output[,3], col = hue_pal ()(2)[2])
legend (300, 60, legend = c ("plant", "herbivore"), lty = 1,

col = hue_pal ()(2))

The system exhibits damped oscillations to a stable point equilibrium at which dv
dt

and dn
dt

are both
equal to zero, so equilibrium plant abundance V∗ = d∕c = 0.3∕0.01 = 30 and equilibrium herbivore
abundance = r(K − V∗)∕bK = 19.4.

An alternative is to plot the output as a phase plane, with herbivore abundance on the x-axis and
plant abundance on the y-axis to give Figure 2.12:

plot (phm_output[,2], phm_output[,3], xlim = c (0, max (phm_output[,2:3])),
ylim = c (0, max (phm_output[,2:3])), type = "l",
ylab = "plant", xlab = "herbivore", col = hue_pal ()(1))

�

� �

�

TECHNICAL BACKGROUND 45

0 10 20 30 40 50 60

0
10

20
30

40
50

60

Herbivore

P
la

nt

Figure 2.12 Plant herbivore interaction in a phase plane

2.4 Probability

Probability is a branch of mathematics concerned with chance and, sometimes, uncertainty. As
with all good mathematical disciplines, there is a set of axioms from which a large number of
theorems have been derived, some of which have been found useful in the study of Statistics (see
Section 2.5). One slight issue is that there is no consensus on the meaning of the word probability:
the problem extends into Statistics. In this section, we will just review some definitions and results
that are required elsewhere in the book.

2.4.1 The central limit theorem

The basic idea is that if we take an independent (see Section 8.1.3) sample from a population
with finite variance, then the mean of that sample will have a distribution that is close to a Normal
distribution. This is known as the central limit theorem or CLT. We will ignore all the technicalities
and look at some simple examples. We can take six uniformly distributed random numbers between
0 and 10 and work out their mean. This will be low when we get, say, 2.7, 3.1, 1.0, 2.8, 1.5, 3.1, and
high when we get 9.9, 8.5, 9.2, 6.1, 8.7, 6.9. Typically, of course, the mean will be close to 5. Let us
do this 1000 times and look at the distribution of the 6000 observations (as a method of simulating
the distribution), in Figure 2.13a. The best way to store the data will be in a matrix with 1000 rows
and 6 columns:

unif_data <- runif (6000, min = 0, max = 10)
unif_samples <- matrix (unif_data, ncol = 6)
hist (unif_data, main = "", xlab = "", col = hue_pal ()(3)[1], breaks = 11)

We have set one bar per integer range (breaks = 11 as we include the start and end as well
as the divisions between bars), and it is no surprise to see that each of them has about 600
observations. How about the means of each of the 1000 samples? Figure 2.13b shows that
histogram:

hist (rowMeans (unif_samples), main = "", xlab = "", col = hue_pal ()(3)[2],
breaks = 21, freq = F)

�

� �

�

46 THE R BOOK

F
re

qu
en

cy

0 2 4 6 8 10

0
10

0
20

0
30

0
40

0
50

0
60

0

(a) 6000 observations

D
en

si
ty

2 3 4 5 6 7 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

(b) 1000 means, each of 6 data points

Figure 2.13 Histograms from U(0,10)

We have requested 21 breaks so that we can see more detail and requested a density rather
than a frequency histogram, for reasons that will become clear.

The shape of the second histogram appears roughly similar to that of a Normal distribution. But
which Normal distribution, i.e. what are the parameter values for the mean and variance? The
CLT says (this is a very informal version of it) that the mean should be what we would expect to
see in a sample of 6, namely 5. The variance is a bit more complicated, but it is 𝜎2

n
, where 𝜎 is the

variance of the U(0,10) distribution ((10−0)2
12

: see Section 8.3.2) and n the number of independent

samples drawn (6), or 100
72

. That gives 1.389 and so the standard deviation we are looking for is the

square root of that, or 1.179. We can compare these values to the corresponding values from our
sample:

mean (rowMeans (unif_samples))

[1] 4.899517

sd (rowMeans (unif_samples))

[1] 1.191412

The mean is close and the standard deviation not that far off. We have added the Normal curve
with those parameters to Figure 2.13b:

x <- seq (0, 10, 0.01)
lines (x, dnorm (x, mean = 5, sd = sqrt (100 / 72)), col = hue_pal ()(3)[3],

lwd = 2)

�

� �

�

TECHNICAL BACKGROUND 47

F
re

qu
en

cy

0 2 4 6 8 10

0
50

00
10

 0
00

15
 0

00
20

 0
00

(a) 200 000 observations

D
en

si
ty

3.5 4.0 4.5 5.0 5.5 6.0 6.5

0.
0

0.
2

0.
4

0.
6

0.
8

(b) 5000 means, each of 40 data points

Figure 2.14 Histograms from U(0,10)

We can see that the histogram is close to the Normal curve but not that close, particularly in the
tails. That is because the CLT says that the distribution will become closer to Normal as the sample
size rises. So, let’s do the same but with a sample size of 40, and let’s take 5000 samples (200 000
observations in total), to give Figures 2.14:

unif_data <- runif (200000, min = 0, max = 10)
unif_samples <- matrix (unif_data, ncol = 40)
hist (unif_data, main = "", xlab = "", col = hue_pal ()(3)[1], breaks = 11)
y <- hist (rowMeans (unif_samples), plot = F)
x <- seq (0, 10, 0.01)
hist (rowMeans (unif_samples), main = "", xlab = "", col = hue_pal ()(3)[2],

breaks = 41, freq = F, ylim = c (0, max (dnorm (x, mean = 5,
sd = sqrt (100 / (12 * 40))), y$density)))

lines (x, dnorm (x, mean = 5, sd = sqrt (100 / (12 * 40))),
col = hue_pal ()(3)[3], lwd = 2)

That’s much better but still not perfect: the CLT is an asymptotic result which means that the
distribution will never be exactly Normal but will get closer as n gets larger. We can compare the
standard deviation of our sample with what we might expect:

sd (rowMeans (unif_samples))

[1] 0.4507736

sqrt (100 / (12 * 40))

[1] 0.4564355

�

� �

�

48 THE R BOOK

F
re

qu
en

cy

2 4 6 8

0
10

 0
00

20
 0

00
30

 0
00

40
 0

00

(a) 40 000 data points

D
en

si
ty

2.6 2.8 3.0 3.2 3.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(b) 5000 means, each of 40 data points

Figure 2.15 Histograms from Gamma (12,4)

We might think that beginning with the Uniform distribution, which is symmetric and nicely behaved,
is cheating: the distribution of the mean of a sample will inevitably itself be symmetric and neat. So,
let’s repeat the process with a skewed distribution, the Gamma (12,4) distribution, which has mean
12
4

= 3 and variance 12
4∗4

= 0.75, to give Figures 2.15:

gamma_data <- rgamma (200000, shape = 12, rate = 4)
gamma_samples <- matrix (gamma_data, ncol = 40)
hist (gamma_data, main = "", xlab = "", col = hue_pal ()(3)[1], breaks = 20)
x <- seq (2.4, 4, 0.01)
y <- hist (rowMeans (gamma_samples), plot = F)
hist (rowMeans (gamma_samples), main = "", xlab = "", col = hue_pal ()(3)[2],

breaks = 41, freq = F, ylim = c (0, max (dnorm (x, mean = 3,
sd = sqrt (12 / (4 * 4 * 40))), y$density)))

lines (x, dnorm (x, mean = 3, sd = sqrt (12 / (4 * 4 * 40))),
col = hue_pal ()(3)[3], lwd = 2)

The starting data are definitely skewed. The right-hand histogram is perhaps not quite as good
a fit as for the Uniform distribution, but close. Again, we can compare the means and standard
deviations from our sample, and from the Normal distribution:

mean (rowMeans (gamma_samples))

[1] 3.001485

sd (rowMeans (gamma_samples))

[1] 0.1347468

�

� �

�

TECHNICAL BACKGROUND 49

sqrt (12 / (4 * 4 * 40))

[1] 0.1369306

The CLT applies to any distribution with a finite variance, in particular to discrete distributions. In
fact, the very first version of the theorem was about the Bernoulli distribution. The upshot was that
a sum of Bernoulli distributions, i.e. a Binomial distribution, will get closer to a Normal distribution
as the number in the sum increases.

This theorem suggests why approximate Normal distributions appear very often in the natural
world: weights or heights of mammals for instance. However, the result is approximate and the
natural world a complex place so we should not read too much into the prevalence of roughly
bell-shaped curves.

2.4.2 Conditional probability

In probability theory, we discuss the probability of events: the probability that our train will arrive in
the next five minutes, or that it will rain today or that the sun will rise tomorrow (hopefully close to 1).
So if I draw card from a standard pack of playing cards, the probability of the event that it is a heart
will be P(H) = 13

52
. Conditional probability is important in many areas of statistics but particularly in

Bayesian analysis (see Chapter 22).

Conditional probability is where we examine the probability of an event, given that something
else is true. The probability of a heart will be different if I only choose from the red cards in a pack,
and we describe this as P(H|R). the definition is

P(A|B) = P(A ∩ B)
P(B)

,

where P(A ∩ B) means the probability of events both A and B occurring. So, for our example:

P(H|R) = P(H ∩ R)
P(R)

= P(H)
P(R)

=
13
52
26
52

= 1
2
,

as expected.
There are some simple consequences of the definition:

• 0 ≤ P(A|B) ≤ 1;

• P(A|A) = 1;

• P(A ∩ B) = P(A|B) × P(B) = P(B|A) × P(A);

• P(A) = P(A|B1) × P(B1) + P(A|B2) × P(B2), where B1 and B2 are events such that P(B1) +
P(B2) = 1 and P(B1 ∩ B2) = 0.

The final item is the subtle one and is known as the law of total probability: it can be extended to
as many Bis as we like as long as their probabilities sum to 1 (they are exhaustive), and they don’t
intersect with each other (exclusive). Let’s look at an example.

Twins can arise from splitting of a single fertilised egg (monozygotic twins), or from two separate
fertilisations of different eggs (dizygotic twins). Not all monozygotic twins look identical, and some

�

� �

�

50 THE R BOOK

dizygotic individuals can look very alike. This means that you cannot reliably tell monozygotic from
dizygotic twins just by looking at them. But there is a reliable way of estimating the proportions of
monozygotic and dizygotic twins in the population. The key fact is that while dizygotic twins can be
born as 2 boys or 2 girls or 1 boy and 1 girl, monozygotic twins are always of the same gender.
So if B is the event of a twin being a boy, and G is the event of a twin being a girl, then there are
three outcomes for any batch of twins: BB, GG, or GB. Let us define the conception event(s) as
either monozygotic (M) or dizygotic (D). We might want to know what is the probability of a pair of
twins being monozygotic: P(M). However, all we can do is observe what proportion of twins are, for
instance, born as both girls. Assuming that gender at birth is female with a probability of 0.5, the
probabilities for the dizygotic twins are easy:

P(GG|D) = 1
4

P(BB|D) = 1
4

P(GB|D) = 1
2
,

which sum to 1. The probabilities for monozygotic twins are

P(GG|M) = 1
2

P(BB|M) = 1
2

P(GB|M) = 0.

The law of total probability says that

P(GG) = P(GG|M) × P(M) + P(GG|D) × P(D),

as twins can only be monozygotic or dizygotic (i.e. P(M) + P(D) = 1). Applying this and the proba-
bilities from above we find that:

P(GG) = 1
2

P(M) + 1
4
(1 − P(M))

P(M) = 4
(

P(GG) − 1
4

)
,

after rearranging. Therefore, in a town where 45% of twins are GG, we can deduce that 80% of
twins are monozygotic (0.8 = 4(0.45 − 0.25)).

That is a result from probability. In real life, using statistics, we would say that we have only looked
at a sample of twins and we would want to add some level of uncertainty or confidence to that result.

2.5 Statistics

Statistics is the art or science of analysing data, looking for explanations and patterns. Sometimes,
predictions and decisions are also made. The word ‘arose’ during the nineteenth century in the
first era of big data when states (mostly European) began to compile and make available data
about births, deaths, crimes, punishments, etc. Some statistical techniques make use of results

�

� �

�

TECHNICAL BACKGROUND 51

derived using sometimes quite sophisticated mathematics, and we will mention of few of those in
this section. However, statistics is not a branch of mathematics: it just speaks the same language.

At a number of places in this book we build statistical models that attempt, albeit simplistically, to
help us analyse aspects of the data we are considering. Many of these models are parametric
in that they are built around specific named distributions. These distributions all have parame-
ters (e.g. the Exponential distribution has a rate 𝜆), and we introduce the data into the model in
order to, among other things, estimate those parameters. Alternatives to parametric models are
non-parametric, wherein no specific distributions are used, or semi-parametric, which are a mix-
ture of the two.

In order to estimate the parameters in a parametric model, a number of different techniques have
been developed. These are mentioned and used at various places in the book, and we shall outline
them here.

2.5.1 Least squares

In Chapter 10, we see that the parameters in a simple linear regression model, and indeed in a
multiple regression model, are estimated using least squares. In this case, the parameters are the
coefficients of the line (with one covariate), plane (with two) or hyperplane (more than two) that best
fit the data. For one covariate, this is illustrated in Figure 10.3. In mathematical terms, we might have
a multiple linear regression model:

Yi = 𝛽0 + 𝛽1xi1 + · · · + 𝛽pxip + 𝜖i, (2.3)

for i = 1,2, … ,n where the 𝜖is each come independently from a N(0, 𝜎2) distribution. The idea in
estimating the parameters, 𝛽0, 𝛽1, … , 𝛽p, 𝜎

2, is to minimise the difference between all the actual
outcomes, yis, and the right-hand side of equation (2.3). Obviously, that difference will vary over
the different values of i and could be positive or negative: so the least squares approach is to
minimise the sum of the squared differences.

n∑
i=1

(Yi − 𝛽0 − 𝛽1xi1 − · · · − 𝛽pxip − 𝜖i)2.

We treat this as a mathematical expression in p + 2 unknowns (the 𝛽s plus 𝜎2). The usual approach
to minimising such expressions is to differentiate it in turn with respect to each of the parameters and
then set each resulting equation equal to zero: and that is exactly what we do here. We then have
p + 2 equation in p + 2 unknowns which we can solve. For linear regression, there are standard
formulae for the solutions. However, if we use least squares in other sorts of models, then we will
have to solve those simultaneous equations by hand or, perhaps, estimate the solutions with the
help of software (as in generalised linear models: see Chapter 11).

2.5.2 Maximum likelihood

An alternative approach to estimating parameters is to use maximum likelihood: this is used, for
instance, in spatial point processes (Section 21.1) and factor analysis (Section 19.4). The core
concept is to make the assumption that the data we are considering are an independent sample
from some specific distribution (e.g. the Exponential), which has parameters (e.g. 𝜆). We then write
down the probability or likelihood of getting the data we have, which will be an expression involving
the parameters of the distribution, for instance, 𝜆, as well as the data. Finally, we find the value(s)

�

� �

�

52 THE R BOOK

of the parameter(s) which maximise that probability. Simple! In practice, we may not have a single
distribution in our model, but a much more complicated expression. However, the same approach
can still be used.

If we want any more detail, then it may be simplest to look at an example. We have data,
y1, y2, … , yn and make the assumption that they come from a Normal distribution. However, which
values of the parameters, 𝜇 and 𝜎2, are the most likely?

The probability density of the Normal is

f(y|𝜇, 𝜎2) = 1√
𝜎22𝜋

exp
[
−
(y − 𝜇)2

2𝜎2

]
,

which is read as saying the probability density for a data value y, given (|) a mean of 𝜇 and a variance
of 𝜎2, is calculated from this rather complicated-looking two-parameter exponential function on the
right-hand side. For any given combination of 𝜇 and 𝜎2, it gives a value between 0 and 1. We have
made the expression a function of 𝜎2 rather than 𝜎 as this simplifies the algebra later on.

We then create the likelihood, L(), which is the product of the probability densities, for each of the
values of the response variable, y. So with the data in our experiment, y1, y2, … , yn, the likelihood
function is

L(𝜇, 𝜎2) =
n∏

i=1

(
1√
𝜎22𝜋

exp
[
−
(yi − 𝜇)2

2𝜎2

])

= 1

(
√
𝜎22𝜋)n

exp

[
− 1

2𝜎2

n∑
i=1

(yi − 𝜇)2
]
.

The only change in the first line is that y has been replaced by yi, and we multiply together the
probabilities for each of the n data points. But note that this is now a function of the parameters not
the data. The second line does two things:

• it takes any terms not involving i out of the product as they will be the same for every i, and just
raises them to the nth power;

• uses the fact that the product of a set of exponentials is just the exponential of the sum of the
items. A simple example is that e3 × e4 = e3+4.

The two parameters 𝜇 and 𝜎2 are unknown, and the purpose of the exercise is to use statistical
modelling to determine their maximum likelihood values from the data (the n different values of
y). So how do we find the values of 𝜇 and 𝜎2 that maximize this likelihood? The answer involves
calculus: first we find the derivative of the function with respect to the parameters, then set it to
zero, and solve.

It turns out that, for various technical reasons, it is easier to work with the ln of the likelihood,

l(𝜇, 𝜎) = ln(L(𝜇, 𝜎)) = −n
2

ln(2𝜋) − n
2

ln(𝜎2) −
∑

(yi − 𝜇)2∕2𝜎2,

and maximize this instead. Obviously, the values of the parameters that maximize the loglikelihood
l(𝜇, 𝜎) = ln(L(𝜇, 𝜎)) will be the same as those that maximize the likelihood. From now on, we shall
assume that summation is over the index i from 1 to n to simplify the algebraic expressions.

Now for the calculus. We start with the mean, 𝜇. The derivative of the log-likelihood with respect
to 𝜇 is

dl
d𝜇

=
∑

(yi − 𝜇)∕𝜎2.

�

� �

�

TECHNICAL BACKGROUND 53

We then set the derivative to zero and solve for 𝜇:∑
(yi − 𝜇)∕𝜎2 = 0 so

∑
(yi − 𝜇) = 0,

assuming that 𝜎2 ≠ 0. Taking the summation through the bracket, and noting that
∑

𝜇 = n𝜇,∑
yi − n𝜇 = 0 so

∑
yi = n𝜇 and �̂� =

∑
yi

n
.

The maximum likelihood estimate of 𝜇 is just the arithmetic mean: note the hat notation.
Next, we find the derivative of the loglikelihood with respect to 𝜎2:

dl
d𝜎2

= − n
2𝜎2

+
∑

(yi − 𝜇)2

2𝜎4
,

recalling that the derivative of ln(x) is 1∕x and the derivative of −1∕x is 1∕x2. Solving, we get

− n
2𝜎2

+
∑

(yi − 𝜇)2

2𝜎4
= 0 so

∑
(yi − 𝜇)2 = 𝜎4

(
n
𝜎2

)
= 𝜎2n

�̂�2 =
∑

(yi − 𝜇)2

n
.

The maximum likelihood estimate of the variance 𝜎2 is the mean squared deviation of the y values
from the mean. This is different from the formula we use for the sample variance, where we divide
by (n − 1), rather than by n. It is a biased estimator which means that its expected value does not
equal the variance of the population. However, it does have other advantages.

So we have found estimates of the parameters. However, we will have estimated these from
sample data and so we would like to build some uncertainty into the estimates. The maximum
likelihood approach allows us to do this by giving these estimators a distribution, and so we can
work out confidence intervals, etc.

The Normal distribution, although appearing complex, works very neatly with maximum likeli-
hood estimation. In other more complex models, there is no simple algebraic solution and various
numerical techniques are used to estimate the parameters.

Reference

Soetaert, K., Petzoldt, T., & Setzer, R. W. (2010). Solving differential equations in R: package deSolve. Journal
of Statistical Software, 33(9), 1–25. https://doi.org/10.18637/jss.v033.i09.

https://doi.org/10.18637/jss.v033.i09

�

� �

�

�

� �

�

3
Essentials of the R Language

There is an enormous range of things that R can do, and one of the hardest parts of learning R is
finding our way around. Likewise, there is no obvious order in which different people will want to
learn the different components of the R language. It is probably worth quickly scanning down the
following bullet points, which represent the order in which the introductory material is presented,
and if you are relatively experienced in statistical computing, you might want to skip directly to the
relevant section. Beginners are strongly recommended to work through the material in the order
presented because successive sections build upon knowledge gained from previous sections. This
chapter is divided into the following sections:

• Calculations

• Naming objects

• Factors

• Logical operations

• Sequences

• Class membership

• Missing values and things that are not numbers

• Vectors and subscripts

• Vectorised functions

• Matrices and arrays

• Sampling

• Loops and repeats

• Lists

• Text, character strings, and pattern matching

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

56 THE R BOOK

• Dates and times

• Environments

• Writing R functions

• Structure of R objects

• Writing to a file from R

• Tips for writing R code.

Other essential material is elsewhere: beginners will want to master data input and dataframes
(Chapter 4), and graphics (Chapters 5 and 6).

3.1 Calculations

The screen prompt > is an invitation to put R to work. The convention in this book is that material to
be typed into the command line after the screen prompt is shown in red in Courier New font. Just
press the Return or Enter key to see the answer. We can use the command line as a calculator,
like this:

> 7 + 5

[1] 12

> log (42 / 7.3)

[1] 1.749795

A further convention is that we use spaces to separate elements of the input. R ignores them, but
they are helpful for reading code, spotting mistakes, and adding a little elegance to the sometimes
mundane world of statistical coding.

Each line can have at most 8192 characters, but if we want to see a lengthy instruction or a
complicated expression on the screen, we can continue it on one or more further lines simply by
ending the line at a place where the line is obviously incomplete (e.g. with a trailing comma, operator,
or with more left parentheses than right parentheses, implying that more right parentheses will
follow). When continuation is expected, the prompt changes from > to +, as follows:

> 5 + 6 + 3 + 6 + 4 + 2 + 4 + 8 +
+ 3 + 2 + 7

Note that the + continuation prompt does not carry out the arithmetic plus operation. If we have
made a mistake, and we want to get rid of the + prompt and return to the > prompt, then press the
Esc key and use the Up arrow to edit the last (incomplete) line. The latter is incredibly useful, and
pressing Up a number of times will retrieve previous commands for editing.

From here onwards and throughout the book, the prompt character > will be omitted. The output
from R is shown in blue in Courier New font, which uses absolute rather than proportional spacing,
so that columns of numbers remain neatly aligned on the page or on the screen.

�

� �

�

ESSENTIALS OF THE R LANGUAGE 57

Two or more expressions can be placed on a single line as long as they are separated by
semi-colons:

2 + 3; 5 * 7; 3 - 7

[1] 5
[1] 35
[1] -4

Frankly, this is bad practice and should be avoided wherever possible: it can lead to code that is
difficult to follow.

For very big numbers or very small numbers R uses a form of scientific notation called exponents:

1.2e3 means 1.2 × 103 = 1200;
1.2e-2 means 1.2 × 10−2 = 0.012;
3.9 + 4.5i is a complex number with real (3.9) and imaginary (4.5) parts, and

i is the square root of −1. See Section 3.1.1 for more details.

3.1.1 Complex numbers

If you don’t use complex numbers, just skip this section. Complex numbers consist of a real part
and an imaginary part, which is identified by a lower-case i like this:

z <- 3.5 - 8i

Although we might have difficulties in conceiving the square root of −1, it can be very useful math-
ematically. The elementary trigonometric, logarithmic, exponential, square root, and hyperbolic
functions are all implemented for complex values. The following are the special R functions that
we can use with complex numbers. Determine the real part:

Re (z)

[1] 3.5

Determine the imaginary part:

Im (z)

[1] -8

If we plot the real part (x) of a complex number as being on the x-axis, and the imaginary part
(y) on the y-axis, then the modulus is the distance from the coordinates (x, y) to the origin:√
(x − 0)2 + (y − 0)2). Calculate the modulus, in this case

√
3.52 + 82:

Mod (z)

[1] 8.732125

�

� �

�

58 THE R BOOK

Calculate the argument (don’t ask if you don’t know: it’s to do with representing complex numbers
in a different way using polar coordinates):

Arg (z)

[1] -1.158386

Work out the complex conjugate (change the sign of the imaginary part):

Conj (z)

[1] 3.5+8i

If we want to know whether a number is complex or turn a real number into a complex one:

is.complex (z)

[1] TRUE

as.complex (3.8)

[1] 3.8+0i

3.1.2 Rounding

We can round to any number of decimal places using round () and to the nearest integer above
or below using the companion functions ceiling () and floor (), respectively:

round (3.14156, 3)

[1] 3.142

round (16.2, 0)

[1] 16

ceiling (16.2)

[1] 17

floor (16.2)

[1] 16

�

� �

�

ESSENTIALS OF THE R LANGUAGE 59

It is a little trickier with negative numbers, but the principles should be clear (remember −5 > −6):

round (-3.14156, 3)

[1] -3.142

round (-16.2, 0)

[1] -16

ceiling (-16.2)

[1] -16

floor (-16.2)

[1] -17

There are a couple of further functions that can be useful:

trunc (5.72, 1)

[1] 5

trunc (-5.72, 1)

[1] -5

signif (2718281, 3)

[1] 2720000

signif (-2718281, 3)

[1] -2720000

We can see that trunc () will push the number towards zero with the required number of decimal
places, and signif () extracts the first few rounded places, possibly for use in estimation.

3.1.3 Arithmetic

The screen prompt in R is a fully functional calculator. We can add and subtract using the obvious +
and - symbols, while division is achieved with a forward slash / and multiplication is done by using
an asterisk * like this:

7 + 3 - 5 * 2

[1] 0

�

� �

�

60 THE R BOOK

Notice from this example that multiplication (5 × 2) is done before the additions and subtractions.
Powers (like squared or cube root) use the caret symbol, ̂ , and are done before multiplication or
division, as we can see from this example:

3^2 / 2

[1] 4.5

R follows the usual order or carrying out arithmetic operations which is often abbreviated to
BODMAS or PEMDAS:

1. brackets:

2. powers;

3. multiplication and division (order is irrelevant);

4. addition and subtraction (order is irrelevant).

There are many fundamental arithmetic and mathematical functions available, some key ones are
given in Table 3.1. More mathematical details on many of these functions are given in Section 2.1.
R knows what 𝜋 is

pi

[1] 3.141593

Can’t we do better?

signif_digits <- getOption ("digits")
options (digits = 15)
pi

[1] 3.14159265358979

options (digits = signif_digits)

We have created an object (see Section 3.2 for more details), signif_digits, containing the
default number of digits in R: R contains a lot of these defaults (see options ()), but beware
of changing them: there may be unexpected consequences, and it’s best to change them back to
the default as soon as possible. Too many decimal places may lead to inaccurate answers as the
figures are calculated approximately: 𝜋 is wrong from the 16th decimal place.

All trigonometric functions are calculated in radians and not degrees: see Section 2.1.2 for more
details.

�

� �

�

ESSENTIALS OF THE R LANGUAGE 61

Table 3.1 Mathematical functions.

Function Meaning

ln (x) log to base e of x
exp (x) inverse of ln (x) or ex

log (x, n) log to base n of x
log10 (x) log to base 10 of x
sqrt (x) square root of x
factorial (x) x! = x × (x − 1) × (x − 2) × · · · × 3 × 2 × 1
choose (n, x) binomial coefficients or n!∕(x!(n − x)!)
gamma (x) Γ(x): for integer x, equals (x − 1)!
lgamma (x) ln(Γ(x))
floor (x) greatest integer less than x
ceiling (x) smallest integer greater than x
trunc (x) closest integer to 0 between x and 0
round (x, digits = a) round the value of x to a decimal places
signif (x, digits = b) give x to b digits
runif (n) generates n random numbers between 0 and 1 from a

uniform distribution
cos (x) cosine of x in radians
sin (x) sine of x in radians
tan (x) tangent of x in radians
acos (x), asin (x), atan (x) inverse trigonometric transformations of real or

complex numbers
acosh (x), asinh (x), atanh (x) inverse hyperbolic trigonometric transformations of

real or complex numbers
abs (x) the absolute value of x, i.e. ignoring the minus sign if

there is one

3.1.4 Modular arithmetic

Suppose we want to know the integer part of a division: say, how many 13s there are in 119:

119 %/% 13

[1] 9

Now suppose we wanted to know the remainder (what is left over when 119 is divided by 13): in
maths this is known as 119 modulo 13, and the value 13 is known as the modulus:

119 %% 13

[1] 2

Modulo is very useful for testing whether one number is an exact multiple of some other number.
For instance, to find out whether 15 421 is a multiple of 7, then ask

�

� �

�

62 THE R BOOK

15421 %% 7

[1] 0

It is as there is no remainder. We can then carry out more complex modular arithmetic:

(123 + 456) %% 19

[1] 9

But don’t forget to put brackets around the expression for which we want to carry out the modular
calculation as follows:

123 + 456 %% 19

[1] 123

3.1.5 Operators

We have already seen the standard arithmetic operators in Section 3.1.3. However, there are many
more available in R, and some are listed in Table 3.2.

We have already seen an example of <- in Section 3.1.3 but here is a much simpler one:

a <- 16.3
a

[1] 16.3

The model formula will be introduced in anger in Chapter 10.1.2. However, several of these oper-
ators have different meaning inside any such expression. Thus, * indicates the main effects plus
interaction (rather than multiplication), : indicates the interaction between two variables (rather than
generate a sequence) and ̂ means all interactions up to the indicated power (rather than raise to
the power).

Table 3.2 Common operators

Operator Meaning

> >= < <= == != relational: greater than, greater than or equals, less than,
less than or equals, equals, not equals

! & | logical (not, and, or)
model formula (‘is modelled as a function of’)

<- assignment for giving a value to a variable
$ select elements from a complex data object
: create an integer sequence

�

� �

�

ESSENTIALS OF THE R LANGUAGE 63

3.1.6 Integers

Historically, memory for computers was very expensive and was at a premium. So integers were
stored as whole numbers as distinct from real numbers, which might have many decimal places and
would use up more memory. That meant that one had to tell a computer program which numbers
were to be treated as integers and which not. This is not such a problem now, but R still offers the
option of storing a number as an integer. It is only important to do this if we are creating large data
objects (such as huge matrices) or using functions in R that call programs written in C or Fortran.
So don’t bother with describing objects as integers unless they are large, as it is a bit of a hassle.
The range of integers in R is from approximately −2 000 000 000 to approximately +2 000 000 000
(−2 × 109 to +2 × 109, which R could portray as -2e+09 to 2e+09).

Be careful. Do not try to change the class of a vector from numeric by using the integer ()
function. Here is a numeric vector of whole numbers that we want to convert into a vector of integers:

x <- c (5, 3, 7, 8)
is.integer (x)

[1] FALSE

is.numeric (x)

[1] TRUE

Applying the integer () function to it doesn’t work:

x <- integer (x)

Error in integer(x): invalid 'length' argument

Use the as.integer () function in one of two ways like this:

x <- c (5, 3, 7, 8)
x <- as.integer (x)
is.integer (x)

[1] TRUE

y <- as.integer (c (5, 3, 7, 8))
is.integer (y)

[1] TRUE

The as.integer () function works as trunc () when applied to real numbers and removes
the imaginary part when applied to complex numbers:

as.integer (5.7)

[1] 5

�

� �

�

64 THE R BOOK

as.integer (-5.7)

[1] -5

as.integer (5.7 - 3i)

Warning: imaginary parts discarded in coercion

[1] 5

3.2 Naming objects

We often create named objects in R: they might just be a numeric or character variable, a matrix or
something more complex such as the results of a linear model. There are three important things to
remember when selecting names for our variables:

• Variable names in R are case sensitive, so y is not the same as Y;

• Variable names cannot begin with numbers (e.g. 1y) or symbols (e.g. %y) but can contain such
characters (e.g. y1);

• Variable names should not contain blank spaces (use back_pay not back pay).

In terms of work–life balance, it is tempting make variable names as short as possible, so as not
to spend too much time typing, and then correcting spelling mistakes in ridiculously long variable
names. However, as RStudio completes our variable names once we have typed three letters, it is
probably best to make the names meaningful so that we can understand what they are when we
come back to look at our code after a period of time.

Objects obtain values in R by assignment. This is achieved by <- which is a composite symbol
made up from less than and minus with no space between them. Thus, to create a scalar constant
x with value 5 we type:

x <- 5

and not x = 5 (which will work some of the time but not all). Notice that there is a potential ambi-
guity if we get the spacing wrong. Compare our x <- 5 with x < - 5 where there is a space
between the ‘less than’ and ‘minus’ symbols. In R, this is actually a question, asking ‘is x less than
minus 5?’ and, depending on the current value of x, would evaluate to the answer either TRUE or
FALSE.

3.3 Factors

Factors are categorical variables that have a fixed number of levels. A simple example of a factor
might be a variable called gender with two levels: female and male. If we had three females and

�

� �

�

ESSENTIALS OF THE R LANGUAGE 65

two males, we could create the factor like this:

gender <- factor (c ("female", "male", "female", "male", "female"))
class (gender)

[1] "factor"

The function class () tells us what sort of data we have: we saw this in Section 3.1.6 when we
discussed integers. Incidentally, R actually stores factors as numbers:

mode (gender)

[1] "numeric"

More often, we will create a dataframe by reading our data from a file using read.table ():

daphnia <- read.table ("daphnia.txt", header = T)
head (daphnia)

Growth.rate Water Detergent Daphnia
1 2.919086 Tyne BrandA Clone1
2 2.492904 Tyne BrandA Clone1
3 3.021804 Tyne BrandA Clone1
4 2.350874 Tyne BrandA Clone2
5 3.148174 Tyne BrandA Clone2
6 4.423853 Tyne BrandA Clone2

class (daphnia$Water)

[1] "character"

The $ sign enables us to select one of the data columns. Unfortunately, R has changed the way it
imports data. If we are using a version of R less than 4.0 (we really shouldn’t: do upgrade), then it
would have automatically imported columns of data with a small number of possible non-numeric
values as factors. From version 4.0 onwards, it just imports them as characters or strings of letters.
We can see that we have three columns that we would like to import as factors, and we do this as
follows:

daphnia <- read.table ("daphnia.txt", header = T,
colClasses = c ("numeric", rep ("factor", 3)))

class (daphnia$Water)

[1] "factor"

�

� �

�

66 THE R BOOK

The dataframe contains a continuous response variable (Growth.rate: numeric) and three cate-
gorical explanatory variables (Water, Detergent and Daphnia), all of which are factors.

There are some important functions for dealing with factors. We will often want to check that a
variable is a factor (especially if the factor levels are numbers rather than characters):

is.factor (daphnia$Water)

[1] TRUE

To discover the names of the factor levels, we use the levels () function:

levels (daphnia$Detergent)

[1] "BrandA" "BrandB" "BrandC" "BrandD"

To discover the number of levels of a factor, we use the nlevels () function as it is simpler than
the alternative:

nlevels (daphnia$Detergent)

[1] 4

length (levels (daphnia$Detergent))

[1] 4

By default, factor levels are treated in alphabetical order. If we want to change this (as we might,
for instance, in ordering the bars of a bar chart), then this is straightforward: we just type the factor
levels in the order that we want them to be used and provide this vector as the second argument
to the factor () function.

For instance, we might want to reverse the alphabetical ordering of our rivers:

levels (daphnia$Water)

[1] "Tyne" "Wear"

daphnia$Water <- factor (daphnia$Water, levels = c ("Wear", "Tyne"))
levels (daphnia$Water)

[1] "Wear" "Tyne"

Any results that involve rivers, such as the mean growth rate, would then appear in that order (details
of the tapply () function can be found in Section 3.10.1):

tapply (daphnia$Growth.rate, daphnia$Water, mean)

Wear Tyne
4.017948 3.685862

�

� �

�

ESSENTIALS OF THE R LANGUAGE 67

Only == (not =, see Section 3.4) and != can be used for comparing factors. Note, also, that a factor
can only be compared to another factor with an identical set of levels (not necessarily in the same
ordering) or to a character vector. For example, we cannot ask quantitative questions about factor
levels, like > or <=, even if the levels are numeric.

daphnia$Detergent == daphnia$Water

Error in Ops.factor(daphnia$Detergent, daphnia$Water): level sets of factors
are different

daphnia$Detergent <= daphnia$Water

[1] NA
[26] NA
[51] NA

We might want to turn factor levels into numbers (integers) in order, say, to colour them in a particular
way in a plot, and we use the unclass () function like this:

as.vector (unclass (daphnia$Daphnia))

[1] 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1
[39] 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3

3.4 Logical operations

A crucial part of computing involves asking questions about things. Is one thing bigger than other?
Are two things the same size? Questions can be joined together using words like and, or and
not. Questions in R typically evaluate to TRUE or FALSE (which in certain circumstances we can
abbreviate to T and F), but there is the option of ignorance (when the answer is not available, NA).
Table 3.3 gives some common notation used in logical operations.

Table 3.3 Logical and relational operations

Symbol Meaning

! logical NOT
& logical AND
| logical OR
< less than
<= less than or equal to
> greater than
= greater than or equal to
== logical equals (double =)
!= not equal
&& AND with IF
|| OR with IF
xor(x,y) exclusive OR
isTRUE (x) an abbreviation of identical (TRUE, x)

�

� �

�

68 THE R BOOK

Here are some simple comparisons with integers. See Section 3.4.2 for a discussion of
non-integer values.

6 > 5

[1] TRUE

6 == 5

[1] FALSE

6 <= 5

[1] FALSE

6 != 5

[1] TRUE

3.4.1 TRUE, T, FALSE, F

We can use T for TRUE and F for FALSE, but we should be aware that T and F might have been
allocated as variables. So

TRUE == FALSE

[1] FALSE

T == F

[1] FALSE

This, however, is not so obvious:

T <- 0
T == FALSE

[1] TRUE

F <- 0
TRUE == F

[1] FALSE

T == F

[1] TRUE

�

� �

�

ESSENTIALS OF THE R LANGUAGE 69

This arises as R also stores T as 1 and FALSE as 0. So never use T or F as variable names, and
we can remove them as follows:

rm (T, F)

3.4.2 Testing for equality of real numbers

There are international standards for carrying out floating point arithmetic (i.e. arithmetic using
numbers with decimal places), but on our computer these standards are beyond the control of R.
This is not an issue for integers unless they are enormous (absolute value > 1032), but for fractions
and other real numbers we lose accuracy because of rounding errors. This is only likely to become
a real problem in practice if we have to subtract similarly sized but very large numbers. A dramatic
loss in accuracy under these circumstances is called catastrophic cancellation error. It occurs
when an operation on two numbers increases relative error substantially more than it increases
absolute error.

We need to be careful in programming when we want to test whether or not two computed num-
bers are equal. R will assume that we mean exactly equal, and what that means depends upon
machine precision. Typically therefore, two floating point numbers will not reliably be equal unless
they were computed by the same algorithm, and not always even then. We can see this by squaring
the square root of 2: surely these values are the same?

x <- sqrt(2)
x * x == 2

[1] FALSE

The square root of 2 will, inevitably, be approximately calculated and so when it is squared, it will
not exactly equal 2. We can see by how much the two values differ by subtraction:

x * x - 2

[1] 4.440892e-16

This is not a big number, but it is not zero either. So how do we test for equality of real numbers?
The best advice is not to do it. Sometimes, however, we really do want to test for equality. In those
circumstances, do not use == to test for equality, but employ the all.equal () function instead.
Using an even simpler example:

y <- 0.3 - 0.2
z <- 0.1
y == z

[1] FALSE

There is a function for testing for exact equality which applies not just to numbers but to all sorts of
objects in R:

�

� �

�

70 THE R BOOK

identical (y, z)

[1] FALSE

However, that is no better. But

all.equal (y, z)

[1] TRUE

saves the day. If we want to be specifically precise, then we can use the argument tolerance =
... to set the level at which we regard two numbers as the same. For instance, if we regard 0.0001
as being small enough not to care about the difference between numbers:

all.equal (y, z, tolerance = 0.0001)

[1] TRUE

all.equal (pi, 3.141, tolerance = 0.0001)

[1] "Mean relative difference: 0.0001886475"

R then reports on the nature of the difference. We will see in Section 3.18.2 how to use the
if () function to determine what to do next on the basis of a comparison. R is very strict in help
(all.equal) and says: ‘Do not use all.equal () directly in if () expressions - either use
isTRUE (all.equal ()) or identical () if appropriate’.

3.4.3 Testing for equality of non-numeric objects

The function all.equal () is very useful in for checking that all types of objects, not just num-
bers, are as we expect them to be. Where differences occur, all.equal () does a useful job
in describing all the differences it finds. Here, for instance, it reports on the difference between a,
which is a vector or list of non-edible pets described using characters and b, which is a factor of
exactly the same things:

a <- c ("cat", "dog", "goldfish")
b <- factor (a)

In the all.equal () function, the object on the left, a, is called the target and the object on the
right, b, is current:

all.equal (a, b)

[1] "Modes: character, numeric"
[2] "Attributes: < target is NULL, current is list >"
[3] "target is character, current is factor"

�

� �

�

ESSENTIALS OF THE R LANGUAGE 71

1. The first difference, in [1], is mode which tells us how the objects are stored. Recall that factors
are stored internally as integers, so they have mode = numeric;

2. The reason why current is list in item [2] of the output is that factors have two attributes,
namely their levels and their class, and these are stored as a list;

3. [3] tells us what class of objects we are dealing with.

We could look at each of these items individually as follows:

mode (a)

[1] "character"

mode (b)

[1] "numeric"

attributes (a)

NULL

attributes (b)

$levels
[1] "cat" "dog" "goldfish"

$class
[1] "factor"

class (a)

[1] "character"

class (b)

[1] "factor"

The all.equal () function is also useful for obtaining feedback on differences in things like the
lengths of vectors:

n1 <- c (1,2,3)
n2 <- c (1,2,3,4)
all.equal (n1, n2)

[1] "Numeric: lengths (3, 4) differ"

�

� �

�

72 THE R BOOK

It works well, too, for multiple differences:

n2 <- as.character (n2)
n2

[1] "1" "2" "3" "4"

all.equal (n1,n2)

[1] "Modes: numeric, character"
[2] "Lengths: 3, 4"
[3] "target is numeric, current is character"

Here we have converted the numbers in n2 to characters, so they have quotation marks. If
we supply more than two objects to be compared, the third and subsequent objects are simply
ignored.

3.4.4 Evaluation of combinations of TRUE and FALSE

It is important to understand how combinations of logical variables evaluate and to appreciate how
logical operations (such as those in Table 3.3) work when there are missing values, NA. Here are
all the possible outcomes expressed as a logical vector called x:

x <- c (NA, FALSE, TRUE)

To see the logical combinations using & (logical AND), we can use the outer () function with x to
evaluate all nine combinations like this:

outer (x, x, "&")

[,1] [,2] [,3]
[1,] NA FALSE NA
[2,] FALSE FALSE FALSE
[3,] NA FALSE TRUE

Only TRUE & TRUE evaluates to TRUE. FALSE overrides everything else with NA taking priority
next. To see the logical combinations | (logical OR) write:

outer (x, x, "|")

[,1] [,2] [,3]
[1,] NA NA TRUE
[2,] NA FALSE TRUE
[3,] TRUE TRUE TRUE

Here TRUE is dominant followed by NA.

�

� �

�

ESSENTIALS OF THE R LANGUAGE 73

3.4.5 Logical arithmetic

Arithmetic involving logical expressions is very useful in programming and in selection of variables.
If logical arithmetic is unfamiliar, then persevere with it, because it will become clear how useful it
is, once the penny has dropped. The key thing to understand is that logical expressions evaluate
to either true or false (represented in R by TRUE or FALSE), and that R can coerce TRUE or FALSE
into numerical values: 1 for TRUE and 0 for FALSE. Suppose that x is a sequence of integers from
0 to 6 like this:

x <- 0:6

Now, we can ask questions about the contents of the vector called x. Is each element of x less
than 4?

x < 4

[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE

The answer is yes for the first four values (0, 1, 2, and 3) and no for the last three (4, 5, and 6).
Two important logical functions are all () and any (). They check an entire vector but return a
single logical value: TRUE or FALSE. Are all the x values bigger than 0?

all (x > 0)

[1] FALSE

No. The first x value is a zero. Are any of the x values negative?

any (x < 0)

[1] FALSE

No. The smallest x value is a zero.
We can use the answers of logical functions in arithmetic. We can count the number of values

with x < 4, using sum ():

sum (x < 4)

[1] 4

We can multiply x < 4 by other vectors, where we only want a non-zero result if the statement is
true:

(x < 4) * runif (7)

[1] 0.07904065 0.25855709 0.36850863 0.84638190 0.00000000 0.00000000 0.00000000

where runif (7) is a set of seven random numbers between zero and one.

�

� �

�

74 THE R BOOK

Logical arithmetic is particularly useful in generating simplified factor levels during statistical mod-
elling. Suppose we want to reduce a five-level factor with levels {a,b,c,d,e} called treatment to
a three-level factor called t2 by lumping together the levels a and e (new factor level 1) and c and
d (new factor level 3) while leaving b distinct (with new factor level 2):

(treatment <- letters[1:5])

[1] "a" "b" "c" "d" "e"

There are a couple of things worth noting here:

• R knows the letters of the Roman alphabet, amongst other things: see help (letters);

• if we enclose our statement in brackets, then R outputs the value of what we have just created.

(t2 <- factor (1 + (treatment == "b") + 2 * (treatment == "c") +
2 * (treatment == "d")))

[1] 1 2 3 3 1
Levels: 1 2 3

Remember that R can treat the factors in order as integers. So the new factor t2 gets a value 1 as
default for all the factors levels, and we want to leave this as it is for levels a and e. Thus, we do
not add anything to the 1 if the old factor level is a or e. For old factor level b, however, we want the
result that t2 is 2 so we add 1 (treatment=="b") to the original 1 to get the answer we require.
This works because the logical expression evaluates to 1 (TRUE) for every case in which the old
factor level is b and to 0 (FALSE) in all other cases. For old factor levels c and d, we want the result
that t2 is 3, so we add 2 to the baseline value of 1 if the original factor level is either c or d. Don’t
forget that logical equals is a double equals sign without a space in between (==). It is important to
understand the distinction between

x <- y x is assigned the value of y;
x = y in a function or a list x is set to y unless we specify otherwise;
x == y produces TRUE if x is exactly equal to y and FALSE, otherwise.

3.5 Generating sequences

An important way of creating vectors (in this case, just a list of numbers: although they can also
be lists of anything, e.g. characters, logical values) is to generate a sequence of numbers. The
simplest sequences are in steps of 1, and the colon operator is the simplest way of generating such
sequences. All we do is specify the first and last values separated by a colon. Here is a sequence
from 0 up to 10:

0:10

[1] 0 1 2 3 4 5 6 7 8 9 10

�

� �

�

ESSENTIALS OF THE R LANGUAGE 75

Here is a sequence from 15 down to 5:

15:5

[1] 15 14 13 12 11 10 9 8 7 6 5

To generate a sequence in steps other than 1, we use the seq () function. There are various forms
of this, of which the simplest has three arguments: from = ..., to = ..., by = ... (the
initial value, the final value and the increment). These are the default arguments: what R assumes if
we just list values. If the initial value is smaller than the final value, the increment should be positive,
like this:

seq (from = 0, to = 1.5, by = 0.1)

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

seq (0, 1.5, 0.1)

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

If the initial value is larger than the final value, the increment should be negative, like this, or we will
get an error:

seq (6, 4, -0.2)

[1] 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0

seq (6, 4, 0.2)

Error in seq.default(6, 4, 0.2): wrong sign in 'by' argument

In many cases, we want to generate a sequence to match an existing vector in length. Rather than
having to figure out the increment that will get from the initial to the final value and produce a vector
of exactly the appropriate length, R provides the along = and length = options. Suppose we
have a vector of population sizes which we create using the c () (combine) function:

N <- c (55, 76, 92, 103, 84, 88, 121, 91, 65, 77, 99)
length (N)

[1] 11

We need to plot this against a sequence that starts at 0.04 in steps of 0.01:

seq (from = 0.04, by = 0.01, length = 11)

[1] 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

�

� �

�

76 THE R BOOK

But this requires us to figure out the length of N. A simpler method is to use the along argument
and specify the vector, N, whose length has to be matched:

seq (0.04, by = 0.01, along = N)

[1] 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

Alternatively, we can get R to work out the increment (0.01 in this example), by specifying the start
and the end values (from and to), and the name of the vector (N) whose length has to be matched:

seq (from = 0.04, to = 0.14, along = N)

[1] 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

Notice that when the increment does not match the final value, then the generated sequence stops
short of the last value (rather than overstepping it):

seq (1.4, 2.1, 0.3)

[1] 1.4 1.7 2.0

If we want a vector made up of sequences of unequal lengths, then use the sequence () function.
Suppose that the five sequences we want to string together are (1:4, 1:3, 1:4, 1:4, 1:4, 1:5), then:

sequence (c (4, 3, 4, 4, 4, 5))

[1] 1 2 3 4 1 2 3 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5

3.5.1 Generating repeats

We will often want to generate repeats of numbers or characters, for which the function is rep ().
The object that is named in the first argument is repeated a number of times as specified in the
second argument. At its simplest, we would generate five 9s like this:

rep (9, 5)

[1] 9 9 9 9 9

We can see the issues involved by a comparison of these three increasingly complicated uses of
the rep () function:

rep (1:4, 2)

[1] 1 2 3 4 1 2 3 4

rep (1:4, each = 2)

�

� �

�

ESSENTIALS OF THE R LANGUAGE 77

[1] 1 1 2 2 3 3 4 4

rep (1:4, each = 2, times = 3)

[1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

In the simplest case, the entire first argument is repeated (i.e. the sequence 1–4 appears twice).
We often want each element of the sequence to be repeated, and this is accomplished with the
each argument. Finally, we might want each number repeated and the whole series repeated a
certain number of times (here three times).

When each element of the series is to be repeated a different number of times, then the second
argument must be a vector of the same length as the vector comprising the first argument (length
4 in this example). So if we want one 1, two 2s, three 3s, and four 4s we would write:

rep (1:4, 1:4)

[1] 1 2 2 3 3 3 4 4 4 4

In a more complicated case, there is a different but irregular repeat of each of the elements of the
first argument. Suppose that we need four 1s, one 2, four 3s, and two 4s. Then we use the combine
function c () to create a vector of length 4 which will act as the second argument to the rep ()
function:

rep (1:4, c (4, 1, 4, 2))

[1] 1 1 1 1 2 3 3 3 3 4 4

Here is the most complex case with character data rather than numbers: each element of the pet
series is repeated an irregular number of times:

rep (c ("cat", "dog", "gerbil", "goldfish", "rat"), c (2, 3, 2, 1, 3))

[1] "cat" "cat" "dog" "dog" "dog" "gerbil"
[7] "gerbil" "goldfish" "rat" "rat" "rat"

3.5.2 Generating factor levels

The function gl () (generate levels) is useful when we want to encode long vectors of factor
levels. The syntax for the three arguments is n (number of levels), k (repeated this number of
times), length (to total length with default n ∗ k). Here is the simplest case where we want 4 factor
levels with three repeats (i.e. total length 12):

gl (4, 3)

[1] 1 1 1 2 2 2 3 3 3 4 4 4
Levels: 1 2 3 4

�

� �

�

78 THE R BOOK

Here is the function when we want that whole pattern repeated twice:

gl (4, 3, 24)

[1] 1 1 1 2 2 2 3 3 3 4 4 4 1 1 1 2 2 2 3 3 3 4 4 4
Levels: 1 2 3 4

If we want text for the factor levels, rather than numbers, we use labels like this:

gloss <- gl (2, 2, 24, labels = c ("Low", "High"))
give <- gl (3, 8, 24, labels = c ("Hard", "Medium", "Soft"))
flammable <- gl (2, 4, 24, labels = c ("N", "Y"))
brand <- gl (2, 1, 24, labels = c ("X", "M"))

We can then combine these to give all the different combinations (see Section 4.5 for more details
on dataframes) for hair gel:

data.frame (gloss, give, flammable, brand)

gloss give flammable brand
1 Low Hard N X
2 Low Hard N M
3 High Hard N X
4 High Hard N M
5 Low Hard Y X
6 Low Hard Y M
7 High Hard Y X
8 High Hard Y M
9 Low Medium N X
10 Low Medium N M
11 High Medium N X
12 High Medium N M
13 Low Medium Y X
14 Low Medium Y M
15 High Medium Y X
16 High Medium Y M
17 Low Soft N X
18 Low Soft N M
19 High Soft N X
20 High Soft N M
21 Low Soft Y X
22 Low Soft Y M
23 High Soft Y X
24 High Soft Y M

3.6 Class membership

We have already seen in Section 3.4.3 how data objects can be described by their class, mode, or
attributes. We will now examine a fourth classification, data type, which is usually how we will refer

�

� �

�

ESSENTIALS OF THE R LANGUAGE 79

to a data object. In many cases, the type is the same as class. We can test whether objects are a
particular type and also coerce them into a different type. For instance, a logical variable has type
logical. This is how we create the variable:

lv <- c (T, F, T)

We can assess its membership by asking if it is a logical variable using the is.logical ()
function:

is.logical (lv)

[1] TRUE

It is not a factor, and so it does not have levels:

levels (lv)

NULL

But we can coerce it to be a two-level factor like this:

(fv <- as.factor (lv))

[1] TRUE FALSE TRUE
Levels: FALSE TRUE

is.factor (fv)

[1] TRUE

The brackets around an expression will automatically show the outcome, even when we are creating
an object from the outcome. We can coerce a logical variable to be numeric: TRUE evaluates to 1
and FALSE evaluates to 0, like this:

(nv <- as.numeric (lv))

[1] 1 0 1

This is particularly useful as a short cut when creating new factors with reduced numbers of levels
(as we do in model simplification).

Table 3.4 lists functions for testing (is.) the type of different objects (arrays, lists, etc.) and for
coercing (as.) them into a specified form.

Only some types of objects can be coerced into other types. A familiar type of coercion occurs
when we interpret the TRUE and FALSE of logical variables as numeric 1 and 0, respectively. Fac-
tor levels can be coerced to numbers. Numbers can be coerced into characters, but non-numeric
characters cannot be coerced into numbers: we just end up with a load of NAs and a warning.

�

� �

�

80 THE R BOOK

Table 3.4 Data types.

Type Testing Coercing

Array is.array as.array
Character is.character as.character
Complex is.complex as.complex
Dataframe is.data.frame as.data.frame
Double is.double as.double
Factor is.factor as.factor
List is.list as.list
Logical is.logical as.logical
Matrix is.matrix as.matrix
Numeric is.numeric as.numeric
Raw is.raw as.raw
Time series is.ts as.ts
Vector is.vector as.vector

as.numeric (factor (c ("a", "b", "c")))

[1] 1 2 3

as.numeric (c ("a", "b", "c"))

Warning: NAs introduced by coercion

[1] NA NA NA

as.numeric (c ("1", "4", "3"))

[1] 1 4 3

If we try to coerce complex numbers to numeric, the imaginary part will be discarded. Note that
is.complex () and is.numeric () are never both TRUE.

We often want to coerce tables (perhaps of counts) into the form of vectors and to turn matrices
into dataframes. A lot of testing involves the NOT operator ! in functions to return an error message
if the wrong type is supplied. For instance, if we were writing our own function (see Section 3.18
for more details) to calculate geometric means we might want to test to ensure that the input was
numeric using !is.numeric ():

geometric <- function (x) {
if (!is.numeric (x)) stop ("Input must be numeric")
exp (mean (log (x)))

}

�

� �

�

ESSENTIALS OF THE R LANGUAGE 81

Here is what happens when we try to work out the geometric mean of numeric and character data:

geometric (c (2, 4, 8))

[1] 4

geometric (c ("a", "b", "c"))

Error in geometric(c("a", "b", "c")): Input must be numeric

We might also want to check that there are no zeros or negative numbers in the input, because it
would make no sense to try to calculate a geometric mean of such data:

geometric <- function (x) {
if (!is.numeric(x)) stop ("Input must be numeric")
if (min (x) <= 0) stop ("Input must be greater than zero")
exp (mean (log (x)))

}

Testing this:

geometric (c (2, 3, 0, 4))

Error in geometric(c(2, 3, 0, 4)): Input must be greater than zero

But when the data are OK there will be no messages, just the numeric answer:

geometric (c (10, 1000, 10, 1, 1))

[1] 10

When vectors are created by calculation from other vectors, the new vector will be as long as the
longest vector used in the calculation and the shorter variable will be recycled as necessary. Here,
A is of length 10 and B is of length 3:

A <- 1:10
B <- c (2, 4, 8)
A * B

Warning in A * B: longer object length is not a multiple of shorter object
length

[1] 2 8 24 8 20 48 14 32 72 20

�

� �

�

82 THE R BOOK

The vector B is recycled three times in full and a warning message in printed to indicate that the
length of the longer vector A is not a multiple of the shorter vector B, although the calculation still
proceeds.

3.7 Missing values, infinity, and things that are not numbers

Calculations can lead to answers that are plus infinity (+∞), represented in R by Inf, or minus
infinity (= ∞), which is represented as -Inf:

3 / 0

[1] Inf

-12 / 0

[1] -Inf

Some calculations involving infinity can be evaluated, for instance:

exp(-Inf)

[1] 0

0 / Inf

[1] 0

(0:3)^Inf

[1] 0 1 Inf Inf

Other calculations, however, lead to quantities that are not numbers. These are represented in R
by NaN (not a number). Here are some of the classic cases:

0 / 0

[1] NaN

Inf - Inf

[1] NaN

Inf / Inf

[1] NaN

�

� �

�

ESSENTIALS OF THE R LANGUAGE 83

It is important to understand clearly the distinction between NaN and NA (the latter stands for not
available and is the missing data symbol in R; see below). The function is.nan () is provided to
check specifically for NaN, and is.na (NaN) also returns TRUE. Coercing NaN to logical or integer
type gives an NA of the appropriate type. There are built-in tests to check whether a number is finite
or infinite:

is.finite (10)

[1] TRUE

is.infinite (10)

[1] FALSE

is.infinite (Inf)

[1] TRUE

is.infinite (-Inf)

[1] TRUE

3.7.1 Missing values: NA

Missing values in data are a real source of irritation because, for instance, they affect the way
that model-fitting functions operate, and they can greatly reduce the power of the modelling that
we would like to do. Unfortunately, they are a feature of real life and we must learn how to deal
with them.

We may want to discover which values in a vector are missing. Here is a simple case:

y <- c (4, NA, 7)

The missing value question should evaluate to FALSE TRUE FALSE. There are two ways of looking
for missing values that we might think should work, but do not. These involve treating NA as if it was
a piece of text and using double equals (==) to test for it. But this does not work:

y == NA

[1] NA NA NA

because it records all the values as NA (definitely not what was intended). This does not work either:

y == "NA"

[1] FALSE NA FALSE

�

� �

�

84 THE R BOOK

It correctly reports that the numbers are not character strings, but it returns NA for the missing value
itself, rather than TRUE as required. This is how to do it properly:

is.na (y)

[1] FALSE TRUE FALSE

There a number of functions to deal with a vector that might contain NAs. Let us add an extra vector
with no NAs:

x <- c (4, 5, 7)
na.omit (y)

[1] 4 7
attr(,"na.action")
[1] 2
attr(,"class")
[1] "omit"

na.fail (x)

[1] 4 5 7

na.fail (y)

Error in na.fail.default(y): missing values in object

The first function gives us not only the data without NAs but also tell us which positions have been
omitted, and na.fail () gives an error if there are NAs, but otherwise does nothing.
na.omit () is useful in editing out rows containing missing values from large dataframes (see

Section 4.5.5). Here is a very simple example of a dataframe with four rows and four columns:

y1 <- c (1, 2, 3, 6)
y2 <- c (5, 6, NA, 8)
y3 <- c (9, 10, 11, 12)
y4 <- c (NA, 14, 15, 16)
(full_frame <- data.frame (y1, y2, y3, y4))

y1 y2 y3 y4
1 1 5 9 NA
2 2 6 10 14
3 3 NA 11 15
4 6 8 12 16

(reduced_frame1 <- na.omit (full_frame))

y1 y2 y3 y4
2 2 6 10 14
4 6 8 12 16

�

� �

�

ESSENTIALS OF THE R LANGUAGE 85

We might be interested in just deleting those rows which have NA in one particular column, say y1:

(reduced_frame1 <- full_frame[!is.na (full_frame$y1),])

y1 y2 y3 y4
1 1 5 9 NA
2 2 6 10 14
3 3 NA 11 15
4 6 8 12 16

This uses both [,] and $ to extract parts of a dataframe. These are discussed in Section 4.5.1.
Some functions do not work with their default settings when there are missing values in the data,

and mean () is a classic example of this:

x <- c (1:8, NA)
mean (x)

[1] NA

In order to calculate the mean of the non-missing values, we need to specify that the NAs are to be
removed, using the na.rm = TRUE argument which is available for many functions by looking in
help ():

mean (x, na.rm = T)

[1] 4.5

Here is an example where we want to find the locations (7 and 8) of missing values within a vector
called vmv:

(vmv <- c (1:6, NA, NA, 9:12))

[1] 1 2 3 4 5 6 NA NA 9 10 11 12

Making an index of the missing values in an array could use the seq () function, like this:

seq (along = vmv)[is.na (vmv)]

[1] 7 8

However, the result is achieved more simply using the which () function like this:

which (is.na (vmv))

[1] 7 8

�

� �

�

86 THE R BOOK

If the missing values are genuine counts of zero, we might want to edit the NAs to 0s. We can use
the is.na () function to generate subscripts for this:

vmv[is.na (vmv)] <- 0
vmv

[1] 1 2 3 4 5 6 0 0 9 10 11 12

or, more straightforwardly, use the ifelse () function like this:

vmv <- c (1:6, NA, NA, 9:12)
ifelse (is.na (vmv), 0, vmv)

[1] 1 2 3 4 5 6 0 0 9 10 11 12

However, we need to make sure that we know what we are doing, because most missing values
are not genuine zeros.

3.8 Vectors and subscripts

A vector is a data object and type with one or more values of the same class (and not, as in maths
and physics, an object with magnitude and direction). For instance, the numbers of peas in six pods
were 4, 7, 6, 5, 6, and 7. The vector called peas is one object of length 6. In this case, the class of
the object is numeric, but it could equally well be, for instance, character, factor or logical.
The easiest way to create a vector in R is to combine (link together) the six values using the combine
function, c (), like this:

peas <- c (4, 7, 6, 5, 6, 7)

We can ask all sorts of questions about the vector called peas. For instance, what type of vector
is it?

class (peas)

[1] "numeric"

How big is the vector?

length (peas)

[1] 6

The great advantage of a vector-based language is that it is very simple to ask quite complex ques-
tions that involve all of the values in the vector. These vector functions are often self-explanatory:

mean (peas)

[1] 5.833333

�

� �

�

ESSENTIALS OF THE R LANGUAGE 87

max (peas)

[1] 7

min (peas)

[1] 4

Others might be more opaque:

quantile (peas)

0% 25% 50% 75% 100%
4.00 5.25 6.00 6.75 7.00

We will examine these type of activities in more detail in Section 3.10.
Another, slightly old-fashioned way to create a vector, is to input data from the keyboard using

the function called scan:

peas <- scan ()

The prompt named 1: appears, which means type in the first number of peas (4) then press the
return key; then the prompt 2: appears (type in 7), and so on. When we have typed in all six
values, and the prompt 7: has appeared, we just press the return key to tell R that the vector is
now complete. R replies by telling us how many items it has read.

3.8.1 Extracting elements of a vector using subscripts

We will often want to use (read, manipulate, or update) some but not all of the contents of a vector.
To do this, we need to master the use of subscripts (or indices as they are also known). In R,
subscripts involve the use of square brackets []. It is important to understand that these [] refer to
the position in a vector not the contents. Our vector called peas shows the numbers of peas in six
pods:

peas

[1] 4 7 6 5 6 7

The first element of peas is 4, the second 7, and so on. The elements are indexed left to right,
1–6. If we want to extract the fourth element of peas (which we can see is a 5), then this is what
we do:

peas[4]

[1] 5

�

� �

�

88 THE R BOOK

If we want to extract several values (say the 2nd, 3rd, and 6th), we use a vector to specify the pods
we want as subscripts, either in two stages like this:

pods <- c (2, 3, 6)
peas[pods]

[1] 7 6 7

or in a single step, like this:

peas[c (2, 3, 6)]

[1] 7 6 7

We can drop values from a vector by using negative subscripts. Here are all but the first values of
peas:

peas[-1]

[1] 7 6 5 6 7

Here are all but the last (note the use of the length () argument to decide what is last):

peas[-length (peas)]

[1] 4 7 6 5 6

We can use these ideas to write a function called trim () to remove (say) the largest two and the
smallest two values from a vector, x (see Section 3.18 for details on writing our own functions). First,
we have to sort () the vector, then remove the smallest two values (these will have subscripts 1
and 2), then remove the largest two values (which will have subscripts length (x) and length
(x) - 1):

trim <- function(x) {
sorted_x <- sort (x)
sorted_x[-c (1, 2, length (x) - 1, length (x))]

}

We can use trim () on the vector called peas, expecting to get 6 and 6 as the result:

trim (peas)

[1] 6 6

�

� �

�

ESSENTIALS OF THE R LANGUAGE 89

We can also use sequences of numbers to extract values from a vector. Here are the first three
values of peas:

peas[1:3]

[1] 4 7 6

Here are the even-numbered values of peas:

peas[seq(2, length (peas), 2)]

[1] 7 5 7

or alternatively:

peas[1:length (peas) %% 2 == 0]

[1] 7 5 7

using the modulo function %% on the sequence 1–6 to extract the even numbers 2, 4, and 6. Note
that vectors in R could have length 0, and this can be useful to know:

y <- 4.3
z <- y[-1]
length (z)

[1] 0

3.8.2 Classes of vector

The vector called peas contained numbers: in the jargon, it is of class numeric, vector is the data
type.

class (peas)

[1] "numeric"

R allows vectors of six types, but all of the elements in one vector must belong to the same class.
The classes that we will meet are logical, integer, numeric, and character (or string):

trues <- rep (TRUE, 4)
class (trues)

�

� �

�

90 THE R BOOK

[1] "logical"

threes <- as.integer (c (3, 3))
class (threes)

[1] "integer"

greetings <- c ("hello", "world")
class (greetings)

[1] "character"

3.8.3 Naming elements within vectors

It is often useful to have the values in a vector labelled in some way. For instance, if our data are
counts of 0,1,2, … occurrences in a vector called counts,

(counts <- c (25, 12, 7, 4, 6, 2, 1, 0, 2))

[1] 25 12 7 4 6 2 1 0 2

so that there were 25 zeros, 12 ones, and so on, it would be useful to name each of the counts with
the relevant number 0–8, because if we look at the positions, they will be numbered 1–9:

names (counts) <- 0:8

Now when we inspect the vector called counts, we see both the names and the frequencies:

counts

0 1 2 3 4 5 6 7 8
25 12 7 4 6 2 1 0 2

If we have computed a table of counts, then the object we have created has class table. We can
remove the names and create a vector like this, where we begin with some random data from a
Poisson distribution (frequently used for counts of things):

(count_table <- table (rpois (2000, 2.3)))

0 1 2 3 4 5 6 7 8 9
186 466 537 388 244 112 41 18 6 2

class (count_table)

[1] "table"

�

� �

�

ESSENTIALS OF THE R LANGUAGE 91

(count_vector <- as.vector (count_table))

[1] 186 466 537 388 244 112 41 18 6 2

class (count_vector)

[1] "integer"

3.9 Working with logical subscripts

Take the example of a vector containing the 11 numbers 0–10:

x <- 0:10

There are two quite different kinds of things we might want to do with this. We might want to add
up the values of the elements:

sum (x)

[1] 55

Alternatively, we might want to count the elements that passed some logical criterion. Suppose we
wanted to know how many of the values were less than 5:

sum (x < 5)

[1] 5

We use the vector function sum () in both cases. However, sum (x) adds up the values of the xs

and sum (x < 5) counts up the number of cases that pass the logical condition x < 5. This works

because of coercion (see Section 3.6): logical TRUE has been coerced to numeric 1 and logical

FALSE has been coerced to numeric 0.
That is all well and good, but how do we list or add up the values of just some of the elements

of x? We specify a logical condition, but we do not want to count the number of cases that pass
the condition, we want to output or add up all the values of the cases that pass the condition.
This involves the use of logical subscripts. Note that when we counted the number of cases, the
counting was applied to the entire vector, using sum (x < 5). To find the values of x that are less
than 5, we write:

(x[x < 5])

[1] 0 1 2 3 4

�

� �

�

92 THE R BOOK

This looks a bit weird as x is the vector and is also used in the subscripts, but is a very common
tactic in R. Let us look at this in more detail. The logical condition x < 5 is either true or false:

x < 5

[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

A vector with a load of TRUEs and FALSEs in []s will just output those elements that are TRUE,
giving the answer above.

If we want to add up the elements that pass the test above, then:

sum (x[x < 5])

[1] 10

Suppose we want to work out the sum of the three largest values in a vector, y. There are two steps:
first sort () the vector into descending order; then add up the values of the first three elements
of the reverse-sorted array. Let us do this in stages. First, the values of y:

y <- c (8, 3, 5, 7, 6, 6, 8, 9, 2, 3, 9, 4, 10, 4, 11)

Now if we apply sort () to this, the numbers will be in ascending sequence, and this makes life
slightly harder for the present problem:

sort (y)

[1] 2 3 3 4 4 5 6 6 7 8 8 9 9 10 11

However, as with most functions, there is a useful argument:

sort (y, decreasing = T)

[1] 11 10 9 9 8 8 7 6 6 5 4 4 3 3 2

So the answer to our problem is 11 + 10 + 9 = 30. But how to compute this? A range of subscripts
is simply a series generated using the colon operator. We want the subscripts 1–3, so this is

sort (y, decreasing = T)[1:3]

[1] 11 10 9

And the answer to the exercise is just:

sum (sort (y, decreasing = T)[1:3])

[1] 30

�

� �

�

ESSENTIALS OF THE R LANGUAGE 93

Note that we have not changed the vector y in any way, nor have we created any new space-
consuming vectors during intermediate computational steps.

We will often want to find out which value (i.e. the position) in a vector is the maximum or the
minimum (we can find the actual values using max () and min ()). This is a question about
indices, and the answer we want is an integer indicating which element of the vector contains the
maximum (or minimum) out of all the values in that vector. Here is the vector:

x <- c (2, 3, 4, 1, 5, 8, 2, 3, 7, 5, 7)

So the answers we want are positions 6 (the maximum) and 4 (the minimum). The slow way to do
it is like this:

which (x == max (x))

[1] 6

which (x == min (x))

[1] 4

Better, however, to use the much quicker built-in functions which.max () and which.min ()
like this:

which.max (x)

[1] 6

which.min (x)

[1] 4

3.10 Vector functions

One of R’s great strengths is its ability to evaluate functions over entire vectors, thereby avoiding
the need for loops (which are typically very slow: see Section 3.13) and subscripts. Many of the
most important vector functions are listed in Table 3.5.

Here is a numeric vector:

y <- c (8, 3, 5, 7, 6, 6, 8, 9, 2, 3, 9, 4, 10, 4, 11)

Some vector functions produce a single number:

mean (y)

[1] 6.333333

�

� �

�

94 THE R BOOK

Table 3.5 Vector functions

Operation Meaning

max (x) maximum value in x
min (x) minimum value in x
sum (x) total of all the values in x
mean (x) arithmetic mean of the values in x
median (x) median value in x
range (x) vector of min (x) and max (x)
var (x) sample variance of x
cor (x, y) correlation between vectors x and y
sort (x) a sorted version of x
rank (x) vector of the ranks of the values in x
order (x) integer vector containing the permutation to sort x into ascending order
quantile (x) vector containing the minimum, lower quartile, median, upper quartile, and

maximum of x
cumsum (x) vector containing the sum of all of the elements up to that point
cumprod (x) vector containing the product of all of the elements up to that point
cummax (x) vector of non-decreasing numbers which are the cumulative maxima of the

values in x up to that point
cummin (x) vector of non-increasing numbers which are the cumulative minima of the values

in x up to that point
pmax (x, y, z) vector, of length equal to the longest of x, y, or z, containing the maximum of x, y,

or z for the ith position in each
pmin (x, y, z) vector, of length equal to the longest of x, y, or z, containing the minimum of x, y,

or z for the ith position in each

Others produce two numbers:

range (y)

[1] 2 11

here showing that the minimum was 2 and the maximum was 11 (very useful for setting the axis
range in plots). Other functions produce several numbers:

fivenum (y)

[1] 2.0 4.0 6.0 8.5 11.0

This is Tukey’s famous five-number summary: the minimum, the lower hinge, the median, the upper
hinge, and the maximum (the hinges are similar to lower and upper quartiles).

A very useful vector function in R is table (). Here is a huge vector called counts containing
10 000 random integers from a negative binomial distribution (counts of fungal lesions on 10 000
individual leaves, for instance):

counts <- rnbinom (10000, mu = 0.92, size = 1.1)

�

� �

�

ESSENTIALS OF THE R LANGUAGE 95

Here is a look at the first 30 values:

counts[1:30]

[1] 0 1 1 3 2 4 1 0 1 0 3 1 0 2 0 0 0 0 2 0 0 0 1 1 1 0 0 2 0 2

The question is this: how many zeros are there in the whole vector of 10 000 numbers, how many
1s, and so on right up to the largest value within counts? A formidable task, but for R it is just:

table (counts)

counts
0 1 2 3 4 5 6 7 8 9 10 11 12 13

5183 2537 1237 548 267 119 59 22 16 7 1 2 1 1

There were 5183 zeros, 2537 ones, and so on, up the largest counts. The data have been selected
randomly; so each time we run it we will get different outputs. See Chapter 7 for more details on
using tables.

3.10.1 Obtaining tables using tapply ()

An incredibly useful way of creating tables in R is to use the function tapply (). It does not sound
like much from the name, but we will use it time and again for calculating means, variances, sample
sizes, minima and maxima, etc. With weather data, for instance, we might want the 12 monthly mean
temperatures, rather than the whole-year average. We have two variables of interest: a continuous
one, temperature, and a categorical variable, month:

temp_data <- read.table ("temp_data.txt", header = T)
head (temp_data)

yr month temperature
1 1883 1 6.3
2 1883 2 8.0
3 1883 3 4.8
4 1883 4 12.2
5 1883 5 14.7
6 1883 6 17.7

We have imported a dataset and then looked at its start. See Section 4.2 for more details. The
function that we want to apply is mean (). All we do is invoke the tapply () function with three
arguments: the variable for which we want to calculate the mean (temperatures), the categorical
variable by which we want to break down the answer (month), and the name of the function that
we want to apply, using the $ sign to select variables:

tapply (temp_data$temperature, temp_data$month, mean)

1 2 3 4 5 6 7 8 9 10 11 12
NA NA NA NA NA NA NA NA NA NA NA NA

�

� �

�

96 THE R BOOK

That doesn’t look good, but will teach us to have a look at our data before trying to manipulate them.
Clearly, there are some missing data, and we need to deal with them as discussed in Section 3.7.1.
If we want to use some of the arguments that go with our function, we can just add them in at the
end of the statement as follows:

tapply (temp_data$temperature, temp_data$month, mean, na.rm = T)

1 2 3 4 5 6 7 8
6.272519 6.619084 8.923664 11.832824 15.408397 18.522901 20.254264 19.863566

9 10 11 12
17.293798 13.193023 9.151163 6.879845

It is easy to apply other functions in the same way: here are the monthly variances:

tapply (temp_data$temperature, temp_data$month, var, na.rm = T)

1 2 3 4 5 6 7 8
3.094931 4.302787 4.116436 2.555607 2.233852 2.167164 3.304532 2.786084

9 10 11 12
1.953555 1.910185 1.399237 2.452559

and the monthly minima

tapply (temp_data$temperature, temp_data$month, min, na.rm = T)

1 2 3 4 5 6 7 8 9 10 11 12
1.3 -0.6 4.5 8.5 11.9 15.1 16.2 16.0 13.7 9.8 5.9 1.9

If R does not have a built-in function to do what we want, then we can easily write our own and
add them into tapply (). Here, for instance, is a function to calculate the standard error of each
mean (these are called anonymous functions in R, because they are unnamed):

tapply (temp_data$temperature, temp_data$month,
function (x) sqrt (var (x, na.rm = T) / length (x)))

1 2 3 4 5 6 7 8
0.1531223 0.1805460 0.1765931 0.1391426 0.1300889 0.1281324 0.1582224 0.1452814

9 10 11 12
0.1216538 0.1202959 0.1029577 0.1363085

We use the function function (x) and then just give the formula required by that function (see
Section 3.18 for more details of writing our own functions).

The tapply () function is very flexible. It can produce multi-dimensional tables simply by
replacing the one categorical variable month by a list () of categorical variables. Here are
the monthly means given separately for each year. The variable we name first in the list, yr, will
appear as the rows of the results table and the second will appear as the columns:

attach (temp_data)
temp_summ <- tapply (temperature, list (yr, month), mean, na.rm = T)

�

� �

�

ESSENTIALS OF THE R LANGUAGE 97

detach (temp_data)
head (temp_summ)

1 2 3 4 5 6 7 8 9 10 11 12
1883 6.3 8.0 4.8 12.2 14.7 17.7 18.8 19.8 16.8 12.7 8.6 7.3
1884 8.4 8.0 9.5 10.6 15.7 18.2 20.8 22.6 18.4 12.3 9.0 6.6
1885 4.7 8.5 7.8 11.6 12.9 18.6 21.0 17.1 16.4 10.5 8.0 7.0
1886 4.5 3.9 6.1 10.9 13.9 17.3 20.8 20.8 17.7 13.8 9.7 4.9
1887 5.1 7.5 7.1 11.0 12.3 21.0 23.7 20.7 15.3 10.6 7.6 6.2
1888 6.4 4.0 5.3 8.9 15.8 16.9 16.2 18.0 16.0 11.8 9.7 7.7

We have used the attach () and detach () (which should always go together) to save having
to type the dataset name every time we want to select a variable. We have just shown the start of
the table, which is a reorganisation of the original data into a more readable form.

We might want to trim some of the extreme values before calculating the mean (the arithmetic
mean is famously sensitive to large or small values, unlike the median). The trim argument allows
us to specify the fraction of the data (between 0 and 0.5) that we want to be omitted from the left-
and right-hand tails of the sorted vector of values before computing the mean of the central values.
Let us look at annual values this time, just displaying the first ten:

tapply (temp_data$temperature, temp_data$yr, mean, trim = 0.2)[1:10]

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
12.2500 12.7625 11.6000 11.7875 11.5125 11.5625 11.9500 12.7125 11.7375 11.2750

3.10.2 Applying functions to vectors using sapply ()

If we want to apply a function to a vector (rather than to the margin of a matrix), then use sapply ().
Here is the code to generate a list of sequences from 1:3 up to 1:7:

sapply (3:7, seq)

[[1]]
[1] 1 2 3

[[2]]
[1] 1 2 3 4

[[3]]
[1] 1 2 3 4 5

[[4]]
[1] 1 2 3 4 5 6

[[5]]
[1] 1 2 3 4 5 6 7

The function sapply () is most useful with complicated iterative calculations. There is a similar
function called lapply (), but sapply () is simpler to use. The following data show decay of

�

� �

�

98 THE R BOOK

radioactive emissions (y) over a 50-day (x) period, and we intend to use non-linear least squares
(see Section 2.5.1) to estimate the decay rate a in the model y = e−ax:

sapdecay <- read.table ("sapdecay.txt", header = T)
head (sapdecay)

x y
1 0 1.0000000
2 2 0.9602354
3 4 0.8446638
4 6 0.7069363
5 8 0.7086414
6 10 0.6097954

We need to write a function to calculate the sum of the squares of the differences between
the observed (y) and predicted (yf) values of y, when provided with a specific value of the
parameter a:

sumsq <- function (a, xv = sapdecay$x, yv = sapdecay$y) {
yf <- exp (-a * xv)
sum ((yv - yf)^2)

}

We can get a rough idea of the decay constant, a, for these data by linear regression of ln(y) against
x, like this:

lm (log (y) ~ x, data = sapdecay)

Call:
lm(formula = log(y) ~ x, data = sapdecay)

Coefficients:
(Intercept) x

0.04688 -0.05849

So our parameter a is somewhere close to 0.058. We generate a range of values for a spanning
an interval on either side of 0.058:

a <- seq (0.01, 0.2, 0.005)

Now we can use sapply () to apply the sum of squares function for each of these val-
ues of a (without writing a loop), and plot the deviance against the parameter value to give
Figure 3.1:

plot (a, sapply (a, sumsq), type = "l", col = hue_pal ()(1))

�

� �

�

ESSENTIALS OF THE R LANGUAGE 99

Figure 3.1 Use of sapply () to calculate multiple y values.

3.10.3 The aggregate () function for grouped summary statistics

Suppose that we have two variables of interest (y and z) and two categorical variables
(x and w) that we might want to use to summarise functions like mean or variance of y
and/or z. The aggregate () function (which is a little friendlier than tapply ()) has a formula
method which allows elegant summaries of four kinds:

one to one aggregate (y ∼ x, mean)
one to many aggregate (y ∼ x + w, mean)
many to one aggregate (cbind (y, z) ∼ x, mean)
many to many aggregate (cbind (y, z) ∼ x + w, mean)

These formulae look very much like those we will see in building linear (and other forms of) regres-
sion models, see Chapter 10.

This is very useful for removing pseudo-replication from dataframes (see Section 16.2). Here is
an example using a dataframe with two continuous variables (Growth.rate and pH), and three
categorical variables (Water, Detergent, and Daphnia):

phdaphnia <- read.table ("phdaphnia.txt", header = T)
head (phdaphnia)

Growth.rate Water Detergent Daphnia pH
1 2.919086 Tyne BrandA Clone1 4.426134
2 2.492904 Tyne BrandA Clone1 6.428475
3 3.021804 Tyne BrandA Clone1 8.615967
4 2.350874 Tyne BrandA Clone2 8.384364
5 3.148174 Tyne BrandA Clone2 5.878067
6 4.423853 Tyne BrandA Clone2 6.444727

Here is one-to-one (i.e. examine Growth.rate for each level of one factor) use of aggregate ()
to find mean growth rate in the two water samples:

aggregate (Growth.rate ~ Water, mean, data = phdaphnia)

Water Growth.rate

�

� �

�

100 THE R BOOK

1 Tyne 3.685862
2 Wear 4.017948

Here is a one-to-many use (i.e. examine Growth.rate for each level of two factors) to look at the
interaction between Water and Detergent:

aggregate (Growth.rate ~ Water + Detergent, mean, data = phdaphnia)

Water Detergent Growth.rate
1 Tyne BrandA 3.661807
2 Wear BrandA 4.107857
3 Tyne BrandB 3.911116
4 Wear BrandB 4.108972
5 Tyne BrandC 3.814321
6 Wear BrandC 4.094704
7 Tyne BrandD 3.356203
8 Wear BrandD 3.760259

Finally, here is a many-to-many use (i.e. examine Growth.rate and pH for each level of two
factors) to find mean pH as well as mean Growth.rate for the interaction between Water and
Detergent:

aggregate (cbind (Growth.rate, pH) ~ Water + Detergent, mean, data = phdaphnia)

Water Detergent Growth.rate pH
1 Tyne BrandA 3.661807 6.497067
2 Wear BrandA 4.107857 6.103381
3 Tyne BrandB 3.911116 5.649101
4 Wear BrandB 4.108972 6.042897
5 Tyne BrandC 3.814321 5.817386
6 Wear BrandC 4.094704 6.432722
7 Tyne BrandD 3.356203 6.131518
8 Wear BrandD 3.760259 6.084082

3.10.4 Parallel minima and maxima: pmin and pmax

Here are three vectors, x, y, and z. The parallel minimum function, pmin (), finds the minimum
from any one of the three variables for each subscript, and produces a vector as its result (of length
equal to the longest of x, y, or z):

x <- 1:10
y <- 10:1
z <- seq (0, 18, 2)
pmin (x, y, z)

[1] 0 2 3 4 5 5 4 3 2 1

This function just gives the minimum value in each of the 10 positions of each vector. For instance,
the smallest value in position one comes from z and is 0. If some of the vectors are shorter than

�

� �

�

ESSENTIALS OF THE R LANGUAGE 101

others, then they are just repeated (even partially) up to the length of the longest vector:

x <- 1:10
y <- 10:1
z <- seq (0, 8, 2)
pmin (x, y, z)

[1] 0 2 3 4 5 0 2 3 2 1

z has only length five and so is repeated. This mean that the smallest number in position six is,
again, 0. pmax () works in a similar way.

3.10.5 Finding closest values

Finding the value in a vector that is closest to a specified value is straightforward using which ().
The vector xv contains 1000 random numbers from a Normal distribution with mean 100 and stan-
dard deviation 10:

xv <- rnorm (1000,100,10)

Here, we want to find the value of xv that is closest to 108.0. The logic is to work out the difference
between 108 and each of the 1000 random numbers, then find which of these differences is the
smallest. This is what the R code looks like, where we use the abs () function to take the absolute
value of a number (i.e. any negative sign is ignored):

which (abs (xv - 108) == min (abs (xv - 108)))

[1] 311

The closest value to 108.0 is in location 311 within xv. But just how close to 108.0 is this value?
We use the position as a subscript on xv to find this out:

abs (xv[which (abs (xv - 108) == min (abs (xv - 108)))] - 108)

[1] 0.002232716

To generalise this, we can write a function (see Section 3.18) to return the closest value to a spec-
ified value (sv) in any vector (xv):

closest <- function (xv, sv) {
xv[which (abs (xv - sv) == min (abs (xv - sv)))]

}

and run it like this:

closest (xv, 108)

[1] 108.0022

�

� �

�

102 THE R BOOK

3.10.6 Sorting, ranking, and ordering

These three related concepts are important, and one of them (ordering) can be difficult to understand
on first acquaintance. Let us take a simple example using average house prices in some areas West
of London:

houses <- read.table ("houses.txt", header = T)
head (houses)

Location Price
1 Ascot 325
2 Sunninghill 201
3 Bracknell 157
4 Camberley 162
5 Bagshot 164
6 Staines 101

We apply the three different functions to the vector called Price:

ranked <- rank (houses$Price)
sorted <- sort (houses$Price)
ordered <- order (houses$Price)

Then we make a dataframe (see Section 4.5 for more details) out of the four vectors like this:

(view_houses <- data.frame (houses$Price, ranked, sorted, ordered))

houses. Price ranked sorted ordered
1 325 12.0 95 9
2 201 10.0 101 6
3 157 5.0 117 10
4 162 6.0 121 12
5 164 7.0 157 3
6 101 2.0 162 4
7 211 11.0 164 5
8 188 8.5 188 8
9 95 1.0 188 11
10 117 3.0 201 2
11 188 8.5 211 7
12 121 4.0 325 1

The function rank ()

The prices themselves are in no particular sequence. The ranked column contains the value that
is the rank of the particular data point (value of Price), where 1 is assigned to the lowest data point
and the number of rows in the dataframe – here 12 – is assigned to the highest data point. So the
first element, a price of 325, happens to be the highest value. We can see that there are 11 values
smaller than 325:

�

� �

�

ESSENTIALS OF THE R LANGUAGE 103

houses$Price < 325

[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Fractional ranks indicate ties. There are two 188s, and their ranks are 8 and 9. Because they are
tied, each gets the average of their two ranks (8 + 9)∕2 = 8.5. The lowest price is 95, indicated by
a rank of 1.

The function sort ()

The sorted vector is very straightforward. It contains the values of Price sorted into ascending
order. If we want to sort into descending order, we can use the argument decreasing = T like
this:

(sorted_rev <- sort (houses$Price, decreasing = T))

[1] 325 211 201 188 188 164 162 157 121 117 101 95

Note that sort () is potentially very dangerous, because it uncouples values that might need to
be in the same row of the dataframe (e.g. because they are the explanatory variables associated
with a particular value of the response variable). It is bad practice, therefore, to sort just one column
of a dataframe, not least because there is no unsort () function.

The function order ()

This is the most important of the three functions, and much the hardest to understand on first
acquaintance. The numbers in this column are subscripts between 1 and 12. The order () func-
tion returns an integer vector containing the permutation that will sort the input into ascending
order. The lowest value of Price is 95. What is the position in the original vector called Price
where 95 occurred? Scanning down the column, we find it in row number 9. This is the first value
in ordered: ordered[1]. Where is the next smallest value (101) to be found within Price? It is in
position 6, so this is ordered[2]. The third smallest value of Price (117) is in position 10, so this
is ordered[3], and so on.

This function is particularly useful in sorting dataframes, as explained in Section 4.5.3. Using
order () with subscripts is a much safer option than using sort (), as it enables us to sort
whole rows of the dataframe rather than just one column. The beauty of order () is that we can
use order (Price) as a subscript for Location to obtain the price-ranked list of locations:

attach (houses)
Location[order (Price)]

[1] "Reading" "Staines" "Winkfield" "Newbury" "Bracknell"
[6] "Camberley" "Bagshot" "Maidenhead" "Warfield" "Sunninghill"

[11] "Windsor" "Ascot"

Location[order (Price, decreasing = T)]

�

� �

�

104 THE R BOOK

[1] "Ascot" "Windsor" "Sunninghill" "Maidenhead" "Warfield"
[6] "Bagshot" "Camberley" "Bracknell" "Newbury" "Winkfield"
[11] "Staines" "Reading"

detach (houses)

As we can see, order () also has the decreasing = T argument. In a similar fashion, we can
see the whole dataframe, ordered:

attach (houses)
houses[order (Price),]

Location Price
9 Reading 95
6 Staines 101
10 Winkfield 117
12 Newbury 121
3 Bracknell 157
4 Camberley 162
5 Bagshot 164
8 Maidenhead 188
11 Warfield 188
2 Sunninghill 201
7 Windsor 211
1 Ascot 325

detach (houses)

3.10.7 Understanding the difference between unique () and duplicated ()

The difference between these two functions is best seen with a simple example. Here is a vector
of common British surnames:

names <- c ("Williams", "Patel", "Smith", "Williams", "Patel", "Williams")

We can see how many times each name appears:

table (names)

names
Patel Smith Williams

2 1 3

It is clear that the vector contains just three different names. The function called unique () extracts
these three unique names, creating a vector of length 3, unsorted, in the order in which the names
are encountered in the vector:

�

� �

�

ESSENTIALS OF THE R LANGUAGE 105

unique (names)

[1] "Williams" "Patel" "Smith"

In contrast, the function called duplicated () produces a vector, of the same length as the vector
of names, containing the logical values either FALSE or TRUE, depending upon whether or not that
name has appeared already (reading from the left). So

duplicated (names)

[1] FALSE FALSE FALSE TRUE TRUE TRUE

The first three names are not duplicated (FALSE), but the last three are (TRUE). We can mimic the
unique () function by using this vector as subscripts like this:

names[!duplicated (names)]

[1] "Williams" "Patel" "Smith"

Remember the NOT operator (!) in front of the duplicated () function. There we have it: if we
want a shortened vector, containing only the unique values in names, then use unique (), but if
we want a vector of the same length as names, then use duplicated (). We might use this to
extract values from a different vector. If we wanted the mean salary, ignoring the repeats, because
we believe individuals are on the payroll more than once:

salary <- c (42, 42, 48, 42, 42, 42)
mean (salary)

[1] 43

salary[!duplicated (names)]

[1] 42 42 48

mean (salary[!duplicated (names)])

[1] 44

Note that this is not the same answer as would be obtained by omitting the duplicate salaries
because two of the people (Patel and Williams) had the same salary (42). Here is the wrong
answer:

mean (salary[!duplicated (salary)])

[1] 45

�

� �

�

106 THE R BOOK

3.10.8 Looking for runs of numbers within vectors

The useful function called rle (), which stands for run length encoding, is most easily under-
stood with an example. Here is a vector of 150 random numbers from a Poisson distribution with
mean 0.7:

set.seed (123)

(poisson <- rpois (150,0.7))

[1] 0 1 0 2 2 0 1 2 1 0 2 0 1 1 0 2 0 0 0 2 2 1 1 4 1 1 1 1 0 0 2 2 1 1 0 0 1
[38] 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 1 0 0 1 2 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0
[75] 0 0 0 1 0 0 0 1 0 1 0 0 3 2 2 0 0 1 0 1 0 0 1 0 0 1 1 0 0 2 0 2 2 1 0 0 2
[112] 0 0 2 1 0 1 2 1 0 1 0 0 0 0 3 0 0 0 1 1 2 1 1 1 1 1 1 3 0 0 0 0 0 1 0 0 0
[149] 0 1

The vector runs over several lines, and the number in square brackets at the start of each line tells
us the position of the next element (e.g. the 2nd line begins with the 38th element). We can do our
own run length encoding on the vector by eye: there is a run of two 1s, then a run of two 0s, then
a single 2, then a single 1, then a single 0, and so on. So the run lengths are 2,2,1,1,1,1, … .
The values associated with these runs were 1,0,2,1,0,1, … . Here is the output using
rle ():

rle (poisson)

Run Length Encoding
lengths: int [1:85] 1 1 1 2 1 1 1 1 1 1 ...
values: int [1:85] 0 1 0 2 0 1 2 1 0 2 ...

The object is a list of two vectors, which we can retrieve using double square brackets, [[]]: the
lengths of the runs ([[1]]) and the values that did the running ([[2]]). To find the longest run, and the
value associated with that longest run, we use the indexed lists like this

max (rle (poisson)[[1]])

[1] 12

So the longest run in this vector of numbers was 12. But 12 of what? We use which () to find the
location of the 12 in lengths, then apply this index to values to find the answer:

which (rle (poisson)[[1]] == max (rle(poisson)[[1]]))

[1] 25

rle (poisson)[[2]][which (rle (poisson)[[1]] == max (rle(poisson)[[1]]))]

[1] 0

�

� �

�

ESSENTIALS OF THE R LANGUAGE 107

We should note that what we retrieved in the first line was not the position of the start of the longest
run but the index of the run, i.e. run 12 was the longest. If we want to find out where it started, we
can just add up the lengths of the previous runs and add 1:

sum (rle (poisson)[[1]][1:(which (rle (poisson)[[1]] ==
max (rle(poisson)[[1]])) - 1)]) + 1

[1] 38

The expressions we are using can have quite a few brackets of differing shapes. If a line of code
doesn’t work, it’s often useful to make sure that our start and end brackets are paired up correctly.
In RStudio, if we put the cursor to the right of a bracket, then its partner as R understands it will be
highlighted in grey.

It is sometimes of interest to know the number of runs in a given vector (for instance, the lower
the number of runs, the more aggregated the numbers; and the greater the number of runs, the
more regularly spaced out). We use the length () function for this:

length (rle (poisson)[[1]])

[1] 85

length (rle (poisson)[[2]])

[1] 85

indicating that the 150 values were arranged in 85 runs, whether we look at the first or second item
in the list.

In a different example, suppose we had n1 values of 1 representing present and n2 values of
0 representing absent, with at least one of each; then the minimum number of runs would be 2
(a solid block of 1s then a sold block of 0s). The maximum number of runs would be 2n + 1, where
n = min (n1, n2) if they alternated (until the smaller number ran out). Here is a simple runs
test based on 10 000 randomisations of 25 ones and 30 zeros, so our minimum length would be 2
and our maximum 51:

n1 <- 25
n2 <- 30
y <- c (rep (1, n1),rep (0, n2))
len <- numeric (10000)
for (i in 1:10000) {

len[i] <- length (rle (sample (y))[[2]])
}
summary (len)

Min. 1st Qu. Median Mean 3rd Qu. Max.
16.00 26.00 28.00 28.27 31.00 41.00

Thus, even in 10 000 samples we got nowhere near to achieving the minimum or maximum number
of runs.

�

� �

�

108 THE R BOOK

3.10.9 Sets: union (), intersect (), and setdiff ()

There are three essential functions for manipulating sets. The principles are easy to see if we work
with an example of two sets:

setA <- c ("a", "b", "c", "d", "e")
setB <- c ("d", "e", "f", "g")

We can think about what the two sets have in common, and what is unique to each.
The union of two sets (A ∪ B) is everything in the two sets taken together, but counting elements

only once that are common to both sets:

union (setA, setB)

[1] "a" "b" "c" "d" "e" "f" "g"

The intersection of two sets (A ∩ B) is the material that they have in common:

intersect (setA, setB)

[1] "d" "e"

Note, however, that the difference between two sets is order-dependent. It is the material that is in
the first named set, that is not in the second named set. Thus, setdiff (A, B) gives a different
answer than setdiff (B, A). For our example:

setdiff (setA, setB)

[1] "a" "b" "c"

setdiff (setB, setA)

[1] "f" "g"

Thus, it should be the case that setdiff (A, B) and intersect (A, B) and setdiff
(B, A) is the same as union (A, B). Let us check:

union (setdiff (setA, setB), union (intersect (setA, setB),
setdiff (setB, setA)))

[1] "a" "b" "c" "d" "e" "f" "g"

The function union () only works on two sets so we had to use it twice. There is also a built-in
function setequal () for testing if two sets are equal:

setequal (
union (setdiff (setA, setB), union (intersect (setA, setB),

�

� �

�

ESSENTIALS OF THE R LANGUAGE 109

setdiff (setB, setA))),
union(setA, setB))

[1] TRUE

We can also use %in% for comparing sets. The result is a logical vector whose length matches the
vector on the left and which tells us whether members of the first set are in the second one or not:

setA %in% setB

[1] FALSE FALSE FALSE TRUE TRUE

setB %in% setA

[1] TRUE TRUE FALSE FALSE

Using these vectors of logical values as subscripts, we can demonstrate, for instance, that those
members of the first set that are in the second is the same as A ∩ B:

setA[setA %in% setB]

[1] "d" "e"

intersect (setA, setB)

[1] "d" "e"

3.11 Matrices and arrays

An array is a multi-dimensional object where all the entries have the same class (e.g. they are all
numeric). The dimensions of an array are specified by its dim argument, which gives the maxi-
mal indices in each dimension. So for a three-dimensional array consisting of 24 numbers in the
sequence 1–24, with dimensions 2 × 4 × 3, we write:

(y <- array (1:24, dim = c (2, 4, 3)))

, , 1

[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8

, , 2

[,1] [,2] [,3] [,4]

�

� �

�

110 THE R BOOK

[1,] 9 11 13 15
[2,] 10 12 14 16

, , 3

[,1] [,2] [,3] [,4]
[1,] 17 19 21 23
[2,] 18 20 22 24

This produces three two-dimensional tables, because the third dimension is 3, and this dimension is
given just before each 2 × 4 table, e.g. ,, 1. This is what happens when we change the dimensions:

(y <- array (1:24, dim = c (3, 2, 4)))

, , 1

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

, , 2

[,1] [,2]
[1,] 7 10
[2,] 8 11
[3,] 9 12

, , 3

[,1] [,2]
[1,] 13 16
[2,] 14 17
[3,] 15 18

, , 4

[,1] [,2]
[1,] 19 22
[2,] 20 23
[3,] 21 24

Now we have four two-dimensional tables, each of three rows and two columns.
A matrix is just a two-dimensional array. Incidentally, a dataframe is a two-dimensional object

that looks a bit like a matrix but which can have different content in each column: this is discussed
in Section 4.5.

When there are two subscripts [5,3] to an object like a matrix or a dataframe, the first subscript
refers to the row number (5 in this example; the rows are defined as margin number 1) and the
second subscript refers to the column number (3 in this example; the columns are margin number 2).

�

� �

�

ESSENTIALS OF THE R LANGUAGE 111

There is an important and powerful convention in R, such that when a subscript appears as a blank
it is understood to mean ’all of’. Thus,

• [,4] means all rows in column 4 of an object;

• [2,] means all columns in row 2 of an object.

When we have an array with more than two dimensions, we use more subscripts, e.g. [2,4,5]. So

y[2,1,3]

[1] 14

To find this, we need to look in the third table, second row, and first column of the above.

3.11.1 Matrices

There are several ways of making a matrix. We can create one directly like this:

(X <- matrix (c (1, 0, 0, 0, 1, 0, 0, 0, 1), nrow = 3))

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

where, by default, the numbers are entered column-wise. The class and attributes of X indicate that
it is a matrix of three rows and three columns:

class(X)

[1] "matrix" "array"

attributes(X)

$dim
[1] 3 3

In the next example, the data in the vector appear row-wise:

y <- c (1, 2, 3, 4, 4, 3, 2, 1)
(Y <- matrix (y, byrow = T, nrow = 2))

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 4 3 2 1

�

� �

�

112 THE R BOOK

Another way to convert a vector into a matrix is by providing the vector object with two dimensions
(rows and columns) using the dim () function like this:

dim (y) <- c (4,2)

We can check that vector has now become a matrix:

is.matrix (y)

[1] TRUE

We need to be careful, however, because we have made no allowance at this stage for the fact that
the data were entered row-wise into Y and so it is different from y:

y

[,1] [,2]
[1,] 1 4
[2,] 2 3
[3,] 3 2
[4,] 4 1

The matrix we want is the transpose of this matrix:

t (y)

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 4 3 2 1

3.11.2 Naming the rows and columns of matrices

By default, matrices have numbers naming their rows and columns (see above). Here is a 4 × 5
matrix of random integers from a Poisson distribution with mean 1.5:

(X <- matrix (rpois (20, 1.5), nrow = 4))

[,1] [,2] [,3] [,4] [,5]
[1,] 2 1 1 1 3
[2,] 4 1 0 5 2
[3,] 1 1 2 1 1
[4,] 0 2 1 3 1

Let us suppose that the rows refer to four different trials, and we want to label the rows Trial.1
etc. We employ the function rownames () to do this. We could use the paste () function (see
Section 3.15.1), but here we take advantage of arguments to rownames ():

�

� �

�

ESSENTIALS OF THE R LANGUAGE 113

rownames (X) <- rownames (X, do.NULL = FALSE, prefix = "Trial.")
X

[,1] [,2] [,3] [,4] [,5]
Trial.1 2 1 1 1 3
Trial.2 4 1 0 5 2
Trial.3 1 1 2 1 1
Trial.4 0 2 1 3 1

The do.NULL = FALSE argument tells R not to create row names and then we just add a prefix
to the existing ones using the prefix argument.

For the columns, we want to supply a vector of different names for the five drugs involved in the
trial:

drug_names <- c ("aspirin", "paracetamol", "nurofen", "hedex", "placebo")
colnames (X) <- drug_names
X

aspirin paracetamol nurofen hedex placebo
Trial.1 2 1 1 1 3
Trial.2 4 1 0 5 2
Trial.3 1 1 2 1 1
Trial.4 0 2 1 3 1

Alternatively, we can use the dimnames () function to give names to the rows and/or columns
of a matrix. This time we want the rows to be unlabelled (NULL) and the column names to be of
the form drug.1, drug.2, etc. Each argument to dimnames () has to be a list () (rows first,
columns second, as usual) with the elements of the list of exactly the correct lengths (4 and 5 in
this particular case):

dimnames (X) <- list (NULL, paste ("drug.", 1:5, sep = ""))
X

drug.1 drug.2 drug.3 drug.4 drug.5
[1,] 2 1 1 1 3
[2,] 4 1 0 5 2
[3,] 1 1 2 1 1
[4,] 0 2 1 3 1

3.11.3 Calculations on rows or columns of matrices

Section 2.2 deals with more mathematical aspects of this topic. We can use subscripts to select
parts of the matrix, with a blank meaning ’all of the rows’ or ’all of the columns’. Here is the mean
of the rightmost column (number 5) of X, carried over from Section 3.11.2, calculated over all the
rows (blank then comma),

mean (X[,5])

[1] 1.75

�

� �

�

114 THE R BOOK

or the variance of the bottom row, calculated over all of the columns (comma then blank):

var (X[4,])

[1] 1.3

There are some special functions for calculating summary statistics on matrices, with some fairly
obvious names:

rowSums (X)

[1] 8 12 6 7

colSums(X)

drug.1 drug.2 drug.3 drug.4 drug.5
7 5 4 10 7

rowMeans(X)

[1] 1.6 2.4 1.2 1.4

colMeans(X)

drug.1 drug.2 drug.3 drug.4 drug.5
1.75 1.25 1.00 2.50 1.75

These functions are built for speed, and ‘blur some of the subtleties of dealing with NA or NaN’.
If such subtlety is an issue, then use apply () instead (see Section 3.11.6 for more details).
Remember that columns are margin number 2 and rows are margin number 1:

apply (X, 2, mean)

drug.1 drug.2 drug.3 drug.4 drug.5
1.75 1.25 1.00 2.50 1.75

We might want to sum groups of rows within columns, and rowsum () (singular and all lower case,
in contrast to rowSums (), above) is a very efficient function for this. In this example, we want to
group together row 1 and row 4 (as group A) and row 2 and row 3 (group B). Note that the grouping
vector has to have length equal to the number of rows:

group = c ("A", "B", "B", "A")
rowsum (X, group)

drug.1 drug.2 drug.3 drug.4 drug.5
A 2 3 2 4 4
B 5 2 2 6 3

�

� �

�

ESSENTIALS OF THE R LANGUAGE 115

We could achieve the same ends (but more slowly) with tapply () or aggregate ():

tapply (X, list (group[row(X)], col(X)), sum)

1 2 3 4 5
A 2 3 2 4 4
B 5 2 2 6 3

This is a little complex, and we have lost the column headings: as usual, there are lots of ways to
do things in R, but it’s worth taking a bit of time to think of the simplest one. A bit better is

aggregate (X, list (group), sum)

Group.1 drug.1 drug.2 drug.3 drug.4 drug.5
1 A 2 3 2 4 4
2 B 5 2 2 6 3

Suppose that we want to shuffle the elements of each column of a matrix independently. We apply
the randomising function sample () to each column (margin number 2) like this

apply (X, 2, sample)

drug.1 drug.2 drug.3 drug.4 drug.5
[1,] 0 1 1 1 2
[2,] 4 1 0 5 3
[3,] 2 2 1 1 1
[4,] 1 1 2 3 1

apply (X, 2, sample)

drug.1 drug.2 drug.3 drug.4 drug.5
[1,] 1 1 2 1 1
[2,] 4 1 1 1 2
[3,] 0 1 1 3 3
[4,] 2 2 0 5 1

and so on, for as many shuffled samples as we need.

3.11.4 Adding rows and columns to matrices

In this particular case, we have been asked to add a row at the bottom showing the column means,
and a column at the right showing the row variances:

X <- rbind (X, apply (X, 2, mean))
X <- cbind (X, apply (X, 1, var))
X

drug.1 drug.2 drug.3 drug.4 drug.5
[1,] 2.00 1.00 1 1.0 3.00 0.80000

�

� �

�

116 THE R BOOK

[2,] 4.00 1.00 0 5.0 2.00 4.30000
[3,] 1.00 1.00 2 1.0 1.00 0.20000
[4,] 0.00 2.00 1 3.0 1.00 1.30000
[5,] 1.75 1.25 1 2.5 1.75 0.33125

The functions rbind () and cbind(), with the r and c representing row and column, respectively,
will bind together whatever is put in their respective brackets. Note that the number of decimal places
varies across columns, with one in columns 1 and 2, two in columns 3 and 4, none in column 5
(integers), and five in column 6. The default in R is to print the minimum number of decimal places
consistent with the contents of the column as a whole.

Next, we need to label the sixth column as variance and the fifth row as mean:

colnames (X)[6] <- "variance"
rownames (X) <- c(1:4, "mean")
X

drug.1 drug.2 drug.3 drug.4 drug.5 variance
1 2.00 1.00 1 1.0 3.00 0.80000
2 4.00 1.00 0 5.0 2.00 4.30000
3 1.00 1.00 2 1.0 1.00 0.20000
4 0.00 2.00 1 3.0 1.00 1.30000
mean 1.75 1.25 1 2.5 1.75 0.33125

When a matrix with a single row or column is created by a subscripting operation, it is by default
turned into a vector. In a similar way, if an array with dimension, say, 2 × 3 × 3 is subsetted by just
picking the first row it will be coerced into a 3 × 3 array, losing the unnecessary dimension. After
much discussion this has been determined to be a feature of R. To prevent this happening, add the
argument drop = FALSE to the subscripting. For example:

a <- matrix (1:4, nrow = 2)
(rowmatrix <- a[2, , drop = FALSE])

[,1] [,2]
[1,] 2 4

(rowvector <- a[2,])

[1] 2 4

(colmatrix <- a[, 1, drop = FALSE])

[,1]
[1,] 1
[2,] 2

(colvector <- a[, 1])

[1] 1 2

�

� �

�

ESSENTIALS OF THE R LANGUAGE 117

b <- array (1:18, dim = c (2, 3, 3))
(still_4_dims <- b[1, , , drop = F])

, , 1

[,1] [,2] [,3]
[1,] 1 3 5

, , 2

[,1] [,2] [,3]
[1,] 7 9 11

, , 3

[,1] [,2] [,3]
[1,] 13 15 17

The drop = FALSE option should be used defensively (i.e. always unless we specifically want to
lose a dimension in certain circumstances) when programming.

3.11.5 The sweep () function

The sweep () function is used to sweep out array summaries from vectors, matrices, arrays, or
dataframes. In this example, we want to express a matrix in terms of the departures of each value
from its column mean.

sweepdata <- read.table ("sweepdata.txt")

First, we need to create a vector containing the parameters that we intend to sweep out of the
matrix. In this case, we want to compute the four column means:

(colms <- apply (sweepdata, 2, mean))

V1 V2 V3 V4
4.60 13.30 0.44 151.60

Now, it is straightforward to express all of the data in sweepdata as departures from the relevant
column means:

sweep (sweepdata, 2, colms)

V1 V2 V3 V4
1 -1.6 -1.3 -0.04 -26.6
2 0.4 -1.3 0.26 14.4
3 2.4 1.7 0.36 22.4
4 2.4 0.7 0.26 -23.6
5 0.4 4.7 -0.14 -15.6
6 4.4 -0.3 -0.24 3.4

�

� �

�

118 THE R BOOK

7 2.4 1.7 0.06 -36.6
8 -2.6 -0.3 0.06 17.4
9 -3.6 -3.3 -0.34 30.4
10 -4.6 -2.3 -0.24 14.4

Note the use of margin = 2 as the second argument to indicate that we want the sweep to be
carried out on the columns (rather than on the rows). A related function, scale (), is used for
centring and scaling data in terms of standard deviations.

We can see what sweep () has done by doing the calculation long-hand. The operation of this
particular sweep is simply one of subtraction. The only issue is that the subtracted object has to
have the same dimensions as the matrix to be swept (in this example, 10 rows of 4 columns).
Thus, to sweep out the column means, the object to be subtracted from sweepdata must have the
column means repeated in each of the 10 rows of 4 columns:

(col.means <- matrix (rep(colms, rep (10, 4)), nrow = 10))

[,1] [,2] [,3] [,4]
[1,] 4.6 13.3 0.44 151.6
[2,] 4.6 13.3 0.44 151.6
[3,] 4.6 13.3 0.44 151.6
[4,] 4.6 13.3 0.44 151.6
[5,] 4.6 13.3 0.44 151.6
[6,] 4.6 13.3 0.44 151.6
[7,] 4.6 13.3 0.44 151.6
[8,] 4.6 13.3 0.44 151.6
[9,] 4.6 13.3 0.44 151.6
[10,] 4.6 13.3 0.44 151.6

Then the same result as we got from sweep () is obtained simply by

sweepdata - col.means

There is another helpful use of sweep (). Suppose that we want to obtain the row or column
subscripts in a matrix, within the format of a matrix: this might be useful if we want the position of
entries that fulfil a particular condition.

sweep (sweepdata, 1, 1:10, function (a, b) b)

[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 2 2 2 2
[3,] 3 3 3 3
[4,] 4 4 4 4
[5,] 5 5 5 5
[6,] 6 6 6 6
[7,] 7 7 7 7
[8,] 8 8 8 8
[9,] 9 9 9 9
[10,] 10 10 10 10

�

� �

�

ESSENTIALS OF THE R LANGUAGE 119

sweep (sweepdata, 2, 1:4, function (a, b) b)

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 1 2 3 4
[3,] 1 2 3 4
[4,] 1 2 3 4
[5,] 1 2 3 4
[6,] 1 2 3 4
[7,] 1 2 3 4
[8,] 1 2 3 4
[9,] 1 2 3 4

[10,] 1 2 3 4

3.11.6 Applying functions to matrices

We have already seen some examples of using the apply () function in order to apply other
functions to the rows or columns of matrices or dataframes. For example, here is a matrix with four
rows and six columns:

(X <- matrix (1:24, nrow = 4))

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 5 9 13 17 21
[2,] 2 6 10 14 18 22
[3,] 3 7 11 15 19 23
[4,] 4 8 12 16 20 24

Note that placing the expression to be evaluated in parentheses (as above) causes the value of the
result to be printed on the screen. Often, we want to apply a function across one of the margins of
a matrix. Margin 1 refers to the rows and margin 2 to the columns. Here are the row totals (four of
them):

apply (X, MARGIN = 1, FUN = sum)

[1] 66 72 78 84

The FUN = sum argument describes the function we want to use across the rows. Here are the
column totals (six of them):

apply (X, 2, sum)

[1] 10 26 42 58 74 90

Note that in both cases, the answer produced by apply () is a vector rather than a matrix. We
can apply () functions to the individual elements of the matrix rather than to the margins. The
margin we specify influences only the way the resulting matrix is presented (sqrt () is the square
root function).

�

� �

�

120 THE R BOOK

apply (X, 1, sqrt)

[,1] [,2] [,3] [,4]
[1,] 1.000000 1.414214 1.732051 2.000000
[2,] 2.236068 2.449490 2.645751 2.828427
[3,] 3.000000 3.162278 3.316625 3.464102
[4,] 3.605551 3.741657 3.872983 4.000000
[5,] 4.123106 4.242641 4.358899 4.472136
[6,] 4.582576 4.690416 4.795832 4.898979

apply (X, 2, sqrt)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.000000 2.236068 3.000000 3.605551 4.123106 4.582576
[2,] 1.414214 2.449490 3.162278 3.741657 4.242641 4.690416
[3,] 1.732051 2.645751 3.316625 3.872983 4.358899 4.795832
[4,] 2.000000 2.828427 3.464102 4.000000 4.472136 4.898979

Here are the numbers from each of the rows, randomised using sample () without replacement:

apply (X, 2, sample)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 3 5 10 16 19 24
[2,] 1 7 9 13 18 21
[3,] 4 6 12 14 20 23
[4,] 2 8 11 15 17 22

Note that the resulting matrix has six rows and four columns (i.e. it has been transposed): change
the margin to have the output in the original shape.

We can supply our own function definition (here x2 + x) within apply () like this:

apply (X, 1, function(x) x^2 + x)

[,1] [,2] [,3] [,4]
[1,] 2 6 12 20
[2,] 30 42 56 72
[3,] 90 110 132 156
[4,] 182 210 240 272
[5,] 306 342 380 420
[6,] 462 506 552 600

This is an anonymous function because the function is not named.

3.11.7 Scaling a matrix

For a numeric matrix, we might want to scale the values of the columns so that each has a mean
of 0. We might want to go further by scaling the columns so that they have mean 0 and a standard

�

� �

�

ESSENTIALS OF THE R LANGUAGE 121

deviation of 1. These two actions can be carried out by using scale (). Take the following matrix,
for example:

mat_a <- matrix (c (1, -2, 5, 4, 15, -8, 1, 10, 19), ncol = 3)
mat_a

[,1] [,2] [,3]
[1,] 1 4 1
[2,] -2 15 10
[3,] 5 -8 19

If we wanted to linearly scale the matrix mat_a so that the columns have mean zero, then we would
need:

scale (mat_a, scale = FALSE)

[,1] [,2] [,3]
[1,] -0.3333333 0.3333333 -9
[2,] -3.3333333 11.3333333 0
[3,] 3.6666667 -11.6666667 9
attr(,"scaled:center")
[1] 1.333333 3.666667 10.000000

The output tells us the original mean value for each column. This was then subtracted from the
relevant column to produce zero-mean columns.

If we want to scale the matrix so that each column has mean zero and standard deviation of 1,
then we need:

scale (mat_a)

[,1] [,2] [,3]
[1,] -0.0949158 0.02897638 -1
[2,] -0.9491580 0.98519690 0
[3,] 1.0440738 -1.01417328 1
attr(,"scaled:center")
[1] 1.333333 3.666667 10.000000
attr(,"scaled:scale")
[1] 3.511885 11.503623 9.000000

This time, the output gives us the mean and standard deviation of each original column, which were
then used to scale the matrix as requested.

3.11.8 Using the max.col () function

The task is to work out the number of plots on which a species is dominant in the Park Grass
dataframe. This involves scanning each row of a matrix and reporting on the column number that
contains the maximum value.

�

� �

�

122 THE R BOOK

pgfull <- read.table ("pgfull.txt", header = T)
names (pgfull)

[1] "AC" "AE" "AM" "AO" "AP" "AR"
[7] "AS" "AU" "BH" "BM" "CC" "CF"
[13] "CM" "CN" "CX" "CY" "DC" "DG"
[19] "ER" "FM" "FP" "FR" "GV" "HI"
[25] "HL" "HP" "HS" "HR" "KA" "LA"
[31] "LC" "LH" "LM" "LO" "LP" "OR"
[37] "PL" "PP" "PS" "PT" "QR" "RA"
[43] "RB" "RC" "SG" "SM" "SO" "TF"
[49] "TG" "TO" "TP" "TR" "VC" "VK"
[55] "plot" "lime" "richness" "hay" "pH"

pgfull[1:6, 1:6]

AC AE AM AO AP AR
1 2.51 1.18 0.45 0.91 0.47 0.00
2 6.85 0.10 0.58 1.02 0.35 0.00
3 10.58 0.11 0.21 1.85 0.00 0.00
4 13.65 0.00 0.00 6.46 0.00 0.00
5 4.84 0.00 1.49 0.36 0.10 0.06
6 4.30 0.32 1.72 1.61 0.09 0.03

The species names are represented by 54 two-letter codes (so, for example, ‘AC’ is Agrostis capil-
laris), and the numerical values, biomass. There are also various other bits of data at the right-hand
side. We define the dominant as the species that has the maximum biomass on a given plot. The
first task is to reduce the data so that we only have the species abundances (we do not want the
plot numbers, or the treatments, or the values of any covariates). For the Park Grass data, the first
54 columns contain species abundance values, so we select all of the rows in the first 54 columns
like this:

species <- pgfull[,1:54]

Now we use the function max.col () to go through all of the 89 rows, and for each row return the
column number that contains the maximum biomass:

max.col (species)

[1] 22 22 22 1 32 32 22 1 22 22 22 1 22 22 1 1 22 22 22 4 2 2 51 2 1
[26] 1 22 22 1 1 2 5 1 4 2 2 1 4 22 22 22 4 2 2 25 25 2 2 5 25
[51] 32 1 22 22 2 2 1 1 51 2 2 27 2 2 2 2 35 51 51 1 2 2 1 1 32
[76] 32 1 1 1 1 1 1 14 1 2 1 1 2 2

To get the identity of the dominant, we then extract the name of this column, using the index returned
by the above as a subscript to the object called species:

names (species)[max.col (species)]

[1] "FR" "FR" "FR" "AC" "LH" "LH" "FR" "AC" "FR" "FR" "FR" "AC" "FR" "FR" "AC"

�

� �

�

ESSENTIALS OF THE R LANGUAGE 123

[16] "AC" "FR" "FR" "FR" "AO" "AE" "AE" "TP" "AE" "AC" "AC" "FR" "FR" "AC" "AC"
[31] "AE" "AP" "AC" "AO" "AE" "AE" "AC" "AO" "FR" "FR" "FR" "AO" "AE" "AE" "HL"
[46] "HL" "AE" "AE" "AP" "HL" "LH" "AC" "FR" "FR" "AE" "AE" "AC" "AC" "TP" "AE"
[61] "AE" "HS" "AE" "AE" "AE" "AE" "LP" "TP" "TP" "AC" "AE" "AE" "AC" "AC" "LH"
[76] "LH" "AC" "AC" "AC" "AC" "AC" "AC" "CN" "AC" "AE" "AC" "AC" "AE" "AE"

Finally, we use table () to count up the total number of plots on which each species was domi-
nant. The code looks like this

table (names (species)[max.col (species)])

AC AE AO AP CN FR HL HS LH LP TP
26 23 4 2 1 19 3 1 5 1 4

So AC was dominant on more plots than any other species, with AE in second place and FR in
third. The total number of species that were dominant on one or more plots is given by determining
the length of this table:

length (table (names (species)[max.col (species)]))

[1] 11

So the number of species that were present in the system, but never attained dominance was
54 − 11 = 43.

There is no such function as min.col (), but we can easily emulate it by using max.col () with
the negatives of our data. It makes no sense to do it with this example, because several species
are absent from every plot, and the function would just pick one of the absent species at random
(i.e. in the event of a tie). But, anyway, just to see how it works:

max.col (-species)

[1] 30 16 23 43 54 36 53 52 45 53 52 49 6 54 28 20 11 16 29 54 20 41 31 43 8
[26] 39 45 45 21 54 20 6 17 39 31 12 23 21 52 19 32 14 20 51 12 17 8 32 16 51
[51] 41 7 48 5 47 43 19 41 19 46 48 29 15 14 16 34 17 45 43 16 15 52 10 23 20
[76] 20 46 49 7 43 19 21 52 29 53 23 31 10 8

picks out the identity (the column number) of one of the zeros from each row. In a case where there
was a unique minimum in each row, then this would find it.

3.11.9 Restructuring a multi-dimensional array using aperm ()

There are circumstances where we may want to reorder the dimensions of an array. Here is an
example of an array with three dimensions: two sexes, three ages, and four income groups. For
simplicity and ease of illustration, the values in the array are just the numbers 1–24 in order (2 × 3 ×
4 = 24):

toy_data <- array (1:24, 2:4)

�

� �

�

124 THE R BOOK

The second argument to the array () function specifies the number of levels in dimensions 1,
2, and 3 using the sequence-generator 2:4 to produce the numbers 2, 3, and 4. This is what the
array looks like:

toy_data

, , 1

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

,, 2

[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

, , 3

[,1] [,2] [,3]
[1,] 13 15 17
[2,] 14 16 18

, , 4

[,1] [,2] [,3]
[1,] 19 21 23
[2,] 20 22 24

There are four sub-tables, each with 2 rows and 3 columns. Now we give names to the factor levels
in each of the three dimensions: these are called the dimnames () attributes, and each one is
allocated as a list () like this:

dimnames (toy_data)[[1]] <- list ("male", "female")
dimnames (toy_data)[[2]] <- list ("young", "mid", "old")
dimnames (toy_data)[[3]] <- list ("A", "B", "C", "D")
dimnames (toy_data)

[[1]]
[1] "male" "female"

[[2]]
[1] "young" "mid" "old"

[[3]]
[1] "A" "B" "C" "D"

We can see the advantage of naming the dimensions by comparing the output of the array with
(below) and without names (above):

�

� �

�

ESSENTIALS OF THE R LANGUAGE 125

toy_data

, , A

young mid old
male 1 3 5
female 2 4 6

, , B

young mid old
male 7 9 11
female 8 10 12

, , C

young mid old
male 13 15 17
female 14 16 18

, , D

young mid old
male 19 21 23
female 20 22 24

Suppose, however, that we want the four income groups (A–D) to be the columns in each of the
sub-tables, and the separate sub-tables to represent the two genders. This is a job for aperm ().
We need to specify the order age, then income, then gender in terms of the order of their dimensions
(row, column, sub-table, namely 2, then 3, then 1) like this:

new_toy_data <- aperm (toy_data, c (2, 3, 1))
new_toy_data

,, male

A B C D
young 1 7 13 19
mid 3 9 15 21
old 5 11 17 23

,, female

A B C D
young 2 8 14 20
mid 4 10 16 22
old 6 12 18 24

This can be tricky to see at first, but aperm () is a very useful function, so it’s worth persevering.

�

� �

�

126 THE R BOOK

3.12 Random numbers, sampling, and shuffling

When debugging or testing a program, it is often useful to use some randomly generated data. We
have already seen a few functions which can do this, rpois () and sample (), for instance. If
problems arise, then it can be helpful to get the same string of random numbers as last time. We
can use the set.seed () function to control this using our favourite integer as the seed to repeat
what we get

set.seed (375)
runif (3)

[1] 0.9613669 0.6918535 0.7302684

runif (3)

[1] 0.9228566 0.1603804 0.9642799

runif (3)

[1] 0.52880907 0.08660864 0.29075809

The runif () function generates randomly from (0,1), and we get a different set of three each
time. If we reset the seed with the same value, we get the same random numbers as last time:

set.seed (375)
runif (3)

[1] 0.9613669 0.6918535 0.7302684

runif (3)

[1] 0.9228566 0.1603804 0.9642799

runif (3)

[1] 0.52880907 0.08660864 0.29075809

R generates these random data in a sequence, so once we start at the same point, we will con-
tinue with the same sequence. The current state of the seed (a vector of numbers) is given by
.Random.seed, and it should not be altered:

.Random.seed[1:4]

[1] 10403 9 1743958520 -1985855194

length (.Random.seed)

[1] 626

�

� �

�

ESSENTIALS OF THE R LANGUAGE 127

Randomisation is central to a great many scientific and statistical procedures (and is often referred
to using the phrase Monte Carlo). Generating random numbers from a variety of probability distribu-
tions is explained in, for instance, Section 8.3.1. Here we are concerned with randomising (shuffling
or sampling from) the elements of a vector, as we might use when planning a designed experiment
(e.g. allocating treatments to individuals). There are two ways of sampling:

• sampling without replacement, where some or all of the values in the vector appear in the
output, but in a randomised sequence; i.e. the values have been shuffled;

• sampling with replacement, where some values may be omitted, and other values appear more
than once in the output.

3.12.1 The sample () function

The default sample () function shuffles the contents of a vector into a random sequence while
maintaining all the numerical values intact. It is extremely useful for randomisation in experimental
design, in simulation, and in computationally intensive hypothesis testing. The vector y looks like
this:

y <- c (8, 3, 5, 7, 6, 6, 8, 9, 2, 3, 9, 4, 10, 4, 11)

Here are two different shufflings:

sample (y)

[1] 3 11 9 7 6 8 6 3 9 5 4 2 4 8 10

sample (y)

[1] 3 4 3 11 2 10 5 9 4 7 6 8 6 8 9

The order of the values is different each time sample () is invoked (well, it will repeat but rarely if
y is not small), but the same numbers are shuffled in every case, and all the numbers in the original
vector appear once in the output (so if there are two 9s in the original data, there will be two 9s in
the shuffled vector). This is sampling without replacement. We can specify the size of the sample
we want as an optional second argument. Suppose we want five random elements from y, in any
one sample:

sample (y, 5)

[1] 3 2 9 10 6

sample (y, 5)

[1] 6 2 6 11 3

�

� �

�

128 THE R BOOK

The argument replace = T allows for sampling with replacement, which is the basis of bootstrap-
ping (see Section 9.4 for instance). The default vector produced by the sample () function with
replace = T is the same length as the vector sampled, but some values are left out at random
and other values, again at random, appear two or more times:

set.seed (888)
sample (y, replace = T)

[1] 9 8 11 9 9 8 5 3 8 3 3 6 8 8 9

We have set a seed so that we know that, for instance, 10 does not appear, but 9 appears four
times (as opposed to twice in y). In this next case, there are three 10s and no 9s:

sample (y, replace = T)

[1] 8 8 6 2 5 3 11 7 4 4 3 10 10 10 2

More advanced options in sample () include specifying different probabilities with which each
element is to be sampled (prob =): so far, each number has been chosen with equal probability. For
example, if we want to take four numbers at random from the sequence 1:10 without replacement
where the probability of selection is 5 times greater for the middle numbers (5 and 6) than for the
first or last numbers, and we want to do this five times, we could write:

p <- c (1, 2, 3, 4, 5, 5, 4, 3, 2, 1)
x <- 1:10
sapply (1:5, function(i) sample (x, 4, prob = p))

[,1] [,2] [,3] [,4] [,5]
[1,] 9 5 4 6 7
[2,] 5 1 5 2 5
[3,] 4 7 7 8 3
[4,] 6 4 8 7 4

The probabilities are normalised so that they add up to 1. The four random numbers in the first trial
are in the first column, etc. To learn more about sapply (), see Section 3.11.6.

3.13 Loops and repeats

The classic, Fortran-like loop is available in R. The syntax is a little different, but the idea is identical;
we request that an index, i, takes on a sequence of values, and that one or more lines of commands
are executed as many times as there are different values of i. Here is a loop executed five times
with the values of i from 1 to 5; we print the square of each value:

for (i in 1:5) {
print (i^2)

}

�

� �

�

ESSENTIALS OF THE R LANGUAGE 129

[1] 1
[1] 4
[1] 9
[1] 16
[1] 25

The for () statement introduces the loop with obvious meaning. It is good practice always to
use curly brackets { } to enclose material over which the loop is to work (they can be avoided
if all the details of the loop are put in the same line as the for () statement, but then it is very
difficult to read). It is also good practice to put each element from the loop on a separate line and
indent them all, as this helps once we have multiple loops. The final { should also be on a separate
line:

j <- 0
k <- 0
for (i in 1:5) {

j <- j + 1
k <- k + i * j
print(i + j + k)

}

[1] 3
[1] 9
[1] 20
[1] 38
[1] 65

Here we use a for loop to write a function (see Section 3.18) to calculate factorial x (written x!)
which is

x! = x × (x − 1) × (x − 2) × (x − 3) × · · · × 2 × 1.

So 4! = 4 × 3 × 2 = 24. Here is the function:

fac1 <- function (x) {
f <- 1
if (x < 2) return (1)
for (i in 2:x) {
f <- f * i

}
f

}

That seems rather complicated for such a simple task, but let us show it works first:

fac1 (12)

[1] 479001600

�

� �

�

130 THE R BOOK

We can also try it out for the numbers 0–5 and compare it with R’s alternative:

sapply (0:5, fac1)

[1] 1 1 2 6 24 120

factorial (0:5)

[1] 1 1 2 6 24 120

There are two other functions which introduce loops in R: repeat () and while (). We demon-
strate their use for the purpose of illustration, but we can do much better in terms of writing a compact
function for finding factorials (see below). First, the while () function:

fac2 <- function (x) {
f <- 1
t <- x
while (t > 1) {

f <- f * t
t <- t - 1

}
f

}

The key point is that if we want to use while (), we need to set up an indicator variable (t in this
case) and change its value within each iteration (t <- t-1). We test the function on the numbers
0–5:

sapply (0:5, fac2)

[1] 1 1 2 6 24 120

Finally, we demonstrate the use of the repeat () function:

fac3 <- function (x) {
f <- 1
t <- x
repeat {

if (t < 2) break
f <- f*t
t <- t-1

}
f

}

Because the repeat () function contains no explicit limit, we need to be careful not to program an
infinite loop. We must include a logical escape clause that leads to a break command and, frankly,

�

� �

�

ESSENTIALS OF THE R LANGUAGE 131

is not good programming practice: aim to use for () or while ():

sapply (0:5, fac3)

[1] 1 1 2 6 24 120

If possible, it is always better (i.e. quicker) to use a built-in function that operates on the entire vector
and hence removes the need for loops or repeats of any sort. In this case, we can make use of the
cumulative product function, cumprod (). Here it is in action:

cumprod (1:5)

[1] 1 2 6 24 120

This is already pretty close to what we need for our factorial function. It does not work for 0! of
course, because the whole vector would end up full of zeros if the first element in the vector was
zero (try cumprod (1:5) and see). The factorial of x > 0 is the maximum value from the vector
produced by cumprod:

fac4 <- function(x) {
max (cumprod (1:x))

}

This definition has the desirable side effect that it also gets 0! correct, because when x is 0 the
function finds the maximum of 1 and 0 which is 1.

max (cumprod (1:0))

[1] 1

sapply (0:5, fac4)

[1] 1 1 2 6 24 120

3.13.1 More complicated while () loops

Here is a function (see Section 3.18) that uses the while () function in converting a specified
integer to its binary representation (i.e. in base 2, so as a combination of 0s and 1s). As with dec-
imals, the smallest digit (0 for even or 1 for odd numbers) is always at the right-hand side of the
answer (in location 32 in this case):

binary <- function (x) {
i <- 0
string <- numeric (32)
while (x > 0) {

string[32-i] <- x %% 2

�

� �

�

132 THE R BOOK

x <- x %/% 2
i <- i + 1

}
first <- match (1, string)
string[first:32]

}

At each step we take the remainder when dividing by 2 to create a digit and then carry on with the
preceding value over 2. The value first represents the position where we have arrived at the
value 1 which must begin our output as leading zeros within the string are not printed. We run
the function to find the binary representation of the numbers 15–17:

sapply (15:17, binary)

[[1]]
[1] 1 1 1 1

[[2]]
[1] 1 0 0 0 0

[[3]]
[1] 1 0 0 0 1

The next function uses while () to generate the Fibonacci series 1,1,2,3,5,8, … in which each
term is the sum of its two immediate predecessors. The key point about while () loops is that
the logical variable controlling their operation is altered inside the loop. In this example, we alter n,
the number whose Fibonacci number we want, reducing the value of n by 1 each time around the
loop, and ending when it hits 0. Here is the code:

fibonacci <- function (n) {
a <- 1
b <- 0
while (n > 0) {

swap <- a
a <- a + b
b <- swap
n <- n - 1

}
b

}

An important general point about writing loops involves the use of the swap variable above. When
we replace a by a + b on line 6, we lose the original value of a. If we had not stored this value in
swap, we could not set the new value of b to the old value of a. Now we can test the function by
generating the Fibonacci numbers 1–10:

sapply (1:10, fibonacci)

[1] 1 1 2 3 5 8 13 21 34 55

�

� �

�

ESSENTIALS OF THE R LANGUAGE 133

3.13.2 Loop avoidance

It is good R programming practice to avoid using loops wherever possible, particularly as in R they
can be slow. The use of vector functions (Section 3.10) makes this particularly straightforward in
many cases. Suppose that we wanted to replace all of the negative values in an array by zeros. We
could write a loop:

y <- c (1, 3, -2, 0, -6, 17)
for (i in 1:length (y)) {

if (y[i] < 0) {
y[i] <- 0

}
}
y

[1] 1 3 0 0 0 17

Now, however, we can use logical subscripts like this:

y <- c (1, 3, -2, 0, -6, 17)
y[y < 0] <- 0
y

[1] 1 3 0 0 0 17

Another useful function in avoiding loops is ifelse (). Sometimes we want to do one thing if a
condition is true and a different thing if the condition is false (rather than do nothing, as in the last
example). The ifelse () function allows us to do this for entire vectors without using for () or
other loops. We might want to replace any negative values of y by −1 and any positive values and
zero by +1:

y <- c (1, 3, -2, 0, -6, 17)
z <- ifelse (y < 0, -1, 1)
z

[1] 1 1 -1 1 -1 1

Next we use ifelse () to convert the continuous variable called Area in the dataset worms into
a new, two-level factor with values big and small defined by the median Area of the fields:

worms <- read.table ("worms.txt", header = T)
head (worms)

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5

�

� �

�

134 THE R BOOK

5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2

ifelse (worms$Area > median (worms$Area), "big", "small")

[1] "big" "big" "small" "small" "big" "big" "big" "small" "small"
[10] "small" "small" "big" "big" "small" "big" "big" "small" "big"
[19] "small" "small"

We should use the much more powerful function called cut () when we want to convert a contin-
uous variable like Area into many levels (see Section 3.3).

Another use of ifelse () is to override R’s natural inclinations. The log of zero in R, and
mathematics, is -Inf, as we see in these 20 random numbers from a Poisson process with a
mean count of 1.5:

set.seed (25660)
(y <- log (rpois (20, 1.5)))

[1] 0.0000000 -Inf 0.6931472 0.0000000 0.0000000 0.6931472 0.0000000
[8] 0.0000000 1.0986123 0.0000000 -Inf -Inf 0.0000000 0.0000000
[15] -Inf -Inf 0.6931472 -Inf 0.6931472 0.0000000

However, if we want the log of zero to be represented by NA in our particular application, we can
write:

ifelse (y < 0, NA, y)

[1] 0.0000000 NA 0.6931472 0.0000000 0.0000000 0.6931472 0.0000000
[8] 0.0000000 1.0986123 0.0000000 NA NA 0.0000000 0.0000000
[15] NA NA 0.6931472 NA 0.6931472 0.0000000

3.13.3 The slowness of loops

To see how slow loops can be in R, we compare two ways of finding the maximum number in a
vector of 10 million random numbers from a uniform distribution:

x <- runif (10000000)

First, using the vector function max ():

system.time (max(x))

user system elapsed
0.02 0.00 0.01

�

� �

�

ESSENTIALS OF THE R LANGUAGE 135

As we see, this operation took just 0.01 seconds to look at the 10 million numbers in x. Using a loop,
however, took nearly many times longer:

pc <- proc.time ()
cmax <- x[1]
for (i in 2:10000000) {

if (x[i] > cmax) {
cmax <- x[i]

}
}
proc.time() - pc

user system elapsed
0.29 0.00 0.30

The functions system.time and proc.time produce a vector of three numbers, showing the
user, system, and total elapsed times for the currently running R process. It is the third number
(elapsed time for the calculation) that is typically the most useful.

The take home message from the section so far is

With a large dataset or long program, do everything possible to avoid loops.

Unfortunately, that is not always possible.

3.13.4 Do not ‘grow’ data sets by concatenation or recursive function calls

Here is an extreme example of what not to do. We want to create a vector containing 100 000 num-
bers in sequence from 1 to 100 000. First, the quickest way using the built-in sequence generator:

test1 <- function () {
y <- 1:100000

}

Now we obtain the same result using a loop, where we tell R in advance how long the final vector
is going to be, using the numeric () function. This is called pre-allocation and was (is) a key
activity in low-level programming languages.

test2 <- function () {
y <- numeric (100000)
for (i in 1:100000) {
y[i] <- i

}
}

Finally, the most inefficient way. Each time we go round the loop, we concatenate the new value
onto the right-hand end of the vector that has been created up to this point. We start with a NULL
vector, then build it up, one step at a time, which looks like a neat idea, but is extremely inefficient,
because changing the size of a vector takes roughly the same size as setting a vector up from

�

� �

�

136 THE R BOOK

scratch, and we change the length of our vector 100 000 times in this example. This ill-advised
procedure is called re-dimensioning.

test3 <- function () {
y <- NULL
for (i in 1:100000) {

y <- c (y, i)
}

}

To compare the efficiency of the three methods, we shall work out how long each takes to complete
the task. We shall use the function called system.time () as described in Section 3.13.3:

system.time (test1 ())

user system elapsed
0 0 0

system.time (test2 ())

user system elapsed
0 0 0

system.time (test3 ())

user system elapsed
7.08 0.06 7.14

The first two methods are so lightening fast that they do not even register on the clock. In contrast,
the last method, where we grew the vector at each iteration, is comparatively slow. Another moral:Do
not grow vectors by repeated concatenation.

3.13.5 Loops for producing time series

Wherever we can, we use vectorised functions in R because this leads to compact, efficient and
easily readable code. Sometimes, however, we need to resort to using loops. Suppose we are
interested in the dynamics of a population which is governed by two parameters: the per capita
reproductive rate (𝜆) and the maximum supportable population (Nmax), which for convenience we
shall set to 1.0. Next year’s population N(t + 1) is given by this year’s population, N(t), multiplied by 𝜆,
multiplied again by the fraction of Nmax that is currently unrealised (i.e. (Nmax − N(t))∕Nmax = 1 − N(t)
in the current case). Thus, we have a difference equation:

N(t + 1) = 𝜆N(t)[1 − N(t)].

To simulate the dynamics of this population in R, we start by writing the difference equation as a
function:

next_year <- function (x) {
lambda * x * (1 - x)

}

�

� �

�

ESSENTIALS OF THE R LANGUAGE 137

So if we begin with a population of N = 0.6 and set 𝜆 = 3.7, we can predict next year’s population
like this

lambda <- 3.7
next_year (0.6)

[1] 0.888

The population has increased by 48% (0.888∕0.6 = 1.48). What happens in the second year?

next_year (0.888)

[1] 0.3679872

The population crashes to less than half its previous value. We could go on repeating these
calculations, modelling year after year, but this is an obvious case where using a loop would
be the best solution, as we need to know the previous result before we can calculate the next
one. Let us assume that we want to model the population over 20 years. It is good practice in
cases like this to define a vector to contain the 20 population sizes at the outset as we saw in
Section 3.13.2:

N <- numeric (20)

We set the initial population size (0.6) like this:

N[1] <- 0.6

Now if we run through a loop to simulate years 2 through 20 using an index called t (for time),
we can invoke the function called next_year () repeatedly, employing t as a subscript like
this:

for (t in 2:20) {
N[t] <- next_year (N[t-1])

}

Finally, we might want to plot a time series of the population dynamics over the course of 20 years,
to give Figure 3.2.

plot (N, type = "l", col = hue_pal ()(1))

This famous difference equation is known as the quadratic map, and it played a central role in
the development of chaos theory. For large values of 𝜆 (as we used in the example above), the
function is capable of producing series of numbers that are, to all intents and purposes, random.
This led to a definition of chaos as behaviour that exhibited extreme sensitivity to initial conditions:
tiny differences in initial population size would lead to radically different time series in population
dynamics.

�

� �

�

138 THE R BOOK

5 10 15 20

0.
3

0.
5

0.
7

0.
9

Index

N

Figure 3.2 The quadratic map.

3.14 Lists

Lists are extremely important objects in R. We might come across the problems of ‘compar-
ing apples and oranges’ or how two things are ‘as different as chalk and cheese’. We can
think of lists as a way of getting around these problems. Here are four completely different
objects: a numeric vector, a logical vector, a vector of character strings, and a vector of complex
numbers:

apples <- c (4, 4.5, 4.2, 5.1, 3.9)
oranges <- c (TRUE, TRUE, FALSE)
chalk <- c ("limestone", "marl","oolite", "CaC03")
cheese <- c (3.2 - 4.5i, 12.8 + 2.2i)

We cannot bundle them together into a matrix or dataframe (see Section 4.5), because the vectors
are of different lengths, and this results in an error message:

data.frame (apples, oranges, chalk, cheese)

Error in data.frame(apples, oranges, chalk, cheese): arguments imply differ-
ing number of rows: 5, 3, 4, 2

Despite their differences, however, we can bundle them together in a single list called items:

items <- list (apples, oranges, chalk, cheese)
items

[[1]]
[1] 4.0 4.5 4.2 5.1 3.9

[[2]]
[1] TRUE TRUE FALSE

�

� �

�

ESSENTIALS OF THE R LANGUAGE 139

[[3]]
[1] "limestone" "marl" "oolite" "CaC03"

[[4]]
[1] 3.2-4.5i 12.8+2.2i

Subscripts on vectors, matrices, arrays, and dataframes have one set of square brackets [6], [3,4],
or [2,3,2,1], but subscripts on lists have double square brackets, [[2]] or [[i, j]]. If we want to extract
chalk from the list, we use subscript [[3]]:

items[[3]]

[1] "limestone" "marl" "oolite" "CaC03"

If we want to extract the third element within chalk (oolite), then we use single subscripts after
the double subscripts like this:

items[[3]][3]

[1] "oolite"

R is forgiving about failure to use double brackets on their own, but not when we try to access a
component of an object within a list:

items[3]

[[1]]
[1] "limestone" "marl" "oolite" "CaC03"

items[3][3]

[[1]]
NULL

There is another indexing convention in R which is used to extract named components from lists
using the element names operator $. This is known as indexing tagged lists. For this to work, the
elements of the list must have names. At the moment our list called items has no names:

names (items)

NULL

We can give names to the elements of a list in the function that creates the list by using the equals
sign like this:

items <- list (first = apples, second = oranges, third = chalk, fourth = cheese)

�

� �

�

140 THE R BOOK

Now we can extract elements of the list by name:

items$fourth

[1] 3.2-4.5i 12.8+2.2i

items$third[2]

[1] "marl"

3.14.1 Summarising lists and lapply ()

We can ask a variety of questions about our new list object:

class (items)

[1] "list"

mode (items)

[1] "list"

is.numeric (items)

[1] FALSE

is.list (items)

[1] TRUE

length (items)

[1] 4

Note that the length of a list is the number of items in the list, not the lengths of the individual vectors

within the list.
We have already seen the use of tapply (), apply () and sapply () to various objects:

lapply () does the same thing but for lists: it applies a function to each element in turn, outputting
a list. For instance, we might want to know how many elements comprise each component of the
list. Technically, we want to know the length of each of the vectors making up the list:

lapply (items, length)

$first
[1] 5

�

� �

�

ESSENTIALS OF THE R LANGUAGE 141

$second
[1] 3

$third
[1] 4

$fourth
[1] 2

This shows that items consists of four vectors and shows that there were five elements in the first
vector, 3 in the second 4 in the third and 2 in the fourth. But 5 of what, and 3 of what? To find out,
we apply the function class () to the list:

lapply (items, class)

$first
[1] "numeric"

$second
[1] "logical"

$third
[1] "character"

$fourth
[1] "complex"

So the answer is there were five numbers in the first vector, three logical variables in the second,
four character strings in the third vector, and two complex numbers in the fourth.

Applying numeric functions to lists will only work for objects of class numeric or complex, or
objects (like logical values) that can be coerced into numbers. Here is what happens when we try
to apply the function mean () to items:

lapply (items, mean)

Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
returning NA

$first
[1] 4.34

$second
[1] 0.6666667

$third
[1] NA

$fourth
[1] 8-1.15i

�

� �

�

142 THE R BOOK

We get a warning message pointing out that the third vector cannot be coerced to a number (it is not
numeric, complex or logical), so NA appears in the output. The second vector produces the answer
2∕3 because logical false (FALSE) is coerced to numeric 0 and logical true (TRUE) is coerced to
numeric 1.

The summary () function works for lists:

summary (items)

Length Class Mode
first 5 -none- numeric
second 3 -none- logical
third 4 -none- character
fourth 2 -none- complex

However, the most useful overview of the contents of a list is obtained with str (), the structure
function:

str (items)

List of 4
$ first: num [1:5] 4 4.5 4.2 5.1 3.9
$ second: logi [1:3] TRUE TRUE FALSE
$ third: chr [1:4] "limestone" "marl" "oolite" "CaC03"
$ fourth: cplx [1:2] 3.2-4.5i 12.8+2.2i

3.14.2 Manipulating and saving lists

Saving lists to files is tricky because lists typically have different numbers of items in each row so
we cannot use, for instance, write.table (). Here is a dataframe on species presence (1) or
absence (0) in various locations, with species’ Latin binomials in the first column as the row names:

pa <- read.csv ("pa.csv", row.names = 1)
pa

Carmel Derry Daneswall Erith Foggen Highbury Slatewell
Bartsia alpina 0 0 1 0 0 0 1
Cleome serrulata 1 1 0 0 0 1 0
Conopodium majus 0 0 0 0 0 0 0
Corydalis sempervirens 1 0 0 1 0 1 0
Nitella flexilis 1 0 0 0 0 0 0
Ranunculus baudotii 1 0 1 1 0 0 0
Rhododendron luteum 1 1 1 1 1 0 1
Rodgersia podophylla 0 1 0 0 0 1 0
Tiarella wherryi 0 0 1 1 1 0 0
Veronica opaca 1 0 0 0 0 1 1

Uppington York
Bartsia alpina 0 0
Cleome serrulata 0 0

�

� �

�

ESSENTIALS OF THE R LANGUAGE 143

Conopodium majus 1 1
Corydalis sempervirens 0 0
Nitella flexilis 0 1
Ranunculus baudotii 1 0
Rhododendron luteum 1 1
Rodgersia podophylla 0 0
Tiarella wherryi 0 0
Veronica opaca 1 0

Two kinds of operations, we might want to do with a like this are

• produce lists of the sites at which each species is found;

• produce lists of the species found in any given site.

We shall do each of these tasks in turn.
The problem is that the numbers of place names differ from species to species, and the numbers

of species differ from place to place. However, it is easy to create a list (as different elements will
have differing lengths) showing the column numbers that contain locations for each species:

lapply (1:10, function (i) which (pa[i,] > 0))

[[1]]
[1] 3 7

[[2]]
[1] 1 2 6

[[3]]
[1] 8 9

[[4]]
[1] 1 4 6

[[5]]
[1] 1 9

[[6]]
[1] 1 3 4 8

[[7]]
[1] 1 2 3 4 5 7 8 9

[[8]]
[1] 2 6

[[9]]
[1] 3 4 5

[[10]]
[1] 1 6 7 8

�

� �

�

144 THE R BOOK

This indicates that Bartsia alpina (the first species) is found in locations 3 and 7 (Daneswall and
Slatewell): for each of the 10 species, we ask which of them is present or TRUE. We can extract the
column names at which each species is present, using the elements selected above as subscripts
on the colnames () of data, like this:

lapply (1:10, function (i) colnames (pa)[pa[i,] > 0])

[[1]]
[1] "Daneswall" "Slatewell"

[[2]]
[1] "Carmel" "Derry" "Highbury"

[[3]]
[1] "Uppington" "York"

[[4]]
[1] "Carmel" "Erith" "Highbury"

[[5]]
[1] "Carmel" "York"

[[6]]
[1] "Carmel" "Daneswall" "Erith" "Uppington"

[[7]]
[1] "Carmel" "Derry" "Daneswall" "Erith" "Foggen" "Slatewell"
[7] "Uppington" "York"

[[8]]
[1] "Derry" "Highbury"

[[9]]
[1] "Daneswall" "Erith" "Foggen"

[[10]]
[1] "Carmel" "Highbury" "Slatewell" "Uppington"

This completes the first task.
The second task is to get species lists for each location. We apply a similar method to extract the

appropriate species (this time using rownames (pa)):

sapply (1:9, function (j) rownames (pa)[pa[,j] > 0])

[[1]]
[1] "Cleome serrulata" "Corydalis sempervirens" "Nitella flexilis"
[4] "Ranunculus baudotii" "Rhododendron luteum" "Veronica opaca"

[[2]]
[1] "Cleome serrulata" "Rhododendron luteum" "Rodgersia podophylla"

�

� �

�

ESSENTIALS OF THE R LANGUAGE 145

[[3]]
[1] "Bartsia alpina" "Ranunculus baudotii" "Rhododendron luteum"
[4] "Tiarella wherryi"

[[4]]
[1] "Corydalis sempervirens" "Ranunculus baudotii" "Rhododendron luteum"
[4] "Tiarella wherryi"

[[5]]
[1] "Rhododendron luteum" "Tiarella wherryi"

[[6]]
[1] "Cleome serrulata" "Corydalis sempervirens" "Rodgersia podophylla"
[4] "Veronica opaca"

[[7]]
[1] "Bartsia alpina" "Rhododendron luteum" "Veronica opaca"

[[8]]
[1] "Conopodium majus" "Ranunculus baudotii" "Rhododendron luteum"
[4] "Veronica opaca"

[[9]]
[1] "Conopodium majus" "Nitella flexilis" "Rhododendron luteum"

We might want to present this in a more usable way. Because the species lists for different sites
are of different lengths, the simplest solution is to create a separate file for each species list. We
need to create a set of nine file names incorporating the site name, then use write.table () in
a loop:

spplists <- sapply (1:9, function (j) rownames (pa)[pa[,j] > 0])
for (i in 1:9) {

slist <- data.frame (spplists[[i]])
names (slist) <- names (pa)[i]
file_name <- paste (names (pa)[i], ".txt", sep = "")
write.table (slist, file_name)

}

We have produced nine separate files. Here, for instance, are the contents of the file Carmel.txt
as viewed in a text editor like Notepad:

"Carmel"
"1" "Cleome serrulata"
"2" "Corydalis sempervirens"
"3" "Nitella flexilis"
"4" "Ranunculus baudotii"
"5" "Rhododendron luteum"
"6" "Veronica opaca"

That is all a bit clunky and difficult to analyse. Perhaps the simplest and best solution is to turn the
whole presence/absence matrix into a dataframe (see Section 4.5). Then, both tasks become very

�

� �

�

146 THE R BOOK

straightforward. We start by using stack () to create a dataframe of place names and presence/
absence information:

newpa <- stack (pa)
head (newpa)

values ind
1 0 Carmel
2 1 Carmel
3 0 Carmel
4 1 Carmel
5 1 Carmel
6 1 Carmel

We can see in the RStudio Environment window (top right) that whereas pa had 10 rows (obser-
vations) and 9 columns (variables), newpa has 90 (10 × 9) rows, so we have actually stacked the
data. Now, we extract the species names from the row names, repeat the list of names nine times,
and add the resulting vector species names to the dataframe:

newpa <- data.frame (newpa, rep (rownames (pa), 9))

Finally, give the three columns of the new dataframe sensible names:

names (newpa) <- c ("present", "location", "species")
head (newpa)

present location species
1 0 Carmel Bartsia alpina
2 1 Carmel Cleome serrulata
3 0 Carmel Conopodium majus
4 1 Carmel Corydalis sempervirens
5 1 Carmel Nitella flexilis
6 1 Carmel Ranunculus baudotii

Unlike the lists, we can easily save this object to a file:

write.table (newpa, "spplists.txt")

It is also simple to do both our tasks. Here is a location list for species = Bartsia alpina:

newpa[newpa$species == "Bartsia alpina" & newpa$present == 1, 2]

[1] Daneswall Slatewell
9 Levels: Carmel Derry Daneswall Erith Foggen Highbury Slatewell ... York

We have asked for the species and presence we want, but only output column 2, the location. Here
is a species list for location = Carmel:

�

� �

�

ESSENTIALS OF THE R LANGUAGE 147

newpa[newpa$location == "Carmel" & newpa$present == 1, 3]

[1] "Cleome serrulata" "Corydalis sempervirens" "Nitella flexilis"
[4] "Ranunculus baudotii" "Rhododendron luteum" "Veronica opaca"

Again, we are only outputting the species from column 3. Lists are great, but dataframes have
many advantages. The cost of using a dataframe is the potentially substantial redundancy in stor-
age requirement. In practice, with relatively small dataframes and modern computers, this seldom
matters.

3.15 Text, character strings, and pattern matching

We have seen, albeit in passing, that we can create data objects made up of characters. In R,
character strings are defined by double quotation marks:

a <- "abc"
b <- "123"
class (a)

[1] "character"

class (b)

[1] "character"

Numbers can be coerced to characters (as in b above – they just result in NA), but non-numeric
characters cannot be coerced to numbers:

as.numeric (a)

[1] NA

as.numeric (b)

[1] 123

One of the initially confusing things about character strings is the distinction between the length
() of a character object (a vector, etc.), and the numbers of characters (nchar ()) in the strings
that comprise that object. An example should make the distinction clear:

pets <- c ("cat", "dog", "gerbil", "terrapin")

Here, pets is a vector comprising four character strings:

length (pets)

[1] 4

�

� �

�

148 THE R BOOK

and the individual character strings have 3, 3, 6, and 7 characters, respectively:

nchar (pets)

[1] 3 3 6 8

When first defined, character strings are not factors:

class (pets)

[1] "character"

is.factor (pets)

[1] FALSE

However, if the vector of characters called pets was part of a dataframe, then R would coerce all
the character variables to act as factors:

df <- data.frame (pets)
is.factor (df$pets)

[1] FALSE

There are built-in vectors in R that contain the 26 letters of the alphabet in lower case (letters) and
in upper case (LETTERS):

letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"

LETTERS

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S"
[20] "T" "U" "V" "W" "X" "Y" "Z"

To discover which number in the alphabet the letter n is, we can use the which () function like
this:

which (letters == "n")

[1] 14

For the purposes of printing, we might want to suppress the quotes that appear around character
strings by default. The function to do this is called noquote ():

�

� �

�

ESSENTIALS OF THE R LANGUAGE 149

noquote (letters)

[1] a b c d e f g h i j k l m n o p q r s t u v w x y z

3.15.1 Pasting character strings together

We can amalgamate individual strings into vectors of character information. First, here is probably
the most scintillating command in the book:

c (a, b)

[1] "abc" "123"

This shows that the combination using c () produces a vector of two strings. It does not convert
two 3-character strings into one 6-character string. The R function to do that is paste ():

paste (a, b, sep = "")

[1] "abc123"

The third argument, sep = "", means that the two character strings are to be pasted together
without any separator between them: the default for paste () is to insert a single blank space,
like this:

paste (a, b)

[1] "abc 123"

Notice that we do not lose blanks that are within character strings when we use the sep = ""
option in paste ().

paste(a, b, " a longer phrase containing blanks", sep = "")

[1] "abc123 a longer phrase containing blanks"

If one of the arguments to paste () is a vector, each of the elements of the vector is pasted to
the specified character string to produce an object of the same length as the vector:

d <- c(a, b, "new")
(e <- paste(d,"a longer phrase containing blanks"))

[1] "abc a longer phrase containing blanks"
[2] "123 a longer phrase containing blanks"
[3] "new a longer phrase containing blanks"

�

� �

�

150 THE R BOOK

In this next example, we have four fields of information, and we want to paste them together to
make a file path for reading data into R:

drive <- "c:"
folder <- "temp"
file <- "file"
extension <- ".txt"

Now, we use the function paste () to put them together:

paste (drive, folder, file, extension)

[1] "c: temp file.txt"

This has the essence of what we want, but it is not quite there yet. We need to replace the blank
spaces that are the default separator, with no space, and to insert slashes between the drive and
the directory, and the directory and file names:

paste (drive, "\\", folder, "\\", file, extension, sep = "")

[1] "c:\\temp\\file.txt"

3.15.2 Extracting parts of strings

We being by defining a phrase:

phrase <- "the quick brown fox jumps over the lazy dog"

The function called substr () is used to extract substrings of a specified number of characters
from within a character string. Here is the code to extract the first, the first and second, the first,
second, and third, … , the first 20 characters from our phrase:

q <- character (20)
for (i in 1:20) {
q[i] <- substr (phrase, 1, i)

}
q

[1] "t" "th" "the"
[4] "the " "the q" "the qu"
[7] "the qui" "the quic" "the quick"
[10] "the quick " "the quick b" "the quick br"
[13] "the quick bro" "the quick brow" "the quick brown"
[16] "the quick brown " "the quick brown f" "the quick brown fo"
[19] "the quick brown fox" "the quick brown fox "

�

� �

�

ESSENTIALS OF THE R LANGUAGE 151

The second argument in substr () is the number of the character at which extraction is to begin
(in this case always the first), and the third argument is the number of the character at which
extraction is to end (in this case, the ith).

3.15.3 Counting things within strings

Counting the total number of characters in a string could not be simpler; just use the nchar ()
function directly, like this:

nchar (phrase)

[1] 43

So there are 43 characters including the blanks between the words. To count the numbers of sep-
arate individual characters (including blanks), we need to start by splitting up the character string
into individual characters (43 of them), like this:

strsplit (phrase, split = character (0))

[[1]]
[1] "t" "h" "e" " " "q" "u" "i" "c" "k" " " "b" "r" "o" "w" "n" " " "f" "o" "x"

[20] " " "j" "u" "m" "p" "s" " " "o" "v" "e" "r" " " "t" "h" "e" " " "l" "a" "z"
[39] "y" " " "d" "o" "g"

We could use NULL in place of split = character (0) (see below). We can then resort to our
old favourite, table (), to count the number of occurrences of each of the characters:

table (strsplit (phrase, split = character (0)))

a b c d e f g h i j k l m n o p q r s t u v w x y z
8 1 1 1 1 3 1 1 2 1 1 1 1 1 1 4 1 1 2 1 2 2 1 1 1 1 1

This demonstrates that all of the letters of the alphabet were used at least once within our phrase,
and that there were eight blanks within the string called phrase, although the heading for the
blanks is, not surprisingly but not very helpfully, blank. This suggests a way of counting the number
of words in a phrase, given that this will always be one more than the number of blanks (as long as
there are no leading or trailing blanks in the string):

(words <- 1 + table (strsplit (phrase, split = character (0)))[1])

9

What about the lengths of the words within phrase? Here are the separate words:

strsplit (phrase, " ")

[[1]]
[1] "the" "quick" "brown" "fox" "jumps" "over" "the" "lazy" "dog"

�

� �

�

152 THE R BOOK

The second argument says to split wherever a blank is encountered. To work out their lengths,
we use four functions starting with nchar (), then applying that using lapply () to each word
which are separated using strsplit (), and then summarising everything using table (). This
use of multiple functions in one command line is quite common, and in order to understand such
instructions, it’s often best to start at the innermost set of brackets and work outwards:

table (lapply (strsplit (phrase, " "), nchar))

3 4 5
4 2 3

showing there were 4 three-letter words, 2 four-letter words, and 3 five-letter words.
This is how to reverse a character string. The logic is that we need to break it up into individual

characters, then reverse their order, then paste them all back together again. It seems long-winded
until we think about what the alternative might be. Here is the command gradually being put together:

strsplit (phrase, NULL)

[[1]]
[1] "t" "h" "e" " " "q" "u" "i" "c" "k" " " "b" "r" "o" "w" "n" " " "f" "o" "x"
[20] " " "j" "u" "m" "p" "s" " " "o" "v" "e" "r" " " "t" "h" "e" " " "l" "a" "z"
[39] "y" " " "d" "o" "g"

lapply (strsplit (phrase, NULL), rev)

[[1]]
[1] "g" "o" "d" " " "y" "z" "a" "l" " " "e" "h" "t" " " "r" "e" "v" "o" " " "s"
[20] "p" "m" "u" "j" " " "x" "o" "f" " " "n" "w" "o" "r" "b" " " "k" "c" "i" "u"
[39] "q" " " "e" "h" "t"

sapply (lapply (strsplit (phrase, NULL), rev), paste, collapse = "")

[1] "god yzal eht revo spmuj xof nworb kciuq eht"

The collapse argument is necessary to reduce the answer back to a single character string. Note
that the word lengths are retained, so this would be a poor method of encryption.

When we specify a particular string to form the basis of the split, we end up with a list made up
from the components of the string that do not contain the specified string. Suppose we split our
phrase using the:

strsplit (phrase, "the")

[[1]]
[1] "" " quick brown fox jumps over "
[3] " lazy dog"

We end up with a list with only one element. That element has three parts: the first one is the empty
string because the first three characters within phrase were exactly the; the second contains the
part of the phrase between the two occurrences of the string the; and the third is the end of the

�

� �

�

ESSENTIALS OF THE R LANGUAGE 153

phrase, following the second the. Suppose that we want to extract the characters between the first
and second occurrences of the. This is achieved very simply, using subscripts to extract the second
part of the (only) element in the list:

strsplit (phrase, "the")[[1]][2]

[1] " quick brown fox jumps over "

This emphasises that the output from strsplit () is a list. It is that way as we could put a vector
of items into the function to be split (rather than the single item phrase) and each would probably
have a different structure after the split, requiring a list not a vector as output format. If we want to
know how many characters there are between the first and second occurrences of the word the
within our phrase, we put:

nchar (strsplit (phrase, "the")[[1]][2])

[1] 28

3.15.4 Upper and lower case text

It is easy to switch between upper and lower cases using the toupper () and tolower ()
functions:

toupper (phrase)

[1] "THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG"

tolower (toupper (phrase))

[1] "the quick brown fox jumps over the lazy dog"

3.15.5 The match () function and relational databases

The match () function answers the question: Where (if at all) do the values in the second vector
appear in the first vector? It is a really important function, but can be tricky to understand without
an example:

first <- c (5, 8, 3, 5, 3, 6, 4, 4, 2, 8, 8, 8, 4, 4, 6)
second <- c (8, 6, 4, 2)
match (first, second)

[1] NA 1 NA NA NA 2 3 3 4 1 1 1 3 3 2

The first thing to note is that match () produces a vector as long as the first vector (15), of
subscripts (index values) and that these are subscripts (or positions) within the second vector.
If elements of the first vector do not occur anywhere in the second vector, then we get NA. It works
like this. Where does 5 (from the first position in the first vector) appear in the second vector?

�

� �

�

154 THE R BOOK

Answer: it does not (NA). Then, where does 8 (the second element of the first vector) appear in the
second vector? Answer: in position number 1, and so on. Why would we ever want to use this? The
answer turns out to be very general and extremely useful in data management.

Large and/or complicated databases are always best stored as relational databases (e.g. Oracle
or Access). In these, data are stored in sets of two-dimensional spreadsheet-like objects called
tables. Data are divided into small tables with strict rules as to what data they can contain. You then
create relationships between the tables that allow the computer to look from one table to another in
order to assemble the data we want for a particular application. The relationship between two tables
is based on fields whose values (if not their variable names) are common to both tables. The rules for
constructing effective relational databases were first proposed by Dr E.F. Codd of the IBM Research
Laboratory at San Jose, California, in an extremely influential paper in 1970 and are, roughly:

• all data are in tables;

• there is a separate table for each set of related variables;

• the order of the records within tables is irrelevant (so we can add records without reordering the
existing records);

• the first column of each table is a unique ID number for every row in that table (a simple way to
make sure that this works is to have the rows numbered sequentially from 1 at the top so that
when we add new rows we are sure that they get unique identifiers);

• there is no unnecessary repetition of data so the storage requirement is minimised, and when we
need to edit a record, we only need to edit it once (the last point is very important);

• each piece of data is ‘granular’ (meaning as small as possible); so we would split a customer’s
name into title (Dr), first name (Charles), middle name (Urban), surname (Forrester), and pre-
ferred form of address (Chuck). If they were promoted, for instance, we would only need to convert
Dr to Prof. in the title field.

These are called the normalisation rules for creating bullet-proof databases. The use of Structured
Query Language (SQL) was designed to work with relational databases. Here, the only point is to
see how the match () function relates information in one vector (or table) to information in another.

Take a medical example. We have a vector containing the anonymous identifiers of nine patients
(subjects):

subjects <- c ("A", "B", "G", "M", "N", "S", "T", "V", "Z")

Suppose we wanted to give a new drug to all the patients identified in the second vector called
suitable_patients, and the conventional drug to all the others. Here are the suitable patients:

suitable_patients <- c ("E", "G", "S", "U", "Z")

Notice that there are several suitable patients who are not part of this trial (E and U). This is what
the match () function does:

match (subjects, suitable_patients)

[1] NA NA 2 NA NA 3 NA NA 5

�

� �

�

ESSENTIALS OF THE R LANGUAGE 155

For each of the individuals in the first vector (subjects), it finds the subscript in the second vector
(suitable patients), returning NA if that patient does not appear in the second vector. The key point to
understand is that the vector produced is the same length as the first vector, and that the numbers
in the result are subscripts within the second vector.

Let’s go through the output term by term and see what each means. Patient A is not in the suitable
vector, so NA is returned. The same is true for patient B. Patient G is suitable, so we get a number
in the third position. That number is a 2 because patient G is the second element of the vector called
suitable_patients. Neither patient M nor N is in the second vector, so they both appear as NA.
Patient S is suitable and so produces a number. The number is 3 because that is the position of S
with the second vector.

To complete the job, we want to produce a vector of the drugs to be administered to each of the
subjects. We create a vector containing the two treatment names:

drug <- c ("new", "conventional")

Then we use the result of the match to give the right drug to the right patient:

drug [ifelse (is.na (match (subjects, suitable_patients)), 2, 1)]

[1] "conventional" "conventional" "new" "conventional" "conventional"
[6] "new" "conventional" "conventional" "new"

Note the use of ifelse () with is.na () to produce a subscript 2 (to use with drug) for the
unsuitable patients, and a 1 when the result of the match is not NA (i.e. for the suitable patients). It
is worth working through this example until it is completely understood.

Alternatively, we might have a table containing personal details about all the possible patients
(one row per patient) and want to know which rows to pull out for the suitable patients:

which (is.na (match (suitable_patients, subjects)) == F)

[1] 2 3 5

It is worth having a look at Section 3.15.9 for an alternative to match () in certain circumstances.

3.15.6 Pattern matching

We need a dataset with a serious amount of text in it to make these exercises relevant:

wf <- read.table ("worldfloras.txt", header = T)
head (wf)

Country Latitude Area Population Flora Endemism Continent
1 Afghanistan 30 636.0 14.300 3000 0.270 Asia
2 Albania 42 29.0 3.000 3200 0.008 Europe
3 Algeria 35 2382.0 21.300 3139 0.080 N.Africa
4 Andorra 42 0.5 0.034 1000 0.000 Europe

�

� �

�

156 THE R BOOK

5 Angola 25 1247.0 8.500 5000 0.250 Africa
6 Antarctica 85 14000.0 0.000 2 0.000 Antarctica

Country <- wf$Country

As we can see, there are 161 countries in this dataframe (strictly, 161 places, since some of the
entries, such as Sicily and Balearic Islands, are not countries). The idea is that we want to be
able to select subsets of countries on the basis of specified patterns within the character strings
that make up the country names (factor levels). The function to do this is grep (). This searches
for matches to a pattern (specified in its first argument) within the character vector which forms
the second argument. It returns a vector of indices (subscripts) within the vector appearing as the
second argument, where the pattern was found in whole or in part. The topic of pattern matching
is very easy to master once the penny drops, but it can be hard to grasp without simple, concrete
examples. Perhaps the simplest task is to select all the countries (extracted into a vector, Country)
containing a particular letter – for instance, appropriately, upper-case R:

Country[grep ("R", Country)]

[1] "Central African Republic" "Costa Rica"
[3] "Dominican Republic" "Puerto Rico"
[5] "Reunion" "Romania"
[7] "Rwanda" "USSR"

To restrict the search to countries whose first name begins with ‘R’, we use the ̂ character like
this:

Country[grep("^R", Country)]

[1] "Reunion" "Romania" "Rwanda"

To select those countries with multiple names with upper-case R as the first letter of their second
or subsequent names, we specify the character string with a blank in like this:

Country[grep(" R", Country)]

[1] "Central African Republic" "Costa Rica"
[3] "Dominican Republic" "Puerto Rico"

To find all the countries with two or more names, just search for a blank:

Country[grep(" ", Country)]

[1] "Balearic Islands" "Burkina Faso"
[3] "Central African Republic" "Costa Rica"
[5] "Dominican Republic" "El Salvador"
[7] "French Guiana" "Germany East"
[9] "Germany West" "Hong Kong"

�

� �

�

ESSENTIALS OF THE R LANGUAGE 157

[11] "Ivory Coast" "New Caledonia"
[13] "New Zealand" "Papua New Guinea"
[15] "Puerto Rico" "Saudi Arabia"
[17] "Sierra Leone" "Solomon Islands"
[19] "South Africa" "Sri Lanka"
[21] "Trinidad & Tobago" "Tristan da Cunha"
[23] "United Kingdom" "Viet Nam"
[25] "Yemen North" "Yemen South"

To find countries with names ending in y use the $ symbol like this:

Country[grep("y$", Country)]

[1] "Hungary" "Italy" "Norway" "Paraguay" "Sicily" "Turkey" "Uruguay"

For conditions that can be expressed as groups (say, series of numbers or alphabetically grouped
lists of letters), use square brackets inside the quotes to indicate the range of values that is to be
selected. For instance, to select countries with names containing upper-case letters from C to E
inclusive, write:

Country[grep("[C-E]", Country)]

[1] "Cameroon" "Canada"
[3] "Central African Republic" "Chad"
[5] "Chile" "China"
[7] "Colombia" "Congo"
[9] "Corsica" "Costa Rica"

[11] "Crete" "Cuba"
[13] "Cyprus" "Czechoslovakia"
[15] "Denmark" "Dominican Republic"
[17] "Ecuador" "Egypt"
[19] "El Salvador" "Ethiopia"
[21] "Germany East" "Ivory Coast"
[23] "New Caledonia" "Tristan da Cunha"

Notice that this formulation picks out countries like Ivory Coast and Tristan da Cunha that contain
upper-case Cs in places other than as their first letters. To restrict the choice to first letters, use
the ̂ operator before the list of capital letters:

Country[grep("^[C-E]", Country)]

[1] "Cameroon" "Canada"
[3] "Central African Republic" "Chad"
[5] "Chile" "China"
[7] "Colombia" "Congo"
[9] "Corsica" "Costa Rica"

[11] "Crete" "Cuba"
[13] "Cyprus" "Czechoslovakia"
[15] "Denmark" "Dominican Republic"

�

� �

�

158 THE R BOOK

[17] "Ecuador" "Egypt"
[19] "El Salvador" "Ethiopia"

How about selecting the counties not ending with a specified patterns? The answer is simply to use
negative subscripts to drop the selected items from the vector. Here are the countries that do not
end with a letter between ‘a’ and ‘t’:

Country[-grep("[a-t]$", Country)]

[1] "Hungary" "Italy" "Norway" "Paraguay" "Peru" "Sicily"
[7] "Turkey" "Uruguay" "USA" "USSR" "Vanuatu"

We can see that USA and USSR are included in the list because we specified lower-case letters as
the endings to omit. To omit these other countries, put ranges for both upper and lower case letters
inside the square brackets, separated by a space:

Country[-grep("[A-T a-t]$", Country)]

[1] "Hungary" "Italy" "Norway" "Paraguay" "Peru" "Sicily" "Turkey"
[8] "Uruguay" "Vanuatu"

Countries with ‘y’ as their second letter are specified by ̂ .y. The ̂ represents ‘starting’, then a
single dot means one character of any kind, so y is the specified second character:

Country[grep("^.y", Country)]

[1] "Cyprus" "Syria"

To search for countries with ‘y’ as third letter:

Country[grep("^..y", Country)]

[1] "Egypt" "Guyana" "Seychelles"

If we want countries with ‘y’ as their sixth letter:

Country[grep("^.{5}y", Country)]

[1] "Norway" "Sicily" "Turkey"

Five anything are shown by ., then curly brackets {5}, then y.
Which are the countries with four or fewer letters in their names?

