

A Primer in Biological Data Analysis and Visualization Using R

A Primer in Biological

Data Analysis and

Visualization Using R

Second Edition

Gregg Hartvigsen

Columbia University Press New York

Columbia University Press
Publishers Since 1893

New York Chichester, West Sussex
cup.columbia.edu

Copyright © 2021 Gregg Hartvigsen
All rights reserved

Library of Congress Cataloging-in-Publication Data
Names: Hartvigsen, Gregg, author.

Title: A primer in biological data analysis and visualization using R /
Gregg Hartvigsen.

Description: Second edition. | New York City : Columbia University Press,
2021. | Includes bibliographical references and index.

Identifiers: LCCN 2020053895 (print) | LCCN 2020053896 (ebook) | ISBN
9780231202121 (hardback) | ISBN 9780231202138 (trade paperback) | ISBN

9780231554404 (ebook)
Subjects: LCSH: R (Computer program language) | Mathematical

statistics–Data processing.
Classification: LCC QA276.45.R3 H37 2014 (print) | LCC QA276.45.R3

(ebook) | DDC 005.13/3–dc23
LC record available at https://lccn.loc.gov/2020053895

LC ebook record available at https://lccn.loc.gov/2020053896

Columbia University Press books are printed on permanent
and durable acid-free paper.

Printed in the United States of America

Cover design: Milenda Nan Ok Lee
Cover photo: Gregg Hartvigsen

Contents

Preface to the Second Edition ix

Acknowledgments xi

Introduction xiii

CHAPTER ONE
Introducing Our Software Team 1

1.1 Solving Problems with Excel (or Google Sheets) and R 2
1.2 Install R and RStudio 4
1.3 Getting Help with R 5

1.4 R as a Graphing Calculator 6
1.5 Using Script Files 12

1.6 Extensibility 14
1.7 Problems 15

CHAPTER TWO
Getting Data into R 19

2.1 Using c() for Small Datasets 19
2.2 Reading Data from a Spreadsheet Program 20

2.3 Reading Data from a Website 23
2.4 Problems 24

CHAPTER THREE
Working with Your Data 27

3.1 What Kinds of Data Are There? 27
3.2 Accuracy and Precision of Our Data 27

3.3 Gathering Data into Dataframes 29
3.4 Stacking Data 30

vi Contents

3.5 Subsetting a Dataframe 31
3.6 Sorting a Dataframe 32

3.7 Saving a Dataframe to a File 34
3.8 Problems 34

CHAPTER FOUR
Tell Me About My Data 37

4.1 What Are Data? 37
4.2 Where’s the Middle? 38

4.3 Dispersion About the Middle 42
4.4 Testing for Normality 45

4.5 Outliers 50
4.6 Dealing with Non-Normally Distributed Data 52

4.7 Problems 53

CHAPTER FIVE
Visualizing Your Data 55

5.1 Overview 55
5.2 Histograms 57
5.3 Boxplots 58
5.4 Barplots 59

5.5 Scatterplots 63
5.6 Bump Charts (Before and After Line Plots) 64

5.7 Pie Charts 65
5.8 Multiple Graphs (Using par() and pairs()) 67

5.9 Problems 69

CHAPTER SIX
An Overview of Science, Hypothesis Testing,

Experimental Design, and Inference 73
6.1 What Do We Mean by the Term Statistics? 73

6.2 How to Ask and Answer Scientific Questions 75
6.3 The difference Between Hypothesis and Theory 77

6.4 A Few Experimental Design Principles 78
6.5 Using R to Assign Individuals to Treatments Randomly 79

6.6 Inference 80
6.7 How to Set Up a Simple Random Sample for an Experiment 82

6.8 Interpreting Results: What Is the p-value? 83
6.9 Type I and Type II Errors 85

6.10 Problems 87

CHAPTER SEVEN
Hypothesis Tests: Using One- and Two-Sample Tests 89

7.1 One-Sample, Two-Tailed Test with Normally Distributed Data 89
7.2 One-Sample, One-Tailed Test with Normally Distributed Data 93

7.3 One-Sample Tests with Non-Normally Distributed Data 94
7.4 Paired Data That Are Normally Distributed 95

Contents vii

7.5 Paired Data That Are Not Normally Distributed 98
7.6 Tests with Two Independent Samples 99

7.7 Problems 103

CHAPTER EIGHT
Hypothesis Tests: Differences Among Multiple Samples 105

8.1 One-Way ANOVA 105
8.2 Interpreting Results from a One-Way ANOVA 109

8.3 Visualizing a One-Way ANOVA 110
8.4 One-Way Test for Non-Parametric Data 112

8.5 Two-Way ANOVA 114
8.6 Interpreting the ANOVA Table 119

8.7 Visualizing the Results of a Two-Way ANOVA Test 122
8.8 Problems 124

CHAPTER NINE
Hypothesis Tests: Linear Relationships 127

9.1 Correlation 127
9.2 Linear Regression 131

9.3 Another Example of Regression Analysis 137
9.4 Problems 139

CHAPTER TEN
Hypothesis Tests: Observed and Expected Values 141

10.1 The χ2 Test 141
10.2 An Example with Warts 144
10.3 The Fisher Exact Test 146

10.4 Problems 147

CHAPTER ELEVEN
A Few More Advanced Procedures 149

11.1 Writing Your Own Function 149
11.2 Adding 95% Confidence Interval Lines for Linear Regression 152

11.3 Nonlinear Regression 153
11.4 An Introduction to Mathematical Modeling 163

11.5 Problems 167

CHAPTER TWELVE
An Introduction to Computer Programming 171

12.1 What Is a Computer Program? 171
12.2 Introducing Algorithms 175

12.3 Combining Programming and Computer Output 177
12.4 Problems 178

CHAPTER THIRTEEN
Final Thoughts 181

13.1 Where Do I Go from Here? 181

viii Contents

APPENDIX
Solutions to Select Problems 183

Bibliography 193

Index 195

Preface to the Second Edition

THIS SECOND EDITION IS AIMED at accomplishing two impor-
tant tasks. First, I have worked to make necessary corrections, such as a table
heading here and a dropped word there. Second, I have received a variety of
helpful comments on how to improve the instruction throughout the text.
Hopefully, I have succeeded at completing both tasks. Where the book falls
short, the blame rests with me.

In this edition I also have worked to improve the chapter-ending ques-
tions and have provided solutions to a selection of the problems from each
chapter. My goal is to help improve learning and to help faculty who seek
to adequately assess student learning through assigning the problems. Many
of the solutions include numerical answers so students know they’re on the
right track. The questions can still be assigned for homework because either
the code or answers should be supplied by the students. Below are potential
assignments for each chapter:

Chapter Questions
1 2, 4, 6, 7, 9, 10
2 1a–d, 2b–f, 3
3 1b–e, 2a–d
4 all
5 1, 2, 3, 5
6 1a–c, 2b–d, 3, 4, 5
7 2, 3b–e, 4, 5
8 1a–b, 1e–f, 2a–f
9 1a–e, 2, 3, 4b–d
10 1b–d, 2, 3
11 2, 3b, 4b, 5
12 1, 3, 4, 5, 6, 7

In addition, I have worked to add information that helps readers bet-
ter understand the tests and techniques implemented in the text. For in-
stance, I’ve found students curious about why an analysis of variance, which

x Preface to the Second Edition

compares different samples, isn’t called an “analysis of means.” I also have
worked to clarify how tests work, particularly the different forms of the appar-
ently simple t-test. The concept of a one- versus two-tailed test is introduced
more carefully so readers can both appreciate and implement this approach
correctly.

This edition is about 10% shorter than the first edition. It’s leaner and
meaner. No, I mean it’s more concise! It’s always tempting to expand the
next edition to cover more chapters. I have avoided this urge. New statistical
techniques and packages for R come out daily, but what early undergraduate
biology students need is a short, clear introduction on how to implement
and interpret the quantitative methods they’re most likely to need. I hope
this book meets those needs. Simple methods, such as making graphs using
the plot() function, are perfectly adequate to produce most publication-
quality analyses and visualizations. If and when you need a highly specialized
visualization technique, you will, with the basic skills introduced in this text,
be able to understand how to implement those procedures.

Acknowledgments

I WOULD LIKE TO THANK the developers and maintainers of the
open-source software that was used exclusively to develop this book. I wrote
this book in a LATEX (an open-source typesetting environment) with embed-
ded R code (R Core Team, 2020). The original document is in a “noweb”
format (*.Rnw) that I edited from within RStudio and compiled using the
Sweave() function. With a single keystroke combination in RStudio, the
R code is run and written to a LATEX file and compiled to create the final
pdf. Some of the R code relies on additional “packages” that were written
by volunteers within the vast R community.

I also am please to thank members of the SUNY Geneseo community
for their support, particularly our provost, Carol Long, for the sabbatical
I used to complete the first edition of this book. This second edition was
completed during a second sabbatical, so my thanks go, also, to Provost
Stacey Robertson. I also would like to thank Jenny Apple, Tom Reho, Bob
Simon, Rob Feissner, Jarrod LaFountain, Hayley Martin, Patrick Asselin,
Nicholas Whittel, Chris Leary, and the anonymous reviewers for their keen
eyes and insightful suggestions as to how to improve this book. For the first
edition, my thanks go to my editors and their team at Columbia University
Press: Patrick Fitzgerald, Bridget Flannery-McCoy, Anne McCoy, designer
Lisa Hamm, and Ellie Thorn. And for this second edition, thanks to Miranda
Martin, Brian Smith, Marielle Poss, and Milenda Lee at Columbia University
Press, and to Ben Kolstad and Marianne L’Abbate at KGL. My thanks to all
for their patience, insight, and belief that I could complete this project. I
want you to know that I really tried!

I also must thank the many students that have helped me be a better in-
structor of biostatistics. In particular, I’d like to thank Briana and Angela Ku-
bik, David Morrison, Yannis Dimitroff, and Tom and Phoebe Hartvigsen for
helping point out opportunities to improve the first edition. Without their

xii Acknowledgments

questions and perplexed looks, this book would have been far more frustrat-
ing for readers. Despite all this help, there undoubtedly remain shortcomings
in this book, to which I enjoy complete ownership.

On a more personal note, I thank Meredith Drake for her belief in me.
There simply is no “without her....” So this one’s for you!

Introduction

We face danger whenever information growth outpaces our understanding
of how to process it.

—N. Silver, The Signal and the Noise, 2012

Brazil removed from public view months of data on its COVID-19 epi-
demic on Saturday.

—Reuters, June 6, 2020

So, instead of 25 million tests, let’s say we did 10 million tests. We’d look
like we were doing much better because we’d have far fewer cases.

—President Donald Trump, June 22, 2020

In our effort to understand and predict patterns and processes in biology,
we usually develop an idea or, more formally, a conceptual model of how our
system works. We generally frame our models as testable hypotheses that we
challenge with data. As the science of biology has matured, our questions
about how nature works have gotten more sophisticated and complex. Un-
fortunately, we are not able to simply look at a table of raw data from an
experiment and see an answer to an interesting question with any quantita-
tive level of confidence. To accomplish this, we will learn how to use the R
statistical and programming software package to process these data (that is,
to summarize, analyze, and visualize our results). This approach is laid out in
chapter 6. We also will go a step further and work to understand what these
results mean biologically.

Data, graphs, and statistics, oh my! Isn’t the interesting stuff in biology
really just the cool, living things all around us? It is—but it’s so much more
beautiful when we understand it. Maybe you plan to be a doctor or a vet-
erinarian. Perhaps you want to study molecular biology or be an ecologist.

xiv Introduction

All of these professions require you to fully understand information. You’ll
encounter daily the need to correctly interpret results from different studies
and apply the authors’ results within your specialty. You’ll also continue to
hear news and want to understand what those results mean, maybe also for
your everyday life.

We often hear about a variety of global challenges that human beings
face. As I write this the human population is facing a pandemic caused by
the virus SARS-CoV-2. We’re constantly being provided graphs of data that
capture the number of cases and the number of deaths. The data are vitally
important for us to be able to understand and predict how such challenges
are unfolding and how we are to meet those challenges. Hiding or ignoring
such data is certainly not going to improve the human condition. This book
is aimed at helping you to work with and understand data.

You’ve probably heard about “coral bleaching.” Corals are tiny animals
that harbor mutualistic, photosynthetic zooxanthellae (algae) that give the
corals their bright colors. Bleaching can occur when water is warmer than
normal, an increasingly common phenomenon with global warming. In a
study from the Indian Ocean (Southern Hemisphere), corals were found
to bleach during the warm summer months (December to March; see
figure 0.1).

We can clearly see that zooxanthellae density cycles up and down over
time. The authors knew to try and fit a function through these data. But

0

1

2

3

4

5

Month

Z
o

o
x
a

n
th

e
lla

e

d
e

n
s
it
y
 1

0
6
c
m

−
2
)

J
a

n

F
e

b

M
a

r

A
p

r

M
a
y

J
u

n

J
u

l

A
u

g

S
e

p

O
c
t

N
o
v

D
e

c

Figure 0.1 The density of mutalistic zooxanthellae in a coral found around the island
nation of Mauritius (Indian Ocean). Dips during the summers in the Southern Hemi-
sphere (December to March) coincide with warmer waters that lead corals to expel the
zooxanthellae (a.k.a. coral bleaching). Data from Fagoonee et al. (1999).

Introduction xv

why do this? As you will learn in this book, we try to fit equations to data
like these so that we can complete the two main goals of science:

1. Understand what’s going on;
2. Predict what will happen in the future

In this study the authors admit to trying to fit the most complicated func-
tion they could through these data (ultimately, a fourth-order polynomial).
This line is shown in the graph. This model (the line) does very well at cap-
turing the dynamics of the zooxanthellae density over time but utterly fails
to provide us either understanding or any prediction regarding coral bleach-
ing dynamics. The dynamics are undoubtedly cyclical, so the authors should
have used a sine curve to identify the average density (1.72 million cm−2)
with an amplitude of 1.3 million cm−2, which quantifies the dynamics of
coral bleaching in this system. This appropriate model also provides us the
ability to predict future (or past) densities as well. A fourth-order polyno-
mial suggests that densities both were and soon will be astronomically high
(e.g., > 10 million times their current density in just ten years). My hope is
that this book will help you better assess biological information.

What This Book Is (and Isn’t)

This book is designed to help you collect, organize, analyze, and visualize
data. I assume you have not heard of R, and I will, therefore, introduce how
to use it to accomplish these goals. Although I imagine you have had some
experience making graphs and maybe calculating a few descriptive statistics
(e.g., mean and standard deviation on a calulator or in Excel or Google
Sheets), I assume you haven’t taken a statistics course and have no expe-
rience with R (we’ll install it in the next chapter, in section 1.2).

This book, therefore, aims to give you a foundation upon which to be-
come a better student of science and a better consumer of scientific informa-
tion. More specifically you will learn how to

• Formulate hypotheses
• Design better experiments
• Do a variety of standard statistical procedures
• Interpret your results
• Create publication-quality visualizations of your results
• Correctly report your results
• Find help so you can become more independent
• Write your own functions and create simple computer programs that will

allow you to perform repetitive tasks

xvi Introduction

Despite being able to do all these things by the end of this short book,
it’s fair to say that you shouldn’t expect to achieve the title of “quantitative
guru.” Instead, you will work to become competent at finding answers to
many of your questions, such as “Are these two samples different?” and “Is
there a significant linear relationship between my variables?” You will become
a resource to the people around you and be better at understanding and
presenting scientific information.

I have written this book in the hope that you’ll feel more comfortable with
complex biological problems. It has grown out of the challenges facing my
own undergraduate students. But it also covers some topics that I think are
fun and valuable (e.g., programming). The chapters end with problem sets
for you to challenge yourself to use what you have learned. Some of the data
are real; some are merely realistic. I also have included solutions to many of
the problems at the end of the book. Finally, the book is filled with R code.
You should type this in yourself as you work through the examples because
this helps with the learning process. As you’d probably guess, quantitative
data analysis isn’t a spectator sport! To help you, I also provide all the code
at https://github.com/GreggHartvigsen/Primer-Biostats-2e.

This book is neither a formal introduction to R nor a statistics textbook,
which would be filled with the mathematics of formal statistical theory. In-
stead, this book helps you to solve problems you’re likely to encounter in
your undergraduate program in biology. I explain what statistics are and
how to interpret and share scientific results in written and visual forms. After
working through this book, you should be able to solve a variety of prob-
lems with the most widely used statistical and programming environment. I
hope you will be less intimidated by data, statistics, and graphs and will be
more able to enter data into the computer, test hypotheses, and present your
findings.

This book should help you make more appropriate and professional sci-
entific visualizations and discover findings that might have otherwise been
missed. You will no longer be satisfied with hearing from anyone things like,
“Well, it looks significant” or “There seems to be a trend in the data.” For
the rest of your career, I hope you become the person who says, “We can
test that!”

Who Really Needs This?

In this book, I not only introduce statistical and visualization techniques but
also explain why we do all this. There’s an unfortunate misconception that
we don’t really need all this quantitative stuff in biology. I have heard several
times the following line of thinking:

Introduction xvii

Why do we need to use statistics in biology? If the hypothesis is clear,
the experiment is designed correctly, and the data are carefully collected,
anyone should be able to just look at the data and clearly see whether or
not the hypothesis is supported. Statistical procedures are simply safety nets
for sloppy science.

As you work your way through this book, you’ll see why such thinking
limits scientific exploration, understanding, and the ability to make predic-
tions about natural phenomena. Here is a brief list of reasons that statistics,
mathematics, and appropriate visualizations are critical for understanding bi-
ological systems:

• Statistical procedures allow us to test our ideas rigorously and objectively.
We might test whether atmospheric CO2 concentrations are increasing
statistically. We don’t address statements of opinion, such as someone
stating, “I don’t believe global warming is happening.” Scientists prefer
to assess data rather than opinions.

• Based on our results from data analyses, we often develop formal models
that help us to understand and explain how systems work and maybe
even make predictions. We want these to be completed correctly, not
like the fourth-order polynomial used in the coral bleaching example.

• Biologists often work to understand how multiple factors interact, often
in complex ways, to affect biological systems. To determine the indi-
vidual effects and the combined interactive effects, we need to develop
and conduct complex experiments to illuminate biological patterns and
mechanisms that cause these patterns. We then use sophisticated data-
analysis procedures and visualization techniques to answer these chal-
lenging questions.

Biology is one of the more complex sciences. I will admit that, at times,
some questions can be pretty simple. Imagine, for instance, that we have 100
randomly selected pea plants and expect a 3:1 phenotypic ratio of yellow to
green peas. In this case we should expect to see a ratio of 75 to 25 yellow to
green peas. However, we are unlikely to see exactly this ratio. If, instead, we
find a ratio of 78:22 we can see immediately (without statistics!) that this is
not a 3:1 ratio. Are you prepared, based on this finding, to conclude that this
system does not follow the well established rules of segregation? Scientists are
predisposed by their profession to be skeptical and, therefore, will not accept
a statement like “Trust me that our finding demonstrates conclusively that
Mendel was wrong!”

Our goal is to understand biological systems. Unfortunately, anything in-
teresting today is complex (even determining if our data adhere to a simple
3:1 ratio). With quantitative tools, we can better understand how natural

xviii Introduction

systems work. Only then might we be able to make accurate and useful pre-
dictions. Science relies on a strong foundation of statistics, mathematics, and
the visualization of results, all of which are available to you through the R
statistical and programming environment.

Additional Resources

There are far too many great sources of information on data analysis, statis-
tics, visualizing information, and programming to list them all here; this
book is a basic introduction to all of these topics. I hope you seek more
information in all of these areas. If you do, here are a few recommendations
that go more deeply into different subsets of the topics covered in this book.

General Introductions to R
1. R: A Language and Environment for Statistical Computing R. R Core

Team (2020)
2. An introduction to R. Venables et al. (2018)
3. A beginner’s guide to R. Zuur et al. (2009)
4. R for dummies, 2/e. Meys and de Vries (2015)
5. The R book. Crawley (2012)
6. R in a nutshell: A desktop quick reference. Adler (2012)

Statistics Books
1. Biostatistics for the Biological and Health Sciences. Triola et al. (2017)
2. A primer of ecological statistics. Gotelli and Ellison (2012)
3. Fundamentals of biostatistics. Rosner (2015)
4. Biostatistical analysis. Zar (2009)

Programming Using R
1. The art of R programming. Matloff (2011)
2. Hands-On Programming with R: Write Your Own Functions And Simu-

lations. Grolemund (2014)
3. http://manuals.bioinformatics.ucr.edu/home/programming-in-r

CHAPTER ONE

Introducing Our Software Team

IN SCIENCE, we are interested in understanding systems that are com-
plicated. Our use of quantitative approaches gives us the ability not only to
understand these systems but also to predict how a system might behave in
the future (or maybe even how it behaved in the past). As we work to under-
stand and predict complex biological systems, we need computational help.
You probably have written lab reports using only a calculator. This should
be avoided for a variety of important reasons:

• Difficulty in verifying that you entered the data correctly (“I think the
numbers are right”)

• Difficulty in repeating the analysis (“I’m not doing it again because I
might get a different answer”)

• Inability to share your analytical approaches and results (“Sorry, I hit the
all-clear button! You have to trust me”)

• Inflexibility in how the data are analyzed (“You wanted me to do what?”)
• Inability to make and share appropriate graphs (“Can I take a picture of

the graph on my calculator with my phone and incorporate that in my
lab report?”)

To solve these shortcomings, we will use Excel and R.
You may be somewhat familiar with Excel but probably have little or no

experience with R. Therefore, I welcome you to the world of R! I know this
might be a scary place for you at first. I bet R is really different from all the
programs you’ve used. Fortunately, this introduction is intended for new-
comers. But as you proceed, you will learn how to do some really amazing
things with R. You’ll gain independence with practice. R is like playing an
instrument, participating in a sport, or learning a foreign language—they all
require practice. I have confidence that you are capable of using R to solve

2 A Primer in Biological Data Analysis and Visualization Using R

interesting problems. And the more time you spend at it, the better you
will get.

1.1 Solving Problems with Excel (or Google Sheets) and R

For many analytical problems, we will be able to use R by itself. However, in
biology, we often test our ideas, or hypotheses, with large amounts of data.
Therefore, we will use Excel for what it does well (entering and organizing
data). But we will not use Excel to do what it doesn’t do well (statistical
analyses, modeling, and visualizing data). Instead, these core scientific skills
are best done with R. If you love Excel, then you’ll be happy to know we’re
not abandoning it—Excel has its place.

It is important to recognize that doing things well is rarely easy. Writing
a good poem, playing tennis well, or doing ballet well are all hard. And
conducting hypothesis tests correctly and making professional-quality graphs
are not simple, one-click operations.

At first you will likely think that making graphs and performing statisti-
cal tests in R are absolute nightmares. (And when you become a skilled R
programmer, you’ll still be challenged at times!) But the days of skipping an
analysis or accepting an ugly or incorrect graph because “that’s the best I can
do with Excel” are over. You can do it in R! Therefore, in this chapter, we
will discuss Excel but focus mainly on R. The combination of using Excel to
organize our data and R for analyses and visualizations will allow you to ask
and answer questions in biology.

You still may be wondering why you can’t just do all of this in Excel. Here
is a sampling of reasons whyR is clearly better than Excel for problem solving
in biology. With R you can:

• Create professional, publication-quality visualizations.
• conduct quantitative analyses, both analytical and statistical (e.g., do

a t-test, solve systems of differential equations, conduct nonlinear re-
gression, use matrix algebra, conduct signal processing, perform wavelet
analysis, analyze fMRI data, do genome analyses, and create phyloge-
netic reconstructions, to name a few).

• Build statistical tests that can be repeated easily and shared with; these
tests might rely on their own data, data read from a file, or data acquired
directly from a website.

• Do the same thing and work the same way on computers running Mac,
Windows, and Linux.

• Write computer programs, such as modeling a population growing over
time, using an object-oriented language.

Introducing Our Software Team 3

• Access modern analytical tools for biologists that are being developed
right now.

• Use and receive widely available help from the R open-source
community.

• Use open-source software that provides solutions that are “auditable,”
meaning you can understand and explain to others how you got your
results (there are no black boxes; it’s open software).

• Write a document like this book; the R environment allows one to com-
pile together in one document words, mathematical equations, com-
puter code, statistical tests and output, and professional-quality graphs,
all in the free, open-source LATEX typesetting environment.

• Carry a research project, paper, all the data, and the entire software pack-
age for doing the analysis on a low-capacity flash drive.

• Rest assured that your investment in skill building will pay off well into
the future; you don’t have to hope you’ll have access to the program
when you move on to your next stage of life.

• Enjoy these benefits because open-source means R is free!

Your ability to use R to make informed, evidence-based conclusions likely
will provide you the most valuable set of skills you’ll learn as an undergrad-
uate science major. If you keep this skill set, you will be highly marketable.
R helps you speak the language of science, which is written in mathemat-
ics, statistics, and data evaluation and visualization. This ability to answer
scientific questions and present your results professionally is finally in your
hands.

Your ability to use R helps fulfill an important goal that was synthesized
in the report Scientific Foundations for Future Physicians produced jointly
by the American Association of American Medical Colleges and the Howard
Hughes Medical Institute (2009). The authors of this report downplay the
importance of memorizing facts and, instead, encourage students to learn
to “apply quantitative reasoning and appropriate mathematics to describe or
explain phenomena in the natural world.”

The report Vision and Change in Undergraduate Biology: A Call to Ac-
tion, produced jointly by the American Association for the Advancement of
Science and the National Science Foundation (2009) and still considered an
important source for guidelines for undergraduate biology education, iden-
tifies six “core competencies” for undergraduates in biology. Below are four
of the six competencies that are directly addressed in this book:

1. Ability to apply the process of science (understand how to formulate and
test hypotheses).

2. Ability to use quantitative reasoning (e.g., use statistics and quantitative
modeling approaches).

4 A Primer in Biological Data Analysis and Visualization Using R

3. Ability to use modeling and simulation.
4. Ability to communicate and collaborate across disciplines.

The reason you have this book is to help you achieve these goals. It’s time
for us to get going.

1.2 Install R and RStudio

We’re going to make the installation of your R environment a two-phase
process. First we will install R, which is a basic program with a simple in-
terface. You can do everything discussed in this book in this environment.
Consider this the engine, frame, wheels, and steering wheel for a car. It’ll
get you to wherever you want to go. The second step is to install RStudio,
which makes it a much more comfortable ride. For both programs, you can
simply accept the defaults offered by the programs during installation.

1. Install R. In a web browser, search simply for the letter “r,” or go to
http://cran.r-project.org/. Follow the instructions to install the correct
version of R on your computer. Note that if you borrow a computer but
you don’t have the proper administrative rights, you usually can install
R on the computer’s desktop. If you have a Mac running the OS prior
to version 10.6, then the latest version of R may not run. Check out the
information at http://cran.r-project.org/bin/macosx/ if your installa-
tion doesn’t work.

2. Install RStudio. Back in your web browser, search for “RStudio”
or go to http://rstudio.org/. Follow the instructions to install the
correct version of RStudio on your computer. Again, the most
recent version of RStudio does not seem to work on Mac OS
prior to 10.6. For Mac OS 10.5, you can download RStudio
at https://s3.amazonaws.com/rstudio-dailybuilds/RStudio-0.95.265.
dmg.

Once you have RStudio running, it should look much like the screenshot
from a Windows-based computer (figure 1.1). You may see only one large
window on the left side. If you do, click on File -> New and open a new
R script file.

RStudio should show four panels. The upper-left panel is where you can
enter lines of code into a “script” file. RStudio allows many script files to
be open and uses tabs to help you keep track of them. You’ll find out more
about scripts in section 1.5.

The lower-left panel is the “console” (or “command prompt”) where you
can type commands and see your answers, like a calculator (see section 1.4).

Introducing Our Software Team 5

Figure 1.1 Screen shot of RStudio running on the Windows operating system.

Also, if you use a script file and run your commands, the output will appear
here in the console.

In the upper-right panel, you’ll see variables and their values after you
declare them. In the console, assign the number 5 to the variable a with this
command, followed by hitting the ”Enter” key (←↩):
> a = 5

Note that you should not type the “>” character. The a and 5 should show
up in the upper-right panel in the “Environment” tab (see figure 1.1).
Finally, the lower-right panel displays help information and the plots you
create.

1.3 Getting Help with R

If you like to get help when using a program, you’re in luck. There are many
ways to get help with R and RStudio. If you don’t know how to get the
mean of some data or perform an analysis of variance (ANOVA) in R, then
you can search within RStudio or you might just search on the web for help.

You can get help in the console as follow:

> ?mean # Gives help on function mean()
> ??mean # Finds all occurrences of ”mean” in the help
> system
> ?”if” # Get help on the control keyword ”if” (same for
> ”for”)

6 A Primer in Biological Data Analysis and Visualization Using R

Figure 1.2 Adding two numbers on the command line of the console in RStudio.

Do not type the leading “>” character—R provides that for you by default in
the console. Note that any text that follows the # sign is ignored by R. These
“comments” can help you, or other readers of your code, to understand what
the commands should accomplish.

You also can get help from inside your script files (upper-left panel) by
placing the cursor on a keyword and hitting the “Tab” key. A pop-up window
should appear with help on your function or similarly spelled functions.

Another important and rich source of help is available online. Feel free
to explore this by simply performing a search in a web browser, such as “r
mean.” For more help you can go to one of these sites:

1. http://cran.r-project.org/doc/manuals/R-intro.html
2. http://www.statmethods.net/
3. https://www.r-bloggers.com/

Or check out the section called “Where Do I Go from Here?” in section
13.1.

1.4 R as a Graphing Calculator

Let’s begin by running a few commands in RStudio’s console. Click inside
the console (lower-left panel) to activate it and try adding 2 and 3 (see figure
1.2). Finish by hitting the “Enter” key:

> 2 + 3

[1] 5

Did you get 5? You have just run a command at the command prompt in
the console. You have used your computer to compute! I hope this has not
been painful so far!

Introducing Our Software Team 7

The “[1]” before the answer seems a bit strange. R is actually reporting
that 5 is the first number in a possible array, or vector, of numbers. Sometimes
your answer will have lots of values, and R will provide you with this counter
to help you find values, but more on that later.

Below is a variety of calculations for you to try. The more you practice,
the easier this will be. You should check that you get the same answers as I
did.

> 5-1 # Subtraction

[1] 4

> 2*3 # Multiplication

[1] 6

> 7/3 # Division

[1] 2.333333

> sqrt(9) # Use the sqrt() function to get the square root of 9

[1] 3

> 9∧2 # 9 squared

[1] 81

> log(3) # Natural logarithm of 3

[1] 1.098612

> log(3,10) # Log of 3 (base 10), or use log10(3)

[1] 0.4771213

What if a command doesn’t work? R is really picky about how you enter
commands. There’s a little wiggle room with spaces, for instance, 5+3 and
5 + 3 both work, but R is very finicky about nonspace characters. For ex-
ample, sqrt{9} doesn’t work because braces are different from parentheses.
R will give you an error message if something’s not quite right:

> sqrt{9}
Error: unexpected ’{’ in ”sqrt{”

Computers, and programs like R, generally do exactly what you tell them
to do, which might not be what you intended them to do! If something goes

8 A Primer in Biological Data Analysis and Visualization Using R

wrong, R will return an error message that should be somewhat helpful, as
you saw above, but it’s never very friendly about it. It’s important not to
take this personally—for R, it’s all business.

Let’s try more complicated calculations. The following lines of code rely
on you providing some data in an “array,” which is a group of objects that
are of the same type, like all numbers or all letters, packaged together. Once
the data are in an array, then far more interesting things can happen. Be sure
to try the following examples because we’ll be using arrays throughout the
rest of the book.

> 1:5 # create an array of integers from 1 to 5

[1] 1 2 3 4 5

The “:” in the above expression is an operator that makes an integer array
ranging from the first value to the second value. Often, however, we have dif-
ferent numbers that we want to combine. We can use the combine function
(c()) to group any set of numbers together into an array.

> c(1, 2.5, 3, 4, 3.5) # combining five numbers into an array

[1] 1.0 2.5 3.0 4.0 3.5

We can store those numbers in a variable so that we can use them again later
(see box 1.1 for more on variables). Here’s how to store the numbers into
the variable dat:

> dat = c(1, 2.5, 3, 4, 3.5) # store numbers the variable
> ”dat ”

Above is how this book “assigns” information to a variable (or object; see
box 1.1). The R language also permits the symbol “<-” (a “less than” sign
followed by a hyphen) to be used for assignments. The following is an ex-
ample that is equivalent to the assignment above:

> dat <- c(1, 2.5, 3, 4, 3.5) # store numbers the variable
> ”dat ”

You can use either of these methods. Whichever you choose, however, you
should be consistent throughout your work.

Note that when you run this line of code, there’s no output provided.
That’s because R has completed the task: store the numbers as an array in
the variable dat. If you want to see the contents of an array, such as dat,
you can type the variable name in the console and hit <enter>. Try it:

> dat

[1] 1.0 2.5 3.0 4.0 3.5

Introducing Our Software Team 9

Box 1.1. What is a variable? Variables, also called objects in R, are letters
or words that store information. We usually use them to store a number
or a group of numbers for later use, as we just did in this chapter for the
data in the variable dat. Alternatively, variables can store characters. For
example, we could store Darwin’s Origin of Species (OoS) in the variable
“OoS”:

> OoS = c(”When”, ”on”, ”board”, ”H.M.S.”, ”Beagle....”)

Variable names should be as short and descriptive as possible (but no
shorter). They should always begin with a letter (never a number or sym-
bol). Descriptive names will help your future self and others who might
look at your code. Good names and commented code help save us time.
If, for example, you have the mass of a dog, don’t use the variable “a”
but instead a more meaningful name with words separated by periods:

> dog.mass = 25.2 # a 25.2 kg dog

Storing numbers in an array variable is very common in statistics. We’ll learn
more about variables when we discuss data in chapter 2. Now that the data
are in the array called “dat,” we can perform a variety of operations on
them. Try these:

> sum(dat) # sum up all values in array ”dat”

[1] 14

> length(dat) # tells you how many numbers are in ”dat”

[1] 5

> sum(dat)/length(dat) # this calculates the mean

[1] 2.8

> summary(dat) # more descriptive statistics for ”dat”

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 2.5 3.0 2.8 3.5 4.0

> dat/5 # divide each value in ”dat” by 5

[1] 0.2 0.5 0.6 0.8 0.7

> dat[5] # returns the fifth element in array ”dat”

[1] 3.5

10 A Primer in Biological Data Analysis and Visualization Using R

> dat[1:3] # returns the first three elements of array ”dat”

[1] 1.0 2.5 3.0

Sometimes you will need to make a longer sequence of numbers. We can do
that using the seq() function. The following line prints the sequence to
the screen.
> seq(1,10, by = 0.5) # sequence from 1 to 10 by 0.5

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
[12] 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

The next line of code, instead, stores the sequence in a variable called
my.seq.
> my.seq = seq(1,10, by = 0.5) # store result in variable
> ”my.seq”

We can see that R uses square brackets to represent the index number for
arrays. From the above output, we see that the twelfth number is 6.5. We
can get that number by using this index value in square brackets at the end
of the variable’s name.
> my.seq[12]

[1] 6.5

Note that indexing inR begins with [1], which differs from some other pro-
gramming languages, such as C or Python, which start with zero. This con-
forms with mathematical expressions, such as this:

∑N
i=1 my.seq i = 104.5.

Sometimes, instead of a sequence of numbers, we need to repeat numbers,
or even letters, for different experimental designs. Let’s try this using the
rep() function:
> rep(c(”A”,”B”,”C”), times = 2) # entire array twice

[1] ”A” ”B” ”C” ”A” ”B” ”C”

> rep(c(”A”,”B”,”C”), each = 2) # each element twice

[1] ”A” ”A” ”B” ”B” ”C” ”C”

You also can combine calculations within the declaration of an array.
> p = c(1/2,1/4,1/4) # three proportions saved in an array
> p

[1] 0.50 0.25 0.25

R also is good at making graphs. Sometimes you need to see what a sine
curve looks like or, perhaps, a simple polynomial. Suppose you are asked (or
simply want) to view a function such as this:

y = 2x2 + 4x− 7 (1.1)

Introducing Our Software Team 11

−10 −5 0 5 10

0
5

0
1

5
0

x

2
 *

 x
^
2

 +
 4

 *
 x

 −
 7

Figure 1.3 The graph of the function y = 2x2 + 4x − 7 over the range −10 ≤ x ≤ 10,
made using the curve() function.

over the range −10 ≤ x ≤ 10. In R, it’s really easy! You can use the
curve() function (see figure 1.3):
> curve(2*x∧2 + 4*x - 7,-10,10)

The curve() function requires us to provide the right-hand side of the
equation, which must include “x.” You also might include the range if you
want something other than a graph from 0 to 1. We can provide additional
arguments if we want to enhance the graph (see box 5.2). If entered correctly,
R will create a smooth curve over the provided range (figure 1.3). We will
use the curve() function to help us solve some tough problems later in the
book (e.g., section 11.3).

Here’s one more thing to try. Histograms are great graphs, as we’ll see,
to visualize the distribution of data. The elusive bell-shaped curve of the
normal distribution can be made using data drawn from the standard normal
distribution (mean = 0 and standard deviation = 1).

Here’s how to get 10,000 values from the standard normal distribution
and send them to the hist() function:
> hist(rnorm(10000))

I didn’t reproduce the graph because we’ll work on this later (see chap-
ter 5). But if you typed that correctly at the command prompt and hit
<enter> I hope you saw a cool “histogram.” What’s happening under the
hood is the following. First, rnorm() is a built-in R “function.” Functions
are routines that do a bunch of stuff behind the scenes (see box 1.2). In
the rnorm(10000) call above, we send the number 10,000 (without the
comma) to the rnorm() function as a single “argument.” The function
rnorm() then “returns” an array of 10, 000 random numbers, drawn from
a “standard normal distribution” (mean = 0, standard deviation = 1). The
call above then uses those 10, 000 values as the “argument” to the hist()

12 A Primer in Biological Data Analysis and Visualization Using R

function. The hist() function then divides the numbers into bins and,
behind the scenes, calls the plot() function that makes the histogram, dis-
played in the graphics window. There’s a lot going on with only that one,
simple line of code!

1.5 Using Script Files

The command line in the console (figure 1.2) is great for quick answers to
simple, one-line problems. For most exercises, however, it is best to create
and use a “script” file. This is a plain text file, created from within RStudio,
that contains a series of commands, each on its own line, that can be run
either one command at a time or all together as a “batch” job.

Box 1.2. Functions. In programming languages, like R, a function is a
defined set of instructions that does something. A function may or may
not require “arguments” as input. Multiple arguments need to be sep-
arated by commas. Functions may return a variable and/or perform an
operation (e.g., make a graph). The sum() function, for instance, adds
together an array of numbers and returns the total:

> sum(1,2,3,4)

[1] 10

R provides many functions that simplify your work. You can even write
your own functions, too (see section 11.1).

To run a line of code in a script file (see box 1.3), you need to have the file
open in RStudio. Place the cursor anywhere in the line you want to run and
hit <ctrl><enter> (Windows PC) or <cmd><enter> (Mac). You also
can highlight any chunk of code, highlighting like you do in other programs,
and run only that which you have highlighted. I will often want to run the
entire script file and so will hit <ctrl><a>, which highlights everything,
then <ctrl><enter> (replace <ctrl> with <cmd> on a Mac).

Box 1.3. Create a script file. Click on the following in RStudio: File
→ New File→ R Script. An empty script file should appear in the
upper-left panel in RStudio (by default). Save it with a meaningful name
in a new folder for this exercise (<ctrl><s> or <cmd><s>). You may
need to create that folder, too, which could hold data files, a presentation
file, and maybe a lab report or paper. You can see what the work flow is
for a typical R project, such as a laboratory exercise, in box 1.4.

Introducing Our Software Team 13

Note that the R code needs to be correct for it to work. Otherwise, R will
provide an error message in the console. If you forget a comma or spell the
sqrt() function SQRT(), R will provide you a mildly helpful error mes-
sage. You also should include “comments” to yourself after the # character.
Comments are ignored by R. Try the example that you can see in figure 1.4.

Organizing your code into script files and placing those into well-named
project folders will greatly simplify your life. Be organized from the start—it
will save you time. One last beauty of RStudio is that when you close it and
later open it up, it will reopen the files that you left open and place the cursor
where you left it.

Box 1.4. What does a typical R project look like? Let’s imagine that you’re
in a laboratory class and several groups collected and pooled their data.
The data have been made available in an Excel spreadsheet in the .CSV
file format (one of the options in both Excel and Google Sheets). Here
are the steps you might take to complete the lab:

1. Download the data file and store it in a folder for this class/lab/
project.

2. Open RStudio and create a new script file, give it a meaningful name,
and save it in the project folder with the data.

3. Set the working directory in RStudio to the location of your script
file (Session -> Set Working Directory -> To Source File Location).

4. Write yourself some commented text (lines that start with the # sym-
bol) about the project so when you return you’ll know what you
were trying to do.

5. Write lines of code that do the following:

(a) Read in the data from the spreadsheet file (see section 2.2).
(b) Explore your data. For example, you will likely gather sum-

mary statistics (see chapter 4), test whether your data are nor-
mally distributed (see section 4.4), and/or create visualiza-
tions (see chapter 5).

(c) Conduct the appropriate statistical test(s) (see chapters 7–
11).

6. Once you’ve completed the tasks above, you’ll need to copy your
graphs and statistical output from RStudio to your laboratory report.

14 A Primer in Biological Data Analysis and Visualization Using R

Figure 1.4 RStudio after running the script file that is in the upper-left panel. The output
is in the console (lower-left panel).

1.6 Extensibility

When you install R and RStudio, you will have the basic version of the soft-
ware. As you progress in your use of R, you’ll likely need to add more tools
(or get the latest version of your existing tools). To get those tools, you
will install “packages” from internet servers located around the world. Once
these packages are installed, you have to “load” them with the library()
command at the beginning of your session.

At first this probably makes R seem like an incomplete software package.
It’s actually a very efficient use of your computer and its resources. You only
install what you need. The major computer packages with which you are
familiar require a lot of time to install and consume a lot of space on a hard
drive. R is much smaller, faster, and customized by you for what you do.

When you try to install a package for the first time during an RStudio
session, you may be asked to choose a “mirror” website, so you need to
be connected to the internet. You should choose one that is geographically
nearby (although, at times, I’ll go international for fun). Once these packages
are installed, you can use them without being connected to the internet. You
also can save the packages to a flash drive if you’re at an internet cafe in an
exotic study abroad location and install them later. Here are the packages I
will assume you have installed: e1071, deSolve, plotrix, and UsingR.
Note that names are case sensitive. To install the UsingR package, type:

Introducing Our Software Team 15

> install.packages(”UsingR”)

and to load it into R for your current session, type:

> library(UsingR)

Note that you need quotes around the package name when you use the
install.packages() function but not in the library() function.

If you are using an older version of R, then you will be warned that the
package was compiled using a more recent version of R. This warning is not
likely to cause a problem. If you get this message, you should install the latest
version of R, at your convenience. Note that “warnings” are just warnings.
You are likely fine. An error message, however, means something is wrong
and you’ll have to fix it.

Now that you’ve installed R and RStudio, created a script file, completed
some calculations, and installed a few packages, it’s time to test-drive R.
Below are a few problems for you to try.

1.7 Problems

1. Find the solutions to the following problems:

(a)
√

17 = ?
(b) log8(10) = ? That’s the log of 10, base 8. Read the help on the

log() function (> ?log)
(c) What’s e10, where e is the base of the natural logarithm? If you

enter > e^10 in your script file and run it, you’ll get an error.
Why? Do a quick search on the internet to find how to raise e to
a power or, as above, query R with “> ?log”.

(d) If x = 3, find y, given the following expression.

y =
1
17

+ (5x+ 7)2 + ln(17)

Note that the natural logarithm (ln) of a number is obtained in
R using the log() function.

2. Find the basal area of a tree (cross-sectional area of a tree trunk) if the
diameter is 13.5 cm. Hint: Area = πr2 and that, in R, the constant pi
holds the value of π.

3. Calculate the volume of the Earth in km3. It is an oblate spheroid, which
is a somewhat flattened beach ball. The volume of an oblate spheroid is
V = 4

3πa
2b where a is the radius to the equator and b is the radius to one

of the poles. Here are these values for Earth in kilometers:

> a = 6378.137
> b = 6356.752

16 A Primer in Biological Data Analysis and Visualization Using R

4. The following are masses for chickadee chicks from several nests, mea-
sured in grams:

3.2, 6.7, 5.5, 3.1, 4.2, 7.3, 6.0, 8.8, 5.8, 4.6

(a) Combine the data into a single variable array called my.dat us-
ing the c() function. Use R code in an R script file to answer
these questions.

(b) What is the total mass of all the chicks combined?
(c) It’s easy enough to count, but use the length() function to

count how many chicks are in the sample.
(d) Without using the mean() function, calculate the mean chick

mass in grams. Note you calculated the total mass and the num-
ber of chicks above.

5. Create an array of numbers from 0 to 5, by steps of 0.5, using the func-
tion seq(). Save the result in a variable called i. Using code in your
script file, write the values of 2i in the console (it should be an array of
numbers).

6. A population of seagulls has 47 females and 38 males. What proportion
of birds are females?

7. You are riding in your friend’s monster truck and you’ve stopped yet
again at the gas station to fill up. You wonder what the gas mileage is for
this vehicle. Your friend tells you it went 230 miles on the 28 gallons of
gas, the amount just put in the tank.

(a) What’s the fuel efficiency for this vehicle in miles per gallon
(mpg)?

(b) If the tank holds 32 gallons, how far can this vehicle be driven?

8. There are many datasets built into R (type data() to see them in a text
file within RStudio). You can learn more about each with the help fea-
ture. There’s an interesting time series dataset on the ring widths mea-
sured from an ancient bristlecone pine tree (Pinus longaeva). You can
learn more about these data with this command:

> ?treering

Answer the following questions using these data:

(a) The help on this dataset (> ?treering) tells us how many ob-
servations there are. Provide code that confirms or denies this.

(b) Graph the data by sending these to the plot() function.
(c) Tree ring widths are generally correlated with climate (e.g.,

amount of rainfall). The data are bouncing around a lot. Is
there a periodic pattern hidden in these data? If so, what’s the

Introducing Our Software Team 17

dominant period in years? Below is a technique that tweaks out
of a time series dataset like this long-term signals of a repeating
pattern.

> the.spectrum = spectrum(treering) # spectral analysis
> # get the maximum spectrum
> max.spectrum = which(the.spectrum$spec ==
> max(the.spectrum$spec))
> # the period = 1/dominant frequency
> 1/the.spectrum$freq[max.spectrum]

What is the dominant period in years?

9. Graph the Michaelis-Menton function for enzyme kinetics. It is repre-
sented by this equation:

v =
Vmax · x
Km + [x]

where v is the velocity of the reaction, Vmax is the maximum velocity, x
is the concentration of the substrate (usually denoted as [S]), and Km

is the Michaelis-Menton constant. Use the curve() function of this
relationship for concentrations of x ∈ (0, 5), assuming that Vmax = 0.9
and Km = 0.5.
In chapter 11 we discuss the analysis of this relationship in greater detail
(see section 11.3).

10. A population of koalas in Australia has a per-capita growth rate of λ =

0.95 per year. They grow according to this equation:

N2020+t = λtN2020

There are currently 127 koalas now (N2020 = 127).

(a) How many koalas will there be in the year 2025 (N2025)? In an
R script file (in RStudio), assign the correct values to variables
called lambda, t, and N.2020 (or whatever year it currently is).
Each of these should be placed on their own line in your script
file. On the fourth line perform the calculation that prints how
many koalas there will be in 2025 (N2025).

(b) How many were there in 2015?

CHAPTER TWO

Getting Data into R

THERE ARE MANY WAYS TO GET DATA INTO R, and which
technique you use depends on a variety of factors. All data are eventually
stored in “variables” in R. A variable is a named object in R that is used to
store and reference information (see box 1.1). The method we use to do this
usually depends on the amount of data we have. The three basic approaches
are as follows:

1. Fewer than about 25 values: create a variable and assign data to that
variable using the c() function.

2. More than about 25 values: enter data into a spreadsheet, save the file in a
.csv format, and then read the data file into R using the read.csv()
function.

3. Read data in from a website, usually using read.csv() (comma sepa-
rated variables) or read.table() for other types of data files.

We’ll discuss each of these methods in more detail in the coming sections.
Note that getting data into R accurately is a critical step in understanding
what the data tell us. Extreme care needs to be taken in this step or all our
efforts in doing the work could be lost. It’s always a good idea to have some-
one help you with double-checking that the data have been entered into the
computer correctly.

2.1 Using c() for Small Datasets

The best way to get small amounts of data into R is to use the combine
function (c()) in a script file. This function, as it sounds, groups together
data into a single “array.” Open a new script file, create your variables, and
assign the data to a logically named variable. For example, if we imagine we
have heights for each of four men and women, then we can do the following:

20 A Primer in Biological Data Analysis and Visualization Using R

Males Females

1
.5

5
1

.6
5

1
.7

5

Sex

H
e

ig
h

ts
 (

m
)

Figure 2.1 The heights of males and females, presented using the boxplot() function.

> male.hts = c(1.82, 1.79, 1.70, 1.76) # heights in meters
> female.hts = c(1.55, 1.62, 1.58, 1.68)

After running these lines, our data are available using these two variables by
name. We can do things like get the mean or median of the heights:

> mean(male.hts) # calculates the arithmetic mean

[1] 1.7675

> median(female.hts) # calculates the median for continuous data

[1] 1.6

We also can quickly visualize these data (we’ll discuss this in more detail in
chapter 5). We can send these two arrays to the boxplot() function (see
figure 2.1) like this:

> boxplot(male.hts,female.hts, names = c(”Males”,”Females”),
+ xlab = ”Sex”,ylab = ”Heights (m)”, cex.lab = 1.5)

Note that in your script file, you do not include the line leading “>” or the
“+” symbols.

2.2 Reading Data from a Spreadsheet Program

If you have data with more than about 25 values, you should enter these first
into a spreadsheet and then read that file into R. Programs like Excel and

Getting Data into R 21

Figure 2.2 A sample spreadsheet with data.

Google Sheets are great at helping you organize your data and allowing you
to double-check that you entered the values correctly.

You also may find data from sources such as the Centers for Disease Con-
trol and Prevention (CDC) that can be downloaded to your computer in a
text format usually a “comma-separated variable” file ending with “.csv.”
R can read native Excel spreadsheets (e.g., in .xlsx format), but it is best if
you save the data in the comma-separated variable format (.csv). The .csv
format is highly portable and likely will be used and readable for decades. Fi-
nally, within R you can combine datasets and create new spreadsheets that
you can save to disk and share with colleagues.

When you create a spreadsheet of data follow these rules:

1. Use descriptive, preferably one-word, unique column headings in
row 1. These should start with letters but may contain numbers (see
figure 2.2). Note that these will be the names of your variables.

2. Begin the data on row 2. Do not include comments or empty cells in the
middle of your data, if at all possible. Variables should start with letters.
Variable names can have numbers (e.g., “trmt5”). Numbers (your data)
should not have characters. As with other statistics programs, if you have
a column with thousands of numbers and a single word, the entire col-
umn will be considered text (you won’t be able to graph the numbers
or do the usual statistics on them).

3. Save the file as a text file in .csv format with a descriptive name. Note
that Excel formulas will be replaced by the values. If you don’t want to
lose those, then save the file as an .xlsx (native) Excel file and then save
a copy of it in the .csv format. The .csv format will save only the first
sheet of a spreadsheet file. Avoid using multiple sheets within a single
file. You can use text formats other than .csv (e.g., tab-delimited files),
but reading these in is slightly different than described here. For such
data, see the function read.table(), which requires you to specify

22 A Primer in Biological Data Analysis and Visualization Using R

the character used to separate your data values, such as sep = ”;” for
data separated by semicolons.

4. In RStudio, change the “working directory” to where you saved the file
(Session -> Set Working Directory -> Choose Direct-
ory). Preferably your R script file and data files are in the same folder
so, instead, choose Session -> Set Working Directory ->
To Source File Location. The “source file” is your R script
file.

5. After choosing the directory, you can check that your file is in the current
directory. In the console type:

> dir()

If you see your data file, you’re in business. If not, set the working di-
rectory to where the file is or move your file to where you want it. You
can, instead, click on the “Files” tab in the lower-right panel of RStudio.
This allows you to look for files through the file structure and click on
files (e.g., a .csv file) and view it in RStudio.

6. Read in the file using either the read.csv() or read.table() func-
tion. By default, these function return a dataframe that we assign to a
variable. Below I read in a file called “filename.csv” that is stored
in my working directory and store it in the dataframe variable called
my.data:

> my.data = read.csv(”filename.csv”)

The file name must be in quotes. The variable my.data can be any
legal variable name (names can’t start with numbers and shouldn’t have
special characters). The variable my.data is now like a spreadsheet in R
and is called a dataframe.

7. Check that the file was read in correctly and that the column headers
(variables) are correct:

> names(my.data) # should return the names of the
> columns

You should see the variable names, which came from the first row of your
data file. These may be different than you intended because R changes
them a bit to be legal (e.g., spaces are converted into periods). For an
overview of this important process, see box 2.1).

8. Once you are done with a variable, you can remove it from the cur-
rent environment with the rm() function. This can be a good idea if
you are going to move on to another project without closing down
RStudio. To remove the variable x you simply type the following:
> rm(x). You can remove all variables by clicking on the little broom

Getting Data into R 23

icon in the “Environment” panel of RStudio or by typing in the console
the command rm(list=ls()) and hitting <enter>.

If you need to change a value in your data, you should change it in the
original .csv file using Excel. When you reread the data from disk, the
new data will be stored in the dataframe, eliminating the original dataframe.
Alternatively, you can make the fix in your R script file and be sure to run the
fix after reading in the data. If you change the data in RStudio, you can write
the new data to a file in your working directory using the write.csv()
function (e.g., >write.csv(my.data,”newfilename.csv”)).

Box 2.1. Reading data into R. Here’s how to read in data that are stored
in a file:

1. Save the data file as a .csv file into the folder for your project (where
your R script file is saved). If it’s an Excel file, then, in Excel, choose
“Save As...’ and choose the type CSV.

2. In RStudio, set the working directory to the location of your R script
file and the data file (click on Session→ Set Working Direc-
tory→ To Source File Location).

3. Read the data into a variable, for example:

> my.data = read.csv(”file.csv”)

4. Your variable (my.data) is a dataframe that holds all the data from
the .csv file. You access the data in R using that variable name.
The dataframe name alone points to all of the data. You can ac-
cess individual columns of data using the $ sign convention (e.g.,
my.data$height). Here’s what this might look like:

> my.data = read.csv(”plant data.csv”)
> my.data$heights # print heights to screen
> mean(my.data$heights) # calculate the mean of
> heights

We discuss dataframes more in chapter 3.

2.3 Reading Data from a Website

We sometimes rely on data that are updated frequently on a website. If we
download these data, they’re soon out of data, and we find ourselves having
to download them again. R is able to read data directly from websites that

24 A Primer in Biological Data Analysis and Visualization Using R

provide them in a proper format. Reading the data directly from websites is
best when the data are continuously being updated. Instead of download-
ing the data each day, we can read data from a website with just one line
of code and have the latest information. We can, for example, get the con-
centration of atmospheric CO2 at Mauna Loa, Hawaií, over the last several
decades, updated weekly, at a National Oceanic and Atmospheric Adminis-
tration (NOAA) website.

> W = ”ftp://aftp.cmdl.noaa.gov/products/trends/co2/
> co2_weekly_mlo.txt”
> CO2 = read.table(W, skip = 49)[,4:5]
> plot(CO2, ylim = c(300,420), pch = 16, cex = 0.5,
+ xlab = ”Year”, ylab = ”Atmospheric CO2 (ppm)”)

The first line creates a text variable (W) that holds the full address for the web-
site. If you go to this website, you’ll see that the data file begins with a lot of
information about the data. The data actually start on line 50, where we can
see data columns that are separated by spaces. We use the read.table()
function to get these data and store the data into a dataframe called CO2.
Note that the argument skip = 49 is used to skip over all 49 lines of the
header. Also, we only need the decimal date (column 4) and the CO2 con-
centration (column 5). We get this information by using the trailing [,4:5]
to grab all the rows and just columns 4 and 5 (we’ll learn more about how
that works in chapter 3). The last line of code makes a decent graph of these
data (if they’re still updated at this website; you have to poke around to find
the site). When we discuss visualizations in chapter 5 you will learn what the
arguments in the plot() function do.

2.4 Problems

1. Below are grades earned by six randomly selected students from my bi-
ology class.

86.3, 79.9, 92.4, 85.5, 96.2, 68.9

(a) Store the grades above in a variable called grades.
(b) Determine the arithmetic mean of the grades.

2. The following are the masses (kg) of 10 raccoons.

2.17, 1.53, 2.02, 1.76, 1.81, 1.55, 2.07, 1.75, 2.05, 1.96

(a) Open a new file in Excel and enter “Mass” in cell A1. In cells A2
to A11, enter the data for the raccoons.

Getting Data into R 25

(b) Save the file as raccoons.csv into a working directory for
your R projects. You need to choose a different type of file, so
click on “Save as type” and choose “CSV (Comma delimited)
(*.csv)”. Remember where you save it! Note, to create .csv
files in Excel, you must specify this file type under the “Save as
type” option.

(c) Create a script file in RStudio named something like coons.r
and save this file into the same folder as your raccoons.csv
file.

(d) Set the working directory in RStudio to be the folder where your
raccoons.csv file is stored (review the steps in box 1.4).

(e) Read this data file into an R variable named my.coons. Once
you’ve read it in, check that the name of the variable is correct
using the names() function. The names() function should re-
turn the word “Mass,” which means that this variable is recog-
nized and contains your data. If you type (my.coons$Mass) at
the command line and hit enter, you should see your data.

(f) Summarize these data using the summary() function. Be sure
to use the dataframe$header convention for your data.

3. Go to the website https://ourworldindata.org/. There you can find
data on a variety of different topics. I was just checking out data on the
number of COVID-19 cases in all affected countries by day (found at
https://covid.ourworldindata.org/data/owid-covid-data.csv as of this
writing). Ask a question about the data you have chosen and answer it
by making a graph of those data. You need to copy the data you need
into a new spreadsheet, save it to your computer, and then read them
into a variable. Finally, make a graph of those data.

CHAPTER THREE

Working with Your Data

NOW THAT YOU HAVE DATA IN R, you will often need to work
them a bit to get them into a form that’s more usable. You’ll need to know
what types of data you have, know where they came from, what the units are,
who collected them, and that they are correct. You also should have some
sense of what the patterns in the data should look like before you analyze or
graph them. This understanding can help you be more confident that you’re
assessing what your data might mean about the biological system you’re
studying.

3.1 What Kinds of Data Are There?

R is very flexible with a variety of different types of data types. You’ve already
seen some of these. A lot of data are numeric (numbers), but they don’t have
to be. If they are numbers, it’s often easier. Table 3.1 shows the different
types of data you’ll encounter and how they’re represented in R.

3.2 Accuracy and Precision of Our Data

When working with numbers, we need to consider the difference between
accuracy and precision and understand how they apply to our data (see
figure 3.1). We also need to be careful about how we report our numbers.

1. Accuracy. When we use an instrument to measure something, we want
our measurement to be as close to the actual value as possible. The close-
ness of this measurement to the real value is referred to as “accuracy.”

2. Precision. This is the similarity of repeated measurements of the same
value. If our measurements are quite similar, then precision is high. We
can have high precision and low accuracy. Alternatively, we could actually

28 A Primer in Biological Data Analysis and Visualization Using R

Table 3.1 Data Types in R.

Data Type Description Representation in R

Integers These are whole numbers and their nega-
tive counterparts

5, −17, and 3

Real numbers These take on any value. 5.2, 0.17, 30.3
Characters Names of objects or treatment levels. “cat” or “Trmt A”
Array A one-dimensional set of the same type of

objects.
c(1, 3, 2) or c(”a”, ”b”,
”d”)

Matrix Generally a two-dimensional object that
holds numbers.

matrix(c(1,3,2,7), nrow
= 2, ncol = 2)

Dataframe Like a spreadsheet of data, containing dif-
ferent types of data but columns have the
same type of data.

data.frame(array1, ar-
ray2, array3)

Logical TRUE or FALSE. You will see this when
you ask questions about your data.

if (x > 0), then do some-
thing

Factor This is a nominal grouping that you will
use for data in dataframes

Trmt1, Trmt2

List Object that contains different types of data
in groups. This is a very flexible but com-
plex type that you will rarely encounter.

list(”a”,5)

Missing data This often happens when an experimen-
tal design is unbalanced (some individuals
didn’t make it in one of the treatments).

NA

have high accuracy (in one measurement) while our precision might be
low (we just happened to have been lucky).

Related to these is the level of precision used to report our values, referred
to as significant figures. For instance, if we we want the average mass of two
feral cats, then we report that using the same number of significant digits
as the mass with the least number of significant digits. If a cat is 3.0 kg and
another is 5.275 kg, then the mean of those should be reported as follows:

> signif(mean(3.0 + 5.275),2)

[1] 8.3

In addition, R provides the round() function to control the number of
digits reported. Below are a few examples using these two functions:

> a = 3.141592654 # pi
> b = 3141592654 # a x 10∧9
> round(a,2) # control number of decimal places displayed

[1] 3.14

> signif(a,2) # this controls significant digits

[1] 3.1

Working with Your Data 29

A B C D

1000

2000

3000

4000

5000

Method

N
u

m
b

e
r

o
f
B

is
o

n

Low Precision

High Accuracy

High Precision

High Accuracy
Low Precision

Low Accuracy

High Precision

Low Accuracy

Figure 3.1 Four different hypothetical outcomes for estimates of the number of bison
(Bison bison) in Yellowstone National Park. The true value is represented by the dashed
line at 3000 animals. Each method was repeated 10 times. Method B is best, exhibiting
high precision and high accuraty.

> signif(b,2)

[1] 3.1e+09

You should allow R to do all the calculations with all the significant digits
it wants to use. However, you should report your results using the correct
number of significant digits for the standards of your particular subdiscipline
(or whoever is evaluating your work).

3.3 Gathering Data into Dataframes

In the previous chapter, we discussed reading data into a variable in R from
comma-separated variable files (usually ending with .csv). When we read in
a file and store it in a named variable, that variable itself points to a structure
called a dataframe. Dataframes, like Excel spreadsheets, can contain many
different types of data stored in different columns. Each column should have
its own unique name, preferably have no empty spaces, and contain data that
are all of the same type (e.g., all numbers or all character strings).

If our data are in separate variables, they can be difficult to work with. If,
for instance, we had the mass of seeds from 20 separate species, then we’d
have 20 different variables. Instead, a dataframe conveniently can be used
to gather data together into a single variable. This is similar to a database
or even an Excel spreadsheet. To do this, we send our variables to the

30 A Primer in Biological Data Analysis and Visualization Using R

data.frame() function and store the returned object into a single, well-
named variable. Let’s create a dataframe that’s made up of two array vari-
ables. We’ll use the male and female height data from the previous chapter:

> males = c(1.72, 1.59, 1.70)
> females = c(1.55, 1.62, 1.58)

We can combine these into a single dataframe in a variety of ways. The easiest
way is to use the data.frame() function:

> height.dat = data.frame(males,females)
> height.dat

males females
1 1.72 1.55
2 1.59 1.62
3 1.70 1.58

We now have our height data for males and females stored in a single variable
called height.dat. On the left, R provides the row numbers. Then we see
the male and female data in separate columns. If we want to see just the males
we can use the $ symbol, as follows:

> height.dat$males # this returns an array of data for males

[1] 1.72 1.59 1.70

This is how we can get just one of our variables as an array. The last thing we
should check out are summary statistics for these datasets. Instead of doing
this separately for males and females, we can send the entire dataframe
to the summary() function. Here’s what happens:

> summary(height.dat)

males females
Min. :1.590 Min. :1.550
1st Qu.:1.645 1st Qu.:1.565
Median :1.700 Median :1.580
Mean :1.670 Mean :1.583
3rd Qu.:1.710 3rd Qu.:1.600
Max. :1.720 Max. :1.620

3.4 Stacking Data

Data often are entered into spreadsheets in many different ways, some of
which are not easily analyzed. Data scientists refer to the work that goes
into arranging data into a useful format as preprocessing, which can take a
considerable amount of time. We will work only with data that come in two
different formats. One is where data variables occur in separate columns, like

Working with Your Data 31

we saw in the height data above for males and females. This format is called
unstacked. The other format we’ll use is called stacked. In general, statistics
programs, like R, expect data to be stacked. Fortunately, it is quite easy to
go back and forth if we only have one factor (in this case, “sex”).

To stack the height dataframe we simply send it to the stack() function.
This function returns a stacked dataframe.

> height.dat.stacked = stack(height.dat)
> height.dat.stacked

values ind
1 1.72 males
2 1.59 males
3 1.70 males
4 1.55 females
5 1.62 females
6 1.58 females

We now see that the heights are in a single column and the sexes are correctly
associated with each datum in the second column. R assigns names to the
newly created columns that aren’t very informative (“values” and “ind”?).
We can rename the columns like this:

> names(height.dat.stacked) = c(”height”,”sex”)

We can check that the names have changed:

> names(height.dat.stacked)

[1] ”height” ”sex”

We can unstack the data. You can see that R has used the factor levels (males
and females) as the column headings:

> unstack(height.dat.stacked)

males females
1 1.72 1.55
2 1.59 1.62
3 1.70 1.58

3.5 Subsetting a Dataframe

We often need to (and want to) work with a subset of data from a dataframe.
For instance, we might need to test the normality of our height data for
males and females separately. There are two basic ways to subset data. You
can decide which works best for you. The two approaches are as follows:

32 A Primer in Biological Data Analysis and Visualization Using R

1. Find “which” rows in a dataframe are associated with one or more search
criteria (e.g., find which heights are for just females). This method re-
turns the row indices.

2. Subset the dataframe based on one or more criteria. This returns a new
dataframe with only the data you want.

When using the “which()” approach, we are seeking which rows in the
dataframe have the data we need. Let’s say we have the heights for males and
females in the heights.dat.stacked dataframe (from above). We want
just the heights for the females. The following code provides the row indices
in the dataframe that contain the heights of the females:

> which(height.dat.stacked$sex == ”females”)

[1] 4 5 6

Note the strange double equals sign (“==”). A single equals sign is an
assignment, while a double equals sign is read as is equivalent to. In En-
glish, the above command reads as “which rows in the sex column in the
height.dat.stacked dataframe are females?” We can store those rows
in a new variable, called “female.rows,” and use that variable to get the
height data for the females:

> female.rows = which(height.dat.stacked$sex == ”females”)
> height.dat.stacked$height[female.rows]

[1] 1.55 1.62 1.58

Alternatively, we can use the “subset()” approach to extract data from
a dataframe. This function returns a new dataframe with just the information
we need. Here’s how we can create a new dataframe for the males:

> males = subset(height.dat.stacked, sex == ”males”)

We now can access the heights of males like this:

> males$height

[1] 1.72 1.59 1.70

These approaches are equally effective at getting data out of a dataframe.
You should decide for yourself which approach makes the most sense to you
and stick with that.

3.6 Sorting a Dataframe

There are two basic ways to sort data. The first involves the sort() func-
tion. This function returns a sorted array of numbers or characters. This can

Working with Your Data 33

help us see the low and high values quickly, but it is not helpful if we have
a dataframe with other columns of associated data. To solve that problem,
we need to use the order() function. This likely will require a new way of
thinking for you!

The difference between these can be better understood by looking at the
height dataframe for males and females (see the stacked data in section 3.4).
We can sort the heights of males and females in the dataframe using the
sort() function. This function sorts an array of numbers either from lowest
to highest (default) or highest to lowest (decreasing order). Let’s sort the
height data for males and females.

> height.dat.stacked$height # unsorted

[1] 1.72 1.59 1.70 1.55 1.62 1.58

> sort(height.dat.stacked$height) # sorted low to high

[1] 1.55 1.58 1.59 1.62 1.70 1.72

We can now see that the lowest value is 1.53 m and highest value is 1.72 m.
However, we’ve lost the information in the dataframe that contains the sex
of those individuals. To sort a dataframe with multiple columns, we need to
get the correct order of the row numbers from the dataframe that will give
us the sorted data. If we have the row numbers, then we can keep the sex of
the individuals together with their height. To do this, we use the order()
function. Admittedly, this is really confusing at first. Let’s use the height data
to see how this works.

> order(height.dat.stacked$height)

[1] 4 6 2 5 3 1

These are the row numbers that contain the heights in the order from lowest
to highest. With this new ordering, we can rearrange the dataframe so heights
increase and keep the correct sex identifiers with those height data. Here’s
how to sort the dataframe based on height from shortest to tallest people.

> height.dat.stacked[order(height.dat.stacked$height),]

height sex
4 1.55 females
6 1.58 females
2 1.59 males
5 1.62 females
3 1.70 males
1 1.72 males

This is confusing, but we can see that the data are correctly sorted from
the shortest person to the tallest person. If we wanted to, we could assign

34 A Primer in Biological Data Analysis and Visualization Using R

that result to a new (or the same) dataframe. What’s new with this syntax is
the second to last character; the comma that seems wrong. Our dataframe
has two dimensions: rows and columns. In R, like other programming lan-
guages, dataframes have index values for rows and columns in square brackets
([rows, columns]). We have provided the new order of rows but provide no
value for columns (after the comma). Because we have not specified which
columns to include, R will assume that we want all columns. This will result
in the sex identifier getting ordered by row as well.

3.7 Saving a Dataframe to a File

Once we have worked our data into a form that we like, be it stacked, un-
stacked, or sorted, we may want to save it to a disk. Remember that in R,
we should use script files so we write lines of code that prepare and analyze
our data. We might be quite content reading in a data file that is a complete
mess and fixing it up so that it’s sorted and stacked, for instance, with just a
few lines of code. We really don’t have to do anything else with the original
data because, with no additional work, we would then have our data cor-
rectly entered in R. Nonetheless, if you want to share these data with others,
then you might want to give them a well-formatted version. To do that, you
can write the dataframe to a comma-separated variable file (.csv) on your
hard disk. Note that R will write the file to the current working directory.
If you don’t know where the file will be written, you can use the getwd()
function at the command prompt.

Below is how you write a dataframe to a .csv file in the current working
directory:

> write.csv(height.dat.stacked,”Plant heights.csv”,
> row.names = F)

The write.csv() function writes the dataframe height.dat.stacked
to the file named in quotes. Note what your working directory is (click on
Session→ Set Working Directory to control where the file will be
written). The added argument row.names = F tells R to not add row
numbers to the file.

3.8 Problems

1. Here are the top speeds of five cheetahs in km/hr−1:

102, 107, 109, 101, 112.

(a) Enter these data into an array called cheetahs, in this order.

Working with Your Data 35

(b) Sort the data in decreasing order. Include all your code and the
sorted data.

(c) Print out the indices for the data (not the data!) in the order that
will result in a decreasing order for the data.

(d) Use those row indices to report the data in decreasing order.
These values should be sorted in decreasing order. The answer
should be the same, but your method is different. Be sure to
include your code.

(e) You discover that the speed gun used to measure the cheetahs
had a precision of only 10 km/hr−1. Use the signif() func-
tion to report the data properly.

2. Below are data for the masses of mussels in grams. The treatments are
low, medium, and high pH levels in the water.

Low Medium High
12 54 87
32 34 78
22 45 59
19 69 82
27 83 64
31 44 73
25 22 77

(a) Enter the data into a spreadsheet as you see them in the table.
(b) Read the data into R, storing them in a dataframe variable called

mussels.
(c) Stack the data, storing the result in the same dataframe. View

them to ensure they are correct.
(d) Rename the columns “Mass” and “pH.trmt.”
(e) Sort the data in the stacked dataframe based on mass. Using the

head() command, show the first six lines of your sorted, stacked
dataframe.

(f) Get the mean (use the mean() function) for the Low pH treat-
ment using the which() method.

(g) Get the mean for the Medium pH treatment using the sub-
set() method.

(h) Create a dataframe that contains only the mussels and their treat-
ment levels with masses greater than 80 grams. Hint: Use the
which() function and a test that includes the “>” symbol.

36 A Primer in Biological Data Analysis and Visualization Using R

3. Your professor wants to create working groups with the students in a
laboratory. Assume there are twenty students and the professor wants
five groups of four. Students count off so have ID numbers from one to
twenty. Randomly place them into the five groups. Provide your code
and a table with five columns and four ID numbers per group.

CHAPTER FOUR

Tell Me About My Data

AFTER WE’VE COLLECTED SOME DATA, we usually want to
do something with them. We usually want to know if they tell us something
important about the world. We should always inspect them to see if the values
are reasonable for our system. We should ask questions about the range of
the data, where the middle is, and how messy the data are. We’ll first define
what we mean by data because they come in many different forms. We will
then look at the distribution of the data and calculate some basic statistics,
or summary values, about the data.

4.1 What Are Data?

Data are usually numbers (a single number is referred to as a datum), but
they don’t have to be numbers (e.g., flower colors). Data can be continu-
ous and take on any value in a range. We often think of height as being a
continuous value because, for instance, we can really be any value between
a certain range. It’s not really practical, however, because we are limited by
the precision of our measuring instrument. Discrete data have only certain
values that they can be. This is true for the numbers of individuals. So count
data are usually discrete.

Sometimes data come in discrete categories that can be ranked. We might
not have speeds or sizes of individuals; maybe we know only the order in
which the types occurred. Sometimes data have discrete categories but can-
not be ranked at all. These data would simply have what we call attributes,
referred to as categorical data. An example might be the color morphs of
the eastern red-backed salamander. These types of data also are referred to
as being nominal because we are simply naming different types without any
ordering.

38 A Primer in Biological Data Analysis and Visualization Using R

Data can be described by the type of scale they occur on. Some data are
found on an interval scale. This means that differences between values can
be compared. For instance, the difference between 32◦F and 37◦F is the
same as the difference between 52◦F and 57◦F. These data, however, lack a
true zero point (0◦F is not a true zero). Alternatively, data on a ratio scale
exhibit this interval property but also have a real zero point. The mass of
organisms or the number of leaves on plants are on this scale. Temperature
in degrees F do not exhibit this property (50◦F is not twice as hot as 25◦F,
although I once heard a meteorologist say this). The Kelvin scale does have
a zero point, however, so these values are on a ratio scale.

4.2 Where’s the Middle?

There are many estimates of where the middle is in a set of numbers. The
most common descriptors are the mean, median, and mode. We should rec-
ognize that these measures of where the middle is are simplifications, or
models, of our data. It matters which one we choose because sometimes
these measures are quite different from each other.

The Mean (x̄)

There are actually many different means. We usually consider the mean to be
what’s more technically called the arithmetic mean (x̄). This is the average
you’re probably familiar with, which is the sum of all the values in a sample
divided by the number of observations in the sample. We can write this for-
mally using the summation sign (Σ), which means that we add all our values
from the first (i = 1) to the last (i = n) number. The numbers in the data
array are represented by xi, with i being the index for each number.

x̄ =
1
n

n∑
i=1

xi (4.1)

In R we calculate the arithmetic mean of an array like this:

> x = c(5,3,6,7,4)
> mean(x)

[1] 5

If we have a frequency table of values, we might need the weighted mean.
For instance, we might have seven ones, three twos, and five threes in our
data. We might represent our data in the usually way by listing them:

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3

Tell Me About My Data 39

Table 4.1 Grade table.

Grade A A− B+ B B− C+ C C− D F
Points 4 3.7 3.3 3 2.7 2.3 2 1.7 1 0
Number of grades 11 15 8 3 0 0 1 0 2 1

This is a rather short list of numbers, and we might be fine with just getting
the mean using this list (equation 4.1). For long lists, however, we can get the
weighted mean using the function weighted.mean(). We can calculate
the weighted mean like this:
> vals = c(1,2,3)
> weights = c(7,3,5) # 7 ones, 3 twos, and 5 threes
> weighted.mean(vals,weights)

[1] 1.866667

The Median (x̃)

If the distribution of your data is asymmetric (skewed or lopsided; see
figure 4.1) then the center of your distribution might best be described by
the median, which is the 50th percentile (a percentile represents the value in
your data at which that percentage of values fall below this value). If you sort
your data from lowest to highest (or highest to lowest), then the median is
the middle value. This is really nice if there is an odd number of values. If
you have an even number of values, then the median usually is calculated as
the arithmetic mean of the two values on either side of the middle. See the
following examples, which use the median() function:
> median(c(2,3,4,5,8)) # 4 is the middle value

[1] 4

> median(c(2,3,4,8)) # the middle lies between 3 and 4

[1] 3.5

Let’s consider an example of where we might want to find the middle of
a distribution. In table 4.1 are grades, points received per grade, and the
number of grades received by a graduating senior. The grades have been
converted from letter grades to the often-used 0- to 4-point scale (e.g., a
B– is a 2.7). Such a student’s performance is often reported as a grade point
average (GPA). That’s the arithmetic mean.
Now, to calculate this student’s GPA, we need to use the weighted.mean()
function, as we did above. What is the student’s GPA? This is left as Problem
7 at the end of this chapter.

40 A Primer in Biological Data Analysis and Visualization Using R

Points Received

F
re

q
u

e
n

c
y

0

5

10

15

20

0 0.3 1 1.3 2 2.3 3 3.3 4

Figure 4.1 The frequency of grades received by a graduating senior. The solid vertical line
represents the student’s grade point average (GPA) and the vertical dashed line represents
the student’s grade point median (GPM).

The Mode

The mode is the most frequent observation (value) in a dataset. This makes
sense if the data are discrete (e.g., integers), categorical, or nominal. If the
data are continuous, however, it’s likely all values in a dataset are unique. If
we plot data in a histogram, we usually see some grouping (bin) that has the
largest number of observations. In such a circumstance, we can think of the
mode as either the range of values in this bin or as the center of the bin. This,
unfortunately, is dependent on the number of bins we divide our data into.
The mode in the GPA data in the previous table is an A–, and is seen as the
most frequent value in the table and in figure 4.1.

In biology we rarely use the mode as a quantitative measure. Sometimes
we think qualitatively about whether data exhibit two modes (e.g., bimodal
distribution) or, perhaps, more modes. If the data are discrete, then the mode
might be useful to use (the number of leaves on young plants). If the data
are continuous, however, then this is subjective because the size and number
of the bins we use affects where and how many modes we could have.

For discrete data, we can find the mode using the table() function.
This function performs a cross-tabulation analysis, which simply gathers up
all the different values and counts their occurrences. Here’s an example:

> set.seed(100) # do this so you will have the same data
> dat.raw = sample(1:10, 500, replace = T) # get 500 random
> # values from 1 to 10
> dat.table = table(dat.raw) # cross tabulation for the data
> dat.table # here are the data, ordered up by their frequency

Tell Me About My Data 41

dat.raw
1 2 3 4 5 6 7 8 9 10
48 43 42 55 55 45 53 52 46 61

The last step is to find the maximum value (in the top row of the output
above), which is our mode. To do this, we can find which value is the max-
imum (using the which.max() function). We don’t want the number of
occurrences but, instead, want to know which value has the largest number
of occurrences. So we find which of the names in dat.table has the largest
number of occurrences, using the names() function. Finally, we return that
result as a number (using the as.numeric() function).