Country[grep("^.{,3}$", Country)]

[1] "Chad" "Cuba" "Iran" "Iraq" "Laos" "Mali" "Oman" "Peru" "Togo" "USA"
[11] "USSR"

�

� �

�

ESSENTIALS OF THE R LANGUAGE 159

The ‘.’ means ‘anything’ while the {,3} means ‘repeat up to three anythings (dots) before the final
string. So to find all the countries with 15 or more characters in their name:

Country[grep("^.{15,}$", Country)]

[1] "Balearic Islands" "Central African Republic"
[3] "Dominican Republic" "Papua New Guinea"
[5] "Solomon Islands" "Trinidad & Tobago"
[7] "Tristan da Cunha"

3.15.7 Substituting text within character strings

Search-and-replace operations are carried out in R using the functions sub () and gsub (). The
two substitution functions differ only in that sub () replaces only the first occurrence of a pattern
within a character string, whereas gsub () replaces all occurrences. They both come from the
same family of functions as grep () and share much of its syntax. Here is a vector comprising
seven character strings, called limbs:

limbs <- c ("arm", "leg", "head", "foot", "hand", "hindleg", "elbow")

We want to replace all lower-case ‘h’ with upper-case ‘H’:

gsub ("h", "H", limbs)

[1] "arm" "leg" "Head" "foot" "Hand" "Hindleg" "elbow"

Note that limbs hasn’t changed: we are just seeing the effect of the change. Now, suppose we want
to convert the first occurrence of a lower-case ‘o’ into an upper-case ‘O’. We use sub () for this:

sub ("o", "O", limbs)

[1] "arm" "leg" "head" "fOot" "hand" "hindleg" "elbOw"

We can see the difference between sub () and gsub () in the following, where both instances
of ‘o’ in foot are converted to upper case by gsub () but not by sub ():

gsub ("o", "O", limbs)

[1] "arm" "leg" "head" "fOOt" "hand" "hindleg" "elbOw"

More general patterns can be specified in the same way as we learned for grep ()
(Section 3.15.6). For instance, to replace the first character of every string with upper-case
‘O’, we use the dot notation coupled with ̂ (the ‘start of string’ marker):

gsub ("^.", "O", limbs)

[1] "Orm" "Oeg" "Oead" "Ooot" "Oand" "Oindleg" "Olbow"

�

� �

�

160 THE R BOOK

There is a very useful string manipulation package, stringr (Wickham, 2019), which saves having
to use the more esoteric features of gsub (), particularly those coming from the language Perl.
Here, we capitalise the first character in each string:

library (stringr)

Attaching package: ’stringr’

The following object is masked _by_ ’.GlobalEnv’:

words

str_to_title (limbs)

[1] "Arm" "Leg" "Head" "Foot" "Hand" "Hindleg" "Elbow"

Here we convert all the characters to upper case:

str_to_upper (limbs)

[1] "ARM" "LEG" "HEAD" "FOOT" "HAND" "HINDLEG" "ELBOW"

If we need to do some string manipulation, then it is worth searching through the Index to stringr:
more details at help (stringr).

3.15.8 Locations of a pattern within a vector

Instead of substituting a pattern as in Section 3.15.7, we might want to know if it occurs in a
string and, if so, where it occurs within each string. The result of regexpr (), therefore, is a
numeric vector (as with grep () in Section 3.15.6), but now indicating the position of the first
instance of the pattern within the string (rather than just whether the pattern was there). If the pat-
tern does not appear within the string, the default value returned is −1. We return to limbs from
Section 3.15.7:

limbs

[1] "arm" "leg" "head" "foot" "hand" "hindleg" "elbow"

regexpr ("o", limbs)

[1] -1 -1 -1 2 -1 -1 4
attr(,"match.length")
[1] -1 -1 -1 1 -1 -1 1
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE

�

� �

�

ESSENTIALS OF THE R LANGUAGE 161

This indicates that there were lower-case ‘o’s in two of the elements of text, and that they occurred
in positions 2 and 4, respectively, within those elements. Remember that if we wanted just the
subscripts showing which elements of a vector contained an ‘o’ we would use grep () like
this:

grep ("o", limbs)

[1] 4 7

and we would extract the character strings like this:

limbs[grep ("o", limbs)]

[1] "foot" "elbow"

Counting how many ‘o’s there are in each string is a different problem again, and this involves the
use of gregexpr ():

freq <- as.vector (unlist (lapply (gregexpr ("o", limbs), length)))
present <- ifelse (regexpr ("o", limbs) < 0, 0, 1)
freq * present

[1] 0 0 0 2 0 0 1

indicating that there are no ‘o’s in the first three character strings, two in the fourth and one in the
last string. The best way to understand the first expression is to run subsets of it, starting from the
inside, for instance gregexpr ("o", limbs). This will show that gregexpr () contains a lot
more output than regexpr (). Using unlist allows us to turn a list into a vector and we then
take the elements form that and multiply by whether ‘o’s were present at all (0 or 1).

The function charmatch () is for matching characters. If there are multiple matches (two or
more), then the function returns the value 0 (e.g. when all the elements contain ‘m’):

charmatch ("m", c ("mean", "median", "mode"))

[1] 0

If there is a unique match, the function returns the index of the match within the vector of character
strings (here in location number 2):

charmatch ("med", c ("mean", "median", "mode"))

[1] 2

Pattern matching for use in grep (), grepexpr (), etc., is a huge topic and a rabbit hole from
which one might never emerge. There is a long R help page at help (regex), and that then links

�

� �

�

162 THE R BOOK

to even more arcane detail derived from the Perl language, which can be used in R. Here are a few
more examples. We can look for consecutive characters, in a fairly clear way:

grep ("o{1}", limbs, value = T)

[1] "foot" "elbow"

grep ("o{2}", limbs, value = T)

[1] "foot"

grep ("o{3}", limbs, value = T)

character(0)

And here we are counting the number of alphanumeric characters (alnum) in each word:

grep ("[[:alnum:]]{4, }", limbs, value = T)

[1] "head" "foot" "hand" "hindleg" "elbow"

grep ("[[:alnum:]]{5, }", limbs, value = T)

[1] "hindleg" "elbow"

grep ("[[:alnum:]]{6, }", limbs, value = T)

[1] "hindleg"

grep ("[[:alnum:]]{7, }", limbs, value = T)

[1] "hindleg"

3.15.9 Comparing vectors using %in% and which ()

We might want to know all of the matches between one character vector and another. Here a vehicle
hire company has a set of requests for items which may or not be in stock:

stock <- c ("car", "van")
requests <- c ("truck", "suv", "van", "sports", "car", "wagon", "car")

We can use which (... %in% ...) to find the locations in the first-named vector of any and all
of the entries in the second-named vector:

which (requests %in% stock)

[1] 3 5 7

�

� �

�

ESSENTIALS OF THE R LANGUAGE 163

So we can match the 3rd, 5th, and 7th requests. If we want to know what the matches are as well
as where, they are we use square brackets as an index to requests:

requests[which (requests %in% stock)]

[1] "van" "car" "car"

We could use the match () function to obtain the same result (see Section 3.15.5):

stock[match (requests, stock)][!is.na (match (requests, stock))]

[1] "van" "car" "car"

but that is more clumsy as we need to eliminate the NAs. We could also use sapply ():

which (sapply (requests, "%in%", stock))

van car car
3 5 7

but that is unnecessarily long. However, it does bring up an important issue: the use of quotes
around the %in% function as it does not begin with a letter. This would also be necessary in, for
instance, help ("%in%").

3.15.10 Stripping patterned text out of complex strings

Suppose that we want to tease apart the information in these complicated strings:

(entries <- c ("Trial 1 58 cervicornis (52 match)",
"Trial 2 60 terrestris (51 matched)",
"Trial 8 109 flavicollis (101 matches)"))

[1] "Trial 1 58 cervicornis (52 match)"
[2] "Trial 2 60 terrestris (51 matched)"
[3] "Trial 8 109 flavicollis (101 matches)"

The first task might be to remove the material on numbers of matches including the brackets:

gsub (" *$", "", gsub ("\\(.*\\)$", "", entries))

[1] "Trial 1 58 cervicornis" "Trial 2 60 terrestris"
[3] "Trial 8 109 flavicollis"

The first argument (*$, ""), removes the ‘trailing blanks’, while the second deletes everything
(".*) between the left- and the right-hand brackets, substituting this with nothing "". The next job
is to extract that bracketed material, ignoring the brackets themselves:

pos <- regexpr ("\\(", entries)

�

� �

�

164 THE R BOOK

This gives the positions where the material within the brackets begins (the \\ is there as (is not
an alphanumeric character).

substring (entries, first = pos + 1, last = nchar (entries) - 1)

[1] "52 match" "51 matched" "101 matches"

We then have the + 1 and - 1 so as not to output the brackets themselves.

3.16 Dates and times in R

The measurement of time is highly idiosyncratic. Successive years start on different days of the
week. There are months with different numbers of days. Leap years have an extra day in February.
Americans and Europeans put the day and the month in different places: 3/4/2006 is March 4 for the
former and April 3 for the latter. Occasional years have an additional leap second added to them
because friction from the tides is slowing down the rotation of the earth from when the standard time
was set on the basis of the tropical year in 1900. The cumulative effect of having set the atomic
clock too slow accounts for the continual need to insert leap seconds (37 of them by June 2020).
There is currently a debate about abandoning leap seconds and introducing a ‘leap minute’ every
century or so instead. Calculations involving times are complicated by the operation of time zones
and daylight saving schemes in different countries. All these things mean that working with dates
and times is excruciatingly complicated. Fortunately, R has a robust system for dealing with this
complexity. To see how R handles dates and times, let us have a look at Sys.time () with the
time taken from the computer on which the command was typed:

Sys.time ()

[1] "2021-10-27 10:58:10 BST"

This description of date and time is strictly hierarchical from left to right: the longest time scale
(years) comes first, then month, then day, separated by hyphens, then there is a blank space, fol-
lowed by the time, with hours first (using the 24-hour clock), then minutes, then seconds, separated
by colons. Finally, there is a character string explaining the time zone (GMT stands for Greenwich
Mean Time, BST for British Summer time, for instance). This representation of the date and time as
a character string is user-friendly and familiar, but it is no good for calculations. For that, we need
a single numeric representation of the combined date and time. The convention in R is to base this
on seconds (the smallest time scale that is accommodated in Sys.time ()). It is possible it to
aggregate upwards to days or year, but not to do the reverse. The baseline for expressing today’s
date and time in seconds is 1 January 1970:

as.numeric (Sys.time ())

[1] 1635328691

This is fine for plotting time series graphs, but it is not much good for computing monthly means
(e.g. is the mean for June significantly different from the July mean?) or daily means (e.g. is the
Monday mean significantly different from the Friday mean?). To answer questions like these, we

�

� �

�

ESSENTIALS OF THE R LANGUAGE 165

have to be able to access a broad set of categorical variables associated with the date: the year,
the month, the day of the week, and so forth. To accommodate this, R uses the POSIX system for
representing times and dates:

class (Sys.time ())

[1] "POSIXct" "POSIXt"

We can think of the class POSIXct, with suffix ct, as continuous time (i.e. a number of seconds).
There is also a more user friendly format, POSIXlt, with suffix lt, as list time (i.e. a list of all the
various categorical descriptions of the time, including day of the week, and so forth). We shall call
these, generically, date-time objects. It is hard to remember these acronyms, but it is well worth
making the effort. Naturally, we can easily convert to one representation to the other:

time.list <- as.POSIXlt (Sys.time ())
unlist (time.list)

sec min hour mday
"10.6584351062775" "58" "10" "27"

mon year wday yday
"9" "121" "3" "299"

isdst zone gmtoff
"1" "BST" "3600"

Here we can see the 11 components of the list, converted into a character vector. The time is
represented by the number of seconds (sec to a startling level of accuracy), minutes (min) and
hours (on the 24-hour clock). Next comes the day of the month (mday, starting from 1), then the
month of the year (mon, starting at January = 0), then the year (starting at 0 = 1900). The day of the
week (wday) is coded from Sunday = 0 to Saturday = 6. The day within the year (yday) is coded
from 0 = January 1. There is a logical variable (isdst) which asks whether daylight saving time is
in operation (0 = FALSE for instance), a description of the time zone and the number of seconds
difference from GMT (gmtoff).

3.16.1 Reading time data from files

It is most likely that our data files contain dates in Excel format, for example 03/09/2014 (a character
string showing day/month/year separated by slashes).

dates <- read.table ("dates.txt", header = T)
head (dates)

x date
1 4 01/01/2021
2 2 02/01/2021
3 0 03/01/2021
4 6 04/01/2021
5 2 05/01/2021
6 8 06/01/2021

�

� �

�

166 THE R BOOK

class (dates$date)

[1] "character"

When we read such data into R using read.table (), the default option is to turn the data into
character variables. For our present purposes, the point is that the data are not recognised by R
as being dates. To convert a character string or a factor into a date-time object, we employ an
important function called strptime ().

To convert a factor or a character string into dates using the strptime () function, we provide
a format statement enclosed in double quotes to tell R exactly what to expect, in what order, and
separated by what kind of symbol. For our present example, we have day (as two digits), then slash,
then month (as two digits), then slash, then year (with the century, making four digits).

Rdate <- strptime (as.character (dates$date), "%d/%m/%Y")
class (Rdate)

[1] "POSIXlt" "POSIXt"

We don’t have any seconds, so there is no POSIXct. It is always a good idea at this stage to add
the R-formatted date to our dataframe:

dates <- data.frame (dates, Rdate)
head (dates)

x date Rdate
1 4 01/01/2021 2021-01-01
2 2 02/01/2021 2021-01-02
3 0 03/01/2021 2021-01-03
4 6 04/01/2021 2021-01-04
5 2 05/01/2021 2021-01-05
6 8 06/01/2021 2021-01-06

Now, at last, we can do things with the date information. We might want the mean value of x for
each day of the week using wday as described in Section 3.16:

tapply (dates$x, Rdate$wday, mean)

0 1 2 3 4 5 6
3.285714 3.000000 4.357143 5.571429 4.357143 4.666667 4.214286

The lowest mean is on Tuesdays (wday = 1) and the highest on Fridays (wday = 5).
It is hard to remember all the format codes for strptime (), but they are sometimes mnemonic,

and they are always preceded by a percent symbol. The full list of format components is given in
Table 3.6.

Note the difference between the upper case for year %Y (this is the unambiguous year including
the century, 2014), and the potentially ambiguous lower case %y (it is not clear whether 14 means
1914 or 2014).

�

� �

�

ESSENTIALS OF THE R LANGUAGE 167

Table 3.6 Format codes for dates and times

%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%c date and time, locale-specific
%d day of the month as decimal number (01–31)
%H hours as decimal number (00–23) on the 24-hour clock
%I hours as decimal number (01–12) on the 12-hour clock
%j day of year as decimal number (0–366)
%m month as decimal number (0–11)
%M minute as decimal number (00–59)
%p AM/PM indicator in the locale
%S second as decimal number (00–61, allowing for two ‘leap seconds’)
%U week of the year (00–53) using the first Sunday as day 1 of week 1
%w weekday as decimal number (0–6, Sunday is 0)
%W week of the year (00–53) using the first Monday as day 1 of week 1
%x date, locale-specific
%X time, locale-specific
%Y year with century
%y year without century
%Z time zone as a character string (output only)

There is a useful function called weekdays () (note the plural) for turning the day number into
the appropriate name:

y <- strptime ("01/01/2021", format = "%d/%m/%Y")
weekdays (y)

[1] "Friday"

which is converted from

y$wday

[1] 5

because the days of the week are numbered from Sunday = 0.
Here is another kind of date, with years in two-digit form, and the months as abbreviated names,

with no separators:

other_dates <- c ("1jan99", "2jan05", "31mar04", "30jul05")
strptime (other_dates, "%d%b%y")

[1] "1999-01-01 GMT" "2005-01-02 GMT" "2004-03-31 BST" "2005-07-30 BST"

�

� �

�

168 THE R BOOK

Note that R has worked out when British Summer Time starts (in the UK). Here is yet another
possibility with year, then month in full, then week of the year, then day of the week abbreviated, all
separated by a single blank space:

yet_another_date <- c ("2016 January 2 Mon", "2017 February 6 Fri",
"2018 March 10 Tue")

strptime (yet_another_date, "%Y %B %W %a")

[1] "2016-01-11 GMT" "2017-02-10 GMT" "2018-03-06 GMT"

The system is clever in that it knows the date of the Monday in week number 2 of January in 2016,
and of the Tuesday in week 10 of 2018, the information on month is redundant in this case:

yet_more_dates <- c ("2016 2 Mon", "2017 6 Fri", "2018 10 Tue")
strptime (yet_more_dates, "%Y %W %a")

[1] "2016-01-11 GMT" "2017-02-10 GMT" "2018-03-06 GMT"

3.16.2 Calculations with dates and times

We can do the following calculations with dates and times:

• time ± number;

• time1 − time2;

• time1 ==, !=, <, <=, >, >= time2;

The difference between two date-time objects is a difftime object. We can add or subtract a number
of seconds or a difftime object to/from a date-time object. For obvious reasons, we cannot add two
date-time objects. Unless a time zone has been specified two date-time objects are interpreted as
being in the current time zone in calculations. It is important to note that the default object being
added (or taken away) is seconds, whatever format we begin with

(now <- Sys.time ())

[1] "2021-10-27 10:58:10 BST"

now + 1

[1] "2021-10-27 10:58:11 BST"

y

[1] "2021-01-01 GMT"

y + 1

[1] "2021-01-01 00:00:01 GMT"

�

� �

�

ESSENTIALS OF THE R LANGUAGE 169

We should convert our dates and times into date-time objects before starting to do any calculations.
Once we have done that, it is straightforward to calculate means, differences and so on. Here we
want to calculate the number of days between two dates, 22 October 2015 and 22 October 2018.
Without conversion:

y1 <- "2015-10-22"
y2 <- "2018-10-22"
y1 - y2

Error in y1 - y2: non-numeric argument to binary operator

But, with conversion:

y1 <- as.POSIXlt (y1)
y2 <- as.POSIXlt (y2)
y1 - y2

Time difference of -1096 days

Working out the time difference between two dates and/or times involves the difftime () func-
tion, which takes two date-time objects as its arguments: the function returns an object of class
difftime with an attribute indicating the units. The difference we just calculated did just that with
the function operating behind the scenes:

class (y1 - y2)

[1] "difftime"

If we want only the number of days to use in calculation, then write:

as.numeric (difftime (y1, y2))

[1] -1096

If we have times but no dates, then we can use difftime () to change them into time differences
which are appropriate objects for calculations:

t1 <- as.difftime ("6:14:21")
t2 <- as.difftime ("5:12:32")
t1 - t2

Time difference of 1.030278 hours

We will often want to create date-time objects from components stored in different vectors within a
dataframe. For instance, here is a dataframe with the hours, minutes, and seconds from an exper-
iment with two factor levels (A and B) in four separate columns:

�

� �

�

170 THE R BOOK

times <- read.table ("times.txt", header = T)
head (times)

hrs min sec experiment
1 2 23 6 A
2 3 16 17 A
3 3 2 56 A
4 2 45 0 A
5 3 4 42 A
6 2 56 25 A

Because the times are not stored as a date-time object, we need to paste together the hours,
minutes, and seconds into a character string, using colons as the separator, and then convert them
into time differences:

attach (times)
duration <- as.difftime (paste (hrs, min, sec, sep = ":"))
detach (times)

Then we can carry out calculations like mean and variance using the tapply () function:

tapply (duration, times$experiment, mean)

A B
2.829375 2.292882

which gives the answer in decimal hours.

3.16.3 Generating sequences of dates

We may want to generate sequences of dates by years, months, weeks, days of the month, or days
of the week. Here are four sequences of dates, all starting on 4 November 2015, the first going in
increments of one day:

seq (as.POSIXlt ("2015-11-04"), as.POSIXlt ("2015-11-15"), "1 day")

[1] "2015-11-04 GMT" "2015-11-05 GMT" "2015-11-06 GMT" "2015-11-07 GMT"
[5] "2015-11-08 GMT" "2015-11-09 GMT" "2015-11-10 GMT" "2015-11-11 GMT"
[9] "2015-11-12 GMT" "2015-11-13 GMT" "2015-11-14 GMT" "2015-11-15 GMT"

the second with increments of 2 weeks:

seq (as.POSIXlt ("2015-11-04"), as.POSIXlt ("2016-04-05"), "2 weeks")

[1] "2015-11-04 GMT" "2015-11-18 GMT" "2015-12-02 GMT" "2015-12-16 GMT"
[5] "2015-12-30 GMT" "2016-01-13 GMT" "2016-01-27 GMT" "2016-02-10 GMT"
[9] "2016-02-24 GMT" "2016-03-09 GMT" "2016-03-23 GMT"

�

� �

�

ESSENTIALS OF THE R LANGUAGE 171

the third with increments of 3 months:

seq (as.POSIXlt ("2015-11-04"), as.POSIXlt ("2018-10-04"), "3 months")

[1] "2015-11-04 GMT" "2016-02-04 GMT" "2016-05-04 BST" "2016-08-04 BST"
[5] "2016-11-04 GMT" "2017-02-04 GMT" "2017-05-04 BST" "2017-08-04 BST"
[9] "2017-11-04 GMT" "2018-02-04 GMT" "2018-05-04 BST" "2018-08-04 BST"

the fourth with increments of 6 years:

seq (as.POSIXlt ("2015-11-04"), as.POSIXlt ("2045-02-04"), by = "6 years")

[1] "2015-11-04 GMT" "2021-11-04 GMT" "2027-11-04 GMT" "2033-11-04 GMT"
[5] "2039-11-04 GMT"

If we specify a number, rather than a recognised character string, in the by part of the sequence
function, then the number is assumed to be a number of seconds, so this generates the time as
well as the date:

seq (as.POSIXlt ("2015-11-04"), as.POSIXlt ("2015-11-05"), 8955)

[1] "2015-11-04 00:00:00 GMT" "2015-11-04 02:29:15 GMT"
[3] "2015-11-04 04:58:30 GMT" "2015-11-04 07:27:45 GMT"
[5] "2015-11-04 09:57:00 GMT" "2015-11-04 12:26:15 GMT"
[7] "2015-11-04 14:55:30 GMT" "2015-11-04 17:24:45 GMT"
[9] "2015-11-04 19:54:00 GMT" "2015-11-04 22:23:15 GMT"

As with other forms of seq (), we can specify the length of the vector to be generated, instead of
specifying the final date:

seq (as.POSIXlt ("2015-11-04"), by = "month", length = 10)

[1] "2015-11-04 GMT" "2015-12-04 GMT" "2016-01-04 GMT" "2016-02-04 GMT"
[5] "2016-03-04 GMT" "2016-04-04 BST" "2016-05-04 BST" "2016-06-04 BST"
[9] "2016-07-04 BST" "2016-08-04 BST"

or we can generate a vector of dates to match the length of an existing vector, using along instead
of length:

results <- 1:16
seq (as.POSIXlt ("2015-11-04"), by = "month", along = results)

[1] "2015-11-04 GMT" "2015-12-04 GMT" "2016-01-04 GMT" "2016-02-04 GMT"
[5] "2016-03-04 GMT" "2016-04-04 BST" "2016-05-04 BST" "2016-06-04 BST"
[9] "2016-07-04 BST" "2016-08-04 BST" "2016-09-04 BST" "2016-10-04 BST"

[13] "2016-11-04 GMT" "2016-12-04 GMT" "2017-01-04 GMT" "2017-02-04 GMT"

�

� �

�

172 THE R BOOK

We can use the weekdays () function to extract the days of the week from a series of dates:

weekdays (seq (as.POSIXlt ("2015-11-04"), by = "month", along = results))

[1] "Wednesday" "Friday" "Monday" "Thursday" "Friday" "Monday"
[7] "Wednesday" "Saturday" "Monday" "Thursday" "Sunday" "Tuesday"
[13] "Friday" "Sunday" "Wednesday" "Saturday"

Suppose that we want to find the dates of all the Mondays in a sequence of dates. This involves
the use of logical subscripts. The subscripts evaluating to TRUE will be selected, so the logical
statement we need to make is wday == 1 (because Sunday is wday == 0). We create an object
containing the first 100 days in 2016 (note that r starts at day 0), then convert this vector of dates
into a date-time object, a list like this:

first_100 <- as.Date (0:99, origin = "2016-01-01")
first_100 <- as.POSIXlt (first_100)

Now, because first_100 is a list, we can use the $ operator to access information on weekday,
and we find, of course, that our Mondays are all 7 days apart, starting from the 4 January 2016:

first_100[first_100$wday == 1]

[1] "2016-01-04 UTC" "2016-01-11 UTC" "2016-01-18 UTC" "2016-01-25 UTC"
[5] "2016-02-01 UTC" "2016-02-08 UTC" "2016-02-15 UTC" "2016-02-22 UTC"
[9] "2016-02-29 UTC" "2016-03-07 UTC" "2016-03-14 UTC" "2016-03-21 UTC"
[13] "2016-03-28 UTC" "2016-04-04 UTC"

Suppose we want to list the dates of the first Monday in each month. This is the first date with wday
== 1 (as above) in each month of the year. This is slightly trickier, because several months will
contain five Mondays, so we cannot use seq () with by = 28days to solve the problem (this
would generate 13 dates, not the 12 required). Here are the dates of all the Mondays in the year of
2016, together with their months:

first_week <- seq (as.POSIXlt ("2016-01-01"), as.POSIXlt ("2016-01-07"), "days")
first_mon <- first_week[weekdays (first_week) == "Monday"]
all_mons <- seq (first_mon, as.POSIXlt ("2016-12-31"), "7 days")
all_mons_months <- data.frame (all_mons, month = months (all_mons))
head (all_mons_months)

all_mons month
1 2016-01-04 January
2 2016-01-11 January
3 2016-01-18 January
4 2016-01-25 January
5 2016-02-01 February
6 2016-02-08 February

We want a vector to mark the 12 Mondays we require: these are those where month is not dupli-
cated (i.e. we want to take the first row from each month). For this example, the first Monday in

�

� �

�

ESSENTIALS OF THE R LANGUAGE 173

January is in row 1 (obviously), the first in February in row 5, the first in March in row 10, and so
on. We can use the ‘not duplicated’ function !duplicated () to tag these rows:

wanted <- !duplicated (all_mons_months$month)

Finally, select the 12 dates of the first Mondays using wanted as a subscript like this:

all_mons_months[wanted,]

all_mons month
1 2016-01-04 00:00:00 January
5 2016-02-01 00:00:00 February
10 2016-03-07 00:00:00 March
14 2016-04-04 01:00:00 April
18 2016-05-02 01:00:00 May
23 2016-06-06 01:00:00 June
27 2016-07-04 01:00:00 July
31 2016-08-01 01:00:00 August
36 2016-09-05 01:00:00 September
40 2016-10-03 01:00:00 October
45 2016-11-07 00:00:00 November
49 2016-12-05 00:00:00 December

Note that every month is represented, and none of the dates is later than the 7th of the month as
required. The time given highlights those Mondays where summer time rules.

3.16.4 Calculating time differences between the rows of a dataframe

A common action with time data is to compute the time difference between successive rows of a
dataframe. The vector called duration created from the dataset times in Section 3.16.2 is of
class difftime and contains 16 times measured in decimal hours:

class (duration)

[1] "difftime"

duration

Time differences in hours
[1] 2.385000 3.271389 3.048889 2.750000 3.078333 2.940278 3.207778 1.953333
[9] 2.372778 1.701944 2.521389 3.254444 2.467778 1.926111 2.285278 1.813333

We can compute the differences between successive rows using subscripts, like this:

(diffs <- duration[1:15] - duration[2:16])

Time differences in hours
[1] -0.8863889 0.2225000 0.2988889 -0.3283333 0.1380556 -0.2675000

�

� �

�

174 THE R BOOK

[7] 1.2544444 -0.4194444 0.6708333 -0.8194444 -0.7330556 0.7866667
[13] 0.5416667 -0.3591667 0.4719444

We might want to make the differences between successive rows into part of a dataframe (for
instance, to relate change in time to one of the explanatory variables in the dataframe). Before
doing this, we need to decide on the row in which we want to put the first of the differences. We
should be guided by whether the change in time between rows 1 and 2 is related to the explanatory
variables in row 1 or row 2. Suppose it is row 1 that we want to contain the first time difference
(−0.8864). Because we are working with differences the vector of differences is shorter by one
than the vector from which it was calculated:

length (diffs)

[1] 15

length (duration)

[1] 16

so we need to add one NA to the bottom of the vector (in row 16):

(diffs <- c (diffs, as.difftime ("00:00:00")))

Time differences in secs
[1] -3191 801 1076 -1182 497 -963 4516 -1510 2415 -2950 -2639 2832
[13] 1950 -1293 1699 0

Now we can make this new vector part of the dataframe called times:

times$diffs <- diffs
times

hrs min sec experiment diffs
1 2 23 6 A -3191 secs
2 3 16 17 A 801 secs
3 3 2 56 A 1076 secs
4 2 45 0 A -1182 secs
5 3 4 42 A 497 secs
6 2 56 25 A -963 secs
7 3 12 28 A 4516 secs
8 1 57 12 A -1510 secs
9 2 22 22 B 2415 secs
10 1 42 7 B -2950 secs
11 2 31 17 B -2639 secs
12 3 15 16 B 2832 secs
13 2 28 4 B 1950 secs
14 1 55 34 B -1293 secs
15 2 17 7 B 1699 secs
16 1 48 48 B 0 secs

�

� �

�

ESSENTIALS OF THE R LANGUAGE 175

3.16.5 Regression using dates and times

Here is an example where the number of individual insects was monitored each month over the
course of 13 months:

timereg <- read.table ("timereg.txt", header = T)
head (timereg)

survivors date
1 100 01/01/2011
2 52 01/02/2011
3 28 01/03/2011
4 12 01/04/2011
5 6 01/05/2011
6 5 01/06/2011

The first job, as usual, is to use strptime () to convert the date character strings into date-time
objects:

timereg$date <- strptime (timereg$date,"%d/%m/%Y")

We can see that the new object has the following features:

class (timereg$date)

[1] "POSIXlt" "POSIXt"

mode (timereg$date)

[1] "list"

Then we look at the data to give Figure 3.3a:

attach (timereg)
plot (date, survivors, xlab = "month", col = hue_pal ()(3)[1])
plot (date, log (survivors), xlab = "month", col = hue_pal ()(3)[2])
detach (timereg)

Inspection of the relationship suggests an exponential decay in numbers surviving, so we shall
analyse a model in which ln (survivors) is modelled as a function of time (Figure 3.3b): see
Chapter 15 for an introduction to these models.

timereg_mod1 <- lm (log (survivors) ~ date, data = timereg)

Error in model.frame.default(formula = log(survivors) ~ date, data = timereg,:
invalid type (list) for variable ’date’

�

� �

�

176 THE R BOOK

Jan Mar May Jul Sep Nov

0
20

40
60

80
10

0

Month

T
im

er
eg

$s
ur

vi
vo

rs

(a) As given

Jan Mar May Jul Sep Nov

0
1

2
3

4

Month

Lo
g(

tim
er

eg
$s

ur
vi

vo
rs

)

(b) Log response

Figure 3.3 Dataset timereg.

Well, that didn’t work. There are two things we need to correct:

• we need to eliminate the zeros which won’t work with a log model;

• the date data need to be converted to something based around seconds, i.e. the POSIXct format.

timereg_mod2 <- lm (log (survivors) ~ as.POSIXct (date),
data = subset (timereg, survivors > 0))

We can use the output from this model to add a regression line to the plot in Figure 3.3b using:

abline (timereg_mod2, col = hue_pal ()(3)[3])

We need to take care in reporting the values of slopes in regressions involving date-time
objects, because the slopes are rates of change of the response variable per second. Here is the
summary:

summary (timereg_mod2)

Call:
lm(formula = log(survivors) ~ as.POSIXct(date), data = subset(timereg,

survivors > 0))

�

� �

�

ESSENTIALS OF THE R LANGUAGE 177

Residuals:
Min 1Q Median 3Q Max

-0.32076 -0.21449 0.09847 0.14596 0.29366

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.974e+02 1.551e+01 19.18 2.61e-07 ***
as.POSIXct(date) -2.264e-07 1.189e-08 -19.05 2.74e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2413 on 7 degrees of freedom
Multiple R-squared: 0.9811, Adjusted R-squared: 0.9784
F-statistic: 362.7 on 1 and 7 DF, p-value: 2.738e-07

The slope is 0; the change in ln (survivors) per second. It might be more useful to express this
as a monthly rate. So with 60 sec min−1, 60 min hr−1, 24 hr d−1, and (say) 30 d mo−1, the appropriate
rate is roughly:

(month_rate <- coef (timereg_mod2)[2] * 60 * 60 * 24 * 30)

as.POSIXct(date)
-0.5868743

We can check this out by calculating how many survivors we would expect from 100 starters after
two months:

100 * exp(month_rate * 2)

as.POSIXct(date)
30.92057

which compares well with our observed count of 28 (see above).

3.17 Environments

R is built around a highly sophisticated system of naming and locating objects. When we start a
session in R, the variables we create are put in the global environment, which is known more
familiarly as the user’s workspace: details of this can be seen in the default top right-hand window
of RStudio (Environment tab, Global Environment drop down). For instance, if we create the variable
a and the matrix b, they should appear in that box:

a <- 897932
b <- matrix (c (38, 46, 26, 43), nrow = 2)

�

� �

�

178 THE R BOOK

Any item under the heading Data, for instance dataframes, will be given in more detail if clicked
upon (using RStudio’s View () function). If we create our own function (see Section 3.18), then
that will also appear:

d <- function (x) {
f <- log (exp (x))
f

}

The global environment is the first place in which R looks for named objects.
An environment consists of a frame, which is collection of named objects, and a pointer to

an enclosing environment. The most common example is the frame of variables that is local to a
specific function call (in our example, f is a variable only within the environment of the function d); its
enclosure is the environment where the function was defined (in this case the global environment).

There is a strict hierarchy in which R looks for things: it starts by looking in the frame, then in the
enclosing frame, and so on. Most of the time, we will be operating in the global environment, but,
occasionally, we will be working in the environment of a specific function.

3.17.1 Using attach () or not!

When we attach () a dataframe (and some other objects in R), we can refer to the variables
within that dataframe by name. So, for instance if we consider the built-in dataframe Orchard-
Sprays:

head (OrchardSprays)

decrease rowpos colpos treatment
1 57 1 1 D
2 95 2 1 E
3 8 3 1 B
4 69 4 1 H
5 92 5 1 G
6 90 6 1 F

OrchardSprays$colpos[1:10]

[1] 1 1 1 1 1 1 1 1 2 2

attach (OrchardSprays)

The following object is masked _by_ .GlobalEnv:

treatment

colpos[1:10]

[1] 1 1 1 1 1 1 1 1 2 2

detach (OrchardSprays)

�

� �

�

ESSENTIALS OF THE R LANGUAGE 179

Advanced R users do not routinely employ attach () in their work, because it can lead to unex-
pected problems in resolving names (e.g. we can end up with multiple copies of the same variable
name, each of a different length and each meaning something completely different: in the example
above, we already assigned the object treatment in Section 3.4.5 giving rise to the message).
When we used attach () we can see that an extra environment for the dataset has been created
in the drop-down window within Environment in RStudio’s top right-hand window.

Most modelling functions like lm () or glm () have a data = argument so attach () is
unnecessary in those cases. Even when there is a data = argument, it is preferable to wrap the
call using with () like this:

with (name_of_dataframe, name_of_function (...))

The with () function evaluates an R expression in an environment constructed from data. We
will often use the with () function with other functions like tapply () or plot () which have
no built-in data argument. If our dataframe is part of the built-in package called datasets (like
Orchard Sprays), we can refer to the dataframe directly by name:

with (OrchardSprays, boxplot (decrease ~ treatment))

Here we calculate the number of n (not infected) cases in the bacteria dataframe which is part
of the MASS (Venables and Ripley, 2002) library:

library (MASS)
with (bacteria, tapply ((y == "n"), trt, sum))

placebo drug drug+
12 18 13

Here we plot brain weight against body weight for mammals on log–log axes:

with (mammals, plot (body, brain, log = "xy"))

In neither case did we attach the dataframe. Here we import a dataframe called regression:

regression <- read.table ("regression.txt", header = T)

with which we carry out a linear regression and print a summary:

with (regression, {
model <- lm (growth ~ tannin)
summary (model)
}

)

Call:
lm(formula = growth ~ tannin)

�

� �

�

180 THE R BOOK

Residuals:
Min 1Q Median 3Q Max

-2.4556 -0.8889 -0.2389 0.9778 2.8944

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.7556 1.0408 11.295 9.54e-06 ***
tannin -1.2167 0.2186 -5.565 0.000846 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.693 on 7 degrees of freedom
Multiple R-squared: 0.8157, Adjusted R-squared: 0.7893
F-statistic: 30.97 on 1 and 7 DF, p-value: 0.0008461

The linear model fitting function lm () knows to look in regression to find the variables called
growth and tannin because the with () function has used regression for constructing the
environment from which lm () is called. Groups of statements (different lines of code) to which the
with () function applies are contained within curly brackets. An alternative is to define the data
environment as an argument in the call to lm () like this:

summary (lm (growth ~ tannin, data = regression))

Note that whatever form we choose, we still need to get the dataframe into our current environment
by using read.table (), etc. (if, as here, it is to be read from an external file), or from a library
(like MASS to get bacteria and mammals, as above). To see the names of the dataframes in the
built-in package called datasets, type:

data ()

To see all available data sets (including those in the installed packages), type:

data (package = .packages (all.available = TRUE))

3.17.2 Using attach () in this book

We use attach () in many places throughout this book because experience has shown that
it makes the code easier to understand for beginners. In particular, using attach () provides
simplicity and brevity so that we can:

• refer to variables by name, so x rather than dataframe$x;

• write shorter models, so lm (y ∼ x) rather than lm (y ∼ x,data = dataframe);

• go straight to the intended action, so plot (y ∼ x) not with (dataframe, plot
(y ∼ x)).

Nevertheless, readers are encouraged to use with () or data = for their own work, and to avoid
using attach () wherever possible. If attach () is used, then it must be followed, after the
abbreviated names have been used by detach () as we have done at the start of Section 3.17.1:

�

� �

�

ESSENTIALS OF THE R LANGUAGE 181

that will free up the variable names (and the dataset no longer appears as an Environment in RStu-
dio). We have attempted to do this throughout the book: apologies if we have omitted that in one
or two examples.

3.18 Writing R functions

We typically write our own functions in R to carry out operations that require two or more lines of
code to execute and that we might want to repeat many times. We have seen a few examples in
this chapter so far, but here we will explain in detail how the process works.

Functions in R are objects that carry out operations on arguments that are supplied to them and
return one or more values. The syntax for writing a function is

function_name <- function (argument list) {
body

}

The first component of the function declaration is the keyword function (), which indicates to R
that we want to create a function. An argument list is a comma-separated list of formal arguments.
Typically, these will represent data we pass to the function. The body can be any valid R expression
or set of R expressions over one or more lines. Generally, the body is a group of expressions
contained in curly brackets {, }, with each expression on a separate line. Functions can be written
on a single line, with no curly brackets, but we will, in general, avoid that as it can make the code
difficult to read. We have usually indented the body. We will now have a look at several examples
in operation.

3.18.1 Arithmetic mean of a single sample

The mean is the sum of the numbers divided by the number of numbers, typically in a single vector,
say y, in R. The R functions involved are sum (y) and length (y), so a function to compute
arithmetic means is

arithmetic_mean <- function (x) {
sum (x) / length (x)

}

If we want the function to output a value, as here, then the last statement in the function must be
what we want that output to be. We should test the function with some data where we know the
right answer:

y <- c (3, 3, 4, 5, 5)
arithmetic_mean (y)

[1] 4

When we used x within the function, it only exists in the function environment (see Section 3.17)
and when we actually use the function, we can pass it to any data we want (in this case y

�

� �

�

182 THE R BOOK

which exists in the global environment). Obviously, we can compare the answer to the built-in
function:

mean (y)

[1] 4

3.18.2 Median of a single sample

The median (or 50th percentile) is the middle value of the sorted values of a vector of numbers,
which we can calculate with this slightly convoluted formula:

sort (y)[ceiling (length (y) / 2)]

[1] 4

There is a slight hitch here, of course, because if the vector contains an even number of numbers,
then there is no middle value. The logic here is that we need to work out the arithmetic average of
the two values of y on either side of the middle. The question now arises as to how we know, in
general, whether the vector y contains an odd or an even number of numbers so that we can decide
which of the two methods to use. The trick here is to use modulo 2 (see Section 3.1.4). Now we
have all the tools we need to write a general function to calculate medians. Let us call the function
med () and define it like this:

med <- function(x) {
odd_even <- length (x) %% 2
if (odd_even == 0) {

med_x <- (sort (x)[length (x) / 2] + sort (x)[1 + length (x) / 2]) / 2
} else {

med_x <- sort(x)[ceiling (length(x) / 2)]
}
med_x

}

Notice that when the if () statement is true (i.e. we have an even number of numbers) then the
expression immediately following the if () function is evaluated (this is the code for calculating
the median with an even number of numbers). When the if () statement is false (i.e. we have an
odd number of numbers, and odd_even == 1), then the expression following the else function
is evaluated (this is the code for calculating the median with an odd number of numbers). It is good
practice in more complex functions to create an object which is the answer (med_x) and leave it as
the last line for output.

Let us try it out, first with the odd-numbered vector y, then with the even-numbered vector y[−1],
after the first element of y has been dropped (using the negative subscript), and comparing with
R’s built-in function:

med (y)

[1] 4

�

� �

�

ESSENTIALS OF THE R LANGUAGE 183

med (y[-1])

[1] 4.5

median (y)

[1] 4

median (y[-1])

[1] 4.5

We could write the same function in a single (long) line by using ifelse () as follows:

med <- function (x) ifelse (length (x) %% 2 == 1,
sort (x)[ceiling (length (x) / 2)],

(sort (x)[length (x) / 2] + sort (x)[1 + length (x) / 2]) / 2)

However, that is pretty incomprehensible compared with the layout above, and we suggest that lots
of lines, space, and indents are used to produce readable code (particularly if we come back to a
function after a break).

3.18.3 Geometric mean

For processes that change multiplicatively rather than additively, neither the arithmetic mean nor the
median is an ideal measure of central tendency. Under these conditions, the appropriate measure
is the geometric mean. The formal definition of this is somewhat abstract: the geometric mean
is the nth root of the product of the data. If we have data y1, y2, … , yn, then the geometric mean,
ygm is

ygm = n
√

y1 × y2 × · · · × yn.

Let us take a simple example we can work out by hand: the numbers of insects on five plants
were as follows: 10, 1, 1000, 1, 10. Multiplying the numbers together gives 100 000. There are five
numbers, so we want the fifth root of this. Roots are hard to do in our head, so we will use R as
a calculator. Remember that roots are fractional powers, so the fifth root is a number raised to the
power 1∕5 = 0.2. In R, powers are denoted by the ̂ symbol:

100000^0.2

[1] 10

So the geometric mean of these insect numbers is 10 insects per stem. Note that two of the data
were exactly like this, so it seems a reasonable estimate of central tendency. The arithmetic mean,
on the other hand, is a hopeless measure of central tendency in this case, because the large value
(1000) is so influential. This may be interesting but doesn’t match the way that insects are repre-
sented on plants.

�

� �

�

184 THE R BOOK

insects <- c (1, 10, 1000, 10, 1)
mean (insects)

[1] 204.4

Another way to calculate geometric mean involves the use of logarithms. Recall that to multiply
numbers together we add up their logarithms. And to take roots, we divide the logarithm by the
root. So we should be able to calculate a geometric mean by finding the antilog (exp ()) of the
average of the logarithms (log ()) of the data:

exp (mean (log (insects)))

[1] 10

So here is a function to calculate geometric mean of a vector of numbers x:

g_mean <- function (x) {
exp (mean (log (x)))

}

When we create a function, it is always worth checking that R does not already have a function with
that name, which would cause confusion: it’s best to choose a name that is clearly distinct from that
of existing functions. We can test it with the insect data:

g_mean (insects)

[1] 10

The use of geometric means draws attention to a general scientific issue. Look at the Figure 3.4,
which shows numbers varying through time in two populations. We could ask which population is
the more variable. Chances are, we will pick the upper line:

But now look at the scale on the y axis. The upper population is fluctuating 100, 200, 100, 200,
and so on. In other words, it is doubling and halving, doubling and halving. The lower curve is
fluctuating 10, 20, 10, 20, 10, 20, and so on. It, too, is doubling and halving, doubling and halving.
So the answer to the question is that they are equally variable, relative to their mean value. It is
just that one population has a higher mean value than the other (150 vs. 15 in this case). In order
not to fall into the trap of saying that the upper curve is more variable than the lower curve, it is
good practice to graph the logarithms rather than the raw values of things like population sizes that
change multiplicatively, as in Figure 3.5.

Now it is clear that both populations are equally variable. Note the change of scale, to logarithms.

3.18.4 Harmonic mean

Consider the following problem. An elephant has a territory which is a square of side 2 km. Each
morning, the elephant walks the boundary of this territory. He begins the day at a sedate pace,
walking the first side of the territory at a speed of 1 km hr−1. On the second side, he has sped up to

�

� �

�

ESSENTIALS OF THE R LANGUAGE 185

5 10 15 20

0
50

10
0

15
0

20
0

25
0

Time

P
op

ul
at

io
ns

Figure 3.4 Numbers of species varying in two populations.

5 10 15 20

0
1

2
3

4
5

6

Time

Lo
g

(p
op

ul
at

io
ns

)

Figure 3.5 Log (numbers) of species varying in two populations.

2 km hr−1. By the third side, he has accelerated to an impressive 4 km hr−1, but this so wears him
out, that he has to return on the final side at a sluggish 1 km hr−1. So what is his average speed
over the ground? You might say he travelled at 1, 2, 4, and 1 km hr−1 so the average speed is
(1 + 2 + 4 + 1)∕4 = 8∕4 = 2 km hr−1. But that is wrong. Recall that velocity is defined as distance
travelled divided by time taken. The distance travelled is easy: it is just 4 × 2 = 8 km. The time
taken is a bit harder. The first edge was 2 km long, and travelling at 1 km hr−1 this must have taken
2 hours. The second edge was 2 km long, and travelling at 2 km hr−1 this must have taken 1 hours.
The third edge was 2 km long and travelling at 4 km hr−1 this must have taken 0.5 hours. The final
edge was 2 km long and travelling at 1 km hr−1 this must have taken 2 hours. So the total time taken
was 2 + 1 + 0.5 + 2 = 5.5 hours. So the average speed is not 2 km hr−1 but 8∕5.5 = 1.4545 km hr−1.
The way to solve this problem is to use the harmonic mean.

The harmonic mean is the reciprocal of the average of the reciprocals. The average of our recip-
rocals is

1
1
+ 1

2
+ 1

4
+ 1

1

4
= 2.75

4
= 0.6875.

�

� �

�

186 THE R BOOK

The reciprocal of this average is the harmonic mean

4
2.75

= 1
0.6875

= 1.4545.

In symbols, therefore, the harmonic mean, ỹ, for data y is given by

ỹ = 1(∑
(1∕y)

)
∕n

= n∑
(1∕y)

.

An R function for calculating harmonic means, therefore, could be

harmonic <- function (x) {
1 / mean (1 / x)

}

and testing it on our elephant data gives

harmonic (c (1, 2, 4, 1))

[1] 1.454545

3.18.5 Variance

A measure of variability or uncertainty is perhaps the most important quantity in statistical analysis.
The greater the variability in the data, the greater will be our uncertainty in the values of parameters
estimated from the data, and the less will be our ability to distinguish between competing hypotheses
about the data.

The variance of a sample is measured as a function of the sum of the squares of the difference
between the data and the arithmetic mean. This important quantity is called the ‘sum of squares’,
SS:

SS =
∑

(y − y)2.

Naturally, this quantity gets bigger with every new data point we add to the sample (unless that
point happens to be the arithmetic mean). An obvious way to compensate for this is to measure
variability as the average of the squared departures from the mean (the ‘mean square deviation’.).
There is a slight problem, however. Look at the formula for the sum of squares, SS, above and ask
what we need to know before we can calculate it. We have the data, y, but the only way we can
know the sample mean, y, is to calculate it from the data (we will never know y in advance).

To allow for this and to complete our calculation of the variance, we need the degrees of freedom
(d.f.). This important concept in statistics is defined, for our purposes, as follows:

d.f. = n − k,

which is the sample size, n, minus the number of parameters, k, estimated from the data. For
the variance, we have estimated one parameter from the data, y, and so there are n − 1 degrees
of freedom. In a simple linear regression (see Section 10.1), we estimate two parameters from
the data, the slope, and the intercept, and so there are n − 2 degrees of freedom in a regression
analysis.

�

� �

�

ESSENTIALS OF THE R LANGUAGE 187

Variance is denoted by the lower-case Latin letter s squared: s2. The square root of variance, s, is
called the standard deviation. We always calculate the variance of a sample as

variance = s2 =
sum of squares

degrees of freedom
.

Consider the following data:

y <- c (13, 7, 5, 12, 9, 15, 6, 11, 9, 7, 12)

We need to write a function to calculate the sample variance: we call it samp_var variance and
define it like this:

samp_var <- function (x) {
sum ((x - mean (x))^2) / (length (x) - 1)

}

and use it like this:

samp_var (y)

[1] 10.25455

Our measure of variability in these data, the variance, is thus 10.254 545 5. It is said to be an
unbiased estimator of the variance of the population because we divide the sum of squares by
the degrees of freedom (n − 1) rather than by the sample size, n, to compensate for the fact that
we have estimated one parameter from the data. So the variance is close to the average squared
difference between the data and the mean, especially for large samples, but it is not exactly equal
to the mean squared deviation. We can compare this answer to the built in function:

var (y)

[1] 10.25455

3.18.6 Variance ratio test

How do we know if two variances are significantly different from one another? One of several sen-
sible ways to do this is to carry out Fisher’s F-test, which simply examines the ratio of the two
variances (see Section 9.2.6). Here is a function to print the p-value (see Section 9.1.3) associated
with a comparison of the larger and smaller variances:

vrt <- function (x,y) {
v1 <- var (x)
v2 <- var (y)

if (var (x) > var (y)) {
vr <- var (x) / var (y)
df1 <- length (x)-1

�

� �

�

188 THE R BOOK

df2 <- length (y)-1
} else {

vr <- var (y) / var (x)
df1 <- length (y) - 1
df2 <- length (x) - 1

}
p_val <- 2 * (1 - pf (vr, df1, df2))
p_val

}

This is the longest function we have written, so it’s worth mentioning:

• the liberal use of space and indents. In particular, we need to be very clear about where the }s
appear so we understand where loops, etc., end;

• we have a if () else () statement. It is probably clearer to use this than the ifelse function;

• the } else { layout is recommended by R;

• rather than leave the final calculation as the last line, we have given it a name and then put that
last. This is a good habit to get into so it is clear what the program is outputting;

• R already has a function called pvalue () so we should avoid using that name.

The technical details aren’t important, but they follow anyway. The last line of our function works
out the probability of getting an F ratio as big as vr or bigger by chance alone if the two variances
were really the same, using the cumulative probability of the F distribution, which is an R function
called pf (). We need to supply pf () with three arguments: the size of the variance ratio (vr),
the number of degrees of freedom in the numerator (df1), and the number of degrees of freedom
in the denominator (df2).

Here are some data to test our function. They are normally distributed random numbers, but the
first set has a variance of 4 and the second a variance of 16 (i.e. standard deviations of 2 and 4,
respectively):

a <- rnorm (20, 15, 2)
b <- rnorm (10, 15, 4)

Here is our function in action:

vrt (a, b)

[1] 0.565174

We can compare our p-value with the p-value given by R’s built-in function:

var.test (a,b)

F-test to compare two variances

�

� �

�

ESSENTIALS OF THE R LANGUAGE 189

data: a and b
F = 0.74775, num df = 19, denom df = 9, p-value = 0.5652
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.2030086 2.1535570

sample estimates:
ratio of variances

0.7477493

3.18.7 Using the variance

The variance is used in many ways. Here we will concentrate on establishing a measure of unrelia-
bility, a confidence interval (CI) for the mean of the population. This, along with hypothesis testing,
is examined in more detail in Chapter 9.

Consider the properties that we would like a measure of unreliability to possess. As the variance
of the data increases, what would happen to the unreliability of estimated parameters? Would it go
up or down? Unreliability would go up as variance increased, so:

unreliability ∝ s2.

What about sample size? Would we want our estimate of unreliability to go up or down as sample
size, n, increased? We would want unreliability to go down as sample size went up, so:

unreliability ∝ s2

n
.

Finally, consider the units in which unreliability is measured. What are the units in which our current
measure is expressed? Sample size is dimensionless, but variance is based on the sum of squared
differences, so it has dimensions of mean squared. So if the mean was a length in cm, the variance
would be an area in cm2. This is an unfortunate state of affairs. It would make good sense to have the
dimensions of the unreliability measure and of the parameter whose unreliability it is measuring the
same. That is why all unreliability measures are enclosed inside a big square root term. Unreliability
measures are called standard errors. What we have just worked out is the standard error of the
mean (of the population), estimated from a sample:

sey =
√

s2

n
,

where s2 is the variance and n is the sample size. We can write a function to calculate the standard
error of a mean:

se <- function (x) {
sqrt (var (x) / length (x))

}

We can refer to functions we have written from within other functions. Recall (see Section 9.1.3),
although the details are not important here, that a CI is based around a value from the t-distribution:

CI = sample mean ± t1−𝛼∕2,d.f. × se.

�

� �

�

190 THE R BOOK

The R function qt () gives the value of the t-distribution, with 1 − 𝛼∕2 = 0.975 and degrees of
freedom d.f. = length (x) - 1. Here is a function called ci95 () which uses our function
se () to compute a 95% CI for a mean:

ci95 <- function (x) {
t_value <- qt (0.975, length(x) - 1)
ci <- t_value * se (x)
return (list (lower_CI = mean (x) - ci,

upper_CI = mean (x) + ci))
}

Here we want the function to output two things: the lower and upper limits of the CI. The final line
shows us how to do that and gives names to the two outputs. We can test the function with 150
normally distributed random numbers with mean 25 and standard deviation 3:

x <- rnorm (150, 25, 3)
ci95 (x)

$lower_CI
[1] 24.18495

$upper_CI
[1] 25.11273

If we were to repeat the experiment many times, then the mean of the population would lie in
approximately 95% of the intervals we create.

We can also use the se () function to investigate how the standard error of the mean changes
with the sample size. We will take progressively larger samples from the standard Normal distribu-
tion (mean 0, variance 1) and plot their standard errors to give Figure 3.6:

We can see clearly that as the sample size falls below about n = 15, so the standard error of
the mean increases rapidly. The lack of smoothness is caused by randomness in the data being

10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

Sample size

S
ta

nd
ar

d
er

ro
r

of
 m

ea
n

Figure 3.6 Effect of sample size on standard error of the mean.

�

� �

�

ESSENTIALS OF THE R LANGUAGE 191

selected and decreases with sample size. The smooth curve we have added is easy to compute:
since the values in our data came from a standard Normal distribution with mean 0 and standard
deviation 1, the expected curve would be 1∕

√
n.

3.18.8 Plots and deparsing in functions

There is no function in the base package of R for drawing error bars on bar charts, although several
contributed packages use the arrows () function for this purpose as described in Section 5.4.3.
Here is a simple, stripped-down function that is supplied with three arguments: the positions of
the bars (yv), the lengths (up and down) of the error bars (z), and the labels for the bars on the
x axis (nn).

In addition, sometimes we write functions which produce output that we want to label with the
names of the variables that were passed to the function. The process of deparsing does this and
turns an unevaluated expression into a character string. For instance, if the function is written in
terms of a continuous response variable y and a categorical explanatory variable x, we might want
to label the axes of a plot produced by the function with, say, biomass in place of y, where that
label is the name of the data. We will use the deparse () function to do that.

error.bars <- function (yv, z, nn){
xv <- barplot(yv, ylim = c (0, max(yv) + max(z)), col = hue_pal ()(2)[1],

names = nn, ylab = deparse (substitute (yv)))
g = (max (xv) - min (xv)) / 50 # 2g is width of error bar
for (i in 1:length (xv)) {

lines (c (xv[i], xv[i]), c (yv[i] + z[i], yv[i] - z[i]),
col = hue_pal ()(2)[2], lwd = 2)

lines (c (xv[i] - g, xv[i] + g), c (yv[i]+z[i], yv[i] + z[i]),
col = hue_pal ()(2)[2], lwd = 2)

lines (c (xv[i] - g, xv[i] + g), c (yv[i]-z[i], yv[i] - z[i]),
col = hue_pal ()(2)[2], lwd = 2)

}
}

The first lines () function adds the vertical line, and the subsequent two lines the crossbars. Our
function will output just a plot. We have also added a comment after the # symbol. Anything after
such a symbol will be ignored by R when running the code. A good program or function will have
many whole or part lines explaining what is going on.

Here is the error.bars () function in action with the plant competition data (see
Section 16.3.2):

comp <- read.table ("competition.txt", header = T,
colClasses = list (clipping = "factor"))

head (comp)

biomass clipping
1 551 n25
2 457 n25
3 450 n25
4 731 n25

�

� �

�

192 THE R BOOK

Control n25 n50 r10 r5

B
io

m
as

s
0

10
0

30
0

50
0

Figure 3.7 Function to generate a plot with error bars.

5 499 n25
6 632 n25

se <- tapply (comp$biomass, comp$clipping, function (x) sd (x) /
sqrt (length (x)))

labels <- as.character (levels (comp$clipping))
biomass <- tapply (comp$biomass, comp$clipping, mean)

Notice that within the line for se, we have created a little function (known as an anonymous argu-
ment as it is not named) to calculate the standard error of each type of clipping. More details about
tapply () can be found in Section 3.10.1. Now, we invoke the function with the means, standard
errors, and bar labels to give Figure 3.7:

error.bars (biomass, se, labels)

3.18.9 The switch () function

When we want a function to do different things in different circumstances, particularly in functions
we write, then the switch () function can be useful. Here we write a function that can calcu-
late any one of four different measures of central tendency: arithmetic mean, median, geometric
mean, or harmonic mean, using functions we have created in Sections 3.18.1–3.18.4. The argument
measure should take one value of Mean, Geometric, Harmonic, or Median; any other text will lead
to the error message Measure not included. Alternatively, we can specify the number of the
switch (e.g. 1 for Mean, 2 for Median).

central_tend <- function (y, measure) {
switch (measure,

Mean = arithmetic_mean (y),
Median = med (y),
Geometric = g_mean (y),
Harmonic = harmonic (y),
stop ("Measure not included"))

}

�

� �

�

ESSENTIALS OF THE R LANGUAGE 193

Note that we have to include the character strings in quotes as arguments to the function when we
call it, but they must not be in quotes within the switch () function itself. We must also get the
name exactly right.

our_data <- rnorm (100, 10, 2)
central_tend (our_data, "Median")
[1] 9.97455

central_tend (our_data, 2)

[1] 9.97455

central_tend (our_data, "median")

Error in central_tend(our_data, "median"): Measure not included

3.18.10 Arguments in our function

When we create a function, we normally specify some arguments. For instance in the function
central_tend () at the end of Section 3.18.9 we specify that the user must supply values for the
arguments y and measure. The names of these arguments are only valid within the environment
(see Section 3.17 for more details) of the function central_tend (). They have no meaning
outside the function and, in fact it is possible to have the same names used globally. So

y <- 1:6
central_tend (y = y, 2)

[1] 3.5

In the global environment, y is the vector of integers from 1 to 6. The first argument to the function,
y = y says that we should give to the argument y in the function the values of the global y. R will
then evaluate central_tend (y = y, 2)with y having the values 1:6 (which could be changed
within the function). Once it has finished evaluating the function, it will revert to the global y.

What we have just described are known as supplied arguments (i.e. the user must supply a
value for the argument). We can also set default arguments in our functions. These are where we
set up a function so that the value of an argument will default to a particular value unless the user
suggests otherwise. We have seen this already in R’s built-in functions. For instance, we saw in
Section 3.7.1 that by default the function mean () will just return NA if any of the data supplied are
themselves NA. That is because (as we can see by looking at help (mean)) there is an argument
to the function, na.rm = FALSE. That is a default argument specifying that NAs should not be
removed unless otherwise specified.

It is very straightforward to add default arguments to our own functions. Sticking with cen-
tral_tend (), let’s change the measure argument so that it defaults to Median:

central_tend <- function (y, measure = "Median") {
switch (measure,

Mean = arithmetic_mean (y),
Median = med (y),

�

� �

�

194 THE R BOOK

Geometric = g_mean (y),
Harmonic = harmonic (y),
stop ("Measure not included"))

}
central_tend (y)

[1] 3.5

central_tend (y, measure = "Geometric")

[1] 2.993795

We can still use the function for other measures of central tendency, but we need to specify them.
Some applications are much more straightforward if the number of arguments does not need

to be specified in advance. There is a special formal name … (triple dot) which is used in the
argument list to specify that an arbitrary number of arguments are to be passed to the function.
Here is a function that takes any number of vectors and calculates their means and variances:

many_means_vars <- function (...) {
data <- list (...)
n <- length (data)
means <- numeric (n)
vars <- numeric (n)
for (i in 1:n) {

means[i] <- mean (data[[i]])
vars[i] <- var (data[[i]])

}
print (means)
print (vars)

}

The main features to note are these:

• the function definition has … as its only argument. This allows the function to accept additional
arguments of unspecified name and number and introduces tremendous flexibility into the struc-
ture and behaviour of functions;

• the first thing done inside the function is to create an object (in fact a list) called data out of the list
of vectors that are actually supplied in any particular case. The length of this list is the number of
vectors, not the lengths of the vectors themselves (these could differ from one vector to another,
as in the example below);

• the two output variables (means and vars) are defined to have as many elements as there are
vectors in the parameter list. The loop goes from 1 to the number of vectors, and for each vector
uses the built-in functions mean () and var () to compute the answers we require;

• because data is a list, we use double [[]] subscripts in addressing its elements;

• the outputs have been printed directly to the screen, rather than saved. We will discuss this in
more detail below in Section 3.18.12.

�

� �

�

ESSENTIALS OF THE R LANGUAGE 195

Now let’s try it out. To make things difficult, we shall create three vectors of different lengths. All
come from the standard Normal distribution (with default arguments of mean 0 and variance 1), but
the three vectors will have different lengths:

x <- rnorm (100)
y <- rnorm (200)
z <- rnorm (300)

Now we invoke the function for different numbers of inputs:

many_means_vars (x, y, z)

[1] 0.23911128 0.01472836 0.03127244
[1] 1.0012944 0.8792163 1.0185302

many_means_vars (x, z)

[1] 0.23911128 0.03127244
[1] 1.001294 1.018530

many_means_vars (z)

[1] 0.03127244
[1] 1.01853

The first line in each output contains the means, the second the variances. Unsurprisingly, all the
means are close to 0, and all three variances are close to 1.

We can use … to absorb some arguments into an intermediate function which can then be
extracted by functions called subsequently. R has a form of lazy evaluation of function arguments
in which arguments are not evaluated until they are needed (in some cases the argument will never
be evaluated).

3.18.11 Errors in our functions

Sometimes our functions might give rise to errors. In that case, we might want the function to con-
tinue and just report the error. One way to trap these errors (i.e. identify and then deal with them) is
to use the try () function. The following function can be used to attempt to load a dataset using
read.table (). Here are the standard error and warning messages:

read.table ("compitition.txt", header = T)

Warning in file(file, "rt"): cannot open file 'compitition.txt': No such file or
directory

Error in file(file, "rt"): cannot open the connection

As we can see, they are not very helpful if the file can’t be found, as is the case here (due to a mis-
spelling). So our function turns them off at the start, produces a bespoke message, and then turns

�

� �

�

196 THE R BOOK

them on again at the end. The key middle part of the function tries to read the file, and the output
from that is saved in try_read. If that is an error (class (try_read) == "try-error"), then
the bespoke error is generated. Otherwise, the start of the file is printed to the screen.

try.dataset <- function (x) {
options (show.error.messages = FALSE)
options (warn = -1)
try_read <- try (read.table (x, header = T))
if (class (try_read) == "try-error") {

cat ("The file named", x, "does not appear to exist in the working direc-
tory\n")
} else {

data_in <- read.table (x, header = T)
cat ("The first records in", x, "are\n")
print (head (data_in))

}
options (show.error.messages = TRUE)
options (warn = 0)

}

We can now run it with a misspelled one, and then a correct dataset, competition.txt, from
Section 3.18.8, which is then saved as our_data:

our_data <- try.dataset ("compitition.txt")

The file named compitition.txt does not appear to exist in the working
directory.

our_data <- try.dataset ("competition.txt")

The first records in competition.txt are
biomass clipping

1 551 n25
2 457 n25
3 450 n25
4 731 n25
5 499 n25
6 632 n25

The object our_data can be seen in the Environment tab in the top right-hand window of RStu-
dio. There are many other functions for dealing with errors and a good starting point can be found at

help (tryCatch)

3.18.12 Outputs from our function

So far we have seen three ways of outputting information from functions: standard output using the
final line, plots and the print () function. We will look at each of these in turn.

�

� �

�

ESSENTIALS OF THE R LANGUAGE 197

The standard option is to put the value to be output in the last line of the function or by using the
return (list ()) line for multiple outputs as in Section 3.18.7. If we do that, we can create an
object from the output and use $ or [] for picking out elements. Let us create a simple function with
multiple outputs for producing squares of two numbers:

simple.function <- function (a, b) {
a2 <- a^2
b2 <- b^2
return (list (asquared = a2, bsquared = b2))

}

And now we can run it:

run1 <- simple.function (6, 13)
run1

$asquared
[1] 36

$bsquared
[1] 169

run1[1]

$asquared
[1] 36

run1$bsquared

[1] 169

and when we enter run1$, we are presented with the various names we have set up.
Producing plots is very straightforward as we saw in Section 3.18.7. If we just want a plot, then

there is no need for the final line of the function to represent the output.
In other circumstances, we might want to see some output to the screen (perhaps, if we have

a loop, a counter showing which loop is being run). We have seen a very poor example of this in
Section 3.18.10 using the print () function: we don’t know what the output actually represents!
Let us add some screen output to simple.function ():

simple.function <- function (a, b) {
a2 <- a^2
b2 <- b^2
cat ("The value of", a, "squared is", a2,

"\nand the value of", b, "squared is", b2)
return (list (asquared = a2, bsquared = b2))

}

�

� �

�

198 THE R BOOK

The key function for screen output is cat (). It works in a similar way to paste () by
concatenating elements; text or variables. Using \n in quotation marks creates a new line, but it is
often simplest just to use multiple cat () functions. So

simple.function (71, 245)

The value of 71 squared is 5041
and the value of 245 squared is 60025
$asquared
[1] 5041

$bsquared
[1] 60025

That looks a mess. We forgot to put in a line break at the end of the screen output and now we have
both that, and the values returned by the function. It’s best practice to do one or the other, although
in some cases, we might want to see output while the function is running (a counter) and then have
the function output saved for further use as described above. Here is a final version of our function
with an example:

simple.function <- function (a, b) {
a2 <- a^2
b2 <- b^2
cat ("The value of", a, "squared is", a2,

"\nand the value of", b, "squared is", b2, "\n\n")
return (list (asquared = a2, bsquared = b2))

}
run2 <- simple.function (6.3, pi)

The value of 6.3 squared is 39.69
and the value of 3.141593 squared is 9.869604.

run2$bsquared

[1] 9.869604

When we run a function, it’s best to save the output as we have done here to run2. The screen
output will still appear, and we can use the output in other functions or calculations later. When out-
putting results to screen, it can be good to think about rounding. Although we should store the data
to as many decimal places as we need, it can be simpler to output using the round () function.

We saw above the use of \n. There are other escape sequences (harking back to the days of
manual typewriters) we can use and they are given in Table 3.7.

Here is an example of using some of these sequences, where we create a simple model but
would like the ANOVA output to appear differently to usual. The details of the numbers are not
important.

tannin <- read.table ("tannin.txt", header = T)
head (tannin)

�

� �

�

ESSENTIALS OF THE R LANGUAGE 199

Table 3.7 Escape sequences for use with cat ()

Escape sequence Effect

\n newline
\r carriage return
\t tab character
\b backspace
\a bell (particularly useful)
\f form feed
\v vertical tab

growth tannin
1 12 0
2 10 1
3 8 2
4 11 3
5 6 4
6 7 5

tannin_model <- lm (growth ~ tannin, data = tannin)
summary.aov (tannin_model)

Df Sum Sq Mean Sq F value Pr(>F)
tannin 1 88.82 88.82 30.97 0.000846 ***
Residuals 7 20.07 2.87

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Suppose that we wanted to produce a slightly different layout

ANOVA table
Source SS d.f. MS F
Treatment 99.2 2 49.6 4.244691
Error 315.5 27 11.68519
Total 414.7 29

First, we extract the necessary numbers from the summary.aov () object:

df1 <-unlist (summary.aov (tannin_model)[[1]] [1])[1]
df2 <-unlist (summary.aov (tannin_model)[[1]] [1])[2]
ss1 <-unlist (summary.aov (tannin_model)[[1]] [2])[1]
ss2 <-unlist (summary.aov (tannin_model)[[1]] [2])[2]

Here is the R code to produce the ANOVA table, using cat() with multiple tabs ("\t\t") and
single new-line markers ("\n") at the end of each line:

{cat ("ANOVA table", "\n")
cat ("Source", "\t\t", "SS", "\t", "\t", "d.f.", "\t", "MS", "\t",

"\t\t", "F", "\n")

�

� �

�

200 THE R BOOK

cat ("Treatment","\t", ss1, "\t", df1, "\t", ss1/df1, "\t\t",
(ss1 / df1) / (ss2 / df2), "\n")

cat ("Error", "\t\t", ss2, "\t", df2, "\t", ss2 / df2, "\n")
cat ("Total", "\t\t", ss1 + ss2, "\t", df1 + df2, "\n")}

Note the use of curly brackets to group the five cat () functions into a single print object rather
than alternating the commands with the output.

As we saw in Section 3.18.10, it is also possible to output to screen using the print () function.
This should only be used when what we want to output has an intrinsic structure, as in

print (summary (1:20))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 5.75 10.50 10.50 15.25 20.00

cat (summary (1:20))

1 5.75 10.5 10.5 15.25 20

The print () function preserves the structure while cat () does not. However, we would need
to use cat () as well, in order to add some sort of description of what the output represents.

3.19 Structure of R objects

We have discussed (or will discuss throughout the book) a range of types of objects in R from simple
numbers to the outputs of complex models. There is a simple way to examine what these objects
contain. For instance, here is one of the simplest objects in R – a vector of length 7 containing real
numbers:

(y <- seq (0.9 ,0.3, -0.1))

[1] 0.9 0.8 0.7 0.6 0.5 0.4 0.3

We can ask R about the structure of the object called y using str ():

str (y)

num [1:7] 0.9 0.8 0.7 0.6 0.5 0.4 0.3

We discover that it is numeric (well, actually, its mode, which describes how it is stored, is), a
vector of length 7 [1:7], and (because the vector is short) we see all of the values listed. For longer
vectors, we would see the first few values, depending on what would fit on a single printed line (as
affected by the number of decimal places displayed). For such a simple object, this information is
available in RStudio in the top right-hand window of the screen.

�

� �

�

ESSENTIALS OF THE R LANGUAGE 201

What about a slightly more complicated object? Here is a dataframe with two columns:

spino <- read.table ("spino.txt", header = T, colClasses = rep ("factor", 2))
str (spino)

’data.frame’: 109 obs. of 2 variables:
$ condition: Factor w/ 5 levels "better","much.better",..:

4 2 4 4 4 5 2 4 3 1 ...
$ treatment: Factor w/ 3 levels "drug.A","drug.B",..: 3 2 2 1 2 1 2 1 2 3 ...

We learn that spino is a dataframe with 109 rows and 2 columns, then we get detailed information
on each of the columns in turn. The first is a variable called condition which is a factor with five
levels (the first two levels of which (in alphabetical order) are better and much.better). The
second variable is called treatment and is a factor with three levels. The numbers are the integer
representations of the factor levels in the first 10 rows of the dataframe (the numbers represent
the levels of the factors in alphabetical order). Because we can see only factor levels 1 and 2, we
would need to do more work to discover what factor level 4 of condition, or level 3 of treatment,
actually represented:

levels (spino$condition)

[1] "better" "much.better" "much.worse" "no.change" "worse"

levels (spino$treatment)

[1] "drug.A" "drug.B" "placebo"

We can also click on spino to view all the data in a more comfortable format.
Frequently, in this book, we will be dealing with objects that are statistical models. Here is the

simplest case, a linear regression model (see Section 10.1 for details):

tannin <- read.table ("tannin.txt", header = T)
tannin_model <- lm (growth ~ tannin, data = tannin)
str (tannin_model)

List of 12
$ coefficients: Named num [1:2] 11.76 -1.22
..- attr(*, "names")= chr [1:2] "(Intercept)" "tannin"

$ residuals : Named num [1:9] 0.244 -0.539 -1.322 2.894 -0.889 ...
..- attr(*, "names")= chr [1:9] "1" "2" "3" "4" ...

$ effects : Named num [1:9] -20.67 -9.42 -1.32 2.83 -1.01 ...
..- attr(*, "names")= chr [1:9] "(Intercept)" "tannin" "" "" ...

$ rank : int 2
$ fitted.values: Named num [1:9] 11.76 10.54 9.32 8.11 6.89 ...
..- attr(*, "names")= chr [1:9] "1" "2" "3" "4" ...

$ assign : int [1:2] 0 1
$ qr :List of 5
..$ qr: num [1:9, 1:2] -3 0.333 0.333 0.333 0.333 ...

�

� �

�

202 THE R BOOK

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:9] "1" "2" "3" "4" ...

..$: chr [1:2] "(Intercept)" "tannin"

.. ..- attr(*, "assign")= int [1:2] 0 1

..$ qraux: num [1:2] 1.33 1.26

..$ pivot: int [1:2] 1 2

..$ tol : num 1e-07

..$ rank : int 2

..- attr(*, "class")= chr "qr"
$ df.residual: int 7
$ xlevels : Named list()
$ call : language lm(formula = growth ~ tannin, data = tannin)
$ terms :Classes ’terms’, ’formula’ language growth ~ tannin
.. ..- attr(*, "variables")= language list(growth, tannin)
.. ..- attr(*, "factors")= int [1:2, 1] 0 1
..- attr(*, "dimnames")=List of 2
..$: chr [1:2] "growth" "tannin"
..$: chr "tannin"
.. ..- attr(*, "term.labels")= chr "tannin"
.. ..- attr(*, "order")= int 1
.. ..- attr(*, "intercept")= int 1
.. ..- attr(*, "response")= int 1
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
.. ..- attr(*, "predvars")= language list(growth, tannin)
.. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
..- attr(*, "names")= chr [1:2] "growth" "tannin"

$ model :’data.frame’: 9 obs. of 2 variables:
..$ growth: int [1:9] 12 10 8 11 6 7 2 3 3
..$ tannin: int [1:9] 0 1 2 3 4 5 6 7 8
..- attr(*, "terms")=Classes ’terms’, ’formula’ language growth ~ tannin
..- attr(*, "variables")= language list(growth, tannin)
..- attr(*, "factors")= int [1:2, 1] 0 1
..- attr(*, "dimnames")=List of 2
..$: chr [1:2] "growth" "tannin"
..$: chr "tannin"
..- attr(*, "term.labels")= chr "tannin"
..- attr(*, "order")= int 1
..- attr(*, "intercept")= int 1
..- attr(*, "response")= int 1
..- attr(*, ".Environment")=<environment: R_GlobalEnv>
..- attr(*, "predvars")= language list(growth, tannin)
..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
..- attr(*, "names")= chr [1:2] "growth" "tannin"

- attr(*, "class")= chr "lm"

There are 12 elements in the list (which is much longer than the data!) representing the structure
of this linear model object: coefficients, residuals, effects, rank, fitted values, assign, qr, residual
degrees of freedom, xlevels, call, terms, and model. Each of these, in turn, is broken down into
components; for instance, the two coefficients are numbers (11.76 and −1.22), and their names
are (Intercept) and tannin. It is worth coming back to this after understanding linear models
(Chapter 10).

�

� �

�

ESSENTIALS OF THE R LANGUAGE 203

The summary () function will typically pull out just some of the elements from a model object,
so it is worth spending a bit of time becoming familiar with all the available information.

summary (tannin_model)

Call:
lm(formula = growth ~ tannin, data = tannin)

Residuals:
Min 1Q Median 3Q Max

-2.4556 -0.8889 -0.2389 0.9778 2.8944

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.7556 1.0408 11.295 9.54e-06 ***
tannin -1.2167 0.2186 -5.565 0.000846 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.693 on 7 degrees of freedom
Multiple R-squared: 0.8157, Adjusted R-squared: 0.7893
F-statistic: 30.97 on 1 and 7 DF, p-value: 0.0008461

More complex models, such as GLMs (Chapter 11) give rise to even more complex objects. All these
objects are just lists, and we can create such things by building our own functions (see Section 3.18).

3.20 Writing from R to a file

There are many ways to save a variety of objects in R: data, plots, commands, current session, etc.
We will examine those in this section.

3.20.1 Saving data objects

Sometimes we might be interrupted halfway through a session and need to close down R, but wish
to keep all the data objects and functions we have created (in RStudio, the list in the top right-hand
corner: Environment/Global Environment). To do that we can type:

save (list = ls (all = TRUE), file = "session15092021.RData")

The file will be saved to our current working directory (other locations can just be typed into the
start of file = ()). To restore the session later, we can just launch the file (which RStudio should
recognise) or type:

load ("session15092021.RData")

Alternatively, we can just use RStudio mean options: Session/Save Workspace as… , and then type
in the filename as above. There is a Load Workspace… menu option for restoring data objects,

�

� �

�

204 THE R BOOK

etc. We can just save specific data objects by using the save () command described above and
just listing the objects we want to save. Unless some data objects take a long time to generate (and
are thus worth saving and retrieving), we suggest that it is not worth saving all data objects every
time we exit R. If we do that, we end up with hundreds of objects that we might not need and which
might have names that could clash with new work we are carrying out.

The best way to save what we have done is to do all our work in an RStudio script (or program)
session in a window in the top left-hand corner of RStudio (see Section 1.4 for more details). This
is just a text file that can be reopened on next entering R, and the relevant commands run again to
generate any key data objects.

3.20.2 Saving command history

Alternatively, or additionally, we might wish to save all the commands that we have entered during
a session. Again, the best way to do this is with an R program or script. However, there is an
alternative:

savehistory (file = "commandhistory15092021.txt")

This can then be loaded using:

loadhistory (file = "commandhistory15092021.txt")

3.20.3 Saving graphics or plots

This is dealt with thoroughly in Section 5.1.3.

3.20.4 Saving data for a spreadsheet

We might wish to export some spreadsheet style data (typically a dataframe, table, or matrix) to an
actual spreadsheet (we hope we persuade you in this book that there will usually be very little call
for that). Anyway, the simplest approach is to save the data object to a .csv file. Here are some
simple examples:

matrices
amatrix <- matrix (1:24, nrow = 6)
write.csv (amatrix, file = "amatrix.csv", row.names = F)

dataframes
adataframe <- as.data.frame (amatrix)
row.names (adataframe) <- paste ("row", 1:6, sep = "")
colnames (adataframe) <- paste ("col", 1:4, sep = "")
write.csv (adataframe, file = "adataframe.csv")

tables
atable <- table (rpois (100, 6))
write.csv (atable, "atable.csv", row.names = F)

�

� �

�

ESSENTIALS OF THE R LANGUAGE 205

Although most of the datasets for this book have been saved to .txt files with spaces separating
the pieces of data, .csv are more widely used and use commas to separate the data. Obviously, we
can then retrieve the data into R using read.csv (). Note that this function, unlike read.table
() assumes that there is a single row of header information. That option can be changed.

3.20.5 Saving output from functions to a file

Sometimes when we run a program, we would like to put the results directly into a file: perhaps
we have written a program that we wish to run against a number of different datasets, with each
dataset producing its own output document. This requires us to do two things:

• run a whole program;

• direct the output from that program to a file.

Let’s create a simple program which takes as input a vector of numbers, in a csv file whose name
we are required to input, and then outputs some basic summary statistics:

import data
filename <- readline ("Enter csv file name without the extension,

and press Enter: ")
input <- read.csv (paste (filename, ".csv", sep = ""), header = F)
input <- unlist (input) # create a vector from the imported dataframe

produce summary statistics
inp_sum <- summary (input)
inp_var <- var (input)

create output
cat ("Summary statistics for data in ", filename, ".csv\n", sep = "")
cat (rep ("=", 35 + nchar (filename)), sep = "")
cat ("\nThe usual summary statistics are:\n")
print (inp_sum)
cat ("\nThe variance of the data is", round (inp_var, 2), "\n\n")
print (Sys.Date ())

When we run the first line, it asks us to enter a name in the R console (use the data file trial.csv
which has random data in the first column, or create our own). Running each line after that will
create the summary statistics and then print them to screen. However, that looks a bit of a mess.
So there is a copy of the program saved as Test_program.R. We can now run that program using
the source () function:

source ("Test_program.R")

We then just get the output from the analysis printed to screen. The program should work with
any set of data in the first column of a csv file, which we can generate in a spreadsheet. That has
completed the first task.

�

� �

�

206 THE R BOOK

Pointing the output to a file rather than the screen is very straightforward:

sink ("Test_output.txt")
source ("Test_program.R")
sink ()

Nothing will be output to the screen but, if all has gone well, a file will have been created from the
sink () function with our output. It is very important that the second sink () command is run:
only then will the file be complete.

3.21 Tips for writing R code

Here are some suggestions for good programming, particularly in R:

• create a script or program to store R commands;

• use RStudio;

• lay out the program with lots of spaces, indents and comments (using #);

• be clear about what is wanted from the code: once that is done, stop;

• test the program, line by line, as it is written;

• use object names that mean something;

• try not to use attach (): if it is absolutely necessary, then use detach () immediately after
finishing use of the dataframe;

• always look for an alternative to loops, although there may not be one.

References

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (Fourth) [ISBN 0-387-95457-0].
Springer. https://www.stats.ox.ac.uk/pub/MASS4/.

Wickham, H. (2019). Stringr: simple, consistent wrappers for common string operations [R package version
1.4.0]. https://CRAN.R-project.org/package=stringr.

https://www.stats.ox.ac.uk/pub/MASS4/
https://CRAN.R-project.org/package=stringr

�

� �

�

4
Data Input and Dataframes

In this chapter, we will explore how to import data into R and then, when it has arrived, how to
manipulate its default structure, known as a dataframe. Obviously, data can be typed directly into
R using c () and other functions, but we will assume from now on that the data is held in a file,
usually a spreadsheet.

4.1 Working directory

R always has a working directory which is where it will attempt to read and write files. It’s easy to
find the current working directory:

getwd ()

The simplest way to organise things is to set the working directory to wherever (directory or folder)
the project we are working on is based, as soon as R is started. Presumably, any data files we
import will already be located there and then when we save a program, plot, data file, etc., it will
automatically be saved to the same place. There are a number of ways to do this. Let us assume
that the directory is C:/project. Then we could type:

setwd ("C:/project")

Alternatively, in RStudio, we can click on the Files tab in the bottom right-hand window, move
to the directory we want and then, from the menu in that window, select More and then Set As
Working Directory. Another good option is to open the program or script we are working on
(see Section 1.4.2), perhaps by double clicking on it in its folder or directory, which will open R and
RStudio, and then from the main menu selecting Session, Set Working Directory, and then
To Source File Location.

Whichever method we use, it’s best to have the working directory set before we attempt any work.
See also Section 1.8.4 for a discussion of projects.

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

208 THE R BOOK

4.2 Data input from files

The easiest way to get data into R is to make the data into the shape of a dataframe in a spreadsheet
before trying to read it into R. As explained in detail in Section 4.5, we should put all of the values
of each variable into a single column, and put the name of the variable in row 1 (called the header
row). Sometimes the rows and the columns of the dataframe are referred to as cases and fields,
respectively. In our terminology, the fields are the variables and the cases are rows. Once we have
the spreadsheet laid out correctly we can save it as file types text (Tab delimited) or CSV
(Comma delimited).

When data is read into R from a file, that file will need to have a separator between elements of
the dataset. Most of the datasets we import in this book will have a space or a tab as a separator
as they have been saved as file type text (Tab delimited). We can then use read.table

() to read in the file as that is the default separator. Where there are text strings (either in the
column names or in the data themselves) containing blanks (e.g. place names like ‘New Brighton’)
then read.table () is no good because it will think that ‘New’ is the value of one variable and
‘Brighton’ is another, causing the input to fail because the number of data items does not match
the number of columns. In such cases, we save them as CSV (Comma delimited) and read the
data from a .csv file using the function read.csv () (the suffix .csv stands for ‘comma separated
values’). The function read.csv2 () is the variant for countries where a comma is used as the
decimal point: in this case, a semicolon is the field separator.

4.2.1 Data input using read.table () and read.csv ()

Here is an example of the standard means of data entry used in this book, creating a dataframe
within R using read.table (), which assumes that the file we are trying to read is in our working
directory:

yields <- read.table ("yields.txt", header = T)
head (yields)

sand clay loam
1 6 17 13
2 10 15 16
3 8 3 9
4 6 11 12
5 14 14 15
6 17 12 16

The argument header = T tells R that the first line of the file we are importing contains column
names. Alternatively, we can save time by using read.delim (), because then we can omit the
argument:

yields <- read.delim ("yields.txt")

�

� �

�

DATA INPUT AND DATAFRAMES 209

Or we could go the whole way down the labour-saving route and write our own text-minimising
function (see Section 3.18), which uses the paste () function like this:

rt <- function (x) {
read.table (paste (x, ".txt", sep = ""), header = TRUE)

}

Then we can just type:

yields <- rt ("yields")

It is possible to import the data from another directory rather than the working directory as in

yields <- read.table ("C://temp/yields.txt", header = T)

However, it is far simpler to have the data file in the working directory.
At this point, it is worth thinking about what to call the data we input. It’s tempting to give the

data the name data, but that can be confusing and may even overwrite data we have previously
imported. It’s much better to give the new data object a sensible name, perhaps related to the name
of the file we have used.

Importing data often gives rise to errors. The following is a common error message:

yield <- read.table ("yield.txt", header = T)

Error in file(file, "rt"): cannot open the connection

There are a number of reasons why that could have arisen:

• the file we are trying to import is not in the working directory;

• the file name has been typed incorrectly, which is the case here: it should be yields not yield.
Similar errors would be using capital or lower case letters, or inserting spaces when they are not
used that way in the file name;

• quotation marks for the whole file name (including other directory if that is used) have been
omitted;

• the file extension, .txt, has been omitted.

Another common cause of failure is that the number of variable names (characters strings in row 1)
does not match the number of columns of information. This is usually because there are blank
spaces in the variable names; so for instance, if we have five column names:

1. state name;

2. population;

�

� �

�

210 THE R BOOK

3. home ownership;

4. cars;

5. insurance,

R will expect seven columns of numbers (because of the spaces in the first and third names). The
following will work:

1. state_name;

2. population;

3. home_ownership;

4. cars;

5. insurance.

There are two possible reasons why spaces in the data area of the file we are importing might
cause problems. The first is when there is no data for a particular row and column. This might arise
if we are collecting the data in a spreadsheet and one cell is empty, perhaps because of some
missing data. The safest thing is to put NA in that cell. Alternatively, the character data in a cell
("dark chocolate") might contain a blank. In both cases, the best solution is to save the file in
the spreadsheet as a .csv file (often Save as type, then select CSV (Comma delimited))
and then read the file into R using read.csv ():

map <- read.csv ("bowens.csv")
head (map)

place east north
1 Abingdon 50 97
2 Admoor Copse 60 70
3 AERE Harwell 48 87
4 Agates Meadow 70 73
5 Aldermaston 59 65
6 Aldermaston Court 60 65

As a bonus, this function assumes that the data have a header and so we don’t need to tell R that.

4.2.2 Input from files using scan ()

For dataframes with data in a fixed number of rows and columns, read.table () and read.csv
() are superb. But we can now see what happens when we try to use those functions with a more
complicated file structure:

read.table ("rt.txt")

Error in scan(file = file, what = what, sep = sep, quote = quote, dec = dec,
: line 1 did not have 4 elements

�

� �

�

DATA INPUT AND DATAFRAMES 211

It simply cannot cope with lines having different numbers of fields (check out the file using a word
or text processor) which is what we have here: 5 lines of data with 1, 2, 4, 2, 1 numbers in each.
However, scan () and readLines () (see Section 4.2.3) come into their own with these com-
plicated, non-standard files.

The scan () function reads data into a list when it is used to read from a file. It is much less
friendly for reading dataframes than read.table () or read.csv (), but it is substantially more
flexible for tricky or non-standard files.

By default, scan () assumes that we are inputting double precision numbers. If not, then
we need to use the what argument to explain what exactly we are inputting (character,
logical, integer, complex or list). By default, scan () expects to read space-delimited
or tab-delimited input fields. If our file has separators other than blank spaces or tab markers, \t,
then we can specify the separator option (e.g. sep = ",") to specify the character which delimits
fields.

With scan (), we may want to skip the header row (because this contains variable names rather
than data). The argument for this is skip = 1, or however many lines we want to skip (this option
is also available for read.table () and read.csv ()). If a single record occupies more than
one line of the input file, then we can use the argument multi.line = TRUE.

Anyway, back to the datafile rt.txt that we failed to read earlier. It is an image of a file containing
information on the identities of the neighbours of five individuals from a population: the first individual
has one neighbour (number 138), the second individual has two neighbours (27 and 44), the third
individual has four neighbours, and so on.

138
27 44
19 20 345 48
115 2366
59

Let’s attempt three different readings of the same file with different separators: the first has 10 items,
the second 5 items, and the third 20 items:

scan ("rt.txt")

[1] 138 27 44 19 20 345 48 115 2366 59

scan ("rt.txt", sep = "\n")

[1] 138 2744 192034548 1152366 59

scan ("rt.txt", sep = "\t")

[1] 138 NA NA NA 27 44 NA NA 19 20 345 48 115 2366 NA
[16] NA 59 NA NA NA

• the first line uses the default separator which is blanks: the 10 items are the 10 numbers that we
are interested in, but information about their grouping has been lost;

• the second line uses the sep = "\n" end of line control character as the separator: the contents
of each of the five lines have been stripped out and trimmed to create meaningless numbers,
except for 138 and 59 which were the only numbers on their respective lines;

�

� �

�

212 THE R BOOK

• the third uses tabs sep = "\t" as separators (we have no information on lines, but at least the
numbers have retained their integrity), and missing values (NA) have been used to pad out each
line to the same length, 4.

To get the result we want, we need to use the information on the number of lines from method 2
and the information on the contents of each line from method 3. The first step is easy:

no_lines <- length (scan ("rt.txt", sep = "\n"))

So we have five lines of information in this file. To find the maximum number of items per line, we
divide the total number of items by the number of lines:

len <- length (scan ("rt.txt", sep = "\t")) / no_lines

To extract the information on each line, we want to take a line at a time, and extract the missing
values (i.e. remove the NAs). So, for line 1 we start with:

scan ("rt.txt", sep = "\t")[1:len]

[1] 138 NA NA NA

then, to remove the NA we use na.omit (), to remove the Read 20 items we use quiet = T
and to leave only the numerical value we use as.numeric ():

as.numeric (na.omit (scan ("rt.txt", sep = "\t", quiet = T)[1:len]))

[1] 138

To complete the job, we need to apply this logic to each of the five lines in turn, creating a function
to produce a list of vectors of variable lengths (1, 2, 4, 2, and 1):

sapply (1:no_lines, function (i)
as.numeric (na.omit(scan("rt.txt", sep = "\t", quiet = T)[(4*i-3):(4*i)])))

[[1]]
[1] 138

[[2]]
[1] 27 44

[[3]]
[1] 19 20 345 48

[[4]]
[1] 115 2366

[[5]]
[1] 59

We have created a list of five items, each of the appropriate length. That was about as complicated
a procedure as we are likely to encounter in reading information from a file (apart from having to
specify the data type). In hindsight, we might have created the data as a dataframe with missing

�

� �

�

DATA INPUT AND DATAFRAMES 213

values explicitly added to the rows that had less than four numbers. Then a single read.table
() statement would have been enough.

4.2.3 Reading data from a file using readLines ()

Now let’s have a look at the example of the neighbours file that we analysed in Section 4.2.2 using
readLines ():

readLines ("rt.txt")

[1] "138\t\t\t" "27\t44\t\t" "19\t20\t345\t48" "115\t2366\t\t" "59\t\t\t"

We can see that the function has produced a vector of length 5 (one element for each row in the file),
with the contents of each row reduced to a single character string (including the literal tab markers
"\t"). We need to split this up within the lines using strsplit (), as discussed in Section 3.15.3.
We split first on the tabs, then on the new lines in order to see the distinction:

strsplit (readLines ("rt.txt"), "\t")

[[1]]
[1] "138" "" ""

[[2]]
[1] "27" "44" ""

[[3]]
[1] "19" "20" "345" "48"

[[4]]
[1] "115" "2366" ""

[[5]]
[1] "59" "" ""

strsplit (readLines ("rt.txt"), "\n")

[[1]]
[1] "138\t\t\t"

[[2]]
[1] "27\t44\t\t"

[[3]]
[1] "19\t20\t345\t48"

[[4]]
[1] "115\t2366\t\t"

[[5]]
[1] "59\t\t\t"

�

� �

�

214 THE R BOOK

The split by tab markers is closest to what we want to achieve, so we shall work on that. First, turn
the character strings into numbers:

(neighbour_rows <- lapply (strsplit (readLines ("rt.txt"), "\t"), as.numeric))

[[1]]
[1] 138 NA NA

[[2]]
[1] 27 44 NA

[[3]]
[1] 19 20 345 48

[[4]]
[1] 115 2366 NA

[[5]]
[1] 59 NA NA

Now all that we need to do is to remove the NAs from each of the vectors using a simple function:

sapply (1:no_lines, function(i) as.numeric (na.omit (neighbour_rows[[i]])))

[[1]]
[1] 138

[[2]]
[1] 27 44

[[3]]
[1] 19 20 345 48

[[4]]
[1] 115 2366

[[5]]
[1] 59

And we have ended up with the same list as with scan (), probably in a more straightforward way.
Using both scan () and readLines () was fiddly, but both arrived at what we were looking for
in the end. It takes a lot of practice to appreciate which one of the functions to use in any particular
circumstance. If possible, it’s best to aim for the more straightforward dataframe import.

�

� �

�

DATA INPUT AND DATAFRAMES 215

4.3 Data input directly from the web

We typically use read.table () to read data from a file, but the function also works for complete
URLs. In computing, URL stands for universal resource locator and is a specific character string
that constitutes a reference to an Internet resource, combining domain names with file path syntax,
where forward slashes are used to separate folder and file names:

canc <- read.table ("http://www.bio.ic.ac.uk/research/mjcraw/therbook/data/
cancer.txt", header = T)

head (canc)

death treatment status
1 4 DrugA 1
2 26 DrugA 1
3 2 DrugA 1
4 25 DrugA 1
5 7 DrugA 1
6 6 DrugA 0

4.4 Built-in data files

There are many built-in data sets within the datasets package (or library), which is automatically
enabled when R is launched. We can see their names by typing:

data ()

We can see the data sets in all or individual installed packages, whether we have started them by
using library () or not, by typing:

data (package = .packages (all.available = TRUE))
data (package = "MASS")

We can read the documentation for a particular data set with the usual query:

?lynx

Some very large packages, such as spatstat, are actually multiple packages and all are launched
when we type:

library (spatstat)

http://www.bio.ic.ac.uk/research/mjcraw/therbook/data/cancer.txt
http://www.bio.ic.ac.uk/research/mjcraw/therbook/data/cancer.txt

�

� �

�

216 THE R BOOK

We can see all installed packages in RStudio in the Packages tab in the bottom right-hand window.
Those with a tick in the box have been launched or enabled. So if we have spatstat installed,
then we can see that we will need to type the following to see the datasets:

data (package = "spatstat.data")

4.5 Dataframes

Learning how to handle our data, how to enter them into the computer, and how to read them
into R are among the most important topics we will need to master. R handles data in objects
known as dataframes. A dataframe is an object with rows and columns (a bit like a matrix). The
rows, typically, contain different observations from our study, or measurements from our experiment
(these are sometimes called cases). The columns contain the values of different variables (these
are often called fields). The values in the body of a matrix must all be of the same type (numbers,
etc.,), but the values in the body of a dataframe can vary by column: numbers, text (e.g. the names
of factor levels for categorical variables, like male or female in a variable called gender), calendar
dates (e.g. 23/5/04), or logical variables (TRUE or FALSE). Table 4.1 is a spreadsheet in the form
of a dataframe with seven variables, the leftmost of which comprises the row names, and other
variables are numeric (Area, Slope, Soil pH, and Worm Density), categorical (Field Name
and Vegetation) or logical (Damp is either true = T or false = F).

Perhaps the most important thing about analysing data properly is getting the data absolutely
right to be imported into a dataframe. The expectation is that we will have used a spreadsheet to

Table 4.1 Correctly set out dataset for importing into a dataframe

Field name Area Slope Vegetation Soil pH Damp Worm density

Nash’s Field 3.6 11 grassland 4.1 F 4
Silwood Bottom 5.1 2 arable 5.2 F 7
Nursery Field 2.8 3 grassland 4.3 F 2
Rush Meadow 2.4 5 meadow 4.9 T 5
Gunness’ Thicket 3.8 0 scrub 4.2 F 6
Oak Mead 3.1 2 grassland 3.9 F 2
Church Field 3.5 3 grassland 4.2 F 3
Ashurst 2.1 0 arable 4.8 F 4
The Orchard 1.9 0 orchard 5.7 F 9
Rookery Slope 1.5 4 grassland 5 T 7
Garden Wood 2.9 10 scrub 5.2 F 8
North Gravel 3.3 1 grassland 4.1 F 1
South Gravel 3.7 2 grassland 4 F 2
Observatory Ridge 1.8 6 grassland 3.8 F 0
Pond Field 4.1 0 meadow 5 T 6
Water Meadow 3.9 0 meadow 4.9 T 8
Cheapside 2.2 8 scrub 4.7 T 4
Pound Hill 4.4 2 arable 4.5 F 5
Gravel Pit 2.9 1 grassland 3.5 F 1
Farm Wood 0.8 10 scrub 5.1 T 3

�

� �

�

DATA INPUT AND DATAFRAMES 217

Table 4.2 Dataset that will not form a dataframe correctly

Control Preheated Prechilled

6.1 6.3 7.1
5.9 6.2 8.2
5.8 5.8 7.3
5.4 6.3 6.9

enter and edit the data, and that we will have used plots to check for errors. The thing that takes
some practice is learning exactly how to put the data into the spreadsheet. There are countless
ways of doing it wrong, but only one way of doing it right. And this way is not the way that most
people find intuitively to be the most obvious.

The key thing is this: all the values of the same variable must go in the same column. It does
not sound like much, but this is what people tend to get wrong. If we had an experiment with three
treatments (control, preheated, and prechilled), and four measurements per treatment, it
might seem like a good idea to create the spreadsheet as in Table 4.2:

However, this is not correct to be imported into a dataframe, because values of the response
variable appear in three different columns, rather than all in the same column. The correct way to
enter these data is to have two columns: one for the response variable and one for the levels of the
experimental factor called Treatment (control, preheated, and prechilled). Table 4.3 has
the same data, entered correctly:

A good way to practice this layout is, for instance, to use the Excel function called PivotTable
(found under Insert on the main menu bar): it requires the spreadsheet to be in the form of a
dataframe, with each of the variables in its own column.

Once we have made our dataframe in a spreadsheet in the correct format, and corrected all the
inevitable data entry and spelling errors, then we need to save it in a file format that can be read
by R. One way is to save each tab from the spreadsheet as a tab-delimited text file. In Excel, for
instance, click on File Save As… then from the Save as type options choose Text (Tab
delimited). There is no need to add a suffix, because Excel will automatically add .txt to the
file name. This file can then be read into R directly as a dataframe, using the read.table ()

Table 4.3 Dataset that will form a dataframe correctly

Response Treatment

6.1 control
5.9 control
5.8 control
5.4 control
6.3 preheated
6.2 preheated
5.8 preheated
6.3 preheated
7.1 prechilled
8.2 prechilled
7.3 prechilled
6.9 prechilled

�

� �

�

218 THE R BOOK

function as explained in Section 4.2.1, where an alternative approach using read.csv () is also
discussed.

It is important to note that read.table () would fail if there were any spaces in any of the
variable names in row 1 of the dataframe (the header row), such as Field Name, Soil pH or
Worm Density (above), or between any of the words within the same factor level (as in many of
the field names). These should be replaced by dots, ‘.’, or underscores, ‘_’, before the data is saved
in the spreadsheet (an alternative is to use read.csv ()). Also, it is good idea to remove any
apostrophes, as these can sometimes cause problems because there is more than one ASCII code
for quotation marks. Now the spreadsheet can be read into R. Think of a name for the dataframe
(say, worms in this case) and then allocate the data from the file to the dataframe like this:

worms <- read.table ("worms.txt", header = T,
colClasses = list (Vegetation = "factor"))

The final argument, colClasses = list (Vegetation = "factor"), specifies that entries
in the column of data headed Vegetation should be treated as coming from a restricted set of
options, called levels. See Section 3.3 for more details.

Once the file has been imported to R, there are a number of things we can do to inspect the data:

• use names () to get a list of the variable names;

• use head () to look at the first few rows of the data;

• use tail () to look at the last few rows of the data.

names (worms)

[1] "Field.Name" "Area" "Slope" "Vegetation" "Soil.pH"
[6] "Damp" "Worm.density"

head (worms)

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2

tail (worms)

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

�

� �

�

DATA INPUT AND DATAFRAMES 219

To see the contents of the whole dataframe, we can just type its name or, for better presentation,
click on the name of the dataframe in the Environment tab in the top right-hand window of RStudio.
This actually runs the command (note the capital V):

View (worms)

Notice that R has expanded our abbreviated T and F into TRUE and FALSE. The object called worms
is now a dataframe. For example, we can summarise it, using summary ():

summary (worms)

Field.Name Area Slope Vegetation
Length:20 Min. :0.800 Min. : 0.00 Arable :3
Class:character 1st Qu.:2.175 1st Qu.: 0.75 Grassland:9
Mode:character Median :3.000 Median : 2.00 Meadow :3

Mean :2.990 Mean : 3.50 Orchard :1
3rd Qu.:3.725 3rd Qu.: 5.25 Scrub :4
Max. :5.100 Max. :11.00

Soil.pH Damp Worm.density
Min. :3.500 Mode :logical Min. :0.00
1st Qu.:4.100 FALSE:14 1st Qu.:2.00
Median :4.600 TRUE :6 Median :4.00
Mean :4.555 Mean :4.35
3rd Qu.:5.000 3rd Qu.:6.25
Max. :5.700 Max. :9.00

Values of continuous variables are summarised under six headings: the arithmetic mean, maximum,
minimum, median, 25th percentile or first quartile, and 75th percentile or third quartile. Levels of
categorical variables or factors (Vegetation in this case) are counted. Note that the field names
are not listed in full because they are unique to each row.

The two functions by () and aggregate () (for more details see Section 3.10.3) allow sum-
mary of the dataframe on the basis of factor levels. For instance, it might be interesting to know the
means of the Area for each Vegetation type:

by (worms$Area, worms$Vegetation, mean)

worms$Vegetation: Arable
[1] 3.866667
--
worms$Vegetation: Grassland
[1] 2.911111
--
worms$Vegetation: Meadow
[1] 3.466667
--
worms$Vegetation: Orchard
[1] 1.9
--
worms$Vegetation: Scrub
[1] 2.425

�

� �

�

220 THE R BOOK

Or the effect of Vegetation type on Damp:

by (worms$Damp, worms$Vegetation, mean)

worms$Vegetation: Arable
[1] 0
--
worms$Vegetation: Grassland
[1] 0.1111111
--
worms$Vegetation: Meadow
[1] 1
--
worms$Vegetation: Orchard
[1] 0
--
worms$Vegetation: Scrub
[1] 0.5

The logical variable Damp has been coerced to numeric (TRUE = 1, FALSE = 0) and then
averaged.

4.5.1 Subscripts and indices

The key thing about working effectively with dataframes is to become completely at ease with using
subscripts (or indices, as some people call them). In R, subscripts appear in square brackets, [,].
A dataframe is a two-dimensional object, comprising rows and columns. The rows are referred to
by the first (left-hand) subscript, the columns by the second (right-hand) subscript in exactly the
same way as with matrices (see Section 3.11). Thus:

worms[3, 5]

[1] 4.3

is the value in row 3 of Soil.pH (the variable in column 5). To extract a consecutive sequence of
values (say the 14th to 19th rows) from worm density (the variable in the seventh column), we use
the colon operator : to generate a series of subscripts (14, 15, 16, 17, 18, and 19):

worms[14:19, 7]

[1] 0 6 8 4 5 1

�

� �

�

DATA INPUT AND DATAFRAMES 221

To extract a group of rows and a group of columns, we need to generate a series of subscripts for
both the row and column subscripts. Suppose we want Area and Slope (columns 2 and 3) from
rows 1 to 5:

worms[1:5, 2:3]

Area Slope
1 3.6 11
2 5.1 2
3 2.8 3
4 2.4 5
5 3.8 0

This next point is very important and is hard to grasp without practice. To select all the entries in a
row, the syntax is ‘number comma blank’. Similarly, to select all the entries in a column the syntax
is ‘blank comma number’: the ‘blank’ tells R to select all the entries in that row or column. Thus, to
select all the columns in row 3, we type:

worms[3,]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2

whereas to select all the rows in column 3 we need:

worms[, 3]

[1] 11 2 3 5 0 2 3 0 0 4 10 1 2 6 0 0 8 2 1 10

This is a key feature of the R language. Note that these two apparently similar commands create
objects of different classes (see Section 3.6):

class (worms[3,])

[1] "data.frame"

class (worms[, 3])

[1] "integer"

That happens because when we select a single column, all the data must be of the same class, in
this case integers. Whereas, when we select a single row we have representatives of all the different
data classes present in the dataframe, and so we end up with a dataframe with just one row.

�

� �

�

222 THE R BOOK

There is an alternative to using column numbers, which is to use their names, and is particularly
useful for selecting single columns

worms$Slope

[1] 11 2 3 5 0 2 3 0 0 4 10 1 2 6 0 0 8 2 1 10

In RStudio, this is very straightforward. Once we have typed $, we will be offered a list of column
names to choose from.

We can create sets of rows or columns. For instance, to extract all the rows for Field.Name and
Soil.pH (columns 1 and 5), we use the combine function, c (), to make a vector of the required
column numbers:

worms[, c (1, 5)]

Field.Name Soil.pH
1 Nashs.Field 4.1
2 Silwood.Bottom 5.2
3 Nursery.Field 4.3
4 Rush.Meadow 4.9
5 Gunness.Thicket 4.2
6 Oak.Mead 3.9
7 Church.Field 4.2
8 Ashurst 4.8
9 The.Orchard 5.7
10 Rookery.Slope 5.0
11 Garden.Wood 5.2
12 North.Gravel 4.1
13 South.Gravel 4.0
14 Observatory.Ridge 3.8
15 Pond.Field 5.0
16 Water.Meadow 4.9
17 Cheapside 4.7
18 Pound.Hill 4.5
19 Gravel.Pit 3.5
20 Farm.Wood 5.1

Again, we end up with a smaller dataframe. The commands for selecting rows and columns from
the dataframe are summarised in Table 4.4.

4.5.2 Selecting rows from the dataframe at random

In bootstrapping (see Sections 9.4 and 11.6) or cross-validation we might want to select certain rows
from the dataframe at random. We use the sample () function to do this: the default replace
= FALSE performs shuffling (each row is selected once and only once), while the option replace
= TRUE (sampling with replacement) allows for multiple copies of certain rows and the omission of
others. Here we use the default to select a unique 8 of the 20 rows at random:

�

� �

�

DATA INPUT AND DATAFRAMES 223

Table 4.4 Selecting parts of a dataframe called df_dummy

Command Meaning

df_dummy[n,] select all of the columns from row n
df_dummy[-n,] drop the whole of row n
df_dummy[1:n,] select all of the columns from rows 1 to n
df_dummy[-(1:n),] drop all of the columns from rows 1 to n
df_dummy[c (i,j,k),] select all of the columns from rows i, j, and k
df_dummy[x > y,] use a logical test (x > y) to select all columns from certain rows
df_dummy[, m] select all of the rows from column m
df_dummy[, -m] drop the whole of column m
df_dummy[, 1:m] select all of the rows from columns 1 to m
df_dummy[, -(1:m)] drop all of the rows from columns 1 to m
df_dummy[, c (i, j, k)] select all of the rows from columns i, j, and k
df_dummy[, x > y] use a logical test (x > y) to select all rows from certain columns
df_dummy[, c (1:m, i, j, k)] add duplicate copies of columns i, j, and k to columns 1 to m
df_dummy[x > y, a != b] extract certain rows (x > y) and certain columns (a != b)
df_dummy[c (1:n, i, j,k),] add duplicate copies of rows i, j, and k to rows 1 to n

worms[sample (1:20, 8),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4

Note that the row numbers are in random sequence (not sorted), so that if we want a sorted random
sample we will need to order the dataframe after the randomisation (see Section 4.5.3).

4.5.3 Sorting dataframes

It is common to want to sort a dataframe by rows, but rare to want to sort by columns (although the
same principles apply). Because we are sorting by rows (the first subscript), we specify the order
of the row subscripts before the comma. Thus, to sort the dataframe on the basis of values in one
of the columns (say, Slope), we write:

worms[order (worms$Slope),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6

�

� �

�

224 THE R BOOK

16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4

There are some points to notice here:

• because we want the sorting to apply to all the columns, the column subscript (after the comma)
is blank;

• the original row numbers are retained in the leftmost column;

• where there are ties for the sorting variable (e.g. there are five ties for Slope = 0), then the
rows are in their original order.

If we want the dataframe in reverse order:

worms[order (worms$Slope, decreasing = TRUE),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8

�

� �

�

DATA INPUT AND DATAFRAMES 225

Notice that when there are ties (e.g. Slope = 0), the original row order is retained.
More complicated sorting operations might involve two or more variables. This is achieved very

simply by separating a series of variable names by commas within the order () function. R will
sort on the basis of the left-hand variable, with ties being broken by the second variable, and so on.
Suppose that we want to order the rows of the database on Worm.density within each Vegeta-
tion type:

worms[order (worms$Vegetation, worms$Worm.density),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8

Notice that as with single-condition sorts, when there are ties in both sort variables, the rows are in
their original sequence (here: 3, 6, 13 for instance). We might want to override this by specifying a
third sorting condition (e.g. Soil.pH):

worms[order (worms$Vegetation, worms$Worm.density, worms$Soil.pH),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7

�

� �

�

226 THE R BOOK

4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8

The rule is this: if in doubt, sort using more variables than we think we need. That way we can
be absolutely certain that the rows are in the order we expect them to be in. This is exceptionally
important when we begin to make assumptions about the variables associated with a particular
value of the response variable on the basis of its row number.

Perhaps we want only certain columns in the sorted dataframe. Suppose we want Vegetation,
Worm.density, Soil.pH, and Slope, and we want them in that order from left to right. We specify
the column numbers in the sequence we want them to appear as a vector:

worms[order (worms$Vegetation, worms$Worm.density, worms$Soil.pH), c (4, 7, 5, 3)]

Vegetation Worm.density Soil.pH Slope
8 Arable 4 4.8 0
18 Arable 5 4.5 2
2 Arable 7 5.2 2
14 Grassland 0 3.8 6
19 Grassland 1 3.5 1
12 Grassland 1 4.1 1
6 Grassland 2 3.9 2
13 Grassland 2 4.0 2
3 Grassland 2 4.3 3
7 Grassland 3 4.2 3
1 Grassland 4 4.1 11
10 Grassland 7 5.0 4
4 Meadow 5 4.9 5
15 Meadow 6 5.0 0
16 Meadow 8 4.9 0
9 Orchard 9 5.7 0
20 Scrub 3 5.1 10
17 Scrub 4 4.7 8
5 Scrub 6 4.2 0
11 Scrub 8 5.2 10

We can select the columns on the basis of their variables names, but this is more fiddly to type,
because we need to put the variable names in quotes like this:

worms[order (worms$Vegetation, worms$Worm.density, worms$Soil.pH),
c("Vegetation", "Worm.density", "Soil.pH", "Slope")]

Vegetation Worm.density Soil.pH Slope
8 Arable 4 4.8 0
18 Arable 5 4.5 2

�

� �

�

DATA INPUT AND DATAFRAMES 227

2 Arable 7 5.2 2
14 Grassland 0 3.8 6
19 Grassland 1 3.5 1
12 Grassland 1 4.1 1
6 Grassland 2 3.9 2
13 Grassland 2 4.0 2
3 Grassland 2 4.3 3
7 Grassland 3 4.2 3
1 Grassland 4 4.1 11
10 Grassland 7 5.0 4
4 Meadow 5 4.9 5
15 Meadow 6 5.0 0
16 Meadow 8 4.9 0
9 Orchard 9 5.7 0
20 Scrub 3 5.1 10
17 Scrub 4 4.7 8
5 Scrub 6 4.2 0
11 Scrub 8 5.2 10

Sometimes there are multiple sorting variables, but the variables have to be sorted in opposing
directions. In this example, the task is to order the database first by vegetation type in alphabetical
order (the default) and then within each vegetation type to sort by worm density in decreasing order
(highest densities first). The trick here is to use order () and then put a minus sign in front of
Worm.density like this:

worms[order (worms$Vegetation, -worms$Worm.density),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

�

� �

�

228 THE R BOOK

Using the minus sign only works when sorting numerical variables. For factor levels, we can use
the rank () function. This treats the levels as numbers in the default order (alphabetical):

worms[order (-rank (worms$Vegetation), -worms$Worm.density),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
8 Ashurst 2.1 0 Arable 4.8 FALSE 4

It is less likely that we will want to select columns on the basis of logical operations, but it is perfectly
possible. Suppose that for some reason we want to select the columns that contain the character S
(upper-case S). In R, the function for this is grep () (see Section 3.15.6 for more details), which
returns the subscript (a number or set of numbers) indicating which character strings within a vector
of character strings contained an upper-case S. The names of the variables within a dataframe are
obtained by the names () function:

names (worms)

[1] "Field.Name" "Area" "Slope" "Vegetation" "Soil.pH"
[6] "Damp" "Worm.density"

So we want our function grep () to pick out variables numbers 3 and 5 because they are the only
ones containing upper-case S:

grep ("S", names (worms))

[1] 3 5

�

� �

�

DATA INPUT AND DATAFRAMES 229

Finally, we can use these numbers as subscripts to select columns 3 and 5:

worms[, grep ("S", names (worms))]

Slope Soil.pH
1 11 4.1
2 2 5.2
3 3 4.3
4 5 4.9
5 0 4.2
6 2 3.9
7 3 4.2
8 0 4.8
9 0 5.7
10 4 5.0
11 10 5.2
12 1 4.1
13 2 4.0
14 6 3.8
15 0 5.0
16 0 4.9
17 8 4.7
18 2 4.5
19 1 3.5
20 10 5.1

4.5.4 Using logical conditions to select rows from the dataframe

A very common operation is selecting certain rows from the dataframe on the basis of values in
one or more of the variables (the columns of the dataframe). Suppose that we want to restrict the
data to cases from damp fields. We want all the columns, so the syntax for the subscripts is [‘which
rows’, blank]:

worms[worms$Damp == T,]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

Note that because Damp is a logical variable (with just two potential values, TRUE or FALSE) we
can refer to true or false in abbreviated form, T or F. Also notice that the T in this case is not
enclosed in quotes: the T means true, not the character string T. The other important point is that
the symbol for the logical condition is == (two successive equals signs with no gap between them;
see Section 3.4).

�

� �

�

230 THE R BOOK

The logic for the selection of rows can refer to values (and functions of values) in more than one
column. Suppose that we wanted the data from the fields where Worm.density was higher than
the median and Soil.pH was less than 5.2. In R, the logical operator for AND is the (‘ampersand’)
symbol:

worms[worms$Worm.density > median (worms$Worm.density) & worms$Soil.pH < 5.2,]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5

This might seem fiddly to type, but in RStudio, the lists offered after typing three characters of worms
and after $ make it very simple.

Suppose that we want to extract all the columns that contain numbers (rather than characters or
logical variables) from the dataframe. The function is.numeric () can be applied across all the
columns of worms using sapply () to create the appropriate subscripts like this:

worms[, sapply (worms, is.numeric)]

Area Slope Soil.pH Worm.density
1 3.6 11 4.1 4
2 5.1 2 5.2 7
3 2.8 3 4.3 2
4 2.4 5 4.9 5
5 3.8 0 4.2 6
6 3.1 2 3.9 2
7 3.5 3 4.2 3
8 2.1 0 4.8 4
9 1.9 0 5.7 9
10 1.5 4 5.0 7
11 2.9 10 5.2 8
12 3.3 1 4.1 1
13 3.7 2 4.0 2
14 1.8 6 3.8 0
15 4.1 0 5.0 6
16 3.9 0 4.9 8
17 2.2 8 4.7 4
18 4.4 2 4.5 5
19 2.9 1 3.5 1
20 0.8 10 5.1 3

�

� �

�

DATA INPUT AND DATAFRAMES 231

Similarly, we might want to extract the columns that are factors (see Section 3.3):

worms[, sapply (worms, is.factor)]

[1] Grassland Arable Grassland Meadow Scrub Grassland Grassland
[8] Arable Orchard Grassland Scrub Grassland Grassland Grassland

[15] Meadow Meadow Scrub Arable Grassland Scrub
Levels: Arable Grassland Meadow Orchard Scrub

There is just one.
To drop a row or rows from the dataframe, use negative subscripts. Thus, to drop the middle 10

rows (i.e. row numbers 6–15 inclusive) do this:

worms[-(6:15),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

Here are all the rows that are not grasslands (recall that the logical symbol ! means NOT):

worms[!(worms$Vegetation == "Grassland"),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

�

� �

�

232 THE R BOOK

If we want to use minus signs rather than logical NOT to drop rows from the dataframe, the expres-
sion we use must evaluate to (i.e. produce) numbers. The which () function is useful for this as it
just returns the position in the appropriate vector (here, Damp). Let’s use this technique to drop the
non-damp fields:

worms[-which (worms$Damp == F),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

which achieves the same end as the more elegant:

worms[!(worms$Damp == F),]

or, even simpler:

worms[worms$Damp == T,]

In this rather more complicated example, we would like to extract a single record for each veg-
etation type, and that record is to be the case within each vegetation type that has the greatest
Worm.density. There are two steps to this: first order all of the rows in a new dataframe in decreas-
ing order of Worm.density, then select the subset of these rows which is not duplicated within
each Vegetation type. This will pick out the first of each Vegetation type, which will therefore
have the highest Worm.density:

worms_new <- worms[order (worms$Worm.density),]
worms_new[!duplicated (worms_new$Vegetation),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9

4.5.5 Omitting rows containing missing values, NA

In statistical modelling, it is often useful to have a dataframe that contains no missing values (which
should be described as NA: see Section 3.7) in the data. We can create a shorter dataframe using
the na.omit () function. Here is a sister dataframe of worms in which certain values are NA:

�

� �

�

DATA INPUT AND DATAFRAMES 233

(worms_short <- read.table ("worms.missing.txt", header = T))

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
2 Silwood.Bottom 5.1 NA Arable 5.2 FALSE 7
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
7 Church.Field 3.5 3 Grassland NA NA NA
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
19 Gravel.Pit NA 1 Grassland 3.5 FALSE 1
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

By inspection we can see that we should like to leave out row 2 (one missing value), row 7 (three
missing values), and row 19 (one missing value). This could not be simpler:

na.omit (worms_short)

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

and we see that rows 2, 7, and 19 have been omitted in creating the new dataframe.

�

� �

�

234 THE R BOOK

Alternatively, we can use the na.exclude () function. This differs from na.omit () only
when we are considering models (such as linear models in Chapter 10). A model built with na.omit
(worms.missing) will only produce residuals and predictions of length 17 (20 − 3). However, if
we use na.exclude (worms.missing), then the residuals and predictions will be of length 20
with NAs in positions 2, 7, and 19:

new_worms_short <- na.exclude (worms_short)

The function to test for the presence of missing values across a dataframe is complete.
cases ():

complete.cases (worms_short)

[1] TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[13] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE

We could also use this as a method to pick out the rows with no NAs:

worms_short[complete.cases (worms_short),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

It is well worth checking the individual variables containing NAs separately, because it is possi-
ble that one or more variables contribute most of the missing values, and it may be preferable to
remove these variables from the modelling rather than lose the valuable information about the other
explanatory variables associated with these cases. We can use summary () to count the missing
values for each variable in the dataframe:

summary (worms_short)

Field.Name Area Slope Vegetation
Length:20 Min. :0.800 Min. : 0.000 Length:20
Class :character 1st Qu.:2.150 1st Qu.: 0.500 Class :character
Mode :character Median :3.100 Median : 2.000 Mode :character

�

� �

�

DATA INPUT AND DATAFRAMES 235

Mean :2.995 Mean : 3.579
3rd Qu.:3.750 3rd Qu.: 5.500
Max. :5.100 Max. :11.000
NA’s :1 NA’s :1

Soil.pH Damp Worm.density
Min. :3.500 Mode :logical Min. :0.000
1st Qu.:4.100 FALSE:13 1st Qu.:2.000
Median :4.700 TRUE :6 Median :4.000
Mean :4.574 NA’s :1 Mean :4.421
3rd Qu.:5.000 3rd Qu.:6.500
Max. :5.700 Max. :9.000
NA’s :1 NA’s :1

We can see that in this case no single variable contributed more missing values than any other.
We would need to think carefully before doing this, but there might be circumstances when we

want to replace the missing values, NA, by zero (or by some other missing-value indicator). This is
how to replace all the NAs by zeros:

worms_short[is.na (worms_short)] <- 0
worms_short

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 0 4
2 Silwood.Bottom 5.1 0 Arable 5.2 0 7
3 Nursery.Field 2.8 3 Grassland 4.3 0 2
4 Rush.Meadow 2.4 5 Meadow 4.9 1 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 0 6
6 Oak.Mead 3.1 2 Grassland 3.9 0 2
7 Church.Field 3.5 3 Grassland 0.0 0 0
8 Ashurst 2.1 0 Arable 4.8 0 4
9 The.Orchard 1.9 0 Orchard 5.7 0 9
10 Rookery.Slope 1.5 4 Grassland 5.0 1 7
11 Garden.Wood 2.9 10 Scrub 5.2 0 8
12 North.Gravel 3.3 1 Grassland 4.1 0 1
13 South.Gravel 3.7 2 Grassland 4.0 0 2
14 Observatory.Ridge 1.8 6 Grassland 3.8 0 0
15 Pond.Field 4.1 0 Meadow 5.0 1 6
16 Water.Meadow 3.9 0 Meadow 4.9 1 8
17 Cheapside 2.2 8 Scrub 4.7 1 4
18 Pound.Hill 4.4 2 Arable 4.5 0 5
19 Gravel.Pit 0.0 1 Grassland 3.5 0 1
20 Farm.Wood 0.8 10 Scrub 5.1 1 3

This has had unfortunate side-effects in that the Damp entries have been coerced to 0s and 1s, and,
for instance, it is impossible to distinguish between a Slope of 0 (row 5) and one where the datum
was missing (row 2).

4.5.6 A dataframe with row names instead of row numbers

We can suppress the creation of row numbers and allocate our own unique names to each row
by altering the syntax of the read.table () function. The first column of the worms database

�

� �

�

236 THE R BOOK

contains the names of the fields in which the other variables were measured. Up to now, we have
read this column as if it was the first variable.

(worms2 <- read.table ("worms.txt", header = T, row.names = 1))

Area Slope Vegetation Soil.pH Damp Worm.density
Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
Church.Field 3.5 3 Grassland 4.2 FALSE 3
Ashurst 2.1 0 Arable 4.8 FALSE 4
The.Orchard 1.9 0 Orchard 5.7 FALSE 9
Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
North.Gravel 3.3 1 Grassland 4.1 FALSE 1
South.Gravel 3.7 2 Grassland 4.0 FALSE 2
Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
Pond.Field 4.1 0 Meadow 5.0 TRUE 6
Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
Cheapside 2.2 8 Scrub 4.7 TRUE 4
Pound.Hill 4.4 2 Arable 4.5 FALSE 5
Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

We can see that the field names column is not now headed by a variable name, and that the row
numbers, as intended, have been suppressed. Now, we can use the row name or the row number
as a reference:

worms2[1, 1]

[1] 3.6

worms2["Nashs.Field", 1]

[1] 3.6

The first column is now Area.

4.5.7 Creating a dataframe from another kind of object

We have seen that the simplest way to create a dataframe in R is to read a table of data from an
external file using the read.table () function. Alternatively, we can create a dataframe by using
the data.frame () function to bind together a number of vectors. Here are three vectors of the
same length:

�

� �

�

DATA INPUT AND DATAFRAMES 237

x <- runif (10)
y <- letters [1:10]
z <- sample (c (rep (T, 5), rep(F, 5)))

To make them into a dataframe called new_df, we just type:

(new_df <- data.frame (y, z, x))

y z x
1 a FALSE 0.8598338
2 b TRUE 0.6170012
3 c TRUE 0.7765110
4 d FALSE 0.2229500
5 e FALSE 0.6665438
6 f TRUE 0.7434039
7 g TRUE 0.1997147
8 h TRUE 0.5121942
9 i FALSE 0.6975335
10 j FALSE 0.2100809

Note that the order of the columns is controlled simply by the sequence of the vector names speci-
fied, and the Ts and Fs have been converted into TRUEs and FALSEs.

In this next example, we create a table of counts of 1500 random integers from a Poisson distri-
bution with mean 1.5, and then convert the table into a dataframe. First, we make a table object:

x <- rpois (1500, 1.5)
(y <- table (x))

x
0 1 2 3 4 5 6 7

311 494 395 190 76 23 9 2

Now, it is simple to convert this table object into a dataframe with two variables, the value of the
variable and the frequency, using the as.data.frame () function (see Section 3.6 for more
details). R knows that the count arises in the variable x and, as the source is a table, puts the result
of the count in the variable Freq:

(y_df <- as.data.frame (y))

x Freq
1 0 311
2 1 494
3 2 395
4 3 190
5 4 76
6 5 23
7 6 9
8 7 2

�

� �

�

238 THE R BOOK

Figure 4.1 Histogram from extended dataframe

In some cases, we might want to expand a dataframe like the one above such that it had a separate
row for every distinct count (i.e. 311 rows with x = 0, 494 rows with x = 1, 395 rows with x = 2, etc.).
This is very straightforward using subscripts. We need to create a vector of indices containing 311
repeats of 1, 494 repeats of 2 and so on. Note that we need to the row numbers (1,2,3, … ,), not
the row values (x = 0,1,2, … ,).

y_long <- rep (1:nrow (y_df), y_df$Freq)

This simple command has produced a vector with the right number of repeats of each of the row
numbers, which we can now use to plot the table in Figure 4.1:

length (y_long)

[1] 1500

hist (y_long, breaks = 1: (max (x) + 1), main = "",
xlab = "x", col = hue_pal ()(1))

To get the long version of the dataframe, y_df, we just use our vector, y_long, as the row specifier.
We can have a look at its bottom:

y_long_df <- y_df[y_long,]
tail (y_long_df)

x Freq
7.5 6 9
7.6 6 9
7.7 6 9
7.8 6 9
8 7 2
8.1 7 2

�

� �

�

DATA INPUT AND DATAFRAMES 239

Note the way that R has handled the duplicate row numbers, creating a nested series to indicate
the repeats of each of the original row numbers.

4.5.8 Eliminating duplicate rows from a dataframe

Sometimes a dataframe will contain duplicate rows where all the variables have exactly the same
values in two or more rows, perhaps by mistake. Here is a simple example:

(dups <- read.table ("dups.txt", header = T))

cow dog cat bat
1 1 2 3 1
2 1 2 2 1
3 3 2 1 1
4 4 4 2 1
5 3 2 1 1
6 6 1 2 5
7 1 2 3 2

Note that row number 5 is an exact duplicate of row number 3. To create a dataframe with all the
duplicate rows stripped out, we can use the unique () function like this:

unique (dups)

cow dog cat bat
1 1 2 3 1
2 1 2 2 1
3 3 2 1 1
4 4 4 2 1
6 6 1 2 5
7 1 2 3 2

Notice that the row names in the new dataframe are the same as in the original so that we can spot
that row number 5 was removed by. The function will work equally well on vectors, matrices, and
arrays.

To view the rows that are duplicates in a dataframe (if any), we can use the duplicated ()
function to create a vector of TRUEs and FALSEs to act as the filter:

dups[duplicated (dups),]

cow dog cat bat
5 3 2 1 1

This will output the second or further instances of any row.

4.5.9 Dates in dataframes

Dates and times, particularly their structure, are dealt with in detail in Section 3.16. Here we illustrate
the idea, focused on dataframes, using a simple example of patients’ response to a treatment:

�

� �

�

240 THE R BOOK

pat_resp <- read.table ("sortdata.txt", header = T)
head (pat_resp)

name date response treatment
1 albert 25/08/2003 0.05963704 A
2 ann 21/05/2003 1.46555993 A
3 john 12/10/2003 1.59406539 B
4 ian 02/12/2003 2.09505949 A
5 michael 18/10/2003 2.38330748 B
6 ann 02/07/2003 2.86983693 B

We want to order the rows by date. The ordering is to be applied to all four columns of the dataframe.
Note that ordering on the basis of our variable called date does not work in the way we want
it to

head (pat_resp[order (pat_resp$date),])

name date response treatment
53 rachel 01/08/2003 32.987922 B
65 albert 02/06/2003 38.419796 A
6 ann 02/07/2003 2.869837 B
10 cecily 02/11/2003 6.814676 A
4 ian 02/12/2003 2.095059 A
29 michael 03/05/2003 15.598909 B

This is because of the format used for depicting the date is a character string in which the first
characters are the day, then the month, then the year, so the dataframe has been sorted by day of
the month. In order to sort by date, we need first to convert our variable into date-time format using
the strptime () function (see Section 3.16.1 for details):

(pat_resp_dates <- strptime (pat_resp$date, format = "%d/%m/%Y"))

[1] "2003-08-25 BST" "2003-05-21 BST" "2003-10-12 BST" "2003-12-02 GMT"
[5] "2003-10-18 BST" "2003-07-02 BST" "2003-09-27 BST" "2003-06-05 BST"
[9] "2003-06-11 BST" "2003-11-02 GMT" "2003-09-24 BST" "2003-11-26 GMT"
[13] "2003-11-08 GMT" "2003-07-11 BST" "2003-09-12 BST" "2003-05-27 BST"
[17] "2003-09-06 BST" "2003-09-30 BST" "2003-05-30 BST" "2003-07-20 BST"
[21] "2003-07-29 BST" "2003-10-15 BST" "2003-09-18 BST" "2003-04-27 BST"
[25] "2003-11-17 GMT" "2003-10-03 BST" "2003-11-23 GMT" "2003-11-11 GMT"
[29] "2003-05-03 BST" "2003-11-20 GMT" "2003-10-30 GMT" "2003-09-15 BST"
[33] "2003-04-30 BST" "2003-06-08 BST" "2003-05-18 BST" "2003-08-04 BST"
[37] "2003-08-13 BST" "2003-08-07 BST" "2003-10-21 BST" "2003-11-29 GMT"
[41] "2003-06-17 BST" "2003-08-19 BST" "2003-10-27 GMT" "2003-10-06 BST"
[45] "2003-11-05 GMT" "2003-07-05 BST" "2003-07-26 BST" "2003-06-20 BST"
[49] "2003-04-21 BST" "2003-05-09 BST" "2003-07-17 BST" "2003-08-31 BST"
[53] "2003-08-01 BST" "2003-10-09 BST" "2003-07-23 BST" "2003-09-21 BST"
[57] "2003-08-28 BST" "2003-06-29 BST" "2003-07-08 BST" "2003-08-22 BST"

�

� �

�

DATA INPUT AND DATAFRAMES 241

[61] "2003-06-26 BST" "2003-08-10 BST" "2003-04-24 BST" "2003-10-24 BST"
[65] "2003-06-02 BST" "2003-09-09 BST" "2003-09-03 BST" "2003-07-14 BST"
[69] "2003-05-12 BST" "2003-06-14 BST" "2003-05-06 BST" "2003-05-15 BST"
[73] "2003-05-24 BST" "2003-08-16 BST" "2003-11-14 GMT" "2003-06-23 BST"

This has produced a date object (vector) with year first, then a hyphen, then month, then a hyphen,
then day, and this will sort into the desired sequence. We bind the new variable to the dataframe
like this:

pat_resp <- cbind (pat_resp, pat_resp_dates)

Now that the new variable is in the correct format, the dates can be sorted correctly:

head (pat_resp[order (pat_resp$pat_resp_dates),])

name date response treatment pat_resp_dates
49 albert 21/04/2003 30.66633 A 2003-04-21
63 james 24/04/2003 37.04140 A 2003-04-24
24 john 27/04/2003 12.70257 A 2003-04-27
33 william 30/04/2003 18.05707 B 2003-04-30
29 michael 03/05/2003 15.59891 B 2003-05-03
71 ian 06/05/2003 39.97238 A 2003-05-06

4.6 Using the match () function in dataframes

The worms dataframe we have been using contains fields of five different vegetation types:

unique (worms$Vegetation)

[1] Grassland Arable Meadow Scrub Orchard
Levels: Arable Grassland Meadow Orchard Scrub

and we want to know the appropriate herbicides to use in each of the 20 fields. The herbicides are
in a separate dataframe that contains the recommended herbicides for a much larger set of plant
community types:

(herbicides <- read.table ("herbicides.txt", header = T))

Type Herbicide
1 Woodland Fusilade
2 Conifer Weedwipe
3 Arable Twinspan
4 Hill Weedwipe
5 Bracken Fusilade

�

� �

�

242 THE R BOOK

6 Scrub Weedwipe
7 Grassland Allclear
8 Chalk Vanquish
9 Meadow Propinol
10 Lawn Vanquish
11 Orchard Fusilade
12 Verge Allclear

We want to create a vector of length 20 (one for every field in worms) containing the name of the
appropriate herbicide. The first value needs to be Allclear because Nash’s Field is Grassland,
and the second needs to be Twinspan because Silwood Bottom is Arable, and so on. The first
argument in match () is what we want to match, i.e. worms$Vegetation, and the second argu-
ment selects the appropriate row from herbicides. The result is the used as a vector of subscripts
to extract the relevant herbicides from herbicides$Herbicide like this:

(hb <- herbicides$Herbicide[match (worms$Vegetation, herbicides$Type)])

[1] "Allclear" "Twinspan" "Allclear" "Propinol" "Weedwipe" "Allclear"
[7] "Allclear" "Twinspan" "Fusilade" "Allclear" "Weedwipe" "Allclear"
[13] "Allclear" "Allclear" "Propinol" "Propinol" "Weedwipe" "Twinspan"
[19] "Allclear" "Weedwipe"

We could then add this information as a new column in the worms dataframe:

worms$hb <- hb

That is a very simple way to add a column to a dataframe. An alternative which is a bit clearer about
what is happening is

data.frame (worms, hb)

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density hb
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4 Allclear
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7 Twinspan
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2 Allclear
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5 Propinol
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6 Weedwipe
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2 Allclear
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3 Allclear
8 Ashurst 2.1 0 Arable 4.8 FALSE 4 Twinspan
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9 Fusilade
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7 Allclear
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8 Weedwipe
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1 Allclear
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2 Allclear
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0 Allclear
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6 Propinol

�

� �

�

DATA INPUT AND DATAFRAMES 243

16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8 Propinol
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4 Weedwipe
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5 Twinspan
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1 Allclear
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3 Weedwipe

4.6.1 Merging two dataframes

Suppose we have two dataframes, the first containing information on plant life forms and the sec-
ond containing information on time of flowering. We want to produce a single dataframe showing
information on both life form and flowering time. Both dataframes contain variables for genus name
and species name:

(lifeforms <- read.table ("lifeforms.txt", header = T))

Genus species lifeform
1 Acer platanoides tree
2 Acer palmatum tree
3 Ajuga reptans herb
4 Conyza sumatrensis annual
5 Lamium album herb

(flowering <- read.table ("fltimes.txt", header = T))

Genus species flowering
1 Acer platanoides May
2 Ajuga reptans June
3 Brassica napus April
4 Chamerion angustifolium July
5 Conyza bilbaoana August
6 Lamium album January

Because at least one of the variable names is identical in the two dataframes (in this case, in fact,
two variables are identical, namely Genus and species) we can use the simplest of all merge
commands:

merge (flowering, lifeforms)

Genus species flowering lifeform
1 Acer platanoides May tree
2 Ajuga reptans June herb
3 Lamium album January herb

R has looked for rows which had identical entries in both dataframes, where the column names
match (i.e. Genus and species), and then put in the values from the remaining columns from
both dataframes. Two rows from the lifeforms database were excluded because there were

�

� �

�

244 THE R BOOK

no flowering time data for them (Acer platanoides and Conyza sumatrensis), and three

rows from the flowering database were excluded because there were no life-form data for them

(Chamerion angustifolium, Conyza bilbaoana, and Brassica napus).
If we want to include all the species, with missing values (NA) inserted when flowering times or

life forms are not known, then we can use the all = T option:

(plants_all <- merge (flowering, lifeforms, all = T))

Genus species flowering lifeform
1 Acer palmatum <NA> tree
2 Acer platanoides May tree
3 Ajuga reptans June herb
4 Brassica napus April <NA>
5 Chamerion angustifolium July <NA>
6 Conyza bilbaoana August <NA>
7 Conyza sumatrensis <NA> annual
8 Lamium album January herb

One complexity that often arises is that the same variable has different names in the two dataframes
that need to be merged. The simplest solution is often to edit the variable names in the spreadsheet
before reading them into R but, failing this, we need to specify the names in the first dataframe
(known conventionally as the x dataframe) and the second dataframe (known conventionally as
the y dataframe) using the by.x = and by.y = options in merge (). We have a third dataframe
containing information on the seed weights of all eight species, but the variable Genus is called
name1 and the variable species is called name2.

(seeds <- read.table ("seedwts.txt", header = T))

name1 name2 seed
1 Acer platanoides 32.0
2 Lamium album 12.0
3 Ajuga reptans 4.0
4 Chamerion angustifolium 1.5
5 Conyza bilbaoana 0.5
6 Brassica napus 7.0
7 Acer palmatum 21.0
8 Conyza sumatrensis 0.6

Just typing merge (plants_all, seeds) fails miserably as it is not clear how to merge the
dataframes: try it and see. We need to inform the merge () function that Genus and name1 are
synonyms (different names for the same variable), as are species and name2.

merge (plants_all, seeds, by.x = c ("Genus", "species"),
by.y = c ("name1", "name2"))

Genus species flowering lifeform seed
1 Acer palmatum <NA> tree 21.0
2 Acer platanoides May tree 32.0

�

� �

�

DATA INPUT AND DATAFRAMES 245

3 Ajuga reptans June herb 4.0
4 Brassica napus April <NA> 7.0
5 Chamerion angustifolium July <NA> 1.5
6 Conyza bilbaoana August <NA> 0.5
7 Conyza sumatrensis <NA> annual 0.6
8 Lamium album January herb 12.0

Note that the variable names used in the merged dataframe are those names that originate in the
x dataframe.

4.7 Adding margins to a dataframe

Suppose we have a dataframe showing sales by season and by person:

(sales <- read.table ("sales.txt", header = T))

name spring summer autumn winter
1 Jane.Smith 14 18 11 12
2 Robert.Jones 17 18 10 13
3 Dick.Rogers 12 16 9 14
4 William.Edwards 15 14 11 10
5 Janet.Jones 11 17 11 16

We want to add margins (i.e. an extra row and column) to this dataframe showing departures of
the seasonal means from the overall mean (as an extra row at the bottom) and departures of the
people’s means from the overall mean (as an extra column on the right). Finally, we want the sales
in the body of the dataframe to be represented by departures from the overall mean. Let’s start with
the extra column:

indiv_means <- rowMeans (sales[, 2:5])
overall_mean <- mean (indiv_means)
(people <- indiv_means - overall_mean)

[1] 0.30 1.05 -0.70 -0.95 0.30

It is very straightforward to add a new column to the dataframe using cbind ():

(new.sales <- cbind (sales, people))

name spring summer autumn winter people
1 Jane.Smith 14 18 11 12 0.30
2 Robert.Jones 17 18 10 13 1.05
3 Dick.Rogers 12 16 9 14 -0.70
4 William.Edwards 15 14 11 10 -0.95
5 Janet.Jones 11 17 11 16 0.30

�

� �

�

246 THE R BOOK

Robert Jones is the most effective sales person (+1.05) and William Edwards is the least effective
(−0.95). The column means are calculated in a similar way:

indiv_seasons <- colMeans (sales[,2:5])
overall_seasons <- mean (indiv_seasons)
(seasons <- indiv_seasons - overall_seasons)

spring summer autumn winter
0.35 3.15 -3.05 -0.45

Sales are highest in summer (+3.15) and lowest in autumn (−3.05).
Now there is a hitch, however, because there are only four column means, but there are six

columns in new.frame, so we cannot use rbind () directly. The simplest way to deal with this
is to make a copy of one of the rows of the new dataframe and then edit this to include the values
we want: a label in the first column to say ‘seasonal means’ then the four column means, and then
a zero for the grand mean of the effects:

new.row <- new.sales[1,]
new.row[1] <- "Seasonal effects"
new.row[2:5] <- seasons
new.row[6] <- 0
new.row

name spring summer autumn winter people
1 Seasonal effects 0.35 3.15 -3.05 -0.45 0

Now we can use rbind () to add our new row to the bottom of the extended dataframe:

(new.sales <- rbind (new.sales, new.row))

name spring summer autumn winter people
1 Jane.Smith 14.00 18.00 11.00 12.00 0.30
2 Robert.Jones 17.00 18.00 10.00 13.00 1.05
3 Dick.Rogers 12.00 16.00 9.00 14.00 -0.70
4 William.Edwards 15.00 14.00 11.00 10.00 -0.95
5 Janet.Jones 11.00 17.00 11.00 16.00 0.30
6 Seasonal effects 0.35 3.15 -3.05 -0.45 0.00

Our final task is to replace the counts of sales in the dataframe new.frame[1:5, 2:5]
by departures from the overall mean sale per person per season (the grand mean (gm):
overall_mean = overall_seasons = 13.45). We create a vector of length 4 containing
repeated values of the grand mean (one for each column of sales). Finally, we use sweep () (see
Section 3.11.5) to subtract the grand mean from each value:

gm <- rep (overall_mean,4)
new.sales[1:5, 2:5] <- sweep (new.sales[1:5, 2:5], 2, gm)
new.sales

�

� �

�

DATA INPUT AND DATAFRAMES 247

name spring summer autumn winter people
1 Jane.Smith 0.55 4.55 -2.45 -1.45 0.30
2 Robert.Jones 3.55 4.55 -3.45 -0.45 1.05
3 Dick.Rogers -1.45 2.55 -4.45 0.55 -0.70
4 William.Edwards 1.55 0.55 -2.45 -3.45 -0.95
5 Janet.Jones -2.45 3.55 -2.45 2.55 0.30
6 Seasonal effects 0.35 3.15 -3.05 -0.45 0.00

To complete the table we want to put the grand mean in the bottom right-hand corner:

new.sales[6,6] <- overall_mean
new.sales

name spring summer autumn winter people
1 Jane.Smith 0.55 4.55 -2.45 -1.45 0.30
2 Robert.Jones 3.55 4.55 -3.45 -0.45 1.05
3 Dick.Rogers -1.45 2.55 -4.45 0.55 -0.70
4 William.Edwards 1.55 0.55 -2.45 -3.45 -0.95
5 Janet.Jones -2.45 3.55 -2.45 2.55 0.30
6 Seasonal effects 0.35 3.15 -3.05 -0.45 13.45

The best per-season performance was shared by Jane Smith and Robert Jones who each sold
4.55 units more than the overall average in summer.

4.7.1 Summarising the contents of dataframes

The usual function to obtain cross-classified summary functions like the mean or median for a single
vector is tapply () (see Section 3.10.1), but there are three useful functions for summarising
whole dataframes:

• summary () which summarises all the contents of each of the variables;

• aggregate () which creates a table after the fashion of tapply ();

• by () which performs functions for each level of any specified factors.

The use of summary () and by () with the worms database was described in Section 4.5. The
aggregate () function is used like tapply () to apply a function (mean () in this case) to
the levels of a specified categorical variable (Vegetation in this case) for a specified range of
variables (Area, Slope, Soil.pH, and Worm.density) which are specified using their subscripts
as a column index:

aggregate (worms[,c (2 ,3, 5, 7)], by = list (veg = worms$Vegetation), mean)

veg Area Slope Soil.pH Worm.density
1 Arable 3.866667 1.333333 4.833333 5.333333
2 Grassland 2.911111 3.666667 4.100000 2.444444
3 Meadow 3.466667 1.666667 4.933333 6.333333
4 Orchard 1.900000 0.000000 5.700000 9.000000
5 Scrub 2.425000 7.000000 4.800000 5.250000

�

� �

�

248 THE R BOOK

We have created a new heading for the Vegetation column. The by = argument needs to be a
list () even if, as here, we have only one classifying factor. Here are the aggregated summaries
cross-classified by Vegetation and Damp:

aggregate (worms[, c(2, 3, 5, 7)],
by = list (veg = worms$Vegetation, d = worms$Damp), mean)

veg d Area Slope Soil.pH Worm.density
1 Arable FALSE 3.866667 1.333333 4.833333 5.333333
2 Grassland FALSE 3.087500 3.625000 3.987500 1.875000
3 Orchard FALSE 1.900000 0.000000 5.700000 9.000000
4 Scrub FALSE 3.350000 5.000000 4.700000 7.000000
5 Grassland TRUE 1.500000 4.000000 5.000000 7.000000
6 Meadow TRUE 3.466667 1.666667 4.933333 6.333333
7 Scrub TRUE 1.500000 9.000000 4.900000 3.500000

Note that this summary is unbalanced (i.e. not all factor combinations are represented) because
there were no damp arable or orchard sites and no dry meadows.

�

� �

�

5
Graphics

Producing high-quality graphics is one of R’s strong points as it offers almost complete control over
the look of plots. The particular plot function needed will depend on the number and type of variables
you want to plot.

In this introductory chapter on creating graphics, we’ll first look at the basics of plotting in R.
Various plotting functions are then dealt with under four headings:

• plots for single variables;

• plots for two variables;

• plots for three or more variables;

• plotting functions.

5.1 Plotting principles

A plot should be clear, readable, and serve a purpose. It shouldn’t be so busy or cluttered that the
main message is obscured, nor should its interpretation (or the reason for its inclusion in a report,
say) be left to the audience to guess. This depends, at least in part, on having:

• appropriate graphic type;

• appropriate graphic size;

• descriptive title(s) or caption(s);

• informative labels on axes;

• appropriate number of ‘tick marks’ on axes;

• suitable font and font size for labels and titles;

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

tuhocr
Highlight

http://www.wiley.com/go/jones/therbook3e

�

� �

�

250 THE R BOOK

• strategic use of colour;

• clear legends where necessary.

There are many more aspects we could list here, but this is a good start.
This section is intended to give an overview of the most basic features of plotting – axes, titles, and

colour – for which we’ll use R’s plot () function. This function is the basis for many R plots and will
be explored in more depth from Section 5.3 onward. The ideas introduced here in terms of changing
plot features are similar if not identical to how they are changed for other graphing functions.

For now, though, let us explore its basic use on a simple dataset.

scatter1 <- read.table ("scatter1.txt", header = T)
attach (scatter1)
head (scatter1)

xv ys
1 90.77212 51.75918
2 16.11536 28.95312
3 31.12350 35.50002
4 39.79581 32.69104
5 48.82297 40.50366
6 78.17519 56.58430

You’ll see that our dataset has two numeric variables, xv and ys, and a classic plot to show the
relationship (if any) between these would be a scatterplot. If you feed R’s plot () function two
numeric variables, this is exactly what you get, as shown in Figure 5.1. Notice that the variable
written as the first argument is plotted on the x-axis, and the second argument is plotted on the
y-axis.

plot (xv, ys)

The plot is pretty basic: there is no title or caption, the axis labels take the variable name (which
may or may not be appropriate), and the observations are plotted as open black circles. It’s pretty
uninspiring as it is.

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

● ● ●

●

●
●●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●

● ●

●

●●

●

● ●

● ●
●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
● ●

● ●

●

●

●
● ●

●

●

●

●

●●
●●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●● ●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●

●

●●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
● ●

● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●●
●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

0 20 40 60 80 100

20
30

40
50

60

xv

ys

Figure 5.1 A scatterplot of ys against xv

�

� �

�

GRAPHICS 251

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

● ● ●

●

●
●●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●

● ●

●

●●

●

● ●

● ●
●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
● ●

● ●

●

●

●
● ●

●

●

●

●

●●
●●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●● ●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●

●

●●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
● ●

● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●●
●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

0 20 40 60 80 100

20
30

40
50

60

 A plot of the response variable against the explanatory variable

Explanatory variable

R
es

po
ns

e
va

ria
bl

e

Figure 5.2 Scatterplot with better axes labels

5.1.1 Axes labels and titles

Let us add a title and appropriate axis labels. This can all be done within the plot () function
using main to specify the title, and xlab and ylab to specify the x- and y-axis labels, respectively.
If we run the following code, we get Figure 5.2. It certainly looks a lot better already.

plot (xv, ys, xlab = "Explanatory variable", ylab = "Response variable",
main = "A plot of the response variable against the explanatory variable")

If the title is a bit long, it might look better spread over a couple of lines. This is easy enough using
\n at the point you want to break the line (resulting plot not shown):

plot (xv, ys, xlab = "Explanatory variable", ylab = "Response variable",
main = "A plot of the response variable \n against the explanatory
variable")

5.1.2 Plotting symbols and colours

The default in R when producing a scatterplot is to use open circles, but this can be changed very
easily in the plot () function using pch (which stands or plot character). Figure 5.3 shows the
range of plotting symbols that can be used, with the associated numeric code. Symbols 0 through
14 are outline or empty symbols, symbols 15 through 20 are solid filled symbols which have no
border to them, and symbols 21 through 25 can be filled (e.g. with colour) but will retain a border
(the colour of which can be controlled).

You can change the size of a plotting symbol using cex. The default is cex = 1, but you can
scale the size of the symbol up or down to suit your needs.

Let us try a different plotting symbol (a particular favourite is pch = 16), and while we’re at it
we’ll shrink the size of the symbol slightly. We’ll drop the title for brevity from now on, given that all
figures in the book have a caption instead. Doing all this results in Figure 5.4.

plot (xv, ys, xlab = "Explanatory variable", ylab = "Response variable",
pch = 16, cex = 0.6)

�

� �

�

252 THE R BOOK

0
●
1 2 3 4 5 6

7 8 9
●
10 11 12

●
13

14 15
●
16 17 18

●
19

●

20

●
21 22 23 24 25

Figure 5.3 pch symbols and their numeric code

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ● ●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

0 20 40 60 80 100

20
30

40
50

60

Explanatory variable

R
es

po
ns

e
va

ria
bl

e

Figure 5.4 Scatterplot with different plotting symbol

A bit of colour can make a graph come alive, but be careful here: it’s easy to go overboard with
R’s possible colours. Make sure that your graphic is still readable. A very easy way to add colour
to our plot is using the col argument. R has built-in colours with a recognisable name, e.g. col =
"red" or col = "blue", or you can define a very specific colour via a hexadecimal RGB triplet,
e.g. col = "#C69647". Let’s try a basic named colour, which we see in Figure 5.5.

plot (xv, ys, xlab = "Explanatory variable", ylab = "Response variable",
pch = 16, cex = 0.6, col = "blue")

If we had chosen a different plotting symbol, let us say one that had a separate border (plotting
symbols number 21–25), then we can specify a colour for the inside of the symbol (via bg which
stands for ‘background’) and the border (which we do via the usual col argument). For example,
in Figure 5.6, we specify blue border filled with col = "orange".

plot (xv, ys, xlab = "Explanatory variable", ylab = "Response variable",
pch = 21, cex = 0.6,
col = "blue", bg = "orange")

The result is OK, but it can be really tricky to define a sequence of colours for a plot when several
are needed, for example to highlight different groups. There are ready-made ‘palettes’ available

�

� �

�

GRAPHICS 253

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ● ●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

0 20 40 60 80 100

20
30

40
50

60

Explanatory variable

R
es

po
ns

e
va

ria
bl

e

Figure 5.5 Scatterplot with better axes labels

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ● ●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

0 20 40 60 80 100

20
30

40
50

60

Explanatory variable

R
es

po
ns

e
va

ria
bl

e

Figure 5.6 Scatterplot with different colour for border and background of plotting symbol

which suggest good colours to combine. More on this later, but you will notice in this book that we
use hue_pal () from the scales package (Wickham and Seidel, 2020) to generate appropriate
colours depending on how many we need in a particular plot. For example, if we need four colours
in a plot, we specify hue_pal()(4), which will generate the four nicely contrasting colours in
Figure 5.7.

We can then pick out individual colours as needed using square brackets, from hue_pal()(4)
[1] through to hue_pal()(4)[4]. Adding this to our scatterplot, we choose two colours (one
for background of the plotting symbol and one for its border), as demonstrated in Figure 5.8. Let’s
face it, having a circle for each observation, with a different colour for the border and background,
doesn’t look that great whatever colours are chosen.

plot (xv, ys, xlab = "Explanatory variable", ylab = "Response variable",
pch = 21, cex = 0.6,
col = hue_pal()(2)[1], bg = hue_pal()(2)[2])

detach (scatter1)

�

� �

�

254 THE R BOOK

#F8766D

#00BFC4

#7CAE00

#C77CFF

Figure 5.7 Four contrasting colours

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ● ●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

0 20 40 60 80 100

20
30

40
50

60

Explanatory variable

R
es

po
ns

e
va

ria
bl

e

Figure 5.8 Final scatterplot

5.1.3 Saving graphics

For publication-quality graphics, saving each plot as a PDF, PostScript or other type of file will
be necessary. By default, plots will generally show up in the Plots pane in RStudio in the bottom
right-hand corner, which can be saved directly by exporting it to whatever format required. This will
give a rough and ready copy of the graph, but it won’t be of the highest quality.

If a high-quality PDF, postscript, bmp, png, jpeg, or tiff file is needed, this can be done simply by
specifying the ‘device’ before you start plotting, then turning the device off once finished. Assuming
that you’ve already set your working directory to where the plot should be saved, here is how to
save to a pdf file:

pdf ("myplot.pdf", width = 7, height = 4)
plot (xv, ys, xlab = "Explanatory variable", ylab = "Response variable",

�

� �

�

GRAPHICS 255

pch = 21, cex = 0.6,
col = hue_pal()(2)[1], bg = hue_pal()(2)[2])

dev.off ()

Notice that the file is opened using the pdf () function, inside which the intended file name is
specified, and the width and height which are in inches (old fashioned, we know). Now close the
file using dev.off (). It’s possible to change all sorts of other optional arguments too. See ?pdf
for details.

Saving as a postscript file is done in the same way, swapping pdf () for postscript (), with
?postscript bringing up the relevant help file.

There are further functions with the obvious names if a bmp, png, jpeg, or tiff file is required: bmp
(), png (), jpeg (), and tiff (). The height and width for such plots still need to be specified,
but this time the measure is pixels by default. This can be changed, if necessary, along with a load
of other things. See ?png for specifics (this also gives information on bmp, jpeg, and tiff file types).

5.2 Plots for single variables

With just one variable to plot, we have a range of options depending on the type of variable. A plot
suitable for a numeric variable isn’t generally going to be suitable for a categorical variable. Table 5.1
shows some possible options, the type of variable it is suitable for, and the R base function that we
can use.

5.2.1 Histograms vs. bar charts

First a word on histograms and bar charts. In Table 5.1, the variable type for histograms and bar
charts are starred because there is some flexibility in the variable types they are suitable for, but
nowhere near as much as some may think. These are not the same graphic.

A histogram is for a continuous numeric response, where we have the value of the response on
the x-axis and the y-axis shows the frequency (or, more correctly, the probability density). The x-axis
is cut into ‘bins’ which do not need to be of the same length, and the adjacent bars are connected
(as long as there are observations in consecutive bins) on account of the x-axis representing a
continuous response. You wouldn’t therefore re-order the ‘bins’ on the x-axis as these follow a
prescribed order.

A bar chart, on the other hand, is for categorical data where we have the categories on the x-axis
and frequency on the y-axis. These bars are not connected as the categories are distinct and we

Table 5.1 Plotting single variables (starred variable
types indicate some flexibility)

Plot name Variable type R function

Histogram Numeric* hist ()
Density plot Numeric density ()
Boxplot Numeric box ()
Dotplot Numeric stripchart ()
Bar chart Categorical* barplot ()
Pie chart Categorical pie ()

�

� �

�

256 THE R BOOK

Continuous variable

F
re

qu
en

cy

480 490 500 510 520

0
5

10
15

(a) Histogram for continuous data

A B C E

Type

F
re

qu
en

cy

0
5

10
15

20
25

30
35

(b) Bar chart for categorical data

Figure 5.9 A histogram and a bar chart

can in general reorder the bars however we like (compare this with a histogram). Figure 5.9 gives
an example of both to highlight the difference.

A grey area is what we do with discrete numeric variables: should these be plotted as a histogram
or a bar chart? This depends on the nature of the variable. If you have a variable with lots of (discrete)
values, let’s say age in years, then we could treat this as continuous and create age-group bins,
e.g. 18–24, 25–34, 35–44. A histogram would then be ideal. If we had a variable with only very few
discrete values, then we are better off using a bar chart and not grouping the values.

5.2.2 Histograms

Let us look at an example where the response variable is the growth rate of daphnia. We can ask
R for a histogram using the hist () function, colour it using the col argument, and specify that
no title is produced via main = "" (by default, R creates a title for the graphic, but we can put
whatever we like between the speech marks). The result is shown in Figure 5.10.

daph <- read.table ("daphnia.txt", header = T)
attach (daph)
hist (Growth.rate, col = hue_pal ()(4)[1], main = "")

The divisions of the x-axis into which the values of the response variable are distributed and then
counted are called bins. Unless you specify your bins, R will choose them for you. The convention
adopted in R for showing bin boundaries is to employ square and round brackets so that [a,b)
means ‘greater than or equal to a but less than b’ [square then round), and (a,b] means ‘greater
than a but less than or equal to b’ (round then square]. The point is that it must be unequivocal
which bin gets a given number when that number falls exactly on a boundary between two bins.

�

� �

�

GRAPHICS 257

Growth.rate

F
re

qu
en

cy

2 3 4 5 6 7

0
2

4
6

8
10

12

Figure 5.10 Histogram of daphnia growth rate

Histograms are profoundly tricky, because what you see depends on the subjective judgements
of where exactly to put the bin margins. Wide bins produce one picture, narrow bins produce a
different picture, unequal bins can result in confusion.

Let us produce four different histograms of the same data with varying bin widths which we can
do via the argument breaks; for example the following specifies that we want breaks every 0.25
units between growth rate of 0 and 8 (which results in Figure 5.11a):

hist (Growth.rate, breaks = seq (0, 8, 0.25),
col = hue_pal ()(4)[1], main = "")

See ?hist for more breaks options, but the resulting plots are in Figure 5.11.
The narrower the bins, the lower the peak frequencies (note that the y scale changes: 7, 12, 40).

Small bins produce multimodality (top left), broad bins unimodality (bottom right). When there are
different bin widths (bottom right), the default in R is for hist () to convert the counts (frequencies)
into densities (so that the total area is 1.0).

Histograms are excellent for showing the mode, the spread, and the symmetry (skew) of a set
of data, but the R function hist () is deceptively simple. Figure 5.12 shows a histogram of 1000
random integers drawn from a Poisson distribution with a mean of 1.7. With the default bins, the
histogram produces a graphic that does not clearly distinguish between the zeros and the ones.

The question here is whether we should use a bar chart instead, but if it makes sense to continue
with a histogram then it is much better to specify the bins explicitly, using the breaks argument.
The most sensible breaks for count data are −0.5 to +0.5 to capture the zeros, 0.5–1.5 to capture
the 1s, and so on; breaks = (-0.5: 8.5) generates such a sequence automatically. Now the
histogram in Figure 5.13 makes clear that 1s are almost twice as frequent as 0s. The distribution
is said to be ‘skewed to the right’ (or ‘positively skewed’) because the long tail is on the right-hand
side of the histogram.

hist (values, breaks = (-0.5 : 8.5), col = hue_pal ()(4)[1], main = "",
xlab = "random numbers from a Poisson with mean 1.7")

So far we’ve considered only frequency on the y-axis of our histograms (admittedly, they’re easier
to read!), but what we should be doing is producing a histogram with the density on the y-axis.

�

� �

�

258 THE R BOOK

daph$Growth.rate

F
re

qu
en

cy

0 2 4 6 8

0
1

2
3

4
5

6
7

(a) Bins 0.25 units wide

daph$Growth.rate

F
re

qu
en

cy

0 2 4 6 8

0
2

4
6

8
10

12

(b) Bins 0.25 units wide

daph$Growth.rate

F
re

qu
en

cy

0 2 4 6 8

0
10

20
30

40

(c) Bins 2.00 units wide

daph$Growth.rate

D
en

si
ty

0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

(d) Bins different widths

Figure 5.11 Types of point pattern

This enables different sized bins. We can do this easily with freq = FALSE and the plot is in
Figure 5.14. Now compare to Figure 5.10: the histogram is identical with only the scale on the
y-axis having changed.

hist (Growth.rate, col = hue_pal ()(4)[1], main = "", freq = FALSE)

�

� �

�

GRAPHICS 259

Random numbers from a Poisson with mean 1.7

F
re

qu
en

cy

0 2 4 6 8

0
10

0
20

0
30

0
40

0
50

0

Figure 5.12 Histogram of 1000 Poisson random numbers

Random numbers from a Poisson with mean 1.7

F
re

qu
en

cy

0 2 4 6 8

0
50

15
0

25
0

35
0

Figure 5.13 Histogram of 1000 Poisson random numbers

Growth.rate

D
en

si
ty

2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

Figure 5.14 Histogram of daphnia with density on y-axis and superimposed density

�

� �

�

260 THE R BOOK

0 2 4 6 8

0.
00

0.
10

0.
20

Daphnia growth rate

D
en

si
ty

Figure 5.15 Filled density plot of daphnia data

5.2.3 Density plots

A density plot can be a useful alternative to a histogram when you want to see the shape of a
distribution of a variable. The relevant function is density () which estimates the density, and
from there we can use plot (). If we did this, we’d get an outline of the density. You can colour it
in, so to speak, using the polygon () function. We’ll demonstrate on the daphnia data here once
again, resulting in Figure 5.15.

plot (density (Growth.rate), col=hue_pal ()(4)[1],
xlab="Daphnia growth rate", main="")

polygon (density (Growth.rate), col=hue_pal ()(4)[1],
xlab="Daphnia growth rate", main="")

It’s possible to use the density () function to superimpose the estimated density on a histogram,
as in Figure 5.16.

Growth.rate

D
en

si
ty

2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

Figure 5.16 Histogram for the daphnia data with density superimposed

�

� �

�

GRAPHICS 261

hist (Growth.rate, col = hue_pal ()(4)[1], main = "", freq = FALSE)
lines (density (Growth.rate))

Adding a bespoke density function to a plot can be done by specifying it with lines (). See
?lines for information and examples.

5.2.4 Boxplots

Boxplots are great for showcasing continuous data when it’s in abundance. It is a graphical repre-
sentation of the so-called ‘five number summary’: it shows the minimum, 25th percentile, median
(50th percentile), 75th percentile, and the maximum. This allows us to get a good feel for the ‘shape’
of the distribution of the underlying variable. Let’s draw a boxplot for the growth rate of daphnia,
which is displayed in Figure 5.17.

boxplot (Growth.rate, col = hue_pal ()(4)[1], ylab = "Daphnia growth rate")

The box represents the middle 50% of the data (from the 25th percentile at the lower end of the box
through to the 75th percentile at the upper end), with the heavy horizontal line in the box representing
the median. The end points of the ‘whiskers’ usually show the minimum and maximum values (hence
the original name, ‘box-and-whisker’ plot which has since been shortened to ‘boxplot’, but see below
for an exception). These points correspond to the five number summary of growth rate, but does
not show the mean:

summary (Growth.rate)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.762 2.797 3.788 3.852 4.807 6.918

We can switch to a horizontal boxplot if we want, by using the extra argument horizontal =
TRUE in the boxplot () function.

One important point to note is that the minimum and/or maximum may not be captured at the end
points of the whiskers. Let’s add a couple of spuriously large values to our daphnia growth rate data,
say a value of 10.00 and another of 11.00 and re-draw the boxplot. The result is in Figure 5.18.

The added values are showing on the graph but as circles, with the end of the whisker at the
previous maximum. This is because R uses an automated process to work out if there are any

2
3

4
5

6
7

D
ap

hn
ia

 g
ro

w
th

 r
at

e

Figure 5.17 Boxplot for the daphnia data

�

� �

�

262 THE R BOOK

●

●

2
4

6
8

10

D
ap

hn
ia

 g
ro

w
th

 r
at

e

Figure 5.18 Boxplot for the daphnia data with two unusual values added

unusually big or small values, and if there are, it decides to display them as in Figure 5.18 instead of
having a very long whisker. This makes sense: an extremely long whisker here would give us a false
impression about the skew of the distribution of the data. A word of warning; however, the process
that R uses to decide on which values to display as circles is arbitrary, and these observations
should not be automatically classified as ‘outliers’. They might well be strange observations worthy
of further investigation, or they may be just fine as they are.

5.2.5 Dotplots

For sample sizes that are too small to use box plots, an alternative plotting method is to use dot-
plots. You can do this using the stripchart () function. Let us use this on the caterpillar growth
data.

caterpillar <- read.table ("caterpillar.txt", header = T)
stripchart (caterpillar$growth, xlab = "Caterpillar growth",

col = hue_pal ()(2)[1])
stripchart (caterpillar$growth, xlab = "Caterpillar growth",

col = hue_pal ()(2)[2],
method = 'jitter', jitter = 1, pch = 16, cex = 2)

What we can’t see in Figure 5.19a is that there are two identical values (both at 3). To get around
this, we vertically jitter the values slightly with method = 'jitter' with an amount of jitter set
at 1, resulting in Figure 5.19b. Alternatively, we could have used the method = 'stack' option,
which, as the name suggests, stacks observations. We are now able to see all observations. We’ve
also changed the dot type, and the size of the plotting symbol here to make the plot look a little nicer.

It is really important to know when dot plots can be used, and when they are unsuitable. For small
datasets, by all means use a dotplot. In such cases a boxplot, for example, might well mask the
underlying shape of the distribution because it attempts to summarise it in just five numbers. With a
small dataset, you have the luxury of being able to plot all data points without the graphic becoming
cluttered and unreadable, so why not plot everything?

For large datasets, use a boxplot or other type of display. A dotplot will be too busy and in extreme
cases will show just a dense cloud or line of points where the underlying shape will be invisible.

�

� �

�

GRAPHICS 263

2 4 6 8 10 12
Caterpillar growth

(a) Default dotplot

2 4 6 8 10 12
Caterpillar growth

●

●
●

●
●

●
●

●
●

(b) Dotplot with jitter and
different plotting symbol

Figure 5.19 Dotplots of the caterpillar data

Black Blond Brown Red

F
re

qu
en

cy

0
50

10
0

15
0

20
0

25
0

Figure 5.20 Barplot showing frequency of different hair colour types

5.2.6 Bar charts

Bar charts are a great way of displaying categorical data (or perhaps discrete numeric data with
limited unique values). Bar plots come in many different flavours, but the simplest is to place the
categories of the variable on the x-axis with the height of the bars representing the frequency of
observations that fall into that category. These are simple enough to create, as we demonstrate
with the hair and eye colour dataset from R. We’ll plot the hair colour of the participants, but first
we need to create a table and then pass on this table to the barplot () function. The result is in
Figure 5.20.

hair_eye <- read.table ("hair_eye.txt", header = T)
table_hair <- table (hair_eye$Hair)
table_hair

�

� �

�

264 THE R BOOK

Black Blond Brown Red
108 127 286 71

barplot (table_hair, col = hue_pal()(4), ylab = "Frequency")

5.2.7 Pie charts

A word of warning here: Statisticians do not like pie charts, and for good reason. Avoid these as far
as possible, and let the following example act as a warning.

When creating graphics to represent data, we want to make sure that the main messages are
clear to our audience. The problem with pie charts is that we humans aren’t very good at distin-
guishing, e.g. sizes and angles, especially when the bits to be compared are not right next to each
other, or there are lots of bits to compare. Based on the pie chart in Figure 5.21a, can you tell which

A

B
C

D

E

F

G

(a) Pie chart

A

BC

D

E

F

G

(b) 3D pie chart

A B C D E F G

0
5

10
15

20
25

30
35

(c) Bar plot

Figure 5.21 Three plots of the same data

�

� �

�

GRAPHICS 265

Coal

Oil

Gas

Oil shales

Methyl clathrates

Figure 5.22 Pie chart

category has the most observations? What about in Figure 5.21b? And the truth is patently clear in
Figure 5.21c.

If you absolutely must use one, then the relevant function is pie (). It takes a vector of num-
bers, turns them into proportions, and divides up the circle on the basis of those proportions. It is
essential to use a label to indicate which pie segment is which. The label is provided as a vector
of character strings, here called data$names. Because there are blank spaces in some of the
names (‘oil shales’ and ‘methyl clathrates’) we cannot use read.table () with a tab-delimited
text file to enter the data. Instead, we save the file as a comma-delimited file, with a ‘.csv’ exten-
sion, and input the data to R using read.csv () in place of read.table (). The end result is in
Figure 5.22.

piedata <- read.csv ("piedata.csv")
piedata

names amounts
1 coal 4
2 oil 2
3 gas 1
4 oil shales 3
5 methyl clathrates 6

pie (piedata$amounts, labels = as.character (piedata$names), col = hue_pal()(5))

Try not to use these sorts of plots, however. It just isn’t worth it.

5.3 Plots for showing two numeric variables

5.3.1 Scatterplot

We first met the plot () function in Section 5.1 and now we continue with exploration of it. There
are, in fact, two ways of specifying plot () and you should choose whichever you prefer:

• Cartesian plot (x, y)

• formula plot (y ∼ x)

�

� �

�

266 THE R BOOK

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ● ●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

0 20 40 60 80 100

20
30

40
50

60

xv

ys

Figure 5.23 Basic scatterplot using plot ()

The advantage of the formula-based plot is that the plot function and the model fit look and feel the
same (response variable, tilde, explanatory variable, as will be discussed in Section 10.1.2). If you
use Cartesian plots (eastings first, then northings, like the grid reference on a map), then the plot
has ‘x, then y’ while the model has ‘y, then x’.

Let us load some data and produce an initial scatterplot as shown in Figure 5.23.

scatter1 <- read.table ("scatter1.txt", header = T)
attach (scatter1)
names (scatter1)

[1] "xv" "ys"

plot (xv, ys, col = hue_pal()(3)[1], pch = 16, cex = 0.6)

The great thing about graphics in R is that it is extremely straightforward to add things to your
plots. In the present case, we might want to add a line to the plot, which may represent a par-
ticular cut-off to emphasise or perhaps a line of best fit (regression line) through the cloud of
points.

The function for this is abline () which can take as its arguments either a specified line (as in
Figure 5.24a), or a linear model object lm (y1 ∼ x1) as explained in Section 10.1.2 if you want
to superimpose a line of best fit (as in Figure 5.24b). If you want to add the former, then use abline
(a, b) for a line with intercept a and slope b, or abline (v) for a vertical line placed at v = x or
abline (h) for a horizontal line placed at h = y.

You can also change the line thickness (using lwd), as we do in Figure 5.24.

plot (xv, ys, col = hue_pal()(3)[1], cex = 0.6,
xlab = "Explanatory variable", ylab = "Response variable")

abline (v = 40, col = hue_pal()(3)[2], lwd = 3)
plot (xv, ys, col = hue_pal()(3)[1], cex = 0.6,

xlab = "Explanatory variable", ylab = "Response variable")
abline (lm (ys ~ xv), col = hue_pal()(3)[2], lwd = 3)

�

� �

�

GRAPHICS 267

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

(a) Adding a vertical line

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

(b) Adding a line of best fit

Figure 5.24 Adding lines to plots

It is just as easy to add more points to the plot. The extra observations are in another file:

scatter2 <- read.table ("scatter2.txt", header = T)
attach (scatter2)
names (scatter2)

[1] "xv2" "ys2"

The new points (xv2, ys2) are added using the points () function, and we can finish by adding
a line of best fit through the extra points as in Figure 5.25. Notice that we also change the line
type to distinguish between the two regression lines using lty. We’ll stick to black lines here to
demonstrate (colour is great, but sometimes it all gets a bit too much).

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ● ●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

0 20 40 60 80 100

2
0

3
0

4
0

5
0

6
0

Explanatory variable

R
e
s
p
o
n
s
e
 v

a
ri

a
b
le

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

Figure 5.25 Scatterplot with added observations, and a regression line for each dataset

�

� �

�

268 THE R BOOK

plot (xv, ys, col = hue_pal()(3)[1], cex = 0.6,
xlab = "Explanatory variable", ylab = "Response variable")

abline (lm (ys ~ xv), lty = 1, lwd = 2)
points (xv2, ys2, col = hue_pal()(3)[2], pch = 16, cex = 0.6)
abline (lm (ys2 ~ xv2), lty = 2, lwd = 2)

This example shows a very important feature of the plot () function. Notice that several of the
lower values from the second data set have not appeared on the graph. This is because (unless we
say otherwise at the outset) R chooses ‘pretty’ scaling for the axes based on the data range in the
first set of points to be drawn. If, as here, the range of subsequent data sets lies outside the scale
of the x- and y-axes, then points are simply left off without any warning message.

One way to cure this problem is to plot all the data with type = "n". This instructs R to create
a plot – with axes that area scaled to accommodate all the points from all the data sets (using the
concatenation function, c ()) – then we can use points () and lines () to add both sets of
data to the blank axes, resulting in Figure 5.26.

plot (c (xv, xv2), c(ys, ys2),
xlab = "Explanatory variable",
ylab = "Response variable",
type = "n")

points (xv, ys, col = hue_pal()(3)[1], pch = 16, cex = 0.6)
points (xv2, ys2, col = hue_pal()(3)[2], pch = 16, cex = 0.6)
abline (lm (ys ~ xv), lty = 1, lwd = 2)
abline (lm (ys2 ~ xv2), lty = 2, lwd = 2)

Now all of the points from both data sets appear on the scatterplot. However, sometimes it is better
to take control of the selection of the limits for the x- and y-axes, rather than accept the ‘pretty’
default values. In Figure 5.26, for instance, the minimum on the y-axis was about 13 (but it is not
exactly obvious). Specifying that the minimum on the y-axis should be zero, for example is achieved
with the ylim argument. This is a vector of length 2, specifying the minimum and maximum values
for the y-axis: ylim = c (0, 70). Similarly, for the x-axis using xlim. This method is particularly

0 20 40 60 80 100

2
0

3
0

4
0

5
0

6
0

Explanatory variable

R
e
s
p
o
n
s
e
 v

a
ri

a
b
le ●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ● ●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

Figure 5.26 Scatterplot with better scaling of axes to accommodate both datasets

�

� �

�

GRAPHICS 269

convenient when you want two comparable graphs side by side, or when you want to overlay several
lines or sets of points on the same axes.