> as.numeric(names(dat.table)[which.max(dat.table)])

[1] 10

If our data are continuous (real numbers), then it’s quite possible all our
data values are unique so there wouldn’t be a unique mode. However, we
might look at our data using a histogram (the hist() function) and see that
some range of values occurs most frequently in our dataset. We can actually
use the histogram function to do the work for us and get which bin is the
most frequent (the tallest bar in the histogram). I show the code below but
without presenting the graph.

> set.seed(100) # do this so you will have the same data
> a = hist(rnorm(1000)) # store data from hist() in ”a”
> the.mode = a$mids[which.max(a$counts)]
> cat(”The mode is the bin centered on”, the.mode,”\n”)

The mode is the bin centered on 0.25

The hist() function is quite flexible and allows us to make as many bins
as we would like (e.g., use the argument breaks = 50, for instance). The
line above that defines the mode (the.mode) uses the variable “a,” which is
the object returned by the hist() function. We can use this output to find
which of the bins is the largest, using the which.max() function. We’re
interested in where the midpoint is for this bin and can get that with the
mids element from the object returned by the hist() function. Trust me,
you don’t want to do that by hand!

As you have seen, however, the number of bins in a histogram is relatively
arbitrary and easily changed. Therefore, for continuous data, the mode is a
subjective measure and should be avoided. Instead, we should use either the
mean (symmetric data) and/or the median (symmetric or asymmetric data)
to describe the middle of a distribution.

42 A Primer in Biological Data Analysis and Visualization Using R

4.3 Dispersion About the Middle

After we’ve found the middle of our data, we next need to understand the
spread of our data around this middle. Here, too, a variety of measures can
be used to estimate this spread.

We’re going to create a dataset that is normally distributed and then cal-
culate a variety of measures of dispersion. If you use the code I give you,
then your data will be the same as mine (using the set.seed() function).
Let’s first get 1,000 values from the standard normal distribution (x̄ = 0,
s = 1).

> set.seed(100) # do this so you will have the same data
> x = rnorm(1000) # 1000 nums values from the ”standard
> # normal distribution”

Note that each of the techniques below represents a simplification, or model,
of our data. This is similar to how we looked at different models of the center
of a distribution above (e.g., the x̄).

Range

The range of a dataset is simply the largest value minus the smallest value. It’s
generally a poor representation of the dispersion because it measures only the
most extreme values, which we might not take much stock in. Sometimes,
however, it’s just what we need. We’ll use this later, for instance, when we
want to fit a line to some data but want to do that only over the range of
the x-variable data (see section 9.2). We can get the range of our x variable
as follows:

> range(x) # returns the smallest and largest values

[1] -3.320782 3.304151

We can use the diff() function to calculate the difference between these
two values.

> diff(range(x)) # for this, diff() gives us what we want

[1] 6.624933

Standard Deviation (s)

The standard deviation is a good measure of dispersion about the mean be-
cause it has the same units as the mean. It’s useful to know what the standard
deviation measures. It is approximately the average, absolute difference of
each value from the mean (see the section called Variance (s2) below). If, for

Tell Me About My Data 43

instance, the values are all very close to the mean, then s is small. It is easily
calculated in R as follow:

> sd(x) # sd for the standard deviation

[1] 1.030588

Variance (s2)

The s2 of these data is actually the square of the standard deviation (s). The
sample variance for a group of n numbers is calculated as:

s2 =

n∑
i=1

(xi − x̄)2

n− 1
(4.2)

We can determine the variance (s2) in R in either of the following two ways:

> sd(x)∧2

[1] 1.062112

> var(x)

[1] 1.062112

Standard Error of the Mean (SEM)

Another measure of dispersion that is often used to represent variability is the
standard error of the mean (SEM). This measure is actually an estimate of
the standard deviation of a sampling distribution, which is the distribution of
many means drawn from the same population. This is the foundation of the
central limit theorem, which we discuss later (see the central limit theorem
in figure 12.1) and is calculated as SEM = s/

√
n, where n is the number of

values in our sample. In R we can calculate this as:

> SEM = sd(x)/sqrt(length(x))
> SEM

[1] 0.03259005

Some researchers choose to describe the distribution of their data with
SEM. I have actually heard some people like to use this because it’s smaller
than the standard deviation (note that, by its definition, it will be smaller
than sd because n > 1). This smaller value might imply that the data have
a higher precision. This is not sound thinking. This measure of dispersion
should be used if one wishes to show the estimated variability of the standard

44 A Primer in Biological Data Analysis and Visualization Using R

deviation that would be found if the means of many samples were taken. For
most of us, this is kind of hard to visualize. Note that if we know the number
of values in our dataset, we can get either s or s2 from the SEM.

95% Confidence Intervals (95% CIs)

Many researchers choose to represent variability as a 95% confidence interval
(see box 7.1 Fig 12.1 as before for more information). This interval is com-
plicated, used often, and easily misunderstood. Here’s how it is calculated:

95% CI = SEM · tα=0.05,df (4.3)

We see that this interval relies on SEM and is, therefore, an estimate of a
population parameter that assumes we sample our population many times.
In the equation, SEM is followed by a value drawn from the t-distribution,
which (statisticians, look away) can be thought of as a measure related to
the normal distribution. The 95% comes from 1− α. The df represents the
degrees of freedom, which is the number of observations minus one. Here’s
how to calculate the 95% confidence level for our data using R:

> n = length(x) # the size of a sample
> CI95 = SEM * qt(0.975, df = n - 1)
> CI95

[1] 0.06395281

The qt() function returns a t-value, given that we want a two-sided distri-
bution with n observations (that’s where the 0.975 comes from: 0.975 =
1− α/2). We’ll talk more about this in chapter 7.

Using SEM in this way suggests that we are somehow estimating some
measure of dispersion from a large number of samples. The 95% confidence
interval is a measure that, if we calculated this interval for many samples,
95% of those intervals would capture the true population mean. It is wrong
to think of this as an interval that says we’re 95% confident that the true
mean lies in this range. The key to the correct definition lies in its reliance on
SEM. All this depends on the assumption that our data are perfectly normally
distributed and on the central limit theorem (see chapter 12 in figure 12.1).

You probably noticed that the measures s, s2, SEM, and the 95% CI rely
on x̄ (e.g., see equation 4.2 for the variance, which relies on x̄). This sug-
gests that, for these measures of dispersion to be useful, the x̄ must be a
good measure of the middle of our data. These measures also weigh all de-
viations from the x̄ (either smaller or larger) equally. Therefore, the utility
of these dispersion measures relies on the assumption that our data are nor-
mally distributed. We will learn about these parametric statistical tests in later
chapters.

Tell Me About My Data 45

The Interquartile Range (IQR)

The last measure of dispersion I want to mention is the interquartile range
(IQR). This is a range that is based on quartiles, like the median, which is
the second quartile or the 50th percentile. The IQR is the third quartile (the
75th percentile) minus the first quartile (the 25th percentile). The IQR is a
measure of dispersion around the median. Here’s how we calculate this in
R:
> IQR(x) # returns the interquartile range of the x array

[1] 1.359288

This calculation can be confusing for small datasets, so it should be consid-
ered an approximation. If the data are continuous and have a large number
of values, then the measure makes sense.

The IQR is not often used in biology, but occasionally we are interested
in the boundaries on the middle 50% of observations when the distribution
is not necessarily normal. My college uses this range of the SAT scores for
entering students by reporting the 25th and 75th percentiles.

Be sure to check with whomever is evaluating your work to find out which
measure of dispersion is preferred.

The coefficient of variation (CV)

The Coefficient of Variation (CV) is a valuable measurement of variability
when we’re comparing objects that are different. Let’s imagine we have
measured the mass of 10 mice and 10 elephants. We might ask, “Which
of these organisms exhibits more relative variability?” Clearly the elephants
have greater absolute variability in kilograms, but maybe the mice are actually
more different from each other than are the elephants from each other. The
CV is usually expressed as a percentage and is calculated as follows:

CV = 100 ·
(s
x̄

)
(4.4)

where s is the standard deviation and x̄ is the mean.

4.4 Testing for Normality

We’ve already talked about data being normally distributed. We’re now go-
ing to discuss this more explicitly and learn how to test whether our data
are normally distributed. As we discuss this, we should keep in mind that
no biological data are truly normal in the statistical sense because the math-
ematical distribution for a normal curve ranges from minus infinity to plus

46 A Primer in Biological Data Analysis and Visualization Using R

infinity. What that means for heights or masses is, obviously, questionable in
real biological systems.

So we will test whether the data are significantly different from a normal
distribution before performing a statistical test. As mentioned above, the rea-
son for this is that some statistical tests, called parametric tests, assume that
the arithmetic mean of the sample is a good measure of the middle of the
data and that the spread of the data is well represented by the standard devia-
tion. If the mean is not in the middle of the distribution and/or the standard
deviation poorly represents the spread, then the assumptions of parametric
tests are violated (e.g., the statistical test and, therefore, your conclusions
could be terribly wrong). Non-parametric statistical tests do not make the
assumption that the distribution of the data is normal. These non-parametric
tests do assume, however, that multiple samples, though not normally dis-
tributed, have the same distributions (because our null hypothesis is that they
come from the same population).

The bottom line is that you must test whether your data are normally
distributed before doing a statistical test. Some people think if you’re not
sure whether the distributions of your samples are normally distributed, you
should just use non-parametric tests. This is not a safe approach and may
lead you to make mistakes in your interpretation of your results. In short,
always use the correct statistical test!

As we will see, parametric statistical tests include many of the tests with
which you are familiar, including regression, correlation, t-test, and analysis
of variance tests. Non-parametric tests include the Mann-Whitney U and the
chi-square tests.

We may, at times, be able to transform our non-normal data into normal
data so that we can employ parametric tests. We might do this with growth
data, for instance, because many organisms and populations grow exponen-
tially. Log-transforming such data can lead to normally distributed data (see
section 4.6).

Our first step to assess a dataset’s distribution is to create a graph of the
data. Three common graphs for this purpose are histograms, boxplots, and
Q-Q plots (see figure 4.2). All three of these plots are conveniently graphed
for us using the function simple.eda(), found in the package UsingR.
The “eda” stands for exploratory data analysis. Be sure to install that pack-
age, if you haven’t already, and load it using the library() function (see
section 1.6).

> simple.eda(rnorm(1000))

All three visualization approaches can help us evaluate whether our data
are normally distributed. However, I encourage you also to use the Shapiro-
Wilk test (the shapiro.test() function) to help you decide whether data
are normally distributed. The null hypothesis for normality tests is that the

Tell Me About My Data 47

Histogram of x

x

F
re
q
u
e
n
c
y

−3 −1 1 2 3

0
5
0

1
0
0

1
5
0

−
3

−
2

−
1

0
1

2
3

Boxplot

−3 −1 1 2 3

−
3

−
2

−
1

0
1

2
3

Normal Q−Q Plot

Theoretical Quantiles

S
a
m
p
le
 Q
u
a
n
ti
le
s

Figure 4.2 Exploratory data analysis visualizations for 1,000 values drawn from the stan-
dard normal distribution using the function simple.eda() from the UsingR package.
The left graph is a histogram. The center graph is a modified boxplot. The right graph
is a Q-Q plot. If the data points in the right graph fall on the straight line, then the data
adhere to a normal distribution.

data are normally distributed. This means that if we get a p-value greater than
0.05, we do not have enough evidence to reject the assumption of normality
(see section 6.8 for a complete explanation of p-values).

Let’s generate four samples (x1 – x4) and evaluate their distributions for
normality. Here are the four datasets (if you run these lines of code, you
should have the same data):
> set.seed(10) # do this so you will have the same data
> x1 = rnorm(1000) # 1000 values from standard normal dist.
> x2 = runif(1000) # 1000 values from uniform dist.
> x3 = rgamma(1000,2,1) # 1000 values from a gamma distribution
> x4 = c(rep(3,10),1,2,4,5) # leptokurtic distribution

Before we test these datasets for normality, it’s always a good idea first to look
at their distributions. I’ve done this by sending each dataset to the hist()
function (see figure 4.3).

The upper-left panel of figure 4.3 looks like a bell-shaped curve, which is
indicative of a normal distribution. The other three, however, seem quite dif-
ferent from a normal distribution. Let’s evaluate these samples for normality
using the Shapiro-Wilk test for normality.
> shapiro.test(x1)$p.value # large p -> fail to reject Ho

[1] 0.25377

> shapiro.test(x2)$p.value # small p -> reject Ho

[1] 2.90682e-19

48 A Primer in Biological Data Analysis and Visualization Using R

Normal Distribution

x1

F
re
q
u
e
n
c
y

−2 0 2 4

0

50

100

150

200

Uniform Distribution

x2

F
re
q
u
e
n
c
y

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120

Gamma Distribution

x3

F
re
q
u
e
n
c
y

0 2 4 6 8 10

0

50

100

150

200

250

300

350

Leptokurtic Distribution

x4

F
re
q
u
e
n
c
y

0 1 2 3 4 5

0

2

4

6

8

10

Figure 4.3 Histograms for four distributions for the datasets x1, x2, x3, and x4. We fail
to reject the normality null hypothesis only for the distribution in the upper-left panel
(the other three are not statistically normally distributed). Note that the data in both
lower panels exhibit kurtosis, which is referred to as being leptokurtic, meaning they
are peaked. The normally distributed data are mesokurtic, while the data in the uniform
distribution are platykurtic, or flat-topped.

> shapiro.test(x3)$p.value # small p -> reject Ho

[1] 2.789856e-25

> shapiro.test(x4)$p.value # small p -> reject Ho

[1] 0.001854099

The output from the shapiro.test() function suggests that only the
x1 dataset is normally distributed (p = 0.254) while the results for x2, x3,
and x4 suggest that these datasets are not normally distributed (p ≤ 0.05).
This agrees with our original interpretation of the histograms in figure 4.3.

Tell Me About My Data 49

If the data are not normally distributed it can be useful to know in what
way they violate normality. You’ve probably heard of a distribution appearing
to be skewed. This is when the data exhibit an asymmetric distribution (see
the lower-left panel of figure 4.3). We can test skewness using the skew-
ness() function from the e1071 package. Be sure you’ve installed the
e1071 package (see section 1.6) and loaded it with the library() func-
tion. Now you can run the following lines of code to test for skewness.

> skewness(x1)

[1] -0.008931715

> skewness(x2)

[1] -0.03822913

> skewness(x3)

[1] 1.373072

> skewness(x4)

[1] 0

Skewness values close to zero suggest no skew in the data. We see this for
the datasets x1, x2, and x4 in figure 4.3. However, the x3 (lower-left panel
of figure 4.3) is positively skewed. We say these data are skewed to the right
(the direction the tail is pointing). The uniformly distributed data (upper-
right panel of figure 4.3) are not skewed, so they are probably not normally
distributed due to our next measure of kurtosis.

Kurtosis, our last measure of the deviation from normality, is a measure
of the distribution’s shape away from the standard bell-shaped distribution.
You can try this for all four distributions as follow:

> kurtosis(x1)

[1] -0.1145157

> kurtosis(x2)

[1] -1.296026

> kurtosis(x3)

[1] 2.356125

> kurtosis(x4)

[1] 1.104286

50 A Primer in Biological Data Analysis and Visualization Using R

Table 4.2 Statistical moments about the mean.

Statistic x1 x2 x3 x4

x̄ 0.011 0.508 1.975 3
s2 0.984 0.09 1.946 0.769
Skew −0.009 −0.038 1.373 0
Kurtosis −0.115 −1.296 2.356 1.104

If the value of kurtosis is near zero, then the distribution is mesokurtic, or
it is consistent with a bell-shaped curve without a really sharp peak or a flat-
topped peak. If the value is a relatively large, positive number, then the data
are more pointy in the middle than a regular, bell-shaped distribution (x3
and x4). Such a distribution is referred to as being leptokurtic. If the value
is negative, then the distribution is relatively flat-topped. As we can see here,
the kurtosis value for x2 is more negative than the x1 sample. The x2 dis-
tribution is referred to as being platykurtic.

To summarize, we can look at these four statistics, called the first four
moments about the mean, and compare them for the four distributions in
table 4.2:

4.5 Outliers

We all know that outliers are unusual values in a dataset. It turns out they’re
kind of hard to define, and we’ll do so formally later in chapter 5. Outliers
are rare (they should occur in less than 1% of values drawn from a nor-
mal distribution), but they are expected to occur if our sample size is large
enough. I’ve heard some people say that outliers should simply be thrown
out. This is wrong. You should never discard data simply because the val-
ues seem unusual; we need a better reason than that! If a value seems to be
totally unexpected then you should investigate why.

Here are some possible explanations for why a data point might appear to
be an outlier or otherwise questionable:

1. Equipment malfunction.
2. Recording error.
3. Data entry mistake.
4. General carelessness.
5. Extreme environmental conditions at the time of the data collection.
6. A large sample size, which will yield statistical outliers (they’re expected).

Tell Me About My Data 51

If, after careful consideration, you decide that a value is an outlier that
either needs to be removed from your dataset or needs to be changed (e.g.,
it should be 1.53 not 153), then here’s what you should do. If the data were
read into R from a file, then you should fix the data file and read it back in,
if possible. If this is not possible, then you need to find it using R and fix it.
Let’s imagine you have a dataset of 100 values, they’re all 1.0 ≤ x ≤ 2.0,
and one of the values is 153 (it’s supposed to be 1.53). You can find its index
value in the array (where in the list of 100 numbers it is found). First, we
need a list of 100 numbers in our range:

> x = runif(100)+1 # creates 100 random values (1 ≤ x ≤ 2)

Next, let’s change the thirty-sixth value to 153:

> x[36] = 153 # makes the thirty-sixth value erroneously 153

This assigns 153 to the thirty-sixth array element. Finally, let’s find that value
and fix it. Here’s how we can find the index of any value in an array greater
than 2:

> which(x > 2) # find index of number(s) that are > 2

[1] 36

R tells us that, in this case, the outlier is the thirty-sixth entry in the x array.
We can inspect that value as follows:

> x[36]

[1] 153

and see that the thirty-sixth element is out of range. We double-check our
lab notebook and see that it’s supposed to be 1.53. Here’s how you can fix
it:

> x[36] = 1.53

What if the number was recorded correctly, but it seems our instrument
gave us a faulty value? Then we might want to simply remove this value. If
you want to remove the value from the working copy of data in R, you can
do the following, leaving you with just 99 data points:

> x = x[-36] # -36 means removes the 36th value, then copies
> # the remaining values back into x

Remember, if the data are in a spreadsheet, you should fix the spreadsheet
and read the data back into R.

52 A Primer in Biological Data Analysis and Visualization Using R

4.6 Dealing with Non-Normally Distributed Data

If the data are not normally distributed, what can you do? Before jumping
to a non-parametric test (a statistical test that does not assume data are nor-
mally distributed but are, generally, weaker tests of hypotheses), you should
investigate whether you can transform the data so they become normally
distributed. This can be a good idea because, if the data are normally dis-
tributed upon transformation, a parametric statistical test can and should be
used. The exponentially distributed data in the histogram in the left panel of
Figure 4.4 are shown without transformation and are then log-transformed,
using the natural logarithm. Many growth processes in biology lead to ex-
ponential distributions that are normalized with this log-transformation.

Below is the Shapiro-Wilk test for normality for these two datasets. Recall
that the null hypothesis for this test is that the data are normally distributed.
Therefore, if p > 0.05 then the data appear to be normally distributed (i.e.,
we don’t have enough information to reject the H0).

> shapiro.test(Data) # these are NOT normally distributed

Shapiro-Wilk normality test

data: Data
W = 0.90762, p-value = 3.286e-06

> shapiro.test(log.Data) # transformed -> normally distributed

Shapiro-Wilk normality test

data: log.Data
W = 0.98908, p-value = 0.5911

Data

F
re
q
u
e
n
c
y

0 100 300 500

0
5
10
15
20
25
30

ln(Data)

F
re
q
u
e
n
c
y

3.5 4.5 5.5 6.5

0

5

10

15

20

Figure 4.4 Two histograms of 100 data points. The left histogram shows data that are
right-skewed. The histogram on the right shows the same data after log-transforming.
The data are now normally distributed (a log-normal distribution). The transformation
was done using the natural logarithm function (log()).

Tell Me About My Data 53

Sometimes you have data with perhaps two or more groups and discover
that one sample is normally distributed while the other is not. You can try
to transform the data and the samples may be normally distributed. What
might happen, however, is that the non-normal data may become normally
distributed and the previously normal data may become non-normally dis-
tributed. What should you do? This is tricky so discuss this with a statistician
or adviser. What can become critically important in such cases is knowing
what the underlying distribution should be or knowing how previously col-
lected data were distributed. If the data are usually normally distributed, or
they should be for a very good reason, then you might assume normality.

4.7 Problems

1. The following values represent the average lengths of flagella in Chlamy-
domonas (a green alga) as a function of the number of flagella per cell
(based on data from Marshall et al., 2005). If the alga has one flagellum,
then, on average, they are 11.1 µm in length. They are only 4.3 µm,
on average, when they have six flagella. Store these in a variable called
flag.

11.1, 11.0, 10.7, 10.9, 11.2, 11.2

(a) Calculate the mean, standard deviation, median, SEM, IQR,
range, and CV for these data.

(b) Which of the measures of central tendency and variability assume
that the data are normally distributed and which do not?

(c) Create a histogram, boxplot, and Q-Q plot with a line using the
function simple.eda() from the UsingR package.

(d) Test the data for normality using the Shapiro-Wilk test. Does this
statistical test seem to support what the visualizations suggest?
What concerns do you have about this analysis?

2. Create a set of 1,000 normally distributed random numbers (use the
rnorm() function) with a mean equal to your height in cm. Assume
sd = 12cm. Store these in a variable called heights.

(a) What is the mean height for your dataset? Hint: It should be
close to your own height.

(b) Report the values of any outliers. Hint: Use the output from the
boxplot() function.

(c) Create a histogram of your data.

54 A Primer in Biological Data Analysis and Visualization Using R

3. The human population has been growing rapidly over the past 2,000
years. From the internet, find the current size of populations for the top
ten most populous nations.

(a) Create a histogram, boxplot, and Q-Q normality plot of these
data using the simple.eda() function.

(b) Describe the distribution of population sizes across these na-
tions.

4. Provide one, clear biological example for each of the following data types
not discussed in this chapter:

(a) Continuous.
(b) Discrete.
(c) Categorical.

5. Can you think of an example other those discussed in this chapter where
you’d need the range of the data?

6. I collected the mass of five mice and five elephants in the table below.
All data are in kilograms. Which exhibits the greatest relative variability?
Hint: Use the CV from section 4.3.

Mice 24.0 × 10−3 22.0 × 10−3 10.0 × 10−3 18.0 × 10−3 27.0 × 10−3

Elephants 5.19 × 106 4.40 × 106 4.82 × 106 4.19 × 106 4.87 × 106

7. What is the GPA of the student whose grades are provided in table
4.1? Be sure to provide the data you enter and your code, using the
weighted.mean() function.

CHAPTER FIVE

Visualizing Your Data

IN THIS CHAPTER, we will work to create clear, concise graphs of re-
lationships to convey information efficiently to your readers. R is extremely
powerful and flexible in allowing us to create a variety of visualizations, from
simple scatterplots to full-blown animations and three-dimensional (3D)
clickable diagrams. With its basic drawing palette, you’re actually able to
create any visualization you are likely to need or see in any professional scien-
tific publication. In this chapter we will develop a variety of graphs, enhance
those graphs, and discuss the reasons why we might use each of these graph
types.

As we begin, you will undoubtedly think R is rather primitive. Writing a
line of code to generate a graph might even seem crazy. But you will likely
soon realize that it is easy and intuitive to use typed words that direct R to
use your data to make the visualizations you want. Yes, it might seem hard at
first, but I hope you enjoy the skills you develop to make publication-quality
graphs. To see even more of what’s possible using R, you can search for ex-
amples online and, perhaps, begin by checking out this site: https://www.r-
graph-gallery.com/.

In this chapter, you’ll see a variety of basic graphing procedures. The more
you play with the different graphs, the better you’ll get. Be sure to give them
a try.

5.1 Overview

Before we get started, let’s create some random data. The following lines of
code will create three variables (x, y, and z) that each have 100 values drawn
from normal distributions with standard deviations equal to 1. The first line
sets the random number seed so that your data will be the same as my data.
This way your graphs should look exactly like those I’ve created.

56 A Primer in Biological Data Analysis and Visualization Using R

5 10 15 20

4
.0

5
.0

6
.0

7
.0

Index

x
[1

:2
0

]

0 5 10 15 20

0

2

4

6

8

10

My Custom Title

My X−Axis Label

M
y
 Y

−
A

x
is

 L
a

b
e

l
Figure 5.1 An example of a default scatterplot (left) and one with modifications (right).
For the graph on the right, I’ve added arguments that make it more professional looking
(see box 5.2).

> set.seed(100) # do this so you will have the same data
> x = rnorm(100, mean = 5) # 100 random nums, mean = 5, sd = 1
> y = rnorm(100, mean = 6) # 100 random nums, mean = 6, sd = 1
> z = rnorm(100, mean = 8) # 100 random nums, mean = 8, sd = 1

As you proceed through this section you’ll see a number of different types
of graphs. Graphs in R are made by sending data variables to graphing func-
tions. We refer to these data, and anything else we send to a function, as
arguments. In the examples that follow, you will see how data are sent to
the graphing functions and a variety of optional arguments that improve the
looks of the graphs. Keep your eyes open for when I do this in the examples.
Some of the important arguments used to improve the looks of graphs are
summarized in box 5.2 at the end of this chapter. You can see how this can
help improve the scatterplot in figure 5.1.

> par(mfrow = c(1,2)) # make graph window 1 row and 2 columns
> plot(x[1:20]) # left plot with no graphics parameters
> plot(x[1:20], xlim = c(0,20),ylim = c(0,10), las = 1,
+ xlab = ”My X-Axis Label”, ylab = ”My Y-Axis Label”,
+ main = ”My Custom Title”, pch = 16, cex = 0.75,
+ cex.lab = 1.5) # a professional-looking graph!

Visualizing Your Data 57

Legends

In addition to the graphical parameters just listed, you might be interested
in adding a legend to your graph. You’ll see that some graphing types, like
barplot(), can accept a legend.text argument (see figure 5.6). For
other graphs, you can always add a legend using the legend() function.
Because this is a function, it is called separately, on its own line. This can be
a little tricky and so you might just steal some code from later in this chapter
or from online sources and tweak the code for your purpose. There’s an
example of the implementation of this within a scatterplot in figure 5.7.

The legend() function is a little tricky. The first argument is where
the legend should be placed. Commonly we’ll place it in the top left
(”topleft”) or top right (”topright”) of the graph. It often takes up
too much room, so you need to increase the scale for the y-axis. One last
tweak I have found helpful is to make the legend horizontal by adding the
argument (horiz = T). The words you want to identify the different sam-
ples are combined into an array and passed to the legend argument (e.g.,
legend = c(”Females”,”Males”)). You can then add color and fill
for lines and boxes as needed.

5.2 Histograms

Histograms are standard graphs for visualizing the distribution of a dataset.
This is the best plot for getting a first look at your data. It’s quite easy, for
instance, to see if the data appear normally distributed, which is important
to know as you begin testing hypotheses. Below is the code used to make
the side-by-side histograms in figure 5.2.

> par(mfrow = c(1,2))
> hist(x, cex.lab = 1.5, main = ””, las = 1)
> abline(v = mean(x),lwd = 5)
> hist(x, cex.lab = 1.5, main = ””, breaks = 34,
+ las = 1, ylim = c(0,10))
> abline(v = mean(x),lwd = 5)
> par(mfrow = c(1,1))

You can control the number of bins that your data are placed into with
the “breaks” argument (e.g., breaks = 34). You might first simply let R
make the histogram and see how it looks before changing the number of
bins. If the data are normally distributed, they should form a bell-shaped
distribution.

58 A Primer in Biological Data Analysis and Visualization Using R

x

F
re
q
u
e
n
c
y

3 4 5 6 7 8

0

5

10

15

20

x

F
re
q
u
e
n
c
y

3 4 5 6 7

0

2

4

6

8

10

Figure 5.2 Two histograms of the x data. On the left, I let R select the number of bars to
graph. The thick, vertical line is placed on the graphs at the mean using the abline()
function. For the histogram on the right, I requested thirty-four bars (breaks = 34).

5.3 Boxplots

Boxplots, like histograms, can be used to show the distributions of data.
They are preferred over barplots because they show the distributions of data
and make comparing distributions among samples easy and clear.

Boxplots generally show a box with a line through the middle. The top of
the box is the 75th percentile, the middle line shows the median, which also
is the 50th percentile, and the bottom of the box is the 25th percentile. The
range between the 75th and 25th percentiles is referred to as the interquartile
range (IQR). A percentile is a value at which that percentage of observations
is below. Therefore, the 50th percentile is the value at which 50% of the
observations are below. A perfect score on an SAT test usually represents only
the 95th percentile because 5% of those who take the exam get perfect scores.
The whiskers may extend above the 75th percentile to the largest value but
must not exceed 1.5 times the interquartile range above this 75th percentile.
There also can be a whisker below the 25th percentile in the same manner.
Data points that lie beyond the whiskers are called outliers (see box 5.1).

Box 5.1. What is an outlier?
An outlier is a value that is more extreme than 1.5 times the interquar-
tile range above or below the 75th or 25th percentiles, respectively. Or,
more simply, they are the points beyond the whiskers of a boxplot when
graphed using R.

Visualizing Your Data 59

Control Low High

0

2

4

6

8

10

Fertilizer Treatment

T
re

e
 H

e
ig

h
t
(m

)

Figure 5.3 A boxplot of tree growth under three different conditions (A, B, and C). Note
that the y-axis extends down to zero (ylim = c(0, ...).

In figure 5.3 I’ve plotted x, y, and z, pretending they are the heights for
three groups of trees grown under different conditions (treatments). Treat-
ment levels B and C both have outliers.

> boxplot(x,y,z,names = c(”Control”,”Low”,”High”),
+ xlab = ”Fertilizer Treatment”, las = 1,
+ ylab = ”Tree Height (m)”,
+ cex.lab = 1.5, ylim = c(0, max(c(x,y,z))))

5.4 Barplots

Barplots generally show a summary value for continuous variables. The
heights of the bars almost always represent the arithmetic means. Sometimes
bars are displayed horizontally, but this is usually not best because the re-
sponse variable (the variable that was measured) should be shown on the
y-axis. The function barplot() needs just the heights of each bar in a sin-
gle array. In the example, I use the means, placed into a new variable called
Ht (see figure 5.4). Note that barplots should extend down to zero on the
response variable axis (usually the y-axis).

> Ht = c(mean(x),mean(y),mean(z))
> barplot(Ht,
+ xlab = ”Fertilizer Treatment”,
+ ylab = ”Tree Height (m)”, las = 1,
+ names = c(”Low”,”Medium”,”High”), cex.lab = 1.5)
> abline(h=0)

Be careful when using a barplot. You’ve seen these often, but they rep-
resent a very simplified version of your data (the mean is a single datum) as

60 A Primer in Biological Data Analysis and Visualization Using R

Low Medium High

Fertilizer Treatment

T
re

e
 H

e
ig

h
t
(m

)

0

2

4

6

8

Figure 5.4 A barplot showing the means of individuals of a tree species grown under
three different levels of fertilizer. These are the same data as those shown in figure 5.3.
Does something seem to be missing?

opposed to boxplots, which show several pieces of information. If you use
barplots, you should consider including error bars that represent the variabil-
ity of the data (discussed in box 7.1). Error bars on barplots still are limited,
reducing your data to only two pieces of information (the mean and the es-
timate of variability). In addition, if you graph the means using a barplot be
sure that they are good estimates of the center of distributions (i.e., the data
should be normally distributed).

Let’s compare the differences between a plain barplot and a boxplot for
two samples of data (A and B) with the same means and variabilities (figure
5.5). The datasets are the same for both graphs. You can see that the barplot
on the left, showing only the mean ± the standard deviation, suggests the
samples are very similar, while the boxplot on the right shows that the two
datasets are wildly different. This is a very important reason for using box-
plots instead of barplots, when possible. The reason the barplot is the wrong
graph type to use is because the data in treatment B are far from normally
distributed. This is easily seen in the boxplot in the right panel of figure 5.5.

Sometimes we want to create a barplot that compares observations over
two factors. This is often used when we have data we are analyzing using an
analysis of variance (see chapter 8) or a two-way chi-square test (see chapter
10). If we want a barplot, then we need to decide how to gather up our data.
Let’s imagine we have the following average Medical College Admission Test
(MCAT) scores for females and males who either are or are not majoring in
biology.

Visualizing Your Data 61

A B

Treatments

B
io

m
a

s
s
 (

g
)

0

50

100

150

200

A B

0

50

100

150

200

Treatments

B
io

m
a

s
s
 (

g
)

Figure 5.5 On the left is a barplot showing means (± standard deviations) for two samples
of plants (treatments A and B). These treatments appear to have resulted in no differences
in plant mass. The boxplots on the right show the same data but reveal that the samples
are really quite different from each other when we take into account the distributions
of the data, despite having nearly identical means and estimates of variabilities. Data for
samples A and B are the same in both plots.

If we wish to plot these means using a barplot, we have to decide which
factor goes on the x-axis and which factor is represented by the trace factor
(that’s the factor that’s paired and shown in the legend). The factors can be
interchanged, and you’ll have to decide which one makes the most sense for
your data. For these data, I have done it both ways (see figure 5.6). Here
are the data and how they are combined into a matrix for the barplot()
function.

> females = c(36.3,29.5)
> males = c(36.2,28.9) # first is biology, then non-bio majors
> MCAT = matrix(c(females,males),byrow = T, nrow = 2)

To create the side-by-side barplots, we need the data to be in a matrix. The
command above stores the data as a matrix in the variable MCAT. The default
for the matrix() function is to combine the data by columns. I like to enter
the data by rows, and so I added the argument byrow = T. Let’s see what
the data look like:

> MCAT

[,1] [,2]
[1,] 36.3 29.5
[2,] 36.2 28.9

This matrix matches the data in table 5.1. The code below creates figure 5.6.

62 A Primer in Biological Data Analysis and Visualization Using R

Biology Nonbiology

Males

Females

Major

M
e

a
n

 M
C

A
T

 S
c
o

re

0

10

20

30

40

50

60

Males Females

Biology

Nonbiology

Sex

M
e

a
n

 M
C

A
T

 S
c
o

re

0

10

20

30

40

50

60

Figure 5.6 Two barplots that represent the same data in two different ways. The graph
on the left shows mean MCAT scores for biology versus nonbiology majors, separated by
sex. The graph on the right shows the same data for males and females, each separated
by major. (Note that the scores were conceived by me for my biology audience.)

> par(mfrow = c(1,2)) # graphics panel with 1 row, 2 columns
> MCAT = matrix(c(females,males),byrow = T, nrow = 2)
> barplot(MCAT,beside = T, names = c(”Biology”,”Non-Biology”),
+ ylim = c(0,60), xlab = ”Major”, cex.lab = 1.5,
+ las = 1,
+ ylab = ”Mean MCAT Score”, legend.text = c(”Males”,
+ ”Females”))
> abline(h=0)
> # Alternatively, separate by major
> bio = c(36.2,36.3) # first males, then females
> non.bio = c(28.9,29.5)
> MCAT = matrix(c(bio,non.bio),byrow = T, nrow = 2)
> barplot(MCAT, beside = T, names = c(”Males”,”Females”),
+ ylim = c(0,60), xlab = ”Sex”, las = 1,
+ cex.lab = 1.5, ylab = ”Mean MCAT Score”,
+ legend.text = c(”Biology”,”Non-Biology”))
> abline(h=0)

Table 5.1 Average MCAT scores for males and females by major.

Sex Biology Nonbiology

Females 36.3 29.5
Males 36.2 28.9

Visualizing Your Data 63

5.5 Scatterplots

Scatterplots are used to show the relationship between two, usually contin-
uous variables. You might just show points for viewing relationships, or you
might add a best-fit line to a scatterplot (see section 9.2 on linear regression)
when there’s a statistically significant dependency that you want to model.
Such plots are made with the plot() function, which takes at least data for
the y-axis variable. In addition, we usually provide the function x-axis data
as well. We saw these types of graphs in figure 5.1.

Scatterplots with Different Points and a Legend

We may have several different sets of data we want to show on the same
graph. We can easily add points and lines using the function points() and
lines(), respectively.

Below are some data I retrieved from a paper by White and Seymour
(2003) on the relationship between basal metabolic rate and mass of different
animals. I use only a subset of data from the deer Order and the carnivore
Family. I have formatted the graph using log-log axes (argument log =
”xy”), added exponentiated labels for the scale, and provided exponential
and subscript values in the y-axis label. This really is not easy, so you might
re-create this graph and keep the code for later use (see figure 5.7).
> par(mar = c(5.1,5.1,2.1,1.1))
> M.artiodactyl = c(37800, 196500,69100, 325000,21500,58600,
> 20500)
> BMR.artiodactyl = c(9318,41242,19120,51419,8308,25609,5945)

Mass (g)

B
M

R
 (

m
l
O

2
 h

r-
1
)

103

104

105

103 104 105

Artiodactyla

Canidae

Figure 5.7 The relationship between basal metabolic rate (BMR) and the mass of animals
from the deer and carnivore groups. Note that the many elements to this graph make it
complicated. You should consider copying the code that generated this graph and save it
to a file. Data from White and Seymour (2003).

64 A Primer in Biological Data Analysis and Visualization Using R

> plot(M.artiodactyl, BMR.artiodactyl,
+ xlim = c(1000,300000), ylim = c(400,100000),
+ log = ”xy”, cex.lab = 1.5, xaxt = ”n”, yaxt = ”n”,
+ xlab = ”Mass (g)”,
+ ylab = expression(paste(”BMR (ml O”[2],” hr”∧-1,”)”)))
> axis(2,at = c(1e3,1e4,1e5),
+ labels = expression(”10”∧3,”10”∧4,”10”∧5),las = 1)
> axis(1, at = c(1e3,1e4,1e5),
+ labels = expression(”10”∧3,”10”∧4,”10”∧5))
> M.canids = c(3600,10000,7720,5444,1215,1769,4440)
> BMR.canids = c(1374,2687, 3860,1524,583,887,2442)
> points(M.canids, BMR.canids,#log = ”xy”,
+ pch = 16, las = 1)
> legend(”topleft”, legend = c(”Artiodactyla”,”Canidae”),
> pch = c(1,16))

5.6 Bump Charts (Before and After Line Plots)

Sometimes we have data with measurements on subjects before and after ap-
plying a treatment. For instance, we can measure reaction time to a stimulus
in a variety of organisms. We then train or expose subjects to a treatment and
again measure their responses. We can make a nice graph in R by following
these steps:

1. Enter the data into two array variables of equal length (e.g., before and
after). Alternatively, enter the data into a spreadsheet with two columns
of equal length. Each row would represent the response of a single sub-
ject.

2. Create an empty plot.
3. Draw lines that connect the paired data (before and after).
4. Draw points at the ends of each of the lines, if we want.

Below are lines of code that create the data and then graph them as a bump
chart (see figure 5.8).

> N = 20 # number of individuals in sample
> time1 = rnorm(N, mean = 3)
> time2 = rnorm(N, mean = 7)
> plot(0, xlim = c(0.75,2.25),ylim = c(0,10),
+ type = ”n”,xaxt = ”n”, xlab = ”Time”,
+ ylab = ”Measurement”, cex.lab = 1.5, las = 1)
> axis(1,at = c(1,2),labels = c(”Before”,”After”),
+ cex.axis = 1.25)
> for (i in 1:length(time1)) { # add the lines one at a time
+ lines(c(1,2),c(time1[i],time2[i]),lty = 1)
+ }
> points(rep(1,length(time1)),time1, pch = 16, cex = 1.5)
> points(rep(2,length(time2)),time2, pch = 17, cex = 1.5)

Visualizing Your Data 65

0

2

4

6

8

10

Time

M
e
a
s
u
re
m
e
n
t

Before After

Figure 5.8 A bump chart showing lines that connect observations made on individuals
before and after some treatment. We provide a graph like this so that a reader might see
an overall trend between subjects. Notice that each line represents a measurement from
a single experimental unit, so these data can’t be analyzed as though the before and after
points represent independent samples (see section 7.4).