A good way to find out the axis values is to use the range () function applied to the data sets
in aggregate:

range (c (xv, xv2))

[1] 0.02849861 99.93262000

range (c (ys, ys2))

[1] 13.41794 62.59482

Here the x-axis needs to go from 0.02 up to 99.93 (0–100 would be pretty), and the y-axis needs
to go from 13.4 up to 62.6 (0–70 would be pretty). This is how the axes are drawn; the points and
lines are added exactly as before:

plot (c (xv, xv2), c (ys, ys2), xlim = c (0, 100), ylim = c (0, 70),
xlab = "Explanatory variable", ylab = "Response variable",
type = "n")

points (xv, ys, col = hue_pal()(3)[1], pch = 16, cex = 0.6)
points (xv2, ys2, col = hue_pal()(3)[2], pch = 16, cex = 0.6)
abline (lm (ys ~ xv), lty = 1, lwd = 2)
abline (lm (ys2 ~ xv2), lty = 2, lwd = 2)

Adding a legend to the plot to explain the difference between the two colours of points would be
useful. The thing to understand about the legend () function is that the number of lines of text
inside the legend box is determined by the length of the vector containing the labels (two in this case:
c ("Dataset 1", "Dataset 2"). The other specified vectors must be of the same length as
this: in our case, one for the plotting symbols and one for the colours (e.g. c ("red", "blue")).

The legend () function can also be used with locator (1) as one of its arguments to allow
you to select exactly where on the plot surface the legend box should be placed like this:

legend (locator (1), c ("Dataset 1", "Dataset 2"), pch = c (16, 16),
col = hue_pal()(3)[1:2])

Once you run the function, go to your plot viewing pane in R and click where you want the top left
of the box around the legend to be. Otherwise, specify the location of the top left-hand corner of
the legend box, like we do to get Figure 5.27. Here we specify the top left of the legend box to be
located at the co-ordinate (0,70).

legend (0, 70, c ("Dataset 1", "Dataset 2"), pch = c (16, 16),
col = hue_pal()(3)[1:2])

detach (scatter1)
detach (scatter2)

Figure 5.27 is about as complicated as you would want to make any figure. Adding more information
would begin to detract from the message.

�

� �

�

270 THE R BOOK

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

Explanatory variable

R
e
s
p
o
n
s
e
 v

a
ri

a
b
le

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

● ● ●

●

●
●●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●

● ●

●

●●

●

● ●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
● ●

● ●

●

●

●
●

●
●

●

●

●

●●
●●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●● ●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●

●

●●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
● ●

● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
Dataset 1
Dataset 2

Figure 5.27 Scatterplot with legend, showing a regression line for each of the datasets plotted

●●●●
●●●

●●●●

●●●●●

●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●

●●

●●●
●●

●●●

●●

●●●
●●

●●●

●●

0 10 20 30 40 50

3
5

4
0

4
5

5
0

5
5

6
0

6
5

Input

C
o
u
n
t

Figure 5.28 Scatterplot with duplicated observations

5.3.2 Plots with many identical values

Sometimes a scatterplot simply won’t do. Consider the following example, depicted in Figure 5.28,
where we have 1275 observations, but you could be forgiven for thinking that there are far
fewer. The problem here is that some of the values are duplicated and so appear as one dot on
the plot.

longdata <- read.table ("longdata.txt", header = T)
attach (longdata)
names (longdata)

[1] "xlong" "ylong"

plot (xlong, ylong, col = hue_pal()(3)[1], xlab = "Input", ylab = "Count")

�

� �

�

GRAPHICS 271

●●●●

●
●

●

●

●
●
●

●
●

●
●
●

●
●
●

●
●

●

●
●

●

●

●●

●

●●●●

●
●●●

●● ●
● ●●●● ●

●
●● ●●●

●●
●

●

●
●

●

● ●●
●●

●●

●

●●

●
●

● ●●
●● ●●●

●●
●

●

●

●●●● ●●
●

●

●
●

●
●

●●
●

●●● ●●●
●

●

●

●

●●

●●●●●

●
●

●
●

●

●
●●

●
●

●
●●

●

●●

●●
●
●

● ●●●
●
●●●●●●

●

●

●●

●●
●

●
●

●
●●●

●

●●
●●

● ●

●

●●

●

●

●●●
●

●
●

●
●

●

●●
●
●

●
●
●

●●

●

●

●

●
●●●

●●●

●
●

●
●●

●
●
●

●●
●

●

●

●●
●

●

●
●● ●

●
●●

●
●

●
●

●

●
●

●
●●●●

●

●
● ●
●

●

●

●

●
●
●

● ●
●●

●●
●

●
●●●●

●

●●
●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●●●
●

●
●

●
●

●●
●

●
●●●

●●

●●
●

●
●

●●
●● ●●

●
●●

●

●

●●
●

●
●
●●

●

●
●
●●

●●

●

●
●●●
●
●

●

●●

●●●

● ●
●

●●
●
● ●●●

●●●

●
●
●●

●
●●●●
●●

●
●●

●

●●

●
●
●●●●
●
●

●●

●●
●

●●●●

●●

●
● ●●● ●●●●

●●●●

●

● ●●

●
●

●●

●●●
●
●

●

●
●

●

●●●

●
●

●●
●
●

●

●
●●

●

●●
●

●

●

●
●

●● ●

● ●●

●
●

●●●●
●●

●

●
●

●

●●●●
●●
●

●
●

●●● ●●
●
●
●●
●●

●

●
●●

● ●●
●

●
● ●
●

●
●

●
●

●
●

●●

●

●●
●●●●

●
●●

●
●●●

●●

●

●
●
●

●

●
●

●●●

●

●

●
●●

●

●●
●●●
●

●●●

●
●

●

●
●

●
● ●
● ●

●

●

●

●●

●

●●

●

●●
●

●
●

●●

●●
●

●●
●●
●●

●
●

●

●●

●●
●

●

●

●

●
●●●

●

●●●
●●

●

●

●●●
●

●

●

●
●
● ●

●

●●●●

●
●

●

●

●
●

●●

●●

●
●●

●●

●
●●
●

●

●
●

●
●

●●●

●● ●● ●

●

●

●

●

●●
●●

●
●

●

●

●●●●

● ●●●

●
●●

●

●

●●●

●
●

●
●
●

●
●

●
●●

●●●

●
●●●
●●●

●
●●●●

●

●
●
●

●

●

● ●

●●

●

●

●
●

●
●

●
●

●
●

●
●

●

●●
●
●
●

●●

●
●

● ●

●

●
●●

●
●

●
●

●

●
●●

●
●

●
●

● ●

●●

●
●●

●
●●

●
●

●●
●
●●

●
●
●

●●
● ●
●

●
●

●●
● ●●

●
●
●

●

●
●

●

●
●

●

●
●●

●
●
●●

●●●●●

●

●●

●

●●

●
●

●●●
●● ●

●
●

● ●
●●

●

● ●
●

●
●

●●●●
●● ●●
●●

●
● ●

●
●●●

●●
●●●● ●

●

●

●
●

●

●

●

●
●

●
●
●

●

●
●●
●●

●
●

●●
●

●
●

●●●
●●

●
●

●

●
●●●●

●●●
●

●●
●●
●

●●
●

●

●
●
●

●

●
●

●

●
●

●

●
●

●

●

●

●●
●
●

●
●●
●

●

●

●●●

●
●

●

●

●

●●

●

●●

●
● ●
●●

●

●
●

●
●●

●●

●● ●

●
●●

●
●

●
●●

●●●
●
●●

●
●

●

●●●●●
●●

●
●

●●

●
●●

●
●●

●●

●●●●●●
●
●●

●

●
●● ●

●●
●

●●
●
●
●

●
●

●

●●
●●●●
●

●●
●●

●●●
●●
●

●

●●

●
●

●

●
● ●●●

●
●

●

●
●●●●

●

●●
●

●●
●

●● ●
●

●

●

●

●●

●
●

● ●●
●●●

●

●
●●●

●

●

●
●
●●
●●
●

●
● ●

●
●

●

●
●

●

●
●●

●
●

●●●●
●

●●
●

●●
●●

●
●

●●

●
●
●●

●●●
●

●

●●
● ●●

●
●

●

●● ●
●●
●
●

●
●●●

●

●●

●
●

●●

●

●

●
●●●

● ●

●●
●

●●●●
●
●

●
●

●●●

●●
●●

●
●

●●
●

●

●●

●

●●
●●

● ●
●
●
●

●

●●
●

●

●

●

●●
●
●

●

●●

●
●●

●●●
●

●

●
●

●
●

●

●
●

●●●
●●●●

●●
●●

●●
●●

●

● ●
●

●●●●●

●
●●● ●●

● ●

●
●●

●●
●●

● ●●
●
●

●
●

●●

0 10 20 30 40 50

3
5

4
0

4
5

5
0

5
5

6
0

6
5

Input

C
o
u
n
t

(a) Jittered scatter plot

0 10 20 30 40 50

3
5

4
0

4
5

5
0

5
5

6
0

6
5

Input
C

o
u
n
t

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

(b) Sunflower plot

0 10 20 30 40 50

0
5

1
0

1
5

2
0

2
5

Input

C
o
u
n
t

●

●

●

●

●

●

●

●

●

●

(c) Bubble plot

Figure 5.29 Three plots of the same data

We could ‘jitter’ the observations (add some random noise to each observation in the x- and
y-direction), but be careful here because too much jitter can obscure the truth and the plot
becomes useless. The jittered scatterplot is shown in Figure 5.29a.

plot (jitter (xlong, amount = 1), jitter (ylong, amount = 1),
xlab = "Input", ylab = "Count", col = hue_pal()(4)[1])

�

� �

�

272 THE R BOOK

Another easy option is a sunflower plot which produces one ‘petal’ of a flower for each value of y
that is located at that point. This is shown in Figure 5.29b.

plot (jitter (xlong, amount = 1), jitter (ylong, amount = 1),
xlab = "Input", ylab = "Count", col = hue_pal()(4)[1])

A final attractive option is a bubble plot. A bubble plot works by changing the size of the dot
(i.e. bubble) depending on the number of observations that underlie it. This requires us to do the
following:

• reformat the data into a table;

• make the table into a data frame (which may contain some cells with no observations);

• prune out the rows corresponding to zero observations from the dataframe;

• set the radius of the circles so that the area of the area of the bubble represents (proportionally)
the number of observations represented.

The bubble plot can then be drawn using symbols (), where we request that the bubbles are
scaled down proportionally using the inches argument so they aren’t ridiculously big. The result
is shown in Figure 5.29c

Preparing data for the bubble plot
tab_longdata <- table (longdata$ylong, longdata$xlong)
tab_longdata_df <- as.data.frame (tab_longdata)
tab_longdata_df <- tab_longdata_df [!(tab_longdata_df$Freq == 0),]
Setting the radius of circles so that area of bubble represents frequency
radius_area <- sqrt (tab_longdata_df$Freq / pi)
symbols (tab_longdata_df$Var2, tab_longdata_df$Var1, circles = radius_area,

xlab = "Input", ylab = "Count",
inches = 0.3, bg = hue_pal()(4)[1])

5.4 Plots for numeric variables by group

Now suppose that we have a numeric variable that we wish to display by group. These are easily
conjured using some of the ideas we met in Section 5.2, namely boxplots and dotplots.

5.4.1 Boxplots by group

Our first example uses the factor called month (with levels 1–12) to investigate weather patterns
at Silwood Park. There is one bit of housekeeping we need to do before we can plot the data. We
need to declare month to be a factor. At the moment, R thinks it is just a number:

weather <- read.table ("SilwoodWeather.txt", header = T)
weather$month <- as.factor (weather$month)
attach (weather)
names (weather)

[1] "upper" "lower" "rain" "month" "yr"

�

� �

�

GRAPHICS 273

●
●
●

●
●●●

●

●

●●

●●
●●

●

●

●

●

●
●
●

●
●●

●●
●●● ●

●
●●●●●●●●●●
●
●
●

●

●

●●●●●
●
●

●●●
●

●●●●●●

●

1 2 3 4 5 6 7 8 9 10 11 12

0
1

0
2

0
3

0

Month

D
a

ily
 m

a
x
im

u
m

 t
e

m
p

e
ra

tu
re

Figure 5.30 Boxplots of daily maximum temperature by month at Silwood Park

Now, we can plot using a categorical explanatory variable (month), resulting in Figure 5.30. Inciden-
tally, using plot () instead of boxplot () still yield a set of boxplots because the first variable
is a factor.

boxplot (upper ~ month, ylab = "daily maximum temperature", xlab = "month",
col = hue_pal()(1)[1])

The boxplot summarises a great deal of information very clearly; see Section 5.2.4 for an expla-
nation of how to interpret each individual boxplot. Boxplots not only show the location and spread
of data but also indicate skewness (which shows up as asymmetry in the sizes of the upper and
lower parts of the box). For example Figure 5.30 shows that the distribution of daily maximum
temperature is fairly symmetric across all 12 month, though there is perhaps a little skewness in,
for example, January (skewed to the left, as there is a slightly longer left tail – corresponding to
lower temperatures – visible) and in August (skewed to the right, as there is a slightly longer right
tail – corresponding to higher temperatures – visible).

Boxplots are also excellent for spotting errors in the data when the errors are represented by
extreme points. There don’t seem to be any untoward values in Figure 5.30, and you shouldn’t
assume that R’s decision to plot some of the lowest and highest temperatures as dots rather than
as part of the whiskers as implying anything is wrong.

Boxplots are very good at showing the distribution of the data points around the median, but they
are not so good at indicating whether or not the median values are different from one another. Tukey
invented notches to get the best of both worlds. The notches are drawn as a ‘waist’ on either side
of the median and are intended to give a rough impression of the extent of the differences between
two medians. Boxes in which the notches do not overlap are likely to prove to have different medi-
ans under an appropriate test. Boxes with overlapping notches probably do not have particularly
different medians. The size of the notch increases with the magnitude of the interquartile range and
declines with the square root of the replication, like this:

notch = ±1.58
IQR√

n
, (5.1)

where IQR is the interquartile range and n is the replication per sample. Notches are based on
assumptions of asymptotic normality of the median and roughly equal sample sizes for the two

�

� �

�

274 THE R BOOK

●
●
●

●
●●●

●

●

●●

●●
●●

●

●

●

●

●
●
●

●
●●

●●
●●● ●

●
●●●●●●●●●●
●
●
●

●

●

●●●●●
●
●

●●●
●

●●●●●●

●

1 2 3 4 5 6 7 8 9 10 11 12

0
1

0
2

0
3

0

Month

D
a

ily
 m

a
x
im

u
m

 t
e

m
p

e
ra

tu
re

Figure 5.31 Boxplots of daily maximum temperature by month at Silwood Park, with notches

medians being compared and are said to be rather insensitive to the underlying distributions of the
samples. The idea is to give roughly a 95% confidence interval for the difference in two medians,
but the theory behind this is somewhat vague.

Figure 5.31 are the Silwood Weather data with the option notch = TRUE (or notches = TRUE
if you are using plot ()):

boxplot(upper ~ month, ylab = "daily maximum temperature", xlab = "month",
col = hue_pal()(1)[1], notch = TRUE)

detach (weather)

There is not much of a difference in median daily maximum temperature between July and August
(the notches for months 7 and 8 overlap completely), but median maxima in September are sub-
stantially lower than in August.

When the sample sizes are small and/or the within-sample variance is high, the notches are not
drawn as you might expect them (i.e. as a waist within the box). Instead, the notches are extended
above the 75th percentile and/or below the 25th percentile. This looks odd, but it is an intentional
feature, supposed to act as a warning of the likely invalidity of using such a method.

5.4.2 Dotplots by group

If you have only a small number of observations by group, you are better off with a dotplot. Data for
this example come from an experiment on plant competition, with five factor levels in a single cate-
gorical variable called clipping: a control (unclipped), two root clipping treatments (r5 and r10)
and two shoot clipping treatments (n25 and n50) in which the leaves of neighbouring plants were
reduced by 25% and 50%. The response variable is yield at maturity (a dry weight) called biomass.

compexpt <- read.table ("compexpt.txt", header = T)
attach (compexpt)
names (compexpt)

[1] "biomass" "clipping"

�

� �

�

GRAPHICS 275

450 500 550 600 650 700

C
o
n
tr

o
l

n
2
5

n
5
0

r1
0

r5

Biomass

● ● ●●● ●

●●● ●● ●

●●● ● ●●

● ●● ● ● ●

●●● ● ● ●

Figure 5.32 Dotplot of biomass, by clipping group

Now we can draw the dotplot by group, as shown in Figure 5.32:

stripchart (biomass ~ clipping, col = hue_pal()(5), pch = 16, cex = 0.8)

detach (compexpt)

Notice that dotplots would be a silly idea if you have a lot of data. All that would be visible is a mass
of points and spotting any shape to the distribution would be near impossible.

5.4.3 An inferior (but popular) option

Rather than using boxplots to display the data, an alternative option (but inferior, as explained
below) is to use a barplot () to show the heights of the mean values from the different
treatments.

Let’s return to the Silwood Park weather data from Section 5.4.1. We need to begin by calculating
the heights of the bars, typically by using the function tapply () to work out the mean values for
each level of the categorical explanatory variable.

weather <- read.table ("SilwoodWeather.txt", header = T)
attach (weather)
means <- tapply (upper, month, mean)

Then the barplot is produced very simply, with the result in Figure 5.33:

barplot (means, xlab = "Month", ylab = "Mean daily maximum temperature",
col = hue_pal()(4)[1])

Compare Figure 5.33 to the boxplots by group we produced earlier in Figure 5.30. In the former,
we are plotting just 12 numbers, one for each group (do you need a plot for just 12 numbers?),
while in the latter, we are plotting information about the whole dataset which allows us to see, for

�

� �

�

276 THE R BOOK

1 2 3 4 5 6 7 8 9 10 11 12

Month

M
e
a
n
 d

a
ily

 m
a
x
im

u
m

 t
e
m

p
e
ra

tu
re

0
5

1
0

1
5

2
0

Figure 5.33 Bar plot of mean daily maximum temperature, by month

example the shape of the distribution of maximum daily temperature and the variability by month.
Figure 5.30 wins in terms of conveying information by a country mile.

We could add error bars to our barplot, which would go some way to indicating the extent of the
uncertainty associated with each of the estimated treatment means. There is no built-in function for
drawing error bars on barplots, but it easy to write a function to do this. One obvious issue is that
the y-axis as drawn by the previous call to barplot () may be too short to accommodate the
error bar extending from the top of the tallest bar. Another issue is that it is not obvious where to
centre each of the error bars (i.e. the x coordinates of the middles of the bars).

The next decision to make is what kind of error bar to draw. Many journals prefer plus or minus one
standard error of the mean. An old-fashioned approach is to use plus or minus the 95% confidence
interval of the mean. On the assumption that you want to publish your work in Science or Nature,
we shall use plus or minus one standard error of the mean, because this is their error bar of choice.
First, we need to compute the standard error of the mean (we define a function to do this, as there
is no in-built way of doing so in R):

sem <- tapply (upper, month, function(x) sqrt (var (x) / length (x)))

Now we draw the barplot with arrows () creating the error bars, as shown in Figure 5.34.

mybarplot <- barplot (means, xlab = "Month",
ylab = "Mean daily maximum temperature",
col = hue_pal()(4)[1])

arrows (x0 = mybarplot, y0 = means - sem,
x1 = mybarplot, y1 = means + sem,
code = 3, angle = 90, length = 0.1)

detach (weather)

The x0 and y0 arguments provide the coordinates from which to start the bar, and x1 and y1 argu-
ments tells R where to stop. The argument code = 3 instructs that we want a head at both ends of
the arrow, while angle determines the angle of the arrow head and length determines its length.

�

� �

�

GRAPHICS 277

1 2 3 4 5 6 7 8 9 10 11 12

Month

M
e

a
n

 d
a

ily
 m

a
x
im

u
m

 t
e

m
p

e
ra

tu
re

0
5

1
0

1
5

2
0

Figure 5.34 Bar plot with error bars

5.5 Plots showing two categorical variables

It is also possible to create plots to display two or more categorical variables, though you may prefer
to keep things simple by displaying information in a contingency table instead (see Section 7.1).
The following plots are based on the bar chart of Section 5.2.6.

5.5.1 Grouped bar charts

Let us use the hair and eye colour dataset of Section 5.2.6 once again. Suppose we want a barchart
of hair colour, but this time by eye colour. Once again, the barplot () function requires a table
as its argument (see Section 7.1), which is simple enough, and the result is in Figure 5.35a.

hair_eye <- read.table ("hair_eye.txt", header = T)
table_hair_eye <- table (hair_eye$Hair, hair_eye$Eye)
barplot (table_hair_eye, col = c (hue_pal()(4)[1:4]),

ylab = "Frequency", xlab = "Eye colour",
legend = rownames (table_hair_eye))

You can also add beside = TRUE to the barplot () function, which places the bars for each
eye colour side by side rather than stacking them. See Figure 5.35b.

Blue Brown Green Hazel
Black 20 68 5 15
Blond 94 7 16 10
Brown 84 119 29 54
Red 17 26 14 14

5.5.2 Mosaic plots

You can take the idea of the stacked bar chart further by creating a mosaic plot. In a bar plot,
the height of the bars indicate frequency of observations in a group, but a mosaic plot uses

�

� �

�

278 THE R BOOK

Blue Brown Green Hazel

Red
Brown
Blond
Black

Eye colour

F
re

q
u
e
n
c
y

0
5
0

1
0
0

1
5
0

2
0
0

(a) Stacked by hair colour

Blue Brown Green Hazel

Black
Blond
Brown
Red

Eye colour

F
re

q
u
e
n
c
y

0
2
0

4
0

6
0

8
0

1
0
0

(b) Grouped by hair colour

Figure 5.35 Bar chart of eye colour and hair colour

Hair colour

E
y
e
 c

o
lo

u
r

Black Blond Brown Red

B
lu

e
B

ro
w

n
H

a
z
e
l
G

re
e
n

Figure 5.36 Mosaic plot for the hair and eye colour data

the width of the bars to indicate this. Applying this to the eye and hair colour example, we get
Figure 5.36.

mosaicplot (table_hair_eye, col = c (hue_pal()(4)[1:4]),
ylab = "Eye colour", xlab = "Hair colour", main = "")

�

� �

�

GRAPHICS 279

Red hair has the narrowest column, while brown hair has the widest. The width of each column
is proportional to the number of individuals in each hair colour group. Similarly, the height of each
segment is proportional to the number of observations in that group. We can see, for example, that
well in excess of half of the blond participants had blue eyes while there were very few green-eyed
individuals with black hair.

If you are familiar with contingency tables, you can see that each block of colour represents a
cell in the table with its size indicative of the number of observations therein.

5.6 Plots for three (or more) variables

When you want to incorporate information on a third variable (or even more) into the mix, things
inevitably get trickier. There are a number of ways we could do this, but we’ll stick to looking at
simple ways of conveying this information in different situations.

5.6.1 Plots of all pairs of variables

A simple and often effective strategy is to use the pairs () function to create a matrix of scat-
terplots. This produces a scatterplot (technically two scatterplots) for each pair of variables in the
dataset or subset thereof. This couldn’t be easier, and we’ll demonstrate with the ozone data. This
dataset contains information on four continuous variables, and the resulting plot is in Figure 5.37.
Notice that we’ve scaled down the point size using cex to make the plots look better:

ozone <- read.table ("ozone_pollution.txt", header = TRUE)
head (ozone)

rad temp wind ozone
1 190 67 7.4 41
2 118 72 8.0 36
3 149 74 12.6 12

Rad

6
0

8
0

●
● ●

●
●

●●

●
●●

●
●●

●

●
●

●

●

● ●
●

●●
●

●

●
●

●
●

●

●

●
●

●●
●● ●

●
●●

●

●

●● ● ● ●
● ●

●

●●
●
● ● ●

●●●● ●

●●●
●

●●
●●

● ●● ●
●

● ●
●

●
● ●●

● ●●●
●

●
●●

● ●

●
●●

● ●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

● ●
●

●

●

● ●
●

●
●●

●

●
●●

●

●
●●

●

●
●

●

●
●

●

●

●

●
● ●

●

●●

●

●

●●●
●

●●●

●

●

●●

●

●
●●●

●

● ●●
●

●

●

●

●

●
●

● ●
●●

● ●

●●

●●

●

●

●
●

●

●●●
●

●
●

●

●

●●● ●

● ●

●

● ●

●

●

● ●
●

●

● ●●

●

●

●

●

●

0 50 150 250

0
1

0
0

●●
● ●●●● ● ●●● ●

●
●

●
●● ●●

●●
●

●

●●

●

●
● ●

●
● ● ●

●

●
●

●
●

●
●●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●

● ●

●

●
●

●
●

●

●

●

● ●
●

●
●

●

●

●●

●

●●●
●●

●

●
●

●●● ●
●

●●
● ●

●
●● ●● ●●

●

●●
●
●● ●

60 70 80 90

●

●
●

● ●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●●●

●

●
● ●●

●

●

●

●

●● ●

●
●

●

●

●

● ●

●

●●●

●

●
●

●
●●●

●

●

● ●

●

●
●

●

●

●
●

● ●● ●
●●

●●●

●●

●
●●

●
●

●●

●

●

●●

●

●
●

●

●

●

●
●

● ●

●

●

Temp

● ●

●●
●

●

●

●●
●

●
● ●

●

●
●●

●

●
● ●

●

●
●

●

●
●

●

●

●

●
● ●

●

●●

●

●

● ●●
●

● ●●

●

●

● ●

●

●
●●●

●

●●●
●
●

●

●

●

●
●

●●
●●

●●

●●

●●

●

●

●
●

●

●●●
●

●
●

●

●

●●●●

●●

●

●●

●

●

●●
●

●

● ●●

●

●

●

●

●

● ●
●● ●● ● ●● ●● ●

●
●

●
●● ●●

● ●
●

●

● ●

●

●
●●

●
● ● ●

●

●
●

●
●

●
●●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●

●●

●

●
●

●
●

●

●

●

● ●
●

●
●

●

●

● ●

●

●●●
●●

●

●
●

●●●●
●

●●
●●

●
● ●● ●● ●

●

●●
●

●●●

●

●
●

●●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

● ●●

●

●
● ●●

●

●

●

●

● ●●

●
●

●

●

●

● ●

●

●● ●

●

●
●

●
●● ●

●

●

●●

●

●
●

●

●

●
●

● ●● ●
● ●

●● ●

● ●

●
● ●

●
●

●●

●

●

● ●

●

●
●

●

●

●

●
●

● ●

●

●

●
● ●

●
●

● ●

●
● ●

●
●●

●

●
●
●

●

● ●
●

●●
●

●

●
●

●
●

●

●

●
●

● ●
●● ●

●
●●

●

●

●●● ●●
● ●

●

●●
●

●●●
● ●● ●●

● ●●
●
●●

●●
● ●● ●

●

●●
●

●
● ●●

●●● ●
●

●
●●
●●

●
●●

● ●

●

●

●

●

●

●

●

●

●
●

●
●●

●

Wind

5 10 15 20

● ●
●●● ● ●●● ● ●●

●
●

●
●● ●●

●●
●

●

● ●

●

●
● ●

●
● ●●

●

●
●

●
●

●
●●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●
● ●

●

●●

●

●
●

●
●

●

●

●

● ●
●

●
●

●

●

● ●

●

●●
●

●●
●

●
●

●● ●●
●

●●
● ●

●
●●●● ●●

●

● ●
●

●● ●

0 50 100 150

0
2

0
0

●

●
●

●●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●●●

●

●
● ●●

●

●

●

●

●● ●

●
●

●

●

●

● ●

●

● ●●

●

●
●

●
● ●●

●

●

● ●

●

●
●

●

●

●
●

●● ●●
● ●

●● ●

●●

●
●●
●

●
● ●

●

●

●●

●

●
●

●

●

●

●
●

●●

●

●

●
●●

●
●

●●

●
●●

●
● ●

●

●
●

●

●

● ●
●

● ●
●

●

●
●

●
●

●

●

●
●

●●
● ●●

●
●●

●

●

●● ●● ●
●●

●

● ●
●

● ●●
●●●● ●

●● ●
●

● ●
● ●
● ● ●●

●

● ●
●

●
●●●

●●● ●
●

●
●●
●●

●
● ●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

5
1

5

●●

● ●
●

●

●

●●
●

●
● ●

●

●
●●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●●

●

●●

●

●

● ●●
●

● ●●

●

●

● ●

●

●
● ●●

●

●● ●
●

●

●

●

●

●
●

●●
●●

●●

● ●

●●

●

●

●
●

●

●● ●
●

●
●

●

●

●●●●

●●

●

●●

●

●

● ●
●

●

● ●●

●

●

●

●

●

Ozone

Figure 5.37 Matrix of scatterplots for the ozone data.

�

� �

�

280 THE R BOOK

4 313 62 11.5 18
5 299 65 8.6 23
6 99 59 13.8 19

pairs (ozone, col = hue_pal()(1), cex = 0.6)

If we want to pick out a subset of variables to plot (this can be useful if you have a lot of variables
as each scatterplot becomes too small to be useful), you can do this by using, e.g. pairs (ozone
[, c (1:2, 4)]), which would select the first, second, and fourth variables to plot.

Notice how the scatterplots under the diagonal in Figure 5.37 are mirror images of those above.
For example, the first scatterplot of the top row is a scatterplot of rad by temp with rad on the
y-axis and temp on the x-axis. Meanwhile, the first scatterplot in the first column is of temp by rad
with temp on the y-axis and rad on the x-axis.

5.6.2 Incorporating a third variable on a scatterplot

The following example concerns the response of a grass species Festuca rubra as measured by its
biomass in small samples (FR) to two explanatory variables, soil pH, and total hay yield (the mass
of all plant species combined). A scatterplot of pH against hay shows the locations of the various
samples. The idea is to use the text function to label each of the points on the scatterplot with the
dry mass of F. rubra in that particular sample, to see whether there is systematic variation in the
mass of Festuca with changes in hay yield and soil pH, which is in Figure 5.38.

pgr <- read.table ("pgr.txt", header = T)
attach (pgr)
names (pgr)

[1] "FR" "hay" "pH"

plot (hay, pH, col = hue_pal()(2)[1])
text (hay, pH, labels = round (FR, 1), pos = 1, offset = 0.5, cex = 0.7)

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

2 3 4 5 6 7 8 9

3
.5

4
.5

5
.5

6
.5

Hay

p
H

9.1

7.4

14.2

0

4.9

5.7

10
8.8

7.1

7.2

9.1
8.3

7.3

6.8

8.67

22.7

24.4

21.5

0

1.8

2.1

0.9

0.4

2.5
4.1

6

7.7

7.5
7.7

0.7

1.4

4.5

0

0.7

1.4

7.1

0

21

19.2

23.7

0

0
0

0

0

0

0

0.1

0

3.6

5.9

11.3 8.9

1.9

2

3.2

4.7

4.9

5.5

1 0.8

1.7

3.6

1.7
1.1

7

4.1

4.3
5.3

9.5

7.6

4.5
2.1

4.4

1.7

3.24

5.4

5.6

8.6

0

2.4

3.5

0.9

0.6

1

1.6

2.1

Figure 5.38 pH by hay, labelled using dry mass of F. rubra in sample

�

� �

�

GRAPHICS 281

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

2 4 6 8 10

4
5

6
7

8

Hay

p
H

●

●
FR > median

FR ≤ median

Figure 5.39 pH by hay, coloured by whether dry mass of F. rubra in sample was greater than the median

The labels are centred on the x value of the point (pos = 1) and are offset half a character below
the point (offset = 0.5). They show the value of FR rounded to one significant digit (labels =
round (FR, 1)) at 70% character expansion (cex = 0.7). There is an obvious problem with
this method when there is lots of overlap between the labels (as in the top right), but the technique
works well for more widely spaced points. The plot shows that high values of Festuca biomass are
concentrated at intermediate values of both soil pH and hay yield.

You can also use a third variable to choose the colour of the points in your scatterplot, as shown
in Figure 5.39. We need to specify a legend, which will take up space in the plot, so we extend
the range of the x- and y-axes to accommodate this. Now we’ll place the legend so that the top
left-hand corner is positioned at (1,8).

plot (hay, pH, pch = 16, xlim = c (1, 10), ylim = c (3.5, 8),
col = ifelse (FR > median (FR), hue_pal()(2)[1], hue_pal()(2)[2]))

legend (1, 8, c ("FR > median", "FR <= median"),
pch = 16, col = hue_pal()(2)[1:2])

5.6.3 Basic 3D plots

When there are two continuous explanatory variables, it is often useful to plot the response as a
contour map. We continue with the example from 5.6.2. This time, we want the biomass of one plant
species (the response variable) plotted against soil pH and total community biomass. The species
is a grass called Festuca rubra once again, that peaks in abundance in communities of intermediate
total biomass.

There are many base R functions and other packages that build different types of 3D plots in R.
You could stick to the basic filled.contour () function to create a contour plot. Alternatively,
employ a specialist package, for example rgl (Murdoch and Adler, 2021) or plotly (Sievert,
2020). We’ll use plotly here, which has a range of excellent plotting options. It’s worth exploring
their library.

The relevant function in plotly is plot_ly () which, roughly speaking, needs us to specify a
grid and to say how many observations are in each section of the grid. For example, imagine taking
the rectangular area defined by the axes in Figure 5.39, say. Cut this up into a 40 × 40 grid (40 is

�

� �

�

282 THE R BOOK

arbitrary, but will turn out to be the default), and count the number of observations in each square
of this grid. Of course, if you want to produce some sort of smoothed 3D plot, then some degree of
interpolation is going to be needed between adjacent squares of the grid.

This is where the package akima (Akima and Gebhardt, 2021) comes in handy: we can use
the interp () function to perform this bivariate interpolation onto a grid. The two explanatory
variables are presented first (hay and pH in this case), with the response variable (the ‘height’ of
the topography), which is FR in this case, third:

library (plotly)
library (akima)
plot_dat <- interp (hay, pH, FR)

Now, we can use plot_ly () to create a contour plot as shown in Figure 5.40. (Incidentally, the
interpolation onto a grid is needed for other 3D plotting systems in R too.)

plot_ly (x = plot_dat$x, y = plot_dat$y,
z = matrix (plot_dat$z, nrow = length (plot_dat$y), byrow = TRUE),
type = "contour", colorscale = hue_pal()(24))

3 4 5 6 7 8 9

4

4.5

5

5.5

6

6.5

7

10

20

Figure 5.40 Contour plot of grass density, with pH on the y-axis and total hay yield on the x-axis

�

� �

�

GRAPHICS 283

0

5

10

15

20

20

15

10

5

0

4

4.5

5

5.5

6

6.5

y

z

x

3

4

5

6

7

8

Figure 5.41 3D surface plot of grass density, with pH on the y-axis and total hay yield on the x-axis

Evidently, the grass peaks in abundance at intermediate biomass, but it also occurs at lower
biomasses on soils of intermediate pH (5.0–6.0). It is found in only trace amounts in communities
where the biomass is above 7.5 tonnes ha−1, except where soil pH is around 6.6.

Changing to type = "surface" in the plot_ly () function gives a nice-looking surface
plot of the same data, with the added satisfaction that you can twist the plot around manually
in the viewing window to see it from any viewpoint. Figure 5.41 gives the standard view that
you get on creating the plot. Notice that the axes have been twisted in comparison to those in
Figure 5.40.

plot_ly (x = plot_dat$x, y = plot_dat$y,
z = matrix (plot_dat$z, nrow = length (plot_dat$y), byrow = TRUE),
type = "surface", colorscale = hue_pal()(24))

5.7 Trellis graphics

The main purpose of trellis graphics is to produce multiple plots per page and multi-page plots. The
plots are produced in adjacent panels, typically with one plot for each level of a categorical variable
(called the conditioning variable).

Trellis graphics is a framework for data visualisation developed at Bell Laboratories by Rick
Becker, Bill Cleveland, and others, extending the ideas about what makes for an effective graph
(layout, colour, style, symbol sizes, and so forth,) presented in Cleveland, 1993. The package for

�

� �

�

284 THE R BOOK

producing trellis graphics in R is called lattice (Sarkar, 2008) (not trellis as you might have
guessed, because that name was pre-empted by a commercial package), written by Deepayan
Sarkar, and the plots created are rendered by the Grid Graphics engine for R (developed by Paul
Murrell). Here are some examples of lattice functions:

• barchart () for barplots;

• bwplot () for box-and-whisker plots;

• densityplot () for kernel density plots;

• dotplot () for dot plots;

• histogram () for panels of histograms;

• qqmath () for quantile plots against mathematical distributions;

• stripplot () for a one-dimensional scatterplot;

• qq () for a quantile–quantile plot for comparing two distributions;

• xyplot () for a scatterplot;

• levelplot () for creating level plots;

• contourplot () for contour plots;

• cloud () for 3D scatterplots;

• wireframe () for 3D surfaces;

• splom () for a scatterplot matrix;

• parallel () for creating parallel coordinate plots.

You’ll notice that many of the plot types we’ve already considered are covered by the lattice
package, but these are generally only used when the base R versions we considered earlier are
not the best (e.g. when you want to display a variable using a histogram, but you want a separate
histogram for each level of some categorical variable).

Let us look at a quick example before we consider some of these functions in more depth. The
data used here give the age and weight of seven females and seven males.

panels <- read.table ("panels.txt", header = T)
attach (panels)
names (panels)

[1] "age" "weight" "gender"

You might, for instance, plot weight against age for each of two genders (males and females), as
displayed in Figure 5.42. The response variable is weight, the continuous explanatory variable is
age (also called the primary covariate in documentation on trellis graphics) and the categorical
explanatory variable is gender (a factor with two levels). In a case like this, the default would produce
two panels side by side in one row, with the panel for females on the left (simply because ‘f’ comes

�

� �

�

GRAPHICS 285

Age

W
e
ig

h
t

2

4

6

8

0 1 2 3 4 5 6

●

●

●

●

●

●

●

Female

0 1 2 3 4 5 6

●

●

●

●

●

●

●

Male

Figure 5.42 Trellis plot of weight by age, separated by gender

before ‘m’ in the alphabet). In the jargon of trellis graphics, gender is a grouping factor that divides
the observations into distinct groups.

The panel plots are created by xyplot (), using a formula to indicate the grouping structure:
weight ∼ age | gender. This is read as ‘weight is plotted as a function of age, given gender’
(the vertical bar is the ‘given’ symbol).

library (lattice)
xyplot (weight ~ age | gender, col = hue_pal()(1)[1])

detach (panels)

Lattice plots are highly customisable via user-modifiable settings, but these are completely unre-
lated to base graphics settings. To read more about the background and capabilities of the lattice
package, type ?lattice.

5.7.1 Panel boxplots

Here is an example trellis plot for the interpretation of a designed experiment where all the explana-
tory variables are categorical. If we want boxplots, the relevant function is bwplot (), and we
request one plot per detergent type.

daph <- read.table ("daphnia.txt",header=T)
attach (daph)
names (daph)

[1] "Growth.rate" "Water" "Detergent" "Daphnia"

bwplot (Growth.rate ~ Water + Daphnia | Detergent,
col = hue_pal()(1)[1], scales = list(x = list (rot = 45)))

detach (daph)

�

� �

�

286 THE R BOOK

G
ro

w
th

.r
a

te

2

3

4

5

6

7

C
lo
ne

1

C
lo
ne

2

C
lo
ne

3
Ty

ne

W
ea

r

●

●

●

●

●●

BrandA

C
lo
ne

1

C
lo
ne

2

C
lo
ne

3
Ty

ne

W
ea

r

●

●
●

● ●

BrandB

C
lo
ne

1

C
lo
ne

2

C
lo
ne

3
Ty

ne

W
ea

r

●

●
●

● ●

●

BrandC

C
lo
ne

1

C
lo
ne

2

C
lo
ne

3
Ty

ne

W
ea

r

●

●

●
●

●

●

BrandD

Figure 5.43 Boxplots by water and daphnia, by detergent

Notice that in order to get Figure 5.43, we specify two explanatory variables –Water and Daph-
nia – and get five boxplots for each detergent type in return: one for each of the three levels of
Daphnia and one for each of the two levels of the variable Water (that is, we have two categorical
variables on the x-axis). The angle of the x-axis text has also been rotated for easy reading using
the scales argument.

5.7.2 Panel scatterplots

The following example is concerned with root growth measured over time, as repeated measures
on 12 individual plants:

fertilizer_data <- read.table ("fertilizer.txt", header = T)
attach (fertilizer_data)
names (fertilizer_data)

[1] "root" "week" "plant" "fertilizer"

A set of 12 scatterplots is given in Figure 5.44, showing root ∼ week with one panel for each
plant. The syntax uses the ‘given’ bar like this:

xyplot (root ~ week | plant, col = hue_pal()(1)[1])

Panels are, by default, drawn starting from the bottom left-hand corner, going right and then up,
unless as.table = TRUE is specified, in which case panels are drawn from the top left-hand
corner, going right and then down. Both of these orders can be modified using the index.cond
and perm.cond arguments. In our example, the panels are shown in alphabetical order by plant
name from bottom left (ID1) to top right (ID9), which may not be helpful.

If you want to change things like the plotting symbol, we can do this within the xyplot ()
function, which gives Figure 5.45 in this case.

xyplot (root ~ week | plant, col = hue_pal()(1)[1], pch = 16)

�

� �

�

GRAPHICS 287

Week

R
o
o
t

2
4
6
8

10

2 4 6 8 10

●
●

●
●

●

ID1

●
●

●
●

●

ID10

2 4 6 8 10

●
●

●
●

●

ID11

● ●
●

●

●

ID12

2 4 6 8 10

●
●

●
●

●

ID2

●
●

●
●

●

ID3

●
●

●
●

●
ID4

2 4 6 8 10

●

● ●
●

●

ID5

●
●

●
●

●

ID6

2 4 6 8 10

● ●
●

●

●

ID7

●
●

●
●

●

ID8

2 4 6 8 10

2
4
6
8
10

● ●
●

●
●

ID9

Figure 5.44 Root length by week, displayed by plant

Week

R
o

o
t

2
4
6
8

10

2 4 6 8 10

●
●

●
●

●

ID1

●
●

●
●

●

ID10

2 4 6 8 10

●
●

●
●

●

ID11

● ●
●

●

●

ID12

2 4 6 8 10

●
●

●
●

●

ID2

●
●

●
●

●

ID3

●
●

●
●

●
ID4

2 4 6 8 10

●

● ●
●

●

ID5

●
●

●
●

●

ID6

2 4 6 8 10

● ●
●

●

●

ID7

●
●

●
●

●

ID8

2 4 6 8 10

2
4
6
8
10

● ●
●

●
●

ID9

Figure 5.45 A change of plotting symbol

If we want to make more involved changes, we should use a panel.() function. There are some
grid-compatible replacements for commonly used base R graphics functions, for example, lines
can be replaced by panel.lines (). Note that base R graphics functions like lines () simply
will not work here.

For example, suppose we want to fit a separate linear regression for each individual plant. This
is easy enough, and the output is displayed in Figure 5.46:

xyplot (root ~ week | plant,
panel = function (x, y)

{panel.xyplot (x, y, pch = 16, col = hue_pal()(2)[1])
panel.abline (lm (y ~ x), col = hue_pal()(2)[2])

})

�

� �

�

288 THE R BOOK

Week

R
o
o
t

2
4
6
8

10

2 4 6 8 10

●
●

●
●

●

ID1

●
●

●
●

●

ID10

2 4 6 8 10

●
●

●
●

●

ID11

● ●
●

●

●

ID12

2 4 6 8 10

●
●

●
●

●

ID2

●
●

●
●

●

ID3

●
●

●
●

●
ID4

2 4 6 8 10

●

● ●
●

●

ID5

●
●

●
●

●

ID6

2 4 6 8 10

● ●
●

●

●

ID7

●
●

●
●

●

ID8

2 4 6 8 10

2
4
6
8
10

● ●
●

●
●

ID9

Figure 5.46 Adding a linear regression line for each plant

Week

R
oo

t

2
4
6
8

10

2 4 6 8 10

●
●

●
●

●

ID1

●
●

●
●

●

ID10

2 4 6 8 10

●
●

●
●

●

ID11

● ●
●

●

●

ID12

2 4 6 8 10

●
●

●
●

●

ID2

●
●

●
●

●

ID3

●
●

●
●

●
ID4

2 4 6 8 10

●

● ●
●

●

ID5

●
●

●
●

●

ID6

2 4 6 8 10

● ●
●

●

●

ID7

●
●

●
●

●

ID8

2 4 6 8 10

2
4
6
8
10

● ●
●

●
●

ID9

Figure 5.47 Adding a horizontal line

We might want to do different things in different panels. We could draw a horizontal dashed line, as
in Figure 5.47 highlighting the location of the fourth data point in each panel using subscripts [4]:

xyplot (root ~ week | plant,
panel = function (x, y)
{panel.xyplot (x, y, pch = 16, col = hue_pal()(3)[1])
panel.abline (lm (y ~ x), col = hue_pal()(3)[2])
panel.abline (h = y [4], col = hue_pal()(3)[3], lty = 3)
})

�

� �

�

GRAPHICS 289

Week

R
oo

t

2
4
6
8

10

2 4 6 8 10

1

ID1

2

ID10

2 4 6 8 10

3

ID11

4

ID12

2 4 6 8 10

5

ID2

6

ID3

7

ID4

2 4 6 8 10

8

ID5

9

ID6

2 4 6 8 10

10

ID7

11

ID8

2 4 6 8 10

2
4
6
8
10

12

ID9

Figure 5.48 Displaying panel number

The panels are numbered by default from lower left to upper right. Here we use panel.number
() to illustrate this in Figure 5.48, by adding a text label to each panel showing the panel number:

xyplot (root ~ week | plant,
panel = function (x, y)

{panel.xyplot (x, y, pch = 16, col = hue_pal()(4)[1])
panel.abline (lm (y ~ x), col = hue_pal()(4)[2])
panel.text (8, 2, panel.number (), col = hue_pal()(4)[4], cex = 0.7)
})

detach (fertilizer_data)

We can add extra points and extra lines to each panel using panel.lines () and
panel.points () with panel.number () as a subscript (output not shown):

xyplot (root ~ week | plant,
panel = function (x, y)

{panel.xyplot (x, y, pch = 16, col = hue_pal()(4)[1])
panel.abline (lm (y ~ x), col = hue_pal()(4)[2])
panel.points (xnew [panel.number ()], ynew [panel.number ()])
})

5.7.3 Panel barplots

The following example shows the use of the trellis version of the barchart with the built-in barley
data. The data are shown separately for each site in Figure 5.49, and the bars are stacked for each
year by specifying stack = TRUE in different colours.

�

� �

�

290 THE R BOOK

B
ar

le
y

yi
el

d
(b

us
he

ls
 a

cr
e−1

)

0
40
80

120

Sva
ns

ot
a

No.
46

2

M
an

ch
ur

ia

No.
47

5

Ve
lve

t

Pea
tla

nd

Glab
ro

n

No.
45

7

W
isc

on
sin

 N
o.

38
Tr

eb
i

Grand rapids

Sva
ns

ot
a

No.
46

2

M
an

ch
ur

ia

No.
47

5

Ve
lve

t

Pea
tla

nd

Glab
ro

n

No.
45

7

W
isc

on
sin

 N
o.

38
Tr

eb
i

Duluth

University farm

0
40
80
120

Morris
0

40
80

120
Crookston Waseca

Figure 5.49 Yield by variety and year, by site

The barcharts are produced in three rows of two plots each by specifying layout = c (2, 3)).
Note the use of scales to rotate the long labels on the x-axis through 45 degrees:

barchart (yield ~ variety | site, data = barley,
groups = year, layout = c(2,3), stack = TRUE,
col = c (hue_pal ()(2)[1:2]),
ylab = "Barley Yield (bushels/acre)",
scales = list(x = list (rot = 45)))

5.7.4 Panels for conditioning plots

We’ll use the in-built ethanol dataset to demonstrate conditioning plots. These are generally plots
of two variables, conditioned on a third.

We have NOx, the concentration of nitric acid and nitrogen dioxide in engine exhaust; C, the
compression ratio of the engine under consideration; and E, the equivalence ratio at which the
engine ran.

We want side by side panels of NOx by C, split by E. We need to split E into nine suitable equally
sized groups. We’ll call the resulting variable EE:

EE <- equal.count (ethanol$E, number = 9, overlap = 1/4)

Within each panel in Figure 5.50, we create a scatterplot of NOx against C (via panel.xyplot
(x, y)) and draw an individual linear regression using panel.abline (lm (y ∼ x)). Notice
that we’ve requested all nine panels to be displayed in one row by specifying layout = c
(9, 1):

xyplot (NOx ~ C | EE, data = ethanol, layout = c (9, 1),
panel = function (x, y) {
panel.xyplot (x, y, col = hue_pal()(2)[1], pch = 16)
panel.abline (lm (y ~ x), col = hue_pal()(2)[2])

})

�

� �

�

GRAPHICS 291

C

N
O

x

1

2

3

4

8 12 16

●

●

●
●

●
●

●
●● ●

●
●

●

EE

8 12 16

●

●

●
●

●

●
●
●

●
●

●

●

●

EE

8 12 16

●

●

●
●

●

●

●

●
●

●

●

●

EE

8 12 16

●

●●●
●

●

●

●

● ●
● ●●

EE

8 12 16

●

●

●
●

●●

●

●●

●
●

●
●

EE

8 12 16

●
●

●

●● ●

●

●

●
●

●

●

●

EE

8 12 16

●
●

●

●
●●

●

●

●

●

●

●

EE

8 12 16

●

●
● ●●

●●
●

●

●

●
●

●

EE

8 12 16

●● ●
●

●
●

●
●●

●
●●

●

EE

Figure 5.50 NOx by C, by EE, with regression lines added for each panel

This is an excellent way of illustrating that the correlation between NOx and C is positive for all levels
of EE except the highest one, and that the relationship is steepest for values of EE just below the
median (i.e. in the third panel from the left).

5.7.5 Panel histograms

The task is to use the Silwood weather data to draw a panel of histograms, one for each month
of the year, showing the number of days per month during the period 1987–2005 with particular
minimum temperatures.

weather <- read.table ("SilwoodWeather.txt", header = T)
attach (weather)
head (weather)

upper lower rain month yr
1 10.8 6.5 12.2 1 1987
2 10.5 4.5 1.3 1 1987
3 7.5 -1.0 0.1 1 1987
4 6.5 -3.3 1.1 1 1987
5 10.0 5.0 3.5 1 1987
6 8.0 3.0 0.1 1 1987

histogram (~ lower | month, type = "count",
xlab = "mimimum temerature", ylab = "frequency",
breaks = seq (-12, 28, 2), col = hue_pal()(1))

detach (weather)

The panel histogram in Figure 5.51 is drawn using the histogram function which takes a model
formula without a response variable, ∼ lower | month, as its first argument. Though not
necessary, we’ve also specified the bins for the histogram. The month labels, as per the dataset,
are displayed above each histogram.

�

� �

�

292 THE R BOOK

Mimimum temperature

F
re

qu
en

cy

0

50

100

150

−10 0 10 20

Month Month

−10 0 10 20

Month Month

−10 0 10 20

Month Month

Month

−10 0 10 20

Month Month

−10 0 10 20

Month Month

−10 0 10 20

0

50

100

150

Month

Figure 5.51 Histogram of minimum temperature, by month of year

5.7.6 More panel functions

Rather than having side-by-side panels, plots can be specified by a grouping groups = rowpos
with one plot produced rather than many. We can indicate that each group should be drawn in a
different colour via panel = "panel.superpose", or specify that the dots should be joined by
lines for each member of the group panel.groups = "panel.linejoin".

Here are the built-in orchard spray data with each row shown in a different colour and the treat-
ment means joined together by lines, shown in Figure 5.52. This example also shows how to use
key to locate a key to the groups on the right of the plot, showing lines rather than points:

xyplot (decrease ~ treatment, OrchardSprays, groups = rowpos,
type="a", col = c (hue_pal()(8)[1:8]),
key = list(lines = list (col = c (hue_pal()(8)[1:8])),

text = list (as.character (unique (OrchardSprays$rowpos))),
space = "right")

)

Treatment

D
ec

re
as

e

0

50

100

A B C D E F G H

1
2
3
4
5
6
7
8

Figure 5.52 Decrease by treatment, plotted by row

�

� �

�

GRAPHICS 293

5.8 Plotting functions

In this section, we’ll turn our attention to plotting deterministic functions, for example mathe-
matical functions or statistical functions such as drawing probability densities. We’ll first look at
two-dimensional functions before we consider plotting in three-dimensions.

5.8.1 Two-dimensional plots

The curve () function is convenient for this. A plot of x3 − 3x between x = −2 and x = 2 is in
Figure 5.53:

curve (x^3 - 3 * x, -2, 2, col = hue_pal()(1), xlab = "x", ylab = "y")

Here is the more cumbersome code to do the same thing using plot (), which results in exactly
the same plot:

x <- seq (-2, 2, 0.01)
y <- x^3 - 3 * x
plot (x, y, type = "l", col = hue_pal()(1), xlab = "x", ylab = "y")

With plot (), you need to decide how many segments you want to generate to create the curve
(using seq () with steps of 0.01 in this example), then calculate the matching y values, then use
plot () with type = "l". This stands for ‘type = line’ (rather than the default points ()) and
can cause problems if you misread the symbol as a number ‘one’ rather than a lower-case letter ‘L’.

You can also draw probability distributions in a similar manner, for example a standard Normal
distribution (mean = 0 and standard deviation = 1), plotted between x = −5 and x = 5. To do this
we use the built-in dnorm () which gives the density of a Normal distribution with given mean and
standard deviation, the result of which is in Figure 5.54:

curve (dnorm (x, mean = 0, sd = 1), -5, 5, col = hue_pal()(2)[1],
xlab = "x", ylab = "Density of standard normal")

−2 −1 0 1 2

−
2

−
1

0
1

2

x

y

Figure 5.53 Plot of a mathematical function

�

� �

�

294 THE R BOOK

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

D
en

si
ty

 o
f s

ta
nd

ar
d

no
rm

al

Figure 5.54 Standard Normal distribution function

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

D
en

si
ty

 o
f s

ta
nd

ar
d

no
rm

al

Figure 5.55 Standard Normal distribution function, with section shaded

The polygon () function can be used to draw and fill more complicated shapes, including
curved ones. In this example, we are asked to shade the area beneath a standard normal curve
between −2 and −1. First draw the probability density as before, then fill the corresponding area.
You can see the result in Figure 5.55:

curve (dnorm (x, mean = 0, sd = 1), -5, 5, col = hue_pal()(2)[1],
xlab = "x", ylab = "Density of standard normal")

w <- seq (-2, -1, 0.01)
polygon (c (-2, w, -1), c (0, dnorm (w), 0), col = hue_pal()(2)[2])

Note the insertion of the points (−2,0) and (−1,0): to create the right-angled corners to the polygon
on the x-axis and make sure that the bottom line is horizontal. You get a very strange plot if you
don’t do this!

�

� �

�

GRAPHICS 295

−2 −1.8 −1.6 −1.4 −1.2 −1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0

10

(a) Contour plot of mathematical function

−5

xy

z

0

5

10

15

5

10

5

0

–5
–2
–1.5

–1
–0.5

–1.2

–1.4

–1.6

–1.8

–2

0
0.5

1
5

(b) Surface plot of mathematical function

Figure 5.56 Visualising functions with two input variables

5.8.2 Three-dimensional plots

It is straightforward to create 3D images of mathematical functions from regularly spaced grids
produced by the outer () function. First, create a series of values for the x- and y-axis (the base
of the plot) and write a function to predict the height of the graph (the response variable, z) as a
function of the two explanatory variables x and y. Now use the outer () function to evaluate the
function over the complete grid of points defined by x and y:

x <- seq (0, 10, 0.1)
y <- seq (0, 10, 0.1)
func <- function (a, b) 3 * a * exp (0.1 * a) * sin (b * exp (-0.5 * a))
z <- t (outer (x, y, func))

Notice that we use t (outer (y, x,.)) because the outer () function uses the first argu-
ment to define the row names first followed by the column names, but plot_ly () from the
package plotly will need the resulting matrix ordered the other way around. In other words, we
need to transpose the resulting matrix using t (). Now, we can create a contour or surface plot
which results in Figure 5.56:

library (plotly)
plot_ly (x = x, y = y, z = z,

type = "contour", colorscale = hue_pal()(24))
plot_ly (x = x, y = y, z = z,

type = "surface", colorscale = hue_pal()(24))

References

Akima, H., & Gebhardt, A. (2021). Akima: Interpolation of irregularly and regularly spaced data [R package
version 0.6-2.2]. https://CRAN.R-project.org/package=akima.

https://CRAN.R-project.org/package=akima

�

� �

�

296 THE R BOOK

Cleveland, W. S. (1993). Visualizing data. At & T Bell Laboratories.
Murdoch, D., & Adler, D. (2021). RGL: 3D visualization using OpenGL [R package version 0.106.8]. https://

CRAN.R-project.org/package=rgl.
Sarkar, D. (2008). Lattice: multivariate data visualization with R [ISBN 978-0-387-75968-5]. Springer. http://

lmdvr.r-forge.r-project.org.
Sievert, C. (2020). Interactive web-based data visualization with R, Plotly, and Shiny. Chapman & Hall/CRC.

https://plotly-r.com.
Wickham, H., & Seidel, D. (2020). Scales: scale functions for visualization [R package version 1.1.1]. https://

CRAN.R-project.org/package=scales.

https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=rgl
http://lmdvr.r-forge.r-project.org
http://lmdvr.r-forge.r-project.org
https://plotly-r.com
https://CRAN.R-project.org/package=scales
https://CRAN.R-project.org/package=scales

�

� �

�

6
Graphics in More Detail

We looked at the basics of plotting in R in Chapter 5. Here, we delve into more detail, under the
following broad topics:

• Colour in plots;

• Changing the look of graphics;

• Adding items to plots;

• An introduction to an alternative plotting system using ggplot2.

We end the chapter with the ultimate graphics cheat-sheet, which goes through a large number of
plotting options alphabetically.

6.1 More on colour

Colour can make or break a plot, and it’s often tricky to find a set of colours that is easy on the eye
and also provides good contrast. In this section, we’ll start with colour choice, before looking at how
to change the colour of various elements of a plot.

6.1.1 Colour palettes with categorical data

Rather than choose a set of colours explicitly, it’s possible to use a colour palette. It is easy to create
a vector of colours from a palette, then refer to the colours by their subscripts within the palette.
The key is to create the right number of colours for our needs.

Here’s a simple example where we use the built-in heat.colors () to shade the temperature
bars in our Silwood Weather dataset. We want the colours to grade from cold to hot, then back to
cold again from January to December as in Figure 6.1:

weather <- read.table ("SilwoodWeather.txt", header = T)
weather$month <- factor (weather$month)
attach (weather)

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

298 THE R BOOK

●
●
●

●
●●●

●

●

●●

●●
●●

●

●

●

●

●
●
●

●
●●

●●
●●● ●

●
●●●●●●●●●●
●
●
●

●

●

●●●●●
●
●

●●●
●

●●●●●●

●

1 2 3 4 5 6 7 8 9 10 11 12
0

10
20

30
x

y

Figure 6.1 Shaded boxplots of temperature by month.

season <- heat.colors (12)
temp <- c (11, 10, 8, 5, 3, 1, 2, 3, 5, 8, 10, 11)
plot (month, upper, col = season[temp])

detach (weather)

There are several built-in palettes. For instance, the built-in function called rainbow () takes the
seven colours of the rainbow (red, orange, yellow, green, blue, indigo, violet) and splits them into
a specified number of colours on the basis of hue, saturation, and value. Here are four examples,
with the spectrum split into 7, 14, 28, or 56 segments as displayed in Figure 6.2:

pie (rep (1, 7), col = rainbow (7), radius = 1)
pie (rep (1, 14), col = rainbow (14), radius = 1)
pie (rep (1, 28), col = rainbow (28), radius = 1)
pie (rep (1, 56), col = rainbow (56), radius = 1)

Notice that between them, greens and blues take up more than half of the space, with red, orange,
yellow, indigo, and violet making up the remainder. Also, note the use of the margin parameter
radius to optimise the size of the pie diagrams, while keeping their labels distinct from each other.

There are four other built-in colour functions that can be used to produce graded hues, as dis-
played in Figure 6.3:

pie (rep (1, 14), col = heat.colors (14), radius = 0.9)
pie (rep (1, 14), col = terrain.colors (14), radius = 0.9)
pie (rep (1, 14), col = topo.colors (14), radius = 0.9)
pie (rep (1, 14), col = cm.colors (14), radius = 0.9)

It is simple to create customized palettes. Here we use the function rgb () to do it, as displayed
in Figure 6.4:

custom <- c (rgb (0.6, 0.8,1), rgb (1, 0.8, 0.2), rgb (1, 0.8, 0.4),
rgb(1, 0.8, 0.6), rgb (1, 0.8, 0.8), rgb (1, 0.8,1),
rgb(0.8, 0.8,1), rgb (0.7, 0.8,1))

pie (rep (1/8, 8), col = custom)

�

� �

�

GRAPHICS IN MORE DETAIL 299

1

2

3

5

6

7

(a) Seven colours

1

2

35

6

7

8

9

10 12

13

14

(b) 14 colours

2

3

4

5
6

78
9

10

11

12

13

16

17

18

19
20

21 22
23

24

25

26

27

(c) 28 colours

3
4

5
6

7
8

9
10

111213161718
19

20
21

22
23

24
25

26

31
32

33
34

35
36

37
38

39 40 41 42 43 44 45 46
47

48
49

50
51

52
53
54

(d) 56 colours

Figure 6.2 Demonstrating the rainbow function.

6.1.2 The RColorBrewer package

RColorBrewer (Neuwirth, 2014) is a very useful package of tried and tested colour schemes, in
which carefully selected colours have been grouped together into a set of palettes (more information
on ColorBrewer is available at its website, http://www.colorbrewer.org). It is necessary to install
RColorBrewer in the usual way.

These palettes have a minimum of three colours and a maximum of 8–12 depending on the
palette. There are three types of palettes – sequential, diverging, and qualitative:

• Sequential palettes are suited to ordered data that progress from low to high. Lightness steps
dominate the look of these schemes, from light colours for low data values to dark colours for
high-data values.

http://www.colorbrewer.org

�

� �

�

300 THE R BOOK

1

2

3
4

5

6

7

8

9

10
11

12

13

14

(a) Heat colours

1

2

3
4

5

6

7

8

9

10
11

12

13

14

(b) Terrain colours

1

2

3
4

5

6

7

8

9

10
11

12

13

14

(c) Topo colours

1

2

3
4

5

6

7

8

9

10
11

12

13

14

(d) Cm colours

Figure 6.3 Demonstrating other colour functions.

• Diverging palettes put equal emphasis on mid-range critical values and extremes at both ends
of the data range. The critical class or break in the middle of the legend is emphasised with light
colours, and low and high extremes are emphasised with dark colours that have contrasting hues.

• Qualitative palettes do not imply magnitude differences between legend classes, and hues are
used to create the primary visual differences between classes. Qualitative schemes are best
suited to representing nominal or categorical data.

Figure 6.5 is a demonstration of three palettes from each of the three palette types. We specify how
many colours to use in the palette (eight in these examples). For example, Figure 6.5a was created
using:

library (RColorBrewer)
mypalette <- brewer.pal (8, "Reds")
pie (rep (1,8), col = mypalette)

�

� �

�

GRAPHICS IN MORE DETAIL 301

1

23

4

5

6 7

8

Figure 6.4 Custom colour palatte.

1

23

4

5

6 7

8

(a) Reds

1

23

4

5

6 7

8

(b) Blues

1

23

4

5

6 7

8

(c) Greens

1

23

4

5

6 7

8

(d) BrBG

1

23

4

5

6 7

8

(e) PiYG

1

23

4

5

6 7

8

(f) Spectral

1

23

4

5

6 7

8

(g) Accent

1

23

4

5

6 7

8

(h) Pastel1

1

23

4

5

6 7

8

(i) Set2

Figure 6.5 Some RColourBrewer palattes with eight colours.

�

� �

�

302 THE R BOOK

The relevant palatte colour, e.g. Reds in Figure 6.5a, are given as captions under each
plot.

The top row in Figure 6.5 contains three classic sequential palettes, the centre row three different
diverging palettes, and the bottom row three quite effective qualitative palettes. Once we have
defined a palette, we can refer to colours within it using subscripts in any plotting function that
accepts a col = argument, for example col = mypalette[3].

To reset the palette back to the default use:

palette ("default")

6.1.3 Foreground colours

Changing the colour of such things as axes and boxes around plots uses the ‘foreground’
parameter, fg. We can add this as an argument to the plot () function resulting in
Figure 6.6:

plot (1 : 10, 1 : 10, xlab = "x", ylab = "y")
plot (1 : 10, 1 : 10, xlab = "x", ylab = "y", fg = "blue")
plot (1 : 10, 1 : 10, xlab = "x", ylab = "y", fg = hue_pal ()(1))
plot (1 : 10, 1 : 10, xlab = "x", ylab = "y", fg = brewer.pal (3, "Accent")[1])

6.1.4 Background colours

It is important to distinguish two contrasting uses of ‘background’ in R graphics, which is set using
the bg argument. The first and most obvious refers to the colour of ‘paper’ on which the graph is
produced. This can be set using, for example, par (bg = "wheat2").

The second usage refers to the fill colour of two-tone plotting symbols pch = 21 through to pch
= 25 (see Section 5.1.2).

In Figure 6.7, we set the background of both plots to be wheat2. In Figure 6.7a, we use a solid
plotting symbol, while in Figure 6.7b, we use a two-tone plotting symbol (the background of which
can be set using bg) to demonstrate both uses of bg. The change to background colour is perma-
nent until we switch it back to white.

jaws <- read.table ("jaws.txt", header = T)
attach (jaws)
par (bg = "wheat2")
plot (age, bone, pch = 16, cex = 2, col = hue_pal()(1))
plot (age, bone, pch = 21, cex = 2, col = hue_pal()(2)[1], bg = hue_pal()(2)[2])
par (bg = "white")
detach (jaws)

�

� �

�

GRAPHICS IN MORE DETAIL 303

●●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

x

y

(a) Default

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

x

y

(b) Red

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

x

y

(c) Using hue pal

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

x

y

(d) Using RColorBrewer

Figure 6.6 Changing the foreground colours.

6.1.5 Background colour for legends

Changing the background colour for a legend box is simple enough, and we can again do it using
the bg argument, resulting in Figure 6.8a (plot code not shown):

legend (0, 50, legend = c ("Control", "Heat", "Dose"), pch = c (16, 16, 16),
bg = "wheat1", col = hue_pal()(6)[c(2, 4, 6)])

As in Section 6.1.4, there is a clash in the use of bg in setting a background colour of a legend when
we choose to use two-tone plotting symbols (pch = 21 through to pch = 25). We get around this

�

� �

�

304 THE R BOOK

●

●
●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●
●
●

●

●

●●

●

●
●●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

0 10 20 30 40 50

0
20

40
60

80
10

0
12

0
14

0

Age

B
on

e

(a) Solid plotting symbols

●●

●
●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●
●
●

●

●

●●

●

●
●●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

0 10 20 30 40 50

0
20

40
60

80
10

0
12

0
14

0

Age

B
on

e

(b) Two-tone plotting symbols

Figure 6.7 Changing the background colour.

using pt.bg to set the background colour of the plotting symbol, when required, resulting in Figure
6.8b (plot code not shown):

legend (0, 50, legend = c ("Control", "Heat", "Dose"), pch = c (21, 21, 21),
bg = "wheat1", col = hue_pal()(6)[c(2, 4, 6)],
pt.bg = hue_pal()(6)[c (1, 3, 5)])

6.1.6 Different colours for different parts of the graph

The colours for different parts of the graph are specified as follows:

col.axis () is the colour to be used for axis annotation;
col.lab () is the colour to be used for x and y labels;
col.main () is the colour to be used for plot main titles;
col.sub () is the colour to be used for plot subtitles.

For example, in Figure 6.9, we’ve changed the colour of the plotting symbols, the labels on the
axes, and the tick mark labels on the axes. The result is pretty hideous.

plot (1 : 10, 1 : 10, xlab = "x label", ylab = "y label", pch = 16,
col = hue_pal()(3)[1], col.lab = hue_pal()(3)[2], col.axis = hue_pal()(3)[3])

�

� �

�

GRAPHICS IN MORE DETAIL 305

2 4 6 8 10

0
10

20
30

40

x

y

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

Control
Heat
Dose

(a) Solid plotting symbols

2 4 6 8 10
0

10
20

30
40

x

y

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
Control
Heat
Dose

(b) Two-tone plotting symbols

Figure 6.8 Changing the background colour of legends.

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

x label

y
la

be
l

Figure 6.9 Changing colours of various plot elements.

6.1.7 Full control of colours in plots

We could, if we really wanted to, control the colours and line types of all of the components of a plot
separately. For example, if we use plot () to create a boxplot (this is the default if we supply one
factor variable to the function), we can control the following components:

• the box and its outline box*;

• the median, its line type, line width and colour med*;

�

� �

�

306 THE R BOOK

• the whiskers, their line type, width, and colour whisk*;

• the staples (this is the jargon for the flat ends of the whiskers) staple*;

• the ‘outliers’ (which may not be actual outliers), their plotting symbol, edge, and fill out*.

Here is a full list of arguments that can be controlled in this case:

Box
boxlty line type
boxlwd line width
boxcol line colour
boxfill fill colour

Median
medlty line type (medlty = "blank" if we want no line, just a point)
medlwd line width
medpch plotting symbol (added with the line unless specified otherwise)
medcex plotting symbol size
medcol plotting symbol colour
medbg plotting symbol fill for pch = 21 to pch = 25

Whisker
whisklty line type
whisklwd line width
whiskcol colour

Staple
staplelty line type
staplelwd line width
staplewex width expansion
staplecol colour

Outlier
outlty line type
outlwd line width
outwex width expansion
outpch plotting symbol
outcex symbol size
outcol colour of the outline of the plotting symbol
outbg colour of the fill of the plotting symbol

�

� �

�

GRAPHICS IN MORE DETAIL 307

●●

●●
●●

●
● ●

●●●

●

●●
●●
●
●●

●

●

●●●●●●●●●●●●
●●

●

●

●

●

●

●

●

●

●●
●●
●

●
●

●

1 2 3 4 5 6 7 8 9 10 11 12

−
10

0
10

20

Month

M
in

im
um

 te
m

pe
ra

tu
re

Figure 6.10 Changing colours of various boxplot elements.

Figure 6.10 has many of the options in their non-default settings (but whether we would ever
really want to do this is debatable):

weather <- read.table ("silwoodweather.txt", header = T)
attach (weather)
plot (factor (month), lower, ylab = "minimum temperature", xlab = "month",

medlty = "blank", medpch = 21, medbg = hue_pal()(4)[1],medcol = hue_pal()(4)[2],
boxcol = hue_pal()(4)[1], boxfill = hue_pal()(4)[3], outpch = 21,
outbg = hue_pal()(4)[2], outcol = hue_pal()(4)[1],

staplecol = hue_pal()(4)[4], whisklty = 1, whiskcol = hue_pal()(4)[4])

detach (weather)

6.1.8 Cross-hatching and grey scale

We can control five aspects of shading: the density of the lines, the angle of the shading, the border
of the shaded region, the colour of the lines, and the line type. Here are their default values:

density = NULL
angle = 45
border = NULL
col = NA
lty = par ("lty"), ...)

Other graphical parameters dealing with lines such as xpd, lend, ljoin, and lmitre can be
given as arguments. We shall shade each of the bars differently in Figure 6.11:

box <- read.table ("box.txt", header = T)
attach (box)
barplot (tapply (response, fact, mean), density = 3 : 10,

angle = seq (30, 60, length = 8))

�

� �

�

308 THE R BOOK

1 2 3 4 5 6 7 8

0
2

4
6

8
10

12

Figure 6.11 Cross-hatching a bar plot.

1 2 3 4 5 6 7 8

0
2

4
6

8
10

12

Figure 6.12 Grey scale on a bar plot.

The density and the angle of the shading in Figure 6.11 increase from left to right (the density from
3 lines per inch to 10 lines per inch, and the angle from 30 to 60 degrees).

Figure 6.12 gives the same example with grey scale instead of shading. Remember that the grey
scale goes from 0 to 1, which (counter-intuitively) is from dark to light:

barplot (tapply (response, fact, mean), col = grey (seq (0.8, 0.2, length = 8)))

detach (box)

6.2 Changing the look of graphics

6.2.1 Shape and size of plot

We can resize the Plots pane manually in RStudio as we see fit. This alters the size of the graphic,
of course. If we choose to save the plot using the Export button on the Plots pane (remember
that this doesn’t save a particularly high-quality graphic, see Section 5.1.3), then the height and

�

� �

�

GRAPHICS IN MORE DETAIL 309

width of the saved plot depends on how we resized the Plots pane. We can check the size of the
current graphic by typing:

dev.size ()

This gives the width then height in inches by default (terribly old fashioned, we know), but we can
request the information to be displayed in centimetres (dev.size ("cm")) or pixels (dev.size
("px")) if preferred.

When we want to save high-quality graphics, it is necessary to specify the size of the saved
graphic explicitly. See Section 5.1.3 for more information. A word of warning, however: if we want
to preview a plot in the right ratio, this should be done before saving. Otherwise, the final file might
look different from what we expect.

6.2.2 Multiple plots on one screen

Often, it is desirable to place more than one graph in a single window. The graphical parameter to
do this just happens to be the least intuitive to use. This is the number of graphs per screen, called
somewhat unhelpfully, mfrow (). This stands for ‘multiple frames by rows’.

The idea is simple, but the syntax is hard to remember. We need to specify the number of rows
of plots we want, and number of plots per row, in a vector of two numbers. The first number is the
number of rows, and the second number is the number of graphs per row. The vector is made using
concatenate c () in the normal way. The default single-plot screen is par (mfrow = c(1, 1)).
Two plots side by side is par (mfrow = c (1, 2)) and a panel of four plots in a 2 × 2 square
is par (mfrow = c (2, 2)).

To move from one plot to the next, we need to execute a new plot () function (it doesn’t have
to be plot () specifically, though). Control stays within the same plot frame while we execute
functions like points (), lines (), or text (). Remember to return to the default single plot
when we have finished our multiple plot by executing par (mfrow = c (1, 1)). If we have
more than two graphs per row or per column, the character expansion cex is set to 0.5, and we get
half-size characters and labels.

We won’t show the plots here, but the following would, for example, generate a single screen
with three plots in a row, and once done, we change it back so that we get one plot per screen in
future:

par (mfrow = c (1, 3))
plot (x1, y1)
plot (x2, y2)
plot (x3, y3)
par (mfrow = c (1, 1))

6.2.3 Tickmarks and associated labels

The most likely changes we will be asked to make are to the orientation of the numbers on the
tick marks, and to the sizes of the text labels on the axes. There are three functions involved here,
which are described in Table 6.1.

�

� �

�

310 THE R BOOK

Table 6.1 Orientation and sizes of labels.

Argument Purpose Values

0: parallel to each axis
las orientation of tick mark labels 1: horizontal to each axis

2: perpendicular to each axis
3: vertical to each axis

cex.lab size of axes text labels > 0, default = 1
cex.axis size of tick mark labels > 0, default = 1

0 50 100 150

10
20

30
40

50
60

70
80

x axis label

y
ax

is
 la

be
l

(a) Default settings

0 50 100 150

10

20

30

40

50

60

70

80

x axis label

y
ax

is
 la

be
l

(b) Changing orientation and size of tick mark
labels, and size of axes labels

Figure 6.13 Changing tickmarks and associated items.

For example, the scatterplot in Figure 6.13a shows the default settings, while in Figure 6.13b, we
have changed the orientation and size of tick mark labels, and size of axes labels. Note the use of
par () to generate side-by-side plots.

xvals <- seq (0, 150, 10)
yvals <- 16 + xvals * 0.4 + rnorm (length (xvals), 0, 6)
par (mfrow = c (1, 2))
plot (xvals, yvals, pch = 16, col = hue_pal()(1),

xlab = "x axis label", ylab = "y axis label")
plot (xvals, yvals, pch = 16, col = hue_pal()(1),

xlab = "x axis label", ylab = "y axis label",
las = 1, cex.lab = 1.8, cex.axis = 1.5)

par (mfrow = c (1, 1))

�

� �

�

GRAPHICS IN MORE DETAIL 311

2 4 6 8 10

2
4

6
8

10

y

x

This is the default font

This is the serif font

Figure 6.14 Different fonts.

6.2.4 Font of text

To change the typeface used for plotted text, change the name of a font family using family. Stan-
dard values are "serif", "sans" (the default font), "mono", and "symbol", and the Hershey
font families are also available. Some devices will ignore this setting completely. Text drawn onto
the plotting region is controlled using par () and displayed in Figure 6.14:

plot (1 : 10, 1 : 10, type = "n", xlab = "x", ylab = "y")
par (family = "sans")
text (5, 8, "This is the default font")
par (family = "serif")
text (5, 6, "This is the serif font")
par (family = "mono")
text (5, 4, "This is the mono font")
par (family = "HersheySymbol")
text (5, 2, "This is the symbol font")

par (family = "sans")

Don’t forget to turn the family back to "sans", otherwise we may get some very unexpected sym-
bols in the next text.

The fonts of the various titles are specified in a similar way:

font.axis font to be used for axis annotation;
font.lab font to be used for x and y labels;
font.main font to be used for plot main titles;
font.sub font to be used for plot subtitles.

6.3 Adding items to plots

6.3.1 Adding text

It is very easy to add text to graphics. Suppose we wanted to add the text ‘(b)’ to a plot at the location
x = 80 and y = 65; just type text (80, 65, "(b)").

�

� �

�

312 THE R BOOK

In the following example, we want to produce a map of place names, and the place names
are in a file called map.places.csv, but their coordinates are in another, much longer file
called bowens.csv, containing many more place names than we want to plot. If we have factor
level names with spaces in them (e.g. multiple words), then the best format for reading files
is comma-delimited (.csv) rather than the standard tab-delimited (.txt). These are read into a
dataframe in R using read.csv () in place of read.table ():

map_places <- read.csv ("map.places.csv", header = T)
attach (map_places)
head (map_places)

wanted
1 Ascot
2 AERE Harwell
3 Reading
4 Botley
5 Wytham Wood
6 Cumnor

map_data <- read.csv ("bowens.csv", header = T)
attach (map_data)
head (map_data)

place east north
1 Abingdon 50 97
2 Admoor Copse 60 70
3 AERE Harwell 48 87
4 Agates Meadow 70 73
5 Aldermaston 59 65
6 Aldermaston Court 60 65

There is a slight complication to do with the coordinates. The northernmost places are in a different
100 km square so, for instance, a northing of 3 needs to be altered to 103. It is convenient that all
of the values that need to be changed have northings less than 60 in the dataframe:

nn <- ifelse (north < 60, north + 100, north)

This says: change all of the northings for which north < 60 is TRUE to nn <- north + 100,
and leave unaltered all the others (FALSE) as nn <- north.

We begin by plotting a blank space (type = "n") of the right size (eastings from 20 to 100 and
northings from 60 to 110) with blank axis labels and no tick marks or numbers:

plot (c (20, 100), c (60, 110), type = "n",
xlab = "", ylab = "", xaxt = "n", yaxt = "n")

The trick is to select the appropriate places in the vector called place and use text () to plot
each name in the correct position (east[ii], nn[ii]). For each place name in wanted, we find
the correct subscript for that name within place using the which () function to find ii:

�

� �

�

GRAPHICS IN MORE DETAIL 313

Ascot

AERE Harwell

Reading

Botley

Wytham Wood

Cumnor

Buscot

Coleshill

Faringdon

Cookham

Maidenhead

Old Windsor

Sandhurst

Bracknell
Wokingham

Bagshot Heath

Nine Mile Ride

Arborfield

Bray

Windsor

Cranbourne

Knowl Hill

Twyford

Binfield

Cothill

Frilford

Didcot

Shrivenham

East Ilsley

Newbury

Hungerford

Inkpen

Walbury Camp

Kintbury

Greenham Common

Wallingford

Streatley

Sulham

Appleton

Lambourn

Chilton Foliat

Ashbury

East Garston
Peasemore

Yattendon
Hermitage

Cold Ash

Thatcham

Farley Hill

Winnersh

Pangbourne

Basildon
White Waltham

Windsor Great Park

Watchfield

Shefford

Fence Wood

Aldermaston

Theale

Wantage

Moulsford

Aston Tirrold

Harwell

Churn
Farnborough

Whitehorse Hill

Kennington

Radley

Sutton Courtenay

Welford

Boxford

Hinton Waldrist

Marcham

Kingstone Down
Fawley

Letcombe Bassett

Charney Bassett

Grove
Uffington

Shurlock Row
Woodley

Beenham

Bradfield

Swinley ParkWilderness

Upper Lambourn
Brightwalton

Steventon

Drayton

Denchworth

Shalbourne
Silchester

Mortimer

Burghfield
Pingewood

Blewbury

Pusey

Cliveden Reach

Riseley

Swallowfield
Grazeley

Ashampstead

Compton
Beedon

Abingdon
TubneyBuckland

Fernham

Farmoor

Wytham Meads

Elcot
Speen

Figure 6.15 Map of place names.

for (i in 1:length (wanted)){
ii <- which (place == as.character (wanted[i]))
text (east[ii], nn[ii], as.character (place[ii]), cex = 0.6)

}
detach (map_places)
detach (map_data)

The result of all this is in Figure 6.15.

6.3.2 Adding smooth parametric curves to a scatterplot

In many cases, we want to add a smooth curve to a scatterplot. The important tip is that to produce
reasonably smooth-looking curves in R, we should draw about 100 straight-line sections between
the minimum and maximum values of the x-axis.

�

� �

�

314 THE R BOOK

Let’s start by plotting the data, then we’ll consider two possible smooth curves to describe the
relationship between the two variables in the following dataset.

plotfit <- read.table ("plotfit.txt", header = T)
attach (plotfit)
names (plotfit)
plot (x, y, pch = 16, col = hue_pal()(3)[1])

Now let us consider some curve options. The Ricker curve is named after the famous Canadian
fish biologist who introduced this two-parameter hump-shaped model for describing recruitment to
a fishery y as a function of the density of the parental stock, x. We wish to compare two Ricker
curves with the following parameter values:

yA = 482x exp(−0.045x), yB = 518x exp(−0.055x).

The first decision to be made is the range of x values for the plot. In our case, this is easy because
we know from the literature that the minimum value of x is 0 and the maximum value of x is 100.
Next, we need to generate about 100 values of x at which to calculate and plot the smoothed
values of y:

xv <- 0 : 100

Next, calculate vectors containing the values of yA and yB at each of these x values:

yA <- 482 * xv * exp (-0.045 * xv)
yB <- 518 * xv * exp (-0.055 * xv)

We are now ready to draw the two curves by using lines (). We want to draw the smooth curve
for yA as a dashed line:

lines (xv, yA, lty = 2, col = hue_pal()(3)[2])

and the curve for yB as a solid line:

lines(xv, yA, lty = 1, col = hue_pal()(3)[3])
detach (plotfit)

Figure 6.16 implies that the dotted line is a much better description of our data than is the solid line.
Estimating the parameters of non-linear functions like the Ricker curve from data is explained in
Chapter 14.

6.3.3 Fitting non-parametric curves through a scatterplot

It is common to want to fit a non-parametric smoothed curve through data, especially when there is
no obvious candidate for a parametric function. R offers a range of options:

�

� �

�

GRAPHICS IN MORE DETAIL 315

0 20 40 60 80 100

0
10

00
20

00
30

00
40

00

Stock

R
ec

ru
its

●

●

●

●

●

●

●

●
● ●

●

●

●
● ●

●

●●

●
●

●

●

●

●
●

●

●

●

●

Figure 6.16 Adding smooth curves to a scatterplot.

• loess () (a modelling tool, see Chapter 12);

• gam () (fits generalized additive models, see Chapter 12);

• lm () for linear regression (fit a linear model involving powers of x, see Chapter 10).

We will illustrate each of these options using the jaws data. First, we load the data:

jaws <- read.table ("jaws.txt", header = T)
attach (jaws)
names (jaws)

[1] "age" "bone"

Let us now plot our four graphs with different smooth functions fitted through the jaws data. First,
the simple non-parametric smoother called lowess (). We provide the lowess () function with
arguments for the explanatory variable and the response variable, then provide this object as an
argument to the lines () function like this:

plot (age, bone, pch = 16, col = hue_pal()(2)[1])
lines (lowess (age, bone), col = hue_pal()(2)[2])

Figure 6.17a shows that it is a reasonable fit overall, but a poor descriptor of the jaw size for the
lowest five ages. Let us try loess (), which is a model-fitting function. We use the fitted model to
predict () the jaw sizes:

plot (age, bone, pch = 16, col = hue_pal()(2)[1])
model <- loess (bone ~ age)
xv <- 0:50
yv <- predict (model, data.frame (age = xv))
lines (xv, yv, col = hue_pal()(2)[2])

�

� �

�

316 THE R BOOK

The result in Figure 6.17b is much better at describing the jaw size of the youngest animals, but
shows a slight decrease for the oldest animals which might not be realistic. Next, we use a gen-
eralized additive model (gam (), from the library mgcv (Wood, 2011)) to fit bone as s (age),
a smooth function of age:

library(mgcv)
plot (age, bone, pch = 16, col = hue_pal()(2)[1])
model <- gam (bone ~ s (age))
xv <- 0:50
yv <- predict (model, list (age = xv))
lines (xv, yv, col = hue_pal()(2)[2])

The line in Figure 6.17c is almost indistinguishable from the line produced by loess () in Figure
6.17b. Finally, a polynomial:

plot (age, bone, pch = 16, col = hue_pal()(2)[1])
model <- lm (bone ~ age + I (age^2) + I (age^3))
xv <- 0:50
yv <- predict (model, list (age = xv))
lines (xv, yv, col = hue_pal()(2)[2])
detach (jaws)

As so often is the case with polynomials, the line in Figure 6.17d is more curvaceous than we really
want. Note the use of capital I (the ‘as is’ function) in front of the quadratic and cubic terms. The fit
is good for young animals, but is rather wavy where we might expect to see an asymptote. It tips
up at the end, whereas the last two smoothers tipped down.

6.3.4 Connecting observations

Sometimes we want to join the points on a scatterplot by lines. Let’s start with the view of connecting
all observations. The trick is to ensure that the points on the x-axis are ordered: if they are not
ordered, the result is a mess, as we’ll see below.

smooth <- read.table ("smoothing.txt", header = T)
attach (smooth)
names (smooth)

[1] "x" "y"

If we do not order the x values, and just use the lines () function, the result is Figure 6.18a: a
car crash of a plot.

plot (x, y, pch = 16, col = hue_pal()(2)[1])
lines(x, y, col = hue_pal()(2)[2])

�

� �

�

GRAPHICS IN MORE DETAIL 317

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

0 10 20 30 40 50

0
20

40
60

80
10

0
12

0
14

0

Age

B
on

e

(a) Fitting curve with lowess

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

0 10 20 30 40 50

0
20

40
60

80
10

0
12

0
14

0

Age

B
on

e

(b) Fitting curve with loess

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

0 10 20 30 40 50

0
20

40
60

80
10

0
12

0
14

0

Age

B
on

e

(c) Fitting curve with gam

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

0 10 20 30 40 50

0
20

40
60

80
10

0
12

0
14

0

Age

B
on

e

(d) Fitting curve with cubic polynomial

Figure 6.17 Fitting different types of non-parametric curves to data.

We need to order the x values. Begin by producing a vector of subscripts representing the ordered
values of the explanatory variable. Then draw lines with this vector as subscripts to both the x and
y variables, resulting in Figure 6.18b:

plot (x, y, pch = 16, col = hue_pal()(2)[1])
sequence <- order (x)
lines (x[sequence], y[sequence], col = hue_pal()(2)[2])
detach (smooth)

�

� �

�

318 THE R BOOK

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

4
6

8
10

12
14

16

x

y

(a) Without ordering the x values

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

4
6

8
10

12
14

16

x

y

(b) After ordering the x values

●

●

●

●

●
●

●
●

●

●

● ●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

● ●●

0 2 4 6 8 10

4
6

8
10

12
14

16

x

y

(c) Using type = ”b” within plot ()

Figure 6.18 Join the dots.

There is a plot option type = "b" (this stands for ‘both’ points and lines) which draws the points
and joins them together with lines like in Figure 6.18c. We can choose the plotting symbol (pch)
and the line type (lty) to be used, like this (we still need to order the x values!):

sequence <- order (x)
plot (x[sequence], y[sequence], pch = 16, col = hue_pal()(2)[1],type = "b", lty = 1)

If, instead, we want to plot square edges between two points like in Figure 6.19, we need to decide
whether to go across and then up, or up and then across. The issue should become clear with an
example. We have two vectors from 0 to 10:

�

� �

�

GRAPHICS IN MORE DETAIL 319

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

x

y

Figure 6.19 Adding stepped lines.

x <- 0 : 10
y <- 0 : 10
plot (x, y, pch = 16, col = hue_pal()(4)[1])

There are three ways we can join the dots: with a straight line

lines (x, y, col = hue_pal()(4)[2])

with a stepped line going across first then up, using lower-case ‘s’

lines (x, y, col = hue_pal()(4)[3], type = "s")

or with a stepped line going up first, then across using upper-case ‘S’ (‘upper case, up first’ is the
way to remember it):

lines (x, y, col = hue_pal()(4)[4], type = "S")

Another common request is to identify multiple individuals in scatterplots using a combination of
colours and lines to connect data from an individual. In Figure 6.20, we have an example where
reaction time is plotted against duration of sleep deprivation for 18 subjects:

sleep <- read.table ("sleep.txt", header = T)
attach (sleep)
plot (Days, Reaction, col = hue_pal()(1))

The raw scatterplot in Figure 6.20 is uninformative; the individuals need to stand out more clearly
from one another. The main purpose of the graphic is to show the relationship between sleep depri-
vation (measured in days) and reaction time. Another aim is to draw attention to the differences
between the 18 subjects in their mean reaction times and to differences in the rate of increase of
reaction time with the duration of sleep deprivation. Because there are so many subjects, the graph
is potentially very confusing.

�

� �

�

320 THE R BOOK

●●
● ●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ●

●

● ●

● ● ● ●
●

● ●
●

●
●

● ● ●
●

●

●
●

●

● ●
●

● ●

● ●

●

●

●

● ●

●

● ● ●

●

●
●

●

● ●
●

● ●

● ●
●

●

●

●
●

●
●

● ●
●

● ●

●

●

●
●

●
● ●

●
● ● ●

● ●
●

●
●

●
●

●

● ●

● ● ●
● ●

●
●

●

●
●

●
●

● ●
●

●

●
●

● ●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ● ● ● ●

●
●

● ●
●

●

● ●
●

● ●

●

●
● ● ●

●

●

●

●
● ●

● ● ● ● ● ●

●

●

●
●

● ●

●
●

●

● ● ●

● ●

0 2 4 6 8
20

0
25

0
30

0
35

0
40

0
45

0

Days

R
ea

ct
io

n

Figure 6.20 Scatterplot of reaction against sleep.

Days

R
ea

ct
io

n

200

250

300

350

400

450

0 2 4 6 8

● ● ●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ●

●

● ●

● ● ● ●
●

● ●
●

●
●

● ● ●
●

●

●
●

●

● ●
●

● ●
● ●

●

●

●

● ●

●

● ● ●

●

●
●

●

● ●
●

● ●

● ●
●

●

●

●
●

●
●

● ●
●

● ●

●

●

●
●

●
● ● ●

● ● ●

● ●
●

●
●

●
●

●

● ●

● ● ●
● ●

●
●

●

●
●

●
●

● ●
●

●

●
●

● ●

●

●

●
● ●

●
●

●

●

●

●

●

●
● ● ● ● ●

●
●

● ●
●

●

● ●
●

● ●

●

● ● ● ●

●

●

●

●
● ●

● ● ● ● ● ●

●

●

●
●

● ●

●
●

●

● ● ●

● ●

Figure 6.21 Scatterplot of reaction against sleep, by individual.

One improvement is to join together the time series for the individual subjects. We could stick
to using plot () to do this, though that would require quite a bit of work. Alternatively, we can
use xyplot () from lattice (Sarkar, 2008) (see Section 5.7) which does the job with minimal
fuss. The function needs to know which observations should be joined (using groups), and we
specify that we want the observations plotted with points and joined by lines (using type = c
("p", "l")). Though not essential, we specify the plotting symbol type and the colours to be
used, resulting in Figure 6.21.

library (lattice)
xyplot (Reaction ~ Days, groups = Subject, type = c ("p", "l"),

pch = 16, col = hue_pal()(18)[c (1 : 18)])

detach (sleep)

There’s (probably) insufficient room on the plotting surface to insert a legend with 18 labels in it.
Perhaps the clearest pattern to emerge from the graphic is that subject 331 (mid-green) clearly had
a hangover on day 6, because they were the third fastest reactor after 9 days of deprivation, but
their day 6 reaction is rather poor.

�

� �

�

GRAPHICS IN MORE DETAIL 321

6.3.5 Adding shapes

Once we have produced a set of axes using plot (), it is straightforward to locate and insert other
kinds of things. To demonstrate, we create two unlabelled axes, without tick marks (xaxt = "n"),
both scaled from 0 to 10 but without any of the 11 points drawn on the axes (type = "n"):

plot (0 : 10, 0 : 10, xlab = "", ylab = "", xaxt = "n", yaxt = "n", type = "n")

We’ll now add items to this blank canvas, such as

• rect () for rectangles;

• arrows () arrows and headed bars;

• polygon () more complicated filled shapes, including objects with curved sides.

For the purposes of demonstration, we shall add a single-headed arrow, a double-headed arrow, a
rectangle, and a six-sided polygon to this space.

We want to put a solid square object in the top right-hand corner, and we know the precise
coordinates to use. The syntax for the rect () function is to provide four numbers:

rect (xleft, ybottom, xright, ytop)

We can also specify the colour. Thus, to plot a coloured square from (6, 6) to (9, 9) involves:

rect (6, 6, 9, 9, col = hue_pal()(5)[1])

Drawing arrows is straightforward. The syntax for the arrows () function is to draw a line
from the point (x0, y0) to the point (x1, y1) with the arrowhead, by default, at the ‘second’
end (x1, y1):

arrows (x0, y0, x1, y1, col = hue_pal()(5)[2])

Thus, to draw an arrow from (1, 1) to (3, 8) with the head at (3, 8) type:

arrows (1, 1, 3, 8, col = hue_pal()(5)[2])

A horizontal double-headed arrow from (1, 9) to (5, 9) is produced by adding code = 3 like this:

arrows(1, 9, 5, 9, code = 3, col = hue_pal()(5)[3])

A vertical bar with two square ends (e.g. like an error bar) uses angle = 90 instead of the default
angle = 30:

arrows (4, 1, 4, 6, code = 3, angle = 90, col = hue_pal()(5)[4])

�

� �

�

322 THE R BOOK

Figure 6.22 Adding shapes to plots.

We now wish to draw a polygon. We can define the corners of a polygon using two vectors; one to
define the locations of the x-coordinates and the other to define the locations of the y-coordinates:

polygon (c (5, 7, 9, 8, 7, 5), c (4, 4, 2, 0.5, 1, 2), col = hue_pal()(5)[5])

Note that the polygon () function has automatically closed the shape, drawing a line from the
last point to the first. More complex uses of the polygon () function are discussed in Section 5.8,
including defining curved shapes. The result of all this is in Figure 6.22.

A final point on adding items to plots: it’s often tricky to know the exact co-ordinates of where we
want to place a shape or other items. We might want to point with the cursor and get R to tell us
the coordinates of the locations we pick. First, run the function like this:

locator ()

This activates the plotting pane. Click however many times we need to in it, then press Escape (or
another appropriate method, see ?locator for details). R then gives us the x and y co-ordinates
of the locations we chose.

6.3.6 Adding mathematical and other symbols

To write on plots using more intricate symbols such as mathematical symbols or Greek letters, we
use expression () or substitute () (see Table 6.2 for a list of the available symbols). Here
are some examples of their use. First, we produce a plot of sin𝜙 against the phase angle 𝜙 over
the range −𝜋 to +𝜋 radians:

x <- seq(-4, 4, len = 101)
plot (x, sin (x), type = "l", xaxt = "n", col = hue_pal()(1),

xlab = expression (paste ("Phase Angle ", phi)),
ylab = expression ("sin " * phi))

axis (1, at = c (-pi, -pi/2, 0, pi/2, pi),
lab = expression (-pi, -pi/2, 0, pi/2, pi))

�

� �

�

GRAPHICS IN MORE DETAIL 323

Table 6.2 Drawing mathematical expressions in text.

Syntax Meaning

x + y x plus y
x - y x minus y
x*y juxtapose x and y
x/y x forward slash y
x %+-% y x plus or minus y
x %/% y x divided by y
x %*% y x times y
x %.% y x cdot y
x[i] x subscript i
x∧2 x superscript 2
paste (x, y, z) juxtapose x, y, and z
sqrt (x) square root of x
sqrt (x, y) yth root of x
x == y x is equal to y
x != y x is not equal to y
x < y x is less than y
x <= y x is less than or equal to y
x > y x is greater than y
x >= y x is greater than or equal to y
x %∼∼% y x is approximately equal to y
x %= ∼ % y x and y are congruent
x %==% y x is defined as y
x %prop% y x is proportional to y
plain (x) draw x in normal font
bold (x) draw x in bold font
italic (x) draw x in italic font
bolditalic (x) draw x in bold italic font
symbol (x) draw x in symbol font
list (x, y, z) comma-separated list
... ellipsis (height varies)
cdots ellipsis (vertically centred)
ldots ellipsis (at baseline)
x %subset% y x is a proper subset of y
x %subseteq% y x is a subset of y
x %notsubset% y x is not a subset of y
x %supset% y x is a proper superset of y
x %supseteq% y x is a superset of y
x %in% y x is an element of y
x %notin% y x is not an element of y
hat (x) x with a circumflex
tilde (x) x with a tilde
dot (x) x with a dot
ring (x) x with a ring
bar (x) x with bar
widehat (xy) xy with a wide circumflex
widetilde (xy) xy with a wide tilde
x %<->% y x double-arrow y
x %->% y x right-arrow y
x %<-% y x left-arrow y

(continued)

�

� �

�

324 THE R BOOK

Table 6.2 Continued

Syntax Meaning

x %up% y x up-arrow y
x %down% y x down-arrow y
x %<=>% y x is equivalent to y
x %=>% y x implies y
x %<=% y y implies x
x %dblup% y x double-up-arrow y
x %dbldown% y x double-down-arrow y
alpha Greek alphabet (lower case)
beta
...
omega
Alpha Greek alphabet (upper case)
Beta
...
Omega
theta1, phi1, sigma1, omega1 cursive Greek symbols
Upsilon1 capital upsilon with hook
aleph first letter of Hebrew alphabet
infinity infinity symbol
partialdiff partial differential symbol
nabla nabla, gradient symbol
32*degree 32 degrees
60*minute 60 minutes of angle
30*second 30 seconds of angle
displaystyle (x) draw x in normal size (extra spacing)
textstyle (x) draw x in normal size
scriptstyle (x) draw x in small size
scriptscriptstyle (x) draw x in very small size
underline (x) draw x underlined
x ∼∼ y put extra space between x and y
x + phantom (0) + y leave gap for “0”, but do not draw it
x + over (1, phantom (0)) leave vertical gap for “0” (do not draw)
frac (x, y) x over y
over (x, y) x over y
atop (x, y) x over y (no horizontal bar)
sum (x[i], i==1, n) sum x[i] for i equals 1 to n
prod (plain (P)(X==x), x) product of P(X = x) for all values of x
integral (f(x)*dx, a, b) definite integral of f(x) with respect to x
union (A[i], i==1, n) union of A[i] for i equals 1 to n
intersect (A[i], i==1, n) intersection of A[i]
lim (f(x), x %->% 0) limit of f(x) as x tends to 0
min (g(x), x > 0) minimum of g(x) for x greater than 0
inf (S) infimum of S
sup (S) supremum of S
x∧y + z normal operator precedence
x∧(y + z) visible grouping of operands
x∧y + z invisible grouping of operands
group ("(",list(a, b),"]") specify left and right delimiters
bgroup ("(",atop(x,y),")") use scalable delimiters
group (lceil, x, rceil) special delimiters

�

� �

�

GRAPHICS IN MORE DETAIL 325

Note the use of xaxt = "n" to suppress the default labelling of the x-axis, and the use of expres-
sion () in the labels for the x- and y-axes to obtain mathematical symbols such as phi (𝜙) and
pi (𝜋). The more intricate values for the tick marks on the x-axis are obtained by the axis ()
function, specifying 1 (the x-axis is axis number 1), then using the at argument to say where the
labels and tick marks are to appear, and lab with expression () to say what the labels are
to be.

Suppose we wanted to add 𝜒2 = 24.5 to this graph at location (−𝜋∕2,0.5). We use text () with
substitute (), like this:

text (-pi/2, 0.5, substitute (chi^2 == "24.5"))

Note the use of ‘double equals’ to print a single equals sign, and the use of caret ̂ to obtain
superscripts. We can write quite complicated formulae on plots using paste () to join together
the elements of an equation. Here is the density function of the normal written on the plot at location
(𝜋∕2,−0.5):

text (pi/2, -0.5, expression (paste (frac (1, sigma * sqrt(2*pi)), " ",
e^{frac (-(x - mu)^2, 2*sigma^2)})))

Note the use of frac () to obtain individual fractions: the first argument is the text for the numera-
tor, the second the text for the denominator. Most of the arithmetic operators have obvious formats
(+, -, /, *, ̂ ," etc.); the only non-intuitive symbol that is commonly used is ‘plus or minus’ ±; this
is written as % + −% like this:

text (pi/2, 0, expression (hat (y) %+-% se))

To write the results of calculations using text, it is necessary to use substitute (). Here, the
coefficient of determination cd was calculated earlier, and we want to write its value on the plot,
labelled with ‘r2 =’:

cd <- 0.63
text(-pi/2, 0, substitute (r^2 == cd, list (cd = cd)))

Note the use of ‘double equals’ and the requirement for a list containing the value calculated earlier.
After all that, we end up with Figure 6.23.

There are several other useful plotting symbols (see ?plotmath) that we refer to in text
() functions as symbol (e.g. the ‘universal’ character is obtained with expression (symbol
("\042"))): the full set is:

• universal ∀ : "\042";

• existential ∃ : "\044";

• such that ∋ : "\047";

• therefore ∴ : "\134";

• perpendicular ⟂ : "\136";

�

� �

�

326 THE R BOOK

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Phase angle ϕ

si
n

ϕ

−π −π 2 0 π 2 π

χ2 = 24.5

1

σ 2π
e

−(x−μ)2

2σ2

ŷ ±ser2 = 0.63

Figure 6.23 Adding mathematical expressions to plots.

• circlemultiply ⊗ : "\304";

• circleplus ⊕ : "\305";

• emptyset ∅ : "\306";

• angle ∠ : "\320";

• leftangle ⟨ : "\341";

• rightangle ⟩ : "\361".

Table 6.2 presents the syntax for including mathematical expressions in plots. If the text argument
to one of the text-drawing functions (text (), mtext (), axis (), legend ()) is an expres-
sion, the argument is interpreted as a mathematical expression and the output will be formatted
according to TeX-like rules (see Knuth, 2012). Expressions can also be used for titles, subtitles,
and x- and y-axis labels (but not for axis labels on persp () plots). It is possible to produce
many different mathematical symbols, Greek letters, generate subscripts, or superscripts, produce
fractions, etc.

6.4 The grammar of graphics and ggplot2

Before finishing off with a broad summary of graphics in Section 6.5, it is worth spending a little
time looking at the ggplot2 package (Wickham, 2016). The package, written by Hadley Wick-
ham, tries to make creating publication-quality graphics as easy as possible. It is based on the
philosophy discussed in the book The Grammar of Graphics (Wilkinson, 2012), and the process of
creating visualisations with it feels very different to the ‘usual’ procedures in R for plotting. However,
ggplot2 makes it fairly easy to add layers of complexity to a visualisation (e.g. adding additional
data, incorporating legends, creating plots by group).

There is a bewildering amount of information about ggplot2, but a good place to start is to
explore the ggplot2 section of the Tidyverse website https://ggplot2.tidyverse.org/.

https://ggplot2.tidyverse.org/

�

� �

�

GRAPHICS IN MORE DETAIL 327

6.4.1 Basic structure

We can think of ggplot2 plots as consisting of:

• The dataset to be used;

• An aesthetic mapping aes (), which controls, for example, which variables map to which axes
or colours;

• Add any ‘layers’ to the plot as required.

The general format of the function ggplot () from ggplot2 is

ggplot (dataset, aes ()) + layers

A plot will always start with a ggplot () call, and the layers will then specify the type of plot we
want (generally of the form geom_ (), referencing ‘geometric object’) and any other options. Notice
the plus sign, +, between ggplot () and the layers. Often, as we’ll see below, we have a string
of various layers which we specify as follows:

ggplot (dataset, aes ()) + layer1 + layer2 + layer3 + layer4 + layer5 +
layer6 + layer7 + layer8

We can also save a plot as an object, then add layers to it later, for example:

myplot <- ggplot (dataset, aes ()) + layer1 + layer2
myplot + layer3 + layer4

Notice the rather subtle differences between adding features using the usual R plotting and how
we do this with ggplot2. In R, we could run the plot () function, then add features using, for
example lines () or text (). In ggplot2, meanwhile, we connect these ‘layers’ in a plot using
+ (taking care to use + before starting a new line if we are still adding layers). In addition, while we
can save a ggplot2 as an object, then continue adding layers to it, this is not how the usual R
graphics operate.

One of the tricker aspects of ggplot2 is setting aes () so that we end up with the plot we
wanted. It takes a little practice, but is fairly straightforward: just remember that all we’re doing here
is specifying, for example, how to map variables to axes and colours. Specifying the layers will
quickly become natural but may take a little practice initially.

6.4.2 Examples

Learning to use ggplot2 takes practice, and the best way to do that is to run through some
examples. Let us start with the daphnia dataset, and create a range of graphics for the variable
Growth.rate.

daph <- read.table ("daphnia.txt", header = T)
names (daph)

[1] "Growth.rate" "Water" "Detergent" "Daphnia"

�

� �

�

328 THE R BOOK

First, we must load the ggplot2 package. We’ll create several versions of a histogram (+
geom_histogram ()) and a boxplot (+ geom_box ()) for the data, demonstrating how to add
layers to change or update features. These are displayed in Figures 6.24 and 6.25, respectively.
Note how easy it is to switch from one graphic type to another.

library (ggplot2)
ggplot (daph, aes (x = Growth.rate)) +
geom_histogram ()

ggplot (daph, aes (x = Growth.rate)) +
geom_histogram (fill = hue_pal()(1))

ggplot (daph, aes (x = Growth.rate, fill = Water)) +
geom_histogram ()

ggplot (daph, aes (x = Growth.rate)) +
geom_histogram (fill = hue_pal()(1)) +
facet_grid (Water ~ .)

The initial ggplot () function supplies the basic information about the dataset and variable(s) of
interest. We add to this the type of graphic we want; in this case, a histogram with geom_histogram
() and a boxplot with geom_boxplot (). These geom_ () functions can be used as they are
(as in Figure 6.24a for example), or we can specify further graphical properties as options in geom_
() (as in Figure 6.24b). Further elements can be added to the graphic, for example in Figure 6.24d,
where we also request that the two groups are plotted in separate panels using facet_grid ().

ggplot (daph, aes (x = Detergent, y = Growth.rate)) +
geom_boxplot ()

ggplot (daph, aes (x = Water, y = Growth.rate, fill = Detergent)) +
geom_boxplot ()

ggplot (daph, aes (x = Water, y = Growth.rate, fill = Water)) +
geom_boxplot () +
coord_flip ()

ggplot (daph, aes (x = Water, y = Growth.rate, fill = Water)) +
geom_boxplot () +
geom_jitter (shape = 16, position = position_jitter (0.2))

Although Figures 6.24 and 6.25 show the basics of what can be done with ggplot2 with a single
variable split into groups, this is by no means exhaustive.

The same procedure applies with other types of graphics. Let us consider our fertiliser data. We
are interested in root length by week, by plant.

fertilizer_data <- read.table ("fertilizer.txt", header = T)
names (fertilizer_data)

[1] "root" "week" "plant" "fertilizer"

We start by plotting root length by week (Figure 6.26a), then identifying plants by colour with larger
plotting symbols (Figure 6.26b) and by connected lines (Figure 6.26c), then producing a plot with
regression lines added for each plant (Figure 6.26d). For the latter, notice that we didn’t need to

�

� �

�

GRAPHICS IN MORE DETAIL 329

0

2

4

6

2 3 4 5 6 7
Growth.rate

C
ou

nt

(a) Basic histogram of growth rate

0

2

4

6

2 3 4 5 6 7
Growth.rate

C
ou

nt

(b) Histogram of growth rate with colour

0

2

4

6

2 3 4 5 6 7
Growth.rate

C
ou

nt Water

Tyne

Wear

(c) Histogram of growth rate by river (colour)

Tyne
W

ear

2 3 4 5 6 7

0

1

2

3

4

5

0

1

2

3

4

5

Growth.rate

C
ou

nt

(d) Histogram of growth rate by river (facet)

Figure 6.24 Visualising growth rate using ggplot2.

build a regression model first: ggplot2 takes care of that behind the scenes. All these additional
options are mix-and-match and, once again, are intended to give a flavour of what’s possible.

ggplot (fertilizer_data, aes (x = week, y = root)) +
geom_point ()

ggplot (fertilizer_data, aes (x = week, y = root, color = plant)) +
geom_point (size = 4)

ggplot (fertilizer_data, aes (x = week, y = root, group = plant)) +
geom_point (aes (colour = plant), size = 2) +
geom_line (aes (colour = plant), size = 1)

ggplot (fertilizer_data, aes (x = week, y = root, color = plant)) +
geom_point () +
geom_smooth (method = lm, se = FALSE)

�

� �

�

330 THE R BOOK

2

3

4

5

6

7

BrandA BrandB BrandC BrandD

Detergent

G
ro

w
th

.r
at

e

(a) Boxplot of growth rate by detergent

2

3

4

5

6

7

Tyne Wear

Water

G
ro

w
th

.r
at

e

Detergent

BrandA

BrandB

BrandC

BrandD

(b) Boxplot of growth rate by
detergent and river

Tyne

Wear

2 3 4 5 6 7

Growth.rate

W
at

er Water

Tyne

Wear

(c) Horizontal boxplots of growth rate
by river

2

3

4

5

6

7

Tyne Wear

Water

G
ro

w
th

.r
at

e

Water

●
●

Tyne

Wear

(d) Boxplot of growth rate by river,
with data superimposed

Figure 6.25 Visualising growth rate using ggplot2.

6.5 Graphics cheat sheet

Most of us cannot be expected to remember which graphics attributes are changed with the par ()
function, which can be changed inside the plot () function, and which stand alone. This section
therefore unites all the various kinds of graphics control into a single list (see Table 6.3 at the
end of the section): properties that are altered by a call to the par () function are shown as par
(name), while properties that can be altered inside a plot () function are shown in that context;
other graphics functions that standalone (such as axis ()) are not shown in the table.

�

� �

�

GRAPHICS IN MORE DETAIL 331

3

6

9

2 4 6 8 10

Week

R
oo

t

(a) Basic scatterplot of root length by week

3

6

9

2 4 6 8 10

Week
R

oo
t

Plant

ID1
ID10
ID11
ID12
ID2
ID3
ID4
ID5
ID6
ID7
ID8
ID9

(b) Scatterplot of root length by week, distinguishing between
plants with colour and increasing plotting symbol size

3

6

9

2 4 6 8 10

Week

R
oo

t

Plant

ID1
ID10
ID11
ID12
ID2
ID3
ID4
ID5
ID6
ID7
ID8
ID9

(c) Connecting observations by plant

0

3

6

9

2 4 6 8 10

Week

R
oo

t

Plant

ID1
ID10
ID11
ID12
ID2
ID3
ID4
ID5
ID6
ID7
ID8
ID9

(d) Partitioning scatterplots by plant, with regression lines

Figure 6.26 Scatterplots for the fertilizer data.

Before we begin, let us revisit the par () function. When writing functions, we need to know
things about the current plotting region. For instance, to find out the limits of the current axes, use

par ("usr")

[1] 0 1 0 1

�

� �

�

332 THE R BOOK

which shows the minimum x value par ("usr")[1], the maximum x value par ("usr")[2],
the minimum y value par ("usr")[3] and the maximum y value par ("usr")[4] of the current
plotting region.

If we need to use par (), then the graphics parameters should be altered before we use the
first plot () function. It is a good idea to save a copy of the default parameter settings so that
they can be changed back at the end of the session to their default values:

default.parameters <- par (no.readonly = TRUE)
...
par (...)
...
par (default.parameters)

To inspect the current values of any of the graphics parameters, type the name of the option in
double quotes: thus, to see the sizes of the current margins:

par ("mar")

[1] 5.1 4.1 4.1 2.1

In the rest of this section, we’ll go through graphical controls alphabetically. Many of these have
already been discussed either in this chapter or in Chapter 5. An at-a-glance overview is given in
Table 6.3 in Section 6.5.27.

6.5.1 Text justification, adj

To alter the justification of text strings, run the par () function like this:

par (adj = 0)

The parameter adj = 0 produces left-justified text, adj = 0.5 centred text (the default) and adj
= 1 right-justified text. For the text () function, we can vary justification in the x and y directions
independently, e.g. adj = c (1,0).

6.5.2 Annotation of graphs, ann

If we want to switch off the annotation from a plot (i.e. leave the numbers on the tick marks but not
write the x- and y-axis labels or print any titles on the graph), then set ann = FALSE.

6.5.3 Delay moving on to the next in a series of plots, ask

Setting ask = TRUE means that the user is asked for input before the next figure is drawn.

6.5.4 Control over the axes, axis

The attributes of four sides of the graph (1 = bottom (the x-axis); 2 = left (the y-axis); 3 = above
and 4 = right) are controlled by the axis () function.

�

� �

�

GRAPHICS IN MORE DETAIL 333

A B C D E F G H I J

j
i

h
g

f
e

d
c

b
a

2 4 6 8 10

O
ne

T
w

o
T

hr
ee

Figure 6.27 Controlling axis style.

When we want to put two graphs with different y scales on the same plot, we are likely to want
to scale the right axis (axis = 4) differently from the usual y-axis on the left.

Again, we may want to label the tick marks on the axis with letters (rather than the usual numbers)
and this, too, is controlled by the axis () function.

First, draw the graph with no axes at all using plot with the axes = FALSE option. For the pur-
poses of illustration only, we use different styles on each of the four axes in Figure 6.27.

plot (1 : 10, 10 : 1, type = "n", axes = FALSE, xlab = "", ylab = "")
axis (1, 1 : 10, LETTERS[1:10], col.axis = hue_pal()(3)[1])
axis (2, 1 : 10, letters[10:1], col.axis = hue_pal()(3)[2])
axis (3, lwd = 3, col.axis = hue_pal()(3)[3])
axis (4, at = c (2, 5, 8), labels = c ("one", "two", "three"))

On axis 1, there are upper-case letters in place of the default numbers 1 to 10 with red rather than
black lettering. On axis 2, there are lower-case letters in reverse sequence in green on each of the
10 tick marks (note the order of the y values 10 : 1 in the original plot function). On axis 3 (the
top of the graph), there is blue lettering for the default numbers (2 to 10 in steps of 2) and an extra
thick black line for the axis itself (lwd = 3). On axis 4, we have overwritten the default number and
location of the tick marks using at, and provided our own labels for each tick mark (note that the
vectors of at locations and labels must be the same length).

Because we did not use box (), there are gaps between the ends of each of the four axes.

6.5.5 Background colour for plots, bg

The colour to be used for the background of plots is set by bg like this:

par (bg = "cornsilk")

There is an example in Section 6.1.4. The default setting is par (bg = "transparent").

�

� �

�

334 THE R BOOK

2 4 6 8 10

2
4

6
8

10

1:10

10
:1

(a) Default complete box

2 4 6 8 10

2
4

6
8

10

1:10

10
:1

(b) No box

2 4 6 8 10

2
4

6
8

10

1:10

10
:1

(c) Open on the left

2 4 6 8 10

2
4

6
8

10

1:10

10
:1

(d) Open on the right

2 4 6 8 10

2
4

6
8

10

1:10

10
:1

(e) Open on the top

2 4 6 8 10

2
4

6
8

10

1:10

10
:1

(f) Top and right only

Figure 6.28 Different types of boxes around plots.

6.5.6 Boxes around plots, bty

Boxes are altered with the bty parameter, and bty = "n" suppresses the box. If the character is
one of "o", "l" (lower-case L, not numeral 1), "7", "c", "u", or "]" the resulting box resembles
the corresponding upper-case letter. There are six options in Figure 6.28:

plot (1 : 10, 10 : 1, type = "n")
plot (1 : 10, 10 : 1, type = "n", bty = "n")
plot (1 : 10, 10 : 1, type = "n", bty = "]")
plot (1 : 10, 10 : 1, type = "n", bty = "c")
plot (1 : 10, 10 : 1, type = "n", bty = "u")
plot (1 : 10, 10 : 1, type = "n", bty = "7")

6.5.7 Size of plotting symbols using the character expansion function, cex

We can use points with cex to create ‘bubbles’ of different sizes. We need to specify the (x, y)
coordinates of the centre of the bubble, then use cex = value to alter the diameter of the bubble
(in multiples of the default character size: cex stands for character expansion).

�

� �

�

GRAPHICS IN MORE DETAIL 335

plot (0 : 10, 0 : 10, type = "n", xlab = "", ylab = "")
for (i in 1:10) points (2, i, cex = i, col = hue_pal()(10)[i])
for (i in 1:10) points (6, i, cex = (10 + (2 * i)), col = hue_pal()(10)[i])

The left column in Figure 6.29 shows points of size 1, 2, 3, 4, etc. (cex = i), and the big circles
on the right are in sequence cex = 12, = 14, = 16, etc. (cex = (10 + (2 * i))).

6.5.8 Changing the shape of the plotting region, plt

Suppose that we wanted a plot where we specified the shape of the plotting region (e.g. for a map).
We can achieve this with the plt () option, which allows us to specify the coordinates of the plot
region as fractions of the current figure region. If we imagine the standard plotting region being a
unit square, we can specify that we want the x-axis to run from, say, 0.15 to 0.95, while the y-axis
runs from 0.3 to 0.7. We can then add the relevant tick marks as appropriate, as in Figure 6.30.

par (plt = c (0.15, 0.95, 0.3, 0.7))
plot (c (0, 3000), c (0, 1500), type = "n", ylab = "y", xlab = "x")

0 2 4 6 8 10

0
2

4
6

8
10

●

●
●

Figure 6.29 Changing size of plotting symbols.

0 500 1000 1500 2000 2500 3000

0
50

0
10

00
15

00

x

y

Figure 6.30 A bespoke shape for the plotting region.

�

� �

�

336 THE R BOOK

6.5.9 Locating multiple graphs in non-standard layouts using fig

Generally, we use mfrow () to get multiple plots on the same graphic screen; for instance, mfrow
= c (3, 2) would give six plots in three rows of two columns each. Sometimes, however, we
want a non-standard layout, and fig is the function to use in this case.

Suppose we want to have two graphs, one in the bottom left-hand corner of the screen and one
in the top right-hand corner. What we need to know is that fig considers that the whole plotting
region is scaled from (0,0) in the bottom left-hand corner to (1,1) in the top right-hand corner. So
we want our bottom left-hand plot to lie within the space x = c (0,0.5) and y = c (0,0.5), while our
top right-hand plot is to lie within the space x = c (0.5,1) and y = c (0.5,1). Here is how to plot the
two graphs: fig is like a new plot () function and the second use of fig would normally wipe
the slate clean, so we need to specify that new = TRUE in the second par () function to stop this
from happening, resulting in Figure 6.31:

par (fig = c (0.5, 1, 0.5, 1))
plot (0 : 10, 25 * exp (-0.1 * (0:10)), col = hue_pal()(2)[1],

type = "l", xlab = "x", ylab = "y")
par (fig = c (0, 0.5, 0, 0.5), new = T)
plot (0 : 100, 0.5 * (0:100)^0.5, col = hue_pal()(2)[2],

type = "l", xlab = "x", ylab = "y")

6.5.10 Two graphs with a common X scale but different Y scales using fig

The idea here is to draw two graphs with the same x-axis, one directly above the other, but with
different scales on the two y-axes. Here are the data:

gales <- read.table ("gales.txt", header = T)
attach (gales)
names (gales)

[1] "year" "number" "February"

0 2 4 6 8 10

10
20

x

y

0 20 40 60 80 100

0
2

4

x

y

Figure 6.31 Non-standard layout of plots.

�

� �

�

GRAPHICS IN MORE DETAIL 337

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●●

●
●

●●●
●

●

●●●●

●●●

●

●

●
●

●

●

●●●

●

●
●

●
●

●
●

●

●
●

●
●

●

0
10

00
20

00

P
op

ul
at

io
n

1950 1960 1970 1980 1990 2000

5
15

Year

F
eb

. g
al

es

Figure 6.32 Two plots with common x-axis.

We use fig to split the plotting area into an upper figure (where number will be drawn first) and
a lower figure (for February gales, to be drawn second but on the same page, so new = T). The
whole plotting area scales from (0,0) in the bottom left-hand corner to (1,1) in the top right-hand
corner, so:

par (fig = c (0, 1, 0.5, 1))

Now think about the margins for the top graph. We want to label the y-axis, and we want a normal
border above the graph and to the right, but we want the plot to sit right on top of the lower graph,
so we set the bottom margin to zero (the first argument):

par (mar = c (0, 5, 2, 2))

Now we plot the top graph, leaving off the x-axis label and the x-axis tick marks:

plot (year, number, xlab = "", xaxt = "n", type = "b", pch = 16,
col = hue_pal()(2)[1], ylim = c (0, 2000), ylab = "Population")

Next, we define the lower plotting region and declare that new = T:

par (fig = c (0, 1, 0, 0.5), new = T)

For this graph, we do want a bottom margin, because we want to label the common x-axes (Year),
but we want the top of the second graph to be flush with the bottom of the first graph, so we set the
upper margin to zero (argument 3 of mar):

par (mar = c (5, 5, 0, 2))
plot (year, February, xlab = "Year", type = "h",

col = hue_pal()(2)[2], ylab = "February gales")
detach (gales)

Contrast Figure 6.32 with the overlaid plots in Section 6.5.19.

�

� �

�

338 THE R BOOK

6.5.11 The layout function

If we do not want to use mfrow () or fig to configure multiple plots, then layout () might be
the function needed. This function allows us to alter both the location and shape of multiple plotting
regions independently. The layout function is used like this:

layout (matrix, widths = ws, heights = hs, respect = FALSE)

where matrix is a matrix object specifying the location of the next n figures on the output device
(see below), ws is a vector of column widths (with length = ncol (matrix)) and hs is a vector
of row heights (with length = nrow (matrix)). Each value in the matrix must be 0 or a positive
integer. If n is the largest positive integer in the matrix, then the integers {1, … ,n − 1} must also
appear at least once in the matrix. Use 0 to indicate locations where we do not want to put a graph.
The respect argument controls whether a unit column width is the same physical measurement
on the device as a unit row height and is either a logical value or a matrix object. If it is a matrix, then
it must have the same dimensions as matrix and each value in the matrix must be either 0 or 1.
Each figure is allocated a region composed from a subset of these rows and columns, based on
the rows and columns in which the figure number occurs in matrix. The function layout.show
(n) plots the outlines of the next n figures.

Here is an example of the kind of task for which layout () might be used. We want to produce
a scatterplot with histograms on the upper and right-hand axes indicating the frequency of points
within vertical and horizontal strips of the scatterplot (see the result below). This example was written
by Paul R. Murrell and can be found in the layout () help file by typing ?layout. Here are the
data:

x <- pmin (3, pmax (-3, rnorm (50)))
y <- pmin (3, pmax (-3, rnorm (50)))
xhist <- hist (x, breaks = seq (-3, 3, 0.5), plot = FALSE)
yhist <- hist (y, breaks = seq (-3, 3, 0.5), plot = FALSE)

We need to find the ranges of values within x and y, where the two histograms will lie:

top <- max (c (xhist$counts, yhist$counts))
xrange <- c (-3, 3)
yrange <- c (-3, 3)

Now the layout () function defines the location of the three figures: Fig. 1 is the scatterplot which
we want to locate in the lower left of four boxes, Fig. 2 is the top histogram which is to be in the
upper left box, and Fig. 3 is the side histogram which is to be drawn in the lower right location (the
top right location is empty), Thus, the matrix is specified as follows:

matrix (c (2, 0, 1, 3), 2, 2, byrow = TRUE)

[,1] [,2]
[1,] 2 0
[2,] 1 3

�

� �

�

GRAPHICS IN MORE DETAIL 339

1

2

3

(a) Plot layout

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

(b) Scatterplot with a marginal histogram
for each axis

Figure 6.33 Creating a scatterplot with marginal histograms.

We can view the layout, as in Figure 6.33a:

nf <- layout (matrix (c (2, 0, 1, 3), 2, 2, byrow = TRUE),
c (3, 1), c (1, 3), TRUE)

layout.show (nf)

The areas in the first (left) column of the matrix in Figure 6.33a (numbered 1 and 2) are of width
3, while the area in the second column (numbered 3) is of width 1; hence, c (3, 1) is the sec-
ond argument. The heights of the figures in the first column of the matrix (numbered 2 and 1)
are 1 and 3, respectively; hence, c (1, 3) is the third argument. The ‘missing’ area is 1 by 1
(top right).

par (mar = c (3, 3, 1, 1))
plot (x, y, xlim = xrange, ylim = yrange, pch = 16,

col = hue_pal()(2)[1], xlab = "", ylab = "")
par (mar = c (0, 3, 1, 1))
barplot (xhist$counts, axes = FALSE, col = hue_pal()(2)[2],

ylim = c (0, top), space = 0)
par (mar = c (3, 0, 1, 1))
barplot (yhist$counts, axes = FALSE, col = hue_pal()(2)[2],

xlim = c (0, top), space = 0, horiz = TRUE)

Note the way that the margins for the three figures are controlled in Figure 6.33b, and how the
horiz = TRUE option is specified for the histogram on the right-hand margin of the plot.

�

� �

�

340 THE R BOOK

6.5.12 Creating and controlling multiple screens on a single device

The function split.screen () defines a number of regions within the current device which can
be treated as if they were separate graphics devices. It is useful for generating multiple plots on
a single device (see also mfrow () and layout ()). Screens can themselves be split, allowing
for quite complex arrangements of plots. The function screen () is used to select which screen
to draw in, and erase.screen () is used to clear a single screen, which it does by filling with
the background colour, while close.screen () removes the specified screen definition(s) and
split-screen mode is exited by close.screen (all = TRUE). We should complete each graph
before moving on to the graph in the next screen, because returning to a screen can create prob-
lems.

We can create a matrix in which each row describes a screen with values for the left, right, bottom,
and top of the screen (in that order) in normalized device coordinate (NDC) units, that is, 0 at the
lower left-hand corner of the device surface, and 1 at the upper right-hand corner.

We’ll use a dataframe called gales. We want a long, narrow plot on the top of the screen as
Fig. 1, a tall rectangular plot on the bottom left as Fig. 2, then two small square plots on the bottom
right as Figs 3 and 4. First, set up the matrix to define the corners of each of the plots.

gales <- read.table ("gales.txt", header = T)
attach (gales)
names (gales)

[1] "year" "number" "February"

fig.mat <- c (0, 0, .5, .5, 1, .5, 1, 1, .7, 0, .35, 0, 1, .7, .7, .35)
fig.mat <- matrix (fig.mat, nrow = 4)
fig.mat

[,1] [,2] [,3] [,4]
[1,] 0.0 1.0 0.70 1.00
[2,] 0.0 0.5 0.00 0.70
[3,] 0.5 1.0 0.35 0.70
[4,] 0.5 1.0 0.00 0.35

Each row in fig.mat corresponds to a screen with values for the left, right, bottom, and top of the
screen. Therefore, the first row corresponds to a full width screen, which occupies the upper 30%
of the whole window (from 0.7 to 1).

Now we can draw the four graphs as in Figure 6.34.

split.screen (fig.mat)

[1] 5 6 7 8

screen (1)
plot (year, number, type = "l", col = hue_pal()(3)[1])
screen (2)
plot (year, February, type = "h", col = hue_pal()(3)[2])
screen (3)
plot (1 : 10, 0.5 * (1 : 10)^0.5, xlab = "concentration",

ylab = "rate", type = "l", col = hue_pal()(3)[3])

�

� �

�

GRAPHICS IN MORE DETAIL 341

1950 1960 1970 1980 1990 2000
60

0
12

00

Year

N
um

be
r

1950 1970 1990

5
10

15
20

Year

F
eb

ru
ar

y 2 4 6 8 10

0.
6

1.
0

1.
4

Concentration
R

at
e

2 4 6 8 10

0
10

0
25

0

Time

R
es

id
ue

Figure 6.34 Plot layout using split screen.

screen (4)
plot (1 : 10, 600 * exp (-0.5 * (1 : 10)), xlab ="time",

ylab = "residue", type = "l", col = hue_pal()(3)[3])

detach (gales)

6.5.13 Orientation of numbers on the tick marks, las

Many journals require that the numbers used to label the y-axis must be horizontal. To change from
the default, use las:

las = 0 always parallel to the axis (the default);
las = 1 always horizontal (preferred by many journals);
las = 2 always perpendicular to the axis;
las = 3 always vertical.

Note that we cannot use character or string rotation for this.

�

� �

�

342 THE R BOOK

0 2 4 6 8 10

0
2

4
6

8
10

Figure 6.35 Showing shapes for ends of lines.

6.5.14 Shapes for the ends and joins of lines, lend and ljoin

The default is that the bare ends of lines should be rounded (see also arrows () if we want pointed
ends). We can change this to butt or square. This example shows the use of overwriting with
successive colours to achieve special effects:

plot (0 : 10, 0 : 10, type = "n", xlab = "", ylab = "")
lines (c (2, 5, 8), c (8, 2, 8), col = hue_pal()(3)[1], lwd = 50,

lend = "square", ljoin="mitre")
lines(c (2, 5, 8), c (8, 2, 8), col = hue_pal()(3)[2], lwd = 50,

lend = "round", ljoin = "round")
lines(c (2, 5, 8), c (8, 2, 8), col = hue_pal()(3)[3], lwd = 50,

lend = "butt", ljoin = "bevel")

A V in Figure 6.35 was drawn first with ‘square’ ends and ‘mitre’ joins, then the V with ‘round’ ends
and ‘round’ joins, then finally the V with ‘butt’ ends and ‘bevel’ joins.

To get the effect of bordered lines (e.g. to produce roads on a map), first draw wide lines in black
(or whatever colour we want the border to be), then draw the colour for the body of the line using a
slightly smaller value for the line width. Here is a two-dimensional random walk drawn as a smoothly
snaking road in red with black margins:

x <- numeric (100)
y <- numeric (100)
x[1] <- 1
y[1] <- 1
for (i in 2:100) {
a <- runif (1) * 2 * pi
d <- runif (1) * 1
x[i] <- x[i-1] + d * sin (a)
y[i] <- y[i-1] + d * cos (a)

}

�

� �

�

GRAPHICS IN MORE DETAIL 343

Figure 6.36 Bordered lines on a realisation of a smoothed random walk.

We plot blank axes with an intact box around the outside of the map:

plot (0 : 10, 0 : 10, type = "n", xaxt = "n", yaxt = "n", xlab = "", ylab = "")

The red road with black margins and smooth curves is added like this, resulting in Figure 6.36:

lines (x, y, lwd = 13, lend = "round", ljoin = "round")
lines (x, y, lwd = 10, col = hue_pal()(1), lend = "round", ljoin = "round")

6.5.15 Line types, lty

Line types (like solid, dotted, or dashed) are changed with the line-type parameter lty:

lty = 1 solid (the default);
lty = 2 dashed;
lty = 3 dotted;
lty = 4 dot-dash;
lty = 5 long-dash;
lty = 6 two-dash.

Invisible lines are drawn if lty = 0 (i.e. the line is not drawn). Alternatively, we can use text to
specify the line types with one of the following character strings: blank, solid, dashed, dotted,
dotdash, longdash, or twodash.

6.5.16 Line widths, lwd

To increase the widths of the plotted lines use lwd = 2 (or greater; the default is lwd = 1). The
interpretation is device-specific, and some devices do not implement line widths less than 1. The
function abline () is so-called because it has two arguments – the first is the intercept (a), and
the second is the slope (b) of a linear relationship y = a + bx:

�

� �

�

344 THE R BOOK

plot (1 : 10, 1 : 10, xlim = c (0, 10), ylim = c (0, 10),
xlab = "", ylab = "", type = "n")

for(i in 1 : 7) {
abline ((-6 + 2 * i), 1, lty = i, col = hue_pal()(7)[i])

}
for (i in 2:7) {
y <- (-6 + 2 * i) + 2
x <- 2
text (x, y, i)

}
abline (-6, 1, lty = 1, lwd = 4)
abline (-8, 1, lty = 1, lwd = 8)
points (5, 1, pch = 16, cex = 3, col = "white")
points (7, 1, pch = 16, cex = 3, col = "white")
points (9, 1, pch = 16, cex = 3, col = "white")
text (5, 1, 1)
text (7, 1, 4)
text (9, 1, 8)

The numerals in a vertical line above x = 2 in Figure 6.37 indicate the line types 2 to 7 in colours 2
to 7. In the bottom right-hand corner are three solid lines lty = 1 of widths lwd = 1, 4 and 8.
Note the use of the large white pch = 16 across the lines to make a gap in which the red labels
indicating the line widths can be printed clearly.

6.5.17 Several graphs on the same page, mfrow and mfcol

The way to remember the names of these functions is to think of them as standing for ‘multiple
frames in rows’, mfrow (), or ‘multiple frames in columns’, mfcol (). We can obtain multi-
ple graph panels on the same graphics device by par (mfrow), par (mfcol), par (fig),
split.screen, and layout, but par (mfrow) is the most frequently used. We specify the

0 2 4 6 8 10

0
2

4
6

8
10

2

3

4

5

6

7

● ● ●1 4 8

Figure 6.37 Showing line widths and line types.

�

� �

�

GRAPHICS IN MORE DETAIL 345

number of rows of graphs (first argument) and number of columns of graphs per row (second
argument) like this:

par (mfrow = c (1,1)) the default of one plot per screen;
par (mfrow = c (1,2)) one row of two columns of plots;
par (mfrow = c (2,1)) two rows of one column of plots;
par (mfrow = c (2,2)) four plots in two rows of two columns each;
par (mfrow = c (3,2)) six plots in three rows of two columns each;
par (mfrow = c (3,3)) nine plots in three rows of three columns each.

The graphs will be produced row-wise, starting in the top left-hand corner. We need to complete
each graph (add all points, lines and text) before going on to the next by issuing a new plot
() command or other plotting function.

In a layout with exactly two rows and columns, the base value of cex is reduced by a factor of
0.83; if there are three or more of either rows or columns, the reduction factor is 0.66. Remember
to set par () back to par (mfrow = c (1,1)) once finished.

6.5.18 Margins around the plotting area, mar

We need to control the size of the margins when we intend to use large symbols or long labels for
axes, or when we want to position multiple plots closer together. The four margins of the plot are
defined by integers 1 to 4 as follows:

1 = bottom (the x-axis);
2 = left (the y-axis);
3 = top;
4 = right.

The sizes of the margins of the plot are measured in lines of text. The four arguments to mar are
given in the sequence bottom, left, top, right. The default is

par (mar = (c (5, 4, 4, 2) + 0.1))

with more spaces on the bottom (5.1) than on the top (4.1) to make room for a subtitle (if needed),
and more space on the left (4.1) than on the right (2) on the assumption that we will not want to
label the right-hand axis. Suppose that we do want to put a label on the right-hand axis, then we
would need to increase the size of the fourth number, for instance like this:

par (mar = (c (5, 4, 4, 4) + 0.1))

�

� �

�

346 THE R BOOK

To get rid of margins altogether, use

par (mar = (c (0, 0, 0, 0)))

but bear in mind that there will be no space for any labels under this format.

6.5.19 Plotting more than one graph on the same axes, new

The new parameter is a logical variable, defaulting to new = FALSE. If it is set to new = TRUE,
the next high-level plotting command (like plot (y ∼ x)) does not wipe the slate clean in the
default way. This allows one plot to be placed on top of another.

In the next example, we want to plot the number of animals in a wild population as a time series
over the years 1950–2000 with the scale of animal numbers on the left-hand axis (numbers fluctuate
between about 600 and 1600). Then, on top of this, we want to overlay the number of gales in
February each year. This number varies between 1 and 22, and we want to put a scale for this on
the right-hand axis, axis = 4.

gales <- read.table ("gales.txt", header = T)
attach (gales)
names (gales)

[1] "year" "number" "February"

First, we need to make room in the right-hand margin for labelling the axis with the information on
February gales:

par (mar = c (5, 4, 4, 4) + 0.1)

Now draw the time series using a thicker line than usual (lwd=2) for emphasis, specifying the
orientation of axis numbers and colour:

plot (year, number, type = "l", lwd = 2, las = 1, col = hue_pal()(2)[1])

Next, indicate that the next graph will be overlaid on the present one:

par (new = T)

Now plot the graph of gales against years. This is to be displayed as vertical, type = "h", dashed
lines, lty = 2:

plot (year, February, type = "h", axes = F, ylab = "",
lty = 2, col = hue_pal()(2)[2])

�

� �

�

GRAPHICS IN MORE DETAIL 347

1950 1960 1970 1980 1990 2000

600
800

1000
1200
1400
1600

N
um

be
r

Year

5

10

15

20

F
eb

ru
ar

y
ga

le
s

Figure 6.38 Solid line shows time series of number of animals. Dotted lines show number of February gales.

and it is drawn with its own scale (with ticks from 5 to 20, as we shall see). The right-hand axis is
ticked and labelled as follows: first use axis (4) to create the tick marks and scaling information,
then use the mtext () function to produce the axis label (the name stands for ‘margin text’).
axis (4, las = 1)
mtext (side = 4, line = 2.5, "February gales")
detach (gales)

From the resulting Figure 6.38, it looks as if unusually severe February gales are associated with
the steepest population crashes (contrast this with the separate plots in Section 6.5.10).

6.5.20 Outer margins, oma

There is an area outside the margins of the plotting area called the outer margin. Its default size
is zero, oma = c (0, 0, 0, 0), but if we want to create an outer margin, we use oma.

Here is the function to produce an outer margin big enough to accommodate five lines of text on
the bottom and left-hand sides of the plotting region:

par (oma = c (5, 5, 0, 0))

We want to combine large outer margins with reduced inner margins when producing our own
multiple-panel plots.

When using par (mfrow = c (2,2)) to get a panel of plots, we will probably use main to
get a unique title for each of the plots, but we may want an overall title (the equivalent of main but
for the entire set of panel plots). We use mtext (‘margin text’) for this with along with outer = T.
Here are Anscombe’s infamous four plots; he contrived the data so that they all have exactly the
same regression models and p-values, but they are obviously very different once we plot them.
Moral: always plot the data first, then do the modelling once we know what the data look like. The
data are built into R:

attach (anscombe)
par (mfrow = c (2, 2))

�

� �

�

348 THE R BOOK

We can see the contrasting patterns in the four data sets in Figure 6.39, but there is no room for an
overall title:

plot (x1, y1, col = hue_pal()(2)[1], pch = 16,
xlim = c (0,20), ylim = c (0, 16), main = "Set 1")

abline (lm (y1 ~ x1), col = hue_pal()(2)[2])
plot (x2, y2, col = hue_pal()(2)[1], pch = 16,

xlim = c (0,20), ylim = c (0, 16), main = "Set 2")
abline (lm (y2 ~ x2), col = hue_pal()(2)[2])
plot (x3, y3, col = hue_pal()(2)[1], pch = 16,

xlim = c (0,20), ylim = c (0, 16), main = "Set 3")
abline (lm (y3 ~ x3), col = hue_pal()(2)[2])
plot (x4, y4, col = hue_pal()(2)[1], pch = 16,

xlim = c (0,20), ylim = c (0, 16), main = "Set 4")
abline (lm (y4 ~ x4), col = hue_pal()(2)[2])

We need to plan ahead and to make space for at least one line of (potentially large) text at the
top of the page. This is the third margin, and the space we want to create is outside the space of
the existing plot. Using oma, we specify the width of the margin (in units of text lines) for each of
the four margins in a vector (in our case, c (0, 0, 2, 0), to leave two lines at the top (third)
margin):

par (mfrow = c (2, 2), oma = c (0, 0, 2, 0))

Now redraw the four plots (as above), then add the graph title using mtext (), for example like
this (result not shown):

mtext ("Anscombe’s 4 regression data sets", outer = TRUE, cex = 1.5)
detach (anscombe)

6.5.21 Packing graphs closer together

In this example, we want to create nine closely spaced plots in a 3 × 3 pattern without any tick
marks, and to label only the outer central plot on the x- and y- axes. We need to take care of four
things:

• mfrow = c (3, 3) to get the nine plots in a 3 × 3 pattern;

• mar = c (0.2, 0.2, 0.2, 0.2) to leave a narrow strip (0.2 lines looks best for tightly
packed plots) between each graph;

• oma = c (5, 5, 0, 0) to create an outer margin on the bottom and left for labels;

• outer = T to write the titles in the outer margin.

�

� �

�

GRAPHICS IN MORE DETAIL 349

●

●
●

●
●

●

●

●

●

●
●

0 5 10 15 20

0
5

10
15 Set 1

x1

y1

●
●

●●
●

●

●

●

●

●

●

0 5 10 15 20

0
5

10
15 Set 2

x2

y2

●
●

●

●
●

●

●
●

●

●
●

0 5 10 15 20

0
5

10
15 Set 3

x3

y3

●
●

●

●●

●

●

●

●

●
●

0 5 10 15 20

0
5

10
15 Set 4

x4

y4

Figure 6.39 Anscombe data without a main header.

The plots consist of 100 pairs of ranked uniform random numbers sort (runif (100)), and we
shall plot the nine graphs with a for () loop, which results in Figure 6.40:

par (mfrow = c (3, 3))
par (mar = c (0.2, 0.2, 0.2, 0.2))
par (oma = c (5, 5, 0, 0))
for (i in 1:9) plot (sort (runif (100)), sort (runif (100)),

xaxt = "n", yaxt = "n", pch = 16, col = hue_pal()(1))
title (xlab = "time", ylab = "distance", outer = T, cex.lab = 2)

�

� �

�

350 THE R BOOK

●●●●●●●●●●●● ●●● ●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●
● ●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

● ●● ●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●
●● ●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●● ● ●●●●●●●●
●●●●●

●●●
●●●●●●●●●●

●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●● ●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●

●●●●●●●●●●●●●

●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●

● ●●●●●●●
●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

●● ●●●●●●●●●● ●●●●●●●●●
●●●●●

●●●●●●●●
●● ●●●● ●●●●●

●●
●●●●●●●●●●●●●● ●●●● ●●●●●●● ●●●●●●●●●●●●●●●

Time

D
is

ta
nc

e

Figure 6.40 Nine graphs close together.

6.5.22 Square plotting region, pty

If we want to have a square plotting region (e.g. when producing a map or a grid with true squares
on it), then use the pty = "s" option. The option pty = "m" generates the maximal plotting
region which is not square on most devices.

6.5.23 Character rotation, srt

To rotate characters in the plotting plane, use srt (which stands for ‘string rotation’). The argument
to the function is in degrees of counter-clockwise rotation:

plot (1 : 10, 1 : 10, type = "n", xlab = "", ylab = "")
for (i in 1:10) text (i, i, LETTERS[i], srt = (20 * i), col = hue_pal()(2)[1])
for (i in 1:10) text (10 - i + 1, i, letters[i], srt = (20 * i), col = hue_pal()(2)[2])

Observe how the letters i and I have been turned upside down in Figure 6.41 since srt = 180.

2 4 6 8 10

2
4

6
8

10

A

B

C

D

E

F

G

H

I

J

a
b

c

d

e

f

g

h

i

j

Figure 6.41 A plot with character rotation.

�

� �

�

GRAPHICS IN MORE DETAIL 351

S
pe

nd
in

g

0
10

20
30

Arg
en

tin
a

Aus
tra

lia

Aus
tri

a

Bah
ra

in

Bale
ar

ic
Isl

an
ds

Ban
gla

de
sh

Belg
ium

Beli
ze

Figure 6.42 A plot with character rotation.

6.5.24 Rotating the axis labels

When we have long text labels (e.g. for bars on a barplot ()), it is a good idea to rotate them
through 45 degrees so that all the labels are printed, and all are easy to read.

spending <- read.csv ("spending.csv", header = TRUE)
attach (spending)
names (spending)

[1] "spend" "country"

There are three steps involved:

• Make the bottom margin big enough to take the long labels with mar ().

• Find the x coordinates of the centres of the bars xvals with usr.

• Use text () with srt = 45 to rotate the labels.

par (mar = c (7, 4, 4, 2) + 0.1)
xvals <- barplot (spend, ylab = "spending", col = hue_pal()(1))
text (xvals, par ("usr")[3] - 0.25, srt = 45,

adj = 1, labels = country, xpd = TRUE)

detach (spending)

Note the use of xpd = TRUE to allow for text outside the plotting region, and adj = 1 to place
the right-hand end of text at the centre of the bars. The vertical location of the labels is set by par
("usr")[3] - 0.25 and we can adjust the value of the offset (here 0.25) as required to move
the axis labels up or down relative to the x-axis.

6.5.25 Tick marks on the axes

The arguments tck and tcl control the length and location of the tick marks. Negative values put
the tick marks outside the box (tcl = -0.5 is the default setting in R); tcl gives the length of
tick marks as a fraction of the height of a line of text.

�

� �

�

352 THE R BOOK

2 4 6 8 10

2
4

6
8

10

(a) Default ticks

2 4 6 8 10

2
4

6
8

10

(b) Maximum ticks

2 4 6 8 10

2
4

6
8

10

(c) No ticks

2 4 6 8 10

2
4

6
8

10

(d) Interior ticks

Figure 6.43 Tick marks demonstration.

The default setting for tck is tck = NA, but we can use this for drawing grid lines: tck = 0
means no tick marks, while tck = 1 means fill the whole frame (i.e. the tick marks make a grid).
The tick is given as a fraction of the frame width (they are +0.03 in the bottom right-hand graph, so
are internal to the plotting region). See Figure 6.43 for examples.

plot (1 : 10, 1 : 10, xlab = "", ylab = "", type = "n")
plot (1 : 10, 1 : 10, xlab = "", ylab = "", type = "n", tck = 1)
plot (1 : 10, 1 : 10, xlab = "", ylab = "", type = "n", tck = 0)
plot (1 : 10, 1 : 10, xlab = "", ylab = "", type = "n", tck = 0.03)

�

� �

�

GRAPHICS IN MORE DETAIL 353

6.5.26 Axis styles

There are three functions that we need to distinguish:

axis () select one of the four sides of the plot to work with;
xaxs, yaxs intervals for the tick marks;
xaxt, yaxt suppress production of the axis with xaxt = "n".

The axis () function is described in Section 6.3.6.
The xaxs option is used infrequently: style "r" (regular) first extends the data range by 4% and

then finds an axis with pretty labels that fits within the range; style "i" (internal) just finds an axis
with pretty labels that fits within the original data range.

Finally, xaxt and yaxt are often used when we want to specify our own kind of axes with different
locations for the tick marks and/or different labelling. If we do not want any tick marks or numbers on
the axes, then suppress the tick marks and value labels using xaxt = "n" and/or yaxt = "n".

6.5.27 Summary

It is worth restating the really important things about plotting.

• Plots: plot (x, y) gives a scatterplot if x is continuous, and a boxplot if x is a factor. Some
people prefer the alternative syntax plot (y ∼ x) using ‘tilde’ as in a model formula; one
advantage is that this has a subset () option.

• Type of plot: Options include lines type = "l" or null (axes only) type = "n".

• Lines: lines (x, y) plots a smooth function of y against x using the x and y values provided.
Some might prefer lines (y ∼ x).

• Line types: Useful dotted or dashed lines; lty = 2 (an option in plot () or lines ()).

• Points: points(x,y) adds another set of data points to a plot. Some might prefer points (y
∼ x).

• Plotting characters for different data sets: pch = 16 or pch = "*" (an option in points ()
or plot ()).

• Axes: setting non-default limits to the x- or y-axis scales uses xlim = c (0, 25) and/or ylim
= c (0, 1) as an option in plot ().

• Labels: use xlab and ylab to label the x- and y- axes.

• Scales: use ylim and xlim to control the top and bottom values on axes.

• Scales: use legend () to add a legend to a plot.

Table 6.3 gives a more detailed view of the options when plotting. We omit the usual () notation
from functions for conciseness, unless necessary. Each of the functions is illustrated in more detail
in Section 6.5.

Table 6.3 Graphical parameters and their default values.

Parameter In plot () ?a Default value Meaning

adj * 0.5 (centred) Justification of text
ann * TRUE Annotate plots with axis and overall titles?
ask * FALSE Pause before new graph?
bg * "transparent" Background style or colour
bty full box Type of box drawn around the graph
cex * 1 Character expansion: enlarge if > 1, reduce if < 1
cex.axis * 1 Magnification for axis notation
cex.lab * 1 Magnification for label notation
cex.main * 1.2 Main title character size
cex.sub * 1 Subtitle character size
cin 0.1354167,

0.1875000
Character size (width, height) in inches

col * "black" colors () to see range of colours
col.axis "black" Colour for graph axes
col.lab * "black" Colour for graph labels
col.main * "black" Colour for main heading
col.sub * "black" Colour for subheading
cra 13, 18 Character size (width, height) in rasters (pixels)
crt 0 Rotation of single characters in degrees (see srt)
csi 0.1875 Character height in inches
cxy 0.02255379,

0.03452245
Character size (width, height) in user-defined units

din 7.166666, 7.156249 Size of the graphic device (width, height) in inches (the window is bigger
than this)

family * "sans" Font style: from "serif", "sans", "mono" and "symbol" (and see
font, below)

fg "black" Colour for objects such as axes and boxes in the foreground
fig 0, 1, 0, 1 Coordinates of the figure region within the display region: c (x1, x2,

y1, y2)
fin 7.166666, 7.156249 Dimensions of the figure region (width, height) in inches
font * 1 Font (regular = 1, bold = 2 or italics = 3) in which text is written (and see

family, above)
font.axis * 1 Font in which axis is numbered

font.lab * 1 Font in which labels are written
font.main * 1 Font for main heading
font.sub * 1 Font for subheading
gamma 1 Correction for hsv colours
hsv 1, 1, 1 Values (range [0, 1]) for hue, saturation and value of colour
lab 5, 5, 7 Number of tick marks on the x-axis, y-axis and size of labels
las 0 Orientation of axis numbers: use las = 1 for publication
lend round Style for the ends of lines; could be square or butt
lheight 1 Height of a line of text used to vertically space multi-line text
ljoin round Style for joining two lines; could be mitre or bevel
lmitre 10 Controls when mitred line joins are automatically converted into bevelled

line joins
log * Neither Which axes to log: "log = x", "log = y" or "log = xy"
lty * solid Line type (e.g. dashed: lty = 2)
lwd * 1 Width of lines on a graph
mai 0.95625, 0.76875,

0.76875, 0.39375
Margin sizes in inches for c (bottom, left, top, right)

mar 5.1, 4.1, 4.1, 2.1 Margin sizes in numbers of lines for c (bottom, left, top, right)
mex 1 Margin expansion specifies the size of font used to convert between mar

and mai, and between oma and omi
mfcol 1, 1 Multiple frames per page (same layout as mfrow (see below), but graphs

produced columnwise)
mfg 1, 1, 1, 1 Which figure in an array of figures is to be drawn next (if setting) or is being

drawn (if enquiring); the array must already have been set by mfcol or
mfrow

mfrow 1, 1 Multiple frames per page (first number = rows, second number = columns):
mfrow = c (2, 3) gives graphs in two rows each with three columns,
drawn row-wise

mgp 3, 1, 0 Margin line (in mex units) for the axis title, axis labels and axis line
new FALSE To draw another plot on top of the existing plot, set new = TRUE so that

plot does not wipe the slate clean
oma 0, 0, 0, 0 Size of the outer margins in lines of text c (bottom, left, top,

right)
omd 0, 1, 0, 1 Size of the outer margins in normalized device coordinate (NDC) units,

expressed as a fraction (in [0,1]) of the device region c (bottom, left,
top, right)

omi 0, 0, 0, 0 Size of the outer margins in inches c(bottom, left, top, right)
pch * 1 Plotting symbol; e.g. pch = 16

(continued)

Table 6.3 (Continued)

Parameter In plot () ?a Default value Meaning

pin 6.004166, 5.431249 Current plot dimensions (width, height), in inches
plt 0.1072675,

0.9450581,
0.1336245,
0.8925764

Coordinates of the plot region as fractions of the current figure region c
(x1, x2, y1, y2)

ps 12 Point size of text and symbols
pty m Type of plot region to be used: pty = "s" generates a square plotting

region, m stands for maximal
srt * 0 String rotation in degrees
tck −0.5 Big tick marks (grid-lines); to use this set tcl = NA
tcl −0.5 Tick marks outside the frame
tmag 1.2 Enlargement of text of the main title relative to the other annotating text of

the plot
type * p Plot type: e.g. type = "n" to produce blank axes
usr set by the most

recent plot function
Extremes of the user-defined coordinates of the plotting region c (xmin,
xmax, ymin, ymax)

xaxp 0, 1, 5 Tick marks for log axes: xmin, xmax and number of intervals
xaxs r Pretty x-axis intervals
xaxt s x-axis type: use xaxt = "n" to set up the axis but not plot it
xlab * label for the x-axis xlab = "label for x axis"
xlim * pretty User control of x-axis scaling: xlim = c (0, 1)
xlog FALSE Is the x-axis on a log scale? If TRUE, a logarithmic scale is in use; e.g.

following plot (y ∼ x, log = "x")
xpd FALSE The way plotting is clipped: if FALSE, all plotting is clipped to the plot

region; if TRUE, all plotting is clipped to the figure region; and if NA, all
plotting is clipped to the device region

yaxp 0, 1, 5 Tick marks for log axes: ymin, ymax and number of intervals
yaxs r Pretty y-axis intervals
yaxt s y-axis type: use yaxt = "n" to set up the axis but not plot it
ylab * label for the y-axis ylab = "label for y axis"
ylim * pretty User control of y-axis scaling: ylim = c (0, 100)
ylog FALSE Is the y-axis on a log scale? If TRUE, a logarithmic scale is in use; e.g.

following plot (y ∼ x, log = "xy")

a The column headed ‘In plot?’ indicates with an asterisk whether this parameter can be changed as an argument to the plot, points or
lines functions.

�

� �

�

GRAPHICS IN MORE DETAIL 357

References

Knuth, D. E. (2012). The texbook. Addison-Wesley.
Neuwirth, E. (2014). Rcolorbrewer: colorbrewer palettes [R package version 1.1-2]. https://CRAN.R-project

.org/package=RColorBrewer.
Sarkar, D. (2008). Lattice: multivariate data visualization with R [ISBN 978-0-387-75968-5]. Springer. http://

lmdvr.r-forge.r-project.org.
Wickham, H. (2016). Ggplot2: elegant graphics for data analysis. Springer-Verlag New York. https://ggplot2

.tidyverse.org.
Wilkinson, L. (2012). Grammar of graphics. Springer.
Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of

semi-parametric generalized linear models.

https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=RColorBrewer
http://lmdvr.r-forge.r-project.org
http://lmdvr.r-forge.r-project.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org

�

� �

�

�

� �

�

7
Tables

The alternative to using graphics is to summarise your data in tabular form. Broadly speaking, if you
want to convey detail, use a table, and if you want to show effects, then use graphics. You are more
likely to want to use a table to summarise data when your data are categorical (such as people’s
names, or different commodities) than when they are continuous (in which case a scatterplot is
likely to be more informative; see Section 5.1).

7.1 Tabulating categorical or discrete data

We’ll first look at tables for categorical data, or discrete (numeric) data with a very limited number
of unique values. Our main tools will be the following functions:

• table (): Produces a table of counts;

• prop.table (): Produces a table of proportions.

7.1.1 Tables of counts

The table () function is perhaps the most useful of all the simple vector functions, because it
does so much work behind the scenes. We have a vector of objects (they could be numbers or
character strings), and we want to know how many of each is present in the vector.

Suppose we generate 1000 integers from a Poisson distribution with mean 0.6. We want to count
up all of the zeros, ones, twos, and so on. A big task, but here is the table () function in action:

counts <- rpois (1000, 0.6)
table (counts)

counts
0 1 2 3 4

544 310 115 27 4

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

360 THE R BOOK

The function works for characters as well as for numbers and for multiple classifying variables. Let
us take the dataset disease which contains information on gender and disease status:

disease <- read.table ("disease.txt", header = T)
attach (disease)
head (disease)

gender status
1 females clear
2 females clear
3 females clear
4 females clear
5 females clear
6 females clear

This is a large dataset with 1000 rows (observations). You want to know how many males and
females were infected and how many were clear of infection:

table (status, gender)

gender
status females males
clear 284 515
infected 53 68

If you want the genders as the rows rather than the columns, then put gender first in the argument
list to table ():

table (gender, status)

status
gender clear infected
females 284 53
males 515 68

You could also go further if you wanted and specify three variables in table (). This would create
a stack of two-dimensional tables. The number of tables would depend on the number of levels in
the third variable specified.

7.1.2 Tables of proportions

Sometimes it is preferable to show tables using proportions rather than counts, especially if we are
dealing with large tables. Just remember that we also need a decent sample size to do this. If you
have a small dataset and try to spread out your data in a large table – making it very sparse – using
proportions instead of counts can distort what’s really going on.

�

� �

�

TABLES 361

If you decide that proportions are the way to go, the prop.table () function uses a table’s
margins (the row totals or the column totals) to calculate cell proportions. We have three options:

• compute the proportion in each cell by considering row totals so that proportions in a particular
row of the table sum to 1;

• compute the proportion in each cell by considering column totals so that proportions in a particular
column of the table sum to 1;

• compute the proportion in each cell by considering the grand total so that proportions across the
whole table sum to 1.

The type of proportion you want is controlled by the second argument of prop.table (), as
we’ll see.

Let us try this with our disease dataset. First, we create an object, disease_tab, which is the
frequency table we’d like to convert to a table of proportions.

disease_tab <- table (gender, status)
disease_tab

status
gender clear infected

females 284 53
males 515 68

Now we can use prop.table () and specify the type of proportions we want computed. If we
want row proportions, the second argument is margin = 1 (or just 1 for short). Notice how the
rows sum to 1 here.

prop.table (disease_tab, 1)

status
gender clear infected

females 0.8427300 0.1572700
males 0.8833619 0.1166381

If we want column proportions, the second argument is margin = 2 (or just 2 for short). Notice
how the columns sum to 1 here.

prop.table (disease_tab, 2)

status
gender clear infected

females 0.3554443 0.4380165
males 0.6445557 0.5619835

Finally, if we want proportions to be computed in relation to the grand total, then we don’t need to
specify a second argument in prop.table (). Here, the proportions across the table sum to 1.

�

� �

�

362 THE R BOOK

prop.table (disease_tab)

status
gender clear infected
females 0.30869565 0.05760870
males 0.55978261 0.07391304

detach (disease)

In any particular case, you need to think carefully whether it makes sense to express your counts
as proportions of the row totals, the column totals or the grand total.

7.2 Tabulating summaries of numeric data

It is often useful to generate summaries of numeric variables. The most basic function to do this is
the summary () function, or we can compute specified summary statistics for particular variables
using, for example mean (), median (), sd (), and so on, with the argument of each function
being the relevant variable.

We can do more with other functions, however, including generating summaries of variables split
by groups. This is what we’ll focus on here.

We’ll use the Daphnia dataset in this section. The response variable is growth rate of the animals,
and there are three categorical explanatory variables: the river from which the water was sampled,
the kind of detergent experimentally added, and the clone of daphnia employed in the experiment.
Here’s a flavour of the content of the dataset:

daphnia <- read.table ("Daphnia.txt", header = T)
attach (daphnia)
head (daphnia)

Growth.rate Water Detergent Daphnia
1 2.919086 Tyne BrandA Clone1
2 2.492904 Tyne BrandA Clone1
3 3.021804 Tyne BrandA Clone1
4 2.350874 Tyne BrandA Clone2
5 3.148174 Tyne BrandA Clone2
6 4.423853 Tyne BrandA Clone2

7.2.1 General summaries by group

If you are looking for general summaries by group, the psych package is a good place to start
(Revelle, 2021). The package contains a bewildering number of functions which are aimed at those
working with psychology-based data as the name would suggest. For generating summaries of
numeric data, the describe () and describeBy () functions are very useful. Note the lone
capital letter in the latter function.

If you want a numerical summary of a single variable, then use describe (). It gives a lot of
output, and most of it is probably unnecessary. You can choose for skew and kurtosis not to be
calculated, which streamlines the output.

�

� �

�

TABLES 363

library ('psych')
describe (Growth.rate)

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 72 3.85 1.28 3.79 3.79 1.53 1.76 6.92 5.16 0.37 -0.86 0.15

describe (Growth.rate, skew = FALSE)

vars n mean sd min max range se
X1 1 72 3.85 1.28 1.76 6.92 5.16 0.15

For summaries by group, for example numeric summaries of Growth.rate by Detergent, with
or without displaying skew and kurtosis, use the describeBy () function:

describeBy (Growth.rate, Water)

Descriptive statistics by group
group: Tyne

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 36 3.69 1.05 3.44 3.63 1.21 2.2 5.83 3.63 0.38 -0.97 0.18
--
group: Wear

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 36 4.02 1.48 3.96 3.96 2 1.76 6.92 5.16 0.19 -1.22 0.25

describeBy (Growth.rate, Water, skew = FALSE)

Descriptive statistics by group
group: Tyne

vars n mean sd min max range se
X1 1 36 3.69 1.05 2.2 5.83 3.63 0.18
--
group: Wear

vars n mean sd min max range se
X1 1 36 4.02 1.48 1.76 6.92 5.16 0.25

It is also possible to generate summary tables by two categorical variables, for example

describeBy (Growth.rate, list (Water, Daphnia), skew = FALSE)

Descriptive statistics by group
: Tyne
: Clone1

vars n mean sd min max range se
X1 1 12 2.87 0.51 2.2 3.71 1.51 0.15
--
: Wear
: Clone1

�

� �

�

364 THE R BOOK

vars n mean sd min max range se
X1 1 12 2.81 0.66 2.1 3.95 1.85 0.19
--
: Tyne
: Clone2

vars n mean sd min max range se
X1 1 12 3.81 0.87 2.35 5.29 2.93 0.25
--
: Wear
: Clone2

vars n mean sd min max range se
X1 1 12 5.35 1.07 3.89 6.92 3.03 0.31
--
: Tyne
: Clone3

vars n mean sd min max range se
X1 1 12 4.38 1.1 2.23 5.83 3.6 0.32
--
: Wear
: Clone3

vars n mean sd min max range se
X1 1 12 3.89 1.36 1.76 5.38 3.62 0.39

The describe () and describeBy () functions can be manipulated further. See Revelle, 2021
or search the package help for further details.

7.2.2 Bespoke summaries by group

While all-purpose functions for generating summaries are very useful, you might need more control
over exactly what you want to compute. To generate a summary table of a particular statistic of your
choosing (by group), a useful function is the somewhat obscurely named tapply (). It is called
tapply () because it applies a named function (such as mean or variance) across a grouping
variable (categorical variable) to create a table.

Here is tapply () in action using the Daphnia dataset, assuming that we want to tabulate the
mean growth rates for the four brands of detergent tested:

tapply (Growth.rate, Detergent, mean)

BrandA BrandB BrandC BrandD
3.884832 4.010044 3.954512 3.558231

or for the two rivers:

tapply (Growth.rate, Water, mean)

Tyne Wear
3.685862 4.017948

�

� �

�

TABLES 365

or for the three daphnia clones:

tapply (Growth.rate, Daphnia, mean)

Clone1 Clone2 Clone3
2.839875 4.577121 4.138719

Two-dimensional summary tables are created by replacing the single explanatory variable (the
second argument in the function call) by a list () indicating which variable is to be used for
the rows of the summary table and which variable is to be used for creating the columns of the
summary table. To get the daphnia clones as the rows and detergents as the columns, we write
list (Daphnia, Detergent) – rows first then columns – and use tapply () to create the
summary table as follows:

tapply (Growth.rate, list (Daphnia, Detergent), mean)

BrandA BrandB BrandC BrandD
Clone1 2.732227 2.929140 3.071335 2.626797
Clone2 3.919002 4.402931 4.772805 5.213745
Clone3 5.003268 4.698062 4.019397 2.834151

If we wanted the median values (rather than the means), then we would just alter the third argument
of the tapply () function like this:

tapply (Growth.rate, list (Daphnia, Detergent), median)

BrandA BrandB BrandC BrandD
Clone1 2.705995 3.012495 3.073964 2.503468
Clone2 3.924411 4.282181 4.612801 5.416785
Clone3 5.057594 4.627812 4.040108 2.573003

We’re not limited to pre-defined functions like mean and median. We can also specify our own
function. For example, to obtain a table of the standard errors of the means (where each mean
is based on six numbers: two replicates and three rivers), the function we want to apply is

√
s2∕n.

There is no built-in function for the standard error of a mean in base R, so we create a function ()
inside tapply () like this:

tapply (Growth.rate, list (Daphnia, Detergent),
function (x)

sqrt (var (x) / length (x))
)

BrandA BrandB BrandC BrandD
Clone1 0.2163448 0.2319320 0.3055929 0.1905771
Clone2 0.4702855 0.3639819 0.5773096 0.5520220
Clone3 0.2688604 0.2683660 0.5395750 0.4260212

�

� �

�

366 THE R BOOK

When tapply () is asked to produce a three-dimensional table, it produces a stack of
two-dimensional tables with the number of stacked tables being determined by the number of
levels of the categorical variable that comes third in the list (Water in this case):

tapply (Growth.rate, list (Daphnia, Detergent, Water), mean)

,, Tyne

BrandA BrandB BrandC BrandD
Clone1 2.811265 2.775903 3.287529 2.597192
Clone2 3.307634 4.191188 3.620532 4.105651
Clone3 4.866524 4.766258 4.534902 3.365766

,, Wear

BrandA BrandB BrandC BrandD
Clone1 2.653189 3.082377 2.855142 2.656403
Clone2 4.530371 4.614673 5.925078 6.321838
Clone3 5.140011 4.629867 3.503892 2.302537

In cases like this, the function ftable () (which stands for ‘flat table’) often produces more pleas-
ing output:

ftable (tapply (Growth.rate, list (Daphnia, Detergent, Water), mean))

Tyne Wear

Clone1 BrandA 2.811265 2.653189
BrandB 2.775903 3.082377
BrandC 3.287529 2.855142
BrandD 2.597192 2.656403

Clone2 BrandA 3.307634 4.530371
BrandB 4.191188 4.614673
BrandC 3.620532 5.925078
BrandD 4.105651 6.321838

Clone3 BrandA 4.866524 5.140011
BrandB 4.766258 4.629867
BrandC 4.534902 3.503892
BrandD 3.365766 2.302537

Notice that the order of the rows, columns, or tables is determined by the alphabetical sequence
of the factor levels (e.g. Tyne comes before Wear in the alphabet). If you want to override this, you
must specify that the factor levels are ordered in a non-standard way:

water <- factor (Water, levels = c ("Wear", "Tyne"))
ftable (tapply (Growth.rate, list (Daphnia, Detergent, water), mean))

Wear Tyne

Clone1 BrandA 2.653189 2.811265
BrandB 3.082377 2.775903

�

� �

�

TABLES 367

BrandC 2.855142 3.287529
BrandD 2.656403 2.597192

Clone2 BrandA 4.530371 3.307634
BrandB 4.614673 4.191188
BrandC 5.925078 3.620532
BrandD 6.321838 4.105651

Clone3 BrandA 5.140011 4.866524
BrandB 4.629867 4.766258
BrandC 3.503892 4.534902
BrandD 2.302537 3.365766

The function to be applied in generating the table can be supplied with extra arguments. For
example, the trim argument is part of the mean () function, specifying the fraction (between
0 and 0.5) of the observations to be trimmed from each end of the sorted vector of values
before the mean is computed. Values of trim outside that range are taken as the nearest
endpoint.

tapply (Growth.rate, Detergent, mean, trim = 0.1)

BrandA BrandB BrandC BrandD
3.874869 4.019206 3.890448 3.482322

An extra argument is essential if you want means when there are missing values:

tapply (Growth.rate, Detergent, mean, na.rm = T)

BrandA BrandB BrandC BrandD
3.884832 4.010044 3.954512 3.558231

Without the argument specifying that you want to average over the non-missing values (na.rm =
T means ‘it is true that I want to remove the missing values’), the mean () function will simply fail,
producing NA as the answer.

7.3 Converting between tables and dataframes

7.3.1 From a table to a dataframe

In some situations, you may want to create a dataframe of summary statistics.
For instance, if we wanted a dataframe of mean growth rate classified by detergent and daph-

nia clone (i.e. averaged over river water and replicates), we can generate the summaries using
tapply (), then coerce the result into a dataframe:

daph_table <- tapply (Growth.rate, list (Detergent, Daphnia), mean)
daph_table_data <- as.data.frame.table (daph_table)
daph_table_data

Var1 Var2 Freq
1 BrandA Clone1 2.732227

�

� �

�

368 THE R BOOK

2 BrandB Clone1 2.929140
3 BrandC Clone1 3.071335
4 BrandD Clone1 2.626797
5 BrandA Clone2 3.919002
6 BrandB Clone2 4.402931
7 BrandC Clone2 4.772805
8 BrandD Clone2 5.213745
9 BrandA Clone3 5.003268
10 BrandB Clone3 4.698062
11 BrandC Clone3 4.019397
12 BrandD Clone3 2.834151

You need to edit the variable names like this:

names (daph_table_data) <- c ("detergents", "daphnia", "mean")
head (daph_table_data)

detergents daphnia mean
1 BrandA Clone1 2.732227
2 BrandB Clone1 2.929140
3 BrandC Clone1 3.071335
4 BrandD Clone1 2.626797
5 BrandA Clone2 3.919002
6 BrandB Clone2 4.402931

detach (daphnia)

In other situations, you may receive a dataset which is in table format already. For example, for
the purpose of model-fitting, we often want to expand a table of explanatory variables to create a
dataframe with as many repeated rows as specified by a count. Here is an example of such data:

tabledata <- read.table ("tabledata.txt", header = T)
head (tabledata)

count sex age condition
1 12 male young healthy
2 7 male old healthy
3 9 female young healthy
4 8 female old healthy
5 6 male young parasitized
6 7 male old parasitized

The idea is to create a new dataframe with a separate row for each case. That is to say, we want 12
copies of the first row (for healthy young males), 7 copies of the second row (for healthy old males),
and so on.

One way of doing this is to use lapply () to apply the repeat function rep () to each variable
in tabledata such that each row is repeated by the number of times specified in the vector called
count:

expanded_table <- lapply (tabledata, function (x) rep (x, tabledata$count))

�

� �

�

TABLES 369

Then we convert this object to a data.frame using as.data.frame like this:

expanded_table <- as.data.frame (expanded_table)
head (expanded_table)

count sex age condition
1 12 male young healthy
2 12 male young healthy
3 12 male young healthy
4 12 male young healthy
5 12 male young healthy
6 12 male young healthy

To tidy up, we probably want to remove the redundant vector of counts:

expanded_table <- expanded_table [, -1]
head (expanded_table)

sex age condition
1 male young healthy
2 male young healthy
3 male young healthy
4 male young healthy
5 male young healthy
6 male young healthy

tail (expanded_table)

sex age condition
57 female young parasitized
58 female old parasitized
59 female old parasitized
60 female old parasitized
61 female old parasitized
62 female old parasitized

Now we can use the contents of expanded_table as explanatory variables in modelling other
responses of each of the 62 cases (e.g. the animals’ body weights).

This is not the only way of achieving the same result. The alternative is to produce a long vector
of row numbers and use this as a subscript on the rows of the short dataframe to turn it into a long
dataframe with the same column structure:

expanded_table2 <- tabledata [rep (1 : nrow (tabledata),
tabledata [["count"]]),]

head (expanded_table2)

count sex age condition
1 12 male young healthy
1.1 12 male young healthy
1.2 12 male young healthy

�

� �

�

370 THE R BOOK

1.3 12 male young healthy
1.4 12 male young healthy
1.5 12 male young healthy

Again, the resulting dataset could be tidied up.

7.3.2 From a dataframe to a table

The reverse procedure of creating a table from a dataframe is much more straightforward and
involves nothing more than the table () function:

table (expanded_table)

,, condition = healthy

age
sex old young
female 8 9
male 7 12

,, condition = parasitized

age
sex old young
female 5 8
male 7 6

This tabulated object itself could be coerced into another dataframe, in which case use:

as.data.frame (table (expanded_table))

sex age condition Freq
1 female old healthy 8
2 male old healthy 7
3 female young healthy 9
4 male young healthy 12
5 female old parasitized 5
6 male old parasitized 7
7 female young parasitized 8
8 male young parasitized 6

R has invented the variable name Freq for the counts of the various contingencies. To change this
to ‘count’ use names () with the appropriate subscript for the column number (in this case 4):

contract_table <- as.data.frame (table (expanded_table))
names (contract_table) [4] <- "count"
contract_table

�

� �

�

TABLES 371

sex age condition count
1 female old healthy 8
2 male old healthy 7
3 female young healthy 9
4 male young healthy 12
5 female old parasitized 5
6 male old parasitized 7
7 female young parasitized 8
8 male young parasitized 6

Reference

Revelle, W. (2021). Psych: Procedures for psychological, psychometric, and personality research [R package
version 2.1.6]. Northwestern University. Evanston, IL. https://CRAN.R-project.org/package=psych.

https://CRAN.R-project.org/package=psych

�

� �

�

�

� �

�

8
Probability Distributions in R

Data analysis in essence revolves around attempting to understand as much of the variability in our
data as possible. The data used could be numeric (e.g. height) or categorical (e.g. ethnicity), see
Section 1.8.1 for more information, but either way describing the nature of the variability in the data
from one observation to the next is done via probability distributions.

Before we consider probability distributions, we must think about random variables: informally, a
random variable is a quantity that varies randomly from unit to unit. For example, height will naturally
vary from person to person, while the outcome of a throw of a die will vary from throw to throw. The
probability distribution for height or the outcome of a throw of a die then describes the likelihood
of an event, occurrence, or outcome of interest. From there we can ask questions such as ‘what’s
the probability (how likely is it) that a person chosen at random from a particular population will be
taller than 170 cm?’, or ‘what are the chances that a six thrown on the next roll of a die?’.