The empty plot is created by including the argument “type = ”n”” and
then use a “for” loop to fill in each line one at a time. This looping is
explained in more detail in chapter 12. The resulting graph is figure 5.8. A
good time to use this type of graph is seen later in section 7.4.

5.7 Pie Charts

A pie chart is a type of graph that might be used when data values add up
to 100%. However, simply stated, pie charts are rarely used in biology. They
are challenging because the amounts in each slice often are too hard to com-
pare quantitatively. To overcome this problem, pie charts often display the
numerical value of the size of the slice, as well. However, if a graph requires
the presence of data values, then the pie chart is probably not appropriate.
If there are few slices in the pie then those data might best be presented in a
table.

For instance, we can look at the data presented at the top of figure 5.9.
The two charts show different data, but it is difficult to distinguish the differ-
ences. As you look at these pie charts, your eyes will go back and forth trying
to see if there are any important differences. Alternatively, the data are better
represented using another graphing procedure, such as a barplot (lower-
panel, figure 5.9), which more clearly shows differences between groups.

66 A Primer in Biological Data Analysis and Visualization Using R

1

2

3

4

Pie Chart 1

1

2

3

4

Pie Chart 2

1 2 3 4

Barplot

Groups

H
e

ig
h

t
(c

m
)

0

10

20

30

40

50

Pie 1 data

Pie 2 data

Figure 5.9 The upper panel shows two pie charts with slightly different data. The differ-
ences between each group across the two pie charts are difficult to see. You never want
to make your reader work to understand your results. These data are presented more
clearly in a barplot such as the one shown below the two pie charts. The two datasets
are graphed using a side-by-side alignment (beside = T) for each group, helping the
reader to make comparisons between the two datasets. To create a graphics window that
allows two graphs on top and one on the bottom, I used the layout() function (see
code).

> x1 = c(10,20,30,40)
> x2 = c(5,25,35,35)
> my.dat = matrix(c(x1,x2),nrow = 2,byrow = T)
> my.col = gray(seq(0,1.0,length=4))
> layout(matrix(c(1,2,3,3), 2, 2, byrow = TRUE)) # set layout

Visualizing Your Data 67

> pie(my.dat[1,], col = my.col,radius = 1,
+ main = ”Pie Chart 1”)
> pie(my.dat[2,], col = my.col,radius = 1,
+ main = ”Pie Chart 2”)
> leg.txt = c(”Pie 1 data”,”Pie 2 data”)
> barplot(my.dat,beside = T, ylim = c(0,50), names = 1:4,
> las = 1,
+ col = gray.colors(2), ylab = ”Height (cm)”,
+ xlab = ”Groups”, cex.lab = 1.5, main = ”Barplot”)
> legend(”topleft”,leg.txt, fill = gray.colors(2))
> abline(h=0)

5.8 Multiple Graphs (Using par() and pairs())

You have already seen several examples where I’ve managed to place mul-
tiple graphs into a single graphics panel (e.g., combining pie charts with
barplots in figure 5.9). This is done using the par() function, which con-
trols the making of graphs. You can stack graphs, such as histograms, on
top of each other (as seen in figure 5.10) with the par() function, using

Histogram of x

x

F
re
q
u
e
n
c
y

2 4 6 8 10

0

10

20

Histogram of y

y

F
re
q
u
e
n
c
y

2 4 6 8 10

0
10
20
30

Histogram of z

z

F
re
q
u
e
n
c
y

2 4 6 8 10

0
10
20
30
40

Figure 5.10 A set of three histograms, stacked one above the other, with the help of the
par(mfrow = c(3,1)) command (three rows and one column).

68 A Primer in Biological Data Analysis and Visualization Using R

a matrix approach to set up the graphics window. In figure 5.10, I’ve cre-
ated a graphics window with three rows and one column (> par(mfrow =
c(3,1)). If you’re trying to help your reader see similarities or differ-
ences in your data, you should show the graphs on the same scale (e.g., use
the > xlim = c(xmin,xmax) option in your plot command). I found
the ranges of the data using the floor() and ceiling() functions (see
code). In this example, I used the same limits so the range on the x-axes
are the same and only the data change among the graphs.
> # min() gets smallest value; floor() rounds down
> xmin = floor(min(c(x,y,z)))
> # max gets highest value; ceiling() rounds up
> xmax = ceiling(max(c(x,y,z)))
> par(mfrow = c(3,1)) # set graphic window: 3 rows, 1 col
> hist(x,xlim = c(xmin,xmax), las = 1)
> hist(y,xlim = c(xmin,xmax), las = 1)
> hist(z,xlim = c(xmin,xmax), las = 1)
> par(mfrow = c(1,1)) # reset the graphics window

Another useful and related graph is a matrix plot, which shows the re-
lationships among several variables simultaneously (figure 5.11). You can

x

4
5

6
7

8

3 4 5 6 7

4 5 6 7 8

y
3
4
5
6
7

5 6 7 8 9 10

5
7

9

z

Figure 5.11 A matrix scatterplot using the pairs() function. The main diagonal shows
no data but instead identifies the three variables (x, y, and z). In the upper-left corners
x. The two graphs of data to the right of the x box are graphing x on the y-axis. The
two plots directly below the x box have x on the x-axis. As an example, the graph in
the middle of the bottom row shows y on the x-axis and z on the y-axis. The data are
mirrored on either side of the main diagonal. It’s up to you to consider which makes the
most sense.

Visualizing Your Data 69

make these using the pairs() function. This is actually really handy to use
because it allows you to look for patterns among continuous data and not
actually do a hypothesis test. This is a type of data mining without actually
testing hypotheses.
> dat = data.frame(x,y,z)
> pairs(dat)

5.9 Problems

1. We’re going to use the built-in dataset called “trees” that contains
height and diameter (“Girth”) of black cherry trees. You can view these
data simply by typing trees in the console and hitting <enter>.

(a) The diameter data are in inches and height values are in feet.
Create new variables for diameter and height that are in cen-
timeters and meters called diam and ht, respectively. Note that
you need to use the syntax trees$diam and trees$ht to pull
out the diameter and height data, respectively, from the trees
dataframe.

(b) Create a publication-quality graph relating diameter and height
of these trees.

(c) Sort the trees based on height, from lowest to highest and store
them in a new dataframe called trees.sorted.

(d) Create a scatterplot of just tree heights against their order in the
new dataframe. This should show you how the distribution in
height increases.

2. The built-in dataset “precip” contains annual rainfall data for cities in
the United States in inches. Use it to answer the following problems.
Remember to include your code with your answers

(a) How many cities are represented in the dataset?
(b) Report which city has the highest rainfall and which has the

lowest.
(c) Examine visually the distribution of the rainfall amounts in these

cities using both a boxplot and a histogram.
(d) Determine whether the highest rainfall observed is technically an

outlier.

3. Below are four lines of code that make five samples. Be sure to check out
what is in the variable M after you run the provided code.

> set.seed(7)
> M = matrix(rnorm(25, mean = 10, sd = 2), ncol = 5)

70 A Primer in Biological Data Analysis and Visualization Using R

> M = as.data.frame(M)
> names(M) = LETTERS[1:5]

(a) Create two graphs, side by side. (Hint: Use the par() function.)
On the left, create a boxplot of these five datasets (A–E). On the
right, create a barplot of the sample means. Feel free to make up
x- and y-axis labels.

(b) Test whether the samples are normally distributed.

4. Below are the numbers of bacterial counts found in six control and six
treatment (trmt) plates.

control = 2,3,4,5,6,7
trmt = 5,3,4,5,6,9

Provide a side-by-side boxplot of these data. Add labels for the axes,
individual treatment levels, and a title.

5. A student conducted a time budget analysis for two gray squirrels on her
campus. One was black and the other gray. She recorded the following
times in minutes for each activity:

Squirrel Foraging Grooming Playing Resting
Black 133 78 122 47
Gray 95 22 57 33

(a) Create two pie charts for these data, showing percentages.
(b) Create a side-by-side barplot of these data using minutes.
(c) Discuss the pros and cons of each graph for these data.

Visualizing Your Data 71

Box 5.2.Optional arguments for visualizations.The following options,
or arguments, can be included to improve the looks of graphs. When
provided, they must be separated with commas. An example might look
like this: > plot(x, y, xlim = c(0,10)).

• xlim = c(low,high) and ylim = c(low,high). These con-
trol the range of the x and y axes, respectively.

• type = ”n”. This produces a plot without data. This is used when
you want a little more control, such as when adding several sets of
data using the functions points() or lines().

• type = ”l”. This produces a line graph without points. Note that
it is the letter “el.”

• type = ”b”. This produces both a line and the point symbols.
• pch = number. This controls the type of points produced in the
plot() function. Some of the options for this argument include:

– pch = 1. This is the default and produces small open-circle
points.

– pch = 16. This produces small, solid circular points.
– pch = ”symbol”. You can replace “symbol” with char-

acters, such as a period (type = ”.”) or a plus sign (type
= ”+”).

• lty = number. This produces different line types. The default (1)
is a solid line. A dashed line is 2.

• lwd = number. This is the line width. The default width is 1.
• cex = number. This number controls the size of the symbol, 1

being the default.
• cex.lab = number. This number controls the size of the x- and
y-axis labels. The default is 1, but I usually like 1.5.

• main = ”Your title”. Add a title. Using main = ”” removes
a title.

• xlab = ”Your x-label”. Self explanatory.
• ylab = ”Your y-label”. Ditto.
• xpd = F. Used for barplots when you want the lower limit of the

y-axis limit to be a value other than zero.

Additionally, you might consider placing text in your graph using
the text() function, which might look like this: > text(x, y,
”text”), where the x and y values are coordinates in the graph where
the text will be centered. See the help on the text() function for some
useful expressions and symbols to add (type ?text and hit <enter> at
the console).

CHAPTER SIX

An Overview of Science,
Hypothesis Testing, Experimental

Design, and Inference

SCIENCE IS BY FAR the best method humans have to understand our
universe. You certainly enjoy its products every day and probably use it often
to solve your own challenges. For example, you may have had the unpleasant
experience of getting into a car, turning the key, and discovering it doesn’t
start. Your first reaction is undoubtedly to test whether turning the key again
will simply do the trick. If it doesn’t, you’ll likely run through a series of other
hypotheses that you think might get the car to start (e.g, shout, curse, kick
the bumper, or open the hood and threaten the engine). Alternatively, you
might pick up sand and throw it eastward or look skyward for sympathy (or
shake a fist). Unfortunately, none of these approaches uses a method that
has a scientific basis that actually addresses the problem.

Then again, sometimes unrelated activities coincidentally result in a de-
sired outcome. Dowsing for water often works because you’ll run into water
if you dig down deep enough just about anywhere. Other times crossing your
fingers for “good luck” and baseball players going through a series of odd,
superstitious behaviors before batting are acquired because they seemed to
work once two years ago. What separates the above methods from science is
that science focuses on using empirical evidence, acquired through rigorous ob-
servations and/or experiments, to illuminate the mechanisms that govern how
natural systems work. In this chapter, we’ll briefly explore the process of ac-
quiring and interpreting the meaning of scientific information.

6.1 What Do We Mean by the Term Statistics?

This book is about biological data analysis. I think of data analysis as being
the process of gathering, summarizing, interpreting, and sharing information.
Statistics is certainly a core discipline in this field. But what do we mean by

74 A Primer in Biological Data Analysis and Visualization Using R

the term statistics? Here are the two main pieces that encompass statistics for
our purposes:

1. Statistics are summary values that estimate parameter values. For in-
stance, there is an average value for the height of full grown, adult hu-
mans on Earth. There is an exact number, called a parameter, that we
will never know. However, we can take a random sample of these hu-
mans and determine the average height of this sample. This summary
value of a sample is called a statistic.

2. We also think of the procedures we use to formally test hypotheses as
statistics or statistical tests (e.g., the common t-test).

In biology our process of getting information usually follows the standards
of the scientific method and relies on proper experimental design (see section
6.4). Numbers by themselves do not constitute statistics, and they certainly
do not if there is no context. When we attach information to numbers, we
can have something with a great deal of meaning.

The simplest statistics are summary values, which are called descriptive
statistics. You encounter these all the time, such as the average score on an
exam, the fastest time in a race, or even the approval rating of the president’s
job performance. Even from the esteemed journal Nature we can find a
comparison of multiple means using t-tests when the data are not normally
distributed (fig. 6.1). As we’ll learn in chapter 8, this is wildly inappropriate.
And because this test relies on a sample’s mean, it is important that the mean
be a good measure of the center of our data. We can see that, for one of
the samples, the mean (where the arrow in figure 6.1 points) doesn’t even
represent one of the data points. Therefore, this mean value is not just a
poor statistic estimating some population parameter in this case. It also is
pointless!

In biology, we are often interested in knowing something about a popu-
lation, which usually includes everything in that group (e.g., all wolves on
Earth). We generally are restricted to collecting data from a sample, or sub-
set of the population, and use statistical procedures to estimate what we’re
interested in knowing about the population. For instance, we might be in-
terested in whether two different strains of bacteria have different colony
growth rates. We don’t test all bacteria but, instead, use samples of colonies
that we hope represent the larger population of all bacterial strains. For these
types of questions, we are not just summarizing numerical information but
are, instead, asking what these samples of data mean in the larger context.
This extension of a hypothesis from samples to statements about popula-
tions is referred to as inference (see section 6.6 for a further discussion of
inference).

An Overview of Science, Hypothesis Testing, Experimental Design, and Inference 75

Response Variable

F
re

q
u

e
n

c
y

0 2 4 6 8 10 12

0

1

2

3

4

5

Figure 6.1 A histogram of one of many samples used in a multiple t-test analysis. In this
sample there isn’t even a data point at the mean (arrow). Not surprisingly, these data are
far from normally distributed (data from Zhang 2020).

In this way, we generally collect data on a small subgroup and extrapolate
what our results mean to the larger group. Our small group is referred to as
a sample, while the larger group is called a population. Summary values of a
sample are called statistics, while summary values of the entire population are
called parameters. Therefore, we usually collect samples from populations to
get statistics that we use to estimate population parameters. The process of
understanding populations from samples using a variety of statistical proce-
dures is referred to as inferential statistics. Much of what we will do in the rest
of this book is designed to help you make this leap from summary statistics
to inferential statistics.

6.2 How to Ask and Answer Scientific Questions

Here are the basic steps that scientists take when they want to know some-
thing about the universe that can’t just be looked up. In general, these steps
are really hard to accomplish. Scientists usually need extra funding to do this
work, and so scientists work to get grants that fund the research. Biologi-
cal research, in particular, is expensive and time consuming. Therefore, it is
quite important that the data be collected carefully and analyzed correctly.
Your success in learning to design experiments and analyze the results pro-
vides you a valuable and marketable skill. So here are the steps scientists tend
to follow, often referred to as the scientific method:

1. Clearly state your question in a way that can be tested. This question is
generally stated as a hypothesis.

76 A Primer in Biological Data Analysis and Visualization Using R

2. Decide what data are needed to answer the question. These should be
just the data you need to answer the question—no more and no less.

3. Hand-draw a graph of what a beautiful answer might look like if your
idea is correct. This exercise will always help you clarify your experimen-
tal design.

4. Determine the appropriate analysis that would be required to test your
hypothesis if you got the cool data you graphed by hand. You can make
up data (called dummy data) and try the analysis. Yes, you read that
correctly. This way you really understand what you’re trying to find out
and whether the data you hope to collect will answer your question. If
you stop here and present or publish this, you can become famous for a
very bad reason.

5. Using the dummy data, you could consider performing a power analysis
(see “Power analysis and the number of replicates”). Better is to do this
analysis with data from previous experiments or the scientific literature.

6. Design a good way to get those data (experiment or observation). You
will likely draw heavily on what others have done before.

7. Do the research and collect the data as carefully as possible.
8. Look at the data you have collected. This is best done with a graph. Test

how the data are distributed (normal or not normal). Do the results look
like your hand-drawn graph?

9. Test your hypothesis. This is where inferential statistics are used.
10. Share your result with the greater world through a carefully crafted re-

port (e.g., see the journals Science or Nature) or presentation. Use the
style required by your reader (e.g., lab instructor, professor, or journal).
It doesn’t matter how strange that might seem. Different journals have
different styles (as do different faculty members). I once had a student
tell me their faculty instructor wanted the methods described in the dis-
cussion section of the laboratory report. I asked them if that made sense
to them. No, it did not. And I got to say: “And that’s how you’ll do it,
right?”

We need to be sure that we respect the investment made into getting each
data point. Time; lab equipment; consumables (e.g., reagents); and the time
of faculty members, lab instructors, and assistants are all costly. This leads us
to an important rule:

Box 6.1. The golden rule of data analysis You should be as careful with
your data analysis and developing your visualizations as you are designing
and conducting your experiment. Your results are only as valid as the
weakest part of your research.

An Overview of Science, Hypothesis Testing, Experimental Design, and Inference 77

6.3 The Difference Between Hypothesis and Theory

People often assume that a hypothesis is just a fancy word for a guess in
science. This is not correct! A guess is generally some estimate that is made
with insufficient evidence or an understanding of the system. For instance, I
am an avid tennis player and before a match, players spin a racquet to decide
who gets to choose whether or not to serve (e.g., “up” or “down”). The
opponent has no information beyond up or down, and we assume that there
is an even probability of getting either outcome. The person who gets to
choose up or down is making a guess. So what’s a hypothesis?

Box 6.2. A scientific hypothesis A hypothesis is a well-supported predic-
tion of an outcome that could occur from a scientific investigation.

In general, when we’ve gotten to the point of developing an experiment,
we are testing a well-thought-out hypothesis that has been developed based
on previous research experience and/or a deep exploration of the scientific
literature. We’re never just guessing about what might happen—experiments
are too costly! Most often we formally test hypotheses statistically, which
usually provides us with some level of confidence, or lack of confidence, in
one or more of our hypotheses. And for our purposes in this book, we are
generally testing the null hypothesis (H0). H0 is one of many potential out-
comes and usually agrees with random chance, no pattern, or no relationship.
When we do experiments, we often are interested in positive results (e.g.,
something is happening different from chance), so we test whether our data
support H0 or not. We then report our result and include a p-value. We will
develop the technical definition of the p-value very carefully below (section
6.8).

A related term we often hear is theory. I once had a mathematician friend of
mine state confidently that evolution isn’t true—it is “just a theory.” He even
noted that scientists refer to it as the “theory of evolution.” For evolution
to be true, must we prove that it is true? Otherwise, isn’t it simply a guess?
Are scientific theories just guesses? Where’s the proof?

The bad news is that we do not prove anything in science. Mathematicians
prove stuff and they can do this because, well, they cheat by building proofs
that rely on axioms that are assumed to be true. In biology, we work to
understand nature and continue to challenge our ideas with more evidence.
Evidence, however, is always a bit shaky and dependent on many variables
and sources of error. As we work to understand how nature works, we gather
more and more evidence that supports or refutes ideas. If the ideas are not

78 A Primer in Biological Data Analysis and Visualization Using R

supported by data, we may modify our understanding of nature or possibly
abandon our ideas. So what’s a theory?

Box 6.3. A scientific theory A theory is a comprehensive explanation of
natural phenomena supported by extensive evidence gathered through
observations and/or experiments.

The evidence we gather may increase our confidence that our ideas about
nature are correct. But, unfortunately, we only get more and more confident.
We never eliminate the possibility that some new evidence might cause us
to have to give up on our beloved ideas. Therefore, we cannot be 100%
sure an idea is true, which, therefore, prevents us from “proving” anything
in science. A slightly controversial corollary to this idea is that, if we can’t
prove something true in science, we can’t disprove it either. If we can’t be
100% sure that something is true, then we also can’t be absolutely certain
that something is false.

What then can we say about our results? We can’t say: “our results prove”
that something is happening. Instead, we say that “our results are consistent”
with something happening.

So, the words prove and disprove have limited roles in science, restricted
particularly to the area of applied mathematics. Biomathematicians, for in-
stance, do provide proofs that lead us to deep understandings of how biolog-
ical systems work or can work. Therefore, our inability to prove or disprove
hypotheses in science is the result of the inescapable fact that all results in
science are provisional. For example, we are quite confident the Earth is an
oblate spheroid and not flat and that it revolves around the sun. We also
have high confidence that species evolve over time and low confidence in
spontaneous generation and the medical benefits of homeopathy.

6.4 A Few Experimental Design Principles

Our focus here is to learn to analyze and visualize data correctly. However, to
do this correctly we need to, and should know, how best to get data so as to
correctly analyze and visualize it. Below are a few important design principles
to keep in mind if you’re collecting your own data. Most, but not all, obser-
vations and experiments will include the items in this list. We should accept,
however, that occasionally we can gain great insight about nature without
some of these components. Some biological systems, for instance, are just too
large and difficult to adequately replicate (e.g., test global atmospheric re-
sponse to elevated CO2 or perform experiments on whole-lake ecosystems).

An Overview of Science, Hypothesis Testing, Experimental Design, and Inference 79

1. Replication. This solves the problem that we might have if we only mea-
sured one individual who happens to be really unusual. We need, instead,
to sample as many individuals as is practical under each treatment level
individuals, for instance, under each treatment level so that we can un-
derstand the collective behavior of our system. Each individual should be
independent from other individuals. It is possible, however, to measure
a single individual multiple times, but we need to account for this lack of
independence. For example, we might measure the mass of an individual
over time to determine its growth rate, but we only get one growth rate
measurement from this individual and therefore need to make the same
type of measurement on other individuals (replicates). A problem might
arise if all our study critters are genetic clones within a species. Are these
independent replicates? In general, our inference will only extend to this
clone, not the species as a whole.

2. Randomization. We often need to take individual samples in a study and
place them in different treatment groups randomly. If we’re sampling
out in nature, we need to pick our sites randomly. It’s not random, for
instance, if we choose research plots that are close to a road or human
subjects that happen to be our friends. If we do this, then we can say
something only about the groups we are testing, not the larger systems
we may actually be wanting to study (see section 6.7).

3. Factors. Factors are different treatments that we’re investigating and
that might affect our study system. For plants, we might be interested
in the effect of nitrogen on growth rates. We can have multiple factors
that we investigate (e.g., water and temperature).

4. Levels. If we have a factor, then we need to have at least two different
levels of that factor to understand how it influences our study system. In
the above example, we might investigate the effect of nitrogen on plant
growth rate, and so we have a treatment level with no nitrogen added
(control) and a level with nitrogen added.

5. Control. Controls are tricky sometimes. In the above example, the “no
nitrogen” treatment serves as the control. We like to have controls that
are factor levels against which we compare our treatments. It is possible,
however, not to have a control. If we are interested in testing whether
SAT scores for males and females are different, then neither sex would
serve as a control group.

6.5 Using R to Assign Individuals to Treatments Randomly

When we set up experiments, we often have individuals, or experimental
units (some unit for which we will take a measurement), that we need to

80 A Primer in Biological Data Analysis and Visualization Using R

assign to different treatment groups. Let’s imagine that we need to set up a
small pilot study to test the effect of a fertilizer on plant size (mass). If we
have six plants and two levels of fertilizer (control and fertilized), we should
assign three plants randomly to each treatment group.

In such an experiment, we would plant seeds in six identical pots. Each
pot should be numbered from 1 to 6 (you should write the number on each
pot). We can get our pot numbers like this:
> pot = 1:6

and we can use the rep() function to list the names of the treatments for
this:
> trmt = rep(c(”control”,”fertilizer”), each = 3)

We can now randomize the pots and assign treatment levels to each:
> set.seed(11) # so you get the same order as I do (don’t do if
> # doing this for an experiment!)
> pot = sample(pot) # randomize the array pot numbers
> design = data.frame(trmt,pot)
> design

trmt pot
1 control 2
2 control 6
3 control 4
4 fertilizer 1
5 fertilizer 5
6 fertilizer 3

Undoubtedly a real experiment would be much larger than this, but this skill
of randomly assigning individuals to treatments is valuable.

For setting up an experiment, R’s function sample() is likely one of
the most important. You always need some level of randomization of your
treatments across your sampling units (the subject you are studying). Alter-
natively, you may need to choose sample organisms or study plots randomly.
To do this, you generally number your subjects or possible study plots, for
instance, and then choose or arrange them randomly. The sample() func-
tion helps you avoid having bias in your experimental design.

6.6 Inference

Once we have designed a study and collected and analyzed our data, we usu-
ally want to say something about the natural world as a whole. This statement
of the greater meaning of our research is referred to as inference. Our ability
to make inferential statements is limited by the data we have collected. If we
are interested in endocrinology and have discovered the function of a hor-
mone on metabolic activity in mice, what can we say? We might be tempted

An Overview of Science, Hypothesis Testing, Experimental Design, and Inference 81

to state that our result is important in mammals. We might even go as far
as saying that this could be important to humans. Unfortunately, if we’ve
studied this in mice, we can’t say this result applies even to related mammal
species—and certainly not to humans.

Studies using model systems, such as fruit flies, mice, or yeast, often are
done using just one or a few genetic lines where all individuals within a line
are genetically identical. In this case, our inference (statement of the greater
meaning of our result) cannot go beyond this line of mice. If we use three
strains of white lab mice and the result was found clearly in all three, can
we say something about this result in white lab mice in general? Possibly, if
these three strains were chosen randomly out of all strains of white lab mice.
Most likely, however, these mice strains were not chosen randomly but were,
instead, strains with which the investigator was familiar or which are simply
particularly easy to raise and test under laboratory conditions. Therefore,
inferential statements might not go beyond the three specific strains of mice.
Think of it this way: if you discover something about three of your friends,
are you ready to make an inference about humans?

Power Analysis and the Number of Replicates

If we’re designing an experiment, we always have constraints on the size of
our experiment. We just discussed the importance of replicates. Why not
just have as many as we can afford, have room for, and/or have personnel
to do the work? The reason is that we will be making one or more of a
variety of mistakes if we do this. We want to be efficient and design the right
experiment for the hypothesis we are testing. If we use too many resources,
we will not be able to ask other questions. If we use too few resources, then
we might not be able to answer our question.

One solution to this problem is for us to conduct a power analysis or a
power test. The idea of this is to estimate the number of replicates we need
to determine that a factor (e.g., nitrogen) affects our response variable (e.g.,
plant growth rate). The problem with this determination is that we need to
know the answer before we start!

As an example, let’s assume that a t-test is the appropriate way to de-
termine if the masses of individual rodents are different between two geo-
graphically isolated morphotypes within a species. From previous research,
we know that the mean mass of one morphotype is 250 g and that the vari-
ability for this species is s = 25 g. Given this information, can we estimate
how many animals we would have to collect and weigh to detect a signifi-
cant difference of at least 30 g? The power of a statistical test is defined as
1 − β, where β is the probability of making a Type II error (see section
6.9). Determining power is difficult and depends on sample size, our critical

82 A Primer in Biological Data Analysis and Visualization Using R

p-value α, the strength of the effect we’re studying, and various errors
we might make. Often a value of 0.1 is a conservative estimate (β = 0.1,
power = 1− β = 0.9). Given this, our power analysis is done as follows:

> power.t.test(delta = 30, sd = 25, power = 0.9)

Two-sample t test power calculation

n = 15.61967
delta = 30

sd = 25
sig.level = 0.05

power = 0.9
alternative = two.sided

NOTE: n is number in *each* group

This suggests that we need at least sixteen replicate individuals (always round
up) in each sample group to have our t-test provide us with a significantly
different mass for these populations, given that we need the means to be
different by 30 g, that the standard deviation of these samples is 25, and that
our samples are normally distributed (see chapter 4). This function has more
flexibility and other power tests are available.

6.7 How to Set Up a Simple Random Sample for an Experiment

Let’s imagine that we are asked to set up an experiment to test the effect of
gibberellin on the height of Brassica rapa (a fast-growing plant). We would
like to employ a proper scientific approach for this experiment so that we can
correctly quantify and interpret our results. Let’s apply what we learned in
the previous section on the principles of experimental design.

1. Replication. To test the effect of gibberellin on plant height, we need
to be sure that we have several plants. Our laboratory instructor might
provide us with ten pots for us to grow replicate plants.

2. Randomization. In each pot, we overplant with seeds and, during the
first week, we carefully remove all but one plant per pot. At the start of
our second week, we are prepared to apply our treatment (spray gibber-
rellin onto the leaves of the treatment plants). Which plants receive the
treatment and which do not? We should do this randomly using the ap-
proach described in section 6.4 rather than haphazardly (just choosing
them ourselves).

> sample(1:10,5) # from the array 1-10, randomly choose 5

[1] 5 6 4 10 9

An Overview of Science, Hypothesis Testing, Experimental Design, and Inference 83

If you run this line you should get a different set of plants than I did.
These are the pots to treat with gibberellin. The other plants do not
receive the treatment.

3. Factor. We have just one factor in this experiment: gibberellin.
4. Levels. For our gibberellin factor, we have just two levels: with and with-

out gibberellin applied.
5. Control. The control plants are those that do not receive gibberellin. In

this example, gibberellin is sprayed on the plant leaves at the beginning
of week two. Our control should be a spray that doesn’t contain gib-
berellin, such as distilled water. In medical applications you’ll hear such
treatments as being called a sham or placebo.

In addition, we want to be sure to state our hypotheses explicitly. Our
hypothesis here might be that giberrilin increases the height of Brassica rapa
(alternative hypothesis) or that it has no effect (null hypothesis).

6.8 Interpreting Results: What Is the p-value?

A p-value is an important number that comes from conducting many of the
statistical tests discussed in this book. It’s usually a little tricky to understand
at first so let’s start slowly. When you conduct one of many statistical tests,
you often get a p-value that tells you something about your hypothesis. A
simple test might ask whether two samples are statistically different from each
other. What we are generally asking is whether the two samples came from
the same population. In the previous example, we asked whether gibberellin
increases plant height. If the samples are both normally distributed (an as-
sumption of the t-test), then you can perform a t-test (see section 7.6). The
test returns a p-value (see figure 6.2). In a t-test, the t-value generally gets
larger as the means of the two samples get more and more different (but
this also depends on how messy the data are). Larger t-values generally yield
smaller p-values and lower our confidence that the two samples came from
the same population.

In an effort to make this more intuitive, I will lie and tell you that the
p-value is like the probability of the the null hypothesis being true. With
this idea in mind, a large p-value, like 0.95, suggests we not reject our null
hypothesis, while a small p-value, like 0.001, suggests we should reject our
null hypothesis. It’s never good to lie so let me formally define the p-value
in correct, but more confusing, terms.

84 A Primer in Biological Data Analysis and Visualization Using R

4

5

6

7

8

9

M
a

s
s
 (

K
g

)

t = 0.99, df = 14, p = 0.34 t = 1.64, df = 14, p = 0.13

A B

4

5

6

7

8

9

Treatment

M
a

s
s
 (

K
g

)

t = 2.29, df = 14, p = 0.047

A B

Treatment

t = 5.32, df = 14, p < 0.001

Figure 6.2 Boxplots from four possible studies of the masses of organisms from two
different treatments (A or B). In the upper-left panel, it appears that there is no treatment
effect (the two samples seem to have come from the same population because p > 0.05.
As the samples appear more and more different, our p-values get smaller. At some point,
our samples appear so different that we conclude that they did not come from the same
population (they are statistically different). We often draw this line at the critical p-value
called α, which is often set so that α = 0.05.

Box 6.4. The p-value The p-value is the probability of getting a test statis-
tic (like t returned by a t-test or F returned by an analysis of variance
[ANOVA] test) that is as extreme or more extreme than the one you
observed had the null hypothesis been true.

I assume this definition seems pretty confusing. It’s not that bad, however.
Statistical tests return test statistics (e.g., a t-value or an F-value). These test
statistics have ranges where, at one end, they suggest there’s no difference or
relationship. At the other end, the test statistic might suggest a big difference
between samples or a strong relationship between samples. Generally, when
these test statistics are near zero, we fail to reject the null hypothesis. Large test
statistics reduce our confidence in the null hypothesis. So, for the t-value,

An Overview of Science, Hypothesis Testing, Experimental Design, and Inference 85

for instance, it continues to get larger for samples that are more and more
different and, at some point, we reject the null hypothesis that the samples
came from the same population (see figure 6.2).

Our definition of a p-value above explains why we consider a p-value that
is less than or equal to the critical p-value (α) to be statistically significant. It
is important to always set α before we conduct an experiment. If we aren’t
sure what will happen in our experiment, we generally set α = 0.05. There-
fore, we would reject the null hypothesis when p ≤ α = 0.05. Notice, too,
that we are dealing with statistical significance; biological significance is quite
different.

Where did α = 0.05 come from? That’s a story involving a famous ge-
neticist named Sir Ronald Fisher. It is an arbitrary value. But it’s a widely
accepted value. We will use the convention that we fail to reject H0 when
p > α. Not everyone will agree with this rule. But it is a simple rule for
getting started. Therefore, if α = 0.05 and p = 0.06, it is wrong to say
something like, “The relationship is almost significant” or that “there is a
positive trend.” It is even worse to say, “Let’s make α = 0.1 so it’ll be
significant!”

6.9 Type I and Type II Errors

As mentioned before, in science we cannot be absolutely certain of anything
but instead work to increase our confidence in our understanding. In biology,
if we’re dealing with data, there always is a chance that we are wrong. This is
true even for physicists, at least if they’re working with data using a natural
system. We accept that there is a probability of making a mistake and have
to balance this chance with our desire to interpret our results correctly. Why
not just make α really small so that if we reject our H0, we are really sure the
H0 is wrong? This is a great question!

Imagine we conduct a vaccine trial for COVID-19. We would vaccinate
some and not others, and then challenge these brave subjects with the live
SARS-CoV-2 virus. If we set our α = 0.001, then we would have incredibly
strong evidence that the vaccine was effective. But if it worked really well,
we risk failing to reject our null hypothesis (the vaccine doesn’t work) and
people who could be saved with this vaccine would never receive it. Making
errors can be dangerous!

Let’s consider the situation that we really don’t want to make the mis-
take of incorrectly rejecting a true H0. For context, let’s imagine we’re in-
vestigating whether human males and females are different in height. We
set α = 0.001 so that we’ll only reject H0 (no difference in heights) if the
heights of males and females are wildly different. To conclude that males and

86 A Primer in Biological Data Analysis and Visualization Using R

Figure 6.3 This diagram represents Type I and Type II errors. If we could assume that
our null hypothesis (H0) is true, then, based on our data analysis, we are acting correctly
if we fail to reject H0. If we reject a true H0, however, then we’ve made an error (Type I).
If we fail to reject a false H0, however, then we’ve also made a mistake (Type II). Finally,
if we reject a false H0, then we’ve acted correctly. Note the probability of making a Type
I error is α, while the probability of making a Type II error is β.

females differ in height, we need to see a difference of at least three feet. Then
we’d be sure they’re different. If males were only 2.5 feet taller than females,
it’s not enough to be statistically significant. You probably can tell that we’ve
made a mistake (see figure 6.3). What we’ve done is to avoid making a Type
I error by making α (the probability of making a Type I error) very small.
But, unfortunately, under this scenario, we’ve failed to conclude a difference
in height between males and females where there really is a difference (2.5
feet on average). We’ve committed what’s called a Type II error.

This becomes more problematic when the results matter, such as in the
case of a new drug that could save or extend lives. If the life expectancy
of patients increased because of our drug, what length of time might be
considered significant? We are likely to think one week might be great. If
we set α to a small value, we would not likely detect such a difference. We
would be really rigorous in our result by wanting to be certain that our drug
extends life by a long time. If our drug does extend life but, perhaps, not by
much, or the result is pretty variable, we fail to reject our false H0 (Type II
error; see figure 6.3). We might end up not recommending that a drug that
works be administered. Are you comfortable with that?

To avoid this mistake, we might set α = 0.2. This is great because the
test is really sensitive (it’s easy to reject our H0). Is this a problem? This
error might be acceptable because maybe the drug is inexpensive and has a
placebo effect, so even if it doesn’t work, no one is hurt (see figure 6.3). We
often must consider which of these errors is more acceptable.

An Overview of Science, Hypothesis Testing, Experimental Design, and Inference 87

In this chapter, we’ve discussed a variety of ways to conduct sound sci-
ence and assess information. As you can see, this process is quite challenging
to do correctly. And its complexity ensures that people, not just statistical
programs, play a critical role in order to interpret results correctly.

6.10 Problems

1. You take your first test in a biostatistics class and the professor reports
that the average (mean) was 75%.

(a) The reported mean is a model representing a simplification: a sin-
gle number represents all grades earned by students in the class.
What assumptions has the professor made in order to report the
mean correctly?

(b) Is the reported mean, in this example, a statistic or a parameter?
(c) What inference can be made regarding this result?

2. You perform a statistical test and get a p-value of 0.06.

(a) Under what conditions would we consider this to be statistically
significant?

(b) Under what conditions would we consider this not to be statis-
tically significant?

(c) Provide a biological example where a p-value = 0.06 might not
be statistically significant but is, instead, biologically significant.

(d) Assuming the researcher set α = 0.05 prior to conducting the
experiment, describe the type of error made by concluding that
p = 0.06 is close enough to being significant that H0 is
rejected.

3. You walk into your bedroom and flip on the light switch. The light does
not go on. Assuming this is a problem you want to fix, describe the steps
that you would take to remedy this using the scientific method.

4. You plan to investigate how the drug enalapril affects blood pressure in
patients. You advertise in a local newspaper to pay anyone over 50 years
of age with hypertension $100 to to join the study. From the first thirty
to sign up, you create a randomized controlled trial (RCT) with three
groups, each with ten people. The groups receive either a placebo, 2.5
mg, or 5 mg daily dosages. You measure their blood pressure before the
trial begins and after one month.

(a) Provide a hand-drawn graph of what the results will probably
look like. Include a reasonable scale and units.

(b) Describe what the control is (or should be) in this experiment.

88 A Primer in Biological Data Analysis and Visualization Using R

(c) Provide code that would randomly place ten individuals into
each study group.

(d) What is the population to which your results would apply?
(e) Describe the conditions under which you would want α = 0.01

for this trial.
(f) Describe the conditions under which you would want α = 0.2

for this trial.

5. Three student researchers are interested in how a particular plant species
responds to elevated atmospheric CO2. They clonally propagate cotton-
wood saplings (Populus deltoides) to reduce the variability among indi-
viduals and that therefore maximizes their ability to attribute any re-
sponse they see to the CO2 treatment effect. What inference can they
make about plant response to changes in CO2?

6. Below is a quote from a New York Times (September 12, 2012) article
titled “How Testosterone May Alter the Brain After Exercise.”

A new study published last month in the Proceedings of theNational
Academy of Sciences [found] that male sex hormones surge in the
brain after exercise and could be helping to remodel the mind. The
research was conducted on young, healthy and exclusively male
rats—but scientists believe it applies to female rats, too, as well as
other mammals, including humans.

(a) Describe the population that these results apply to.
(b) Describe why the results can or can’t apply to female rats.
(c) Describe why the results can or can’t apply to humans.

7. In section 6.7 we discussed growing ten plants in ten separate pots, with
five plants receiving the gibberellin treatment and five serving as our
controls. To save money, the researcher decides to grow the ten plants
in two pots, five per pot. They spray the plants in one pot with gibberellin
after one week and spray the other plants in the other pot with an equal
amount of distilled water (the control plants).

(a) Describe what problem or problems could arise from this exper-
imental protocol (check out the concept of pseudoreplication,
first described by Hurlbert (1984).

(b) Why would it be important for the control plants to receive a
treatment spray of distilled water at the same time gibberellin is
applied to the treatment plants?

CHAPTER SEVEN

Hypothesis Tests: Using One- and
Two-Sample Tests

THIS CHAPTER TACKLES HYPOTHESIS TESTING when we
have one sample and a test value or two samples that we want to compare
against each other. Choosing which test to use and how to implement them
correctly is tricky. I’ve worked to group tests together based on the structure
of your data. However, which test you use may be influenced by experience
and by suggestions of your laboratory instructor or research mentor. If you
are not sure what to do, keep in mind you’ve learned a lot so far and should
be able to ask a qualified person for directions and implement the solution
with one of the techniques introduced in this and the next few chapters. The
tests presented here form a starting point for you. No matter your questions,
however, the answers can be obtained from R, so you’re definitely on your
way to solving a wide variety of problems in biology.

We begin with one-sample tests. The data may or may not be nor-
mally distributed. In addition, the questions we ask might be one- or two-
tailed, meaning that we want to know whether there’s a simple difference
or whether one sample is, on average, greater or less than another value or
sample. If there is direction in our question, then we will be conducting a
one-tailed test. If our question does not have directionality, then we will be
using a two-tailed test.

7.1 One-Sample, Two-Tailed Test with Normally Distributed Data

Below are combined SAT scores for twenty randomly chosen students at
your school. We’ll assume that your combined SAT score is 1120. We’d like
to know whether your SAT score is statistically different from this random
group. In other words, is the sample of student SAT scores and your score
all drawn from the same population of SAT scores or not?

90 A Primer in Biological Data Analysis and Visualization Using R

SAT Scores

F
re

q
u

e
n

c
y

1000 1100 1200

0
1
2
3
4
5
6
7

1050

1100

1150

S
A
T

 S
c
o

re
s

Figure 7.1 Visualizations of the SAT scores for a sample of university students using
a histogram (left) and a boxplot (right). The thick lines in both graphs represent your
SAT score. The histogram suggests the data may be normally distributed. In the boxplot,
we see that the median is close to the middle of the data, also consistent with normally
distributed data. We also note that your score of 1120 is found near the middle of the
distribution of SAT scores from the random student sample.

> SAT.scores = c(1130, 1090, 1190, 1110, 1160, 1120, 1160, 1110,
+ 1080, 1160, 1050, 1120, 1030, 1010, 1080, 1090,
+ 1170, 1110, 1090, 1140)
> your.SAT = 1120

First, we should visualize the data, including the sample and your SAT
score. This can be done using a histogram and/or a boxplot (see figure 7.1
and Box 7.1). It doesn’t have to be fancy. The data seem like they are nor-
mally distributed. We note that your score appears to fall near the middle of
the sample distribution and, therefore, we will ask whether your SAT score
is different from the sample SAT scores. This question does not have direc-
tionality and thus is a two-tailed test. (the test value, which is your score,
might be in either tail of the distribution).

Next, we need to test whether the sample is normally distributed. As we
learned in chapter 4 (section 4.4) we can use the Shapiro-Wilk test. Here is
the test return for the p-value only, for brevity.

> shapiro.test(SAT.scores)$p.value

[1] 0.7522183

Recall that the null hypothesis for the normality test is that the data are
normally distributed. Because our p-value of 0.75 is greater than 0.05, we
conclude that our data meet the assumption of normality for a t-test.

Hypothesis Tests: Using One- and Two-Sample Tests 91

Box 7.1. Boxplots versus barplots. Many researchers, and the journals that
they publish in, prefer presenting data using barplots with error bars
(showing variability in the samples) over boxplots. This is unfortunate
for three reasons:

1. Conion doesn’t make it right.
2. Boxplots show more information about the distribution of data than

do barplots with error bars.
3. Barplots with error bars assume data are normally distributed. They

often aren’t, and the ability to know is hidden from the reader.

It is always appropriate to show boxplots and sometimes appropriate to
use barplots and error bars. So which one should you use? Whichever the
person who’s evaluating your work tells you to use, of course! If you must
use barplots with error bars, here’s one way to do it in R. The generally
preferred error bar, is a 95% confidence interval (shown below). Other
error bars include the standard deviation, standard error of the mean, and
variance.

> par(mfrow = c(1,2))
> library(plotrix) # install this package, if necessary
> boxplot(SAT.scores, ylab = ”SAT Scores”, cex.lab = 1.5,
+ ylim = c(1000,1200), las = 1)
> M = mean(SAT.scores)
> s = sd(SAT.scores)
> SEM = s/sqrt(length(SAT.scores))
> CI95 = qt(0.975, df = length(SAT.scores) - 1)*SEM
> a = barplot(M, ylim = c(1000,1200), xpd = F, cex.lab = 1.5,
+ ylab = ”Mean SAT Scores”, las = 1)
> abline(h=1000)
> plotCI(a, M, CI95, pch = NA, add = T, lwd = 2)

92 A Primer in Biological Data Analysis and Visualization Using R

Before we do this, it is necessary (and helpful) to declare our hypotheses
formally. These will include one null hypothesis (H0) and at least one alter-
native hypothesis (HA). The alternative hypothesis mirrors exactly how our
question is asked. In this case, we’re asking, Is the mean of the sample of
SAT scores different from the test value (µ = 1120), given the level of vari-
ability in the sample data? Therefore, HA (alternative hypothesis) is that the
sample and test value are not equal. The null hypothesis, which is what R
will actually test, includes all other options. Here are these two hypotheses:

H0: x̄ = µ
HA: x̄ ̸= µ

R requires that we send the t.test() function the sample SAT.scores
and the test value (in R µ is spelled as “mu”). By default, the t.test()
function assumes µ = 0 and that we’re requesting a two-tailed test. In our
case, mu = 1120. We are now ready to conduct our one-sample, two-tailed
t-test.
> t.test(SAT.scores, mu = your.SAT) # mu value tested against
> sample

One Sample t-test

data: SAT.scores
t = -0.95119, df = 19, p-value = 0.3535
alternative hypothesis: true mean is not equal to 1120
95 percent confidence interval:
1087.996 1132.004
sample estimates:
mean of x

1110

This is the output from the t-test. For us, the important part is the statis-
tical test result, which starts with t = -0.951. We’ve tested the data using
a two-tailed approach, meaning that we’ve asked whether the sample is ei-
ther less than or greater than our test value (your score). Our result suggests
that the sample of SAT scores from other students is not statistically differ-
ent from your SAT score. A proper results statement would say this and end,
parenthetically, with this: (t = −0.951, df = 19, p = 0.354). So we’ve con-
cluded that the sample of SAT scores and your SAT score are not different
(they come from the same population).

You might wonder why the t statistic is negative. This actually provides
us some interesting information about the relationship between the sample
mean and the test value. The t statistic is calculated as follows:

t =
x̄− µ

SEM
(7.1)

where x̄ is the sample mean, the test value is µ, and SEM is the standard
error of the mean of just the sample (the test value is not included). Because

Hypothesis Tests: Using One- and Two-Sample Tests 93

x̄ < µ the numerator in equation 7.1 is negative. Let’s verify that R correctly
calculated the t value:

> SEM = sd(SAT.scores)/sqrt(20)
> (mean(SAT.scores) - your.SAT)/SEM

[1] -0.9511897

Therefore, if the t-test returns a negative t-value, then our sample is, on
average, smaller than our test value. We also see that, in this case, although
the mean is smaller than mu, it is not significantly different.

7.2 One-Sample, One-Tailed Test with Normally Distributed Data

I asked students how long they can hold their breath. I’m pretty competitive
and so I like saying they can’t hold their breath as long as I can. Students
then hold their breath and try to beat me. Their times in seconds are below:

> breath = c(33, 79, 41, 41, 25, 51, 50, 46, 53, 61)

The first thing we can do is a quick visualization of the student sample
times and the test value (my time of 65 seconds). For this, I’m will produce
quick and simple graphs (see figure 7.2)

From figure 7.2, we see that students, in general, were not able to hold
their breaths as long as I could. Note that we have not yet tested a hypothesis.
The original challenge suggested that I could hold my breath longer than
the students. The proper way to state this question, however, is with respect
to the sample, not the test value. The question is, therefore, Is the sample
statistically less than the test value? This becomes our alternative hypothesis
(HA).

Before we do this test, we need to determine whether we’ll be conducting

Breath (sec)

F
re

q
u

e
n

c
y

20 40 60 80

0

1

2

3

4

30

40

50

60

70

80

B
re

a
th

 (
s
e

c
)

Figure 7.2 The distribution of the amount of time that students could hold their breath.
The test value (65 seconds) is the thick line in both graphs.

94 A Primer in Biological Data Analysis and Visualization Using R

a parametric test (e.g., t-test) or some other test (we’ll talk about those soon).
So let’s test the sample for normality:
> shapiro.test(breath)

Shapiro-Wilk normality test

data: breath
W = 0.96315, p-value = 0.8211

Because the data are statistically normally distributed (p > α = 0.05), we
know that we can use the t-test, which relies on the difference between the
mean and the test value. Therefore, our hypotheses look like this:

H0: x̄ ≥ µ
HA: x̄ < µ

We are now ready to test the hypothesis. We write the R code as follows:
> t.test(breath, mu = 65, alt = ”l”)

One Sample t-test

data: breath
t = -3.5848, df = 9, p-value = 0.002943
alternative hypothesis: true mean is less than 65
95 percent confidence interval:

-Inf 56.69307
sample estimates:
mean of x

48

Note that the alt argument is set equal to the letter “l,” not the number
“1.” If our question had been: Can students hold their breaths longer than I
can? then we would simply use the argument “alt = g.” From this analysis,
we conclude that the students, on average, did not hold their breath as long
as I did (t = −3.585, df = 9, p < 0.01).

7.3 One-Sample Tests with Non-Normally Distributed Data

We can conduct a similar test that is non-parametric if our sample fails the
normality test (the Shapiro-Wilk test returns a p-value ≤ α). The function
Wilcox.test() can be used. Perhaps we wish to test whether a group
of locals and their awesome jumping frogs (called the “jumpers”) can out
jump our “Celebrated Jumping Frog of Calaveras County” (see the 1867
story by Mark Twain). I’m going to claim that this frog could jump 137 cm
in one leap. Note that this is a directional test.

Assuming we have a sample of distances from the local frogs (in cm) in a
variable called jumpers, we should first graph them (graph not shown):

Hypothesis Tests: Using One- and Two-Sample Tests 95

> jumpers = c(48, 118, 136, 134, 129, 123, 119, 87, 106, 119)
> par(mfrow = c(1,2))
> hist(jumpers)
> abline(v = 137, lwd = 3)
> boxplot(jumpers)
> abline(h=137, lwd = 3)

From these graphs, we grow suspicious that these data may not be normally
distributed. Let’s test this:

> shapiro.test(jumpers)$p.value

[1] 0.01600322

From this result, we conclude that the sample of distances is not normally
distributed.

We now are ready to test whether this sample of frogs jumps farther than
the celebrated frog. Note that the data suggest the celebrated frog jumps
farther but that our hypothesis test is whether the sample jumps farther.
Again, the hypothesis is always in terms of the sample, so our hypotheses
can be formally stated as follows:

H0: x̄ ≤ µ
HA: x̄ > µ

and our final statistical test should look like this:

> the.frog = 137 # distance in centimeters
> wilcox.test(jumpers, mu = the.frog, alt = ”g”)

Wilcoxon signed rank test with continuity correction

data: jumpers
V = 0, p-value = 0.9979
alternative hypothesis: true location is greater than 137

From this analysis, we conclude that the sample of frogs did not jump as far
as the celebrated frog of Calaveras County (V = 0, df = 9, p = 0.998).

7.4 Paired Data That Are Normally Distributed

Sometimes we’re interested in how our study system changes over time. For
instance, we might have a measurement of an organism before and after some
sort of treatment. These types of measurements would not be independent
measures but are, instead, called repeated measures or paired measures. As
mentioned above, I have been asking students for years to determine how
long they can hold their breath. It’s been my observation that students, in
general, are able to hold their breath longer the second time they try.

96 A Primer in Biological Data Analysis and Visualization Using R

Below is a subset of data from a class from a few years ago. We’re going to
want to answer the question, Can students hold their breaths longer during
the second trial? Note that this is a directional question—I’m not asking
whether the length of times are simply different. Here are the data with
values in seconds:

> first = c(106.70, 72.00, 58.80, 48.00, 53.53, 35.93, 39.91,
+ 31.00, 45.85, 78.50)
> second = c(129.00, 101.00, 64.20, 58.00, 64.78, 50.92, 48.50,
+ 42.09, 70.00, 124.60)

Note that it is important that the measurements are ordered by students so
that each student has the same index value in both datasets.

We should first graph these data. We might first be tempted to create a
boxplot of these two samples side-by-side for comparison (see figure 7.3).
We can see that it seems students are able to hold their breaths, on average,
longer. However, this is an incorrect way to graph these data! Graphing the
data this way implies that the samples are independent. They are not! Each
student is in both the first and second attempts! It is okay to measure indi-
vidual experimental units more than once, like these students, but we can’t
treat these measurements as independent. What we need is a single value of
change for each student. We can calculate this difference as follows:

> breath.diff = second - first # create a new variable

We should graph these data. In figure 7.3, I’ve graphed these data two
ways. Be sure to convince yourself that one way is appropriate and the other
is quite inappropriate for these data. Another good method to visualize these

First Second

40

60

80

100

120

Attempt

T
im

e
 (

s
e

c
)

−10
0

10
20
30
40
50

D
if
fe

re
n

c
e

 (
s
e

c
)

Figure 7.3 On the left are boxplots for the first and second attempts by students to hold
their breaths (time in seconds). We see that, collectively, times seem to increase. However,
this is an incorrect representation of the length of time students can hold their breath. The
graph on the right shows the additional time in seconds that students could hold their
breath during their second attempt compared to their first attempt. This is the correct
way to show these data. The reference line at zero represents no change in time.

Hypothesis Tests: Using One- and Two-Sample Tests 97

data is to use a bump chart that shows the change in time for each student
(see figure 5.8). This is left as an exercise.

Now that we have this difference value for each student, we can test
whether that difference improved. For it to improve, we would expect the
variable breath.diff to be statistically greater than zero. We first need to
test whether the breath.diff data are normally distributed.
> shapiro.test(breath.diff) # test this single sample for
> normality

Shapiro-Wilk normality test

data: breath.diff
W = 0.86885, p-value = 0.09692

We conclude that the data are normally distributed, so we may proceed with
our parametric test. This, again, becomes a one-sample t-test. The original
question asked whether the length of times students could hold their breath
increased, which is the same as asking whether the difference (second, longer
attempt minus the first, shorter attempt) is greater, on average, than zero.
We can write our hypotheses like this:

H0: x̄ ≤ 0
HA: x̄ > 0

We can now perform the test as follows:
> t.test(breath.diff, alt = ”g”)

One Sample t-test

data: breath.diff
t = 4.6705, df = 9, p-value = 0.0005839
alternative hypothesis: true mean is greater than 0
95 percent confidence interval:
11.10951 Inf
sample estimates:
mean of x

18.287

From this analysis, we conclude that the students did significantly in-
crease the length of time they could hold their breath (t = 4.67, df = 9,
p < 0.001). The appropriate visualization for this result is the right graph in
figure 7.3. One last note: it is equally valid to test the separate times using
the t.test() function, but we need to tell R that these data are paired:
> t.test(second, first, paired = T, alt = ”g”) # T for TRUE

The argument alt = ”g” is read in these tests as the first argument
(second) is greater than the second argument (first). The problem with
this approach, apart from being confusing, is that we still need to determine

98 A Primer in Biological Data Analysis and Visualization Using R

whether the data are normally distributed to use this test appropriately or
know that we need to use the non-parametric Wilcoxon test (below). So it
is best simply to create a new variable for the differences and correctly use
that new sample. Always check the answer you get from your statistical test
with your graph of the data: they should be in agreement.

7.5 Paired Data That Are Not Normally Distributed

If the data are not normally distributed we, instead, need to substitute the
function wilcox.test() for the t.test() function. The arguments sent
to these functions are the same.

The LDL cholesterol levels of individuals were measured for ten human
subjects. These individuals were then “treated” by restricting them to meals
served only at an unnamed fast-food restaurant for thirty days. We will ask
whether there was a change in LDL for these individuals. Note that this is
not a directional test. Here are the data:

> before = c(75, 53, 78, 89, 96, 86, 69, 87, 73, 87)
> after = c(124, 103, 126, 193, 181, 122, 120, 197, 127, 146)

Because we are interested only in the changes, we test whether the differences
(after-before) are normally distributed:

> LDL.diff = after-before
> shapiro.test(LDL.diff)$p.value

[1] 0.02916288

The p-value for the Shapiro-Wilk test is less than 0.05, so we reject the null
hypothesis that the data are normally distributed. Therefore, we proceed
with the non-parametric Wilcoxon test. We can write down our hypotheses,
noting that we are not asking about the mean but are, instead, asking about
the median (represented by an x with a tilde over it: x̃).

H0: x̃ = 0
HA: x̃ ≠ 0

We can now perform our test, which, being a two-tailed test with a test value
of zero, is written like this:

> wilcox.test(LDL.diff)

Wilcoxon signed rank exact test

data: LDL.diff
V = 55, p-value = 0.001953
alternative hypothesis: true location is not equal to 0

Hypothesis Tests: Using One- and Two-Sample Tests 99

Note that there is a significant difference in LDL levels before and after
the treatment. In particular, the LDL of our sample of individuals increased
significantly after one month of eating at a fast-food restaurant (V = 55, p =
0.002). The graphing of these data would follow the same format that we
saw for the paired t-test. Note that no individuals were actually hurt to get
these data.

7.6 Tests with Two Independent Samples

In the previous section, we explored in detail examples where there was
only one sample. We saw data that were either normally or non-normally
distributed and asked questions that were either directional (one-tailed) or
nondirectional (two-tailed). We’re going to extend this briefly to two sam-
ples, recognizing that the differences in approaches are not that different
when we have two independent samples.

Samples Are Normally Distributed

For this example, we’re going to look at an experiment that tested whether
adding fertilizer to plants causes them to grow taller. Note the directionality
in the test. Below are the data:

> cont = c(64.7, 86.6, 67.1, 62.5, 75.1, 83.8,
+ 71.7, 83.4, 90.3, 82.7) # control plants
> fert = c(110.3, 130.4, 114.0, 135.7, 129.9,
+ 98.2, 109.4, 131.4, 127.9, 125.7)
fertilized treatment plants

We always begin the analysis by visualizing our data. A side-by-side box-
plot is an appropriate approach (figure 7.4).

> boxplot(cont, fert, names = c(”Control”,”Fertilizer”),
+ xlab = ”Treatment”, ylab = ”Plant Height (cm)”,
+ ylim = c(60,140), cex.lab = 1.5, las = 1)

The graph in Figure 7.4 seems to suggest that fertilizer increases plant height,
as we suspected. We also see that the two samples might be normally dis-
tributed. Let’s test these samples for normality. Because these two samples
are independent, we need to test them individually. Here are just the p-values
from the normality test:

> shapiro.test(cont)$p.value # normal?

[1] 0.3725881

> shapiro.test(fert)$p.value # normal?

100 A Primer in Biological Data Analysis and Visualization Using R

Control Fertilizer

60

80

100

120

140

Treatment

P
la

n
t
H

e
ig

h
t
(c

m
)

Figure 7.4 A comparison of the heights of plants with fertilizer and without
(control). The fertilized plants are significantly taller than the controls (t = −8.884,
df = 18, p < 0.001). Do the data in the graph support this statistical finding?

[1] 0.1866711

The samples are statistically normally distributed, so we may be able to pro-
ceed with a standard t-test. However, the t-test also assumes that the vari-
ances are equal. Let’s test that, too, using the var.test() variance test.

> var.test(cont,fert)

F test to compare two variances

data: cont and fert
F = 0.63802, num df = 9, denom df = 9, p-value =
0.5137
alternative hypothesis: true ratio of variances is not equal

to 1
95 percent confidence interval:
0.1584741 2.5686485
sample estimates:
ratio of variances

0.6380159

The null hypothesis for this test is that the variances are not statistically dif-
ferent. The resulting p-value (p = 0.51) suggests that the variances aren’t
different, so we may proceed with a t-test instead of the Welch test (the
default test, done if variances are unequal). We now know that we can use
a parametric t-test to test our hypothesis about whether fertilizer increases
this plant’s height. To do this, we write down our hypotheses as we’ve done
before:

Hypothesis Tests: Using One- and Two-Sample Tests 101

H0: fert ≤ cont
HA: fert > cont

where fert represents the mean for the fert treatment. Our prediction is the
alternative hypothesis, while the null hypothesis is everything else (including
no change in plant height).

Finally, it’s time to conduct the statistical test. Remember to include the
argument var.equal = TRUE to our function call.

> t.test(cont, fert, alt = ”l”,var.equal = TRUE)

Two Sample t-test

data: cont and fert
t = -8.884, df = 18, p-value = 2.67e-08
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:

-Inf -35.81405
sample estimates:
mean of x mean of y

76.79 121.29

This is confusing. Why did I write alt = ”l”? The way to read the ar-
guments is as follows: the alternative hypothesis is that the first argument
(cont) is less than the second argument (fert). That is the same as the our
stating that the fert heights are greater than the cont heights. Therefore,
we could have written the t.test() as follows:

> t.test(fert, cont, alt = ”g”, var.equal = TRUE)

It is always important to be very careful about how we ask and answer these
seemingly simple statistical questions! From this result, we conclude that
fertilizer significantly increased the height of plants (t = −8.884, df = 18,
p < 0.001, see figure 7.4).

Samples Are Not Normally Distributed

A dairy cow can produce a lot of milk, about 10,000 kg in a year. Below are
data for two samples of cows treated with different levels of antibiotics to
help maintain the health of the cows. Do cows produce different amounts
of milk depending on these two treatments?

> A = c(5800, 5000, 6500, 5000, 5200, 7900, 5300, 5900, 7600,
> 5400)
> B = c(7100, 8600, 8900, 7500, 7300, 7100, 7400, 8300, 7000,
> 7000)

We should first visualize these data. A boxplot would be appropriate (see
figure 7.5):

102 A Primer in Biological Data Analysis and Visualization Using R

Treatment A Treatment B

5000

6000

7000

8000

9000

M
ilk

 P
ro

d
u

c
ti
o

n
 (

k
g

)

Figure 7.5 Milk production for two samples of cows.

> boxplot(A,B, names = c(”Treatment A”, ”Treatment B”) las = 1,
+ ylab = ”Milk Production (kg)”, cex.lab = 1.5)

Both sets of data appear to be skewed to the right. We need to test these
samples for normality:

> shapiro.test(A)$p.value # normal?

[1] 0.04226108

> shapiro.test(B)$p.value # normal?

[1] 0.02425519

The samples are not statistically normally distributed. If we log-transform
these data, then sample B remains non-normally distributed. Given this, we
will proceed with the non-parametric test using the original data. We can
write down our hypotheses in terms of sample median and recall that our
question was whether these samples were simply different (no directionality):

H0: Ã = B̃
HA: Ã ≠ B̃

With these hypotheses, we can now perform the non-parametric test. We
need to send the wilcox.test() function only the two samples. By de-
fault, the function will assume that there is no directionality in the hypothesis
test (no need to include an “alt = ” argument) and that we’re just look-
ing for a difference between the medians (so there is no expected difference
between the sample sizes, so no “mu = ” argument).

> wilcox.test(A,B)

Hypothesis Tests: Using One- and Two-Sample Tests 103

Wilcoxon rank sum test with continuity correction

data: A and B
W = 14, p-value = 0.007219
alternative hypothesis: true location shift is not equal to 0

From this result, we conclude that milk production by the two samples of
cows treated with different antibiotics were statistically different. In partic-
ular, cows receiving antibiotics in treatment B outproduced cows receiving
treatment A (W = 14, p = 0.007219, see figure 7.5).

7.7 Problems

1. Below are the numbers of adult smaller tea tortrix moths (Adoxo-
phyes honmai) counted in different light traps (Nelson, Bjornstad, and
Yamanaka, 2013).

1916, 1563, 1436, 6035, 3833, 5031, 13326, 3130, 6020, 1889

(a) Enter the data into a variable called moths and test whether
the data are normally distributed. If they are not normally dis-
tributed, test whether they are after log-transforming them (use
the log() function).

(b) If we collect data from a single light trap this year and count
10,000 adults, would this be considered a statistically higher
number of moths? Provide the written hypotheses for this test.

(c) Perform the correct statistical test for question 1(b).
(d) Write a complete results statement, including the proper statis-

tical output to support your claim.

2. Create a bump chart for the data on students holding their breath twice.
3. The order of leaves along the stem of plants is referred to as phyllotaxis.

A researcher is interested in whether the fifth order leaves (lf5) differ in
leaf area from the first order leaves (lf1). The leaf areas, in cm2, for six
plants are shown below.

lf1 = 27, 26, 20, 24, 28, 29
lf5 = 30, 34, 28, 35, 42, 40

(a) Note that the leaves are paired for the six plants. Are the data
normally distributed?

(b) Provide the hypotheses for this test.
(c) Complete the correct statistical test to answer the question.
(d) Create an appropriate visualization of your result.
(e) Provide a complete results statement.

104 A Primer in Biological Data Analysis and Visualization Using R

4. Two unnamed universities (U1 and U2) compete in a championship
basketball game. The height of the twelve players on each team are listed
below, in inches. Sports pundits say height matters in the game. You want
to know if there is enough evidence to suggest that one university has
an advantage over another with respect to height.

U1 = 81.0, 80.1, 86.1, 78.9, 86.8, 84.6, 79.3, 84.0, 95.4, 70.3, 86.8,
78.1
U2 = 94.4, 76.7, 70.0, 88.8, 73.7, 86.3, 85.7, 74.0, 79.5, 75.9, 68.1,
75.9

(a) Are the data normally distributed?
(b) Provide the hypotheses for this test.
(c) Complete the correct statistical test to solve the problem.
(d) Create an appropriate visualization of your result.
(e) Provide a complete results statement.

5. Below are combined SAT scores for a random sample of ten undergrad-
uate students from a randomly selected college and another sample of
undergraduates from a university center. You want to know if the SAT
scores are different between these institutions, based on these sample.

Institution SAT Scores
College 1330, 1320, 1350, 1370, 1390, 1470, 1340, 1470, 1450, 1360
University 1190, 1160, 1140, 1390, 1360, 1320, 1150, 1240, 1380, 1180

(a) Are the data normally distributed?
(b) Provide the hypotheses for this test.
(c) Complete the correct statistical test to solve the problem.
(d) Create an appropriate visualization of your result.
(e) Provide a complete results statement.

CHAPTER EIGHT

Hypothesis Tests: Differences
Among Multiple Samples

WE OFTEN ARE INTERESTED in testing the effect of a factor over
a variety of levels. For instance, if we’re testing the effect of nutrition on
an organism’s growth rate, we might have a treatment without the addition
(“control”), as well as levels with medium and high additions. When we
have more than two sample groups, it’s not statistically correct to do just
multiple t-tests. Why? The bottom line is that conducting multiple tests,
like many t-tests, increases our chance of making a Type I error (see
the example in chapter 6). You may recall from section 6.9 that this happens
when we erroneously reject a true H0. The use of a single test, like an analysis
of variance (ANOVA), reduces our likelihood of making this mistake.

There are many types of ANOVA. We will assume only one type: a fixed
effects model. In this design, you collect continuous data measurements (real
numbers) for your response variables, and the different levels chosen for fac-
tors are exactly the ones you want to test. This makes the factors fixed. Alter-
natively, you may have a large number of levels that you could choose from
and so you randomly pick those. An example of this design might be that
you want to test how new football helmets help reduce concussive injuries,
and you have many teams to choose from. Therefore, you choose teams at
random. You’ll want to pursue information on how to conducted this type of
random effects or mixed effects model, which is not discussed here. Finally,
there also are other designs, such as repeated measures, nested designs, and
blocking effects, which are beyond the scope of this chapter.

8.1 One-Way ANOVA

The ANOVA test is generally used when we have more than two samples
that are each normally distributed. In addition, it can be used when you have
just two samples and your conclusion will be exactly the same as a t-test. In

106 A Primer in Biological Data Analysis and Visualization Using R

general, with this test, we are asking whether the samples come from the
same population or not, using the variability within and between samples
(see box 8.1).

Box 8.1. Analysis of variance or analysis of means? This test is quite dif-
ferent from a t-test, which you may recall tests the difference between two
sample means. An ANOVA, however, does not test the means. Instead,
it tests a ratio of variances. In the left graph below are three samples,
each with large within-sample variances. There isn’t that much between-
sample variance. The opposite is true for the data in the graph on the
right. An ANOVA tests the ratio of the between-sample variance to the
within-sample variance. Therefore, the data in the right graph will yield
a much smaller p-value than the data in the left graph.

A B C

8

9

10

11

12

13

14

Treatment

M
a

s
s
 (

g
)

A B C

8

9

10

11

12

13

14

Treatment

M
a

s
s
 (

g
)

Let’s assume we have data on the mass of young fish that were grown
using three different food supplemental rates. When we have more than two
samples and the data are normally distributed, then we are able to use an
ANOVA to test whether there was an effect of food treatment on fish growth,
measured as the mass of fish grown over some length of time (here, one
month). One challenging part of this test is getting the data into the proper
format. To do this, I have simply entered the mass of each fish grown under
each treatment level into its own variable in an RStudio script file. Then
it’s simple enough to gather the data into a dataframe and stack them (we
discussed stacking data back in chapter 3).

> Low = c(52.3, 48.0, 42.3, 50.8, 53.3, 45.1)
> Med = c(50.4, 53.8, 53.4, 58.1, 56.7, 61.2)
> High = c(66.3, 59.9, 57.1, 61.3, 58.3, 55.4)
> fish.dat = data.frame(Low,Med,High)
> fish.stacked = stack(fish.dat)

Hypothesis Tests: Differences Among Multiple Samples 107

Low Med High

4
5

5
0

5
5

6
0

6
5

fish.stacked$Trmt

fi
s
h
.s
ta
c
k
e
d
$
M
a
s
s

Figure 8.1 A simple boxplot of fish growth under three feeding rates.

The default variable names after stacking are “values” and “ind.” We can
change these using the names() function:

> names(fish.stacked) = c(”Mass”,”Trmt”)

In this stacked format, we can create a quick graph of the data using the
formula method (y ∼ x) to see the distributions of the samples (figure 8.1).

> boxplot(fish.stacked$Mass ∼ fish.stacked$Trmt)

These data appear to be normally distributed, but we must, of course, test
this formally. It is important not to test all the data at once to see if they are
normally distributed collectively. Instead, we must test the individual samples
separately. We can do this in a variety of ways. You can use your skill with
either the which() or subset() functions to extract just the data values
for each level (low, medium, and high feeding rates), or we can do this with
a single command, using the tapply() function.

> tapply(fish.stacked$Mass, fish.stacked$Trmt, shapiro.test)

If you run this, you’ll see that it performs the Shapiro-Wilk test on each
of the three treatment levels separately. All of the samples are statistically
normally distributed, so we may proceed with the parametric ANOVA test.
In addition, we should check that the variances of our samples are similar.
We can do this using the Bartlett test.

> bartlett.test(fish.stacked$Mass, fish.stacked$Trmt)

Bartlett test of homogeneity of variances

data: fish.stacked$Mass and fish.stacked$Trmt

108 A Primer in Biological Data Analysis and Visualization Using R

Bartlett’s K-squared = 0.084655, df = 2, p-value =
0.9586

The result here suggests that the variances are not significantly different.
There’s one more check we should be sure to make. It’s important that

our data are numeric while our treatment levels are of type “factor.” We
already know that the data are numeric after testing them for normality and
equal variances (R would have been more than happy to provide us an error
message). We can test the treatment factor to make sure it’s stored as a factor,
as follows:

> class(fish.stacked$Trmt)

[1] ”factor”

Sometimes our data will be coded with treatment levels labeled as numbers
(e.g., 1, 2, 3, and so on). If this is the case, thenR interprets those as numeric
data instead of different levels of a factor. When this happens, we need to
type-cast them into factors using the as.factor() function. If they need
to be type-cast, then we would use the following code:

> fish.stacked$Trmt = as.factor(fish.stacked$Trmt)

Let’s now write down the hypotheses we are testing using words:

H0: Samples all come from the same population.
HA: Samples do not all come from the same population.

Note that if we have seventeen samples and all except one are similar, the
ANOVA will lead us to reject the null hypothesis. Let’s now complete the
analysis. We will store the output from the aov() function in a variable for
later use.

> fish.aov = aov(fish.stacked$Mass ∼ fish.stacked$Trmt)

We can now let R summarize the output for us using the summary() func-
tion:

> summary(fish.aov)

Df Sum Sq Mean Sq F value Pr(>F)
fish.stacked$Trmt 2 376.6 188.32 11.76 0.000848 ***
Residuals 15 240.2 16.01

Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Hypothesis Tests: Differences Among Multiple Samples 109

8.2 Interpreting Results from a One-Way ANOVA

The summary provided above is called an ANOVA table. At first, we usually
are most interested in whether the samples are statistically different. We see
this, like usual, by inspecting the p-value. This is found on the right side of
this table under the Pr(>F) heading, where we see p = 0.0008. Therefore,
we can conclude that the masses of fish grown under the different feeding
treatments are statistically different (F = 11.76; df = 2, 15; p < 0.001). Note
that we have two degrees of freedom because there are three samples.

Another question we’d like to answer is. Is the effect very strong? Under
the column “Sum sq” (sum of squares), we see that the proportion of vari-
ance explained by the treatment is 376.6/(376.6 + 240.2) = 0.61, or 61%,
which is most of the variance. You also can get this value, called R squared
(R2), by using the linear model function (the result is not shown):
> summary(lm(fish.stacked$Mass ∼ fish.stacked$Trmt))

Although we’ve found that the samples are statistically different, we don’t
know which sample might be different from the others. We need to do a
little more work to interpret these more complicated results. For instance,
increasing feeding from low to medium rates seems important, but increasing
from medium to high rates seems to have a smaller effect, based on the data in
figure 8.1. If the ANOVA is statistically significant, we can test for differences
among levels in an ANOVA, performing what’s called a post hoc test (i.e.,
after-the-fact test). I often use Tukey’s Honest Significant Differences test
(the TukeyHSD() function in R). It’s a good post hoc test if the variances
of the different samples are similar, which is an assumption of the ANOVA.
Other tests could be used instead. You should have a good reason to choose
a different one and always use only one! To implement this test, we send the
variable fish.aov to the TukeyHSD() function:
> TukeyHSD(fish.aov)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = fish.stacked$Mass ∼ fish.stacked$Trmt)

$‘fish.stacked$Trmt‘
diff lwr upr p adj

Med-Low 6.966667 0.9652966 12.96804 0.0223110
High-Low 11.083333 5.0819632 17.08470 0.0006483
High-Med 4.116667 -1.8847034 10.11804 0.2091488

The interpretation of the output from this test is a bit challenging and
gets more so with increasing numbers of samples. The function provides a
table (above) with each pairwise comparison on the left (e.g., Med-Low)
with a difference between the means (diff). It also provides lower (lwr)

110 A Primer in Biological Data Analysis and Visualization Using R

and upper (upr) bounds. If those bounds include 0, then the two sam-
ples are not statistically different. We also get an associated p-value (p adj)
for each comparison in the right column. In this example, two of the three
comparisons are significantly different (p ≤ 0.05). However, we see that the
medium and high treatment groups are not statistically different.

8.3 Visualizing a One-Way ANOVA

Now we’re ready to create a final visualization of our results. We’re going to
make both a boxplot and a barplot with 95% confidence intervals and add
contrast letters that show which means are statistically similar or different
from each other based on the post hoc Tukey HSD analysis. Your boss/pro-
fessor/lab instructor may have a preference for the way that they want these
results presented, so your job is to be able to do this either way.

We want to identify the groupings of samples using lowercase letters. Sam-
ples that are not significantly different from each other share a letter. Because
we’re going to add letters to these plots, we need to set up a variable that
will hold those letters in the correct order (from left to right). To do this,
we should build the letters upward in alphabetical order, starting with the
lowest mean or median. Therefore, for this example, the correct order of
letters is as follows:
> contrast.labels = c(”a”,”b”,”b”)

This will tell the reader that the masses of fish receiving the low feeding rate
are significantly less than the masses of fish receiving the medium and high
feeding rates but that the medium and high treatment fish are not signifi-
cantly different from each other.

Adding Constrast Letters to a Boxplot

Contrast letters should be placed in the middle-top of each sample, which
means we need to know where that is for each sample. The function we’ll
use to add the letters is, not surprisingly, called text(). We first make the
boxplot graph, find the tops using the max() function, and then place the
letters above the highest value. Note that the command “pos = 3” places
the letter in position 3, based on the maximum values’ locations. Positions
are below (= 1), to the left (= 2), above (= 3), and to the right (= 4) (see
figure 8.2).
> boxplot(fish.stacked$Mass ∼ fish.stacked$Trmt, # note the
> tilde
+ names = c(”L”,”M”,”H”), ylim = c(0,80),
+ xlab = ”Feeding Rate”, ylab = ”Fish Mass (g)”,
+ las = 1, cex.lab = 1.5)

Hypothesis Tests: Differences Among Multiple Samples 111

L M H

0

20

40

60

80

Feeding Rate

F
is

h
M

as
s

(g
)

a
b b

L M H

Feeding Rate

F
is

h
 M

a
s
s
 (

g
)

0

20

40

60

80

a
b b

Figure 8.2 The mass of fish grown under low (L), medium (M) and high (H) feeding
rates. The data have been graphed using the boxplot() (left) and barplot() (right)
functions. We see that fish attain a larger mass when they are fed at a higher rate (F =
11.76; df = 2, 15; p < 0.001). Error bars on the right represent 95% confidence intervals.
Samples with different letters are statistically different.

> data.tops = tapply(fish.stacked$Mass, fish.stacked$Trmt, max)
> text(1:3, data.tops, labels = contrast.labels, pos = 3)

Adding Constrast Letters to a Barplot That Has Error Bars

This is a little harder because we need to calculate and place 95% confidence
intervals on each sample mean and then place letters. Also, unlike the logical
placement of samples in a boxplot (integer values starting at 1), R places the
bars at non-integer locations along the x-axis. Therefore, we need to capture
the locations for the bars from the barplot() function. We can do this by
using a variable, such as “a” below.

The confidence intervals are added using the plotCI() function, which
is in the plotrix package (you may need to install that if you haven’t be-
fore). This function takes as arguments the x-locations (“a,” in this example),
the height of the bars (the means), the size of the error bars (CI95), and the
character to use where the error bar meets the top of the bar (I like having
no character using pch = NA), and finally we need to tell the function to
add these error bars to the active graph (add = T) (see the right panel in
figure 8.2).

> library(plotrix)
> M = tapply(fish.stacked$Mass,fish.stacked$Trmt,mean)
> S = tapply(fish.stacked$Mass,fish.stacked$Trmt,sd)
> SEM = S/sqrt(6) # because S is an array, SEM is an array
> CI95 = qt(1-0.05/2,5) * SEM
> a = barplot(M, ylim = c(0,80), las = 1, cex.lab = 1.5,
+ names.arg = c(”L”, ”M”, ”H”),
+ xlab = ”Feeding Rate”, ylab = ”Fish Mass (g)”)

112 A Primer in Biological Data Analysis and Visualization Using R

> abline(h = 0)
> plotCI(a,M,CI95, add = T, pch = NA)
> text(a, M+CI95, labels = contrast.labels, pos = 3)

What If the Data are Really Wonky?

Sometimes your data are normally distributed, which allows us to use
parametric tests (e.g., ANOVA). Sometimes the data are not normally
distributed, and we can use non-parametric tests. However, even non-
parametric tests assume the data have all been drawn from the same dis-
tribution. Generally, that assumption is valid. For example, the height of
corn plants may not be normally distributed, or you’re not able to transform
them so they are normally distributed, but they’re all corn plants and their
growth responses should be similar. In the event your data are all over the
place, you may have to consider that something really is wrong with your
data or that, if your data are correct, you can’t do a standard statistical test as
described here. Instead, you may need to turn to alternative methods, such
as randomization tests.