It is useful to have notation so that we can write statements involving random variables succinctly
and without ambiguity. It is customary to write random variables using capital letters – this tells us
that the value that it can take will vary randomly from unit to unit. Let us say, for example, that
X represents the height of an individual from our population of interest, and that Y denotes the
outcome of the next roll of the die. Then it makes sense to think about the distribution of X and
(probably separately!) of Y: what values can they take, and what is the probability of observing a
particular event (e.g. that X is larger than 170, or that Y is equal to six)? Our questions above can be
written succinctly as P(X > 170) and P(Y = 6), respectively, and as long as we know (or assume)
the probability distribution of X and of Y, we can compute these probabilities. More generally, rather
than specifying a particular number we can write more generally, for example P(X > x) or P(Y = y)
denoting the probability that X is larger than some (yet to be specified) value x or the probability
that Y is equal to some (yet to be specified) value y, respectively. Notice that we use lower-case
letters, x and y, as these represent particular values, whereas X and Y denote random variables.

There is no end to the probability distributions that we could define, but there are common ‘fami-
lies’ of probability distributions that will become very familiar with. You may well have come across
some of these already, e.g. the Normal distribution (which is probably the most famous distribution
of all). Each of these probability distributions will be characterised by a specific parameter or a
set of parameters. For example, we’ll see that a Normal distribution is characterised by its mean
and standard deviation (or variance, if preferred) – this is enough to completely specify a particular

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

374 THE R BOOK

Normal distribution – and, of course, there is no end of possible values for these parameters. So in
essence there are an infinite number of possible distinct Normal distributions.

When it comes to using probability distributions to answer questions, sometimes there is an ‘obvi-
ous’ probability distribution to use; other times, we assume that we can use a specific distribution.
Many of the analysis techniques that are discussed later in this book assume specific probability
distributions for particular random variables. Methods for checking whether a given set of values
does indeed belong to a particular distribution don’t exist, but it is possible to look for evidence that
the set does not come from the specified distribution. We won’t consider these methods here, but
look out for them in Chapter 9.

8.1 Probability distributions: the basics

8.1.1 Discrete and continuous probability distributions

Broadly speaking, probability distributions are categorised as being either discrete or continuous,
though it is possible to have a distribution with both elements (we won’t consider them in this book).
The distinction sits with the nature of the random variable of interest, see Section 1.8.1 for more
information.

If it is possible to list all values that the random variable can take – which may produce an infinite
list – the underlying probability distribution is discrete. For example, whether a patient suffered a
heart attack (yes or no), the outcome of a roll of a six-sided die (whole numbers from 1 to 6), the
number of adults in a household (whole numbers, with no theoretical maximum but with realistic
constraints), or the smoking status of an individual (none, light, moderate, and heavy). Some of
these random variables are numeric (e.g. the number of adults in a household), while others are
categorical (e.g. whether a patient suffered a heart attack). In the latter case, we can map the pos-
sible events to numbers. In the heart attack example, we could map ‘no heart attack’ to 0 and ‘heart
attack’ to 1. This might seem like an unnecessary extra step, but it will be useful in terms of notation:
if W is the random variable denoting whether a patient suffered a heart attack, then W can now
take on the values 0 or 1, and we no longer need to write out text descriptions of possible options.

A continuous probability distribution is used when the events of interest are not only numeric but
also can take on any reasonable value (there may be natural minimum and maximum values). Take
for example adult height or the time taken to run 100 m. The values that these variables can take
are endless, and indeed, we can’t write down all possible eventualities.

8.1.2 Describing probability distributions mathematically

Discrete and continuous distributions are characterised by mathematical functions. For discrete
distributions, the probability mass function (pmf) gives the probability of a particular event
being observed. This is not a suitable description for continuous probability distributions: the
probability of observing a particular event is zero (for example the probability that I run 100 m in
exactly 13.4607 seconds is zero). Instead, continuous probability distributions are described by a
probability density function (pdf). This can be used to determine the probability that we observe
a random variable falling between two defined values (for example, the probability that I run 100 m
in a time between 13.1 and 13.7 seconds).

The idea of a cumulative distribution function can also be helpful, but only when the events
themselves are ordinal or numeric. These functions describe the probability that a random variable
is less than or equal to a particular value. For example, if we had a discrete distribution describing
the number of adults in a household, we could look at the probability that a household has three or
fewer adults residing: if we let X denote the number of adults in a household, then this would amount

�

� �

�

PROBABILITY DISTRIBUTIONS IN R 375

to computing P(X ≤ 3). For continuous distributions, we could, for example, look at the probability
that I run 100 m in less than 11.91 seconds (which is unlikely). If Y denoted the time it takes me to
run 100 m (in seconds), I would need P(Y < 11.91).

A note of caution here: P(X ≤ 3) is not the same as P(X < 3) when we have a discrete variable.
In the former, we want the probability that we have three or fewer adults in the household while
the latter asks for the probability we have fewer than three adults (i.e. two or fewer adults) in the
household. Meanwhile, for continuous variables such as Y, there is no difference between asking
for P(Y ≤ 11.91) and P(Y < 11.91) as the probability that I run 100 m in exactly 11.91 seconds (and
not a millisecond more or less than this) is zero.

8.1.3 Independence

The concept of independence crops up regularly in probability and statistics. It often forms the basis
of the assumptions we make during data analysis, and you’ll see that it features regularly through-
out this book. Let us start with the idea of independent events, before considering independent
random variables.

Suppose we have two events of interest, let us call them A and B. These events are independent
if the occurrence of one of these doesn’t affect the probability of the other happening. In other words,
knowing that A (or B) occurred doesn’t affect the chances of B (or A) happening.

For example, if A denoted the event ‘roll a six using a six-sided fair die’ and B denoted ‘two-sided
fair coin lands on heads’, then intuitively these are independent events: whatever happens when
we roll the die isn’t going to affect the outcome of the coin flip.

Mathematically speaking, we can formalise this in terms of probability in the following (equivalent)
ways:

1. ‘Knowledge of B doesn’t affect the probability of A occurring’: P(A|B) = P(A);

2. ‘Knowledge of A doesn’t affect the probability of B occurring’: P(B|A) = P(B);

3. ‘The probability of both A and B occurring is equal to the product of their probabilities: P(A ∩ B) =
P(A)P(B).

See Section 2.4.2 on conditional probability if the notation P(A|B) is unfamiliar. The first two state-
ments are fairly intuitive, but the third might seem peculiar. This stems from the fact that, for
example,

P(A ∩ B) = P(A|B)P(B) = P(A)P(B),

where the second equality uses the first from the list of equivalent statements.
The idea of independence can also be applied to random variables in a similar way. Let us sup-

pose we have two numeric random variables, X and Y. Informally, the two are independent if the
value (realisation) of one of these doesn’t depend on the value of the other. More formally, X and
Y are independent if

P(X ≤ x,Y ≤ y) = P(X ≤ x)P(Y ≤ y) (8.1)

for any values x and y of our choosing. Equation (8.1) uses the cumulative distribution functions
of X and Y. Notice that this ties in with the definition of independent events: here our events are
{X ≤ x} and {Y ≤ y}.

The idea of independence will be particularly useful in Chapter 9 on statistical testing, and in later
chapters of the book on building models (e.g. regression models in Chapters 10 and 11). Often, in
these chapters, we will refer to observations in our data being independent of each other. The same
broad intuition works here too: if observations are independent of one another, then they don’t exert
any influence over one another.

�

� �

�

376 THE R BOOK

For example, if we measured the height of two (unrelated) individuals, then we would (probably)
be happy that the measurements are not dependent on each other as knowledge on the height of the
first individual wouldn’t give us any information on the height of the second. In other words, we could
accept that these measurements are independent of each other. If, on the other hand, we were to
measure the height of two siblings, we would expect that knowing the height of one of the pair gives
partial information about the height of the other. In this case, the observations are not independent.

8.2 Probability distributions in R

R has a wide range of built-in probability distributions, some of which are listed in Table 8.1. The
meanings of the parameters are explained in the remainder of this chapter.

For each of R’s supported distributions, four functions are available that complete certain tasks:

• the pdf, which has a d prefix, e.g. for the Beta distribution, dbeta (). This allows us to compute
the value of the density at a particular point in the case of a continuous probability distribution, or
gives the value of the pmf at a particular point for discrete distributions;

• the cumulative probability, which has a p prefix, e.g. for the Beta distribution, pbeta (). This
computes the probability of seeing an observation less than or equal to a particular value;

• the quantiles of the distribution, which has a q prefix, e.g. for the Beta distribution, qbeta ().
This asks the reverse question to that asked by pbeta (): what value is required so that the
probability of choosing a value less than or equal to this point is a particular probability;

• random numbers generated from the distribution, which has an r prefix, e.g. for the Beta distri-
bution, rbeta ().

Table 8.1 Some commonly used probability distributions supported by R

Distribution Type Parameters R function R parameter names

Beta continuous two shape parameters beta shape1, shape2
Binomial discrete sample size, probability binom size, prob
Exponential continuous rate exp rate
Chi-squared continuous degrees of freedom chisq df
F continuous degrees of freedom (twice) f df1, df2
Gamma continuous shape, rate gamma shape, rate
Geometric discrete probability geom prob
Hypergeometric discrete two size parameters,

number of successes
hyper m, n, k

Lognormal continuous mean, standard deviation lnorm meanlog, sdlog
Logistic continuous location, scale logis location, scale
Negative Binomial discrete size, probability nbinom size, prob
Normal continuous mean, standard deviation norm mean, sd
Poisson discrete mean pois lambda
t continuous degrees of freedom t df
Uniform continuous minimum, maximum unif min, max
Uniform discrete minimum, maximum dunif min, max
Weibull continuous shape weibull shape

�

� �

�

PROBABILITY DISTRIBUTIONS IN R 377

8.3 Continuous probability distributions

The Normal distribution will be used to demonstrate the four functions available in R applied to
continuous distributions. Other distributions covered in this chapter will receive a much shorter
treatment since the same ideas apply.

8.3.1 The Normal (or Gaussian) distribution

Box 8.1: The Normal distribution

Parameters: Mean (𝜇) and standard deviation (𝜎).
Mean and variance: 𝜇 and 𝜎2.
Possible values: Any.
Characteristics: Symmetric, bell-shaped pdf.
Notation for a random variable X: X ∼ N(𝜇, 𝜎2).

The pdf of a Normal distribution is characterised by its ‘bell-shaped’ curve. The value of the function
at any point x can be computed in R using the function dnorm (), but this isn’t really of inter-
est. We can use this function to plot the pdf using the code below which gives Figure 8.1. This
Normal distribution has a mean, 𝜇, of 170 and a standard deviation, 𝜎, of 8. It is plotted for val-
ues of x between 140 and 200 though in reality the minimum and maximum values are infinite.
Notice that though the usual notation for a Normal distribution is to give its mean and variance,

140 150 160 170 180 190 200

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

x

P
ro

ba
bi

lit
y

de
ns

ity

Figure 8.1 Normal pdf.

�

� �

�

378 THE R BOOK

that is N(𝜇, 𝜎2), the suite of norm functions require us to specify the mean and standard deviation
instead.

curve (dnorm (x, 170, 8), 140, 200, xlab = "x",
ylab = "probability density", col = hue_pal ()(1)[1])

Computing probabilities based on the Normal distribution is also straightforward. Suppose that we
know that height is normally distributed with mean 170 cm and standard deviation 8 cm. What is
the probability that a randomly selected individual will be:

• shorter than 160 cm?

• taller than 185 cm?

• between 160 and 185 cm?

The area under the whole curve is exactly 1; this will always be the case for any ‘proper’ pdf. We
won’t consider improper probability densities in this book. The area represents total probability,
for example in our case that the individual is of any height. Then, the required probabilities listed
here are defined as the relevant area under the curve. Figure 8.2 shows the relevant areas under
the curve for each of the questions we posed earlier.

140 150 160 170 180 190 200

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

x value

P
ro

ba
bi

lit
y

de
ns

ity

140 150 160 170 180 190 200

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

x value

P
ro

ba
bi

lit
y

de
ns

ity

140 150 160 170 180 190 200

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

x value

P
ro

ba
bi

lit
y

de
ns

ity

(a) Less than 160 (b) Greater than 185

(c) Between 160 and 185

Figure 8.2 Normal probabilities.

�

� �

�

PROBABILITY DISTRIBUTIONS IN R 379

For example, the first question can be computed by looking at the area under the curve from
minus infinity up to 160 (Figure 8.2a). The function we need for this is pnorm (), which computes
the cumulative probability (i.e. the probability of being less than or equal to a specific value); we
provide it with the value 160, together with information about the mean and standard deviation of the
distribution, to find this probability. The answer to our first question is just over 10% when we feed
this request to R.

Meanwhile, the answer to our second question requires the complement of what pnorm ()
gives – remember that pnorm () computes the probability of observing less than a particular value.
This amounts to subtracting the value pnorm () gives from 1. See Figure 8.2b for a visual rep-
resentation. A similar argument shows that we must consider the difference between two calls
to pnorm () to consider the third question (Figure 8.2c).

pnorm (160, mean = 170, sd = 8)

[1] 0.1056498

1 - pnorm (185, mean = 170, sd = 8)

[1] 0.03039636

pnorm (185, mean = 170, sd = 8) - pnorm (160, mean = 170, sd = 8)

[1] 0.8639539

We could reverse these probability questions, for example by asking what height are 80% of the
population shorter than? What we’re asking for here is a particular quantile of the Normal distribu-
tion, in this case, the 80th quantile of a Normal distribution with mean 170 and standard deviation
8. We can do this using the qnorm () function:

qnorm (0.8, mean = 170, sd = 8)

[1] 176.733

Therefore, 80% of the population under consideration have a height less than or equal to 176.73. Of
course, if we used pnorm () to check the probability of randomly selecting an individual with height
less than or equal to 176.73, then we would get an answer of around 0.8 (‘around’ is due to
rounding).

There is one more useful function when it comes to probability distributions: randomly selecting
a value from a distribution. If, for example, we wanted to randomly choose a value from a Normal
distribution with mean 170 and standard deviation of 8, our tool of choice would be rnorm (). Its
first argument is the number of observations that we want to generate from the specified distribution.
If we again asked for one observation from the Normal distribution, then we would get a different
value as shown in the following code:

rnorm (1, mean = 170, sd = 8)

[1] 172.5204

rnorm (1, mean = 170, sd = 8)

�

� �

�

380 THE R BOOK

[1] 175.9139

rnorm (5, mean = 170, sd = 8)

[1] 186.6341 162.7192 161.6572 168.6895 177.5674

If it is important that we generate the same random numbers every time, we can use the set.seed
() function as follows:

set.seed (1604)
rnorm (1, mean = 170, sd = 8)

[1] 178.7003

set.seed (1604)
rnorm (1, mean = 170, sd = 8)

[1] 178.7003

set.seed (3)
rnorm (1, mean = 170, sd = 8)

[1] 162.3045

set.seed (3)
rnorm (1, mean = 170, sd = 8)

[1] 162.3045

The seed that we used here – 1604 for the first example and 3 for the second – is arbitrary, but
notice as the seed changes so do the randomly generated numbers. This is very useful if we want
to, for example, generate simulated data that we can replicate exactly next time.

8.3.2 The Uniform distribution

Box 8.2: The Uniform distribution

Parameters: Minimum and maximum values, a and b.
Mean and variance: (b − a)∕2 and (b − a)2∕12.
Possible values: Any within [a,b].
Characteristics: Symmetric, box-like pdf
Notation for a random variable X: X ∼ U(a,b).

The idea is to generate values within an interval (a,b), where the probability of the random value
falling in a sub-interval of length l is the same, regardless of where the subinterval lies within (a,b).

�

� �

�

PROBABILITY DISTRIBUTIONS IN R 381

0 5 10 15 20 25 30

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

x

P
ro

ba
bi

lit
y

de
ns

ity

Figure 8.3 Uniform probability density function.

The Uniform distribution is of course symmetric, with a characteristic ‘box’ shape that is needed
to guarantee the above property. See Figure 8.3, which shows the pdf of a Uniform distribution over
the range [5,25]. Within this range, the density is 1∕(25 − 5), while outside this range it is zero. This
guarantees that the area under the ‘curve’ is 1: here the ‘curve’ is just a rectangle so that we can
check this by multiplying the height and width of the box.

Densities, probabilities, quantiles, and random numbers from the Uniform distribution are all pos-
sible, with dunif (), punif (), qunif (), and runif () the appropriate functions this time.
Supposing we have a random variable such that X ∼ U(5,25), then

• the pdf evaluated at X = 10 is dunif (10, 5, 25), which is 0.05;

• the probability that X is less than 14.33 is punif (14.33, 5, 25), which is 0.4665;

• the quantile of the distribution that relates to 0.6 is qunif (0.6, 5, 25), which is 17;

• we can generate 100 random numbers from this Uniform distribution using runif (100,
5, 25).

8.3.3 The Chi-squared distribution

Box 8.3: The Chi-squared distribution

Parameter(s): Degrees of freedom, 𝜈.
Mean and variance: 𝜈 and 2𝜈.
Possible values: Positive.
Characteristics: Skewed, getting more symmetric as 𝜈 increases.
Notation for a random variable X: X ∼ 𝜒2

𝜈 .

�

� �

�

382 THE R BOOK

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

x

P
ro

ba
bi

lit
y

de
ns

ity

3 degrees of freedom
10 degrees of freedom
20 degrees of freedom

Figure 8.4 Chi-squared probability density function.

The Chi-squared distribution is characterised by a single parameter: the number of degrees of free-
dom, 𝜈 (‘nu’, pronounced ‘new’).

The Chi-squared distribution is always positive (that is, only defined for positive values of the
x-axis), and in changing its degrees of freedom, we change its shape. Its shape ranges from being
very positively skewed to being (almost) symmetric. See Figure 8.4.

Densities, probabilities, quantiles, and random numbers using the Chi-squared distribution are all
possible, with dchisq (), pchisq (), qchisq (), and rchisq () the appropriate functions
this time. For example, if a random variable X had a Chi-squared distribution with 5 degrees
of freedom:

• the density function evaluated at x = 3 is dchisq (3, 5), which is 0.15;

• the probability that X is less than 4 is pchisq (4, 5), which is 0.45;

• the quantile of the distribution that relates to 0.6 is qchisq (0.6, 5), which is 5.13;

• we can generate 100 random numbers from the Chi-squared distribution by using rchisq
(100, 5).

8.3.4 The F distribution

Box 8.4: The F distribution

Parameter(s): Degrees of freedom, 𝜈1 and 𝜈2 (it matters in which order these are given).
Mean: 𝜈2∕(𝜈2 − 2) (for 𝜈2 > 2).
Variance: 2𝜈2

2
(𝜈1 + 𝜈2 − 2)∕(𝜈1(𝜈2 − 2)2(𝜈2 − 4)) for 𝜈2 > 4.

Possible values: Positive.
Characteristics: Skewed.
Notation for a random variable X: X ∼ F𝜈1,𝜈2

.

�

� �

�

PROBABILITY DISTRIBUTIONS IN R 383

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

P
ro

ba
bi

lit
y

de
ns

ity

2 and 2 degrees of freedom
3 and 10 degrees of freedom
5 and 50 degrees of freedom
50 and 5 degrees of freedom
30 and 50 degrees of freedom

Figure 8.5 F distribution probability density.

Whereas the Chi-squared distribution was characterised by a single parameter – its degrees of free-
dom – the F distribution is characterised by two parameters, both of which are degrees of freedom.
They control the distribution’s shape. The density functions for various F distributions are plotted
in Figure 8.5. Notice in particular that it matters which way around the degrees of freedom are given:
an F distribution with 5 and 50 degrees of freedom is not the same as that with 50 and 5 degrees
of freedom.

Densities, probabilities, quantiles, and random numbers using the F distribution are all possi-
ble, with df (), pf (), qf (), and rf () the appropriate functions this time. For example, if a
random variable X had an F distribution with 5 and 8 degrees of freedom:

• the density function evaluated at x = 3 is df (3, 5, 8), which is 0.06;

• the probability that X is less than 4 is pf (4, 5, 8), which is 0.959;

• the quantile of the distribution that relates to 0.6 is qf (0.6, 5, 8), which is 1.17;

• we can generate 100 random numbers from the F distribution by using rf (100, 5, 8).

8.3.5 Student’s t distribution

Box 8.5: The t-distribution

Parameter(s): Degrees of freedom, r.
Mean: 0.
Variance: r∕(r − 2) for r > 2.
Possible values: Any.
Characteristics: Symmetric, bell-shaped.
Notation for a random variable X: X ∼ tr.

�

� �

�

384 THE R BOOK

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

P
ro

ba
bi

lit
y

de
ns

ity

r = 2
r = 5
r = 20

Figure 8.6 t-distribution probability density.

This famous distribution was first published by W.S. Gossett in 1908 under the pseudonym of
‘Student’ because his then employer, the Guinness Brewing company in Dublin, would not permit
employees to publish under their own names. It is a distribution with one parameter – its degrees
of freedom, r – and a random variable with a t-distribution can take any value along the real line.
The standard version of the t-distribution is to assume its mean is 0. It is possible to define a
non-central t-distribution with a non-zero mean, but we won’t look at this here (same principles apply,
however).

The density for various t-distributions are given in Figure 8.6; all of which are the standard
zero-mean versions of the distribution. Notice that the t-distribution is bell-shaped like the Normal
distribution, but that it has heavier (or ‘fatter’) tails. This means that extreme values are more
likely with a t-distribution than with a normal. As the degrees of freedom increase however,
the t-distribution approaches a Normal distribution with mean 0 and variance 1 (the so-called
‘standard Normal distribution’). Technically, the t-distribution with infinite degrees of freedom is
equivalent to the standard Normal distribution, while the t-distribution with one degree of freedom
is equivalent to the Cauchy distribution.

Densities, probabilities, quantiles, and random numbers using the t-distribution are all possible,
with dt (), pt (), qt (), and rt () the appropriate functions this time. For example, if a ran-
dom variable had a t-distribution with 10 degrees of freedom:

• the density function evaluated at x = 3 is dt (3, 10), which is 0.017;

• the probability that X is less than 4 is pt (4, 10), which is almost 1;

• the quantile of the distribution that relates to 0.6 is qt (0.6, 10), which is 0.26;

• we can generate 100 random numbers from the F-distribution by using rt (100, 10).

�

� �

�

PROBABILITY DISTRIBUTIONS IN R 385

8.3.6 The Gamma distribution

Box 8.6: The Gamma distribution

Parameter(s): Shape, 𝛼, and rate, 𝛽.
Mean: 𝛼∕𝛽.
Variance: 𝛼∕𝛽2.
Possible values: Positive.
Characteristics: Skewed.
Notation for a random variable X: X ∼ Gamma(𝛼, 𝛽).

The Gamma distribution is a two-parameter distribution, where the parameters are traditionally
known as shape, 𝛼, and rate, 𝛽. R also allows the Gamma distribution to be defined using scale
instead of rate, where scale is the inverse of rate.

The Gamma distribution is defined over only positive values. Examples of gamma probability
densities are given in Figure 8.7.

Note how 𝛼 ≤ 1 produces strictly declining functions and 𝛼 > 1 produces humped curves, with the
degree of skew declining as 𝛼 increases.

Densities, probabilities, quantiles, and random numbers using the Gamma distribution are all
possible, with dgamma (), pgamma (), qgamma (), and rgamma () the appropriate functions
this time. For example, if a random variable had a Gamma distribution with parameters 10 and 5:

• the density function evaluated at x = 1 is dgamma (1, 10, 5), which is 0.18;

• the probability that X is less than 1.5 is pgamma (1.5, 10, 5), which is 0.22;

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

P
ro

ba
bi

lit
y

de
ns

ity

Shape = 1, rate = 1
Shape = 2, rate = 2
Shape = 10, rate = 5

Figure 8.7 Gamma distribution probability density.

�

� �

�

386 THE R BOOK

• the quantile of the distribution that relates to 0.8 is qgamma (0.8, 10, 5), which is 0.83;

• we can generate 100 random numbers from the Gamma distribution by using rgamma (100,
10, 5).

8.3.7 The Exponential distribution

Box 8.7: The Exponential distribution

Parameter(s): Rate, 𝜆, with 𝜆 > 0.
Mean: 1∕𝜆.
Variance: 1∕𝜆2.
Possible values: Positive.
Characteristics: Skewed.
Notation for a random variable X: X ∼ Exp(λ).

The Exponential distribution is a one parameter distribution; indeed, it is a special case of the
Gamma distribution. Its parameter is often known as a rate and is useful in modelling the times
between events. Values from this distribution are always positive. Examples of the pdf in this case
are in Figure 8.8.

Densities, probabilities, quantiles, and random numbers using the Exponential distribution are all
possible, with dexp (), pexp (), qexp (), and rexp () the appropriate functions this time.
For example if a random variable had an Exponential distribution with rate 1:

• the density function evaluated at x = 2 is dexp (2, 1), which is 0.14;

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

x

P
ro

ba
bi

lit
y

de
ns

ity

Rate = 2
Rate = 1
Rate = 0.5

Figure 8.8 Exponential probability density.

�

� �

�

PROBABILITY DISTRIBUTIONS IN R 387

• the probability that X is less than 4 is pexp (4, 1), which is 0.98;

• the quantile of the distribution that relates to 0.6 is qexp (0.6, 1), which is 0.92;

• we can generate 100 random numbers from the Exponential distribution by using
rexp (100, 1).

8.3.8 The Beta distribution

Box 8.8: The Beta distribution

Parameter(s): Two shape parameters, a and b, both greater than 0.
Mean: a∕(a + b).
Variance: ab∕(a + b)2(a + b + 1).
Possible values: Any value in [0,1].
Characteristics: Bounded between 0 and 1.
Notation for a random variable X: X ∼ Beta(a,b).

The only possible values that we can get from a Beta distribution are between 0 and 1. It has two
parameters – let us call them a and b – which are its shape parameters. The order that the shape
parameters appear is important: a Beta distribution with shape parameters 1 and 5, say, is not
the same as a Beta distribution with shape parameters 5 and 1.

Figure 8.9 shows just how different the Beta distribution’s pdf can look as we change a and b.
Notice that when a = b = 1, we get the Uniform distribution over [0,1]: this is a special case of the
Beta distribution.

Densities, probabilities, quantiles, and random numbers using the Beta distribution are all pos-
sible, with dbeta (), pbeta (), qbeta (), and rbeta () the appropriate functions this time.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

x

P
ro

ba
bi

lit
y

de
ns

ity

a = 0.1, b = 0.1
a = 5, b = 1
a = 1, b = 5
a = 10, b = 10
a = 1, b = 1

Figure 8.9 Beta probability density.

�

� �

�

388 THE R BOOK

For example, if a random variable had an Exponential distribution with parameters 1 and 5:

• the density function evaluated at x = 0.1 is dbeta (0.1, 1, 5), which is 3.28;

• the probability that X is less than 0.4 is pbeta (0.4, 1, 5), which is 0.92;

• the quantile of the distribution that relates to a probability of 0.5 is qbeta (0.5, 1, 5), which
is 0.13;

• we can generate 100 random numbers from the Beta distribution by using rbeta
(100, 1, 5).

8.3.9 The Lognormal distribution

Box 8.9: The Lognormal distribution

Parameter(s): 𝜇 (any value) and 𝜎 > 0.
Mean: exp(𝜇 + 𝜎2∕2).
Variance: (exp(𝜎2) − 1)exp(2𝜇 + 𝜎2).
Possible values: Positive.
Characteristics: Skewed.
Notation for a random variable X: ln(X) ∼ N(𝜇, 𝜎2).

Random variables with a Lognormal distribution take only positive values. If the logarithm of a
lognormal random variable is taken, the result is a normal random variable, hence the name.
Applications for the lognormal include the distribution of particle sizes in aggregates, flood flows,
concentrations of air contaminants, and failure times. Examples of lognormal distributions are given
in Figure 8.10.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

P
ro

ba
bi

lit
y

de
ns

ity

Mu = 1, sigma = 2
Mu = 0, sigma = 0.5
Mu = –0.5, sigma = 0.5

Figure 8.10 Lognormal probability density.

�

� �

�

PROBABILITY DISTRIBUTIONS IN R 389

Densities, probabilities, quantiles, and random numbers using the Lognormal distribution are all
possible, with dlnorm (), plnorm (), qlnorm (), and rlnorm () the appropriate functions
this time. For example, if a random variable had a Lognormal distribution with 𝜇 = 0 and 𝜎 = 0.3:

• the density function evaluated at x = 1 is dlnorm (1, 0, 0.3), which is 1.33;

• the probability that X is less than 1.1 is plnorm (1.1, 0, 0.3), which is 0.62;

• the quantile of the distribution that relates to a probability of 0.6 is qlnorm (0.6, 0, 0.3),
which is 1.08;

• we can generate 100 random numbers from this Lognormal distribution by using rlnorm (100,
0, 0.3).

8.3.10 The Logistic distribution

Box 8.10: The Logistic distribution

Parameter(s): Location, 𝜇 (any value), and scale, 𝜎 > 0.
Mean: 𝜇.
Variance: 𝜎2𝜋2∕3.
Possible values: Positive.
Characteristics: Symmetric, bell-shaped.
Notation for a random variable X: X ∼ Logistic(𝜇, 𝜎).

The Logistic is a unimodal, symmetric distribution on the real line with tails that are heavier than
the Normal distribution. Its most famous role is that in logistic regression, which is a very popular
model (see Sections 11.4.1, 11.4.2, and 11.4.6). Probability densities of various Logistic distribu-
tions are given in Figure 8.11.

–5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

P
ro

ba
bi

lit
y

de
ns

ity

Mu = –5, sigma = 0.5
Mu = 0, sigma = 0.8
Mu = 3, sigma = 2

Figure 8.11 Logistic probability density.

�

� �

�

390 THE R BOOK

When we take the exponential of a Logistic distribution, we get the so-called ‘log-Logistic distri-
bution’. It is, of course, positive.

Densities, probabilities, quantiles, and random numbers using the Logistic distribution are all
possible, with dlogis (), plogis (), qlogis (), and rlogis () the appropriate functions
this time. For example, if a random variable had a Logistic distribution with parameters 1 and 3:

• the density function evaluated at x = 2 is dlogis (2, 1, 3), which is 0.08;

• the probability that X is less than 4 is plogis (4, 1, 3), which is 0.73;

• the quantile of the distribution that relates to 0.6 is qlogis (0.6, 1, 3), which is 2.22;

• we can generate 100 random numbers from the Logistic distribution by using rlogis (100,
1, 3).

8.3.11 The Weibull distribution

Box 8.11: The Weibull distribution

Parameter(s): Shape, 𝛼 > 0, and scale, 𝛽 > 0.
Mean: A function of 𝛼 and 𝛽.
Variance: A function of 𝛼 and 𝛽.
Possible values: Positive.
Characteristics: Skewed.
Notation for a random variable X: X ∼ Weibull(𝛼, 𝛽).

The Weibull is a two-parameter distribution, with Weibull random variables always positive. The
distribution is characterised by its so-called ‘scale and shape’; the larger the shape parameter,
the more symmetric the distribution. It is commonly used in reliability and survival analysis and is
useful in many other applications involving modelling behaviour. Whenever the shape parameter,
𝛼, is equal to 1, the Weibull reduces to the Exponential distribution. Densities of various Weibull
distributions are given in Figure 8.12.

Densities, probabilities, quantiles, and random numbers using the Weibull distribution are all
possible, with dweibull (), pweibull (), qweibull (), and rweibull () the appropriate
functions this time. For example, if a random variable had a Weibull distribution with parameters 1
and 3:

• the density function evaluated at x = 2 is dweibull (2, 1, 3), which is 0.17;

• the probability that X is less than 4 is pweibull (4, 1, 3), which is 0.74;

• the quantile of the distribution that relates to 0.6 is qweibull (0.6, 1, 3), which is 2.75;

• we can generate 100 random numbers from the Weibull distribution by using rweibull (100,
1, 3).

8.3.12 Multivariate Normal distribution

Finally, we look at the Normal distribution again, but this time its multivariate version. A random
quantity generated from this distribution will this time be a vector (X1, … ,Xk), say, where each

�

� �

�

PROBABILITY DISTRIBUTIONS IN R 391

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

P
ro

ba
bi

lit
y

de
ns

ity

Alpha = 2, beta = 3
Alpha = 2, beta = 10
Alpha = 10, beta = 10

Figure 8.12 Weibull probability density.

element Xi of the vector will have a Normal distribution but the set of variables {X1, … ,Xk} are
correlated.

The parameters of this distribution are the mean vector 𝝁 = (𝜇1, … , 𝜇k) and the covariance
matrix, Σ:

Σ =

⎡⎢⎢⎢⎢⎢⎣

𝜎2
1

𝜎12 … 𝜎1k

𝜎21 𝜎2
2

… 𝜎2k

⋮ ⋮ ⋱ ⋮

𝜎k1 𝜎k2 … 𝜎2
k

⎤⎥⎥⎥⎥⎥⎦
.

The entries in Σ are as follows: 𝜎2
i

is the variance of the ith element of the vector of random variables
(X1, … ,Xk), and 𝜎ij (where i ≠ j) is the covariance between Xi and Xj. Notice that this is the same
as the covariance between Xj and Xi, 𝜎ji, hence the covariance matrix is symmetric. A matrix is
said to be symmetric when it is equal to its transpose (see Section 3.11.6 for details).

With notation now defined, the distribution of a single element of a multivariate normal vector
(X1, … ,Xk), let us say Xi, is normally distributed with mean 𝜇i and variance 𝜎2

i
. The covariances

from Σ only come into play when we want to say something about how two elements of the vector,
say Xi and Xj where i ≠ j, behave in relation to each other (i.e. how they co-vary).

In order to generate random numbers from the multivariate Normal distribution (which is the
only function we’ll consider here), we will need the mvrnorm () function from the package MASS
(Venables and Ripley, 2002). For example, suppose that we want to simulate five observations from
the bivariate Normal distribution – so k is 2 in the above description – under the assumption that the
mean vector is (4,8) and the covariance matrix is

Σ =
[
3 1
1 7

]
.

�

� �

�

392 THE R BOOK

We can do this as follows, where the rows in the output correspond to single observations from the
given multivariate Normal distribution.

library(MASS)
mvrnorm (5 , mu = c (4, 8), matrix (c (3, 1, 1, 7), 2))

[,1] [,2]
[1,] 3.681000 7.266784
[2,] 2.353227 9.104023
[3,] 5.260096 4.518117
[4,] 2.070355 8.996658
[5,] 5.223700 7.794384

8.4 Discrete probability distributions

8.4.1 The Bernoulli distribution

Box 8.12: The Bernoulli distribution

Parameter(s): Probability of success, p.
Mean: p.
Variance: p(1 − p).
Possible values: {0,1}.
Characteristics: Related to the Binomial distribution.
Notation for a random variable X: X ∼ Bern(p).

This is the distribution underlying tests with a binary response variable. The response takes one
of only two values: it is 1 with probability p (‘a success’) and is 0 with probability 1 − p (a ‘failure’).
This in turn defines the distribution’s pmf.

It might be instructive to see why the mean of the Bernoulli distribution in R is just the probability
p: there are just two possible outcomes which are either a success (a value of 1) with probability p,
or a failure (a value of 0) with probability 1 − p. Thus, the expectation of our random variable X is

E(X) = 0 × (1 − p) + 1 × p = 0 + p = p.

Computations in R involving the Bernoulli distribution are generally done using the binomial, which
is discussed next, as the former is a special case of the latter.

8.4.2 The Binomial distribution

Box 8.13: The Binomial distribution

Parameter(s): Probability of success, p, and number of trials, n.
Mean: np.
Variance: np(1 − p).
Possible values: {0,1,2, … ,n}.
Characteristics: All trials are independent of one another.
Notation for a random variable X: X ∼ Bin(n,p).

�

� �

�

PROBABILITY DISTRIBUTIONS IN R 393

The binomial is an extension of the Bernoulli distribution: instead of just considering what happens
in one trial (for which the outcome is either a success or a failure), we now consider what happens
in n of these trials. It counts the number of successes in total, out of the n trials, hence a binomial
random variable can take on only whole numbers between 0 (indicating that none of the trials was
a success) and n (indicating that all trials succeeded).

Suppose that we are interested in the number of successes from four independent trials, where
the probability of a success on any given trial is 0.3. Notice that we don’t care which trials succeeded
and which trials didn’t; we are just interested in the count of the successful trials. Counting how many
ways a particular result could have arisen forms a crucial part of the probability calculations for the
Binomial distribution.

If, at the end of all four trials, we were told that two of the four were a success, how could this
have arisen? We could list all possible ways:

success, success, failure, failure
success, failure, success, failure
success, failure, failure, success
failure, success, success, failure
failure, success, failure, success
failure, failure, success, success

so there are six in total. All six are equally likely, with any of them having probability (0.320.72) which
account for two successes and two failures. We can therefore compute the probability of observing
two successes out of four trials as

6 × 0.32 × 0.72 = 0.2646,

where we acknowledge that we see two successes (each with probability 0.3), and therefore, two
failures (each with probability 0.7) and that there are six ways of observing this result if we look
at the order of the successes and failures.

As the number of trials increases, it becomes rather cumbersome to list all possible ways of find-
ing a particular number of successes among a set number of trials. An easy-to-implement formula
to compute the number of ways of getting x items (successes) out of n items (trials) is the combi-
natorial formula (

n
x

)
= n!

x!(n − x)!
.

The ‘exclamation mark’ means ‘factorial’; for instance, 5! = 5 × 4 × 3 × 2 × 1 = 120. This formula
has immense practical utility. We can certainly use it to help us enumerate binomial probabilities,
but it also shows, for example, how unlikely one is to win the National Lottery in which six numbers
are selected without replacement between 1 and 59. We can use the built-in choose () function
for this, which is roughly a 1 in 45 million chance of winning the jackpot.

choose (59, 6)

[1] 45057474

The general form of the pmf of the Binomial distribution is given by

p(x) =
(

n
x

)
px(1 − p)n−x,

�

� �

�

394 THE R BOOK

0 1 2 3 4

Number of successes

P
ro

ba
bi

lit
y

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 8.13 Binomial probability mass function for Bin(4, 0.3).

using the combinatorial formula above. Comparing this to the calculation above: this is indeed
the form of the probability of two successes in four trials we computed. Again, under the assump-
tion of four trials and probability of success of 0.3 on each one, and now armed with the general
formula, we can easily state the pmf (that is, we can quickly compute the probability of 0, 1, 3, and 4
successes out of the four trials). The resulting pmf is given in Figure 8.13.

The mean of the Binomial distribution is np and the variance is np(1 − p). Since 1 − p is less
than 1, it is obvious that the variance is less than the mean for the Binomial distribution (except,
of course, in the trivial case when p = 0 and the variance is 0).

The mass function, probabilities, quantiles, and random numbers using the Binomial distribu-
tion are all possible, with dbinom (), pbinom (), qbinom (), and rbinom () the appropriate
functions this time. For example, if a random variable X had a Binomial distribution with n = 10
and p = 0.6:

• the mass function at x = 2 is P(X = 1), which can be evaluated using dbinom (1, 10, 0.6),
is 0.01;

• the probability that X is less than or equal to 4 is pbinom (4, 10, 0.6), which is 0.17;

• the smallest value q such that P(X ≤ q) ≥ 0.5 is qbinom (0.5, 10, 0.6), which is 6 (note
that we will always get a whole number when asking such questions because of the nature of the
Binomial distribution);

• we can generate 100 random numbers from this Binomial distribution by using rbinom (100,
10, 0.6).

�

� �

�

PROBABILITY DISTRIBUTIONS IN R 395

This is easily adapted to the Bernoulli distribution by specifying the number of trials to be 1. For
example, if a random variable X had a Bernoulli distribution with p = 0.6, then we can generate 100
random numbers from this Bernoulli distribution by using rbinom (100, 1, 0.6).

8.4.3 The Geometric distribution

Box 8.14: The Geometric distribution

Parameter(s): Probability of success, p.
Mean: 1∕p or (1 − p)∕p depending on definition.
Variance: (1 − p)∕p2.
Possible values: {1,2,3, …} or {0,1,2, …}, depending on definition.
Characteristics: All trials are independent of one another.
Notation for a random variable X: X ∼ Geom(p).

There are two ‘versions’ of the Geometric distribution, with no common consensus as to which one
is the Geometric distribution.

In one version of the Geometric distribution, suppose that we have a series of independent
Bernoulli trials, each with probability p of success. How long do we wait until we see the first suc-
cess? That is, how many trials do we conduct until we see our first success? Letting W denote
the number of trials until the first success occurs, the density function is then

f1(w) = p(1 − p)w−1.

(That is, we observe (w − 1) failures first, each with probability (1 − p), and then a success, which
happens with probability p). Notice that unlike the Binomial distribution, we do not have to account
for how many ways there are of observing this: the whole point is that we stop when we see the first
success. This geometric random variable counts how many trials we undertake until we see a
success and so can take any value in {1,2,3, …}. The minimum value is 1 here, which indicates
we saw a success on the first trial.

Contrast this to the other version of the Geometric distribution: suppose that we have a series
of independent Bernoulli trials, each with probability p of success. Now, let Y be the number of fail-
ures until the first success occurs. The density function, therefore, is

f2(y) = p(1 − p)y.

(That is, we observe y failures first, each with probability (1 − p), and then a success, which hap-
pens with probability p). This geometric random variable counts how many failures we see before
observing a success and so can take any value in {0,1,2, …}. The minimum value is 0 here, which
indicates we saw a success on the first trial (and therefore there were no failures beforehand). Often,
this version of the Geometric distribution is known as the ‘shifted Geometric’ distribution.

Notice all that has happened in the second version of the Geometric distribution is that the val-
ues of the random variable have shifted down by one, but the like-for-like probabilities are the same
(e.g. the probability that a geometric random variable using the first formulation is equal to 2 is
the same as the probability that a geometric random variable using the second formulation is equal
to 1). An example of the pmf of the geometric (with probability of success 0.7 on each trial) is given

�

� �

�

396 THE R BOOK

1 2 3 4 5 6 7 8 9 10

Number of trials until a success

P
ro

ba
bi

lit
y

0.
00

0.
05

0.
10

0.
15

0.
20

(a) Version 1

0 1 2 3 4 5 6 7 8 9

Number of failures before a success

P
ro

ba
bi

lit
y

0.
00

0.
05

0.
10

0.
15

0.
20

(b) Version 2 (the shifted geometric)

Figure 8.14 Two versions of the Geometric distribution.

in Figure 8.14, for which this relationship should be clear. On the left-hand side is the first formula-
tion, while on the right, we have the second version of the Geometric distribution. The probabilities
are the same, but the labels on the x-axis are different: on the right, they are one unit less than
those on the left.

Given that the values that the two types of Geometric distribution can take differ, the mean of the
two distributions will be different. In the first formulation, the mean is simply 1∕p, while in the second,
given that we know it is simply shifted down by a value of one, it is

1
p
− 1 =

1 − p
p

.

The variance is the same for both distributions at 1−p
p2 : the spread of the two distributions doesn’t

change, only its location.
The mass function, probabilities, quantiles, and random numbers using the Geometric distribution

are all possible, with dgeom (), pgeom (), qgeom (), and rgeom () the appropriate functions
this time. Note that this is for the first version of the geometric indicated above. For example, if
a random variable X had a Geometric distribution with p = 0.6 (remember here that the possible
values are {1,2,3, …}):

• the mass function at x = 1 is P(X = 1), which can be evaluated using dgeom (1, 0.6), gives
0.24;

• the probability that X is less than or equal to 4 is pgeom (4, 0.6), which is 0.99;

• the smallest value q such that P(X ≤ q) ≥ 0.5 is qgeom (0.5, 0.6), which is 0;

• we can generate 100 random numbers from this Geometric distribution by using rgeom (100,
0.6).

If we want the shifted Geometric instead, we can still do this using the above functions, but this
time adjusting the inputs. For example, if a random variable X had a shifted Geometric distribution
with p = 0.6 (remember here that the possible values are {0,1,2, …}):

�

� �

�

PROBABILITY DISTRIBUTIONS IN R 397

• the mass function at x = 3 is P(X = 3), which can be evaluated using dgeom (4, 0.6), gives
0.1 (note: we are looking for the probability of 3 failures before then seeing a success, therefore,
4 trials in total in the language of the first type of Geometric distribution);

• the probability that X is less than or equal to 6 is pgeom (7, 0.6), which is 0.99 (see above
for reasoning why we use 7 and not 6 in pgeom ());

• the smallest value q such that P(X ≤ q) ≥ 0.8 is qgeom (0.8, 0.6) - 1, which is 0 (we need
to shift the answer down by one unit – see Figure 8.14 for a graphic representation of why this is
the case);

• we can generate 100 random numbers from this Geometric distribution by using rgeom (100,
0.6)-1 (again we need to shift all random numbers down by one unit so that this is representative
of the shifted Geometric).

8.4.4 The Hypergeometric distribution

Box 8.15: The Hypergeometric distribution

Parameter(s): Number in population, N, number of specified type, m, number chosen, n.
Mean: nm∕N.
Variance: A function of n,m,N.
Possible values: {0, … ,n} (though some of these may have probability zero).
Characteristics: Sampling is with replacement.
Notation for a random variable X: X ∼ Hypergeometric(N,m,n).

‘Balls in urns’ are the classic sort of problem solved by this distribution. Suppose that there are
N coloured balls in the statistician’s famous urn: b of them are blue and m = N − b of them are
red. Now a sample of n balls is removed from the urn; this is sampling without replacement. The
Hypergeometric distribution counts the number of blue balls that are in our sample. (Note, how-
ever, that the Hypergeometric doesn’t just apply to balls in urns; this is merely a convenient way of
describing it!)

The density function of the hypergeometric is

f(x) =

(
N−m

x

)(
m

n−x

)
(

N
n

) .

This gives the probability that x of these n balls are blue. When we set N = 20 (total number of balls
in the urn), m = 16 (number of blue balls in urn), and n = 5 (take a sample of size five), then the pmf
is depicted in Figure 8.15. Notice that a value of zero is impossible here: we take five balls without
replacement from the urn, and there are only four red balls in there (the rest are blue).

The mass function, probabilities, quantiles, and random numbers using the Hypergeometric dis-
tribution are all possible, with dhyper (), phyper (), qhyper (), and rhyper () the appro-
priate functions this time. For example if a random variable X had a Hypergeometric distribution
with N = 20,m = 16,n = 5:

• the mass function at x = 1 is P(X = 1), which can be evaluated using dhyper (1, 16, 4,
5), gives 0 (note – the parameters required by R are the number of blue balls, and the remaining
number of (red) balls, and not the total number of balls);

�

� �

�

398 THE R BOOK

0 1 2 3 4 5

Number of blue balls in sample

P
ro

ba
bi

lit
y

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 8.15 Hypergeometric probability mass function.

• the probability that X is less than or equal to 4 is phyper (4, 16, 4, 5), which is 0.72;

• the smallest value q such that P(X ≤ q) ≥ 0.5 is qhyper (0.5, 16, 4, 5), which is 4;

• we can generate 100 random numbers from this Geometric distribution by using rhyper (100,
16, 4, 5).

8.4.5 The Multinomial distribution

Box 8.16: The Multinomial distribution

Parameter(s): Number of trials, n, and probability of particular outcomes, p = (p1, … ,pt).
Mean: Expected number of times we see outcome i, from a set of n trials, npi.
Variance: Variance of the number of times we see outcome i, from a set of n trials, npi(1 − pi).
Possible values: Vector of length t, each element between 0 and n.
Characteristics: Outcomes are vectors. Must have that p1 + · · · + pt = 1. All trials are indepen-
dent of one another.
Notation for a random variable N: N ∼ Multinomial(n,p).

The Multinomial distribution is essentially an extension of the Binomial distribution, but this time
there are more than two possible outcomes for each trial (hence, multi- rather than bi-nomial).

Suppose that there are t possible outcomes (let us label these {1,2, … , t}) from an experimental
trial, and the outcome i has probability pi. Now allow n independent trials – each of which will result
in one of the t outcomes – and ask how many of the trials resulted in each of the t possible outcomes.

�

� �

�

PROBABILITY DISTRIBUTIONS IN R 399

What we get, in that case, is a vector N = (N1, … ,Nt), where Ni denotes the number of times we
saw outcome i out of the n trials.

The mass function here is an extension of the pmf of the Binomial distribution:

P(N = (n1, … ,nt)) =
n!

n1!n2!n3! … nt!
pn1

1
pn2

2
pn3

3
… pnt

t ,

where n1 + · · · + nt = n (the total number of trials) and p1 + · · · + pt = 1 (so that each trial must
result in one of the t distinct outcomes). We cannot plot the mass function in this case as it is too
cumbersome.

Notice that if we just looked at one of the possible outcomes, let us say the ith outcome,
and counted the number of trials which resulted like this, we get the Binomial distribution. That
is, if N = (N1, … ,Nt) has a Multinomial distribution with parameters n and p = (p1, … ,pt), then
if we look at the distribution of just Ni, this has a Binomial distribution with n trials and probability
of success pi in each.

R has functions to deal with the Multinomial distribution, which can be found in the stats pack-
age (R Core Team, 2019). The functions available are the dmultinom () and rmultinom ().
(It does not make sense to talk about quantiles or cumulative probabilities here: we are dealing
with random vectors instead of random variables.) Take an example with three outcomes (say black,
red and blue, so t = 3), where the first outcome is twice as likely as the other two (p1 = 0.5,p2 =
0.25,p3 = 0.25), noting that the probabilities sum to 1. Let us suppose that we take the number
of trials to be 5 (so that each one will result in either black or red or blue):

• the mass function at (1,2,2) (so seeing 1 black, 2 red, and 2 blue), or P(N = (1,2,2)), which can
be evaluated using dmultinom (c (1, 2, 2), 5, c(0.5, 0.25, 0.25)), gives 0.06;

• we can generate 100 random numbers from this Multinomial distribution by using rmulti-
nom (100, 5, c(0.5, 0.25, 0.25)). Note that this will generate 100 random vectors,
each of length 3 (the number of possible outcomes), and will randomly spread five trials among
the three possible outcomes according to the given probabilities.

8.4.6 The Poisson distribution

Box 8.17: The Poisson distribution

Parameter(s): 𝜆 (often referred to as a rate).
Mean: 𝜆.
Variance: 𝜆.
Possible values: {0,1,2, …}.
Characteristics: All events are independent of one another.
Notation for a random variable X: X ∼ Poisson(𝜆).

This is one of the most useful and important of the discrete probability distributions for describing
count data: the random variable describes how many times a particular event was observed (e.g.
number of lightning strikes in a particular area over a specified period of time, number of people
entering a particular shop each day).

The Poisson is a one-parameter distribution – the rate – which in essence describes the rate or
frequency with which the events of interest occur. The mass function of a Poisson distribution
with parameter (rate) 𝜆 is

p(x) = e−𝜆𝜆x

x!
.

�

� �

�

400 THE R BOOK

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of events observed

P
ro

ba
bi

lit
y

0.
00

0.
05

0.
10

0.
15

Figure 8.16 Poisson probability mass function.

This gives the probability that we observe x events (in a specified time period or space). The mass
function when 𝜆 = 5 is shown in Figure 8.16. This distribution has the interesting property that its
variance is equal to its mean, both of which are equal to the rate, 𝜆.

The mass function, probabilities, quantiles, and random numbers using the Poisson distribution
are all possible, with dpois (), ppois (), qpois (), and rpois () the appropriate functions
this time. For example, if a random variable X had a Poisson distribution with 𝜆 = 5:

• the mass function at x = 1 is P(X = 1), which can be evaluated using dpois (1, 5), gives 0.03;

• the probability that X is less than or equal to 4 is ppois (4, 5), which is 0.44;

• the smallest value q such that P(X ≤ q) ≥ 0.5 is qpois (0.5, 5), which is 5;

• we can generate 100 random numbers from this Poisson distribution by using rpois
(100, 5).

8.4.7 The Negative Binomial distribution

Box 8.18: The Negative Binomial distribution

Parameter(s): Number of failures, r, and probability of failure in each trial, p.
Mean: pr∕(1 − p).
Variance: pr∕(1 − p)2.
Possible values: {0,1,2, …}.
Characteristics: All trials are independent of each other.
Notation for a random variable X: X ∼ NB(r,p).

�

� �

�

PROBABILITY DISTRIBUTIONS IN R 401

Suppose that we observe a sequence of trials, each of which can succeed or fail. The negative
binomial counts the number of successful trials we observe before we see a particular number
of failures. For example, if we are willing to observe up to and including five failures before we stop
observing a particular set of trials, how many successes will we have seen up until we stopped? It
makes sense that this type of variable can take any (whole) number, starting from 0 (that is, we see
five failures in a row, so stop before observing any successes).

The mass function this time, for a specified number of failures r and probability p of any given
trial succeeding, is

f(x) =
(

x − 1
r − 1

)
pr(1 − p)x−r.

This, of course, gives the probability of observing x successes, when the probability that any given
trial succeeds is p and we stop when we see the rth failure. An example of the mass function, when
r = 5 and p = 0.4 is given in Figure 8.17

The mass function, probabilities, quantiles, and random numbers using the Negative Binomial
distribution are all possible, with dnbinom (), pnbinom (), qnbinom (), and rnbinom ()
the appropriate functions this time. For example, if a random variable X had a Negative Binomial
distribution with success probability of 0.4 and number of failures equal to 5:

• the mass function at x = 1 is P(X = 1), which can be evaluated using dnbinom (1, 5, 0.4),
gives 0.03;

• the probability that X is less than or equal to 4 is pnbinom (4, 5, 0.4), which is 0.27;

• the smallest value q such that P(X ≤ q) ≥ 0.5 is qnbinom (0.5, 5, 0.4), which is 7;

• we can generate 100 random numbers from this Negative Binomial distribution by using rnbinom
(100, 5, 0.4).

0 2 4 6 8 10 12 14 16 18 20 22 24

Number of successes up until observing five failures

P
ro

ba
bi

lit
y

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Figure 8.17 Negative binomial probability mass function.

�

� �

�

402 THE R BOOK

Note that, like the Geometric distribution, there are different formulations of the Negative Binomial
distribution. See Ross, 1998 for more information.

8.5 The central limit theorem

Suppose that we have collected data on a particular variable, but we don’t know which distribution
the data come from. We might want to estimate the population mean, which is straightforward
enough: we estimate it using the sample mean. But this gives a single number – how will this vary
if we were to repeat the data collection again and again?

The central limit theorem is a very powerful result that enables us to say something useful about
the population mean of a random variable, even when we don’t know its underlying distribution, as
long as we collect enough samples of the random variable.

If we take repeated equally sized samples from a population with finite variance and calcu-
late their averages, then the averages will be normally distributed. This is called the central limit
theorem.

Let us demonstrate it using R’s functions to generate data from a specific distribution. We can take
one hundred uniformly distributed random numbers between 0 and 10 and work out the average.
Typically, the average will be around 5 – the mean of this Uniform distribution – but, of course, it will
vary from sample to sample. Let us look at the histogram of observations for one such sample of
100 observations, given in Figure 8.18. This should look roughly (though not exactly) like the pdf of
the uniform, with its characteristic ‘flat-top’.

Value

F
re

qu
en

cy

0 2 4 6 8 10

0
5

10
15

Figure 8.18 100 samples from a Uniform distribution.

�

� �

�

PROBABILITY DISTRIBUTIONS IN R 403

Mean

F
re

qu
en

cy

4.0 4.5 5.0 5.5 6.0

0
50

10
0

15
0

20
0

25
0

Figure 8.19 1000 sample means from a Uniform distribution. Each sample has 100 observations.

For this particular sample, the mean is 4.8. What if we were to repeat this experiment? The
sample mean is likely to change, but by how much? Let us repeat this experiment a further 1000
times. Each time we’ll record the sample mean; the histogram of all 1000 sample means is in
Figure 8.19.

The histogram indicates a nice bell-shaped curve, and though we won’t prove it here, the distri-
bution of the sample mean is approximately normally distributed with mean 4.99 (roughly the mean
of the original distribution) and variance 0.08 (roughly the original variance, 100/12, divided by the
sample size of 100).

Figure 8.20 shows four more examples of the distribution of sample means when the underlying
distribution is non-normal. Each sample has 100 observations, and the sampling is repeated 1000
times.

The central limit theorem really works. Almost any distribution, even a ‘badly behaved’ one like
the Uniform distribution (which for which the distribution looks nothing like the normal), will result in
a Normal distribution for the sample means. But we must be careful, however: when we take very
small samples from a distribution the central limit theorem might not hold. We can’t put a minimum
sample size to guarantee the central limit theorem, but a sample size of at least 30 often does the
trick.

But aside from novelty, what practical purpose does this result have? It turns out that it helps us in
many ways. We won’t be using the result directly, and we may not even notice that the mathematics
underpinning some of what we discuss in the rest of this book is based on the central limit theorem,
but it is there: in creating confidence intervals for population means, in hypothesis testing, and even
in inference around building regression models.

�

� �

�

404 THE R BOOK

F
re

qu
en

cy

1.8 1.9 2.0 2.1 2.2

0
50

10
0

15
0

20
0

25
0

(a) Gamma(10,5)

F
re

qu
en

cy

0.46 0.48 0.50 0.52

0
50

10
0

15
0

(b) Beta(10,10)

F
re

qu
en

cy

2.4 2.6 2.8 3.0 3.2 3.4

0
50

10
0

15
0

20
0

25
0

(c) Binomial(10,0.3)

F
re

qu
en

cy

4.5 5.0 5.5

0
50

10
0

15
0

20
0

(d) Poisson(5)

Figure 8.20 Distribution of the sample mean using different sampling distributions.

References

R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical
Computing. Vienna, Austria. https://www.R-project.org/.

Ross, S. M. (1998). A first course in probability (Fifth). Prentice Hall.
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (Fourth) [ISBN 0-387-95457-0].

Springer. https://www.stats.ox.ac.uk/pub/MASS4/.

https://www.R-project.org/
https://www.stats.ox.ac.uk/pub/MASS4/

�

� �

�

9
Testing

Box 9.1:

Population The group to which we want to apply the conclusion, e.g. Canadian women.

Sample The subgroup of the population for which we have data.

One of the most popular (as in frequently performed) tasks in statistics is to draw conclusions about
a population when we only have data for a subset or a sample of that population. In this chapter,
we will consider two such tasks:

• Calculating a confidence interval (CI) for a population statistic such as the mean or the variance;

• Comparing population statistics to each other or to specific values or distributions, using statistical
tests.

The calculations in R in both cases are extremely straightforward and, where appropriate, carried
out simultaneously. However, selecting and defining an appropriate CI or test, and then interpreting
the results are fraught with pitfalls and generally performed badly, frequently in published papers.

The framework for tests (CIs use a subset) is the following:

1. Define the question under consideration in terms of statistical hypotheses. This will determine
the general sort of test to be carried out;

2. Check the assumptions that lay behind the tests. This will help pin down the specific test (and
possibly the specific hypotheses) that is appropriate;

3. Carry out the test;

4. Interpret the results of the test in terms of the hypotheses;

5. Translate those results into a conclusion for the population being studied.

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

406 THE R BOOK

In this chapter, we will begin by examining the general principles for conducting tests/CIs (items 1,
2, and 4). It is important that these are well understood before moving on to the rest of the chapter
where tests/CIs for specific comparisons (item 3) are described. They are organised by data type,
initially continuous or discrete. The final issues that we will cover are an alternative approach to
testing/CIs known as bootstrapping, how to interpret results when multiple tests are performed, and
calculating sample sizes for tests/CIs. There are hundreds of statistical tests: we will touch on a
subset of them here.

A final encouragement: before leaping into tests and CIs, have a look at your data by using
summary statistics and plots. These may suggest helpful lines of analysis. A summary of all the
tests used in this chapter is given in Table 9.1.

9.1 Principles

9.1.1 Defining the question to be tested

We have a question that we want to answer about a population, e.g. are women from Canada taller
on average than women from Burundi, or does a hypothetical subatomic particle exist; and some
data from a sample of that population. Our first task is to create a statistical null hypothesis, H0,
about the population. When we carry out the test (this section does not apply to CIs), we will assume
that this null hypothesis, together with the assumptions covered in Section 9.1.2, are true and that
will enable us to carry out the mathematics required to draw our conclusion. For the mathematics
to work, the null hypothesis needs to be straightforward and it will usually describe the boring or
negative outcome. For instance:

• H0: the average height of women in Canada is the same as the average height of women in
Burundi;

• H0: a new subatomic particle with a specific mass does not exist.

We might then be interested in a specific alternative hypothesis, H1, which may not be the logically
exhaustive converse of H0, for instance: H1: women in Canada are taller than women in Burundi
on average.

The first thing to keep in mind is that we will be testing H0 and not H1. It would be much more
satisfactory if we could directly test the assumption that Canadian women are taller than Burundian
women on average, but the mathematics of the test would not then work. So we can only come
to a conclusion about H0. Second, since we are only examining a sample of the population, we
cannot come to a definite conclusion: we have not studied the complete population and so our
conclusion will express a level of uncertainty. Finally, as is usual with much scientific testing, we
can only express the conclusion in terms of the strength of evidence against H0.

This all sounds rather depressing and inconclusive. However, there are approaches that will result
in more definite conclusions:

• use as large a sample size as possible. This will reduce the level of uncertainty in the conclusion;

• repeat the experiment independently of the original work, and then analyse that. This ought to
reduce experimental bias and is essential for the results to have long-term validity.

We will return to interpreting the results of tests in Section 9.1.3.

�

� �

�

TESTING 407

Exam1
40

60
80

30 40 50 60 70 80 90

40 50 60 70 80

Exam2

30
60

90

30 40 50 60 70 80 90

30
60

90

Exam3

Figure 9.1 Scatter plots comparing the marks from exams.

Let us illustrate these ideas using the exams dataset. This shows the marks out of 100 for 88
students, each taking three exams:

exams <- read.csv ("exams.csv")
head (exams)

Exam1 Exam2 Exam3
1 79 81 80
2 58 72 61
3 44 35 44
4 67 67 69
5 61 61 66
6 53 51 58

plot (exams, pch = 20)

We can see from Figure 9.1 that the marks from exams 1 and 3 are highly correlated. In the same
way that the plot () function interprets the exams dataframe intelligently, we can examine all
correlations in a very straightforward way:

cor (exams)

Exam1 Exam2 Exam3
Exam1 1.0000000 0.6369653 0.9867625
Exam2 0.6369653 1.0000000 0.6127684
Exam3 0.9867625 0.6127684 1.0000000

We might be interested in comparing the mean score in exam 1 to a specific mark, say 60%, perhaps
because the organisation running the exams has decided that it would like the mean mark to be
that. In that case our hypotheses would be

H0 The population mean exam 1 mark is 60%;

H1 The population mean exam 1 mark is not 60%.

�

� �

�

408 THE R BOOK

This is a two-sided test as the alternative hypothesis could involve the exam 1 mark being either
greater than or less than 60%. An alternative to that might be a one-sided test, where our interest
might solely lie in whether mean population marks are greater than 60% (perhaps because of an
interest in grade inflation):

H0 The population mean exam 1 mark is ≤ 60%;

H1 The population mean exam 1 mark is > 60%.

The calculations regarding the null hypothesis would actually take place with a value of 60% as
they would provide the strongest evidence against the null hypothesis. The two sets of hypotheses
above might well lead to differing conclusions using the same data so defining very carefully the
question to be answered is very important.

9.1.2 Assumptions

All statistical tests and CIs make assumptions which come in two flavours:

1. That the data in the sample are randomly selected from the population about which we want
to draw a conclusion. If this is not the case, then the conclusion may be invalid. For instance,
the conclusion of a test to measure the effect that exercise has on cognitive ability where the
sample is mostly male university students, should not be extended to the population as a whole.
Further discussion is outside the scope of this book and, in practice, the assumption is virtually
impossible to achieve. An understanding of the extent to which it has been achieved is important
in drawing wider inferences;

2. Some tests (known as parametric tests) and CIs make distributional assumptions about the
population data. The most common is that population data are normally distributed, and this
particular assumption is covered in more detail in Section 9.2.5. Tests that do not make these
distributional assumptions are known as non-parametric.

For our exams dataset, we can assume that the sample was randomly selected from the popula-
tion (of students). However, we will need to check that the population data come from a Normal
distribution and we do this in Section 9.2.5. The outcome is that we are happy with the normality
assumption for exams 1 and 3, but not for exam 2.

9.1.3 Interpreting results

The R output from a test contains a lot of information, including the CI, that will vary by test. However,
the key data to look out for are

• p-value This will be present for all tests. It can be defined as the probability that the sample data,
or data more extreme, would have arisen if the assumptions and H0 are true.

• confidence interval This will be present for all parametric and some non-parametric tests where
we are trying to estimate a parameter. It represents a, say, 92% interval for that population
parameter, and if we were to sample from the population 100 times, we would expect the actual
population parameter to lie in roughly 92 of the resulting confidence intervals. Again, this is based
on the assumptions being true.

�

� �

�

TESTING 409

Interpretations of both of these values are poorly described and frequently, in practice, erroneous.
However, before we consider that, let us go back to our exam data and run a test. We have a

sample of 88 students with a mean mark in exam 1 of 60.67, which is close to our target of 60%, but
we are interested in the population mean. Fortunately, there are statistical tests that we can use to
check that. In this case, as the assumptions are met, we can use a simple t-test and we will request
a 92% confidence interval:

t.test (x = exams$Exam1, mu = 60, conf.level = 0.92)

One Sample t-test

data: exams$Exam1
t = 0.51809, df = 87, p-value = 0.6057
alternative hypothesis: true mean is not equal to 60
92 percent confidence interval:
58.37812 62.96279

sample estimates:
mean of x
60.67045

The default setting for H1 is displayed in the output, as are the p-value and 92% confidence interval.
What can we conclude? If our assumptions and H0 are true, then the probability of ending up with
our data or more extreme is 0.606. This does not seem at all unlikely and so we have no evidence
against our null hypothesis that the mean population exam mark is 60%. This does not imply that
H0 is true nor that H1 is false. The strongest statement that we can make (in statistical terms) is that
the data are not incompatible with H0. The confidence interval for the population mean is (58.38,
62.96) and a mark of 60 falls comfortably within that.

Box 9.2: Nutritional statistics

The use of p-values is similar to eating fast food: superficially tasty but neither nutritious nor
satisfying in the long term. There are healthier statistical techniques: try, for instance, confidence
intervals or building (linear) models. These can give you more insight into the data and leave you
a happier and healthier statistician.

Before we look at another example, here are some interpretations of p-values (we will use 0.606
from above) that are not valid:

• the probability that the null hypothesis is true is 0.606;

• the null hypothesis should be accepted;

• the alternative hypothesis should be rejected.

And, likewise, incorrect interpretations of confidence intervals (CIs) – we will use 92%:

• for a specific CI, the probability that the population value being estimated (e.g. mean) is contained
within (or belongs to) that CI is 92%;

• we are 92% certain that the sample mean belongs to the CI (should be population mean).

�

� �

�

410 THE R BOOK

Assuming that our assumptions are OK, what is the p-value where our conclusion might change
from no evidence against H0 (as in our test) to some (or a stronger word) evidence against H0?
There is no right answer and certainly no mathematical justification for a clear cut off point. As
the p-value becomes smaller, our evidence against H0 becomes stronger and the results should
be interpreted in terms of both the sample size (a larger sample will detect smaller differences)
and subject matter relevance (for instance is the confidence interval significant as far as the topic
under consideration is concerned?). Large p-values tell us nothing about the alternative hypoth-
esis. Experience counts here, so we should involve an experienced statistician in interpreting
tests. Above all, we must not blindly treat 5% as a magical boundary between significant and
otherwise.

We have avoided using the term statistically significant as it has been so badly abused. It might
be clearer to say that very small p-values indicate weird shit in the data, given the null hypothesis
and any assumptions.

9.2 Continuous data

We will look at some of the most common topics for testing aspects of a continuous dataset:

• comparing a population average to a specific value (Section 9.2.1);

• comparing the averages of two populations (Section 9.2.2);

• comparing the averages of more than two populations (Section 9.2.3);

• comparing the population distribution to a specific named distribution such as the Gamma
(Section 9.2.4).

In many cases, the equivalent CI would give an interval for the average or difference in averages.
We might treat a discrete dataset, such as exams, as continuous if there is a wide enough range
of values: after all, continuous data are usually rounded. The specific test/CI chosen will depend
upon assumptions (see Section 9.1.2), the most common being:

• do the population data have a Normal distribution (Section 9.2.5);

• do the two populations have the same variance (Section 9.2.6)?

Checking these assumptions may involve further tests!

9.2.1 Single population average

We have already seen an example of a t-test where we have a single sample of data and wish to
know whether the population mean has a specific value (Section 9.1.2).

We can investigate the matter further by examining the data from Michelson’s famous experiment
in 1879 to measure the speed of light (Michelson, 1880) with a sample of 20 observations. The
dataset light contains his results in km s−1, but with 299,000 subtracted.

�

� �

�

TESTING 411

F
re

qu
en

cy

700 800 900 1000 1100

0
2

4
6

8

Figure 9.2 Histogram of estimates of the speed of light from light (-299,000).

light <- read.table ("light.txt", header = T)
head (light)

speed
1 850
2 740
3 900
4 1070
5 930
6 850

summary (light$speed)

Min. 1st Qu. Median Mean 3rd Qu. Max.
650 850 940 909 980 1070

Figure 9.2 is a frequency histogram of the data, which is very well spread out and strongly
negatively skewed.

hist (light$speed,, main = "", xlab = "", col = hue_pal ()(1))

We want to test the hypothesis that Michelson’s estimate of the speed of light is significantly differ-
ent from the value of 299,990 thought to prevail at the time. Since the data have all had 299,000
subtracted from them, the test value is 990: this is equivalent to testing whether the data are differ-
ent from 990. Because of the non-normality (evident in Figure 9.2) and small sample size (20), the
use of a t-test in this case is ill advised. However, the non-parametric test we will use (Wilcoxon’s
signed-rank test) has the following hypotheses, so be careful not to over interpret the results:

H0: estimates of the speed of light are symmetric about 299,990;

H1: estimates of the speed of light are not symmetric about 299,990.

�

� �

�

412 THE R BOOK

wilcox.test (light$speed, mu = 990)

Wilcoxon signed rank test with continuity correction

data: light$speed
V = 22.5, p-value = 0.00213
alternative hypothesis: true location is not equal to 990

The p-value of 0.0021 suggests strong evidence against the null hypothesis: estimates of the speed
of light do not appear to be symmetric about 299,990, and the plot indicates that most are lower.
Note that this test does not like data points with the same value, as suggested by the warning
message that your console may display when running the test.

9.2.2 Two population averages

Comparing averages from two populations is a popular pastime, and the starting point is to decide
whether we can pair items. In our exams dataset, we can match up results for any pair of exams by
picking a student and looking at their marks in those exams. Before we look at those data, we will
first examine the tulips dataset. This contains measurements of the heights of samples of tulip
flowers in two gardens, A and B. The gardeners, Ronald and Karl, are fiercely competitive about
their respective approaches to growing tulips. The data come from measurements in two separate
gardens and cannot be paired.

load ("tulips.RData")
boxplot (list (GardenA, GardenB), ylab = "Height (cm)",

varwidth = T, names = c ("GardenA", "GardenB"),
col = hue_pal ()(2), notch = T)

Figure 9.3 shows box plots for the samples with slightly differing widths based on the square roots
of the sample sizes. It appears that the values in GardenA may be slightly higher than those in
GardenB and also more spread out. The notch = T argument produces the waist-like effect: their
overlap suggests no evidence of difference in medians (see help (boxplot.stats) for more
details). However, as the datasets appear to be normally distributed (check out the two QQ plots

GardenA GardenB

2
4

6
8

10

H
ei

gh
t (

cm
)

Figure 9.3 Tulip flower heights in 2 gardens.

�

� �

�

TESTING 413

as described in Section 9.2.5 for an example with another dataset) we will compare means using a
t-test. Our hypotheses are

H0: the populations in GardenA and GardenB have the same mean;

H1: the populations in GardenA and GardenB do not have the same mean.

This t-test uses the same command as for a single dataset, but we use more of the arguments:

t.test (x = GardenA, y = GardenB, conf.level = 0.9,
var.equal = T)

Two Sample t-test

data: GardenA and GardenB
t = 1.4751, df = 153, p-value = 0.1422
alternative hypothesis: true difference in means is not equal to 0
90 percent confidence interval:
-0.04832176 0.84133842

sample estimates:
mean of x mean of y
6.398133 6.001625

We test for equal variances in Section 9.2.6 and accept the default non-paired argument. Combi-
nations of these arguments results in variations of the classic t-test. The p-value of 0.142 suggests
no evidence against our null hypothesis, and the 90% CI contains 0.

Reverting to our exams dataset to consider paired data, we might be interested in comparing
the results between the first two exams. The assumption we need to check is whether the two sets
of population data are normally distributed. As we see in Section 9.2.5, that appears not to be the
case for exam 2. This means that we cannot carry out a paired t-test but will need to perform a
non-parametric Wilcoxon signed rank test. This has the following hypotheses:

H0 The differences between marks for pupils in the two exams are symmetric about 0;

H1 The differences between marks for pupils in the two exams are not symmetric about 0.

Running the test gives:

wilcox.test (exams$Exam1, exams$Exam2, paired = TRUE, conf.int = TRUE)

Wilcoxon signed rank test with continuity correction

data: exams$Exam1 and exams$Exam2
V = 1143, p-value = 0.01482
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-4.9999700 -0.4999531

sample estimates:
(pseudo)median
-2.500061

�

� �

�

414 THE R BOOK

The confidence interval is the difference in median between the two datasets and defaults to 95%.
As we can see, it does not contain zero, and we also have a small p-value, 0.015. This suggests that
our assumptions and H0 would only have a small chance of giving rise to the data, or more extreme:
it is very likely that there are problems with either our assumptions or H0. It does not mean that H1
is true or that H0 is false. Formally, we might say that there is evidence against the hypothesis that
the two sets of exam marks have the same distributional shape or that there is a problem with one
of our assumptions.

Exams 1 and 3 do appear to have normally distributed marks and so we can use a variation on the
t-test discussed earlier in this section. First, we need to check for equal variances using var.test
() (the values are actually not too far apart: 147.37 and 154.1) and then we put the result of that
test into our t-test:

if (var.test (x = exams$Exam1, y = exams$Exam3)$p.value < 0.01) {
exams13_var_equal <- "T"

} else {
exams13_var_equal <- "F"

}
t.test (x = exams$Exam1, y = exams$Exam3, conf.level = 0.9,

paired = T, var.equal = exams13_var_equal)

Paired t-test

data: exams$Exam1 and exams$Exam3
t = -14.541, df = 87, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
90 percent confidence interval:
-3.482312 -2.767688
sample estimates:
mean of the differences

-3.125

There is very strong evidence against our null hypothesis (or any assumptions).
We have seen varieties of the parametric t-test and the non-parametric Wilcoxon test. The

non-parametric test is much more appropriate than the t-test when the errors are not Normal,
perhaps detected by examining the QQ-plot from the residuals in a t-test. The non-parametric
test is about 95% as powerful with Normal errors and can be more powerful than the t-test if
the distribution is strongly skewed by the presence of outliers. Typically, the t-test will give the
lower p-value, so the Wilcoxon test is said to be conservative: if a difference is very small under a
Wilcoxon test it is generally even smaller under a t-test.

9.2.3 Multiple population averages

In Section 9.2.2, we looked at comparing two populations. We might want to compare more than
two, for instance if we are looking at the effectiveness of a number of medical interventions. If the
populations involved appear to be normally distributed, then this analysis can be carried out using
linear regression (Chapter 10). If that is not the case, as in our exams dataset, then we have another
option, a Kruskal–Wallis test:

�

� �

�

TESTING 415

kruskal.test (exams)

Kruskal--Wallis rank sum test

data: exams
Kruskal--Wallis chi-squared = 3.589, df = 2, p-value = 0.1662

This is working with the following hypotheses:

H0 The medians of the 3 populations of marks are the same.

H1 The medians of the 3 populations of marks are not the same.

So, in this case, there is no evidence against that null hypothesis. If we did come up with a small
p-value, then we would still need to know where the differences occur. A common approach then
is to test all pairs of datasets: just be aware that as there are multiple tests, the p-values will need
to be adjusted as in Section 9.5.

9.2.4 Population distribution

We might have some data and want to understand their distribution, and could ask one of two
different questions:

• Are two sample distributions the same, or are they significantly different from one another in one
or more (unspecified) ways?

• Does a particular sample distribution arise from a particular hypothesised distribution?

These apparently simple questions are actually very broad. It is obvious that two distributions could
be different because their means were different. But two distributions with exactly the same mean
could be significantly different if they differed in variance, or in skew, or in kurtosis. There are some
wonderfully named tests that examine these questions.

The tests work on cumulative distribution functions. These give the probability that a randomly
selected value of X is less than or equal to x:

F(x) = P(X <= x).

This sounds somewhat abstract. Returning to the size of tulips, we met in Section 9.2.2 and
Figure 9.3:

load ("tulips.RData")

We plot the cumulative frequencies, translated into probabilities (known as empirical distribution
functions), for the two samples on the same axes in Figure 9.4, bearing in mind that the samples
have different lengths. We also show the two boxplots, with very similar profiles.

�

� �

�

416 THE R BOOK

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Percentage of samples considered

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

GardenA
GardenB

(a) Empirical distribution functions

0
2

4
6

8
10

12

(b) Box plot Garden A

0
2

4
6

8
10

12

(c) Box plot Garden B

Figure 9.4 Tulip flower heights in 2 gardens.

A <- length (GardenA)
B <- length (GardenB)
plot (seq (0, 1, length = A), cumsum (sort(GardenA) / sum(GardenA)), type="l",

ylab = "cumulative probability", xlab = "percentage of samples consid-
ered",

col = hue_pal ()(4)[1])
lines (seq (0, 1, length = B), cumsum (sort (GardenB) / sum(GardenB)),

col = hue_pal ()(4)[2])
legend (x = 0.7, y = 0.4, legend = c ("GardenA", "GardenB"),

col = hue_pal ()(2), lty = 1)
boxplot (GardenA, col = hue_pal ()(4)[3], ylim = c (0, 12))
boxplot (GardenB, col = hue_pal ()(4)[4], ylim = c (0, 12))

Although we have seen that the two samples have different means and variability, the plot shows
that the two sample distributions are virtually indistinguishable in shape. We can carry out the formal
Kolmogorov–Smirnov test:

ks.test (GardenA, GardenB)

Two-sample Kolmogorov--Smirnov test

data: GardenA and GardenB
D = 0.19583, p-value = 0.1027
alternative hypothesis: two-sided

The p-value suggests little evidence against the null hypothesis that the data in the two populations
come from the same distribution.

If we wanted to compare the data in GardenA to a specific distribution, say a t-distribution:

ks.test(GardenA, "pt", ncp = mean (GardenA), df = length (GardenA) - 1)

One-sample Kolmogorov--Smirnov test

data: GardenA
D = 0.13273, p-value = 0.1423
alternative hypothesis: two-sided

�

� �

�

TESTING 417

then we need to specify the appropriate cumulative distribution function in R (pt) together with its
parameter values, which we take from the GardenA sample. There is an equally intriguingly named
test, the Anderson–Darling test, which one can also use.

Comparisons with the Normal distribution are considered separately in the following section.

9.2.5 Checking and testing for normality

The most common reason for wishing to check that data are normally distributed is because a test
that we wish to perform, such as comparing population means, assumes that the population data
are normally distributed. That is what we will focus on in this section. For a more general analysis
of comparing data to a distribution, see Section 9.2.4.

How might we check whether population data are normally distributed? First, see whether some-
one else has done it. Reverting to our example from Section 9.1.1, the height of Canadian women
will have been thoroughly studied and normality or otherwise should be clear. Usually, however, we
will need to perform the review ourselves. In an ideal world, we would have access to the population
data and can check those: in practice, we are likely to have only the sample data and, as long as
they fulfil the randomness assumption, we can use them.

There are three further conditions that need to be considered before we can actually check for
normality:

1. How much data do we have? There is no precise answer to this but, for simplicity’s sake, let
us say that with fewer than 20 data items, we cannot check for normality (and so cannot make
the assumption) but with at least 30 items we definitely can. In between, we should get a bigger
sample. If in doubt, let us assume that a check is not possible (i.e. we will either need to perform
a non-parametric test or state that we are making the normality assumption without evidence).

2. Are our data genuinely numerical? We may have used numbers as labels and, even if those
labels represent some sort of order as in a survey, then normality is not appropriate.

3. What type of data do we have? The Normal distribution is continuous and has a range from
minus infinity to plus infinity. So, ideally, our data should be the same. In practice, they may take
only integer values and have a much narrower range. Again, it is a judgment call as to whether
checking for normality is appropriate. But, for example, 30 data points in {11,12,13,14,15} would
not be appropriate for checking but 100 data points in {31,32, . . .,70} might be.

Now, let us assume that we have data that meet all the above conditions. How can we actually
check for normality? The obvious answer is to carry out a test, and, indeed, there are many such
tests. However, they are difficult to interpret and are likely, by default, to suggest normality for small
samples and to rule it out for large samples. In addition, trying to capture how well data fit a curve
in one number is a little optimistic.

A much better idea is to plot the data. The obvious approach is to plot a histogram (or density
plot) of the data and compare it with a Normal curve. But, again, we can do better: there are many
histograms for any set of data (depending up on where the breaks between cells occur), so how do
we know which one we should use? A Normal QQ plot is essentially a mathematical transformation
of a Normal curve into a straight diagonal line. We can then carry out the same transformation with
the data and see how well the data points match the straight line.

We will illustrate these ideas using the exams dataset, introduced in Section 9.1.1. We can build
QQ plots with the accompanying Normal straight lines (Figure 9.5) for each of the three exams as
follows, with R doing all the heavy lifting:

�

� �

�

418 THE R BOOK

Theoretical quantiles

S
am

pl
e

qu
an

til
es

(a) Exam 1

Theoretical quantiles

S
am

pl
e

qu
an

til
es

(b) Exam 2

Theoretical quantiles

S
am

pl
e

qu
an

til
es

(c) Exam3

Figure 9.5 QQ plots for the two exams in exams.

qqnorm (exams$Exam1, main = "", col = hue_pal ()(3)[1], cex.lab = 2, xaxt = "n",
yaxt = "n")

qqline (exams$Exam1)
qqnorm (exams$Exam2, main = "", col = hue_pal ()(3)[2], cex.lab = 2, xaxt = "n",

yaxt = "n")
qqline (exams$Exam2)
qqnorm (exams$Exam3, main = "", col = hue_pal ()(3)[3], cex.lab = 2, xaxt = "n",

yaxt = "n")
qqline (exams$Exam3)

In Figures 9.5a and 9.5c the points lie almost exactly on the straight lines, suggesting that the results
for Exams 1 and 3 are a good fit to the Normal distribution. However, in Figure 9.5b,things are a little
more complicated and this gives us a chance to examine QQ plots in more detail. The heights of
the points (on the y-axis) represent the actual values of the data points. So, in the bottom left-hand
corner (i.e. for lowest exam marks), they are higher than one might expect from a Normal distri-
bution and in the top right-hand corner, they are lower. This suggests that the data are distributed
somewhat like a Normal distribution but where the extreme values have been pushed towards the
centre (this is known as light tailed). We would usually expect the extreme points on a QQ plot
to diverge from the line somewhat, but this plot shows something more serious going on. There is
also something a bit weird going on in the middle values, suggesting a bimodal distribution. As you
can see, visual comparisons for normality require clear thinking.

To summarise, in order to test for normality: take a decent sized sample of numerical data with a
reasonably wide range of values and create a Normal QQ plot. If it is not possible to do that, then
we should not assume that our data are normally distributed.

�

� �

�

TESTING 419

There is one exception to what we have described above. If the summary statistic that is used
in the test for which we are checking assumptions is the mean (for instance, in a t-test), then we
do not have to test for normality. We can apply the central limit theorem (see Section 2.4.1) and
that tells us that we can proceed on the basis that the normality assumption is true, and we can
therefore use a z-test, as long as the sample size is large enough. How much data do we have
earlier on in this section describes how we might interpret large enough.

Slightly surprisingly, there is no function for the z-test in base R. There is a function z.test ()
in the package BSDA (Arnholt and Evans, 2017):

library (BSDA)

This works in a similar way to t.test () as discussed in Section 9.2.2:

z.test (x = exams$Exam1, y = exams$Exam2,
sigma.x = sd (exams$Exam1),
sigma.y = sd (exams$Exam2))

Two-sample z-Test

data: exams$Exam1 and exams$Exam2
z = -1.5965, p-value = 0.1104
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-6.3033041 0.6442132

sample estimates:
mean of x mean of y
60.67045 63.50000

The p-value here is 0.11 compared with 0.015 for the Wilcoxon test for the same data in Section
9.2.2, which may be because the latter is not sensitive to outlying pairs, or because the former
does not take pairing into account. The z-test is only an approximate test (i.e. the data will only be
approximately Normal), unlike the t-test, so if there is a choice between a z-test and a t-test, use a
t-test.

9.2.6 Comparing variances

Before we can carry out a t-test to compare two independent sample means (Section 9.2.2), we
need to test whether the sample variances are significantly different. The test could not be sim-
pler. It is called Fisher’s F test (which uses the F(isher)-distribution) after the famous statistician
and eugenicist R.A. Fisher, who worked at Rothamsted in south-east England. To compare two
variances, all you do is divide the larger variance by the smaller variance. Obviously, if the vari-
ances are the same, the ratio will be 1. In order to be significantly different, the ratio will need
to be significantly bigger than 1 (because the larger variance goes on top, in the numerator).
We will explore this test using the tulip data introduced in Section 9.2.2 where the means of the

�

� �

�

420 THE R BOOK

populations are compared. We are not sure which population might have the larger variance, so our
hypotheses are

H0 The population variances for the heights of the two tulip populations are the same.

H1 The population variances for the heights of the two tulip populations are not the same.

In order to test whether the variances of the populations are the same:

load ("tulips.RData")
var.test (GardenA, GardenB, conf.level = 0.99)

F-test to compare two variances

data: GardenA and GardenB
F = 1.2489, num df = 74, denom df = 79, p-value = 0.3315
alternative hypothesis: true ratio of variances is not equal to 1
99 percent confidence interval:
0.6902072 2.2712733
sample estimates:
ratio of variances

1.248927

There is clearly little evidence against H0.
For multiple samples, you can choose between the Bartlett test and the Fligner–Killeen test. Here

are both tests in action using the refuge dataset:

refs <- read.table ("refuge.txt", header = T)
names(refs)

[1] "B" "T"

where T is an ordered factor with nine levels. Each level produces 30 estimates of yields (B) except
for level 9 which is a single zero. We begin by looking at the variances:

tapply(refs$B, refs$T, var)

1 2 3 4 5 6 7 8
1354.024 2025.431 3125.292 1077.030 2542.599 2221.982 1445.490 1459.955

9
NA

When it comes to the variance tests, we shall have to leave out level 9 of T because the tests require
at least two replicates at each factor level. We need to know which data point refers to treatment
T = 9:

which (refs$T == 9)

[1] 31

�

� �

�

TESTING 421

We shall omit the 31st data point using negative subscripts. First Bartlett:

bartlett.test (refs$B[-31], refs$T[-31])

Bartlett test of homogeneity of variances

data: refs$B[-31] and refs$T[-31]
Bartlett’s K-squared = 13.199, df = 7, p-value = 0.06741

and then Fligner:

fligner.test (refs$B[-31],refs$T[-31])

Fligner--Killeen test of homogeneity of variances

data: refs$B[-31] and refs$T[-31]
Fligner--Killeen:med chi-squared = 14.386, df = 7, p-value = 0.04472

The two p-values are either side of 0.05, WHICH DOES NOT MATTER, but are not too far apart:
both suggest that there is some evidence against H0, that there is no difference between the group
variances.

The Fligner–Killeen test (preferred over Bartlett’s test by many statisticians) is a non-parametric
test which uses the ranks of the absolute values of the centred samples, and weights. Of the
many tests for homogeneity of variances, this is the most robust against departures from normality
(Conover et al., 1981), which is assumed for parametric tests such as Bartlett’s.

9.3 Discrete and categorical data

We will look at some popular topics for testing a discrete or categorical dataset:

• comparing signs (+/-) of the values in two populations (Section 9.3.1);

• comparing proportions of data with a specific distribution or population. These are known as
goodness-of-fit tests (Section 9.3.2);

• testing data in a contingency table (Section 9.3.3).

The latter two sets of tests originally used the 𝜒2-test for calculations: this was the first test that
gave rise to the idea of a p-value, as set out by the famous eugenicist and statistician, K. Pearson.
There are better tests now, and there is no need for the 𝜒2-test to be used any longer. These better
tests may be exact (so can be used for small samples) or approximate (for larger samples).

9.3.1 Sign test

This is one of the simplest and most underrated of all statistical tests. Suppose that you cannot
measure a difference, but you can see it as, say, in judging a diving contest. For example, nine
springboard divers were scored as better or worse, having trained under a new regime and under
the conventional regime (the regimes were allocated in a randomized sequence to each athlete: new

�

� �

�

422 THE R BOOK

then conventional, or conventional then new). Divers were judged twice: one diver was worse on
the new regime, and 8 were better. What is the evidence that the new regime produces significantly
better scores in competition? The answer comes from a two-tailed binomial test (see Section 9.3.2
for a more general multinomial test). How likely is a response of 1/9 (or 8/9 or more extreme than
this, i.e. 0/9 or 9/9) given the null hypothesis where

H0: there is no difference in performance between the new and conventional training regimes.

H1: there is a difference in performance between the new and conventional training regimes.

We use a binomial test for this with a probability of success of 0.5, specifying the number of ‘failures’
(1) and the total sample size (9):

binom.test (x = 1, n = 9, p = 0.5)

Exact binomial test

data: 1 and 9
number of successes = 1, number of trials = 9, p-value = 0.03906
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.002809137 0.482496515
sample estimates:
probability of success

0.1111111

We would conclude that there is little evidence against the new and conventional training regimes
having similar performance.

It is easy to write a function to carry out a sign test to compare two samples, x and y:

sign.test <- function (x, y) {
if (length(x) != length(y)) stop ("The two variables must be the same length")
d <- x - y
binom.test (sum (d > 0), length(d))

}

The function starts by checking that the two vectors are the same length, then works out the vector
of the differences, d. The binomial test is then applied to the number of positive differences and
the total number of numbers (i.e. unlike the previous example we create the 1s and 0s from the
numeric data). If there was no difference between the samples, then on average, the former would
be about half the latter. Here is the sign test used to compare the marks for exams 1 and 2:

sign.test (exams$Exam1, exams$Exam2)

Exact binomial test

data: sum(d > 0) and length(d)
number of successes = 35, number of trials = 88, p-value = 0.06935

�

� �

�

TESTING 423

alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.2948766 0.5076647

sample estimates:
probability of success

0.3977273

Note that the p-value from the sign test (0.069) is larger than that for the equivalent Wilcoxon test
that we carried out earlier (0.015)). This will generally be the case: other things being equal, the
sign test is cruder, albeit simpler to understand than the Wilcoxon equivalent.

9.3.2 Test to compare proportions

Suppose that a university department wanted to compare how its staff measured up to its country’s
population in terms of categorisations such as race or gender. We might examine this using a
goodness-of-fit test. Let us assume that there are three categories (A, B, and C) with staff numbers
and population percentages as follows:

A B C

Staff numbers 4 47 12
Population % 11.1 71.2 17.7

We might want to run our test with the following hypotheses:

H0: the number of staff in categories A, B, and C are representative of the population as a whole.

H1: the number of staff in categories A, B, and C are not representative of the population as a whole.

There is an exact test, the multinomial-test, for which we need to load a package, EMT
(Menzel, 2013):

library (EMT)
multinomial.test (observed = c (4, 47, 12),

prob = c (0.111, 0.712, 0.177))

Exact Multinomial Test, distance measure: p

Events pObs p.value
2080 0.0112 0.5154

There is no evidence against the null hypothesis that the staff profile for this categorisation rep-
resents that of the nation. An alternative approach would be to calculate CIs for the observed
proportions and then compare those with the population percentages. For this we need a very
useful package, DescTools (Andri et mult. et al., 2021), which has all sorts of statistical goodies
and utilities: download it and have a look.

�

� �

�

424 THE R BOOK

library (DescTools)
MultinomCI (x = c (4, 47, 12), conf.level = 0.92)

est lwr.ci upr.ci
[1,] 0.06349206 0.0000000 0.1680624
[2,] 0.74603175 0.6666667 0.8506021
[3,] 0.19047619 0.1111111 0.2950465

The output presents our numbers as proportions in the first column and then gives, in this case,
92% CIs for each of the three proportions. We can see that in each case, the population proportion
sits well within the CIs. The advantage of this approach, compared to the p-value line of attack, is
that we can see how each category individually compares with the population.

For large numbers (of, say, staff), the multinomial test can get very slow and an approximate test,
the G-test, should be used (and will give very similar answers anyway). What is large? This is one
of the most common statistical questions and, as usual, there is no commonly agreed answer. A
rule of thumb here is 1000 (although we can see below that that may be far too large). The G-test
can also be found in DescTools, and we will illustrate it with our data, even if they are small:

GTest (x = c (4, 47, 12), y = c (0.111, 0.712, 0.177))

Log likelihood ratio (G-test) test of independence without correction

data: c(4, 47, 12) and c(0.111, 0.712, 0.177)
G = 6.5917, X-squared df = 4, p-value = 0.1591

This gives a similar outcome to the multinomial-test, fortunately!
For a more complex example, we have some data on the numbers of bankruptcies in 80 districts.

The question is whether there is any evidence that some districts show greater than expected
numbers of cases. What would we expect? Of course, we should expect some variation, but how
much, exactly? Well, that depends on our model of the process. Perhaps the simplest model is that
absolutely nothing is going on, and that every singly bankruptcy case is absolutely independent of
every other. That leads to the prediction that the numbers of cases per district will follow a Poisson
distribution in which the variance is equal to the mean. Let us see what the data show.

banks <- read.table ("cases.txt", header = T)
names (banks)

[1] "cases"

banks_table <- table (banks$cases)

We have used the table () function to summarise the number of districts which have any par-
ticular number of cases. There were no cases at all in 34 districts, but one district had 10 cases. A
good way to proceed is to compare our distribution with the distribution that would be observed if
the data really did come from a Poisson distribution as postulated by our model. We can use the
R function dpois to compute the probability density of each of the 11 frequencies from 0 to 9 and
then put the remaining probability (so that the distribution sums to 1) in frequency 10 (we multiply

�

� �

�

TESTING 425

0 1 2 3 4 5 6 7 8 9 10
Cases

F
re

qu
en

cy

0
5

10
15

20
25

30
35

(a) Bankruptcies

0 1 2 3 4 5 6 7 8 9 10
Cases

F
re

qu
en

cy

0
5

10
15

20
25

30
35

(b) Poisson

Figure 9.6 Barplots of banks data and Poisson distribution.

the probability produced by dpois by the total sample of 80 to obtain the predicted frequencies).
We need to calculate the mean number of cases per district – this is the Poisson distribution’s only
parameter:

mean (banks$cases)

[1] 1.775

We can compare our data and the Poisson distribution visually in Figure 9.6:

barplot (banks_table, ylab = "Frequency", xlab = "Cases", col = hue_pal ()(2)[1],
ylim = c (0, 35), main = "")

barplot (c (dpois (0:9, 1.775), 1 - ppois (9, 1.775)) * 80,
names = as.character (0:10), ylab = "Frequency", xlab = "Cases",
col = hue_pal ()(2)[2], ylim = c (0, 35), main = "")

The distributions are very different: the mode of the observed data is 0, but the mode of the Poisson
distribution with the same mean is 1; the observed data contained examples of 8, 9, and 10 cases,
but these would be highly unlikely under a Poisson distribution. We would say that the observed
data are highly aggregated – they have a variance/mean ratio much greater than 1 (the Poisson
distribution, of course, has a variance/mean ratio of 1):

var (banks$cases) / mean (banks$cases)

[1] 2.99483

�

� �

�

426 THE R BOOK

Finally, we can carry out a goodness-of-fit test: the Poisson distribution is definitely not appropriate.
We have used the G-test as the data appear to be too much for the multinomial test.

GTest (x = banks_table, p = c (dpois (0:9, 1.775), 1 - ppois (9, 1.775)))

Log likelihood ratio (G-test) goodness of fit test

data: banks_table
G = 69.144, X-squared df = 10, p-value = 6.485e-11

So, if the data are not Poisson distributed, how are they distributed? A good candidate distribution
where the variance - mean ratio can vary is the Negative Binomial (see Section 8.4.7).This is a
two-parameter distribution: the first parameter is the mean number of cases (𝜇 = 1.775), and the
second can be presented in two equivalent ways. We will use what R refers to as size and can be
approximated from the data by

x
2

s2 − x

using the usual notation for the mean and variance of the sample. Here, that is

mean (banks$cases)^2 / (var (banks$cases) - mean (banks$cases))

[1] 0.8898003

We can then compare our data to the Negative Binomial visually in Figure 9.7

barplot (banks_table, ylab = "Frequency", xlab = "Cases", col = hue_pal ()(2)[1],
ylim = c (0, 35), main = "")

barplot (c (dnbinom (0:9, size = 0.89, mu = 1.75),
1 - pnbinom (9, size = 0.89, mu = 1.75)) * 80,

names = as.character (0:10), ylab = "Frequency", xlab = "Cases",
col = hue_pal ()(2)[2], ylim = c (0, 35), main = "")

which appears to be a better fit. A G-test confirms that

GTest (x = banks_table,
p = c (dnbinom (0:9, size = 0.89, mu = 1.75),

1 - pnbinom (9, size = 0.89, mu = 1.75)))

Log likelihood ratio (G-test) goodness of fit test

data: banks_table
G = 3.0911, X-squared df = 10, p-value = 0.9792

Although the tests in Section 9.3.4 appear similar to those we have seen here, they are addressing
different questions.

�

� �

�

TESTING 427

0 1 2 3 4 5 6 7 8 9 10
Cases

F
re

qu
en

cy

0
5

10
15

20
25

30
35

(a) Bankruptcies

0 1 2 3 4 5 6 7 8 9 10
Cases

F
re

qu
en

cy

0
5

10
15

20
25

30
35

(b) Negative Binomial

Figure 9.7 Barplots of banks data and Negative Binomial distribution.

9.3.3 Contingency tables

A great deal of statistical information comes in the form of counts (whole numbers or integers): the
number of animals that died, the number of branches on a tree, the number of days of frost, the
number of companies that failed, the number of patients who died. With count data, the number 0 is
often the value of a response variable (consider, for example, what a 0 would mean in the context
of the examples just listed).

The dictionary definition of contingency is ‘A possible or uncertain event on which other things
depend or are conditional’ (OED, 2012). In statistics, however, the contingencies are all the events
that could possibly happen. A contingency table shows the counts of how many times each of the
contingencies actually happened in a particular sample. Consider the following example that has to
do with the relationship between hair colour and eye colour in white people. For simplicity, we just
chose two contingencies for hair colour: ‘fair’ and ‘dark’. Likewise, we just chose two contingencies
for eye colour: ‘blue’ and ‘brown’. Each of these two categorical variables, eye colour and hair colour,
has two levels (‘blue’ and ‘brown’, and ‘fair’ and ‘dark’, respectively). Between them, they define four
possible outcomes (the contingencies): fair hair and blue eyes, fair hair and brown eyes, dark hair
and blue eyes, and dark hair and brown eyes. We take a random sample of white people and count
how many of them fall into each of these four categories. Then we fill in the 2 × 2 contingency table
like this:

Blue eyes Brown eyes

Fair hair 38 11
Dark hair 14 51

�

� �

�

428 THE R BOOK

These are our observed frequencies (or counts). The next step is very important. In order to
make any progress in the analysis of these data, we need a model which predicts the expected
frequencies. What would be a sensible model in a case like this? There are all sorts of complicated
models that you might select, but the simplest model (Occam’s razor, or the principle of parsimony)
is that hair colour and eye colour are independent. We may not believe that this is actually true, but
the hypothesis has the great virtue of being falsifiable. It is also a very sensible model to choose
because it makes it possible to predict the expected frequencies based on the assumption that the
model is true. We need to do some simple probability work. What is the probability of getting a
random individual from this sample whose hair was fair? A total of 49 people (38 + 11) had fair hair
out of a total sample of 114 people. So the probability of fair hair is 49

114
and the probability of dark

hair is 65
114

. Notice that because we have only two levels of hair colour, these two probabilities add
up to 1. What about eye colour? What is the probability of selecting someone at random from this
sample with blue eyes? A total of 52 people had blue eyes (38 + 14) out of the sample of 114, so
the probability of blue eyes is 52

114
and the probability of brown eyes is 62

114
. As before, these sum to

1. It helps to add the subtotals to the margins of the observed contingency table like this:

Blue eyes Brown eyes Row totals

Fair hair 38 11 49
Dark hair 14 51 65
Column totals 52 62 114

Now comes the important bit. We want to know the expected frequency of people with fair hair
and blue eyes, to compare with our observed frequency of 38. Our model assumption says that the
two are independent. This is essential information because it allows us to calculate the expected
probability of fair hair and blue eyes. If, and only if, the two traits are independent, then the probability
of having fair hair and blue eyes is the product of the two probabilities. So, following our earlier
calculations, the probability of fair hair and blue eyes is 49

114
× 52

114
. We can do exactly equivalent

things for the other three cells of the contingency table:

Blue eyes Brown eyes Total count in each row

Fair hair 49∕114× 52/114 49∕114× 62/114 49
Dark hair 65∕114× 52/114 65∕114× 62/114 65
Total count in each column 52 62 114

Now we need to know how to calculate the expected frequency. It couldn’t be simpler. It is just
the probability multiplied by the total sample (n = 114). So the expected frequency of blue eyes
and fair hair is 49

114
× 52

114
× 114 = 22.35, which is much less than our observed frequency of 38. It is

beginning to look as if our hypothesis of independence of hair and eye colour may be false.
You might have noticed something useful in the last calculation: two of the sample sizes cancel

out. Therefore, the expected frequency in each cell is just the row total (R) times the column total

tandu
Highlight

�

� �

�

TESTING 429

(C) divided by the grand total (G) like this:

E = R × C
G

.

We can now work out the four expected frequencies:

Blue eyes Brown eyes Row totals

Fair hair 22.35 26.65 49
Dark hair 29.65 35.35 65
Column totals 52 62 114

Notice that the row and column totals (the so-called ‘marginal totals’) are retained under the
model. It is clear that the observed frequencies and the expected frequencies are different. But
in sampling, everything always varies, so this is no surprise. The important question is to what
extent the expected frequencies are different from the observed frequencies. There are a number
of ways we could answer that question, which we will address in the next section. Although
the tables generated here have only two rows and two columns, contingency tables frequently
have more of both.

9.3.4 Testing contingency tables

The first way of looking at the difference between observed and expected contingency tables is to
calculate some Pearson residuals: these measure the distance between each matching pair of
cells and tell us where the larger discrepancies lie. We create a residual table where the entry in
location (i, j) is for observed O and expected E:

Oi,j − Ei,j√
Ei,j

.

A useful rule of thumb is that any entries larger than two (or less then minus two) warrant fur-
ther investigation: particularly if any of the tests we will explore later in this section result in small
p-values. For the hair/eye colour table in Section 9.3.3, the residuals table is

Blue eyes Brown eyes

Fair hair 3.31 −3.03
Dark hair −2.87 2.63

All the entries have large absolute values, suggesting that independence is looking unlikely.
It is possible to visualise the relative size of these residuals. We will use a more complicated

dataset, also investigating the relationship between hair and eye colour. It is HairEyeColor and
is built into R. We can tabulate it very easily:

�

� �

�

430 THE R BOOK

ftable (HairEyeColor)

Sex Male Female
Hair Eye
Black Brown 32 36

Blue 11 9
Hazel 10 5
Green 3 2

Brown Brown 53 66
Blue 50 34
Hazel 25 29
Green 15 14

Red Brown 10 16
Blue 10 7
Hazel 7 7
Green 7 7

Blond Brown 3 4
Blue 30 64
Hazel 5 5
Green 8 8

The ftable () function produces a flat table which attempts to capture the multiple dimensional
data in a straightforward way (compare it with the table () function). If we were not concerned
about gender, we could produce the association plot in Figure 9.8:

assocplot (margin.table (HairEyeColor, c (1, 2)))

The margin.table argument reduces the three-dimensional contingency table to its first two
dimensions. The plot then shows the excess (black bars) of people with black hair who have brown
eyes, the excess of people with blond hair who have blue eyes, and the excess of redheads who
have green eyes. The red bars show categories where fewer people were observed than expected
under the null hypothesis of independence of hair colour and eye colour.

We can now move to formal tests which, as usual, require hypotheses:

H0: hair colour and eye colour are independent in our population;

H1: hair colour and eye colour are not independent in our population.

Black Brown Red BlondG
re

en
B

lu
e

B
ro

w
n

Hair

E
ye

Figure 9.8 Association plot for HairEyeColor, ignoring gender.

�

� �

�

TESTING 431

We can use the approximate G-test (better than the traditional 𝜒2-test), as described in
Section 9.3.2:

GTest (x = matrix (c (38, 14, 11, 51), nrow = 2))

Log likelihood ratio (G-test) test of independence without correction

data: matrix(c(38, 14, 11, 51), nrow = 2)
G = 37.241, X-squared df = 1, p-value = 1.044e-09

The observed data have been entered as a matrix which looks like the original contingency table.
As we might have expected from the residuals analysis, the very small p-value suggests very strong
evidence against independence of hair and eye colour.

In an analogous way to Section 9.3.2, there is an exact test, Fisher’s test, which can be used for
smaller samples:

fisher.test (x = matrix (c (38, 14, 11, 51), nrow = 2))

Fisher’s Exact Test for Count Data

data: matrix(c(38, 14, 11, 51), nrow = 2)
p-value = 2.099e-09
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:

4.746351 34.118920
sample estimates:
odds ratio

12.22697

This has a small p-value, similar to that for the G-test but also presents the hypotheses in a different
but equivalent way (for 2 × 2 tables). The odds ratio is commonly used in medical statistics. In this
case, it compares the odds of having blue eyes as against brown eyes between the two types of
hair colour (you can switch hair and eye colour round in the interpretation) and H0 is that the odds
ratio is one.

The tests discussed in this section extend to larger contingency tables, which do not even have
to be square. The odds ratio is only used in 2 × 2 tables.

9.4 Bootstrapping

You have probably heard the old phrase about ‘pulling yourself up by your own bootlaces’. That is
where the term ‘bootstrap’ comes from. It is used in the sense of getting ‘something for nothing’.
The idea is very simple: we replace our population by our sample and produce CIs and p-values
by (sub)sampling from that new population. It is most useful when the data are skewed and so
parametric methods cannot be used.

So, if we have a single sample of n measurements, we can sample from this in very many ways,
as long as we allow some values to appear more than once, and other samples to be left out (i.e.

�

� �

�

432 THE R BOOK

sampling with replacement). For instance, to calculate a CI, we work out the sample mean of lots
of (sub)samples, and then examine the extreme highs and lows of these means using a quantile
function to extract the interval we want (e.g. a 93% interval is specified using the (0.035,0.965),
quantile values).

For a very simple example, let us revert to the speed of light data from Section 9.2.1 and sample
10,000 times:

boot_means <- numeric (10000)
for (i in 1:10000) {
boot_means[i] <- mean (sample (light$speed, replace = T))

}
summary (boot_means)

Min. 1st Qu. Median Mean 3rd Qu. Max.
814.5 894.0 909.5 909.0 925.0 986.0

hist (boot_means, main = "", xlab = "sample means", col = hue_pal ()(1))

Figure 9.9 shows a histogram of the (sub)sample means. Unsurprisingly, from the Central Limit
Theorem, the distribution is approximately Normal. We might create a 93% CI using the quantile
() function:

quantile (boot_means, probs = c (0.035, 0.965))

3.5% 96.5%
865.5 949.0

We can also see that there are 0 means at least as large as the postulated speed of light (990 km/s
without the 299,000), suggesting that a p-value for the null hypotheses that that is the speed of light
(with a one-sided alternative hypothesis) is roughly 0.

Predictably, there is a package, boot (Canty and Ripley, 2021), to do the work for us:

library (boot)

Sample means

F
re

qu
en

cy

800 850 900 950

0
50

0
15

00

Figure 9.9 Histogram of means of 10,000 samples from Michelsons speed of light data.

�

� �

�

TESTING 433

We use it as follows:

mymean <- function (light, i) {
mean (light$speed[i])

}
boot_means_package <- boot (light, statistic = mymean, R = 10000)
boot.ci (boot_means_package, conf = 0.93)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

CALL:
boot.ci(boot.out = boot_means_package, conf = 0.93)

Intervals:
Level Normal Basic
93% (867.5, 950.8) (869.5, 952.5)

Level Percentile BCa
93% (865.5, 948.5) (859.5, 944.5)
Calculations and Intervals on Original Scale

Setting up the function for the statistic argument is the tricky bit: the i is just an index that will be
used to run through the 10,000 samples. The default output gives a number of intervals, based on
different calculation methods: the BCa interval (using the adjusted bootstrap percentage method)
is probably the one to go for (technical details omitted). All the intervals will be different from that
calculated by us above, as a different random sample will have been used.

For more depth read the Davison and Hinkley, 1997 book from which the boot package was
developed.

9.5 Multiple tests

If we carry out a test and get a p-value of 0.04, this represents the probability of getting a result at
least as extreme as that from our data, by chance, given that our null hypotheses and any assump-
tions are true. If we carry out two tests with p-values of 0.04 and 0.03, what is the probability that
we might get a result at least as small in one of them by chance etc (i.e. the rest of the first sentence
which I will no longer state for brevity’s sake)? It is one minus the probability that neither situation
arises or

1 - (1 - 0.04) * (1 - 0.03)

[1] 0.0688

As the number of tests increases, so does the probability of small p-values arising purely by chance.
So when we run multiple tests, we need to adjust the resulting p-values in order to decide which tests
might warrant further investigation. The probability of coming to at least one erroneous conclusion
without adjusting the p-values is known as the family-wise error rate.

�

� �

�

434 THE R BOOK

R can carry out the necessary adjustment using the p.adjust () function. However, there are
a number of different adjustments that can be carried out and it may be best to take advice from a
statistician before deciding which one to use. As an example, if we have carried out 10 tests on a
dataset and have p-values of 0.04, 0.03, 0.17, 0.12, 0.01, 0.18, 0.02, 0.04, 0.21, and 0.08, then we
might calculate adjusted p-values as follows:

p.adjust (p = c (0.04, 0.03, 0.17, 0.12, 0.01, 0.18, 0.02, 0.04, 0.21, 0.08),
method = "holm")

[1] 0.28 0.24 0.51 0.48 0.10 0.51 0.18 0.28 0.51 0.40

None of these appear to be particularly small, despite the fact that in the original tests several of
them were.

9.6 Power and sample size calculations

If we carry out a test and would like to come to a conclusion one way or the other (e.g. does a new
drug reduce cholesterol more than an old one or does eating chocolate improve blood pressure?),
then we could set a threshold, 𝛼, for our p-value, p, and go with H0 if p < 𝛼 and H1, otherwise. This
could give rise to two sorts of error:

Type I error We reject H0 when it is, in fact, true. This will have probability 𝛼;
Type II error We reject H1 when it is true. This is defined to have probability 𝛽.

Box 9.3: Thresholds

There are two dangers here:

1. The value for the threshold. 5% has become the standard for no good reason and does
not denote a particularly rare event. If we must have a cut-off point, go for something much
smaller: 1% or 0.05%.

2. Treating the threshold as absolute: almost identical datasets might give rise to p-values
of 0.011 and 0.009. We need to think carefully about whether it is correct that those two
values might give rise to completely different decisions.

For our drug example, the hypotheses might be

H0: the new and old drugs have the same effect on blood pressure;

H1: the new drug reduces blood pressure more than the old drug.

A lot of money will probably have been invested in the new drug so if it is an improvement on the
old drug, we would like to improve our chances of detecting that: i.e. if H1 is true, then we want
to maximise the probability of coming to that decision. This probability is known as power and equals
1 − 𝛽.

New drugs usually give rise to drug trials where their efficacy is tested, and this idea has been
extended into many other subject areas such as psychology. An important question therefore is

�

� �

�

TESTING 435

how many people should I enrol on my trial? Due to the unknown nature of the new treatment,
we would like this number to be as small as possible but large enough to detect the effect we are
interested in. This sample size calculation requires four inputs when the output we are measuring
(e.g. cholesterol) is continuous (other types of output require slightly different information):

1. 𝛼, sometimes referred to as the significance level;

2. power or, equivalently, 𝛽;

3. the mean effect size we wish to detect (often referred to as 𝛿), such as the difference in choles-
terol reduction, that, clinically, we might regard as important;

4. the standard deviation of our output (e.g. cholesterol measurements), under the drug regimes
(assumed here to be the same for both drugs). This is annoying but is usually found either
through a pilot study or from previous research.

Once we have worked through all these, R can carry out a sample size calculation:

power.t.test (delta = 2, sd = 3.5, power = 0.8, sig.level = 0.01)

Two-sample t test power calculation

n = 73.2095
delta = 2

sd = 3.5
sig.level = 0.01

power = 0.8
alternative = two.sided

NOTE: n is number in *each* group

As the name of the function suggests, this calculation is based on the t-test and so all the assump-
tions from that test apply. In the example here, each of our two trial groups would need to have 74
participants. In practice, a larger number would need to be used to allow for people dropping out
of the trials.

Changing the values of the four inputs will alter the sample size: reducing 𝛼, increasing power,
reducing 𝛿, or increasing the standard deviation all lead to larger samples, and vice versa. For
instance, we can plot the effect of changing the power on sample size, using the data from the pre-
vious example, as follows to give Figure 9.10:

powers <- seq (0.5, 0.95, 0.01)
sample_size = numeric (length (powers))
for (i in 1:length (powers)) {

sample_size[i] <- power.t.test (delta = 2, sd = 3.5, power = powers[i],
sig.level = 0.01)$n

}
plot (powers, sample_size, type = "l", xlab = "power", ylab = "sample size",

col = hue_pal ()(1))

�

� �

�

436 THE R BOOK

0.5 0.6 0.7 0.8 0.9

40
60

80
10

0

Power

S
am

pl
e

si
ze

δ = 2
sd = 3.5
α = 0.01

Figure 9.10 Sample sizes for varying power.

text (x = 0.6, y = 100, adj = c (0, 0),
labels = substitute (paste (delta, "= 2")))

text (x = 0.6, y = 95, adj = c (0, 0),
labels = substitute (paste ("sd = 3.5")))

text (x = 0.6, y = 90, adj = c (0, 0),
labels = substitute (paste (alpha, "= 0.01")))

There are other functions in R which carry out sample size calculations relating to other tests,
for instance power.prop.test () for a proportion test: they all begin power..

9.7 A table of tests

We have explored using a number of tests in this chapter, and a summary is given in Table 9.1.
There are hundreds of others available, most of them in R, but care should be taken to understand
exactly what the test does and does not do before use. The table is not intended to be a replacement
for working through the appropriate part of this chapter.

Table 9.1 Tests used in Chapter 9.

Name Function in R Testing what

t-test t.test () comparing means in two normally distributed
continuous paired data populations

t-test t.test (..., paired
= F)

comparing means in two normally distributed
continuous unpaired data populations

z-test z.test () in BSDA comparing means in two non-normally
distributed populations

Wilcoxon signed rank test wilcox.test () looking for symmetric data pattern in numeric
or ordered populations

�

� �

�

TESTING 437

Table 9.1 Continued

Name Function in R Testing what

Kruskal–Wallis rank sum test kruskal.test () comparing medians across multiple
populations

equality of variances test var.test () compare variances in two populations
equality of variances test bartlett.test () compare variances in multiple populations
equality of variances test fligner.test () compare variances in multiple populations
Kolmogorov–Smirnov test ks.test () comparing whether data in two samples

come from the same population
Anderson–Darling test ad.test () in nortest comparing whether data in two samples

come from the same population
Binomial test binom.test () comparing two proportions from different

populations
multinomial test multinomial.test ()

in EMT
comparing multiple proportions from different

populations in small samples
G-test GTest.test () in

DescTools
comparing multiple proportions from different

populations and independence in
contingency tables

Fisher test fisher.test () comparing independence in contingency
tables (small samples)

References

Andri, S. et al. (2021). DescTools: Tools for descriptive statistics [R package version 0.99.42]. https://cran.r-
project.org/package=DescTools.

Arnholt, A. T., & Evans, B. (2017). BSDA: Basic statistics and data analysis [R package version 1.2.0]. https://
CRAN.R-project.org/package=BSDA.

Canty, A., & Ripley, B. D. (2021). Boot: Bootstrap R (S-plus) functions [R package version 1.3-28].
Conover, W. J., Johnson, M. E., & Johnson, M. M. (1981). A comparative study of tests for homogeneity of

variances, with applications to the outer continental shelf bidding data. Technometrics, 23, 351–361.
Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application. CUP.
Menzel, U. (2013). EMT: Exact multinomial test: goodness-of-fit test for discrete multivariate data [R package

version 1.1]. https://CRAN.R-project.org/package=EMT.
Michelson, A. A. (1880). Experimental determination of the velocity of light made at the U.S. Naval Academy,

Annapolis. Astronomical Papers, 1, 109–145.

https://cran.r-project.org/package=DescTools
https://cran.r-project.org/package=DescTools
https://CRAN.R-project.org/package=BSDA
https://CRAN.R-project.org/package=BSDA
https://CRAN.R-project.org/package=EMT

�

� �

�

�

� �

�

10
Regression

Regression models provide a flexible tool to understand the drivers behind an outcome, response,
or phenomenon of interest. These models can be used to complete a variety of tasks, including
estimating the collective relationship between variables, hypothesis testing, and prediction of future
outcome values.

Perhaps the simplest form of a regression is the simple linear regression model, which quan-
tifies the linear relationship between a covariate (otherwise known as a predictor), X, and an
outcome (otherwise known as response) of interest, Y. This model assumes a linear – or straight
line – relationship between X and Y, of the form

Y = 𝛽0 + 𝛽1X. (10.1)

Box 10.1: Terminology

In other texts, the covariate may be referred to as an ‘independent variable’ and the outcome
as a ‘dependent variable’, but this is misleading especially in terms of our covariate: the term
‘independent’ has a special meaning in statistics (see Section 8.1.3),and the covariate here is
not necessarily ‘independent’ of the outcome. Later in this chapter, we’ll also consider having
multiple covariates, and these do not need to be statistically independent of each other. It’s
best, therefore, to avoid the term ‘independent’ variable and use a neutral term like ‘covariate’
or ‘predictor’ instead.

Of course, the model in (10.1) is a simplification of the real-world relationship between X and Y,
and in particular, we don’t expect every observation to lie exactly on this line. Our aim therefore, at
least in part, is to find the ‘best’ estimates of the intercept, 𝛽0, and slope, 𝛽1, of this line, to create
what is often referred to as a ‘line of best fit’. These models and their extensions are the basis of
this chapter.

In this chapter, we consider:

• simple linear regression models;

• multiple linear regression models;

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

440 THE R BOOK

• hypothesis testing in simple and multiple linear regression models;

• checking the assumptions made on simple and multiple linear regression models;

• improving simple and multiple linear regression models (improving model fit).

The models we consider here can be substantially extended, for example in allowing non-linear
relationships between covariates and outcome. Later in the book, we cover such extensions (see
Table 10.1 in Section 10.7 for a list of R functions relating to these types of regression models).

10.1 The simple linear regression model

Let us start with an example which shows the growth of caterpillars fed on experimental diets dif-
fering in their tannin content:

caterpillardata <- read.table ("caterpillar.txt" , header = T)
attach (caterpillardata)
head (caterpillardata)

growth tannin
1 12 0
2 10 1
3 8 2
4 11 3
5 6 4
6 7 5

plot (tannin, growth, pch = 19, col = hue_pal ()(3)[1],
xlab = "% tannin in diet", ylab = "growth rate")

detach (caterpillardata)

Though there is no straight line that will pass through all points on the scatterplot in Figure 10.1, (it
doesn’t need to), there is a general linear trend: a well-chosen straight line through the scatter of
points would describe the relationship between tannin and growth well. We would expect this line to
have a negative slope, describing the nature of the relationship: the higher the percentage of tannin
in the diet, the more slowly the caterpillars grew.

This section looks at the underlying model, the assumptions we make about our data in fitting
this model, and how we do so in R.

10.1.1 Model format and assumptions

Let us suppose that we have n pairs of observations of X and Y, (x1, y1), … , (xn, yn). We’ll assume
that the ith observed value of the outcome, yi, is related to the ith observed value of the covariate
(or predictor), xi, by way of a straight line plus an error term.

We can write out the general form as follows:

Yi = 𝛽0 + 𝛽1xi + 𝜖i . (10.2)

�

� �

�

REGRESSION 441

0 2 4 6 8

2
4

6
8

10
12

% Tannin in diet

G
ro

w
th

 r
at

e

Figure 10.1 Caterpillar growth rate and percentage tannin in diet.

The error term, 𝜖i, is in recognition of the fact that the observations do not need to lie exactly on a
straight line. Here, error does not mean ‘mistake’, but refers to unexplained variation about the line.

Box 10.2: Two important points

First, the distinction between {X,Y} and {x, y} is important. Lower-case letters are used to denote
observed data, while capital letters are used to denote random variables (think of this as before
we observe the data). In (10.2), the covariate is thought of as ‘fixed’ or observed, but the error
term is a random variable. The latter implies that the outcome is also a random variable.

Second, though not explicitly mentioned here, the outcome is a numeric variable and generally
a continuous variable. We look at what we can do when this is not the case in later chapters.

There is one obvious assumption that we make about this model: its linear structure. More often
than not, however, we also need to make assumptions about the error term. Though the latter is not
necessary to find the ‘best’ estimate of the intercept and slope, it is essential if, for example we want
to test hypotheses with our regression model, or provide confidence intervals for predictions. The
assumptions we make about the structure of the model, and about the error terms, can be simply
stated as follows:

• the relationship between the outcome and covariate is linear;

• the error terms are independent: 𝜖i and 𝜖j are independent, when i ≠ j;

• the error terms are normally distributed: 𝜖i ∼ N(0, 𝜎2);

• the error terms have the same variance, say 𝜎2.

The first assumption implies that the relationship between X and Y can be described by a straight
line – even if the observations themselves do not lie exactly on any line. For simple linear regression
models this can be checked using a scatterplot. Figure 10.2 shows four examples of fitting a simple
linear regression model to different data, with commentary below.

�

� �

�

442 THE R BOOK

0 2 4 6 8

2
4

6
8

10
12

Tannin

G
ro

w
th

(a) Example 1

−10 −5 0 5 10−
60

−
40

−
20

0
20

40

Covariate

O
ut

co
m

e

(b) Example 2

5 6 7 8 9 10

0
5

10
15

Covariate

O
ut

co
m

e

(c) Example 3

2 4 6 8 10

0
50

10
0

15
0

20
0

25
0

Covariate

O
ut

co
m

e

(d) Example 4

Figure 10.2 Simple linear regression models.

(a) This is the tannin-growth example, where a straight-line model seems to be a good fit for the
data.

(b) The relationship here could still be described by a straight line despite there being a lot of
variability around the line.

(c) There is little to no relationship between the covariate and outcome here. We can still fit a
simple linear regression model, but this time the slope will be close to zero (why does that
make sense?).

(d) While a strong relationship between the covariate and outcome is evident here, it isn’t linear.
Attempting to use simple linear regression here would be foolish. See Section 10.5.8 for sug-
gestions of what could be done in this case.

There are many ways in which we could choose to find the ‘best’ slope and intercept for any given
scatterplot, but they are generally computed using the so-called ‘least squares’ technique. This
procedure minimises (‘least’) the squared vertical distance (‘squares’) between each observation
and the straight line. These distances (before squaring) are known as residuals and are shown
by solid blue lines in Figure 10.3. Notice what is happening here: for a specific value x, we are
comparing the observed outcome y to the outcome that is predicted by the model (vertical distance
between the green dotted horizontal lines for one observation).

�

� �

�

REGRESSION 443

0 2

•

•

•

•

•

•

•

•

•

4 6 8

2
4

6
8

10
12

% tannin in diet

G
ro

w
th

 r
at

e

Figure 10.3 Distance between observations and line.

Why do we minimise the squared distance and not some other measure of distance between
these points? There are convincing mathematical reasons why this is the case which are beyond
the scope of this book, but rest assured that this is the method that R uses.

As we will see later in this chapter however, merely estimating the slope and intercept is rarely
enough. Usually, we want to do a lot more with our regression model, for which we need to impose
assumptions on the error term.

Our error terms, 𝜖, are assumed to be independent and follow a Normal distribution with the
same variance. Note that it makes sense that the mean of the error terms is zero (this is not really
an assumption, per se): suppose that the mean error is, say, 3. Then this implies that we are sys-
tematically underestimating our outcome by 3. This can be easily remedied by adding 3 to the
intercept, which means that the error term mean is then zero. Incidentally, a common misconcep-
tion is that the outcome needs to be normally distributed, but this is not the case: we are assuming
that the error terms are normally distributed, which happens to have implications for the format of
the outcome, but we won’t discuss this further here.

Though these assumptions on the error term are often ‘hidden’, these are exactly what R assumes
in order to provide much of the model output. We’ll consider this output in detail in Section 10.2, but
for now we’ll look at how to use R to run a simple linear regression model.

10.1.2 Building a simple linear regression model

The basic steps in building a simple linear regression model are shown in Figure 10.4. The first step
is good practice regardless of the analysis that you plan to undertake, and indeed often helps to
clarify which analyses might be appropriate. Cleaning will ensure that the data are in an appropriate
format and can help in the detection of problems at an early stage.

�

� �

�

444 THE R BOOK

Understand how the data were generated.
Clean the data.

Get to know your data and the relationship between variables.

Decide whether a
simple linear regression

model is suitable

Build the simple lin-
ear regression model

(Section 10.1.2)

Check for violations
of the model assump-

tions (Section 10.5)

Interpret your model
(Section 10.6.1)

Transform covari-
ate and/or outcome

(Section 10.5.8)

Figure 10.4 Building a simple linear regression model.

The second step – in this case deciding whether the simple linear regression model is an appro-
priate approach – will generally involve checking that the relationship between the covariate and
outcome is linear. This can be simply done using a scatterplot. Steps can be taken at this point to
improve any issues around linearity; see Section 10.5.8 on how transformation of variables may
help here.

The third step is what we’ll consider in this section: building the simple linear regression model
in R. The remaining suggested steps are discussed in Sections 10.5 and 10.6.1, respectively.

Running a simple linear regression model in R is best done using the lm () command (it stands
for Linear Model). For the caterpillar growth example, the following code loads the required data
and then runs the lm () command on the variables of interest:

attach (caterpillardata)
lm (growth ~ tannin)

Call:
lm(formula = growth ~ tannin)

Coefficients:
(Intercept) tannin

11.756 -1.217

detach (caterpillardata)

Notice the way the variables growth and tannin are fed to the command lm (): we insert the
outcome first, followed by a twiddle symbol ∼, and then the covariate. We don’t have to attach ()

�

� �

�

REGRESSION 445

our data in order to run lm (): the following code provides identical output where we specify the
dataset to be used within the lm () command.

lm (growth ~ tannin, data = caterpillardata)

The output from lm () gives an estimate of the intercept and slope, but we can ask for more
information (which will be vital later in the chapter). The most convenient way of doing this is to
save the output of the lm () command in an object – called caterpillar_model below – then
request a summary of this object. This has the advantage that the output is accessible without
having to run the model again.

caterpillar_model <- lm (growth ~ tannin, data = caterpillardata)
summary (caterpillar_model)

Call:
lm(formula = growth ~ tannin, data = caterpillardata)

Residuals:
Min 1Q Median 3Q Max

-2.4556 -0.8889 -0.2389 0.9778 2.8944

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.7556 1.0408 11.295 9.54e-06 ***
tannin -1.2167 0.2186 -5.565 0.000846 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.693 on 7 degrees of freedom
Multiple R-squared: 0.8157,Adjusted R-squared: 0.7893
F-statistic: 30.97 on 1 and 7 DF, p-value: 0.0008461

An alternative, that will provide identical output but without saving the information in an object, is

summary (lm (growth ~ tannin, data = caterpillardata))

Box 10.3: Extracting information from the model output

We’ll discuss the majority of the output later in the chapter, but for now

• The estimates of the slope and intercept are available in the Estimate column.

• The estimated standard deviation of the error term is known as Residual standard error
in the output. Squaring this number gives an estimate of the variance of the error term.

• Information about the residuals – their five number summary – is given under the heading
Residuals.

�

� �

�

446 THE R BOOK

10.2 The multiple linear regression model

While the simple linear regression model provides a convenient way of describing the (linear) rela-
tionship between a covariate and an outcome, what should we do if we have more than one possible
covariate?

Consider the air pollution dataset for example: our research question of interest may be to inves-
tigate how ozone concentration is related to wind speed, air temperature, and the intensity of solar
radiation. Specified like this, it is clear that ozone is the outcome of interest, but there are three
possible covariates to choose from: wind speed, air temperature, and the intensity of solar radia-
tion. A good place to start might be to view the relationship between each pair of variables, which
the pairs () function automates. The resulting scatterplots are in Figure 10.5. Notice that the six
plots under the diagonal are mirror images of those above.

ozone_pollution <- read.table ("ozone_pollution.txt", header = T)
attach (ozone_pollution)
pairs (ozone_pollution, col = hue_pal ()(3)[1])

detach (ozone_pollution)

The outcome variable, ozone concentration, is shown on the y-axis of the bottom row of panels:
there is a strong negative relationship with wind speed, a positive correlation with temperature, and
a rather unclear, humped relationship with radiation. There are also clear relationships between
some of the proposed covariates, for example between wind speed and air temperature.

How do we make the most of all this information about the response? One option is to build
a simple linear regression models for each possible covariate. This, however, is an unsatisfactory
solution. We wouldn’t be making the most of the combined information about the outcome contained
in our collection of covariates.

A multiple linear regression model does just that: it extends the idea of a simple linear regres-
sion to allow more than one covariate. This is an exceptionally powerful idea and is a technique
that is used extensively in practice.

10.2.1 Model format and assumptions

The multiple linear regression model handles data that come in the form (yi, xi1, … , xip) for
(i = 1, … ,n). That is, for the ith observation, we have a single observed outcome yi and in this
case, p covariates, xi1, … , xip. The model is written as

Yi = 𝛽0 + 𝛽1xi1 + … + 𝛽pxip + 𝜖i . (10.3)

Compare this with the general form of the simple linear regression model, and we’ll see that this is
a ‘natural’ extension of it. Indeed, the simple linear regression model is just a special case of the
multiple linear regression model.

For the simple linear regression model, there was a nice geometric interpretation: we could
visualise the model as a straight line passing through a scatterplot, or in other words, a line in
two-dimensional space. What does the model in (10.3) ‘look’ like? This model with p covariates as
in (10.3) will produce a hyperplane: with p covariates this is a hyperplane in (p + 1)-dimensional
space. Anything above two covariates therefore means we can’t visualise our scatter of points and
the resulting hyperplane!

�

� �

�

REGRESSION 447

Rad

60
70

80
90

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●
●

● ●

●
●●

●

●

●● ●●
●

●
●

●

●●
●
●

●
●

●
●●● ●

●●●
●

●
●

●
●

●
●● ●

●

●
●

●

●
●

●
●

● ●●●

●
●

●
●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

● ●
●

●
●●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●●●

●

●

●
●

●

●
●●●

●

● ●●
●

●

●

●

●

●

●

● ●
●●

●
●

●●

●
●

●

●

●
●

●

●●●
●

●
●

●

●

●●●
●

● ●

●

● ●

●

●

● ●

●

●

●
●●

●

●

●

●

●

0 50 150 250

0
50

10
0

15
0

●●

● ●●●
●

● ●●● ●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
● ●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●●
●

●●

●

●
●

●●● ●

●

●
●

● ●

●

●●
●

● ●
●

●

●
●

●
●● ●

60 70 80 90

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

● ●●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●●

●
●
●
●●

●●

●
●●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

Temp

● ●

●
●

●

●

●

●●
●

●
●●

●

●
●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

● ●●

●

●

●
●

●

●
●●●

●

●●●
●

●

●

●

●

●

●

●●
●●

●
●

●●

●
●

●

●

●
●

●

●●●
●

●
●

●

●

●●●
●

●●

●

●●

●

●

●●

●

●

●
●●

●

●

●

●

●

● ●

●● ●●
●

●●●● ●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●●

●

●
● ●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

● ●

●

●●
●

●●

●

●
●

●●●●

●

●
●

●●

●

● ●
●

●●
●

●

●
●

●
●●●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

● ●●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ●
● ●

●
●

●
● ●

● ●

●
●●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

● ●
●

● ●

●
●●

●

●

●●● ●
●

●
●

●

●●
●

●
●
●
●

●● ●●

● ●●
●
●

●
●

●
●

●● ●

●

●
●

●

●
●

●
●

●●● ●

●
●

●
●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

Wind

5 10 15 20

●●

●●● ●
●

●● ● ●●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
● ●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

● ●

●

●●
●

●●

●

●
●

●●●●

●

●
●

●●

●

●●
●

● ●
●

●

●
●

●
●● ●

0 50 100 150

0
50

15
0

25
0

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

● ●●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●
●●

●
●

●
● ●

●●

●
●●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●
●

●
●
●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●
●

●●

●
●●

●

●

●● ●●
●

●
●

●

● ●
●

●
●

●
●

●●●●

●● ●
●

●
●

●
●

●
● ●●

●

●
●

●

●
●

●
●

●●● ●

●
●

●
●
●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

5
10

15
20

●●

●
●

●

●

●

●●
●

●
● ●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

● ●●

●

●

●
●

●

●
● ●●

●

●● ●
●

●

●

●

●

●

●

●●
●●

●
●

● ●

●
●

●

●

●
●

●

●● ●
●

●
●

●

●

●●●●

●●

●

●●

●

●

● ●

●

●

●
●●

●

●

●

●

●

Ozone

Figure 10.5 Scatterplots of all possible pairs of variables in the ozone dataset.

There are, of course, assumptions to be made in building this model. Once again, we assume
linearity, but unlike in the simple linear regression case, we can’t easily check this assumption by
creating a single scatterplot. We will need alternative methods, which we’ll revisit in Section 10.5, to
check this assumption. The same assumptions apply to the error terms as did for the simple linear
regression model; we’ll also discuss how we can check these assumptions in Section 10.5.

10.2.2 Building a multiple linear regression model

Building a simple linear regression model was straightforward as we had only one covariate to
consider. With more covariates comes added complexity and the process becomes more of an

�

� �

�

448 THE R BOOK

Understand how the data were generated.
Clean the data.

Get to know your data and the relationships between variables.

Decide whether a
multiple linear regression

model is suitable

Choose initial set of
covariates (Section 10.4)

Build the multiple lin-
ear regression model

(Section 10.2.2)

Simplify the model
(Section 10.4)

Check for violations
of the model assump-

tions (Section 10.5)

Interpret your model
(Section 10.6.1)

Make adjustments to
the covariates and/or
outcome via transfor-

mation (Section 10.5.8)

Figure 10.6 Building a multiple linear regression model.

art than a science. Figure 10.6 is a modified version of the suggested process for building simple
linear regression models, as seen in Figure 10.4, and suggests a procedure for handling the task
of modeling and which sections of this book deals with which parts.

Deciding whether a multiple linear model is suitable in the first place will come from knowledge
of the context of the data and how it was generated, for example in ensuring that observations
are not obviously dependent on one another which would immediately violate the assumption of
independent errors. In particular, no longer can we identify problems with linearity before building
the model, as we could for the simple linear regression model, and we have the additional hurdle
of deciding how we deal with multiple covariates. These issues are discussed at various points in
this chapter.

For now, we’ll focus on how to run a multiple linear regression model in R, and do so using the
air pollution example. We’ll build a multiple linear regression model with ozone concentration as the
outcome and wind speed, air temperature, and the intensity of solar radiation as covariates.

Running this model in R follows the same pattern as building a simple linear regression model:
we use the lm () command, and feed the covariates to this function, separating them using +.

�

� �

�

REGRESSION 449

attach (ozone_pollution)
ozone_mod1 <- lm (ozone ~ rad + temp + wind)
summary (ozone_mod1)

Call:
lm(formula = ozone ~ rad + temp + wind)

Residuals:
Min 1Q Median 3Q Max

-40.485 -14.210 -3.556 10.124 95.600

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -64.23208 23.04204 -2.788 0.00628 **
rad 0.05980 0.02318 2.580 0.01124 *
temp 1.65121 0.25341 6.516 2.43e-09 ***
wind -3.33760 0.65384 -5.105 1.45e-06 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 21.17 on 107 degrees of freedom
Multiple R-squared: 0.6062,Adjusted R-squared: 0.5952
F-statistic: 54.91 on 3 and 107 DF, p-value: < 2.2e-16

detach (ozone_pollution)

If, for some reason, we do not want an intercept in your model, we can suppress it in one of two
ways (the -1 or +0 can go anywhere to the right of ∼):

lm (ozone ~ rad + temp + wind - 1)
lm (ozone ~ rad + temp + wind + 0)

This forces the regression line through the origin, (0,0,0,0), implying that if rad=0, temp=0, and
wind=0, then we must have ozone=0. There is no reason to enforce this here, but this might be a
sensible strategy in some cases. Consider, for example predicting the number of calories in 100 g of
a product, with fat, carbohydrate, and protein content as covariates. It might be desirable to build a
model that guarantees a zero calorie prediction if a food product has no fat, carbohydrate or protein;
in this case, we could consider a model without intercept. Such cases are rare, and it is advisable
to include an intercept unless there are exceptional reasons not to.

10.2.3 Categorical covariates

What if one or more of your covariates is categorical? Can you still use linear regression models?
The good news is that yes, you can.

Categorical variables cannot be directly included as covariates in a linear model because their
values are names (or labels) and not numbers: we need to convert them into a format that R can
work with. Essentially, this means turning a categorical variable into a sequence of binary variables,

�

� �

�

450 THE R BOOK

also known as dummy variables. These variables, as the name suggests, can only take one of two
values: 0 or 1.

When you pass a categorical variable to R as a covariate, or specify that an apparently numeric
variable should be treated as categorical (sometimes categorical variables are coded using num-
bers, but these numbers are just labels), R will automatically create these binary variables so we
don’t have to.

Let us take a simple example: we have an experiment in which crop yields per unit area were
measured from 10 randomly selected fields on each of three soil types. All fields were sown with
the same variety of seed and provided with the same fertilizer and pest control inputs. The question
is whether soil type significantly affects crop yield, and if so, to what extent.

yields <- read.table ("yields.txt", header = T)
yields

sand clay loam
1 6 17 13
2 10 15 16
3 8 3 9
4 6 11 12
5 14 14 15
6 17 12 16
7 9 12 17
8 11 8 13
9 7 10 18
10 11 13 14

At the moment, these data are not in the correct format to run a linear regression: these data are
currently in wide format, whereas we want them in long format. The long format of these data will
involve generating one column with the soil types (this will be our covariate) and another for the yield
(our outcome variable). This can easily be achieved by using the stack () function. This would
give a long list in the output here, so we limit the displayed results to the first few observations by
using the function head ().

yields_long <- stack (yields)
head (yields_long)

values ind
1 6 sand
2 10 sand
3 8 sand
4 6 sand
5 14 sand
6 17 sand

We see that the stack () function has invented names for the outcome variable values and the
covariate ind. We will most likely want to change these:

names (yields_long) <- c ("yield", "soil")
head (yields_long)

�

� �

�

REGRESSION 451

yield soil
1 6 sand
2 10 sand
3 8 sand
4 6 sand
5 14 sand
6 17 sand

Now that our data are in the correct format, we need to consider how to convert the categorical
variable soil into something that R can handle. Notice that there are three categories in total, so
we can do this using just two binary variables. Let us call these xi1 and xi2 for now and define them
as follows:

xi1 =

{
1 if clay
0 otherwise

xi2 =

{
1 if loam
0 otherwise

Note that xi1 and xi2 are each dummy variables, and:

• Soil is clay if xi1 = 1 (in which case xi2 = 0);

• Soil is loam if xi2 = 1 (in which case xi1 = 0);

• Soil is sand if xi1 = 0 and xi2 = 0.

The important thing to notice is that two dummy variables are enough to code a categorical variable
with three categories, and in general (q − 1) dummy variables are enough to code a categorical
variable with q categories. The subsequent model can be written in the form

Yi = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 + 𝜖i. (10.4)

Notice what happens in (10.4):

• If the soil is clay: Yi = 𝛽0 + 𝛽1 + 𝜖i (because xi1 = 1; xi2 = 0);

• If the soil is loam: Yi = 𝛽0 + 𝛽2 + 𝜖i (because xi1 = 0; xi2 = 1);

• If the soil is sand: Yi = 𝛽0 + 𝜖i (because xi1 = 0; xi2 = 0).

The mean yield for sand type soil is described by the intercept 𝛽0. If we consider clay or loam,
then the additional 𝛽1 or 𝛽2 describes the mean yield difference between sand and each other soil
type. Notice, however, that what we have here are three intercept-only models: the intercept is
permitted to change by category. More generally, when we have at least one categorical variable
as a covariate, the intercept can change for observations from different categories (if there are
differences in outcome between the categories).

In our example here, sand is considered the reference category, but is an arbitrary choice: any
of the categories will do. It is best, however, to avoid using a category with very few observations
as your reference as this can cause some instability in your model.

When we run a multiple regression model for the yield data, we see that R automatically creates
the dummy variables required. It has chosen sand as the reference category in this case, but of
course the choice is rather arbitrary.

�

� �

�

452 THE R BOOK

yields_model <- lm (yield ~ soil, data = yields_long)
summary (yields_model)

Call:
lm(formula = yield ~ soil, data = yields_long)

Residuals:
Min 1Q Median 3Q Max

-8.5 -1.8 0.3 1.7 7.1

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.900 1.081 9.158 9.04e-10 ***
soilclay 1.600 1.529 1.047 0.30456
soilloam 4.400 1.529 2.878 0.00773 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.418 on 27 degrees of freedom
Multiple R-squared: 0.2392,Adjusted R-squared: 0.1829
F-statistic: 4.245 on 2 and 27 DF, p-value: 0.02495

We can see that the mean yield for sand soil is 9.9, while the difference between yields for clay and
sand soils is 1.6, for example.

In some cases, it doesn’t matter which category is chosen as the reference as is probably the
case here (unless you specifically want to compare the performance of, say, loam to each of clay
and sand). An obvious example of where it does matter is in comparing treatments: supposing you
want to compare two new treatments against the current gold standard. It would make sense for the
current gold standard to be treated as the reference category, so that comparisons can be made
between it and each of the new treatments.

Changing the reference category can be done by reordering the categories using factor ().
To change the reference category from sand to loam, for example

yields_long$soil <- factor (yields_long$soil, levels = c ("loam", "clay", "sand"))
yields_model2 <- lm (yield ~ soil, data = yields_long)
summary (yields_model2)

Call:
lm(formula = yield ~ soil, data = yields_long)

Residuals:
Min 1Q Median 3Q Max

-8.5 -1.8 0.3 1.7 7.1

Coefficients:
Estimate Std. Error t value Pr(>|t|)

�

� �

�

REGRESSION 453

(Intercept) 14.300 1.081 13.229 2.58e-13 ***
soilclay -2.800 1.529 -1.832 0.07807.
soilsand -4.400 1.529 -2.878 0.00773 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.418 on 27 degrees of freedom
Multiple R-squared: 0.2392, Adjusted R-squared: 0.1829
F-statistic: 4.245 on 2 and 27 DF, p-value: 0.02495

You can also use other methods to achieve the same, see for example Section 16.3 for an
example.

Finally, two questions that you might be asking at this point are ‘what would happen if we used
three dummy variables to describe soil type?’, and ‘what would happen if we decided not to have
an intercept in our model?’.

In answer to the first question, you would run into trouble: you would have four regression coeffi-
cients to estimate (the intercept and three ‘slopes’), but only three pieces of information with which
to do this (the yield information from each soil type). This is tantamount to trying to solve a set of
three simultaneous equations involving four unknowns, which won’t have a unique solution.

The second question is more interesting. If you don’t have an intercept, then two dummy variables
in this case won’t distinguish between the three categories (otherwise, loam in the above example
will be assumed to have yi = 𝜖i, implying a mean yield of zero). In this special case, we therefore
need to use three dummy variables to code for our three categories. Remember that going ahead
without an intercept is unusual and needs robust justification.

While R is perfectly happy to create dummy variables for categorical variables, it is sometimes
helpful to create these explicitly. Creating tables of dummy variables for use in statistical modelling
is extremely easy with the model.matrix () function. You will see what the function does with
a simple example.

In our modelling, we want to create a two-level dummy variable (present or absent) for each soil
type (in three extra columns), so that we can ask questions such as whether the mean value of
yield is significantly different in cases where each soil type was present, and when it was absent.
So for the first row of the dataframe, we want sand = TRUE, and the rest as FALSE.

The long-winded way of doing this is to create a new factor for each soil type separately, but it is
easy to do with model.matrix (). The -1 in the model formula ensures that we create a dummy
variable for each of the three soil types (technically, it suppresses the creation of an intercept).

dummy_matrix <- model.matrix (~ yields_long$soil - 1)
head (dummy_matrix)

yields_long$soilloam yields_long$soilclay yields_long$soilsand
1 0 0 1
2 0 0 1
3 0 0 1
4 0 0 1
5 0 0 1
6 0 0 1

�

� �

�

454 THE R BOOK

This matrix has 30 rows, one for each observation in the original dataset. Now, we can join these
three columns of dummy variables to the original dataframe, yields_long. We just join the new
columns to it, after which we can use variable names like yields_long.soilloam in the statis-
tical modelling (we might want to update the names to something snappier!):

new_frame <- data.frame (yields_long, model.matrix (~ yields_long$soil - 1))
head (new_frame)

yield soil yields_long.soilloam yields_long.soilclay yields_long.soilsand
1 6 sand 0 0 1
2 10 sand 0 0 1
3 8 sand 0 0 1
4 6 sand 0 0 1
5 14 sand 0 0 1
6 17 sand 0 0 1

10.2.4 Interactions between covariates

In many circumstances, we would like to be able to describe the effect of an interaction between
two (or more) covariates on the response. Interactions are interesting when dependence of the
outcome on a specific covariate changes with the value of another covariate. This may sound a
little abstract right now, but the next example should put that right.

The following experiment, with weight as the response variable, involved genotype, sex, and age
as covariates. There are six levels of genotype and two levels of sex. We initially build a model for
weight based on genotype, sex, and age as covariates.

gain <- read.table ("Gain.txt", header = T)
attach (gain)
gain_mod1 <- lm (Weight ~ Sex + Age + Genotype)
summary (gain_mod1)

Call:
lm(formula = Weight ~ Sex + Age + Genotype)

Residuals:
Min 1Q Median 3Q Max

-0.40005 -0.15120 -0.01668 0.16953 0.49227

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.93701 0.10066 78.851 < 2e-16 ***
Sexmale -0.83161 0.05937 -14.008 < 2e-16 ***
Age 0.29958 0.02099 14.273 < 2e-16 ***
GenotypeCloneB 0.96778 0.10282 9.412 8.07e-13 ***
GenotypeCloneC -1.04361 0.10282 -10.149 6.21e-14 ***
GenotypeCloneD 0.82396 0.10282 8.013 1.21e-10 ***
GenotypeCloneE -0.87540 0.10282 -8.514 1.98e-11 ***

�

� �

�

REGRESSION 455

GenotypeCloneF 1.53460 0.10282 14.925 < 2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.2299 on 52 degrees of freedom
Multiple R-squared: 0.9651,Adjusted R-squared: 0.9604
F-statistic: 205.7 on 7 and 52 DF, p-value: < 2.2e-16

We could ask questions such as:

1. Does the effect of Age on Weight depend on Sex?

• That is, should the coefficient of Age change depending on the given Sex?

2. Does the effect of Age on Weight depend on Genotype?

• That is, should the coefficient of Age change depending on the given Genotype?

3. Does the effect of Genotype on Weight depend on Sex?

• That is, should the coefficient of Genotype change depending on the given Sex?

And so on.
These are questions about interactions: how two (or more) covariates interact with each other in

their effect on the outcome. Taking into account interactions in a regression model is generally a
simple task: just multiply the two (or more) covariates which you think may interact with each other
to form a set of new covariates. Of course, we don’t need to literally create these covariates: we
can simply tell R to include an interaction between specified covariates in the lm () function by
using * instead of +.

An important point to note is that interactions can be between any type of variable, but the number
of interaction terms it produces as extra ‘covariates’ in our model will depend on the nature of the
variables used. Interactions can be between:

• two categorical covariates, which will produce (p − 1) × (q − 1) additional covariates (where
p and q are the number of levels for each covariate);

• one categorical and one numeric covariate, which will produce (p − 1) additional covariates
(where p is the number of levels for the categorical covariate);

• two numeric covariates, which will produce one additional covariate.

As adding interactions is straightforward, it might be tempting to include interactions between all
variables. This is rarely wise. As a general rule of thumb, if context-specific information leads you
to suspect an interaction may be at play, then by all means try adding an interaction to the model.

This being said, it might be helpful to assess potential interactions before including them in a
model. Interaction plots provide a visual representation of how two covariates interact (if at all). The
relevant R functions are interaction.plot () for interactions between two categorical covari-
ates, and coplot () which is a more general function that can deal with any type of covariates.

Let us go back to our experimental data, and suppose we have a reason to believe that an
interaction between age and sex, and another between genotype and sex, may help us in explaining
the outcome. The first is an interaction between a numeric and categorical variable, while the second

�

� �

�

456 THE R BOOK

●
●

● ●

●
●

● ● ●

●

●
●

● ● ●

●
● ●

●
●

● ●
●

●
●

● ●

● ●
●

1 2 3 4 5

6
7

8
9

10
11

●

●
●

● ●
●

●

● ●

●

●
●

● ●
●

●

● ●
●

●

●
●

● ●

●

● ●
●

● ●

1 2 3 4 5

Age

W
ei

gh
t

Female

Male

Given : Sex

(a) Coplot between age and sex

●
●
●●

●
●
●●●

●

●
●

●●●

●
●●
●
●

●●
●
●
●

●●

●●
●

ClnA ClnB ClnC ClnD ClnE ClnF

6
7

8
9

10
11

●

●
●

●●
●
●

●●

●

●
●

●●
●

●

●●
●

●

●
●

●●

●

●●
●

●●

ClnA ClnB ClnC ClnD ClnE ClnF

Genotype

W
ei

gh
t

Female

Male

Given : Sex

(b) Coplot between genotype and sex

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

10
.0

Genotype

M
ea

n
of

 w
ei

gh
t

CloneA CloneB CloneC CloneD CloneE CloneF

 Sex

Female
Male

(c) Interaction plot between genotype and sex

Figure 10.7 Plots to check for interaction.

involves two categorical variables. Figures 10.7a and 10.7b show the coplot () output for both
situations, while Figure 10.7c shows the equivalent interaction.plot () function in action for
the latter: Figures 10.7b and 10.7c show the same information in slightly different formats.

coplot (Weight ~ Age | Sex, data = gain)
coplot (Weight ~ Genotype | Sex, data = gain)
interaction.plot (Genotype, Sex, Weight)

What we are looking for here is evidence that males and females differ in terms of gradi-
ents/slopes or patterns. There is no obvious difference between males and females by genotype
(Figures 10.7b and 10.7c): though females are generally heavier than males, the pattern of change
over genotype is very similar. Notice that the difference in weight between females and males
will be addressed by the covariate Sexmale on its own; this doesn’t suggest that we need an
interaction.

Meanwhile, a similar story is evident for age and sex: the gradient of a regression line fitted to
each window in Figure 10.7a wouldn’t differ particularly between men and women so again there
is no evidence of an interaction between these two covariates.

�

� �

�

REGRESSION 457

No interaction effect could be seen using plots, and therefore unless these effects were of partic-
ular scientific interest we wouldn’t include them in our model. Supposing, however, the interaction
between age and sex was of interest, then we can incorporate this using:

gain_mod2 <- lm (Weight ~ Sex * Age + Genotype)
summary (gain_mod2)

Call:
lm(formula = Weight ~ Sex * Age + Genotype)

Residuals:
Min 1Q Median 3Q Max

-0.37202 -0.15893 -0.00302 0.15263 0.45188

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.99759 0.11882 67.310 < 2e-16 ***
Sexmale -0.95277 0.13933 -6.838 9.80e-09 ***
Age 0.27939 0.02970 9.406 9.98e-13 ***
GenotypeCloneB 0.96778 0.10290 9.405 1.00e-12 ***
GenotypeCloneC -1.04361 0.10290 -10.142 7.96e-14 ***
GenotypeCloneD 0.82396 0.10290 8.008 1.41e-10 ***
GenotypeCloneE -0.87540 0.10290 -8.507 2.36e-11 ***
GenotypeCloneF 1.53460 0.10290 14.914 < 2e-16 ***
Sexmale:Age 0.04039 0.04201 0.961 0.341

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.2301 on 51 degrees of freedom
Multiple R-squared: 0.9658, Adjusted R-squared: 0.9604
F-statistic: 179.8 on 8 and 51 DF, p-value: < 2.2e-16

detach (gain)

Box 10.4: Main effects and interaction effects

The term ‘interaction effect’ is exactly as it sounds: here our only interaction effect was the vari-
able Sexmale:Age in the output. The main effects are the covariates listed in our model that
are not interaction effects. This includes Sexmale and Age along with Genotype.

Here we have an interaction effect between a categorical and numeric covariate, so given that the
categorical variable has two levels we would expect just one additional row to appear in the output
relating to the interaction between age and sex. This is indeed the case: the (single) interaction effect
is in the last row of the main table in the output. But how does this allocate a different coefficient for
Age depending on Sex?

For a male (so that Sexmale is 1), supposing that their genotype is clone D for simplicity (so that
GenotypeCloneD is 1, but all others are 0), we have

ŷ = 8 − 0.95 + 0.28 × age + 0.82 + 0.04 × age = 7.87 + 0.32 × age

�

� �

�

458 THE R BOOK

For a female, with the same Genetic type as above, we have:

ŷ = 8 + 0.28 × age + 0.82 = 8.82 + 0.28 × age

You should see that the regression coefficient for age has changed depending on sex. The different
intercept is due to the Sexmale main effect and not due to the interaction.

Interactions of three or more variables are possible by multiplying the relevant covariates. For
example, to fit an interaction between all three covariates here:

lm (Weight ~ Age * Genotype * Sex, data = gain)

The interpretation of a fitted model with such interactions is cumbersome. More on this in
Section 10.6.1.

10.3 Understanding the output

We’ll use the model that we built in the last section – a model for ozone concentration using wind
speed, air temperature, and the intensity of solar radiation as covariates – to understand the output
from the function lm (). The output is displayed here again for convenience.

summary (ozone_mod1)

Call:
lm(formula = ozone ~ rad + temp + wind)

Residuals:
Min 1Q Median 3Q Max

-40.485 -14.210 -3.556 10.124 95.600

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -64.23208 23.04204 -2.788 0.00628 **
rad 0.05980 0.02318 2.580 0.01124 *
temp 1.65121 0.25341 6.516 2.43e-09 ***
wind -3.33760 0.65384 -5.105 1.45e-06 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 21.17 on 107 degrees of freedom
Multiple R-squared: 0.6062, Adjusted R-squared: 0.5952
F-statistic: 54.91 on 3 and 107 DF, p-value: < 2.2e-16

10.3.1 Residuals

A residual is the difference between an observed outcome for a specific value of the covariate(s),
and the outcome predicted by the model using the same value(s) of the covariate(s). The five
number summary for the residuals is given. On its own, this is probably not the most helpful of
information, but we will be using the residuals later in Section 10.4: these will turn out to be the key
to assessing how well a model fits the data.

�

� �

�

REGRESSION 459

10.3.2 Estimates of coefficients

The Estimate column in the Coefficients: table of the output gives us the (least squares)
estimates of the regression coefficients. The intercept is listed as (Intercept) – in this case it is
estimated to be around -64.23. Estimates of the regression coefficients of the covariates are also
given. In our case, the predicted model is

ŷ = −64.23 + 0.06 × rad + 1.65 × temp + −3.34 × wind.

10.3.3 Testing individual coefficients

The remaining columns in the Coefficients: table of the output are

• Std. Error: The standard error of the estimated regression coefficient;

• t value: The t-statistic for the null hypothesis that the regression coefficient is zero. This is
computed as the ratio of the estimated regression coefficient and its standard error;

• Pr(>|t|): The p-value resulting from the t-test above.

The hypothesis being tested here is particularly interesting. Suppose we look at the case of the j’th
regression coefficient, 𝛽j:

H0 ∶ 𝛽j = 0 given the other covariates in the model.

H1 ∶ 𝛽j ≠ 0 given the other covariates in the model.

This is an important test: if indeed the null hypothesis is true, then this is equivalent to leaving
the jth covariate out of the model. This implies that the covariate doesn’t help in explaining the
variability in the outcome. The alternative hypothesis, of course, is that it remains in the model: that
this particular covariate does help in explaining the variability in the outcome. The underlying test is
a t-test: the test statistic as given in the t value column is compared to a t-distribution with (n − p)
degrees of freedom, where n is the number of observations and p is the number of regression
coefficients to estimate (including the intercept). See, for example Section 9.1 for an example of a
t-test.

Box 10.5: Testing the intercept

Even if we don’t reject the hypothesis that the intercept is zero, it is rarely wise to remove it.

These hypothesis tests can be used to check if a single regression coefficient is nonzero. We
shouldn’t be eliminating multiple covariates simultaneously on the basis that their p-values are all
‘too large’: this is not what’s being tested here. It can happen that two or more of the p-values for
the regression coefficients are large so may lead us to think that we could remove these covariates
simultaneously. However, as we’ll see later, an appropriate statistical test to look at whether we can
remove two or more covariates simultaneously may find that it is best not to. Remember that the
hypothesis is conditional on all other variables being present, so while there may be no evidence
to retain covariate A in the model when B is in there, and no evidence to retain covariate B in the
model when A is in there, this is not evidence that we can remove both A and B.

�

� �

�

460 THE R BOOK

The stars (if any) next to the p-values give a helpful at-a-glance view of how small the p-value is
for each of these t-tests. As noted in the Signif. codes legend beneath the table of coefficients,
three stars denotes a p-value of less than 0.001, two stars a p-value of between 0.001 and 0.01,
and so on. These cut-offs for levels of p-values are arbitrary and should not be taken too seriously.

10.3.4 Residual standard error

The residual standard error is listed beneath the main table in the output. It is the sample estimate of
the standard deviation, 𝜎, of the error term, 𝜖, in (10.3). For the ozone dataset in hand, the estimate
is 21.17, and therefore the estimated variance of the error term is its square, 448.26.

10.3.5 R2 and its variants

One useful measure we can extract from a model is the coefficient of determination, commonly
known as R2 (‘R squared’). This is a sliding scale between 0 and 1 measuring the proportion of vari-
ability in the outcome that is explained by the covariates in the model. An R2 of zero indicates that
there is no linear relationship between the outcome and covariates (for example in Figure 10.8a),
while an R2 of 1 indicates that (a linear combination of) the covariate(s) can perfectly predict the
outcome (for example in Figure 10.8b).

The R2 can be used as a very rough guide to assessing the strength of the linear relationship
between the response variable and the covariates in the model. It should not be used to decide on
which model to use, or to compare between models, and should be viewed as just one tool in a
modeller’s toolkit.

A very important point to note is that a low R2 isn’t necessarily an indication of a poor-fitting
model. See, for example Figure 10.8c where a simple linear regression model isn’t a bad choice,
but due to the amount of variability in the outcome, the R2 is low. The converse is also true: a high
R2 doesn’t necessarily mean you have a ‘good’ model. In Figure 10.8d, the R2 is high but a simple
linear regression model is clearly the wrong model.

In the R output, there are two versions of R2: the Multiple R-squared and the Adjusted
R-squared. The R2 as described here is the Multiple R-squared. The Adjusted
R-squared attempts to get around an undesirable property of R2: adding covariates into a
model will never decrease the R2, and indeed will very likely increase it. This is undesirable since
we could artificially inflate our R2 by simply increasing the number of covariates we use in the
model. Indeed, if we have n observations in our dataset, and we use (n − 1) covariates in our
model, then we will ensure that R2 = 1: perfect prediction of the outcome from the covariates! To
see why this is the case, consider the case that we have two observations and only one covariate.
We can guarantee that a simple linear regression model can be found that fits exactly through
these two points, yielding an R2 of 1. This argument extends to however many observations
you happen to have. The adjusted R2 includes a penalty to prevent this happening: the more
covariates you add to your model, the bigger the penalty. This penalty is arbitrary, and there’s
nothing wrong with using Multiple R-squared without the penalty, subject to you bearing in
mind this property.

10.3.6 The regression F-test

The final line of the lm () output is an F-test, which is sometimes known as an Analysis of Variance
for regression (or ANOVA for regression). This is a rather severe statistical test, but serves as a
blunt tool to assess your model. Suppose that the model you are building has an intercept, 𝛽0, and

�

� �

�

REGRESSION 461

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

−10 −5 0 5 10

−
6

−
4

−
2

0
2

4
6

8

Covariate

O
ut

co
m

e

(a) R2 about 0: no relationship

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

6
8

10
12

14
16

Covariate

O
ut

co
m

e

(b) R2 = 1: outcome perfectly predicts covariate

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

2 4 6 8 10

−
10

−
5

0
5

10
15

20

Covariate

O
ut

co
m

e

(c) R2 around 0.05

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
50

10
0

15
0

20
0

25
0

Covariate

O
ut

co
m

e

(d) R2 around 0.94

Figure 10.8 R2 of various relationships.

further regression coefficients 𝛽1, … , 𝛽p for p covariates. The hypothesis in question here is

H0 ∶ 𝛽1 = … = 𝛽p = 0 ;

H1 ∶ At least one of 𝛽1, … , 𝛽p is non-zero.

The null hypothesis can be rephrased as ‘remove ALL covariates from the model’. This seems
rather extreme, but it tells us something about whether the covariates have any power in describing
the outcome. If we fail to reject this hypothesis, then we probably don’t have a very powerful model
on our hands.

10.3.7 ANOVA: Same model, different output

It is worth spending some time discussing the ANOVA for regression a little more. In Section 10.3.6,
we discussed the ANOVA for regression which boils down to an F-test comparing the model in ques-
tion with the intercept-only model. We’ll also be using this function later in the chapter to compare
models. There is a lot more going on behind the scenes here, which we’ll now consider.

�

� �

�

462 THE R BOOK

Let us start by applying the anova () function to our model. As you can see, the output looks
very different to the lm () output, which is also given for reference. Can you see some similarity,
however?

summary (ozone_mod1)

Call:
lm(formula = ozone ~ rad + temp + wind)

Residuals:
Min 1Q Median 3Q Max

-40.485 -14.210 -3.556 10.124 95.600

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -64.23208 23.04204 -2.788 0.00628 **
rad 0.05980 0.02318 2.580 0.01124 *
temp 1.65121 0.25341 6.516 2.43e-09 ***
wind -3.33760 0.65384 -5.105 1.45e-06 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 21.17 on 107 degrees of freedom
Multiple R-squared: 0.6062,Adjusted R-squared: 0.5952
F-statistic: 54.91 on 3 and 107 DF, p-value: < 2.2e-16

anova (ozone_mod1)

Analysis of Variance Table

Response: ozone
Df Sum Sq Mean Sq F value Pr(>F)

rad 1 14780 14780 32.971 8.853e-08 ***
temp 1 47378 47378 105.692 < 2.2e-16 ***
wind 1 11680 11680 26.057 1.450e-06 ***
Residuals 107 47964 448

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The anova () output contains the building blocks of the F-test we saw in Section 10.3.6, but
we won’t worry about that here. What you should look at are the p-values. Notice that the last
p-value – that for wind – is the same for both lm () and anova (). Let us do something seemingly
innocent and switch around the order of the covariates in the model:

attach (ozone_pollution)
ozone_mod1a <-lm (ozone ~ wind + rad + temp)
summary (ozone_mod1a)

�

� �

�

REGRESSION 463

Call:
lm(formula = ozone ~ wind + rad + temp)

Residuals:
Min 1Q Median 3Q Max

-40.485 -14.210 -3.556 10.124 95.600

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -64.23208 23.04204 -2.788 0.00628 **
wind -3.33760 0.65384 -5.105 1.45e-06 ***
rad 0.05980 0.02318 2.580 0.01124 *
temp 1.65121 0.25341 6.516 2.43e-09 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 21.17 on 107 degrees of freedom
Multiple R-squared: 0.6062,Adjusted R-squared: 0.5952
F-statistic: 54.91 on 3 and 107 DF, p-value: < 2.2e-16

anova (ozone_mod1a)

Analysis of Variance Table

Response: ozone
Df Sum Sq Mean Sq F value Pr(>F)

wind 1 45762 45762 102.088 < 2.2e-16 ***
rad 1 9044 9044 20.176 1.792e-05 ***
temp 1 19032 19032 42.457 2.429e-09 ***
Residuals 107 47964 448

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

detach (ozone_pollution)

Other than switching rows around in the lm () output, it’s identical to the previous version. How-
ever, the anova () output is different. Notice again that the last p-value is the same for both lm
() and anova (), but this time this relates to temp.

So what is the ANOVA output telling us? Going back to our ozone_mod1 model, and applying
the anova () function:

• the first row of the output compares the model with rad to the intercept-only model (no covariates)
via an F-test;

• the second row of the output compares the model with rad, temp to the model with only rad
via an F-test;

• the third row of the output compares the model with rad, temp, wind to the model with rad,
temp via an F-test.

�

� �

�

464 THE R BOOK

By the time we reach the row corresponding to the last-entered covariate in the ANOVA table, we
are comparing the ‘full’ model with removing just one covariate, in this case wind. This is identical
to the t-test for wind that appears in the lm () output, because the F-test in this special case is
mathematically identical to a t-test which we saw in Section 10.3.3 (see Section 10.4.3 for full details
why the F- and t-test are identical here). The other p-values in the ANOVA table are not equivalent
to the t-tests in the lm () output, so the p-values are different in this case.

10.3.8 Extracting model information

We often want to extract material from fitted models (e.g. slopes, residuals, or p values), and there
are three different ways of doing this:

• extracting from the model object;

• extracting from the summary of the model;

• directly by name, e.g. coef (model).

Let us take a look at what we can extract with each of the methods above from ozone_mod1. First,
we’ll look what was saved inside the model object itself.

names (ozone_mod1)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

There’s a whole host of information here, which we can extract using the name or number attached
to each element. For example, if we want to extract just the coefficients, we could do this via one
of two ways:

ozone_mod1$coefficients

(Intercept) rad temp wind
-64.23208116 0.05979717 1.65120780 -3.33759763

ozone_mod1[1]

$coefficients
(Intercept) rad temp wind
-64.23208116 0.05979717 1.65120780 -3.33759763

Remembering which numbers go with which bits of the output is probably harder than using the
names directly so we’ll stick to names.

We may want to extract a subset of the coefficients:

ozone_mod1$coefficients[[2]]

[1] 0.05979717

�

� �

�

REGRESSION 465

or save all coefficients as a vector (useful if you’re running many analyses and want to keep track
of the estimated coefficients, for example):

coef_ozone_mod1 <- as.vector (ozone_mod1$coefficients)
coef_ozone_mod1

[1] -64.23208116 0.05979717 1.65120780 -3.33759763

A slightly different set of information is contained in the summary of the model:

names (summary (ozone_mod1))

[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

Again, we can access these bits of information by name or by number. For example, if I wanted to
extract the residual standard error:

summary (ozone_mod1)$sigma

[1] 21.17222

or save the residuals as a newly defined object:

resid_ozone_mod1 <- summary (ozone_mod1)$residuals
head (resid_ozone_mod1)

1 2 3 4 5 6
7.9379186 0.9898344 -12.8133444 -0.4769439 -9.2724401 25.9497483

Finally, some information can be extracted using a particular function applied to the model object.
These include the coefficients, the residual standard error, the residuals, and the fitted values. You
get the idea by now, so we won’t run these functions:

coef (ozone_mod1)
sigma (ozone_mod1)
residuals (ozone_mod1)
fitted (ozone_mod1)

10.4 Fitting models

10.4.1 The principle of parsimony

One of the most important themes running through this book concerns model simplification. The
principle of parsimony is attributed to the early fourteenth-century English nominalist philosopher,

�

� �

�

466 THE R BOOK

William of Occam, who insisted that, given a set of equally good explanations for a given
phenomenon, the correct explanation is the simplest explanation. It is called Occam’s razor
because he ‘shaved’ his explanations down to the bare minimum: his point was that in explaining
something, assumptions must not be needlessly multiplied. For multiple linear regression models,
the principle of parsimony means that:

• models should have as few parameters as possible;

• a model without interactions is preferred to a model containing interactions between factors, all
else being equal;

• the levels of a categorical covariate may need to be grouped if they do not differ significantly from
each other in terms of the outcome.

In our zeal for model simplification, however, we must be careful not to throw the baby out with
the bathwater. Einstein made a characteristically subtle modification to Occam’s razor. He said: ‘A
model should be as simple as possible. But no simpler.’ Thus, we should only include an explanatory
variable in a model if it significantly improves the fit of the model; the fact that we went to the trouble
of measuring something does not mean we have to include it in our model. So, models should have
as few covariates as possible, while still explaining as much of the variability in the outcome as is
realistically possible.

In practice, the principle of parsimony means that simplifying our models becomes an important
task for any modeller. So, given all this, how should we go about simplifying a model? There are
no fixed rules and no absolutes: how we achieve this is essentially a process of exploration. The
thing to remember about multiple regression is that, in principle, there is no end to it. The number of
combinations of interaction terms (and curvature terms, which are discussed later in Section 10.5.8)
is endless, but a model resulting from any simplifying process:

• must not lead to significant reductions in the model’s power to explain the outcome;

• must make good scientific sense;

• should not be more difficult to interpret than is necessary.

The second and third items on this list mainly are mainly concerned with understanding the context
of the data and thoughtfully choosing which covariates to retain in the model. For a model to be
appropriate in this sense, we may need to incorporate covariates that do not help us particularly
in explaining the outcome. This includes, but is by no means limited to, dealing with interactions:
if a model includes an interaction term, it is highly recommended that the terms for the individual
covariates are kept in the model even if these main effects don’t have much of an impact in helping
to predict the outcome. Without these however, interpretation gets very tricky indeed (and what use
is a model that is either very hard, or not possible, to interpret?). See Section 10.6.1 for further
details.

To make matters more complicated, an important point to realise is that it is likely that at least
some of the covariates are correlated with each other. Some correlation is expected and won’t cause
a problem (see Section 10.5.7 for potential problems when correlation is too strong). However,
correlation between covariates means that deleting some of these from the model will change how
the remaining covariates influence the outcome.

For example in our ozone pollution data, the covariates wind and temp are correlated with one
another as we saw in Figure 10.5. If we remove, say, temp from the model, the regression coefficient

tandu
Highlight

tandu
Highlight

�

� �

�

REGRESSION 467

of wind changes considerably, as does the intercept and to a lesser extent the regression coefficient
of rad. The standard errors and p-values of the remaining covariates also change, though these
are not requested in the output here. This is nothing to worry about per se, but it is something that
you should bear in mind when modelling.

attach (ozone_pollution)
lm (ozone ~ rad + temp + wind)

Call:
lm(formula = ozone ~ rad + temp + wind)

Coefficients:
(Intercept) rad temp wind

-64.2321 0.0598 1.6512 -3.3376

lm (ozone ~ rad + wind)

Call:
lm(formula = ozone ~ rad + wind)

Coefficients:
(Intercept) rad wind

77.2687 0.1003 -5.4035

detach (ozone_pollution)

10.4.2 First plot the data

A sensible starting point is to visualise the data. Useful ways of doing this include the following:

• Plotting the response against each covariate separately;

– This will highlight which covariates are highly correlated with the outcome, and therefore,
potentially very important in our model.

• Plotting the explanatory variables against one another (e.g. pairs (); see Section 10.2);

– This will highlight which covariates are highly correlated with each other.

– Care needs to be taken if they are highly correlated (see Section 10.5.7); one possible option
is to remove one or more of these covariates.

– Don’t forget that correlation between covariates means that omitting covariates from the model
will change how the remaining covariates influence the outcome.

• Plotting the response against covariates for different combinations of other covariates
(checking for interactions) (e.g. conditioning plots via the function coplot () or interaction
plots via interaction.plot (), see Section 10.2.4).

�

� �

�

468 THE R BOOK

– This will highlight interaction terms that may be worth including in the model.

– However, building these plots to look for interactions between covariates generally means that
you should have context-specific information to suspect an interaction may be at play.

– When there are lots of covariates, trying to do this for all possible interactions is not a sensible
strategy!

Plotting the data will give a good indication of which covariates may play an important role when
modelling the outcome. The more of a feel you get for the data the more likely you are to produce
a meaningful model at the end of the process. It’s also a good opportunity to check for potential
problems with your data, for example high correlation between covariates. Only when we start
building the model, however, can we assess just how important (or not) covariates really are in
explaining the variability in the outcome.

10.4.3 Comparing nested models

There are no specific rules on where to start when building a model, but if you have a reasonably
small number of covariates you could do worse than start by building a model with all covariates
initially (which may include interaction terms if your initial data exploration suggested that these
would be sensible). From this initial model, we must adopt the principle of parsimony and be pre-
pared to simplify the model. This is often done on the basis of deletion tests: testing hypotheses
about omitting covariates from a model.

You have already met the simplest type of a deletion test in Section 10.3.3: hypotheses relating
to omitting a single covariate (or equivalently, testing the hypothesis that its regression coefficient
is zero), given that the remaining covariates remain in the model. This was conducted using a t-test,
and the results of which could be viewed in the output of lm ().

You also saw a more severe form of deletion test in 10.3.6, which tested whether we could omit
all covariates from the model. This was an F-test, and again, the results of this test could be viewed
in the output of lm ().

It would be reasonable to want to test a ‘middle ground’ hypothesis: whether we can omit a
subset of the covariates in the model. For example, supposing that there are several covariates
present in the model with associated regression coefficients 𝛽s, 𝛽t, … , 𝛽u, interest may be in testing
a hypothesis such as

H0 ∶ 𝛽s = 𝛽t = … = 𝛽u = 0 , (10.5)

for distinct indices s, t, … ,u ∈ {1, … ,p}. We cannot simply look at the result of the t-test for each
of 𝛽s, 𝛽t, … , 𝛽u. We need a more sophisticated method that checks whether we can remove all
covariates listed simultaneously (i.e. 𝛽s = 𝛽t = … = 𝛽u = 0). In the context of multiple linear regres-
sion, such hypotheses can be tested using F-tests (or possibly likelihood-ratio tests). Notice that
the F-test given within the lm () output – which tested whether we could omit all covariates – is
the same F-test as here but applied to all covariates rather than just a subset.

A very important point to remember when we use these F-tests is that this is a comparison of
nested models: we compare a model which uses a particular set of covariates with another model
in which a subset of these covariates have been removed. This test can’t be used when we are
comparing non-nested models.

�

� �

�

REGRESSION 469

Box 10.6: Nested models

A model, let us call it Model A, is nested within another model, let us say Model B, if it contains
a subset of the covariates that appear in Model B.

Running these F-tests is simply done in R. Let us consider our ozone data once again. At the
moment, we have three covariates: rad, temp, and wind. We can test whether we can omit (simul-
taneously) the variables rad and temp from the model using:

ozone_mod2 <- lm (ozone ~ wind)
anova (ozone_mod2, ozone_mod1)

Analysis of Variance Table

Model 1: ozone ~ wind
Model 2: ozone ~ rad + temp + wind

Res.Df RSS Df Sum of Sq F Pr(>F)
1 109 76040
2 107 47964 2 28076 31.316 1.965e-11 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Here, the resulting p-value is 1.9647811 × 10−11 – which is very small – so we reject the null hypoth-
esis (which said that we could omit these variables from the model with minimal consequences), and
we on balance prefer to retain these covariates in the model. This does not mean to say that both
are important: only that at least one of them is important enough to prefer to keep both covariates
rather than omit both.

Let us check that when we apply this F-test in testing whether we can omit all covariates, we get
the same p-value as the lm () gave in its output.

ozone_mod3 <- lm (ozone ~ 1)
anova (ozone_mod3, ozone_mod1)

Analysis of Variance Table

Model 1: ozone ~ 1
Model 2: ozone ~ rad + temp + wind

Res.Df RSS Df Sum of Sq F Pr(>F)
1 110 121802
2 107 47964 3 73838 54.907 < 2.2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Remember that the nested model this time is the intercept-only model, and in conducting this
test, we get the same p-value as given by the F-test in the output of lm (), as expected (see
Section 10.3.6).

What would happen if we used our F-test to test whether we can omit exactly one covariate? Of
course, the lm () output already performs a t-test for this purpose, but if we were to perform the

�

� �

�

470 THE R BOOK

F-test in this case, then the p-value would be identical to the p-value from the t-test in the output.
In the example below, we conduct an F-test to assess whether we can omit rad from the model
(i.e. a single covariate). Both give the same p-value.

ozone_mod4 <- lm (ozone ~ wind + temp)
summary (ozone_mod4)

Call:
lm(formula = ozone ~ wind + temp)

Residuals:
Min 1Q Median 3Q Max

-42.160 -13.209 -3.089 10.588 98.470

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -67.2008 23.6083 -2.846 0.00529 **
wind -3.2993 0.6706 -4.920 3.12e-06 ***
temp 1.8265 0.2504 7.293 5.32e-11 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 21.72 on 108 degrees of freedom
Multiple R-squared: 0.5817,Adjusted R-squared: 0.574
F-statistic: 75.1 on 2 and 108 DF, p-value: < 2.2e-16

anova (ozone_mod4, ozone_mod1)

Analysis of Variance Table

Model 1: ozone ~ wind + temp
Model 2: ozone ~ rad + temp + wind
Res.Df RSS Df Sum of Sq F Pr(>F)

1 108 50948
2 107 47964 1 2983.9 6.6565 0.01124 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

So when applied to a single covariate, the F-test gives an identical p-value to the t-test. It would be
rather inconvenient if this were not the case.

10.4.4 Comparing non-nested models

What if we want to compare two models that are not nested? That is, the outcome is the same in
both models, we’re using the same data to fit the models, but the covariates in one of the models
isn’t a subset of the covariates in the other.

If you are looking to perform a statistical test here, you could do worse than consider the lmtest
package (Zeileis and Hothorn, 2002) which includes tests for comparing non-nested normal linear
models. These include the Cox test, coxtest (), the Davidson–MacKinnon J test, jtest (),

�

� �

�

REGRESSION 471

and the encompassing test, encomptest () (though there are many ‘flavours’ of encompassing
test out there).

Another popular option is to look at Akaike’s information criterion (AIC). This is a statistic rather
than a test, and comparing (non-nested) models boils down to choosing a model with the smallest
AIC. It is known in the statistics trade as a penalized log-likelihood. See Section 2.5.2 for details
on the likelihood function.

The idea is that the more parameters there are in the model, the better it fits the data, and so the
larger the log likelihood. We could obtain a perfect fit if we had a separate parameter for every data
point, but this model would have absolutely no explanatory power. The AIC takes the log-likelihood
for the model under consideration then penalises it according to how many parameters we need to
estimate. Mathematically, we have

AIC = −2 × log-likelihood + 2(p + 1),

where p is the number of parameters in the model, and 1 is added for the estimated variance of the
error terms (you could call this another parameter if you wanted to).

So the smaller the AIC (smaller because we’re looking at the negative of the log-likelihood), the
better the fit of the model. We could take two (potentially non-nested) models, compute the AIC for
each of them, then the better fitting model would be the model with the smallest AIC.

There is an R function, AIC (), to compute the information criterion directly from the model
object. Let us build three models (notice that they aren’t nested so the F-test from Section 10.4.3
wouldn’t do), and try it out:

ozone_mod5 <- lm (ozone ~ temp + wind)
ozone_mod6 <- lm (ozone ~ rad + wind)
ozone_mod7 <- lm (ozone ~ rad + temp)
AIC (ozone_mod5, ozone_mod6)

df AIC
ozone_mod5 4 1003.327
ozone_mod6 4 1033.721

AIC (ozone_mod5, ozone_mod6, ozone_mod7)

df AIC
ozone_mod5 4 1003.327
ozone_mod6 4 1033.721
ozone_mod7 4 1020.820

detach (ozone_pollution)

When comparing ozone_mod5 and ozone_mod6, we would prefer ozone_mod5 because it has
the smallest AIC. This is still the case when we also add ozone_mod7 into the mix.

10.4.5 Dealing with large numbers of covariates

In Section 10.4, we suggested that a reasonable place to start building a model is to use all covari-
ates in your dataset. With a reasonable sample size and a fairly small number of covariates, this
shouldn’t pose any problems. Simplifying your model is relatively straightforward too: after all, there

�

� �

�

472 THE R BOOK

are only so many combinations of covariates you could try if we ignore the possibility of transforming
the data as we do in Section 10.5.8.

When you have a large number of covariates to deal with however (and hopefully a much
larger number of observations), things get more tricky. Now, the process of simplifying your model
becomes unwieldly: a natural question to ask is ‘where do I start?’. How do I choose subsets of
covariates to test whether I can omit them? Lots of covariates in your model may have a large
p-value in the individual t-tests of the regression coefficients, but testing whether this subset can be
removed entirely may well yield a small p-value: some of those covariates were important after all.
But which ones? To compound matters, remember that how covariates are related to the outcome
in a multiple regression model changes depending on which other covariates are present. How do
we go about building and simplifying a model in this case?

There are no hard-and-fast rules to apply here: it is a matter of personal choice. There are proce-
dures which automate the selection of covariates for your outcome, but these should be used with
extreme care:

1. They are automated routines that cannot take into account the context of the data collection
mechanism, and therefore whether certain covariates are ‘important’ regardless of their impact
on the outcome;

2. There is no theoretical justification to these procedures, they simply attempt to make your life
easier. These algorithms can fit complicated models to completely random data;

3. The model that results from using these automated procedures should be used as a first model:
this is where your model building starts, and it is usually simpler and more manageable to
improve this particular model by tinkering with it than try to create one from scratch.

4. This process of tinkering may involve:

• Adding covariates back into the model (especially if they are known to be important but were
omitted by the automated procedure);

• Simplifying the model further by omitting some of the covariates suggested by the automated
procedure;

• Adding interactions where/if necessary;
• Transforming variables (see Section 10.5.8 for details).

The main automatic model-building procedures are backward elimination, forward selection, and
stepwise regression. Each employs a set of pre-programmed rules to determine which covariates
should be kept in the model, and which should not. In summary, these algorithms work as follows:

• forward selection starts with just the intercept and adds covariates to the model one-by-one;

• backward elimination starts by fitting a model with all possible covariates (if possible), and
chooses covariates to omit one-by-one;

• stepwise regression is a combination of the above two procedures: this approach allows both
entering and removing covariates at each step, allowing to later enter or remove a covariate that
has been either removed or entered, respectively, at an earlier step.

Generally, these processes add or remove one covariate at a time, and continue doing so until the
programmed ‘stop’ condition is met. One possible strategy is to run all three types of algorithm and

�

� �

�

REGRESSION 473

compare their results. If all three methods suggest roughly the same model then this can provide
an initial direction for the analysis.

Implementation of these will vary from software to software. In R, for example, step () provides
forward, backward, or stepwise (‘both’) procedures. The algorithm behind the scenes here – what
determines whether a covariate is added or deleted – is based on the current and proposed model’s
AIC. Implementation is straightforward, for example:

model_all <- lm (outcome ~., data = mydata)
model_auto <- step (model_all, direction = "both")
summary (model_auto)

The . in the lm () function indicates that all variables should be used: we are staring with
the model with all possible covariates, and using stepwise regression by choosing direction
= "both". Alternatively, direction = "backward" or direction = "forward" give the
obvious other choices.

10.5 Checking model assumptions

In the case of the Normal linear model, as we have been studying here, the assumptions that we
have made are

1. Linearity: the response is a linear combination of the parameters 𝛽1, … , 𝛽p, and p covariates

yi = 𝛽1xi1 + … + 𝛽pxip + 𝜖i;

2. Homoscedasticity: the variance of 𝜖i is 𝜎2 for all i = 1, … ,n;

3. Normality: the error components 𝜖1, … , 𝜖n are Normally distributed;

4. Independence of error components: the error components are mutually independent (𝜖i is inde-
pendent of 𝜖j for i ≠ j).

If one of the these assumptions fails, then the normal linear model might not be adequate for the
data in hand. Nevertheless, given merely the data, it is impossible to prove (and hence be certain)
that the above assumptions hold. We can merely develop tools that would give indications against
the above assumptions: the best we can hope for is that we find no evidence of departure from
these assumptions.

10.5.1 Residuals and standardised residuals

Our main tool in checking for departures from the model assumptions will be the residuals (see
Section 10.1.1). We will call these raw residuals, and you can think of these as estimators of the
error components. However, you should not think that errors and residuals are the same thing.
Errors are theoretical constructs, whereas residuals are observed from data using our model.

Our errors are assumed to be independent and identically distributed, and even if this really is
the case, the residuals can be dependent and not identically distributed. This poses a problem:
even if the underlying assumptions on our error term are correct, our residuals may not behave in
the same way. If, in that case, we see that residuals are correlated and/or not identically distributed,
then we cannot draw conclusions about the underlying error term. This is a major drawback.

�

� �

�

474 THE R BOOK

One way of getting around this is to use standardised residuals instead of the raw residuals:
standardising ensures that if the errors are independent and identically normally distributed, then
this will approximately be true for the standardised residuals (but not necessarily the raw residuals).
There are many ways to standardise residuals – all of which require computing a function of the
raw residual – but we’ll stick to Pearson residuals here.

Pearson residuals can be computed in R painlessly using the rstandard () function. This
takes the ratio between the raw residuals and another quantity that is specific to the observation
under consideration.

For our ozone data, the residuals and the standardised residuals can be computed as follows.
Notice the difference in values between the raw (ozone_res) and standardised (ozone_stres)
residuals.

attach (ozone_pollution)
ozone_res <- predict (ozone_mod1) - ozone
ozone_stdres <- rstandard (ozone_mod1)
head (cbind (ozone_res, ozone_stdres))

ozone_res ozone_stdres
1 -7.9379186 0.38307433
2 -0.9898344 0.04731941
3 12.8133444 -0.60976646
4 0.4769439 -0.02338242
5 9.2724401 -0.45326743
6 -25.9497483 1.25472833

Instead of defining the (standardised) residuals ourselves, and creating our own plots for checking
assumptions, another alternative is to use the plot () function with our model as the argument
like this (output not shown):

plot (ozone_mod1)

This generates a set of four model checking plots, but we prefer to use our own plots so that
we can adjust them as necessary and use standardised residuals in all plots (some of R’s model
checking plots use raw residuals).

10.5.2 Checking for linearity

The simplest way to check linearity is to plot the values of the response against the values of each
covariate, like in Figure 10.5. If these plots indicate roughly linear relationships, then there is no
evidence against the linearity assumption.

Another useful way to check linearity is by plotting the standardised residuals against each covari-
ate in turn. If there is no evidence against the linearity assumption, then the plots should show a
more or less random scatter around zero. If, on the other hand, you see patterns for a specific
covariate, then this provides some evidence that the dependence of the response to that particular
covariate isn’t linear.

�

� �

�

REGRESSION 475

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ● ●

●

●

●

●

●●

●
●

●

●●

●

●

0 50 100 150 200 250 300

−
2

−
1

0
1

2
3

4

Solar radiation

S
ta

nd
ar

di
se

d
re

si
du

al
s

(a)

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●● ●

●

●

●

●

● ●

●
●

●

● ●

●

●

60 70 80 90

−
2

−
1

0
1

2
3

4

Air temperature

S
ta

nd
ar

di
se

d
re

si
du

al
s

(b)

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●●

●

●

●

●

●●

●
●

●

● ●

●

●

5 10 15 20

−
2

−
1

0
1

2
3

4

Wind speed

S
ta

nd
ar

di
se

d
re

si
du

al
s

(c)

Figure 10.9 Checking for evidence against linearity.

The plots for our ozone data are in Figure 10.9 and are drawn like this (you could use the standard
R plots by typing plot (ozone_mod1), but this produces generic plots):

plot (rad, ozone_stdres, pch = 20, col = hue_pal ()(3)[1],
ylab = "Standardised residuals", xlab ="Solar radiation", ylim = c (-2, 4.5))

abline (a = 0, b = 0, lty = 3)
plot (temp, ozone_stdres, pch = 20, col = hue_pal ()(3)[1],

ylab = "Standardised residuals", xlab = "Air temperature", ylim = c (-2, 4.5))
abline (a = 0, b = 0, lty = 3)
plot (wind, ozone_stdres, pch=20, col = hue_pal ()(3)[1],

ylab = "Standardised residuals", xlab = "Wind speed", ylim = c (-2, 4.5))
abline (a = 0, b = 0, lty = 3)

�

� �

�

476 THE R BOOK

There is some evidence here that the relationship between the outcome and air temperature is not
linear, and perhaps to a lesser extent the same can be said for wind speed. The former in particular
seems to have a slight ‘U’ shape. Problems with linearity could also be seen in the scatterplots of
ozone versus each covariate in the last row of plots in Figure 10.5.

Be careful, however: the human eye is very good at detecting patterns – even in a genuinely
random scatter of points – so we shouldn’t make our lives difficult by hunting for patterns in these
plots. Whether there is a pattern in these plots is often a judgement call, but the more you use these
techniques, the more comfortable you will be in making such decisions.

What should be done if there is evidence against linearity? Transformation of either (some of)
the covariates, or indeed, the outcome, can often result in a near-linear relationship between the
transformed variables. The nature of these transformations can often be inferred from the above
plots. For example, the relationship between the standardised residuals and air temperature has a
slight ‘U’ shape indicating that some power transform of air temperature would be beneficial. See
Section 10.5.8 for details.

10.5.3 Checking for homoscedasticity of errors

Box 10.7: Fitted values

The outcome predicted by the model, given a set of covariates.

Homoscedasticity of the error terms simply means that we assume the variance of the error terms
𝜖1, … , 𝜖n is the same for all 𝜖i. If this assumption holds, then a plot of standardised residuals against
the fitted values should look like the sky at night (points scattered at random over the whole plotting
region), with no trend in the size or degree of scatter of the residuals. A common problem is that
the variance increases with increasing value of the covariate (or vice versa) so that we obtain an
expanding, fan-shaped pattern of residuals.

The plot in Figure 10.10a is what we want to see: no trend in the residuals with the fitted values.
The plot in Figure 10.10b is a problem. There is a clear pattern of increasing residuals as the fitted
values get larger, indicating that homoscedasticity does not hold in this case. Suggestions of what
can be done in this case are given in Section 10.5.8.

10.5.4 Checking for normality of errors

The theory of multiple linear regression is based on the assumption of normal errors. If the errors are
not normally distributed, then we shall not know how this affects our interpretation of the data or the
inferences we make from it. In particular, consequences include but are not limited to inaccurate
hypothesis testing and confidence intervals when using the model. This is, of course, a serious
problem.

If the assumption of normally distributed errors holds, then the standardised residuals should
be, approximately, from a standard Normal distribution. The most convenient way of checking this
assumption is to look at normal probability plots. These plot the (ordered) standardised residuals
against the quantiles of the standard Normal distribution. If the assumption holds, then we should
see that these two quantities, when plotted against each other, roughly lie on the y = x line.

�

� �

�

REGRESSION 477

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

10 15 20 25 30 35

−
4

−
2

0
2

4

Fitted values

S
ta

nd
ar

di
se

d
re

si
du

al
s

(a) No evidence against homoscedasticity

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10 15 20 25 30 35

−
4

−
2

0
2

4

Fitted values

S
ta

nd
ar

di
se

d
re

si
du

al
s

(b) Evidence against homoscedasticity

Figure 10.10 Checking for evidence against homoscedasticity.

●●
●

●

●
●

●

●

●●
●

●

●

●

●

●●●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●● ●

●
●

● ●●
●

●
●

●

●

●

●

● ●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●

●●●

●

●

●

●

●●
●●

●

● ●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2
3

4

Quantiles of N(0,1)

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Figure 10.11 Normal probability plot.

Creating these plots is easy: qqnorm () creates the scatterplot of the quantiles and standardised
residuals, and qqline () inserts the y = x line for comparison. For the ozone data, the so-called
‘QQ-plot’ (or quantile-quantile plot) is given in Figure 10.11.

qqnorm (ozone_stdres, col = hue_pal ()(3)[1], main = "",
ylab = "Standardized Residuals", xlab = "Quantiles of N(0,1)")

qqline (ozone_stdres)

detach (ozone_pollution)

The QQ-plot alerts us to a problem with the assumption of normality of errors, as the scatter of points
form a curve rather than a straight line. It is important to remember, however, that no QQ-plot will

�

� �

�

478 THE R BOOK

ever look perfect, and in particular, the two ends of the plot where there are fewer observations often
do no lie exactly on the line even if the assumption of normality holds. Here, however, it is clear it
does not: the most worrying features are that the middle of the plot clearly lies beneath the y = x
line, and that the tails of the plot lie well above the y = x line. The latter implies that the distribution
has a lighter left tail (the smallest standardised residuals are larger than we would expect) and
heavier right tail (the largest residuals are larger than we would expect) than a standard Normal
distribution.

10.5.5 Checking for independence of errors

The last of our assumptions – that of independence of the error term – is the most difficult to check.
Independence can be violated in a number of ways; therefore, no single test or procedure can check
this assumption. The best piece of advice is to understand how the data were collected: this should
alert you to any obvious problems with this assumption. For example, if data are collected on lifestyle
and diet, multiple observations from the same household may indicate that the observations are not
truly independent which would likely imply that the errors won’t be independent either. Alternatively,
data collected repeatedly from the same individual over time (e.g. weight or a child’s height) clearly
violates this assumption.

Other cursory checks can be made by looking at the residual plots discussed in Sections 10.5.2
and 10.5.3; any patterns therein could be due to a lack of independence between errors, especially
if the observations appear clustered.

One specific way that independence can be violated is if we have serial correlation. This can
only happen if it is possible to order the observations in some way, for example in terms of time
or location. Serial correlation occurs if the (ordered) errors are correlated with the errors that come
before them. The Durbin–Watson test is used for testing for serial correlation and is implemented
as part of the car package (Fox and Weisberg, 2019). You may need to install this package first.

Notice that this test isn’t suitable for our ozone data: the observations cannot be ordered by time
or location. The dataset below, however, contains information on profit from the cultivation of a crop
of carrots for a supermarket (profit) and associated costs of inputs including fertilizers, pesticides,
energy, and labour (profit). These data are collected sequentially over time and therefore can be
ordered; the order of observations in the dataset is already chronological. It makes sense, in this
case, to check for serial correlation.

cost_profit <- read.table ("cost_profit.txt", header = T)
attach (cost_profit)
model_cost1 <- lm (profit ~ cost)
library ("car")
durbinWatsonTest (model_cost1)

lag Autocorrelation D-W Statistic p-value
1 -0.07946739 2.049899 0.854

Alternative hypothesis: rho != 0

detach (cost_profit)

There is no evidence of serial correlation in these residuals – the p-value is large – but note that this
is just one way that the assumption of independent errors can be violated: a suggested absence of
serial correlation in no way guarantees that this assumption holds in general.

�

� �

�

REGRESSION 479

●●

●

●

●

●

●

●
●

●

●

−2 0 2 4

1
2

3
4

5
6

7
8

x1

y1

(a) The standard data

●

●

●

●

●

●

●
●

●

●

●

−2 0 2 4

1
2

3
4

5
6

7
8

x

y

(b) With influential observation added

Figure 10.12 The influence of observations.

10.5.6 Checking for influential observations

One of the most common reasons for lack of fit is the existence of influential or unusual observations
in the data. It is important to understand, however, that a point may appear to be unusual because
of misspecification of the model, and not because there is anything wrong with the data. It is also
worth noting that the analysis of residuals is a poor way of looking for influence: if a point is highly
influential, it forces the regression line close to it, and hence, the influential point may have a very
small residual.

Take a look at the data plotted in Figure 10.12a which includes a line of best fit. Now consider
what happens when we add a single observation to these data, as in Figure 10.12b. The regression
of y on x looks very different. The outlier is said to be highly influential. This makes our write-up
much more complicated. We need to own up and show that the entire edifice depends upon the
single point at (5, 8). This requires an explanation of two models rather than one. We cannot pretend
that the point (5, 8) does not exist (that would be a scientific scandal), but we must describe just
how influential it is.

Checking for the presence of influential points is an important part of statistical modelling. We
cannot rely on analysis of the residuals, because by their very influence, these points force the
regression line close to them. If we look at Figure 10.12b, we can see that the line of best fit is close
to it, and closer than it is to some of the other observations. Looking at residual plots, therefore,
might not be the best way to detect such observations.

One option is to use existing measures of influence. Some of these are usefully reported by the
influence.measures () function in R. When we run this function on our regression model, it
helpfully highlights observations that may be influential using a * in the inf column:

reg <- lm (y ~ x)
influence.measures (reg)

Influence measures of
lm(formula = y ~ x):

�

� �

�

480 THE R BOOK

dfb.1_ dfb.x dffit cov.r cook.d hat inf
1 -0.1578 0.03305 -0.1581 1.319 0.01365 0.0951
2 1.3872 -1.49085 1.8979 0.277 0.82823 0.2374 *
3 -0.3649 0.18246 -0.3869 1.100 0.07378 0.1169
4 -0.4103 0.08364 -0.4108 0.969 0.07903 0.0948
5 0.0595 0.02480 0.0687 1.399 0.00264 0.1045
6 0.1635 -0.04472 0.1647 1.320 0.01480 0.0981
7 0.2847 -0.07210 0.2862 1.168 0.04207 0.0971
8 -0.1348 0.02784 -0.1350 1.340 0.01004 0.0949
9 -0.0740 0.02302 -0.0750 1.389 0.00314 0.1004
10 -0.2850 0.00369 -0.2877 1.143 0.04221 0.0909
11 0.8794 4.73210 5.0006 4.511 9.58238 0.8698 *

The statistics reported by influence.measures () are

• DFBETAS (dfb.1 and dfb.x): This looks at the difference in the regression parameters – here
the intercept and slope – when we include the observation and when we don’t.

• DFFITS (dffit): This is a function of the difference between the predicted value of an observa-
tion versus its predicted value if we dropped the observation from the model.

• Covariance ratio (cov.r): This looks at the effect of deleting each observation in turn on the
variance–covariance matrix of the estimated regression parameters.

• Cook’s distance (cook.d): This looks at the effect that omitting an observation has on all pre-
dicted values. Compare with DFFITS.

• Leverage (hat): This reports the ith diagonal of the so-called hat matrix, which is a measure of
influence of the ith observation.

The observations with high influence are highlighted by an asterisk. To extract the subscripts of the
influential points, use the is.inf attribute like this:

influence.measures (reg)$is.inf

dfb.1_ dfb.x dffit cov.r cook.d hat
1 FALSE FALSE FALSE FALSE FALSE FALSE
2 TRUE TRUE TRUE TRUE TRUE FALSE
3 FALSE FALSE FALSE FALSE FALSE FALSE
4 FALSE FALSE FALSE FALSE FALSE FALSE
5 FALSE FALSE FALSE FALSE FALSE FALSE
6 FALSE FALSE FALSE FALSE FALSE FALSE
7 FALSE FALSE FALSE FALSE FALSE FALSE
8 FALSE FALSE FALSE FALSE FALSE FALSE
9 FALSE FALSE FALSE FALSE FALSE FALSE
10 FALSE FALSE FALSE FALSE FALSE FALSE
11 FALSE TRUE TRUE TRUE TRUE TRUE

So it seems that our additional observation is detected as being unusual in this analysis. There are
various rules of thumb for deciding whether an observation is influential according to a particular
measure. A nice introduction can be found in the documentation of the olsrr package (Hebbali,
2020).

�

� �

�

REGRESSION 481

10.5.7 Checking for collinearity

Some dependence between covariates is perfectly normal and to be expected: the covariates are
not required to be independent of one another. This is a common misconception, probably due to
the unfortunate term ‘independent variables’ used by some when describing covariates.

While dependent covariates are not unusual, too much dependence between them can cause
problems when fitting multiple linear regression models. In the worst-case scenario, where a lin-
ear combination of at least some of the covariates can be perfectly predicted from a subset of
the other covariates, the algorithm that estimates the regression coefficients fails. The result is
no output, which may be the first time this problem is encountered if pre-analysis checks, as rec-
ommended in Figure 10.6, are not conducted. Common examples where this might occur include
accidentally using a two (or more) covariates that contain the same information (e.g. if we had a
covariate measuring weight in grams, and another measuring the same weight in pounds, then
we can predict precisely one from the other causing collinearity). Removing one of these covari-
ates should resolve the problem. More subtle situations where several covariates act together to
perfectly predict another covariate are more difficult to spot.

Box 10.8: Linear combinations

Combination of covariates xik, … , xip of the form akxik + … + apxip, for constants ak, … ,ap.

Collinearity isn’t just a problem when a covariate can be perfectly predicted from a linear combina-
tion of other covariates. Far more common, and probably more difficult to spot, is when a covariate
is highly correlated with such a combination of other covariates. While in this case it is very probable
that the regression coefficients can be estimated, other problems may appear:

• estimated standard errors are unexpectedly large;

• estimated regression coefficients may have signs that don’t make sense (e.g. we expect covariate
A to be negatively correlated with the outcome, but its regression coefficient is large and positive),
but this may be the case due to reasons other than collinearity;

• many of the covariates are insignificant, despite strong observed relationships with the outcome
observed during preliminary analysis.

Spotting potential collinearity is best done at the preliminary analysis stage thereby avoiding this
problem entirely. Good strategies to detect collinearity include the following:

1. Plot covariates against one another, for example using the pairs () function. Are any covari-
ates highly correlated? Of course, this only looks for dependence between pairs of variables,
but is a good initial strategy.

2. Compute measures such as the variance inflation factor, or VIF for short, which looks at lin-
ear dependence between each covariates and all the other covariates. This produces a single
number for each covariate: a measure of collinearity.

3. If you have already started building your model, omitting some covariates and looking at the
estimates from this simpler model may also be helpful: though they are expected to change as
we add or remove covariates, a substantial change may indicate a problem with collinearity.

�

� �

�

482 THE R BOOK

The first strategy may seem like a poor relation to the second, but this is probably something that
you would be doing anyway during your preliminary analysis: you may as well spend a few additional
seconds in looking for any signs of collinearity while you’re getting to know your data.

Let us return to our ozone pollution data. We have already seen (Figure 10.5) that there is some
fairly strong correlation between the covariates that could potentially mean that collinearity could
become an issue. But is the correlation sufficiently pronounced to be a cause for concern? At this
point, calculating the VIF score for each covariate may be helpful. The function vif () in the car
package (Fox and Weisberg, 2019) does just that.

attach (ozone_pollution)
library (car)
summary (ozone_mod1)

Call:
lm(formula = ozone ~ rad + temp + wind)

Residuals:
Min 1Q Median 3Q Max

-40.485 -14.210 -3.556 10.124 95.600

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -64.23208 23.04204 -2.788 0.00628 **
rad 0.05980 0.02318 2.580 0.01124 *
temp 1.65121 0.25341 6.516 2.43e-09 ***
wind -3.33760 0.65384 -5.105 1.45e-06 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 21.17 on 107 degrees of freedom
Multiple R-squared: 0.6062,Adjusted R-squared: 0.5952
F-statistic: 54.91 on 3 and 107 DF, p-value: < 2.2e-16

vif (ozone_mod1)

rad temp wind
1.095241 1.431201 1.328979

detach (ozone_pollution)

The VIF for each covariate will be at least 1, with a VIF of 1 indicating that the covariate is approx-
imately linearly independent of the other covariates. The higher the VIF, the more problematic the
collinearity. As a rule of thumb, a VIF larger than 5 deserves further investigation. Note that the
VIF isn’t a cure-all: while it may tell you that there is some linear dependence between the covari-
ates it doesn’t tell you between exactly which ones, or what you should do next. The latter requires
investigation that only you, the researcher, can carry out.

In this case, the VIFs are all fairly close to 1: there is no evidence here that collinearity is an issue.

�

� �

�

REGRESSION 483

10.5.8 Improving fit

What should we do if we detect a problem with one of the model assumptions? In this case, the
model might not be appropriate as it is (or doesn’t fit or describe the data particularly well). Then
what? There are a number of options to try, including (in order or increasing complexity):

• transform the covariate(s) and/or the outcome;

• use weighted least squares;

• abandon the model and try a more sophisticated method such as generalised linear models.

We’ll discuss the first of these options, with a brief look at weighted least squares. The models used
in the third option are introduced in later chapters of this book. See, for example, Chapters 11, 12
and 14.

Transforming covariates

The idea of transforming covariates and/or the outcome through some function may sound strange:
if we, for example, take the square root of (one of) the covariates, is the model still linear? Actually,
it is. We assume the outcome is linear in the parameters (regression coefficients). That is, we are
free to transform the covariates (and indeed, the outcome). This is easiest to see when we consider
simple linear regression models, though the same applies when you have multiple covariates.

In Figure 10.13, we see two examples:

• it is not clear whether the relationship between the untransformed variables in Figure 10.13a is
linear. Transforming both the covariate and the outcome produces a clearer pattern which we
might be happy to call linear (Figure 10.13b). In this case, both variables are transformed using
the (natural) log function;

• the relationship between the untransformed variables in Figure 10.13c is not linear. Transforming
just the covariate produces a linear relationship in Figure 10.13d. In this case, the covariate is
squared to produce this linear relationship while the outcome remains untouched.

The earlier statement that the outcome is linear in the parameters (regression coefficients) might
make more sense now. In the first example above, think of log(y) as the outcome and log(x) as the
covariate, so that simple linear regression is a suitable strategy to model the relationship between
log(y) and log(x). In the second example, think of the covariate as x2 – and not x – so that a simple
linear regression would be a suitable way of describing the relationship between y and x2. Note the
implication: the idea of building linear models isn’t as restrictive as it may initially seem.

How should we decide whether to apply a transformation to the covariate(s), outcome, or both?
If a transformation is necessary, which transformation should we apply?

This is easiest with the simple linear regression model. A scatterplot will help us in giving an
educated guess to which transformation might be suitable. Usually, however, this is a matter of
trial-and-error until we find the best transformation(s) to achieve linearity (if indeed this is possible).
Common transformations include the following:

• logarithmic functions;

• power functions (including the square root);

• reciprocals.

�

� �

�

484 THE R BOOK

15 20 25 30 35

0
20

10
30

40
50

Covariate

15 20 25 30 35

Covariate

O
ut

co
m

e

2.4 2.6 2.8 3.0 3.2 3.4 3.6

−
2

0
2

4

Log(covariate)

Lo
g(

ou
tc

om
e)

(b) Log-transformed covariate and outcome

10
0

20
0

30
0

40
0

O
ut

co
m

e

(c) Non-linear relationship

1000 1200 1400200 400 600 800

10
0

20
0

30
0

40
0

O
ut

co
m

e

(d) Covariate squared

(a) Non-linear relationship

(Covariate)^2

Figure 10.13 Transformations.

It might help to first of all consider common transformation of the covariate, before moving on to
transform the outcome if it is necessary (as it was in Figure 10.13a).

For multiple linear regression models where we can’t simply draw a scatterplot, we rely on infor-
mation from the plots used to check linearity in Section 10.5.2: plotting the standardised residuals
against each of the covariates. These plots can be used to detect problems in linearity, and there-
fore, by default we may be able to take an educated guess as to a transformation to ‘fix’ issues.
The plots in Figure 10.14 show various common problems with linearity and suggested fixes.

These plots take experience in deciphering, and there’s nothing wrong in trying a variety of trans-
formations to find a combination that improves linearity.

For our ozone pollution data, for example, the plots used to look at linearity are given in
Figure 10.9, the plot concerning air temperature (Figure 10.9b) caused the most concern. Here we
see a slightly ‘U’-shaped pattern to the residuals over the values of air temperature. We could try
a square transformation of temperature, or even the reciprocal, but in this case these transforma-
tions don’t help very much. Figure 10.15 shows the resulting plots when we transform temp by
squaring it.

�

� �

�

REGRESSION 485

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●
●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

● ●

●
●

●

●

●

●
●

●

● ●

●

●

●

4 6 8 10 12

−
1

0
1

2
3

4
5

Covariate

S
ta

nd
ar

di
se

d
re

si
du

al
s

(a) Try squaring the covariate

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10 20 30 40 50 60 70 80

−
3

−
2

−
1

0
1

Covariate

S
ta

nd
ar

di
se

d
re

si
du

al
s

(b) Try the natural logarithm of the covariate

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

10 20 30 40 50 60 70 80

−
2

−
1

0
1

2

Covariate

S
ta

nd
ar

di
se

d
re

si
du

al
s

(c) Try the square-root of the covariate

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0

−
2

−
1

0
1

2
3

Covariate

S
ta

nd
ar

di
se

d
re

si
du

al
s

(d) Try the reciprocal of the covariate

Figure 10.14 Transformations.

attach (ozone_pollution)
sq_temp <- temp^2
ozone_mod8 <- lm (ozone ~ wind + rad + sq_temp)
summary (ozone_mod8)

Call:
lm(formula = ozone ~ wind + rad + sq_temp)

Residuals:
Min 1Q Median 3Q Max

-39.831 -13.790 -3.226 10.103 96.975

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.64005 14.17817 -0.398 0.6916
wind -3.22264 0.64429 -5.002 2.24e-06 ***

�

� �

�

486 THE R BOOK

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ● ●

●

●

●

●

●●

●
●

●

●●

●

●

0 50 100 150 200 250 300

−
2

−
1

0
1

2
3

4

Solar radiation

S
ta

nd
ar

di
se

d
re

si
du

al
s

(a) Solar radiation

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●● ●

●

●

●

●

● ●

●
●

●

● ●

●

●

4000 5000 6000 7000 8000 9000

−
2

−
1

0
1

2
3

4

Air temperature

S
ta

nd
ar

di
se

d
re

si
du

al
s

(b) Square of air temperature

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●●

●

●

●

●

●●

●
●

●

● ●

●

●

5 10 15 20

−
2

−
1

0
1

2
3

4

Wind speed

S
ta

nd
ar

di
se

d
re

si
du

al
s

(c) Wind speed

Figure 10.15 Transformations.

rad 0.05933 0.02272 2.611 0.0103 *
sq_temp 0.01120 0.00162 6.915 3.54e-10 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 20.8 on 107 degrees of freedom
Multiple R-squared: 0.6199, Adjusted R-squared: 0.6092
F-statistic: 58.16 on 3 and 107 DF, p-value: < 2.2e-16

ozone8_stdres <- rstandard (ozone_mod8)

Given that a range of transformations (not shown) didn’t improve matters here, it’s natural to turn
our attention to transforming the outcome. From the plots, we have used so far it is hard to know
whether we should try this, let alone what the optimal transformation would look like.

In these circumstances, the Box–Cox transformation offers a simple empirical solution. The idea
is to find a power, 𝜆 (lambda), so that transforming the outcome via y𝜆 provides a more linear

�

� �

�

REGRESSION 487

−2 −1 0 1 2

−
60

0
−

50
0

−
40

0
−

30
0

−
20

0

λ

Lo
g−

lik
el

ih
oo

d

 95%

Figure 10.16 (Log)-likelihood as a function of lambda.

relationship with the covariates. The value of lambda can be positive or negative, when a 𝜆 of zero
is suggested, then this implies a log transformation, while a 𝜆 of 1 implies that a transformation isn’t
necessary. The function boxcox () in the package MASS (Venables and Ripley, 2002) automates
this procedure. This function yields a plot from which we can deduce the ‘best’ value of 𝜆 to use.
This is a likelihood function, and we would like to find the value of 𝜆 that maximises the likelihood.

Box 10.9: Box-Cox and maximising the likelihood

The graph produced by boxcox () is the likelihood when the covariates are fitted to a model
with (y𝜆 − 1)∕𝜆 as the outcome. Whatever our preferred value for 𝜆, this implies that fitting a
model with y𝜆 is suggested: once 𝜆 is fixed, then we can rearrange the implied equation so that
the outcome is y𝜆 instead of (y𝜆 − 1)∕𝜆.

Applying boxcox () to our ozone pollution data produces the plot in Figure 10.16.

library (MASS)
boxcox (ozone ~ rad + temp + wind)

The plot suggests that a power transformation may be suitable. It’s difficult to see exactly what value
of 𝜆 that the maximum of the (log)-likelihood suggests, but this does not matter: a value in the right
vicinity is all we need (and it’s probably better to choose something that is easy to describe). Here,
the maximum seems to happen around the 0.25 mark, suggesting that y1∕4 might be the way to go,
but equally we could consider 𝜆 = 0 which suggests log(y) as this is also in the vicinity and might
be easier to interpret and/or to explain to users of your model.

�

� �

�

488 THE R BOOK

For ease of interpretation, let us go for a log transformation of the outcome. Figure 10.17 shows
the resulting scatterplots, and we immediately see that things have improved, especially for temp.
Though still not quite perfect, but taking into consideration the principle of parsimony, it is probably
sensible to stop here: there isn’t strong evidence against linearity now. Be sure to check the other
model checking plots, however, as you could find that your transformation has had unintended
consequences on the other assumptions.

ozone_mod9 <- lm (log (ozone) ~ wind + rad + temp)
summary (ozone_mod9)

Call:
lm(formula = log(ozone) ~ wind + rad + temp)

Residuals:
Min 1Q Median 3Q Max

-2.06212 -0.29968 -0.00223 0.30767 1.23572

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.2611739 0.5534102 -0.472 0.637934
wind -0.0615925 0.0157037 -3.922 0.000155 ***
rad 0.0025147 0.0005567 4.518 1.62e-05 ***
temp 0.0491630 0.0060863 8.078 1.07e-12 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.5085 on 107 degrees of freedom
Multiple R-squared: 0.6645, Adjusted R-squared: 0.6551
F-statistic: 70.65 on 3 and 107 DF, p-value: < 2.2e-16

ozone9_stdres <- rstandard (ozone_mod9)
plot (rad, ozone9_stdres, pch = 20, col = hue_pal ()(3)[1],

ylab = "Standardised residuals", xlab = "Solar radiation", ylim = c (-2, 4.5))
abline (a = 0, b = 0, lty = 3)
plot (temp, ozone9_stdres, pch = 20, col = hue_pal ()(3)[1],

ylab = "Standardised residuals", xlab = "Air temperature", ylim = c (-2, 4.5))
abline (a = 0, b = 0, lty = 3)
plot (wind, ozone9_stdres, pch=20, col = hue_pal ()(3)[1],

ylab = "Standardised residuals", xlab = "Wind speed", ylim = c (-2, 4.5))
abline (a = 0, b = 0, lty = 3)
detach (ozone_pollution)

Finally, not all ailments with linearity can be fixed by transforming the covariates and/or outcome.
Other approaches such as non-linear models may be necessary. See Chapters 12 and 14 for
details.

Weighted least squares

The default is for all the values of the response to have equal weights (all equal to 1). This might not
be what we want: we could, for example have more faith in some of the observations than others
and may want to reflect this in the weighting that the observations are given in an analysis.

�

� �

�

REGRESSION 489

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

0 50 100 150 200 250 300

−
2

−
1

0
1

2
3

4

Solar radiation

(a) (b)

(c)

S
ta

nd
ar

di
se

d
re

si
du

al
s

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

60 70 80 90

−
2

−
1

0
1

2
3

4

Air temperature

S
ta

nd
ar

di
se

d
re

si
du

al
s

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

5 10 15 20

−
2

−
1

0
1

2
3

4

Wind speed

S
ta

nd
ar

di
se

d
re

si
du

al
s

Figure 10.17 Transformations.

Where data points are to be weighted unequally, the classical approach is to weight each value
by the inverse of the variance of the distribution from which that point is drawn. This downplays the
influence of highly variable data and can result in a better fitting model. This strategy relies on us
having a suitable variable which we can use to weight the observations, which is very unusual in
practice.

Let us consider another dataset, where the response is seed production (Fruit) with a con-
tinuous explanatory variable (Root, Root diameter), and a two-level factor (Grazing, with levels
Grazed and Ungrazed). Let us take a look at the data initially:

ipomopsis <- read.table ("ipomopsis.txt", header = T)
names (ipomopsis)

[1] "Root" "Fruit" "Grazing"

ipomopsis_mod1 <- lm (Fruit ~ Grazing + Root, data = ipomopsis)
summary (ipomopsis_mod1)

�

� �

�

490 THE R BOOK

Call:
lm(formula = Fruit ~ Grazing + Root, data = ipomopsis)

Residuals:
Min 1Q Median 3Q Max

-17.1920 -2.8224 0.3223 3.9144 17.3290

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -127.829 9.664 -13.23 1.35e-15 ***
GrazingUngrazed 36.103 3.357 10.75 6.11e-13 ***
Root 23.560 1.149 20.51 < 2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 6.747 on 37 degrees of freedom
Multiple R-squared: 0.9291,Adjusted R-squared: 0.9252
F-statistic: 242.3 on 2 and 37 DF, p-value: < 2.2e-16

Instead of using initial root size as a covariate (as above) we could use Root as a weight in fitting a
model with Grazing as the sole categorical explanatory variable. When weights (w) are specified
the model is fitted using weighted least squares, in which the quantity to be minimized is

∑
w × d2

(rather than
∑

d2), where d is the difference between the response variable and the fitted values
predicted by the model. Needless to say, the use of weights alters the parameter estimates and
their standard errors:

ipomopsis_mod2 <- lm (Fruit ~ Grazing, data = ipomopsis, weights = Root)
summary (ipomopsis_mod2)

Call:
lm(formula = Fruit ~ Grazing, data = ipomopsis, weights = Root)

Weighted Residuals:
Min 1Q Median 3Q Max

-137.822 -53.551 0.381 30.259 145.132

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 70.725 4.849 14.59 <2e-16 ***
GrazingUngrazed -16.953 7.469 -2.27 0.029 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 62.51 on 38 degrees of freedom
Multiple R-squared: 0.1194,Adjusted R-squared: 0.0962
F-statistic: 5.151 on 1 and 38 DF, p-value: 0.02899

Fitting root size as a statistical weight is scientifically wrong in this case: why should values from
larger plants be given greater influence? Also, this analysis gives entirely the wrong interpretation

�

� �

�

REGRESSION 491

●●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

20 40 60 80 100 120

5
6

7
8

9
10

Root diameter

S
ee

d
pr

od
uc

tio
n

●

●
Grazed
Ungrazed

Figure 10.18 Plot of seed production by root diameter, coloured by grazing type.

of the data (ungrazed plants come out as being less fecund than the grazed plants). The original
analysis in ipomopsis_mod1 reverses this interpretation, showing that for a given root size, the
grazed plants produced 36.013 fewer fruits than the ungrazed plants; the problem was that the big
plants were almost all in the grazed treatment. We can see this clearly in Figure 10.18.

10.6 Using the model

10.6.1 Interpretation of model

There is little point in building a model unless we can interpret the results. This means not only
understanding the output as described in Section 10.3 but also interpreting the regression coeffi-
cients: after all, if you have gone to the trouble of building a model to describe how a set of covariates
impact the outcome, then it is reasonable to want to explain the role of each covariate in turn. The
trick to doing this is to isolate the regression coefficient of interest. Understanding how this works in
the case of the simple linear regression model is instructive, so we start by revisiting the caterpillar
data from Section 10.1 for which the output is given again here for convenience.

summary (caterpillar_model)

Call:
lm(formula = growth ~ tannin, data = caterpillardata)

Residuals:
Min 1Q Median 3Q Max

-2.4556 -0.8889 -0.2389 0.9778 2.8944

�

� �

�

492 THE R BOOK

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.7556 1.0408 11.295 9.54e-06 ***
tannin -1.2167 0.2186 -5.565 0.000846 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.693 on 7 degrees of freedom
Multiple R-squared: 0.8157,Adjusted R-squared: 0.7893
F-statistic: 30.97 on 1 and 7 DF, p-value: 0.0008461

To isolate the intercept, we simply set tannin = 0. Isolating the (estimated) regression coefficient
of tannin is also easy enough: take any value of tannin - let us say a% – and compare it to having
(a + 1)% tannin in the diet. Then the expected change in growth rate between these two conditions
of tannin is

(11.76 − 1.22 × (a + 1)) − (11.76 − 1.22 × a) = −1.22 (10.6)

This leaves us with just the regression coefficient of tannin, as we wanted. Now let us think about
how this converts into interpretation:

• the intercept tells us that when there is no tannin in the diet, the expected growth rate will be
11.76.

• the regression coefficient of tannin tells us that with a one unit (one percent) increase in tannin
in the diet, the expected growth rate decreases by 1.22.

The italicised text above may seem pedantic, but without these caveats the interpretation wouldn’t
make sense. Notice also that the intercept here has a real-world interpretation, but this isn’t always
the case. If it doesn’t make sense to set the covariate equal to zero, then by all means interpret the
intercept but don’t expect it to be meaningful. This doesn’t mean that you don’t need an intercept.

When we move to models with more than one covariate, the same ideas prevail. Take our exper-
iment from Section 10.2.4 with weight as the response variable, and genotype, sex, and age as
covariates. The first model we built was a multiple linear regression model without interactions
(interactions make interpretation a little more tricky as we’ll see shortly).

summary (gain_mod1)

Call:
lm(formula = Weight ~ Sex + Age + Genotype)

Residuals:
Min 1Q Median 3Q Max

-0.40005 -0.15120 -0.01668 0.16953 0.49227

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.93701 0.10066 78.851 < 2e-16 ***
Sexmale -0.83161 0.05937 -14.008 < 2e-16 ***
Age 0.29958 0.02099 14.273 < 2e-16 ***

�

� �

�

REGRESSION 493

GenotypeCloneB 0.96778 0.10282 9.412 8.07e-13 ***
GenotypeCloneC -1.04361 0.10282 -10.149 6.21e-14 ***
GenotypeCloneD 0.82396 0.10282 8.013 1.21e-10 ***
GenotypeCloneE -0.87540 0.10282 -8.514 1.98e-11 ***
GenotypeCloneF 1.53460 0.10282 14.925 < 2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.2299 on 52 degrees of freedom
Multiple R-squared: 0.9651, Adjusted R-squared: 0.9604
F-statistic: 205.7 on 7 and 52 DF, p-value: < 2.2e-16

The intercept tells us that when all covariates are set to zero – so Age = 0, Sex = 0which implies
female, and all genotype dummy variables are zero implying Genotype Clone A (the reference
category)- the expected weight will be 7.94.

The slope of Age tells us that with a one unit (one year) increase in age, the expected weight
increases by 0.3, holding all other covariates constant. The last part tells us that we have to keep all
other covariates the same if we want to isolate the slope of Age in order to interpret it (try something
similar to equation (10.6) to see this is the case).

The remaining covariates are categorical. We could continue the same method of interpretation,
but as we’ll see, this has particular meaning in this case. Starting with sex, remember that a male
has Sexmale = 1 while a female – the reference category – has Sexmale = 0. In this case, it
doesn’t always make sense to ‘increase Sexmale by one unit’ (what if Sexmale = 1 already?)
so our comparison is always to the reference category (in other words, the ‘increase by one unit’
is represented by going from female to male here). The regression coefficient of Sexmale tells us
therefore that the weight of males is 0.83 lower than that for females on average, if Genotype and
Age remain unchanged.

Finally, the same interpretation applies for all the Genotype dummy variables, but this time we
need to compare each one to the reference category. For example, the regression coefficient of
GenotypeCloneD tells us therefore that the weight of those with Genotype Clone D is 0.82 higher
than for those with Genotype Clone A on average, if Sex and Age don’t change.

Box 10.10: Interpretation of regression coefficients

Putting all this together, the regression coefficients in multiple linear regression models without
interaction terms can be interpreted as follows:

• the intercept tells us that for a female with Genotype Clone A and age zero, their expected
weight is 7.94;

• the regression coefficient of age tells us that with a one unit (one year) increase in age, the
expected weight increases by 0.3, if Genotype and Sex don’t change;

• the regression coefficient of Sexmale tells us that the weight of males is expected to be 0.83
lower than that for females, if Genotype and Age remain don’t change.

• the regression coefficient of GenotypeCloneD tells us that the weight of those with Genotype
Clone D is 0.82 higher than that for those with Genotype Clone A on average, if Sex and Age
don’t change.

�

� �

�

494 THE R BOOK

When we add in interactions, things get a little trickier. Take the model gain_mod2, for example in
which we had an interaction between sex and age. According to this model, how do sex, age, and
genotype now impact weight?

summary (gain_mod2)

Call:
lm(formula = Weight ~ Sex * Age + Genotype)

Residuals:
Min 1Q Median 3Q Max

-0.37202 -0.15893 -0.00302 0.15263 0.45188

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.99759 0.11882 67.310 < 2e-16 ***
Sexmale -0.95277 0.13933 -6.838 9.80e-09 ***
Age 0.27939 0.02970 9.406 9.98e-13 ***
GenotypeCloneB 0.96778 0.10290 9.405 1.00e-12 ***
GenotypeCloneC -1.04361 0.10290 -10.142 7.96e-14 ***
GenotypeCloneD 0.82396 0.10290 8.008 1.41e-10 ***
GenotypeCloneE -0.87540 0.10290 -8.507 2.36e-11 ***
GenotypeCloneF 1.53460 0.10290 14.914 < 2e-16 ***
Sexmale:Age 0.04039 0.04201 0.961 0.341

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.2301 on 51 degrees of freedom
Multiple R-squared: 0.9658, Adjusted R-squared: 0.9604
F-statistic: 179.8 on 8 and 51 DF, p-value: < 2.2e-16

Let us start with the easy one: genotype isn’t involved with any interaction term, so our interpretation
of the estimated regression coefficients for each dummy variable for genotype is interpreted as
before.

For sex, however, notice that it appears twice in the model: once as a main effect, and again as
part of an interaction effect. If we want to understand what the main effect of sex is telling us, the
only way to do this is to set age = 0, so that the interaction term effectively disappears. Then we
proceed as per normal: using model gain_mod2, the regression coefficient of sex tells us that the
expected weight of males is 0.95 lower than it is for females, when age = 0 and genotype remains
the same.

For age, the same thought process is necessary: using model gain_mod2, the regression coef-
ficient of age tells us that for a female (i.e. setting Sexmale = 0), the expected weight increases
by 0.28 with a one unit (one year) increase in age, if Genotype doesn’t change.

Finally, what about the interaction term itself? This one is even more cumbersome. Again, it might
be easier to think about it as attempting to isolate this term from the model. The only way we can
do this to compare:

• the expected change in weight for a one-year change in age for males, if genotype doesn’t
change;

• the expected change in weight for a one-year change in age for females, if genotype doesn’t
change.

�

� �

�

REGRESSION 495

The first comparison is estimated to be 0.28+0.04, while the second is estimated to be 0.28. Looking
at the difference between the two gives the interaction effect.

Box 10.11: Interpretation of regression coefficients (including interactions)

Putting all this together, the regression coefficients in multiple linear regression models with
interaction terms can be interpreted as follows:

• the intercept tells us that for a female with Genotype Clone A and age zero, their expected
weight is 8;

• the regression coefficient of age tells us that for a female (i.e. setting Sexmale = 0), the
expected weight increases by 0.28 with a one unit (one year) increase in age, if Genotype
doesn’t change;

• the regression coefficient of sex tells us that the expected weight of males is 0.95 lower than
it is for females, when age = 0 and genotype remains the same;

• the regression coefficient of GenotypeCloneD tells us that the weight of those with Genotype
Clone D is 0.82 higher than that for those with Genotype Clone A on average, if Sex and Age
remain unchanged;

• the regression coefficient of Sexmale:Age tells us that 0.04 is the expected difference
between:

– the expected change in weight for a one-year change in age for males, if genotype doesn’t
change;

– the expected change in weight for a one-year change in age for females, if genotype doesn’t
change.

10.6.2 Making predictions

Using our model to make predictions about future observations is of interest in many situations.
Using your model to make a point estimate of a future outcome, based on a set of covariates, is
easy enough: you can think of it as plugging in the values of your covariates into the linear form of the
model, along with the estimated regression coefficients. This is the predicted mean (or expected,
or average) outcome based on your covariate values.

Before we make any predictions, you should be confident that the model fits the data well (oth-
erwise, any prediction is unreliable at best) and that the values of the ‘new’ covariate(s) are in-line
with what was used to build the model (otherwise, you are extrapolating outside the range of the
data, for which you have no information).

R can, of course, automate the prediction using the predict () function. Let us use
ozone_mod1 to predict the outcome when:

• rad = 110, temp = 60 and wind = 15.3;

• rad = 110, temp = 80 and wind = 9.5.

�

� �

�

496 THE R BOOK

Both sets of values are reasonable given the range of the values within the dataset, but the first set
is unusual in its combination of the three covariate values.

attach (ozone_pollution)
predict (ozone_mod1, data.frame (rad = c (110, 110), temp = c (60, 80),
wind = c (15.3, 9.5)))

1 2
-9.647168 42.735054

While the second set of ‘new’ covariates gives a broadly sensible estimate of pollution level, the
first is negative which is clearly nonsense. We need to be careful, therefore, that not only are the
covariate values sensible but that their combination is in-line with the data used to build the model.
In this case, it was obvious something had gone wrong, but it may not be the case in other examples.

As with any prediction, it is not enough simply to give a point estimate: we need to qualify it with
some estimate of variability. This could be in the form of a standard error or a confidence interval.
It’s likely that a confidence interval is more appealing, and this can be requested when using the
predict () function.

There’s one complication before we can go further: what type of prediction are you making?
Which of the following does your case fall in to?

1. Predicting the outcome for a population, given a specified set of covariate values;

2. Predicting the outcome for a single observation, given a specified set of covariate values.

The point estimate of these quantities will be the same, but their confidence intervals will differ:
there is less variability in the (unknown) population (mean) outcome than there will be in the indi-
vidual’s outcome and so the confidence interval for the first case will be narrower than that of the
second.

Box 10.12: Population vs individual prediction

This distinction is probably easier to visualise if we take a simple example. Imagine that you’ve
built a model for the height of children, using age as a covariate. Suppose that you want to
predict the height of a particular seven-year-old child, and also estimate the (mean) height of
a population of seven-year-old children. There’s a lot of variability in the heights of individual
seven-year-olds, but when we think about the population mean height of seven-year-olds, there’s
a lot less uncertainty. The confidence interval we choose for our prediction must therefore reflect
what we’re trying to estimate.

Once you’ve decided what your prediction represents, you can specify this in the predict func-
tion as either:

1. interval = confidence when we want the confidence interval for the population (mean)
outcome;

2. interval = prediction when we want the confidence interval for a specific observation.

�

� �

�

REGRESSION 497

predict (ozone_mod1, data.frame (rad = 110, temp = 80, wind = 9.5),
interval = "confidence", level = 0.95)

fit lwr upr
1 42.73505 37.20529 48.26482

predict (ozone_mod1, data.frame (rad = 110, temp = 80, wind = 9.5),
interval = "prediction", level = 0.95)

fit lwr upr
1 42.73505 0.4008949 85.06921

detach (ozone_pollution)

In the first, we request a 95% confidence interval for the population mean ozone concentration for
the given covariate values, while in the second we assume that we want a confidence interval for
a one-off observation. Notice how the latter is wider than the former, but the point estimate is the
same for both.

10.7 Further types of regression modelling

We’ll be extending the normal linear regression model over the next few chapters, and you will
notice similarities in how we approach the modelling in R. Table 10.1 gives an overview of what’s
to come, including the relevant R function to fit the models.

For most of these models, a range of generic functions can be used to obtain information about
the model, as we have in this chapter. The most important and most frequently used are listed in
Table 10.2.

Table 10.1 Functions for various regression models.

lm () Fits a linear model with normal errors and constant variance; generally this is used
for regression analysis using continuous explanatory variables.

glm () See Chapter 11. Fits generalised linear models to data using categorical or
continuous explanatory variables, by specifying one of a family of error
structures (e.g. Poisson for count data or binomial for proportion data) and a
particular link function.

gam () See Chapter 12. Fits generalized additive models to data with one of a family of
error structures (e.g. Poisson for count data or binomial for proportion data) in
which the continuous explanatory variables can (optionally) be fitted as arbitrary
smoothed functions using non-parametric smoothers rather than specific
parametric functions.

lme (); lmer () See Chapter 13. Fit linear mixed-effects models with specified mixtures of fixed
effects and random effects and allow for the specification of correlation structure
among the explanatory variables and autocorrelation of the response variable
(e.g. time series effects with repeated measures). lmer () allows for non-normal
errors and non-constant variance with the same error families as a GLM.

nls () See Chapter 14. Fits a non-linear regression model via least squares, estimating
the parameters of a specified non-linear function.

(continued)

�

� �

�

498 THE R BOOK

Table 10.1 (Continued)

nlme () See Chapter 14. Fits a specified non-linear function in a mixed-effects model
where the parameters of the non-linear function are assumed to be random
effects; it allows for the specification of correlation structure among the
explanatory variables and autocorrelation of the response variable (e.g. time
series effects with repeated measures).

loess () See Chapter 12. Fits a local regression model with one or more continuous
explanatory variables using non-parametric techniques to produce a smoothed
model surface.

tree (); rpart() See Chapter 20. Fits a regression tree model using binary recursive partitioning
whereby the data are successively split along coordinate axes of the explanatory
variables so that at any node the split is chosen that maximally distinguishes the
response variable in the left and right branches. With a categorical response
variable, the tree is called a classification tree, and the model used for
classification assumes that the response variable follows a Multinomial
distribution.

Table 10.2 Frequently used functions to extract information about regression models.

summary () produces parameter estimates and standard errors from lm ().
plot () produces diagnostic plots for model checking, including residuals against fitted values,

normality checks, influence tests, etc.
anova () is a wonderfully useful function for comparing different models and producing ANOVA

tables.
update () is used to modify the last model fit; it saves both typing effort and computing time.
coef () gives the coefficients (estimated parameters) from the model.
fitted () gives the fitted values, predicted by the model for the values of the explanatory

variables included.
resid () gives the residuals (the differences between measured and predicted values of y).
predict () uses information from the fitted model to produce smooth functions for plotting a line

through the scatterplot of your data. Make sure you provide a list or a dataframe
containing all of the necessary information on each of the explanatory variables in your
model to enable the prediction to be made.

References

Fox, J., & Weisberg, S. (2019). An R companion to applied regression (Third). Sage. https://socialsciences.
mcmaster.ca/jfox/Books/Companion/.

Hebbali, A. (2020). Olsrr: Tools for building OLS regression models [R package version 0.5.3]. https://CRAN.
R-project.org/package=olsrr.

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (Fourth) [ISBN 0-387-95457-0].
Springer. https://www.stats.ox.ac.uk/pub/MASS4/.

Zeileis, A., & Hothorn, T. (2002). Diagnostic checking in regression relationships. R News, 2(3), 7–10. https://
CRAN.R-project.org/doc/Rnews/.

https://socialsciences.mcmaster.ca/jfox/Books/Companion/
https://CRAN.R-project.org/package=olsrr
https://www.stats.ox.ac.uk/pub/MASS4/
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
https://socialsciences
https://CRAN

�

� �

�

11
Generalised Linear Models

We saw in Section 10.5.8 that linear model assumptions may not be satisfied for our dataset, even
after transformations. Fortunately, riding to our assistance are Generalised Linear Models or
GLMs which are far more flexible and will also work with a much wider range of outcomes than
linear models. Some examples of such outcomes are the following:

• Count data, such as the number of road accidents, where negative counts are not permitted;

• Binary data, such as dead or alive;

• Time to event (such as arrival of a train) data.

11.1 How GLMs work

This section offers a summary of the key features of GLMs: for more mathematical background and
examples see, for instance, Dobson and Barnett, 2018. These features highlight the differences
from and similarities to linear models.

11.1.1 Error structure

We saw in Chapter 10 that linear models have error terms that are assumed to have a Normal
distribution. In practice, this may not be realistic, for instance we may have

• errors that are strongly skewed;

• errors that are strictly bounded (as in proportions);

• errors that cannot lead to negative fitted values (as in counts).

GLMs deal with this issue by assuming that the distribution of the outcome variable (Yis), given
the covariates (xijs), and thus the error distribution, comes from the exponential family (not to be

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

500 THE R BOOK

confused with the exponential distribution). The Normal distribution is part of this family, and so
linear models are just examples of GLMs. Other examples are the following:

• Poisson errors, useful with count data;

• Binomial errors, useful with proportion data;

• Gamma errors, useful with data showing a constant coefficient of variation;

• Exponential errors, useful with data on time to an event.

In many of these cases, the relationship between the mean and variance is not constant, as
assumed in linear models. Figure 11.1 illustrates this.

11.1.2 Linear predictor

The good news is that we don’t have to forget everything we learnt about linear models. We still
create a linear combination of the covariates (including interactions, etc.), but now that does not
equal Yi but

𝜂i = 𝛽0 + 𝛽1xi1 + … 𝛽pxip

the linear predictor, and the error term is taken care of elsewhere.

(a) Normal (b) Poisson

(c) Binomial (d) Gamma

Figure 11.1 Relationship between mean (x-axis) and variance (y-axis) for a range of error types.

�

� �

�

GENERALISED LINEAR MODELS 501

11.1.3 Link function

The linear predictor and error distribution are brought together with the link function. So if the mean
of any outcome variable, given the covariates is 𝜇i, i.e.

𝜇i = E(Yi|Xi = xi),

then the link function, g(), is defined so that:

𝜂i = g(𝜇i)

which is simple, but needs thinking about. The linear predictor emerges from the linear model as a
sum of the terms for each of the p parameters. For instance, if our error terms come from a Normal
distribution, the link function is usually the identity function:

𝜂i = 𝜇i

and the mean of the linear predictor is also the mean of Yi. Usually, however the mean of Yi is
obtained by applying the inverse link function to 𝜂i, the linear combination of the covariates.

A more complex example arises with Poisson errors where the usual link function is

𝜂i = ln(𝜇i)

One of the reasons for choosing this, and many other, link functions is to ensure that the fitted
values stay within reasonable bounds. Here, for example, counts are all greater than or equal to 0
(negative count data would be nonsense), and so we need g−1(𝜂i) = e𝜂i also to be non-negative,
which is the case. Similarly, if the response variable was the proportion of individuals that died, then
the fitted values would have to lie between 0 and 1 (fitted values greater than 1 or less than 0 would
be meaningless). So the inverse of the logit link (Table 11.1) ensures that the linear predictor is
transformed to a value between 0 and 1.

We can decide which link function we want to go with each error distribution. However, there
are defaults used by R, known as canonical link functions, the most common being given in
Table 11.1.

In the third line, we can see that the logit link, is actually the log of the odds of the event happening
against it not happening: this is known as the log odds ratio. Note that, rather confusingly, R uses
the argument family in order to select the error distribution. Dispersion allows, in some cases,
flexibility between the variance of the linear predictor and that of the error distribution. See Section
11.2.2 for more details.

Once the GLM has been set up, the parameters of the model, the 𝛽s, and those from the error
distribution are estimated from the data by a form of maximum likelihood.

Table 11.1 Common members of the exponential family

Error distribution name in R Parameters Canonical link g(𝜇) Dispersion parameter

gaussian 𝜇, 𝜎2 identity 𝜇 𝜎2

poisson 𝜇 log ln(𝜇) 1

binomial n,p logit ln
(

𝜇

1−𝜇

)
1
n

Gamma 𝛼, 𝜆 reciprocal 1
𝜇

1
𝛼

�

� �

�

502 THE R BOOK

Choosing between using a link function (e.g. log link) and transforming the response variable (i.e.
having log(Yi) as the response variable rather than Yi) takes a certain amount of experience. The
decision is usually based on whether the variance is constant on the original scale of measurement.
If the variance was constant, we might prefer use a link function. If the variance increased with the
mean, we might be more likely to log-transform the response.

11.1.4 Model checking

To illustrate some of these ideas, we will return to the ozone pollution dataset discussed in
the linear models chapter. We start by reproducing the model created using lm (), but using the
glm () function: the argument family = gaussian () is used to specify normally distributed
errors. The full model is

E(Yi|Xi = xi) = 𝛽0 + 𝛽1xi1 + … + 𝛽pxip .

as the link function is just the identity function. This is equivalent to equation (10.3)
in Section 10.2.1.

ozonepollution <- read.table ("ozone_pollution.txt", header = T)
lm_ozone <- glm (ozone ~ rad + temp + wind, family = gaussian (),

data = ozonepollution)
summary (lm_ozone)

Call:
glm(formula = ozone ~ rad + temp + wind, family = gaussian(),

data = ozonepollution)

Deviance Residuals:
Min 1Q Median 3Q Max

-40.485 -14.210 -3.556 10.124 95.600

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -64.23208 23.04204 -2.788 0.00628 **
rad 0.05980 0.02318 2.580 0.01124 *
temp 1.65121 0.25341 6.516 2.43e-09 ***
wind -3.33760 0.65384 -5.105 1.45e-06 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Gaussian family taken to be 448.2628)

Null deviance: 121802 on 110 degrees of freedom
Residual deviance: 47964 on 107 degrees of freedom
AIC: 998.63

Number of Fisher Scoring iterations: 2

�

� �

�

GENERALISED LINEAR MODELS 503

The summary of the GLM model looks a little different from that of a linear model. Some of the
key features are the following:

• Near the top is a summary of deviance residuals rather than the residuals we are used to. The
raw residuals are not generally appropriate for GLMs due to the relationship between the mean
and the variance. Two types of residuals are usually created and this is the first;

• The middle section describing the coefficients is identical to that for linear models: be careful
about its interpretation if the link function is not the identity;

• The residual deviance near the bottom is analogous to the RSS for linear models, i.e. we would
like it to be as small as possible. The ratio of the residual deviance (4.7964118 × 104) to the
number of degrees of freedom (107) should, in theory, be close to the dispersion parameter,
whose theoretical Value is given in Table 11.1. Whether that is the case, is one of the factors in
judging whether the model we have is a good one. We will come back to this in Section 11.2.2
when we examine overdispersion in count models;

• The AIC will be given wherever possible. This can be used for comparing models: the smaller
the better.

We can create standardised residuals (the second type for GLMs) in a similar fashion to the way
we did for linear models and Figure 11.2 compares them with fitted values from the model.

stdres_lm <- rstandard (lm_ozone)
plot (lm_ozone$fitted.values, stdres_lm, col = hue_pal ()(2)[1], pch = 20,
ylab = "standardised residuals", xlab = "fitted values")

As with linear models, we are looking for a random spread of dots. Although there are not too many
residuals with absolute values greater than two, one of them is very large. In addition, the variance
does appear to grow with the fitted values. Transformations were examined in Section 10.5.8, so

−20 0 20 40 60 80 100

−
2

−
1

0
1

2
3

4

Fitted values

S
ta

nd
ar

di
se

d
re

si
du

al
s

Figure 11.2 Linear model residuals from ozonepollution.

�

� �

�

504 THE R BOOK

we will look at a different structure for the residuals. As the residuals appear to decrease and then
increase, we will use a Gamma error distribution. This would give a model equation:

(E(Yi|Xi = xi))−1 = 𝛽0 + 𝛽1xi1 + … + 𝛽pxip .

In order to account for the possible heteroscedasticity, we will also see whether a log-link function
improves things and that model equation would be

ln(E(Yi|Xi = xi)) = 𝛽0 + 𝛽1xi1 + … + 𝛽pxip .

We won’t write out any further model equations in full, but it’s just a case of putting together the
appropriate link function with the usual linear model equation:

glm_ozone_g <- glm (ozone ~ rad + temp + wind, family = Gamma (),
data = ozonepollution)

glm_ozone_gl <- glm (ozone ~ rad + temp + wind, family = Gamma (link = "log"),
data = ozonepollution)

summary (glm_ozone_g)

Call:
glm(formula = ozone ~ rad + temp + wind, family = Gamma(), data = ozonepollution)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.91389 -0.44403 -0.09569 0.29349 1.25129

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.061e-01 1.528e-02 6.940 3.13e-10 ***
rad -6.821e-05 1.778e-05 -3.836 0.000212 ***
temp -9.626e-04 1.567e-04 -6.144 1.40e-08 ***
wind 1.443e-03 3.465e-04 4.165 6.32e-05 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Gamma family taken to be 0.2608118)

Null deviance: 71.95 on 110 degrees of freedom
Residual deviance: 29.16 on 107 degrees of freedom
AIC: 939.81

Number of Fisher Scoring iterations: 6

summary (glm_ozone_gl)

Call:
glm(formula = ozone ~ rad + temp + wind, family = Gamma(link = "log"),

data = ozonepollution)

�

� �

�

GENERALISED LINEAR MODELS 505

Deviance Residuals:
Min 1Q Median 3Q Max

-1.70970 -0.40806 -0.09134 0.24151 1.17971

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4520877 0.5315684 0.850 0.39696
rad 0.0021026 0.0005347 3.933 0.00015 ***
temp 0.0430223 0.0058461 7.359 3.98e-11 ***
wind -0.0659143 0.0150839 -4.370 2.89e-05 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Gamma family taken to be 0.2385663)

Null deviance: 71.950 on 110 degrees of freedom
Residual deviance: 25.853 on 107 degrees of freedom
AIC: 925.9

Number of Fisher Scoring iterations: 7

The log-link model has the smaller AIC (also smaller than that for the linear model), so let us run
with that. Figure 11.3 shows the residuals.

stdres_glm <- rstandard (glm_ozone_gl)
plot (glm_ozone_gl$fitted.values, stdres_glm, col = hue_pal ()(2)[2], pch = 20,
ylab = "standardised residuals", xlab = "fitted values")

There are fewer points with absolute values greater than two, and they are less extreme, than in
the linear model. On the face of it does look as if we have a larger variance for smaller fitted values;
however, that may just be a consequence of there being more points for smaller values. Incidentally,

20 40 60 80 100 120

−
3

−
2

−
1

0
1

2

Fitted values

S
ta

nd
ar

di
se

d
re

si
du

al
s

Figure 11.3 GLM with Gamma errors and log-link residuals from ozonepollution.

�

� �

�

506 THE R BOOK

in Section 10.5.8, we wondered whether a transformation taking y0.25 might be a good idea. With
GLMs, we can use such a link function as follows:

glm_ozone_p <- glm (ozone ~ rad + temp + wind, family = Gamma (link =
power (0.25)),data = ozonepollution)

summary (glm_ozone_p)

Call:
glm(formula = ozone ~ rad + temp + wind, family = Gamma(link = power(0.25)),

data = ozonepollution)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.70755 -0.45419 -0.06948 0.24978 1.17973

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.6798371 0.3104981 2.190 0.030732 *
rad 0.0010801 0.0003091 3.494 0.000693 ***
temp 0.0246121 0.0035039 7.024 2.08e-10 ***
wind -0.0345243 0.0087976 -3.924 0.000154 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Gamma family taken to be 0.2532739)

Null deviance: 71.950 on 110 degrees of freedom
Residual deviance: 27.997 on 107 degrees of freedom
AIC: 935.1

Number of Fisher Scoring iterations: 11

but the AIC does not appear to be an improvement and the residuals plot (not shown) is very similar
to that from the log link.

11.1.5 Interpretation and prediction

Having arrived at a model that we are happy with (glm_ozone_gl), how should we interpret it?
The complicating factor is our log-link function. Since we take logs to arrive at the linear predictor,
we need to go through the inverse of that function to understand how the linear predictor affects the
outcome variable. We might want to know what the effect of an increase of 2 degrees in tempera-
ture might be on ozone estimates. Perhaps we discovered our thermometer was inaccurate or are
interested in the effect of climate change:

1. Select the coefficient of wind in the model, 𝛽2 = 0.0430223;

2. Multiply by the 2 degrees of interest to give, 0.0860447;

3. Take the exponential of the result, e2𝛽2 = 1.089855;

4. The effect on any ozone value can then be calculated by multiplying that value by the result from
point 3.

�

� �

�

GENERALISED LINEAR MODELS 507

Making predictions requires a similar approach, but we can use the predict () function in R, as
we did for linear models. It is a little more complicated to derive the confidence interval, but here
goes. Let us assume that we want to calculate 99% CIs for ozone levels for two sets of values of
the covariates: (250,64,10.3) and (200,62,15.7).

covs <- data.frame (rad = c (250, 200), temp = c (64, 62), wind = c (10.3, 15.7))
z <- qnorm (0.995)
preds <- predict (glm_ozone_gl, newdata = covs, type = "response", se.fit = T)
point_est <- preds$fit
ci_lower <- preds$fit - z * preds$se.fit
ci_upper <- preds$fit + z * preds$se.fit

Fortunately, R handles the exponential transformation with the argument type = "response".
The CI for the first set of covariates, for instance, is then (ci_lower[1], ci_upper[1]) or
(15.45, 26.87). It is worth mentioning that it is dangerous to make predictions outside the area
bounded by the covariate data that we have.

11.2 Count data and GLMs

Up to this point, most of our response variables have been continuous measurements such as
weights, heights, lengths, temperatures, and growth rates. A great deal of the data collected by
scientists, medical statisticians, and economists, however, is in the form of counts (whole numbers
or integers). The number of individuals who died, the number of firms going bankrupt, the number
of days of frost, the number of red blood cells on a microscope slide, and the number of craters in
a sector of lunar landscape are all potentially interesting variables for study. With count data, the
number 0 often appears as a value of the response variable (consider, for example what a 0 would
mean in the context of the examples just listed). In this section, we deal with data on frequencies,
where we count how many times something happened, although we have no way of knowing how
often it did not happen (e.g. lightning strikes, bankruptcies, deaths, and births). This is in contrast
to count data on proportions, where we know not only the number doing a particular thing but also
the number not doing that thing (e.g. the proportion dying, sex ratios at birth, and proportions of
different groups responding to a questionnaire).

Straightforward linear regression methods (assuming constant variance, Normal errors) are not
appropriate for count data for four main reasons:

• the linear model might lead to the prediction of negative counts;

• the variance of the response variable is likely to increase with the mean;

• errors are unlikely be normally distributed;

• zeroes can be tricky to handle in transformations.

In R, count data are handled very elegantly in a generalised linear model by specifying family =
poisson which sets errors to have a Poisson distribution and the default link = log. The log
link ensures that all the fitted values are positive, while Poisson errors take account of the fact that
the data are integers: the latter assume that their variances are equal to their means, and we shall
revisit this assumption in Section 11.2.2.

�

� �

�

508 THE R BOOK

0 2 4 6 8 10

10
20

30
40

Biomass

S
pe

ci
es

pH level

High
Mid
Low

Figure 11.4 Dataset species.

11.2.1 A straightforward example

In this first example, the response is a count of the number of plant species on plots that have
different biomass (a continuous explanatory variable) and different soil pH (a categorical variable
with three levels: high, mid, and low), as pictured in Figure 11.4:

species <- read.table ("species.txt", header = T, colClasses = list (pH = "factor"))
head (species)

pH Biomass Species
1 high 0.4692972 30
2 high 1.7308704 39
3 high 2.0897785 44
4 high 3.9257871 35
5 high 4.3667927 25
6 high 5.4819747 29
cols = data.frame (pH = levels (species$pH), col = hue_pal ()(3))
plot (species[,2:3], col = cols[match (species$pH, cols$pH),2],

pch = 19)
legend (8, 40, legend = c ("high", "mid", "low"), pch = rep (19, 3),

col = hue_pal ()(3), title = "pH level")

We have created a dataframe, cols, matching each level of pH to a colour and then applying that
to each point. It is clear that species declines with biomass, and that soil pH has a big effect on
species, but does the slope of the relationship between species and biomass depend on pH? This
is a question about interaction effects, and here, interaction effects are about differences between
slopes. This is what we shall explore with our GLM, beginning with a model with no interaction.

species_mod1 <- glm (Species ~ Biomass + pH, poisson, data = species)
summary (species_mod1)

Call:
glm(formula = Species ~ Biomass + pH, family = poisson, data = species)

�

� �

�

GENERALISED LINEAR MODELS 509

Deviance Residuals:
Min 1Q Median 3Q Max

-2.5959 -0.6989 -0.0737 0.6647 3.5604

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.84894 0.05281 72.885 < 2e-16 ***
Biomass -0.12756 0.01014 -12.579 < 2e-16 ***
pHlow -1.13639 0.06720 -16.910 < 2e-16 ***
pHmid -0.44516 0.05486 -8.114 4.88e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Poisson family taken to be 1)

Null deviance: 452.346 on 89 degrees of freedom
Residual deviance: 99.242 on 86 degrees of freedom
AIC: 526.43

Number of Fisher Scoring iterations: 4

All the covariates appear to be important, so let us introduce an interaction and compare the two
models:

species_mod2 <- glm (Species ~ Biomass * pH, poisson, data = species)
summary (species_mod2)

Call:
glm(formula = Species ~ Biomass * pH, family = poisson, data = species)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.4978 -0.7485 -0.0402 0.5575 3.2297

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.76812 0.06153 61.240 < 2e-16 ***
Biomass -0.10713 0.01249 -8.577 < 2e-16 ***
pHlow -0.81557 0.10284 -7.931 2.18e-15 ***
pHmid -0.33146 0.09217 -3.596 0.000323 ***
Biomass:pHlow -0.15503 0.04003 -3.873 0.000108 ***
Biomass:pHmid -0.03189 0.02308 -1.382 0.166954

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Poisson family taken to be 1)

Null deviance: 452.346 on 89 degrees of freedom
Residual deviance: 83.201 on 84 degrees of freedom
AIC: 514.39

�

� �

�

510 THE R BOOK

0 2 4 6 8 10

10
20

30
40

Biomass

S
pe

ci
es

pH level

High
Mid
Low

Figure 11.5 Dataset species with means of the fitted GLM.

Number of Fisher Scoring iterations: 4

anova (species_mod1, species_mod2, test = "Chi")

Analysis of Deviance Table

Model 1: Species ~ Biomass + pH
Model 2: Species ~ Biomass * pH
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 86 99.242
2 84 83.201 2 16.04 0.0003288 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Clearly, the small p-value suggests there is a difference between the models.
Poisson family models assume that the dispersion is 1 and so a good model would have the

residual deviance and number of degrees of freedom close to each other (see Section 11.2.2 for
more details). That is the case in our interaction model, whose AIC is also lower than the original
simpler model.

The interaction between biomass and pH has an important effect on the number of species. We
can plot the means of the fitted model to give Figure 11.5:

plot (species[,2:3], col = cols[match (species$pH, cols$pH),2])
legend (8, 40, legend = c ("high", "mid", "low"), pch = rep (19, 3),

col = hue_pal ()(3), title = "pH level")
x <- seq (0, 10, 0.1)
for (levs in levels (species$pH)) {
lines (x, exp (predict (species_mod2,

list (Biomass = x, pH = rep (levs, length (x))))),
col = cols[match (levs, cols$pH),2])

}

�

� �

�

GENERALISED LINEAR MODELS 511

11.2.2 Dispersion

In Table 11.1, we saw that attached to each error distribution is a dispersion parameter. Intuitively,
this represents the ratio of the response variable to that of the linear predictor. Mathematically, we
write it as follows:

Var(Yi)
Var(𝜇i)

=
Var(Yi)

Var(g−1(𝛽0 + 𝛽1xi1 + … 𝛽pxip))
.

In those distributions where the dispersion parameter is represented by a parameter of the distri-
bution (e.g. Gamma with 1

𝛼
), the value of that latter parameter can be estimated based upon the

dispersion of the data. However, for the Poisson and Binomial distributions, the dispersion param-
eter is fixed (1 and 1

n
, respectively), and so there is no way of rectifying any differences in the

variances. Typically, Var(Yi) is larger than the denominator, and we have overdispersion, i.e. the
data we observe are more widely spread (dispersed) than the explanatory variables.

The simplest way to deal with this is to find some more covariates that reduce the dispersion.
If that is not possible, then GLMs do have a work around: the quasi-Poisson family can be
used for count data and the following example illustrates that. However, it is worth stressing that
this technique introduces another level of uncertainty into the analysis. Overdispersion happens
for real, scientifically important reasons, and these reasons may throw doubt upon our ability to
interpret the experiment in an unbiased way.

The response variable we will be examining is a count of infected blood cells per square millimetre
on microscope slides prepared from randomly selected individuals. The explanatory variables are
smoker (logical: yes or no), age (three levels: under 20, 21–59, 60, and over), sex (male or female),
and body mass score (three levels: normal, overweight, and obese).

cellcounts <- read.table ("cells.txt", header = T,
colClasses = c ("numeric", rep ("factor", 4)))

names (cellcounts)

[1] "cells" "smoker" "age" "sex" "weight"

head (cellcounts)

cells smoker age sex weight
1 1 T young male normal
2 0 T young male normal
3 1 T young male normal
4 1 T young male normal
5 0 T young male normal
6 2 T young male normal

It is always a good idea with count data to get a feel for the overall frequency distribution
of counts:

table (cellcounts$cells)

0 1 2 3 4 5 6 7
314 75 50 32 18 13 7 2

�

� �

�

512 THE R BOOK

Most subjects (314 of them) showed no damaged cells, and the maximum of 7 was observed in
just two patients. We begin data inspection by tabulating the main effect means:

tapply (cellcounts$cells, cellcounts$smoker, mean)

F T
0.5478723 1.9111111

tapply (cellcounts$cells, cellcounts$weight,mean)

normal obese over
0.5833333 1.2814371 0.9357143

tapply (cellcounts$cells, cellcounts$sex, mean)

female male
0.6584507 1.2202643

tapply (cellcounts$cells, cellcounts$age, mean)

mid old young
0.8676471 0.7835821 1.2710280

It looks as if smokers had a substantially higher mean count than non-smokers, overweight and
obese subjects had higher counts than those of normal weight, males had a higher count than
females, and young subjects had a higher mean count than middle-aged or older people. We need
to test whether any of these differences are important and to assess whether there are interactions
between the explanatory variables.

We might start our model building with the very straightforward:

cells_mod1 <- glm (cells ~ smoker + sex + age + weight, poisson, data = cellcounts)
summary (cells_mod1)

Call:
glm(formula = cells ~ smoker + sex + age + weight, family = poisson,

data = cellcounts)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.4787 -1.2493 -0.7866 0.5244 3.6826

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.228699 0.141585 -8.678 < 2e-16 ***
smokerT 1.305209 0.111522 11.704 < 2e-16 ***
sexmale 0.124044 0.109401 1.134 0.257
ageold 0.055447 0.125359 0.442 0.658
ageyoung -0.003507 0.130616 -0.027 0.979
weightobese 0.925295 0.117704 7.861 3.80e-15 ***

�

� �

�

GENERALISED LINEAR MODELS 513

weightover 0.531883 0.130218 4.085 4.42e-05 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Poisson family taken to be 1)

Null deviance: 1052.95 on 510 degrees of freedom
Residual deviance: 803.72 on 504 degrees of freedom
AIC: 1331.4

Number of Fisher Scoring iterations: 6

Aside from noting that weight and smoking appear to be critical factors in determining cell count,
while age and gender do not, we can see that the ratio of residual deviance to degrees of freedom is
803.72∕504 = 1.59 showing considerable overdispersion. If we cannot uncover further covariates
that might explain this, then we could adapt our model:

cells_mod2 <- glm (cells ~ smoker + sex + age + weight, quasi-Poisson,
data = cellcounts)

summary (cells_mod2)

Call:
glm(formula = cells ~ smoker + sex + age + weight, family = quasi-Poisson,

data = cellcounts)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.4787 -1.2493 -0.7866 0.5244 3.6826

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.228699 0.196355 -6.258 8.36e-10 ***
smokerT 1.305209 0.154662 8.439 3.41e-16 ***
sexmale 0.124044 0.151721 0.818 0.41399
ageold 0.055447 0.173852 0.319 0.74991
ageyoung -0.003507 0.181143 -0.019 0.98456
weightobese 0.925295 0.163236 5.668 2.43e-08 ***
weightover 0.531883 0.180590 2.945 0.00338 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for quasi-Poisson family taken to be 1.923312)

Null deviance: 1052.95 on 510 degrees of freedom
Residual deviance: 803.72 on 504 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

�

� �

�

514 THE R BOOK

where the only change is to change Poisson to Quasi-Poisson (the default link function has not
changed). It is worth comparing the outputs from the two models:

• the parameter estimates have not changed;

• however, the standard errors and, thus, the p-values have changed;

• this is as a result of the new parameter in our model, the dispersion, which is no longer 1 but is
now estimated from the data;

• the AIC, to be used in model comparison, no longer has a value. This is because the
quasi-Poisson is not a genuine probability distribution. So we cannot compare the two models
we have produced so far in the usual ways (the anova function will not work as the models
are not nested). However, we would probably decide that as our second model deals with the
overdispersion, we will stick with that.

However, our model analysis is not complete as we have not examined interactions. The anova ()
function can be used to compare quasi-Poisson models in the usual way, but it can also be used
on individual models to examine the effect of adding in terms to the model. So for the maximal
model:

cells_mod3 <- glm (cells ~ smoker * sex * age * weight, quasi-poisson,
data = cellcounts)

anova (cells_mod3, test = "F")

Analysis of Deviance Table

Model: Quasi-Poisson, link: log

Response: cells

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev F Pr(>F)
NULL 510 1052.95
smoker 1 175.838 509 877.11 94.8007 < 2.2e-16 ***
sex 1 3.250 508 873.86 1.7521 0.18624
age 2 4.991 506 868.87 1.3455 0.26140
weight 2 65.148 504 803.72 17.5620 4.372e-08 ***
smoker:sex 1 6.441 503 797.28 3.4727 0.06300.
smoker:age 2 4.055 501 793.22 1.0930 0.33604
sex:age 2 6.670 499 786.56 1.7979 0.16677
smoker:weight 2 11.714 497 774.84 3.1577 0.04341 *
sex:weight 2 2.584 495 772.26 0.6966 0.49877
age:weight 4 4.939 491 767.32 0.6657 0.61608
smoker:sex:age 2 6.570 489 760.75 1.7712 0.17125
smoker:sex:weight 2 5.774 487 754.97 1.5566 0.21192
smoker:age:weight 4 9.665 483 745.31 1.3027 0.26802

�

� �

�

GENERALISED LINEAR MODELS 515

sex:age:weight 4 7.442 479 737.87 1.0030 0.40551
smoker:sex:age:weight 2 1.538 477 736.33 0.4147 0.66080

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Note that we need to specify the F-test due to the presence of the dispersion parameter. We won’t
go through the gory details of picking our preferred model, but we might end up with something
like:

cells_mod4 <- glm (cells ~ smoker * weight, quasi-Poisson, data = cellcounts)
summary (cells_mod4)

Call:
glm(formula = cells ~ smoker * weight, family = Quasi-Poisson,

data = cellcounts)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.6511 -1.1742 -0.9148 0.5533 3.6436

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.8712 0.1760 -4.950 1.01e-06 ***
smokerT 0.8224 0.2479 3.318 0.000973 ***
weightobese 0.4993 0.2260 2.209 0.027598 *
weightover 0.2618 0.2522 1.038 0.299723
smokerT:weightobese 0.8063 0.3105 2.597 0.009675 **
smokerT:weightover 0.4935 0.3442 1.434 0.152226

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for quasi-Poisson family taken to be 1.827927)

Null deviance: 1052.95 on 510 degrees of freedom
Residual deviance: 792.85 on 505 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

The intercept includes normal weight, and there does not appear to be a distinguishable difference
between that and overweight (unlike between normal and obese), so we might choose to merge
the normal and overweight levels. We can summarise the effect of the interaction:

tapply (cellcounts$cells, list (cellcounts$smoker, cellcounts$weight), mean)

normal obese over
F 0.4184397 0.6893939 0.5436893
T 0.9523810 3.5142857 2.0270270

�

� �

�

516 THE R BOOK

Normal Obese Over

Body mass

D
am

ag
ed

 c
el

ls

0.
0

1.
0

2.
0

3.
0 Non−smoker

Smoker

Figure 11.6 The effect of smoking and obesity in cellcounts.

The interaction arises because the response to smoking depends on body weight: smoking
adds a mean of about 0.5 damaged cells for individuals with normal body weight, but adds 2.8
damaged cells for obese people. It is straightforward to turn the summary table into a barplot as
in Figure 11.6:

barplot (tapply (cellcounts$cells, list (cellcounts$smoker, cellcounts$weight),
mean),
col = hue_pal ()(2), beside = T,
ylab = "damaged cells", xlab = "body mass")

legend (1.2,3.4, c("non-smoker", "smoker"), fill = hue_pal ()(2))

There is also a quasi-Binomial error distribution that operates in a similar fashion and a more
general quasi option. For the latter, we can specify a link function and a variance function, but no
other distributional assumptions are made: it may be helpful to work with a statistician to understand
exactly what is going on here.

11.2.3 An alternative to Poisson counts

The data analysed in this section refer to children from Walgett, New South Wales, Australia, who
were classified by sex (with two levels: male (M) and female (F)), culture (also with two levels:
Aboriginal (A) and not (N)), age group (with four levels: F0 (primary), F1, F2, and F3) and learner
status (with two levels: average (AL) and slow (SL)). The response variable is a count of the number
of days absent from school in a particular school year (Days). We pick up the data from one of the
core R packages, MASS (Venables and Ripley, 2002):

library (MASS)
data (quine)
head (quine)

�

� �

�

GENERALISED LINEAR MODELS 517

Before we proceed any further, it is worth looking at the number of data points in each combination
of covariates:

ftable (table (quine$Eth, quine$Sex, quine$Age, quine$Lrn))
AL SL

A F F0 4 1
F1 5 10
F2 1 8
F3 9 0

M F0 5 3
F1 2 3
F2 7 4
F3 7 0

N F F0 4 1
F1 6 11
F2 1 9
F3 10 0

M F0 6 3
F1 2 7
F2 7 3

F3 7 0

There are zeroes, apparently because slow learners in the dataset never make it to F3. From a
modelling point of view, this means that a maximal model (Days ∼ Eth * Age * Sex * Lrn)
will have lines where no analysis is possible.

We might begin with a minimal model:

quine_mod1 <- glm (Days ~ Eth + Age + Sex + Lrn, data = quine, family = poisson)
summary (quine_mod1)

Call:
glm(formula = Days ~ Eth + Age + Sex + Lrn, family = poisson,

data = quine)

Deviance Residuals:
Min 1Q Median 3Q Max

-6.808 -3.065 -1.119 1.818 9.909

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.71538 0.06468 41.980 < 2e-16 ***
EthN -0.53360 0.04188 -12.740 < 2e-16 ***
AgeF1 -0.33390 0.07009 -4.764 1.90e-06 ***
AgeF2 0.25783 0.06242 4.131 3.62e-05 ***
AgeF3 0.42769 0.06769 6.319 2.64e-10 ***

�

� �

�

518 THE R BOOK

SexM 0.16160 0.04253 3.799 0.000145 ***
LrnSL 0.34894 0.05204 6.705 2.02e-11 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Poisson family taken to be 1)

Null deviance: 2073.5 on 145 degrees of freedom
Residual deviance: 1696.7 on 139 degrees of freedom
AIC: 2299.2

Number of Fisher Scoring iterations: 5

Although all the elements of the model seem worth retaining, the ratio of residual deviance to
degrees of freedom is shocking, so we should examine a quasi-Poisson model:

quine_mod2 <- glm (Days ~ Eth + Age + Sex + Lrn, data = quine,
family = quasi-Poisson)summary (quine_mod2)

Call:
glm(formula = Days ~ Eth + Age + Sex + Lrn, family = quasi-Poisson,

data = quine)

Deviance Residuals:
Min 1Q Median 3Q Max

-6.808 -3.065 -1.119 1.818 9.909

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.7154 0.2347 11.569 < 2e-16 ***
EthN -0.5336 0.1520 -3.511 0.000602 ***
AgeF1 -0.3339 0.2543 -1.313 0.191413
AgeF2 0.2578 0.2265 1.138 0.256938
AgeF3 0.4277 0.2456 1.741 0.083831.
SexM 0.1616 0.1543 1.047 0.296914
LrnSL 0.3489 0.1888 1.848 0.066760.

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for quasi-Poisson family taken to be 13.16691)

Null deviance: 2073.5 on 145 degrees of freedom
Residual deviance: 1696.7 on 139 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5

�

� �

�

GENERALISED LINEAR MODELS 519

The dispersion parameter seems to have taken care of the overdispersion, but ethnicity appears
now to be the only key covariate. Once we start examining interactions using anova (...,
test = "F") for model comparison, the picture changes. Our preferred model, details omitted,
might be

quine_mod3 <- glm (Days ~ Eth * Age + Sex * Age + Eth * Sex * Lrn,
data = quine, family = quasi-Poisson)

summary (quine_mod3)

Call:
glm(formula = Days ~ Eth * Age + Sex * Age + Eth * Sex * Lrn,

family = quasi-Poisson, data = quine)

Deviance Residuals:
Min 1Q Median 3Q Max

-7.1369 -2.6852 -0.5919 1.6040 7.1049

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.83161 0.30489 9.287 4.98e-16 ***
EthN 0.09821 0.38631 0.254 0.79973
AgeF1 -0.20878 0.35933 -0.581 0.56224
AgeF2 0.16223 0.37481 0.433 0.66586
AgeF3 -0.25584 0.37855 -0.676 0.50036
SexM -0.56268 0.38877 -1.447 0.15023
LrnSL 0.50311 0.30798 1.634 0.10479
EthN:AgeF1 -0.68742 0.46823 -1.468 0.14450
EthN:AgeF2 -1.07361 0.42449 -2.529 0.01264 *
EthN:AgeF3 0.01879 0.42914 0.044 0.96513
AgeF1:SexM -0.26358 0.50673 -0.520 0.60385
AgeF2:SexM 0.94531 0.43530 2.172 0.03171 *
AgeF3:SexM 1.35285 0.42933 3.151 0.00202 **
EthN:SexM -0.24554 0.37347 -0.657 0.51206
EthN:LrnSL -0.65154 0.45857 -1.421 0.15778
SexM:LrnSL -0.29570 0.41144 -0.719 0.47363
EthN:SexM:LrnSL 1.60463 0.57113 2.810 0.00573 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for quasi-Poisson family taken to be 9.833478)

Null deviance: 2073.5 on 145 degrees of freedom
Residual deviance: 1301.1 on 129 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5

�

� �

�

520 THE R BOOK

Although none of the covariates would appear to warrant inclusion in the model on their own,
they all appear in at least one of the interactions, and so they should all be retained.

We have seen that one of the disadvantages of the quasi approach to GLMs is the lack of an
automatic AIC calculation. An alternative approach to overdispersed Poisson models which does
provide this is to use the Negative Binomial distribution instead of the Poisson (see Section 9.3.2 for
an example of a test which formally compares the two). The function for handling this, glm.nb (),
also appears in the MASS library, so let us have a look at it for our minimal model:

quine_mod4 <- glm.nb (Days ~ Eth + Sex + Age + Lrn, data = quine)
summary (quine_mod4)

Call:
glm.nb(formula = Days ~ Eth + Sex + Age + Lrn, data = quine,

init.theta = 1.274892646, link = log)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.7918 -0.8892 -0.2778 0.3797 2.1949

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.89458 0.22842 12.672 < 2e-16 ***
EthN -0.56937 0.15333 -3.713 0.000205 ***
SexM 0.08232 0.15992 0.515 0.606710
AgeF1 -0.44843 0.23975 -1.870 0.061425.
AgeF2 0.08808 0.23619 0.373 0.709211
AgeF3 0.35690 0.24832 1.437 0.150651
LrnSL 0.29211 0.18647 1.566 0.117236

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Negative Binomial (1.2749) family taken to be 1)

Null deviance: 195.29 on 145 degrees of freedom
Residual deviance: 167.95 on 139 degrees of freedom
AIC: 1109.2

Number of Fisher Scoring iterations: 1

Theta: 1.275
Std. Err.: 0.161

2 x log-likelihood: -1093.151

The output is slightly different than for a conventional GLM: we see the estimated second Negative
Binomial parameter (here called Theta, but described in the R distributions functions as size) and
its approximate standard error, together with the log-likelihood. Note that the residual deviance is
far closer to the number of degrees of freedom than in the Poisson case above. There is also an
AIC, which we can use, together with anova, to compare models. Having done that, details omitted
to preserve sanity and paper, our preferred set of covariates and interactions appears to be the
same as under the quasi-Poisson approach (that is not always the case):

�

� �

�

GENERALISED LINEAR MODELS 521

quine_mod5 <- glm.nb (Days ~ Eth * Age + Sex * Age + Eth * Sex * Lrn,
data = quine)

summary (quine_mod5)

Call:
glm.nb(formula = Days ~ Eth * Age + Sex * Age + Eth * Sex * Lrn,

data = quine, init.theta = 1.678619828, link = log)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.0246 -0.9449 -0.2228 0.4847 1.9002

Coefficients:
Estimate Std. Error z-value Pr(>|z|)

(Intercept) 2.91755 0.32626 8.942 < 2e-16 ***
EthN 0.05666 0.39515 0.143 0.88598
AgeF1 -0.32379 0.38373 -0.844 0.39878
AgeF2 -0.06383 0.42046 -0.152 0.87933
AgeF3 -0.34854 0.39128 -0.891 0.37305
SexM -0.55047 0.39014 -1.411 0.15825
LrnSL 0.57697 0.33382 1.728 0.08392.
EthN:AgeF1 -0.56613 0.43162 -1.312 0.18965
EthN:AgeF2 -0.89577 0.42950 -2.086 0.03702 *
EthN:AgeF3 0.08467 0.44010 0.192 0.84744
AgeF1:SexM -0.08459 0.45324 -0.187 0.85195
AgeF2:SexM 1.13752 0.45192 2.517 0.01183 *
AgeF3:SexM 1.43124 0.44365 3.226 0.00126 **
EthN:SexM -0.41608 0.37491 -1.110 0.26708
EthN:LrnSL -0.78724 0.43058 -1.828 0.06750.
SexM:LrnSL -0.47437 0.45908 -1.033 0.30147
EthN:SexM:LrnSL 1.75289 0.58341 3.005 0.00266 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Negative Binomial (1.6786) family taken to be 1)

Null deviance: 243.98 on 145 degrees of freedom
Residual deviance: 168.03 on 129 degrees of freedom
AIC: 1093.2

Number of Fisher Scoring iterations: 1

Theta: 1.679
Std. Err.: 0.227

2 x log-likelihood: -1057.219

Not unexpectedly, the estimated parameters and their corresponding p-values are different from
the equivalent quasi-Poisson model, but the model is probably easier to describe. We can plot our
favourite residuals analyses in the usual way (plot () uses the deviance residuals by default for

�

� �

�

522 THE R BOOK

1.0 1.5 2.0 2.5 3.0 3.5

−
1

0
1

2
3

Predicted values

R
es

id
ua

ls

glm.nb(Days ~ Eth * Age + Sex * Age + Eth * Sex * Lrn)

126
7269

Figure 11.7 Deviance residuals vs fitted values for a Negative Binomial model for quine.

GLMs) to give Figure 11.7:

plot (quine_mod5, which = 1, col = hue_pal ()(1))

11.3 Count table data and GLMs

The analysis of count data with categorical explanatory variables comes under the heading of con-
tingency tables, which we introduced in Section 9.3.3, in the context of testing. In this section, we
will explore how we might visualise such data, in tables or plots, as we model them. Along the way,
we will dig a little deeper into how we might compare models.

11.3.1 Log-linear models

A number of models that had been used for a long time were subsumed into the GLM family with its
more general approach. The names of some of these models persist: we have already seen with the
ozone dataset in Section 11.1.4 that the linear model is one of these. A log-linear model is just a
linear model with a log-link function. There is a very useful way of displaying the residuals from such
a model with categorical covariates, a mosaic plot. We can illustrate this using the HairEyeColor
dataset in R:

mosaicplot (HairEyeColor, shade = T, type = "deviance")

Figure 11.8 shows the results for the deviance residuals. In this case (not always true), there is
no difference in the analysis between these and the Pearson residuals.

11.3.2 All covariates might be useful

We saw in Section 10.4.5, the danger of building as many variables as possible into a model.
However, there is also a danger, if we build models without thinking, of omitting some important

�

� �

�

GENERALISED LINEAR MODELS 523

S
ta

nd
ar

di
ze

d
re

si
du

al
s:

<
−

4
−

4:
−

2
−

2:
0

0:
2

2:
4

>
4

Hair eye color

Hair

E
ye

Black Brown Red Blond
B

ro
w

n
B

lu
e

H
az

el
G

re
en

Male Female Male Female MaleFemale Male Female

Figure 11.8 Visualisation of residuals from HairEyeColor.

explanatory variables. Subject matter expertise is critical here, but a thoughtful statistical analysis
will also help. If we don’t have the data, then that’s life, and given that we make every effort to note
the important factors, there is little we can do about it. The problem comes when we ignore factors
that have an important influence on the response variable. This difficulty can be particularly acute
if we aggregate data over important explanatory variables.

Suppose we are carrying out a study of induced defences in trees. A preliminary trial has sug-
gested that early feeding on a leaf by aphids may cause chemical changes in the leaf which reduces
the probability of that leaf being attacked later in the season by hole-making insects. To this end, we
mark a large cohort of leaves, then score whether they were infested by aphids early in the season
and whether they were holed by insects later in the year. The work was carried out on two different
trees, and the results were as follows:

induced <- read.table ("induced.txt", header = T,
colClasses = c (rep ("factor", 3), "numeric"))

induced

Tree Aphid Caterpillar Count
1 Tree1 absent holed 35
2 Tree1 absent not 1750
3 Tree1 present holed 23
4 Tree1 present not 1146
5 Tree2 absent holed 146
6 Tree2 absent not 1642
7 Tree2 present holed 30
8 Tree2 present not 333

�

� �

�

524 THE R BOOK

There are four variables: the response variable, count of leaves, a two-level factor for late-season
feeding by caterpillars (holed or intact), a two-level factor for early season aphid feeding (aphids
present or absent), and a two-level factor for tree (the observations come from two separate
trees, imaginatively named tree1 and tree2).

We begin by fitting what is known as a saturated model. This is a curious thing, which has
as many parameters as there are values of the response variable as a result of all interactions
being present, and occurs with models where all the covariates are categorical. As a result, the fit
of the model is perfect, so there are no residual degrees of freedom and no residual deviance. It
suggests which variables might be important and can be a good place to start modelling complex
contingency tables: begin here and then investigate what happens as high-order interactions are
dropped.

induced_mod1 <- glm (Count ~ Tree * Aphid * Caterpillar, family = poisson,
data = induced)

summary (induced_mod1)

Call:
glm(formula = Count ~ Tree * Aphid * Caterpillar, family = poisson,

data = induced)

Deviance Residuals:
[1] 0 0 0 0 0 0 0 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.555348 0.169031 21.034 < 2e-16 ***
TreeTree2 1.428259 0.188204 7.589 3.23e-14 ***
Aphidpresent -0.419854 0.268421 -1.564 0.11778
Caterpillarnot 3.912023 0.170713 22.916 < 2e-16 ***
TreeTree2:Aphidpresent -1.162555 0.335011 -3.470 0.00052 ***
TreeTree2:Caterpillarnot -1.491959 0.191314 -7.798 6.27e-15 ***
Aphidpresent:Caterpillarnot -0.003484 0.271097 -0.013 0.98975
TreeTree2:Aphidpresent:Caterpillarnot -0.009634 0.342474 -0.028 0.97756

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Poisson family taken to be 1)

Null deviance: 6.5734e+03 on 7 degrees of freedom
Residual deviance: -2.5580e-13 on 0 degrees of freedom
AIC: 73.521

Number of Fisher Scoring iterations: 3

The asterisk notation ensures that the saturated model is fitted, because all of the main effects and
two-way interactions are fitted, along with the three-way Tree by Aphid by Caterpillar interaction.
The model fit involves the estimation of 2 × 2 × 2 = 8 parameters and exactly matches the eight
values of the response variable, Count.

�

� �

�

GENERALISED LINEAR MODELS 525

The first real step in the modelling is to use update () to remove the three-way interaction
from the saturated model and then to use anova () to test whether the three-way interaction is
significant or not:

induced_mod2 <- update (induced_mod1, ~ . - Tree:Aphid:Caterpillar)
anova (induced_mod1, induced_mod2, test= "Chi")

Analysis of Deviance Table

Model 1: Count ~ Tree * Aphid * Caterpillar
Model 2: Count ~ Tree + Aphid + Caterpillar + Tree:Aphid + Tree:Caterpillar +

Aphid:Caterpillar
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 0 0.00000000
2 1 0.00079137 -1 -0.00079137 0.9776

The punctuation in the first line is very important (it is ’comma, tilde, dot, minus’), and note the use
of colons rather than asterisks to denote interaction terms rather than main effects plus interaction
terms. The test shows very clearly that the interaction between caterpillar attack and leaf holing does
not differ from tree to tree (the p-value is large). Note that if this interaction had been significant,
then we would have stopped the modelling at this stage. But it was not, so we leave it out and
continue.

What about the main question? Is there an interaction between aphid attack and leaf holing? The
p-value is large in both our first two models, but let us test this by deleting the Caterpillar by Aphid
interaction from the model:

induced_mod3 <- update (induced_mod2, ~ . - Aphid:Caterpillar)
anova (induced_mod2, induced_mod3, test= "Chi")

Analysis of Deviance Table

Model 1: Count ~ Tree + Aphid + Caterpillar + Tree:Aphid + Tree:Caterpillar +
Aphid:Caterpillar

Model 2: Count ~ Tree + Aphid + Caterpillar + Tree:Aphid + Tree:Caterpillar
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1 0.0007914
2 2 0.0040853 -1 -0.003294 0.9542

There is absolutely no hint of an interaction (note also the decreasing AICs as our modelling has
progressed). The interpretation is clear: this work provides no evidence at all for induced defences
caused by early season caterpillar feeding.

But look what happens when we do the modelling without thinking. Suppose we went straight for
the interaction of interest, Aphid by Caterpillar. We might proceed like this:

induced_mod1a <- glm (Count~ Aphid * Caterpillar, family = poisson,
data = induced)

induced_mod2a <- update (induced_mod1a, ~ . - Aphid:Caterpillar)

�

� �

�

526 THE R BOOK

anova (induced_mod1a, induced_mod2a, test = "Chi")

Analysis of Deviance Table

Model 1: Count ~ Aphid * Caterpillar
Model 2: Count ~ Aphid + Caterpillar
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 4 550.19
2 5 556.85 -1 -6.6594 0.009864 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The Aphid by Caterpillar interaction is highly significant, providing strong evidence for induced
defences. This is wrong. By failing to include Tree in the model, we have omitted an important
explanatory variable. As it turns out, and as we should really have determined by more thorough
preliminary analysis, the trees differ enormously in their average levels of leaf holing:

as.table (by (induced$Count, INDICES = list (induced$Tree, induced$Caterpillar),
FUN = sum))

holed not
Tree1 58 2896
Tree2 176 1975

Tree 2 has more than four times the proportion of its leaves holed by caterpillars than tree 1 does.
If we had been paying more attention when we did the modelling the wrong way, we should have
noticed that the model containing only Aphid and Caterpillar had massive overdispersion, and this
should have alerted us that all was not well.

The moral is clear: always examine our data before we start modelling. With covariates that are
all categorical, beginning with a saturated model and then gradually eliminating unimportant inter-
actions is a sensible way to proceed. However, as discussed in Section 10.4.5, it is not guaranteed
that we will arrive at our preferred model: it might also be worth starting with a linear model consisting
of all covariates with no interactions and then adding in the latter gradually.

At this point, it is worth highlighting the reasons why we might prefer one model to another. We
have seen a number of possibilities:

• using the anova () function to compare deviances. This only works with nested models;

• using AIC to compare log-likelihoods. This will work with all models where the data involved are
the same;

• looking for overdispersion in count (and Binomial) models;

• examining residuals;

• one model makes more sense in the context being examined.

These criteria might not always point to one model being preferred: in fact, there may not be a
preferred model. This is where subject matter expertise comes to the fore.

�

� �

�

GENERALISED LINEAR MODELS 527

As an example, we might be interested in whether lizards show any niche separation across var-
ious ecological factors and, in particular, whether there are any interactions – for example, whether
they show different habitat separation at different times of the day:

lizards <- read.table ("lizards.txt",header = T,
colClasses = c ("numeric", rep ("factor", 5)))

head (lizards)

n sun height perch time species
1 20 Shade High Broad Morning opalinus
2 13 Shade Low Broad Morning opalinus
3 8 Shade High Narrow Morning opalinus
4 6 Shade Low Narrow Morning opalinus
5 34 Sun High Broad Morning opalinus
6 31 Sun Low Broad Morning opalinus

ftable (tapply (lizards$n, list (lizards$species,
lizards$sun,
lizards$height,
lizards$perch,
lizards$time),

sum))

Afternoon Mid-day Morning

grahamii Shade High Broad 4 1 2
Narrow 3 1 3

Low Broad 0 0 0
Narrow 1 0 0

Sun High Broad 10 20 11
Narrow 8 32 15

Low Broad 3 4 5
Narrow 4 5 1

opalinus Shade High Broad 4 8 20
Narrow 5 4 8

Low Broad 12 8 13
Narrow 1 0 6

Sun High Broad 18 69 34
Narrow 8 60 17

Low Broad 13 55 31
Narrow 4 21 12

The response variable is n, the count for each contingency. The explanatory variables are all cat-
egorical: sun is a two-level factor (Sun and Shade within the bush), height is a two-level factor
(High and Low within the bush), perch is a two-level factor (Broad and Narrow twigs), time is
a three-level factor (Afternoon, Mid-day, and Morning), and there are two lizard species both
belonging to the genus Anolis (A. grahamii and A. opalinus). It is important in creating our summary
table to list our key variable, species, first. With categorical explanatory variables it can be difficult
to see which are important by looking at tables or plots particularly, as here, when some of the
combinations of variables have very few data instances.

�

� �

�

528 THE R BOOK

As usual, we begin by fitting a saturated model, fitting all the interactions and main effects:

lizards_mod1 <- glm (n ~ sun * height * perch * time * species, poisson,
data = lizards)

lizards_mod1$aic
[1] 259.2488

Without painfully listing here a complex model, we can see that very few covariates have small
p-values. At this point, it might be better to try a minimal model with no interactions, to see whether
we can eliminate any of them.

lizards_mod2 <- glm (n ~ sun + height + perch + time + species, poisson,
data = lizards)

lizards_mod2$aic

[1] 329.8624

No. However, as the interaction between species and the other explanatory variables is what our
subject matter expertise tells us is important, let us introduce those interactions.

lizards_mod3 <- glm (n ~ (sun + height + perch + time) * species, poisson,
data = lizards)

lizards_mod3$aic

[1] 281.642

This gives an AIC that is an improvement on our minimal model but not as good as the saturated one.
Comparing the two by an alternative route suggests that we can improve upon lizards_mod3:

anova (lizards_mod3, lizards_mod1, test = "Chi")

Analysis of Deviance Table

Model 1: n ~ (sun + height + perch + time) * species
Model 2: n ~ sun * height * perch * time * species
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 36 94.393
2 0 0.000 36 94.393 3.934e-07 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

And this is where things get tricky: we have 22 interaction terms that we could add in which leaves
over a million models that we could try. It is unlikely that there is any best model across all the criteria
listed above. One way to start may be to say that we can’t really explain five-factor or four-factor
interactions, so let us investigate what happens if we drop them:

lizards_mod4 <- update (lizards_mod1, ~ . - sun:height:perch:time:species -
height:perch:time:species -
sun:perch:time:species -

�

� �

�

GENERALISED LINEAR MODELS 529

sun:height:time:species -
sun:height:perch:species -
sun:height:perch:time)

anova (lizards_mod4, lizards_mod1, test = "Chi")

Analysis of Deviance Table

Model 1: n ~ sun + height + perch + time + species + sun:height + sun:perch +
height:perch + sun:time + height:time + perch:time + sun:species +
height:species + perch:species + time:species + sun:height:perch +
sun:height:time + sun:perch:time + height:perch:time + sun:height:species +
sun:perch:species + height:perch:species + sun:time:species +
height:time:species + perch:time:species

Model 2: n ~ sun * height * perch * time * species
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 11 13.231
2 0 0.000 11 13.231 0.2785

lizards_mod4$aic

[1] 250.4801

That looks better by both our formal criteria, anova () and AIC, although we have skipped over
the option of just leaving some of them out.

Returning to our bottom up modelling, we could take our interactions a step further by adding in
three-factor interactions, but only if they involve species.

lizards_mod5 <- glm (n ~ (sun * height + perch * time + sun * perch +
sun * time + height * perch + height * time) * species,

poisson, data = lizards)
anova (lizards_mod5, lizards_mod4, test = "Chi")

Analysis of Deviance Table

Model 1: n ~ (sun * height + perch * time + sun * perch + sun * time +
height * perch + height * time) * species

Model 2: n ~ sun + height + perch + time + species + sun:height + sun:perch +
height:perch + sun:time + height:time + perch:time + sun:species +
height:species + perch:species + time:species + sun:height:perch +
sun:height:time + sun:perch:time + height:perch:time + sun:height:species +
sun:perch:species + height:perch:species + sun:time:species +
height:time:species + perch:time:species

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 18 19.963
2 11 13.231 7 6.7313 0.4574

anova (lizards_mod3, lizards_mod5, test = "Chi")

Analysis of Deviance Table

�

� �

�

530 THE R BOOK

Model 1: n ~ (sun + height + perch + time) * species
Model 2: n ~ (sun * height + perch * time + sun * perch + sun * time +

height * perch + height * time) * species
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 36 94.393
2 18 19.963 18 74.431 7.929e-09 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

lizards_mod5$aic

[1] 243.2114

There seems to be no justification for the extra interactions in lizards_mod4, but these
three-factor interactions do seem to be worth having. It is tempting to stop here, but we could see
whether all these three-factor interactions are necessary. We could laboriously check dropping
each of them term by term (which is probably what we ought to do), but let us take a short cut and
use step (), noting the problems with this function described in Section 10.4.5. We will do this
by specifying that we want a model between lizards_mod3 and lizards_mod5.

lizards_mod6 <- step (lizards_mod5, lower = lizards_mod3, upper = lizards_mod5,
trace = 0)

anova (lizards_mod6, lizards_mod5, test = "Chi")

Analysis of Deviance Table

Model 1: n ~ sun + height + perch + time + species + sun:height + perch:time +
sun:time + height:perch + sun:species + height:species +
perch:species + time:species + sun:height:species

Model 2: n ~ (sun * height + perch * time + sun * perch + sun * time +
height * perch + height * time) * species

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 29 26.103
2 18 19.963 11 6.1408 0.8638

anova (lizards_mod3, lizards_mod6, test = "Chi")

Analysis of Deviance Table

Model 1: n ~ (sun + height + perch + time) * species
Model 2: n ~ sun + height + perch + time + species + sun:height + perch:time +

sun:time + height:perch + sun:species + height:species +
perch:species + time:species + sun:height:species

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 36 94.393
2 29 26.103 7 68.29 3.272e-12 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

�

� �

�

GENERALISED LINEAR MODELS 531

We have avoided all the detailed output using trace = 0. All the elements from lower must
appear in any model, while upper describes the set of interactions that we would like to investigate.
This model, lizards_mod6, appears to be the best we have seen so far using anova (), subject
matter expertise and AIC:

summary (lizards_mod6)

Call:
glm(formula = n ~ sun + height + perch + time + species + sun:height +

perch:time + sun:time + height:perch + sun:species + height:species +
perch:species + time:species + sun:height:species, family = poisson,
data = lizards)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.2416 -0.4477 -0.1028 0.3693 1.4269

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.06039 0.34470 3.076 0.002096 **
sunSun 1.28872 0.33200 3.882 0.000104 ***
heightLow -2.34553 1.03851 -2.259 0.023911 *
perchNarrow 0.05118 0.25367 0.202 0.840093
timeMid.day -1.21882 0.38436 -3.171 0.001519 **
timeMorning -0.09322 0.35844 -0.260 0.794808
speciesopalinus 1.09914 0.35772 3.073 0.002122 **
sunSun:heightLow 1.18783 1.06165 1.119 0.263205
perchNarrow:timeMid.day 0.46361 0.25099 1.847 0.064732.
perchNarrow:timeMorning 0.13262 0.27146 0.489 0.625154
sunSun:timeMid.day 1.78928 0.31769 5.632 1.78e-08 ***
sunSun:timeMorning 0.17181 0.28014 0.613 0.539670
heightLow:perchNarrow -0.62891 0.19501 -3.225 0.001259 **
sunSun:speciesopalinus -0.64637 0.33881 -1.908 0.056425.
heightLow:speciesopalinus 2.33058 1.05740 2.204 0.027520 *
perchNarrow:speciesopalinus -0.77098 0.20934 -3.683 0.000231 ***
timeMid.day:speciesopalinus 0.88058 0.27353 3.219 0.001285 **
timeMorning:speciesopalinus 0.71650 0.29258 2.449 0.014330 *
sunSun:heightLow:speciesopalinus -1.38050 1.08838 -1.268 0.204657

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Poisson family taken to be 1)

Null deviance: 737.555 on 47 degrees of freedom
Residual deviance: 26.103 on 29 degrees of freedom
AIC: 227.35

Number of Fisher Scoring iterations: 5

�

� �

�

532 THE R BOOK

−2 −1 0 1 2 3 4

−
2

0
1

2

Predicted values

R
es

id
ua

ls

Residuals vs fitted
44

1712

−2 −1 0 1 2

−
2

0
2

Theoretical quantiles

S
td

. P
ea

rs
on

 r
es

id
. Normal Q−Q

44

17
12

−2 −1 0 1 2 3 4

0.
0

1.
0

Predicted values

S
td

.P
ea

rs
on

re
si

d. Scale−location
44 17

12

0.0 0.2 0.4 0.6 0.8

−
2

0
2

Leverage

S
td

. P
ea

rs
on

 r
es

id
.

Cook's distance 1
0.5

0.5

Residuals vs leverage

1
15

17
47

Figure 11.9 Residual plots for lizards model 6.

And it does not appear to be overdispersed. Finally, let us have a look at the standard residuals plots
in Figure 11.9. They are the usual plots we should be familiar with from linear models (Section 10.5),
where we are looking for:

• Residuals vs Fitted: non-linear patterns;

• Normal Q-Q: a pattern of points that deviates from the straight diagonal line;

• Scale-Location: a change in the spread of points, indicating heteroscedasticity;

• Residuals vs Leverage: points outside the dotted lines that might have undue influence.

par (mfrow = c (2, 2))
plot (lizards_mod6)

par (mfrow = c (1, 1))

There doesn’t appear to be anything too concerning. We have certainly not explored all the possible
models but have ended up with one that appears to be satisfactory from a statistical point of view,
and also which is reasonably comprehensible from the point of view of somebody trying to interpret
the data.

There is one final simplification that might reduce the complexity of the model. The time variable
has three levels: Morning, Mid.day, and Afternoon. Afternoon is the default value in the
intercept of our models, and it appears from the output of lizards_mod6 that there is very little
difference between that and the Morning (large p-values in all cases): something about the middle
of the day is different from the rest of the time. So let us combine Morning and Afternoon for our
final model.

�

� �

�

GENERALISED LINEAR MODELS 533

levels (lizards$time)

[1] "Afternoon" "Mid.day" "Morning"

levels (lizards$time)[c (1, 3)] <- "Not.mid.day"
lizards_mod5a <- glm (n ~ (sun * height + perch * time + sun * perch +

sun * time + height * perch + height * time) * species,
poisson, data = lizards)

lizards_mod6a <- step (lizards_mod5, lower = lizards_mod3, upper = lizards_mod5,
trace = 0)

summary (lizards_mod6a)

Call:
glm(formula = n ~ sun + height + perch + time + species + sun:height +

perch:time + sun:perch + sun:time + height:perch + height:time +
sun:species + height:species + perch:species + time:species +
sun:height:species + sun:perch:species + sun:time:species +
height:perch:species + height:time:species, family = poisson,
data = lizards)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.8617 -0.5586 -0.1196 0.6015 1.8812

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.046307 0.397387 2.633 0.008464 **
sunSun 1.293375 0.438127 2.952 0.003157 **
heightLow -2.425150 1.058721 -2.291 0.021984 *
perchNarrow 0.115169 0.520185 0.221 0.824780
timeMid.day -1.317651 0.769383 -1.713 0.086785.
speciesopalinus 1.497113 0.434556 3.445 0.000571 ***
sunSun:heightLow 1.367695 1.076195 1.271 0.203778
perchNarrow:timeMid.day 0.299511 0.186869 1.603 0.108983
sunSun:perchNarrow -0.005545 0.558791 -0.010 0.992082
sunSun:timeMid.day 2.012323 0.786212 2.560 0.010482 *
heightLow:perchNarrow -0.314426 0.463790 -0.678 0.497804
heightLow:timeMid.day -0.530622 0.477581 -1.111 0.266543
sunSun:speciesopalinus -0.650635 0.482837 -1.348 0.177811
heightLow:speciesopalinus 2.447222 1.082506 2.261 0.023778 *
perchNarrow:speciesopalinus -0.908819 0.579194 -1.569 0.116623
timeMid.day:speciesopalinus 0.786771 0.808520 0.973 0.330504
sunSun:heightLow:speciesopalinus -1.440738 1.105941 -1.303 0.192668
sunSun:perchNarrow:speciesopalinus 0.275271 0.615174 0.447 0.654537
sunSun:timeMid.day:speciesopalinus -0.395379 0.833931 -0.474 0.635418
heightLow:perchNarrow:speciesopalinus -0.353296 0.511734 -0.690 0.489948
heightLow:timeMid.day:speciesopalinus 0.297291 0.520378 0.571 0.567798

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Poisson family taken to be 1)

�

� �

�

534 THE R BOOK

Null deviance: 737.555 on 47 degrees of freedom
Residual deviance: 51.699 on 27 degrees of freedom
AIC: 256.95

Number of Fisher Scoring iterations: 5

We cannot compare lizards_mod6 and lizards_mod6a formally as they do not share the same
dataset (we have altered the time variable). However, this latest model appears to be overdis-
persed with many large p-values for the model terms. Also, the residuals plots (not shown) do not
look as satisfactory as those for lizards_mod6 so we will stick with that model.

We will have a final look at this dataset in Section 11.4.7, where we will treat the response variable
as a proportion of species.

11.3.3 Spine plot

We will examine some interesting ways of plotting tables. Let us have a look at a spine plot:
sometimes called a mosaic plot and introduced in Section 5.5.2. Suppose we have three treatments
(placebo, drug A, and drug B) and the response variable is a five-level categorical variable (much
worse, worse, no change, better, and much better). The data, one row per patient, consist of their
current condition, and the treatment they were given:

spino <- read.table ("spino.txt", header = T, colClasses = rep ("factor", 2))
head (spino)

condition treatment
1 no.change placebo
2 much.better drug.B
3 no.change drug.B
4 no.change drug.A
5 no.change drug.B
6 worse drug.A

The plot will be easier to interpret if we specify the order of the factor levels (they will be in alphabetic
order by default):

spino$condition <- factor(spino$condition, c ("much.worse", "worse", "no.change",
"better", "much.better"))

spino$treatment <- factor(spino$treatment, c ("placebo", "drug.A", "drug.B"))

Now, we can use spineplot () like this to give Figure 11.10:

spineplot (condition ~ treatment, data = spino, col = hue_pal ()(5))

There are two things to notice about the spine plot, which is a bit like a more sophisticated bar plot.
The partitions within the bars are the proportions of a given treatment in each of the five conditions,

�

� �

�

GENERALISED LINEAR MODELS 535

Treatment

C
on

di
tio

n

Placebo Drug.A Drug.B

M
uc

h.
be

tte
r

be
tte

r
no

.c
ha

ng
e

w
or

se

Figure 11.10 Spine plot for spino.

i.e. the conditional relative frequencies of y, condition, in every x, treatment, group (these are
labelled on the left axis and quantified on the right axis). Where a category is empty (as in the much
worse level with drug.A), the labels on the left can be confusing. The widths of the bars reflect
the total sample sizes (there were more patients getting either drug than the placebo). It looks like
drug.B is more effective than placebo, but the efficacy of drug.A is less clear. Here are the
counts:

table (spino$condition, spino$treatment)

placebo drug.A drug.B
much.worse 1 0 3
worse 5 7 2
no.change 12 17 25
better 6 10 9
much.better 1 3 8

With so few patients showing changes in condition, we are going to struggle to find significant
effects in this dataset. To do the stats, we need to create a dataframe of these counts with matching
columns, one to show the level of treatment and one to show the level of condition. The tool for this
is as.data.frame.table ():

spino_df <- as.data.frame.table (table (spino$condition, spino$treatment))
colnames (spino_df) <- c ("condition", "treatment", "count")
spino_df

�

� �

�

536 THE R BOOK

condition treatment count
1 much.worse placebo 1
2 worse placebo 5
3 no.change placebo 12
4 better placebo 6
5 much.better placebo 1
6 much.worse drug.A 0
7 worse drug.A 7
8 no.change drug.A 17
9 better drug.A 10
10 much.better drug.A 3
11 much.worse drug.B 3
12 worse drug.B 2
13 no.change drug.B 25
14 better drug.B 9
15 much.better drug.B 8

There is a line for each of the 5 × 3 = 15 combinations of condition and treatment. It is tempting
to use aggregate () to do this, where the function we want to apply would be length () (for
instance, to count how many patients receiving the placebo got much worse; we can see from the
previous R output that the answer is 3 in this case).

spino_agg <- aggregate (spino, spino, length)
nrow (spino_agg)

[1] 14

As we can see, the problem is that aggregate () leaves out rows from the dataframe when there
were zero cases (i.e. no patients receiving drug A got much worse), so there are only 14 rows in
the dataframe, not the 15 we want for doing the statistics.

Despite the sparse data, let us attempt some model building by looking at models with and without
interactions, and comparing them:

spino_mod1 <- glm (count ~ condition * treatment, poisson, data = spino_df)
spino_mod2 <- glm (count ~ condition + treatment, poisson, data = spino_df)
anova(spino_mod1, spino_mod2, test = "Chi")

Analysis of Deviance Table

Model 1: count ~ condition * treatment
Model 2: count ~ condition + treatment
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 0 0.00
2 8 12.85 -8 -12.85 0.1171

As we suspected, given the low replication, there is not enough data to spot an interaction between
treatment and condition.

�

� �

�

GENERALISED LINEAR MODELS 537

11.4 Proportion data and GLMs

An important class of problems involves count data on proportions such as:

• studies on death rates;

• infection rates of diseases;

• answers to questionnaires;

• proportion responding to clinical treatment;

• proportion admitting to particular voting intentions;

• sex ratios;

• data on proportional response to an experimental treatment.

What all these have in common is that we know how many of the experimental objects are in one
category (dead, insolvent, male, or infected), and we also know how many are in another (alive,
solvent, female, or uninfected). This contrasts with Poisson count data, where we, usually, knew
how many times an event occurred, but not how many times it did not occur. We model processes
involving proportional response variables in R by specifying a generalised linear model with family
= binomial. The only complication is that whereas with Poisson errors we could simply specify
family = poisson, with binomial errors, we must give the number of failures as well as the
numbers of successes in a two-vector response variable. To do this, we bind together two vectors
using cbind () into a single object, y, comprising the numbers of successes and the number of
failures. The binomial denominator, n, is the total sample size, and, for instance

number_of_failures <- n - number_of_successes
y <- cbind (number_of_successes, number_of_failures)

The old fashioned way of modelling this sort of data was to use a linear model and the mortality
proportion as the response variable. There are four problems with this:

• the errors are not normally distributed;

• the variance is not constant;

• the response is bounded (by 1 above and by 0 below);

• by calculating the percentage, we lose information on the size of the sample, n, from which the
proportion was estimated.

There are some kinds of proportion data, such as percentage cover, which are best analysed using
conventional linear models (assuming Normal errors and constant variance) following arcsine trans-
formation. The response variable, y, measured in radians, is

sin−1(0.01 × p)

where p is percentage cover.

�

� �

�

538 THE R BOOK

If, however, the response variable takes the form of a percentage change in some continuous
measurement (such as the percentage change in weight on receiving a particular diet), then rather
than arcsine-transforming the data, it is usually better treated by either

• using final weight as the response variable and initial weight as a covariate; or

• by specifying the response variable as a relative growth rate, measured as log (final weight/initial
weight),

both of which can be analysed as linear models with Normal errors without further transformation.

11.4.1 Theoretical background

The traditional transformations of proportion data were arcsine (see Section 2.1.2) and probit
(Φ−1(p), where Φ is the CDF for the standard Normal distribution). The arcsine transformation took
care of the error distribution, while the probit transformation was used to linearize the relationship
between percentage mortality and log dose in a bioassay. There is nothing wrong with these
transformations, and they are available within R, but a simpler approach is often preferable and is
likely to produce a model that is easier to interpret. The major difficulty with modelling proportion
data is that the responses are strictly bounded. There is no way that the percentage dying can be
greater than 100% or less than 0%. But if we use simple techniques such as regression or analysis
of covariance, then the fitted model could quite easily predict negative values or values greater
than 100%, especially if the variance was high, and many of the data were close to 0% or to 100%.

The logistic curve (see Figure 2.7 for a selection) is commonly used to describe data on propor-
tions, because unlike the straight-line model, it asymptotes at 0 and 1 so that negative proportions
and responses of more than 100% cannot be predicted. Throughout this discussion, we shall use
p to describe the proportion of individuals observed to respond in a given way. Because much of
their jargon was derived from the theory of gambling, statisticians call these successes, although
to a demographer measuring death rates, this may seem somewhat macabre. The proportion of
individuals that respond in other ways (the statistician’s failures) is therefore 1 − p, and we shall call
this proportion q. The third variable is the size of the sample, n, from which p was estimated (this
is the binomial denominator, and the statistician’s number of attempts).

An important point about the binomial distribution is that the variance is not constant. In fact, the
variance of a binomial distribution with mean np is

npq,

so that the variance changes with the mean as in Figure 11.11.
The variance is low when p is very high or very low, and the variance is greatest when p = q = 0.5.

As p gets smaller, so the binomial distribution gets closer and closer to the Poisson distribution.
We can see why this is so by considering the formula for the variance of the Binomial (above).
Remember that for the Poisson, the variance is equal to the mean, np. Now, as p gets smaller, so
q gets closer and closer to 1, so the variance of the Binomial converges to the mean:

npq → np (q → 1).

Using a GLM to model a proportional response is sometimes known as logistic regression. For
the sake of simplicity, if we assume a simple linear predictor a + bx, then the logistic function for
p as a function of x is given by

p = ea+bx

1 + ea+bx
,

�

� �

�

GENERALISED LINEAR MODELS 539

Mean

V
ar

ia
nc

e

Figure 11.11 Mean vs variance for a Binomial distribution.

and there are no prizes for realizing that the model is not linear. But if x = −∞, then p = 0, and
if x = +∞, then p = 1, so the model is strictly bounded. If x = 0, then p = ea∕(1 + ea). The trick of
linearising the logistic model actually involves a very simple transformation. Bookmakers specify
probabilities by quoting the odds, for instance against a particular horse winning a race (they might
give odds of 2 to 1 on a reasonably good horse or 25 to 1 on an outsider). This is a rather different
way of presenting information on probabilities than scientists are used to dealing with. Thus, where
the scientist might state a proportion as 0.333 (one chance of winning in three), the bookmaker
would give odds of 2 to 1 (based on the counts of outcomes: one success against two failures). In
symbols, this is the difference between the scientist stating the probability p, and the bookmaker
stating the odds p∕q. Now, if we take the odds p∕q and substitute this into the formula for the
logistic, we get

p
q

= ea+bx

1 + ea+bx

(
1 − ea+bx

1 + ea+bx

)−1

= ea+bx

Taking natural logs and recalling that ln(ex) = x will simplify matters even further, so that

ln(p∕q) = a + bx.

This gives a linear predictor, a + bx, not for p but for the logit transformation of p, namely ln(p∕q).
In the jargon of GLMs, the logit is the link function relating the linear predictor to the value of p.
Figure 11.12 p as a function of x (left panel) and logit(p) as a function of x (right panel) for the
logistic model with a = 1 and b = 0.1.

x <- seq (-60, 60, 0.1)
a <- 1
b <- 0.1
p <- exp (a + b * x) / (1 + exp (a + b * x))
plot (x, p, xlab = "x", ylab = "p", type = "l", col = hue_pal ()(2)[1])
plot (x, log (p / (1 - p)), xlab = "x", ylab = "logit = log (p / q)",

type = "l", col = hue_pal ()(2)[2])

�

� �

�

540 THE R BOOK

−60 −40 −20 0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

p

(a) Linear

−60 −40 −20 0 20 40 60

−
4

−
2

0
2

4
6

x

lo
gi

t =
 lo

g
(p

 /
q)

(b) Logistic

Figure 11.12 Relationships between x and functions of p.

We might ask at this stage: ’why not simply do a linear regression of ln(p∕q) against the explana-
tory x-variable?’. GLM with binomial errors has three great advantages here:

1. it allows for the non-constant binomial variance;

2. it deals with the fact that logits for ps near 0 or 1 are infinite;

3. it allows for differences between the sample sizes by weighted regression.

That the errors are binomially distributed is an assumption, not a fact. When we have overdispersion,
this assumption is wrong, and we need to deal with it: we describe how to do this in our final
theoretical excursion.

All the different statistical procedures that we have met in earlier chapters can also be used with
data on proportions. Factorial analysis of variance, multiple regression, and a variety of models in
which different regression lines are fitted in each of several levels of one or more factors, can be
carried out. The only difference is that we assess the significance of terms compared with the 𝜒2

distribution – using the increase in scaled deviance that results from removal of the term from the
current model.

The important point to bear in mind is that hypothesis testing with Binomial errors is less clear-cut
than with Normal errors. While the chi-squared approximation for changes in scaled deviance is rea-
sonable for large samples (i.e. larger than about 30), it is poorer with small samples. Most worrying
is the fact that the degree to which the approximation is satisfactory is itself unknown. This means
that considerable care must be exercised in the interpretation of tests of hypotheses on parameters,
especially when the parameters are marginally significant or when they explain a very small fraction
of the total deviance. With Binomial or Poisson errors, we cannot hope to provide exact p-values for
our tests using the anova () function in R. When we have obtained the minimal adequate model,
the residual scaled deviance should be roughly equal to the residual degrees of freedom.

�

� �

�

GENERALISED LINEAR MODELS 541

Overdispersion occurs when the residual deviance is considerably larger than the residual
degrees of freedom. There are two possibilities: either the model is mis-specified, or the proba-
bility of success, p, is not constant within a given treatment level. The effect of randomly varying
p is to increase the binomial variance from npq to npq + n(n − 1)𝜎2, leading to a large residual
deviance. This occurs even for models that would fit well if the random variation were correctly
specified.

One simple solution is to assume that the variance is not npq but npq𝜙, where 𝜙 is an unknown
scale parameter, greater than 1. We obtain an estimate of the scale parameter from the data and
then compare that to the residual deviance divided by the degrees of freedom. To accomplish this,
we use family = quasi-Binomial rather than family = binomial when there is overdis-
persion.

To summarise, the most important points to emphasise in modelling with binomial errors are as
follows:

• create a two-column object for the response, using cbind to join together the two vectors con-
taining the counts of success and failure;

• fit a model or models, perhaps beginning with the maximal model and removing interaction terms
and main effects as necessary;

• check for overdispersion (residual deviance greater than the residual degrees of freedom) and
correct for it by using family = quasi-Binomial rather than family = binomial if nec-
essary;

• remember that we do not obtain exact p-values with binomial errors: the 𝜒2 approximations are
sound for large samples, but small samples may present a problem;

• the fitted values are two sets of counts, like the response variable;

• the linear predictor is in logits (the log of the odds = ln(p∕q));

• we can back-transform from logits (z) to proportions (p) by p = 1∕[1 + e−z]

• use plot () to examine residuals.

11.4.2 Logistic regression with binomial errors

This example concerns sex ratios in insects (the proportion of all individuals that are males).
In the species in question, it has been observed that the sex ratio is highly variable, and an
experiment was set up to see whether population density was involved in determining the fraction
of males.

sexratio <- read.table ("sexratio.txt", header = T)
head (sexratio)

density females males
1 1 1 0
2 4 3 1
3 10 7 3
4 22 18 4
5 55 22 33
6 121 41 80

�

� �

�

542 THE R BOOK

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

Density

P
ro

po
rt

io
n

m
al

e

(a) Linear

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

Log (denisty)

P
ro

po
rt

io
n

m
al

e

(b) Log

Figure 11.13 Proportions of males in sexratio.

From Figure 11.13 it certainly looks as if there are proportionally more males at high density, but
we should plot the data as proportions to see this more clearly:

p <- sexratio$males / (sexratio$males + sexratio$females)
plot (sexratio$density, p, ylab = "proportion male", xlab = "density",

col = hue_pal ()(2)[1])
plot (log (sexratio$density), p, ylab = "proportion male",

xlab = "log (denisty)", col = hue_pal ()(2)[2])

Evidently, a logarithmic transformation of the explanatory variable is likely to improve the model fit.
We shall see in a moment.

The question is whether increasing population density leads to a significant increase in the pro-
portion of males in the population – or, more briefly, whether the sex ratio is density-dependent. It
certainly looks from the plot as if it is.

The response variable is a matched pair of counts that we wish to analyse as proportion data
using a GLM with binomial errors. First, we use cbind to bind together the vectors of male and
female counts into a single object that will be the response in our analysis. This means that y will
be interpreted in the model as the proportion of all individuals that were male. We then specify the
model:

y <- cbind (sexratio$males, sexratio$females)
sex_mod1 <- glm (y ~ density, binomial, data = sexratio)
summary (sex_mod1)

Call:
glm(formula = y ~ density, family = binomial, data = sexratio)

�

� �

�

GENERALISED LINEAR MODELS 543

Deviance Residuals:
Min 1Q Median 3Q Max

-3.4619 -1.2760 -0.9911 0.5742 1.8795

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.0807368 0.1550376 0.521 0.603
density 0.0035101 0.0005116 6.862 6.81e-12 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Binomial family taken to be 1)

Null deviance: 71.159 on 7 degrees of freedom
Residual deviance: 22.091 on 6 degrees of freedom
AIC: 54.618

Number of Fisher Scoring iterations: 4

This says that the object called sex_mod1 is a generalised linear model in which y (the sex ratio) is
modelled as a function of a single continuous explanatory variable (called density), using an error
distribution from the Binomial family.

The model table looks just as it would for a straightforward regression. The first parameter
in the coefficients table is the intercept, and the second is the slope of the graph of sex ratio
against population density. The p-value corresponding to the slope is effectively 0 and as the
slope is greater than 0, there appears to be proportionately more males at higher population
density, but there is substantial overdispersion (residual deviance = 22.09 is much greater
than the degrees of freedom, 6). We can see if log transformation of the explanatory variable
improves this:

sex_mod2 <- glm (y ~ log (density), binomial, data = sexratio)
summary (sex_mod2)

Call:
glm(formula = y ~ log(density), family = binomial, data = sexratio)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.9697 -0.3411 0.1499 0.4019 1.0372

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.65927 0.48758 -5.454 4.92e-08 ***
log(density) 0.69410 0.09056 7.665 1.80e-14 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Binomial family taken to be 1)

�

� �

�

544 THE R BOOK

Null deviance: 71.1593 on 7 degrees of freedom
Residual deviance: 5.6739 on 6 degrees of freedom
AIC: 38.201

Number of Fisher Scoring iterations: 4

This is a big improvement, so we shall adopt it. In the model with log (density), there is no
evidence of overdispersion (residual deviance = 5.67 on 6 degrees of freedom), whereas the lack
of fit introduced by the curvature in our first model caused substantial overdispersion. Note also the
reduction in AIC.

Model checking involves the use of plot (sex_mod2) (not shown). As we will see, there is no
pattern in the residuals against the fitted values, and the QQ plot is reasonably linear. Point no. 4 is
highly influential (it has a large Cook’s distance), but the model is still an improvement with this point
omitted. One shouldn’t draw too strong a conclusion from residual plots with such a small number
of points, but there is nothing too worrying there.

We conclude that the proportion of animals that are males increases significantly with increasing
density, and that the logistic model is linearised by logarithmic transformation of the explanatory
variable (population density). We finish by drawing the fitted mean line through the scatter plot to
produce Figure 11.14. Note the use of type = "response" to back-transform from the logit scale
to the S-shaped proportion scale.

xv <- seq (0, 6, 0.01)
ev <- data.frame (density = exp (xv))
yv <- predict (sex_mod2, newdata = ev,

type = "response")
plot (log (sexratio$density), p, ylab = "Proportion male",

xlab = "log (density)", col = hue_pal ()(2)[2])
lines (xv, yv, col = hue_pal ()(2)[2])

11.4.3 Predicting x from y

The next dataset consist of numbers dead and initial batch size for five doses of pesticide applica-
tion, and we wish to know what dose kills 50% of the individuals (or 90% or 95%, as required). The

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

Log (density)

P
ro

po
rt

io
n

m
al

e

Figure 11.14 Fitted line in sexratio logistic model.

�

� �

�

GENERALISED LINEAR MODELS 545

tricky statistical issue is that one is using a value of y (50% dead), the outcome, to predict a value
of x (the relevant dose), the explanatory variable, and to work out a standard error on the x-axis.

bioassay <- read.table ("bioassay.txt", header = T)
head (bioassay)

dose dead batch
1 1 2 100
2 3 10 90
3 10 40 98
4 30 96 100
5 100 98 100

The logistic regression is carried out in the usual way after we have created a response of the dead
and not-dead:

y <- cbind (bioassay$dead, bioassay$batch - bioassay$dead)
bioassay_mod <- glm (y ~ log(bioassay$dose), binomial)

Then the function dose.p () from the MASS library is run with the model object, specifying the
proportions killed for which we want the predicted log (doses) (0.5 is the default):

dose.p (bioassay_mod, p = c (0.5,0.9,0.95))

Dose SE
p = 0.50: 2.306981 0.07772065
p = 0.90: 3.425506 0.12362080
p = 0.95: 3.805885 0.15150043

As our model took logs of the doses we will need to reverse that to give the predicted dose. So for
50%, we need to calculate e2.307 = 10.04.

11.4.4 Proportion data with categorical explanatory variables

This next example concerns the germination of seeds of two genotypes of the parasitic plant
Orobanche and two extracts from host plants (bean and cucumber) that were used to stimulate
germination. It is a two-way factorial analysis of deviance:

germination <- read.table ("germination.txt", header = T,
colClasses = c (rep ("numeric", 2),

rep ("factor", 2)))
head (germination)

count sample Orobanche extract
1 10 39 a75 bean
2 23 62 a75 bean
3 23 81 a75 bean
4 26 51 a75 bean
5 17 39 a75 bean
6 5 6 a75 cucumber

�

� �

�

546 THE R BOOK

The count is the number of seeds that germinated out of a batch of size = sample. So the number
that did not germinate is sample – count, and we construct the response vector like this:

y <- cbind (germination$count, germination$sample - germination$count)

Each of the categorical explanatory variables has two levels:

levels (germination$Orobanche)

[1] "a73" "a75"

levels (germination$extract)

[1] "bean" "cucumber"

We want to test the hypothesis that there is no interaction between Orobanche genotype (a73 or
a75) and plant extract (bean or cucumber) on the germination rate of the seeds. This requires a
factorial analysis using the asterisk * operator like this:

germ_mod1 <- glm (y ~ Orobanche * extract, binomial, data = germination)
summary (germ_mod1)

Call:
glm(formula = y ~ Orobanche * extract, family = binomial, data = germination)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.01617 -1.24398 0.05995 0.84695 2.12123

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4122 0.1842 -2.238 0.0252 *
Orobanchea75 -0.1459 0.2232 -0.654 0.5132
extractcucumber 0.5401 0.2498 2.162 0.0306 *
Orobanchea75:extractcucumber 0.7781 0.3064 2.539 0.0111 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Binomial family taken to be 1)

Null deviance: 98.719 on 20 degrees of freedom
Residual deviance: 33.278 on 17 degrees of freedom
AIC: 117.87

Number of Fisher Scoring iterations: 4

At first glance, it looks as if there is a highly significant interaction term, but we need to check
that the model is sound. The first thing is to check for is overdispersion. The residual deviance

�

� �

�

GENERALISED LINEAR MODELS 547

divided by the residual degrees of freedom is 1.96, so the model is quite badly overdispersed: the
overdispersion factor is almost 2. The simplest way to take this into account is to use what is called
an ‘empirical scale parameter’ to reflect the fact that the errors are not binomial as we assumed,
but were larger than this (i.e. overdispersed) by a factor of almost 2. We refit the model using
quasi-Binomial errors to account for the overdispersion, checking whether the interaction term is still
important:

germ_mod2 <- glm (y ~ Orobanche * extract, quasi-Binomial, data = germination)
germ_mod3 <- update (germ_mod2, ~ . - Orobanche:extract)
anova (germ_mod3, germ_mod2, test = "F")

Analysis of Deviance Table

Model 1: y ~ Orobanche + extract
Model 2: y ~ Orobanche * extract

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 18 39.686
2 17 33.278 1 6.4081 3.4418 0.08099.

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Remember that we use an F-test instead of a 𝜒2 test to compare the original and simplified models
because now we have estimated two parameters from the model (the mean plus the empirical scale
parameter). Now, we see that adding the interaction does not appear to improve the model. There
is no compelling evidence that different genotypes of Orobanche respond differently to the two plant
extracts.

The next step is to see if any further model simplification is possible by using the anova ()
function on just the latest model:

anova (germ_mod3, test = "F")

Analysis of Deviance Table

Model: Quasi-Binomial, link: logit

Response: y

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev F Pr(>F)
NULL 20 98.719
Orobanche 1 2.544 19 96.175 1.1954 0.2887
extract 1 56.489 18 39.686 26.5412 6.692e-05 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

�

� �

�

548 THE R BOOK

The p-value for extract is very small, but it is not obvious that we need to keep Orobanche genotype
in the model. We try removing it:

germ_mod4 <- update (germ_mod3, ~ . - Orobanche)
anova (germ_mod4, germ_mod3, test = "F")

Analysis of Deviance Table

Model 1: y ~ extract
Model 2: y ~ Orobanche + extract
Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 19 42.751
2 18 39.686 1 3.065 1.4401 0.2457

There is no justification for retaining Orobanche in the model. So the minimal adequate model
contains just two parameters:

coef (germ_mod4)

(Intercept) extractcucumber
-0.5121761 1.0574031

However, what exactly do these two numbers mean? Remember that the coefficients are from the
linear predictor. They are on the transformed scale, so because we are using quasi-binomial errors,
they are in logits: (ln(p∕(1 − p)). To turn them into the germination rates for the two plant extracts,
we require a little calculation. To go from a logit(x) to a proportion p, we need to calculate:

p = 1
1 + e−x

So our first x value is -0.512, and we calculate

1 / (1 + exp(0.512))

[1] 0.3747248

This says that the mean germination rate of the seeds with the first plant extract (bean) was 37%.
What about the parameter for extract (1.057)? Remember that with categorical explanatory vari-
ables, the parameter values are differences between means. So to get the second germination
rate, we add 1.057 to the intercept before back-transforming:

1 / (1 + exp(0.5122-1.0574))

[1] 0.6330212

This says that the germination rate was nearly twice as great (63%) with the second plant extract
(cucumber). Obviously, we want to generalise this process and also to speed up the calculations of

�

� �

�

GENERALISED LINEAR MODELS 549

the estimated mean proportions. We can use predict to help here, because type="response"
makes predictions on the back-transformed scale automatically:

tapply (predict (germ_mod4, type="response"), germination$extract, mean)

bean cucumber
0.3746835 0.6330275

It is interesting to compare these figures with the averages of the raw proportions. First, we need
to calculate the proportion germinating, p, in each sample:

p <- germination$count / germination$sample

Then we can find the average germination rates for each extract:

tapply (p, germination$extract, mean)

bean cucumber
0.3487189 0.6031824

We see that this gives different answers. Not too different in this case, but different nonetheless.
The correct way to average proportion data is to add up the total counts for the different levels of
abstract, and only then to turn them into proportions:

tapply (germination$count, germination$extract, sum)

bean cucumber
148 276

This means that 148 seeds germinated with bean extract and 276 with cucumber. But how many
seeds were involved in each case?

tapply (germination$sample, germination$extract, sum)

bean cucumber
395 436

This means that 395 seeds were treated with bean extract and 436 seeds were treated with cucum-
ber. So the answers we want are 148/395 and 276/436 (i.e. the correct mean proportions). We can
automate the calculation like this:

as.vector (tapply (germination$count, germination$extract, sum)) /
as.vector (tapply (germination$sample, germination$extract, sum))

[1] 0.3746835 0.6330275

�

� �

�

550 THE R BOOK

These are the correct mean proportions that were produced by the GLM. The moral here is that we
calculate the average of proportions by using total counts and total samples and not by averaging
the raw proportions.

Just to clarify, here is another example showing what not to do. We have four proportions:

0.2,0.17,0.2,0.53.

So surely to find the overall proportion, we just add them up and divide by 4. This gives 1.1∕4 =
0.275. Wrong! And not by just a little bit. We need to look at the counts on which the proportions
were based. These turn out to be

1∕5,1∕6,2∕10,53∕100.

The correct way to average proportions is to add up the total count of successes (1 + 1 + 2 + 53 =
57) and divide this by the total number of samples (5 + 6 + 10 + 100 = 121). The correct mean
proportion is 57∕121 = 0.4711. This is nearly double our incorrect answer (0.275).

11.4.5 Binomial GLM with ordered categorical covariates

We now look at the dataset esoph where the outcome is whether subjects have cancer, based on
covariates which are categorical but ordered. The dataset comes with R:

head (esoph)

agegp alcgp tobgp ncases ncontrols
1 25-34 0-39g/day 0-9g/day 0 40
2 25-34 0-39g/day 10-19 0 10
3 25-34 0-39g/day 20-29 0 6
4 25-34 0-39g/day 30+ 0 5
5 25-34 40-79 0-9g/day 0 27
6 25-34 40-79 10-19 0 7

More details can be found at help (esoph), but in summary the covariates are age group (agegp,
with six ordered levels each spanning 10 years), alcohol consumption (alcgp, with four ordered
levels), and tobacco consumption (tobgp, with four ordered levels). There are too few cases to fit
a full factorial of agegp * tobgpacco * alcgp, so we start with a maximal model that has a
main effect for age and an interaction between tobacco and alcohol (which doesn’t seem a stupid
area to explore):

esoph_mod1 <- glm (cbind (ncases, ncontrols) ~ agegp + alcgp * tobgp, binomial,
data = esoph)

summary (esoph_mod1)

Call:
glm(formula = cbind(ncases, ncontrols) ~ agegp + alcgp * tobgp,

family = binomial, data = esoph)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.9069 -0.6470 -0.2356 0.5557 2.4011

�

� �

�

GENERALISED LINEAR MODELS 551

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.16933 0.20767 -5.631 1.79e-08 ***
agegp.L 3.97135 0.69286 5.732 9.94e-09 ***
agegp.Q -1.58715 0.61943 -2.562 0.0104 *
agegp.C 0.09866 0.47331 0.208 0.8349
agegp^4 0.09950 0.32816 0.303 0.7617
agegp^5 -0.27067 0.21516 -1.258 0.2084
alcgp.L 2.42627 0.28829 8.416 < 2e-16 ***
alcgp.Q 0.12999 0.25418 0.511 0.6091
alcgp.C 0.36600 0.22252 1.645 0.1000
tobgp.L 1.10809 0.27042 4.098 4.17e-05 ***
tobgp.Q 0.26586 0.25419 1.046 0.2956
tobgp.C 0.29394 0.24026 1.223 0.2212
alcgp.L:tobgp.L -0.42942 0.58589 -0.733 0.4636
alcgp.Q:tobgp.L 0.04169 0.53027 0.079 0.9373
alcgp.C:tobgp.L -0.25088 0.47211 -0.531 0.5951
alcgp.L:tobgp.Q 0.33676 0.56764 0.593 0.5530
alcgp.Q:tobgp.Q -0.62384 0.50922 -1.225 0.2205
alcgp.C:tobgp.Q 0.02303 0.44197 0.052 0.9584
alcgp.L:tobgp.C -0.15742 0.54313 -0.290 0.7719
alcgp.Q:tobgp.C -0.06700 0.48120 -0.139 0.8893
alcgp.C:tobgp.C -0.17340 0.40908 -0.424 0.6717

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Binomial family taken to be 1)

Null deviance: 367.953 on 87 degrees of freedom
Residual deviance: 76.886 on 67 degrees of freedom
AIC: 233.94

Number of Fisher Scoring iterations: 6

The residual deviance is close to the number of degrees of freedom, which is promising. We have
not seen before how ordered factor levels (see later in this Section for how to order/unorder levels)
are displayed in the summary.glm table:

• L means ‘linear’, testing whether there is evidence for a straight-line relationship with the response
variable (look at the sign to see if it is increasing or decreasing);

• Q means ‘quadratic’, testing whether there is evidence for curvature in the response (look at the
sign to see if the curvature is U-shaped or upside-down U-shaped);

• C means ‘cubic’, testing whether there is evidence for more than one point of inflection in the
relationship;

• numbers like 4, 5, etc., test for higher-order polynomial effects, like local maxima and local minima
in the relationship.

�

� �

�

552 THE R BOOK

We shall not attempt to interpret the output until we have finished with model simplification. There
is no indication of an interaction between smoking and drinking, so we remove this and compare
with the first model:

esoph_mod2 <- glm (cbind (ncases, ncontrols) ~ agegp + alcgp + tobgp, binomial,
data = esoph)

anova (esoph_mod1, esoph_mod2, test = "Chisq")

Analysis of Deviance Table

Model 1: cbind(ncases, ncontrols) ~ agegp + alcgp * tobgp
Model 2: cbind(ncases, ncontrols) ~ agegp + alcgp + tobgp
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 67 76.886
2 76 82.337 -9 -5.4506 0.7934

Where our outcome variable is Binomial or Poisson, we need to specify a 𝜒2 test; otherwise, we
can stick to the default F-test. The null hypothesis is that we could omit the deleted variables from
the model with minimal consequences, and there is no evidence against that, so we will retain the
new model (which also has a lower AIC):

summary (esoph_mod2)

Call:
glm(formula = cbind(ncases, ncontrols) ~ agegp + alcgp + tobgp,

family = binomial, data = esoph)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.9507 -0.7376 -0.2438 0.6130 2.4127

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.19039 0.20737 -5.740 9.44e-09 ***
agegp.L 3.99663 0.69389 5.760 8.42e-09 ***
agegp.Q -1.65741 0.62115 -2.668 0.00762 **
agegp.C 0.11094 0.46815 0.237 0.81267
agegp^4 0.07892 0.32463 0.243 0.80792
agegp^5 -0.26219 0.21337 -1.229 0.21915
alcgp.L 2.53899 0.26385 9.623 < 2e-16 ***
alcgp.Q 0.09376 0.22419 0.418 0.67578
alcgp.C 0.43930 0.18347 2.394 0.01665 *
tobgp.L 1.11749 0.24014 4.653 3.26e-06 ***
tobgp.Q 0.34516 0.22414 1.540 0.12358
tobgp.C 0.31692 0.21091 1.503 0.13294

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Binomial family taken to be 1)

�

� �

�

GENERALISED LINEAR MODELS 553

0−39g/day 40−79 80−119 120+

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

(a) Alcohol

0−9g/day 10−19 20−29 30+

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

(b) Tobacco

25−34 35−44 45−54 55−64 65−74 75+

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

(c) Age

Figure 11.15 Prevalence of cancer by covariate in esoph.

Null deviance: 367.953 on 87 degrees of freedom
Residual deviance: 82.337 on 76 degrees of freedom
AIC: 221.39

Number of Fisher Scoring iterations: 6

There is strong evidence for linear effects of all three covariates, with a quadratic (decelerat-
ing) effect of age on cancer risk. We shall now consider factor-level reduction, particularly for
higher-order elements. Let us look at the outcome data as proportions of the number of cases (p)
and plot the covariates, as in Figure 11.15, each time displaying the results as the other covariates
vary:

p <- esoph$ncases / (esoph$ncases + esoph$ncontrols)
plot (p ~ alcgp, col = hue_pal ()(3)[1], data = esoph, xlab = "",

cex.lab = 1.5, cex.axis = 1.5)
plot (p ~ tobgp, col = hue_pal ()(3)[2], data = esoph, xlab = "",

cex.lab = 1.5, cex.axis = 1.5)
plot (p ~ agegp, col = hue_pal ()(3)[3], data = esoph, xlab = "",

cex.lab = 1.5, cex.axis = 1.5)

The plots suggest some model simplifications: let us reduce each covariate to just three groups.
For the alcohol response, we could combine the middle two groups:

esoph$alcgp2 <- esoph$alcgp
levels (esoph$alcgp2)[2:3] <- "40-119"
levels (esoph$alcgp2)

[1] "0-39g/day" "40-119" "120+"

�

� �

�

554 THE R BOOK

The tobacco response could probably be simplified by combining the two intermediate smoking
rates:

esoph$tobgp2 <- esoph$tobgp
levels (esoph$tobgp2)[2:3] <- "10-30"
levels (esoph$tobgp2)

[1] "0-9g/day" "10-30" "30+"

The age effect is most complicated, but a three-level factor might work just as well with a young
group (under age 45), an intermediate group (age between 45 and 54), and an older group (55+):

esoph$agegp2 <- esoph$agegp
levels (esoph$agegp2)[4:6] <- "55+"
levels (esoph$agegp2)[1:2] <- "under45"
levels (esoph$agegp2)

[1] "under45" "45-54" "55+"

Updating our model, esoph_mod2 for that, reduces the number of terms (as there are fewer levels
of the covariates):

esoph_mod3 <- glm (cbind (ncases, ncontrols) ~ agegp2 + alcgp2 + tobgp2, binomial,
data = esoph)

summary (esoph_mod3)

Call:
glm(formula = cbind(ncases, ncontrols) ~ agegp2 + alcgp2 + tobgp2,

family = binomial, data = esoph)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.8944 -0.7976 -0.3094 0.8586 2.0751

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.1913 0.1632 -7.299 2.89e-13 ***
agegp2.L 2.1472 0.2602 8.252 < 2e-16 ***
agegp2.Q -0.5952 0.2112 -2.819 0.00482 **
alcgp2.L 2.4664 0.2674 9.223 < 2e-16 ***
alcgp2.Q 0.1420 0.1782 0.797 0.42565
tobgp2.L 1.0549 0.2357 4.476 7.62e-06 ***
tobgp2.Q 0.2307 0.1766 1.307 0.19131

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Binomial family taken to be 1)

�

� �

�

GENERALISED LINEAR MODELS 555

Null deviance: 367.953 on 87 degrees of freedom
Residual deviance: 97.619 on 81 degrees of freedom
AIC: 226.67

Number of Fisher Scoring iterations: 5

We can’t use AIC to compare esoph_mod2 and esoph_mod3, as we have played around with the
data by combining factors, and we can’t use the anova () function as the models are not nested.
However, simpler is better, so let us stick with the newer model.

Having established that our ordered factors should all stay in the model, it might be interesting to
examine what happens if we take away the ordering:

esoph$alcgp3 <- factor (esoph$alcgp, ordered = FALSE)
esoph$agegp3 <- factor (esoph$agegp2, ordered = FALSE)
esoph$tobgp3 <- factor (esoph$tobgp2, ordered = FALSE)
esoph_mod4 <- glm (cbind (ncases, ncontrols) ~ agegp3 + alcgp3 + tobgp3, binomial,

data = esoph)
summary (esoph_mod4)

Call:
glm(formula = cbind(ncases, ncontrols) ~ agegp3 + alcgp3 + tobgp3,

family = binomial, data = esoph)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.8967 -0.8038 -0.3366 0.7228 2.4536

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.2314 0.4202 -12.449 < 2e-16 ***
agegp345-54 2.1941 0.3924 5.591 2.25e-08 ***
agegp355+ 2.9868 0.3692 8.089 6.02e-16 ***
alcgp340-79 1.3906 0.2458 5.658 1.53e-08 ***
alcgp380-119 1.9254 0.2785 6.913 4.76e-12 ***
alcgp3120+ 3.4805 0.3770 9.231 < 2e-16 ***
tobgp310-30 0.4409 0.1989 2.216 0.0267 *
tobgp330+ 1.4747 0.3350 4.402 1.07e-05 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Binomial family taken to be 1)

Null deviance: 367.953 on 87 degrees of freedom
Residual deviance: 92.602 on 80 degrees of freedom
AIC: 223.66

Number of Fisher Scoring iterations: 5

�

� �

�

556 THE R BOOK

We can see that even without the ordering, all the different levels in our factors seem to belong in the
model. As with all such models, we could continue permuting factor levels and interactions, but we
should be careful about doing that until we reach a result that we might have imagined beforehand.

11.4.6 Binomial GLM with categorical and continuous covariates

We now turn to an example concerning flowering in five varieties of perennial plant. Replicated
individuals in a fully randomized design were sprayed with one of six doses of a controlled mixture
of growth promoters. After six weeks, plants were scored as flowering or not flowering. The count of
flowering individuals forms the response variable. We have both continuous (dose) and categorical
(variety) explanatory variables. We use logistic regression because the response variable is a count
(flowered) that can be expressed as a proportion (flowered/total):

flowering <- read.table ("flowering.txt", header = T,
colClasses = list (variety = "factor"))

head (flowering)
flowered number dose variety

1 0 12 1 A
2 0 17 4 A
3 4 10 8 A
4 9 11 16 A
5 10 10 32 A
6 0 17 1 B

We can plot the data in Figure 11.16:

y <- cbind (flowering$flowered, flowering$number - flowering$flowered)
pf <- flowering$flowered / flowering$number
plot (flowering$dose, jitter (pf), xlab = "dose", ylab = "proportion flowered",

col = hue_pal ()(5)[as.vector (as.numeric (factor (flowering$variety)))])
legend (1, 0.9, legend = levels (flowering$variety),

pch = rep (19, 5), title = "variety",
col = hue_pal ()(5))

We use a sneaky trick to colour the points by variety: we can convert levels of a factor to num-
bers by using as.numeric () (we then need to convert the result of that into a vector!). Using
jitter () stops common values hiding one another.

There is clearly a substantial difference between the plant varieties in their response to the flow-
ering stimulant. The modelling proceeds in the usual way. We begin by fitting the maximal model
with different slopes and intercepts for each variety (estimating 10 parameters in all):

flow_mod1 <- glm (y ~ dose * variety, binomial, data = flowering)
summary (flow_mod1)

Call:
glm(formula = y ~ dose * variety, family = binomial, data = flowering)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.6648 -1.1200 -0.3769 0.5735 3.3299

�

� �

�

GENERALISED LINEAR MODELS 557

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Dose

P
ro

po
rt

io
n

flo
w

er
ed Variety

A
B
C
D
E

Figure 11.16 flowering by variety and dose.

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.59165 1.03215 -4.449 8.64e-06 ***
dose 0.41262 0.10033 4.113 3.91e-05 ***
varietyB 3.06197 1.09317 2.801 0.005094 **
varietyC 1.23248 1.18812 1.037 0.299576
varietyD 3.17506 1.07516 2.953 0.003146 **
varietyE -0.71466 1.54849 -0.462 0.644426
dose:varietyB -0.34282 0.10239 -3.348 0.000813 ***
dose:varietyC -0.23039 0.10698 -2.154 0.031274 *
dose:varietyD -0.30481 0.10257 -2.972 0.002961 **
dose:varietyE -0.00649 0.13292 -0.049 0.961057

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Binomial family taken to be 1)

Null deviance: 303.350 on 29 degrees of freedom
Residual deviance: 51.083 on 20 degrees of freedom
AIC: 123.55

Number of Fisher Scoring iterations: 5

The model exhibits substantial overdispersion, but this could be due to poor model selection rather
than extra, unmeasured variability. Let us investigate this by plotting the fitted curves through the
scatter plot to give Figure 11.17.

y <- cbind (flowering$flowered, flowering$number - flowering$flowered)
pf <- flowering$flowered / flowering$number
plot (flowering$dose, jitter (pf), xlab = "dose", ylab = "proportion flowered",

col = hue_pal ()(5)[as.vector (as.numeric (factor (flowering$variety)))])
legend (1, 0.9, legend = levels (flowering$variety),

pch = rep (19, 5), title = "variety",

�

� �

�

558 THE R BOOK

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Dose

P
ro

po
rt

io
n

flo
w

er
ed Variety

A
B
C
D
E

Figure 11.17 flowering by variety and dose with fitted logistic lines.

col = hue_pal ()(5))
xv <- seq (0,35,0.1)
for (i in 1:5) {
vn <- rep (levels (flowering$variety)[i], length (xv))
yv <- predict (flow_mod1, list (variety = factor(vn), dose = xv),

type = "response")
lines (xv, yv, col = hue_pal ()(5)[i])

}

As we can see, the model is reasonable for two of the genotypes (A and E), moderate for one
genotype (C) but very poor for two of them, (B and D). For both of the latter, the model greatly
overestimates the proportion flowering at zero dose, and for genotype B, there seems to be some
inhibition of flowering at the highest dose because the graph falls from 90% flowering at dose 16 to
just 50% at dose 32. Variety D appears to be asymptoting at less than 100% flowering.

tapply (pf, list (flowering$dose, flowering$variety), mean)

A B C D E
0 0.0000000 0.08333333 0.00000000 0.06666667 0.0000000
1 0.0000000 0.00000000 0.14285714 0.11111111 0.0000000
4 0.0000000 0.20000000 0.06666667 0.15789474 0.0000000
8 0.4000000 0.50000000 0.17647059 0.53571429 0.1578947
16 0.8181818 0.90000000 0.25000000 0.73076923 0.7500000
32 1.0000000 0.50000000 1.00000000 0.77777778 1.0000000

These failures of the model should focus attention for future work. The moral is that the fact that we
have proportion data does not mean that the data will necessarily be well described by the logistic
model. For instance, in order to describe the response of genotype B, the model would need to
have a hump, rather than to asymptote at p = 1 for large doses. It is essential to look closely at the
data, both with plots and with tables, before accepting the model output. Model choice is a very big
deal. The logistic was a poor choice for two of the five varieties in this case.

We did rather gloss over whether accounting for overdispersion would improve matters. As we
discussed in Section 11.2.2, the parameter estimates, and thus the predictions, will not change if

�

� �

�

GENERALISED LINEAR MODELS 559

we use family = quasi-Binomial so Figure 11.17 would look exactly the same. However, if
we put confidence intervals around these lines (they are mean estimates), then things would be
different. This does not change the conclusion that the model we have requires improvement: more
data would help as well.

11.4.7 Revisiting lizards

In Section 11.3.2, we examined the lizards dataset, treating the response as a count of lizards
from one of two species. We can work with the proportion of all lizards that are text Anolis grahamii
as the response variable, instead of analysing the counts of the numbers of text A. grahamii and
A. opalinus separately. This requires us to reformat the dataset.

First, we need to make absolutely sure that all the explanatory variables are in exactly the same
order for both species of lizards. The reason for this is that we are going to cbind () the counts
for one of the lizard species onto the half dataframe containing the other species counts and all
of the explanatory variables. Any mistakes here would be disastrous because the count would be
lined up with the wrong combination of explanatory variables, and the analysis would be wrong and
utterly meaningless.

lizards_sort <- lizards[order (lizards$species,
lizards$sun,
lizards$height,
lizards$perch,
lizards$time),]

If we examine the new dataset, we will see that the first half is all the grahamii entries, and the
second is those for opalinus, with the order of the other variables the same in each half. Next,
we need to extract the top half of this dataframe (i.e. rows 1–24):

lizards_sort_top <- lizards_sort[1:24,]
names (lizards_sort_top)[1] <- "Ag"
lizards_sort_top <- lizards_sort_top[,-6]
head (lizards_sort_top)

Ag sun height perch time
25 2 Shade High Broad Not.mid.day
41 4 Shade High Broad Not.mid.day
33 1 Shade High Broad Mid.day
27 3 Shade High Narrow Not.mid.day
43 3 Shade High Narrow Not.mid.day
35 1 Shade High Narrow Mid.day

We have also renamed the count column, n, as it is now just a count of text A. grahamii, and deleted
the final column as all the entries, grahamii, are the same. We can now add the counts for text
A. opalinus into a new column:

lizards_new <- data.frame(lizards_sort$n[25:48], lizards_sort_top)
names (lizards_new)[1] <- "Ao"
head (lizards_new)

�

� �

�

560 THE R BOOK

Ao Ag sun height perch time
25 20 2 Shade High Broad Not.mid.day
41 4 4 Shade High Broad Not.mid.day
33 8 1 Shade High Broad Mid.day
27 8 3 Shade High Narrow Not.mid.day
43 5 3 Shade High Narrow Not.mid.day
35 4 1 Shade High Narrow Mid.day

We can now analyse these data in a similar fashion to other datasets in this section. We have prob-
ably seen enough of modelling lizards in Section 11.3.2, so will not repeat the exercise. However,
it would be interesting to consider whether we might end up with a similar model to that we built
earlier.

11.5 Binary Response Variables and GLMs

Many statistical problems involve binary response variables. For example, we often classify indi-
viduals as

• dead or alive;

• occupied or empty;

• healthy or diseased;

• male or female;

• literate or illiterate;

• mature or immature;

• solvent or insolvent;

• employed or unemployed; or

• good or bad at statistics.

It is interesting to understand the factors that are associated with an individual being in one class
or the other. Binary analysis will be a useful option when at least one of our explanatory variables
is continuous (rather than categorical). In a study of company insolvency, for instance, the data
would consist of a list of measurements made on the insolvent companies (their age, size, turnover,
location, management experience, workforce training, and so on,) and a similar list for the solvent
companies. The question then becomes which, if any, of the explanatory variables increase the
probability of an individual company being insolvent.

The response variable contains only 0s and 1s; for example, 0 to represent dead individuals
and 1 to represent live ones. Thus, there is only a single column of numbers for the response, in
contrast to proportion data where two vectors (successes and failures) were bound together to form
the response (see Section 11.4). The way that R treats binary data is to assume that the 0s and 1s
come from a binomial trial with sample size 1. If the probability that an individual is dead is p, then
the probability of obtaining y (where y is either dead or alive, 0 or 1) is given by an abbreviated form
of the Binomial distribution with n = 1, known as the Bernoulli distribution:

P(y) = py × (1 − p)1−y.

�

� �

�

GENERALISED LINEAR MODELS 561

The random variable y has a mean of p and a variance of p(1 − p), and the objective is to determine
how the explanatory variables influence the value of p. The trick to using binary response variables
effectively is to know when it is worth using them, and when it is better to lump the successes and
failures together and analyse the total counts of dead individuals, occupied patches, insolvent firms,
or whatever. The question we need to ask is: do we have unique values of one or more explanatory
variables for each and every individual case?

If the answer is ’yes’, then analysis with a binary response variable is likely to be fruitful. If the
answer is ’no’, then there is nothing to be gained, and we should reduce our data by aggregating
the counts to the resolution at which each count does have a unique set of explanatory variables.
For example, suppose that all our explanatory variables were categorical – sex (male or female),
employment (employed or unemployed), and region (urban or rural). In this case, there is nothing
to be gained from analysis using a binary response variable because none of the individuals in the
study have unique values of any of the explanatory variables. It might be worthwhile if we had each
individual’s body weight, for example, then we could ask whether, when we control for sex and
region, heavier people are more likely to be unemployed than lighter people: the, usually, unique
values from the continuous variable make the analysis possible. In the absence of unique values
for any explanatory variables, there are two useful options:

1. Analyse the data as a contingency table using Poisson errors, with the count of the total num-
ber of individuals in each of the eight contingencies (2 × 2 × 2) as the response variable (see
Section 11.3) in a dataframe with just eight rows; or

2. decide which of our explanatory variables is the key (perhaps we are interested in gender differ-
ences), then express the data as proportions (the number of males and the number of females)
and recode the binary response as a count of a two-level factor. The analysis is now of proportion
data (the proportion of all individuals that are female, for instance) using Binomial errors (see
Section 11.4).

If we do have unique measurements of one or more explanatory variables for each individual, these
are likely to be continuous variables such as body weight, income, medical history, distance to
the nuclear reprocessing plant, geographic isolation, and so on. This being the case, successful
analyses of binary response data tend to be multiple regression analyses or complex analyses of
covariance.

In order to carry out modelling on a binary response variable, we take the following steps:

• create a single vector containing 0s and 1s as the response variable;

• use a GLM with family = binomial;

• consider changing the link function from the default logit to complementary log-log;

• fit the model in the usual way;

• test the importance of model terms by deletion of terms from the maximal model (or adding in to
the minimal one), and compare the change in deviance with a 𝜒2 test.

Note that there is no such thing as overdispersion with a binary response variable, and hence,
no need to change to using the quasi-Binomial when the residual deviance is large. The choice
of link function is generally made by trying both links and selecting the link that gives the lowest
deviance. The logit link that we used earlier is symmetric in p and q, but the complementary log-log

�

� �

�

562 THE R BOOK

link is asymmetric. We may also improve the fit by transforming one or more of the explanatory
variables. Bear in mind that we can fit non-parametric smoothers to binary response variables using
Generalised Additive Models (as described in Chapter 12) instead of carrying out parametric logistic
regression.