8.4 One-Way Test for Non-Parametric Data

If the samples are not normally distributed, or can’t be made normally dis-
tributed with a log-transformation, then we can conduct a Kruskal-Wallis
test (but see box 8.2). Keep in mind that this test does not assume samples
are normally distributed, but it does assume that the samples come from the
same population (the standard H0). Therefore, all the samples are assumed
to come from the same shaped distribution. If you sense that the distribu-
tions of the samples are similar, then you may proceed with this test. Below
are data for tail lengths in centimeters for three species of small mammals:

> sp.A = c(7.03, 7.22, 7.16, 7.15, 7.33, 7.22, 7.77,
+ 7.75, 7.33, 7.17)
> sp.B = c(5.84, 5.59, 5.38, 5.38, 5.35, 5.87, 5.29,
+ 5.75, 5.85, 5.33)
> sp.C = c(7.09, 7.49, 7.06, 7.19, 7.10, 7.22, 7.45,
+ 6.20, 6.96, 6.02)

We should combine these into a dataframe and stack them for graphing and
conducting our analysis:

> tail.dat = data.frame(sp.A, sp.B, sp.C)
> tail.dat = stack(tail.dat)
> names(tail.dat) = c(”length”,”species”)

Hypothesis Tests: Differences Among Multiple Samples 113

Box 8.2. Normally distributed data and ANOVA. Sometimes we’ll have
data where some samples are normally distributed and one pesky sample
is not. What should you do? First, extensive research on ANOVA suggests
that it performs well (gives the right answer) even when samples are not
normally distributed (it is robust to violations of normality). So we can
use ANOVA if a few of our samples are, let’s say, kind of not normally
distributed. My suggestion is as follows. You can use ANOVA if some of
the samples are not normally distributed but:

1. They have somewhat similar distributions to the samples that are sta-
tistically normally distributed, or

2. Past experience or information has demonstrated that the process
that generated the data should result in data that are normally dis-
tributed.

If the data are not normally distributed but you have reason to believe
the data should be normally distributed you should seek the advice of a
statistician.

Now let’s create an appropriate graph to view the distributions of our
three samples and compare them side-by-side (see figure 8.3). Note that
for a final visualization, we want to add contrast letters if the samples are
statistically different from each other.

> boxplot(tail.dat$length ∼ tail.dat$species,
> names = c(”A”,”B”,”C”),

A B C

5.5

6.0

6.5

7.0

7.5

Species

T
a

il
L

e
n

g
th

 (
c
m

)

Figure 8.3 Side-by-side boxplots of the distributions of tail lengths for three species. The
three samples are statistically different using a Kruskal-Wallis rank sum test (χ2 = 20.6,
df = 2, p < 0.001).

114 A Primer in Biological Data Analysis and Visualization Using R

+ ylab = ”Tail Length (cm)”, las = 1,
+ xlab = ”Species”,cex.lab = 1.5)

It’s hard to tell from these distributions whether they’re normally dis-
tributed. Let’s test our samples for normality using the Shapiro-Wilk test:

> tapply(tail.dat$length, tail.dat$species, shapiro.test)

If you run this code, you will find that these samples are not normally dis-
tributed. Let’s check whether log-transforming these data makes them nor-
mally distributed:

> tapply(log(tail.dat$length), tail.dat$species, shapiro.test)

Again, if you run this, you will find the logged data also are not normally
distributed. Therefore, we will proceed with the non-parametric Kruskal-
Wallis test for comparing these samples. This test is run with the following
function using the formula approach:

> kruskal.test(tail.dat$length ∼ tail.dat$species)

Kruskal-Wallis rank sum test

data: tail.dat$length by tail.dat$species
Kruskal-Wallis chi-squared = 20.631, df = 2, p-value
= 3.311e-05

From this analysis, we find that our data do not support the null hypothesis
that the samples come from the same population. Instead, we find that tail
lengths for the three species measured are statistically different (χ2 = 20.6,
df = 2, p < 0.001).

If you need to conduct a post hoc test for the Kruskal-Wallis test, you can
do this using the kruskalmc() function found in the pgirmess package.
Note that it would be wildly inappropriate to graph these data with a barplot
showing means and 95% confidence intervals because both measures assume
that the data are normally distributed.

8.5 Two-Way ANOVA

In this section, we discuss a more complicated design and introduce only the
test that assumes the data are normally distributed. What do we mean by a
two-way (or two-factor) test? Sometimes we are interested in testing whether
two (or more!) factors (perhaps watering rates and nutrients) interactively af-
fect our system (such as plant growth). This seems really complicated. You
might be tempted to approach this two-factor problem as two separate exper-
iments. For instance, we could test whether different water levels affect plant
growth. We might find that plants grow more with more water. Likewise,
we might want to test the effect of fertilizer levels on plant growth. Again,

Hypothesis Tests: Differences Among Multiple Samples 115

Table 8.1 Design for 2 × 2 factorial experiment to determine the effects and interaction
of water and nutrient levels.

Number of Plants Water Level Nutrient Level

8 Low Low
8 Low High
8 High Low
8 High High

we might find that plants grow more with more fertilizer. Why consider a
single, two-factor test? Here are two important reasons:

1. We want to know if our factors interact.
2. Experiments are expensive and we want to save money. One experiment

is more efficient than two separate experiements.

The most important reason for doing a single experiment is to test the in-
teractive effects of multiple factors. It turns out that plants often will respond
to fertilizer only if they have a lot of water. If they have low levels of water
available, then fertilizing them can actually kill them! So the growth rate of
our plants can depend not only on water and fertilizer levels but also on the
interaction between water and fertilizer. Just to restate this problem: if we
test two factors in separate experiments, we would be unable to discover that
the two factors might interact. A multifactor design (also called a factorial
design) is more complicated but allows us to ask more interesting questions
in biology. If we shy away from this complexity and avoid complicated sta-
tistical tests, then we may easily miss the really exciting aspects of biological
systems.

Designs can actually be much more complicated than just one or two
factors, and this complexity is where we are in biology! Unfortunately, the
simple questions have been asked and answered and, therefore, are no longer
fundable or publishable. So buckle up!

The design shown in table 8.1 is a 2 × 2 factorial design and, as shown,
requires 32 plants (2 × 2 × 8 replicate plants per treatment). Here are the
data for dried plant masses in grams.

> LW.LN = c(3.84,4.47,4.45,4.17,5.41,3.82,3.83,4.67)
> LW.HN = c(8.84,6.54,7.60,7.22,7.63,9.24,7.89,8.17)
> HW.LN = c(7.57,8.67,9.13,10.02,8.74,8.70,10.62,8.23)
> HW.HN = c(16.42,14.45,15.48,15.72,17.01,15.53,16.30,15.58)

The variables are each named with four letters (e.g., LW.LN). The first two
letters represent the water levels (low water (LW) or high water (HW)), and
the last two letters represent the nutrient levels (either low nutrient (LN) or

116 A Primer in Biological Data Analysis and Visualization Using R

high nutrient (HN)). Now we will build the dataframe for these data using
the function rep(), which stands for “repeat.”

> water = rep(c(”LW”,”HW”), each = 16)
> nutr = rep(c(”LN”,”HN”), each = 8, times = 2)
> plant.mass = c(LW.LN,LW.HN,HW.LN,HW.HN) # combine the data

We can see what water and nutr now look like by printing them to the
console:

> water

[1] ”LW” ”LW” ”LW” ”LW” ”LW” ”LW” ”LW” ”LW” ”LW” ”LW” ”LW”
[12] ”LW” ”LW” ”LW” ”LW” ”LW” ”HW” ”HW” ”HW” ”HW” ”HW” ”HW”
[23] ”HW” ”HW” ”HW” ”HW” ”HW” ”HW” ”HW” ”HW” ”HW” ”HW”

> nutr

[1] ”LN” ”LN” ”LN” ”LN” ”LN” ”LN” ”LN” ”LN” ”HN” ”HN” ”HN”
[12] ”HN” ”HN” ”HN” ”HN” ”HN” ”LN” ”LN” ”LN” ”LN” ”LN” ”LN”
[23] ”LN” ”LN” ”HN” ”HN” ”HN” ”HN” ”HN” ”HN” ”HN” ”HN”

The variable plant.mass contains the combined data as an array. Now we
can create the dataframe, using the function data.frame(), and store the
data in a variable called plant.dat. We can send this function our three
arrays of data from above, and it will assemble everything into one structure.

> plant.dat = data.frame(water,nutr,plant.mass)

We can view the beginning of this dataframe with the head() function, as
follows:

> head(plant.dat) # view the first 6 rows

water nutr plant.mass
1 LW LN 3.84
2 LW LN 4.47
3 LW LN 4.45
4 LW LN 4.17
5 LW LN 5.41
6 LW LN 3.82

We see that the two factors (water and nutr) are at the top of the columns.
Our data are in the plant.mass column. We should look at the whole
dataframe to make sure each value is correctly placed into its treatment level.
We can now create a boxplot of the data using the formula approach (see
figure 8.4). Note that we have yet to conduct a hypothesis test.

> boxplot(plant.dat$plant.mass ∼ plant.dat$water *
> plant.dat$nutr,
+ ylab = ”Biomass (g)”, xlab = ”Treatment”,
+ las = 1, cex.lab = 1.5)

Hypothesis Tests: Differences Among Multiple Samples 117

HW.HN LW.HN HW.LN LW.LN

4

6

8

10

12

14

16

Treatment

B
io

m
a

s
s
 (

g
)

Figure 8.4 A quick visualization using boxplots of our samples. We see the samples all
appear relatively normally distributed. Note the naming scheme, which uses the first two
letters to represent the water treatment level and the latter two letters to represent the
nutrient levels.

Now that we’ve seen what our results look like, it’s time to begin our
analysis. H0 is that the samples have all been drawn from a single population
(that water and nutrient levels have no effect on plant mass). That doesn’t
look like the case in figure 8.4, but we need some quantitative support for
our rejection of H0.

The ANOVA is a parametric test and assumes that the data are normally
distributed. Despite the ANOVA’s apparent robustness (see box 8.2) we still
should test our samples separately for normality. Pulling out just our sam-
ples from a dataframe requires subsetting our data. Fortunately, we’ve done
subsetting before (see section 3.5). Here’s another way we can subset our
data. Let’s imagine that we want just the plant masses for the treatment when
water was low and nutrient levels were low. This can be done using indices
in the dataframe, as follows:

> plant.dat$plant.mass[plant.dat$water == ”LW” &
+ plant.dat$nutr == ”LN”]

[1] 3.84 4.47 4.45 4.17 5.41 3.82 3.83 4.67

What we’re asking R to do is to print to the screen the plant.mass data
from the dataframe plant.dat. We don’t want everything. Instead, we
want only the plant.mass when the water level is equivalent to LW (that’s
the == combination), which is low water and (that’s the & symbol) when
the nutrients are low (LN).

Now that we know how to subset our dataframe, we can send those
data as samples to the shapiro.test() function to test for normality.

118 A Primer in Biological Data Analysis and Visualization Using R

I have asked R to provide just the p-values for these tests by adding the
“$p.value” to the function call.

> shapiro.test(plant.dat$plant.mass[water == ”LW” &
+ nutr == ”LN”])$p.value

[1] 0.1734972

> shapiro.test(plant.dat$plant.mass[water == ”LW” &
+ nutr == ”HN”])$p.value

[1] 0.9509188

> shapiro.test(plant.dat$plant.mass[water == ”HW” &
+ nutr == ”LN”])$p.value

[1] 0.6769018

> shapiro.test(plant.dat$plant.mass[water == ”HW” &
+ nutr == ”HN”])$p.value

[1] 0.744246

As you might notice, pulling out the individual samples is a little tough. I
could have done this more simply with just testing each individual variable
that we had before joining them into a dataframe (e.g., LL), but it’s im-
portant to know what to do if you have stacked data. Because the data are
normally distributed, we may proceed with the ANOVA hypothesis test.

I can now run the ANOVA with the following call, using the aov() func-
tion and storing my result in a variable called plant.aov:

> plant.aov = aov(plant.dat$plant.mass ∼
+ plant.dat$water * plant.dat$nutr)

The model that we want to fit is sent to the aov() function as y ~ x1 *
x2. The multiplication on the right-hand side tells R that we want the main
effects and the interaction term.

R doesn’t report anything because the output is, instead, stored in the
variable plant.aov. We should use this approach of saving the output from
the aov() function so we can then get and format the output in more use-
ful ways. You can see the results by typing plant.aov at the command
prompt. You can have R format the output for you by sending the variable
plant.aov to the summary() function. R will return the ANOVA table.

> summary(plant.aov)

Df Sum Sq Mean Sq F value
plant.dat$water 1 314.88 314.88 488.69
plant.dat$nutr 1 216.74 216.74 336.37
plant.dat$water:plant.dat$nutr 1 21.68 21.68 33.65

Hypothesis Tests: Differences Among Multiple Samples 119

Table 8.2 ANOVA table for the effect of water and nutrient levels on plant biomass.

Df Sum Sq Mean Sq F value Pr(>F)

plant.dat$water 1 314.88 314.88 488.69 0.0000
plant.dat$nutr 1 216.74 216.74 336.37 0.0000
plant.dat$water:plant.dat$nutr 1 21.68 21.68 33.65 0.0000
Residuals 28 18.04 0.64

Residuals 28 18.04 0.64
Pr(>F)

plant.dat$water < 2e-16 ***
plant.dat$nutr < 2e-16 ***
plant.dat$water:plant.dat$nutr 3.13e-06 ***
Residuals

Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The output fromR is a bit messy and awkwardly wrapped here, but the infor-
mation is important for us to understand what happened in our experiment.
I’ve reformatted the output into table 8.2. In the next section, we’ll discuss
in greater detail what this means.

8.6 Interpreting the ANOVA Table

As with our other statistical tests, we are quite interested in the p-value so
our eyes naturally go to the far right column in table 8.2. We see the p-value
is in the column labeled Pr(>F). Notice that all the p-values are zero! Well,
they are not zero; they are just small. We should report them as p < 0.001
in a laboratory report (you might revisit our discussion of p-values in
section 6.8).

There are three effects in the table, one for each of our two factors, called
main effects, and a third for the interaction effect between these two factors.
The first main effect is for the effect of water on plant mass. This line gives
us the information we need to interpret the effect of our watering levels on
plant biomass. Go across this row to see that the degrees of freedom (Df)
for this term is 1. This tells us the number of levels, which is one more
than Df (Df = n − 1 = 1). So there must have been two levels (n = 2).
The mean square error term (Mean Sq) is the sums of squares (Sum Sq)
divided by the degrees of freedom (Df). The F value is the Mean Sq term
divided by the residuals Mean Sq term in the Residuals row (0.64). The
F statistic is used to determine a p-value that, in R, is labeled “Pr(>F).”

120 A Primer in Biological Data Analysis and Visualization Using R

In general, the bigger the F value, the smaller our p-value. It’s our job to
compare the p-values against our pre-determined α, which we usually set at
0.05, to determine statistical significance.

The second row is the main effect for the nutrient treatment. The third
row represents the interaction term for the water by nutr treatment effect.
Some researchers consider the interaction term to be more important than
the main effects and even use a different (usually higher) critical p-value (α)
to assess the significance of this effect. Check with your laboratory instructor
or mentor about how they want you to interpret higher-order effects. Here,
we’ll be conservative and stick with α = 0.05.

Our results suggest strong main effects for both water level and nutrient
level on plant biomass. In general, we see that plants with high nutrient levels
(the two boxplots on the left in figure 8.4) are larger, on average, than plants
with low nutrient levels (the two boxplots on the right in figure 8.4). We also
see that plants with higher water levels (HW) tend to be larger than plants
with lower water levels (LW). Does that make sense? It’s always important,
and sometimes tricky, in these tests to know what the results should look like.
Be careful to not just plug and chug statistical tests. Work to understand what
these results tell us about the data we see in our graph.

The interaction term is usually the really confusing part of this analysis
but also the most important part. To help us interpret this, we can use the
interaction.plot() function (see figure 8.5 for a description of what

4

6

8

10

12

14

16

plant.dat$water

m
e

a
n

 o
f
 p

la
n

t.
d

a
t$

p
la

n
t.
m

a
s
s

HW LW

nutr

HN

LN

Figure 8.5 An interaction plot for the plant biomass analysis. Notice that, if the lines
connecting the means of the nutrient factor (high and low nutrients in this example)
are parallel, this suggests there is no statistical interaction. If the lines are not parallel, it
suggests there is a significant interaction. In this graph, the lines are not parallel, which
agrees with the output from the ANOVA test (F = 33.65; df = 1, 28; p < 0.001).

Hypothesis Tests: Differences Among Multiple Samples 121

this plot shows). This is an important graph for visually inspecting statisti-
cal significance. If the interaction term is not significant, these lines will be
approximately parallel. In this example, the lines are not parallel, which is
consistent with the significant water by nutrient interaction effect.

> interaction.plot(plant.dat$water, trace.label = ”nutr”,
> las = 1,
+ trace.factor = plant.dat$nutr, plant.dat$plant.mass)

To determine whether individual samples differ from each other, we need
to use a post hoc comparison (discussed above in section 8.2). Here’s how
to do this with our data:

> TukeyHSD(plant.aov)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = plant.dat$plant.mass ∼ plant.dat$water *
plant.dat$nutr)

$‘plant.dat$water‘
diff lwr upr p adj

LW-HW -6.27375 -6.855088 -5.692412 0

$‘plant.dat$nutr‘
diff lwr upr p adj

LN-HN -5.205 -5.786338 -4.623662 0

$‘plant.dat$water:plant.dat$nutr‘
diff lwr upr p adj

LW:HN-HW:HN -7.92000 -9.01582151 -6.824178 0.0000000
HW:LN-HW:HN -6.85125 -7.94707151 -5.755428 0.0000000
LW:LN-HW:HN -11.47875 -12.57457151 -10.382928 0.0000000
HW:LN-LW:HN 1.06875 -0.02707151 2.164572 0.0579272
LW:LN-LW:HN -3.55875 -4.65457151 -2.462928 0.0000000
LW:LN-HW:LN -4.62750 -5.72332151 -3.531678 0.0000000

The output from this test at first appears to be quite confusing. There’s a
lot of information here. We see the results for the two main effects (water
and nutr) individually, followed by the interaction comparison (below the
$’plant.dat$water:plant.dat$nutr’). For the interaction com-
parison, each of the six rows represents a statistical, pairwise test between
two treatments. The first row, for instance, is for the LW:HN-HW:HN com-
parison. This is a comparison between the sample of plants that receive low
water and high nutrients (LW:HN) against the sample of plants that receive
high water and high nutrients (HW:HN). The last column shows the result of
the statistical test (“p adj”), which is the p-value. You can see that they are
all statistically significant (p < 0.001) except for one comparison, which has
p = 0.0579. Can you find that comparison in figure 8.5?

122 A Primer in Biological Data Analysis and Visualization Using R

HN LN

High Water

Low Water

Nutrient Level

M
a

s
s
 (

g
)

0

5

10

15

20
c

b
b

a

Figure 8.6 A barplot of the means for a two-way ANOVA for plant response to water
and nutrient treatments. Error bars are ± 95% confidence intervals. Samples that share a
letter are not statistically different.

This post hoc test on the interaction term can only be assessed if the inter-
action term is statistically significant. Once we do this post hoc test, we can
interpret which of the samples differ from each other.

If the relationship is significant, we need to determine letters that tell the
reader which samples are statistically similar or different from each other.
Samples that share a letter are not statistically different. Begin with the sam-
ple with the smallest mean and work upward alphabetically. Below are the
contrast letters that are consistent with this approach. In the next section,
we’ll discuss how to add the following contrast letters to figure 8.6.

> contrast.labels = c(”c”,”b”,”b”,”a”)

8.7 Visualizing the Results of a Two-Way ANOVA Test

Interpreting a two-way ANOVA, as we have seen, can be tricky. The interac-
tion plot (figure 8.5) helps us to understand the results from our experiment
but falls short of a professional-quality graph. Instead, the standard practice
is to use a barplot. I’ve added 95% confidence intervals to this graph to rep-
resent the variability in each sample. You may be asked to use a different
measure of variability that uses the same approach as the next code section,
which uses the tapply() function. To build this graph, we need to have
all our summary statistics in their own two-dimensional matrix. This way we
can group the bars by the factor of our choice and include the matching
error bars.

Hypothesis Tests: Differences Among Multiple Samples 123

We need to gather the means and confidence intervals for our data and
store the results in separate matrices. The tapply() function performs a
cross-tabulation on the data and applies the appropriate function (e.g., the
mean()) to the data by groups. We can store the means in a matrix called
M to create our barplot, as shown in figure 8.6 (also see the description of
making barplots in chapter 5). We gather our estimates of variability similarly
to calculate the 95% confidence intervals (see code below). When we make
the barplot, we again need to capture the x-axis locations of each bar, so I
keep those returned values in a variable called “a.” Note that you need to
have installed the plotrix package in order to use the plotCI() function.
The last line of code addes the contrast letters as text on the top of the error
bars using thetext() function.

> M = tapply(plant.dat$plant.mass,
+ list(plant.dat$water, plant.dat$nutr), mean)
> SD = tapply(plant.dat$plant.mass,
+ list(plant.dat$water, plant.dat$nutr), sd)
> SEM = SD/sqrt(8) # there are 8 observations per sample
> CI95 = qt(0.975,7)*SEM
> a = barplot(M, beside = TRUE, ylim = c(0,20),
+ xlab = ”Nutrient Level”, ylab = ”Mass (g)”,
+ legend = c(”High Water”,”Low Water”),
+ cex.lab = 1.5, las = 1)
> abline(h = 0)
> library(plotrix)
> plotCI(a, M, CI95, pch = NA, add = T)
> text(a, M + CI95, labels = contrast.labels, pos = 3)

If we want to switch the factor on the x-axis and the trace factor (water,
which shows up in the legend), then we just reverse the order of the factors
in the list in the tapply() function and change the legend text to be high
and low nutrients.

Writing the Results for a Two-Way ANOVA

This task is complicated enough to warrant a small section. In the previous
example, we have a variety of results. We have the two main effects for water
and nutrient addition on plant mass. In addition, we have the interaction
term. Finally, the interaction term is significant, so we conducted a post hoc
Tukey HSD test and found some differences among those samples. It is im-
portant to report the ANOVA table. It should look something like table 8.2.
You should clean up the names of the treatments and make sure that the p-
values are changed to “< 0.001.” Once you’ve provided the ANOVA table,
most of your work is done.

Each of the three effects in the table warrants a sentence of what you
found. Start by telling the reader what the main effects mean (e.g., adding
nutrients increased plant mass). This should be done using active voice

124 A Primer in Biological Data Analysis and Visualization Using R

(“I found …”), unless someone instructs you otherwise. Finally, end the
sentence with the pertinent statistical output. For example, “I found that
adding water increased plant mass significantly (F = 488.7; df = 1,28; p <
0.001).” A common mistake is to state that the treatment had a significant
effect, which doesn’t tell the reader what really happened. In addition, if you
have a figure for a result, you should refer the reader to it.

Finally, if the interaction term is significant, then you have a challenge. In
the plant example, shown in figure 8.6, we should discuss what we find most
interesting. It might be the samples that are not statistically different. Or it
might be that high water and high nutrient addition acted synergistically to
increase plant mass. Whatever you choose to point out, your sentence about
it should end with the statistical output for that interaction (i.e., F = 33.6;
df = 1, 28; p < 0.001).

8.8 Problems

1. Table below shows data for the bacterial counts found in milk from dif-
ferent dairies. The columns represent different farms, and the rows are
separate replicates from each farm (six from each of the five farms). Units
are in thousands of colony-forming units per milliliter (cfu ml-1).

(a) Enter the data below into an Excel spreadsheet as they appear.
For instance, in Excel, enter “Farm 1” in cell A1, the number 24
in A2, and so forth. Save this file in the .csv format.

(b) In your script file in RStudio, read the data file into a dataframe
variable called milk.dat.

(c) Stack the data into the variable milk.dat.stacked. Check
that these are correct by sending the output from the variable to
the console.

Farm 1 Farm 2 Farm 3 Farm 4 Farm 5

24 14 11 7 19
15 7 9 7 24
21 12 7 4 19
27 17 13 7 15
33 14 12 12 10
23 16 18 18 20

Hypothesis Tests: Differences Among Multiple Samples 125

(d) Test whether the data are normally distributed. Remember that
you need to test the counts within each farm separately. Show
your code and the results.

(e) Test whether there is a statistical difference in colony-forming
units among the farms.

(f) Create a barplot with 95% confidence intervals of the bacterial
counts as a function of the farm. If there is a statistical difference
among farms, add appropriate letters to each sample indicating
those differences.

(g) Provide a clear results statement for your finding and include,
parenthetically at the end of your statement, the statistical sup-
port for your conclusion.

2. Below are data on the lengths of twenty stickleback fish grown under
four different conditions (cold/warm water and high/low pH tanks).

(a) Enter these data into a spreadsheet with three columns. These
columns should be labeled as “Temp,” “pH,” and “Length.”
Save them in the .csv format. Read the spreadsheet into an R
dataframe called my.sticks. Verify that they are entered cor-
rectly in R by typing my.sticks at the console and check them
against the data in the table.

(b) Test whether the samples are normally distributed.
(c) Assume that the data are normally distributed and provide an

ANOVA table of the main and interaction effects.
(d) Provide two, separate side-by-side barplots of the means for

the main effects (temperature and pH). Include 95% confidence
interval error bars for both graphs. Note that you don’t need to
add letters when there are just two samples; they either are or
are not significantly different.

Temp pH Length (cm) Temp pH Length (cm)

C H 4.2 W H 4.4
C H 5.0 W H 4.3
C H 4.4 W H 4.4
C H 4.4 W H 4.5
C H 4.1 W H 4.6
C L 3.2 W L 5.6
C L 3.2 W L 6.1
C L 3.1 W L 5.9
C L 2.3 W L 6.9
C L 3.4 W L 5.7

126 A Primer in Biological Data Analysis and Visualization Using R

(e) Provide a single barplot of means for the interaction term for
this analysis. Include 95% confidence intervals along with letters
indicating significant differences, determined through the use of
the Tukey Honest Significant Difference post hoc test.

(f) Provide a paragraph summarizing the results from this analysis.
Note that you have two main effects and an interaction term
to consider. Be sure to end each statement with the appropriate
statistical support.

CHAPTER NINE

Hypothesis Tests: Linear
Relationships

WE ARE OFTEN INTERESTED in asking whether two variables are
related. For instance, we might ask whether the mass of dogs is related to
the length of dogs. In this kind of test, the data are generally continuous
and paired together somehow (a dog has a mass and a length). Two mea-
surements from the same experimental unit? It’s okay because we use each
dog (length and mass) as a single datum (point). We do need to have inde-
pendence, however, between our data points. We wouldn’t want to test this
relationship between dog lengths and masses using only dogs from a single
litter (they wouldn’t be independent).

There are two broad types of tests we might perform on such data, as-
suming we’re investigating whether there is a linear relationship between
two variables. These tests are correlation and regression analyses. We per-
form a correlation analysis when we’re interested in determining if there is
a linear relationship between two normally distributed variables, and a re-
gression analysis when we’re interested in testing whether one continuous
variable is dependent on the other variable. Strangely, the correlation test
assumes a linear relationship, but we never add a best-fit line to the data!
This can cause a lot of confusion about whether you should add a line to a
scatterplot. After working through this chapter, you will know when adding
a line is appropriate.

9.1 Correlation

As discussed above, a correlation analysis is a test that investigates whether
two variables are linearly related. Let’s assume we are interested in the rela-
tionship between the number of bars and the number of churches in a variety
of towns across New York State. Here are my data for ten towns of different
sizes:

128 A Primer in Biological Data Analysis and Visualization Using R

0

20

40

60

80

100

Number of Churches

N
u

m
b

e
r

o
f
B

a
rs

0 25 50 75 100

0

20

40

60

80

100

Number of Bars

N
u

m
b

e
r

o
f
C

h
u

rc
h

e
s

0 25 50 75 100

Figure 9.1 The relationship between number of churches and the number of bars in ten
towns of different sizes. There appears to be a positive, linear relationship. Does it matter
which variable goes on the y-axis?

> churches = c(29, 44, 45, 46, 53, 53, 54, 59, 70, 90)
> bars = c(20, 22, 36, 37, 38, 41, 60, 62, 76, 99)

Box 9.1. Should I add a best-fit line to a scatterplot?

Correlation. No. There is NEVER a best-fit line added to a correlation
plot. There is no causality (or dependence) implied. Either variable can
be plotted on the y-axis. A correlation analysis results in a correlation
coefficient (r) and a p-value.

Regression. Maybe. The dependent variable (response variable) is placed
only on the y-axis. The independent variable (predictor variable) goes on
the x-axis. You may add a line to regression data only if the relationship
is statistically significant. Provide the reader with the statistical output
(F; df1, df2; p-value). You also might report the adjusted R2 value (check
with an instructor about what is wanted). If the relationship is statistically
significant, add the line to the graph and report the equation (e.g., y =
2.7x + 14).

I have graphed them in figure 9.1. There seems to be a positive, linear re-
lationship. We might wonder if we should put a best-fit line through data
points (see Box 9.1). What we need to ask is whether it seems the variable
on the y-axis is dependent on the variable on the x-axis across different towns.

The proper way to approach these data is first to graph them (figure 9.1).
I’ve graphed the scatterplots with the axes presented both ways. Which one is

Hypothesis Tests: Linear Relationships 129

correct? Actually, it would be hard to argue that one variable depends on the
other. The truth, however, is that both these variables depend on the num-
ber of people living in these different municipalities (a third, confounding
factor). A confounding factor can also be thought of as a hidden factor.

Assuming we are convinced that neither variable depends on the other and
that they appear linear, we can perform the correlation analysis. The corre-
lation analysis is a parametric test and assumes both variables are normally
distributed. Below I test this but report only the p-values.

> shapiro.test(churches)$p.value

[1] 0.3819124

> shapiro.test(bars)$p.value

[1] 0.3385011

Now we may proceed with the correlation test using the cor.test()
function. Note that the H0 is that there is no correlation.

> cor.test(bars,churches) # Are these correlated?

Pearson’s product-moment correlation

data: bars and churches
t = 8.876, df = 8, p-value = 2.052e-05
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.8077248 0.9890719
sample estimates:

cor
0.9527938

R provides us a lot of information from this analysis. We see the type of
test (Pearson’s product moment correlation test), the test results, and the
correlation coefficient (0.953). With this analysis, we conclude that there is
a highly significant, positive correlation between the number of bars and the
number of churches in ten towns in New York State (r = 0.953, t = 8.88,
df = 8, p < 0.001).

Correlation with many variables

You can perform a correlation analysis on many variables at one time, but it’s
important that we focus our hypotheses on what particularly interests us. We
must avoid fishing expeditions where we go looking for anything that might
be significant. Those efforts are generally considered bad scientific practice
and can easily lead to making Type I errors. It is helpful, however, to use the
exploratory graphing function pairs() to visualize all of the relationships

130 A Primer in Biological Data Analysis and Visualization Using R

Sepal.Length
2
.5

3
.5

4.5 5.0 5.5

0
.1

0
.4

2.5 3.5

Sepal.Width

Petal.Length

1.0 1.4 1.8

0.1 0.3 0.5

4
.5

5
.5

1
.0

1
.4

1
.8

Petal.Width

Figure 9.2 A pairs() graph showing all possible scatterplots of the four flower mea-
surements of Iris setosa. In the upper-left graph, we see “Sepal.length.” This measurement
is on the x-axis for the graphs in the left column and on the y-axis for the graphs in the
first row.

between all our variables. We can use this approach to seek out relationships
that might be of potential interest.

We will look at a built-in dataset that contains information on the flow-
ers of Iris setosa. We can get these data using a subsetting technique. The
data are in the dataframe “iris” and the species are in the column labeled
“species.”

> flr.dat = subset(iris,Species == ”setosa”)

We can now use the pairs() function to look at the relationships be-
tween sepal length and width and petal length and width. Note that our
graphing the data does not constitute conducting a hypothesis test. This
type of figure is great for data exploration, allowing us to visualize easily
whether different variables might be positively or negatively related, or not
related at all (see figure 9.2).

> pairs(flr.dat[1:4]) # we only need the data

We can evaluate these relationships quantitatively by examining the cor-
relation matrix of these data using the cor() function with the following
code:

> cor(flr.dat[1:4])

Hypothesis Tests: Linear Relationships 131

Sepal.Length Sepal.Width Petal.Length
Sepal.Length 1.0000000 0.7425467 0.2671758
Sepal.Width 0.7425467 1.0000000 0.1777000
Petal.Length 0.2671758 0.1777000 1.0000000
Petal.Width 0.2780984 0.2327520 0.3316300

Petal.Width
Sepal.Length 0.2780984
Sepal.Width 0.2327520
Petal.Length 0.3316300
Petal.Width 1.0000000

The command cor(flr.dat) provides all the pairwise correlation co-
efficients (r). Notice that on the main diagonal r = 1.0. This is because
all the variables are perfectly correlated with themselves. At this point, we
have not conducted a hypothesis test. It’s always good to keep the number
of statistical tests to a minimum to avoid making statistical errors (see section
6.9). If, after careful consideration, you want to conduct a statistical test and
get the p-value for a particular pairing, then run the test. Below I have tested
the correlation between sepal length and sepal width:

> cor.test(flr.dat$Sepal.Length, flr.dat$Sepal.Width)

Pearson’s product-moment correlation

data: flr.dat$Sepal.Length and flr.dat$Sepal.Width
t = 7.6807, df = 48, p-value = 6.71e-10
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.5851391 0.8460314
sample estimates:

cor
0.7425467

For this analysis, we see four important pieces of information. We get a t
statistic; df; p; and “cor,” the correlation coefficient. From this, we see that
the p-value is very small and conclude that there is a positive correlation
between sepal length and width in Iris setosa (r = 0.743, t = 7.68, df = 48,
p < 0.001). We note that the degrees of freedom (df) for correlation tests is
n− 2, that is, the number of observations minus one degree of freedom for
each variable.

9.2 Linear Regression

The linear regression is used when you know that y depends on x in a linear
fashion (or that relationship has been made linear through a transformation,
like logging the data). It assumes the y-variable is normally distributed (see
section 4.4).

Some people think the goal of a regression is just to add a line on a scatter-
plot because the data points look naked. However, the meaning of a best-fit

132 A Primer in Biological Data Analysis and Visualization Using R

relationship is much more interesting. We often have worked hard and spent
time and money to get each value in our dataset. We consider each value
as giving us insider information about how the world works. For instance,
we might be asking a question about whether something increases, or just
changes, as a function of time. This would suggest we’re actually interested
in knowing the slope of the relationship, which often represents a rate. We
also are often interested in where the line crosses the y-axis, called the y-
intercept. Our methods here will allow us to formalize both our estimates of
these parameters (slope and intercept) and also provide us the estimates of
error for these parameters.

Let’s consider the example of the relationship between blood alcohol
concentration (BAC) and the number of drinks consumed for a 140 lb
female. Here are the estimated data (from https://www.tabc.state.tx.us/
publications/brochures/BACCharts.pdf):

> drinks = 1:10
> BAC = c(0.03, 0.07, 0.11, 0.13, 0.16, 0.19, 0.23, 0.26,
+ 0.29, 0.32)

The first thing we should consider is that there might be a relationship be-
tween these variables. Does having more drinks influence BAC? Probably! If
we graph these, which of the variables goes on the y-axis? If BAC depends
on the number of drinks someone has, then BAC should go on the y-axis.
But can we switch the axes? Can the number of drinks just as easily go on
the y-axis? Let’s graph both; see figure 9.3.

0 2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Number of Drinks

B
A

C

0.00 0.10 0.20 0.30

0

2

4

6

8

10

BAC

N
u

m
b

e
r

o
f
D

ri
n

k
s

Figure 9.3 The left panel shows blood alcohol concentration (BAC) graphed as a func-
tion of the number of drinks for 140 pound females taken in one hour. The right
panel switches these axes. Are these both plausible ways to graph these data? Data from
https://www.tabc.state.tx.us/publications/brochures/BACCharts.pdf.

Hypothesis Tests: Linear Relationships 133

> par(mfrow = c(1,2))
> plot(drinks,BAC, pch= 16, cex.lab = 1.5, xlim = c(0, 11),
+ ylim = c(0,0.3), xlab = ”Number of Drinks”, las = 1)
> plot(BAC,drinks, pch= 16, cex.lab = 1.5, ylim = c(0, 11),
+ xlim = c(0,0.3), ylab = ”Number of Drinks”, las = 1)
> par(mfrow = c(1,1))

The only plausible graph is the left panel. BAC depends on how many drinks
have been consumed, not the other way around. So we now have a relation-
ship that exhibits a dependency. And the data appear to be linearly related,
so we can begin assessing this relationship using linear regression.

Linear regression analysis is a parametric test that assumes that the y-axis
variable is normally distributed for given values on the x-axis. This is a bit
difficult to assess, but we can do this by looking at how the residuals change
against the x variable (see box 9.2). We can check that the y-axis data are
normally distributed:

> shapiro.test(BAC)$p.value

[1] 0.9199544

The p-value is greater than 0.05, which suggests we not reject the H0 that
these data are normally distributed. Therefore, we have more support for
conducting a linear regression analysis.

Linear regression will inform us about whether the relationship is statis-
tically significant and whether we can add a line to our graph. For linear
regression, we are asking whether the slope of the best-fit line to these data
is significantly different from zero (H0 : slope = 0; HA: slope ̸= 0). To
accomplish this, we use the linear model function lm().

> mod = lm(BAC ∼ drinks) # this is y ∼ x

With this type of statistical test, it’s good practice to store the result in a
variable, such as “mod,” so that we can parse out the different pieces. We
also can send that result to other functions to do things like get the p-value
or draw the best-fit line on our graph. We can get most of what we need
using the summary(), so let’s look at our results:

> summary(mod)

Call:
lm(formula = BAC ∼ drinks)

Residuals:
Min 1Q Median 3Q Max

-0.006364 -0.002773 -0.000697 0.001894 0.010242

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0046667 0.0034363 1.358 0.212
drinks 0.0316970 0.0005538 57.235 9.64e-12 ***

134 A Primer in Biological Data Analysis and Visualization Using R

Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.00503 on 8 degrees of freedom
Multiple R-squared: 0.9976, Adjusted R-squared: 0.9973
F-statistic: 3276 on 1 and 8 DF, p-value: 9.641e-12

Box 9.2. Testing the assumption of linear regression. Warning: this is go-
ing to sound crazy! Before we do statistical tests, we need to test the
assumptions of the test. However, to test the assumption of linear re-
gression, we’re going to conduct the linear regression analysis and assess
part of the analysis but not look at whether the relationship is statistically
significant.
To accomplish this, we run the linear regression analysis on our data and
plot the residuals.

> mod = lm(BAC ∼ drinks)
> plot(mod)

In the console, it should say “Hit <Return> to see next
plot.” Click in the console and hit the “Enter” once. The first graph
produced shows the “Residuals” versus the “Fitted Values.” This graph
should show the following two results that test whether the data are cor-
rectly fit by a linear model:

1. The average line through the data should be approximately horizon-
tal along the y = 0 line.

2. The points should be evenly spread above and below this line
throughout the range of the fitted values (x-axis).

For this dataset, it’s not really that clear because we have only ten data
points. It turns out that this passes our test. Below, however, are two
examples of residuals graphs that would lead us to reject quickly the as-
sumption for linear regression:

2 4 6 8 10

−0.04
−0.02
0.00
0.02
0.04
0.06

Reject!