11.5.1 A straightforward example

In this example, the response variable is called incidence: a value of 1 means that an island
was occupied by a particular species of bird, and 0 means that the bird did not breed there. The
explanatory variables are the area of the island (km22) and the isolation of the island (distance
from the mainland, km).

isolation <- read.table ("isolation.txt", header = T)
head (isolation)

incidence area isolation
1 1 7.928 3.317
2 0 1.925 7.554
3 1 2.045 5.883
4 0 4.781 5.932
5 0 1.536 5.308
6 1 7.369 4.934

There are two continuous explanatory variables, so the appropriate analysis is multiple regression.
The response is binary, so we shall do logistic regression with binomial errors. We begin by fitting
a complex model involving an interaction between isolation and area:

iso_mod1 <- glm(incidence ~ area * isolation, binomial, data = isolation)

Then we fit a simpler model with only main effects for isolation and area:

iso_mod2 <- glm(incidence ~ area + isolation, binomial, data = isolation)

We now compare the two models:

anova (iso_mod2, iso_mod1, test = "Chi")

Analysis of Deviance Table

Model 1: incidence ~ area + isolation
Model 2: incidence ~ area * isolation
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 47 28.402
2 46 28.252 1 0.15043 0.6981

�

� �

�

GENERALISED LINEAR MODELS 563

The simpler model does not appear to be worse, so we accept this for the time being, and inspect
the parameter estimates and standard errors:

summary (iso_mod2)

Call:
glm(formula = incidence ~ area + isolation, family = binomial,

data = isolation)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.8189 -0.3089 0.0490 0.3635 2.1192

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.6417 2.9218 2.273 0.02302 *
area 0.5807 0.2478 2.344 0.01909 *
isolation -1.3719 0.4769 -2.877 0.00401 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Binomial family taken to be 1)

Null deviance: 68.029 on 49 degrees of freedom
Residual deviance: 28.402 on 47 degrees of freedom
AIC: 34.402

Number of Fisher Scoring iterations: 6

The estimates and their standard errors are in logits. We see that area has a positive effect (islands
are more likely to be occupied), but isolation has a very strong negative effect (isolated islands
are much less likely to be occupied). This is the minimal adequate model. We should plot the fitted
model through the scatterplot of the data. We can see the effect of each covariate separately in
Figure 11.18.

iso_moda <- glm (incidence ~ area, binomial, data = isolation)
iso_modi <- glm (incidence ~ isolation, binomial, data = isolation)
xva <- seq (0, 9, 0.01)
yva <- predict (iso_moda, list (area = xva), type = "response")
plot (isolation$area, isolation$incidence, xlab = "area", ylab = "incidence")
lines (xva, yva, col = hue_pal ()(2)[1])
xvi <- seq (0, 10, 0.01)
yvi <- predict (iso_modi, list (isolation = xvi), type = "response")
plot (isolation$isolation, isolation$incidence, xlab = "isolation",
ylab = "incidence")
lines (xvi, yvi, col = hue_pal ()(2)[2])

�

� �

�

564 THE R BOOK

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Area

In
ci

de
nc

e

(a) Area

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Isolation

In
ci

de
nc

e

(b) Isolation

Figure 11.18 Covariates shown individually for fitted models in isolation.

This shape of plot is typical of that for logistic regression. It is the middle section, where it begins
and ends, that is the interesting part of the curve. Obviously, the values for incidence can only be
0 or 1 so are not very compelling on their own.

11.5.2 Graphical tests of the fit of the logistic curve to data

The logistic plots above are all well and good, but it is very difficult to know how good the fit of the
model is when the data are shown only as 0s or 1s. Some people have argued for putting histograms
instead of rugs on the top and bottom axes, but there are issues here about the arbitrary location
of the bins. Rugs are a one-dimensional addition to the bottom (or top) of the plot showing the
locations of the data points along the x-axis. The idea is to indicate the extent to which the values
are clustered at certain values of the explanatory variable, rather than evenly spaced out along it.
If there are many values at the same value of x, it will be useful to use the jitter function to spread
them out (by randomly selected small distances).

A different tack is to cut the data into a number of sectors and plot empirical probabilities (ideally
with their standard errors) as a guide to the fit of the logistic curve, but this, too, can be criticized
on the arbitrariness of the boundaries to do the cutting, coupled with the fact that there are often
too few data points to give acceptable precision to the empirical probabilities and standard errors
in any given group. For what it is worth, here is an example of this approach. The response is
occupation of territories (0 or 1) and the explanatory variable is resources available in each
territory:

occupation <- read.table ("occupation.txt", header = T)
head (occupation)

resources occupied
1 14.18154 0

�

� �

�

GENERALISED LINEAR MODELS 565

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Resources

O
cc

up
ie

d
or

 n
ot

Figure 11.19 Rug plot for isolation.

2 18.68306 0
3 20.22156 0
4 30.75129 0
5 38.16026 0
6 43.15511 0

Figure 11.19 is a rug plot with a fitted logistic curve:

plot (occupation$resources, occupation$occupied, type = "n",
xlab = "resources", ylab = "occupied or not")

rug (occupation$resources[occupation$occupied == 0])
rug (occupation$resources[occupation$occupied == 1], side = 3)
occ_mod <- glm (occupied ~ resources, binomial, data = occupation)
xv <- 0:1000
yv <- predict (occ_mod, list(resources = xv), type = "response")
lines (xv, yv, col = hue_pal ()(2)[1])

There is no need to add jitter as resources is continuous and so exact overlap is unlikely.
The idea is to cut up the ranked values on the x-axis (resources) into five categories and then

work out the mean and the standard error of the proportions of occupied in each group. We shall,
slightly arbitrarily, pick five groups:

occ_cut <- cut (occupation$resources, 5)
tapply (occupation$occupied, occ_cut, sum)

(13.2,209] (209,405] (405,600] (600,795] (795,992]
0 10 25 26 31

The cut () function is impressive. It has taken the continuous variable called resources, and
cut it up into five bins creating a factor called occ_cut. The margins of the bins are defined within
curved and square brackets which are read as follows: (13.2, 209] means ’from, but not including,
13.2 to, and including, 209’. So the figure next to the round bracket is excluded from this bin and

�

� �

�

566 THE R BOOK

is included in the adjacent bin (to the left in this case). This option is called right = TRUE and is
the default for cut (). We use the table function to count the number of cases in each bin:

table (occ_cut)
occ_cut
(13.2,209] (209,405] (405,600] (600,795] (795,992]

31 29 30 29 31

So the empirical probabilities are given by

occ_probs <- tapply(occupation$occupied, occ_cut, sum) / table (occ_cut)
occ_probs

(13.2,209] (209,405] (405,600] (600,795] (795,992]
0.0000000 0.3448276 0.8333333 0.8965517 1.0000000

We can plot these probabilities against the mean value of resources in each bin, in the logistic
regression plot, and add a standard error (we will estimate this using a Binomial distribution on the
empirical probabilities for each bin:

√
p(1 − p)∕n) to express uncertainty, to give Figure 11.20.

occ_probs <- as.vector (occ_probs)
resmeans <- as.vector (tapply (occupation$resources, occ_cut, mean))
se <- as.vector (sqrt (occ_probs * (1 - occ_probs) / table (occ_cut)))
up <- occ_probs + se
down <- occ_probs - se
points (resmeans, occ_probs, cex=2, col = hue_pal ()(2)[2])
for (i in 1:5) {
lines (rep (resmeans[i], 2), c (up[i], down[i]), col = hue_pal ()(2)[2])

}

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Resources

O
cc

up
ie

d
or

 n
ot

Figure 11.20 Rug plot for isolation.

�

� �

�

GENERALISED LINEAR MODELS 567

Evidently, the logistic regression is a good fit to the data above resources of 800 (not surprising,
though, given that there were no unoccupied patches in this region), but it is rather a poor fit for
resources between 400 and 800, as well as below 200, despite the fact that there were no occupied
patches in the latter region (empirical probability is zero).

11.5.3 Mixed covariate types with a binary response

In our next example, the binary response variable is infected (abset or present) and the explana-
tory variables are weight and age (continuous) and sex (categorical).

infection <- read.table ("infection.txt", header = T,
colClasses = c ("factor", rep ("numeric", 2), "fac-

tor"))
head (infection)

infected age weight sex
1 absent 2 1 female
2 absent 9 13 female
3 present 15 2 female
4 absent 15 16 female
5 absent 18 2 female
6 absent 20 9 female

Figure 11.21 displays some of the data.

Absent Present

5
10

15

Infected

W
ei

gh
t

(a) Weight

Absent Present

0
50

10
0

15
0

20
0

Infected

A
ge

(b) Age

Figure 11.21 Box plots for infection.

�

� �

�

568 THE R BOOK

boxplot (weight ~ infected, data = infection, col = hue_pal ()(2)[1])
boxplot (age ~ infected, data = infection, col = hue_pal ()(2)[2])
table (infection$sex, infection$infected)

absent present
female 17 11
male 47 6

Infected individuals are substantially lighter than uninfected individuals and occur in a much nar-
rower range of ages. The infection is also much more prevalent in females (11/28) than in males
(6/53).

We now proceed, as usual, to fit a maximal model with different slopes for each level of the
categorical variable:

inf_mod1 <- glm (infected ~ age * weight * sex, family = binomial,
data = infection)

summary (inf_mod1)

Call:
glm(formula = infected ~ age * weight * sex, family = binomial,

data = infection)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.1767 -0.5359 -0.2494 -0.1691 2.3149

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.109124 1.375388 -0.079 0.937
age 0.024128 0.020874 1.156 0.248
weight -0.074156 0.147678 -0.502 0.616
sexmale -5.969109 4.278066 -1.395 0.163
age:weight -0.001977 0.002006 -0.985 0.325
age:sexmale 0.038086 0.041325 0.922 0.357
weight:sexmale 0.213830 0.343265 0.623 0.533
age:weight:sexmale -0.001651 0.003419 -0.483 0.629

(Dispersion parameter for Binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 55.706 on 73 degrees of freedom
AIC: 71.706

Number of Fisher Scoring iterations: 6

It certainly does not look as if any of the high-order interactions are significant. We can gradually
remove them starting from the highest order. We will spare the pain by not showing the details
(using either AIC or anova () for comparison purposes), but the upshot is that we would not wish
to retain any of them. So we now might examine the model which just has main effects:

�

� �

�

GENERALISED LINEAR MODELS 569

inf_mod2 <- glm (infected ~ age + weight + sex, family = binomial,
data = infection)

summary (inf_mod2)

Call:
glm(formula = infected ~ age + weight + sex, family = binomial,

data = infection)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.9481 -0.5284 -0.3120 -0.1437 2.2525

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.609369 0.803288 0.759 0.448096
age 0.012653 0.006772 1.868 0.061701.
weight -0.227912 0.068599 -3.322 0.000893 ***
sexmale -1.543444 0.685681 -2.251 0.024388 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 59.859 on 77 degrees of freedom
AIC: 67.859

Number of Fisher Scoring iterations: 5

Weight is clearly worth retaining, sex is quite significant (not just for the survival of the human race),
and age is marginally interesting. All of these conclusions chime with our preliminary data analysis.
It is worth establishing whether there is any evidence of non-linearity in the response of infection
to weight or age. We might begin by fitting quadratic terms for the two continuous explanatory
variables:

inf_mod3 <- glm (infected ~ age + weight + sex + I (weight^2) + I (age^2),
family = binomial, data = infection)

summary (inf_mod3)

Call:
glm(formula = infected ~ age + weight + sex + I(weight^2) + I(age^2),

family = binomial, data = infection)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.70226 -0.44412 -0.19584 -0.02505 2.36653

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.4475839 1.7978359 -1.918 0.0552.

�

� �

�

570 THE R BOOK

age 0.0829364 0.0360205 2.302 0.0213 *
weight 0.4466284 0.3372352 1.324 0.1854
sexmale -1.2203683 0.7683288 -1.588 0.1122
I(weight^2) -0.0415128 0.0209677 -1.980 0.0477 *
I(age^2) -0.0004009 0.0002004 -2.000 0.0455 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 48.620 on 75 degrees of freedom
AIC: 60.62

Number of Fisher Scoring iterations: 6

Evidently, both relationships appear to be curvilinear. It is worth looking at these non-linearities in
more detail, to see if we can do better with other kinds of models (e.g. non-parametric smoothers,
piecewise linear models or step functions). A Generalised Additive Model (GAM) is often a good
way to start when we have continuous covariates. We shall leave the example on a cliffhanger at
this point and return to it in Section 12.2.

11.5.4 Spine plot and logistic regression

In a spinogram (see Section 11.3.3), the response is categorical, but the explanatory variable is
continuous. The following data show parasitism (a binary response, parasitised or not) as a
function of host population density:

wasps <- read.table ("wasps.txt", header = T, colClasses = list (fate = "fac-
tor"))
head (wasps)

density fate
1 1 not
2 2 not
3 2 not
4 4 not
5 4 not
6 4 not

table (wasps$density, wasps$fate)

not paratised
1 1 0
2 2 0
4 3 1
8 6 2
16 11 5
32 12 20
64 12 52

�

� �

�

GENERALISED LINEAR MODELS 571

Density

F
at

e

0 10 20 40 70

P
ar

at
is

ed
N

ot

Figure 11.22 Spine plot for wasps.

Apparently, the proportion of hosts parasitised increases as host density is increased, as we can
see in Figure 11.22:

spineplot (fate ~ density, data = wasps, col = hue_pal ()(2))

The trend of increasing parasitism with density is very clear. In these plots, the width of the sector
indicates how many of the data fell in this range of population densities; there were equal numbers
of hosts in the first two bins, but twice as many in the highest density category than in the category
below, with a peak of just over 80% parasitised. Alternatively, if we want a smooth curve, we can
use the conditional density plot cdplot () like this to give Figure 11.23a:

cdplot (fate ~ density, data = wasps, col = hue_pal ()(2))
cdplot (fate ~ log (density), data = wasps, col = hue_pal ()(2))

The trend is quantified using logistic regression:

wasps_mod1 <- glm (fate ~ density, binomial, data = wasps)
wasps_mod2 <- glm (fate ~ log (density), binomial, data = wasps)
summary (wasps_mod2)

Call:
glm(formula = fate ~ log(density), family = binomial, data = wasps)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.8044 -1.0124 0.6612 0.6612 2.1522

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.0230 1.0585 -3.801 0.000144 ***
log(density) 1.3062 0.2942 4.440 8.99e-06 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

�

� �

�

572 THE R BOOK

Density

F
at

e

10 20 30 40 50 60

P
ar

at
is

ed
N

ot

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Density

Log(density)

F
at

e

1 2 3 4

P
ar

at
is

ed
N

ot

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) ln (density)

Figure 11.23 Smoothed spine plot for wasps.

(Dispersion parameter for Binomial family taken to be 1)

Null deviance: 167.39 on 126 degrees of freedom
Residual deviance: 139.08 on 125 degrees of freedom
AIC: 143.08

Number of Fisher Scoring iterations: 4

It’s a little tricky to see from Figure 11.23a, but the relationship between density and proportion
parasitised does not appear to be linear (see Figure 11.23b), which is why we have looked at
both models with the second one having a lower AIC, so we will stick with that.

We can plot the data and regression line. We will do that using the model coefficients. However,
first, we need to convert the outcome into numbers as fate is a factor. We have seen before that
levels can be converted into numbers using as.numeric (), but those numbers start at one, so
we need to deduct one from each value. This gives us Figure 11.24:

plot (jitter (log (wasps$density)), as.numeric (wasps$fate) - 1, col = hue_pal
()(3)[1], xlim = c (0, 5), xlab = "jittered ln (density)",
ylab = "proportion parasitised")

xv <- seq (0, 5, 0.01)
yv <- 1 / (1 + 1 / exp (coef (wasps_mod2)[1] + coef (wasps_mod2)[2] * xv))
lines (xv, yv, col = hue_pal ()(3)[2])

The logistic plot might be improved by overlaying the empirical frequencies, as well as showing
the raw data as 0s and 1s. We might choose four bins in an example like this, averaging the four

�

� �

�

GENERALISED LINEAR MODELS 573

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jittered in (density)

P
ro

po
rt

io
n

pa
ra

si
tis

ed

Figure 11.24 Data and regression line for wasps model 2.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jittered in (density)

P
ro

po
rt

io
n

pa
ra

si
tis

ed

Figure 11.25 Data and regression line for wasps model 2.

lowest density classes, and using the counts data from the three highest classes (16, 32, and 64).
To add error bars, eb, to show plus and minus one standard error of the estimated proportion,
we use:

SEp =
√

p(1 − p)
n

This gives us Figure 11.25:

den <- c (3.75, 16, 32, 64)
pd <- c(3/15, 5/16, 20/32, 52/64)
points (log (den), pd, cex = 2,, col = hue_pal ()(4)[3])
eb <- sqrt (pd * (1 - pd) / den)
for (i in 1:4) {

lines (rep (log (den[i]), 2), c (pd[i] - eb[i], pd[i] + eb[i]),
col = hue_pal ()(4)[4])

}

�

� �

�

574 THE R BOOK

This has the virtue of illustrating the excellent fit of the model at high densities, but the rather less
good although not terrible fit at lower densities.

11.6 Bootstrapping a GLM

We introduced the bootstrap in Section 9.4, but it has much wider applicability than just for tests
and CIs. There are two contrasting ways of bootstrapping statistical models:

1. fit the model lots of times by selecting cases for inclusion at random with replacement, so that
some data points are excluded and others appear more than once in any particular model fit;

2. fit the model once and calculate the residuals and the fitted values, then shuffle the residuals
lots of times and add them to the fitted values in different permutations, fitting the model to the
many different data sets.

In both cases, we will obtain a distribution of parameter values for the model from which we can
derive confidence intervals. Here we use the timber dataset to illustrate the two approaches:

timber <- read.table ("timber.txt", header = T)
head (timber)

volume girth height
1 0.7458 0.6623 21.0
2 0.7458 0.6862 19.5
3 0.7386 0.7022 18.9
4 1.1875 0.8379 21.6
5 1.3613 0.8538 24.3
6 1.4265 0.8618 24.9

Modelling attempts to derive the volume in cubic metres from the girth and height, both in
metres. There is a similar dataset in the achingly modern imperial measurements named trees in
R, but the data are different. We shall use what is, in fact, a linear model, but it illustrates the point
in a straightforward way:

timber_model <- glm (log (volume) ~ log (girth) + log (height), data = timber)
summary (timber_model)

Call:
glm(formula = log(volume) ~ log(girth) + log(height), data = timber)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.168619 -0.048504 0.002509 0.063703 0.129248

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.89938 0.63767 -4.547 9.56e-05 ***

�

� �

�

GENERALISED LINEAR MODELS 575

log(girth) 1.98267 0.07503 26.426 < 2e-16 ***
log(height) 1.11714 0.20448 5.463 7.83e-06 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Gaussian family taken to be 0.006626731)

Null deviance: 8.30893 on 30 degrees of freedom
Residual deviance: 0.18555 on 28 degrees of freedom
AIC: -62.697

Number of Fisher Scoring iterations: 2

We will use the boot library (Canty and Ripley, 2021) and, as we saw in Section 9.4, the hard part
of using this is writing the sampling function correctly. It has at least two arguments: the first must
be the data on which the resampling is to be carried out (in this case, the whole dataframe called
timber), and the second must be the index (the randomized subscripts showing which data values
are to be used in a given realization; some cases will be repeated, others will be omitted).

For the first approach, we create a new dataframe inside the function based on the randomly
selected indices, then fit the model to this new data set. Finally, the function should return the
coefficients of the model. Here is the ’statistic’ function in full:

library (boot)
model.boot1 <- function (data, indices){

sub_data <- data[indices,]
model <- glm (log(volume) ~ log (girth) + log (height), data = sub_data)
coef (model)

}

We can run this function 2000 times using the boot () function:

timber_boot <- boot (timber, model.boot1, R = 2000)
timber_boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = timber, statistic = model.boot1, R = 2000)

Bootstrap Statistics:
original bias std. error

t1* -2.899379 -0.025232199 0.65937400
t2* 1.982665 -0.000664192 0.06164977
t3* 1.117138 0.008103604 0.21297723

There is very little bias in any of the three parameter estimates, and the bootstrapped standard
errors are close to their parametric equivalents.

�

� �

�

576 THE R BOOK

For the second approach, we fit the GLM and extract the fitted values (ŷ or yhat), which will be
the same each time, and the residuals, which will be independently shuffled each time:

yhat <- fitted (timber_model)
resids <- resid (timber_model)

Then we make a dataframe that will be fed into the bootstrap, containing the residuals to be shuffled,
along with the two covariates:

res_data <- data.frame (resids, timber$girth, timber$height)

We write the ‘statistic’ function to do the work within boot. The first argument is always the dataframe
and the second is always the index i, which controls the shuffling:

model.boot2 <- function (res_data, i) {
y <- yhat + res_data[i,1]
nd <- data.frame (y, timber$girth, timber$height)
model <- glm (y ~ log (timber$girth) + log (timber$height), data = nd)
coef(model)

}

Inside the function, we create a particular vector of y values by adding the shuffled residuals
(res_data[i,1]) to the fitted values, then put this vector along with the covariates into a new
dataframe, nd, that will be different each time the GLM is fitted. The function returns the three
coefficients from the particular fitted model, which are the ’statistics’ of the bootstrap, hence, the
name of the function. Finally, because we want to shuffle the residuals rather than sample them
with replacement, we specify sim = "permutation" in the call to the boot function:

perms <- boot (res_data, model.boot2, R = 2000, sim = "permutation")
perms

DATA PERMUTATION

Call:
boot(data = res_data, statistic = model.boot2, R = 2000, sim = "permutation")

Bootstrap Statistics:
original bias std. error

t1* -2.899379 0.0133097979 0.60946493
t2* 1.982665 0.0009428575 0.07218387
t3* 1.117138 -0.0042702801 0.19549132

with similarly effective results to the first method.

�

� �

�

GENERALISED LINEAR MODELS 577

Finally, we can create 99% CIs for each of the parameter estimates, selecting the usually pre-
ferred BCa method (using the adjusted bootstrap percentage method):

boot.ci (perms, index = 1, conf = 0.99)$bca[c (1, 4, 5)]
[1] 0.990000 -4.596246 -1.532413
boot.ci (perms, index = 2, conf = 0.99)$bca[c (1, 4, 5)]
[1] 0.990000 1.767156 2.142671
boot.ci (perms, index = 3, conf = 0.99)$bca[c (1, 4, 5)]
[1] 0.990000 0.678363 1.658917

Remember that these intervals are for the intercept, and the coefficients of log (girth) and log
(height), respectively.

References

Canty, A., & Ripley, B. D. (2021). Boot: Bootstrap R (S-plus) functions [R package version 1.3-28].
Dobson, A. J., & Barnett, A. J. (2018). An introduction to generalized linear models (Fourth). CRC Press.
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (Fourth) [ISBN 0-387-95457-0].

Springer. https://www.stats.ox.ac.uk/pub/MASS4/.

https://www.stats.ox.ac.uk/pub/MASS4/

�

� �

�

�

� �

�

12
Generalised Additive Models

Up to this point, we have introduced covariates into linear models or into the linear predictors of
GLMs (see Section 11.1.2), by taking the covariate data directly or possibly using some function
of those data. It may well be that the covariate data do not have a neat linear (or function of linear
such as ln) relationship with the outcome variable (even when the link function is taken into account),
and we need some non-parametric representation of the covariate to be introduced into the linear
predictor. These representations are known as smoothers: they attempt to represent the covariate
data by a smooth line. For instance, if we had some count data with a single covariate, then with a
GLM we might use a log-link function so that

ln(𝜇i) = 𝜂i = 𝛽0 + 𝛽1xi

where 𝜇i is the mean of the Poisson distribution for Yi. With Generalised additive models or GAMs
we have

ln(𝜇i) = 𝜂i = 𝛽0 + s(xi)

where the function s (.), a smoother, attempts to create a smooth line to represent the xis, which
don’t have a shape that can be represented by a regular parametric function.

Generalised additive models (implemented in R by the gam () function) extend the range of
application of generalised linear models by allowing non-parametric smoothers in addition to para-
metric forms, and these can be associated with a range of link functions. All of the error families
allowed with GLMs are available with GAMs (binomial, poisson, Gamma, etc.). Indeed, gam
() has many of the attributes of both glm () and lm (), and the output can be modified using
update (). We can use all of the familiar methods such as summary (), anova (), predict
() and fitted () after a GAM has been fitted to data. The gam () function used in this book is
in the mgcv package contributed by Simon Wood who has also written a book (Wood, 2017, where
many of the arguments to gam (), which we have not covered, are discussed):

library (mgcv, quietly = T)

This is mgcv 1.8-36. For overview type 'help("mgcv-package")'.

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

580 THE R BOOK

Before we look at building models, we will look at an example of smoothing. Then we will review
some straightfoward examples before returning to how the smoothers work and some more complex
models.

12.1 Smoothing example

One of the simplest model-fitting functions is loess () (which replaces its predecessor called
lowess ()). This, and other functions such as splines (), can be used where we are interested
in exploring the simple relationship between two variables without the complexity of a GLM. The
following example shows the log of population change from year to year, Delta(t) = ln(N(t + 1)∕N(t)),
as a function of population density (N(t)) in an investigation of density dependence in a sheep
population. The data are shown in Figure 12.1:

soay <- read.table ("soaysheep.txt", header = T)
head (soay)

Year Population Delta
1 1955 710 0.08759806
2 1956 775 0.22546344
3 1957 971 0.12382949
4 1958 1099 0.20124957
5 1959 1344 -0.78994656
6 1960 610 0.39998564

attach (soay)
plot (Population, Delta, col = hue_pal ()(2)[1])

detach (soay)

We are not examining trends over time but trying to understand whether we can predict the log
change, given the current year’s population. Broadly speaking, population change is positive at low
densities (Delta > 0) and negative at high densities (Delta < 0), but there is a great deal of scatter,

600 800 1000 1200 1400 1600 1800 2000

−
0.

8
−

0.
4

0.
0

0.
4

Population

D
el

ta

Figure 12.1 Log of population change from year to year.

�

� �

�

GENERALISED ADDITIVE MODELS 581

and it is not at all obvious what shape of smooth function would best describe the data. Here is the
default loess at work:

soay_mod1 <- loess (Delta ~ Population, data = soay)
summary (soay_mod1)

Call:
loess(formula = Delta ~ Population, data = soay)

Number of Observations: 44
Equivalent Number of Parameters: 4.66
Residual Standard Error: 0.2616
Trace of smoother matrix: 5.11 (exact)

Control settings:
span : 0.75
degree : 2
family : gaussian
surface: interpolate cell = 0.2

normalize: TRUE
parametric: FALSE

drop.square: FALSE

While the summary output is not particularly illuminating, it does tell us that the equivalent of 4.66
parameters was used in building the model. Remember a straight line has two parameters, a
quadratic (e.g. a parabola) three, etc. The 0.66 is a little confusing, but it does give some sense of
the complexity of the line representing the smooth fit. Now, we can draw the smoothed line using
predict () in the usual way to extract the predicted values from the model and plot them in
Figure 12.2:

xv <- seq (600, 2000, 1)
yv <- predict (soay_mod1, data.frame (Population = xv))
lines (xv, yv, col = hue_pal ()(3)[2])

600 800 1000 1200 1400 1600 1800 2000

−
0.

8
−

0.
4

0.
0

0.
4

Population

D
el

ta

Figure 12.2 Log of population change with smoothed line.

�

� �

�

582 THE R BOOK

The smooth curve looks rather like a step function. We can compare this smooth function with a step
function, using a tree model (see Section 20.2 and Ripley, 2019) as an objective way of determining
the threshold for splitting the data into low- and high-density parts:

library (tree)
thresh <- tree (Delta ~ Population, data = soay)
print (thresh)

node), split, n, deviance, yval
* denotes terminal node

1) root 44 5.2870 0.006208
2) Population < 1289.5 25 0.8596 0.226500

4) Population < 1009.5 13 0.2364 0.277600 *
5) Population > 1009.5 12 0.5525 0.171200
10) Population < 1059.5 5 0.1631 0.072120 *
11) Population > 1059.5 7 0.3053 0.241900 *

3) Population > 1289.5 19 1.6180 -0.283700
6) Population < 1459 9 0.7917 -0.349500 *
7) Population > 1459 10 0.7519 -0.224400 *

The threshold for the first split of the tree model is at Population = 1289.5, so we define this as the
threshold density:

th <- 1289.5

Then we can use this threshold to create a two-level factor for fitting two constant rates of population
change using aov ():

soay_mod2 <- aov (Delta ~ (Population > th), data = soay)
summary (soay_mod2)

Df Sum Sq Mean Sq F value Pr(>F)
Population > th 1 2.810 2.810 47.63 2.01e-08 ***
Residuals 42 2.477 0.059

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness

showing a residual error variance of 0.059. This compares with the residual of 0.26162 = 0.068
from the loess () model above. To draw the step function, we need the average low-density
population increase and the average high-density population decline:

tapply (soay$Delta[-45], (soay$Population[-45] > th), mean)

FALSE TRUE
0.2265084 -0.2836616

�

� �

�

GENERALISED ADDITIVE MODELS 583

600 800 1000 1200 1400 1600 1800 2000

−
0.

8
−

0.
4

0.
0

0.
4

Population

D
el

ta

Figure 12.3 Log of population change with smoothed line and step function.

Note the use of negative subscripts to drop the NA from the last value of Delta. Then use these
figures to draw the step function, shown in Figure 12.3:

lines (x = c (600, th, th, 2000), y = c (0.2265, 0.2265, -0.2837, -0.2837),
lty = 2, col = hue_pal ()(3)[3])

It is a moot point which of these two models is the most realistic scientifically, but the step function
involved three estimated parameters (two averages and a threshold), while the loess is based on
4.66 degrees of freedom, so parsimony favours the step function (it also has a slightly lower residual
sum of squares). It is also worth noting that there are very few points to the right-hand side of the
plot and so any fitted model above 1600 would have a very large standard error.

12.2 Straightforward examples of GAMs

Sometimes we can see that the relationship between y and x is non-linear, but we do not have any
theory or any mechanistic model to suggest a particular functional form (mathematical equation)
to describe the relationship. In such circumstances, GAMs are particularly useful because they
fit non-parametric smoothers to the data without requiring us to specify any particular mathemati-
cal model to describe the non-linearity. Here is a toy example, using the dataset hump, plotted in
Figure 12.4:

hump <- read.table ("hump.txt", header = T)
head (hump)

y x
1 3.741 0.907
2 2.295 0.761
3 1.498 1.108
4 2.881 1.016
5 0.760 1.189
6 3.120 1.001

�

� �

�

584 THE R BOOK

0.6 0.7 0.8 0.9 1.0 1.1 1.2

1
2

3
4

x

y

Figure 12.4 Scatter plot of hump.

attach (hump)
plot (x, y, col = hue_pal ()(2)[1])

detach (hump)

There is no obvious formula which could relate the x and y values. The model is specified very
simply by showing which explanatory variables (in this case just x) are to be fitted as smoothed
functions: it is set up exactly as a GLM, except that we use s (x) to say that we wish to smooth
the x data:

hump_mod <- gam (y ~ s (x), data = hump)
summary (hump_mod)

Family: gaussian
Link function: identity

Formula:
y ~ s(x)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.95737 0.03446 56.8 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(x) 7.452 8.403 116.7 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.919 Deviance explained = 92.6%
GCV = 0.1156 Scale est. = 0.1045 n = 88

�

� �

�

GENERALISED ADDITIVE MODELS 585

0.6 0.7 0.8 0.9 1.0 1.1 1.2

1
2

3
4

x

y

Figure 12.5 Scatter plot of hump with fitted model.

The output looks reasonably familiar, but there are a couple of things worth pointing out:

• the smoothed term has been taken out of the Parametric coefficients section of the output
and is shown instead under the Approximate significance of smoothed terms head-
ing. The estimated degrees of freedom column (edf: 7.452) gives some measure of the complexity
of the curve that has been created;

• the Deviance explained estimates how much of the uncertainty in y is explained by the model.

We can use the predict function to show the fitted model over the range of x values by adding
the following to give Figure 12.5:

xv <- seq (0.5, 1.3, 0.01)
yv <- predict (hump_mod,list (x = xv))
lines (xv, yv, col = hue_pal ()(2)[2])

Our second straightforward example takes us back to Section 11.5.3 and the infection data
set. We had got as far as determining that the linear predictor seemed to behave more acceptably
with squared terms for age and weight. We will create a new GAM model with smoothers for these
variables:

inf_mod4 <- gam (infected ~ sex + s (age) + s (weight), family = binomial,
data = infection)

summary (inf_mod4)

Family: binomial
Link function: logit

Formula:
infected ~ sex + s(age) + s(weight)

�

� �

�

586 THE R BOOK

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.4763 0.5716 -2.583 0.0098 **
sexmale -1.3099 0.7279 -1.800 0.0719.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(age) 2.150 2.715 6.191 0.07667.
s(weight) 1.957 2.446 10.954 0.00722 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.359 Deviance explained = 40.3%
UBRE = -0.23574 Scale est. = 1 n = 81

This does not appear to help very much with age, but the p-value associated with weight is small.
If we revert the age term back to age + I (age2), we find that sex does not have a substantial
influence, and so our final GAM model would be, with the smoothed fitted line for weight, as in
Figure 12.6:

inf_mod5 <- gam (infected ~ I (age^2) + s (weight), family = binomial,
data = infection)

summary (inf_mod5)

Family: binomial
Link function: logit

Formula:
infected ~ I(age^2) + s(weight)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.218e+00 5.877e-01 -3.773 0.000161 ***
I(age^2) 2.779e-05 3.162e-05 0.879 0.379407

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(weight) 2.198 2.742 13.39 0.00335 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.228 Deviance explained = 26.6%
UBRE = -0.14183 Scale est. = 1 n = 81

plot (inf_mod5, col = hue_pal ()(2)[1], shade = T, shade.col = hue_pal ()(2)[2])

�

� �

�

GENERALISED ADDITIVE MODELS 587

5 10 15

−
4

−
2

0
2

Weight

s(
w

ei
gh

t,2
.2

)

Figure 12.6 Plot of infection fitted model 5 showing the smoothed weight function.

Unlike for GLMs and linear models, the plot () function for GAMs will plot each of the fitted
smoothed variables (we will examine residuals for GAMs in Section 12.4.1). We can see that the
weight smoothed function seems to have a threshold, where it drops steeply at somewhere between
8 and 12. We could leave the model as it is now. However, if we wanted a final model that was a
GLM, we could incorporate that threshold point as follows.

We could try a piecewise linear fit for weight, estimating the threshold weight at a range of values
(say 8–14) and selecting the threshold that gives the lowest residual deviance; this turns out to be
a threshold of 12. The piecewise regression is specified by the term:

I((weight - 12) * (weight > 12))

The I (’as is’) is necessary to stop the * being evaluated as an interaction term in the model
formula. What this expression says is ’regress infection on the value of weight - 12, but only do this
when weight > 12 is true’. Otherwise, assume that infection is independent of weight. So our final
model is

inf_mod6 <- glm (infected ~ age + I (age^2) + I((weight - 12) * (weight > 12)),
family = binomial, data = infection)

summary (inf_mod6)

Call:
glm(formula = infected ~ age + I(age^2) + I((weight - 12) * (weight >

12)), family = binomial, data = infection)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.42301 -0.50141 -0.13277 -0.01416 2.11658

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.1207552 1.2665593 -2.464 0.0137 *
age 0.0765784 0.0323376 2.368 0.0179 *
I(age^2) -0.0003843 0.0001846 -2.081 0.0374 *

�

� �

�

588 THE R BOOK

I((weight - 12) * (weight > 12)) -1.3511706 0.5134681 -2.631 0.0085 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 51.953 on 77 degrees of freedom
AIC: 59.953

Number of Fisher Scoring iterations: 7

which has a lower AIC than our previous GLM. We conclude that there is a humped relationship
between infection and age and a threshold effect of weight on infection.

12.3 Background to using GAMs

GAMs are an extension of GLMs and the gam () function inherits many of the features of glm (),
such as the model formula, family, and link function. The extra feature is the smoothing of certain
covariates. The theory and implementation of this feature is very complex. However, in this section,
we will first attempt to explain what smoothing is doing and then cover how this might be applied in
practice, particularly where there are multiple smoothed covariates. The gam () function can be run
without understanding any of the technical background, as it has various default arguments built in.

12.3.1 Smoothing

We saw in Section 12.1 an example of trying to fit a smooth curve to a series of points. The basic
idea is to take lots of short sections along the x-axis, fit a curve (known as a spline) to each of them
and then make sure that each of these splines join up smoothly (i.e. they meet at a point or knot with
the same gradient and, possibly more features in common described by further derivatives of the
splines). The most obvious curve would just link up all the covariate values precisely. However, as
our data will only be a sample from a population, we will have overfitted the curve to that sample:
a different sample would then be likely to fit that curve badly. So the fitting process penalises the
use of too many knots or too much wiggliness. To complicate this even further, the penalty has
a coefficient, known as a smoothing parameter, which determines how strict the penalisation is.
There are a range of methods for estimating this parameter from the data and details can be found
in help (gam).

In practice, we are interested in the fitted curve, and Figure 12.7 shows the results of various types
of fit. Bad fits might arise from the wrong number of knots or an incorrect smoothing parameter, etc.:
we don’t need to worry about those as gam () takes care of that for us.

12.3.2 Suggestions for using gam ()

There are many ways of specifying the model in a GAM: all of the continuous explanatory variables
x, w, and z can enter the model as non-parametrically smoothed functions like this:

y ∼ s (x) + s (w) + s (z).

�

� �

�

GENERALISED ADDITIVE MODELS 589

(a) Overfitted (b) Underfitted (c) Well fitted?

Figure 12.7 Various types of fitted splines.

Alternatively, the model can contain a mix of parametrically estimated parameters (x and z) and
smoothed variable w:

y ∼ x + s (w) + z.

Formulae can involve nested (two-dimensional) terms in which the smoothing s() terms have more
than one argument, implying a multi-dimensional smooth:

y ∼ s (x) + s (z) + s (x, z).

This does not represent an interaction between x and z. The appropriate formula for that is

y ∼ z + s (x, by = z),

where the by argument ensures that the smooth function gets multiplied by covariate z. However,
GAM smooths are centred (average value zero), so the parametric term for z is needed as well. If
we wanted a relationship

E(y) = f(x)z,

then the appropriate formula would be

y ∼ z + s (x, by = z) - 1.

Finally, the smoothers can have overlapping terms such as

y ∼ s (x, z) + s (z, w).

12.4 More complex GAM examples

The use of GAMs can be extended to any situation where we might use a GLM, but where one or
more of our covariates does not have an obvious functional relationship with the outcome variable.
In this section, we will examine a few such examples.

�

� �

�

590 THE R BOOK

Rad

60
80

0 50 150 250

0
50

15
0

60 70 80 90

Temp

Wind

5 10 15 20

0 50 100 150

0
10

0
25

0
5

10
20

Ozone

Figure 12.8 Pairwise scatter plots for ozonepollution.

12.4.1 Back to Ozone

We have explored the dataset which looks at levels of ozone in relation to wind temperature and
solar radiation in the chapters on both linear regression (Section 10.2) and GLMs (Section 11.1.4).
Here we will return to it in the context of GAMs. For data inspection, we use pairs with a
non-parametric smoother, lowess to give Figure 12.8:

ozonepollution <- read.table ("ozone_pollution.txt", header = T)
pairs (ozonepollution, panel = function (x,y) {
points (x, y, col = hue_pal ()(2)[1])
lines (lowess (x, y), col = hue_pal ()(2)[2])

}
)

Now, let us fit all three explanatory variables using a GAM:

ozone_gam1 <- gam (ozone ~ s (rad) + s (temp) + s (wind), data = ozonepollution)
summary (ozone_gam1)

Family: gaussian

�

� �

�

GENERALISED ADDITIVE MODELS 591

Link function: identity

Formula:
ozone ~ s(rad) + s(temp) + s(wind)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.10 1.66 25.36 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(rad) 2.763 3.451 3.964 0.00859 **
s(temp) 3.841 4.762 11.612 < 2e-16 ***
s(wind) 2.918 3.666 13.770 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.724 Deviance explained = 74.8%
GCV = 338 Scale est. = 305.96 n = 111

Note that the intercept is estimated as a parametric coefficient and the three explanatory variables
are fitted as smooth terms. All three have small p-values, but radiation’s is the largest. For illustration
purposes, we can compare a GAM with and without a term for radiation using ANOVA in the usual
way (there doesn’t seem to be a good reason for excluding radiation in practice):

ozone_gam2 <- gam (ozone ~ s (temp) + s (wind), data = ozonepollution)
anova (ozone_gam2, ozone_gam1, test = "F")

Analysis of Deviance Table

Model 1: ozone ~ s(temp) + s(wind)
Model 2: ozone ~ s(rad) + s(temp) + s(wind)

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 101.10 34885
2 98.12 30742 2.9757 4142.2 4.5496 0.0051 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Clearly, it would be silly to exclude radiation. However, we need to recognise that the F-test for
GAMs, unlike that for GLMs, is only approximate and the resulting p-values should not be interpreted
too precisely (a good lesson in all circumstances). Figure 12.8 suggests that there might be an
interaction between wind and temperature, as there appears to be a clear trend in the scatter plot,
so let us investigate that

ozone_gam3 <- gam (ozone ~ s (temp) + s (wind) + s (rad) + s (wind, by = temp),
data = ozonepollution)

summary (ozone_gam3)

Family: gaussian
Link function: identity

�

� �

�

592 THE R BOOK

Formula:
ozone ~ s(temp) + s(wind) + s(rad) + s(wind, by = temp)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.7802 1.5017 0.52 0.605

Approximate significance of smooth terms:
edf Ref.df F p-value

s(temp) 3.826 4.769 6.479 5.18e-05 ***
s(wind) 3.310 4.181 4.764 0.00127 **
s(rad) 2.834 3.537 3.861 0.00946 **
s(wind):temp 2.000 2.000 176.395 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Rank: 37/38
R-sq.(adj) = 0.726 Deviance explained = 75.3%
GCV = 339.97 Scale est. = 303.26 n = 111

That seems to improve things: note the increased Deviance explained figure. It is worth investigating
the order in which the interaction term is presented (s (wind, by = temp) vs s (temp, by
= wind) as the answers may well be different, due to the approximate nature of smoothing). We
can examine the residuals from this model as given in Figure 12.9:

par (mfrow = c (2,2))
plot (ozone_gam3, residuals = T)

par (mfrow = c (1, 1))

There are three plots comparing smoothed curve with points representing the residuals for each
covariate, together with one for the interaction. The residuals are displayed alongside the fitted
lines. The plot at the bottom right represents the interaction term. The residuals do seem to be fairly
randomly spread about the fitted line, which is what we are looking for in a well-fitted model.

12.4.2 An example with strongly humped data

The SemiPar package (Wand, 2018) contains a number of useful data sets where parametric
modelling, such as in GLMs, is not entirely satisfactory. We will use the ethanol dataframe which
contains 88 sets of measurements for variables from an experiment in which ethanol was burned in
a single cylinder automobile test engine. The response variable, NOx, is the concentration of nitric
oxide (NO) and nitrogen dioxide (NO2) in engine exhaust, normalised by the work done by the
engine, and the two continuous explanatory variables are C (the compression ratio of the engine),
and E (the equivalence ratio at which the engine was run, which is a measure of the richness of the
air-ethanol mix). Pairwise scatter plots are shown in Figure 12.10.

library (SemiPar)
data (ethanol)
head (ethanol)

�

� �

�

GENERALISED ADDITIVE MODELS 593

60 70 80 90

−
10

0
0

10
0

20
0

Temp

s(
te

m
p,

3.
83

)

5 10 15 20

−
10

0
0

10
0

20
0

Wind

s(
w

in
d,

3.
31

)

0 50 100 150 200 250 300

−
10

0
0

10
0

20
0

Rad

s(
ra

d,
2.

83
)

5 10 15 20

−
10

0
0

10
0

20
0

Wind

s(
w

in
d,

2)
:te

m
p

Figure 12.9 Residual plots for ozonepollution model 3.

NOx C E
1 3.741 12 0.907
2 2.295 12 0.761
3 1.498 12 1.108
4 2.881 12 1.016
5 0.760 12 1.189
6 3.120 9 1.001

pairs (ethanol, col = hue_pal ()(6))

Because NOx is such a strongly humped function of the equivalence ratio, E, we start with a model
that fits E as a smoothed term and estimates a parametric term for the compression ratio:

ethanol_mod1 <- gam (NOx ~ s (E) + C, data = ethanol)
summary (ethanol_mod1)

Family: gaussian
Link function: identity

Formula:
NOx ~ s(E) + C

�

� �

�

594 THE R BOOK

NOx

8
10

14
18

1 2 3 4

8 10 12 14 16 18

C

1
2

3
4

0.6 0.8 1.0 1.2

0.
6

0.
8

1.
0

1.
2

E

Figure 12.10 Pairwise scatter plots for ethanol.

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.291342 0.088898 14.526 < 2e-16 ***
C 0.055345 0.007062 7.837 1.88e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(E) 7.553 8.469 208.8 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.953 Deviance explained = 95.8%
GCV = 0.067206 Scale est. = 0.05991 n = 88

This looks to be a useful model, but we have not really thought about C. The coplot () function
is helpful in showing where the effect of C on NOx was most marked, as given in Figure 12.11:

coplot (NOx ~ C | E, panel = panel.smooth, data = ethanol, col = hue_pal ()(10))

�

� �

�

GENERALISED ADDITIVE MODELS 595

1
2

3
4

8 10 12 14 16 18

8 10 12 14 16 18 8 10 12 14 16 18

1
2

3
4

C

N
O

x

0.6 0.7 0.8 0.9 1.0 1.1 1.2

Given : E

Figure 12.11 Coplot for explaining the effect of C on NOx in ethanol.

This set of plots divides the variable we are not interested in, E, into six overlapping sets of values
(se top plot) and then, for each of them, starting at the bottom left, plots the five levels of C against
NOx, together with a smoothed line of best fit. There is a pronounced positive effect of C on NOx
only in panel 2 (ethanol, 0.7 < E < 0.9 from the bars or shingles in the upper panel), but only slight
effects elsewhere (most of the smoothed lines are roughly horizontal). So we can introduce an
interaction effect into our model:

ethanol_mod2 <- gam (NOx ~ s (E) + s (E, by = C), data = ethanol)
summary (ethanol_mod2)

Family: gaussian
Link function: identity

Formula:
NOx ~ s(E) + s(E, by = C)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.28594 0.06537 19.67 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

�

� �

�

596 THE R BOOK

Approximate significance of smooth terms:
edf Ref.df F p-value

s(E) 6.328 7.236 38.62 <2e-16 ***
s(E):C 4.710 5.407 36.54 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.976 Deviance explained = 97.9%
GCV = 0.036159 Scale est. = 0.031213 n = 88

Note that if we had introduced the interaction the other way round (s (C, by = E)), we would
have received an error message, essentially because E is continuous, and we don’t have enough
data points for the number of actual values of E. C only has five levels so that is not a problem. All
elements of this new model have (nearly) zero p-values, and the deviance explained is 97.9%: a
cracking result.

12.4.3 GAMs with binary data

GAMs are particularly valuable with binary response variables (for background, see Section 11.5).
To illustrate the use of gam () for modelling binary response data, we return to the example anal-
ysed by logistic regression in Section 11.5.1. We want to understand how the isolation of an island
and its area influence the probability that the island is occupied by our study species.

isolation <- read.table ("isolation.txt", header = T)
head (isolation)

incidence area isolation
1 1 7.928 3.317
2 0 1.925 7.554
3 1 2.045 5.883
4 0 4.781 5.932
5 0 1.536 5.308
6 1 7.369 4.934

In the logistic regression analysis, isolation had a negative effect on the probability that an
island will be occupied by our species, and area (island size) had a positive effect on the likelihood
of occupancy. But we have no a priori reason to believe that the logit of the probability should
be linearly related to either of the explanatory variables. We can try using a GAM to fit smoothed
functions to the incidence data:

iso_gam1 <- gam (incidence ~ s (area) + s (isolation), binomial, data = isola-
tion)
summary (iso_gam1)

Family: binomial
Link function: logit

Formula:
incidence ~ s(area) + s(isolation)

�

� �

�

GENERALISED ADDITIVE MODELS 597

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.6371 0.9898 1.654 0.0981.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(area) 2.429 3.066 3.455 0.32945
s(isolation) 1.000 1.000 7.480 0.00624 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.63 Deviance explained = 63.1%
UBRE = -0.32096 Scale est. = 1 n = 50

This suggests that areamight be worth dropping from the model. Let us have a look at the residuals
to see what is going on (Figure 12.12):

par (mfrow = c (1, 2))
plot (iso_gam1, residuals = T)

par (mfrow = c (1, 1))

This suggests a strong effect of area, with very little scatter, but only above a threshold of about
area = 5. As there are relatively few points in that range, it might explain why the p-value in the
model is large, despite there appearing to be something going on. We assess the significance of
area by deletion:

iso_gam2 <- gam (incidence ~ s (isolation), binomial, data = isolation)
anova (iso_gam2, iso_gam1, test = "Chisq")

0 2 4 6 8

−
5

0
5

10
15

Area

s(
ar

ea
,2

.4
3)

2 4 6 8

−
5

0
5

10
15

Isolation

s(
is

ol
at

io
n,

1)

Figure 12.12 Fitted plots with residuals for a GAM for isolation.

�

� �

�

598 THE R BOOK

Analysis of Deviance Table

Model 1: incidence ~ s(isolation)
Model 2: incidence ~ s(area) + s(isolation)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 45.191 29.127
2 44.934 25.094 0.25709 4.033 0.007425 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

and clearly should not delete area. This shows the value of exploring a model and not just deleting
terms because of a large p-value.

From Figure 12.12, it looks as if the relationship between isolation and indicence might be
roughly linear. Look what happens if we don’t smooth isolation:

iso_gam3 <- gam (incidence ~ s (area) + isolation, binomial, data = isolation)
summary (iso_gam3)

Family: binomial
Link function: logit

Formula:
incidence ~ s(area) + isolation

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 9.5755 3.1859 3.006 0.00265 **
isolation -1.3555 0.4956 -2.735 0.00624 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(area) 2.429 3.066 3.455 0.329

R-sq.(adj) = 0.63 Deviance explained = 63.1%
UBRE = -0.32096 Scale est. = 1 n = 50

There is no difference in the deviance explained between this and the first model. We might have
anticipated this by looking at the edf value for isolation in that model: it is exactly 1, suggesting
a straight-line relationship which will also appear in our final model.

12.4.4 Three-dimensional graphic output from gam

Here is an example by Simon Wood (the author of mgcv) which shows the kind of three-dimensional
graphics that can be obtained from mgcv using vis.gam (), when there are two or more continu-
ous explanatory variables. Note that in this example, the smoother works on both variables together,
y ∼ s(x, z), to give Figure 12.13 showing the fitted model over a wide range of covariate values:

�

� �

�

GENERALISED ADDITIVE MODELS 599

x

z

R
esponse

Figure 12.13 Fitted plots with residuals for a GAM for isolation.

some_function <- function (x, z, sx = 0.3, sz = 0.4) {
(pi^sx * sz) * (1.2 * exp (-(x - 0.2)^2 / sx^2 - (z - 0.3)^2 / sz^2) +

0.8 * exp (- (x - 0.7)^2 / sx^2 - (z - 0.8)^2 / sz^2))
}
n <- 500
x <- runif(n)
z <- runif(n)
y <- some_function (x, z) + rnorm (n) * 0.1
some_model <- gam (y ~ s (x, z))
vis.gam (some_model, type = "response")

The details of the function which generates the data don’t matter – it’s just complex with some added
noise (rnorm (n) * 0.1). We can choose whether to plot the linear predictor or the response.
In this case, they are the same as there is no link function.

References

Ripley, B. (2019). Tree: classification and regression trees [R package version 1.0-40]. https://CRAN.R-project
.org/package=tree.

Wand, M. (2018). SemiPar: semiparametic regression [R package version 1.0-4.2]. https://CRAN.R-project
.org/package=SemiPar.

Wood, S. N. (2017). Generalized additive models: an introduction with R (2nd ed.). Chapman; Hall.

https://CRAN.R-project.org/package=tree
https://CRAN.R-project.org/package=tree
https://CRAN.R-project.org/package=SemiPar
https://CRAN.R-project.org/package=SemiPar

�

� �

�

�

� �

�

13
Mixed-Effect Models

13.1 Regression with categorical covariates

Up to this point, we have treated all categorical explanatory variables in regression models by
defining dummy variables to represent the levels of the variable. Effectively, this partitions the data
into groups with observations within a group in some sense more similar than those from differ-
ent groups. This has worked well so far for our examples, allowing us to take account of such
explanatory variables with little fuss.

Let us delve into this idea a bit further because, as we’ll see, this isn’t the only way of incorporating
information about categorical explanatory variables. Indeed, in some instances, this method would
be downright silly as we’ll now show.

Let us first consider a simple example where we have a regression model with a categorical
covariate, sex, which has two levels: male and female. For any individual that we find, the knowledge
that it is, say, female conveys a great deal of information about the individual, and this information
draws on experience gleaned from many other individuals that were female. A female will have a
whole set of attributes (associated with her being female) no matter what population that individual
was drawn from.

Now, take a different example where we are looking at the effect of adding fertiliser (F, a binary
variable) on crop yield (Y), where the experiment was conducted on plots located in many different
fields so that there are potentially many observations from the same field. We could model this as
in equation (13.1), with fi denoting the presence of fertiliser for the ith observation.

Yi = 𝛽0 + 𝛽1fi + 𝜖i, (13.1)

where 𝜖i ∼ N(0, 𝜎2). This model seems perfectly sensible: we probably want to understand the effect
of fertiliser on yield, and an estimate of the regression coefficient (and associated information) from
a regression output would be desirable.

One criticism of this model is that it ignores the possibility that the field in which the plot was
located may have an effect on crop yield. In other words, plots within the same field are likely to
be in some way similar, or alternatively, the yields from plots within the same field are likely to be
correlated with one another. We need to take account of this as it violates a basic assumption of
a normal linear regression model: loosely speaking, that the observations are independent of one
another once we account for the predictors. Our go-to method would be to create dummy variables

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

602 THE R BOOK

to represent the various fields (let us say M of them) involved in the study like this:

Yi = 𝛽0 + 𝛽1fi + 𝛽2gi2 + · · · + 𝛽iMgiM + 𝜖i . (13.2)

This is rather messy with all the dummy variables introduced, but it’s worth thinking about what they
are actually doing. These dummy variables are adjusting the intercept for each field.

Let us write this in an alternative way where now Yij represents the i’th observation from the jth
field (and similarly, fij and 𝜖ij represent the fertiliser and error term for the i’th observation from the
jth field):

Yij = 𝛽0j + 𝛽1fij + 𝜖ij. (13.3)

Notice the intercept term: this changes for each field as we go from j = 1 through to j = M. The
expression in (13.3) is a lot tidier than that in (13.2).

However, though this looks tidier, all those dummy variables are still there despite our new nota-
tion. This formulation, where we have one dummy variable for each field, leads to at least two
inconveniences.

First, the experiment may have been conducted using a large number of fields which would
translate into a large number of dummy variables in our model in equation (13.2) or equivalently in
equation (13.3). Do we really want to use up valuable degrees of freedom in including these dummy
variables in the model?

Second, what if we want to generalise the results beyond the fields that were used in the study?
If we were to use dummy variables to account for field-to-field differences, then our model is tied to
those particular fields (compare this with the dummy variable for fertiliser, where we have already
agreed that it is useful to compare yield with and without fertiliser, and there is no reason why our
findings on the effect of fertiliser on yield can’t be generalised). We don’t really want to do this,
and indeed, we probably aren’t all that interested in these particular fields anyway. So what do
we do? We could ignore the field effect as in our simpler model in equation (13.1), but then we’re
not accounting for potential dependence in yield between observations that came from the same
field and the subsequent structure inherent in our data. Or we could use an alternative approach:
account for the field effect using random effects.

13.2 An alternative method: random effects

So far the regression coefficients in equations (13.1)–(13.2) contain only so-called fixed effects.
They are fixed in the sense that we estimate each of them, though this term can be rather confusing:
take, for example, equation (13.2) where the intercept varies by field.

Random effects have factor levels that are drawn from a large (potentially very large) population
in which the units of observation differ in many ways, but we do not know exactly how or why they
differ (and, frankly, we may not care as in our plots within fields example). Whether we class a
categorical variable as a random or fixed effect is really our choice and will depend, at least in part,
on what we are interested in investigating.

How do these random effects make their way into our model? Let us go back to our hypothetical
example. Rather than incorporate information about field using dummy variables (and so we have
regression coefficients to estimate), let us instead think of the effect that field has on crop as a
random variable. We need to assume a distribution for this random variable, and a common choice
is to assume that the distribution is Normal. We follow the same apparent structure as in equation
(13.3), that is:

Yij = 𝛽0j + 𝛽1fij + 𝜖ij, (13.4)

�

� �

�

MIXED-EFFECT MODELS 603

but now we assume that 𝛽0j ∼ N(𝛽0, 𝜏
2) for j = 1, … ,M as well as 𝜖ij ∼ N(0, 𝜎2) for all i and j. This

assumption on 𝛽0j is different to what we assumed in equation (13.3).
Note that we don’t intend to estimate each of the 𝛽0j, but we are interested in estimating the

parameters of its assumed distribution, 𝛽0 and 𝜏, in the same way we’re interested in estimating
𝜎 from the distribution of the error term. These models are known as random intercept models
(or more generally random effect models) because the intercept is treated as a random effect (or
more generally because there are random effects in the model). As we are interested in estimating
the regression coefficient of fertiliser directly, we call this a fixed effect. Models with both fixed- and
random effects are often referred to as mixed effects models.

Before moving on, let us compare the random effect model in equation (13.4) to the so-called
fixed effect model in equation (13.2) or (13.3) (the term ‘fixed’ just means that we assume there is
an underlying (fixed) value to the parameter and we try to estimate it).

• In our fixed effects model, we estimate the value of 𝛽0j for each value of j. This means a total of
M + 2 parameters to estimate (the intercept, the (M − 1) regression coefficients attached to each
field, the regression coefficient of F, and 𝜎);

• In our random effects model, we treat 𝛽0j as a random variable from a N(𝛽0, 𝜏
2) distribution. We

don’t estimate each individual 𝛽0j, but we are interested in estimating 𝛽0 and 𝜏2. This means a
total of 4 parameters to estimate (𝛽0, 𝜏

2, 𝛽1, 𝜎).

Now we’re in a situation where we are accounting for the differences between fields but without
constraining ourselves to the pitfalls of doing this with dummy variables. But what if, for example,
we also thought that there might be some interaction between the field and whether fertiliser was
applied. Now what?

The idea of random effects comes in handy here too. Let us go back to using dummy variables
as in equation (13.2). An interaction means that we are now allowing the slope to vary by group as
well as the intercept (the latter is just due to having a categorical covariate). When we’ve dealt with
interactions in the past, we’ve estimated each and every one of these slopes, but we don’t need
to do this unless this information is of interest in its own right. We can, instead, treat these varying
slopes as random variables. In our example, this would amount to

Yij = 𝛽0j + 𝛽1jfij + 𝜖ij, (13.5)

where now we assume that 𝛽0j ∼ N(𝛽0, 𝜏
2
0
), along with 𝛽1j ∼ N(𝛽1, 𝜏

2
1
), in addition to 𝜖ij ∼ N(0, 𝜎2) for

all i and j. Again, when we treat this as a random slope what we’re really interested is in estimating
the parameters of the distribution, so now we’re estimating 𝛽0, 𝜏0, 𝛽1, 𝜏1 as well as the usual 𝜎. This
makes a total of five things to estimate. Had we have gone for the fixed effects model with interaction
this would have meant a total of (3M + 1) parameters to estimate.

13.3 Common data structures where random effects are useful

It’s vitally important to think about the structure of our data before applying random effects. The
modelling which we’ll come to shortly relies on us specifying the correct structure of the data. This
ensures that we’re applying random effects in the correct way, but relies on us to get it right in the
first place. Here are some common data structures.

�

� �

�

604 THE R BOOK

13.3.1 Nested (hierarchical) structures

We saw a simple example of a nested structure earlier, with plots nested within fields. This is often
referred to as a two-level model: level 2 corresponds to the overarching fields, whereas level 1 is
the plots (and, of course, these are nested within the level 2 units). It is helpful to visualise the data
structure as in Figure 13.1, noting that we don’t need the same number of plots per field.

In our example, where we applied fertiliser (or not) to plots, we say that the variable fertiliser is at
level 1.

We’re not restricted to two levels. Three- and four-level nested models are not uncommon though
as the number of levels grows, so does the complexity of fitting the model. Let us modify our
example, supposing that the fields are nested within farms. We’re not interested in specifically
modelling farms, but we can add it as a random effect so that we are taking into account that fields
are nested within farms (and so may have some commonalities), and then plots are nested within
fields. Figure 13.2 shows a common visualisation for this type of data structure.

At level 1 we have the plots, at level 2 we have the fields, and at level 3 we have the farms
themselves. As before, fertiliser enters the model at level 1 (plots), though we will probably want to
treat fertiliser as a fixed effect.

13.3.2 Non-nested structures

Let us take another example, where the structure isn’t nested. Three experienced dentists measure
the remaining dentin thickness between a cavity in a tooth and the pulp in a number of children’s
teeth using radiographs (an image). For each tooth and subsequent radiograph, two dentists mea-
sure the remaining dentin thickness. We’d like to model remaining dentin thickness, but we should
account for two things: that the two measurements taken on the same radiograph are likely to be
highly correlated, and that measurements taken by a particular dentist are likely to be somehow
connected (they’re taken by the same person after all!). The specific tooth and particular dentist
doesn’t really matter here, so it makes sense to introduce these structures into the data using ran-
dom effects, along with any other information (let us suppose they’re all fixed effects) that we have
access to.

We could argue that there are two measurements per tooth (radiograph) and, therefore, we have a
two-level model. But what about the dentists? Are the teeth nested within dentists? Neither approach
works, of course. These are non-nested data.

Non-nested data are trickier to analyse. We don’t consider this in much detail, but see, for example
Faraway, 2016.

Field 1

Plot 1 Plot 2

Field 2

Plot 1 Plot 2 Plot 3

Field 3

Plot 1 Plot 2

Figure 13.1 Two-level data structure.

Farm 1

Field 1

Plot 1 Plot 2

Field 2

Plot 1 Plot 2 Plot 3

Farm 2

Field 1

Plot 1 Plot 2

Field 2

Plot 1 Plot 2

Figure 13.2 Three-level data structure.

�

� �

�

MIXED-EFFECT MODELS 605

13.3.3 Longitudinal structures

Longitudinal structures are very common. This is when we take multiple measurements of the unit
of interest over time. We might for example look at the growth of children from age five to nine,
measuring their height every 6 months. Modelling the growth of any particular child might not be of
interest (immediately we think of random effects), but we obviously need to take account of the fact
that there are multiple measurements from each child as these are going to be highly correlated.

In this case, we could simply state that the measurements are nested within child, which
would be true. What this ignores is time: these are ordered observations. We will need to be
careful to incorporate time into our model so that we can model the growth of children over the
5-year period.

13.4 R packages to deal with mixed effects models

There are several R packages that fit models with random effects. Two popular packages are nlme
(Pinheiro et al., 2021) and lme4 (Bates et al., 2015). Both have functions to fit linear mixed models
using the functions lme () and lmer (), respectively. Most examples in this book will fit linear
mixed models using the nlme package, though we will also look at an example using lme4.

At the end of this chapter, we’ll consider generalised linear mixed models, which is akin to extend-
ing (normal) linear models to generalised linear models. For this, the lme4 package is well suited
as it has a dedicated function for such models, glmer ().

13.4.1 The nlme package

The nlme package fits linear mixed effects models (those with normally distributed errors), along
with non-linear mixed effects models (again with normally distributed errors). See Bates et al., 2015,
for an excellent introduction to the nlme package.

We’ll concentrate on linear mixed effect models in this chapter, for which the relevant package
function is lme (). The format of this function separates the fixed and random parts of the model,
and we specify each separately as follows (in its most basic format):

lme (fixed, random, data)

The fixed effect (a compulsory part of the lme () structure) is just the overall mean value of the
response variable, for example y ∼ 1 or y ∼ x + z.

The random effects show the identities of the random variables and their relative locations in the
hierarchy and is not optional. Let us suppose that we have three random effects a, b, and c, with
c nested within b which in turn is nested within a. In most mixed-effects models, we assume that
the random effects have a mean of zero and that we are interested in quantifying variation in the
intercept caused by differences between the factor levels of the random effects. After the intercept
comes the vertical bar | which is read as ‘given the following spatial arrangement of the random
variables’. We would specify this using random = 1 | a/b/c. (Now, we see the importance of
thinking about the structure of data!) An important detail to notice is that the name of the response
variable (y here) is not repeated in the random-effects formula.

Putting this together we have, for example:

lme (fixed = y ~ 1, random = ~ 1 | a / b / c, data)

�

� �

�

606 THE R BOOK

If we also had a fixed effect, x, and just one random effect a, but we want to specify a random slope
as well as a random intercept for x, we would write

lme(fixed = y ~ x, random = ~ x | a, data)

13.4.2 The lme4 package

The lme4 package not only fits linear mixed models (like the nlme package) using the lmer ()
function but also fits generalised linear mixed models using the glmer () function. We’ll see an
example at the end of this chapter where the outcome of interest is binary, not continuous, and so
we need to use a logistic mixed model instead of a (normal) mixed model. We’ll concentrate on
linear mixed models using lmer () for now.

There is just one formula in lmer (), not separate formulae for the fixed and random effects. In
its most basic format we have, for example

lmer (formula, data)

where the formula structure requires the fixed effects to be specified first, followed by a plus sign,
then one or more random terms enclosed in parentheses. In the following example, we use the
same model as we did previously where we have a random intercept specified in layers with c
nested within b which in turn is nested within a:

lmer (y ~ 1 + (1 | a / b / c), data)

If we also had a fixed effect, x, and just one random effect a, but we want to specify a random slope
as well as a random intercept for x, we would write:

lmer (y ~ x + (x | a), data)

13.4.3 Methods for fitting mixed models

When we were dealing with normal linear models, in which we only had fixed effects, least squares
was a simple approach to estimating the model’s parameters. However, if we tried it for models with
random effects, we have the downside of, for example, potentially negative variance for random
effects. See Faraway, 2016 for an in-depth discussion. We need to find another method.

So what alternatives do we have? Maximum likelihood (ML) – see Section 2.5.2 – has good prop-
erties but requires assuming a distribution for the random effects (usually we assume normality).
That would be fine for our (normal) linear mixed models, but ML estimates can be biased.

Another approach, restricted maximum likelihood (REML), tries to correct this. In general, REML
is preferred because of its attempt to correct this bias. However, REML has its downsides too:
because of the underlying mathematics, if we want to compare models (i.e. test one model against
another), then we can only compare REML-fitted models if they have the same fixed effect structure
(i.e. any difference is in the random effects only). If we want to compare two models where the
fixed-effect structure differs, then we can’t use REML to fit the models initially. In this case, it is
common for researchers to fit the models using ML instead, where there is no such restriction in
comparing models.

�

� �

�

MIXED-EFFECT MODELS 607

13.5 Examples of implementing random effect models

13.5.1 Multilevel data (two levels)

This example involves a regression of plant size against local point measurements of soil nitrogen N
at five places within each of 24 farms. It is expected that plant size and soil nitrogen will be positively
correlated. There is only one measurement of plant size and soil nitrogen at any given point. We
have here an example of two-level data: the five places (level 1) are nested within a farm (level 2).
We also have a covariate, soil nitrogen, which is measured at level 1.

Our first port of call is to plot the data.

farms <- read.table ("farms.txt" , header = T)
attach (farms)
head (farms)

N size farm
1 18.18014 96.48147 1
2 20.47343 98.64003 1
3 21.34757 99.36465 1
4 18.41299 93.19268 1
5 19.75629 98.39972 1
6 29.02022 99.53934 2

plotcol <- hue_pal ()(24)
plot (N, size, col = plotcol[farm], pch = 16,

ylab = "Plant size", xlab = "Soil nitrogen level")

With 24 farms to consider, the plot in Figure 13.3 is tricky to read. The most obvious pattern, how-
ever, is that there is substantial variation in mean values of both soil nitrogen and plant size across
the farms: the minimum-yielding fields have a mean y value of less than 80, while the maximum
fields have a mean y value above 110.

The key distinction to understand is between:

1. fitting lots of linear regression models (one for each farm);

2. fitting one linear regression model using dummy variables to represent farms;

3. fitting one mixed-effects model, taking account of the differences between farms in terms of their
contribution to the variance in response.

The first strategy is simple to implement but doesn’t make the most of the data by borrowing strength
across the whole dataset, and we end up with 24 linear regression models for specific farms that
we can’t generalise. The second strategy is again simple to implement, but the resulting model will
be cumbersome owing to a large number of dummy variables to account for farm effect. Though
we are making good use of our data here by pooling information across farms, we are still limited to
a model that is specific to the 24 farms which formed the study. The third strategy, though perhaps
slightly more complicated to implement, makes good use of the data and allows us to learn about
the variation in size across farms while controlling for nitrogen.

Let us start with a simple random effects model which takes into account the structure (size
readings are nested within farms), but ignores the information on soil nitrogen.

�

� �

�

608 THE R BOOK

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

● ●

●

●

●

●●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

● ●

15 20 25

80
90

10
0

11
0

Soil nitrogen level

P
la

nt
 s

iz
e

Figure 13.3 A plot of plant size against nitrogen level, coloured by farm.

library(nlme)
farms_mod1 <- lme (size ~ 1, random = ~ 1 | farm, data = farms)
summary (farms_mod1)

Linear mixed-effects model fit by REML
Data: farms

AIC BIC logLik
655.1033 663.4406 -324.5516

Random effects:
Formula: ~1 | farm

(Intercept) Residual
StdDev: 8.361411 2.443197

Fixed effects: size ~ 1
Value Std.Error DF t-value p-value

(Intercept) 99.65783 1.721277 96 57.89763 0

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-2.43265571 -0.58669857 -0.00948166 0.63447518 2.44336463

Number of Observations: 120
Number of Groups: 24

�

� �

�

MIXED-EFFECT MODELS 609

Let us take a closer look at the Random effects and Fixed effects parts of the output. The
fixed effects section tells us that the average size is around 100. Meanwhile, the random effects
output reveals considerable variation in size. This has been estimated at the farm level (i.e. how
much of the variation in size is due to farm), and residual (unexplained) variation. The total variance
is about 8.3612 + 2.4432 ≈ 75.88 with 8.3612∕75.88 ≈ 0.92 or 92% of the total variation in size due
to differences between farms.

We would ideally make use of the soil nitrogen readings, so let us add that into our model. This
next model has an intercept for each farm, but the slope (of soil nitrogen) is assumed to be the
same for each farm.

farms_mod2 <- lme (size ~ N, random = ~ 1 | farm, data = farms)
summary (farms_mod2)

Linear mixed-effects model fit by REML
Data: farms

AIC BIC logLik
614.3687 625.4515 -303.1844

Random effects:
Formula: ~1 | farm

(Intercept) Residual
StdDev: 8.506147 1.929859

Fixed effects: size ~ N
Value Std.Error DF t-value p-value

(Intercept) 85.56750 2.5406539 95 33.67932 0
N 0.70875 0.0928735 95 7.63133 0
Correlation:
(Intr)

N -0.727

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-2.79070207 -0.62807448 0.02781053 0.70358230 2.18211935

Number of Observations: 120
Number of Groups: 24

Now, we can see that nitrogen and size appear to be positively correlated, as expected. On adding
information on soil nitrogen, the total variance (of the random effects) is roughly 8.5062 + 1.9302 ≈
76.079 with 8.5062∕76.079 ≈ 95% of this estimated to be due to differences in sizes between farms.

Finally, what if we thought that the effect of soil nitrogen might change from farm to farm? That
is, is there an interaction between farm and soil nitrogen in their effect on size of plants? This is
equivalent to asking for a random slope (in addition to the random intercept). Here’s how we can
incorporate this:

farms_mod3 <- lme (size ~ N, random = ~ N | farm, data = farms)

Error in lme.formula(size ~ N, random = ~N | farm, data = farms): nlminb
problem,
convergence error code = 1 message = iteration limit reached without
convergence (10)

�

� �

�

610 THE R BOOK

In this case, the model won’t run, and we get an error message stating that the model hasn’t con-
verged. There are various choices of algorithm underpinning mixed models, all of which depend on
a fancy version of trial-and-error until repeated updates no longer improve the estimates. Here, the
algorithm hasn’t found a point after which the estimates stabilise under the default REML method,
but we can try another algorithm instead (and increase the number of iterations from the default
of 50–100). This time we try optimising using optim (see ?optim for more information about this
algorithm), but ask R to print out information about the algorithm using msVerbose = TRUE (the
additional information is printed after running the model).

farms_mod4 <- lme (size ~ N, random = ~ N | farm, data = farms,
control = list (msMaxIter = 100 , opt = "optim" , msVerbose = TRUE))

initial value 417.290973
final value 417.024640
converged

summary (farms_mod4)
Linear mixed-effects model fit by REML
Data: farms

AIC BIC logLik
617.978 634.6021 -302.989

Random effects:
Formula: ~N | farm
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
(Intercept) 7.29765460 (Intr)
N 0.09435962 0.583
Residual 1.91987488

Fixed effects: size ~ N
Value Std.Error DF t-value p-value

(Intercept) 85.82944 2.3595804 95 36.37488 0
N 0.69860 0.0940528 95 7.42779 0
Correlation:
(Intr)

N -0.68

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-2.76289733 -0.68265159 0.05158404 0.69169645 2.18451345

Number of Observations: 120
Number of Groups: 24

This now works, and we see that the total variance (of the random effects) is about 7.2982 +
0.0942 + 1.9202 ≈ 56.95 with 7.2982∕56.95 ≈ 93.5% of this estimated to be due to differences in
intercepts and a mere 0.00016% due to differences in slopes. The remaining (residual) variance in
size is unexplained. We are also informed that the correlation between the random intercept and
random slope is about 0.583. We probably don’t need the random slope here, but we could test
whether this was the case using the anova () function:

�

� �

�

MIXED-EFFECT MODELS 611

anova (farms_mod4, farms_mod2)

Model df AIC BIC logLik Test L.Ratio p-value
farms_mod4 1 6 617.9780 634.6021 -302.9890
farms_mod2 2 4 614.3687 625.4515 -303.1844 1 vs 2 0.3907332 0.8225

With a large p-value, it seems that our addition of a random slope doesn’t really do much and so
on balance we would probably prefer the simpler model.

Before we finish up here, we should check that the model fits the data reasonably well. The model
checking process is similar in spirit to that for linear models in Section 10.5. We’ll look at a plot of
standardised residuals vs. fitted values (we would ideally see a cloud-like pattern), the observed
vs. fitted values, and QQ-plots to check for normality (the latter for the random intercept and for the
usual residuals). A nice package for this is predictmeans (Luo et al., 2021), which can be used
across the mixed models packages.

library (predictmeans)
residplot (farms_mod2)
detach (farms)

The plots in Figure 13.4 look reasonable here, and we have no strong evidence to suggest that the
model is unsuitable.

13.5.2 Multilevel data (three levels)

The following classic example comes from Snedecor, 1989. Three experimental treatments were
administered to rats, and the glycogen content of the rats’ livers was analysed as the response
variable. There were two rats per treatment, so the total sample was n = 3 × 2 = 6. The tricky bit was
that after each rat was killed, its liver was cut up into three pieces: a left-hand bit, a central bit, and
a right-hand bit. So now there are six rats, each producing three bits of liver, so a total of 6 × 3 = 18
bits of liver to analyse. Finally, two separate preparations were made from each macerated bit of
liver to assess the measurement error associated with the analytical machinery. There are therefore
2 × 18 = 36 observations in the dataframe.

rats <- read.table ("rats.txt" , header = T)
attach (rats)
names (rats)

[1] "Glycogen" "Treatment" "Rat" "Liver"

head (rats)

Glycogen Treatment Rat Liver
1 131 1 1 1
2 130 1 1 1
3 131 1 1 2
4 125 1 1 2
5 136 1 1 3
6 142 1 1 3

�

� �

�

612 THE R BOOK

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
20

−
10

−
5

0
5

10

Normal plot for random intercept

Theoretical quantiles

S
am

pl
e

qu
an

til
es

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●
●

●

●

●

● ●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●
●

●

●●
●

●

●

●

●●

●
●

●

●

●

●

●
●

−2 −1 0 1 2

−
2

−
1

0
1

2

Normal Plot for Residuals

Standardised residuals

Q
ua

nt
ile

s
of

 s
ta

nd
ar

d
no

rm
al

6
56

48

5550
80

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●
●

●

●

●

● ●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●●

●
●

●

●●
●

●

●

●

● ●

●
●

●

●

●

●

●
●

80 90 100 110

−
2

−
1

0
1

2

Residuals vs. fitted

Fitted values

S
ta

nd
ar

di
se

d
re

si
du

al
s

●
●●

● ●

●
●●

●●

●
●

●●
●

●●●
●●

●●

●
●

●●● ●
●

●

●●

●

●●

● ●
●

●

●
●

●●

●

●

●
●● ●

●

●●●
● ●

●
●

●

●
●

●●
●●

●

●
● ●

● ●

●

●
●●●

●

●
● ● ●

● ●● ●●
●

●

●●

●●
●●
●

●

● ●

●
●

●

●
●●

●
●

●
● ●

●
●

●
●

●

●●

●●

●
●●

80 90 100 110

80
90

10
0

11
0

Fitted vs. observed

Size

F
itt

ed
 v

al
ue

s

Figure 13.4 Model checking for our chosen two-level model.

The factor levels are numbers, so we need to declare the explanatory variables to be categorical
before we begin. Our first problem is that the data are presented with rat coded as either ‘1’ or ‘2’
within each treatment. We need to explicitly tell R that we have six different rats here rather than
two different rats who were each subjected to each treatment.

rats$Rat <- factor (Rat)
rats$Liver <- factor (Liver)
rats$Treatment <- factor (Treatment)
rats$rat_num <- cumsum (!duplicated (rats[2:3]))
head (rats, 8)

Glycogen Treatment Rat Liver rat_num
1 131 1 1 1 1
2 130 1 1 1 1
3 131 1 1 2 1
4 125 1 1 2 1
5 136 1 1 3 1
6 142 1 1 3 1
7 150 1 2 1 2
8 148 1 2 1 2

�

� �

�

MIXED-EFFECT MODELS 613

Let us take a closer look at the difference between Rat and rat_num by producing a table of each
of these variables:

table (rats$Rat)

1 2
18 18

table (rats$rat_num)

1 2 3 4 5 6
6 6 6 6 6 6

It makes sense to treat ‘Treatment’ as a fixed effect, but we will probably want to consider ‘Rat’
and ‘Liver’ as random effects. Notice here that the samples are nested within ‘Liver’ which in turn is
nested within ‘Rat’. We need to take account of this nested structure of the data. We need not only
a random effect at the level of the rat but also at the level of liver (which is nested within rat).

Now, we can build our model with treatment as a fixed effect and random effects to account for
the structure of observations within liver, nested within rat. Let us use the function lmer () this
time from the lme4 package.

library (lme4)
rats_mod1 <- lmer (Glycogen ~ Treatment + (1 | rat_num / Liver), data = rats)
summary (rats_mod1)

Linear mixed model fit by REML [’lmerMod’]
Formula: Glycogen ~ Treatment + (1 | rat_num/Liver)

Data: rats

REML criterion at convergence: 219.6

Scaled residuals:
Min 1Q Median 3Q Max

-1.48212 -0.47263 0.03062 0.42934 1.82935

Random effects:
Groups Name Variance Std.Dev.
Liver:rat_num (Intercept) 14.17 3.764
rat_num (Intercept) 36.06 6.005
Residual 21.17 4.601

Number of obs: 36, groups: Liver:rat_num, 18; rat_num, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 140.500 4.707 29.848
Treatment2 10.500 6.657 1.577
Treatment3 -5.333 6.657 -0.801

�

� �

�

614 THE R BOOK

Correlation of Fixed Effects:
(Intr) Trtmn2

Treatment2 -0.707
Treatment3 -0.707 0.500

The output doesn’t include p-values, but we can see from the rather small t-values that treatment
2 doesn’t appear to be significantly different from treatment 1, and neither is treatment 3. This may
be due to the size of the dataset, however.

From the output, we can compute the contribution of the various components to the variability in
glycogen. We see that the total variance is about 14.17 + 36.06 + 21.17 = 71.40 and so about 50%
of the variation is between rats within treatments, 19.8% is between liver bits within rats and 29.6%
is between readings within liver bits within rats.

Once again, we should check that our model is suitable using the residplot () function from
predictmeans. We can do so as follows, and this time we should specify the level at which we
want to do this: level 1 and level 2. The resulting plots are not shown.

library (predictmeans)
residplot (rats_mod1, level = 1)
residplot (rats_mod1, level = 2)
detach (rats)

13.5.3 Designed experiment: split-plot

The first example is a classic designed experiment set-up, known as a split-plot experiment. We
want to model crop yield from the application of three different treatments: irrigation (with two levels,
irrigated or not), sowing density (with three levels: low, medium, and high), and fertiliser application
(with three levels: low, medium, and high). See Section 16.2.1 for another analysis using these data.

The largest plots were the four whole fields (or block), each of which was split in half, and irriga-
tion was allocated at random to one half of the field. Each irrigation plot was split into three, and one
of three different seed-sowing densities (low, medium, or high) was allocated at random (indepen-
dently for each level of irrigation and each block). Finally, each density plot was divided into three,
and one of three fertiliser nutrient treatments, N,P, or N and P together, was allocated at random.
Each field, therefore, has a yield observation for each combination of the treatments applied.

yields <- read.table ("splityield.txt" , header = T)
attach (yields)
head (yields)

yield block irrigation density fertilizer
1 90 A control low N
2 95 A control low P
3 107 A control low NP
4 92 A control medium N
5 89 A control medium P
6 92 A control medium NP

�

� �

�

MIXED-EFFECT MODELS 615

Now, let us think about how we’ll analyse these data. The three fertilisers are likely to be of direct
interest so it makes sense to incorporate this information as fixed effects. On the other hand, one
complicating factor is that we need to account for the effect of a particular field (‘block’ variable
in the data): observations taken from the same field are more likely to be similar to each other
than observations from different fields. Unless we take this structure into account we risk losing
vital information about the variability in yield between fields. These particular fields are unlikely to
be of direct interest in themselves, so we account for this structure using random effects. This is
equivalent to having a random intercept for the model.

The fixed-effect part of the model is specified in just the same way as in a straightforward factorial
experiment, as below. The random-effect part of the model says that we want the random variation
to enter via effects on the intercept, denoted by 1 as per normal. Finally, we define the spatial
structure of the random effects after the vertical line (which we read as ‘given that density is nested
within irrigation, which is nested within block’ in this example) reflecting the progressively smaller
plot sizes. There is no need to specify the smallest spatial scale (fertiliser plots). Here we extract
only the table of estimated coefficients and p-values instead of the whole output: with so many
covariates the output becomes very cumbersome.

library (nlme)
yields_mod1 <- lme (yield ~ irrigation * density * fertilizer,

random = ~ 1 | block / irrigation / density)
summary (yields_mod1)$tTable[, c (1, 5)]

Value p-value
(Intercept) 80.50 8.249709e-16
irrigationirrigated 31.75 3.180453e-02
densitylow 5.50 5.159119e-01
densitymedium 14.75 9.782620e-02
fertilizerNP 5.50 4.081089e-01
fertilizerP 4.50 4.978391e-01
irrigationirrigated:densitylow -39.00 5.712055e-03
irrigationirrigated:densitymedium -22.25 7.964592e-02
irrigationirrigated:fertilizerNP 13.00 1.703904e-01
irrigationirrigated:fertilizerP 5.50 5.576461e-01
densitylow:fertilizerNP 3.25 7.285769e-01
densitymedium:fertilizerNP -6.75 4.723096e-01
densitylow:fertilizerP -5.25 5.756095e-01
densitymedium:fertilizerP -5.50 5.576461e-01
irrigationirrigated:densitylow:fertilizerNP 7.75 5.590671e-01
irrigationirrigated:densitymedium:fertilizerNP 3.75 7.770156e-01
irrigationirrigated:densitylow:fertilizerP 20.00 1.367861e-01
irrigationirrigated:densitymedium:fertilizerP 4.00 7.626005e-01

We could consider testing whether the three-way interaction was actually important in predicting
yield. We can do so with anova (), but this will only work if we compare the models when they
have both been fitted with ML rather than REML. This is because the two models have different
fixed effects, which REML can’t cope with (see Section 13.4.3).

To fit the models with ML rather than REML, we use method = "ML" in lme () or REML =
FALSE in lmer (). Let us re-run the model above, this time fitting with ML rather than REML, then
build a simpler model that omits the three-way interaction but keeps the two-way interactions.

�

� �

�

616 THE R BOOK

yields_mod1 <- lme (yield ~ irrigation * density * fertilizer,
random = ~ 1 | block / irrigation / density, method = "ML")

yields_mod2 <- lme (yield ~ (irrigation + density + fertilizer) ^ 2 ,
random = ~ 1 | block / irrigation / density, method = "ML")

anova (yields_mod1, yields_mod2)

Model df AIC BIC logLik Test L.Ratio p-value
yields_mod1 1 22 573.5108 623.5974 -264.7554
yields_mod2 2 18 569.0046 609.9845 -266.5023 1 vs 2 3.493788 0.4788

With a large p-value from the ANOVA, it seems that having the three-way interaction isn’t really
helping to explain the variability in yield, therefore, it is sensible to omit it.

We can continue this process to simplify the model as necessary. Finally, we may settle on a much
simplified model with irrigation, density, and fertiliser as fixed effects, together with irrigation–density
and irrigation–fertiliser interactions, which seems almost as good as the second model we
considered:

yields_mod3 <- lme (yield ~ irrigation * density + irrigation * fertilizer,
random = ~ 1 | block / irrigation / density, method = "ML")

anova (yields_mod1, yields_mod3)

Model df AIC BIC logLik Test L.Ratio p-value
yields_mod1 1 22 573.5108 623.5974 -264.7554
yields_mod3 2 14 565.1933 597.0667 -268.5967 1 vs 2 7.682562 0.4651

summary (yields_mod3)

Linear mixed-effects model fit by maximum likelihood
Data: NULL

AIC BIC logLik
565.1933 597.0667 -268.5967

Random effects:
Formula: ~1 | block

(Intercept)
StdDev: 0.0005335774

Formula: ~1 | irrigation %in% block
(Intercept)

StdDev: 1.716893

Formula: ~1 | density %in% irrigation %in% block
(Intercept) Residual

StdDev: 5.722412 8.718327

Fixed effects: yield ~ irrigation * density + irrigation * fertilizer
Value Std.Error DF t-value p-value

(Intercept) 82.08333 4.756285 44 17.257868 0.0000
irrigationirrigated 27.80556 6.726402 3 4.133793 0.0257
densitylow 4.83333 5.807346 12 0.832279 0.4215

�

� �

�

MIXED-EFFECT MODELS 617

densitymedium 10.66667 5.807346 12 1.836754 0.0911
fertilizerNP 4.33333 3.835553 44 1.129781 0.2647
fertilizerP 0.91667 3.835553 44 0.238992 0.8122
irrigationirrigated:densitylow -29.75000 8.212827 12 -3.622382 0.0035
irrigationirrigated:densitymedium -19.66667 8.212827 12 -2.394628 0.0338
irrigationirrigated:fertilizerNP 16.83333 5.424290 44 3.103325 0.0033
irrigationirrigated:fertilizerP 13.50000 5.424290 44 2.488805 0.0167
Correlation:

(Intr) irrgtn dnstyl dnstym frtlNP frtlzP
irrigationirrigated -0.707
densitylow -0.610 0.432
densitymedium -0.610 0.432 0.500
fertilizerNP -0.403 0.285 0.000 0.000
fertilizerP -0.403 0.285 0.000 0.000 0.500
irrigationirrigated:densitylow 0.432 -0.610 -0.707 -0.354 0.000 0.000
irrigationirrigated:densitymedium 0.432 -0.610 -0.354 -0.707 0.000 0.000
irrigationirrigated:fertilizerNP 0.285 -0.403 0.000 0.000 -0.707 -0.354
irrigationirrigated:fertilizerP 0.285 -0.403 0.000 0.000 -0.354 -0.707

irrgtnrrgtd:dnstyl irrgtnrrgtd:dnstym irr:NP
irrigationirrigated
densitylow
densitymedium
fertilizerNP
fertilizerP
irrigationirrigated:densitylow
irrigationirrigated:densitymedium 0.500
irrigationirrigated:fertilizerNP 0.000 0.000
irrigationirrigated:fertilizerP 0.000 0.000 0.500

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-2.58166957 -0.51480864 0.07893418 0.60157089 2.19570827

Number of Observations: 72
Number of Groups:

block irrigation %in% block
4 8

density %in% irrigation %in% block
24

detach (yields)

We should also consider whether our chosen model fits the data well and we can do so in the same
manner as the previous two examples.

13.5.4 Longitudinal data

A common cause of non-independence between observations is when each individual is measured
several times as it grows during the course of an experiment. The next example is as simple as
possible: we have a single fixed effect (a two-level categorical variable, with fertiliser added or not)
and six replicate plants in each treatment, with each plant measured on five occasions (after 2, 4,
6, 8, and 10 weeks of growth). The response variable is root length, measured non-destructively

�

� �

�

618 THE R BOOK

through a glass panel, which is opened to the light only when the root length measurements are
being taken.

fert_results <- read.table ("fertilizer.txt" , header = T)
attach (fert_results)
head (fert_results)

root week plant fertilizer
1 1.3 2 ID1 added
2 3.5 4 ID1 added
3 7.0 6 ID1 added
4 8.1 8 ID1 added
5 10.0 10 ID1 added
6 2.0 2 ID2 added

We begin with data inspection. For the kind of data involved in mixed-effects models, there are
some excellent built-in plotting functions (variously called panel plots, trellis plots, or lattice plots).
To use trellis plotting, we begin by turning our dataframe called fert_results into a grouped-
Data () object. To do this, we specify the nesting structure of the random effects and indicate the
fixed effect by defining fertilizer as outer to this nesting. Because fert_results is now a
groupedData object, the plotting is fantastically simple:

library (nlme)
library (lattice)
fert_results <- groupedData (root ~ week | plant,

outer = ~ fertilizer, fert_results)
plot (fert_results)

Now, in Figure 13.5, we get separate a plot of growth for each of the individual plants (created, in
this case, by joining the dots, which is the default option), with plant identities ranked from bottom
left (ID5) to top right (ID7) on the basis of mean root length.

It is often informative to group together the six replicates within each treatment and to have one
panel for each of the treatment levels (i.e. one for the fertilised plants and one for the controls in
this case). This is very straightforward, using outer to indicate the grouping:

plot (fert_results, outer = T)

It is clear from Figure 13.6 that by week 10, there is virtually no overlap between the two treatment
groups. The largest control plant has about the same root length as the smallest fertilised plant
(about 9 cm).

Now for the statistical modelling, it makes sense to have fertiliser as a fixed effect, and we ought
to account for time in this way too. In the first instance, let us allow a random intercept by plant,
and also allow the slope of the growth over the 10-week period to vary by plant. This is probably
unnecessary: look at Figure 13.5 or 13.6 and notice that the slopes don’t really vary by plant all
that much.

In any case, notice the way we now specify the random effects: we use week | plant, rather
than 1 | plant, as the latter would give us just a random intercept. Notice also that we once
again switch to a different algorithm, optim, and increase the number of iterations here to 200 in
order for the model to converge.

�

� �

�

MIXED-EFFECT MODELS 619

Week

R
oo

t

2

4

6

8

10

2 4 6 8 10

ID5 ID2

2 4 6 8 10

ID6 ID3

ID1 ID4 ID12

2

4

6

8

10

ID8

2

4

6

8

10

ID9

2 4 6 8 10

ID11 ID10

2 4 6 8 10

ID7

Figure 13.5 Growth over 10 weeks by plant.

Our model is now:

fert_mod1 <- lme (root ~ fertilizer + week, random = ~ week | plant,
control = list (msMaxIter = 200 , opt = "optim"))

summary (fert_mod1)
Linear mixed-effects model fit by REML

Data: NULL
AIC BIC logLik

117.9317 132.2331 -51.96587

Random effects:
Formula: ~week | plant

�

� �

�

620 THE R BOOK

Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr

(Intercept) 0.12799038 (Intr)
week 0.03879304 0.755
Residual 0.47643219

Fixed effects: root ~ fertilizer + week
Value Std.Error DF t-value p-value

(Intercept) -0.0289046 0.18354447 47 -0.15748 0.8755
fertilizercontrol -1.1445241 0.21462754 10 -5.33261 0.0003
week 0.9375000 0.02446016 47 38.32764 0.0000
Correlation:

(Intr) frtlzr
fertilizercontrol -0.585
week -0.562 0.000

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.5850053 -0.6309136 -0.1337281 0.5333399 2.2062078

Number of Observations: 60
Number of Groups: 12

Week

R
oo

t

2

4

6

8

10

2 4 6 8 10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Added

2 4 6 8 10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Control

ID5
ID2

ID6
ID3

ID1
ID4

ID12
ID8

ID9
ID11

Figure 13.6 Growth over 10 weeks for each plant, by fertiliser status.

�

� �

�

MIXED-EFFECT MODELS 621

The mean reduction in root size associated with the unfertilised controls, in the same week, is
estimated to be around 1.14 and this has a standard error of 0.21. Do we really need the random
slope, though? Let us build a model without this and use anova () to investigate. Notice here that
since we are only changing the random effects structure, we can continue to use REML and still
use anova () (see Section 13.4.3 for more information).

fert_mod2 <- lme (root ~ fertilizer + week, random = ~ 1 | plant,
control = list (msMaxIter = 200 , opt = "optim"))

anova (fert_mod1, fert_mod2)

Model df AIC BIC logLik Test L.Ratio p-value
fert_mod1 1 7 117.9317 132.2331 -51.96587
fert_mod2 2 5 115.3551 125.5704 -52.67756 1 vs 2 1.423382 0.4908

With a p-value of around 0.49, there doesn’t seem to be much evidence for keeping the random
slope, and this tallies with what we saw in Figures 13.5 and 13.6. Let us go with our simpler model,
therefore:

summary (fert_mod2)

Linear mixed-effects model fit by REML
Data: NULL

AIC BIC logLik
115.3551 125.5704 -52.67756

Random effects:
Formula: ~1 | plant

(Intercept) Residual
StdDev: 0.3269795 0.4911157

Fixed effects: root ~ fertilizer + week
Value Std.Error DF t-value p-value

(Intercept) 0.0526667 0.20963942 47 0.25123 0.8027
fertilizercontrol -1.3076667 0.22741630 10 -5.75010 0.0002
week 0.9375000 0.02241626 47 41.82231 0.0000
Correlation:

(Intr) frtlzr
fertilizercontrol -0.542
week -0.642 0.000

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.7022503 -0.6297164 -0.1275204 0.4571003 2.4393620

Number of Observations: 60
Number of Groups: 12

detach (fert_results)

�

� �

�

622 THE R BOOK

Notice that there is quite a bit of unexplained variation in root size. The total variance is about
0.332 + 0.492 ≈ 0.35 with 0.492∕0.35 ≈ 69% of this unexplained.

Model checking follows the same procedure as for other examples in this chapter.

13.6 Generalised linear mixed models

We are not restricted to normal hierarchical models. Just as we were able to extend the idea of
(normal) linear models to generalised linear models, we can extend the idea of (normal) mixed
effect models to generalised linear mixed effects models using lmer () with a specified error
family.

The default method for fitting generalised linear model is now the Laplace method. The lmer ()
function can deal with the same error structures as a generalised linear model, namely Poisson (for
count data), binomial (for binary data or proportion data), or gamma (for continuous data, where the
variance increases with the square of the mean). The model call is just like a mixed-effects model
but with the addition of the name of the error family. Some examples of the formulation are the
following:

glmer (y ~ fixed + (time | random), family = binomial)
glmer (y ~ fixed + (1 | random), family = poisson)

Note that the model formula has the same structure as for lmer (), but we’re also specifying a
family.

13.6.1 Logistic mixed model

In the bacteria dataframe, which is part of the MASS library (Venables and Ripley, 2002), we have
repeated assessment of bacterial infection (yes or no, coded as y or n) in a series of patients allo-
cated at random to one of three treatments: placebo, drug and drug plus supplement (drug+).
The trial lasted for 11 weeks and different patients were assessed on different numbers of occa-
sions. The question is whether the two treatments significantly reduced bacterial infection.

library (MASS)
attach (bacteria)
head (bacteria)

y ap hilo week ID trt
1 y p hi 0 X01 placebo
2 y p hi 2 X01 placebo
3 y p hi 4 X01 placebo
4 y p hi 11 X01 placebo
5 y a hi 0 X02 drug+
6 y a hi 2 X02 drug+

The data are binary, so we need to use family = binomial. There are repeated measures on
the same patients so we cannot use glm (). The ideal solution is to use a generalised mixed
models function, for which we need glmer (). Like glm (), the glmer () function can take text
(e.g. a two-level factor like y) as the response variable. We start by looking at the data:

�

� �

�

MIXED-EFFECT MODELS 623

table (y, trt)

trt
y placebo drug drug+

n 12 18 13
y 84 44 49

table (y, week)

week
y 0 2 4 6 11

n 5 4 11 11 12
y 45 40 31 29 32

Preliminary data inspection suggests that the drug might be effective because only 12 out of 96
patient visits were bacteria-free in the placebos, compared with 31 out of 124 for the treated indi-
viduals. There is also some evidence that week might prove to be important in modelling the
outcome too.

The modelling goes like this. It makes sense to have both treatment and week as fixed effects,
but let us account for the repeated assessment of patients by introducing a random intercept and
allow the slope of week to vary by patient:

library (lme4)
bacteria_mod1 <- glmer (y ~ trt + week + (week | ID), family = binomial)
summary (bacteria_mod1)

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]

Family: binomial (logit)
Formula: y ~ trt + week + (week | ID)

AIC BIC logLik deviance df.resid
210.6 234.4 -98.3 196.6 213

Scaled residuals:
Min 1Q Median 3Q Max

-4.1130 0.2191 0.2839 0.3840 1.3666

Random effects:
Groups Name Variance Std.Dev. Corr
ID (Intercept) 0.40495 0.6364

week 0.01876 0.1369 1.00
Number of obs: 220, groups: ID, 50

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.84912 0.63533 4.484 7.31e-06 ***
trtdrug -1.30207 0.66459 -1.959 0.0501.
trtdrug+ -0.65443 0.70285 -0.931 0.3518
week -0.08225 0.09085 -0.905 0.3653

�

� �

�

624 THE R BOOK

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Correlation of Fixed Effects:
(Intr) trtdrg trtdr+

trtdrug -0.652
trtdrug+ -0.641 0.512
week -0.558 0.147 0.223
optimizer (Nelder_Mead) convergence code: 0 (OK)
boundary (singular) fit: see ?isSingular

Variation in intercepts across the patients (variance of around 0.41) explained a lot more than that
for variation in slopes (variance of around 0.02). In the first instance, let us test whether we really
need the random slope.

bacteria_mod2 <- glmer (y ~ trt + week + (1 | ID), family = binomial)
anova (bacteria_mod1, bacteria_mod2)

Data: NULL
Models:
bacteria_mod2: y ~ trt + week + (1 | ID)
bacteria_mod1: y ~ trt + week + (week | ID)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
bacteria_mod2 5 207.77 224.74 -98.885 197.77
bacteria_mod1 7 210.62 234.37 -98.308 196.62 1.1553 2 0.5612

The simpler bacteria_mod2 is not much worse than the more complex bacteria_mod1 (p =
0.56), so we adopt the simpler model.

summary (bacteria_mod2)

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]

Family: binomial (logit)
Formula: y ~ trt + week + (1 | ID)

AIC BIC logLik deviance df.resid
207.8 224.7 -98.9 197.8 215

Scaled residuals:
Min 1Q Median 3Q Max

-3.8175 0.1755 0.2958 0.4171 1.2930

Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 1.314 1.146
Number of obs: 220, groups: ID, 50

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

�

� �

�

MIXED-EFFECT MODELS 625

(Intercept) 3.14392 0.62249 5.051 4.41e-07 ***
trtdrug -1.32014 0.64240 -2.055 0.03988 *
trtdrug+ -0.79544 0.65198 -1.220 0.22245
week -0.14369 0.05099 -2.818 0.00484 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Correlation of Fixed Effects:
(Intr) trtdrg trtdr+

trtdrug -0.618
trtdrug+ -0.580 0.492
week -0.591 0.118 0.085

detach (bacteria)

The interpretation is straightforward: holding week constant, there is evidence in this experiment
that the treatment significantly reduces bacterial infection, though curiously there is no evidence
that the drug plus supplement regime is any different from the placebo. This might be because the
trial is too small to demonstrate the significance of its efficacy.

13.7 Alternatives to mixed models

Random effects aren’t the only way to deal with data for which observations aren’t independent.
Another class of models, Generalised Estimating Equations (also known as GEEs), extend the
ideas underpinning generalised linear models of Chapter 11.

In mixed models, we explicitly model the random effects: we interpret the output as subject spe-
cific. That is, we interpret the regression coefficients in terms of the individual units of observation.
For GEEs, however, we average over these random effects and so the interpretation of regression
coefficients is now population averaged. In other words, if we consider the outcome of interest
conditional on the covariates in the model, we interpret the GEE output as being averaged over the
population.

The advantage of the GEE is that it doesn’t suffer the same potential issues with convergence as
a mixed model might. The choice of mixed or GEE model should, however, depend on the modelling
interest: are we interested in modelling on an individual or population-averaged basis?

An excellent introduction to GEEs can be found in Hardin, 2012 and also in Ziegler, 2011.

References

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal
of Statistical Software, Articles, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01.

Faraway, J. J. (2016). Extending the linear model with R: generalized linear, mixed effects and nonparametric
regression models / Julian J. Faraway (Second). CRC Press.

Hardin, J. W. (2012). Generalized estimating equations / James W. Hardin, Joseph M. Hilbe (Second). Chap-
man and Hall/CRC.

Luo, D., Ganesh, S., & Koolaard, J. (2021). Predictmeans: calculate predicted means for linear models
[R package version 1.0.6]. https://CRAN.R-project.org/package=predictmeans.

https://doi.org/10.18637/jss.v067.i01
https://CRAN.R-project.org/package=predictmeans

�

� �

�

626 THE R BOOK

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2021). nlme: Linear and nonlinear mixed
effects models [R package version 3.1-152]. https://CRAN.R-project.org/package=nlme.

Snedecor, G. W. (1989). Statistical methods (Eighth / George W. Snedecor, William G. Cochran). Blackwell.
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (Fourth) [ISBN 0-387-95457-0].

Springer. https://www.stats.ox.ac.uk/pub/MASS4/.
Ziegler, A. (2011). Generalized estimating equations / Andreas Ziegler. Springer.

https://CRAN.R-project.org/package=nlme
https://www.stats.ox.ac.uk/pub/MASS4/

�

� �

�

14
Non-linear Regression

When it comes to building a model, sometimes a linear model just won’t do, and we resort to using
a non-linear model instead. These terms might, at first glance, be confusing.

Consider a regression model where we have a covariate x and a response Y, and we choose
to transform the covariate (let us say to x2 to achieve the best linear fit between the covariate and
response). The model equation looks something like

Y = a + bx2,

and if we were to plot the (x, y) relationship, it wouldn’t be linear.
Is this still a linear model? It might seem strange, but this is still a linear model because it is

linear in its parameters, that is, it is linear in a and b. It might help to consider re-labelling x2 to,
say, z. Now, if we were to plot the (z,Y) relationship, we’d see a linear relationship. The model is
still classed as a linear model.

The same idea goes for the generalised linear models (GLMs) of Chapter 11. These are still linear
models, as the name suggests, even though the relationship between an outcome (or a function
thereof) and the covariates may not appear linear. The format of a GLM, assuming just one covariate
here, is

g(𝜇) = a + bx,

where g() is a link function and 𝜇 is the expected response given the covariate. This is a linear
model since g(𝜇) is a linear function of the parameters a and b.

It is not always possible to build an adequate model for some relationships through linear models.
That is, the sort of relationship required cannot be linearized like the example above. This leads to
the idea of non-linear models.

Our first problem is that when we move away from linear models, we have an unlimited choice of
structure or format for our non-linear model. Unlike linear models, we must explicitly specify the form
(or shape) of our non-linear model and then we can consider estimating the parameters therein.
Table 14.1 lists some common forms, some of which are also discussed in Section 2.1.6.

Our second problem is that we need to specify an initial guess for each of the parameters in
our model, though some common non-linear models have ‘self-starting’ versions which bypass this
step. We consider these later in Section 14.3.

Once we have the format of our model sorted (and starting values, if necessary), then we can
use nls () instead of lm () to build our model. Then, instead of say y ∼ x, we write out the
functional form of the model, e.g. y ∼ a - b * exp(-c * x) to spell out the precise non-linear
model we want to fit to the data.

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

628 THE R BOOK

Table 14.1 Useful non-linear functions

Type Equation

Asymptotic functions
Michaelis–Menten y = ax

1+bx
two-parameter asymptotic exponential y = a(1 − e−bx)
three-parameter asymptotic exponential y = a − be−cx

S-shaped functions
two-parameter logistic y = ea+bx

1+ea+bx

three-parameter logistic y = a
1+be−cx

four-parameter logistic y = a + b−a
1+e(c−x)∕d

Weibull y = a − be−(cxd)

Gompertz y = ae−be−cx

Humped curves
Ricker curve y = axe−bx

first-order compartment y = k exp(−exp(a)x) − exp(−exp(b)x)
bell-shaped y = a exp(−(bx)2)
biexponential y = aebx − ce−dx

A good reference for principles of non-linear models can be found in Seber, 2004, while Ritz,
2008 is an excellent source for non-linear modelling specifically in R.

14.1 Example: modelling deer jaw bone length

Our first example requires us to model jaw bone length as a function of age in deer. Our first port
of call is to plot the data to see what we’re dealing with which is shown in Figure 14.1.

jaws <- read.table ("jaws.txt", header = T)
attach (jaws)
names (jaws)

●●

●
●

●

●

●

●
●

●
● ● ●

●
●
●

●

●

●
●
●

●
●

● ●

●

●
● ●

● ● ●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

● ●

●

●
●

●

●

0 10 20 30 40 50

0
20

40
60

80
12

0

Age of deer

Ja
w

 b
on

e
le

ng
th

Figure 14.1 A plot of jaw bone length against age of deer

�

� �

�

NON-LINEAR REGRESSION 629

[1] "age" "bone"

plot (age, bone, col = hue_pal ()(3)[1],
ylab = "Jaw bone length" , xlab = "Age of deer")

We’ll look at two different modelling strategies: initially assuming an exponential relationship (as
theory indicates this would be a suitable model), then using the Michaelis–Menten model.

14.1.1 An exponential model for the deer data

Theory indicates that the relationship between age (here denoted x) and jaw bone length (denoted y)
is an asymptotic exponential with three parameters (a,b,c):

y = a − b exp(−cx).

Our plot in Figure 14.1 provides useful information to work out sensible starting values. It always
helps in cases like this to work out the equation’s ‘behaviour at the limits’ – that is to say, to find
the values of y when x = 0 and when x = ∞. For x = 0, we have exp(−0) which is 1, and 1 × b = b,
so y = a − b. For x = ∞, we have exp(−∞) which is 0, and 0 × b = 0, so y = a. That is to say, the
asymptotic value of y is a, and the intercept is a − b.

Inspection suggests that a reasonable estimate of the asymptote is a ≈ 120 and intercept ≈ 10,
so b = 120 − 10 = 110. Our guess at the value of c is slightly harder. Where the curve is rising most
steeply, jaw length is about 40, where age is 5. Rearranging the equation gives

c = −
log((a − y)∕b)

x
= −

log(120 − 40)∕110)
5

≈ 0.064.

We can check the adequacy of our initial values using the nlstools package (Baty et al., 2015),
which plots the data together with the curve defined by our initial guesses of parameters. The plot is
generated using the preview () function and is shown in Figure 14.2: it looks pretty good. Notice
that the function also gives us the residual sum of squares (RSS) for this particular model (the sum
of the squared differences between observed and predicted jaw bone length, based on the initial
model given).

library(nlstools)
preview (bone ~ a - b * exp (-c * age), data = jaws,

list (a = 120, b = 110, c = 0.064))

RSS: 15900

We go ahead and fit our non-linear model using nls ().

jaws_mod1 <- nls (bone ~ a - b * exp (-c * age),
start = list (a = 120, b = 110, c = 0.064))

summary (jaws_mod1)

Formula: bone ~ a - b * exp(-c * age)

�

� �

�

630 THE R BOOK

●●

●
●

●

●

●

●
●

●
● ● ●

●
●
●

●

●

●
●
●

●
●

● ●

●

●
● ●

● ● ●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

● ●

●

●
●

●

●

0 10 20 30 40 50

0
20

40
60

80
12

0

Age

P
re

di
ct

ed

+

+

+

+

++
++

++ +++
+++ ++ +++ ++ +++++ + +++ ++ +++ +++++ ++ ++ ++ ++ + ++ +

Figure 14.2 A plot of jaw bone length against age of deer, with the model corresponding to the initial values
of the parameters superimposed

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 115.2528 2.9139 39.55 < 2e-16 ***
b 118.6875 7.8925 15.04 < 2e-16 ***
c 0.1235 0.0171 7.22 2.44e-09 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 13.21 on 51 degrees of freedom

Number of iterations to convergence: 5
Achieved convergence tolerance: 2.383e-06

All parameters appear to be significantly different from zero. Beware, however. This does not nec-
essarily mean that all the parameters need to be retained in the model. In this case, a = 115.2528
with standard error 2.9139 doesn’t appear all that different from b = 118.6875 with standard error
7.8925. So we should try fitting the simpler two-parameter model instead:

y = a(1 − e−cx).

jaws_mod2 <- nls (bone ~ a * (1 - exp (-c * age)),
start = list (a = 120, c = 0.064), data = jaws)

anova (jaws_mod1, jaws_mod2)

Analysis of Variance Table

Model 1: bone ~ a - b * exp(-c * age)
Model 2: bone ~ a * (1 - exp(-c * age))
Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 51 8897.3
2 52 8929.1 -1 -31.843 0.1825 0.671

�

� �

�

NON-LINEAR REGRESSION 631

●

●
●

●

●

●

●
●

●
● ● ●

●
●
●

●

●

●
●
●

●
●

● ●

●

●
● ●

● ● ●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

● ●

●

●
●

●

●

0 10 20 30 40 50

0
20

40
60

80
12

0

Age of deer

Ja
w

 b
on

e
le

ng
th

Figure 14.3 The final fitted non-linear model for the deer jawbone data

Model simplification seems justified (p = 0.671), so we accept the two-parameter version,
jaws_mod2, as our minimal adequate model. We finish by plotting the curve through the scat-
terplot. A useful function from the nlstools package is the plotfit () function which allows
us to informally inspect the fit of our model. Note that the data set needs to be specified in the
nls () call in order for plotfit () to work. The argument smooth instructs that a continuous
curve should be plotted as opposed to a sequence of dots. It looks pretty good in Figure 14.3.

plotfit (jaws_mod2, smooth = TRUE, ylab = "Jaw bone length" , xlab = "Age of deer",
col.obs = hue_pal ()(3)[1], col.fit = hue_pal ()(3)[2], pch.obs = 16)

We can use the usual summary () function, or overview () from nlstools to get parameter
estimates and other information. The latter contains everything that is produced by the former, but
with a little more detail (most helpfully, confidence intervals for the parameter estimates).

overview (jaws_mod2)

Formula: bone ~ a * (1 - exp(-c * age))

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 115.58056 2.84365 40.645 < 2e-16 ***
c 0.11882 0.01233 9.635 3.69e-13 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 13.1 on 52 degrees of freedom

Number of iterations to convergence: 5
Achieved convergence tolerance: 1.369e-06

�

� �

�

632 THE R BOOK

Residual sum of squares: 8930

t-based confidence interval:

2.5% 97.5%
a 109.87435953 121.2867506
c 0.09407099 0.1435604

Correlation matrix:

a c
a 1.0000000 -0.6795024
c -0.6795024 1.0000000

Our final fitted model is of the form

Yi = 115.58(1 − exp(−0.12xi)) + 𝜖i,

where, approximately, 𝜖 ∼ N(0,13.12).

14.1.2 A Michaelis–Menten model for the deer data

Model choice is always an important issue in curve fitting. We shall compare the fit of the asymptotic
exponential of Section 14.1.1 with a Michaelis–Menten model which is of the form:

y = ax
1 + bx

.

As to starting values for the parameters, it is clear that a reasonable estimate for the asymptote
would be 100 (this is a∕b). The curve passes close to the point (5, 40), so we can guess a value of
a of 40∕5 = 8, and hence, b = 8∕100 = 0.08. We can check how sensible our starting values are.
They don’t seem too bad, and roughly the right area, as shown in Figure 14.4.

preview (bone ~ a * age / (1 + b * age), data = jaws, list (a = 8, b = 0.08))

RSS: 82600

●●

●
●

●

●

●

●
●

●
● ● ●

●
●
●

●

●

●
●
●

●
●

● ●

●

●
● ●

● ● ●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

● ●

●

●
●

●

●

0 10 20 30 40 50

0
20

40
60

80
12

0

Age

P
re

di
ct

ed

+

+

+

+

++++ ++ +++ +++ ++ +++ ++ +++++ + +++ ++ +++ +++++ ++ ++ ++ ++ + ++ +

Figure 14.4 Checking the adequacy of the initial values of parameters

�

� �

�

NON-LINEAR REGRESSION 633

Now, use nls () to estimate the parameters:

jaws_mod3 <- nls (bone ~ a * age / (1 + b * age), data = jaws, list (a = 8, b = 0.08))
summary (jaws_mod3)

Formula: bone ~ a * age/(1 + b * age)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 18.72539 2.52587 7.413 1.09e-09 ***
b 0.13596 0.02339 5.814 3.79e-07 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 13.77 on 52 degrees of freedom

Number of iterations to convergence: 7
Achieved convergence tolerance: 1.553e-06

We can check the fit of the model, and the plots don’t look too ominous in Figure 14.5, with the
possibility that we have a little heteroscedasticity of the variance of the error term, like with the
previous model. We’ll look at model checking in a little more detail in Section 14.4.1, including
using the package nlstools to generate these plots directly.

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100 120

−
2

−
1

0
1

2

Fitted values

S
ta

nd
ar

di
se

d
re

si
du

al
s

(a) Standardised residuals against fitted values

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Quantiles of N(0,1)

S
ta

nd
ar

di
se

d
re

si
du

al
s

(b) Quantile–quantile plot

Figure 14.5 Checking the fit of the Michaelis–Menten model for the deer jawbone data

�

� �

�

634 THE R BOOK

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

0 10 20 30 40 50

0
20

40
60

80
10

0
12

0
14

0

Age of deer

Ja
w

 b
on

e
le

ng
th

(a) Exponential model

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

0 10 20 30 40 50

0
20

40
60

80
10

0
12

0
14

0

Age of deer

Ja
w

 b
on

e
le

ng
th

(b) Michaelis–Menten model

Figure 14.6 Two models for the deer jawbone length data

jaws_mod3_resids <- nlsResiduals (jaws_mod3)
plot (nlsResiduals (jaws_mod3)[[2]][,1], nlsResiduals (jaws_mod3)[[2]][,2],

col = hue_pal ()(3)[1], pch = 16,
ylab = "Standardized residuals", xlab = "Fitted values")

abline(a=0, b=0, lty=3)
qqnorm (nlsResiduals (jaws_mod3)[[2]][,2], col = hue_pal ()(3)[1], main="", pch = 16,

ylab = "Standardized Residuals", xlab = "Quantiles of N(0,1)")
qqline (nlsResiduals (jaws_mod3)[[2]][,2])

14.1.3 Comparison of the exponential and the Michaelis–Menten model

Finally, we can compare the two models. We can see that the asymptotic exponential (Figure 14.6a)
tends to get to its asymptote first, and that the Michaelis–Menten (Figure 14.6b) continues to
increase.

14.2 Example: grouped data

Here is a dataframe containing experimental results on reaction rates as a function of enzyme
concentration for five different bacterial strains, with reaction rate measured just once for each
strain at each of 10 enzyme concentrations. The idea is to fit a family of five Michaelis–Menten
functions with parameter values depending on the strain, each of the form:

rate = c +
a × enzyme

1 + b × enzyme
.

�

� �

�

NON-LINEAR REGRESSION 635

●
●

●
●

●

●

●
●

●

●

● ●
● ● ●

●
● ●

●

●

● ●
● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
● ● ●

●
●

● ●

●
●

0 1 2 3 4 5

20
40

60
80

10
0

12
0

Enzyme

R
at

e

Figure 14.7 Plot of rate by enzyme concentration, for five bacterial strains

Our first port of call is to plot the data. It is clear from Figure 14.7 that the different strains will
require different parameter values, but there is a reasonable hope that the same functional form
will describe the response of the reaction rate of each strain to enzyme concentration.

reaction <- read.table ("reaction.txt", header=T)
attach (reaction)
names (reaction)

[1] "strain" "enzyme" "rate"

plotcol <- hue_pal ()(5)
plot (enzyme, rate, pch=16, col = plotcol[strain])

We could also plot the data separately by strain, which we can see in Figure 14.8, that we achieve
by using the groupedData () function from the nlme package (Pinheiro et al., 2021).

library (nlme)
reaction <- groupedData (rate ~ enzyme | strain, data = reaction)
plot (reaction, pch=16, col = hue_pal ()(1)[1])

We’ll use the nlme package to fit such a model which allows us to fit a model for each of the five
strains in the dataset. Note here that this is just a fixed effects model (no random effects as yet): we
are just fitting an nls () to each group. The function we need is nlsList (), which fits the same
functional form to a group of subjects (as indicated by the horizontal ‘given’ operator). Figure 14.8
is helpful for choosing starting values. For example, c is the rate when we have no enzyme, and a
starting value of c = 10 seems reasonable. We could use the preview () function from nlstools
to experiment with values of a and b. We settle on a = 20 and b = 0.25.

react_mod1 <- nlsList (rate ~ c + a * enzyme / (1 + b * enzyme) | strain,
data = reaction, start = c (a = 20, b = 0.25, c = 10))

summary (react_mod1)

�

� �

�

636 THE R BOOK

enzyme

ra
te

20

40

60

80

100

120

0 1 2 3 4 5

E B

0 1 2 3 4 5

C

A

0 1 2 3 4 5

20

40

60

80

100

120
D

Figure 14.8 Plot of rate, enzyme and strain.

Call:
Model: rate ~ c + a * enzyme/(1 + b * enzyme) | strain
Data: reaction

Coefficients:
a

Estimate Std. Error t-value Pr(>|t|)
E 37.50984 4.840749 7.748768 6.462816e-06
B 26.05893 3.063474 8.506335 2.800345e-05
C 51.86774 5.086678 10.196781 7.842354e-05
A 51.79746 4.093791 12.652687 1.943004e-06
D 94.46245 5.813975 16.247482 2.973297e-06

b
Estimate Std. Error t value Pr(>|t|)

E 0.5253479 0.09354863 5.615774 5.412404e-05
B 0.2802433 0.05761532 4.864041 9.173723e-04
C 0.5584897 0.07412453 7.534479 5.150212e-04
A 0.4238572 0.04971637 8.525506 2.728564e-05
D 0.6560539 0.05207361 12.598587 1.634553e-05

c
Estimate Std. Error t value Pr(>|t|)

E 10.30139 1.240664 8.303123 4.059886e-06

�

� �

�

NON-LINEAR REGRESSION 637

B 11.73312 1.120451 10.471780 7.049414e-06
C 10.53219 1.254928 8.392664 2.671650e-04
A 11.46498 1.194155 9.600916 1.244487e-05
D 10.40964 1.294447 8.041767 2.909373e-04

Residual standard error: 1.81625 on 35 degrees of freedom

This procedure fitted a non-linear model to each group, but an alternative approach is to build a
non-linear model that includes random effects to account for the group structure (see Chapter 13
for further details). It seems that the coefficients b and c may suffice as fixed effects as the output
of react_mod1 indicated that the coefficient a varies quite a bit between strains, but b and c don’t
vary all that much. That’s what we’ll do next.

react_mod2 <- nlme (rate ~ c + a * enzyme / (1 + b * enzyme), fixed
= a + b + c ~ 1, random = a ~ 1 | strain, data = reaction,
start = c (a = 20, b = 0.25, c = 10))

summary (react_mod2)

Nonlinear mixed-effects model fit by maximum likelihood
Model: rate ~ c + a * enzyme/(1 + b * enzyme)
Data: reaction

AIC BIC logLik
259.5399 269.1 -124.77

Random effects:
Formula: a ~ 1 | strain

a Residual
StdDev: 17.15369 2.196028

Fixed effects: a + b + c ~ 1
Value Std.Error DF t-value p-value

a 54.18450 8.314779 43 6.516649 0
b 0.54019 0.034627 43 15.600302 0
c 10.48476 0.672268 43 15.596111 0
Correlation:
a b

b 0.295
c -0.237 -0.622

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-2.6753956 -0.5190895 0.1192612 0.6285120 1.8587493

Number of Observations: 50
Number of Groups: 5

The fixed effects in this model are the means of the parameter values over the five strains. To see
the separate parameter estimates of a for each strain, use coef ():

�

� �

�

638 THE R BOOK

coef (react_mod2)

a b c
E 37.96432 0.5401869 10.48476
B 37.79126 0.5401869 10.48476
C 50.93771 0.5401869 10.48476
A 60.25090 0.5401869 10.48476
D 83.97829 0.5401869 10.48476

detach (reaction)

The parameter estimates are close to, but not equal to, the values estimated by nlsList (). The
efficiency of the random effects model in terms of degrees of freedom is illustrated by contrasting
the numbers of parameters estimated by nlsList (), for which we have 15 (three values for each
of the parameters) and by nlme (), for which we have five (made up of three parameters plus two
variances). This gives residual degrees of freedom of 35 and 45, respectively, for the two models
we considered.

14.3 Self-starting functions

One of the most likely things to go wrong in non-linear model is that the model fails because our
initial guesses for the starting parameter values were too far off. The simplest solution is to use one
of R’s ‘self-starting’ models, which work out the starting values automatically. Table 14.2 lists the
most frequently used self-starting functions.

We’ll look at examples of using self-starting functions next.

14.3.1 Self-starting Michaelis–Menten model

In our next example, reaction rate is a function of enzyme concentration: reaction rate increases
quickly with concentration at first but asymptotes once the reaction rate is no longer enzyme-limited.
R has a self-starting version called SSmicmen (), parameterised as

y = ax
b + x

,

where the two parameters are a (the asymptotic value of y) and b (which is the x value at which half
of the maximum response, a∕2, is attained). In the field of enzyme kinetics, b is called the Michaelis
parameter (in the R help file, the two parameters are called Vm and K, respectively).

Let us load the data and plot it as in Figure 14.9. There’s a good case to be made for a non-linear
model here, and the shape seems to be in-line with a Michaelis–Menten shaped model.

mm <- read.table("mm.txt", header = T)
names (mm)

[1] "conc" "rate"

plot (mm$rate ~ mm$conc, col = hue_pal ()(1)[1],
xlab = "Concentration", ylab = "Reaction rate")

To fit the non-linear model, just put the name of the response variable (rate) on the left of the tilde,
∼, then put SSmicmen (conc, a, b)) on the right of the tilde, with the name of the explanatory

�

� �

�

NON-LINEAR REGRESSION 639

Table 14.2 Useful non-linear self-starting functions

Function Purpose

SSasymp () asymptotic regression model
SSasympOff () asymptotic regression model with an offset
SSasympOrig () asymptotic regression model through the origin
SSbiexp () biexponential model
SSfol () first-order compartment model
SSfpl () four-parameter logistic model
SSgompertz () Gompertz growth model
SSlogis () logistic model
SSmicmen () Michaelis–Menten model
SSweibull () Weibull growth curve model

●●

●

●
●

●

●

●
●

●
●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

50
10

0
15

0
20

0

Concentration

R
ea

ct
io

n
ra

te

Figure 14.9 Plot of reaction rate by enzyme concentration

variable first in the list of arguments (conc in this case), then the names for the two parameters (a
and b, as defined above):

mm_mod1 <- nls (rate ~ SSmicmen (conc, a, b), data = mm)
summary (mm_mod1)

Formula: rate ~ SSmicmen(conc, a, b)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 2.127e+02 6.947e+00 30.615 3.24e-11 ***
b 6.412e-02 8.281e-03 7.743 1.57e-05 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10.93 on 10 degrees of freedom

�

� �

�

640 THE R BOOK

●

●

●
●

●

●

●
●

●
●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

50
10

0
15

0
20

0

Concentration

R
ea

ct
io

n
ra

te

Figure 14.10 Plot of reaction rate by enzyme concentration, with superimposed model

Number of iterations to convergence: 0
Achieved convergence tolerance: 1.937e-06

So the equation is

y = 212.7x
0.064 + x

,

and we can plot it like this using the nlstools package, with the result in Figure 14.10.

plotfit (mm_mod1, smooth = TRUE, ylab = "Reaction rate" , xlab = "Concentration",
col.obs = hue_pal ()(3)[1], col.fit = hue_pal ()(3)[2], pch.obs = 16)

14.3.2 Self-starting asymptotic exponential model

The three-parameter asymptotic exponential is usually written like this:

y = a − be−cx.

In R’s self-starting version, SSasymp (), the parameters are as follows:

• a is the horizontal asymptote on the right-hand side (called Asym in the R help file);

• b = a − R0, where R0 is the intercept (the response when x is zero);

• c is the rate constant (the log of lrc in the R help file).

�

� �

�

NON-LINEAR REGRESSION 641

Here is SSasymp applied to the jaws data:

jaws <- read.table ("jaws.txt", header = T)
attach (jaws)
names (jaws)

[1] "age" "bone"

jaws_ss_mod1 <- nls (bone ~ SSasymp (age, a, b, c))
summary (jaws_ss_mod1)

Formula: bone ~ SSasymp(age, a, b, c)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 115.2527 2.9139 39.553 <2e-16 ***
b -3.4348 8.1961 -0.419 0.677
c -2.0915 0.1385 -15.101 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 13.21 on 51 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 2.45e-07

The plot of this fit was shown in Section 14.1.1 along with the simplified model without the parameter
b which looks unnecessary.

Alternatively, one can use the two-parameter form that passes through the origin, SSasympOrig
(), which fits the function y = a(1 − e−bx). The final form of the asymptotic exponential allows one
to specify the function with an offset, d, on the x values, using SSasympOff (), which fits the
function y = a − be−c(x−d). For example:

jaws_ss_mod2 <- nls (bone ~ SSasympOrig (age, a, b))
summary (jaws_ss_mod2)

Formula: bone ~ SSasympOrig(age, a, b)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 115.5805 2.8436 40.65 <2e-16 ***
b -2.1302 0.1038 -20.52 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 13.1 on 52 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 6.915e-07

detach (jaws)

�

� �

�

642 THE R BOOK

●●●
●●

●●

●●

●●

●●

●●

●●

0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

Concentration

D
en

si
ty

Figure 14.11 Plot of density by concentration

14.3.3 Self-starting logistic

This is one of the most commonly used three-parameter growth models, producing a classic
S-shaped curve. The form of the function is

y = a
1 + be−cx

.

Let us apply this form to a set of data which record the density for differing concentration levels,
which we plot in Figure 14.11.

sslogistic <- read.table ("sslogistic.txt", header = T)
attach (sslogistic)
names (sslogistic)

[1] "density" "concentration"

plot (density ~ concentration, col = hue_pal ()(1)[1],
xlab = "Concentration", ylab = "Density")

We estimate the three parameters (a, b, c) using the self-starting function SSlogis ():

sslogis_mod1 <- nls (density ~ SSlogis (log (concentration), a, b, c),
data = sslogistic)

summary (sslogis_mod1)

Formula: density ~ SSlogis(log(concentration), a, b, c)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 2.34518 0.07815 30.01 2.17e-13 ***
b 1.48309 0.08135 18.23 1.22e-10 ***
c 1.04146 0.03227 32.27 8.51e-14 ***

�

� �

�

NON-LINEAR REGRESSION 643

●●
●●

●●

●●

●●

●●

●●

●●

0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

Concentration

D
en

si
ty

Figure 14.12 Plot of density by concentration, with superimposed model

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.01919 on 13 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 8.283e-06

Here a is the asymptotic value, b is the mid-value of x when y is a∕2, and c is the scale.
Now draw the fitted line using plotfit () from the package nlstools. We see in Figure 14.12

that the fit is rather good.

plotfit (sslogis_mod1, smooth = TRUE, xlab = "Concentration", ylab = "Density",
col.obs = hue_pal ()(3)[1], col.fit = hue_pal ()(3)[2], pch.obs = 16)

detach (sslogistic)

14.3.4 Self-starting four-parameter logistic

This model allows a lower asymptote (the fourth parameter) as well as an upper. The four-parameter
logistic is given by

y = a + b − a

1 + exp
(

d−x
c

) .
The parameters are a, the horizontal asymptote (for low values of x); b, the horizontal asymptote
(for large values of x); d the value of x at the point of inflection of the curve; and c is a numeric scale
parameter on the x-axis.

The chicks data set contains information on chick weight at varying time points. Applying
a four-parameter logistic model to the chicks data we get the following, including the plot in
Figure 14.13.

�

� �

�

644 THE R BOOK

●
●

● ●
●

●
●

●

●

●

●
●

0 5 10 15 20

50
10

0
15

0
20

0

Time

C
hi

ck
 w

ei
gh

t

Figure 14.13 Plot of chick weight by time, with superimposed model

chicks <- read.table ("chicks.txt" , header = T)
attach (chicks)
names (chicks)

[1] "weight" "Time"

chicks_mod1 <- nls (weight ~ SSfpl (Time, a, b, c, d), data = chicks)
summary (chicks_mod1)

Formula: weight ~ SSfpl(Time, a, b, c, d)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 27.453 6.601 4.159 0.003169 **
b 348.971 57.899 6.027 0.000314 ***
c 19.391 2.194 8.836 2.12e-05 ***
d 6.673 1.002 6.662 0.000159 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.351 on 8 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 2.476e-07

plotfit (chicks_mod1, smooth = TRUE, ylab = "Chick weight" , xlab = "Time",
col.obs = hue_pal ()(3)[1], col.fit = hue_pal ()(3)[2],
pch.obs = 16)

detach (chicks)

�

� �

�

NON-LINEAR REGRESSION 645

The parameterised model would be written like this:

y = 27.453 + 348.971 − 27.453
1 + exp((19.391 − x)∕6.673)

.

14.4 Further considerations

There are a whole host of other considerations, for example model evaluation, confidence intervals
for parameters, and predictions to name but a few. The package nlstools, which was useful in
checking the form and initial values for a non-linear regression, also contains functionality that is
very useful in using and assessing non-linear models.

14.4.1 Model checking

It’s prudent to check how well the model actually fits the data which we do by plotting the residuals
in various ways. We can use the nlsResiduals () function from nlstools to do this, and then
plot in the usual way.

There are a range of possible plots, but we only look at those which are useful in this con-
text. Which plots are produced is controlled by the which argument. A standardised residuals
vs. fitted values plot is generated when which = 2, which is useful for checking for evidence of
heteroscedasticity of the variance of the error term. A quantile–quantile plot (QQ-plot) is generated
when which = 6.

Let us apply this to the deer jawbone data from Section 14.1, where we settled on the an expo-
nential model of the form

y = a(1 − exp(−c × age)).

The resulting model was plotted in Figure 14.3 and was referred to as jaws_mod2 which we’ll
continue with here for convenience.

We’ll start with a standardised residual vs. fitted values plot (checking for evidence of het-
eroscedasticity), and a QQ-plot (checking for evidence of departure from the assumption of
normally distributed errors).

library (nlstools)
jaws_mod2 <- nls (bone ~ a * (1 - exp (-c * age)),

start = list (a = 120, c = 0.064), data = jaws)
jaws_mod2_resids <- nlsResiduals (jaws_mod2)
plot (jaws_mod2_resids, which = 2)
plot (jaws_mod2_resids, which = 6)

The plots in Figure 14.14 aren’t too bad, and the model seems to fit reasonably well.
Another question of interest is whether we have any highly influential observations in our data

set. Again, we can use nlstools to help us here using the nlsJack functionality.

jaws_mod2_jack <- nlsJack (jaws_mod2)
summary (jaws_mod2_jack)

Jackknife statistics

�

� �

�

646 THE R BOOK

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

−
2

−
1

0
1

2

Standardised residuals

Fitted values

S
ta

nd
ar

di
se

d
re

si
du

al
s

(a) Standardised residuals against fitted values

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Normal Q−Q plot of
Standardised residuals

Theoretical quantiles

S
am

pl
e

qu
an

til
es

(b) Quantile–quantile plot

Figure 14.14 Checking the fit of the exponential model for the deer jawbone data

Estimates Bias
a 115.435903 0.144651976
c 0.117775 0.001040679

Jackknife confidence intervals

Low Up
a 109.56824584 121.3035604
c 0.09051351 0.1450365

Influential values
* Observation 4 is influential on a
* Observation 50 is influential on a
* Observation 53 is influential on a
* Observation 54 is influential on a
* Observation 2 is influential on c
* Observation 16 is influential on c

The jackknife procedure flags some possible influential observations and helpfully tells us how they
are influential. We shouldn’t be too surprised about this here: the data set is small so it’s quite
natural for there to be some influential observations (Figure 14.14).

This procedure also produces confidence intervals for regression coefficients, but bootstrap (see
Section 14.4.2) may be more reliable (Baty et al., 2015).

�

� �

�

NON-LINEAR REGRESSION 647

14.4.2 Confidence intervals

There are many ways of estimating confidence intervals for, e.g. parameter estimates, and we have
already seen one possibility in Section 14.4.1. Other methods include profile confidence inter-
vals (which attempts to remove the assumption of normality of regression coefficients) and boot-
strapped confidence intervals. The former can be a little cumbersome. Once again, nlstools
provides an easy method for generating the latter. Let us stick to our deer jawbone data again to
see it in action.

library (nlstools)
jaws_mod2 <- nls (bone ~ a * (1 - exp (-c * age)),

start = list (a = 120, c = 0.064), data = jaws)
summary (jaws_mod2)

Formula: bone ~ a * (1 - exp(-c * age))

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 115.58056 2.84365 40.645 < 2e-16 ***
c 0.11882 0.01233 9.635 3.69e-13 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 13.1 on 52 degrees of freedom

Number of iterations to convergence: 5
Achieved convergence tolerance: 1.369e-06

jaws_mod2_boot <- nlsBoot (jaws_mod2)
summary (jaws_mod2_boot)

Bootstrap statistics

Estimate Std. error
a 115.7844936 2.80065156
c 0.1191837 0.01249085

Median of bootstrap estimates and percentile confidence intervals

Median 2.5% 97.5%
a 115.841325 110.2276768 121.3381662
c 0.118575 0.0969314 0.1449641

The least squares estimates and bootstrapped estimates of the regression coefficient are very sim-
ilar, as one would expect.

�

� �

�

648 THE R BOOK

References

Baty, F., Ritz, C., Charles, S., Brutsche, M., Flandrois, J.-P., & Delignette-Muller, M.-L. (2015). A toolbox for
nonlinear regression in R: the package nlstools. Journal of Statistical Software, Articles, 66(5), 1–21. https://
doi.org/10.18637/jss.v066.i05.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2021). nlme: Linear and nonlinear mixed
effects models [R package version 3.1-152]. https://CRAN.R-project.org/package=nlme.

Ritz, C. (2008). Nonlinear regression with R / Christian Ritz, Jens Carl Streibig. Springer.
Seber, G. A. F. (2004). Nonlinear regression / G.A.F. Seber and C.J. Wild. Wiley.

https://doi.org/10.18637/jss.v066.i05
https://doi.org/10.18637/jss.v066.i05
https://CRAN.R-project.org/package=nlme

�

� �

�

15
Survival Analysis

A great many studies in statistics deal with deaths or with failures of components: they involve the
numbers of deaths, the timing of death, or the risks of death to which different classes of individuals
are exposed. The analysis of survival data is a major focus of the statistics business (see Kalbfleisch
and Prentice, 2002; Miller et al., 1998; Fleming and Harrington, 2011), for which R supports a
wide range of tools. The main theme of this chapter is the analysis of data that take the form of
measurements of the time to death, or the time to failure of a component. Up to now, we have
dealt with mortality data by considering the proportion of individuals that were dead at a given time.
In this chapter, each individual is followed until it dies, then the time of death is recorded (this will be
the response variable). Individuals that survive to the end of the experiment will die at an unknown
time in the future; they are said to be censored (as explained below).

15.1 Handling survival data

Since everything dies eventually, it is often not interesting to analyse the results of survival experi-
ments in terms of the proportion that were killed; in due course, they all die. We’ll use the package
survival (Therneau and Grambsch, 2000) to handle survival analyses in this chapter which offers
a range of functions for graphical representations, hypothesis testing, and model building.

15.1.1 Structure of a survival dataset

Let us start with an example which looks at the changing probability of survival over time. The data
come from a study of cancer patients undergoing one of four-drug treatment programmes (drugs
A, B, and C and a placebo).

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

650 THE R BOOK

library (survival)
cancer <- read.table ("cancer.txt", header = T)
attach (cancer)
head (cancer)

death treatment status
1 4 DrugA 1
2 26 DrugA 1
3 2 DrugA 1
4 25 DrugA 1
5 7 DrugA 1
6 6 DrugA 0

This data set has three variables: death indicates time of death, or survival time (some of these
death times aren’t necessarily deaths, however); treatment indicates which treatment the patient
had been allocated; status indicates any censoring of the death times listed (whether the death
time is an actual death, or the last time the patient was seen). The ‘event’ of interest here is death,
as morbid as that may be, and our goal might be to model the time to event for example.

Let us first look at the variable death, the time of death, or survival time. Its distribution is skewed,
as we can see from the histogram in Figure 15.1a, and the times themselves are of course always
positive. Any analysis we use needs to be able to handle these key features of the data. We could
also view this information using a so-called Kaplan–Meier plot, which is given in Figure 15.1b. This
represents the proportion still alive at particular times. Notice that the function decreases each time
a death is observed, creating a stepped pattern. The Kaplan–Meier plot is discussed in more detail
in Section 15.2.1.
More interesting, perhaps, is to split death times according to treatment. This would allow us to
assess whether treatment had any effect on survival time. A nice way of viewing this information is
via a Kaplan–Meier plot, which is given in Figure 15.2a, but this time we have one Kaplan–Meier
function for each drug.

Time until death (survival time)

F
re

qu
en

cy

0 10 20 30 40 50

0
10

20
30

40
50

60

(a) Histogram of death times

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time until death (survival time)

P
ro

ba
bi

lit
y

of
 s

ur
vi

va
l

(b) Kaplan–Meier survival function

Figure 15.1 Plots of time until death, or survival time

�

� �

�

SURVIVAL ANALYSIS 651

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

ba
bi

lit
y

of
 s

ur
vi

va
l Drug A

Drug B
Drug C
Placebo

(a) Kaplan–Meier survival function
for each treatment

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

ba
bi

lit
y

of
 s

ur
vi

va
l Drug A

Drug B
Drug C
Placebo

(b) Kaplan–Meier survival function for
each treatment, with censoring

Figure 15.2 Survival of different groups of patients over time

It is clear that the treatments caused different patterns of mortality, but all four start out with 100%
survival, and if we continued the study indefinitely, all four would end up with zero. We could pick
some arbitrary point in the middle of the distribution at which to compare the percentage survival,
but this may be difficult in practice because the treatments might have few observations at the same
location. Also, the choice of when to measure the difference is entirely subjective and hence open
to bias. It is much better to use R’s powerful facilities for the analysis of survival data than it is to
pick an arbitrary time at which to compare two proportions.

A complicating feature of survival data is that the time to event for every observation may not be
known. This is known as censoring. This comes about principally because some individuals outlive
the experiment, while others leave the experiment before they die. Another reason for censoring
occurs when individuals are lost from the study: they may be killed in accidents, they may emigrate,
or they may lose their identity tags. We know when we last saw them alive, but we have no way of
knowing their age at death. In general, then, our survival data may be a mixture of times at death
and times after which we have no more information on the individual. We deal with this by setting up
an extra variable called the censoring indicator to distinguish between the two kinds of numbers.
If a time really is a time to death, then the censoring indicator takes the value 1. If a time is just the
last time we saw an individual alive, then the censoring indicator is set to 0.

The column status in our cancer data tells us whether an observation is the death time of an
individual (as is the case for the first five), or whether the observation was censored (as it is for the
sixth individual). Censorship in this case may have happened because the individual dropped out
of the study but is actually still alive, or they may have died, but this was not recorded.

We can update the plot in Figure 15.2a to include information about censoring: such times are
marked by a cross in Figure 15.2b. A cross denotes the last time we saw an individual, but we do not
know what happened to them afterwards. These individuals contribute something to our knowledge
of survival, so we do not remove these observations from our data set, but we do need to ensure
that they are appropriately handled.

Often, in a survival analysis, our aim is to understand the role of covariates in influencing the time
until an event. In our cancer example, our only covariate is the treatment type. We’re not limited to
just one covariate, nor are we limited to only categorical covariates. In Section 15.3, we’ll consider
how to build a (regression) model for time to event data using any number of covariates.

�

� �

�

652 THE R BOOK

15.1.2 Survival data in R

The survival package in R contains a suite of tools to model survival data with which we can
create graphics as in Figure 15.2. It also allows us to estimate important quantities in survival anal-
ysis (Section 15.2) and build models for our time-to-event data (Section 15.3). But before we do
any of this, we need to ensure that R knows that we are dealing with survival data, and in particular
which variable contains information on survival time and which holds information on whether the
observation was censored.

This is achieved using the Surv () command from the package survival, which creates a
survival object in R. Its arguments are the time until an event (time), and whether the observation
is censored (event). For our cancer data, the following gives R the necessary information:

Surv (time = death, event = status)

It makes sense that the object that results – information on time to death/censoring – is usually used
as the outcome variable in a survival analysis, and we’ll frequently use Surv () inside other sur-
vival functions.

15.2 The survival and hazard functions

There are two important quantities that are of interest in the analysis of survival data: the sur-
vival function and the hazard function. Both describe the distribution of time until an event, but
in different ways. These will form the basis of an analysis. Initial analysis (including graphical rep-
resentations and basic hypothesis testing) generally involves the survival function, whereas any
modelling of survival data usually boils down to modelling the hazard function:

• The survival function at time t, S(t), is the probability that an individual will survive beyond time t.

• The hazard function at time t, h(t), is the instantaneous risk of an event at time t, given that the
individual has survived up until time t. This is not a probability, but it is a measure of risk: the
greater the hazard, the greater the risk.

The survival and hazard functions are, of course, closely related. For those familiar with the idea of
derivatives, the relationship is described by

h(t) = − 𝜕

𝜕t
log S(t),

but we needn’t worry about this detail as R does all the hard work for us.
The usual starting point for a survival analysis is to estimate and plot the survival function.

Figure 15.2 shows the (empirical) survival function per treatment for our cancer data, one for each
treatment group. Notice how the survival function – the probability of surviving beyond a particular
time – is decreasing with time but at different rates for the various drug groups, and we can imme-
diately see that patients taking drug A are more likely to survive beyond 20 units of time. With
this much information available at-a-glance from a plot of the (estimated) survival function, it is no
wonder that they are a popular tool in the analysis of time-to-event data and often the first port of call.

We may want to plot the survival function for all observations, or we may want to compare
between groups as we did for our cancer data. Either way, there are two broad options in estimat-
ing the survival function: we can choose not to make distributional assumptions about it (so-called
non-parametric estimation), or alternatively, make assumptions about its form (so-called parametric
estimation). The former is far more common, especially as an initial analysis.

�

� �

�

SURVIVAL ANALYSIS 653

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

ba
bi

lit
y

of
 s

ur
vi

va
l

Figure 15.3 Survival function for the toy data set

15.2.1 Non-parametric estimation of the survival function

The most common non-parametric estimation technique for the survival function is that given by
Kaplan–Meier. This gives a stepped survival function that accrues information as each death occurs.
Indeed, we have already seen such an example in Figure 15.2a (without displaying censoring) and
Figure 15.2b (displaying censoring).

It is, perhaps, easier to understand how the Kaplan–Meier survival function is generated by con-
sidering a toy example. Suppose we had n = 5 individuals and that the times at death were 12, 17,
29, 35, and 42 weeks after the beginning of a trial. The probability of survival remains at 1 until the
first death at time 12. The curve then steps down to 0.8 because 80% of the initial cohort is now
alive. It continues at 0.8 until time 17 when the curve steps down to 0.6 (40% of the individuals are
now dead), and so on, until all of the individuals are dead at time 42. This stepped survival function
is shown in Figure 15.3.

In general, therefore, we have two variables at any one time: the number of deaths and the
number at risk (i.e. those that have not yet died: the survivors). The Kaplan–Meier survivor function
then produces a step at every time at which one or more deaths occurs.

Censoring complicates matters a little, but it is easy enough for R to denote censored observations
on the plot by inserting a cross as we saw in Figure 15.2b. However, these aren’t events per se, so
we need to adjust the number at risk. This makes sense: if an observation is censored, then it is
not at risk so we reduce this accordingly. Therefore, the number at risk changes not only when we
observe a death but also when we consider a censored observation.

All these calculations are automated in R with the survfit () function. The plots in Figure 15.2
were produced by creating an object cancer_surv (notice the use of Surv () here) before plot-
ting. The statement mark.time requests that censored observations be marked on the plot (using
a cross), which then gives us Figure 15.2b.

cancer_surv <- survfit (Surv (death, status) ~ treatment, type = "kaplan-meier")
plot (cancer_surv, ylab = "Probability of survival", xlab = "Time",

mark.time = TRUE, col = hue_pal ()(4)[1:4])
legend ("topright", legend = c ("Drug A", "Drug B", "Drug C", "Placebo"),

fill = hue_pal ()(4)[1:4], bty = "n")

�

� �

�

654 THE R BOOK

Comparing survival functions between groups in our cancer example raises important questions.
Did patients on drug A live longer than those on the placebo? Are the prospects of those on drug B
different to those on drug C? Is there any difference in survival between the four treatments?

The most common statistical procedure applicable here is the log-rank test. This is a
non-parametric test and can cope with censored observations. It compares the observed
and expected number of deaths for each treatment, the latter assuming that the survival is the
same for each group.

compare_treat <- survdiff (Surv (death, status) ~ treatment)
compare_treat

Call:
survdiff(formula = Surv(death, status) ~ treatment)

N Observed Expected (O-E)^2/E (O-E)^2/V
treatment=DrugA 30 25 30.4 0.960 1.838
treatment=DrugB 30 25 27.5 0.226 0.373
treatment=DrugC 30 25 20.2 1.131 1.658
treatment=placebo 30 21 17.9 0.543 0.802

Chisq = 3.6 on 3 degrees of freedom, p = 0.3

detach (cancer)

Here, with a p-value of 0.3, there is no evidence that the survival functions differ between the four
groups. This may come as a surprise, given the plot in Figure 15.2b. If we look closely, however,
only 5 of the 30 individuals on drug A survived beyond time 20. This makes the survival curve for
drug A look better, but is based on a small number of observations.

15.2.2 Parametric estimation of the survival function

If we are confident that the survival function will behave in a predictable way, parametric estimation
may be suitable. Common distributions include the Exponential, Weibull, Gompertz, log-Logistic,
among many others. Each has its own set of characteristics, which should be carefully considered if
contemplating parametric estimation of the survival function. The format of these survival functions
are given in Table 15.1, and examples are given in Figure 15.4.

Given that there is a close relationship between the survival and hazard functions, if we model
the survival function using a particular distribution (as we have done in Figure 15.4), then this also
tells us what the associated hazard function looks like (Figure 15.5). The simplest of these dis-
tributions – the Exponential – gives a constant hazard over time, while the other hazard functions

Table 15.1 Common parametric forms of the survival and hazard functions

Distribution Survival function Hazard function

Exponential exp(−at) a
Weibull exp(−(at)b) ab(at)b−1

Gompertz exp(−(a∕b)(exp(bt) − 1)) a exp(bt)
log-Logistic 1∕(1 + atb) (abtb−1)∕(1 + atb)

�

� �

�

SURVIVAL ANALYSIS 655

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (t)

P
ro

ba
bi

lit
y

of
 s

ur
vi

va
l,

S
(t

) a = 1.00
a = 0.10
a = 0.01

(a) Exponential

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (t)

P
ro

ba
bi

lit
y

of
 s

ur
vi

va
l,

S
(t

) a = 1.0, b = 2.0
a = 0.1, b = 2.0
a = 0.1, b = 3.0

(b) Weibull

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (t)

P
ro

ba
bi

lit
y

of
 s

ur
vi

va
l,

S
(t

) a = 0.010, b = 0.100
a = 0.050, b = 0.100
a = 0.005, b = 0.010

(c) Gompertz

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (t)

P
ro

ba
bi

lit
y

of
 s

ur
vi

va
l,

S
(t

) a = 1.0, b = 2.0
a = 0.1, b = 1.0
a = 0.5, b = 0.5

(d) Log-Logistic

Figure 15.4 Examples of (parametric) survival functions

change over time. Plotting parametric survival or hazard functions requires first building a (para-
metric) model, which we’ll do in Section 15.3.

15.3 Modelling survival data

Modelling survival data generally means modelling failure times using regression models. This
allows us to model the effect of covariates on the failure time. The most common models for survival
data are proportional hazard (PH) models in medical applications, while accelerated failure time
(AFT) models are more common in other applications (e.g. in engineering).
Proportional hazard models model the hazard function and take the form

h(t|xi) = h0(t)exp(𝛽0 + 𝛽1xi1 + · · · + 𝛽pxip) = h0(t)exp(xT
i 𝛽). (15.1)

The function h0(t) describes the baseline hazard of failure for all individuals and in particular is
not dependent on the covariates (think of this as setting all covariates equal to zero). Our specific
choice of model will dictate the form of h0(t). The remaining term may or may not have an intercept,

�

� �

�

656 THE R BOOK

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Time (t) Time (t)

Time (t) Time (t)

H
az

ar
d,

 h
(t

)

a = 1.00
a = 0.10
a = 0.01

(a) Exponential

0 20 40 60 80 100

0
50

10
0

15
0

20
0

H
az

ar
d,

 h
(t

)

a = 1.0, b = 2.0
a = 0.1, b = 2.0
a = 0.1, b = 3.0

(b) Weibull

0 20 40 60 80 100

0
50

10
0

15
0

20
0

H
az

ar
d,

 h
(t

)

a = 0.010, b = 0.100
a = 0.050, b = 0.100
a = 0.005, b = 0.010

(c) Gompertz

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H
az

ar
d,

 h
(t

)

a = 1.0, b = 2.0
a = 0.1, b = 1.0
a = 0.5, b = 0.5

(d) Log-Logistic

Figure 15.5 Examples of (parametric) hazard functions

again depending on our choice of model. Notice that the covariates (and indeed the regression
coefficients) are fixed and do not vary with time in this set-up.

The term ‘proportional hazard’ comes from the idea that changing the covariates x𝟏 to x𝟐 results
in a new hazard function h(t|x𝟐) that is proportional to the original hazard function h(t|x𝟏). That is,
the ratio of these two hazards is constant over t, see Box 15.1 for details. This is shown graphically
by the blue line in Figure 15.6.

Box 15.1: Proportional hazards

We can see that under the model in equation (15.1), the ratio of two hazard functions using the
sets of covariates x𝟏 and x𝟐 is

h(t|x𝟐)
h(t|x𝟏)

=
h0(t)exp(xT

𝟐𝜷)

h0(t)exp(xT
𝟐𝜷)

=
exp(xT

𝟐𝜷)

exp(xT
𝟏𝜷)

.

That is, a constant, thereby the hazards are said to be proportional.

�

� �

�

SURVIVAL ANALYSIS 657

0 10 20 30 40 50

0
2

4
6

8

Time (t)

H
az

ar
d

or
 h

az
ar

d
ra

tio

h (t | x1)
h (t | x2)
h (t | x2) / h (t | x1)

Figure 15.6 Hazard functions (or ratios) over time

Accelerated failure time models consider the time to event, T, and are usually written in the form

log Ti = 𝛼0 + 𝛼1xi1 + · · · + 𝛼pxip + 𝜎𝜖i , (15.2)

for which we choose a particular distribution for 𝜖i, where for some distributions, a scalar 𝜎 is
required. It is perhaps easier to see the similarities and differences between the PH and AFT models
if we re-write equation (15.2) in terms of the hazard function. This gives

h(t|xi) = h0(t exp(−xT
i 𝛼))exp(−xT

i 𝛼). (15.3)

These model classes are not mutually exclusive. Some models are both PH and AFT models.
We’ll start by looking at the most common PH model, the Cox proportional hazard model in

Section 15.3.2, which is the most common model in medicine. AFT models are then discussed in
Section 15.3.3. But before doing this, let us take a look at another survival data set which we’ll use
for building models. This time we have two possible covariates to consider, unlike our cancer data
set which had only one.

15.3.1 The data

We’ll apply these techniques on the roaches data set. This contains three groups of insects
(labelled A, B, and C), their weight, and time until death. Our aim is to understand the impact of
insect group and weight on the insects’ survival time.

roaches <- read.table ("roaches.txt", header = TRUE)
attach (roaches)
summary (roaches)

death status weight group
Min. : 1.00 Min. :0.0000 Min. : 0.055 A:50
1st Qu.: 1.00 1st Qu.:1.0000 1st Qu.: 2.459 B:50
Median : 7.00 Median :1.0000 Median : 6.316 C:50
Mean :15.17 Mean :0.8667 Mean : 9.390
3rd Qu.:21.00 3rd Qu.:1.0000 3rd Qu.:11.955
Max. :50.00 Max. :1.0000 Max. :42.090

�

� �

�

658 THE R BOOK

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

ba
bi

lit
y

of
 s

ur
vi

va
l

A
B
C

Figure 15.7 Kaplan–Meier survival for the three groups of insects

First, we plot the Kaplan–Meier curves of the three groups, which is displayed in Figure 15.7.
There are clearly big differences between the death rates in the three groups. The crosses + at
the end of the survivorship curves for groups A and B indicate that there was censoring in these
groups (not all of the individuals were dead at the end of the experiment). We’ve not consid-
ered the covariate weight yet, which we’ll do in the following sections, first using a Cox pro-
portional hazard model in Section 15.3.2 and then using an accelerated failure time model in
Section 15.3.3.

15.3.2 The Cox proportional hazard model

This is the most widely used regression model for survival data, which has the same basic form as
that in equation (15.1). The Cox proportional hazard model doesn’t assume a specific form for the
baseline hazard, h0(t). These models are therefore known as semi-parametric models (we still
make parametric assumptions on how the covariates act upon failure times, but not on the baseline
hazard, hence semi-parametric). Usually, our main interest is in understanding how the covariates
impact failure times, and not on the baseline hazard, which may explain the popularity of this class
of models.

We can use the function coxph () to fit a Cox proportional hazard model to our roaches
data.

�

� �

�

SURVIVAL ANALYSIS 659

roach_model_ph1 <- coxph (Surv (death, status) ~ weight + group)
summary (roach_model_ph1)

Call:
coxph(formula = Surv(death, status) ~ weight + group)

n= 150, number of events= 130

coef exp(coef) se(coef) z Pr(>|z|)
weight 0.007425 1.007453 0.009953 0.746 0.4557
groupB 0.507645 1.661374 0.237918 2.134 0.0329 *
groupC 0.967882 2.632362 0.233350 4.148 3.36e-05 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

exp(coef) exp(-coef) lower.95 upper.95
weight 1.007 0.9926 0.988 1.027
groupB 1.661 0.6019 1.042 2.648
groupC 2.632 0.3799 1.666 4.159

Concordance= 0.608 (se = 0.03)
Likelihood ratio test= 21.09 on 3 df, p=1e-04
Wald test = 20.54 on 3 df, p=1e-04
Score (logrank) test = 21.69 on 3 df, p=8e-05

The output gives us both the estimated regression coefficients, coef, the exponentiated coeffi-
cients, exp(coef), together with other information relating to the coefficients (hypothesis tests
and the upper and lower bound of the 95% confidence interval). The final part of the output gives
a popular measure of goodness-of-fit of the model (Concordance), together with three hypothesis
tests for the model overall (the likelihood ratio, Wald, and Score (logrank) tests). The concordance
gives the proportion of all pairs of observations for which the predicted survival times of a pair are in
the same order as was observed. That is if the pair in question is observations 1 and 2, and the death
time of observation 1 is larger than for observation 2, then the pair is concordant if the predicted sur-
vival time of observation 1 is also larger than that for observation 2. The following three hypothesis
tests compare the model with removing all covariates: it asks whether a model with no predictors is
(almost) as good as our model. If we get a large p-value here, we are in trouble: it tells us that the
covariates aren’t really doing anything to explain survival time. All three tests listed here are asymp-
totically equivalent, meaning as the sample size grows, the p-values they produce will coincide.

Note that weight doesn’t appear to be particularly influential, so we remove this covariate. The
resulting model is

roach_model_ph2 <- coxph (Surv (death, status) ~ group)
summary (roach_model_ph2)

Call:
coxph(formula = Surv(death, status) ~ group)

n= 150, number of events= 130

coef exp(coef) se(coef) z Pr(>|z|)

�

� �

�

660 THE R BOOK

groupB 0.5607 1.7520 0.2257 2.485 0.013 *
groupC 1.0084 2.7412 0.2263 4.456 8.33e-06 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

exp(coef) exp(-coef) lower.95 upper.95
groupB 1.752 0.5708 1.126 2.727
groupC 2.741 0.3648 1.759 4.271

Concordance= 0.607 (se = 0.027)
Likelihood ratio test= 20.55 on 2 df, p=3e-05
Wald test = 19.86 on 2 df, p=5e-05
Score (logrank) test = 20.98 on 2 df, p=3e-05

Notice here that no information is given about the baseline hazard. This is treated almost like a
nuisance parameter, and only information relating to the covariates is presented. To this end, our
estimated hazard is of the form

h(t|xi) = h0(t)exp(0.56 × groupBi + 1.01 × groupCi)

Evidently, insects in group A lived longer than those in either group B or C (positive regression
coefficients): the hazard of death for those from groups B or C is higher than that for A.

Although we’ve fitted a proportional hazards model, and not made assumptions about the form of
the baseline hazard, we should check whether proportional hazards are a reasonable assumption.
The function cox.zph () allows us to do this and obtain both formal hypothesis tests and graphical
displays for this purpose.

roach_ph <- cox.zph (roach_model_ph2)
print (roach_ph)

chisq df p
group 1.82 2 0.4
GLOBAL 1.82 2 0.4

plot (roach_ph)

The p-values we see check the covariates individually, as well as a global check of the PH assump-
tion. As the null hypothesis is that the hazards are proportional, the p-values here give us no cause
for concern. The plots in Figure 15.8 look at a particular type of residual (specifically the Schoenfeld
residuals) against time. Given that we are assuming proportional hazards, the regression coeffi-
cients should be constant over time, and so the solid black line should be (close to) horizontal.
When this is not the case, proportional hazards is a dubious assumption to make. Here, it doesn’t
seem too bad an assumption. Of course, no such plot with real data will ever give us totally horizontal
lines so this is a judgement call (the p-values help here!).

15.3.3 Accelerated failure time models

Unlike the (semi-parametric) Cox proportional hazard model, AFT models are parametric: they
make assumptions about the form of the baseline hazard and how the covariates impact the survival

�

� �

�

SURVIVAL ANALYSIS 661

Time

B
et

a(
t)

 fo
r

gr
ou

p

1.2 1.6 2 3.6 6 11 18 31

−
2

0
2

4

●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●●●

●●●●●

●●

●

●

●●● ●●●●●

●●●●

●

●●

●●

●

●●●

●●

●

●●

●

●

●

●

●●●●

●

●

●●

● ●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●●●

●●●

●

●●

●

Figure 15.8 Graphic check of PH assumption

time. Just as we had to ensure that the proportional hazard assumption was reasonable in Section
15.3.2, here it is likely that we’ll need to try a range of distributions to see which fits the data best.

That AFT models in equation (15.2) can be fit using the survreg () command for which we
need to specify the distribution to be used. Distributional options include Exponential, Weibull, Gaus-
sian, Logistic, log-Normal, and log-Logistic. We’ll consider the Exponential and Weibull options for
our roaches data.

The exponential model, which assumes that T has an Exponential distribution, is actually one
of the simplest AFT models. Here, 𝜎 = 1 in equation (15.2), and recall that under this assumption,
the (baseline) hazard is constant (see Table 15.1) which we can write as, say, exp(−𝛼0) so that the
notation is consistent with that in equation (15.2). Rewriting the exponential AFT model in terms of
the hazard function, as we did in equation (15.3):

h(t|xi) = exp(−𝛼0 − 𝛼1xi1 − · · · − 𝛼pxip) .

Notice that this model automatically satisfies the PH assumption and could be called an ‘exponential
proportional hazards model’. So that it is of the same form as in equation (15.1), we take 𝛽j = −𝛼j:
this proportional hazards model is a re-parameterisation of the AFT model.

Fitting the exponential AFT model in R, we get the following:

roach_model_exp1 <- survreg (Surv (death, status) ~ weight + group,
dist = "exponential")

summary (roach_model_exp1)

Call:
survreg(formula = Surv(death, status) ~ weight + group, dist = "exponential")

Value Std. Error z p
(Intercept) 3.51541 0.17340 20.27 < 2e-16
weight -0.01002 0.00993 -1.01 0.31
groupB -0.60456 0.23564 -2.57 0.01
groupC -1.32170 0.22889 -5.77 7.7e-09

Scale fixed at 1

�

� �

�

662 THE R BOOK

Exponential distribution
Loglik(model)= -481.5 Loglik(intercept only)= -502.1
Chisq= 41.35 on 3 degrees of freedom, p= 5.5e-09
Number of Newton-Raphson Iterations: 5
n= 150

The output tells us that the model with both covariates is better than a model with neither covariate
included (the p-value for this likelihood ratio test is given in the Chisq line of the output). The
estimates are for the AFT model, but we can easily translate these so that they are for the PH
model as above. We see that with an increase in weight comes a slight decrease in survival (small
negative regression coefficient), and that Groups B and C have shorter survival time compared to
the reference group A (again, negative coefficients). The Scale fixed at 1 comment refers to
𝜎 = 1 in equation (15.2). Allowing 𝜎 to deviate from one gives us the Weibull distribution, so it makes
sense to try that next.

Like the exponential model, the Weibull AFT model also satisfies the PH assumption, but these
are the only two distributions to have this property. The connection between the estimates that
survreg () give and the proportional hazards parameterisation of the model is a little more
involved this time; we won’t go into detail here.

roach_model_wei1 <- survreg (Surv (death, status) ~ weight + group)
summary (roach_model_wei1)

Call:
survreg(formula = Surv(death, status) ~ weight + group)

Value Std. Error z p
(Intercept) 3.5149 0.2370 14.83 < 2e-16
weight -0.0115 0.0135 -0.85 0.395
groupB -0.7401 0.3248 -2.28 0.023
groupC -1.4701 0.3129 -4.70 2.6e-06
Log(scale) 0.3119 0.0704 4.43 9.4e-06

Scale= 1.37

Weibull distribution
Loglik(model)= -470.1 Loglik(intercept only)= -483.3
Chisq= 26.34 on 3 degrees of freedom, p= 8.1e-06
Number of Newton-Raphson Iterations: 5
n= 150

The fact that the scale parameter is greater than 1 indicates that the risk of death increases with time
in this case (which makes sense given the context). Is the scale parameter significantly different
from one? This would imply that the Weibull is superior to the exponential model which fixes 𝜎 =
1. The output indicates that it is: a hypothesis test for the logarithm of the scale being zero is
given – equivalent to testing whether the 𝜎 = 1 – gives a very small p-value. We conclude that the
Weibull roach_model_wei1 is superior to the exponential so we continue with it.

�

� �

�

SURVIVAL ANALYSIS 663

Furthermore, there is no evidence that the regression coefficient of weight is not zero; therefore,
we remove this covariate. The resulting model is

roach_model_wei2 <- survreg (Surv (death, status) ~ group)
summary (roach_model_wei2)

Call:
survreg(formula = Surv(death, status) ~ group)

Value Std. Error z p
(Intercept) 3.4593 0.2283 15.15 < 2e-16
groupB -0.8222 0.3097 -2.65 0.0079
groupC -1.5403 0.3016 -5.11 3.3e-07
Log(scale) 0.3145 0.0705 4.46 8.1e-06

Scale= 1.37

Weibull distribution
Loglik(model)= -470.5 Loglik(intercept only)= -483.3
Chisq= 25.63 on 2 degrees of freedom, p= 2.7e-06
Number of Newton-Raphson Iterations: 5
n= 150

It is clear that groups B and C are significantly different to group A in terms of their survival. Using
the model, the predicted mean ages at death are given, along with the mean ages of insects that
actually died and the ages when insects were last seen (dead or alive):

#Prediction of mean age at death, roach_model_wei2, for each group
tapply (predict (roach_model_wei2), group, mean)

A B C
31.796137 13.972647 6.814384

#Mean age at death for each group, using only death (non-censored) times
tapply (death [status == 1], group [status == 1], mean)

A B C
12.611111 9.568182 8.020000

#Mean age at death/censoring for each group
tapply (death, group, mean)

A B C
23.08 14.42 8.02

The predicted ages at death are substantially greater than the observed ages at last sighting.
This is not surprising: an observation that is censored at time t, say, is still alive and so the
model incorporates a prediction for how long the individual will remain alive after being censored.
This means that when we have lots of censoring, predictions of time to death will potentially be

�

� �

�

664 THE R BOOK

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

ba
bi

lit
y

of
 s

ur
vi

va
l A

B
C

Figure 15.9 Parametric survival functions superimposed on the Kaplan–Meier estimate for the three groups
of insects

significantly larger than the sample mean time to death suggests. We can plot the parametric
survival functions using the Weibull AFT for the roaches data using the following code, the result
of which is in Figure 15.9.

plot (roach_group, ylab = "Probability of survival", xlab = "Time", mark.time = TRUE,
col=hue_pal ()(3)[1:3])

legend ("topright", legend=c("A", "B", "C"), fill = hue_pal ()(3)[1:3], bty = "n")
lines (predict (roach_model_wei2, newdata = list (group = "A"), type="quantile",

p = seq (0.01, 0.99, by = 0.01)), seq (0.99, 0.01, by = -0.01),
col = hue_pal ()(3)[1])

lines (predict (roach_model_wei2, newdata = list (group = "B"), type = "quantile",
p = seq (0.01, 0.99, by = 0.01)), seq (0.99, 0.01, by = -0.01),

col = hue_pal ()(3)[2])
lines (predict (roach_model_wei2, newdata = list (group = "C"), type = "quantile",

p = seq (0.01, 0.99, by = 0.01)), seq (0.99, 0.01, by = -0.01),
col = hue_pal ()(3)[3])

detach (roaches)

While fitting a parametric model is very easy, we might consider which distribution to choose.
Choosing between an Exponential and a Weibull is easy as we saw above, but what if we also
want to consider other distributions? In some fields, there are specific distributions that are known
to describe events well, while in others, it is a case of trial-and-error to find a distribution. One
straightforward way of doing this is by plotting the survival function from the model on top of a
(non-parametric) Kaplan–Meier curve. If these match pretty well then it is not unreasonable to think
that the model is doing a pretty good job at describing the data. The parametric survival functions
using the Weibull AFT for the roaches data, given in Figure 15.9, shows a pretty good fit with the
Kaplan–Meier estimate.

This approach only works with categorical covariates, of course; that is, when the covariates
separate the survival data into groups. Other approaches include looking at the AIC for the model,
which can be accessed using the extractAIC () function.

�

� �

�

SURVIVAL ANALYSIS 665

15.3.4 Cox proportional hazard or a parametric model?

In cases where we have censoring, or where we want to use a more complex error structure,
we need to choose between a parametric model, fitted using survreg (), and a non-parametric
model, fitted using coxph (). If we want to use the model for prediction, then there is no choice: we
must use the parametric survreg () because coxph () does not extrapolate beyond the last
observation. Traditionally, medical studies use a Cox model, while engineering studies use AFT
models, but both disciplines could fruitfully use either technique depending on the nature of the
data and the precise question being asked. Here is a typical question addressed with a Cox model:
‘How much does the risk of dying decrease if a new drug treatment is given to a patient?’ In contrast,
parametric techniques are typically used for questions like this: ‘What proportion of patients will die
in 2 years based on data from an experiment that ran for just 4 months?’

References

Fleming, T. R., & Harrington, D. P. (2011). Counting processes and survival analysis. John Wiley & Sons.
Kalbfleisch, J. D., & Prentice, R. L. (2002). The statistical analysis of failure time data (Second). John Wiley &

Sons.
Miller, R. G., Gong, G., & Alvaro, M. (1998). Survival analysis. John Wiley & Sons.
Therneau, T. M., & Grambsch, P. M. (2000). Modeling survival data: extending the Cox model. Springer.

�

� �

�

�

� �

�

16
Designed Experiments

There are a number of analyses using R that commonly arise when we design our own study or
experiment and those that are not covered in the other modelling chapters are included here. They
can be used for observational studies, etc., but, typically, they work most effectively where we have
control over the process that is being analysed. A good introduction to and discussion of the design
and analysis of experiments can be found in Cox and Reid, 2000. In this chapter, we will assume
that we have the data and want to draw every last ounce/gram/grain of information from them.

16.1 Factorial experiments

A factorial experiment is a designed experiment where all the covariates are categorical, usually
each having a small number of levels, and the outcome is usually continuous. The experiment is
usually carried out for each combination of factor levels. If each combination is repeated, then we
have replicates. For instance, we might be interested in the volume of a loaf of bread where we
have low and high levels of both yeast and flour together with a proving time, where the mixture
rests and expands, of 20 and 40 minutes. Although the final explanatory variable is numerical, it
takes only two values and so we shall consider it as categorical. There are eight combinations of
the three factors and as each has two levels this is known as a 23 experiment. There are also eight
terms in a saturated model (i.e. with all the interactions), and in order to add an understanding of
variation in our model estimates, replicates are necessary. We would want to test each of the eight
combinations and if we did that three times for each combination we would have 3 replicates and
24 experimental runs.

Our example comes from a farm-scale trial of animal diets. There are two factors: diet and
supplement. Diet is a factor with three levels: barley, oats, and wheat. Supplement is a factor
with four levels: control, agrimore, supergain, and supersupp. The response variable is
weight gain after six weeks, and there are four replicates so 3 × 4 × 4 = 48 runs in total.

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

668 THE R BOOK

growth <- read.table ("growth.txt", header = T,
colClasses = list (diet = "factor", supplement = "factor"))

head (growth)

supplement diet gain
1 supergain wheat 17.37125
2 supergain wheat 16.81489
3 supergain wheat 18.08184
4 supergain wheat 15.78175
5 control wheat 17.70656
6 control wheat 18.22717

Data inspection is carried out using barplot (.., beside = T, ...) to get the bars in adja-
cent clusters rather than vertical stacks, and this gives Figure 16.1:

attach (growth)
barplot (tapply (gain, list (diet, supplement), mean),

beside = T, col = hue_pal ()(3), ylim = c (0, 30))
legend (6.2, 30, legend = c ("barley", "oats", "wheat"), fill = hue_pal ()(3))

detach (growth)

Note that the second factor in the list (supplement) appears as groups of bars from left to right in
alphabetical order by factor level, from agrimore to supersupp. The first factor (diet) appears
as three levels within each group of bars, again in alphabetical order by factor level. We need a key
to explain the levels of diet, and we have increased the default scale on the y-axis to make enough
room for the legend box. It is worth remembering that to find the numerical value on the x-axis for
plotting a barplot () legend, we can run the plot without any output:

Agrimore Control Supergain Supersupp

0
5

10
15

20
25

30

Barley
Oats
Wheat

Figure 16.1 Initial factor analysis for growth

�

� �

�

DESIGNED EXPERIMENTS 669

attach (growth)
barplot (tapply (gain, list (diet, supplement), mean),

beside = T, plot = F)

[,1] [,2] [,3] [,4]
[1,] 1.5 5.5 9.5 13.5
[2,] 2.5 6.5 10.5 14.5
[3,] 3.5 7.5 11.5 15.5

detach (growth)

The values given are the location of the start of the bars on the x-axis, and we have chosen to
position the legend just after the third bar in the control set.

There certainly appears to be a difference in gain due to diet, but the effects due to sup-
plement and any interactions are less clear. We can inspect the mean values that have been
plotted:

attach (growth)
tapply (gain, list (diet, supplement), mean)

agrimore control supergain supersupp
barley 26.34848 23.29665 22.46612 25.57530
oats 23.29838 20.49366 19.66300 21.86023
wheat 19.63907 17.40552 17.01243 19.66834

detach (growth)

Then we use aov () or lm () to fit a factorial analysis of variance (the choice affects only whether
we get an ANOVA table or a list of parameters estimates as the default output from summary), as
we would with any model. We can create a linear model and then summarise it in either form:

growth_mod1 <- lm (gain ~ diet * supplement, data = growth)
summary (aov (growth_mod1))

Df Sum Sq Mean Sq F value Pr(>F)
diet 2 287.17 143.59 83.52 3.00e-14 ***
supplement 3 91.88 30.63 17.82 2.95e-07 ***
diet:supplement 6 3.41 0.57 0.33 0.917
Residuals 36 61.89 1.72

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

summary (growth_mod1)

Call:
lm(formula = gain ~ diet * supplement, data = growth)

Residuals:

�

� �

�

670 THE R BOOK

Min 1Q Median 3Q Max
-2.48756 -1.00368 -0.07452 1.03496 2.68069

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.3485 0.6556 40.191 < 2e-16 ***
dietoats -3.0501 0.9271 -3.290 0.002248 **
dietwheat -6.7094 0.9271 -7.237 1.61e-08 ***
supplementcontrol -3.0518 0.9271 -3.292 0.002237 **
supplementsupergain -3.8824 0.9271 -4.187 0.000174 ***
supplementsupersupp -0.7732 0.9271 -0.834 0.409816
dietoats:supplementcontrol 0.2471 1.3112 0.188 0.851571
dietwheat:supplementcontrol 0.8183 1.3112 0.624 0.536512
dietoats:supplementsupergain 0.2470 1.3112 0.188 0.851652
dietwheat:supplementsupergain 1.2557 1.3112 0.958 0.344601
dietoats:supplementsupersupp -0.6650 1.3112 -0.507 0.615135
dietwheat:supplementsupersupp 0.8024 1.3112 0.612 0.544381

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.311 on 36 degrees of freedom
Multiple R-squared: 0.8607,Adjusted R-squared: 0.8182
F-statistic: 20.22 on 11 and 36 DF, p-value: 3.295e-12

This is a rather complex model, because there are 12 estimated parameters (the number of rows in
the linear model table): the intercept, five main effects and six interactions. The parameter labelled
Intercept is the overall mean with both factor levels set to their first in the alphabet (diet =
barley and supplement = agrimore). The remaining lines are the differences between the
parameters in those lines and those in the intercept. The aov () output is shorter and suggests
that, overall, the interaction does not appear to be important. The lm () output has large p-values
for all interaction combinations and, in fact, suggests that there is little difference between agri-
more and supersupp, which the barplot seems to bear out. Also, if we look carefully at the table
of means, we can see that the effect sizes of two of the supplements, control and supergain
are not very different from one another in any of the three rows, but this has not been highlighted
in the output as neither is in the intercept, which just compares their differences with agrimore.
This means that we cannot just count up the number of rows with stars in order to determine the
number of factor levels that show differences.

Next, we might simplify the model by leaving out the interaction term:

growth_mod2 <- lm (gain ~ diet + supplement, data = growth)
summary (growth_mod2)

Call:
lm(formula = gain ~ diet + supplement, data = growth)

Residuals:
Min 1Q Median 3Q Max

-2.30792 -0.85929 -0.07713 0.92052 2.90615

�

� �

�

DESIGNED EXPERIMENTS 671

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.1230 0.4408 59.258 < 2e-16 ***
dietoats -3.0928 0.4408 -7.016 1.38e-08 ***
dietwheat -5.9903 0.4408 -13.589 < 2e-16 ***
supplementcontrol -2.6967 0.5090 -5.298 4.03e-06 ***
supplementsupergain -3.3815 0.5090 -6.643 4.72e-08 ***
supplementsupersupp -0.7274 0.5090 -1.429 0.16

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.247 on 42 degrees of freedom
Multiple R-squared: 0.8531,Adjusted R-squared: 0.8356
F-statistic: 48.76 on 5 and 42 DF, p-value: < 2.2e-16

It is clear that we need to retain all three levels of diet, but it is not clear that we need four levels of
supplement: supersupp is not obviously different from agrimore (from the p-value and barplot).
We have already discussed that supergain is not obviously different from the control group.
We shall try a new two-level factor to replace the four-level supplement, and see if this reduces the
model’s explanatory power: agrimore and supersupp are recoded as best and control and
supergain as worst, using their numerical position in the default alphabetical order:

supp_new <- growth$supplement
levels (supp_new)

[1] "agrimore" "control" "supergain" "supersupp"

levels (supp_new)[c(1,4)] <- "best"
levels (supp_new)[c(2,3)] <- "worst"
levels (supp_new)

[1] "best" "worst"

growth <- cbind (growth, supp_new)

And now we can compare the models:

growth_mod3 <- lm (gain ~ diet + supp_new, data = growth)
anova (growth_mod3, growth_mod2)

Analysis of Variance Table

Model 1: gain ~ diet + supp_new
Model 2: gain ~ diet + supplement

Res.Df RSS Df Sum of Sq F Pr(>F)
1 44 71.284
2 42 65.296 2 5.9876 1.9257 0.1584

�

� �

�

672 THE R BOOK

The new model has saved 2 degrees of freedom, and there is no justification for the more complex
original model. Our final model is thus:

summary (growth_mod3)

Call:
lm(formula = gain ~ diet + supp_new, data = growth)

Residuals:
Min 1Q Median 3Q Max

-2.6716 -0.9432 -0.1918 0.9293 3.2698

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.7593 0.3674 70.106 < 2e-16 ***
dietoats -3.0928 0.4500 -6.873 1.76e-08 ***
dietwheat -5.9903 0.4500 -13.311 < 2e-16 ***
supp_newworst -2.6754 0.3674 -7.281 4.43e-09 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.273 on 44 degrees of freedom
Multiple R-squared: 0.8396,Adjusted R-squared: 0.8286
F-statistic: 76.76 on 3 and 44 DF, p-value: < 2.2e-16

16.1.1 Expanding data

There is a useful function for generating all the different combinations of factor levels. Suppose
we have three variables: height with five levels between 60 and 80 in steps of 5, weight with
five levels between 100 and 300 in steps of 50, and two genderss. Then we have 5 × 5 × 2 = 50
observations:

expanded_factors <- expand.grid (height = seq (60, 80, 5),
weight = seq (100, 300, 50),
sex = c ("Male", "Female"))

head (expanded_factors)

height weight sex
1 60 100 Male
2 65 100 Male
3 70 100 Male
4 75 100 Male
5 80 100 Male
6 60 150 Male

tail (expanded_factors)

�

� �

�

DESIGNED EXPERIMENTS 673

height weight sex
45 80 250 Female
46 60 300 Female
47 65 300 Female
48 70 300 Female
49 75 300 Female
50 80 300 Female

16.2 Pseudo-replication

Pseudo-replication is where the sample size (and thus the number of degrees of freedom available
for testing) is incorrectly stated as being too high. It typically arises in

• nested sampling, when repeated measurements are taken from the same individual, or observa-
tional studies are conducted at several different spatial scales (mostly random effects); or

• split-plot analysis, when designed experiments have different treatments applied to plots of dif-
ferent sizes (mostly fixed effects).

We will look at an example of the latter. A discussion of fixed and random effects can be found in
Section 13.2.

16.2.1 Split-plot effects

In a split-plot experiment, different treatments are applied to plots of different sizes. Each different
plot size is associated with its own error variance, so instead of having one error variance (as in all
the ANOVA tables up to this point), we have as many error terms as there are different plot sizes.
The analysis is presented as a series of component ANOVA tables, one for each plot size, in a
hierarchy from the largest plot size with the lowest replication at the top, down to the smallest plot
size with the greatest replication at the bottom. The following example refers to a designed field
experiment on crop yield with three treatments: irrigation (with two levels, irrigated or not),
sowing density (with three levels, low, medium, and high), and fertiliser application (with
three levels).

splityield <- read.table ("splityield.txt", header = T)
head (splityield)

yield block irrigation density fertiliser
1 90 A control low N
2 95 A control low P
3 107 A control low NP
4 92 A control medium N
5 89 A control medium P
6 92 A control medium NP

The largest plots were the four whole fields (block), each of which was split in half, and irrigation
was allocated at random to one half of the field. Each irrigation plot was split into three, and one

�

� �

�

674 THE R BOOK

of three different seed-sowing densities was allocated at random (independently for each level of
irrigation and each block). Finally, each density plot was divided into three, and one of three fertiliser
nutrient treatments (N, P, or N and P together) was allocated at random.

The problem here is pseudo-replication. There are four blocks, each split in half, with one half irri-
gated and the other as a control. The dataframe for an analysis of this experiment should therefore
contain just 8 rows (not 72 rows as in the present case). There should be seven degrees of freedom
in total, three for blocks, one for irrigation and just 7 − 3 − 1 = 3 d.f. for error. The danger is that the
model could be run as if it had 72 independent trials representing massive pseudo-replication.

The model is specified as a factorial experiment, using the asterisk notation. The error structure
is defined in the Error () term, with the plot sizes listed from left to right, from largest to smallest,
with each variable separated by the slash operator. Note that the smallest plot size, fertiliser,
does not need to appear in the Error term:

splityield_mod1 <- aov (yield ~ irrigation * density * fertilizer +
Error (block/irrigation/density), data = splityield)

summary (splityield_mod1)

Error: block
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 3 194.4 64.81

Error: block:irrigation
Df Sum Sq Mean Sq F value Pr(>F)

irrigation 1 8278 8278 17.59 0.0247 *
Residuals 3 1412 471

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Error: block:irrigation:density
Df Sum Sq Mean Sq F value Pr(>F)

density 2 1758 879.2 3.784 0.0532.
irrigation:density 2 2747 1373.5 5.912 0.0163 *
Residuals 12 2788 232.3

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

fertiliser 2 1977.4 988.7 11.449 0.000142 ***
irrigation:fertiliser 2 953.4 476.7 5.520 0.008108 **
density:fertiliser 4 304.9 76.2 0.883 0.484053
irrigation:density:fertiliser 4 234.7 58.7 0.680 0.610667
Residuals 36 3108.8 86.4

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Here we see the four ANOVA tables, one for each plot size: blocks are the biggest plots, half blocks
get the irrigation treatment, one-third of each half block gets a sowing density treatment,
and one-third of a sowing density treatment gets each fertiliser treatment. Note that although
main effect for density has a large p-value, it appears in an interaction with irrigation that we

�

� �

�

DESIGNED EXPERIMENTS 675

90
95

10
0

10
5

11
0

11
5

12
0

Fertilizer

M
ea

n
of

 y
ie

ld

N NP P

 Irrigation

Irrigated
Control

(a) Fertilizer:irrigation
90

10
0

11
0

12
0

Density

M
ea

n
of

 y
ie

ld

High Low Medium

 Irrigation

Irrigated
Control

(b) Density:irrigation

Figure 16.2 Interactions plots for splityield

would like to keep and so we will retain it. The best way to understand the two interesting interaction
terms is to plot them using interaction.plot () like this, as shown in Figure 16.2:

attach (splityield)
interaction.plot (fertilizer, irrigation, yield, col = hue_pal ()(4)[1:2])
interaction.plot (density, irrigation, yield, col = hue_pal ()(4)[3:4])
detach (splityield)

Irrigation increases yield proportionately more on the N-fertilised plots than on the P-fertilised plots.
On the irrigated plots, yield is lowest on the low-density plots, but on control plots yield is lowest on
the high-density plots.

When there are one or more missing values (NA), then factors have effects in more than one
stratum and the same main effect turns up in more than one ANOVA table. In such a case, use
lme () or lmer () rather than aov (). The output of aov () is not to be trusted under these
circumstances.

16.2.2 Removing pseudo-replication

This section includes reference to fixed and random effects which are defined in Section 13.2.
If we are principally interested in fixed effects in a model, then the best response to

pseudo-replication in a data set is simply to eliminate it. Spatial pseudo-replication can be
averaged away. We will always get the correct effect size and p-value from the reduced,
non-pseudo-replicated dataframe. Note also that we should not use anova to compare different
models for the fixed effects when using lme or lmer with REML (see Section 13.4.3). Temporal
pseudo-replication can be dealt with by carrying out carrying out separate ANOVAs, one at each

�

� �

�

676 THE R BOOK

time (or just one at the end of the experiment). This elimination approach, however, has two
weaknesses:

• it cannot address questions about treatment effects that relate to the longitudinal development of
the mean response profiles (e.g. differences in growth rates between successive times);

• inferences made with each of the separate analyses are not independent, and it is not always
clear how they should be combined.

The key feature of longitudinal data is that the same individuals are measured repeatedly through
time. This would represent temporal pseudo-replication if the data were used uncritically in regres-
sion or ANOVA. The set of observations on one individual subject will tend to be positively corre-
lated, and this correlation needs to be taken into account in carrying out the analysis. The alternative
is a cross-sectional study, with all the data gathered at a single point in time, in which each individ-
ual contributes a single data point. The advantage of longitudinal studies is that they are capable
of separating age effects from cohort effects; these are inextricably confounded in cross-sectional
studies. This is particularly important when differences between years mean that cohorts originat-
ing at different times experience different conditions so that individuals of the same age in different
cohorts would be expected to differ.

There are two extreme cases in longitudinal studies:

• a few measurements on a large number of individuals;

• a large number of measurements on a few individuals.

In the first case, it is difficult to fit an accurate model for change within individuals, but treatment
effects are likely to be tested effectively. In the second case, it is possible to get an accurate model
of the way that individuals change though time, but there is less power for testing the significance
of treatment effects, especially if variation from individual to individual is large. In the first case, less
attention will be paid to estimating the correlation structure, while in the second case, the covariance
model will be the principal focus of attention. The aims are the following:

• to estimate the average time course of a process;

• to characterise the degree of heterogeneity from individual to individual in the rate of the process;

• to identify the factors associated with both of these, including possible cohort effects.

The response is not the individual measurement, but the sequence of measurements on an individ-
ual subject. This enables us to distinguish between age effects and year effects; see Diggle et al.,
1994 for details.

16.2.3 Derived variable analysis

An alternative approach is to get rid of the pseudo-replication by reducing the repeated measures
into a set of summary statistics (slopes, intercepts, or means), then analyse these summary statis-
tics using standard parametric techniques such as ANOVA or regression. This technique is weak
when the values of the explanatory variables change through time. Derived variable analysis makes
most sense when it is based on the parameters of scientifically interpretable non-linear models from
each time sequence. However, the best model from a theoretical perspective may not be the best
model from the statistical point of view.

�

� �

�

DESIGNED EXPERIMENTS 677

There are three qualitatively different sources of random variation that might be taken into
account:

• random effects, where experimental units differ (e.g. genotype, history, size, and physiological
condition) so that there are intrinsically high responders and other low responders;

• serial correlation, where there may be time-varying stochastic variation within a unit (e.g. market
forces, physiology, ecological succession, and immunity) so that correlation depends on the time
separation of pairs of measurements on the same individual, with correlation weakening with the
passage of time;

• measurement error, where, for instance, the assay technique may introduce an element of cor-
relation (e.g. shared bioassay of closely spaced samples; different assay of later specimens).

16.3 Contrasts

Contrasts are used to compare outcome means or groups of means based on specific values for
categorical covariates, in what are known as single-degree-of-freedom comparisons. There are two
sorts of contrasts we might be interested in

• contrasts we had planned to examine at the experimental design stage (these are referred to as
a priori contrasts);

• contrasts that look interesting after we have seen the results (these are referred to as a posteriori
contrasts).

Some people are very snooty about a posteriori contrasts, on the grounds that they were unplanned:
we are not supposed to decide what comparisons to make after we have seen the analysis. There is
some sense to this, but scientists do it all the time. The key point is that we should only do contrasts
after the ANOVA has established that there really are significant differences to be investigated, and
then take account of the fact that you are carrying out multiple tests (see Section 9.5). It is not good
practice to carry out tests to compare the largest mean with the smallest mean, if the ANOVA has
failed to reject the null hypothesis (tempting though this may be).

If we have k levels of a factor, we should remember:

• there is a huge number of possible contrasts, even for relatively small k; and

• there are only k − 1 mutually orthogonal contrasts.

Two contrasts are said to be orthogonal to one another if the comparisons are statistically inde-
pendent. Technically, two contrasts are orthogonal if the products of their contrast coefficients sum
to zero (we shall see what this means in a moment).

Let us take a simple example. Suppose we have one factor with five levels, and the factor levels
are called a,b,c,d,e. Let us start writing down the possible contrasts. Obviously, we could compare
each mean singly with every other:

a × b;a × c;a × d;a × e;b × c;b × d;b × e;c × d;c × e;d × e.

But we could also compare pairs of means:

[a,b] × [c,d]; [a,b] × [c,e]; [a,b] × [cd,e]; [a,c] × [b,d]; [a,c] × [d,e], …

�

� �

�

678 THE R BOOK

or triplets of means:

[a,b,c] × d; [a,b,c] × e; [a,b,d] × c; [a,b,d] × e; [a,b,e] × c; …

or groups of four means:

[a,b,c,d] × e; [a,b,c,e] × d; [a,b,d,e] × c; [a,c,d,e] × b, [b,c,d,e] × a,

and so on. There are absolutely masses of possible contrasts. In practice, however, we should
only compare things once, either directly or implicitly. So the two contrasts a × b and a × c implicitly
contrast b × c. This means that if we have carried out the first two contrasts then the third contrast
is not an orthogonal contrast because we have already carried it out, implicitly. Which particular
contrasts are orthogonal depends very much on our choice of the first contrast to make. Suppose
there were good reasons for comparing [a,b,c,e] × d. For example, d might be the placebo and
the other four might be different kinds of drug treatment, so we make this our first contrast. Because
k − 1 = 4 we only have three possible contrasts that are orthogonal to this. There may be a priori
reasons to group [a,b] and [c,e], so we make this our second orthogonal contrast. This means that
we have no degrees of freedom in choosing the last two orthogonal contrasts: they have to be a × b
and c × e. Just remember that with orthogonal contrasts we only compare things once.

16.3.1 Contrast coefficients

Contrast coefficients are a numerical way of embodying the hypothesis we want to test. The rules
for constructing contrast coefficients are straightforward, each level of the covariate in question
getting a number:

• factor levels to be lumped together get the same sign (plus or minus);

• levels to be contrasted get the opposite sign;

• levels to be excluded get a contrast coefficient of 0;

• the contrast coefficients must add up to 0.

Suppose that with our five-level factor, {a,b,c,d,e}, we want to begin by comparing the four levels
[a,b,c,e] with the single level d. All levels enter the contrast, so none of the coefficients is 0. The
four terms a,b,c,e are grouped together, so they all get the same sign (minus, for example, although
it makes no difference which sign is chosen). They are to be compared to d, so it gets the opposite
sign (plus, in this case). The choice of what numeric values to give the contrast coefficients is not
constrained. Most people use whole numbers rather than fractions, but it really does not matter.
All that matters is that the coefficients sum to 0. The positive and negative coefficients have to add
up to the same value. In our example, comparing four means with one mean, a natural choice of
coefficients would be −1 for each of a,b,c,e, and +4 for d. Alternatively, we could select +0.25 for
each of a,b,c,e, and −1 for d.

Factor level: a b c d e
contrast 1 coefficients: −1 −1 −1 4 −1

�

� �

�

DESIGNED EXPERIMENTS 679

Similarly, suppose the second contrast is to compare [a,b] with [c,e]. Because this contrast
excludes d, we set its contrast coefficient to 0. a,b get the same sign (say, plus) and c,e get the
opposite sign. Because the number of levels on each side of the contrast is equal (2 in both cases),
we can use the name numeric value for all the coefficients. The value 1 is the most obvious choice
(but we could use 𝜋, if we wanted to be perverse):

Factor level: a b c d e
Contrast 2 coefficients: 1 1 −1 0 −1

There are only two possibilities for the remaining orthogonal contrasts, a × b and c × e:

Factor level: a b c d e
Contrast 3 coefficients: 1 −1 0 0 0
Contrast 4 coefficients: 0 0 1 0 −1

The variation in the outcome variable attributable to a particular contrast is called the contrast
sum of squares. The importance of a contrast is judged by an F-test, dividing the contrast sum of
squares by the error variance.

16.3.2 An example of contrasts using R

The following example comes from the a competition experiment, in which the biomass of control
plants is compared to the biomass of plants grown in conditions (clipping), where competition
was reduced in one of four different ways. There are two treatments in which the roots of neighbour-
ing plants were cut (to 5 or 10 cm depth) and two treatments in which the shoots of neighbouring
plants were clipped (25% or 50% of the neighbours were cut back to ground level).

comp <- read.table ("competition.txt", header = T,
colClasses = list (clipping = "factor"))

head (comp)

biomass clipping
1 551 n25
2 457 n25
3 450 n25
4 731 n25
5 499 n25
6 632 n25

attach (comp)
comp_means <- tapply (biomass, clipping, mean)
detach (comp)
comp_means

control n25 n50 r10 r5
465.1667 553.3333 569.3333 610.6667 610.5000

�

� �

�

680 THE R BOOK

We start with the one-way analysis of variance:

comp_mod1 <- aov (biomass ~ clipping, data = comp)
summary (comp_mod1)

Df Sum Sq Mean Sq F value Pr(>F)
clipping 4 85356 21339 4.302 0.00875 **
Residuals 25 124020 4961

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Clipping treatment has a clear effect on biomass. But have we fully understood the result of this
experiment? Probably not. For example, which factor levels had the biggest effect on biomass, and
were all of the competition treatments significantly different from the controls? To answer these
questions, we need to use the lm () analysis. In fact, unless we specifically need to look at the
values of sums of squares, this output is always more useful:

comp_mod1 <- lm (biomass ~ clipping, data = comp)
summary (comp_mod1)

Call:
lm(formula = biomass ~ clipping, data = comp)

Residuals:
Min 1Q Median 3Q Max

-103.333 -49.667 3.417 43.375 177.667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 28.75 16.177 9.4e-15 ***
clippingn25 88.17 40.66 2.168 0.03987 *
clippingn50 104.17 40.66 2.562 0.01683 *
clippingr10 145.50 40.66 3.578 0.00145 **
clippingr5 145.33 40.66 3.574 0.00147 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 70.43 on 25 degrees of freedom
Multiple R-squared: 0.4077,Adjusted R-squared: 0.3129
F-statistic: 4.302 on 4 and 25 DF, p-value: 0.008752

The F-statistic and consequent p-value from aov () are both present here. It looks as if all levels
of the factor are important to the model, because all five rows of the summary table have small
p-values. In fact, this is not the case. This example highlights the major shortcoming of treatment
contrasts: they do not show how many significant factor levels we need to retain in the minimal
adequate model because all of the rows are being compared with the intercept (with the controls
in this case, simply because the factor level name for control comes first in the alphabetic list of
levels).

�

� �

�

DESIGNED EXPERIMENTS 681

In this experiment, there are several planned comparisons we should like to make. The obvious
place to start is by comparing the control plants, exposed to the full rigours of competition, with
all of the other treatments. That is to say, we want to contrast the first level of clipping with the other
four levels. The contrast coefficients, therefore, would be 4, −1, −1, −1, −1. The next planned com-
parison might contrast the shoot-pruned treatments (n25 and n50) with the root-pruned treatments
(r10 and r5). Suitable contrast coefficients for this would be 0, 1, 1, −1, −1 (because we are ignor-
ing the control in this contrast). A third contrast might compare the two depths of root pruning;
0, 0, 0, 1, −1. The last orthogonal contrast would, therefore, have to compare the two intensities
of shoot pruning: 0, 1, −1, 0, 0 (in order to preserve orthogonality: see below). Because the factor
called clipping has five levels there are only 5 − 1 = 4 orthogonal contrasts. R is outstandingly
good at dealing with contrasts, and we can associate these five user-specified a priori contrasts
with the categorical variable called clipping like this:

contrasts (comp$clipping) <-
cbind (c (4, -1, -1, -1, -1),

c (0, 1, 1, -1, -1),
c (0, 0, 0, 1, -1),
c (0, 1, -1, 0, 0))

We can check that this has done what we wanted by typing:

comp$clipping[[2]]

[1] n25
attr(,"contrasts")

[,1] [,2] [,3] [,4]
control 4 0 0 0
n25 -1 1 0 1
n50 -1 1 0 -1
r10 -1 -1 1 0
r5 -1 -1 -1 0
Levels: control n25 n50 r10 r5

This produces the matrix of contrast coefficients that we specified. One contrast is contained in
each column. Note that all the columns add to zero (i.e. each set of contrast coefficients is correctly
specified). Note also that the products of any two of the columns sum to zero (this shows that all the
contrasts are orthogonal, as intended): for example, comparing contrasts 1 and 2 gives products
(4 × 0) + (−1 × 1) + (−1 × 1) + (−1 × −1) + (−1 × −1) = 0. Now, we can refit the model and inspect
the results of our specified contrasts, rather than using the default treatment contrasts:

comp_mod2 <- lm (biomass ~ clipping, data = comp)
summary (comp_mod2)

Call:
lm(formula = biomass ~ clipping, data = comp)

Residuals:
Min 1Q Median 3Q Max

-103.333 -49.667 3.417 43.375 177.667

�

� �

�

682 THE R BOOK

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 561.80000 12.85926 43.688 < 2e-16 ***
clipping1 -24.15833 6.42963 -3.757 0.000921 ***
clipping2 -24.62500 14.37708 -1.713 0.099128.
clipping3 0.08333 20.33227 0.004 0.996762
clipping4 -8.00000 20.33227 -0.393 0.697313

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 70.43 on 25 degrees of freedom
Multiple R-squared: 0.4077,Adjusted R-squared: 0.3129
F-statistic: 4.302 on 4 and 25 DF, p-value: 0.008752

Notice that comp_mod2 appears to be identical to comp_mod1. However, as we have reorganised
clipping with a different set of contrasts, the output from the two models will be different. This
analysis suggests that the only contrast we are interested in is that between the control and the
four competition treatments. All the other comparisons have relatively large p-values. When we
specify the contrasts, the intercept is the overall (grand) mean:

mean (comp$biomass)

[1] 561.8

The second row, labelled clipping1, estimates, like all contrasts, the difference between two
means. But which two means, exactly? We have already seen the means for all the different factor
levels. Thus, this first contrast compares the control mean with the mean of the other four treat-
ments. The simplest way to get this other mean is to create a new factor, c1 that has value 1 for
the controls and 2 for the rest:

c1 <- factor (1 + (comp$clipping != "control"))
tapply (comp$biomass, c1, mean)

1 2
465.1667 585.9583

The estimate reflecting the first contrast is the difference between the overall mean and the mean
of the four non-control treatments:

mean (comp$biomass) - tapply (comp$biomass,c1,mean)[2]

2
-24.15833

and we see the estimate in row 2 of summary (comp_mod2) is -24.15833. What about the second
contrast? This compares the root-pruned and shoot-pruned treatments, and c2 is a factor that lumps
together the required treatments:

�

� �

�

DESIGNED EXPERIMENTS 683

c2 <- factor (2 * (comp$clipping == "n25") + 2 * (comp$clipping == "n50") +
(comp$clipping == "r10") + (comp$clipping == "r5"))

(tapply (comp$biomass, c2, mean)[3] - tapply (comp$biomass, c2, mean)[2]) / 2

2
-24.625

So the second contrast is half the difference between the root- and shoot-pruned treatments. What
about the third contrast? This is between the two root-pruned treatments. We know their values
already from above:

(comp_means[4] - comp_means[5]) / 2

r10
0.08333333

The third contrast is half the difference between the two means. The final contrast compares the
two shoot-pruning treatments, and the contrast is half the difference between these two means:

(comp_means[2] - comp_means[3]) / 2

n25
-8

To recap:

• the first contrast compares the overall mean with the mean of the four non-control treatments;

• the second contrast is half the difference between the root and shoot-pruned treatment means;

• the third contrast is half the difference between the two root-pruned treatments; and

• the fourth contrast is half the difference between the two shoot-pruned treatments.

It is important to note that the first four standard errors in the summary.lm table are all different
from one another. As we have just seen, the estimate in the first row of the table is a mean, while
all the other rows contain estimates that are differences between means. For instance, the overall

mean on the top row is based on 30 numbers so the standard error of the mean is
√

4961
30

, where
the 4961 comes from summary (comp_mod1):

sqrt (4961 / 30)

[1] 12.8595

The next row compares two means so we need the standard error of the difference between two
means. The complexity comes from the fact that the two means are each based on different num-

�

� �

�

684 THE R BOOK

bers of numbers. The overall mean is based on all five factor levels, while the non-control mean with
which it is compared is based on four means. Each factor level has n = 6 replicates, so the denom-
inator in the standard error formula is 5 × 4 × 6 = 120. Thus, the standard error of the difference
between these two means is

sqrt (4961 / 120)

[1] 6.429749

The complexity of these calculations is a good reason for preferring treatment contrasts rather than
user-specified contrasts as the default. The advantage of orthogonal contrasts, however, is that
the summary.lm table gives us a much better idea of the number of parameters required in the
minimal adequate model (two in this case).

Overall, what we have seen suggests that each of the clipping procedures is an improvement on
the control but that there appears to be very little difference between them.

16.3.3 Model simplification for contrasts

The analysis we carried out in Section 16.3.2 would probably have been decided upon before we
carried out the experiment, i.e. it was a priori. In this section, we will look at an interactive approach
to the data that we might carry out once we have collected them, i.e. a posteriori. To demonstrate
this, we revert to treatment contrasts. First, we switch off our user-defined contrasts:

comp$clipping[[2]]

[1] n25
attr(,"contrasts")

[,1] [,2] [,3] [,4]
control 4 0 0 0
n25 -1 1 0 1
n50 -1 1 0 -1
r10 -1 -1 1 0
r5 -1 -1 -1 0
Levels: control n25 n50 r10 r5

contrasts (comp$clipping) <- NULL
comp$clipping[[2]]

[1] n25
Levels: control n25 n50 r10 r5

If we refer back to the table of means at the start of the previous section, we see that the levels that
are most similar are the effects of root pruning to 10 and 5 cm (610.7 vs. 610.5). We shall begin by
simplifying these to a single root-pruning treatment called root. We start by copying the original
factor name:

�

� �

�

DESIGNED EXPERIMENTS 685

clipping2 <- comp$clipping
levels (clipping2)[4:5] <- "root"
levels (clipping2)

[1] "control" "n25" "n50" "root"

comp <- data.frame (comp, clipping2)

The levels we want to merge are the fourth and fifth in alphabetical order. Now, we can fit the new
model and compare it to our initial one:

comp_mod3 <- lm (biomass ~ clipping2, data = comp)
anova (comp_mod3, comp_mod1)

Analysis of Variance Table

Model 1: biomass ~ clipping2
Model 2: biomass ~ clipping

Res.Df RSS Df Sum of Sq F Pr(>F)
1 26 124020
2 25 124020 1 0.083333 0 0.9968

As expected, this model simplification was completely justified. The next step is to investigate the
remaining effects:

summary (comp_mod3)

Call:
lm(formula = biomass ~ clipping2, data = comp)

Residuals:
Min 1Q Median 3Q Max

-103.333 -49.667 3.417 43.417 177.667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 28.20 16.498 2.72e-15 ***
clipping2n25 88.17 39.87 2.211 0.036029 *
clipping2n50 104.17 39.87 2.612 0.014744 *
clipping2root 145.42 34.53 4.211 0.000269 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 69.07 on 26 degrees of freedom
Multiple R-squared: 0.4077,Adjusted R-squared: 0.3393
F-statistic: 5.965 on 3 and 26 DF, p-value: 0.003099

�

� �

�

686 THE R BOOK

It looks as if the two shoot-clipping treatments are not significantly different from one another (they
differ by just 16.0 with a standard error of 23.904). We can lump these together into a single
shoot-pruning treatment as follows:

clipping3 <- comp$clipping2
levels (clipping3)[2:3] <- "shoot"
levels (clipping3)

[1] "control" "shoot" "root"

comp <- data.frame (comp, clipping3)

We can build another model and compare, again concluding that the simpler model is worth retain-
ing:

comp_mod4 <- lm (biomass ~ clipping3, data = comp)
anova (comp_mod4, comp_mod3)

Analysis of Variance Table

Model 1: biomass ~ clipping3
Model 2: biomass ~ clipping2
Res.Df RSS Df Sum of Sq F Pr(>F)

1 27 124788
2 26 124020 1 768 0.161 0.6915

summary (comp_mod4)

Call:
lm(formula = biomass ~ clipping3, data = comp)

Residuals:
Min 1Q Median 3Q Max

-111.333 -48.021 3.417 43.417 169.667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 27.75 16.760 8.52e-16 ***
clipping3shoot 96.17 33.99 2.829 0.008697 **
clipping3root 145.42 33.99 4.278 0.000211 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 67.98 on 27 degrees of freedom
Multiple R-squared: 0.404,Adjusted R-squared: 0.3599
F-statistic: 9.151 on 2 and 27 DF, p-value: 0.0009243

�

� �

�

DESIGNED EXPERIMENTS 687

It is definitely worth checking whether a final simplification that merges all the treatments is better:

clipping4 <- comp$clipping3
levels (clipping4)[2:3] <- "pruned"
levels (clipping4)

[1] "control" "pruned"

comp <- data.frame (comp, clipping4)
comp_mod5 <- lm (biomass ~ clipping4, data = comp)
anova (comp_mod5, comp_mod4)

Analysis of Variance Table

Model 1: biomass ~ clipping4
Model 2: biomass ~ clipping3

Res.Df RSS Df Sum of Sq F Pr(>F)
1 28 139342
2 27 124788 1 14553 3.1489 0.08726.

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

summary (comp_mod5)

Call:
lm(formula = biomass ~ clipping4, data = comp)

Residuals:
Min 1Q Median 3Q Max

-135.958 -49.667 -4.458 50.635 145.042

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.2 28.8 16.152 1.01e-15 ***
clipping4pruned 120.8 32.2 3.751 0.000815 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 70.54 on 28 degrees of freedom
Multiple R-squared: 0.3345,Adjusted R-squared: 0.3107
F-statistic: 14.07 on 1 and 28 DF, p-value: 0.0008149

�

� �

�

688 THE R BOOK

Definitely. The model has just two parameters: the mean for the controls (465.2) and the difference
between the control mean and the four treatment means (120.8):

tapply (comp$biomass, comp$clipping4, mean)

control pruned
465.1667 585.9583

If we were to compare our final model with that containing just an intercept then the p-value for
the F-test comparison is given in two places in the model summary. We have come to a similar
conclusion to our analysis in Section 16.3.2, namely that treatment matters but which one isn’t
really important.

16.3.4 Helmert contrasts

So far we have seen the default treatment contrasts and our hand crafted alternatives. R does
have other built-in contrasts, and the first of them we shall look at is the Helmert contrast:

contrasts (comp$clipping)

n25 n50 r10 r5
control 0 0 0 0
n25 1 0 0 0
n50 0 1 0 0
r10 0 0 1 0
r5 0 0 0 1

options (contrasts = c ("contr.helmert", "contr.poly"))
contrasts (comp$clipping)

[,1] [,2] [,3] [,4]
control -1 -1 -1 -1
n25 1 -1 -1 -1
n50 0 2 -1 -1
r10 0 0 3 -1
r5 0 0 0 4

We have set two types of contrast: the second, "contr.poly", is for ordered covariates and we
will examine it in Section 16.3.6. The first contrast compares the control with n25, the second
[control, n25] with n50, etc. Let us build a model which incorporates these contrasts:

comp_mod6 <- lm (biomass ~ clipping, data = comp)
summary (comp_mod6)

Call:
lm(formula = biomass ~ clipping, data = comp)

�

� �

�

DESIGNED EXPERIMENTS 689

Residuals:
Min 1Q Median 3Q Max

-103.333 -49.667 3.417 43.375 177.667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 561.800 12.859 43.688 <2e-16 ***
clipping1 44.083 20.332 2.168 0.0399 *
clipping2 20.028 11.739 1.706 0.1004
clipping3 20.347 8.301 2.451 0.0216 *
clipping4 12.175 6.430 1.894 0.0699.

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 70.43 on 25 degrees of freedom
Multiple R-squared: 0.4077,Adjusted R-squared: 0.3129
F-statistic: 4.302 on 4 and 25 DF, p-value: 0.008752

The R code is exactly the same as for our first model, but we have changed the universal options
and so the output is different. With Helmert contrasts, the intercept, as usual, is the overall mean
(561.8). The first contrast (labelled clipping1) compares the first mean in alphabetical sequence
with the average of the first and second factor levels in alphabetical sequence (control plus n25):
its parameter estimate is the mean of the first two factor levels, minus the mean of the first factor
level:

mean (comp_means[1:2]) - comp_means[1]

control
44.08333

The other estimates can be calculated in similar ways. This approach is less intuitive than that for
treatment contrasts but does provide an alternative method for gradually building a minimal model.
Superficially, it does seem from the above output that we might keep n25 and r10 in our model as
they appear to make a difference when they are added in. However, it is important to remember what
clipping3 represents. It represents the comparison between r10 and control, n25, n50
and is not something we have studied before. We will need to consider whether for this example, it
is a sensible comparison to make.

16.3.5 Sum contrasts

A further option in R is sum contrasts:

options (contrasts = c ("contr.sum", "contr.poly"))
contrasts (comp$clipping)

[,1] [,2] [,3] [,4]
control 1 0 0 0
n25 0 1 0 0
n50 0 0 1 0

�

� �

�

690 THE R BOOK

r10 0 0 0 1
r5 -1 -1 -1 -1

The four contrasts are the differences between the grand mean and the first four factor means
(control, n25, n50 and r10). We can see this by building our usual model:

comp_mod7 <- lm (biomass ~ clipping, data = comp)
summary (comp_mod7)

Call:
lm(formula = biomass ~ clipping, data = comp)

Residuals:
Min 1Q Median 3Q Max

-103.333 -49.667 3.417 43.375 177.667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 561.800 12.859 43.688 < 2e-16 ***
clipping1 -96.633 25.719 -3.757 0.000921 ***
clipping2 -8.467 25.719 -0.329 0.744743
clipping3 7.533 25.719 0.293 0.772005
clipping4 48.867 25.719 1.900 0.069019.

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 70.43 on 25 degrees of freedom
Multiple R-squared: 0.4077,Adjusted R-squared: 0.3129
F-statistic: 4.302 on 4 and 25 DF, p-value: 0.008752

The estimates are easily calculated:

comp_means[1:4] - mean (comp_means)

control n25 n50 r10
-96.633333 -8.466667 7.533333 48.866667

There definitely appears to be a difference between control and the overall mean (which includes
control). Again, it is a subject matter decision as to whether that is interesting or useful to know.
However, it might be more useful to compare the overall mean with each of the four possible treat-
ments. In order to do that, we need to change the order of the levels so that contrast appears
last, and then build our model:

comp$clipping <- factor (comp$clipping, levels = c ("n25", "n50", "r5", "r10",
"control"))

comp_mod8 <- lm (biomass ~ clipping, data = comp)
summary (comp_mod8)

�

� �

�

DESIGNED EXPERIMENTS 691

Call:
lm(formula = biomass ~ clipping, data = comp)

Residuals:
Min 1Q Median 3Q Max

-103.333 -49.667 3.417 43.375 177.667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 561.800 12.859 43.688 <2e-16 ***
clipping1 -8.467 25.719 -0.329 0.7447
clipping2 7.533 25.719 0.293 0.7720
clipping3 48.700 25.719 1.894 0.0699.
clipping4 48.867 25.719 1.900 0.0690.

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 70.43 on 25 degrees of freedom
Multiple R-squared: 0.4077,Adjusted R-squared: 0.3129
F-statistic: 4.302 on 4 and 25 DF, p-value: 0.008752

It does not seem as if any of the treatments is an improvement on the mixture of everything, not
something we have seen before (where, for instance, we compared individual treatments with just
the control).

16.3.6 Polynomial contrasts

There is a further setting for contrasts in R: polynomial contrasts where we attempt to fit a poly-
nomial to the response data, based on different values of our categorical covariate. Clearly, this will
only have a valid interpretation if the covariate is ordered and the different levels represent roughly
equal widths. For instance, in the following data set, we are measuring the response to four dif-
ferent levels of dietary supplement, the treatment: very low, low, medium, and high. They might
represent the ranges (in mg / day) of 0–5, 5.1–10, 10.1–15, 15.1–20 and, in that case, fitting a curve
to the four levels makes some sense: the four intervals have roughly the same width. One might
then predict the response for specific values of the supplement. However, if the lowest category
was 0 and the remaining three levels were 0.1–5, 5.1–10, 10.1–15, then fitting a curve would make
no sense as the intervals have different widths. Anyway, here are the data, plotted in Figure 16.3:

poly <- read.table ("poly.txt", header = T, colClasses = list
(treatment = "factor"))
head (poly)

treatment response
1 verylow 3
2 low 6
3 medium 7
4 high 5
5 verylow 2
6 low 6

�

� �

�

692 THE R BOOK

High Low Medium Verylow
0

1
2

3
4

5
6

7

Figure 16.3 response for different unordered levels of treatment in poly

attach (poly)
poly_means <- tapply (response, treatment, mean)
poly_means

high low medium verylow
4.50 5.25 7.00 2.50

barplot (poly_means, names = levels (treatment), col = hue_pal ()(5))

detach (poly)

The problem is that R’s default is to take the factor levels in alphabetical order leading to a plot that
is difficult to interpret, and the default model likewise:

summary (lm (response ~ treatment, data = poly))

Call:
lm(formula = response ~ treatment, data = poly)

Residuals:
Min 1Q Median 3Q Max

-1.25 -0.50 0.00 0.50 1.00

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.8125 0.1875 25.667 7.45e-12 ***
treatment1 -0.3125 0.3248 -0.962 0.355
treatment2 0.4375 0.3248 1.347 0.203
treatment3 2.1875 0.3248 6.736 2.09e-05 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.75 on 12 degrees of freedom
Multiple R-squared: 0.8606,Adjusted R-squared: 0.8258
F-statistic: 24.7 on 3 and 12 DF, p-value: 2.015e-05

�

� �

�

DESIGNED EXPERIMENTS 693

At the end of Section 16.3.5, we saw how to change the order of factor levels. However, here we
need to go one step further and tell R that the levels are ordered:

poly$treatment <- ordered (poly$treatment,
levels = c ("verylow", "low", "medium", "high"))

levels (poly$treatment)

[1] "verylow" "low" "medium" "high"

poly_means <- tapply (poly$response, poly$treatment, mean)

We have recreated poly_means after the reordering so that we can use it directly in a new bar
plot. Now, we can build a model which may look a little strange at first:

poly_mod1 <- lm (response ~ treatment, data = poly)
summary (poly_mod1)

Call:
lm(formula = response ~ treatment, data = poly)

Residuals:
Min 1Q Median 3Q Max

-1.25 -0.50 0.00 0.50 1.00

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.8125 0.1875 25.667 7.45e-12 ***
treatment.L 1.7330 0.3750 4.621 0.000589 ***
treatment.Q -2.6250 0.3750 -7.000 1.43e-05 ***
treatment.C -0.7267 0.3750 -1.938 0.076520.

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.75 on 12 degrees of freedom
Multiple R-squared: 0.8606,Adjusted R-squared: 0.8258
F-statistic: 24.7 on 3 and 12 DF, p-value: 2.015e-05

The default in R for ordered factor levels is to build a model where the contrasts are polynomial
terms (treatment.L is linear, treatment.Q is quadratic, treatment.C is cubic, etc.), all mutu-
ally orthogonal. We saw in Section 16.3.4 when we changed to Helmert contrasts that we actually
typed options (contrasts = c ("contr.helmert", "contr.poly")): we had to spec-
ify contrasts for both unordered and ordered data.

�

� �

�

694 THE R BOOK

The model suggests that a linear and quadratic term would be useful in fitting a curve. The details
of the contrasts R has created are given by

contrasts (poly$treatment)

.L .Q .C
[1,] -0.6708204 0.5 -0.2236068
[2,] -0.2236068 -0.5 0.6708204
[3,] 0.2236068 -0.5 -0.6708204
[4,] 0.6708204 0.5 0.2236068

The rows represent the four levels, and we can recover their means by multiplying each row of the
contrast matrix by the appropriate model coefficients and adding in the intercept:

pm_coefs <- coef (poly_mod1)
contrasts (poly$treatment) %*% pm_coefs[2:4] + pm_coefs[1]

[,1]
[1,] 2.50
[2,] 5.25
[3,] 7.00
[4,] 4.50

We can now add the fitted quadratic curve to the bar plot. We need to create a new model as
we want to fit x-values (one to four) to the means of the four categories. However, we have to go
through the process of finding the x-coordinates for the mid-point of each bar and adjusting the
x-coordinates for our fitted curve, resulting in Figure 16.4:

x <- 1:4
barplot (poly_means ~ x, names = names (poly_means),

col = hue_pal ()(5)[1:4])
xv <- seq (1, 4, 0.01)
poly_mod2 <- lm (poly_means ~ poly (x, 3))
yv <- predict (poly_mod2, list (x = xv))
bar_x <- barplot (poly_means, plot = F)
xv_map <- lm (bar_x ~ I(1:4))
xs <- coef (xv_map)[1] + coef (xv_map)[2] * xv
lines (xs, yv, col = hue_pal ()(5)[5], lwd = 2)

16.3.7 Contrasts with multiple covariates

Finally, we will examine a data set where there is more than one covariate. We will keep it relatively
simple by making the second covariate continuous, but extending contrasts to more than one cate-
gorical variable is relatively straightforward with a clear head. Our dataset looks at the dependence
of weight on sex and age in Costa Rican stoats, as illustrated in Figure 16.5:

�

� �

�

DESIGNED EXPERIMENTS 695

Verylow Low Medium High

x

P
ol

y_
m

ea
ns

0
1

2
3

4
5

6
7

Figure 16.4 response for different ordered levels of treatment in poly

stoats <- read.table ("stoats.txt", header = T)
head (stoats)

weight sex age
1 5.311580 male 1
2 7.340586 male 2
3 6.561460 male 3
4 10.151011 male 4
5 9.976946 male 5
6 12.076808 male 6

stoats_male <- stoats[stoats$sex == "male",]
stoats_female <- stoats[stoats$sex == "female",]
plot (stoats_male$age, stoats_male$weight, type = "b",

main = "", xlab = "age", ylab = "weight (kgs)",
ylim = range (stoats$weight), col = hue_pal ()(2)[1])

lines (stoats_female$age, stoats_female$weight, type = "b",
col = hue_pal ()(2)[2])

legend (2, 18, legend = c ("male", "female"), , col = hue_pal ()(2),
lwd = rep (2, 2))

The two sets of data appear relatively linear so we might attempt to fit two lines. However, there
are several different ways of expressing the values of the four parameters involved:

• two slopes, and two intercepts;

• one slope and one difference between slopes, and one intercept and one difference between
intercepts;

• the overall mean slope and the overall mean intercept, and one difference between slopes and
one difference between intercepts.

�

� �

�

696 THE R BOOK

2 4 6 8 10

5
10

15
20

Age

W
ei

gh
t (

kg
s) Male

Female

Figure 16.5 Weights of Costa Rican stoats in weight

We can look at a variety of regression models where we just regress on age:

lm (weight ~ age, data = stoats)

Call:
lm(formula = weight ~ age, data = stoats)

Coefficients:
(Intercept) age

2.541 1.279

lm (weight ~ age, data = stoats_male)

Call:
lm(formula = weight ~ age, data = stoats_male)

Coefficients:
(Intercept) age

3.115 1.561

lm (weight ~ age, data = stoats_female)

Call:
lm(formula = weight ~ age, data = stoats_female)

Coefficients:
(Intercept) age

1.9663 0.9962

These show a wide range of intercept and slope values.

�

� �

�

DESIGNED EXPERIMENTS 697

Now, let us look at the full model with interaction for a range of contrasts. First, the default treat-
ment contrast:

stoats_mod1 <- lm (weight ~ age * sex, data = stoats)
summary (stoats_mod1)

Call:
lm(formula = weight ~ age * sex, data = stoats)

Residuals:
Min 1Q Median 3Q Max

-1.23614 -0.60421 0.05658 0.65660 1.77263

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.54073 0.44319 5.733 3.08e-05 ***
age 1.27851 0.07143 17.899 5.26e-12 ***
sex1 -0.57445 0.44319 -1.296 0.21331
age:sex1 -0.28230 0.07143 -3.952 0.00114 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.9175 on 16 degrees of freedom
Multiple R-squared: 0.9652,Adjusted R-squared: 0.9587
F-statistic: 147.8 on 3 and 16 DF, p-value: 7.101e-12

All the parameter estimates can be extracted from the above models. The intercept is just that
for females (first alphabetically), age is the female slope, sexmale is the difference between the
two gender intercepts and age:sexmale the difference between the two gender slopes. From a
model point of view, we would retain all the terms, even though the difference in intercepts has a
large p-value, as the interaction is clearly important.

Moving to Helmert contrasts:

options (contrasts = c ("contr.helmert", "contr.poly"))
stoats_mod2 <- lm (weight ~ age * sex, data = stoats)
summary (stoats_mod2)

Call:
lm(formula = weight ~ age * sex, data = stoats)

Residuals:
Min 1Q Median 3Q Max

-1.23614 -0.60421 0.05658 0.65660 1.77263

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.54073 0.44319 5.733 3.08e-05 ***
age 1.27851 0.07143 17.899 5.26e-12 ***
sex1 0.57445 0.44319 1.296 0.21331
age:sex1 0.28230 0.07143 3.952 0.00114 **

�

� �

�

698 THE R BOOK

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.9175 on 16 degrees of freedom
Multiple R-squared: 0.9652,Adjusted R-squared: 0.9587
F-statistic: 147.8 on 3 and 16 DF, p-value: 7.101e-12

The intercept is the overall intercept, age is the overall slope, sex1 represents what needs to
be added to (for males) or taken away from (for females) the overall intercept to arrive at the gender
intercepts and age:sex1 similarly to get the two gender slopes. Once we understand where the
numbers come from, the interpretation would remain the same as in the treatment contrast model.

Finally, we look at sum contrasts:

options (contrasts = c ("contr.sum", "contr.poly"))
stoats_mod3 <- lm (weight ~ age * sex, data = stoats)
summary (stoats_mod3)

Call:
lm(formula = weight ~ age * sex, data = stoats)

Residuals:
Min 1Q Median 3Q Max

-1.23614 -0.60421 0.05658 0.65660 1.77263

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.54073 0.44319 5.733 3.08e-05 ***
age 1.27851 0.07143 17.899 5.26e-12 ***
sex1 -0.57445 0.44319 -1.296 0.21331
age:sex1 -0.28230 0.07143 -3.952 0.00114 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.9175 on 16 degrees of freedom
Multiple R-squared: 0.9652,Adjusted R-squared: 0.9587
F-statistic: 147.8 on 3 and 16 DF, p-value: 7.101e-12

This is very similar to the Helmert contrasts in this case, with the signs of the final two estimates
reversed. Note that in all three models the R2 and F-test values remain the same.

References

Cox, D. R., & Reid, N. (2000). The theory of design of experiments. Chapman & Hall.
Diggle, P. J., Liang, K. Y., & Zeger, S. L. (1994). Analysis of longitudinal data. Clarendon Press.

�

� �

�

17
Meta-Analysis

There is a compelling case to be made that analysts should look at the whole body of evidence
rather than trying to understand individual studies in isolation. The systematic review of a body
of evidence is known as meta-analysis. The idea is to draw together all of the appropriate studies
that have addressed the same question and attempted to estimate the same effect, and calculate
an overall effect and an overall measure of uncertainly for it.

In an ideal world, we should be able to extract from every published study the exact question
addressed, the estimated effect size, the variance of that effect, the sample size, and enough detail
on the methods used to be confident that the study was comparable with the others that we have
already included. This allows us to calculate a suitable overall effect size and that would be it. It
sounds simple enough, but there are many pitfalls to watch out for.

We’ll merely scratch the surface in this chapter, but an excellent source of information is the
Cochrane Training webpage, https://training.cochrane.org/, which houses the Cochrane Handbook
(Higgins et al., 2021).

17.1 Elements of a meta-analysis

There is a lot to think about when embarking on a meta-analysis. Broadly speaking we need to
decide:

1. which studies to include in the analysis;

2. what effect is of interest and whether this is calculable from the information we have;

3. how to weight the evidence from each study;

4. what model to use for the meta-analysis.

These are briefly addressed below in turn.

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

https://training.cochrane.org/
http://www.wiley.com/go/jones/therbook3e

�

� �

�

700 THE R BOOK

17.1.1 Choosing studies for a meta-analysis

You cannot do a meta-analysis without collating a set of suitable studies which have attempted to
address the same question. Gathering these studies is often the most time-consuming and difficult
aspect of a meta-analysis.

It is important to think very carefully about the following:

• What do we mean by ‘the same question’?

• What is an appropriate study?

• What makes a study inappropriate?

• How different can a study be and still be worth including in the meta-analysis?

• What are the publication biases in the various studies?

In reality, it would be rare to find a set of studies that have been conducted in exactly the same
way. Subject knowledge will be needed to decide which studies are similar enough and which are
not. Now, come up with clear rules for the selection (and omission) of studies.

Be aware that publication bias is a real problem for meta-analysis. We can never know how
many experiments were carried out but not published, and it is highly likely that proportionately more
studies go unpublished if they failed to find a significant effect. If they don’t make it to publication,
we have no hope of accounting for the information they contained in our meta-analysis. This will,
unfortunately, bias our results. We can attempt to investigate publication bias via funnel plots
(which we’ll see in Section 17.3) though the method won’t work well if there are only a small number
of studies in the meta-analysis.

17.1.2 Effects and effect size

Meta-analysis can work with a variety of effect types. The list below isn’t exhaustive, but it gives
some sense of the broad scope of meta-analysis.

• Measures from continuous variable(s):

– Means;

– Mean differences and standardised mean differences between two independent groups;

– Mean differences and standardised mean differences, paired observations;

– Ratio of means (response ratio);

– Correlation coefficients.

• Measures from categorical variable(s):

– Proportions;

– Rates;

– Risk difference;

– Odds ratios;

– Risk ratios (relative risk).

�

� �

�

META-ANALYSIS 701

For some studies in a meta-analysis, the measure of interest might already be computed in the
relevant paper or other publication. In other cases, that won’t be the case. For example, interest
might be in estimating a particular odds ratio. While some studies might include their estimated
odds ratio in their publication, others may publish a 2 × 2 contingency table of results from which
the odds ratio will need to be computed.

It is important to note that the effect type from each study needs to be the same. That is, if
one study reports an odds ratio and another study reports a risk difference, the results can’t be
combined into a single meta-analysis unless the data are available from which a single effect type
for all studies can be computed.

17.1.3 Weights

It would be a poor quality meta-analysis if we were just to combine the study results without thinking
about the quality of the evidence provided by individual studies. More precise studies should be
given heavier weights in comparison to less precise studies, rather than simply taking the arithmetic
mean of the effect size of interest across studies.

But what do we mean by ‘precision’ and how should we measure it? There are a number of
options. Sample size weighting is one such option, with larger studies allocated higher weight. In
some ways, this makes sense and is appealing due to its simplicity. A large sample size doesn’t
always guarantee that the estimate itself is particularly precise, however: there could be consider-
able uncertainty around the estimate despite a large sample size, whereas a smaller study might
have less uncertainty. Here, of course, we’re referring to the standard error (or equivalently the
variance) of the effect size as a measure of uncertainty.

It therefore makes sense to consider using the standard error of the effect size as a tool for
weighting studies, and that is exactly what is used in many meta-analyses. This gives more weight
to studies with smaller standard error (less uncertainty around the estimated effect size) than those
with larger standard error. A common way of doing this is by using inverse variance weighting,
where ‘variance’ refers to the squared standard error.

How does this compare to the sample size weighting? Typically, studies with larger sample size
have smaller standard error/variance, which leads to a heavier weighting in the meta-analysis. This
isn’t always the case, but often is in practice.

We’ll use inverse variance weighting from now on. In this case, if we have effect sizes �̂�1, … , �̂�N
from N studies, and corresponding estimated standard errors v̂1, … , v̂N for these effects, then a
basic inverse-variance meta-analysis of these effect size would give an overall effect size of∑N

i=1 �̂�i∕v̂2
i∑N

i=1 1∕v̂2
i

. (17.1)

The numerator weights the individual study effects and the denominator then scales this back to the
original scale. As straightforward as (17.1) is, this method might not adequately reflect the overall
effect estimate as we’ll see next.

17.1.4 Fixed vs. random effect models

There will naturally be variation in the effect sizes from different studies. In some instances, it might
be possible to justify that there is a single true effect size (for instance, if many studies are trying
to estimate the same physical constant), and that any differences between studies is purely down
to sampling error. In this case, supposing that the true effect is denoted 𝜇, then the k’th study’s

�

� �

�

702 THE R BOOK

estimate of it, �̂�k, can be represented by

�̂�k = 𝜇 + 𝜖k

where 𝜖k is study k’s sampling error and typically we assume that 𝜖k ∼ N(0, v2
k
).

The aim of a meta-analysis under these assumptions is to estimate 𝜇 in the best way. This is
known as a fixed-effect model, and the resulting analysis a fixed effects meta-analysis. Equation
(17.1) would be an appropriate method to estimate the inverse-variance weighted overall effect size.

It is much more likely in practice, however, that the effect being estimated varies with the context
(e.g. with location, genetics, or environmental conditions). That is, the k’th study’s estimate of the
effect size, �̂�k, has some underlying true value 𝜇k, and this varies from study to study. These true
study effects 𝜇1, … , 𝜇N will centre around 𝜇, say, and study k’s true effect size will deviate from
this by some amount 𝛿k. Therefore, study k’s estimate, �̂�k, can be written as follows:

�̂�k = 𝜇k + 𝜖k

= 𝜇 + 𝛿k + 𝜖k (17.2)

where 𝜖k ∼ N(0, v2
k
) and 𝛿k ∼ N(0, 𝜏2).

Our aim is still to estimate 𝜇 via a meta-analysis, but now we have two sources of ‘error’ to contend
with:

• error arising because of the difference between study k’s true effect size and study k’s estimated
effect (denoted by 𝜖k), known as sampling error or error within studies;

• error arising due to the difference between study k’s true effect size and the overall effect size
(denoted by 𝛿k) known as the heterogeneity between studies.

With a model as defined in (17.2), the resulting meta-analysis is referred to as a random effects
meta-analysis as the 𝛿k act as random effects.

The weighting method in (17.1) is no longer suitable under (17.2) because the weights would only
take into account the sampling error within study rather than the heterogeneity between studies.
The appropriate weighting of study effects is now:∑N

i=1 �̂�i∕(v̂2
i
+ 𝜏2)∑N

i=1 1∕(v̂2
i
+ 𝜏2)

. (17.3)

We can approximate the v2
i
’s easily as before, but what about 𝜏2? There are a number of ways

of doing this, the most common being an approach by DerSimonian and Laird, 1986 which also
happens to be one of the simplest methods. This is what we’ll use in the examples of Section 17.3.

A natural question would be whether the added complexity of a random effects meta-analysis is
worth it, especially if we have only a small number of studies. Do we really need to take into account
heterogeneity between studies, or can we get away with a fixed effects meta-analysis? It might be
that there is external knowledge about the effect size of interest which dictates one way or another
whether a fixed- or random effects meta-analysis is suitable. Otherwise, we could use the data in
hand to investigate further.

Common ways to check whether there is heterogeneity between studies includes Cochran’s
Q, the I2 statistic, or the H2 statistic. The first two are usually printed as part of the output for

�

� �

�

META-ANALYSIS 703

meta-analysis studies whatever package is used, along with H2 and other statistics to boot. These
are by no means perfect ways of measuring the extent of heterogeneity between studies, but they
are easily accessible and provide a rough guide.

Cochran’s Q provides a test of heterogeneity, with the null hypothesis stating no heterogeneity
(that is, there is no variation in the underlying studies’ true effect size and so a fixed effects analysis
will suffice) and the alternative hypothesis stating the opposite. A small p-value here indicates that
the evidence is against the null hypothesis, and so a random effect meta-analysis is likely necessary.

The I2 statistic depends on Q and provides a value between 0 and 1. It is a rough measure of the
proportion of variability in the effect sizes that is due to differences between studies. The larger this
value, the more evidence we have that we need a random effects meta-analysis.

The H2 statistic also depends on Q and estimates the ratio of the total variability between effect
sizes (whether between or within studies) to the variability within studies. As the total variability will
be at least as large as the variability in effect size within studies, H2 will be at least 1. The further
away H2 is from 1, the more likely it is that we need a random effects meta-analysis.

An excellent source of accessible further reading on the nuances of random effects meta-analysis
can be found in Harrer et al., 2021.

17.2 Meta-analysis in R

There are many packages to do the number crunching for a meta-analysis. Two commonly used
packages, both with a wide range of functionality and documentation, are meta (Balduzzi et al.,
2019) and metafor (Viechtbauer, 2010). The metafor package has more advanced capabilities
than meta. Though the examples in this chapter could easily be done using either package, we’ll
demonstrate these with metafor as you may need to use its more advanced functions for your
future analyses.

The main workhorse functions included in the metafor package are escalc (), and the rma
() function or its equivalent, rma.uni (). While escalc () computes (if necessary) the effect
of interest from each study plus the relevant standard error, rma () conducts the meta-analysis
itself.

17.2.1 Formatting information from studies

Before we start using metafor, we need to import the information from our included studies into
R. It is necessary to compile all information into a single data set with one row per study. The
information to be extracted from each study will vary depending on the type of effect of interest, but
this will become second nature with a bit of practice. We’ll see examples in Section 17.3.

Typically, for effects based on continuous measures, information on the estimated effect and
some measure of variability from each study should be included. When interest is an effect based
on categorical data, such as an odds ratio, either the computed effect size and its variance is needed
or in some cases it might be possible to specify the ‘raw’ data from each study (e.g. for an odds
ratio, the underlying entries of the relevant 2 × 2 contingency table).

17.2.2 Computing the inputs of a meta-analysis

The metafor package provides a very useful tool in its escalc () function. Its purpose is to
compute the relevant effect size and appropriate variance for each study. It may sound strange that

�

� �

�

704 THE R BOOK

there is a function to compute the effect sizes and their variances, but remember that the information
from studies might not be in the format required. For example:

• interest is in the mean difference of a response between a treatment and control group (or
between different time points), but each study reports the results for the treatment and control
groups separately (or results at the time points separately);

• an odds ratio is needed but each study reports a 2 × 2 contingency table instead;

• the information about the uncertainty in an effect estimate might not be in the right format, or in
the case of our 2 × 2 table example above, needs to be computed from the table itself. Watch
out for the type of uncertainty estimate reported: ‘standard deviation’ and ‘standard error’ sound
very similar, but are distinct measures.

The arguments of escalc () change depending on the effect of interest, but example set-ups are
given below for some common effect types. The output of this function is saved as an object, which
then becomes the input for the meta-analysis. It is important to think before using escalc (): are
the data already in the correct format? If so, using escalc () is pointless.

More examples can be found in Viechtbauer, 2010, which also explains further capabilities of the
escalc () function.

Single mean

Each study estimates a single mean. The measure in this case is coded as "MN". The dataframe
containing the study information, here called study_data, needs to be specified along with the
names of the columns of the dataframe relating to the:

• sample size, n1i;

• mean, m1i;

• standard deviation, sd1i.

For example, if the sample size was in study_data in a column called study_size, the mean in
a column called study_mean, and the standard deviation in a column called study_stdev, then
we’d use:

dat_mean <- escalc (measure = "MN",
n1i = study_size, m1i = study_mean, sd1i = study_stdev,
data = study_data)

Mean difference

Here, each study will have looked at two groups (we’ll call them group 1 and group 2) and estimated
the mean response for each. We’re interested in looking at the mean difference between these
groups, which we’ll assume hasn’t been computed. The measure in this case is coded as "MD".

�

� �

�

META-ANALYSIS 705

The dataframe containing the study information, here called study_data, needs to be specified
along with the column of the dataframe relating to the:

• group 1 sample size, n1i;

• group 2 sample size, n2i;

• group 1 mean, m1i;

• group 2 mean, m2i;

• group 1 standard deviation, sd1i;

• group 2 standard deviation, sd2i.

The function can then be written as follows, substituting in the relevant column names as
necessary:

dat_meandiff <- escalc (measure = "MD",
n1i, n2i, m1i, m2i, sd1i, sd2i,
data = study_data)

Standardised mean difference

Each study will have looked at two groups (we’ll call them group 1 and group 2) and estimated the
mean response for each. This time we want the standardised mean difference. This is useful when
studies target the same outcome but may have measured it in different ways. The measure in this
case is coded as "SMD". The dataframe containing the study information, here called study_data,
needs to be specified along with the column of the dataframe relating to the:

• group 1 sample size, n1i;

• group 2 sample size, n2i;

• group 1 mean, m1i;

• group 2 mean, m2i;

• group 1 standard deviation, sd1i;

• group 2 standard deviation, sd2i.

The function can then be written as follows, substituting in the relevant column names as
necessary:

dat_meandiff <- escalc (measure = "SMD",
n1i, n2i, m1i, m2i, sd1i, sd2i,
data = study_data)

�

� �

�

706 THE R BOOK

Correlation

Each study measures a correlation coefficient (same type in each study, e.g. all Pearson correlation
coefficients). The measure in this case is coded as "COR". The dataframe containing the study
information, here called study_data, needs to be specified along with the column of the dataframe
relating to the:

• raw correlation coefficients, ri;

• sample size, ni.

The function can then be written as follows, substituting in the relevant column names as
necessary:

dat_corr <- escalc (measure = "COR",
ri, ni,
data = study_data)

Odds ratios, risk ratios and risk differences

Supposing that each study provides a 2 × 2 contingency table and that interest is in estimating either
the odds ratio, risk ratio, or risk difference. The measures in this case are coded as "OR", "RR"
and "RD", respectively. The dataframe containing the study information, here called study_data,
needs to be specified along with the column of the dataframe relating to the:

• upper left cell from 2 × 2 contingency table, ai;

• lower left cell from 2 × 2 contingency table, ci;

• EITHER: upper right cell from 2 × 2 contingency table, bi, and lower right cell, di;

• OR upper row total, n1i, and lower row total, n2i.

Note that the tables need to be set up in the same way to do this (that is, the columns and rows
must be in the same order for all contingency tables under consideration).

The function can then be written as follows (depending on information given), substituting "OR"
for either of the other two measures as necessary, and using the relevant column names:

dat_corr <- escalc (measure = "OR",
ai, bi, ci, di,
data = study_data)

dat_corr <- escalc (measure = "OR",
ai, ci, n1i, n2i,
data = study_data)

17.2.3 Conducting the meta-analysis

Once we’ve computed everything we need, which may or may not have required the use of escalc
(), we can run the meta-analysis. This is very easy using rma (). The effect estimate from each

�

� �

�

META-ANALYSIS 707

study, known as yi, together with its variance, known as vi, needs to be supplied. The method,
fixed- or random- effects meta-analysis will need to be specified and if the latter, the method used
to compute the heterogeneity between studies, 𝜏2.

At this point, it is instructive to see some examples of meta-analyses using the metafor package.

17.3 Examples

17.3.1 Meta-analysis Of scaled differences

This example comes from Borenstein et al., 2021 and concerns six studies each with a treatment
and a control group, with sample size varying from 40 to 200 for each group in each study:

metadata <- read.table ("metadata.txt", header = T)
head (metadata)

study meanT sdT nT meanC sdC nC
1 A 94 22 60 92 20 60
2 B 98 21 65 92 22 65
3 C 98 28 40 88 26 40
4 D 94 19 200 82 17 200
5 E 98 21 50 88 22 45
6 F 96 21 85 92 22 85

The effect size for each study in this case is going to be the scaled difference between the treatment
and control means. We’ll use metafor to do the heavy lifting for us, from calculating the effect size
from each study to conducting the meta-analysis.

Let us first use escalc () to define a new dataset, dat_boren, that includes the effects and
variances.

library (metafor)
dat_boren <- escalc (measure = "SMD", m1i = meanT, m2i = meanC,

sd1i = sdT, sd2i = sdC, n1i = nT, n2i = nC,
data = metadata)

head (dat_boren)

study meanT sdT nT meanC sdC nC yi vi
1 A 94 22 60 92 20 60 0.0945 0.0334
2 B 98 21 65 92 22 65 0.2774 0.0311
3 C 98 28 40 88 26 40 0.3665 0.0508
4 D 94 19 200 82 17 200 0.6644 0.0106
5 E 98 21 50 88 22 45 0.4618 0.0433
6 F 96 21 85 92 22 85 0.1852 0.0236

The escalc () function has computed the effect size (shown in the column labelled yi) and
the associated variance (shown as vi). This is much easier and less error prone than doing the
calculations by hand.

Now we’re ready to run the meta-analysis using rma (). We need to decide at this point whether
we want a fixed effects meta-analysis or a random effects meta-analysis. Let us run both to see the
difference, starting with the fixed-effects version.

�

� �

�

708 THE R BOOK

fixed_boren <- rma (yi = yi, vi = vi, data = dat_boren, method = "FE")
fixed_boren

Fixed-Effects Model (k = 6)

I^2 (total heterogeneity/total variability): 58.03%
H^2 (total variability/sampling variability): 2.38

Test for Heterogeneity:
Q(df = 5) = 11.9138, p-val = 0.0360

Model Results:

estimate se zval pval ci.lb ci.ub
0.4150 0.0643 6.4557 <.0001 0.2890 0.5410 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The output gives us the estimate of the overall effect size, which is 0.415. The output also includes
the 95% confidence interval for our overall estimate, which is (0.289,0.541).

Of interest, perhaps, is the output relating to the summaries for heterogeneity between studies.
The output for Q, I2, and H2 all point to there being evidence of some heterogeneity between stud-
ies. These are only indicators, however, so if it makes scientific sense to run only a fixed effects
meta-analysis here, then do only that.

Let us take a look at the random effects version of this meta-analysis. The rma () function
just needs a small tweak to the method argument. We have a choice of methods in how we
run a random effects meta-analysis, which boils down to options in computing the between-study
variance, 𝜏2. The most common is DerSimonian and Laird’s method, but others are listed in the doc-
umentation for the metafor package. We’ll stick to DerSimonian and Laird’s method by specifying
method = "DL".

random_boren <- rma (yi = yi, vi = vi, data = dat_boren, method = "DL")
random_boren

Random-Effects Model (k = 6; tau^2 estimator: DL)

tau^2 (estimated amount of total heterogeneity): 0.0372 (SE = 0.0421)
tau (square root of estimated tau^2 value): 0.1930
I^2 (total heterogeneity/total variability): 58.03%
H^2 (total variability/sampling variability): 2.38

Test for Heterogeneity:
Q(df = 5) = 11.9138, p-val = 0.0360

Model Results:

estimate se zval pval ci.lb ci.ub
0.3585 0.1055 3.3996 0.0007 0.1518 0.5652 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

�

� �

�

META-ANALYSIS 709

The output gives us the estimate of the overall effect size, which is 0.358. We see that the 95% con-
fidence interval for our overall estimate is (0.152,0.565). Note the difference in estimates between
the fixed- and random-effect versions, and this time we also get an estimate of the between-study
variance, 𝜏2.

A forest plot is an excellent way of displaying the individual study effects together with the esti-
mated overall effect. Let us use our random effects meta-analysis as an example. We tell the
function forest () which meta-analysis object to use, request that headers be included for the
study label and standardised mean difference columns, and that we use the study names as taken
from the data set.

forest (random_boren, header = TRUE, slab = paste (dat_boren$study))

The study effect size is graphically represented by a solid black box in Figure 17.1. The bigger the
box, the more weight was assigned to the study. This tallies with the size of the variance in the data
set generated by escalc (): the larger this variance, the smaller the weight and the resulting
box. The whiskers from the box represent the 95% confidence interval for each estimate. These
estimates are also written on the right-hand side of the plot. The overall effect size is represented
by a diamond at the bottom of the plot, the width of which indicates the 95% confidence interval
around this estimate. Helpfully, the plot also includes a reminder that a random effects model (RE
Model) was used.

We can see in Figure 17.1 that the confidence interval for four of the six study estimates cross
zero. A zero indicates no difference between the groups, and this is indicated on the plot by a

RE model

−0.5 0 0.5 1

Standardized mean difference

F

E

D

C

B

A

0.19 [−0.12, 0.49]

0.46 [0.05, 0.87]

0.66 [0.46, 0.87]

0.37 [−0.08, 0.81]

0.28 [−0.07, 0.62]

0.09 [−0.26, 0.45]

0.36 [0.15, 0.57]

Study SMD [95% CI]

Figure 17.1 Forest plot for the random effects meta-analysis.

�

� �

�

710 THE R BOOK

Standardized mean difference

S
ta

nd
ar

d
er

ro
r

0.
22

5
0.

16
9

0.
11

3
0.

05
6

0

●
●

●

●

●

●

−0.2 0 0.2 0.4 0.6 0.8

Figure 17.2 Funnel plot for the studies included in our meta-analysis.

vertical dashed line. However, we can see that the largest weight was assigned to study D – which
happened to have the largest sample size too – and in this study, we can see a clear difference
between the two groups.

Finally, though the sample size (number of studies) is relatively small, we could consider a funnel
plot to check for any evidence of publication bias. These types of graphics plot the effect size on
the x-axis, and the associated variance on the y-axis. We would expect to see a triangular pattern
(or upside-down funnel shape) as indicated in Figure 17.2, though Higgins et al., 2021 recommend
a minimum of 10 studies for this to be meaningful.

funnel (random_boren, xlab = "Standardized Mean Difference")

Each study is plotted in Figure 17.2. The location of the apex of the white triangle coincides with
the overall effect estimate, while the triangle itself represents the area we would expect all studies
to lie. The smaller the standard error (square root of the variance of the effect estimate), the more
information the study contains (which is related to its weight in the meta-analysis) and in turn we’d
expect such studies to produce similar effect estimates (at the top of the white triangle). Meanwhile,
for studies with larger standard errors, we’d expect the effect sizes to vary more from study to study
(bottom of the white triangle).

We start to worry when there are systematic gaps in the funnel, but this is hard to judge when
we have only a handful of studies as we have here. For example, if we see that gaps in the area
indicating ‘no difference’ – effect size of zero in our example – this points to studies that may not
have been published due to not finding ‘statistically significant’ results.

The picture in Figure 17.2 is unclear, but we have only six studies so we shouldn’t read too much
into this plot.

�

� �

�

META-ANALYSIS 711

17.4 Meta-analysis of categorical data

Next, we demonstrate a random effects meta-analysis on six studies, each with two treatments
(control, C, and treated, T), looking at the number of deaths for each treatment. Rather morbidly,
deaths are counted as ‘successes’ in the data set. The data come from Borenstein et al., 2021.

metadata2 <- read.table ("metadata2.txt", header = T)
metadata2

study successT failureT nT successC failureC nC
1 A 12 53 65 16 49 65
2 B 8 32 40 10 30 40
3 C 14 66 80 19 61 80
4 D 25 375 400 80 320 400
5 E 8 32 40 11 29 40
6 F 16 49 65 18 47 65

The effect of interest is the log-odds ratio rather than the odds ratio. This is because it makes the
mathematics easier. Roughly speaking, the odds ratio takes values in [0,∞) with an odds ratio of 1
indicating no difference between treatment and control. Resulting confidence intervals, for example,
will not be symmetric around the estimated odds ratio, making the maths cumbersome. By taking
the log of the odds ratio, the value can be anything in (−∞,∞) with a log odds ratio of 0 indicating no
difference between treatment and control. Our confidence intervals will now be symmetric around
the estimate, and the maths is far easier to handle. We can, of course, reverse engineer our results
so that we see the odds ratios rather than the log odds ratios.

The data tell us that for study A, for example, we have 65 individuals allocated to the treatment
(of which 12 died), and another 65 individuals were allocated to the control group (with 16 deaths
observed). The information on each study in the data set could be written as a contingency table,
which for study A is given in Table 17.1.

For this particular study, the odds ratio is (12 × 49)∕(53 × 16) = 0.693, so that the log-odds is
−0.366, but we can use escalc () to do all calculations for us including the appropriate variance.
We input the number of deaths and number who survived for each treatment, taking care that ai
and bi relate to one group and ci and di relates to the other.

library (metafor)
dat_categ <- escalc (measure = "OR", ai = successT, bi = failureT,

ci = successC, di = failureC,
data = metadata2)

head (dat_categ)

Table 17.1 Data from Study A.

Deaths Survived TOTAL

Treatment 12 53 65
Control 16 49 65
TOTAL 28 102 130

�

� �

�

712 THE R BOOK

study successT failureT nT successC failureC nC yi vi
1 A 12 53 65 16 49 65 -0.3662 0.1851
2 B 8 32 40 10 30 40 -0.2877 0.2896
3 C 14 66 80 19 61 80 -0.3842 0.1556
4 D 25 375 400 80 320 400 -1.3218 0.0583
5 E 8 32 40 11 29 40 -0.4169 0.2816
6 F 16 49 65 18 47 65 -0.1595 0.1597

The function escalc () has computed everything we need, with each study’s estimated log
odds ratio in the column yi and the estimated variance in the column vi. Let us get on with the
meta-analysis, for which we’ll assume a random effects set-up using the DerSimonian and Laird
method once again.

random_categ <- rma (yi = yi, vi = vi, data = dat_categ, method = "DL")
random_categ

Random-Effects Model (k = 6; tau^2 estimator: DL)

tau^2 (estimated amount of total heterogeneity): 0.1729 (SE = 0.2148)
tau (square root of estimated tau^2 value): 0.4158
I^2 (total heterogeneity/total variability): 52.61%
H^2 (total variability/sampling variability): 2.11

Test for Heterogeneity:
Q(df = 5) = 10.5512, p-val = 0.0610

Model Results:

estimate se zval pval ci.lb ci.ub
-0.5663 0.2388 -2.3711 0.0177 -1.0344 -0.0982 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The overall estimate of the log odds ratio is below zero (all studies indicated this, see the estimates
from escalc ()), and the 95% confidence interval lies entirely below zero too indicating that there
is a difference between the treatment and control groups in terms of number of deaths.

Let us take a look at the associated forest plot:

forest (random_categ, header = TRUE, slab = paste (dat_categ$study))

In Figure 17.3, we see that the study with the most weight (and also the largest sample size, as
would be expected) – Study D – is the only one with a confidence interval that doesn’t cross zero.
Remember that a zero on the log odds ratio scale indicates no difference in proportion of deaths
between treatment and control group.

We may want to display the forest plot in terms of odds ratios rather than log odds ratios. We can
transform the results in Figure 17.3 by specifying atransf = exp in the forest () function.
This takes the exponential of the log odds ratios, which puts us back on the odds ratio scale. Notice
the asymmetry in the confidence intervals on the right-hand side of the plot in Figure 17.4, though
the x-axis is on a natural log scale so they appear symmetric in the plot.

forest (random_categ, header = TRUE, slab = paste (dat_categ$study), atransf = exp)

�

� �

�

META-ANALYSIS 713

RE model

−2 −1 0 0.5 1

Log odds ratio

F

E

D

C

B

A

−0.16 [−0.94, 0.62]

−0.42 [−1.46, 0.62]

−1.32 [−1.79, −0.85]

−0.38 [−1.16, 0.39]

−0.29 [−1.34, 0.77]

−0.37 [−1.21, 0.48]

−0.57 [−1.03, −0.10]

Study Log[OR] [95% CI]

Figure 17.3 Forest plot for the random effects meta-analysis of log odds ratios.

RE model

0.14 0.37 1 1.65

Odds ratio (log scale)

F

E

D

C

B

A

0.85 [0.39, 1.87]

0.66 [0.23, 1.86]

0.27 [0.17, 0.43]

0.68 [0.31, 1.48]

0.75 [0.26, 2.15]

0.69 [0.30, 1.61]

0.57 [0.36, 0.91]

Study Odds ratio [95% CI]

Figure 17.4 Forest plot for the random effects meta-analysis of odds ratios (with a log scale on the x-axis).

�

� �

�

714 THE R BOOK

References

Balduzzi, S., Rücker, G., & Schwarzer, G. (2019). How to perform a meta-analysis with R: a practical tutorial.
Evidence-Based Mental Health, 22(4), 153–160.

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. (2021). Introduction to meta-analysis. John
Wiley & Sons, Inc.

DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7(3), 177–188.
Harrer, M., Cuijpers, P., Furukawa, T. A., & Ebert, D. D. (2021). Doing meta-analysis with R: a hands-on guide

(First). Chapman & Hall/CRC Press.
Higgins, J., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M., & Welch, V. (2021). Cochrane handbook

for systematic reviews of interventions version 6.2 (updated february 2021). Cochrane. http://www.training
.cochrane.org/handbook.

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Soft-
ware, 36(3), 1–48. https://doi.org/10.18637/jss.v036.i03.

http://www.training.cochrane.org/handbook
http://www.training.cochrane.org/handbook
https://doi.org/10.18637/jss.v036.i03

�

� �

�

18
Time Series

Time series data are vectors of numbers, typically regularly spaced in time. Yearly counts of ani-
mals, daily prices of shares, monthly means of temperature, and minute-by-minute details of blood
pressure are all examples of time series, but they are measured on different time scales. Some-
times the interest is in the time series itself (e.g. whether or not it is cyclic, or how well the data fit a
particular theoretical model), and sometimes the time series is incidental to a designed experiment
(e.g. repeated measures). We cover each of these cases in turn.

Three key concepts in time series analysis are

• trend;

• serial dependence; and

• stationarity.

Many time series analyses assume that the data are untrended. If they do show a consistent
upward or downward trend, then they can be detrended before analysis (e.g. by differencing). Serial
dependence arises because the values of adjacent members of a time series may well be con-
nected, as one might expect in all the examples listed above. Stationarity is a technical concept,
but it can be thought of simply as meaning that the time series has the same properties wherever we
start looking at it and is an assumption made in many models (after the trend has been removed).
We will have a look at some examples that cover many common themes of time series before
returning to the theory in a little more detail with an example. Finally, we look at simulating time
series. A longer introduction to using R with time series can be found, for instance, at Cowpertwait
and Metcalfe, 2009.

18.1 Moving average

A good way of seeing patterns in time series data is to plot the moving average. For instance, a
three-point moving average:

yt =
yt−1 + yt + yt+1

3

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

716 THE R BOOK

We could write a simple function in R to calculate the moving average of length n of a series of
numbers of length l:

ma <- function (y, n) {
l <- length (y)
y_new <- numeric (l - n + 1)
for (i in 1:length (y_new)) {

y_new[i] <- mean (y[i:(i + n - 1)])
}
y_new

}

A time series of 13 years of mean monthly temperatures will illustrate the use of the moving average,
resulting in Figure 18.1:

temp <- read.table ("temp.txt", header = T)
attach (temp)
plot (temps, col = hue_pal ()(4)[1])
lines (temps, col = hue_pal ()(4)[2])
plot (temps, col = hue_pal ()(4)[1])
lines (x = 2:155, y = ma (temps, 3), col = hue_pal ()(4)[3])
plot (temps, col = hue_pal ()(4)[1])
lines (x = seq (6.5, 150.5, 1), y = ma (temps, 12), col = hue_pal ()(4)[4])
detach (temp)

0 50 100 150

5
10

15
20

25

Index

T
em

ps

(a) Temperature data

0 50 100 150

5
10

15
20

25

Index

T
em

ps

(b) Moving average of length 3

0 50 100 150

5
10

15
20

25

Index

T
em

ps

(c) Moving average of length 12

Figure 18.1 Time series plots for temp.

�

� �

�

TIME SERIES 717

In the first plot, we have just joined the plotted dots with a line (i.e. a moving average of length
one: an alternative would just be to use plot (temps, type = "b"), although this looks a little
ungainly). We just need to be careful to plot the moving average at the right points on the x-axis:
the first point is at (n + 1)∕2 and the last at l − (n − 1)∕2. R uses the term Index to denote the x
values of data, where y values exist. We can see that the three-point moving average smooths out
the extreme values, while the twelve-point version compensates for the annual seasonal effect.

18.2 Blowflies

The Australian ecologist, A.J. Nicholson, reared blowfly larvae on pieces of liver in laboratory cul-
tures that his technicians kept running continuously for almost 7 years (361 weeks, to be exact).
The data are just the count for each week:

blowfly <- read.table ("blowfly.txt" , header = T)
head.matrix(blowfly)

flies
1 948
2 942
3 911
4 858
5 801
6 676

R has a particular format for storing time series, and we can convert the data into that and then plot
them to give Figure 18.2:

flies <- ts (blowfly$flies)
plot (flies, col = hue_pal ()(1))

Time

F
lie

s

0 50 100 150 200 250 300 350

0
50

00
10

00
0

15
00

0

Figure 18.2 Time series plot for blowfly.

�

� �

�

718 THE R BOOK

The plot () function recognises that we have a time series and plots accordingly (in fact using
plot.ts ()). This classic time series has two clear features:

• For the first 200 weeks, the system exhibits beautifully regular cycles;

• After week 200, things change (perhaps a genetic mutation had arisen); the cycles become much
less clear-cut, and the population begins a pronounced upward trend.

Two important ideas to understand in time series analysis are autocorrelation and partial autocor-
relation. Autocorrelation describes how this week’s population is related to last week’s population.
This is the autocorrelation at (time) lag 1: it can also be measured for any lag. Partial autocorre-
lation describes the relationship between this week’s population and the population at lag t once
we have controlled for the correlations between all of the intervening weeks between this week and
week t. The definition should become clear if we draw the scatterplots from which, for instance, the
first four autocorrelation terms are calculated (lags 1–4).

There is a snag, however. The vector of flies at lag 1 is shorter (by one) than the original vector
because the first element of the lagged vector is the second element of flies. The coordinates of
the first data point to be drawn on the scatterplot are (flies[1],flies[2]) and the coordinates
of the last plot that can be drawn are (flies[360], flies[361]) because the original vector
is 361 element long:

length (flies)

[1] 361

Thus, the lengths of the vectors that can be plotted go down by one for every increase in the lag of
one. We can produce the four plots for lags 1–4 in a function like this, which produces Figure 18.3:

sapply (1:4, function (x) plot (flies[-(361: (361 - x + 1))], flies[-(1:x)],
xlab = "", ylab = "", col = hue_pal ()(8)[x]))

So, for instance, at lag 3 (i.e. x = 3), we are plotting flies[-(361:359)] which equals
flies[1:358] against flies[-(1:3)] which is flies[4:361]. The correlation is very strong
at lag 1, but notice how the variance increases with population size: small populations this week
are invariably correlated with small populations next week, but large populations this week may
be associated with large or small populations next week. The striking pattern here is the way that
the correlation fades away as the size of the lag increases. Because the population is cyclic, the
correlation goes to zero, then becomes weakly negative and then becomes strongly negative. This
occurs at lags that are half the cycle length. Looking back at the time series, the cycles look to be
about 20 weeks in length. So let us repeat the exercise by producing scatterplots at lags of 7, 8, 9,
and 10 weeks in Figure 18.4:

sapply (7:10, function (x) plot (flies[-(361: (361 - x + 1))], flies[-(1:x)],
xlab = "", ylab = "", col = hue_pal ()(8)[x - 2]))

The negative correlation at lag 10 gradually emerges from the fog of no correlation at lag 7.

�

� �

�

TIME SERIES 719

0 5 000 10 000 15 000 0 5000 10 000 15 000

0 5 000 10 000 15 0000 5 000 10 000 15 000

5
00

0
10

00
0

15
00

0

(a) Lag 1

0

5
00

0
10

00
0

15
00

0
0

5
00

0
10

00
0

15
00

0
0

5
00

0
10

00
0

15
00

0
0

(b) Lag 2

(c) Lag 3 (d) Lag 4

Figure 18.3 Scatter plots comparing blowfly numbers at different lags.

We can investigate the autocorrelation and partial autocorrelation using R’s acf () function,
which calculates the two types of correlation for increasing lags, to produce Figure 18.5:

acf (flies, col = hue_pal ()(2)[1], main = "")
acf (flies, type = "p", col = hue_pal ()(2)[2], main = "")

The autocorrelation plot (Figure 18.5a) shows a gradually decreasing positive association between
the value at a time point and that 6 weeks later, followed by a negative relationship for a lag of
7–12 weeks, and then a positive link peaking at about week 19. This is consistent with the time
series plot in Figure 18.2, even taking into account the changes from week 200 or thereabouts.
The dotted blue lines attempt to show where the size of the autocorrelation might be deemed
to be significant. These should be taken with a very large pinch of salt, as with all claims about
statistical significance, and subject matter expertise is a much better judge of important levels of
association.

�

� �

�

720 THE R BOOK

0 5000 10000 15000 0 5000 10000 15000

0 5000 10000 15000 0 5000 10000 15000

0
5

00
0

10
00

0
15

00
0

0
5

00
0

10
00

0
15

00
0

0
5

00
0

10
00

0
15

00
0

0
5

00
0

10
00

0
15

00
0

(a) Lag 7 (b) Lag 8

(c) Lag 9 (d) Lag 10

Figure 18.4 Scatter plots comparing blowfly numbers at different lags.

What kinds of time lags are involved in the generation of these cycles? We use partial autocor-
relation (type = "p") to find this out as shown in Figure 18.5b. The density-dependent effects
are most manifest at lags of two and three weeks, with other negative effects at lags of four and
five weeks. These lags reflect the duration of the larval and pupal period (one and two periods,
respectively). The cycles are clearly caused by overcompensating density dependence, resulting
from intra-specific competition between the larvae for food (what Nicholson christened ’scramble
competition’). There is a curious positive feedback at a lag of 12 weeks (12–16 weeks, in fact).
What might be the cause for this?

We might have decided that the behaviour of the time series is consistent (stationary, approxi-
mately) over the first 200 weeks, but then changes after that. We could investigate the behaviour of
the second half of the time series in the hope that that might also be stationary, albeit in a different
way form the first half. Let us examine the data from week 201 onwards:

flies_2 <- flies[201:361]

�

� �

�

TIME SERIES 721

0 5 10 15 20 25

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

(a) Autocorrelation

5 10 15 20 25

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Lag
P

ar
tia

l A
C

F
(b) Partial autocorrelation

Figure 18.5 Correlation plots for blowfly.

We can test for a linear trend in mean fly numbers against day number, from 1 to length
(flies_2):

blowfly_mod <- lm (flies_2 ~ I (1:length (flies_2)))
summary (blowfly_mod)

Call:
lm(formula = flies_2 ~ I(1:length(flies_2)))

Residuals:
Min 1Q Median 3Q Max

-4584.8 -1205.5 -138.0 968.6 9375.7

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2827.531 336.661 8.399 2.37e-14 ***
I(1:length(flies_2)) 21.945 3.605 6.087 8.29e-09 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2126 on 159 degrees of freedom
Multiple R-squared: 0.189,Adjusted R-squared: 0.1839
F-statistic: 37.05 on 1 and 159 DF, p-value: 8.289e-09

�

� �

�

722 THE R BOOK

Time

F
lie

s
(d

et
re

nd
ed

)

−
40

00
−

20
00

0
20

00
40

00
60

00
80

00

201 251 301 351

(a) Time series

0 5 10 15 20

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

(b) Autocorrelation

5 10 15 20

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Lag

P
ar

tia
l A

C
F

(c) Partial autocorrelation

Figure 18.6 Time series plots for blowfly, weeks 201–361, detrended.

Note the use of I in the model formula (for ’as is’) to tell R that the colon we have used is to generate
a sequence of x values for the regression (and not an interaction term as it would otherwise have
assumed).

This shows that there is a definite upward trend of about 22 extra flies on average each week in
the second half of the time series. We can detrend the data by subtracting the fitted values from
the linear regression of second on day number:

flies_detrended <- flies_2 - predict (lm (flies_2 ~ I (1:length (flies_2))))

Now let us have another look at our time series plots but based around the detrended data.
Figure 18.6 shows all three plots.

plot.ts (flies_detrended, col = hue_pal ()(3)[1],
ylab = "flies (detrended)", xaxt = "n")

axis (1, at = seq (0, 150, 50), labels = seq (201, 361, 50))
acf (flies_detrended, col = hue_pal ()(3)[2], main = "")
acf (flies_detrended, type = "p", col = hue_pal ()(3)[3], main = "")

We have amended the x-axis to show the original week numbers. These new plots seem to
show a cycle but which seems more damped than in the first 20 weeks and which seems to
peak a couple of weeks earlier, presumably caused by the increasing population. There is also a
curious large negative partial autocorrelation. For comparison purposes, autocorrelation plots for
weeks 1–200 are shown in Figure 18.7, where there is also some evidence of the 18 week lag
weirdness.

�

� �

�

TIME SERIES 723

0 5 10 15 20

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

(a) Autocorrelation

5 10 15 20−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

Lag

P
ar

tia
l A

C
F

(b) Partial autocorrelation

Figure 18.7 Autocorrelation plots for blowfly, weeks 1–200.

flies_1 <- flies[1:200]
acf (flies_1, col = hue_pal ()(2)[1], main = "")
acf (flies_1, type = "p", col = hue_pal ()(2)[2], main = "")

18.3 Seasonal data

We saw a straightforward example of some temperature data in Section 18.1. Here are daily max-
imum and minimum temperatures (together with rainfall) from Silwood Park in south-east England
over a 19-year period, beginning in 1987:

silwood <- read.table ("silwoodweather.txt", header = T)
head (silwood)

upper lower rain month yr
1 10.8 6.5 12.2 1 1987
2 10.5 4.5 1.3 1 1987
3 7.5 -1.0 0.1 1 1987
4 6.5 -3.3 1.1 1 1987
5 10.0 5.0 3.5 1 1987
6 8.0 3.0 0.1 1 1987

To simplify matters and make each year the same length, we will delete the leap day data. This
won’t have a great effect on temperature trends but, obviously, wouldn’t be appropriate if we were
examining cumulative rainfall:

silwood <- silwood[-seq (365 + 31 + 29, nrow (silwood), 365 * 4 + 1),]

�

� �

�

724 THE R BOOK

0 5 10 15 20

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

(a) By month

0 2 4 6 8 10 12−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

(b) By year

Figure 18.8 Autocorrelation plots for silwood.

18.3.1 Point of view

As we have seen, one way of spotting trends or seasonal effects is to review the autocorrelation
plot. We will do that here by month and then by year in Figure 18.8:

month_ts <- ts (as.vector (tapply (silwood$upper, list (silwood$month, silwood
$yr), mean)))

acf (month_ts, main = "", col = hue_pal ()(2)[1])
year_ts <- ts (as.vector (tapply (silwood$upper, list (silwood$yr), mean)))
acf (year_ts, main = "", col = hue_pal ()(2)[2])

There is a perfect monthly cycle with period 12 (as expected). What about patterns across years?
Nothing! The pattern we may (or may not) see depends upon the scale at which we look for it.
There is a strong pattern between days within months (tomorrow will be like today). There is very
strong pattern from month to month within years (January is cold, July is warm). But there may be
no pattern at all from year to year (there may be progressive global warming, but it is not apparent
within this recent time series, and there is absolutely no evidence for un-trended serial correlation).

18.3.2 Built in ts () functions

Our analysis of blowfly was a little informal and did not make the most of the tools available to
us in R. Our analysis is more straighforward to carry out, and the graphics are better labelled, if
we convert the temperature data into a regular time series object using ts (), as we saw in the
previous section. We need to specify the first date (January 1987) as start = c (1987, 1),
and the number of data points per year as frequency = 365 (this is much simpler since we
standardised the year length):

upper_ts <- ts (silwood$upper, start = c (1987, 1), frequency = 365)

�

� �

�

TIME SERIES 725

Time

D
eg

re
es

1990 1995 2000 2005

0
10

20
30

Figure 18.9 Correctly labelled time series plot for silwood.

Now, we can use plot () to see a plot of the time series, correctly labelled by years in Figure 18.9:
.

plot (upper_ts, ylab = "degrees", col = hue_pal ()(1))

Having done that, there is a function, stl (), that might help us decompose the time series into
seasonal, trend, and irregular components using loess () (see Section 12.1 for a discussion of
the function). This gives us Figure 18.10

upper_decomp <- stl (upper_ts, "periodic")
plot (upper_decomp, col = hue_pal ()(2)[1], col.range = hue_pal ()(2)[2])

0
10

30

D
at

a

−
5

0
5

10

S
ea

so
na

l

12
14

16

T
re

nd

−
10

0
5

1990 1995 2000 2005

R
em

ai
nd

er

Time

Figure 18.10 Decomposition of silwood using loess ().

�

� �

�

726 THE R BOOK

There is an annual cycle. The bars at the right-hand side of each plot are of equal heights (as can
be seen by looking at the y-axes), so that we can see there appears to be an upward trend, but it
is relatively small in comparison with the data range.

18.3.3 Cycles

Let us examine maximum temperatures and start by modelling the seasonal component. The sim-
plest models for cycles are scaled so that a complete annual cycle is of length 1.0 (rather than 365
days). The equation for the seasonal (or any) cycle is made up of a combination of sine and cosine
curves:

yt = 𝛼 + 𝛽sin(2𝜋t) + 𝛾cos(2𝜋t) + 𝜖t

This is a linear model, so we can estimate its three parameters very simply:

time = (1:nrow (silwood) / 365)
silwood_mod1 <- lm (upper ~ sin (time * 2 * pi) + cos (time * 2 * pi),

data = silwood)
summary (silwood_mod1)

Call:
lm(formula = upper ~ sin(time * 2 * pi) + cos(time * 2 * pi),

data = silwood)

Residuals:
Min 1Q Median 3Q Max

-14.1386 -2.4136 -0.1275 2.2212 14.6645

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.96134 0.04091 365.74 <2e-16 ***
sin(time * 2 * pi) -2.52503 0.05785 -43.65 <2e-16 ***
cos(time * 2 * pi) -7.24301 0.05785 -125.20 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.407 on 6932 degrees of freedom
Multiple R-squared: 0.7172,Adjusted R-squared: 0.7171
F-statistic: 8790 on 2 and 6932 DF, p-value: < 2.2e-16

All three elements of the model need to be retained and over 70% of the variation in the data is
taken care of. We might want to plot the model against the data and Figure 18.11 does just that.
We start by inspecting the two time series. We have used pch = "." as it is the smallest standard
point we can display.

plot (silwood$upper, ylab = "upper", pch = ".", col = hue_pal ()(2)[1])
lines (1:(nrow (silwood)), predict (silwood_mod1), col = hue_pal ()(2)[2])

�

� �

�

TIME SERIES 727

0 1000 2000 3000 4000 5000 6000 7000

0
10

20
30

Index

U
pp

er

Figure 18.11 Data and predictions for silwood model 1.

0 1000 2000 3000 4000 5000 6000 7000

−
15

−
5

−
10

0
5

10
15

Index

R
es

id
ua

ls

Figure 18.12 Residuals for silwood model 1.

We can investigate the residuals to look for patterns (e.g. trends in the mean, or autocorrelation
structure). Remember that the residuals are stored as part of the model object, and they are given
in Figure 18.12:

plot (silwood_mod1$resid, ylab = "residuals", pch = ".", col = hue_pal ()(1))

There looks to be some periodicity in the residuals, roughly matching the yearly patterns, but there
are too many data points to pick out trends. To look for serial correlation in the residuals, we use
the acf () function like this to give Figure 18.13:

acf (silwood_mod1$resid, main = "", col = hue_pal ()(2)[1])
acf (silwood_mod1$resid, type = "p", main = "", col = hue_pal ()(2)[2])

�

� �

�

728 THE R BOOK

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

(a) Autocorrelation

0 10 20 30

0.
0

0.
2

0.
4

0.
6

Lag

P
ar

tia
l A

C
F

(b) Partial autocorrelation

Figure 18.13 Autocorrelation analysis for residuals of silwood model 1.

There is very strong serial correlation in the residuals, and this drops off roughly exponentially with
increasing lag (Figure 18.13a). The partial autocorrelation at lag 1 is very large, but the correlations
at higher lags are much smaller. This suggests that an AR (1) model (see Section 18.5.2: basically,
the previous year has an effect on the current year) might be appropriate on top of the seasonality.
This is the statistical justification behind the old joke about the weather forecaster who was asked
what tomorrow’s weather would be. “Like today’s”, she said. A more complete analysis of cyclic
data using sines and cosines (most cycles require more than one of each) can be carried out using
spectral decomposition, using the function spectrum (). The analysis is fairly technical and will
not be considered here.

18.3.4 Testing for a time series trend

We saw from the decomposition in Figure 18.10 that there may be a trend in the Silwood maximum
daily temperature data, and in Section 18.3.3 the possibility of an AR (1) model in the residuals
suggested the same thing. There are many ways we could investigate this, but one option would
be to take the trend + remainder elements from the decomposition and build a simple linear
model:

trend_rem <- upper_decomp$time.series[,"trend"] +
upper_decomp$time.series[,"remainder"]

silwood_mod2 <- lm (trend_rem ~ I (1: length (trend_rem)))
summary (silwood_mod2)

�

� �

�

TIME SERIES 729

Call:
lm(formula = trend_rem ~ I(1:length(trend_rem)))

Residuals:
Min 1Q Median 3Q Max

-13.4156 -2.2655 -0.1474 2.1437 12.5823

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.431e+01 7.807e-02 183.251 <2e-16 ***
I(1:length(trend_rem)) 1.888e-04 1.950e-05 9.685 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.25 on 6933 degrees of freedom
Multiple R-squared: 0.01335,Adjusted R-squared: 0.01321
F-statistic: 93.81 on 1 and 6933 DF, p-value: < 2.2e-16

We have just regressed the data without the cycle on a simple index of days. There certainly appears
to be a trend of 1.9 × 10−4 degrees per day or 0.07 degrees per year, although the small value for
R2 suggests there is a lot more going on besides that. Residual plots, which we can generate in the
usual way, show nothing unusual.

18.4 Multiple time series

When we have two or more time series measured over the same period, the question naturally
arises as to whether or not the ups and downs, or indeed any other pattern or trend of the different
series are correlated. It may be that we suspect that change in one of the variables causes changes
in the other (e.g. changes in the number of predators may cause changes in the number of prey,
because more predators means more prey eaten). We need to be careful, of course, because it will
not always be obvious which way round the causal relationship might work (e.g. predator numbers
may go up because prey numbers are higher; ecologists call this a numerical response). Suppose
we have the following sets of counts:

twoseries <- read.table ("twoseries.txt", header = T)
head (twoseries)

x y
1 101 121
2 210 111
3 314 234
4 221 512
5 13 226
6 222 137

twoseries <- ts (twoseries)

�

� �

�

730 THE R BOOK

Time

5 10 15 20

0
10

0
20

0
30

0
40

0
50

0

x
y

Figure 18.14 Time series plots of twoseries.

The two series are informatively titled x and y. We start by inspecting the two time series in
Figure 18.14:

ts.plot (twoseries, col = hue_pal ()(2))
legend (10, 500, legend = c ("x", "y"), lwd = 1, col = hue_pal ()(2))

In a change to our usual function, we have used ts.plot () rather than plot () (which defaults
to plot.ts () for time series) as it puts the two sequences in the same plot and offers more
flexibility for multiple time series. There is some evidence of periodicity (at least in x) and it looks
as if y lags behind x by roughly two periods (sometimes 1). Now, let us carry out straightforward
partial autocorrelation analyses on each time series separately and the cross-correlation between
the two series, as in Figure 18.15. The stand-alone plots for x and y are the first and last plots. The
top right-hand plot is the partial autocorrelation between the two going forward in time and that in
the bottom left going backwards.

acf (twoseries, type = "p", col = hue_pal ()(10))

As we suspected, the evidence for periodicity is stronger in x than in y: the partial autocorrelation is
large and negative at lag 2 for x, but not for y. The interesting point is the cross-correlation between
x and y which is significant at lags 1 and 2 (top right). Positive changes in x are associated with
negative changes in y and vice versa.

18.5 Some theoretical background

So far, we have examined time series data but not built models, except for the trend, that might
help us analyse the data or even make predictions. In this section, we will look at some standard
models, which will cover all stationary time series, and more. All of them assume that the error terms
(similar but not the same as those used in linear models) are independent from each other. There
are models, known as GARCH models, where that is not the case, which we will not cover here.
Let us begin with something that we have already seen, namely the autocorrelation.

�

� �

�

TIME SERIES 731

2 4 6 8 10

−
0.

4
0.

0
0.

4

Lag

P
ar

tia
l A

C
F

2 4 6 8 10

−
0.

4
0.

0
0.

4

Lag

−10 −8 −6 −4 −2

−
0.

4
0.

0
0.

4

Lag

P
ar

tia
l A

C
F

2 4 6 8 10

−
0.

4
0.

0
0.

4

Lag

Figure 18.15 Time series plots of twoseries.

18.5.1 Autocorrelation

We have seen plots of autocorrelation and so will have a general idea of what the value represents.
Here we will formalise the idea. Let us assume that we have a time series represented by {Yt ∶ t =
0,1, …} where, for instance, Y1 represents the value at time 1. Then we define the autocovariance
function, 𝛾k, (in an analogous fashion to covariance) at lag k as follows:

𝛾k = cov(Yt−k,Yt).

So this looks at the relationship between the two elements of the right-hand side at lag k over all
values of t. The autocorrelation, 𝜌k, (again in an analogous fashion to correlation) is then

𝜌k =
𝛾k

𝛾0
.

Clearly, 𝛾0 is just the variance of Yt. The most important properties of the autocorrelation coefficient
are as follows:

• they are symmetric backwards and forwards, so 𝜌k = 𝜌−k;

• the limits are −1 ≤ 𝜌k ≤ 1, similar to correlation;

• when Yt and Yt−k are independent, then 𝜌k = 0;

• the converse of the previous point is not true, so that 𝜌k = 0 does not imply that Yt and Yt−k are
independent (look at the scatterplot for k = 7 in Figure 18.4).

�

� �

�

732 THE R BOOK

For the plots in Section 18.2, the covariances and autocorrelations were estimated from the sam-
ple data that we have.

18.5.2 Autoregressive models

The first type of model we will look at is known as autoregressive and its general form, referred to
as AR (p), is

Yt =
p∑

i=1

𝛼iYt−i + 𝜖t.

The 𝜖t (error) terms are known as white noise which means that they come from the same distri-
bution;

• independently of all other white noise terms;

• with mean 0;

• with finite variance 𝜎2.

So, the value of our time series at time t, is a linear combination of the last p values plus a random
error term. We (R) estimate the 𝛼i and 𝜎2 from the data.

A commonly used model is the first-order autoregressive process, AR (1):

Yt = 𝛼Yt−1 + 𝜖t.

which is simple to interpret. In that case, if −1 < 𝛼 < 1, then the process is stationary and going
back to autocorrelation:

𝜌k = 𝛼k, k = 0,1,2, … .

If we decide that we are going to use an AR (p) model, perhaps by looking at the autocorrelation
plot, then how do we pick p, the order? One method is to use the partial autocorrelation function.

18.5.3 Partial autocorrelation

Partial autocorrelation is the relationship between the current value of Yt and that at lag t when
we have controlled for the correlations between all of the successive weeks between this week
and week t. That is to say, the partial autocorrelation is the correlation between Yt and Yt+k after
regression of Yt on Yt+1,Yt+2, … ,Yt+k−1. The technical details are more complex than those for
autocorrelation, but, in practice, we obtain it by solving a set of equations based on the data in our
time series.

We have already seen that the partial autocorrelation function may be useful in interpreting our
data. We can also use it to estimate p, the order of an AR (p) process. When we look at a partial
autocorrelation plot, we would expect to see the partial autocorrelation to be roughly zero from lag
p + 1 onwards. See Section 18.7 for an example. An alternative is to use AIC for model comparison.

18.5.4 Moving average models

These moving average models of order q, MA (q), are the other type of independent error model:
we shouldn’t confuse them with the more general term, moving average. We define the model by

Yt = 𝜇 + 𝜖t +
q∑

i=1

𝛽i𝜖t−i

�

� �

�

TIME SERIES 733

where the 𝜖i are white noise as in AR (p) models. So the value of the time series at any point is
some mean (frequently omitted by subtracting the mean from all values) plus an error term plus the
moving average of a limited number of previous error terms. These models are always stationary.
Again, we (or R) estimate the parameters, 𝛽i and 𝜎2, from the data, albeit in a less straightforward
way than for AR (p) models. The key decisions here are: when do we use an MA (q) model, and
what should we use as q. The autocorrelation plot may guide us here in a similar way to the partial
autocorrelation plot for AR () models: we might pick q + 1 to be the first small value in the plot. See
Section 18.7 for an example. Again, AIC can also be used.

18.5.5 More general models: ARMA and ARIMA

We can combine types of independent error model with both autoregressive and moving average
elements. An ARMA (p,q) model is

Yt =
p∑

i=1

𝛼iYt−i + 𝜖t + 𝜇 +
q∑

i=1

𝛽i𝜖t−i.

Once again, R will do all the work, once we have chosen p and q. AN ARMA model will be able to
represent any stationary time series.

Finally (phew), the most general model is known as ARIMA (p,d,q) (the I stands for integrated).
We might find that we have a time series that is definitely not stationary, for instance there may
be a trend or seasonality. We could not then use the models described above, which only hold for
stationary series. However, there is a technique, known as differencing whereby we replace the
time series with one which is just the differences between consecutive terms. So the new series
might be {Zt}, where

zt = yt − yt−1

If we carry out this process one or more (d) times, then we may end up with a series that appears
to be stationary, and we can use an ARMA model. We can select our value of d by carrying out
differencing and then looking at the time series plot for stationarity. If there is just a single repeated
cycle then, usually d = 1. What we have ended up with is an ARIMA (p,d,q) model. R does all the
dirty work for us using arima (). In Section 18.6, we will have a look at an example.

18.6 ARIMA example

Records of the number of skins of predators (lynx) and prey (snowshoe hares) returned by trappers
were collected over many years by the Hudson’s Bay Company. The data set lynx has the lynx
numbers:

lynx <- read.table ("lynx.txt", header = T)
head (lynx)

Lynx
1 269
2 321
3 585
4 871
5 1475
6 2821

�

� �

�

734 THE R BOOK

Time

Ly
nx

 s
ki

ns

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

(a) Time series

0 5 10 15 20

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

(b) Autocorrelation

5 10 15 20

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Lag

P
ar

tia
l A

C
F

(c) Partial autocorrelation

Figure 18.16 Time series plots for lynx.

Figure 18.16 shows the usual time series plots

plot.ts (lynx$Lynx, col = hue_pal ()(3)[1], ylab = "lynx skins", xaxt = "n")
acf (lynx$Lynx, col = hue_pal ()(3)[2], main = "")
acf (lynx$Lynx, type = "p", col = hue_pal ()(3)[3], main = "")

It looks as if there is a seasonal cycle, so we might think that d = 1. Figure 18.16c has large values
up to p = 2 suggesting that we might incorporate AR (2) into our model. Picking a value for q is a
bit tricky because of the differencing, so let us run an AIC analysis on a range of values for q, say
0 to 5:

lynx_aics <- numeric (6)
names (lynx_aics) <- 0:5
for (q in 0:5) {
lynx_aics[q + 1] <- arima (lynx$Lynx, order = c (2, 1, q))$aic

}
lynx_aics

0 1 2 3 4 5
1895.150 1865.770 1867.537 1864.522 1852.578 1877.075

This suggests we use q = 4. So, let us have a look at the model output:

lynx_mod <- arima (lynx$Lynx, order = c (2, 1, 4))
lynx_mod

�

� �

�

TIME SERIES 735

Call:
arima(x = lynx$Lynx, order = c(2, 1, 4))

Coefficients:
ar1 ar2 ma1 ma2 ma3 ma4

1.5877 -0.9990 -1.8541 0.7477 0.8136 -0.7070
s.e. 0.0057 0.0022 0.1036 0.1779 0.1431 0.0969

sigma^2 estimated as 613727: log likelihood = -919.29, aic = 1852.58

In our terminology, 𝛼1 is represented by ar1 and 𝛽2 by ma2, etc. The estimate of the variance of
the white noise, 𝜎2 is huge: the standard error is larger than any of the data values (the ’noise’ is
larger than the ’signal’) which suggests that this might not be a great model for the data (perhaps
the error terms are not independent). Anyway, this gives us a good idea of how to create ARIMA
models. Predictions can be made in the usual way using predict ().

18.7 Simulation of time series

Once we have built our time series model and are happy with it, we can simulate from it, perhaps
to investigate what happens beyond the period for which we have data. This is dangerous, as it
assumes that the same model assumptions about errors, p, d, and q hold beyond the period for
which we have data. However, it may be useful to explore multiple simulations in order to understand
the possible range of future outcomes. As the models we have built are mostly stationary, one
option with a non-stationary dataset would be to take out non-stationary elements, simulate from
the stationary remainder and then add back the non-stationary features.

Simulations also serve to illustrate how we might expect the time series and autocorrelation plots
for different models to look and that is what we will investigate in this section. Fortunately, R has a
function that will do all the work for us, arima.sim (). Let us start by having a look at some white
noise, in Figure 18.17:

set.seed (271828)
white_noise <- arima.sim (list (order = c (0, 0, 0)), n = 1000)
plot (white_noise, ylab = "", col = hue_pal ()(15)[1])
acf (white_noise, main = "", col = hue_pal ()(15)[2])
acf (white_noise, type = "p", main = "", col = hue_pal ()(15)[3])

We have not specified an error term variance (it can be set using sd =) so the default is 1, and the
parameters of our ARIMA (p,d,q) model are entered using list (order = c (0, 0, 0)). As
we just want white noise in this case, all three are zero and the white noise itself will be picked
up in the AR (0) part of the model. We have fixed the seeds (set.seed (271828)) for all the
simulations in this section so that we can comment on the specific outputs.

The plots are what we might expect: the occasional large value in all three arising by chance but
no overall pattern. In particular both of the autocorrelation plots show occasional lines (here at lags
4 and 21) that exceed the dotted lines. This is an inevitable consequence of random sampling, and
it can be dangerous to read too much into such readings should they occur in a real dataset. The
dotted lines should be treated as guidance, not as an absolute measure of importance.

�

� �

�

736 THE R BOOK

Time
0 200 400 600 800 1000

−
3

−
2

−
1

0
1

2
3

(a) Time series

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

(b) Autocorrelation

0 5 10 15 20 25 30

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04
0.

06

Lag

P
ar

tia
l A

C
F

(c) Partial autocorrelation

Figure 18.17 White noise simulation.

Next, Figure 18.18 shows an AR (2) model with 𝛼1 = 1 and 𝛼2 = −0.7:

set.seed (182845)
ar2 <- arima.sim (list (order = c (2, 0, 0), ar = c (1, -0.7)), n = 1000)
plot (ar2, ylab = "", col = hue_pal ()(15)[4])
acf (ar2, main = "", col = hue_pal ()(15)[5])
acf (ar2, type = "p", main = "", col = hue_pal ()(15)[6])

There is far greater variation in the time series plot, and it is very clear from the partial autocorrelation
plot that p = 2 is appropriate.

Figure 18.19 shows an MA (3) model with no mean, 𝛽1 = 2, 𝛽2 = −1 and 𝛽3 = 1.3:

set.seed (904523)
ma3 <- arima.sim (list (order = c (0, 0, 3), ma = c (2, -1, 1.3)), n = 1000)
plot (ma3, ylab = "", col = hue_pal ()(15)[7])
acf (ma3, main = "", col = hue_pal ()(15)[8])
acf (ma3, type = "p", main = "", col = hue_pal ()(15)[9])

The effect of the three weighted white noise terms is to produce a much wider range of values for
the series than just the white noise alone. The autocorrelation plot with large terms to lag 3 certainly
suggests that q = 3 fits the data well.

In both the preceding simulations, if we had decided that they were AR () or MA (), then finding
the order is relatively straightforward: if we hadn’t settled on the type of model, perhaps from under-
standing the subject matter background of the data set, then things would not have been so clear.

�

� �

�

TIME SERIES 737

Time

0 200 400 600 800 1000

−
4

−
2

0
2

4
6

(a) Time series

0 5 10 15 20 25 30

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

(b) Autocorrelation

0 5 10 15 20 25 30

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Lag

P
ar

tia
l A

C
F

(c) Partial autocorrelation

Figure 18.18 AR (2) simulation.

Time

0 200 400 600 800 1000

−
5

0
5

(a) Time series

0 5 10 15 20 25 30

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

(b) Autocorrelation

0 5 10 15 20 25 30

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Lag

P
ar

tia
l A

C
F

(c) Partial autocorrelation

Figure 18.19 MA (3) simulation.

�

� �

�

738 THE R BOOK

Time

0 200 400 600 800 1000

0
50

10
0

15
0

(a) Time series

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

(b) Autocorrelation

0 5 10 15 20 25 30

−
0.

5
0.

0
0.

5
1.

0

Lag

P
ar

tia
l A

C
F

(c) Partial autocorrelation

Figure 18.20 ARIMA (2, 1, 3) simulation.

Finally, just to complicate things further, we will add a differencing term of order 1 on top of both
models seen already, to give Figure 18.20:

set.seed (536028)
ar2d1ma3 <- arima.sim (list (order = c (2, 1, 3), ar = c (1, -0.7),

ma = c (2, -1, 1.3)), n = 1000)
plot (ar2d1ma3, ylab = "", col = hue_pal ()(15)[10])
acf (ar2d1ma3, main = "", col = hue_pal ()(15)[11])
acf (ar2d1ma3, type = "p", main = "", col = hue_pal ()(15)[12])

Given that this is a stationary time series (arima.sim () will only produce those), the time series
plot shows significant variation and the autocorrelation plots don’t really help us in trying to work
out the values of p, d, and q.

If we examine ar2d1ma3, we will see that it has 1001 elements, as the difference is created by
adding it back in to an ARMA (2, 3) model. So if we take it out again as described in Section 18.5.5,
we get Figure 18.21:

set.seed (747135)
ar2ma3 <- arima.sim (list (order = c (2, 0, 3), ar = c (1, -0.7),

ma = c (2, -1, 1.3)), n = 1000)
plot (ar2ma3, ylab = "", col = hue_pal ()(15)[13])
acf (ar2ma3, main = "", col = hue_pal ()(15)[14])
acf (ar2ma3, type = "p", main = "", col = hue_pal ()(15)[15])

�

� �

�

TIME SERIES 739

Time
0 200 400 600 800 1000

−
10

−
5

0
5

10

(a) Time series

0 5 10 15 20 25 30

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

(b) Autocorrelation

0 5 10 15 20 25 30

−
0.

2
0.

0
0.

2
0.

4
0.

6

Lag

P
ar

tia
l A

C
F

(c) Partial autocorrelation

Figure 18.21 ARMA (2, 3) simulation.

The autocorrelation plots suggest that we might select p = 3 and q = 5. We could compare AIC for
that combination with the orders that actually generated the data:

sim_mod1 <- arima (ar2d1ma3, order = c (3, 0, 5))
sim_mod1$aic

[1] 4711.538

sim_mod2 <- arima (ar2d1ma3, order = c (2, 0, 3))
sim_mod2$aic

[1] 4743.492

The AIC deduced from the plots is smaller than that from the model that the generated data: fitting
time series models is a very inexact science!

Reference

Cowpertwait, P. S. P., & Metcalfe, A. V. (2009). Introductory time series with R (First). Springer.

�

� �

�

�

� �

�

19
Multivariate Statistics

This class of statistical methods is fundamentally different from many others in the book because
there may not be a response variable. Instead of trying to understand variation in a response vari-
able in terms of explanatory variables, in multivariate statistics we look for structure in the data.
The problem is that structure is rather easy to find, and all too often it is a feature of that particular
data set alone. The real challenge is to find general structure that will apply to other data sets as
well. Unfortunately, there is no guaranteed means of detecting pattern, and a great deal of ingenuity
has been shown by statisticians in devising means of pattern recognition in multivariate data sets.
The main division is between methods that assume a given structure and seek to divide the cases
into groups, and methods that seek to discover structure from inspection of the data. The really
important point is that we need to know exactly what the question is that we are trying to answer.
Do not mistake the opaque for the profound.

R incorporates a wide range of multivariate techniques, many of them in extra packages. A good
summary can be found at https://cran.r-project.org/web/views/Multivariate.html. The subjects cov-
ered in this chapter together are the following:

• visualising data;

• multivariate analysis of variance;

• principal component analysis: analyses the main sources of variation in the data;

• factor analysis: picks out hidden variables that explain correlation in the data;

• cluster analysis: splits the data into groups based upon similarity;

• discriminant analysis: explains how data contributes to classification into known groups;

• neural networks: finds pattern in data using a black box.

These techniques are not recommended unless we know exactly what we are doing, and exactly
why we are doing it. Beginners are sometimes attracted to multivariate techniques because of
the complexity of the outputs they produce. These techniques (with the exception of discriminant
analysis and neural networks) are also described as unsupervised learning, i.e. they attempt to
find patterns in data without any guidance as to what these patterns might be.

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

https://cran.r-project.org/web/views/Multivariate.html
http://www.wiley.com/go/jones/therbook3e

�

� �

�

742 THE R BOOK

19.1 Visualising data

As usual, before carrying out fancy statistical analyses it is always worth spending time under-
standing a dataset. Multivariate data often exists in high dimensions (e.g. a record of my physical
characteristics might contain hundreds of pieces of information such as height, left big toe length),
and so it can be difficult to produce helpful summary statistics and plots. A couple of such plots are
illustrated here but many more are available with R.

A good starting point is appropriate univariate plots for each variable (barchart, histogram, or
boxplot for instance) and bivariate scatter plots between pairs. Fortunately, we can combine the
two using the function chart.Correlation () which can be found in the PerformanceAna-
lytics package (Peterson and Carl, 2020). We illustrate this using the taxonomy data set that
we will examine in more detail in Section 19.5.1. For now, we just need to know that there are 120
observations of 7 plant characteristics, and they are displayed in Figure 19.1:

library (PerformanceAnalytics)
taxa <- read.table ("taxonomy.txt", header = T, colClasses = list

(Taxon = "factor"))
chart.Correlation (taxa[, 2:8], histogram = TRUE, pch = 20)

Petals

25
28

31
17

.0
19

.0
1.

0
2.

0
3.

0

4 5 6 7 8

25 27 29 31

−0.045

Internode

0.13

−0.038

Sepal

2.0 3.0 4.0 5.0

17.0 18.5 20.0

−0.056

−0.05

−0.025

Bract

−0.41***

0.05

0.15

0.049

Petiole

7 8 9 11

1.0 2.0 3.0

0.21 *

0.067

−0.15

−0.11

0.093

Leaf

4
6

8

−0.043

0.11

2.
0

3.
5

5.
0

−0.06

0.039

7
9

11

0.21 *

−0.03

7.0 7.4 7.8

7.
0

7.
6Fruit

Figure 19.1 Scatter and density plots for 8 variables in taxonomy.

�

� �

�

MULTIVARIATE STATISTICS 743

Petals

Internode

Sepal

Bract

Petiole

Leaf

Fruit

Figure 19.2 Radar plot for taxonomy.

Histograms of individual variables appear down the diagonal while scatter plots between all pairs of
variables are in the lower left hand triangle. The numbers in the upper right-hand triangle are corre-
lation coefficients and lines of best fit have been added to the histograms and scatter plots. There
is very little flexibility in altering colours, etc. It seems clear that there are no strong relationships
between any of the pairs of variables, and that most of the individual variables are a long way from
being normally distributed. Note the sepal data are split into two parts.

An alternative approach is to focus on the observations rather than the variables. We could create
a radar or cobweb plot as in Figure 19.2:

stars (taxa[,2:8], locations = c (0, 0), key.loc = c (0, 0), radius = F,
col.lines = hue_pal ()(120))

We can track individual observations around the seven variables by following individual lines. The
120 lines have different colours, gradually changing through the colour spectrum. The plot would
look quite different if the order of the variables were to be changed. There do appear to be different
characteristics between the observations at the blue and red ends of the spectrum, the reason for
which will become clear in Section 19.6.

Clearly, both of the plots displayed here are only useful for relatively small numbers of observa-
tions and variables but then big data inhabits a separate universe.

19.2 Multivariate analysis of variance

Two or more response variables are sometimes measured in the same experiment. Of course, we
can analyse each response variable separately, and that is the typical way to proceed. But there are
occasions where we want to treat the group of response variables as one multivariate response. The
function for this is manova (), the multivariate analysis of variance. The data set manova investi-
gates the effect of two categorical covariates, rate and additive, on three outcomes describing
plastic packaging material: tear, gloss, and opacity.

�

� �

�

744 THE R BOOK

plastic <- read.table ("manova.txt", header = T)
head (plastic)

tear gloss opacity rate additive
1 6.5 9.5 4.4 Low Low
2 6.2 9.9 6.4 Low Low
3 5.8 9.6 3.0 Low Low
4 6.5 9.6 4.1 Low Low
5 6.5 9.2 0.8 Low Low
6 6.9 9.1 5.7 Low High

We then bind the three outcomes together and fit a model:

plastic_out <- cbind (plastic$tear, plastic$gloss, plastic$opacity)
colnames (plastic_out) <- colnames (plastic)[1:3]
plastic_mod1 <- manova (plastic_out ~ plastic$rate * plastic$additive)
summary (plastic_mod1)

Df Pillai approx F num Df den Df Pr(>F)
plastic$rate 1 0.61814 7.5543 3 14 0.003034 **
plastic$additive 1 0.47697 4.2556 3 14 0.024745 *
plastic$rate:plastic$additive 1 0.22289 1.3385 3 14 0.301782
Residuals 16

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

This shows that both rate and additive are important, but the interaction appears not to be. Note
that the F-tests are based on 3 (outcomes) and 14 (data - minus variables - intercept) degrees of
freedom (not 1 and 16). However, it would be useful also to see the effect on responses separately,
and we might as well eliminate the interaction term:

plastic_mod2 <- manova (plastic_out ~ plastic$rate + plastic$additive)
summary.aov (plastic_mod2)

Response tear:
Df Sum Sq Mean Sq F value Pr(>F)

plastic$rate 1 1.7405 1.74050 16.769 0.0007549 ***
plastic$additive 1 0.7605 0.76050 7.327 0.0149597 *
Residuals 17 1.7645 0.10379

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Response gloss:
Df Sum Sq Mean Sq F value Pr(>F)

plastic$rate 1 1.3005 1.30050 6.9688 0.01720 *
plastic$additive 1 0.6125 0.61250 3.2821 0.08774.
Residuals 17 3.1725 0.18662

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

�

� �

�

MULTIVARIATE STATISTICS 745

Response opacity:
Df Sum Sq Mean Sq F value Pr(>F)

plastic$rate 1 0.421 0.4205 0.1038 0.7513
plastic$additive 1 4.901 4.9005 1.2094 0.2868
Residuals 17 68.884 4.0520

We are now carrying out multiple tests so need to be careful about the p-values we are considering
(see Section 9.5). As there are three models, a rule of thumb might be to multiply the p-values
by three. In that case, rate seems to have a strong impact on tear and a not very strong effect
on gloss, and rate also has a marginal effect on gloss. How we interpret the model overall
will depend upon subject matter knowledge, and whether we genuinely want to consider the three
responses as one.

19.3 Principal component analysis

The idea of principal component analysis (PCA) is to find a small number of orthogonal (i.e. at right
angles or independent from each other) linear combinations of the variables which capture most of
the variation in the data as a whole. With a large number of variables, it may be easier to consider
a small number of combinations of the original data rather than the entire data set.

Suppose, for example that 54 plants species are grown in 89 plots for 10 years and the average
annual yield (in grams of dry weight) for each species is collected:

pgdata <- read.table ("pgfull.txt", header = T)
names (pgdata)

[1] "AC" "AE" "AM" "AO" "AP" "AR"
[7] "AS" "AU" "BH" "BM" "CC" "CF"

[13] "CM" "CN" "CX" "CY" "DC" "DG"
[19] "ER" "FM" "FP" "FR" "GV" "HI"
[25] "HL" "HP" "HS" "HR" "KA" "LA"
[31] "LC" "LH" "LM" "LO" "LP" "OR"
[37] "PL" "PP" "PS" "PT" "QR" "RA"
[43] "RB" "RC" "SG" "SM" "SO" "TF"
[49] "TG" "TO" "TP" "TR" "VC" "VK"
[55] "plot" "lime" "richness" "hay" "pH"

The data set contains the yield for 89 observations of 54 variables (species: AC to VK) together
with experimental treatments (plot and lime) and covariates (species richness, hay biomass and
soil pH). More details can be found in Crawley et al., 2005. The questions we might be interested
in are: what are the principal species that explain the variation in outputs and what environmental
factors are associated with them?

We shall use PCA for the first question. The general idea is, rather than trying to order 54 species
or linear combinations of 54 species to explain the variability, to pick, say, the top three linear
combinations or, perhaps, the top n combinations that explain 90% of the variability. Each of these
combinations is independent of all others. Calculating principal components is easy. Interpreting
what the components mean in scientific terms is hard and open to multiple viewpoints. We need to
be more than usually circumspect when evaluating multivariate statistical analyses.

�

� �

�

746 THE R BOOK

There are two main functions for carrying out PCA in R. For greater numerical accuracy, it is
better to use prcomp () rather than princomp (). We have used scale. = T, as one usually
should, because there are considerable differences in the species’ yield, and this argument scales
the variables to have a common unit variance. We have also just extracted the first 10 components,
for brevity of display. For more details of the values that prcomp () outputs, see ?prcomp.

Here, we extract the 54 variables that refer to the species’ abundances, create a PCA for those
data and then display the first component (PC1) in terms of a linear combination (known as the
loading) of the species:

pgfull <- pgdata[,1:54]
pg_pca10 <- prcomp (pgfull, scale. = T, rank. = 10)
pg_pca10$rotation[,1]

AC AE AM AO AP AR
-0.094847022 0.248199360 -0.128231348 -0.008367024 0.233093832 -0.030684541

AS AU BH BM CC CF
0.203834353 -0.041862654 0.117061802 -0.217853150 -0.119046926 -0.018751538

CM CN CX CY DC DG
0.013378707 -0.152355483 -0.140626502 -0.163562365 -0.032789664 0.180978637

ER FM FP FR GV HI
0.028176293 -0.038214150 -0.010737382 -0.109946159 -0.029589100 -0.111970784

HL HP HS HR KA LA
0.057332986 -0.177241015 0.243955132 -0.077531394 -0.176949315 -0.034599396

LC LH LM LO LP OR
-0.235911073 -0.245943408 0.017753865 -0.227519292 0.100217825 -0.034801791

PL PP PS PT QR RA
-0.004037382 0.194184981 -0.232368593 0.211780957 0.001242644 0.080241568

RB RC SG SM SO TF
-0.183676488 0.159629849 0.004071989 -0.156285598 -0.091038026 -0.084247592

TG TO TP TR VC VK
0.065843619 0.179495609 0.073639589 -0.075703493 -0.065371782 0.027504448

The output shows the loading assigned to each species in the first principal component. The
species AP, AE, and HS have strong positive loadings on PC1 and LC, PS, BM, and LO have strong
negative loadings. The first principal component would thus begin:

−0.095xAC + 0.248xAE − 0.128xAM … .

We can compare the loadings across the first two components (PC1 and PC2) in the biplot of
Figure 19.3:

biplot (pg_pca10)

The numbers represent the rows in the original dataframe, and the directions of the arrows show
the relative loadings of the species on the first and second principal components. For instance, the
species AP which, as we saw, has a strong positive loading in PC1, has a very slightly negative
loading on PC2: it can be seen on the right-hand side of Figure 19.3.

We can summarise and plot the variances accounted for by the 10 components in Figure 19.4a
(sometimes known as a scree plot):

�

� �

�

MULTIVARIATE STATISTICS 747

−0.3 −0.2 −0.1 0.0 0.1 0.2

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

PC1

P
C

2

1

2

3
4

56

7
8

9
10

11

12

13
14

15
16

17
1819

20

21
22

23

24

25
26

27
28

2930

31

32

33

34

35
36

37

38

39

4041
42

4344

45
46

47

4849

50

51
52

5354

5556
57

58

59

6061
62

636465

6667
68

69
70

71
72

73
74

75

76
777879

80
81

82

83

84

85

86

87

8889

−
5

0
5

AC

AE

AM

AO

AP
AR

AS

AU

BH

BM

CC

CF

CM

CN
CX

CY
DC

DG
ER

FM

FP

FR
GVHI HL

HP
HS

HR

KA

LA

LC
LH

LM

LO

LP

OR

PL

PP
PS

PT

QR

RA

RB

RC

SGSM

SO

TF

TG
TOTPTR

VC

VK

Figure 19.3 Biplot for components 1 and 2 for pgfull.

0
2

4
6

8

(a) Variances

0
5

10
15

(b) Percentages

Figure 19.4 Scree plots from PCA for data set pgfull.

summary (pg_pca10)

Importance of first k=10 (out of 54) components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 3.0048 2.3358 1.9317 1.78562 1.73303 1.51187 1.50878
Proportion of Variance 0.1672 0.1010 0.0691 0.05904 0.05562 0.04233 0.04216
Cumulative Proportion 0.1672 0.2682 0.3373 0.39639 0.45201 0.49434 0.53649

PC8 PC9 PC10
Standard deviation 1.37586 1.32441 1.27318
Proportion of Variance 0.03506 0.03248 0.03002
Cumulative Proportion 0.57155 0.60403 0.63405

barplot (pg_pca10$sdev[1:10]^2, main = "", col = hue_pal ()(2)[1], cex.axis = 2,
ylab = "")

�

� �

�

748 THE R BOOK

2 3 4 5 6 7 8 9

−
8

−
6

−
4

−
2

0
2

4
6

P
C

 1

(a) Hay biomass

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

−
6

−
4

−
2

0
2

4

P
C

 2

(b) Soil pH

Figure 19.5 Comparison of components with covariates for pgfull.

We have calculated the variances by squaring the standard deviations. The plot in Figure 19.4b
shows percentages of the total variance of the data rather than their absolute values. We can see
that the first principal component (PC1) explains 16.7% of the total variation, and only the next
four (PC2–PC5) explain more than 5% of the total remaining variation each (they are presented in
decreasing order of size).

If we built a model from just the first two components, then it would be a model in two dimensions
rather than 54. It would thus be a much simpler model even though each of the two components is
a combination of our original 54 species. In a linear model where we wanted to reduce the number
of dimensions from 54 to 2, we would just delete 52 of the covariates. PCA is thus not only more
subtle but also harder to interpret.

If there are explanatory variables available, we can plot these against the principal components
to look for patterns and Figure 19.5 shows key relationships after some trial and error:

yv <- predict (pg_pca10)[,1]
yv2 <- predict (pg_pca10)[,2]
plot (pgdata$hay, yv, xlab = "", ylab = "PC 1", col= hue_pal ()(2)[1], cex.lab = 2)
plot (pgdata$pH, yv2, xlab = "", ylab = "PC 2", col = hue_pal ()(2)[2], cex.lab = 2)

For Figure 19.5a, we build a model just using the first component, predict total yields for each plot,
and then compare those with the hay biomass covariate. We can see the first principal component is
associated with increasing biomass (and hence increasing competition for light) and, using a similar
approach, that the second principal component is associated with declining soil pH (increasing
acidity). Now the real work would start, because we are interested in the mechanisms that underlie
these patterns.

19.4 Factor analysis

With PCA we were interested in the sources of variation in the data and explored this by looking at
variances of individual components. In factor analysis, we are trying to understand whether there

�

� �

�

MULTIVARIATE STATISTICS 749

are underlying factors that explain the correlations or covariances between pairs of variables. This
approach is popular in the social sciences where the aim is to provide usable numerical values for
quantities such as intelligence or social status (latent variables that are not directly measurable).
In terms of Figure 19.1, PCA could be thought of as an analysis of the variation in the univariate
plots down the diagonal while factor analysis examines the variation in the off diagonal bivariate
plots.

Compared with PCA, the variables themselves are of relatively little interest in factor analysis; it
is gaining an understanding of the hypothesised underlying factors that is the main aim. The idea
is that the correlations amongst the variables are explained by the common factors. The function
factanal () performs maximum likelihood factor analysis on a covariance matrix or data matrix.
We will make use again of the pgfull data set that we introduced in Section 19.3 and will just look
at the first eight factors:

pg_fact8 <- factanal (pgfull, 8)
loadings (pg_fact8)

Loadings:
Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8

AC -0.512 -0.268 0.121
AE 0.925 -0.107 -0.146 -0.118
AM -0.206 0.413 0.213 0.163 0.115 0.153 0.186
AO -0.312 -0.196 -0.151 -0.105 -0.148 -0.102
AP 0.827 -0.173 -0.195 -0.167 -0.123
AR 0.150 0.111 0.127
AS 0.778
AU 0.996
BH 0.380
BM -0.116 0.292 0.695 0.380
CC -0.152 0.159 0.943
CF 0.539 0.342
CM 0.434 -0.110
CN -0.276 0.143 0.541 0.147
CX 0.628 0.169 0.146
CY -0.211 -0.162 0.340 0.270
DC -0.125 0.372
DG 0.738 -0.127 0.145
ER 0.960
FM -0.108 0.133
FP 0.245 0.226 0.478 0.493 -0.176
FR -0.386 -0.144
GV -0.134
HI -0.202 -0.129 -0.163 0.182 0.216
HL -0.157 -0.127 -0.139
HP -0.155 0.832 0.240
HS 0.746 -0.102 0.257 -0.152
HR -0.155 -0.107 -0.122 0.101 0.150
KA -0.167 0.774 -0.169 0.139
LA 0.829
LC -0.306 0.378 -0.125 0.529 0.328
LH -0.256 0.556 -0.132 0.421 0.223 0.195

�

� �

�

750 THE R BOOK

LM 0.112 0.221
LO -0.129 0.432 0.781 0.251
LP 0.115 0.745
OR 0.996
PL 0.369 0.675 0.337
PP 0.527 0.226 -0.167 -0.175
PS -0.212 0.301 -0.130 0.681 0.150 0.158
PT 0.741 -0.100 0.150 -0.105
QR -0.194 -0.135
RA 0.195 0.227 0.578 0.205 -0.166 -0.107
RB -0.122 0.158 0.272 0.934
RC 0.361 -0.198 -0.176 -0.152
SG 0.806
SM 0.388 0.787
SO -0.100 0.386
TF 0.702 0.260
TG 0.141 0.583 -0.110 0.367 0.107
TO 0.418 0.567 -0.158
TP 0.818
TR 0.141 0.306 0.238 0.458
VC 0.403 0.246 0.309 -0.169
VK 0.909

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8
SS loadings 5.840 3.991 3.577 3.540 3.028 2.644 2.427 2.198
Proportion Var 0.108 0.074 0.066 0.066 0.056 0.049 0.045 0.041
Cumulative Var 0.108 0.182 0.248 0.314 0.370 0.419 0.464 0.505

The main loadings table shows, for each factor, its correlation with each variable (values in
(−0.1,0.1) are not shown). We are interested in strong positive or negative correlations. The
bottom table explains, as in PCA, the proportion of variability explained by the factor (Box 19.1).

Box 19.1: Warning

Factors in factor analysis are not the same as the categorical explanatory variables we have
been calling factors throughout the rest of this book

We need a good understanding of the data to be able to interpret them. On factor 1 we see
strong positive correlations with AE, AP, and AS and negative correlations with AC, AO, and FR:
this has a natural interpretation as a gradient from tall neutral grassland (positive correlations) to
short, acidic grasslands (negative correlations). On factor 2, low-growing species associated with
moderate-to-high soil pH (AM, CF, HP, KA) have large positive values and low-growing acid-loving
species (AC, AO) have negative values. Factor 3 picks out the key nitrogen-fixing (legume) species
LP and TP with high positive values, and so on. It is not a coincidence that PCA and factor analysis
result in similar components and factors (see, for instance those with large positive values in PC1
and factor 1) – that is frequently the case.

�

� �

�

MULTIVARIATE STATISTICS 751

Factor analysis could be seen as an exploratory precursor to structural equation modelling which
involves building testable models for latent variables. The subject is outside the scope of this book,
but the packages sem and lavaan are good places to start.

19.5 Cluster analysis

Cluster analysis is a set of techniques that look for groups (clusters) in the data. Objects belonging to
the same group resemble each other. Objects belonging to different groups are dissimilar. Sounds
simple, doesn’t it? The problem is that there are a multitude of ways of determining what sorts of
clusters are required and what determines how similar data items are. We will review two of the
most popular methods, both of which have a number of flavours:

• k-means: partitioning into a number of clusters (k) specified by the user;

• hierarchical: not a single clustering but a set of cluster groupings ranging from each data item
belonging to its own cluster to a single cluster. These are displayed to look like an upside down
tree.

19.5.1 k-means

We try to find clusters of data that are close to each other so that the total variation within clusters
is minimised. Mathematically speaking, assume that our dataset has m numerical variables so that
each data item can be thought of as a point in m-dimensional space, with coordinates the values of
the m variables. The k-means algorithm determines k cluster centres (centroids) in m-dimensional
space and then each data item belongs to the cluster whose centroid is closest (using the standard
Euclidean distance function). The centroids are chosen to minimise the sum of the variances of the
distances to the items within each cluster.

As a toy example, we have some (x, y) data (i.e. m = 2) that we know belong to six groups, by
some unknown criteria, as in Figure 19.6a:

kmd <- read.table ("kmeansdata.txt", header = T)
head (kmd)
attach (kmd)
plot (x, y, col = hue_pal ()(6)[group])

x y group
1 2.918896 8.587122 2
2 10.724510 8.194907 1
3 5.588091 10.382890 2
4 6.619314 5.399704 5
5 8.725792 4.253471 5
6 9.923255 3.216071 4

We then use kmeans () to estimate the clusters for k = 4,5,6 in the remaining plots of Figure 19.6.

�

� �

�

752 THE R BOOK

(a) Actual groups (b) k = 4

(c) k = 5 (d) k = 6

Figure 19.6 Data set kmeansdata with k-means clustering based upon varying values of k.

model4 <- kmeans (kmd[, 1:2], 4)
plot (x, y, col = hue_pal ()(4)[model4[[1]]], xlab = "", ylab = "")
model5 <- kmeans (kmd[, 1:2], 5)
plot (x, y, col = hue_pal ()(5)[model5[[1]]], xlab = "", ylab = "")
model6 <- kmeans (kmd[, 1:2], 6)
plot (x, y, col = hue_pal ()(6)[model6[[1]]], xlab = "", ylab = "")
detach (kmd)

Even when we know how many clusters there should be, there are some points that have been
assigned to the wrong groups (as Euclidean distance is not exactly the measure by which the
original cluster allocation was made). However, the real weakness of the approach is revealed
when we use the wrong number of clusters – allocations vary considerably. For instance, if we want
to allocate people to personality clusters based on their performance in a range of assessments,
what is k? The best approach may be to try a range of values for k and then compare the resulting
clusters in considerable detail.

A further issue with k-means clustering is that it is fairly crude. For instance, the data set tax-
onomy, which we reviewed briefly in Section 19.1 has measurements of seven variables (m = 7)
on 120 individual plants. The data actually come from plants on four separate islands (the Taxon
column with values I–IV), and the question is whether the k-means approach will spot that.

�

� �

�

MULTIVARIATE STATISTICS 753

head (taxa)

Taxon Petals Internode Sepal Bract Petiole Leaf Fruit
1 I 5.621498 29.48060 2.462107 18.20341 11.27910 1.128033 7.876151
2 I 4.994617 28.36025 2.429321 17.65205 11.04084 1.197617 7.025416
3 I 4.767505 27.25432 2.570497 19.40838 10.49072 1.003808 7.817479
4 I 6.299446 25.92424 2.066051 18.37915 11.80182 1.614052 7.672492
5 I 6.489375 25.21131 2.901583 17.31305 10.12159 1.813333 7.758443
6 I 5.785868 25.52433 2.655643 17.07216 10.55816 1.955524 7.880880

The variables are plotted in Figure 19.1, where we can see that there appears to be excellent data
separation on sepal length, and reasonable separation on petiole length and leaf width, but nothing
obvious for the other variables.

In this case, we know that there are four groups. In reality, of course, we would not know this,
and finding out the number of groups would be one of the central aims of the study. Let us see how
kmeans () allocates individuals to four groups:

taxa_kn <- kmeans (taxa[, 2:8], 4)
taxa_kn$centers

Petals Internode Sepal Bract Petiole Leaf Fruit
1 5.496332 27.47250 2.561201 18.80867 10.840511 1.608050 7.526214
2 6.566806 29.91864 3.002083 18.31510 9.802510 1.945407 7.529972
3 6.996461 26.56658 4.614698 18.32699 10.059406 1.653439 7.425915
4 6.998258 26.55506 2.468164 18.37792 9.076467 1.852448 7.440706

taxa_kn$cluster

[1] 2 1 1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 2 1 1 2 2 4 4 2 2 4 4 4
[38] 4 4 4 2 2 4 4 4 2 4 4 1 4 4 4 4 4 2 4 2 2 2 4 2 4 4 4 2 2 4 4 4 2 2 1 2 4
[75] 4 4 4 2 2 2 4 1 4 4 2 2 2 4 1 2 3 2 3 2 3 3 2 1 3 3 2 3 3 3 2 3 3 3 3 3 3

[112] 2 2 3 3 3 2 3 2 2

The kmeans object that we have created contains a lot of information, but we have pulled out two
items:

• centers: The seven-dimensional centroids discussed above;

• cluster: How each data point is allocated to a cluster (if we study the original data in detail we will
see that the correct clusters are four sets of 30 data points each grouped together).

We can also compare how the data are grouped correctly (I–IV) and using kmeans (1–4):

table (taxa$Taxon, taxa_kn$cluster)

1 2 3 4
I 21 7 0 2
II 1 9 0 20
III 3 13 0 14
IV 1 10 19 0

�

� �

�

754 THE R BOOK

Not very impressive at all – we can see how the two sets of four groups match up (e.g. II with 4)
but only just over half of the data points have been correctly clustered. Of course, the computer
was doing its classification blind. See the end of Section 19.6 for a discussion.

19.6 Hierarchical cluster analysis

The idea behind hierarchical cluster analysis is to show which of a (potentially large) set of samples
are most similar to one another, and to group these similar samples in the same limb of a tree.
Groups of samples that are distinctly different are placed in other limbs (see Figure 19.7 for an
example). The trick is in defining what we mean by ‘most similar’. Each of the samples can be
thought of as a sitting in an m-dimensional space (similar to k-means clusters in Section 19.5.1),
defined by the m variables (columns) in the dataframe. We define similarity on the basis of the
distance between two samples in this m-dimensional space. Several different distance measures
could be used, but the default is Euclidean distance (for the other options, see ?dist), and this is
used to work out the distance from every sample to every other sample. Initially, each sample is
assigned to its own cluster, and then the hclust () algorithm proceeds iteratively, at each stage
joining the two most similar clusters, continuing until there is just a single cluster.

We return to our pgfull data, introduced in Section 19.3, which shows the distribution of 54 plant
species over 89 plots receiving different experimental treatments. The aim is to see which plots are
most similar in their botanical composition, and whether there are reasonably homogeneous groups
of plots that might represent distinct plant communities. We label each plot with its number and lime
composition:

labels <- paste (pgdata$plot, letters[pgdata$lime], sep = "")

The first step is to turn the matrix of measurements on individual plots into a dissimilarity matrix, i.e.
we need to calculate the ‘distances’ between each row in the dataframe (plot) and every other using

11
.1

d
11

.2
d

11
.1

a
11

.2
a

14
.2

a
14

.2
b 11

.2
b

11
.2

c
11

.1
b

14
.2

c
14

.2
d

10
d

4.
2d

9.
1d

9.
2d 4.
2a 10

a
4.

2c 10
c 4.

2b 10
b

11
.1

c
9.

2b
9.

2a
20

.2
a

20
.1

c
19

.3
b

16
c

16
d 13

.2
c

20
.3

b
7a

15
a

9.
1a

9.
1b

14
.1

b
14

.1
a

15
b 19

.2
a

14
.1

c
14

.1
d

13
.2

a
13

.2
b

16
a

16
b 6b 6a 7b

17
a

17
b 17

c
12

a
12

b
3a 3b 2.
1a

2.
1b

1a 8a
4.

1b
4.

1a 8b 18
.1

a
1b

17
d

12
c

3c
12

d 8c 8d 4.
1c

4.
1d 18

.1
b

18
.2

a
7c

15
c

18
.1

c
1c

3d
2.

1c
2.

1d
7d

15
d

13
.2

d
19

.1
c

1d
18

.1
d 9.

1c
9.

2c

Figure 19.7 Hierarchical clustering for pgfull.

�

� �

�

MULTIVARIATE STATISTICS 755

dist(). These distances are then used to carry out hierarchical cluster analysis using hclust ():

pgdist <- dist (pgdata[,1:54])
hpg <- hclust (pgdist)

We can plot the resulting object called hpg, and we specify that the leaves of the hierarchy are
labelled by their plot/lime labels to give Figure 19.7:

plot (hpg, labels = labels, main = "", xlab = "", ylab = "", axes = F, sub = "",
cex = 0.6)

If we view this object in full-screen mode within R, we will be able to read all the plot labels and to
work out the groupings. It turns out that the groupings have very natural scientific interpretations.
The highest break, for instance, separates the two plots dominated by Holcus lanatus (11.1d and
11.2d) from the other 87 plots. The second break distinguishes the high nitrogen plots also receiv-
ing phosphorus (plots 11 and 14). The third break takes out the acidified plots (numbers 9, 10,
and 4.2). The plots on the right-hand side all have soils that exhibit phosphorus deficiency. The
leftmost groups are all from plots receiving high rates of nitrogen and phosphorus input, and so on.
The hclust () function has done an excellent job of recognising real-plant communities over the
top seven splits.

Let us try hierarchical clustering on the taxonomic data, described in Section 19.5.1, and leading
to Figure 19.8:

plot (hclust (dist (taxa)), main = "", xlab = "", ylab = "", axes = F, sub = "",
cex = 0.6)

48 52
31 50

60
36 43

44
58

32 37
54

35 75
40 47

33
39 51

42 46
34

55 57
59

21 65
79 87

73 90 78 80
11

4
93

10
6

11
3

11
2

97
11

9
92

94
11

7 12
0

10
1

10
5

86
70 85

26
61

66 71
29 41

11
16 30

25
1

24
14 20

2
13

7
27

22 28
3 8

12 19
10

3
95 99

72
38 64

4
10 23

45 63
5 6

98
10

8
11

6
10

0
10

4
10

7 10
2

11
1 10

9
11

8
11

0
11

5
91 96

88
62 67

81
56

83 84
18 69 77

53 74
9

49
15 17

82 89
68 76

Figure 19.8 Hierarchical clustering for taxonomy.

�

� �

�

756 THE R BOOK

Because in this example we know that the first 30 rows in the dataframe come from group 1, rows
31–60 from group 2, rows 61–90 from group 3, and rows 91–120 from group 4, we can see that the
grouping produced by hclust () is pretty woeful. Most of the rows in the leftmost major split are
from group 2, but the rightmost split contains members from groups 1, 4, and 3. Neither kmeans
() nor hclust is up to the job in this case. When we know the group identities, then it is easy to
use tree models to devise the optimal means of distinguishing and classifying individual cases (see
Section 20.3.2).

So there we have it, when we know the identity of the species, then clustering models are won-
derfully efficient at constructing keys to distinguish between the individuals, and at allocating them
to the relevant categories. When we do not know the identities of the individuals, then the statistical
task is much more severe, and inevitably ends up being much more error-prone. Even knowing
the number of clusters used to generate the data is not particularly helpful. Multivariate clustering
without a response variable is fundamentally difficult and uncertain.

19.7 Discriminant analysis

In discriminant analysis, we know the identity of each individual (unlike cluster analysis) and
want to know how the explanatory variables contribute to the correct classification of individuals.
It is thus quite similar to regression with outcome variable, group membership: there is a form
of regression that deals with more than two categorical outcomes (multinomial regression), but
interpretation can be difficult. Discriminant analysis works by uncovering relationships among the
groups’ covariance matrices to discriminate between groups. With k groups, we will have k − 1
discriminators. However, note that an assumption that needs to be checked is that all explanatory
variables are normally distributed for each outcome value (see Section 9.2.5).The R functions we
will need for discriminant analysis are available in the MASS library (Venables and Ripley, 2002a),
part of the base installation.

Returning to the taxonomy data set (see Section 19.5.1: we know that there are four groups), we
illustrate the use of lda () to carry out a linear discriminant analysis (other types such as quadratic
discriminant analysis, using qda (), are available), assuming that the appropriate normality checks
have been carried out:

library (MASS)
lda_model <- lda (Taxon ~ ., data = taxa)
lda_model

Call:
lda(Taxon ~., data = taxa)

Prior probabilities of groups:
I II III IV

0.25 0.25 0.25 0.25

Group means:
Petals Internode Sepal Bract Petiole Leaf Fruit

I 5.476128 27.91886 2.537955 18.60268 10.864184 1.508029 7.574642
II 7.035078 27.69834 2.490336 18.47557 8.541085 1.450260 7.418702
III 6.849666 27.99308 2.446003 18.26330 9.866983 2.588555 7.482349
IV 6.768464 27.78503 4.532560 18.42953 10.128838 1.645945 7.467917

�

� �

�

MULTIVARIATE STATISTICS 757

Coefficients of linear discriminants:
LD1 LD2 LD3

Petals -0.01891137 0.034749952 0.559080267
Internode 0.03374178 0.009670875 0.008808043
Sepal 3.45605170 -0.500418135 0.401274694
Bract 0.07557480 0.068774714 -0.024930728
Petiole 0.25041949 -0.343892260 -1.249519047
Leaf -1.13036429 -3.008335468 0.647932763
Fruit 0.18285691 -0.208370808 -0.269924935

Proportion of trace:
LD1 LD2 LD3

0.7268 0.1419 0.1313

We can isolate the critical elements of each discriminant by finding the largest absolute coefficients.
We would thus base our model on sepal first (3.46), then leaf (−3.008), and then petiole (−1.25).
Compare this with the key uncovered by the tree model in Section 20.3.2, or the histograms in
Figure 19.1, where those three variables are most clearly bimodal. Plots showing how pairs of
discriminants distinguish between groups are given in Figure 19.9.

plot (lda_model, col = rep (hue_pal ()(4), each = 30))

LD1

−
2

0
2

4

II
I

I
I

I

I
II

I

I
I
I
I

I

II

I

I

I

I

I

I

I

I

I

I

II

I

II II
IIII

II

II
II

II

II

II

II

II

II
II

II

IIII

II

IIII

II
II

II
II

II

II
II
II II

II

III

III

III III
III
III

III

III

III

III

III

III
III

IIIIII
III

IIIIII
III

IIIIII III
IIIIII

III
III

III
III

III

III

IV

IV
IV

IV

IV

IVIVIV

IV IV
IV

IV
IV

IV

IV
IV

IV
IV IV

IVIV

IV

IV IV

IV

IV
IV

IV
IV

IV

−4 −2 0 2 4 6

II I
I

I

II
I
I

I
I

II

I

I

I
I
I

I

I

I

I
I I

I
I

I

I
I

I

II

II

IIII

II

II

II

II
II

II

II

II

II

II

II

II

II
II

II

II

II
IIIIII

II

II
II
II

II

II

III

III
III

III

III

III
III

III

III

III

III
III

III
IIIIIIIII IIIIII

III

III

III

III

III
III

III
III

III

III III
III

IV

IV

IVIVIV IV
IV

IV

IV
IV

IV
IV

IV

IV

IV
IVIV

IV
IV

IV
IV

IVIV

IV

IV
IV

IVIV

IV
IV

−2 0 2 4

II
I

I

I
I

II I

III I I

I
III

I

I
I

I
I I

I
I

I

II

I
II
IIII IIII

II II

II
II

II

II
IIII

IIII
II

IIII
II

II II

II

II IIII

II
II II

II

II
IIIIII

III
III

IIIIII
III

III

III
III

III

III

III
III
IIIIII

III

III

III

III

III
III IIIIIIIII

III

IIIIII
III

III

IV
IV

IV
IV

IV
IV
IVIV IV

IV
IV

IV
IV

IVIV
IV

IV
IV

IV IV
IVIV

IV

IV

IV

IV

IV
IVIV

IV

LD2

II
I

I

I

I I
I
I

I
I

I I

I

I

I
I

I

I

I

I

I
I I

I
I

I

I
I

I

II

II

II II

II

II

II

II
II

II

II

II

II

II

II

II

II
II

II

II

II
IIII II

II

II
II

II
II

II

III

III
III

III

III

III
III

III

III

III

III
III

III
IIIIIIIIIIIIIII

III

III

III

III

III
III

III
III

III

III III
III

IV

IV

IV IV IVIV
IV

IV

IV
IV

IV
IV

IV

IV

IV
IVIV

IV
IV

IV
IV

IV IV

IV

IV
IV

IV IV

IV
IV

−
4

0
2

4
6

I I
I

I

I
I
II I

II I II

I
I I I

I

I
I

I
II

I
I

I

I I

I
II

II IIIIII

IIII

II
II

II

II
IIII

IIII
II

II II
II

IIII

II

II II II

II
IIII

II

II
III III

III
III

IIIIII
III

III

III
III

III

III

III
III

IIIIII

III

III

III

III

III
III III IIIIII

III

IIIIII
III

III

IV
IV

IV
IV

IV
IV

IVIV IV
IV

IV

IV
IV

IVIV
IV

IV
IV

IV IV
IVIV

IV

IV

IV

IV

IV
IVIV

IV

I I
I

I
I

I

I
I I

I

I
I
I

I

I

I I

I

I

I

I

I

I

I

I

I

I

I I

I

IIII
IIII

II

II
II

II

II

II

II

II

II
II

II

II II

II

II II

II
II

II
II

II

II
II

IIII

II

III

III

IIIIII
III

III
III

III

III

III

III

III
III

IIIIII
III

IIIIII
III

III IIIIII
III III

III
III

III
III

III

III

IV

IV
IV

IV

IV

IVIVIV

IVIV
IV

IV
IV

IV

IV
IV

IV
IVIV

IVIV

IV

IV IV

IV

IV
IV

IV
IV

IV

−4 −2 0 2

−
4

−
2

0
2

LD3

Figure 19.9 Linear discriminant analysis for taxonomy.

�

� �

�

758 THE R BOOK

Without going into the technical detail, we can see that the linear discriminants LD1 and LD2 clearly
separate taxon IV (i.e. cases from island IV) without error and make a reasonable stab at taxon III,
but the former is easy because there is no overlap in sepal length between this taxon, and the
others. LD2 and LD3 are quite good at finding taxons I and II, and LD1 and LD3 are quite good at
getting taxon I.

In common with other supervised learning techniques (see Chapter 20), the model is often trained
on data where we know the outcome (here, taxon/island) and then used on cases where we don’t.
So let us use a random subset of half the cases for training:

train <- sort (sample (1:120, 60))
table (taxa$Taxon[train])

I II III IV
13 16 17 14

We can see that our sample is fairly representative of the population (remember, if we try this, we
will get a different sample). Now, use this for training to create a second model with which we can
predict the outcome of the unused (non-training) data:

lda_model2 <- lda (Taxon ~., data = taxa, subset = train)
untrained <- taxa[-train,]
not_train <- predict (lda_model2, untrained)
not_train$class

[1] I I I I I I I I I I I I I I I I I II II
[20] I II II II II II II II II II II II III III III III III III III
[39] III III III III III III IV IV IV IV IV IV IV IV IV IV IV IV IV
[58] IV IV IV
Levels: I II III IV

lda_cm <- table (taxa$Taxon[-train], not_train$class)
lda_cm

I II III IV
I 17 0 0 0
II 1 13 0 0
III 0 0 13 0
IV 0 0 0 16

The class output lists where the untrained plants have been assigned. We can see from
the untrained data predictions and table that only one item (number 20) has been misclassi-
fied – impressive!

19.8 Neural networks

These are computationally intensive methods for finding pattern in data sets that are so large, and
contain so many explanatory variables, that standard methods such as multiple regression are

�

� �

�

MULTIVARIATE STATISTICS 759

Input layer

Hidden layer

Output layer

Figure 19.10 A simplified neural network where information travels along lines and is processed at nodes.

impractical (they would simply take too long to plough through). A simplified representation of a
neural network is given in Figure 19.10.

Data arrives in the input layer and leaves from the output layer. The key feature of neural net-
work models is that they contain at least one hidden layer: each node in the hidden layer receives
information from each of many inputs, carries out some mathematical operations (giving rise to a
large number of variants), and then produces many outputs. A neural network can operate like mul-
tiple regression when the outputs are continuous variables, or like classification when the outputs
are categorical. The concept arose by trying to mimic the human brain – not quite there yet though.

As with discriminant analysis in Section 19.7, there is some training. We shall use the same data
set, taxonomy, and the same training set. The R package is called nnet (Venables and Ripley,
2002b) and comes as part of the base R installation. It is fairly straightforward to use:
library (nnet)
nn_model <- nnet (Taxon ~., data = taxa, subset = train, size = 4, decay = 1.0e-5,

maxit = 200)

weights: 52
initial value 106.567639
iter 10 value 82.843632
iter 20 value 82.843468
iter 30 value 80.592149
iter 40 value 43.336877
iter 50 value 36.031598
iter 60 value 32.098723
iter 70 value 31.613884
iter 80 value 31.223533
iter 90 value 21.820788
iter 100 value 15.581749
iter 110 value 14.309256
iter 120 value 12.472875
iter 130 value 10.643250
iter 140 value 8.486192
iter 150 value 7.918626
iter 160 value 6.879530
iter 170 value 5.986390
iter 180 value 5.047090
iter 190 value 4.803050
iter 200 value 4.698925
final value 4.698925
stopped after 200 iterations

�

� �

�

760 THE R BOOK

We have specified size = 4 for the number of units in our hidden layer. This came about through
trial and error: fewer or more units resulted in all the untrained plants being assigned to III. Similarly,
the decay is a technical parameter, given a value through trial and error. We can compare the actual
classification (rows) with that using the neural network (columns) as follows:

nn_cm <- table (taxa$Taxon[-train], predict (nn_model, untrained, type="class"))
nn_cm

I II III IV
I 4 4 8 1
II 2 12 0 0
III 2 1 9 1
IV 0 0 0 16

The result (19 cases misclassified) is not as good as linear discriminant analysis (just 1) and that
was after quite a bit of tweaking – only possible because we knew the outcome. Note that nnet ()
involves a random process and so will give a slightly different outcome each time it is run.

So only use neural networks when small sample techniques can’t be used (e.g. for extremely
large data sets) and talk to an expert before using them.

References

Crawley, M. J., Johnston, A. E., Silvertown, J., Dodd, M., de Mazancourt, C., Heard, M., Henman, D. F., &
Edwards, G. R. (2005). Determinants of species richness in the park grass experiment. American Naturalist,
165, 348–362.

Peterson, B. G., & Carl, P. (2020). Performanceanalytics: econometric tools for performance and risk analysis
[R package version 2.0.4]. https://CRAN.R-project.org/package=PerformanceAnalytics.

Venables, W. N., & Ripley, B. D. (2002a). Modern applied statistics with S (Fourth) [ISBN 0-387-95457-0].
Springer. https://www.stats.ox.ac.uk/pub/MASS4/.

Venables, W. N., & Ripley, B. D. (2002b). Modern applied statistics with S (Fourth) [ISBN 0-387-95457-0].
Springer. https://www.stats.ox.ac.uk/pub/MASS4/.

https://CRAN.R-project.org/package=PerformanceAnalytics
https://www.stats.ox.ac.uk/pub/MASS4/
https://www.stats.ox.ac.uk/pub/MASS4/

�

� �

�

20
Classification and Regression Trees

Classification and regression tree models (CARTs) are computationally intensive methods that
are used in situations where there are many explanatory variables and we would like guidance
about, possibly, including them in the model: classification trees are where the outcome is discrete
and regression trees where the outcome is continuous. Often, there are so many explanatory
variables that we simply could not investigate them all, even if we wanted to invest the huge amount
of time that would be necessary to complete such a complicated multiple regression exercise. The
great virtues of tree models are as follows:

• they are very simple to implement, understand, and interpret;

• they are excellent for initial data inspection;

• they give a very clear picture of the structure of the data;

• they provide a highly intuitive insight into the kinds of interactions between variables.

Let us begin by looking at a tree model in action, before thinking about how it works. Here is an air
pollution example that we might want to analyse as a multiple regression: the outcome is continuous
(Pollution) and the covariates are self-explanatory, although the units used are a little opaque
in places. We will begin by using the package tree, then illustrate the more modern package
rpart (Ripley, 2019), which stands for recursive partitioning, which is what is going on here.
The regression tree is displayed in Figure 20.1:

library (tree)
pollute <- read.table ("pollute.txt", header = T)
head (pollute)

Pollution Temp Industry Population Wind Rain Wet.days
1 24 61.5 368 497 9.1 48.34 115
2 30 55.6 291 593 8.3 43.11 123
3 56 55.9 775 622 9.5 35.89 105
4 28 51.0 137 176 8.7 15.17 89

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

762 THE R BOOK

|
Industry < 748

Population < 190

Wet.days < 108

Temp < 59.35
Wind < 9.65

43.43

12.00

33.88 23.00 15.00

67.00

Figure 20.1 Regression tree for pollute.

5 14 68.4 136 529 8.8 54.47 116
6 46 47.6 44 116 8.8 33.36 135

pollute_mod1 <- tree (pollute)
plot (pollute_mod1)
text (pollute_mod1)

It shows, for ranges of values of the covariates, what the mean Pollution level might be, e.g. for
Industry with values < 748 and Population with values < 190, the mean Pollution level is
predicted to be 43.43. Our first question might be: why is Industry at the top (other questions will
be considered later)? Well, if we build a simple linear model that might give us a clue:

pollute_mod2 <- lm (Pollution ~ Temp + Industry + Wind + Rain + Wet.days,
data = pollute)

summary (pollute_mod2)

Call:
lm(formula = Pollution ~ Temp + Industry + Wind + Rain + Wet.days,

data = pollute)

Residuals:
Min 1Q Median 3Q Max

-20.483 -8.785 -3.149 7.120 58.013

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 135.825337 49.993685 2.717 0.01017 *
Temp -1.771656 0.635532 -2.788 0.00852 **
Industry 0.025606 0.004597 5.571 2.84e-06 ***
Wind -3.750067 1.948589 -1.925 0.06245.
Rain 0.622758 0.387777 1.606 0.11727

�

� �

�

CLASSIFICATION AND REGRESSION TREES 763

Wet.days -0.055288 0.174421 -0.317 0.75314

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.77 on 35 degrees of freedom
Multiple R-squared: 0.6052,Adjusted R-squared: 0.5488
F-statistic: 10.73 on 5 and 35 DF, p-value: 2.621e-06

Industry has the smallest p-value suggesting that, by some measure, its influence on Pollution
might be the most important. As well as helping us understand the relationship between outcomes
and explanatory variables, CART models are important tools in making decisions: given particular
covariate values, which outcome should we select? We will now examine how these trees work in
a little more detail.

20.1 How CARTs work

A CART model is fitted using binary recursive partitioning, whereby the data are successively
split along co-ordinate axes of each of the explanatory variables so that, at any node, the split which
maximally distinguishes the response variable in the left and the right branches is selected. Splitting
continues until nodes are pure or the data are too sparse (fewer than six cases, by default). The
decisions about which variable to work with next and where it should be split are made based on
which point most clearly distinguishes between the items on either side of the split. There are many
different algorithms to do this, and the details shouldn’t bother us unduly: the key thing is that this
is not a black box process, but one that can be understood. For instance, looking at the first split
for pollute, as selected by our model, in Figure 20.2:

attach (pollute)
low_ind <- (Industry < 748)
ind_means <- tapply (Pollution, low_ind, mean)
ind_means

FALSE TRUE
67.00000 24.91667

plot (Industry, Pollution, col = hue_pal ()(3)[1])
abline (v = 748, lty = 2, col = hue_pal ()(3)[2])

0 500 1000 1500 2000 2500 3000

20
60

10
0

Industry

P
ol

lu
tio

n

Figure 20.2 Splitting pollute by Industry at 748.

�

� �

�

764 THE R BOOK

lines (c (0, 748), rep (ind_means[2], 2), col = hue_pal ()(3)[3])
lines (c (748, max (Industry)), rep (ind_means[1], 2), col = hue_pal ()(3)[3])

detach (pollute)

Splitting Industry at 748 (vertical line) in Figure 20.1 produces the greatest difference between
Pollution means (horizontal lines) for any covariate and point: it explains the greatest amount of
variation or deviance.

The process then continues with all the variables apart from those used already, in this case
Industry. In defiance of gravity, the first split is at the root, and the lowest points are leaves or
classes for discrete outcomes.

20.2 Regression trees

Regression trees have continuous outcomes, and in this section, we will continue with the pollu-
tion data set, but compare the tree package with rpart and with linear regression.

20.2.1 The tree package

When we created pollute_mod1 we just specified the dataset, pollute. By default, tree ()
takes the first column as the outcome and the remainder as covariates. We could have been more
specific and arrived at the same model by specifying:

pollute_mod1 <- tree (Pollution ~ ., data = pollute)

Pollution ∼. means explore Pollution as a function of the rest of the data columns. As well
as a visual output, tree also has a standard textual one:

print (pollute_mod1)

node), split, n, deviance, yval
* denotes terminal node

1) root 41 22040 30.05
2) Industry < 748 36 11260 24.92

4) Population < 190 7 4096 43.43 *
5) Population > 190 29 4187 20.45
10) Wet.days < 108 11 96 12.00 *
11) Wet.days > 108 18 2826 25.61

22) Temp < 59.35 13 1895 29.69
44) Wind < 9.65 8 1213 33.88 *
45) Wind > 9.65 5 318 23.00 *

23) Temp > 59.35 5 152 15.00 *
3) Industry > 748 5 3002 67.00 *

The terminal nodes or leaves are denoted by * (there are six of them). The node number is on
the left, labelled by the variable on which the split at that node was made. Next comes the split

�

� �

�

CLASSIFICATION AND REGRESSION TREES 765

criterion which shows the threshold value of the variable that was used to create the split. The
number of cases going into the split (or into the terminal node) comes next. The penultimate figure
is the deviance at that node. Notice how the deviance goes down as non-terminal nodes are split.
The last figure on the right is the mean value of the response variable within that node or at that
that leaf.

In the root, based on all n = 41 data points, the deviance is the sum of squares and the value
is the overall mean for Pollution. The highest mean pollution (67.00) was in node 3 and the
lowest (12.00) was in node 10. Note how the nodes are nested: within node 2, for example node 4
is terminal, but node 5 is not; within node 5, node 10 is terminal, but node 11 is not; within node 11,
node 23 is terminal but node 22 is not, and so on. Frankly, it is probably simpler to begin with the
graphic of the tree and only then progressing to review the text.

Tree models lend themselves to circumspect and critical analysis of complex dataframes. In the
present example, the aim is to understand the causes of variation in air pollution levels from case
to case. The interpretation of the regression tree would precede something like this:

• the five most extreme cases of Industry stand out (mean = 67.00) and need to be considered
separately;

• for the rest, Population is the most important variable but, interestingly, it is low populations
that are associated with the highest levels of pollution (mean = 43.43). Why might that be?

• for high levels of Population (greater than 190), the number of Wet.days is a key determinant
of pollution; the places with the fewest wet days (less than 108 per year) have the lowest pollution
levels of anywhere in the dataframe (mean = 12.00);

• for those places with more than 108 wet days, it is Temperature that is most important in explain-
ing variation in pollution levels; the warmest places have the lowest air pollution levels (mean =
15.00);

• for the cooler places with lots of wet days, it is Wind speed that matters: the windier places are
less polluted than the still places.

This kind of complex and contingent explanation is much easier to see, and to understand, in tree
models than in the output of a multiple regression.

20.2.2 The rpart package

There is a newer package, rpart (Therneau and Atkinson, 2019), which differs from tree in the
way it decides on which variables to split, and where, but which has many shared features. There is
a good technical introduction with example (vignette), longintro, which can be found once the
package has been installed by typing help (rpart). The name of the package and the function
we will use stands for ’recursive partitioning’. We can compare the outputs of rpart () (left) and
tree () (right) for the pollution data in Figure 20.3:

library (rpart)
pollute_mod3 <- rpart (Pollution ~ ., data = pollute)
plot (pollute_mod3)
text (pollute_mod3)
pollute_mod1 <- tree (Pollution ~ ., data = pollute)
plot (pollute_mod1)
text (pollute_mod1)

�

� �

�

766 THE R BOOK

|

Temp ≥ 56.25

Industry < 597

15.25

32.06 58.71

|

Industry < 748

Population < 190

Wet.days < 108

Temp < 59.35

Wind < 9.65

43.43

12.00

33.88 23.00
15.00

67.00

(a) rpart () (b) tree ()

Figure 20.3 Tree diagrams for pollute.

The trees are different due to the criteria for which variables are to be selected for splitting and
where they are split. The function rpart () is much better at anticipating the results of model
simplification, because it considers interactions. We have thus ended up with just three leaves, but
their mean values are very distinct. Analysing Temp and Industry using the values from the tree
and a simple linear regression:

temp_big <- factor (pollute$Temp >= 56.25)
ind_small <- factor (pollute$Industry < 597)
pollute_mod4 <- lm (pollute$Pollution ~ temp_big * ind_small)
summary (pollute_mod4)

Call:
lm(formula = pollute$Pollution ~ temp_big * ind_small)

Residuals:
Min 1Q Median 3Q Max

-29.714 -8.071 -3.071 6.286 61.944

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 29.085 4.053 7.176 1.66e-08 ***
temp_big1 16.300 4.053 4.021 0.000274 ***
ind_small1 5.022 4.053 1.239 0.223165
temp_big1:ind_small1 8.308 4.053 2.050 0.047544 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18.48 on 37 degrees of freedom
Multiple R-squared: 0.4267,Adjusted R-squared: 0.3802
F-statistic: 9.18 on 3 and 37 DF, p-value: 0.0001132

�

� �

�

CLASSIFICATION AND REGRESSION TREES 767

This displays an important interaction (analogous to the split on the right branch of the tree diagram).
The rpart () model does not allow the inclusion of any other covariates. For instance, if we
added Population to the linear model (the second most important variable according to tree),
the original interaction between Temp and Industry as well as the Industry split becomes less
critical:

pollute_mod5 <- lm (pollute$Pollution ~ temp_big * ind_small +
pollute$Population)

summary (pollute_mod5)

Call:
lm(formula = pollute$Pollution ~ temp_big * ind_small + pollute$Population)

Residuals:
Min 1Q Median 3Q Max

-25.169 -8.664 -3.351 8.142 64.778

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.801554 6.615974 2.691 0.010744 *
temp_big1 15.204906 3.912219 3.887 0.000419 ***
ind_small1 -0.594108 4.706707 -0.126 0.900256
pollute$Population 0.013817 0.006564 2.105 0.042341 *
temp_big1:ind_small1 6.851516 3.938714 1.740 0.090486 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.68 on 36 degrees of freedom
Multiple R-squared: 0.4895, Adjusted R-squared: 0.4328
F-statistic: 8.631 on 4 and 36 DF, p-value: 5.432e-05

In summary, the tree () function seems to be stronger for data inspection, because it shows more
detail about the potential interaction structure in the dataframe. On the other hand, rpart () is
much better at anticipating the results of model simplification. It is probably best to use them both
and get the benefit of two perspectives on the data set before embarking on the time-consuming
business of carrying out a comprehensive multiple regression exercise.

20.2.3 Comparison with linear regression

To see how a tree model works when there is a single, continuous response variable, it is instruc-
tive to compare the output with a simple linear regression model. Take the relationship between
Mileage and Weight in the car.test.frame data set (part of the rpart package) with the tree
diagram and scatter plot shown in Figure 20.4:

data ("car.test.frame")
car_mod1 <- tree (Mileage ~ Weight, data = car.test.frame)
plot (car_mod1)
text (car_mod1)
plot (car.test.frame$Weight, car.test.frame$Mileage, xlab = "Weight",

ylab = "Mileage", col = hue_pal ()(3)[1])

�

� �

�

768 THE R BOOK

|
Weight < 2567.5

Weight < 2280 Weight < 3087.5

Weight < 2747.5 Weight < 3637.5
34.00 28.89

25.62 23.80 21.06 18.67

(a) Tree diagram using rpart

2000 2500 3000 3500

20
25

30
35

Weight

M
ile

ag
e

(b) Scatter plot

Figure 20.4 Exploratory plots for car.test.frame.

As there is only one covariate considered, rpart (Mileage ∼ Weight, data = car.test.
frame) produces exactly the same tree as tree (Mileage ∼ Weight, data = car.test.
frame).

We can see that the heavier cars do fewer miles per gallon, but there is a lot of scatter. The tree
model starts by finding the Weight that splits the mileage data in a way that explains the maximum
deviance or variation in Mileage. This weight turns out to be 2567.5. We can add the effect of this
to the scatter plot to give Figure 20.5:

weight_low <- mean (car.test.frame$Mileage[car.test.frame$Weight < 2567.5])
weight_high <- mean (car.test.frame$Mileage[car.test.frame$Weight >= 2567.5])
abline (v = 2567.5, lty = 2, col = hue_pal ()(3)[2])
lines (c (1500, 2567.5), rep (weight_low, 2), col = hue_pal ()(3)[3])
lines (c (2567.5, 4000), rep (weight_high, 2), col = hue_pal ()(3)[3])

2000 2500 3000 3500

20
25

30
35

Weight

M
ile

ag
e

Figure 20.5 Splitting car.test.frame by Weight at 2567.58.