Fitted Values

R
e
s
id
u
a
ls

2 4 6 8 10

−0.05

0.00

0.05

0.10

Reject!

Fitted Values

R
e
s
id
u
a
ls

Hypothesis Tests: Linear Relationships 135

From our analysis, we’re interested in getting the following:

1. The equation (or model) that describes the relationship (y = f (x)).
2. The significance of the statistical test.
3. How well the points fit the model (the R2 value).

From the summary above, we can get all of this information. The output,
when formatted like this, provides us a section under the “Coefficients,”
which displays the estimates for the slope, labeled “drinks,” and the intercept.
We also get the standard errors for these estimated values. The last column
gives us the p-value for a hypothesis test for the intercept and slope. H0 for
both of these statistics is that they are zero. We see that the estimate for the
intercept is very close to 0.0 and that the resulting p-value is very close to
1.0 (to several decimal places). This strongly suggests that the intercept is
not statistically different from zero. That makes sense! If a female (remember
the data were for females) does not have a drink, her BAC should be zero.

In addition, the output suggests that the slope is different from zero
(p = 2.318 * 10-12). This also is the p-value for the regression test. When
we report the results from a regression, we generally need the F statistic, the
two degrees of freedom, the p-value, the adjusted R2 value, and the equa-
tion, and all are provided in this summary.

The larger the F statistic, the more confidence we have that there is a
nonzero slope of the y-variable on the x-variable. The R2 value, also known
as the coefficient of determination (also written as r2), is a value that can
range as follows: 0 ≤ R2 ≤ 1. It gives us the proportion of the variance in
our y variable that is explained by our x variable. In this particular case, our
R2 value is quite high (almost 1.0), which suggests a very strong fit.

If the slope (or overall regression test) is significant, then we can add
the best-fit regression line. The easiest approach is to use the abline()
function, which draws a line that goes all the way from the axis on the left
to the axis on the right (the two ordinates) (see the left panel in figure 9.4).
Unfortunately, we shouldn’t do this because we need to be very careful about
predicting y-values beyond the range of our x-values.

To avoid this we can, instead, use the following code to draw our line,
assuming we have our data in two arrays of equal length called x and y:

> lines(x,fitted(lm(y~x)))

Undoubtedly, this single line of code seems relatively complicated to draw
a best-fit line on some data. It has a function (lm()) that’s in a function
(fitted()) that’s in yet another function (lines). After our initial shock
that this is what it takes to draw a simple line, let’s tear it apart, working from
inside out.

136 A Primer in Biological Data Analysis and Visualization Using R

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

Number of Drinks

B
A

C

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

Number of Drinks

B
A

C

Figure 9.4 The data for blood alcohol content (BAC) graphed as a function of the num-
ber of drinks consumed by male subjects. In the left panel, the line incorrectly extends
beyond the range of the x-variable. In the right panel, the line is graphed correctly, ex-
tending only as far as the range of drinks consumed. I’ve asked the function to double
the thickness of the line with the argument lwd = 2.

The fitted() function takes the output from the lm() function and
determines the predicted y values for the provided x values. Finally, the
lines() function draws the line between all the points (it’s straight be-
cause all the fitted points lie on the same function returned by lm()). The
end product is the graph on the right of figure 9.4.

> par(mfrow = c(1,2))
> plot(drinks, BAC, pch= 16, cex.lab = 1.5,
+ xlim = c(0,10), ylim = c(0,0.4),
+ xlab = ”Number of Drinks”, las = 1)
> abline(mod)
> plot(drinks, BAC, pch= 16, cex.lab = 1.5,
+ xlim = c(0,10), ylim = c(0,0.4),
+ xlab = ”Number of Drinks”, las = 1)
> lines(drinks, fitted(mod), lwd = 2)
> par(mfrow = c(1,1))

One last option to mention is that, with the above example, it is reasonable
to assume that the relationship must go through the origin. A person who
has not had a drink must have BAC equal to zero. We can force R to make
the best-fit relationship pass through the origin with one little trick:

> mod.origin = lm(BAC ∼ drinks - 1)
-1 force fit through origin
> summary(mod.origin)

We should consider this our best model for these data and report our
result. BAC for males increases linearly with an increasing number of drinks

Hypothesis Tests: Linear Relationships 137

consumed in one hour (BAC = 0.032 * num.drinks; F = 3276; df = 1, 8;
p < 0.001; adj. R2 = 0.997). Note that I dropped the intercept and did not
report it in the equation.

9.3 Another Example of Regression Analysis

A paper from the journal Science reported how warning calls of black-
capped chickadees (Poecile atricapillus) are influenced by the relative per-
ceived threat of a predator (Templeton, Greene, and Davis, 2005). Chick-
adees are small song birds that make a call that sounds, not surprisingly, like
“chick-a-dee.” The researchers found that chickadees tag on extra “dee”
sounds to their calls depending on the extent of a threat–the more threat-
ened they are, the more “dee” sounds they make. Larger predators actually
are less of a threat to chickadees than smaller predators, so the average num-
ber of “dee” sounds decreases with the size of potential predators. Given this,
we should expect to see a graph of the number of calls going down as the
size of the predator goes up.

I got the data from figure 9.5 using a website called WebPlotDigitizer
(https://apps.automeris.io/wpd/). Here are the data that I was able to get:

> aveNumD = c(3.95, 4.08, 1.74, 2.75, 3.03, 3.55, 2.27, 3.16,
+ 2.19, 3.21, 2.79, 2.450, 1.34, 2.24, 2.55, 2.05)
> PredLength = c(15.2, 17.5, 22.1, 25.0, 28.5, 31.5, 34.1, 44.2,
+ 45.0, 45.0, 47.0, 48.1, 48.5, 52.1, 52.9, 58.0)

0 10 20 30 40 50 60 70

0

1

2

3

4

Predator Body Length (cm)

D
e

e
 N

o
te

s
 p

e
r

C
a

ll

Figure 9.5 The number of “dee” call notes from chickadees in the presence of different
potential predators, represented by their average lengths. The solid line is the best-fit
line through these data (y = −0.03x + 3.88; F = 5.837; df = 1, 14; p = 0.03, adj.
R2 = 0.244). The dashed line is the equation presented in the paper (y = −0.4x + 4.4,
p < 0.0001, R2 = 0.361), which is clearly wrong. Data from Templeton, Greene, and
Davis (2005).

138 A Primer in Biological Data Analysis and Visualization Using R

Before completing our analysis, we must get the linear model and plot the
residuals before we complete the hypothesis test.

> mod = lm(aveNumD ∼ PredLength)
> plot(mod)

From the residuals graph, which is not shown, the residuals do appear to
be relatively flat and evenly spread over the fitted values. Therefore, we can
proceed with our hypothesis test, which we complete by sending the model
(mod) to the summary() function.

> summary(mod)

Call:
lm(formula = aveNumD ∼ PredLength)

Residuals:
Min 1Q Median 3Q Max

-1.4670 -0.3311 0.0270 0.5562 0.7327

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.88097 0.51246 7.573 2.58e-06 ***
PredLength -0.03050 0.01262 -2.416 0.0299 *

Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.6628 on 14 degrees of freedom
Multiple R-squared: 0.2942, Adjusted R-squared: 0.2438
F-statistic: 5.837 on 1 and 14 DF, p-value: 0.02994

> plot(PredLength,aveNumD,pch = 16,xlim = c(0,70),
+ ylim = c(0,4.5), las = 1,
+ xlab = ”Predator Body Length (cm)”,
+ ylab = ”Dee Notes Per Call”,
+ xaxs = ”i”, yaxs = ”i”,cex.lab = 1.5)
> mod = lm(aveNumD ∼ PredLength)
> lines(PredLength,fitted(mod),lwd = 2)
> # Add the line from description of Figure2B.
> abline(a = 4.4, b = -0.4, lwd = 2,
+ lty = 2) # line from pub

We see that the relationship is statistically significant (F = 5.837; df = 1, 14;
p = 0.03, adj. R2 = 0.244), so we can add the best-fit line to our data (see
figure 9.5).

As described in the figure caption, there are two lines fit on the graph. The
solid line represents the best fit for the data I got using R. The dashed line is
the equation for the relationship presented by the authors of the paper. It’s
important to think skeptically. I didn’t know the equation was wrong until
I plotted it with the data (see figure 2B in Templeton, Greene, and Davis,
(2005)).

Hypothesis Tests: Linear Relationships 139

9.4 Problems

1. Identify whether these examples of data relationships would best be in-
vestigated using correlation or regression analysis. Also, identify which
variable belongs on the x-axis or if it doesn’t matter. Finally, do you ex-
pect the relationship to be positive or negative? For such problems, it’s
usually quite helpful to hand-draw a graph of the expected relationship.

Question Relationship Corr/Reg? x-Axis Data ±
a The length of metacarpals and

metatarsals in humans
b Animal speed and mass
c Person’s life expectancy and

cigarettes smoked day-1

d Mammalian heart rate and body
mass

e Number of bird species in 100
hectare plots and plot latitude,
north of the equator

2. The following data are femur and humerus lengths (mm) for five fos-
sils of the extinct proto-bird Archaeopterix (Houck et al., 1990). If they
are from the same species, then these points should exhibit a highly sig-
nificant, positive linear relationship. Provide a results statement about
whether these data appear to all come from the same species.

Individual Femur (mm) Humerus (mm)
1 38 41
2 56 63
3 59 70
4 64 72
5 74 84

(a) Test the assumptions of correlation or regression (whichever is
appropriate) for these data.

(b) Test whether there is a significant relationship between these
variables.

(c) Graph these data and, if you decide that a line is appropriate, add
the best-fit line. If not, do not add the line.

(d) Explain why a line should or should not be added to the data.
(e) What does this relationship suggest about these fossils?

3. The following are the number of breeding pairs of red-tailed hawks in a
state from 2015 to 2020. As you work with these data, it’s interesting
to consider whether it is possible that year causes the number of pairs to
change over time. When we have time series data like these, we recognize
that we also can use regression (if appropriate) to determine the rate at

140 A Primer in Biological Data Analysis and Visualization Using R

which something is changing. Note that a rate has units of something
(e.g., number of breeding pairs) over time. Therefore, time can be an
independent factor in a regression analysis.

Year Number of Breeding Pairs
2015 955
2016 995
2017 1029
2018 1072
2019 1102
2020 1130

(a) Test the assumptions of correlation or regression (whichever is
appropriate) for these data.

(b) Test whether there is a significant relationship between these
variables.

(c) Graph these data and, if you decide that a line is appropriate, add
the best-fit line. If not, do not add the line.

(d) Explain why a line should or should not be added to the data.
(e) If appropriate, what is the rate of change in the number of breed-

ing pairs for this species in this state?

4. Loblolly pine (Pinus taeda) trees are found in the southeastern United
States. In the built-in dataframe Loblolly, you’ll find data for the
heights of trees at different ages for trees grown from different seed
sources.

(a) Subset the dataframe for two “Seed” sources. Place the results
in two separate, well-named dataframes.

(b) On a single graph, make a scatter plot of the relationship between
height and age for both seed types you have chosen. Which of
these makes more sense on the x-axis? Explain your reasoning.

(c) Correctly test the relationship for these two seed types. Do they
appear to be different? Provide a reason to support your answer.

(d) If appropriate, add lines to your graph for each seed source. If
not appropriate, state why you think lines should not or cannot
be added.

CHAPTER TEN

Hypothesis Tests: Observed and
Expected Values

SOMETIMES WE HAVE DATA where we have counted the numbers
of things. Such data are generally called categorical data. A classic example we
often run into in biology laboratories is to test whether phenotypes adhere
to a 3:1 ratio or a 9:3:3:1 ratio. We’ll discuss the chi-square test (χ2 test)
and, when the dataset has few observations, the Fisher exact test.

10.1 The χ2 Test

Imagine you have fifty yellow pea plants and twenty green pea plants. You’re
wondering if they adhere to a 3:1 ratio. Here’s how we would do it. We
first enter our data. The easiest way is to enter our observed count data and
then enter the expected probabilities.
> obs = c(50,20) # observed counts
> expP = c(0.75,0.25) # expected probabilities

Once we have our data entered, we do our test with the following command.
You might notice that I haven’t done a normality test. This test does not
assume the data are normally distributed. Therefore, it is a non-parametric
test.
> chisq.test(obs, p = expP)

Chi-squared test for given probabilities

data: obs
X-squared = 0.47619, df = 1, p-value = 0.4902

The chisq.test() function returns the chi-square statistic (χ2 =
0.476), the degrees of freedom (df = 1), and the p-value (p = 0.49). The
null hypothesis is that the observed values adhere to the 3:1 ratio (expP).
In this example, we conclude that the data are consistent with a 3:1 ratio
because p > 0.05.

142 A Primer in Biological Data Analysis and Visualization Using R

We can understand this test best by looking at the equation used to cal-
culate the χ2 statistic:

χ2 =
n∑

i=1

(obsi − expi)2

expi
(10.1)

The obsi and expi in the equation represent the count for the ith observed and
expected values, respectively. In the 3:1 ratio example, we have just two cat-
egories (yellow and green). If the obsi and expi are the same for all categories,
then the χ2 value is zero, which would be consistent with the H0 that the
observed data adhere to the expected. As the observed and expected values
increasingly differ, the χ2 statistic gets bigger. Once the χ2 statistic reaches
and/or exceeds a critical value, we find that p ≤ α and we reject our H0 that
the expected and observed counts do not differ.

For the above example, where we had fifty and twenty individuals that
should fall into a 3:1 ratio (52.5, 17.5), we can calculate χ2 by hand using
equation 10.1 as follows:

χ2 =
(50− 52.5)2

52.5
+

(20− 17.5)2

17.5
= 0.4762

I determined the expected values by multiplying 0.75 and 0.25 by the total
number of individuals in the sample (70).

There are a few caveats with this test. First, you need to be careful about
proportions versus counts (or frequencies). The above equation uses counts,
while the function in R is best used with proportions. If you know it’s a
3:1 ratio, for instance, then the expected frequencies should have 75% and
25% of the values, respectively. If you have 1371 observations, you’d have
to calculate the number for each category (1371 · 0.75 and 1371 · 0.25).
No matter how many total observations you have, however, the proportions
should still be 3:1, or 0.75:0.25.

A second concern involves limitations to the chi-square statistical test. The
general rules are that there should be no more than 20% of the expected
frequencies less than five and none of the expected frequencies should be
less than one. If this is a problem, you should use the Fisher exact test (see
section 10.3).

Data in a Contingency Table

You may encounter observed and expected data that have more than two
categories. These may occur in a matrix, such as an n by m contingency table.
The chi-square test can be used with these data. You need to enter your data
into a matrix and send that matrix to the chisq.test() function. Let’s
try this with the following data. We might, for instance, have a sample with

Hypothesis Tests: Observed and Expected Values 143

Table 10.1 The number of males and females by hair color.

Brown Blond Total

Males 10 6 16
Females 8 12 20

Total 18 18 36

males and females and two hair colors (brown and blond). If we assume that
we have ten brown-haired males, six blond-haired males, eight brown-haired
females, and twelve blond-haired females, we might be interested in whether
individuals are distributed as expected across sex and hair color. This is an
easy test to conduct but a really tricky test to interpret. The data are provided
in table 10.2.
I’ve included the totals for the rows and columns in this matrix. The totals
are used to calculate the expected values for the observed values. Notice that
there are different numbers of males and females but the same number of
blond- and brown-haired people in our population of 36 individuals. Given
this, we can calculate the expected number of individuals that should occur
in each category. For example, to get the expected value for brown-haired
males, we multiply the row total by the column total and divide by the grand
total:
> 16*18/36

[1] 8

We should have eight such individuals, but we saw ten, so we saw more than
expected. Let’s create the matrix of data and use R to do these calculations.
We first enter the data into a matrix and verify they are entered correctly:
> mat = matrix(c(10,6,8,12), byrow = TRUE, nrow = 2)
> mat

[,1] [,2]
[1,] 10 6
[2,] 8 12

Now we can do our statistical test by simply sending the matrix to the
chisq.test() function:
> chisq.test(mat)

Pearson’s Chi-squared test with Yates’ continuity
correction

data: mat
X-squared = 1.0125, df = 1, p-value = 0.3143

144 A Primer in Biological Data Analysis and Visualization Using R

Table 10.2 Results from wart therapy.

Trmt Resolved Not

DT 22 4
Cryo 15 10

Note: number of subjects treated with duct tape (DT)
or cryotherapy (Cryo); resolved or not resolved. Data
from Focht et al. (2002).

Even though the observed frequencies differ from expected, they do not vary
enough from what we would expect, given how many people fall into the two
sexes and the two different hair colors (χ2 = 1.012, df = 1, p = 0.314). What
if the statistical test is statistically significant? Let’s look at another dataset.

10.2 An Example with Warts

Lots of kids get warts. Two-thirds of the warts go away on their own within
two years. Kids think warts are gross and sometimes are willing to take ex-
traordinary means to dig them out themselves. A common medical treatment
is to freeze them with liquid nitrogen (cryotherapy). Another technique,
tested by Focht, Spicer, and Fairchok (2002), was to use duct tape occlu-
sion. The researchers tested the efficacy of placing duct tape over warts for
two months. Fifty-one patients, who ranged in age from three to twenty-two
years, completed the study. Each was randomly assigned to either the duct
tape (DT) treatment or the cryotherapy (Cryo) treatment. Unfortunately,
the researchers did not include a control group (do nothing and see what
happens). The results are shown in table 10.2.
It is really hard to just look at these data and tell what happened. We do
see, however, that most patients experienced warts being resolved and that
it seems like a lot of patients who got the duct tape treatment lost their warts.
The authors of the study conducted a χ2 statistical test and concluded that
duct tape significantly reduced the occurrence of the warts. Let’s test this
ourselves. We first need to enter the data:
> M = matrix(c(22,4,15,10),byrow = TRUE, nrow = 2)
> M

[,1] [,2]
[1,] 22 4
[2,] 15 10

The data match the table. Let’s visualize these data. The best way is to show
the numbers of patients in each group using a barplot (see figure 10.1).

Hypothesis Tests: Observed and Expected Values 145

Resolved Not Resolved

DT

Cryo

Treatment

N
u

m
b

e
r

o
f
P

a
ti
e

n
ts

0
5

1
0

1
5

2
0

2
5

3
0

Figure 10.1 Barplot of the test for whether duct tape and cryotherapy reduced the preva-
lence of warts in patients.

> barplot(M, beside = TRUE, ylim = c(0,30),
+ xlab = ”Treatment”, ylab = ”Number of Patients”,
+ names = c(”Resolved”,”Not Resolved”),
+ legend = c(”DT”,”Cryo”), cex.lab = 1.5)
> abline(h=0)

To complete the χ2 test, we simply need to send matrix M to the
chisq.test() function:

> chisq.test(M)

Pearson’s Chi-squared test with Yates’ continuity
correction

data: M
X-squared = 2.7401, df = 1, p-value = 0.09786

This is interesting. We get a p-value of 0.098. Why did the authors get a
p-value of less than 0.05? The reason they got this answer is that they chose
not to use the commonly used Yates’s continuity correction. It turns out
that R, by default, uses this correction due to the degrees of freedom in this
contingency table being equal to one (df = 1). If we tell R not to do this
correction, then what happens? Here we go:

> chisq.test(M, correct = F) # not using Yates’ correction

Pearson’s Chi-squared test

data: M
X-squared = 3.8776, df = 1, p-value = 0.04893

146 A Primer in Biological Data Analysis and Visualization Using R

It is amusing that we have to tell R not to use the correct test. We now see
how the researchers believed their results to be statistically significant (p ≤
0.05). What would you do if you were a doctor and had a patient with a wart?
Based on these data there is no significant difference between using duct tape
on warts versus using cryotherapy. Additionally, the researchers needed to
include a control (applying no therapeutic treatment) to determine whether
these treatments outperformed simply waiting for the warts to resolve.

Once we conduct our test correctly (with Yates’s correction when we have
a contingency table with df = 1) and determine that there is no statistical
significance, we are done. We are not allowed to go on and ask, “Well, did
those who received the duct tape occlusion treatment resolve more than ex-
pected?” Instead, we set up our experiment, we define our hypotheses, set
our α, determine the experimental design and the statistical test we’ll per-
form, conduct our experiment, collect our data, complete the correct statis-
tical analysis, and interpret our result. Our correct results statement should
read something like this:

We found that the observed frequencies of patients in the two treatments
(duct tape occlusion and cryotherapy) did not differ from what we would
expect by chance among the patients tested (χ2 = 2.74, df = 1, p = 0.098).

10.3 The Fisher Exact Test

The previously discussed χ2 test with the continuity correction is an approx-
imation for this test (Zar, 2009), which uses, as the name implies, exact
probabilities for observing frequencies. This test also allows us to employ
one-tailed tests (the χ2 test is only two-tailed). We can run this on a matrix
much like we did using the chi-square test on the duct tape experiment.
> M = matrix(c(22,4,15,10),byrow = TRUE, nrow = 2)
> fisher.test(M)

Fisher’s Exact Test for Count Data

data: M
p-value = 0.06438
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.8333154 18.6370764

sample estimates:
odds ratio

3.57229

This test on these data suggest what we had discovered from the chi-square
test with Yates’s correction: that the results are not statistically significant.
Therefore, we conclude that using duct tape did not have an effect on the

Hypothesis Tests: Observed and Expected Values 147

resolution of warts compared to the cryotherapy treatment (OR = 3.57, p =
0.064). Note that OR refers to the odds ratio.

10.4 Problems

1. Corn kernels were counted in an ear of corn. There were 295 purple
kernels and 86 yellow kernels. We expect these to occur in a 3:1 ratio.

(a) Enter these data into two variables called obs and exp so that
you can perform a χ2 test on them.

(b) Are these counts consistent with a 3:1 ratio of purple to yellow?
(c) Provide a graph of observed and expected counts.
(d) Provide a formal results statement with correct statistical sup-

port.

2. Gregor Mendel reported (1866; see Hartl and Fairbanks, 2007) finding
pea plants in one dihybrid cross experiment with the following ratio:

Phenotype Number
Round/yellow 315
Wrinkled/yellow 101
Round/green 108
Wrinkled/green 32

(a) Provide code and output from a chi-square test for these data,
testing whether they adhere to a 9:3:3:1 ratio (in that order in
the table).

(b) Provide a barplot of just the data.
(c) Extract from R the expected values for each phenotype had the

plants occurred in exactly a 9:3:3:1 ratio (round the values).
(d) Provide the observed and expected values in a single barplot.
(e) Provide a formal results statement with correct statistical sup-

port.

3. The following data represent the observed body mass index (BMI) val-
ues for a male population with 708 individuals. Also included are the
expected percentages for this particular population.

BMI < 18 ≥ 18 but < 25 ≥ 25 but < 30 ≥ 30
Observed 57 330 279 42
Expected percentages 10 50 30 10

(a) Are the number of people in the BMI categories consistent with
the expected percentages for this population? Be sure to include
your code and output.

148 A Primer in Biological Data Analysis and Visualization Using R

(b) Provide a side-by-side barplot of these data. The trace variable
should be observed/expected.

(c) Extract from R the expected BMI value for each age class.
(d) Provide a barplot of the observed and expected BMI values in a

barplot.
(e) Provide a formal results statement with correct statistical

support.

CHAPTER ELEVEN

A Few More Advanced Procedures

IN THIS CHAPTER, we’re going to gain a variety of skills that broaden
our ability to explore biological data and models more deeply. This includes
writing our own functions that simplify our analyses, digging deeper into
understanding our data (e.g., curve fitting with a little bit of calculus), and
writing and solving differential equation models. In the next chapter, we’ll
explore the components required to write a few simulation models.

11.1 Writing Your Own Function

So far you have used a large number of functions inR. If you look at the index
of this book under “R functions,” you’ll see a long list of functions we’ve
used. Sometimes, however, you might want to write your own function.
Functions are lines of code that are bundled together into a single, hopefully
well-named call. Functions can receive arguments; perform actions, such as
calculations or create graphs; and can return information.

There are many advantages to creating functions. For instance, functions
are useful to write when

1. You need to complete a particular, well-defined task that someone else
hasn’t already written.

2. You need to do something many times, and it is easier to write the task
once, then call it many times with something like a “for” loop (see
chapter 12).

3. You are collaborating and want to share a rock-solid piece of code so
that it’s easy for someone else to use and difficult for them to misuse.

4. You want to be able to compartmentalize tasks such as getting data,
checking it for errors, and then making a graph, all with just a single line
of code

150 A Primer in Biological Data Analysis and Visualization Using R

To get started, let’s write a function that simply returns the arithmetic
mean of an array. This isn’t necessary because R provides us with such a
function (mean()). But it is a simple task that will be good for demonstra-
tion. The arithmetic mean (x̄) for a set of data can be written as follows:

x̄ =
1
n

n∑
i=1

xi (11.1)

Let’s begin with some simple data:

> dat = c(6,3,4,5,3,1)

To write a function, you need a unique name for the function, that’s descrip-
tive. Use the function called function(), and decide whether it receives
arguments, performs actions, and/or returns information. Here’s a simple
function for calculating the arithmetic mean:

> my.mean = function (x) {
+ ans = sum(x)/length(x)
+ return (ans)
+ }

In the function definition above, the data that are passed to the function
are assigned to the variable x. The values in x are used to calculate the mean,
which is then assigned to the variable ans. Finally, the function returns this
answer. The variables x and ans are local to the function and are created
and, when the function finishes, are removed.

To make the function available for later use during your R session, you
need to run it. Just highlight all the code of the function and run that. If
it runs, without error, you might have a working function. We usually want
to test a function extensively before we consider it complete. Let’s test the
function:

> mean(dat)

[1] 3.666667

> my.mean(dat)

[1] 3.666667

The my.mean() function works on these data without generating an error
and returns a value that is the same as R’s mean() function.

Functions can be fun to write. A really good function, however, can be
challenging to write. The above function my.mean() is nice, but it won’t
provide much help if the user sends it bad data. You can look at most of the
code for the built-in mean() function by typing this at the console:

> mean.default

A Few More Advanced Procedures 151

0 5 10 15 20 25

0

5

10

15

20

x

y

0 5 10 15 20 25

0

5

10

15

20

x

y

Figure 11.1 Two graphs with best-fit linear regression lines. On the left, I have incorrectly
added a line with the abline() function that extends from axis to axis. In the right
graph, I have correctly drawn a line with our new lm.line() function that extends the
line only over the range of the x variable.

and hitting <enter>. You’ll see a number of conditional terms (lines that
start with if) as the author of the function (not me!) tests for a variety
of ways that a user might make a mistake and therefore helps them out. A
good function will check the incoming data and, if necessary, return an error
message that’s helpful (you’ve probably already seen several error messages
provided by R).

Once you exit R, your own function will go away. For it to be available
in your next R session, you’ll have to run the function. Then it will become
part of the R session and will be available and ready for you to use.

Let’s build a function that allows us to add a proper best-fit line to a linear
regression. We introduced this procedure in the section on linear regression
(see section 9.2). To do this, we simply wrap our code in a function declara-
tion and identify the arguments we want the user to be able to send to the
function. Here’s a simple version of the function:

> lm.line = function (x, y) {
+ lines(x,fitted(lm(y∼x)))
+ }

I’m going to create some linear but noisy data and store the result from the
linear regression analysis in a variable called mod.

> set.seed(100) # do this so you will have the same data
> x = 5:20
> y = 0.4*x + 2 + 7.5*runif(length(x))
> mod = lm(y∼x)

I can now graph these data and compare the drawing of the line using
abline() versus our own function lm.line() (see figure 11.1).

> par(mfrow = c(1,2)) # create a two-panel graphics window
> plot(x,y, xlim = c(0,25), ylim = c(0,20), pch=16,

152 A Primer in Biological Data Analysis and Visualization Using R

+ cex.lab = 1.5, las = 1)
> abline(mod)
> plot(x,y, xlim = c(0,25), ylim = c(0,20), pch=16,
+ cex.lab = 1.5, las = 1)
> lm.line(x,y)

As you can see, we can now add appropriate best-fit lines to scatterplots using
our lm.line() function. However, it’s still important to make sure that all
the assumptions have been met to add such a line correctly (see chapter 9).

11.2 Adding 95% Confidence Interval Lines for Linear Regression

When we conduct a regression analysis and get a significant result and the
relationship between the x and y variables is linear, we can add a best-fit
straight line. When we look at the analysis output, we see that our slope and
intercept estimates have error terms. This is because the data points do not all
fall exactly on the best-fit line. We can represent this uncertainty in regression
with 95% confidence interval lines on either side of our best-fit line. This can
help a reader interpret the strength of the regression relationship.

Let’s start with a dataset that’s built into R called “BOD,” for biochemical
oxygen demand. You can look at the BOD data by typing the dataset’s name
at the console. To add the 95% confidence interval lines, we need to conduct
the linear regression analysis with the linear model function (lm())) and
send the output from that function to the predict() function. This returns
our 95% prediction values as a matrix that we send to the lines() function
(see box 11.1). So we make the scatterplot, add the best-fit line, and then
add the confidence lines (see figure 11.2).

1 2 3 4 5 6 7

0

5

10

15

20

25

30

Time (Day)

B
O

D
 (

m
g

/l
)

Figure 11.2 Scatterplot of the data with a best-fit linear regression line (solid line). In
addition, the dashed 95% confidence lines for this relationship have been added.

A Few More Advanced Procedures 153

> plot(BOD$Time, BOD$demand, pch = 16, ylim = c(0,30),
+ ylab = ”BOD (mg/l)”, xlab = ”Time”, las = 1,
+ cex.lab = 1.5)
> mod = lm(BOD$demand ∼ BOD$Time)
> lm.line(BOD$Time, BOD$demand) # line function from earlier
> newx = BOD$Time # create a new variable for Time
> prd = predict(mod, interval = c(”confidence”), level = 0.95,
+ type=”response”)
> lines(newx, prd[,2], lty=2, lwd = 2)
> lines(newx, prd[,3], lty=2, lwd = 2)

Box 11.1. What do 95% confidence lines mean?
This is a good question! They represent a confidence range, much like
the one we worked with when we calculated 95% confidence intervals and
placed them on barplots back in chapter 8. These lines show a range of
best-fit lines based on the variability in the estimates of both the intercept
and slope. This range is where 95% of the best-fit lines would occur if we
sampled data from the same population many times. These lines do not
capture 95% of the data points. They are intended to help the reader to
see how the variability in the data affect confidence in the best-fit line.
The dashed confidence interval lines in Figure 11.2 are fairly large, due
to the combination of variability in the data and there being relatively few
data points.

11.3 Nonlinear Regression

This section introduces more complicated models to fit to your data. If you
are thinking of fitting a curved line to your data, you should convince yourself
that your data satisfy the following criteria:

1. Your data clearly are not linear and can’t be transformed to become lin-
ear.

2. The functional form that your data seem to adhere to can be represented
by an equation that defines (not describes) the dynamics of the system.

Note that you are not fishing for some curvy line that looks good with
these data (recall the example of corals in this book’s introduction)! You need
to understand how your data are related (e.g., how y depends biologically
on x) and fit that functional form to your data.

This would be a good time to consider the aphorism attributed to Albert
Einstein that a model should be made as simple as possible, but no simpler.
When we have data, we often are interested in finding the best model that fits

154 A Primer in Biological Data Analysis and Visualization Using R

our data. That means we really want the equation that provides us parameter
estimates of the model that governs how our system actually functions. Just
because some model fits the data well is not confirmation that we’ve learned
anything about our system! Fortunately, nature often is relatively simple and,
therefore, a simple model is likely to be our best approximation about how
our system functions. It is highly unlikely any biological system operates on
a fourth-order or higher polynomial.

An Example Using Dolphin Mass over Time

A quick example should help (see figure 11.3). If we’re interested in getting
the functional relationship of y on x, then we should use the function that
makes the most sense biologically (represents reasonably how the system
changes over time). Below are mass data (kg) of a stranded dolphin over a
ten-week rehabilitation period.
[1] 35.2 35.6 49.9 54.2 53.5 59.2 68.2 69.7 78.7 82.6

What is the rate of mass increase for our dolphin? Mammals, in general,
are determinant growers, meaning they stop growing at adulthood. We can
find out that bottlenose dolphins (Tursiops truncatus) can grow up to 300
kg. The masses above must represent an immature dolphin. The simplest
model to describe the rate of change in the mass of our recovering dolphin
would be to assume it increases linearly. We don’t want to try to fit a high-
order polynomial to our data just so the line goes through several (or every!)
data point. A linear growth rate over this relatively short, ten-week period
seems reasonable (see the left panel in figure 11.3).

Just for fun, I fit a ninth-order polynomial equation to these data (see the
right panel in figure 11.3). Isn’t this a lot better? This line goes through every
data point exactly! If I use this model to predict the mass of this dolphin in the
eleventh week, however, the model says it will weigh less than −1.5 billion
kg. Funny, but not a very useful prediction. This model gives us neither an
understanding of growth over time nor the ability to predict future mass of
our dolphin. Choosing our model carefully is very important. Below is the
code that creates figure 11.3.

> mod1 = lm(y∼x)
> mod2 = lm(y ∼ poly(x,9))
> par(mfrow = c(1,2))
> plot(x,y, xlim = c(0,11), ylim = c(0,100),
+ ylab = ”Dolphin Mass (kg)”, xlab = ”Time (weeks)”,
+ pch = 16, cex.lab = 1.5, las = 1, xaxt = ”n”)
> axis(1, at = seq(0,11,by = 5))
> lines(x,fitted(mod1),lwd = 2)
> plot(x,y, xlim = c(0,11), ylim = c(0,100),
+ ylab = ”Dolphin Mass (kg)”, xlab = ”Time (weeks)”,
+ pch = 16, cex.lab = 1.5, las = 1, xaxt = ”n”)

A Few More Advanced Procedures 155

0

20

40

60

80

100

Time (weeks)

D
o

lp
h

in
 M

a
s
s
 (

k
g

)

0 5 10

0

20

40

60

80

100

Time (weeks)

D
o

lp
h

in
 M

a
s
s
 (

k
g

)

0 5 10

Figure 11.3 The change in average mass of a dolphin over ten weeks. In the left panel,
we see the mass with a linear fit to the data (y = 5.3 week + 29; F = 253; df = 1,8;
p < 0.001; adj. R2 = 0.966). On the right, I fit a ninth-order polynomial equation. It’s a
great fit because the line goes through every data point. I’m not showing the equation
because it’s biologically meaningless!

> axis(1, at = seq(0,11,by = 5))
> xvals = seq(1,10,by=0.1)
> yvals = predict(mod2,list(x = xvals))
> lines(xvals,yvals,lwd = 2)

In summary, our linear model tells us that our dolphin is gaining a little over
5 kg per week (see figure 11.3).

Example: The Mass of Plants

Figure 11.4 shows the mass of different plants of a species grown in a green-
house over the course of sixteen weeks. This measure of dry mass is destruc-
tive so each data point represents a different, independent plant. The species
does not appear to grow linearly in mass over time. I have fit a straight line
to the data, but we can see clearly that this line does not capture how these
plants are growing. Note we don’t just start fitting lines to data; we always
use the correct functional form for our system. I’m adding different lines for
demonstration purposes only!
> plant.mass = c(4.0, 8.5, 12.2, 13.4, 15.0, 17.8, 19.3, 19.4,
+ 21.2, 21.7, 23.4, 23.8, 24.1, 24.7, 24.9, 25.5)
> time = 1:16 # weeks
> mod = lm(plant.mass ∼ time)
> plot(time, plant.mass, xlim = c(0,16), ylim = c(0,30),
+ ylab = ”Plant Mass (g)”, xlab = ”Time (weeks)”,
+ pch = 16, cex.lab = 1.5, las = 1)
> lines(time,fitted(mod), lwd = 2)

Why isn’t this a good model? It captures the basic increase of the data. How-
ever, we notice a clear pattern of the lack of fit. On both ends of the fit, the

156 A Primer in Biological Data Analysis and Visualization Using R

0 5 10 15

0

5

10

15

20

25

30

Time (weeks)

P
la

n
t
M

a
s
s
 (

g
)

Figure 11.4 The mass of plants does not appear to increase in a linear fashion over time.

model overestimates the values of the data. Likewise, in the middle of the
line, the model underestimates the data. This tells us that this model clearly
is not describing the behavior of our system.

We are interested in the coefficients that describe the growth of plants but
doing so will be more complicated than simply finding the best-fit straight
line. We need to develop a model that properly defines the growth of these
plants over time. A starting point for the mass of a plant at time zero is
approximately zero. Therefore, our function should go through the origin.

How do we find the appropriate function and then get R to tell us what
the equation is? Finding the right equation is hard. This usually comes from
researchers with experience in the system and/or from previous work on
plants. Once we have an equation, we then need to estimate the coefficients
of the equation to helpR get started searching for the best-fit coefficients. We
must help R because the algorithm to find the best fit is numerical, mean-
ing R uses a search strategy. It’s quite possible R (like all other statistical
programs) might begin searching in the wrong direction and never find the
correct relationship. Because the data curve downward, let’s try a simple
quadratic function (a second-order polynomial). We can use the curve()
function to approximate the relationship. I had to guess a bit to get started.
For instance, the data curve downward, so the x2 term must be negative.

After trying a few values for the coefficient, I got the curve function you
see in figure 11.5. Below is the code that makes that figure, along with the
equation, which is the first argument in the curve() function.
> plot(time, plant.mass, xlim = c(0,16), ylim = c(0,30),
+ ylab = ”Plant Mass (g)”, xlab = ”Time (weeks)”,
+ pch = 16, cex.lab = 1.5, las = 1)
> curve(-0.12*x∧2+3.1*x+3,from = 1,to = 16, add = TRUE)

The line in figure 11.5 isn’t a bad fit to the data and could be used to help
R find the best-fit line. However, this function has a very serious problem.

A Few More Advanced Procedures 157

0 5 10 15

0

5

10

15

20

25

30

Time (weeks)

P
la

n
t
M

a
s
s
 (

g
)

Figure 11.5 A second-order polynomial equation fit to the data. The line does a pretty
good job of going through the data points, but can you see a problem lurking in the fit?

Can you see the problem? The curve fits the data pretty well, except near
the end. That is really problematic! We’re hoping to use an equation that
describes the underlying mechanism that governs the growth of these plants.
The equation that I have used fits the data well but completely misses how
the plants grow. This equation suggests that the mass of these plants will
get smaller and (wait for it) eventually be negative! Although we have done
a good job approximating the equation for a line that fits these data, the
underlying, quadratic model is terribly wrong! We will not use R to find the
best-fit quadratic line through these data.

We need, instead, to find an equation that starts at the origin (seeds at time
zero have approximately zero mass) and increases asymptotically. We can use
a relatively simple, two-parameter model that goes through the origin and
reaches an asymptote:

y = a · (1− e−bx)

For this function, we need to tell R some approximate values for the coeffi-
cients a and b. If we again look at the data, we might see that the asymptote
seems to be around 25 grams dry weight. For our function, the asymptote is
a. We can also see that if we make x = 0, then the intercept is zero. I don’t
know the value of b, but it controls the rate at which the line reaches the
asymptote. That sounds like it’s a really important growth rate parameter to
estimate. Let’s just start it at b = 1 and see what happens using the curve()
function again (see figure 11.6).

> plot(time, plant.mass, xlim = c(0,16), ylim = c(0,30),
+ ylab = ”Plant Mass (g)”, xlab = ”Time (weeks)”,
+ pch = 16, cex.lab = 1.5, las = 1)
> curve(25 * (1 - exp(-(1*x))),from=0,to=16,add = TRUE)

158 A Primer in Biological Data Analysis and Visualization Using R

0 5 10 15

0

5

10

15

20

25

30

Time (weeks)

P
la

n
t
M

a
s
s
 (

g
)

Figure 11.6 An asymptotic function that is a poor fit to the data but represents a rela-
tionship that seems to have the right idea.