�

� �

�

CLASSIFICATION AND REGRESSION TREES 769

2000 2500 3000 3500

20
25

30
35

Weight

M
ile

ag
e

Figure 20.6 Splitting car.test.frame by Weight for the whole tree with linear regression line.

The vertical line denotes the split and the horizontal lines the mean value of Mileage at any weight
after the split. The next thing the tree model does is to work out the threshold weight that would best
split the mileage data for the lighter cars: this turns out to be 2280. It then works out the threshold
split for the heavier cars: this turns out to be 3087.5, and so the process goes on, until there are
too few cars in each split to justify continuation. To see the full regression tree in a plot, we can use
the predict () function which joins up our vertical and horizontal lines (they represent different
things) to give Figure 20.6:

plot (car.test.frame$Weight, car.test.frame$Mileage, xlab = "Weight",
ylab = "Mileage", col = hue_pal ()(3)[1])

wt <- seq (1500,4000)
ml <- predict (car_mod1, list (Weight = wt))
lines (wt, ml, col = hue_pal ()(3)[3])
car_lm <- lm (Mileage ~ Weight, data = car.test.frame)
abline (a = coef (car_lm)[1], b = coef (car_lm)[2], col = hue_pal ()(3)[2])

We have also added the straightforward linear regression line for comparison. We would not nor-
mally do all this, of course (and we could not do it with more than two explanatory variables), but it is
a good way of showing how tree models work with a continuous response variable. In linear regres-
sion (or GLMs), all the data contribute to the fitted model (here, the straight line). In a regression
tree, just those points in the same leaf contribute to the mean value at that leaf.

20.2.4 Model simplification

Model simplification in regression trees is based on a cost-complexity measure, as opposed to AIC
or anova (). This reflects the trade-off between fit and explanatory power (a model with a perfect
fit would have as many parameters as there were data points (it would be overfitted)), and would
consequently have no explanatory power at all). We return to the pollution example analysed
earlier, where we fitted the tree model object called pollute_mod1.

Regression trees can be over-elaborate and can respond to random features of the data, par-
ticularly if we decide to build the model based on a subset (training set) of the data. To deal
with this, R contains a set of procedures to prune trees on the basis of a cost-complexity mea-
sure (details are not particularly interesting). The function prune.tree () (there is an equivalent
prune.rpart () for the rpart package) determines a nested sequence of sub-trees of the

�

� �

�

770 THE R BOOK

supplied tree by recursively ’snipping’ off the least important splits, based upon the cost-complexity
measure. The function returns an object which contains the following components:

prune.tree (pollute_mod1)$size

[1] 6 5 4 3 2 1

This shows the number of terminal nodes in each tree in the cost-complexity pruning sequence:
the original model had six terminal nodes (see Figure 20.1). This is not very interesting, but fairly
standard (car_mod1 gives the same sequence).

prune.tree (pollute_mod1)$dev

[1] 8876.589 9240.484 10019.992 11284.887 14262.750 22037.902

This is the total deviance of each tree in the cost-complexity pruning sequence.

prune.tree (pollute_mod1)$k

[1] -Inf 363.8942 779.5085 1264.8946 2977.8633 7775.1524

This shows the value of the cost-complexity pruning parameter of each tree in the sequence. If
determined algorithmically (as here, k is not specified as an input), its first value defaults to −∞. We
can compare size with deviance to give Figure 20.7 (the plot.tree.sequence () function
which actually does the plotting appears to have an issue with the colouring of the outline box!):

plot (prune.tree (pollute_mod1), col = hue_pal ()(1)[1])

This shows the way that deviance declines as complexity is increased. The total deviance is
22,037.902 (size = 1), and this is reduced as the complexity of the tree increases up to six
nodes. An alternative is to specify the number of nodes to which we want the tree to be pruned;

Size

D
ev

ia
nc

e

10
00

0
14

00
0

18
00

0
22

00
0

1 2 3 4 5 6

Figure 20.7 Effect of pruning pollute on deviance.

�

� �

�

CLASSIFICATION AND REGRESSION TREES 771

|
Industry < 748

Population < 190

Wet.days < 108
43.43

12.00 25.61

67.00

Figure 20.8 Tree for pollute with four leaves.

this uses the best = option. Figure 20.8 shows the tree with four nodes or leaves. We can see
that the bottom two splits have just been deleted from Figure 20.1.

pollute_mod6 <- prune.tree (pollute_mod1, best = 4)
plot (pollute_mod6)
text (pollute_mod6)

20.3 Classification trees

Classification trees, for discrete outcomes, are derived using the same R functions as for regression
trees. Some of the technical goings on under the bonnet may be different, but the interpretation
remains broadly the same.

20.3.1 Classification trees with categorical explanatory variables

Tree models are a superb tool for helping to write efficient and effective taxonomic keys. Suppose
that all of our explanatory variables are categorical, and that we want to use tree models to write
a dichotomous key (i.e. we want to find a combination of covariates which uniquely identifies each
species). There is only one entry for each species, so we want the twigs of the tree to be the
individual rows of the dataframe (i.e. we want to fit a tree perfectly to the data).

The following example relates to the nine lowland British species in the genus Epilobium
(Onagraceae). We have eight categorical explanatory variables, and we want to find the optimal
dichotomous key. The dataframe looks like this:

epilobium <- read.table ("epilobium.txt", header = T, colClasses = rep
("factor", 9))

epilobium

species stigma stem.hairs glandular.hairs seeds pappilose stolons
1 hirsutum lobed spreading absent none uniform absent
2 parviflorum lobed spreading absent none uniform absent
3 montanum lobed spreading present none uniform absent
4 lanceolatum lobed spreading present none uniform absent
5 tetragonum clavate appressed present none uniform absent
6 obscurum clavate appressed present none uniform stolons

�

� �

�

772 THE R BOOK

7 roseum clavate spreading present none uniform absent
8 palustre clavate spreading present appendage uniform absent
9 ciliatum clavate spreading present appendage ridged absent
petals base

1 >9mm rounded
2 <10mm rounded
3 <10mm rounded
4 <10mm cuneate
5 <10mm rounded
6 <10mm rounded
7 <10mm cuneate
8 <10mm rounded
9 <10mm rounded

In our tree model, we need to specify two extra arguments to ensure that the splitting process goes
as far as it can:

• minsize = 2. This sets the smallest level at which we will continue to create splits. Selecting
2 ensures that we will continue to carry on splitting, even if we have just two items in a set.

• mindev = 0. This is the maximum deviance remaining that we will tolerate. In practice, it is
better to specify a very small value for the minimum deviance (say, 10−6) rather than zero.

Figure 20.9 shows the resulting model.

epi_mod1 <- tree (species ~ ., mindev = 10e-6, minsize = 2, data = epilobium)
plot (epi_mod1)
text (epi_mod1, cex = 0.7)

Each species is uniquely identified by the explanatory variables. The computer has produced a
working key to a difficult group of plants. The result stands as testimony to the power and usefulness
of tree models. The same principle underlies good key-writing as is used in tree models: find

|

stigma:a

stem.hairs:a

stolons:a seeds:a

pappilose:a

glandular.hairs:a

petals:a base:a

tetragonum obscurum

ciliatum palustre

roseum

parviflorum hirsutum lanceolatum montanum

Figure 20.9 Tree for epilobium with maximum number of leaves.

�

� �

�

CLASSIFICATION AND REGRESSION TREES 773

the characters that explain most of the variation, and use these to split the cases into roughly
equal-sized groups at each dichotomy.

20.3.2 Classification trees for replicated data

In this next example from plant taxonomy, the response variable is a four-level categorical variable
called Taxon (it is a label expressed as Roman numerals I–IV). The aim is to use the measure-
ments from the seven morphological explanatory variables to construct the best key to separate
these four taxa (the best key is the one with the lowest error rate – the key that misclassifies the
smallest possible number of cases). We also considered this data set in Chapter 19 when reviewing
multi-variate statistical techniques.

taxonomy <- read.table ("taxonomy.txt", header = T,
colClasses = list (Taxon = "factor"))

head (taxonomy)

Taxon Petals Internode Sepal Bract Petiole Leaf Fruit
1 I 5.621498 29.48060 2.462107 18.20341 11.27910 1.128033 7.876151
2 I 4.994617 28.36025 2.429321 17.65205 11.04084 1.197617 7.025416
3 I 4.767505 27.25432 2.570497 19.40838 10.49072 1.003808 7.817479
4 I 6.299446 25.92424 2.066051 18.37915 11.80182 1.614052 7.672492
5 I 6.489375 25.21131 2.901583 17.31305 10.12159 1.813333 7.758443
6 I 5.785868 25.52433 2.655643 17.07216 10.55816 1.955524 7.880880

The tree, illustrated in Figure 20.10 is surprisingly simple.

tax_mod1 <- tree (Taxon ~ ., data = taxonomy)
plot (tax_mod1)
text (tax_mod1)

With only a small degree of rounding on the suggested break points, the tree model suggests a
simple (and for these 120 plants, completely error-free) key for distinguishing the four taxa:

1. Sepal length > 3.5 Taxon IV
1. Sepal length ≤ 3.5 2.
2. Leaf width > 2.0 Taxon III
2. Leaf width ≤ 2.0 3.
3. Petiole length < 9.9 Taxon II
3. Petiole length ≥ 9.9 Taxon I

|
Sepal < 3.53232

Leaf < 2.00426

Petiole < 9.91246

II I

III

IV

Figure 20.10 Default tree for taxonomy.

�

� �

�

774 THE R BOOK

We have not yet considered the summary () function for a tree, which is always worth a stab, so
here goes:

summary (tax_mod1)

Classification tree:
tree(formula = Taxon ~., data = taxonomy)
Variables actually used in tree construction:
[1] "Sepal" "Leaf" "Petiole"
Number of terminal nodes: 4
Residual mean deviance: 0 = 0 / 116
Misclassification error rate: 0 = 0 / 120

Three of the seven variables were chosen for use (Sepal, Leaf and Petiole); four variables were
assessed and rejected (Petals, Internode, Bract, and Fruit). The key has four nodes, and
hence, three dichotomies. As we can see, the misclassification error rate was an impressive 0 out of
120. It is noteworthy that this classification tree does much better than the multivariate classification
methods described in Chapter 19.

For classification trees, the print method produces a great deal of information:

print (tax_mod1)

node), split, n, deviance, yval, (yprob)
* denotes terminal node

1) root 120 332.70 I (0.2500 0.2500 0.2500 0.2500)
2) Sepal < 3.53232 90 197.80 I (0.3333 0.3333 0.3333 0.0000)

4) Leaf < 2.00426 60 83.18 I (0.5000 0.5000 0.0000 0.0000)
8) Petiole < 9.91246 30 0.00 II (0.0000 1.0000 0.0000 0.0000) *
9) Petiole > 9.91246 30 0.00 I (1.0000 0.0000 0.0000 0.0000) *

5) Leaf > 2.00426 30 0.00 III (0.0000 0.0000 1.0000 0.0000) *
3) Sepal > 3.53232 30 0.00 IV (0.0000 0.0000 0.0000 1.0000) *

The node number is followed by the split criterion (e.g. Sepal < 3.53 at node 2). Then comes the
number of cases passed through that node (90 in this case, versus 30 going into node 3, which is
the terminal node for taxon IV). The remaining deviance within this node is 197.8 (compared with
zero in node 3, where all the individuals are alike; they are all taxon IV). Next is the name of the
factor level(s) left in the split (I, II, and III in this case, with the convention that the first in the alphabet
is listed), then a list of the empirical probabilities (the fractions of all the cases at that node that are
associated with each of the levels of the response variable – in this case, the 90 cases are equally
split between taxa I, II, and III, and there are no individuals of taxon IV at this node, giving 0.33,
0.33, 0.33, and 0 as the four probabilities).

Incidentally, there is quite a useful plotting function for classification trees called partition.
tree (), but it can only be used when the model has no more than two explanatory variables.
Its use is illustrated in Figure 20.11 by taking the two most important explanatory variables, Sepal
and Leaf:

tax_mod2 <- tree (Taxon ~ Sepal + Leaf, data = taxonomy);
partition.tree (tax_mod2)

�

� �

�

CLASSIFICATION AND REGRESSION TREES 775

2.0 2.5 3.0 3.5 4.0 4.5 5.0

1.
0

1.
5

2.
0

2.
5

3.
0

Sepal

Le
af

II

I

III

IV

i
i

i

i

i
i

i

i
i

i

i

i
i

i

i

ii

i

ii

i

i

i

i

i

i

i

i
i

i
ii

ii
iiii

ii

ii

ii

ii

ii
ii

ii

ii

ii

ii
ii

iiii

ii

ii

ii

ii

ii

ii

ii

ii
iiii

ii ii

ii

iii

iii

iii iii

iii
iii

iii

iii

iii

iii

iii

iii iii

iii
iii

iii

iii

iii
iii

iii
iii

iii iiiiii

iiiiii

iiiiii

iii

iii

iv

iv

iv

iv

iv

iv
iv

iv
iv iv

iv

iviv

iv

iv

iv
iv

iv

iv iv
iv

iv

iv
iv

iv

iv

iv

iv
iv

iv

Figure 20.11 Partition tree for taxonomy with just Sepal and Leaf.

tax_label <- ifelse (taxonomy$Taxon == "I", "i",
ifelse (taxonomy$Taxon == "II","ii",

ifelse(taxonomy$Taxon == "III","iii","iv")))
text (taxonomy$Sepal, taxonomy$Leaf, label = tax_label,

col = hue_pal ()(4)[as.numeric (factor (tax_label))])

The partition.tree () shows how the phase space defined by sepal length and leaf width
has been divided up between the four taxa (using capital roman numerals), but it does not show
where the data fall. We have added them using lower-case roman numerals. We can see that
taxa III and IV are beautifully separated on the basis of sepal length and leaf width, but taxa I
and II are all jumbled up (recall that they are separated from one another on the basis of petiole
length).

20.4 Looking for patterns

Tree diagrams can help us look for patterns in the data. As a fairly extreme example, let us
revisit the ethanol database, part of the lattice package (Sarkar, 2008), that we looked at in
Section 12.4.2. We are interested in the dependence of NOx on E:

library (lattice)
data (ethanol)
head (ethanol)

NOx C E
1 3.741 12 0.907
2 2.295 12 0.761
3 1.498 12 1.108
4 2.881 12 1.016
5 0.760 12 1.189
6 3.120 9 1.001

�

� �

�

776 THE R BOOK

We can create a function that will accept the two variables and produce a scatter plot with the default
tree fit:

plot_tree <- function (x, y) {
plot (x, y, col = hue_pal ()(2)[1], xlab = deparse (substitute (x)),

ylab = deparse (substitute (y)))
tree_mod <- tree (y ~ x)
x_grid <- seq (min (x) * 0.9, max (x) * 1.1, length.out = 1000)
y_tree <- predict (tree_mod, list (x = x_grid))
lines (x_grid, y_tree, col = hue_pal ()(2)[2])

}

Note the impenetrable but functional code to extract the axis labels. Figure 20.12 shows three plots:

(a) all the data;

(b) all the data with an E value < 1.007;

(c) all the data with an E value < 1.006.

Even though all three plots show the data dropping at the right-hand side, the tree () func-
tion, which fits a line to the data, requires a minimum number of points (which can be reset as in
Section 20.3.1), in this case E < 1.007, to show that drop in the tree diagram: beware of arbitrarily
cutting off the data.

attach (ethanol)
plot_tree (E, NOx)
plot_tree (E[E < 1.007], NOx[E < 1.007])
plot_tree (E[E < 1.006], NOx[E < 1.006])
detach (ethanol)

0.6 0.7 0.8 0.9 1.0 1.1 1.2

1
2

3
4

E

N
O

x

(a) All

0.6 0.7 0.8 0.9 1.0

1
2

3
4

E[E < 1.007]

N
O

x[
E

 <
 1

.0
07

]

(b) E < 1.007

0.6 0.7 0.8 0.9 1.0

1
2

3
4

E[E < 1.006]

N
O

x[
E

 <
 1

.0
06

]

(c) E < 1.006

Figure 20.12 Tree plots for ethanol for varying subsets of the data.

�

� �

�

CLASSIFICATION AND REGRESSION TREES 777

References

Ripley, B. (2019). Tree: classification and regression trees [R package version 1.0-40]. https://CRAN.R-project
.org/package=tree.

Sarkar, D. (2008). Lattice: multivariate data visualization with R [ISBN 978-0-387-75968-5]. Springer. http://
lmdvr.r-forge.r-project.org.

Therneau, T., & Atkinson, B. (2019). Rpart: Recursive partitioning and regression trees [R package version
4.1-15]. https://CRAN.R-project.org/package=rpart.

https://CRAN.R-project.org/package=tree
https://CRAN.R-project.org/package=tree
http://lmdvr.r-forge.r-project.org
http://lmdvr.r-forge.r-project.org
https://CRAN.R-project.org/package=rpart

�

� �

�

�

� �

�

21
Spatial Statistics

Spatial statistics enables us to build models for data that are set in more than one dimension; for
instance, the spread of mould on the surface of a piece of cheese in two dimensions or the locations
of galaxies in three dimensions. The critical issue is that what goes on at one location might affect
what happens nearby. There are two kinds of data sets that we will explore here:

• data which occur at specific points, e.g. trees in a forest or crimes on a map, and are known as
spatial point patterns;

• data that take values across the whole of the space, e.g. pollution levels in a city, and are known
as geospatial statistics, from their origin in mining.

We are interested in modelling the location and, possibly, the value of the data at specific points or
over an area. We will just give a flavour of the possible analyses.

Modelling using spatial statistics usually requires extra R packages and a list of these is given at
https://cran.r-project.org/web/views/Spatial.html. This should give some idea of the range of
functionality and techniques encompassed by spatial statistics. There are also some links to data
sources.

21.1 Spatial point processes

If our data form a spatial point pattern, then we model them using spatial point processes. For
most of this section, we will use the spatstat package (Baddeley et al., 2015a) to examine the
data and build those processes: the package is extremely comprehensive and Baddeley et al.,
2015b is an equally comprehensive guide to its use and to the general principles of spatial point
processes.

library (spatstat)

Before we can analyse our data, we need to represent them in a point pattern in a format that
spatstat can recognise (technically an object of type ppp): if we are working in two dimensions,
then we need to specify the x and y coordinates of each point together with the window within

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

https://cran.r-project.org/web/views/Spatial.html
http://www.wiley.com/go/jones/therbook3e

�

� �

�

780 THE R BOOK

Figure 21.1 100 randomly generated points.

which those points lie. For instance, we can create a point pattern, summarise it and then plot it in
Figure 21.1 using:

xcoord <- runif (100)
ycoord <- runif (100)
ran_pts <- ppp (x = xcoord, y = ycoord, window = square (r = 1))
summary (ran_pts)

Planar point pattern: 100 points
Average intensity 100 points per square unit

Coordinates are given to eight decimal places

Window: rectangle = [0, 1] x [0, 1] units
Window area = 1 square unit

plot (ran_pts, cols = hue_pal ()(3)[1], main = "", pch = 20)

We have changed the representation of a point using the argument pch = 20. There are many
ways to describe a window, but here we have specified a square with sides of length one, and so our
randomly drawn x and y coordinates fit within that. Data can also be imported from spreadsheets
or standard formats used by Geographic Information Systems. This may require the use of other
R packages such as maptools or shapefiles.

Box 21.1: Plot functions

The plot function used for Figure 21.1 is actually plot.ppp (), as R recognises the object to
be plotted is of type ppp and selects the appropriate plot.() function

�

� �

�

SPATIAL STATISTICS 781

(a) Regular (b) Clustered

Figure 21.2 Types of point pattern.

The first question we consider is whether there is any evidence to allow rejection of the null hypoth-
esis of complete spatial randomness (CSR), sometimes described as a Poisson Process. In a
random pattern (Figure 21.1), the distribution of each individual point is completely independent of
the distribution of every other. Individuals neither inhibit nor promote one another. In a regular pat-
tern (Figure 21.2a), individuals are more spaced out than in a random one, presumably because of
some mechanism (such as competition) that eliminates individuals that are too close together. In a
clustered pattern (Figure 21.2b), individuals are more clumped than in a random one, presumably
because of some process such as reproduction with limited dispersal, or because of underlying
spatial heterogeneity (e.g. good patches and bad patches).

21.1.1 How can we check for randomness?

As we can see from Figures 21.1 and 21.2, it may be quite difficult to discriminate between ran-
domness and other patterns in part or all of a window just by inspection. A number of more formal
approaches have thus been developed to check for randomness and also to understand where
regularity or clustering may occur. None of them is perfect so it is a good idea to use more than
one of them on any data. To explore these techniques, we will use the ponderosa data set from
spatstat which describes tree locations (see ?ponderosa for details):

summary (ponderosa)

Planar point pattern: 108 points
Average intensity 0.0075 points per square metre

Coordinates are given to 3 decimal places
i.e. rounded to the nearest multiple of 0.001 metres

Window: rectangle = [0, 120] x [0, 120] metres
Window area = 14400 square metres
Unit of length: 1 metre

�

� �

�

782 THE R BOOK

22 9 8

13 15 5

15 11 10

12 12 12

12 12 12

12 12 12

2.9 −0.87 −1.2

0.29 0.87 −2

0.87 −0.29 −0.58

Figure 21.3 Ponderosa points and quadrat statistics.

The first approach uses a quadrat test wherein the window is divided into quadrats. The number
of points in each quadrat is compared to the number we would expect from randomness (i.e. total
number of points in the window divided by the number of quadrats) using a 𝜒2 goodness of fit test
(see Section 9.3.2). The relevant statistics are overlaid on the data in Figure 21.3 which shows an
area 120 m on each side:

pond_quad <- quadrat.test (ponderosa, nx = 3, ny = 3)
plot (ponderosa, main = "", cols = hue_pal ()(1), pch = 20)
plot (pond_quad, add = T)

In each quadrat, the first number is the count of points, the second the expected number given
randomness and the third the Pearson residuals (see Section 10.5.1). There are a couple of large
residuals figures and the formal test gives

pond_quad

Chi-squared test of CSR using quadrat counts

data: ponderosa
X2 = 16.5, df = 8, p-value = 0.07152
alternative hypothesis: two.sided

Quadrats: 3 by 3 grid of tiles

The output is fairly self-explanatory. By inspection, there do appear to be more points the further
left one moves. So far, there appears to be some evidence against randomness, but it is not over-
whelming. The number of quadrats to use will be determined by how many data points we have:
we need a reasonable number in each quadrat for the test to work, but want to be able to have as
many quadrats as possible to detect where any non-randomness occurs. R’s default is 5 × 5 but
the area under study may not be square. In this case, we have chosen 3 × 3 as there is not a huge

�

� �

�

SPATIAL STATISTICS 783

amount of data. If we had chosen 5 × 5, then the expected number of points in each quadrat would
have been fewer than five and the 𝜒2 test would have not been valid (see Section 9.3.2).

The second approach to exploring randomness is to select a (mathematical) function that takes
values at every point in the window (perhaps a covariate such as direction or slope) and then
compare its empirical cumulative distribution function (CDF) acting on the data with the CDF that
would have arisen from CSR, using a Kolmogorov–Smirnov test (Section 9.2.4): for instance we
might compare the percentage of points that have slope less than 30 degrees between our actual
data and CSR. In this example, as there appears to be a trend along the x-axis (more points for
smaller x), we shall test for that:

cdf.test (ponderosa, covariate = "x", test = "ks")

Spatial Kolmogorov--Smirnov test of CSR in two dimensions

data: covariate 'x' evaluated at points of 'ponderosa'
and transformed to uniform distribution under CSR

D = 0.15035, p-value = 0.01515
alternative hypothesis: two-sided

There appears to be good evidence against no trend in that direction. Incidentally, there is no strong
evidence of a trend along the y-axis:

cdf.test (ponderosa, covariate = "y", test = "ks")

Spatial Kolmogorov--Smirnov test of CSR in two dimensions

data: covariate 'y' evaluated at points of 'ponderosa'
and transformed to uniform distribution under CSR

D = 0.061672, p-value = 0.8059
alternative hypothesis: two-sided

Although we have used the Kolmogorov–Smirnov test, other tests are available, so we may choose
our favourite.

The third approach to randomness is a little more complicated but, in many cases, more informa-
tive. Again, we pick a function, but this time it takes values at distances from zero up to the longest
distance in the window. And again, we compare the empirical CDF of that function (i.e. the propor-
tions of points with associated distances less than or equal to any distance) with CSR. The functions
most commonly used are (there are many more):

F The distance from anywhere in the window to the nearest point. In practice, a very fine grid is
used rather than anywhere;

G The distance from any point to its nearest neighbouring point;

K The number of points within a certain distance of any point. A more stable version of this is the
L function.

Before we perform any calculations, we need to consider an issue that may cause problems. All our
distance functions work well in the middle of the window and for small distances. However, as we

�

� �

�

784 THE R BOOK

0 2 4 6 8
−

0.
2

0.
2

0.
6

1.
0

r (m)

G
(r)

Ĝobs(r)
G theo(r)
Ĝhi(r)
Ĝ lo(r)

Figure 21.4 Ponderosa G statistic.

move towards the edges, the distance may well extend outside the window: our data are often just
a sample from a larger area and so any calculations will omit that larger area. This explains why we
need to specify a window for any point pattern and, fortunately, spatstat deals with this edge effect
for us.

Plotting the output for our data using the G function gives Figure 21.4:

plot (envelope (ponderosa, Gest, nsim = 19, verbose = F, global = T), main = "")

As this is an important type of plot that comes up frequently in spatial point processes it is worth
exploring in detail:

• The black line (Ĝobs(r)) is the empirical CDF. For instance, about 40% of the points have a nearest
neighbour less than or equal to 6 m away;

• The red line (Gtheo(r)) is the theoretical equivalent to the black line, i.e. if there were 108 trees
(as there are) and the distances between them came as precisely as possible from a Poisson
Process (i.e. they were exponentially distributed: a feature of Poisson Processes), then this would
be the CDF;

• The grey-shaded region (or envelope) represents the outer limits of a random sample of size 19
drawn from the distribution described in the previous point. So if we run the envelope command
again, we will get a slightly different envelope;

• We are interested in whether our data are random. This plot represents a hypothesis test with
null hypothesis that the data are random. The sample size of 19 generates an envelope, based
on that randomness assumption, which is equivalent to checking whether the p-value is less than
0.05 (the equivalent to a p-value of 0.01 would be a sample size of 99). If the black line moves
outside the envelope, then there is evidence against the null hypothesis at the 5% level and at
the distance r where the edge of the envelope is broken;

• The conclusion from this test is that between 4 and 6 m there is some evidence against random-
ness. As the line is close to the edge of the envelope than elsewhere, at those distances, there
are not enough neighbouring points, giving some evidence of regularity. We have not just carried
out a test, but we have also some indication of the distance at which we need to probe further
into non-randomness.

�

� �

�

SPATIAL STATISTICS 785

None of the three types of tests we have described completely captures the extent to which our
data are randomly distributed. They should be used as indicators in building a model rather than
conclusive in themselves (as should all statistical tests!). There appears to be evidence of both a
trend along the x-axis, and some regularity for distances between 4 and 6 m.

21.1.2 Models

Our goal in building spatial point process models is usually to explain why the points are where they
are (there are more complex aims, such as investigating values at points, but we will leave those
for now). We can get some sense of the underlying intensity of points across a window just by
looking at the points as in Figure 21.3. An alternative approach is to look at a heat map which gives
a rough idea of the intensity of points across the whole window. This is shown, psychedelically, in
Figure 21.5 for the ponderosa data:

plot (density (ponderosa), main = "")

The values represent the number of trees per square metre, and the overall pattern backs up the
indication that there are more trees the further to the left that we go.

The outcome that we will model is this intensity (denoted by 𝜆). In fact, for technical reasons, we
model the log intensity so that if we want to build a model with the x direction as a covariate we
would use either of the two following equivalent equations:

log(𝜆) = 𝛽0 + 𝛽1x

𝜆 = e𝛽0+𝛽1x

and then generate the model as follows:

ponderosa_model1 <- ppm (ponderosa, ~x)
ponderosa_model1

0.
00

4
0.

00
6

0.
00

8
0.

01
0.

01
2

0.
01

4

Figure 21.5 Ponderosa heat map.

�

� �

�

786 THE R BOOK

Non-stationary Poisson process

Log intensity: ~x

Fitted trend coefficients:
(Intercept) x
-4.475504135 -0.007515171

Estimate S.E. CI95.lo CI95.hi Ztest Zval
(Intercept) -4.475504135 0.173949717 -4.81643932 -4.134568954 *** -25.728723
x -0.007515171 0.002834888 -0.01307145 -0.001958893 ** -2.650959

where the ppm () function performs a similar role to that which lm () does for linear models. The
interpretation is akin to that of a generalised linear model with a log-link function (Section 11.1.3)
and the parameter estimators have been calculated using a maximum likelihood approach. The
fitted intensity function (rounded to four decimal places) is

𝜆(x) = e−4.4755−0.0075x

Box 21.2: Warning

There is not just one heat map for any spatial point pattern. There are an infinite number which
can be produced by varying the bandwidth (see ?density for more details). This is analogous
to varying the appearance of a histogram by changing the widths of the cells

The mean value of the intensity at the left-hand side of the window (i.e. when x = 0) is e−4.4755 =
0.0114 and every time we move one metre to the right that mean is multiplied by e−0.0075 = 0.9925.
The Ztest column suggests that the x covariate is significant, but we can compare it more
specifically with a Poisson Process without a covariate (the intensity is just the number of
trees):

ponderosa_model0 <- ppm (ponderosa)
anova (ponderosa_model0, ponderosa_model1, test = "Chisq")

Analysis of Deviance Table

Model 1: ~1 Poisson
Model 2: ~x Poisson
Npar Df Deviance Pr(>Chi)

1 1
2 2 1 7.17 0.007413 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The test = "Chisq" tells us that we are carrying out a loglikelihood ratio test, and the covariate
model is clearly an improvement (a p-value of 0.0074). AIC can also be used for comparisons
between models. Other covariates such as soil type can be added into our models using the data
argument in ppm ().

�

� �

�

SPATIAL STATISTICS 787

Incidentally, if we felt that the data showed, for instance, a quadratic relationship with x, then we
could model that and then compare it with ponderosa_model1 as follows:

ponderosa_model2 <- ppm (ponderosa, ~polynom (x, 2))
anova (ponderosa_model1, ponderosa_model2, test = "Chisq")

Analysis of Deviance Table

Model 1: ~x Poisson
Model 2: ~x + I(x^2) Poisson

Npar Df Deviance Pr(>Chi)
1 2
2 3 1 0.345 0.557

but this does not appear to be an improvement.
As usual, once we have created a model, we should check how well the model fits the

data. The first approach to doing this is to run the randomness tests described above but with
ponderosa_model1 rather than just the data:

cdf.test (ponderosa_model1, covariate = "x", test = "ks")

Spatial Kolmogorov--Smirnov test of inhomogeneous Poisson process in two
dimensions

data: covariate 'x' evaluated at points of 'ponderosa'
and transformed to uniform distribution under 'ponderosa_model1'

D = 0.047307, p-value = 0.969
alternative hypothesis: two-sided

and the p-value is now clearly not significant, whereas with just the data it was far smaller (0.02).
Alternatively, or additionally, we could examine residuals in an analogous fashion to linear mod-

els. Both the residuals and the resulting plots are more complex than those we have met before
due to the multi-dimensional nature of our data. The four default plots are shown in Figure 21.6 for
ponderosa_model1:

diagnose.ppm (ponderosa_model1, main = "")

Detailed descriptions of the plots can be found in ?diagnose.ppm. In brief, the top-right and
bottom-left plots show cumulative residuals with 5% significance lines. The residuals sneak outside
the outer lines at about x = 8 m and y = 115 m, but if we run the plots for ponderosa_model0, we
will see that what we have now is a vast improvement.

Box 21.3: Interactions

The interactions discussed here are completely different from the model term interactions we
have met in linear models (Section 10.2.4). The former describe how the location of one point
affects the locations of those nearby, while the latter examine whether covariates interact with
each other in a way that significantly affects the model outcome

�

� �

�

788 THE R BOOK

 −
0.

00
25

 −0.002

 −0.0015
 −0.001

 −0.001

 −0.001

 −5e−04

 −5e−04

 −5e−04

 0
 0

 0
 5e−04

 5e−04

 0.001

 0.001
 0.001

 0.0015
 0.002

 0.002

0 20 60 100

x coordinate

−
8

−
4

0
4

8

C
um

ul
at

iv
e

su
m

 o
f r

aw
 r

es
id

ua
ls 0

20
60

10
0

y
co

or
di

na
te

15 5 0 −5 −15

Cumulative sum of raw residuals

Figure 21.6 Ponderosa model1 residuals.

We have dealt with the x trend, but not the regularity. We can incorporate clustering or regularity
into our models by adding features (known as Gibbs or interaction processes) that include either
of these types of interaction between points.

There is an ever-growing list of available Gibbs processes in spatstat (see ?ppm), and they can
be used to fit clustering or regularity at different distances between pairs or larger groups of points.

In the Ponderosa data set, there appears to be regularity up to about 6 m. The Strauss model is a
fairly straightforward model for dealing with interactions between pairs of points. To use it, we need
to specify the distance (r) up to which we believe the interactions are taking place. We will set r = 6,
but we could play around with this value to see what results in the most satisfactory set of residuals.
More complicated models may require more than one such distance (described in spatstat as
irregular parameters), and there are not completely satisfactory automated techniques for estimat-
ing them (see ?ppm).

We introduce the Strauss model as follows:

ponderosa_model3 <- ppm (ponderosa, ~x, interaction = Strauss (r = 6))
ponderosa_model3

Nonstationary Strauss process

Log trend: ~x

Fitted trend coefficients:

�

� �

�

SPATIAL STATISTICS 789

(Intercept) x
-3.63131827 -0.01403956

Interaction distance: 6
Fitted interaction parameter gamma: 0.5990555

Relevant coefficients:
Interaction
-0.5124009

For standard errors, type coef(summary(x))

We can see that, compared to ponderosa_model1, both the intercept and the coefficient of the x
covariate have changed slightly, but they can still be interpreted in the same way. We also have an
estimate of the interaction parameter: 𝛾 = 0.599. What on earth does that mean? The actual value
is not critical, but 𝛾 < 1 implies that we have fitted a model with regularity up to 6 m. 𝛾 > 1 would
suggest clustering and 𝛾 ∼ 1 neither (i.e. the residuals appear to come from a Poisson Process).
Model fitting (including estimation of these parameters) is carried out using a pseudolikelihood
(an approximation to the likelihood).

To see how good the fit for ponderosa_model3 is, we can examine the residuals for distance
functions. We would expect these to cluster around zero at all distances but with greater uncertainty
for larger distances. A plot of these for the G function is displayed in Figure 21.7a:

plot (Gres (ponderosa_model3), main = "", legend = F)

The black and red lines represent the residuals from the model after adjusting for the edge effect in
two different ways. The outer bands are simulated from the model and represent a sort of envelope:
they suggest where we might look for further model refinement. In this case, the residuals fall well

0 2 4 6 8 10 12 14

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

R
 Ĝ

(r)

(a) G

0 2 4 6 8 10 12 14

−
15

0
−

50
0

50
10

0
15

0

r (m)r (m)

R
 K̂

(r)

(b) K

Figure 21.7 Ponderosa model3 residuals plots.

�

� �

�

790 THE R BOOK

within the outer bands and it appears that no further refinement of the model is necessary. However,
it is always worth examining residuals for more than one function:

plot (Kres (ponderosa_model3), xlim = c (0, 14), main = "", legend = F)

The plot for K residuals is shown in Figure 21.7b (we have kept the same x range as the G plot): it
appears to confirm our diagnosis.

Data may exhibit different clustering or regularity at different distances and multiple interac-
tion processes can be introduced into hybrid models using interactions = Hybrid (S =
Strauss (r = 5), ...) (Baddeley et al., 2013). Gibbs processes are good at representing
regularity but are not always ideal for clustering. For the latter, an alternative approach is to use
Cox or cluster processes. However, these cannot currently be combined with other processes into
hybrid models.

21.1.3 Marks

In many spatial point processes there may be data, known as marks, attached to each point. For
instance, in the ragwort data set, four different types of ragwort are recorded, and they are shown
in Figure 21.8.

ragwort_data <- read.table ("ragwortmap2.txt", header = T,
colClasses = c (type = "factor"))

ragwort <- ppp (x = ragwort_data$x, y = ragwort_data$y, xrange = c (0, 3000),
yrange = c (0, 1500), marks = ragwort_data$type)

summary (ragwort)

Marked planar point pattern: 3359 points
Average intensity 0.0007464444 points per square unit

Coordinates are integers,
i.e. rounded to the nearest unit

Multitype:
frequency proportion intensity

regrowth 135 0.04019053 3.000000e-05

Skeleton

Seedling

Rosette

Regrowth

Figure 21.8 Ragwort.

�

� �

�

SPATIAL STATISTICS 791

rosette 146 0.04346532 3.244444e-05
seedling 1100 0.32747840 2.444444e-04
skeleton 1978 0.58886570 4.395556e-04

Window: rectangle = [0, 3000] x [0, 1500] units
Window area = 4500000 square units

plot (ragwort, main = "", cols = hue_pal ()(4), pch = 15:18)

The mark is the species of ragwort, given in column type which must be a factor, and the window
is specified using the ranges of x and y coordinates. In this case, the types are categorical: there
are four different species as summarised above. Marks can also be continuous. For instance, in
the ragwort data set, we can see that some entries have a diameter. As there are fewer options for
building models with continuous marks, it is often simplest to divide them into a small number of
multi-type categories (e.g. diameters < 4, 5–8 etc) using the cut () function.

It is important with marked data to be sure that a spatial point process model is still appropriate,
i.e. that the locations of the points result from some random pattern that we are interested in inves-
tigating. So if we wanted to study the overall prevalence of the four species of ragwort but were not
bothered about location then a spatial point process model would not be suitable (we could treat
the location as a covariate). However, if we were studying the effect of species on the locations of
other species, then it would. It is important to be clear up front about the research question that is
being investigated.

Many of the techniques described for unmarked point patterns can be applied to marked patterns
but, inevitably, the marks introduce another layer of complexity. We will just touch on some of the
possibilities in the remainder of this section. For instance, heat plots for each of the species can be
easily produced (plots not shown):

plot (density (split (ragwort)))

However, they do not give any sense of the relative frequency of each of the four species. This can
be shown in Figure 21.9 using the relrisk () function:

plot (relrisk (ragwort), zlim = c(0, 1), main = "")

The zlim argument standardises the plots so that a shade in any of the plots represents the same
frequency of plant relative to the total. As we had already seen, there are very few regrowth and
rosette plants compared with seedlings and skeletons.

One way of exploring how the different species interact is to plot the distance functions (e.g. G)
described in Section 21.1.1 for pairs of species. We can create Figure 21.10 as follows:

plot (alltypes (ragwort, "G"), title = "")

Each plot shows the extent to which one species is clustered or regular compared to another species
and can be interpreted in a similar way to the lines in Figure 21.4. For instance, as one might
expect, the diagonal plots show that all species tend to cluster together: the red, green, and black
lines, representing different sorts of edge correction, are well above the blue randomness line. The

�

� �

�

792 THE R BOOK

Regrowth

0
0.

4
0.

8

Rosette

0
0.

4
0.

8

Seedling

0
0.

4
0.

8

Skeleton

0
0.

4
0.

8

Figure 21.9 Relative heat maps for the ragwort data.

Regrowth Rosette Seedling Skeleton

R
eg

ro
w

th
R

os
et

te
S

ee
dl

in
g

S
ke

le
to

n

Figure 21.10 G functions for pairs of species. Blue lines represent randomness: the rest, different types of
edge correction.

plot in row two, column three is interesting as it suggests that at short distances seedlings cluster
around rosettes but that thereafter they tend to keep their distance. Envelopes can be added in
the alltypes () function for randomness tests. We might expect the matrix of plots to be sym-
metrical, but if, for instance, seedlings cluster around rosettes there is no expectation that rosettes
will cluster around seedlings: there may be a variety of patterns that might account for the initial
clustering.

�

� �

�

SPATIAL STATISTICS 793

Point process models can be built which take the marks into account:

ppm (ragwort, ~ marks)

Stationary multi-type Poisson process

Possible marks: 'regrowth', 'rosette', 'seedling' and 'skeleton'

Log intensity: ~marks

Intensities:
beta_regrowth beta_rosette beta_seedling beta_skeleton
3.000000e-05 3.244444e-05 2.444444e-04 4.395556e-04

Estimate S.E. CI95.lo CI95.hi Ztest Zval
(Intercept) -9.1991409 0.03129634 -9.2604806 -9.1378012 *** -293.93663
marks1 -1.2151723 0.06843365 -1.3492998 -1.0810448 *** -17.75694
marks2 -1.1368405 0.06636353 -1.2669106 -1.0067703 *** -17.13050
marks3 0.8826184 0.03786828 0.8083979 0.9568388 *** 23.30759

In this case, the first mark alphabetically, regrowth, is built into the intercept, and then differences of
intensity compared with other the other marks are displayed as covariates. Unsurprisingly, seedlings
and skeletons show a significantly different intensity from regrowth, whereas rosettes do not. Covari-
ates such as soil type or distance in the x direction can be added in the usual way.

Finally, we can add in Gibbs processes to our model to take account of regularity. For instance,
the multi-type Strauss process allows us to specify, for each pair of species, different distances up
to which regularity interactions are taking place (see ?MultiStrauss for more details). At present,
spatstat in common with other packages does not have processes that deal with multi-type clus-
tering in an analogous way.

21.2 Geospatial statistics

There are many R packages for exploring data which take values at all locations in two or three
dimensions. We will use geoR (Ribeiro Jr. et al., 2020), a useful, and not too technical, introduction
to this area.

library (geoR)

The following example is a geographic-scale trial to compare the yields of 56 different varieties
of wheat. What makes the analysis more challenging is that the farms carrying out the trial were
spread out over a wide range of latitudes and longitudes. We shall ignore the specific varieties of
wheat for now.

wheat <- read.table ("wheat.txt", header = T)
head (wheat)

Block variety yield latitude longitude
1 1 LANCER 29.25 4.3 19.2

�

� �

�

794 THE R BOOK

0 10 20 30

10
20

30
40

x coord.

y
co

or
d.

0 10 20 30 40

10
20

30
40

Data

y
co

or
d.

0 10 20 30

0
10

20
30

40

x coord.

D
at

a

Data

D
en

si
ty

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

Figure 21.11 Exploratory plots for wheat.

2 1 BRULE 31.55 4.3 20.4
3 1 REDLAND 35.05 4.3 21.6
4 1 CODY 30.10 4.3 22.8
5 1 ARAPAHOE 33.05 4.3 24.0
6 1 NE83404 30.25 4.3 25.2

We transform our data into the format (class) recognised by geoR (possible covariates could also
be added in here) and then the plot () function is actually plot.geodata () from the package:
this results in Figure 21.11

wheat_geo <- as.geodata (wheat, coords.col = 5:4, data.col = 3)
plot (wheat_geo)

The values of the yield (referred to as ‘data’ in the plots) are represented by colour in the first plot
(blue being low and red high). It seems to show a trend from the NW (low) to the SE (high) which
is borne out by the following two plots. However, note that the trend does not look linear.

21.2.1 Models

There are many types of models that we could work with, but a common one, where s represents
any point in the area we are considering and Y(s) is the value (e.g. wheat yield) at that point, is

Y(s) = 𝜇(s) + S(s) + Z(s)

�

� �

�

SPATIAL STATISTICS 795

Examining each of the elements on the right-hand side in turn:

• 𝜇(S): the trend or deterministic part of the yield consisting of covariates including location data.
In our case that might be latitude or wheat variety;

• S(s): a value which allows statistical variation over the area we are considering but which ensures
that points near to each other have similar variation and are therefore correlated. Technically, this
is a Gaussian process;

• Z(s): a final statistical variation term which takes into account measurement errors or differences
in techniques, wherever data have been gathered. This term is similar to the error term in linear
models (see Section 10.1.1).

We will examine how we might explore the first two elements.
As usual with model building, having examined the data our first task is to create the deterministic

elements or, in geostatistical terminology, trend. We can introduce a term to take account of the
non-linear location pattern in the data as follows:

plot (wheat_geo, trend = '2nd', lowess = T)

The trend = '2nd' argument refers to a second-order trend in direction with terms including x2,
y2, and xy. Figure 21.12 shows residuals rather than data, after the trend has been added. As usual,

0 10 20 30

10
20

30
40

x coord.

x coord.

y
co

or
d.

y
co

or
d.

−15 −5 0 5 10

10
20

30
40

Residuals

0 10 20 30

−
15

−
5

5
R

es
id

ua
ls

Residuals

D
en

si
ty

−20 −15 −10 −5 0 5 10 15

0.
00

0.
02

0.
04

0.
06

Figure 21.12 Exploratory plots for wheat with second-order trend.

�

� �

�

796 THE R BOOK

we are looking for randomness: there is less of a clear pattern to the values in the first plot and the
residuals mapped against the x and y coordinates display far more randomness than before, as
can be seen from the fitted line.

The next task in our model building is to capture the correlation in values between points that are
spatially close to each other. We will do this by building a stationary model which assumes that:

1. the values at each location have a constant mean throughout the area we are considering once
the trend has been taken into account;

2. the variogram of any two points depends only upon the distance between them (not their location
or relative direction).

The variogram is a plot of distance against variability between points at that distance apart. Unlike
a linear model, for instance, we would not expect the residuals of two data points to be independent
from each other: the spatial nature of the data will not permit that. For two points that are close
together, one would expect little difference in the variability of their values and so the variogram is
low. As the distance between the pair increases, the variogram will rise until there is no connection
between the variability whereupon the variogram will meander randomly. The assumptions given
above are rarely precisely true in practice, but they provide a surprisingly effective approach to
describing spatial variability. Technically, the variogram is a function of the covariance between
points at a particular distance.

We begin to model this spatial correlation using an empirical variogram plot (we have chosen
max.dist = 20 as there is no discernible pattern in the data at larger distances) which compares
distance with variogram value:

wheat_var <- variog (wheat_geo, trend = "2nd", max.dist = 20)
plot (wheat_var, main = "",
xlab = "distance (h)", ylab = "variogram", col = "red", pch = 19)

variog: computing omnidirectional variogram
variofit: covariance model used is exponential
variofit: weights used: npairs
variofit: minimisation function used: optim
variofit: covariance model used is spherical
variofit: weights used: npairs
variofit: minimisation function used: optim

Figure 21.13a shows the empirical variogram for our data. It collects distances between pairs of
points into groups (bins) and works out the average variogram value for each group. Various
quaintly named features of the variogram plot, which give away its origin in geological prospecting,
have then been added:

• nugget: the minimum value of the variogram for points very close together. The problem in this
case is that none of the pairs of points are particularly close and so we end up with a large value
for the nugget;

• sill: the value of the variogram where the points appear to flatten out or begin to show random-
ness. The partial sill is the difference between the sill and the nugget;

• range: the distance at which the sill occurs.

�

� �

�

SPATIAL STATISTICS 797

0 5 10 15

0
5

10
15

20
25

Distance (h)

V
ar

io
gr

am

Nugget

Sill

Range

(a) With key features

0 5 10 15

0
5

10
15

20
25

Distance (h)

V
ar

io
gr

am

Exponential
Spherical

(b) Fitting models to the data

Figure 21.13 Empirical variograms for wheat.

We use these initial values to help fit a curve to the variogram plot. There are a number of standard
curves we could use and the features help us estimate their parameters. Figure 21.13b shows a
couple of these curves (exponential and spherical: there are many more options) after they have
been fitted to the data using the function variofit ():

nug <- 18
sill <- 28
partial_sill <- sill - nug
range <- 13
plot (wheat_var, main = "", cex.lab = 1.5,

xlab = "distance (h)", ylab = "variogram", col = "red", pch = 19)
exp_est <- variofit (wheat_var, cov.model = "exp",

ini.cov.pars = c (partial_sill, range), nugget = nug)
sph_est <- variofit (wheat_var, cov.model = "sph",

ini.cov.pars = c (partial_sill, range), nugget = nug)
lines (exp_est, col = "brown", lty = 3, lwd = 2)
lines (sph_est, col = "blue", lty = 3, lwd = 2)
legend (10, 10, legend = c ("exponential", "spherical"), lty = c (2, 3),
lwd = rep (2, 2), bty = "n", cex = 1.5, col = c ("blue", "brown"))

The exponential curve appears to fit best. If we investigate summary (exp_est), we will find that
the final value for the partial sill is 5.53 and the range 12.09. This completes our model in that we
now have details of the covariances between residuals to go with the trend.

Our final step might be to estimate values at any point in the area we are considering. For instance,
Figure 21.14 shows a circle plot of the data together with the prediction for a number of points
(in red):

plot (wheat$longitude, wheat$latitude, xlab = "", ylab = "", col = "blue",
pch = 20, cex = wheat$yield / 10)

�

� �

�

798 THE R BOOK

5 10 15 20 25

10
20

30
40

Figure 21.14 Circle plot with predicted values.

pred_pts <- matrix (c (4, 22, 13, 23, 42, 33, 12, 6), ncol = 2)
krige_pts <- krige.conv (wheat_geo, loc = pred_pts,

krige = krige.control (obj.m = exp_est))

krige.conv: model with mean given by a second-order polynomial on the
coordinates
krige.conv: Kriging performed using global neighbourhood

points (pred_pts, col = "red", pch = 20, cex = krige_pts$predict / 10)

This can be extended to give a heat map of predicted values for the whole area using
pred_grid () and krige_surf ().

References

Baddeley, A., Rubak, E., & Turner, R. (2015a). Spatial point patterns: methodology and applications
with R. Chapman & Hall/CRC Press. https://www.routledge.com/Spatial-Point-Patterns-Methodology-and-
Applications-with-R/Baddeley-Rubak-Turner/9781482210200/.

Baddeley, A., Rubak, E., & Turner, R. (2015b). Spatial point patterns: methodology and applications with
R. CRC Press. https://doi.org/10.1201/b19708.

Baddeley, A., Turner, R., Mateu, J., & Bevan, A. (2013). Hybrids of Gibbs point process models and their
implementation. Journal of Statistical Software, 55(11), 1–43. https://www.jstatsoft.org/v55/i11/.

Ribeiro Jr., P. J., Diggle, P. J., Schlather, M., Bivand, R., & Ripley, B. (2020). geoR: Analysis of geostatistical
data [R package version 1.8-1]. https://CRAN.R-project.org/package=geoR.

https://www.routledge.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/9781482210200/
https://www.routledge.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/9781482210200/
https://www.jstatsoft.org/v55/i11/
https://CRAN.R-project.org/package=geoR
https://doi.org/10.1201/b19708

�

� �

�

22
Bayesian Statistics

Instead of asking ‘what do my data show?’, the Bayesian analyst asks ‘how do my data alter our
view of the world?’. It may not sound like much, but it is a fundamental change of outlook. The idea
is that the results of the new study are assessed in the light of the existing knowledge to establish
an updated assessment of parameter values and their uncertainties.

Imagine we have a model in mind for a data set. Whether we are Bayesian or not, there will be
parameters, 𝜽 = (𝜃1, … , 𝜃m), in this model that we want to estimate (or learn about). The way that
a Bayesian and frequentist view these parameters differs:

• A frequentist would view the parameters 𝜽 as fixed quantities whose true values are unknown
to us.

– The key here is that the parameters are thought of as fixed (i.e. a single number which is
unknown to us).

– The aim is to estimate these parameters.

• A Bayesian would view the parameters 𝜽 as random variables, represented by a probability
distribution.

– These are not thought of as fixed.
– For a specified model with parameters 𝜽, we combine our existing (pre-data) information about

the parameters (in the form of a prior probability distribution on the parameters 𝜽) with our data.
– This gives us the posterior distribution of 𝜽. We can view the process as updating our prior

beliefs about 𝜽 using the data.
– Once we have a good handle on the posterior probability distribution of 𝜽, we can use it to com-

pute all sorts of summary statistics of interest, e.g. means and variances of the parameters.

This fundamental difference in the way we think about parameters has further nice consequences
which we’ll discuss in Section 22.1.6. For now, let us explore the elements of a Bayesian analysis.

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

800 THE R BOOK

22.1 Components of a Bayesian Analysis

If we were to grossly simplify the process of fitting a frequentist model, we could describe it as
follows:

• Choose a suitable (class of) models, e.g. normal linear regression model, which will have a fixed
set of assumptions;

• Estimate the parameters of the model using a pre-defined algorithm;

• Check, as far as possible, that the underlying assumptions of the model are not violated.

A Bayesian analysis feels quite different:

• Construct a (bespoke) model from scratch, where we define every aspect of the structure and
assumptions that will be made (though often the structure is borrowed directly from ‘standard’
frequentist models);

• Gather existing knowledge about the parameters in the model and channel this information into
probability distributions (the prior information we have about the model parameters);

• Estimate the posterior distribution of the parameters, which combines information from the like-
lihood (the model we constructed plus the data) and the prior information;

• Use the posterior distribution to estimate any quantities of interest about the parameters.

This gives the Bayesian analyst ultimate flexibility: whereas frequentists tend to be restricted to
off-the-shelf models with prescribed formats and assumptions, a Bayesian can create a bespoke
model with no restrictions. While this sounds great, it comes with a lot of responsibility and requires
excellent understanding of what we’re doing. A good source of background, examples, and com-
putational methods on each of these steps is given in Gelman et al., 2004.

22.1.1 The likelihood (the model and data)

Model choice is a very important part of Bayesian data analysis. We’ll create a model from scratch
each time we want to run a Bayesian analysis. This may sound like a lot of work, but this gives the
researcher ultimate flexibility. It is probably easiest to get your head around this using an example.

Suppose that we want to build a simple linear regression model of the form:

yi = a + bxi + 𝜖i (22.1)

where we have data on a covariate x = (x1, … , xn) and an outcome y = (y1, … , yn). Other than the
format given in (22.1), we would also need to specify the distribution of our error term, 𝜖. Usually, if
we were to run this model as a frequentist, we would assume that 𝜖i ∼ N(0, 𝜎2) and that these terms
are independent. That is not necessary here: we can build the model however we want.

For now let us say that we’re willing to assume that the errors are independent and come from a
t-distribution with unknown degrees of freedom, 𝜈. That is, 𝜖i ∼ t𝜈 . Our model is defined by

yi = a + bxi + 𝜖i

𝜖i ∼ t𝜈

�

� �

�

BAYESIAN STATISTICS 801

This model structure combined with the data will give us our likelihood. We won’t go into the exact
format of the likelihood here: it isn’t particularly instructive if we are just looking to competently run
a Bayesian analysis. This is taken care of by the software we’ll be using to run our models.

22.1.2 Priors

Continuing with the example in Section 22.1.1, the (unknown) parameters are a,b, 𝜈. Remember
that in a Bayesian framework these are considered random variables so that they have some under-
lying probability distribution.

For each of these parameters, we need to specify our prior information in the form of a probability
distribution (that is, we need to encode our prior beliefs in this format). This prior information will
eventually be combined with the likelihood to produce a posterior distribution for each of a,b, 𝜈: this
gives the updated information about the parameters having seen the data.

There is no such thing as a ‘correct’ prior, and you and I may well have different opinions on
what prior is suitable. I may make the assumption that the prior information on the parameter a is
encapsulated by a prior of the form N(3,52), but it is highly likely that you will choose something
different. This is one of the often-quoted downsides of a Bayesian: the prior information is at least
somewhat subjective. The potential problem with this is, since the prior information is combined
with the data, the posterior distribution is at least partially dependent on the prior chosen.

The good news is that a change in prior information doesn’t always change the end result of our
analysis too drastically as long as there is enough information in the data. When this is the case,
the information in the data essentially dominates the information in the prior. This isn’t always the
case, however, so be warned. We should, at the very least, be able to robustly defend our choice
of prior. This could be based on expert knowledge, as we describe below.

But how do we go about trying to condense our current knowledge of the parameters into suit-
able (prior) distributions? Let us suppose that in the example in (22.1) the outcome represents the
height in centimetres of girls, and the covariate represents their age in months ranging from 24 to
60 months.

The intercept, a, denotes the mean height (or length) of a newborn, for which information is readily
available. The mean is around 49 cm, and we might for example use a normal prior for a with mean
49 cm and standard deviation of 1 cm to be on the safe side though this is probably overkill. A
normal prior is common, but there is an obvious disadvantage in this case: it is not limited to positive
numbers. This shouldn’t be too much of an issue here as we have a small standard deviation and
our analysis is limited to children of at least 24 months old (that is, though the intercept is necessary,
it’s not of interest in its own right).

The slope, b, denotes the average rate of change of height between 24 and 60 months. Again, we
can find information on this: a girl in this age range would be expected to grow on average 0.5 cm
per month. We could opt for a normal prior with mean 0.5 and a standard deviation of, say, 0.1 cm.

Finally, we need to think about the degrees of freedom for our t-distribution which captures infor-
mation about the error term, 𝜖. It has been suggested that a reasonable prior to use for the degrees
of freedom is a Gamma distribution with parameters 2 and 0.1 (Juárez and Steel, 2010) (this may
sound a little strange, but degrees of freedom don’t have to be whole numbers). This Gamma dis-
tribution places most of its weight on values below 50 – so the estimated degrees of freedom for the
t-distribution is likely to be less than 50 unless the data dictates otherwise – which in turn implies
that the resulting t-distribution is rather different to the (standard) Normal distribution.

In this example, we were able to select reasonable prior information, and each prior is justifiable
in this sense. In others, we may have very little information to go on. In these cases, we often
resort to using rather vague priors. That is, priors with large variance that cover a wide range of

�

� �

�

802 THE R BOOK

possibilities. We will frequently find vague priors being referred to as ‘uninformative priors’, but this
isn’t technically true: all priors give some information even if that information isn’t particularly strong.

22.1.3 The Posterior

A Bayesian analysis combines our likelihood (function of our model and data) with the prior informa-
tion on the unknown parameters of the model. This produces our ‘updated’ probability distribution
for these unknown parameters (which are random variables), known as the posterior distribution.

Let us take the parameter a from (22.1), which represents the intercept for our model. A Bayesian
analysis will combine the likelihood and the prior information and provide us with a posterior distri-
bution for a. We can think of the data as having ‘updated’ the prior to give us the posterior.

But how do we elicit the posterior? The underlying idea is that we make use of Bayes’s theorem
(hence the name ‘Bayesian’!). Bayes’s theorem states that for any two events A and B with P(B) ≠ 0
we have

P(A|B) = P(B|A)P(A)
P(B)

.

See Section 2.4.2 for a more in-depth treatment. Another format of Bayes’s theorem states, for our
model parameters 𝜽 and data z:

p(𝜽|z) = p(z|𝜽)p(𝜽)
p(z)

where we have:

• the posterior distribution of the parameters, p(𝜽|z) (that is, the updated distribution of the param-
eters after we take into consideration the data);

• the prior distribution of the parameters, p(𝜽); and

• the information from our model and data, p(z|𝜽).
The term p(z) is just a constant (it doesn’t depend on the unknown 𝜽 which is what we’re trying to
extract information about), and so it’s easier to say that:

p(𝜽|z) ∝ p(z|𝜽)p(𝜽) . (22.2)

This turns out to be very helpful believe it or not, as it tells us how to modify our existing beliefs,
p(𝜽) in the light of our model and data, p(z|𝜽), to give us our posterior distribution, p(𝜽|z).

In some cases, it is possible to derive the exact posterior distribution analytically, because the
mathematics in (22.2) works out nicely. One such case is when the posterior belongs to the same
class of distributions as the prior. When this is the case, we say that the prior is a conjugate prior.
Conjugate priors are useful if we are aiming for an analytical solution, but not essential if we intend
to investigate our posterior distribution numerically.

Estimating the posterior distribution numerically is necessary in the vast majority of cases, but this
requires computing power (and a clever algorithm). Indeed, until the 1980s, the idea of a Bayesian
analysis was novel but often impractical to conduct because the posterior distribution was just too
complex to compute. Models and associated priors were restricted to those which had a posterior
distribution that could be derived analytically. The rapid development of computing power meant
that we could approximate the posterior by simulation instead of determining it analytically. This is
where Markov chain Monte Carlo (or MCMC for short) comes into its own: it allows us to simulate
from the posterior distribution which enables us to build up a picture of what the posterior ‘looks’
like. Bayesian analysis is now commonplace thanks to this innovative idea.

�

� �

�

BAYESIAN STATISTICS 803

22.1.4 Markov chain Monte Carlo (MCMC)

The basic idea behind the MCMC algorithm is to generate a sequence of random values for our
unknown model parameters such that the next value drawn depends only on the previous value,
and that taken collectively the values generated represent draws from the posterior distribution.

Let us suppose we only have one unknown parameter, 𝜃1, though this idea extends to however
many parameters we have in our model. We start with an initial value for 𝜃1, either chosen by the
researcher or randomly sampled from a sensible distribution (e.g. if the parameter is a variance, we
don’t want the initial value to be negative!). Subsequent samples – generally called iterations – for
𝜃1 are drawn sequentially, with the distribution of the next draw depending only on the last sample
drawn. This is the ‘Markov chain’ bit: the current ‘value’ is dependent only on the last value drawn.
The Monte Carlo part of the name refers to random draws (the gambling part).

The clever bit of MCMC is that eventually (i.e. if we do this for long enough) these samples will
be representative of samples drawn from the posterior distribution of 𝜃1 (Gelman et al., 2004). But
why is this useful? If we can draw samples from the posterior distribution of 𝜃1, then we can learn
a lot about this parameter:

• we can get a good feel for the shape of the posterior distribution (e.g. we could draw a histogram
using these samples, or better still approximate with a kernel density plot);

• we can compute summary statistics for the posterior distribution (e.g. if we want to estimate the
mean of the posterior, then compute the mean of the samples drawn).

Don’t be fooled at this point into thinking that there is just one ‘MCMC algorithm’: that isn’t the case.
There are various algorithms that can be used, all with the same underlying idea of generating
sequences of numbers that can eventually be used to learn about the posterior. The simplest is
probably the Gibbs sampling algorithm, with the Metropolis and Metropolis–Hastings algorithms
better for more complicated models. We needn’t worry about which to use when using R: the default
is often Gibbs sampling, but functions to run Bayesian analysis will often switch to another algorithm
behind the scenes if it runs into trouble.

22.1.5 Considerations for MCMC

Using MCMC involves three important practical considerations:

• the burn-in period;

– ‘how long does it take until my MCMC algorithm is spitting out values that are representative
of the posterior?’

• the number of iterations;

– ‘once my MCMC algorithm is producing values that are representative of the posterior, how
long should we continue to run the algorithm?’

• the number of ‘chains’.

– ‘can I run multiple MCMC algorithms simultaneously to see if they all come to the same con-
clusion about the posterior?’

It’s important to note that the first few iterations of the MCMC algorithm won’t produce samples from
the posterior: we need to run the algorithm for a while before we can treat the samples generated
as coming from it.

�

� �

�

804 THE R BOOK

One option is to run the chain for a long time. That way, even if the first few (possibly thousands
of!) samples aren’t representative of the posterior, this will be a drop in the ocean compared to the
total number of samples. These won’t therefore make much difference when taken together with
the rest of the samples.

A more popular option is to burn the first few samples generated. This is a fancy way of saying
that we delete them, and the term burn-in period is often used to denote the iterations we ignore.
How long should the burn-in period last? Once we’re confident that the algorithm is drawing samples
from the posterior distribution, how many iterations do we need? There are no clear-cut answers
here. It is, however, clear that we need to make every effort to check that the algorithm has run
long enough to reach the posterior – often referred to as reaching or converged to equilibrium – and
once that has happened, that we generate a sufficient number of samples from the posterior to get
a very good feel for the distribution.

Of course, there won’t be a specific point at which we switch from ‘not yet sampling from the
posterior’ to ‘sampling from the posterior’, no more than there’ll be a point at which we switch from
‘not enough samples from the posterior’ to ‘enough samples from the posterior’. If we have multiple
parameters in our model, what might be a sufficient number of iterations of the algorithm for one
may not be enough for the others. This makes it very tricky, but the long and the short of it is this:
the more we are willing to ‘burn’ initially and the more samples we generate after the burn-in period,
the better. There’s no such thing as too many samples, though we generally have constraints on
how long we’re willing to wait.

There are various tools available to help determine if we’ve run our chain for long enough, and
whether we’ve discarded a sufficient number of initial samples. A really useful method is to use trace
plots. These plot the iteration number on the x-axis and the sampled value on the y-axis, with one
of these plots per parameter of interest. What we would like to see is a thick solid horizontal band:
this shows that the algorithm has settled down and is churning out values that are, on average, not
changing.

For example, consider a model with two parameters, parameter.1 and parameter.2. We run
the model for 5000 iterations. The trace plot in Figure 22.1a looks just about acceptable: we can
see that the samples for parameter.1 are consistent and form a classic solid band indicative of

1.
24

0
1.

24
5

1.
25

0
1.

25
5

1.
26

0

parameter.1

Iteration

pa
ra
m

et
er

.1

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(a) No evidence of issues with convergence

−
1.

12
−

1.
10

−
1.

08
−

1.
06

−
1.

04

parameter.2

Iteration

pa
ra
m

et
er

.2

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(b) Evidence of issues with convergence

Figure 22.1 Trace plots for two parameters after a Bayesian analysis (5000 iterations).

�

� �

�

BAYESIAN STATISTICS 805

the algorithm having converged. Ideally, we’d run it for a tad longer, just to make sure. Meanwhile,
the trace plot in Figure 22.1b indicates that the MCMC sequence of samples are still wandering
around and haven’t yet settled: we need to run the model for a lot longer, despite parameter.1
looking OK. The burn-in period should therefore be even larger than 5000 iterations in this case.
We’ll see further examples in Section 22.3 of how to generate these plots and what to look out for.

Finally, note that it’s possible to set off more than one MCMC chain at a time. This is often a
very sensible idea as long as we specify different starting values for each chain. To see why this is
the case, imagine that the correct posterior is a multimodal distribution. We set off a single MCMC
algorithm, and after a while, the chain seems to reach equilibrium. It seems very stable, and we
think we’ve got a good handle on the posterior. Great! But what if the MCMC algorithm got ‘stuck’ in
one of the ‘humps’ of the true posterior distribution, and didn’t make it over to visit the other humps?
Our inference would be very wrong indeed about this parameter.

There are two broad ways we can try to avoid this problem. The first is to note that if we run the
MCMC algorithm for long enough, it will eventually visit all the nooks and crannies of the posterior
distribution. But how long is ‘long enough’ (how long is a piece of string)? Our trace plots may look
great, and still we haven’t explored the whole posterior distribution. To try to avoid this problem, a
common tactic is to run multiple chains each starting from a different initial value. If all the chains
start from different places, and all the chains seem to be pointing to roughly the same posterior
distribution by the time we stop the MCMC algorithm, then we should have more confidence that
we have explored the whole of the posterior rather than getting stuck in one part of it.

The idea of thinning a chain is also common. Because the MCMC process is based on a Markov
chain, successive values of the parameters show strong serial correlations, so successive values
typically give little extra information about the shape of the posterior distribution. Thinning a chain
involves taking every nth sample rather than using them all. This is often unnecessary, unless there
is evidence that our chain isn’t moving well around the posterior distribution (again, trace plots are
helpful).

22.1.6 Inference

Once we run our Bayesian analysis and we’re happy that the model has converged, we’ll want to
inspect the output and make inferences about the parameters of interest. One of the strengths of
the Bayesian approach is the ease of interpretation of the output.

The MCMC algorithm will have produced samples from the posterior distribution of each param-
eter of interest. From there we can

• get a feel for the shape of the posterior by plotting the samples for each parameter;

– a rudimentary way of doing this would be to create a histogram;
– software to run Bayesian analyses generally plot kernal densities instead (see Figure 22.3 for

a sneak preview).

• find summary statistics for each parameter of interest, say 𝜃;

– find the (estimated) mean of the posterior of a parameter, 𝜃, by computing the mean of the
samples for 𝜃;

– find an interval [l,u] so that with probability 0.95 the value of 𝜃 lies within it (and with probability
0.025 the value is less than l, and with probability 0.025 the value is greater than u).

The last example is a 95% credible interval for the parameter of interest. Notice how nice the
interpretation is: the value of the parameter lies within these bounds with probability 0.95.

�

� �

�

806 THE R BOOK

Compare this with a frequentist approach, and in particular, the idea of a confidence interval. A
(frequentist) confidence interval for a parameter tells us that, if we re-ran our data-collecting exercise
over and over again, computing a 95% confidence interval for the parameter each time, then 95%
of these 95% confidence intervals would contain the true value of the parameter. That is a far more
complicated interpretation, and possibly less useful, than a Bayesian credible interval.

22.1.7 The Pros and Cons of going Bayesian

The advantages of Bayesian analysis include the following:

• models can be as complex as necessary to describe the question in hand: we have complete
control over the structure of the model and the assumptions we make;

• the assumptions we make are transparent because we have to specify them all in our model;

• we can incorporate prior information about the parameters, which can help strengthen the evi-
dence we collect at the end of our analysis;

• we can combine information from multiple sources easily and in a coherent manner;

• interpretation of complex models is much more straightforward;

• we can carry out sequential analyses, where we continue to update our knowledge of parameters
as new data are collected.

However, a Bayesian analysis has a number of disadvantages:

• we need to know much more maths and statistics to do it competently;

• we have complete control over the model and assumptions, so we need to know what we’re
doing;

• the choice of priors can be both controversial and consequential, especially with small sample
sizes.

Does this mean that Bayesian analyses should not be trusted? Not at all. When we analyse our data,
be it by selecting a frequentist model or going Bayesian, we’re making decisions about the structure
and assumptions to be made. That’s an important point: often, we forget that all frequentist models
make assumptions because many of them are implicit. We shouldn’t be building a frequentist model
if we don’t believe the underlying assumptions it makes, no more than we should be building a
Bayesian model if the assumptions we specify are clearly nonsense.

With the addition of prior information, we do need to be careful. With sufficient data, the influence
of the priors won’t be too dramatic, and the information will come mostly from the data. If we do find
ourselves in the situation where a change of prior results in dramatic changes in the results, then
this tells us that we don’t have very much information in the data to start with. Back to the drawing
board, in that case.

22.2 Bayesian analysis in R

There is a huge amount of information and a great many computing resources for Bayesian anal-
ysis available on the CRAN website. This is summarised in the Bayesian Inference Task View

�

� �

�

BAYESIAN STATISTICS 807

(Park et al., 2021). The Task View subdivides the packages under five headings:

• Bayesian packages for general model fitting;

• Bayesian packages for specific models or methods;

• post-estimation tools;

• packages for learning Bayesian statistics;

• packages that link R to other sampling engines (like R2jags, R2WinBUGS, R2OpenBUGS).

Applied researchers interested in Bayesian statistics are increasingly attracted to R because of
the ease with which one can code algorithms to sample from posterior distributions as well as the
significant number of packages contributed to CRAN. In particular, there are several choices for
MCMC sampling. For many years, the most popular of these was WinBUGS (Spiegelhalter et al.,
2003), and this can still be run from R using the package R2WinBUGS (Sturtz et al., 2005). This
is not used here because WinBUGS does not run on a Mac, and the software is no longer being
developed. The final manifestation of WinBUGS, frozen at version 1.4.3, is still perfectly functional
on some operating systems.

Two other options are OpenBUGS (this replaced WinBUGS) and JAGS. We’ll illustrate this
chapter using JAGS. It is fairly straightforward to learn to use another package once we know one
of them.

22.2.1 Installing JAGS

JAGS stands for ‘Just Another Gibbs Sampler’ (Plummer, 2003). It is a program for analysis of
Bayesian hierarchical models using MCMC simulation. It is very like BUGS in spirit and language.

First, install JAGS. Do this by visiting http://mcmc-jags.sourceforge.net/. Click on ‘files page’
under Downloads, then ‘Download Latest Version’, then click on Download JAGS. Then run the
program and chose all the default options that are offered.

The next thing to do is install the R2jags package (Su and Yajima, 2020) that allows R to com-
municate with JAGS and vice versa. Inside R, while running R as administrator, install the package
in the usual way. Now, we are ready to start Bayesian modelling.

22.2.2 Running JAGS in R

The first thing to appreciate is that most of the hard work is done outside R. We have to use the
BUGS language to write down our model together with the priors. We don’t need anything fancy
here: a basic text editor will do and we’ll be saving our models as .txt files. Only now can we go
into R to start the modelling. This is the sequence of events:

• Write the model in a text editor, using BUGS language, and save it somewhere sensible.

• Use read.table () to enter the data into a dataframe in the usual way.

• (Optional) attach () the dataframe and make a list of the variable names that need to be
passed into the BUGS code. If we don’t do that, we will need to specify where the variables can
be found using the dollar sign.

• Choose the initial values of each parameter and each chain (or leave JAGS to choose them later
down the line).

http://mcmc-jags.sourceforge.net/

�

� �

�

808 THE R BOOK

• Load the R2jags package using library (R2jags).

• Run the JAGS model using the jags () function by specifying the name of the list of variables,
the initial conditions (optional), the path and name of the file where the BUGS code is to be found,
and the number of Markov chains to run (a popular choice is three).

With any luck the JAGS model will run, and its progress is indicated by a slowly moving horizontal
bar. Once the model has finished, we can inspect the parameter estimates and their uncertainty
measures, and create various plots.

22.2.3 Writing BUGS models

BUGS stands for ‘Bayesian inference Using Gibbs Sampling’ (Lunn et al., 2009). Information about
the history of BUGS can be found at the OpenBUGS website https://www.mrc-bsu.cam.ac.uk/
software/bugs/openbugs/.

The trick is to learn how to express a particular model in BUGS code. The code looks superficially
like R, but it is fundamentally different. We write it in a text editor (notepad or similar will do the trick,
or even directly in RStudio), and save it as a text file outside of R. The name of the file containing
the BUGS model is provided as an argument to the jags () function in R.

There are lots of clear examples of the way that different kinds of models are expressed in
BUGS code on the website for WinBUGS (Spiegelhalter et al., 2003) at https://www.mrc-bsu.cam
.ac.uk/software/bugs/the-bugs-project-the-bugs-book/bugs-book-examples/. It is worth spending
time browsing through these examples to find the one closest to the problem you are trying to
solve, then edit the code to tailor it to your specific requirements. Three examples are described in
detail below (a simple regression, a longitudinal study, and an experiment involving proportion data
with overdispersion).

Let us code up a couple of examples, starting with a simple model then using the slightly more
complex running example from Section 22.1.

BUGS model for Bernoulli data

Let us suppose we have 100 observations from a Bernoulli distribution with unknown probability
of success, theta. We want to learn about theta and set up a Bayesian model. We choose a
Beta(1,1) prior for theta (this is equivalent to a Uniform distribution over the interval [0,1]). We
can now write our BUGS model as follows.

model {
for (i in 1:100) {

x[i] ∼ dbern(theta)
}
theta ∼ dbeta(1,1)

}

We can think of the contents of model { } as describing the likelihood, while the remaining line
of code corresponds to the single prior.

Note that:

• all model files start with model{ ;

• we have 100 observations, here indexed by i, and we want to loop around these which we do
using for (i in 1:100){ ;

https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/
https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/
https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-the-bugs-book/bugs-book-examples/
https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-the-bugs-book/bugs-book-examples/

�

� �

�

BAYESIAN STATISTICS 809

• each of our 100 observations, x[1] through x[100], has the same distribution;

• the Bernoulli distribution is denoted dbern and similarly for the Beta distribution;

• we use a twiddles, ∼, to denote distribution, e.g. x[i] ∼ dbern(theta) denotes that the ran-
dom variable x[i] has a Bernoulli distribution with some parameter theta;

• notice that that we close the for (i in 1:100){ loop before we specify the prior on theta,
since theta does not depend on i;

• remember that we opened the BUGS code with model{ so we need to close this at the end
with a } .

BUGS code for a simple linear regression model

In Section 22.1, we considered a linear regression model. Suppose that we have 500 observations
of an outcome, (y1, … , y500), the associated covariate of interest, (x1, … , x500), and we wanted to
code for a model of the following format where the unknown parameters are a,b and 𝜎:

yi = a + bxi + 𝜖i

𝜖i ∼ N(0, 𝜎2)

For now, we are assuming normally distributed errors.
Another way of writing this, since a,b, x are considered constants, would be

yi ∼ N(a + bxi, 𝜎
2)

Or yet another way would be

yi ∼ N(𝜇i, 𝜎
2)

𝜇i = a + bxi

It is this latter format that’s required in BUGS code, and it is written as follows:

model {
for (i in 1:500) {
y[i] ∼ dnorm(mu[i], tau)
mu[i] <- a + b*x[i]

}
a ∼ dnorm(0, 0.01)
b ∼ dnorm(0, 0.01)
tau ∼ dunif(0.1, 100)

}

The model contains a mixture of deterministic and random elements. The deterministic components
are indicated by ‘<-’, for example

mu[i] <- a + b*x[i].

The random components are indicated by a tilde (∼), for example

y[i] ∼ dnorm(mu[i], tau)

�

� �

�

810 THE R BOOK

and similarly for the prior for the intercept

a ∼ dnorm(0, 0.01).

Notice here that BUGS code uses precision, rather than variance (precision is just the inverse of
the variance). So in our model above, tau is the precision, and we would need its reciprocal for the
variance. We choose here to set the prior on tau directly, but this isn’t mandatory. Many prefer to
set a prior on the standard deviation, then convert that information into the precision.

In Section 22.1, we assumed a t-distribution for the error term. How do we write the BUGS code
with this information? It’s simple, as shown below, though now we have an unknown degrees of
freedom parameter (in place of 𝜎). We place a gamma prior on the degrees of freedom, and a
uniform prior on the standard deviation which we then convert to a precision by inverting the square
of the standard deviation, pow(sigma, 2). The function pow raises the first argument to the power
given in the second argument.

model {
for (i in 1:500) {

y[i] ∼ dt(mu[i], tau, df)
mu[i] <- a + b*x[i]

}
a ∼ dnorm(0, 0.01)
b ∼ dnorm(0, 0.01)
tau <- 1/pow(sigma, 2)
sigma ∼ dunif(0.1, 100)
df ∼ dgamma(2, 0.1)

}

22.3 Examples

22.3.1 MCMC for a simple linear regression

In this example (analysed in detail as a linear model in Section 10.1.2, the response variable is
growth and the continuous explanatory variable is the concentration of tannin in the diet. We start
by reading the data into R:

growth_data<- read.table ("regression.txt", header = T)
head (growth_data)

growth tannin
1 12 0
2 10 1
3 8 2
4 11 3
5 6 4
6 7 5

Here is a reminder of the output of the simple linear regression for comparison with the JAGS output
in due course:

summary (lm (growth ~ tannin, data = growth_data))

Call:
lm(formula = growth ~ tannin, data = growth_data)

�

� �

�

BAYESIAN STATISTICS 811

Residuals:
Min 1Q Median 3Q Max

-2.4556 -0.8889 -0.2389 0.9778 2.8944

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.7556 1.0408 11.295 9.54e-06 ***
tannin -1.2167 0.2186 -5.565 0.000846 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.693 on 7 degrees of freedom
Multiple R-squared: 0.8157,Adjusted R-squared: 0.7893
F-statistic: 30.97 on 1 and 7 DF, p-value: 0.0008461

We’ll emulate the structure of this model this time, though note that this is not required: we can
choose whatever structure we want for the model. Also note that a Bayesian analysis requires prior
information on all parameters, which also differentiates this analysis from the frequentist version.

Outside R, write the BUGS model and save it as a text file. This is the part that is most difficult at
first. The model contains the information on the structure of the model and the nature of the priors.
We’ve opted for normal priors on the intercept and slope, centred at zero with a precision of 0.0001
(so a variance of 10 000). These priors are rather vague given the magnitude of the variance, but
they are not entirely uninformative. In an ideal world, we’d have a bit more information on these
parameters and could feed that into the priors.

We choose a Gamma distribution with parameters 0.001 and 0.001 for the precision of growth.
We also define sigma to be the standard deviation: doing this means that we can request results
on the standard deviation which might be easier to interpret than results on the precision. We could
repeat this analysis with different priors to assess how sensitive it is to these assumptions.

The resulting BUGS code is similar in spirit to the second example in Section 22.2.3. The code is
saved to a file called regressionbugs.txt in this example. This is what the model file looks like:

model {
for (i in 1:9) {
growth[i] ∼ dnorm(mu[i], tau)
mu[i] <- a + b * tannin[i]

}
a ∼ dnorm(0.0, 1.0E-4)
b ∼ dnorm(0.0, 1.0E-4)
tau ∼ dgamma(1.0E-3, 1.0E-3)
sigma <- 1/sqrt(tau)

}

Now go back into R. We need to open the library to connect our R session with the JAGS program:

library (R2jags)

We’ll be using the jags () function to run the analysis, and we’ll need to pass on several important
bits of information to it:

• where to find the data;

• initial values for the parameters (we can omit this, and let JAGS choose values);

�

� �

�

812 THE R BOOK

• a list of the unknown parameters that we want output for (it is not always the case that we’ll want
output for all our parameters: some of these may be ‘nuisance’ parameters that are not really of
interest);

• where to find the BUGS model code;

• the number of chains we want to simulate;

• the number of iterations per chain;

• the burn-in period (by default, the burn-in is half the number of iterations);

• any thinning required (by default, jags decides on the level of thinning by looking at the number
of iterations specified and the burn-in).

Run the jags () function to produce the model. Here we ask for three chains (with different starting
points), with 10 000 iterations each, and burning (ignoring) the first 1000 iterations per chain (or 3000
iterations in total). We choose not to thin the chain here, by specifying the thinning to be 1:

growth_mod1 <- jags (data = growth_data,
parameters.to.save = c ("a", "b", "tau"),
n.iter = 10000, n.burnin = 3000, n.thin = 1, n.chains = 3,
model.file = "regressionbugs.txt", progress.bar = "none")

Compiling model graph
Resolving undeclared variables
Allocating nodes

Graph information:
Observed stochastic nodes: 9
Unobserved stochastic nodes: 3
Total graph size: 45

Initializing model

We’ve opted for progress.bar = "none" here, but we can omit this to view real-time information
on the number of iterations completed.

Before inspecting the output, we should check that we’re happy that the chains have converged
and that our burn-in was sufficient. We can do that with the function traceplot (). Note that the
plots don’t show the iterations relegated to the burn-in period, so all we’re looking for here is that the
trace plots don’t provide evidence against the assumption that we’re simulating from the posterior.
Though this doesn’t guarantee that all is OK, there’s nothing in the trace plots of Figure 22.2 that
suggests otherwise.

col_trace <- hue_pal()(3)
traceplot (growth_mod1, ask = FALSE, varname = c ("a", "b", "tau"),

mfrow = c (2,2), col = col_trace)

Now, we can inspect the model output with a fair degree of confidence:

growth_mod1

Inference for Bugs model at "regressionbugs.txt", fit using jags,
3 chains, each with 10000 iterations (first 3000 discarded)

�

� �

�

BAYESIAN STATISTICS 813

5
10

15
20

a

Iteration

a

700 2100 3500 4900 6300

−
3

−
2

−
1

0
1

b

Iteration

b

700 2100 3500 4900 6300

0.
0

0.
5

1.
0

1.
5

tau

Iteration

ta
u

700 2100 3500 4900 6300

Figure 22.2 Trace plots for each parameter, checking for evidence of convergence issues.

n.sims = 21000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff

a 11.758 1.231 9.314 11.020 11.758 12.499 14.222 1.001 21000
b -1.217 0.258 -1.728 -1.373 -1.217 -1.062 -0.709 1.001 21000
tau 0.347 0.183 0.086 0.212 0.317 0.448 0.780 1.001 8000
deviance 36.339 2.926 33.029 34.217 35.580 37.654 44.113 1.001 21000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 4.3 and DIC = 40.6
DIC is an estimate of expected predictive error (lower deviance is better).

The parameter estimates are very close to those obtained by the linear model. The output suggests
for example that the posterior distribution for the intercept, a, has a mean of around 11.8 and the

�

� �

�

814 THE R BOOK

95% credible interval for this parameter is roughly (9.3,14.2). Remember that this has a nice inter-
pretation: there is a 0.95 probability that the true value of the intercept is within this interval. This is
not the same as the interpretation of a (frequentist) confidence interval for the intercept, and so the
two are not comparable.

There is also an additional parameter, deviance, which is computed from the likelihood. This is
useful for model comparison, and is described in more detail in Gelman et al., 2004.

We might want to see the shape of the posterior distribution for our three parameters. We
can estimate these using the coda package (Plummer et al., 2006) (need to load the lattice
package). As we are selecting particular parameters to plot (i.e. we’re not interested in plotting the
posterior of the deviance), we use growth_mod1$BUGSoutput$sims.matrix. This extracts
the BUGS output from the model, and then requests particular parameters from the matrix
that holds all samples for all parameters in the model. We might be interested in inspecting
growth_mod1$BUGSoutput$sims.matrix on its own, but be warned that it will have the same
number of rows as iterations.

library (coda)
library (lattice)
growth_mod1_mcmc <- as.mcmc (growth_mod1$BUGSoutput$sims.matrix

[,c ("a", "b", "tau")])
densityplot (growth_mod1_mcmc)

Connecting these plots to the output, and taking the parameter a as an example, we can see that
the mean of the posterior distribution in Figure 22.3 is around 11.7, while the 2.5th percentile of the
posterior is about 9.3 and the 97.5th percentile is around 14.2. In other words, the 95% credible
interval is (9.3,14.2).

D
en

si
ty

0.
0

0.
2

5 10 15 20

a

0.
0

1.
0

−3 −2 −1 0 1

b

0.
0

1.
0

2.
0

0.0 0.5 1.0 1.5

tau

Figure 22.3 Estimated posterior distribution for each of the three parameters of interest.

22.3.2 MCMC for longitudinal data

The root growth of 12 plants was measured over five time periods which were two weeks apart. Six
of these were allocated to receive fertiliser, while the other six didn’t. In Section 13.5.3, we settled
on a linear mixed-effect model for these data with time and fertiliser as fixed effects and a random
intercept for each plant considered. Here are the data once again.

�

� �

�

BAYESIAN STATISTICS 815

fertilizer_data <- read.table ("fertilizer.txt", header = T)
head (fertilizer_data)

root week plant fertiliser
1 1.3 2 ID1 added
2 3.5 4 ID1 added
3 7.0 6 ID1 added
4 8.1 8 ID1 added
5 10.0 10 ID1 added
6 2.0 2 ID2 added

We’ll develop a Bayesian version of the earlier (frequentist) hierarchical model, and the easiest
way of writing the BUGS model would be as follows. Priors have also been specified below. We
could probably do better here with a little thought, but for now we’ll stick to unimaginative normally
distributed priors for regression coefficients and gamma distributed priors for precisions.

model{
for(i in 1: 12) {
for(j in 1: 5) {

root[i, j] ∼ dnorm(mu[i, j], tau)
mu[i, j] <- alpha[i] + beta[i] * week[j] + gamma[i] * fertilizer[i]

}
alpha[i] ∼ dnorm(alpha.mu, alpha.tau)
beta[i] ∼ dnorm(beta.mu, beta.tau)
gamma[i] ∼ dnorm(gamma.mu, gamma.tau)

}
tau ∼ dgamma(0.001, 0.001)
alpha.mu ∼ dnorm(0, 0.001)
beta.mu ∼ dnorm(0, 0.001)
gamma.mu ∼ dnorm(0, 0.001)
alpha.tau ∼ dgamma(0.001, 0.001)
beta.tau ∼ dgamma(0.001, 0.001)
gamma.tau ∼ dgamma(0.001, 0.001)
sigma <- 1 / sqrt(tau)

}

Notice that the outcome (root) is indexed by [i, j]. Here, i notes the plant number, ranging from
1 to 12, while j tracks the timepoint, ranging from 1 to 5 (weeks 2 through 10). Helpfully, the data
have already been ordered, first by plant ID then by week then by fertiliser status.

For each plant at each timepoint, the root length is described by a Normal distribution with a mean
that depends on the plant and timepoint, and some common precision tau. This mean is a linear
combination of time and fertiliser, with the coefficients (alpha, beta, gamma) depending on the
plant.

Notice how we open two loops at the start (indexed by i and j), close the one relating to j before
specifying the priors on the regression coefficients (which depend on i and so must be within this
loop), then detailing the remaining priors which depend on neither i or j.

We save our model to a text file called bayeslme.txt. Here we choose to place priors on
the precisions, and also create a new parameter, sigma, the standard deviation of the Normal
distribution applied to the outcome. This means we can get output on the standard deviation, which
might be easier to digest than information on the precision.

�

� �

�

816 THE R BOOK

The issues in this example concern the shape of the data. Note from the BUGS code that the
response (root length) needs to be a matrix with the plants as the rows, not a single vector as root
is at present. Some minor restructuring is required, which leads to a matrix with rows corresponding
to plants, and columns corresponding to weeks:

root <- fertilizer_data$root
dim (root) <- c (5, 12)
root <- t (root)
root

[,1] [,2] [,3] [,4] [,5]
[1,] 1.3 3.5 7.00 8.1 10.0
[2,] 2.0 3.5 5.50 7.2 9.1
[3,] 1.7 3.2 5.80 7.5 9.4
[4,] 2.6 4.4 6.23 7.5 11.1
[5,] 1.1 4.4 5.20 7.1 8.8
[6,] 1.3 3.1 6.10 7.3 9.3
[7,] 1.7 2.6 4.70 6.3 8.8
[8,] 1.5 2.7 4.10 6.4 8.2
[9,] 1.2 2.1 4.10 5.9 8.2
[10,] 1.1 2.3 4.10 6.2 8.8
[11,] 1.2 2.4 4.10 5.6 8.3
[12,] 0.8 1.4 3.50 5.1 7.7

The explanatory variables, week and fertilizer, need to be vectors of length 5 and 12, respec-
tively (look at the code: week is indexed by j which runs from 1 to 5, and fertiliser is indexed
by i which runs from 1 to 12). We can simply code the week from 1 to 5, whereas for fertiliser,
the first six plants listed in the data set had fertiliser added and the rest did not. We can conveniently
code this as a binary vector, with 1 indicating fertiliser added:

week <- c (1:5)
fertilizer <- c (rep (1, 6) , rep (0, 6))

We need to provide jags () with the names of the variables containing the data so we define the
following:

fertilizer_data_jags <- list ("root", "week", "fertilizer")

Finally, we can run jags (), specifying three chains each with 100 000 iterations (this is probably
overkill) and a burn-in for each chain of 10 000 iterations. Again, we choose not to thin the iterations,
and notice that we only ask for some of the unknown parameters to be monitored. In this example,
there would otherwise be a total of 44 parameters which would take up too many pages here.

fert_mod1 <- jags (data = fertilizer_data_jags,
parameters.to.save = c ("tau", "alpha.mu", "alpha.tau",

"beta.mu", "beta.tau", "gamma.mu",
"gamma.tau", "sigma"),

model.file = "bayeslme.txt", n.chains = 3, n.iter = 100000,
n.burnin = 10000, n.thin = 1, progress.bar = "none")

�

� �

�

BAYESIAN STATISTICS 817

Compiling model graph
Resolving undeclared variables
Allocating nodes

Graph information:
Observed stochastic nodes: 60
Unobserved stochastic nodes: 43
Total graph size: 257

Initialising model

This may take a while to execute, but once done, we should consider whether there is any evidence
of not having reached convergence. We could ask for the full set of trace plots (there would be a
lot!), but we stick to just a few here.

col_trace <- hue_pal ()(3)
traceplot (fert_mod1, ask = FALSE,

varname = c ("tau", "alpha.mu", "alpha.tau", "beta.mu",
"beta.tau", "gamma.mu", "gamma.tau"),

mfrow = c (4,2), col = col_trace)

All seems in order in Figure 22.4. Notice how the parameters alpha.tau, beta.tau,
gamma.tau are bounded below by zero, creating a rather different looking trace plot to what can
be seen for the other parameters. This is because these are precisions and can’t be less than zero
and a zero (or close to zero) precision appears to be consistent with the data, model, and prior
combination. The same doesn’t happen for the other precision, tau, because the data, model, and
priors point to this parameter being quite different from zero. Now, we’re ready to investigate the
posterior estimates of the parameters:

fert_mod1

Inference for Bugs model at "bayeslme.txt", fit using jags,
3 chains, each with 1e+05 iterations (first 10000 discarded)
n.sims = 270000 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha.mu -1.184 0.213 -1.585 -1.315 -1.186 -1.055 -0.785 1.004 830
alpha.tau 193.408 389.452 4.154 16.794 49.888 184.806 1301.504 1.001 11000
beta.mu 1.874 0.055 1.770 1.840 1.875 1.909 1.979 1.006 2200
beta.tau 266.705 379.122 28.714 78.169 140.824 287.292 1339.548 1.001 4000
gamma.mu 1.171 0.265 0.638 1.009 1.173 1.339 1.678 1.003 1100
gamma.tau 204.191 402.915 2.307 14.851 52.010 202.408 1363.242 1.001 82000
sigma 0.489 0.056 0.398 0.451 0.485 0.521 0.606 1.001 88000
tau 4.328 0.922 2.724 3.677 4.259 4.906 6.322 1.001 88000
deviance 83.734 7.145 72.119 78.866 83.121 87.911 98.497 1.001 28000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 25.5 and DIC = 109.3
DIC is an estimate of expected predictive error (lower deviance is better).

�

� �

�

818 THE R BOOK

tau

alpha.tau

alpha.mu

beta.mu

gamma.mu

al
ph

a.
ta
u

beta.tau

9000 27000 45000
Iteration

0
0

60
00

be
ta

.ta
u

0 –1
1

3
0.

5
–2

2
1.

5

60
00

ga
m
m

a.
ta
u

ga
m
m

a.
m
u

be
ta

.m
u

al
ph

a.
m
u

0
40

00
4ta
u

8

63000 81000

9000 27000 45000
Iteration

63000 81000

gamma.tau

9000 27000 45000
Iteration

63000 81000

9000 27000 45000
Iteration

63000 81000

9000 27000 45000
Iteration

63000 81000

9000 27000 45000
Iteration

63000 81000

9000 27000 45000
Iteration

63000 81000

Figure 22.4 Trace plots for selected parameters, checking for evidence of convergence issues.

There seems to be some uncertainty in the values of the precision for alpha, beta and gamma,
which was also evident in the range of values we saw for these parameters in the trace plots. This
isn’t surprising: we have a small data set, a relatively complex model due to the hierarchical nature
of the data, and priors which contain little information. The consequence of this is that we haven’t
learnt a huge amount about the parameters of interest. We could attempt to remedy this by collecting
more data (this is often implausible), or thinking carefully about the information we provide via the
prior distributions in the hope that this would strengthen our inference, or alternative reconsider the
structure of the model we use.

22.4 MCMC for a model with binomial errors

We analysed data for the percentage germination of seeds from a factorial experiment involving
two genotypes of Orobanche and two extracts as a quasi-binomial model (i.e. including an overdis-
persion parameter) in Section 11.4.4. The response, count, is the number germinating out of an
initial sample of seeds (i.e. 10 germinated out of 39 seeds in the first case):

germ_data <- read.table ("germination.txt", header = T)
attach (germ_data)

�

� �

�

BAYESIAN STATISTICS 819

head (germ_data)

count sample Orobanche extract
1 10 39 a75 bean
2 23 62 a75 bean
3 23 81 a75 bean
4 26 51 a75 bean
5 17 39 a75 bean
6 5 6 a75 cucumber

Write the BUGS model and save it in a text file called bayesglm.txt:

model{
for(i in 1: 21) {
count[i] ∼ dbin(p[i], sample[i])
b[i] ∼ dnorm(0, tau)
logit(p[i]) <- alpha0 + alpha1 * Orobanche[i] + alpha2 * extract[i] +

alpha12 * Orobanche[i] * extract[i] + b[i]
}
alpha0 ∼ dnorm(0, 1.0E-6)
alpha1 ∼ dnorm(0, 1.0E-6)
alpha2 ∼ dnorm(0, 1.0E-6)
alpha12 ∼ dnorm(0, 1.0E-6)
tau ∼ dgamma(0.001, 0.001)
sigma <- 1 / sqrt(tau)

}

We define the number germinating, count, as binomially distributed with probability of success, p,
and the number of trials equal to the number of observations in each case, sample. We model the
logit of the proportion, p, as a linear combination of Orobanche and extract plus their interaction.
For the overdispersion, we define b[i] ∼ dnorm(0,tau).

In terms of priors, we use vague normal priors for the intercept, the two main effects and the
interaction term (alpha0, alpha1, alpha2 and alpha12), with tau selected from a Gamma
distribution. Such vague priors may be the result of genuine lack of information, or perhaps laziness.
With these types of priors, we should hope that the information in the data is sufficient to yield useful
inference.

The data we need to provide to the model are the following:

germ_data_jags <- list ("count", "sample", "Orobanche", "extract")

Now run the model:

germ_mod1 <- jags (data = germ_data_jags,
parameters.to.save = c ("alpha0", "alpha1", "alpha2",

"alpha12","tau"),
model.file = "bayesglm.txt", n.chains = 3, n.iter = 10000,
n.burnin = 3000, n.thin = 1, progress.bar = "none")

Compiling model graph
Resolving undeclared variables

�

� �

�

820 THE R BOOK

Allocating nodes
Graph information:

Observed stochastic nodes: 21
Unobserved stochastic nodes: 26
Total graph size: 166

Initialising model

col_trace <- hue_pal ()(3)
traceplot (germ_mod1, ask=FALSE,

varname = c ("alpha0", "alpha1", "alpha2", "alpha12", "tau"),
mfrow = c (3,2), col = col_trace)

All seems to be OK with the trace plots in Figure 22.5, though there considerable uncertainty in
the precision of the overdispersion component (to be expected, since there we have a very small

−
6

−
2

2
4

6

alpha0

Iteration

al
ph

a0

700 2100 3500 4900 6300

−
4

−
2

0
2

alpha1

Iteration

al
ph

a1

700 2100 3500 4900 6300

−
1

0
1

2
3

alpha12

Iteration

al
ph

a1
2

700 2100 3500 4900 6300

−
4

−
2

0
2

alpha2

Iteration

al
ph

a2

700 2100 3500 4900 6300

−
1

0
1

2
3

alpha12

Iteration

al
ph

a1
2

700 2100 3500 4900 6300

0
20

00
40

00

tau

Iteration

ta
u

700 2100 3500 4900 6300

Figure 22.5 Trace plots for selected parameters, checking for evidence of convergence issues.

�

� �

�

BAYESIAN STATISTICS 821

sample size). We can see this in the model estimates too. We could consider running the model for
more iterations, or improving the prior information to try to remedy this. Once we’re happy we can
inspect our model and make our conclusions. The model summary as described in the trace plots
in Figure 22.5 are given here.

germ_mod1

Inference for Bugs model at "bayesglm.txt", fit using jags,
3 chains, each with 10000 iterations (first 3000 discarded)
n.sims = 21000 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha0 -0.093 1.153 -2.409 -0.822 -0.081 0.645 2.173 1.001 21000
alpha1 -0.910 0.689 -2.278 -1.351 -0.915 -0.477 0.473 1.001 6600
alpha12 0.823 0.437 -0.035 0.547 0.816 1.094 1.711 1.001 21000
alpha2 -0.290 0.727 -1.749 -0.746 -0.285 0.178 1.143 1.001 21000
tau 52.326 178.330 2.918 7.239 13.013 28.974 399.775 1.008 420
deviance 101.969 6.858 90.161 96.878 101.414 106.658 116.043 1.005 570

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 23.4 and DIC = 125.4
DIC is an estimate of expected predictive error (lower deviance is better).

detach (germ_data)

References

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis (Second). Chapman &
Hall/CRC.

Juárez, M. A., & Steel, M. F. J. (2010). Non-Gaussian dynamic Bayesian modelling for panel data. Journal of
Applied Econometrics, 25(7), 1128–1154. https://doi.org/10.1002/jae.1113.

Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: evolution, critique and future
directions. Statistics in Medicine, 28(25), 3049–3067.

Park, J. H. P., Martin, A. D., & Quinn, K. M. (2021). CRAN task view: Bayesian inference [Version 2021-09-04].
http://cran.r-project.org/web/views/Bayesian.html.

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling.
Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence diagnosis and output analysis for

MCMC. R News, 6(1), 7–11. https://journal.r-project.org/archive/.
Spiegelhalter, D., Thomas, A., Best, N., Lunn, D., & MRC Biostatistics Unit (2003). WinBUGS user manual

(Version 1.4).
Sturtz, S., Ligges, U., & Gelman, A. (2005).R2WinBUGS: A package for running winBUGS from R. Journal of

Statistical Software, 12(3), 1–16. http://www.jstatsoft.org.
Su, Y.-S., & Yajima, M. (2020). R2jags: Using R to run ‘JAGS’ [R package version 0.6-1]. https://CRAN.R-

project.org/package=R2jags.

http://cran.r-project.org/web/views/Bayesian.html
https://journal.r-project.org/archive/
http://www.jstatsoft.org
https://CRAN.R-project.org/package=R2jags
https://CRAN.R-project.org/package=R2jags
https://doi.org/10.1002/jae.1113

�

� �

�

�

� �

�

23
Simulation Models

Simulation modelling is an enormous topic, and all we will do here is to demonstrate a few very sim-
ple temporal and spatial simulation techniques that give the flavour of what is possible in R, which
has very powerful simulation capabilities. Simulation models are typically used for investigating
dynamics in time, in space, or in both space and time together.

23.1 Temporal dynamics

For temporal dynamics, we might be interested in:

• the transient dynamics (the behaviour after the start but before equilibrium is attained – if indeed
equilibrium is ever attained);

• equilibrium behaviour (after the transients have damped away);

• chaos (random-looking, but actually deterministic temporal dynamics that are extremely sensitive
to initial conditions).

23.1.1 Chaotic dynamics in population size

Biological populations typically increase exponentially when they are small, but individuals perform
less well as population density rises, because of competition, predation, or disease. In aggregate,
these effects on birth and death rates are called density-dependent processes, and it is the nature
of the density-dependent processes that determine the temporal pattern of population dynamics.
The simplest density-dependent model of population dynamics is known as the quadratic map. It
is a first-order non-linear difference equation:

N(t + 1) = 𝜆N(t)[1 − N(t)],

where N(t) is the population size at time t and the single parameter, 𝜆, is known as the per-capita
multiplication rate. The population can only increase when the population is small if 𝜆 > 1, the
so-called invasion criterion. But how does the system behave as 𝜆 increases above 1?

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

http://www.wiley.com/go/jones/therbook3e

�

� �

�

824 THE R BOOK

We begin by simulating time series of populations for different values of 𝜆 and plotting them to
see what happens. We create a function that plots the output for times in [1,n], with a starting value
of x1 and any value of 𝜆:

quad_fn <- function (x1, lambda, n) {
x <- numeric (n)
x[1] <- x1
for (t in 2:n) {

x[t] <- lambda * x[t - 1] * (1 - x[t - 1])
}
plot (1:n, x, type = "l", ylim = c (0, 1),

xlab = "time", ylab = "population",
main = substitute (paste (lambda, " = ", a), list (a = lambda)),
cex.main = 2, col = hue_pal ()(100)[sample (1:100, 1)])

}

Note the use of substitute (paste ()) to combine text, a Greek letter and the value of a
variable in the heading. Figure 23.1 shows the output for 𝜆 = 2,3.3,3.5,4:

par (mfrow = c (2, 2))
quad_fn (0.6, 2, 40)
quad_fn (0.6, 3.3, 40)
quad_fn (0.6, 3.5, 40)
quad_fn (0.6, 4, 40)

par (mfrow = c (1, 1))

0 10 20 30 40

0.
0

0.
4

0.
8

λ = 2 λ = 3.3

λ = 3.5 λ = 4

Time

P
op

ul
at

io
n

0 10 20 30 40

0.
0

0.
4

0.
8

Time

P
op

ul
at

io
n

0 10 20 30 40

0.
0

0.
4

0.
8

Time

P
op

ul
at

io
n

0 10 20 30 40

0.
0

0.
4

0.
8

Time

P
op

ul
at

io
n

Figure 23.1 Quadratic maps.

�

� �

�

SIMULATION MODELS 825

For 𝜆 = 2, the population falls very quickly from its initial value (0.6) to equilibrium (0.5) and stays
there; this system has a stable point equilibrium. For 𝜆 = 3.3, the dynamics show persistent two
point cycles. For 𝜆 = 3.5, we have four point cycles. Finally, for 𝜆 = 4, this looks interesting. The
dynamics do not repeat in any easily described pattern. They are said to be chaotic because the
pattern shows extreme sensitivity to initial conditions: tiny changes in initial conditions can have
huge consequences on numbers at a given time in the future.

23.1.2 Investigating the route to chaos

We have seen four snapshots of the relationship between 𝜆 and population dynamics. To investigate
this more fully, we can write a function to describe the dynamics as a function of 𝜆, and extract a
set of (say, 20) sequential population densities, after any transients have died away, in the range
[n1,n2]. Here is the function, which is an updated version of that seen in the previous section:

chaos_fn <- function (x1, lambda, n1, n2) {
x <- numeric (n2)
x[1] <- x1
for (t in 2:n2) {
x[t] <- lambda * x[t - 1] * (1 - x[t - 1])

}
x[n1:n2]

}

Although we need to calculate all values of the sequence up to index n2, we only output those in the
specified interval. We will now run this function for a range of values between two and four, looking
at outputs in [380,400] and plot the resulting values, as in Figure 23.2:

plot (c (2, 4), c (0, 1), type = "n", xlab = substitute (paste (lambda)),
ylab = "population")

for (i in seq (2, 4, 0.01)) {

2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

P
op

ul
at

io
n

Figure 23.2 The quadratic map and chaos.

�

� �

�

826 THE R BOOK

outs <- chaos_fn (0.6, i, 380, 400)
points (rep (i, length (outs)), outs, col = hue_pal ()(201)[i * 100 - 199])

}

What is interesting is the boundary of the apparently unpredictable area, the edge of chaos: what
values for the settings determine whether we are in a relatively predictable situation or whether we
cannot foresee what might occur. More details can be found, for instance, in May, 1976.

23.2 Spatial simulation models

For spatial dynamics, we might use simulation models to study:

• meta-population dynamics (where local extinction and re-colonisation of patches characterise the
long-term behaviour, with constant turnover of occupied patches);

• neighbour relations (in spatially explicit systems where the performance of individuals is deter-
mined by the identity and attributes of their immediate neighbours);

• pattern generation (dynamic processes that lead to the generation of emergent, but more or less
coherent patterns).

We will examine examples of all three.

23.2.1 Meta-population dynamics

The theory is very simple. The world is divided up into many patches, all of which are potentially
habitable. Populations on inhabited patches go extinct with a density-independent probability, e.
Occupied patches all contain the same population density and produce migrants (propagules)
at a rate m per patch. Empty patches are colonised at a rate proportional to the total density of
propagules and the availability of empty patches that are suitable for colonisation. The response
variable is the proportion of patches that are occupied, p. The dynamics of p, therefore, are just
gains minus losses, so

dp
dt

= p(1 − p)m − ep.

At equilibrium, dp
dt

= 0, and so
p(1 − p)m = ep,

giving the equilibrium proportion of occupied patches, p∗, as

p∗ = 1 − e
m
.

This draws attention to a critical result: there is a threshold migration rate (m = e) below which
the meta-population cannot persist, and the proportion of occupied patches will drift inexorably
to zero. Above this threshold, the meta-population persists in dynamic equilibrium with patches
continually going extinct (the mean lifetime of a patch is 1∕e) and other patches becoming colonised
by immigrant propagules. This model is due to Levins, 1969.

�

� �

�

SIMULATION MODELS 827

The simulation produces a moving cartoon of the occupied and empty patches. We begin by
setting the parameter values which will ensure that the simulation keeps going:

m <- 0.15
e <- 0.1

We create a square universe of 10 000 patches in a 100 × 100 array, but this is not a spatially
explicit model, and so the map-like aspects of the image should be ignored. The response variable
is just the proportion of all patches that are occupied. Here are the initial conditions, placing 100 (or
nearly) occupied patches at random in a sea of unoccupied patches:

s <- (1 - e)
N <- matrix (rep (0, 10000), nrow = 100)
xs <- sample (1:100, replace = T)
ys <- sample (1:100, replace = T)
for (i in 1:100){

N[xs[i],ys[i]] <- 1
}
image (1:100, 1:100, N)
box (col = "black")

We have used the image () function, to give Figure 23.3, with its default colours, as it plots exactly
what we require.

We want the simulation to run over 1000 generations. We have broken the loop into segments in
order to understand the detail of what is going on:

for (t in 1:1000) {

First, we model the survival (or otherwise) of occupied patches. Each cell of the universe gets
an independent random number from a uniform distribution (a real number between 0 and 1). If
the random number is bigger than or equal to the survival rate s (= 1 − e, above), then the patch

Figure 23.3 Initial meta-population plot.

�

� �

�

828 THE R BOOK

survives for another generation. If the random number is greater than s, then the patch goes extinct
and the corresponding value in the matrix N is set to zero:

S <- matrix (runif (10000), nrow = 100)
N <- N * (S < s)

Note that this one statement updates the whole matrix of 10 000 patches. Next, we work out the
production of propagules, im, by the surviving patches (the rate per patch is m):

im <- floor (sum (N * m))

We assume that the settlement of the propagules is random, some falling in empty patches, but
others being wasted by falling in already occupied patches:

placed <- matrix (sample (c (rep (1, im), rep (0, 10000 - im))), nrow = 100)
N <- N + placed

N <- apply (N, 2, function(x) ifelse (x > 1, 1, x))

The last line is necessary to keep the values of N as just 0 (empty) or 1 (occupied) because our
algorithm gives N = 2 when a propagule falls in an occupied patch. Now, we can draw the map of
the occupied patches at each iteration (or just at the end by moving the image () and box ()
lines after }):

image (1:100, 1:100, N)
box (col = "black")

}

Because the migration rate (m = 0.15) exceeds the extinction rate (e = 0.1), the meta-population
is predicted to persist. The analytical solution for the long-term proportion of patches occupied is
one-third of patches (1 − 0.1∕0.15). If we run our simulation for 1000 iterations, showing the loop in
one code chunk, then we arrive at Figure 23.4:

for (t in 1:1000) {
S <- matrix (runif (10000), nrow = 100)
N <- N * (S < s)
im <- floor (sum (N * m))
placed <- matrix (sample (c (rep (1, im), rep (0, 10000 - im))), nrow = 100)
N <- N + placed
N <- apply (N, 2, function(x) ifelse (x > 1, 1, x))

}
image (1:100, 1:100, N)
box (col = "black")

We can work out the actual proportion occupancy as follows:

sum (N) / length (N)

[1] 0.2934

�

� �

�

SIMULATION MODELS 829

Figure 23.4 Meta-population plot after 1000 iterations.

There were 2934 occupied patches in this map by the time we stopped. Remember that a
meta-population model is not spatially explicit, so we should not read anything into any of the
apparent neighbour relations in this plot (the occupied patches should be distributed at random
over the surface: randomness is not uniform).

23.2.2 Coexistence resulting from spatially explicit (local) density dependence

We have two species which would not coexist in a well-mixed environment because the fecundity
of species A is greater than the fecundity of species B, and this would lead, sooner or later, to the
competitive exclusion of species B and the persistence of a monoculture of species A. The idea is
to see whether the introduction of local neighbourhood density dependence is sufficient to prevent
competitive exclusion and allow long-term coexistence of the two species.

The kind of mechanism that might allow such an outcome is the build-up of specialist natural
enemies such as insect herbivores or fungal pathogens in the vicinity of groups of adults of species
A, that might prevent recruitment by species A when there were more than a threshold number, say
T, of individuals of species A in a neighbourhood.

The problem with spatially explicit models is that we have to model what happens at the edges
of the universe. All locations need to have the same numbers of neighbours in the model, but
patches on the edge have fewer neighbours than those in the middle. The simplest solution is to
model the universe as having wrap-around margins in which the left-hand edge is assumed to have
the right-hand edge as its left-hand neighbour (and vice versa), while the top edge is assumed to
have the bottom edge as its neighbour above (and vice versa). The four corners of the universe
are assumed to be reciprocal diagonal neighbours: this results in a torus rather than the initial
rectangle.

We need to define who is a neighbour of whom. The simplest method, adopted here, is to assume
a square grid in which a central cell has eight neighbours – three above, three below, and one to
either side, as in Figure 23.5:

plot (c (0, 1), c (0, 1),xaxt = "n", yaxt = "n",
type = "n", xlab = "", ylab = "")

abline (v = c (1 / 3, 2 / 3))
abline (h = c (1 / 3, 2 / 3))
text (x = rep (c (1 / 6, 3 / 6, 5 / 6), 3)[-5],

�

� �

�

830 THE R BOOK

1 2 3

4 5

6 7 8

Target cell

Figure 23.5 Target cell and immediate neighbours.

y = rep (c (5 / 6, 3 / 6, 1 / 6), each = 3)[-5],
labels = (1:9)[-9])

text (3 / 6, 3 / 6, "target cell")

Note how we create text that would put the numbers 1–9 in all cells, but then omit the middle item.
This produces a plot showing a target cell in the centre of a matrix, and the numbers in the other
cells indicate its first-order neighbours.

We need to write a function to define the margins for cells on the top, bottom, and edge of our
universe, N, and which determines all the neighbours of the four corner cells. Our universe is 100 ×
100 cells and so the matrix containing all the neighbours will need to be 102 × 102. Note the use of
subscripts:

margins <- function (N) {
edges <- matrix (rep (0, 10404), nrow = 102)
edges[2:101, 2:101] <- N
edges[1, 2:101] <- N[100,]
edges[102, 2:101] <- N[1,]
edges[2:101, 1] <- N[,100]
edges[2:101, 102] <- N[,1]
edges[1, 1] <- N[100, 100]
edges[102, 102] <- N[1, 1]
edges[1, 102] <- N[100, 1]
edges[102, 1] <- N[1, 100]
edges

}

Next, we need to write a function to count the number of species A in the eight neighbouring cells,
for any cell [i, j] in our matrix or universe X:

nhood <- function (X, i, j) {
sum (X[(i - 1):(i + 1), (j - 1):(j + 1)] == 1)

}

�

� �

�

SIMULATION MODELS 831

Figure 23.6 Initial coexistence plot.

Now, we can set the parameter values: the reproductive rates of species A and B, the death (d) and
survival (s) rates of adults (which determine the space freed up for recruitment) and the threshold
number (T) of species A (out of the eight neighbours) above which recruitment cannot occur:

RA <- 3
RB <- 2.0
d <- 0.25
s <- (1 - d)
T <- 6

Our initial conditions fill one half of the universe with species A and the other half with species B,
giving Figure 23.6:

N <- matrix (c (rep (1, 5000), rep(2, 5000)), nrow = 100)
image (1:100, 1:100, N)
box (col = "black")

We run the simulation for 1000 time steps, again breaking the loop down into comprehensible
chunks:

for (t in 1:1000) {

First, we need to see if the occupant of a cell survives or dies. For this, we compare a uniformly
distributed random number between 0 and 1 with the specified survival rates = s = 1 − d. If the
random number is less than s the occupant survives, otherwise, it dies:

S <- 1 * (matrix (runif (10000), nrow = 100) < s)

The 1 * translates TRUEs and FALSEs into 1s and 0s. We kill the necessary number of cells to
open up space for recruitment:

N <- N * S
space <- 10000 - sum (S)

�

� �

�

832 THE R BOOK

We would expect space to be roughly equal to d × 10 000. Next, we need to compute the neigh-
bourhood density of A for every cell (using the wrap-around margins), tots:

nt <- margins (N)
tots <- matrix (rep (0, 10000), nrow = 100)
for (a in 2:101) {

for (b in 2:101) {
tots[a - 1, b - 1] <- nhood (nt, a, b)

}
}

The survivors produce seeds, in proportions fA and fB, as follows:

seedsA <- sum (N == 1) * RA
seedsB <- sum (N == 2) * RB
all_seeds <- seedsA + seedsB
fA <- seedsA / all_seeds
fB <- 1 - fA

Seeds settle over the universe at random:

setA <- ceiling (10000 * fA)
placed <- matrix (sample (c (rep (1, setA),

rep (2, 10000 - setA))),
nrow = 100)

Seeds only produce recruits in empty cells, i.e. if N[i,j] == 0. If the occupant of an empty cell
(placed) is species B, then species B gets that cell. If species A is supposed to occupy a cell, then
we need to check that it has fewer than T neighbours of species A. If so, species A gets the cell. If
not, the cell is forfeited to species B.

for (i in 1:100) {
for(j in 1:100) {
if (N[i,j] == 0) {

if (placed[i,j] == 2) {
N[i,j] <- 2

} else {
if (tots[i,j] >= T) {

N[i,j] <- 2
} else {

N[i,j] <- 1
}

}
}

}
}

�

� �

�

SIMULATION MODELS 833

Figure 23.7 Coexistence plot after 1000 iterations.

Finally, we can draw the map, showing species A in the darker colour:

image (1:100, 1:100, N)
box (col = "black")

}

We can watch as the initial half-and-half pattern breaks down, and species A increases in frequency
at the expense of species B. Eventually, however, species A gets to the point where most of the
cells have six or more neighbouring cells containing species A, and its recruitment begins to fail.
At equilibrium, species B persists in isolated cells or in small lighter-coloured patches, where the
neighbouring cells have six or more occupants that belong to species A. Figure 23.7 shows the result
for the parameters listed above. If we set the threshold T = 9 (i.e. there is no limit to A’s neighbours
of its own species), species A drives species B to extinction. Here is the whole loop in one go:

for (t in 1:1000) {
S <- 1 * (matrix (runif (10000), nrow = 100) < s)
N <- N * S
space <- 10000 - sum (S)
nt <- margins (N)
tots <- matrix (rep (0, 10000), nrow = 100)
for (a in 2:101) {
for (b in 2:101) {

tots[a - 1, b - 1] <- nhood (nt, a, b)
}

}
seedsA <- sum (N == 1) * RA
seedsB <- sum (N == 2) * RB
all_seeds <- seedsA + seedsB
fA <- seedsA / all_seeds
fB <- 1 - fA
setA <- ceiling (10000 * fA)
placed <- matrix (sample (c (rep (1, setA),

rep (2, 10000 - setA))),

�

� �

�

834 THE R BOOK

nrow = 100)
for (i in 1:100) {

for(j in 1:100) {
if (N[i,j] == 0) {

if (placed[i,j] == 2) {
N[i,j] <- 2

} else {
if (tots[i,j] >= T) {

N[i,j] <- 2
} else {

N[i,j] <- 1
}

}
}

}
}

}
image (1:100, 1:100, N)
box (col = "black")

23.2.3 Pattern generation resulting from dynamic interactions

In this section, we look at an example of an ecological interaction between a species and its parasite.
The interaction is unstable in a non-spatial model, with increasing oscillations in numbers leading
quickly to extinction of the host species and then, in the next generation, its parasite. The non-spatial
dynamics look like this Figure 23.8. The parasite increases in generation number 1 and drives the
host to extinction in generation 2, subsequently going extinct itself in generation 3. The challenge is
to see if making the interaction spatially explicit can promote coexistence, and if so, through what
pattern of spatial and temporal dynamics.

In a spatial model, we allow that hosts and parasites can move from the location in which
they were born to any one of the eight first-order neighbouring cells (Figure 23.5). For the

0 2 4 6 8 10

0
50

10
0

15
0

20
0

Generation

P
op

ul
at

io
n

Host
Parasite

Figure 23.8 Non-spatial dynamics of a species and its parasite.

�

� �

�

SIMULATION MODELS 835

purposes of dispersal, the universe is assumed to have wrap-around margins for both species (see
Section 23.2.2). The interaction is interesting because it is capable of producing beautiful spatial
patterns that fluctuate with host and parasite abundance. We begin by setting the parameter values
for the dynamics of the host (r) and the parasite (a) and the migration rates of the host (Hmr) and
parasite (Pmr). In this case, the hosts are relatively sedentary, and the parasites are highly mobile:

r <- 0.4
a <- 0.1
Hmr <- 0.1
Pmr <- 0.9

Next, we set up the 100 × 100 matrices of host (N) and parasite (P) abundance. These will form
what is termed a coupled map lattice:

N <- matrix (rep (0, 10000), nrow = 100)
P <- matrix (rep (0, 10000), nrow = 100)

The simulation is seeded by introducing 200 hosts and 100 parasites into a single cell at location
[33,33]:

N[33,33] <- 200
P[33,33] <- 100

We need to define a function called host () to calculate the next host population as a function of
current numbers of hosts (N) and parasites and (P), and a similar function called parasite ():
this gives us a Nicholson–Bailey model:

host <- function (N, P) {
N * exp (r - a * P)

}
parasite <- function (N,P) {

N * (1 - exp (- a * P))
}

We then need a function to define the wrap-around margins for defining the destinations of migrants
from each cell and a function to count the number of neighbouring individuals, as discussed in
Section 23.2.2:

margins <- function (N) {
edges <- matrix (rep (0, 10404), nrow = 102)
edges[2:101, 2:101] <- N
edges[1, 2:101] <- N[100,]
edges[102, 2:101] <- N[1,]
edges[2:101, 1] <- N[,100]
edges[2:101, 102] <- N[,1]
edges[1, 1] <- N[100, 100]
edges[102, 102] <- N[1, 1]
edges[1, 102] <- N[100, 1]

�

� �

�

836 THE R BOOK

edges[102, 1] <- N[1, 100]
edges

}
nhood <- function (X, i, j) {
sum (X[(i - 1):(i + 1), (j - 1):(j + 1)])

}

We also need a function to count the number of migrants of either sort arriving in any cell:

migration <- function (edges) {
migs <- matrix (rep (0, 10000), nrow = 100)
for (a in 2:101) {

for (b in 2:101) {
migs[a - 1, b - 1] <- nhood (edges, a, b)

}
}
migs

}

Finally, we run the simulation for 600 generations. We will only plot the final status, but by taking
the image () lines into the loop, we can watch the balance of host and parasite evolve: the initial
introduction at [33,33] spreads out and both host and parasite populations pulse in abundance.
Eventually, the wave of migration reaches the margin and appears on the right-hand edge. The fun
starts when the two waves meet one another. The result is shown in Figure 23.9.

for (t in 1:600) {
he <- margins (N)
pe <- margins (P)
Hmigs <- migration (he)
Pmigs <- migration (pe)
N <- N - Hmr * N + Hmr * Hmigs / 9
P <- P - Pmr * P + Pmr * Pmigs / 9
Ni <- host (N,P)

Figure 23.9 Non-spatial dynamics of a species and its parasite.

�

� �

�

SIMULATION MODELS 837

P <- parasite (N,P)
N <- Ni

}
image (1:100, 1:100, N)
box (col = "black")

23.3 Temporal and spatial dynamics: random walk

The spatial models that we saw in Section 23.2 also involved time, but the emphasis was primarily
spatial. We will now demonstrate the classic probabilistic example of a random walk in two dimen-
sions. The idea is to follow an individual as it staggers its way around a two-dimensional surface,
starting at the point [50,50] and leaving a trail of lines on a square island which scales from 0 to
100. First, we need to define what we mean by our random walk. Suppose that in the x direction
the individual could move one step to the left in a given time period, stay exactly where it is for the
whole time period, or move one step to the right. We need to specify the probabilities of these three
outcomes. Likewise, in the y direction the individual could move one step up in a given time period,
stay exactly where it is for the whole time period, or move one step down. Again, we need to specify
probabilities. In R, the three movement options are c (1, 0, -1) for each of the types of motion
(left, stay or right, and up, stay or down), and we might as well say that each of the three motions is
equally likely. We need to select one of the three motions at random independently for the x and y
directions at each time period. In R, we use the sample () function for this:

sample (c (1, 0, -1), 1)

[1] 0

which selects one value (the last argument) with equal probability from the three listed options. Out
of 99 repeats of this procedure, we should expect an average of 33 ups and 33 downs, 33 lefts
and 33 rights. We simulate a walk of 10 000 steps (each time we run this it will differ) resulting in
Figure 23.10

plot (0:100, 0:100, type = "n", xlab = "", ylab = "")
x <- integer (10001)
y <- integer (10001)
x[1] <- 50
y[1] <- 50
points (x[1], y[1], col = hue_pal ()(2)[1])
for (i in 1:10000) {

x[i + 1] <- x[i] + sample (c (1, 0, -1), 1)
y[i + 1] <- y[i] + sample (c (1, 0, -1), 1)
if (x[i + 1] > 100 | x[i + 1] < 0 | y[i + 1] > 100 | y[i + 1] < 0) {
x <- x[1:i]
y <- y[1:i]
break

}
}
lines (x, y, col = hue_pal ()(2)[2])

�

� �

�

838 THE R BOOK

Figure 23.10 Random walk of up to 10 000 steps.

Our walker falls into the water and stops walking once he reaches the edge of the island. We
could make the walk more sophisticated by providing wrap-around margins (see Section 23.2.2).
On average, of course, the random walk should stay in the middle, where it started, but as we will
see by running this model repeatedly, most random walkers do nothing of the sort. Instead, the
average hides interesting activity: they usually wander off and drown.

References

Levins, R. (1969). Some demographic and genetic consequences of environmental heterogeneity for biological
control. Bulletin of the Entomological Society of America, 15, 237–240.

May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261, 459–467.

�

� �

�

Index

Text in typewriter font denotes R functions or packages / libraries. The latter are all listed under the ‘package’ entry
and where appropriate under specific functions or other entries. All datasets are listed under the heading ‘datasets’. Page
references in bold give the definition of a term or the first major usage of a function.

Symbols
α 435
β 435
Γ function 43
π 60
! 67
“ “ 147
191
$ 14, 62, 65, 140
%% 61
%*% 32
%/% 61
%in% 163
& 67, 230
&& 67
: 75
[] 87
[[]] 139
∧ 60
<- 62, 64
== 229
| 67, 231
|| 67

Subject Index

A
abline 176, 266, 268–269, 343–344, 475,

769
absolute values 61, 101
adjusted R2 460
aggregate 99
AIC see Akaike’s Information Criterion

The R Book, Third Edition. Elinor Jones, Simon Harden and Michael J. Crawley.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/jones/therbook3e

Akaike’s Information Criterion 471, 473, 503, 514, 520,
526

allometric relationships 21
analysis of variance see linear regression

multivariate 743
apply 114–115, 117

matrices 119–120
apropos 11–12
arcsin 20
asin 20

argument 181, 193
default 193
lazy evaluation 195
supplied 193

arithmetic operators
table of 62

array 109
dimensions 109
reordering dimensions 123

association plot 430
asymptotic

function 25
result 47

attach and detach 14, 97
when to use 178
with 179

B
bar chart 255, 263, 275

error bars 276
grouped 277
stacked 277
x-axis values 668, 694

http://www.wiley.com/go/jones/therbook3e

�

� �

�

840 INDEX

Bayesian analysis 799
Bayes’s theorem 802
BUGS code 808–810, 811, 815, 819
burn-in period 803, 804
chains 803, 805
concepts 799
conjugate prior 802
convergence 804, 812, 817
credible interval 805–806, 814
densityplot 814
frequentist, comparison with 799, 800, 806
Gibbs sampling 803
interpretation of output 805
iterations 802, 803, 804
JAGS 807
jags 808, 811, 812, 816, 819
likelihood 800
Markov chain Monte Carlo 802, 803
Metropolis-Hastings algorithm 803
model choice 800
model file 807, 808–809, 811, 815
OpenBUGS 807
posterior distribution 799, 800, 802, 803
precision 810
prior distribution 799, 800, 801
reshaping data 816
subjectivity 801
thinning 805
traceplot 812, 817
trace plot 804
vague priors 801–802
WinBUGS 807

biexponential function 28
first order compartment model 28

bootstrapping
generalised linear models 570
tests and CIs 431

boxplot 261
by group 272
notches 273
unusual values 262

bubble plot see scatterplot

C
c see vector
CART see classification and regression trees
cat 197, 200
categorical data 64
central limit theorem 46, 402, 419, 432
chaos 137, 825

edge of chaos 826
quadratic map 137

circle plot 797
classification and regression trees

best key 773
classes 764
classification trees 761, 771

leaves 764
linear regression 767
model simplification (pruning) 769
partitioning 774
recursive partitioning 763
regression trees 761
replicated data 773
split criterion 764
summary 774
training set 769

CLT see central limit theorem
cluster analysis 751

centroids 751
hierarchical 751, 754
k-means 751

cobweb plot 743
coercion see objects
colour palette
brewer.pal (in package RcolorBrewer) 302
cm.colors 298
heat.colors 297
hue_pal (in package scales) 253
rainbow 298
rgb 298
terrain.colors 298
topo.colors 298

comma delimited files 208, 312
commenting code 191
comparing non-numeric objects 70
all.equal 70

comparing numbers 69
all.equal 69
catastrophic cancellation error 69
floating point arithmetic 69
identical 70

complex conjugate 58
modulus 57

complex numbers 57
confidence interval 408

general approach 405
interpretation 409

console 5
contingency tables see also table 359, 427

expected values 428
observed counts 359, 428
Pearson residuals 429

contrasts 675
coefficients 678
example 679
Helmert 688, 697
levels 685
means 682
model simplification 684
ordered levels 693
orthogonal 677
polynomial 691
a posteriori 675
a priori 675

�

� �

�

INDEX 841

standard error of mean 683
sum 689, 698
sum of squares 677
treatment (default) 688, 697

coplot 594
shingles 595

correlation 94, 407, 742, 796
autocorrelation 718, 731, 732
collinearity 481
designed experiments 676, 677
linear regression 466, 467
meta-analysis 706
mixed effects models 489, 610
plot 742
serial correlation 478, 677

cos 19
cosine wave 20

covariance 391
matrix 391

CRAN 4, 7, 9, 10
cumprod 94, 131
cumsum 94
cumulative distribution function 415, 783
curve 293
cut 565, 791

D
dataframe 208, 216

adding a column or row 242, 245
column or field or variable 208
converting to table 370
converting to vector 238
creating from vectors 236
dates and times 239
deleting duplicate rows 239
header 208
linking 241
merging 243
missing values 232
preparing data for import 216
row names 235
row or field 208
sampling rows randomly 222
selecting rows or columns 229
sorting 223
subscripts 220
subset 176
summarising 247
$ 222
[,] 220

datasets
anscombe 347
bacteria 179, 622
barley 290
bioassay 545
blowfly 717
box 307

cancer 650, 654
car.test.frame 767
cases 424
caterpillar 262, 440, 444–445, 491
cells 511
chicks 643
competition 191, 196, 679
compexpt 274
cost_profit 478
daphnia 65, 256, 260, 261, 285, 327, 362, 364, 367
dates 165
disease 360, 361
epilobium 771
esoph 550
ethanol 290, 592, 775
exams 407
farms 607
fertilizer 286, 328, 815
fltimes 243
flowering 556
Gain 454, 492
gales 336, 340, 346
germination 545, 818
growth 668
hair_eye 263, 277
Haireyecolor 429, 522
houses 102
hump 583
incidence 562
induced 523
infection 567, 585
ipomopsis 489
isolation 562, 596
jaws 302, 315, 628, 640, 641, 645
kmeansdata 751
lifeforms 243
light 410, 432
lizards 527, 559
longdata 270
lynx 733
mammals 179
manova 743
metadata 707
metadata2 711
mm 638
occupation 564
OrchardSprays 178, 292
ozone_pollution 279, 446, 449, 458, 469, 482, 502,

590
panels 284
pgfull 122, 745, 749, 754
pgr 280, 281
phdaphnia 99
piedata 265
plotfit 314
pollute 761, 769
poly 691
ponderosa 781

�

� �

�

842 INDEX

datasets (Continued)
ps 142
quine 516
ragwortmap2 790
rats 611
reaction 635
refuge 420
regression 179, 810
roaches 657, 661
rt 210
sales 245
sapdecay 98
scatter1 250, 266
scatter2 267
seedwts 244
sexratio 541
SilwoodWeather 272, 275, 291, 297, 723
sleep 319
smooth 316
soaysheep 580
sortdata 240
species 508
spending 351
spino 201, 534
splityield 673
sslogistic 642
stoats 695
survival 650
sweepdata 117
tabledata 368
tannin 198, 201
taxonomy 742, 752, 755, 756, 759, 773
temp 716
temp_data 95
timber 574
timereg 175
times 170
trial 205
tulips 412, 415, 420
twoseries 729
wasps 570
wheat 793
worldfloras 155
worms 133, 218, 236, 241, 247
worms.missing 233
yields 208, 450

datasets in R 215
dates and times 164

calculations 168
continuous time 165
date-time object 166, 169
day of the week 167
format codes table 167
list time 165
POSIX system 165
reading in date and time data 166
regression 175
sequences 170

system time 164
decimal places see rounding
degrees of freedom 186, 674, 744
density plot 255, 260, 284, 571
deparsing data names 191
detach see attach and detach
dev.off 253
difference equation 823

invasion criterion 823
per capita multiplication rate 823

differential equations 42
ode (in package deSolve) 43

differentiation
D 40
deriv 40

dimnames 113, 124
discriminant analysis 756
distribution see probability distribution
dotplot 262

by group 274
jittered 262

dummy variables 450–451, 453–454, 493–494, 601–603

E
e 17
empirical distribution function 415, 564, 572, 783
enclosure 178

frame 178
global 177, 193
pointer 178

environment 177
equilibrium 823

escape sequences table 199
exponential function 17
stable point equilibrium 825

error bars 191, 276, 321
experiment

design see designed experiments
factorial see factorial experiment
split-plot see split-plot experiment

exponential
biexponential 28
distribution 386
family 499
function 17
model 629, 640, 661, 797

F
factor 64

combining 74
factor 65, 66
generate levels (gl) 77
is.factor 66
levels 66, 201, 553
nlevels 66
numeric representation 556
unclass 67

�

� �

�

INDEX 843

unordering 555
!= 67
== 67

factor analysis 748
latent variables 749

factorial 24
factorial experiment 545, 615, 667

generating factor level combinations 672
interaction plots 675
levels 671
replicates 667

frequentist 799
function 17

anonymous 96, 120, 192
arguments in own function 193
layout of own function 181, 183
output from own function 190, 197
switch 192
trapping errors 195
writing own 181

G
Gamma function 24
GAMs see generalised additive models
Gaussian process 795
generalised additive models 579

binary responses 596
deviance explained 585, 596
estimated degrees of freedom 585, 598
knot 588
model specification 588
overfitting 588
penalising 588
plot 587
prediction 585
residuals plots 592
simple examples 583
smoothers 579
smoothing 588
smoothing parameter 588
spline 588
technical background 588
3D graphics 598–599
wiggliness 588

generalised estimating equations 625
generalised linear mixed models see mixed-effect models
generalised linear models 499

Akaike’s information criterion (AIC) 503
binary response 560
bootstrapping 570
canonical link function 501
complementary log-log 561
confidence intervals 507
count data 507
count table data 522
deviance residuals 503
dispersion 501, 511

error structure 499
exponential family 499
graphical fit of logistic models 564
interaction effects 508
interpretation 506
linear predictor 500
link function 501
logistic regression 538
logit link 501
log-linear model 522
mixed covariate types 556
model selection 526, 558
model simplification 528
ordered covariates 550
overdispersion 503, 511, 520, 541
prediction 507, 549
prediction of covariate 544
proportion data 537
proportion means 540
quasi-Binomial 541, 547
quasi-distributions 511
quasi-Poisson 511, 516
residual deviance 503
residuals plots 532, 544
saturated model 523
step 530
threshhold 587

Geographic Information Systems (GIS) 780
geometric mean 183
geospatial statistics 793

bin 796
exponential model 797
modelling 794
nugget 796
partial sill 796
prediction 797
range 796
sill 796
spherical model 797
stationary 796
trend 795
variogram 796

ggplot see also Tidyverse 327
GLMs see generalised linear models
GLMMs see mixed effects models
Greek letters 824
grep 155

H
harmonic mean 184
heat maps 785
density 786

help 5, 8, 9, 11
heteroscedasticity see homoscedasticity

�

� �

�

844 INDEX

hierarchical data 604
Bayesian 807, 815
cluster analysis 751, 754
mixed model 604, 622

hierarchical models see mixed effects models
histogram 255, 256

bins 256
density 257, 260

homoscedasticity
linear regression 476
non-linear regression 645

hue_pal (in package scales) 253
hypoteneuse 19
hypotheses 406

alternative 406
null 406

hypothesis testing see tests and tests (named)

I
if 182
else 182, 188

ifelse 86
image 827
importing data

errors 209
factors 65, 218
from a spreadsheet 217
irregularly structured data 210
missing data 210
naming 209
read.csv 210
read.csv2 208
read.delim 208
read.table 65, 208
reviewing 218
separator 208
web 215

independence 375
Inf 82
infinity 82
installing

packages 9
R 4
RStudio 4

integers 63
as.integer 63
converting to 63
is.integer 63

integration
integrate 41

interaction 62, 100, 454–458, 466, 494, 495, 508,
603

interval 18
closed 18
open 18

invalid numbers 82
NaN 82

inverse polynomials 23
Michaelis-Menten 23, 25
shallow hump 24
steep hump 24

J
jackknife see non-linear model
JAGS see Bayesian analysis

K
keyboard data entry 87

L
lapply 140, 368
letters 74
l’Hopital’s rule 26
linear mixed effect model see mixed effect model
linear regression 439

Akaike’s information criterion (AIC) 471
Analysis of Variance 460, 461
anova 462, 469
assumptions 441, 473
automatic model building 472–473
Box-Cox transformation 486–487
building process 444, 448
categorical covariates 449
coefficient 453, 459
coefficient of determination 460
collinearity 481
coplot 455
covariate 439
data formatting 450
dummy variables 450
Durbin-Watson test 478
error term 440–441, 443
extensions 497
extracting estimates 464, 498
fitted value 476
F-test 460, 463–464, 468, 469–470
hat matrix 480
homoscedasticity 473, 476
hyperplane 446
hypothesis testing 441
independent errors 473, 478
influence 479
influence.measures 479
interaction 454, 466
interaction effect 457
interaction.plot 455
intercept 449, 453
intercept-only model 451, 460–461
interpretation 466, 491
least squares 442–443
likelihood ratio test 468
linear 439, 441, 444, 627
line of best fit 439
lm 444

�

� �

�

INDEX 845

main effect 457
model checking 467–468
model.matrix 453
model simplification 466
multiple linear regression 439, 446
nested models 468
normality of error 473, 476
normal probability plot 476
outcome 439
penalized log likelihood 471
plot 474
predictions 495
principle of parsimony 465
QQ-plot 477–478
reference category 451–452
reformatting data 450
residual 442–443, 458, 473
residual standard error 445, 460
response 439
R output 445, 448–449
rstandard 474
serial correlation 478
simple linear regression 439, 440
standardised residuals 474
step 473
testing 459
transforming variables 483
t-test 459, 464, 468, 469–470
variance inflation factor 481–482
weighted least squares 488–491

lists 138
vs dataframes 146
lapply 140, 143–145
list 96, 113, 124, 138
naming elements 139
saving 142
stack 146, 450
str 142
unlist 161
$ 140
[[]] 139

lm 44
locator 322
logarithm 17

base 18
natural logarithm 17

logical operations
all 73
any 73
logical arithmetic 73
table of 67
T and F 68
TRUE and FALSE 68, 72

logistic regression see generalised linear models
log-log transformation 21
long format 450
longitudinal data 605
loops 128

avoidance 133
difference equations 136
for 129
growing a vector 136
ifelse 129
repeat 130
speed 134
while 130, 131

M
match 153, 242
mathematical functions

table of 61
mathematical symbols in R

table of 323–324
matrix 30, 110

adding rows or columns 115
adjoint 35
apply 119
cofactor 35
colMeans 114
colSums 114
conjugate 35
determinant 33
diag 32
eigen 38
eigenvalue 36
eigenvector 36
grouping rows or columns 114
identity 32
inverse 35
labelling rows and columns 112
Leslie matrix 36
loss of dimension 116
margin 110
matrix 30, 111
max.col 122
minor 35
multiplication 31
non-singular 35
order 35
outer 72
rowMeans 114
rowSums 114
scaling 120
shuffling rows or columns 114
solve 36, 39
sweep summaries 117
transpose 35, 112
[,] 110

mean 94
median 94
meta-analysis 699

Cochran’s Q 702, 703, 708
effect type 700, 704–706
escalc 703, 704–706, 707, 711
fixed effect 701, 702, 708

�

� �

�

846 INDEX

meta-analysis (Continued)
forest plot 709, 712
funnel plot 700, 710
H2 702, 703, 708
heterogeneity 702, 708
I2 702, 703, 708
inverse variance weighting 701
publication bias 700, 710
random effect 701, 702
rma 703, 708, 712
weights 701

missing data 83
is.na 83, 84
NA 83
na.fail 84
na.omit 84, 214
na.rm = TRUE 85

mixed-effect models 601
alternatives 625
anova 610–611, 615–616
comparing models 606, 610–611
fixed effects 602
generalised linear mixed models 622
glmer 605, 606, 622, 623
hierarchical data 604
interactions 603
longitudinal data 605, 617
lme 605, 608–610, 615
lmer 605, 613
maximum likelihood 606, 615
model checking 611, 614
nested data structure 604
non-nested data structure 604
plotting data 618
random effects 602
random intercept model 603
removing pseudo-replication 675
restricted maximum likelihood 606, 610, 615
split-plot model 614
three level model 611
two level model 607

models see statistical models
modular arithmetic 61
modulus 61
mosaic plot 522, 570
multilevel models see mixed-effect models

N
NA see missing data
names 368, 370
NaN 82
neural networks 758
non-linear model 627
anova 630
checking fit 633, 645
comparing models 630
confidence intervals 631, 646, 647

exponential model 629, 640
grouped data 634
influential observations 645–646
jackknife 645
logistic model 642, 643
Michaelis-Menten 632, 634, 638
nlme 637–638
nls 627, 629, 633
nlsList 635, 638
non-linear functions, table of 628
plotfit 631, 640
preview 629, 632
random effects 637
residuals 645
self-starting models 638, 639
starting values 627, 629, 638

O
object-oriented 7
objects 7
attributes 71
class 65, 71
coerce 79
data type 78
data type table 80
date-time 166, 169
mode 65, 71
names 64
str 200
summary 203
time series 717

odds ratio 431, 539
log-odds ratio 501

options 60
contrasts 688

overdispersion see generalised linear models

P
packages 9
akima 282
boot 432, 575
BSDA 419
car 478, 482
citation see Acknowledgements
coda 814
DescTools 423
deSolve 41
EMT 423
geoR 793
ggplot2 326
lattice 284, 320, 618, 775, 814
lme4 605, 606, 613
lmtest 470
MASS 1, 9, 179, 180, 391, 487, 516, 520, 545, 622,

756
matlib 36
meta 703

�

� �

�

INDEX 847

metafor 703
mgcv 579, 598
nlme 605, 618
nlstools 629, 631, 645, 647
nnet 759
olsrr 480
PerformanceAnalytics 742
plotly 281, 295
predictmeans 611, 614
psych 362
RColorBrewer 299
R2jags 807
rpart 761, 765
scales 253
SemiPar 592
spatial 9
spatstat 779
spdep
stats 399
stringr 160
survival 649, 652
tree 761, 764

paste 149, 824
PCA see principal component analysis
plot see also plotting parameters and scatterplot 250,

265
plotting mathematical objects 293, 313

polygons 322
symbols 322
3D plots 295

plotting parameters see also scatterplot
add curves 293, 313, 314
add lines 266, 287–289
add points 267
add symbols 322
add text 311, 830
axis labels 251, 351
axis limits 268–269
axis tick marks 309, 341, 351
character expansion 251, 334
cheat sheet 330
colour 252, 297, 333
connecting points 316
line type 267, 343
line width 266, 343
multiple plots 309, 336, 338, 340, 344, 346
plot symbol 251
title 251

polar coordinates 58
polynomial functions 22

decelerating 22
humped 22
inflection point 23
local maximum and minimum 23

power 17
power laws 20
principal component analysis 745

biplot 746
interpretation 748
loading 746
scree plot 746

print 194, 197, 200
probability

conditional probability 49
distribution 373
events 49, 375
exclusive 49
exhaustive 49
independence 375
law of total probability 49

probability distribution 373
area under distribution 378
Bernoulli 392, 560
Beta 387
Binomial 392, 537
Cauchy 384
Chi-squared 381
continuous 374
cumulative distribution function 374
discrete 374
Exponential 386
family 373
F distribution 382
Gamma 385, 386, 504
Geometric 395
Hypergeometric 397
Logistic 389
Lognormal 388
Multinomial 398
multivariate Normal 391
Negative Binomial 400, 520
Normal 377, 502
parameter 373
Poisson 399, 507
probability density function 374
probability mass function 374
R functions 376
shifted Geometric 395
standard normal 384
Student’s t 383
Uniform 380, 387
Weibull 390

program time
proc.time 135
system.time 135

prompt 5
pseudolikelihood 789
pseudo-replication 673

split-plot experiment 614, 673
p-value see tests

�

� �

�

848 INDEX

Q
QQ plot 417

light tailed 418
quadratic map 137, 823
quantile 94

R
R 1–864

citation see Acknowledgements
R2 460
radar plot see cobweb plot
radians 19, 60
random effect 602

models see mixed-effect models
random samples 126

Beta distribution 387
Binomial distribution 394
Chi-squared distribution 382
Exponential distribution 386
F distribution 383
Gamma distribution 48, 385
Geometric distribution 396
Hypergeometric distribution 397
Lognormal distribution 389
Multinomial distribution 399
multivariate Normal distribution 391
Negative Binomial distribution 84, 401
Normal distribution 33, 101, 188, 195, 310, 338, 379,

626
Poisson distribution 90, 106, 112, 126, 134, 204, 237,

385, 426
replacement 127
sample 126, 127, 837
sampling 127
set.seed 126
Student’s t 384
Uniform distribution 45, 61, 73, 126, 134, 237, 342,

349, 381, 599, 780, 828, 831
Weibull distribution 390

random variable 373
independent 375
notation 373

read.csv 265
read.table 265
reciprocal transformation 26
regression see linear regression
relational databases 154

SQL 154
rep 76
rounding 58, 198
ceiling 58
floor 58
round 58
signif 59
trunk 59

RStudio 3
brackets 107

citation see Acknowledgements
environment 177, 179, 181, 203
installing 4
packages 8, 216
object descriptions 146, 181, 200
object names 64
projects 15
saving data objects 203
saving work 204
viewing dataframe 30, 178, 219
working directory 15, 207

S
sapply 97, 130, 132
saving

command history 204
data 203
graphics 254
objects 203
output to a file 205
program 204
spreadsheet 204

scatterplot see also plot 250
adding observations 267
axes 268
bubble plot 272
jitter 271, 556
legends 269
lines 266
pairs 279, 446
rugs 564
sunflower plot 272
text labels 280

scientific notation 57
exponents 57

sets 108
set.seed 380
side-by-side plots 35
sigmoid functions 27

four-parameter logistic function 27
Gompertz growth model 27
negative sigmoid function 27
three-parameter logistic function 27
two-parameter logistic function 27

significance level see α
simulation modelling

coupled map lattice 835
density-dependent processes 823
Nicholson-Bailey model 835
random walk 837
in space 826
in time 823

sin 19
sine wave 20

smoothing 580
sorting data 102

see vector

�

� �

�

INDEX 849

sort 88, 92
spatial point patterns 779
spatial point processes 779

Akaike’s information criterion (AIC) 786
clustered 781
Complete Spatial Randomness (CSR) 781
edge effect 784, 829
F function 783
G function 783
G function (paired) 792
Gibbs (interaction) processes 788
hybrid models 790
intensity 785
irregular parameters 788
K function 783
L function 783
marks 790
modelling 785
modelling with marks 793
Poisson Process 781
quadrat test 781
randomness testing 781
regular 781
residuals plots 787
Strauss model 788
window 779

spine plot see mosaic plot
standard deviation 187
standard error 189, 276
statistical models 51

biased estimators 53
estimators 53
least squares 51
likelihood 51, 52
loglikelihood 52
maximum likelihood 51
non-parametric 51
parametric 51
semi-parametric 51

statistical significance see tests, weird shit
summary 362
supervised learning 758
survival models 649

accelerated failure time model 655, 657, 661
baseline hazard 655
censored data 649, 651
censoring indicator 651
covariate 439
coxph 658–659, 665
Cox proportional hazard model 657, 658
cox.zph 660
exponential accelerated failure time model 661
goodness-of-fit 659
hazard function 652, 656, 657
hypothesis tests 659, 660, 662
Kaplan-Meier 650, 653, 658, 664
log-rank test 654
model checking 660

model comparison 662, 664, 665
non-parametric estimation 652, 653
parametric estimation 652, 654, 661
parametric form, table of 654
prediction 663
proportional hazard model 655, 656
regression models 655
residuals 660
semi-parametric models 658
Surv 652
survdiff 654
survfit 653
survival function 652
survreg 661, 662, 665
Weibull accelerated failure time model 662

T
tab delimited files 208, 211
table see also contingency tables

counts 95, 359
to dataframe 367
ftable 366, 430
by group 362
lapply 368
proportions 360
prop.table 359, 361
summary 362
table 359
tapply 95, 364
three dimensional 360, 366

tan 19
tapply 95, 364
Taylor’s power law 21
tests

bootstrapping 431
error rate (family-wise) 433
general approach 405
interpretation 409
multiple 433
non-parametric 408
one-sided 408
parametric 408
power 434
p-value 408
sample size calculation 435
two-sided 408
weird shit 408

tests (named)
independence of variables (Fisher) 431
independence of variables (G) 431
loglikelihood ratio 786
multiple means (regression) 449
multiple medians (Kruskal-Wallis) 415
multiple variances (Bartlett and Fligner) 421
normality of dataset (don’t use a test!) 417
paired qualitative comparison (binomial) 422
paired quantitative comparison (binomial) 422
proportions (G) 424

�

� �

�

850 INDEX

tests (named) (Continued)
proportions (multinomial) 423
single distribution (Kolmogorov-Smirnov) 416, 783
single mean (t) 409
single shape (Wilcoxon’s signed-rank) 411
table of 436
two distributions (Kolmogorov-Smirnov) 416
two paired means (t) 414
two paired shapes (Wilcoxon’s signed-rank) 413
two unpaired means (t) 412
two variances (F) 419, 515

text editor 6
text manipulation 147

alphabet 148
cases 153
comparing 153, 162
counting letters and words 151
extracting substrings 150
finding pattern 160, 161
grep 156
joining character strings 149
noquote 148
number of characters 149
pattern matching 155
reversal 152
splitting text 152, 213
stripping patterns 163
substitution 159
“ “ 147

3D plots 281
contour plot 281
mathematical functions 295
in mgcv 598

Tidyverse 326
aesthetic, aes 327
geometric object, geom 327
ggplot (in package ggplot2) 327
ggplot2 326

time see dates and times
time series 715

AIC 734, 739
ARIMA models 733, 738
ARMA models 733, 738
autocorrelation 718, 731
autocovariance 731
autoregressive (AR) models 732, 736
cycle 726
decomposition 725
detrend 722
differencing 733
estimating parameters 734
GARCH models 730
generating 136
moving average 715
moving average (MA) models 732, 736
multiple 729
noise 735
partial autocorrelation 718, 732

predict 735
residuals 727
seasonal effects 723
serial dependence 715
simulation 735
spectral decomposition 728
stationary 715, 720, 732, 733, 735
theory 730
trend 715, 721, 725, 728
ts 717, 724
ts.plot 730
white noise 732, 735

tips for writing code 206
transformation of variables 29

arcsin 537
logit (logistic) 501, 538
probit 538

tree models
step function 582

trellis graphics 283
conditioning variable 283
grouping factor 285
order of panels 286
primary covariate 284

U
unsupervised learning 741

V
variables see also random variables

categorical 13
continuous 13
discrete 13
nominal 13
numeric 13
ordinal 13

variance 186
ratio test 187
sample variance 187

vector 74, 86
aggregate 99
brackets 107
c 75, 86
class 86
closest value 101
comparison 108
convert to matrix 111
dates times 170
difference 108
differing lengths 81
duplicated 104
functions table 94
intersection 108
labelling 90
logical subsets 91
pmax 101
pmin 100
position 106

�

� �

�

INDEX 851

rep 76
runs of elements 106
sapply 97, 128
scan 87
seq 75
sequence 74
sequence 76
sorting 102
subscript 87
tapply 95
trim 97
union 108
unique 104
which.max 93
which.min 93
[] 87
[[]] 106

W
which 85, 93, 162
wide format 450
working directory 15, 207
getwd 207

workspace 5
write.table 145

X
x-axis 282

Y
y-axis 282

Z
z-axis 282

�

� �

�

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

www.wiley.com/go/eula

	Cover
	Title Page
	Copyright
	Contents
	List of Tables
	Preface
	Acknowledgments
	About the Companion Website
	Chapter 1 Getting Started
	1.1 Navigating the book
	1.1.1 How to use this book

	1.2 R vs. RStudio
	1.3 Installing R and RStudio
	1.4 Using RStudio
	1.4.1 Using R directly via the console
	1.4.2 Using text editors

	1.5 The Comprehensive R Archive Network
	1.5.1 Manuals
	1.5.2 Frequently asked questions
	1.5.3 Contributed documentation

	1.6 Packages in R
	1.6.1 Contents of packages
	1.6.2 Finding packages
	1.6.3 Installing packages

	1.7 Getting help in R
	1.7.1 Worked examples of functions
	1.7.2 Demonstrations of R functions

	1.8 Good housekeeping
	1.8.1 Variable types
	1.8.2 What's loaded or defined in the current session
	1.8.3 Attaching and detaching objects
	1.8.4 Projects

	1.9 Linking to other computer languages
	1.9 References

	Chapter 2 Technical Background
	2.1 Mathematical functions
	2.1.1 Logarithms and exponentials
	2.1.2 Trigonometric functions
	2.1.3 Power laws
	2.1.4 Polynomial functions
	2.1.5 Gamma function
	2.1.6 Asymptotic functions
	2.1.7 Sigmoid (S‐shaped) functions
	2.1.8 Biexponential function
	2.1.9 Transformations of model variables

	2.2 Matrices
	2.2.1 Matrix multiplication
	2.2.2 Diagonals of matrices
	2.2.3 Determinants
	2.2.4 Inverse of a matrix
	2.2.5 Eigenvalues and eigenvectors
	2.2.6 Solving systems of linear equations using matrices

	2.3 Calculus
	2.3.1 Differentiation
	2.3.2 Integration
	2.3.3 Differential equations

	2.4 Probability
	2.4.1 The central limit theorem
	2.4.2 Conditional probability

	2.5 Statistics
	2.5.1 Least squares
	2.5.2 Maximum likelihood

	2.5 Reference

	Chapter 3 Essentials of the R Language
	3.1 Calculations
	3.1.1 Complex numbers
	3.1.2 Rounding
	3.1.3 Arithmetic
	3.1.4 Modular arithmetic
	3.1.5 Operators
	3.1.6 Integers

	3.2 Naming objects
	3.3 Factors
	3.4 Logical operations
	3.4.1 TRUE, T, FALSE, F
	3.4.2 Testing for equality of real numbers
	3.4.3 Testing for equality of non‐numeric objects
	3.4.4 Evaluation of combinations of TRUE and FALSE
	3.4.5 Logical arithmetic

	3.5 Generating sequences
	3.5.1 Generating repeats
	3.5.2 Generating factor levels

	3.6 Class membership
	3.7 Missing values, infinity, and things that are not numbers
	3.7.1 Missing values: NA

	3.8 Vectors and subscripts
	3.8.1 Extracting elements of a vector using subscripts
	3.8.2 Classes of vector
	3.8.3 Naming elements within vectors

	3.9 Working with logical subscripts
	3.10 Vector functions
	3.10.1 Obtaining tables using tapply ()
	3.10.2 Applying functions to vectors using sapply ()
	3.10.3 The aggregate () function for grouped summary statistics
	3.10.4 Parallel minima and maxima: pmin and pmax
	3.10.5 Finding closest values
	3.10.6 Sorting, ranking, and ordering
	3.10.7 Understanding the difference between unique () and duplicated ()
	3.10.8 Looking for runs of numbers within vectors
	3.10.9 Sets: union (), intersect (), and setdiff ()

	3.11 Matrices and arrays
	3.11.1 Matrices
	3.11.2 Naming the rows and columns of matrices
	3.11.3 Calculations on rows or columns of matrices
	3.11.4 Adding rows and columns to matrices
	3.11.5 The sweep () function
	3.11.6 Applying functions to matrices
	3.11.7 Scaling a matrix
	3.11.8 Using the max.col () function
	3.11.9 Restructuring a multi‐dimensional array using aperm ()

	3.12 Random numbers, sampling, and shuffling
	3.12.1 The sample () function

	3.13 Loops and repeats
	3.13.1 More complicated while () loops
	3.13.2 Loop avoidance
	3.13.3 The slowness of loops
	3.13.4 Do not ‘grow’ data sets by concatenation or recursive function calls
	3.13.5 Loops for producing time series

	3.14 Lists
	3.14.1 Summarising lists and lapply ()
	3.14.2 Manipulating and saving lists

	3.15 Text, character strings, and pattern matching
	3.15.1 Pasting character strings together
	3.15.2 Extracting parts of strings
	3.15.3 Counting things within strings
	3.15.4 Upper and lower case text
	3.15.5 The match () function and relational databases
	3.15.6 Pattern matching
	3.15.7 Substituting text within character strings
	3.15.8 Locations of a pattern within a vector
	3.15.9 Comparing vectors using %in% and which ()
	3.15.10 Stripping patterned text out of complex strings

	3.16 Dates and times in R
	3.16.1 Reading time data from files
	3.16.2 Calculations with dates and times
	3.16.3 Generating sequences of dates
	3.16.4 Calculating time differences between the rows of a dataframe
	3.16.5 Regression using dates and times

	3.17 Environments
	3.17.1 Using attach () or not!
	3.17.2 Using attach () in this book

	3.18 Writing R functions
	3.18.1 Arithmetic mean of a single sample
	3.18.2 Median of a single sample
	3.18.3 Geometric mean
	3.18.4 Harmonic mean
	3.18.5 Variance
	3.18.6 Variance ratio test
	3.18.7 Using the variance
	3.18.8 Plots and deparsing in functions
	3.18.9 The switch () function
	3.18.10 Arguments in our function
	3.18.11 Errors in our functions
	3.18.12 Outputs from our function

	3.19 Structure of R objects
	3.20 Writing from R to a file
	3.20.1 Saving data objects
	3.20.2 Saving command history
	3.20.3 Saving graphics or plots
	3.20.4 Saving data for a spreadsheet
	3.20.5 Saving output from functions to a file

	3.21 Tips for writing R code
	3.21 References

	Chapter 4 Data Input and Dataframes
	4.1 Working directory
	4.2 Data input from files
	4.2.1 Data input using read.table () and read.csv ()
	4.2.2 Input from files using scan ()
	4.2.3 Reading data from a file using readLines ()

	4.3 Data input directly from the web
	4.4 Built‐in data files
	4.5 Dataframes
	4.5.1 Subscripts and indices
	4.5.2 Selecting rows from the dataframe at random
	4.5.3 Sorting dataframes
	4.5.4 Using logical conditions to select rows from the dataframe
	4.5.5 Omitting rows containing missing values, NA
	4.5.6 A dataframe with row names instead of row numbers
	4.5.7 Creating a dataframe from another kind of object
	4.5.8 Eliminating duplicate rows from a dataframe
	4.5.9 Dates in dataframes

	4.6 Using the match () function in dataframes
	4.6.1 Merging two dataframes

	4.7 Adding margins to a dataframe
	4.7.1 Summarising the contents of dataframes

	Chapter 5 Graphics
	5.1 Plotting principles
	5.1.1 Axes labels and titles
	5.1.2 Plotting symbols and colours
	5.1.3 Saving graphics

	5.2 Plots for single variables
	5.2.1 Histograms vs. bar charts
	5.2.2 Histograms
	5.2.3 Density plots
	5.2.4 Boxplots
	5.2.5 Dotplots
	5.2.6 Bar charts
	5.2.7 Pie charts

	5.3 Plots for showing two numeric variables
	5.3.1 Scatterplot
	5.3.2 Plots with many identical values

	5.4 Plots for numeric variables by group
	5.4.1 Boxplots by group
	5.4.2 Dotplots by group
	5.4.3 An inferior (but popular) option

	5.5 Plots showing two categorical variables
	5.5.1 Grouped bar charts
	5.5.2 Mosaic plots

	5.6 Plots for three (or more) variables
	5.6.1 Plots of all pairs of variables
	5.6.2 Incorporating a third variable on a scatterplot
	5.6.3 Basic 3D plots

	5.7 Trellis graphics
	5.7.1 Panel boxplots
	5.7.2 Panel scatterplots
	5.7.3 Panel barplots
	5.7.4 Panels for conditioning plots
	5.7.5 Panel histograms
	5.7.6 More panel functions

	5.8 Plotting functions
	5.8.1 Two‐dimensional plots
	5.8.2 Three‐dimensional plots

	5.8 References

	Chapter 6 Graphics in More Detail
	6.1 More on colour
	6.1.1 Colour palettes with categorical data
	6.1.2 The RColorBrewer package
	6.1.3 Foreground colours
	6.1.4 Background colours
	6.1.5 Background colour for legends
	6.1.6 Different colours for different parts of the graph
	6.1.7 Full control of colours in plots
	6.1.8 Cross‐hatching and grey scale

	6.2 Changing the look of graphics
	6.2.1 Shape and size of plot
	6.2.2 Multiple plots on one screen
	6.2.3 Tickmarks and associated labels
	6.2.4 Font of text

	6.3 Adding items to plots
	6.3.1 Adding text
	6.3.2 Adding smooth parametric curves to a scatterplot
	6.3.3 Fitting non‐parametric curves through a scatterplot
	6.3.4 Connecting observations
	6.3.5 Adding shapes
	6.3.6 Adding mathematical and other symbols

	6.4 The grammar of graphics and ggplot2
	6.4.1 Basic structure
	6.4.2 Examples

	6.5 Graphics cheat sheet
	6.5.1 Text justification, adj
	6.5.2 Annotation of graphs, ann
	6.5.3 Delay moving on to the next in a series of plots, ask
	6.5.4 Control over the axes, axis
	6.5.5 Background colour for plots, bg
	6.5.6 Boxes around plots, bty
	6.5.7 Size of plotting symbols using the character expansion function, cex
	6.5.8 Changing the shape of the plotting region, plt
	6.5.9 Locating multiple graphs in non‐standard layouts using fig
	6.5.10 Two graphs with a common X scale but different Y scales using fig
	6.5.11 The layout function
	6.5.12 Creating and controlling multiple screens on a single device
	6.5.13 Orientation of numbers on the tick marks, las
	6.5.14 Shapes for the ends and joins of lines, lend and ljoin
	6.5.15 Line types, lty
	6.5.16 Line widths, lwd
	6.5.17 Several graphs on the same page, mfrow and mfcol
	6.5.18 Margins around the plotting area, mar
	6.5.19 Plotting more than one graph on the same axes, new
	6.5.20 Outer margins, oma
	6.5.21 Packing graphs closer together
	6.5.22 Square plotting region, pty
	6.5.23 Character rotation, srt
	6.5.24 Rotating the axis labels
	6.5.25 Tick marks on the axes
	6.5.26 Axis styles
	6.5.27 Summary

	6.5 References

	Chapter 7 Tables
	7.1 Tabulating categorical or discrete data
	7.1.1 Tables of counts
	7.1.2 Tables of proportions

	7.2 Tabulating summaries of numeric data
	7.2.1 General summaries by group
	7.2.2 Bespoke summaries by group

	7.3 Converting between tables and dataframes
	7.3.1 From a table to a dataframe
	7.3.2 From a dataframe to a table

	7.3 Reference

	Chapter 8 Probability Distributions in R
	8.1 Probability distributions: the basics
	8.1.1 Discrete and continuous probability distributions
	8.1.2 Describing probability distributions mathematically
	8.1.3 Independence

	8.2 Probability distributions in R
	8.3 Continuous probability distributions
	8.3.1 The Normal (or Gaussian) distribution
	8.3.2 The Uniform distribution
	8.3.3 The Chi‐squared distribution
	8.3.4 The F distribution
	8.3.5 Student's t distribution
	8.3.6 The Gamma distribution
	8.3.7 The Exponential distribution
	8.3.8 The Beta distribution
	8.3.9 The Lognormal distribution
	8.3.10 The Logistic distribution
	8.3.11 The Weibull distribution
	8.3.12 Multivariate Normal distribution

	8.4 Discrete probability distributions
	8.4.1 The Bernoulli distribution
	8.4.2 The Binomial distribution
	8.4.3 The Geometric distribution
	8.4.4 The Hypergeometric distribution
	8.4.5 The Multinomial distribution
	8.4.6 The Poisson distribution
	8.4.7 The Negative Binomial distribution

	8.5 The central limit theorem
	8.5 References

	Chapter 9 Testing
	9.1 Principles
	9.1.1 Defining the question to be tested
	9.1.2 Assumptions
	9.1.3 Interpreting results

	9.2 Continuous data
	9.2.1 Single population average
	9.2.2 Two population averages
	9.2.3 Multiple population averages
	9.2.4 Population distribution
	9.2.5 Checking and testing for normality
	9.2.6 Comparing variances

	9.3 Discrete and categorical data
	9.3.1 Sign test
	9.3.2 Test to compare proportions
	9.3.3 Contingency tables
	9.3.4 Testing contingency tables

	9.4 Bootstrapping
	9.5 Multiple tests
	9.6 Power and sample size calculations
	9.7 A table of tests
	9.7 References

	Chapter 10 Regression
	10.1 The simple linear regression model
	10.1.1 Model format and assumptions
	10.1.2 Building a simple linear regression model

	10.2 The multiple linear regression model
	10.2.1 Model format and assumptions
	10.2.2 Building a multiple linear regression model
	10.2.3 Categorical covariates
	10.2.4 Interactions between covariates

	10.3 Understanding the output
	10.3.1 Residuals
	10.3.2 Estimates of coefficients
	10.3.3 Testing individual coefficients
	10.3.4 Residual standard error
	10.3.5 R2 and its variants
	10.3.6 The regression F‐test
	10.3.7 ANOVA: Same model, different output
	10.3.8 Extracting model information

	10.4 Fitting models
	10.4.1 The principle of parsimony
	10.4.2 First plot the data
	10.4.3 Comparing nested models
	10.4.4 Comparing non‐nested models
	10.4.5 Dealing with large numbers of covariates

	10.5 Checking model assumptions
	10.5.1 Residuals and standardised residuals
	10.5.2 Checking for linearity
	10.5.3 Checking for homoscedasticity of errors
	10.5.4 Checking for normality of errors
	10.5.5 Checking for independence of errors
	10.5.6 Checking for influential observations
	10.5.7 Checking for collinearity
	10.5.8 Improving fit

	10.6 Using the model
	10.6.1 Interpretation of model
	10.6.2 Making predictions

	10.7 Further types of regression modelling
	10.7 References

	Chapter 11 Generalised Linear Models
	11.1 How GLMs work
	11.1.1 Error structure
	11.1.2 Linear predictor
	11.1.3 Link function
	11.1.4 Model checking
	11.1.5 Interpretation and prediction

	11.2 Count data and GLMs
	11.2.1 A straightforward example
	11.2.2 Dispersion
	11.2.3 An alternative to Poisson counts

	11.3 Count table data and GLMs
	11.3.1 Log‐linear models
	11.3.2 All covariates might be useful
	11.3.3 Spine plot

	11.4 Proportion data and GLMs
	11.4.1 Theoretical background
	11.4.2 Logistic regression with binomial errors
	11.4.3 Predicting x from y
	11.4.4 Proportion data with categorical explanatory variables
	11.4.5 Binomial GLM with ordered categorical covariates
	11.4.6 Binomial GLM with categorical and continuous covariates
	11.4.7 Revisiting lizards

	11.5 Binary Response Variables and GLMs
	11.5.1 A straightforward example
	11.5.2 Graphical tests of the fit of the logistic curve to data
	11.5.3 Mixed covariate types with a binary response
	11.5.4 Spine plot and logistic regression

	11.6 Bootstrapping a GLM
	11.6 References

	Chapter 12 Generalised Additive Models
	12.1 Smoothing example
	12.2 Straightforward examples of GAMs
	12.3 Background to using GAMs
	12.3.1 Smoothing
	12.3.2 Suggestions for using gam ()

	12.4 More complex GAM examples
	12.4.1 Back to Ozone
	12.4.2 An example with strongly humped data
	12.4.3 GAMs with binary data
	12.4.4 Three‐dimensional graphic output from gam

	12.4 References

	Chapter 13 Mixed‐Effect Models
	13.1 Regression with categorical covariates
	13.2 An alternative method: random effects
	13.3 Common data structures where random effects are useful
	13.3.1 Nested (hierarchical) structures
	13.3.2 Non‐nested structures
	13.3.3 Longitudinal structures

	13.4 R packages to deal with mixed effects models
	13.4.1 The nlme package
	13.4.2 The lme4 package
	13.4.3 Methods for fitting mixed models

	13.5 Examples of implementing random effect models
	13.5.1 Multilevel data (two levels)
	13.5.2 Multilevel data (three levels)
	13.5.3 Designed experiment: split‐plot
	13.5.4 Longitudinal data

	13.6 Generalised linear mixed models
	13.6.1 Logistic mixed model

	13.7 Alternatives to mixed models
	13.7 References

	Chapter 14 Non‐linear Regression
	14.1 Example: modelling deer jaw bone length
	14.1.1 An exponential model for the deer data
	14.1.2 A Michaelis–Menten model for the deer data
	14.1.3 Comparison of the exponential and the Michaelis–Menten model

	14.2 Example: grouped data
	14.3 Self‐starting functions
	14.3.1 Self‐starting Michaelis–Menten model
	14.3.2 Self‐starting asymptotic exponential model
	14.3.3 Self‐starting logistic
	14.3.4 Self‐starting four‐parameter logistic

	14.4 Further considerations
	14.4.1 Model checking
	14.4.2 Confidence intervals

	14.4 References

	Chapter 15 Survival Analysis
	15.1 Handling survival data
	15.1.1 Structure of a survival dataset
	15.1.2 Survival data in R

	15.2 The survival and hazard functions
	15.2.1 Non‐parametric estimation of the survival function
	15.2.2 Parametric estimation of the survival function

	15.3 Modelling survival data
	15.3.1 The data
	15.3.2 The Cox proportional hazard model
	15.3.3 Accelerated failure time models
	15.3.4 Cox proportional hazard or a parametric model?

	15.3 References

	Chapter 16 Designed Experiments
	16.1 Factorial experiments
	16.1.1 Expanding data

	16.2 Pseudo‐replication
	16.2.1 Split‐plot effects
	16.2.2 Removing pseudo‐replication
	16.2.3 Derived variable analysis

	16.3 Contrasts
	16.3.1 Contrast coefficients
	16.3.2 An example of contrasts using R
	16.3.3 Model simplification for contrasts
	16.3.4 Helmert contrasts
	16.3.5 Sum contrasts
	16.3.6 Polynomial contrasts
	16.3.7 Contrasts with multiple covariates

	16.3 References

	Chapter 17 Meta‐Analysis
	17.1 Elements of a meta‐analysis
	17.1.1 Choosing studies for a meta‐analysis
	17.1.2 Effects and effect size
	17.1.3 Weights
	17.1.4 Fixed vs. random effect models

	17.2 Meta‐analysis in R
	17.2.1 Formatting information from studies
	17.2.2 Computing the inputs of a meta‐analysis
	17.2.3 Conducting the meta‐analysis

	17.3 Examples
	17.3.1 Meta‐analysis Of scaled differences

	17.4 Meta‐analysis of categorical data
	17.4 References

	Chapter 18 Time Series
	18.1 Moving average
	18.2 Blowflies
	18.3 Seasonal data
	18.3.1 Point of view
	18.3.2 Built in ts () functions
	18.3.3 Cycles
	18.3.4 Testing for a time series trend

	18.4 Multiple time series
	18.5 Some theoretical background
	18.5.1 Autocorrelation
	18.5.2 Autoregressive models
	18.5.3 Partial autocorrelation
	18.5.4 Moving average models
	18.5.5 More general models: ARMA and ARIMA

	18.6 ARIMA example
	18.7 Simulation of time series
	18.7 Reference

	Chapter 19 Multivariate Statistics
	19.1 Visualising data
	19.2 Multivariate analysis of variance
	19.3 Principal component analysis
	19.4 Factor analysis
	19.5 Cluster analysis
	19.5.1 k‐means

	19.6 Hierarchical cluster analysis
	19.7 Discriminant analysis
	19.8 Neural networks
	19.8 References

	Chapter 20 Classification and Regression Trees
	20.1 How CARTs work
	20.2 Regression trees
	20.2.1 The tree package
	20.2.2 The rpart package
	20.2.3 Comparison with linear regression
	20.2.4 Model simplification

	20.3 Classification trees
	20.3.1 Classification trees with categorical explanatory variables
	20.3.2 Classification trees for replicated data

	20.4 Looking for patterns
	20.4 References

	Chapter 21 Spatial Statistics
	21.1 Spatial point processes
	21.1.1 How can we check for randomness?
	21.1.2 Models
	21.1.3 Marks

	21.2 Geospatial statistics
	21.2.1 Models

	21.2 References

	Chapter 22 Bayesian Statistics
	22.1 Components of a Bayesian Analysis
	22.1.1 The likelihood (the model and data)
	22.1.2 Priors
	22.1.3 The Posterior
	22.1.4 Markov chain Monte Carlo (MCMC)
	22.1.5 Considerations for MCMC
	22.1.6 Inference
	22.1.7 The Pros and Cons of going Bayesian

	22.2 Bayesian analysis in R
	22.2.1 Installing JAGS
	22.2.2 Running JAGS in R
	22.2.3 Writing BUGS models

	22.3 Examples
	22.3.1 MCMC for a simple linear regression
	22.3.2 MCMC for longitudinal data

	22.4 MCMC for a model with binomial errors
	22.4 References

	Chapter 23 Simulation Models
	23.1 Temporal dynamics
	23.1.1 Chaotic dynamics in population size
	23.1.2 Investigating the route to chaos

	23.2 Spatial simulation models
	23.2.1 Meta‐population dynamics
	23.2.2 Coexistence resulting from spatially explicit (local) density dependence
	23.2.3 Pattern generation resulting from dynamic interactions

	23.3 Temporal and spatial dynamics: random walk
	23.3 References

	Index
	EULA