We can see that our function gets to the asymptote too quickly. But it does
have a form that includes an asymptote and is heading in the right direction.
Let’s ask R to approximate the best-fit values for our model:

> mod = nls(plant.mass ∼ a*(1 - exp(-b * time)),
+ start = list(a = 25, b = 1))

Notice that exp() is the exponential function for the natural logarithm. The
nls() function conducts the nonlinear, least-squares analysis. It needs the
mathematical function we’re trying to fit and our best-guess estimates for
the coefficients. We need to send these starting values as a list.

If our calling of the function doesn’t return an error, then our model
results are stored in the variable fit. We can now send fit to the function
summary() and see the parameter estimates and the estimates of variability
for these:

> summary(mod)

Formula: plant.mass ∼ a * (1 - exp(-b * time))

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 26.828212 0.439173 61.09 < 2e-16 ***
b 0.176628 0.007396 23.88 9.59e-13 ***

Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.5266 on 14 degrees of freedom

Number of iterations to convergence: 6
Achieved convergence tolerance: 7.27e-07

A Few More Advanced Procedures 159

0 5 10 15

0

5

10

15

20

25

30

Time (weeks)

P
la

n
t
M

a
s
s
 (

g
)

Figure 11.7 A best-fit asymptotic function for our data for the change in the mass of
plants over time. The horizontal line above the curve is our asymptote.

From this, we can see estimates of the coefficients and error estimates for
each coefficient. The equation is therefore:

mass = 26.8 · (1− e−0.177·week)

In the output, we also see that R has provided the p-values for each pa-
rameter estimate. In this example, we see that the estimate of each parameter
is highly significant (p < 0.001). This is important to us because we need to
verify that the coefficients we’ve asked R to fit with our equation are actually
important. If we overfit our model (have too many parameters) we would
find nonsignificant coefficients. This would suggest that we should consider
a simpler model.

This equation is exciting because it gives us some insight about how our
plant changes in mass over time. We also can compare our results with re-
sults by other researchers. We can test whether the parameters change given
different environmental conditions. And we can ask what the instantaneous
rate of change is using calculus. All sorts of great things become possible!
Here’s the final graph with the correct best-fit line (figure 11.7).
> plot(time, plant.mass, xlim = c(0,16), ylim = c(0,30),
+ pch = 16, ylab = ”Plant Mass (g)”, xlab = ”Time (weeks)”,
+ cex.lab = 1.5, las = 1)
> xv = seq(0,16,0.1)
> yv = predict(mod, list(time = xv))
> lines(xv, yv)
> asymptote = sum(coef(mod)[1]) # asymptote is the
> # sum of these two coefficients
> abline(h = asymptote, lwd = 2, lty = 2)

In the code above, I have captured the value of the asymptote by using the
coef() function, which extracts just the estimated values of the coefficients

160 A Primer in Biological Data Analysis and Visualization Using R

from the model. We store that result in the variable called, not surprisingly,
asymptote. We then send that calculated version to the abline() func-
tion and have it add a horizontal reference line (hence the h = asymptote
argument) to our graph. I’ve asked for a red line, although you’re probably
seeing the line in the figure in black.

Get and Use the Derivative

In biology, we often have situations where something is changing over time
or as a function of some other variable. We graph our points and wish to fit a
function to the data to learn more about what is going on or to make some
prediction. One such problem commonly encountered is with the Michaelis-
Menton relationship. Many introductory laboratories include a module on
looking at enzyme kinetic reactions as a function of substrate concentration.

Here are the steps, or the algorithm, for finding the rate at any point along
a Michaelis-Menton function derived from data:

1. Get the data into two arrays of equal length.
2. Create a scatterplot of the data.
3. Find the best-fit function for these data using the Michaelis-Menton

equation v = Vmax*[S]/(Km + [S]).
4. Add the best-fit line to the graph.
5. Get the derivative of the Michaelis-Menton function.
6. Find the slope of the tangent at a give value of [S].
7. Add the tangent line to the best-fit curve for the data.
8. Report the slope of the tangent line (the rate) and this given value of [S].

Here are some sample data for the substrate concentration (S) and the ve-
locity of the reaction (v). They are graphed in figure 11.8.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

[S]

V
e
lo
c
it
y

Figure 11.8 A scatterplot of the data for velocity and substrate concentration.

A Few More Advanced Procedures 161

> S = c(0.2,0.5,1,2,5) # x-axis data ([S])
> v = c(0.576, 0.762, 0.846, 0.860, 0.911) # velocity

> plot(S,v, xlab = ”[S]”, ylab = ”Velocity”, xlim = c(0,max(S)),
+ ylim = c(0,1), cex.lab = 1.5, pch=16, las = 1)

To determine the best-fit line, we use the nonlinear, least-squares function
(nls()), which returns the coefficients for the model. However, we must
tell R what model to use. In this case, we’ll specify the Michaelis-Menton

function
(
v = Vmax·S

Km+S

)
. As we have seen, R requires us to provide educated

guesses of the coefficients we’re fitting. Note that our unknowns are Vmax

and Km. R will use the starting values we provide to begin its search for the
best parameter estimates.

> mod = nls(v ∼ (Vmax * S)/(Km + S),
+ start = list(Vmax = 1, Km = .1))

If it works without returning an error, our resulting model will be stored
in the variable mod. We can now add the best-fit line that R has given us to
the data in our graph. We can now send mod to the summary() function
to see the result:

> summary(mod)

Formula: v ∼ (Vmax * S)/(Km + S)

Parameters:
Estimate Std. Error t value Pr(>|t|)

Vmax 0.930469 0.011879 78.33 4.59e-06 ***
Km 0.118509 0.009646 12.29 0.00116 **

Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.01536 on 3 degrees of freedom

Number of iterations to convergence: 4
Achieved convergence tolerance: 4.272e-07

We can see that the two parameters have estimates and variabilities (standard
errors). Let’s use the model output to draw the best-fit line onto the graph
with the data (see figure 11.9). We use the predict() function to give us
the model’s y-values and draw that line over the range of x-values.

> plot(S,v, xlab = ”[S]”, ylab = ”Velocity”, xlim = c(0,max(S)),
+ ylim = c(0,1),cex.lab = 1.5, pch = 16, las = 1)
> x = seq(0,max(S),by = 0.01) # an array seq. of x values
> y = predict(mod,list(S = x)) # the predicted y values
> lines(x,y, lwd = 2) # draw the line
> asymptote = coef(mod)[1] # value of the asymptote
> abline(h = asymptote)

162 A Primer in Biological Data Analysis and Visualization Using R

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

[S]

V
e
lo
c
it
y

Figure 11.9 A scatterplot of the data for velocity and substrate concentration with the
best-fit line. The equation for the line, returned by the nls() function, is v = 0.930·S

0.118+S .

Get the Slope of the Tangent Line

We can get the slope at any point on our function by taking the derivative of
our function. As we have seen above, the coefficients are saved in the variable
“mod” so we can get these parameter estimates individually. Let’s get them
from the mod and just call them a and b for simplicity. To do this, we can
use the function coef().

> Vmax = coef(mod)[1] # this is Vmax
> Km = coef(mod)[2] # this is Km

Now we need the derivative to the Michaelis-Menton equation. We tell R
what the equation is and then get the derivative with the function D().

> my.exp = expression(Vmax * my.S/(Km+my.S))
> my.deriv = D(my.exp,”my.S”)
> my.deriv # look a the derivative returned by D()

Vmax/(Km + my.S) - Vmax * my.S/(Km + my.S)∧2

I’m going to choose a value of [S] so that the tangent line intercepts my
function. I’ll call that particular value my.S. I don’t want to use the original
variable “S” because that will overwrite the original data.

> my.S = 1 # choose where on [S] to get the rate (tangent line)

The next step we need to take is to find the tangent line at [S] = my.S.
To do this, we need to find the slope at a particular value of [S] at my.S =
1. We can also add a vertical line at this point to help convince ourselves
we’re finding the tangent at this point along our function. The following
code combines these elements to create figure 11.10.

A Few More Advanced Procedures 163

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

[S]

V
e
lo
c
it
y

Figure 11.10 A scatterplot of the data for velocity and substrate concentration with the
best-fit line. The equation for the line, returned by the nls() function, is v = 0.930·S

0.118+S
with a tangent line added at [S] = 1.

> plot(S,v, xlab = ”[S]”, ylab = ”Velocity”, xlim = c(0,max(S)),
+ ylim = c(0,1), cex.lab = 1.5, pch = 16, las = 1)
> der.slope = eval(my.deriv) # get slow using deriv. at my.S
> der.y = eval(my.exp) # Ht of the best-fit function at my.S
> der.int = der.y - der.slope*my.S # The intercept of tangent
> lines(x,y, lwd = 2)
> asymptote = Vmax
> abline(der.int,der.slope,lwd = 2,lty = 2) # draw tangent
> abline(v=my.S) # place a vert line at tangent

Finally, let’s have R report the slope of the tangent at this point for our
chosen [S].

> cat(”The velocity of the reaction at”,
+ my.S,” is ”,der.slope,”\n”)

The velocity of the reaction at 1 is 0.08814004

I suggest you try to draw that tangent line in another place and get the
velocity at that substrate concentration level.

11.4 An Introduction to Mathematical Modeling

In addition to being able to conduct statistical tests, we sometimes need to
create and evaluate mathematical models. For instance, we might be inter-
ested in using the statistical fit from data and then use those parameter esti-
mates to build a model, such as exponential growth for a population. We’ll

164 A Primer in Biological Data Analysis and Visualization Using R

look at this model and then at a more complicated, standard epidemiology
model.

Exponential Growth

Exponential growth is a relatively simple differential equation model:

dN
dt

= rN (11.2)

This model defines the instantaneous rate of change of the population
(dN/dt) as a function of a growth rate parameter (r) times the popula-
tion size N. This equation defines the rate of change of the population. But
what is the population size at any given time? To determine this we need to
solve this differential equation, which means we need to integrate it. If we
integrate this model we find the solution:

Nt = N0ert (11.3)

In practice we are unable to solve most differential equations of biolog-
ical systems analytically to find their solutions. Instead, we have to rely on
programs like R to approximate the solution for us numerically. Let’s solve
this relatively simple differential equation model numerically to see how this
is done in R. We’re going to use some code that is admittedly challenging to
understand. We’d love to take time to figure this out, but we’re going to just
implement the approach here. Through this example and the next, you’ll be
able to solve a variety of other problems with minor changes to this code.

Instead of using the analytical solution (equation 11.3) we’ll ask R to ap-
proximate the solution from equation 11.2. Below we define our constants,
preferably from data, and then define our model. You may need to install the
deSolve package.

> library(deSolve) # library for solving diff. equations
> num_yrs = 10
> r = 0.2 # the growth rate parameter
> N0 = 100 # starting population
> xstart = c(N=N0) # create a ”list” of starting values
> parms = r # here’s our one parameter
> mod = function(t,x,parms) {
+ N = x[1]
+ with(as.list(parms) , {
+ dN.dt = r*N
+ res=c(dN.dt)
+ return(list(res))
+ })}

A Few More Advanced Procedures 165

0 2 4 6 8 10

100

200

300

400

500

600

700

Time

N

Figure 11.11 The graphed solution to exponential growth (equation 11.2).

Once we have run the model, defined in our function called mod, we
send it, along with the parameter r and starting values (N0), to the ode()
function. The results will be stored in the variable output.

> time=seq(0,num_yrs, by = 0.1) # set number of time steps
> # RUN THE MODEL in the next line!
> output = as.data.frame(ode(xstart,time,mod,parms))

Finally, you should look at what’s stored in the dataframe output. We can
plot those results as follows (see figure 11.11):

> plot(output$time,output$N, xlab = ”Time”, ylab = ”N”,
+ type = ”l”, cex.lab = 1.5, las = 1)

The SIR Model

In our second model, we will see the outcome from a standard epidemiol-
ogy model, called a susceptible, infectious and recovered individuals (SIR)
model. This model is the starting place for understanding the dynamics of
diseases such as influenza or COVID-19. Here’s the model, called a system
of differential equations by mathematicians and a coupled differential equa-
tion model by biologists. The bottom line is that these equations depend on
each other because they share state variables (S and I).

dS
dt

= −βSI

dI
dt

= βSI− νI (11.4)

dR
dt

= νI

166 A Primer in Biological Data Analysis and Visualization Using R

Each equation governs the dynamics of each of these groups of individ-
uals. The model is technically closed because no individuals enter or leave
the model (they only can move from S → I → R). Susceptible people that
come into contact with infectious individuals become infectious and leave
the S class at a rate controlled by the coefficient β. Thus, the term for dS

dt is
negative (−βSI). Infectious individuals recover at rate ν.

The system of equations (equation 11.4) is clearly intimidating to biolo-
gists. But it is easy to solve using R. What biologists want to know is how
the prevalence of a disease might change over time. In particular, if you are
interested in the health sciences, you might be working to making diseases
disappear. With the COVID-19 pandemic, we hear a lot about flattening the
curve. The guidelines for wearing masks and practicing physical distancing
are efforts to reduce β. If we measure infection and recovery rates, we might
find that we get the dynamics seen in figure 11.12.

> Num_Days = 20 # number of days to run simulation
> B = 0.006 # transmission rate (0.006)
> v = 0.3 # recovery rate (0.3)
> So = 499 # initial susceptible pop (299)
> Io = 1 # initial infectious pop (1)
> Ro = 0 # initial recovered pop (0)
> xstart = c(S=So,I = Io, R = Ro)
> parms = c(B, v)
> times=seq(0,Num_Days,length=200) # set up time steps

The code below defines the model as a function. The first part sets the
initial values for S, I, and R from the initial values sent to the function as the
x argument. The with() function contains the actual mathematical model
(equation 11.4).

> mod = function(t,x,parms) {
+ S = x[1] # init num of susceptibles
+ I = x[2] # init num of infectious
+ R = x[3] # init num of recovered
+ with(as.list(parms) , {
+ dS = -B*S*I # dS/dt
+ dI = B*S*I - v*I # dI/dt
+ dR = v*I # dR/dt
+ res=c(dS,dI,dR)
+ list(res)
+ })}

We can now run the model, much like we did for the exponential growth
model. The actual running of the model is done with the following line of
code:

> output = as.data.frame(lsoda(xstart,times,mod,parms))

It seems pretty simple, but what R is doing behind the scenes is really
amazing (and complicated)! It is approximating the solution to the system
of differential equations and storing the result in the dataframe output.

A Few More Advanced Procedures 167

0 5 10 15 20

0

200

400

600

800

Time

A
b
u
n
d
a
n
c
e

S I R

Figure 11.12 Output from the SIR model.

The remaining code creates the plot and draws the S, I, and R populations
using the lines() function.

The last step is to make a presentation-ready visualization. In the code be-
low, we do something odd: we call the plot function but then use “type =
”n”,” which means the graph is made but we don’t add anything to it. We
then add three lines to the set of axes for the susceptible, infectious, and
recovered individuals, and then end with adding a legend (see figure 11.12).

> plot(output$time, output$S, type=”n”,ylab=”Abundance”,
+ xlab=”Time”, main=”ODE Model”, cex.lab = 1.5,
+ ylim = c(0,So*1.6), las = 1)
> lines(output$time,output$S,lty = 1,lwd=3)
> lines(output$time,output$I,lty = 2,lwd=3)
> lines(output$time,output$R,lty = 3,lwd=3)
> leg.txt = c(”S”,”I”,”R”)
> legend(”topright”,leg.txt,lwd=2,lty = 1:3)

11.5 Problems

1. Write a function called my.stats() that takes an array of numbers and
gathers the mean, standard deviation, and standard error of the mean
into a dataframe and returns it. Test your function with data and verify
that your function returns the correct values.

2. Using the built-in Loblolly pine dataset, graph the change in the height
of trees of seed type 301. These trees seem to exhibit linear growth over
time. If the relationship is significant, add the best-fit line. Include 95%
confidence interval lines to the graph.

168 A Primer in Biological Data Analysis and Visualization Using R

3. Below are data for my motorcycle’s gas mileage in miles per gallon (mpg)
on level ground, determined instantaneously at different speeds in miles
per hour.

mpg 44 52 58 63 58
Speed 20 30 40 50 60

Assume that the function that defines these data is a second-order
quadratic function (e.g., y = a · x2 + b · x+ c).

(a) Create a publication-quality graph of these data with the best-fit
quadratic function added to the data.

(b) What is the optimal speed for my motorcycle to travel in order to
maximize my mileage (miles per gallon)? Note that you need to
find the underlying function for mpg as a function of speed for
my motorcycle. The maximum mpg is clearly 50 mph in these
data. However, the question is, What is the best speed based on
these data? You need to find the most appropriate curve for these
data (it is well approximated by a second order polynomial poly-
nomial) and then find the speed where that curve has a slope =
0. This is best solved using calculus.

4. Consider the following logistic growth function:

dN
dt

= rN(1− N
K

) (11.5)

which has the following analytical solution:

Nt =
K ·N0 · er·t

K+N0 · (er·t − 1)
(11.6)

where the initial population is N0 = 50, r = 0.82, and K = 1000.

(a) Use R’s solver (deSolve) to find and graph the solution to the
differential equation (11.5) over the time period 0 ≤ t ≤ 10.

(b) Use the curve() function to plot the solution (equation 11.6)
from t = 0− 10.

5. Enzyme kinetics can be described with the following Michaelis-Menton
equation:

v =
Vmax · [S]
Km + [S]

where v is the velocity of the reaction, Vmax is the maximum velocity, [S]
is the concentration of the substrate, and Km is the Michaelis-Menton
constant.

A Few More Advanced Procedures 169

(a) The built-in dataset called Puromycin contains data on the re-
action rate versus substrate concentration for cells treated and
untreated with Puromycin. Create side-by-side scatterplots for
the “treated” and “untreated” data. Hint: You will need to
subset() the data.

(b) Add to each scatterplot the best-fit relationships.

CHAPTER TWELVE

An Introduction to Computer
Programming

IN ADDITION to the statistical, mathematical, and visual power of R,
you will find that R also is a full-featured, object-oriented programming lan-
guage. In general, we use programming to get the computer to perform
tasks that need to be done many times. Our problems can be quite complex,
so we also need to control the problem-solving route to include conditional
statements, such as “If this is true, then do task 1, otherwise do task 2.” This
is done a lot in biology for a variety of problems. This introduction is meant
to give you a taste of what is possible. Knowing what’s possible can allow
you to think of new problems that you might consider solving.

12.1 What Is a Computer Program?

Computers need to be told exactly what you want them to do. And they are
really good at doing what we tell them to do (like when it’s time to show
a user the so-called blue screen of death). And they’re particularly good at
doing things repetitively.

For our programming needs, computers run sets of instructions. These
instructions are written by people like you and me that use a high-level lan-
guage that makes sense to us. Other programs, written by other humans,
then take the instructions and convert them into low-level instructions that
computers understand. My goal here is to introduce you to the high-level
language of R so you can solve problems in biology.

There are many high-level languages that can be used to create computer
programs. In addition to R, you may have heard of “Matlab,” “Mathemat-
ica,” “Visual Basic” (used within Excel), and “Python.” Different languages
have their own strengths and weaknesses. Strangely, there is no best language.
For modeling complex biological systems, however, most any problem can
be solved using R.

172 A Primer in Biological Data Analysis and Visualization Using R

The advantage of R is that there is a very large set of easy-to-use, built-in
tools for creating graphs, running statistical tests, and analyzing mathemat-
ical models. Although R programs run relatively slowly, the development
time for writing programs in R is very short. Nonetheless, it really helps if
you know what you’re trying to do before you begin coding. As you develop
your skills in programming, it’s good to know that, if you can program in
one language, it becomes relatively easy to migrate to a new language.

This chapter is just an introduction, so we won’t be tackling a complex
problem in biology. You will have to continue to explore and read about
your problem and programming. I hope that you can get started, however,
and see why you might want to do this and how programming can be used
to understand and predict patterns in biological systems.

Computers are great at doing lots of calculations that we’d find pretty
boring to do by hand. To accomplish these tasks, we use just a few basic
constructs when building programs:

1. if (else) statements (conditional tests)
2. for loops (control flow)
3. while loops (control flow)
4. functions that combine instructions into a single call

The if statement is used to test whether a condition is true. If the con-
dition evaluates to be true, then the following statement is executed. If the
conditional test is false, then the true expression is ignored. You can provide
an expression to execute if the statement is false with an else expression.

We use for and while loops when we want a set of instructions executed
more than once. The for loop should be used if you know how many times
you want to do something (we usually know this). If the number of times
some instructions need to be done is determined during run time, then you
use a while loop. The while loop is done until some criterion is satisfied.

An Example: Modeling the Central Limit Theorem (CLT)

Let’s build a short program that tests the central limit theorem (CLT), which
states that the distribution of sample means from any distribution is approx-
imately normal. To accomplish, this let’s take 5,000 samples (not values)
from the standard normal distribution (x̄ = 0 and σ = 1) and a uniform
distribution (x ∈ [0, 1]). Because we know how many times we want to do
the sampling, it is most appropriate to use a for loop.

To test the CLT, we will perform a simulation that requires us to use a
random number generator. Let’s begin by setting the random seed so we’ll
get the same results:

> set.seed(20) # do this so you will have the same data

An Introduction to Computer Programming 173

We can then declare our sample size (num.values) and the number of
times we take samples from each population (num.samples), as follows:

> num.values = 100 # the number of observations per sample
> num.samples = 5000 # the number of samples to draw

For each of the 5,000 samples, we need to calculate and store the mean of
the 100 values from each sample. Therefore, we need two structures that
will each hold a list of 5,000 mean values. For this, we’ll use arrays. Arrays
can be declared as follows:

> means.norm = numeric(num.samples) # will hold 5000 values
> means.unif = numeric(num.samples)

At last we are ready to perform our simulation and collect our data.

> for (i in 1:num.samples) {
+ means.norm[i] = mean(rnorm(num.values))
+ means.unif[i] = mean(runif(num.values))
+ }

The above code does all the work. It tells R to run the two lines between
the curly braces ({ }) 5,000 times (from 1 to num.samples). The first line
within the for loop works like this:

1. Send num.values (100) to the rnorm() function.
2. The rnorm() function returns 100 random numbers drawn from the

standard normal distribution (x̄ = 0, s = 1).
3. Those 100 values from the standard normal distribution are then sent

to the mean() function.
4. The mean() function calculates the arithmetic mean of those numbers

and assigns that result to the ith element in the means.norm[i] array.

Once the for loop is done, the variables means.norm and means.unif
should hold 5,000 values each. We now can look at the distributions of these
means using the hist() function (see section 5.2 on histograms). I’ve also
plotted the distributions of single samples from the standard normal and
uniform distributions for comparison (see figure 12.1).

> par(mfrow = c(2,2))
> hist(rnorm(num.samples),xlab = ”X”,main = ”Normal Sample”,
+ ylim = c(0,1000), las = 1)
> hist(runif(num.samples),xlab = ”X”,main = ”Uniform Sample”,
+ ylim = c(0,1000), las = 1)
> hist(means.norm, xlab = ”X”,main = ”Means from Normal Dist”,
+ ylim = c(0,1000), las = 1)
> hist(means.unif,xlab = ”X”,main = ”Means from Uniform Dist”,
+ ylim = c(0,1000), las = 1)
> par(mfrow = c(1,1))

The histograms in the lower part of figure 12.1 appear similarly bell-
shaped. Note that the histogram in the lower right is from 5,000 means

174 A Primer in Biological Data Analysis and Visualization Using R

Normal Sample

X

F
re
q
u
e
n
c
y

−3 −1 0 1 2 3

0

200

400

600

800

1000

Uniform Sample

X

F
re
q
u
e
n
c
y

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800

1000

Means from Normal Dist

X

F
re
q
u
e
n
c
y

−0.2 0.0 0.2 0.4

0

200

400

600

800

1000

Means from Uniform Dist

X

F
re
q
u
e
n
c
y

0.40 0.45 0.50 0.55 0.60

0

200

400

600

800

1000

Figure 12.1 A visualization of the central limit theorem (CLT). The upper panels show
the distribution of two samples of 5,000 values. The sample on the top left is drawn from a
normal distribution and the sample on the top-right is drawn from a uniform distribution.
The bottom panels demonstrate that the means of many samples drawn from a normal
(lower-left panel) and uniform (lower-right panel) distribution result in relatively normal
distributions, in agreement with CLT.

of samples drawn from the far-from-normal, uniform distribution. We can
test the distributions of means from these two distributions for normality
using the Shapiro-Wilk test (see section 4.4):

> shapiro.test(means.norm)$p # from normal pop

[1] 0.719782

> shapiro.test(means.unif)$p # from unif pop

[1] 0.3899854

An Introduction to Computer Programming 175

What do we conclude about these distributions? Does this result agree with
or contradict the central limit theorem?

What we did above was to write a computer program that completed a task
5,000 times in the blink of an eye. As we discussed above, we sometimes want
to have a computer test an idea that might require many calculations. This is
a great example that has allowed us to verify empirically (that means actually
doing it) a theorem. Our next step is to explore further how programming
can be used to answer some questions in the biological sciences.

12.2 Introducing Algorithms

Let’s approach our introduction to algorithms with an example of simulating
genetic drift operating on two alleles found at a single locus. Genetic drift is
a mechanism that brings about evolution in a population, or the change in
gene frequencies over time. Genetic drift is a random process, unlike natural
selection. The process is governed by chance: one allele might become more
or less frequent over time, simply by chance.

For this exercise, let’s assume that individuals are haploid: they have either
a 0 or 1 allele at a single locus. This way, the proportion of alleles that are
of type 1 will simply be the sum of the allele values divided by the number
of individuals. If we had a small population with six individuals and each has
the alleles 0, 1, 1, 0, 0, 0, the proportion of the 1 allele is just 2/6 = 0.333.

We’ll assume that reproduction is really simplistic. The population size will
remain the same over time and that reproduction is completed by randomly
choosing N individuals from the current population. The chosen individu-
als each make a baby that is identical to itself and is placed into the next
generation.

What should happen over time? We might, just by chance, select more
individuals with the 0 allele than the 1 allele over time and end up with a
population of only the 0 alleles (this is called fixation in population genetics).
It is just as likely that we might end up with the 1 allele becoming the only
allele in the population. To build our model, we begin by developing an
algorithm, which is somewhat similar to a recipe that guides us in writing
our program to simulate this process. Here are the steps that I follow to
complete this simulation (there are many other ways you could do this):

1. Declare the necessary variables (e.g., N).
2. Create an empty plot for our results.
3. Run the simulation many times (sounds like a “for” loop). In each sim-

ulation we:

(a) Create a population.

176 A Primer in Biological Data Analysis and Visualization Using R

(b) Store the proportion of 1s in a variable (e.g., P) for each time
step.

(c) Perform the reproduction routine, randomly choosing individu-
als that will contribute to the next generation and do this many
times.

(d) Add a line for the P data to graph.
(e) If not done, repeat for the next replicate.

We now need to implement these steps, assuming that the algorithm will
work. What I do is write the algorithm in my script file and then write the
code directly below each task. I can then test each task individually to make
sure it’s doing what I think it should. If the tasks are more complicated, I
might write a function to do the work. The code below creates figure 12.2.
Note that the first line calls the set.seed() function (with 10 as the ar-
gument) so that if you run this code, you should get exactly the same graph
as I did. (Remember, don’t include the “>” and “+” symbols in your script
file.)

> set.seed(10) # do this so you will have the same data
> # Step 1: Define variables
> n.time.steps = 100 # how long to run simulation
> pop.size = 50 # how many individuals there are
> n.reps = 20 # how many populations to simulate
> # Step 2: Create an empty plot for simulation
> plot(0,ylim = c(0,1),xlim = c(1,n.time.steps), type = ”n”,
+ ylab = ”P(Allele 1)”,
+ xlab = ”Time Step”, cex.lab = 1.5, las = 1)
> abline(h=0.5,lty = 2, lwd = 3)
> # Step 3: Run the simulation n.reps times
> for (i in 1:n.reps) {
+ # Step 3a: Create population of 0 and 1 alleles
+ pop = c(rep(0,pop.size/2),rep(1,pop.size/2))
+ # Step 3b: Store proportion of 1s in variable
+ P = sum(pop)/pop.size
+ # Step 3c: Run the simulation for this replicate
+ for (j in 2:n.time.steps) {
+ pop = sample(pop,pop.size, replace = T)
+ P[j] = sum(pop)/pop.size
+ }
+ # Step 3d: Add line to graph for this replicate
+ lines(P)
+ }

This simple model has been used to make a variety of important contri-
butions to the fields of population genetics and conservation biology. It also
is an excellent start on an undergraduate research project.

An Introduction to Computer Programming 177

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Time Step

P
(A

lle
le

 1
)

Figure 12.2 The proportion of allele 1 in twenty replicate populations over time. Each
line represents a separate population. Eighteen of the twenty replicates result in either
the loss or fixation of allele 1. Two simulations continue, with both alleles persisting in
these populations.

12.3 Combining Programming and Computer Output

Sometimes we would like to have code that solves a problem and provides the
answer to whomever is looking at the screen (ourselves or others). We can use
commands that will provide the answer with some regular English mixed in.
This can be great to help out lab mates, for instance. Here’s how we might
solve a small problem with a contingent result and print the appropriate
result to the console.

Imagine that you want to provide your lab group with a chunk of R code
that will take their data and tell them whether the data are or are not normally
distributed. Here’s a way to do this using a function that outputs the answer
using the cat() function.
> normality.test = function(x) {
+ ans = shapiro.test(x)
+ if(ans$p.value > 0.05) {
+ cat(”The data are normally distributed:
+ p = ”,ans$p.value)
+ } else {
+ cat(”The data are not normally distributed:
+ p = ”,ans$p.value)
+ }
+ }

Your lab group simply needs to run the code above and enter their data into
the x variable below and run the function call. The function call is a more
intuitive name.
> x = c(1,2,5,3,2,1) # enter your data into this variable
> normality.test(x)

The data are normally distributed: p = 0.2117055

178 A Primer in Biological Data Analysis and Visualization Using R

At this point in your statistics training with R, you might think this is
pretty simple. It hardly does anything more than the simple Shapiro-Wilk
test does for us. However, some folks haven’t read this book and aren’t sure
what the p-value means, especially in this particular statistical test. So this
code can be really helpful by writing out the answer.

The tools we have used above represent really important components for
creating programs in R. With these tools, and perhaps a few more that you’ll
pick up as you go, you’ll be able to answer a variety of really interesting
questions in biology. Test yourself by trying the problems in the next section.
Have fun! The key to success in computer programming is play. If you’re
interested in doing more programming, check out the resources listed in the
Introduction and by doing a Google search. One good, complete guide is
the book by Matloff (2011).

12.4 Problems

1. The gamma distribution can result in samples that are highly skewed
to the right. Test whether the means of 5,000 samples, each of size 100
values, drawn from the gamma distribution, are normally distributed (see
figure 12.1). Use the following sample code:

> rgamma(100, shape = .5)

2. Create a program that uses a for loop to count the integers from 1 to
100.

3. The Fibonacci series begins with the numbers 0, 1, and continues as the
sum of the two previous numbers (0, 1, 1, 2, 3, 5, …).

(a) Write an algorithm that solves this problem.
(b) Write a program that generates the first twenty numbers of the

series.
(c) Create side-by-side graphs (in a single graphics window) of this

series. On the left, present the series on a linear scale; on the
right, present it on a semi-log (ln) scale (y is logged, x is linear).

(d) Write a function called Fibonacci() that takes as a single ar-
gument the number of Fibonacci values to print out. It should
assume that the starting values are 0 and 1. The function should
return the series with the correct number of values.

4. Zebra mussels (Dreissena polymorpha) are invasive, freshwater gastropods
that are expanding their range in North America. When individuals in-
vade a lake, their population is capable of growing rapidly. Assume that

An Introduction to Computer Programming 179

a newly introduced population in a lake, grows geometrically, according
to the following difference equation:

Nt+1 = Nt · λ (12.1)

where Nt is the current population, Nt+1 is the population in the fol-
lowing year, and λ is the growth rate parameter. A new population of
100 mussels last year increased to 145 individuals this year.

(a) What is the value of λ? Hint: Solve equation 12.1 for λ.
(b) Write a program that models the change in the population in this

lake up to N5 (note that N1 = 100).
(c) Create a professional-looking graph of this population. Note that

it is growing in discrete time.

5. We’ve spent time in this text thinking about p-values (you might want to
revisit the definition for the p-value). Write a program that tests whether
this works for the standard t-test. Below is a suggested algorithm to solve
this problem.

(a) Create two samples of ten random numbers each, both drawn
from the normal distribution. One should have x̄2 = 0, sd = 1;
the other x̄1 = 1, sd = 1.

(b) Perform a t-test on your two samples.
(c) Store your t- and p-values in two separate arrays (e.g., my.t.value

and my.p.value).
(d) Use a for loop to generate two new samples, perform a t-test,

record the t-value, and count how many of the t-values are as
extreme as or greater than your t-value from your original test.
Do this test 1,000 times. Note that you do not want to write
each number down! Have R record the number of times the
new t-value is greater than your original t-value.

(e) Print to the console your original p-value and the proportion of
times you got a t-value as great as or greater than the original t-
value. Your proportion and the p-value from the first test should
be similar.

6. The following equation is called the logistic map. This equation exhibits
a wide range of extremely interesting dynamics.

Nt+1 = λ ·Nt · (1−Nt) (12.2)

When λ lies in the range 3.57 < λ < 4.0, the series can produce chaotic
dynamics. Create a graph of what happens when λ = 1.5, 2, 3, and 3.75
over 100 time steps. Begin with N1 = 0.5 for each simulation. Note that
0 ≤ N ≤ 1.

180 A Primer in Biological Data Analysis and Visualization Using R

7. Srinivasa Ramanujan, a famous Indian mathematician who died at the
age of 32, proposed this estimate for π.

π = 1/

(
2
√

2
9801

∞∑
k=0

(4k)!(1103 + 26390k)
(k!)43964k

)

(a) Determine the estimates for π for k = 0→ 5. Note that you will
need to use several levels of parentheses and make sure they’re
placed correctly!

(b) Graph your estimates of π as a function of k. Include a reference
line at the value of π (pi).

CHAPTER THIRTEEN

Final Thoughts

I HOPE YOU’VE LEARNED A LOT! As we discussed, this science
stuff is challenging. Perhaps you learned that R is challenging but manage-
able. You’ve learned how to install this program, and to install a front end
(RStudio). You’ve learned how to extend this program with a few of the
thousands of available packages. I hope you also have learned that you can
solve problems using R. And I hope you’ve learned how to design better
experiments and manage and analyze the data your get from those explo-
rations.

Many people have gone through what you have. And most biologists to-
day have encountered or usedR. Many have said, “I’m not doing that” (only
to quietly come on board). But you didn’t say that—you’ve done it! You’ve
had to look the beast in the eyes and come out victorious (at least sometimes,
I hope). I commend you for your work. You should keep refining this skill.
You can use R for simple calculations (what’s the

√
5?). You can use it to

make a quick graph of a function as well as make professional visualizations,
solve differential equations, and solve just about anything quantitative you
can think of. Put this skill on your resumé, and continue to solve problems.

In addition. I hope you’ve learned to be skeptical. Skepticism means
you’re not sure about something until you’ve seen the data. Good scientists
are skeptical. Don’t be cynical, which is the act of rejecting an idea because
it exists. And I hope you’ve learned to be careful believing what people say.
Instead, you’re prepared to say, “Interesting, but I’d like to see the data for
myself.” So take those data, view them graphically, and test hypotheses your-
self because you have access to and know how to use R, the statistical and
programming choice of biologists worldwide.

13.1 Where Do I Go from Here?

I hope you’re interested in learning more about how to solve problems in
biological sciences. There are large numbers of biostatistics textbooks and

182 A Primer in Biological Data Analysis and Visualization Using R

books that introduce and extend various skills using R. Books on more
advanced statistical techniques using R are coming out weekly. And con-
sider taking a course (or another course) in statistics. But demand that the
professor use R. You’ve come to realize that biological data analysis is not
a spectator sport. And you should demand that you use this program in all
your biology courses. Mathematics, statistics, and computer programming
are modern tools for biologists.

Ultimately, there are many great sources of information on the topics cov-
ered in this book. You can find these in other books (see the Introduction)
and from free online sources. If you have worked your way through this book
and given the exercises the good old college try, then you’re ready to handle
the problems you’ll find elsewhere. If the techniques you need are not in
this book, you should be well versed in finding solutions to your problems. I
often do a Google search by starting off with the letter “r” and then typing
in some keywords. I rarely come up empty-handed with this approach.

I have not been able to introduce several topics in this book. An impor-
tant frontier of modern biology has been collectively referred to as omics,
which includes genomics, epigenomics, proteomics, and metagenomics, to
name a few. One important tool for analysis of these systems is the pack-
age BioConductor (see http://www.bioconductor.org/), which runs within
the R environment. The newer fields of big data, machine learning, and
artificial intelligence are often tackled using R. You also may be inter-
ested in extending your programming skills with the Python language (see
https://www.python.org/). Your work on developing how to solve these
problems will serve you well in your career.

If you find the quantitative analysis of data and the building of mod-
els interesting and valuable, you’re on your way to thinking like a mod-
ern biologist who seeks to better understand the complexity of biologi-
cal systems. I recommend that you consider opportunities in the quan-
titative sciences. There are a variety of different opportunities to pursue
as an undergraduate, including getting internships and research positions
in what are called research experiences for undergraduates (REUs) (see
https://www.nsf.gov/crssprgm/reu/).

One last point: achieving success requires hard work. No one starts an-
swering challenging questions in science and says, “This is so easy!” Those
who are, or have been, successful, however, might make it look easy. It’s
not! All of these successful people worked really hard. You too can do this.
It takes focus and it takes time. But the payoffs will be many. You’re on your
way! Good luck!

APPENDIX

Solutions to Select Problems

Note that, for some of these answers, the code that generated them has not
been shown.

Chapter 1

1. (a) > sqrt(17)

[1] 4.123106

(b) > log(10,base = 8)

[1] 1.107309

(c) > exp(10)

[1] 22026.47

(d) > x = 3 # first, set x = 3, then use it
> 1/17 + (5*x + 7)∧2 + log(17)

[1] 486.892

3. Using the provided values, the Earth has a volume of 1,083,207,266,253.2
km3. There are too many significant figures, however, so we should just
report the volume as 1.083207e+12 km3.

5. The values should be
[1] 1.00 1.41 2.00 2.83 4.00 5.66 8.00 11.31 16.00

[10] 22.63 32.00

8. a. The help says there are 7981 observations. Using the length()
function, I got 7980. I don’t know why it’s wrong.

b. > plot(treering)

c. The dominant period is 1,600 years.

184 A Primer in Biological Data Analysis and Visualization Using R

Chapter 2

1b. When I do this, I get 84.87.
2a. You should enter these data so they resemble those below.

2f. When I do this, I get the following:

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.530 1.752 1.885 1.867 2.042 2.170

Chapter 3

1a. > cheetahs = c(102, 107, 109, 101, 112)

1c. > order(cheetahs, decreasing = T)

[1] 5 3 2 1 4

1e. > signif(cheetahs,2)

[1] 100 110 110 100 110

2e. > head(mussels) # sorted dataframe after using the order()
> function

Mass pH.trmt
15 87 High
12 83 Med
18 82 High
16 78 High
21 77 High
20 73 High

The left-most column shows the original rows for the mussels dataframe.

Solutions to Select Problems 185

2h. > subset(mussels, Mass > 80)

Mass pH.trmt
15 87 High
12 83 Med
18 82 High

Chapter 4

1a. The mean = 11.0 The standard deviation = 0.194. The median = 11.0.
SEM = 0.079. IQR = 0.25. The range = 0.5. CV = 1.76

1c. Hint: Summary statistics that assume the data are normally distributed
rely on the mean as being a good measure of central tendency.

1d. They are normally distributed (W = 0.953, p = 0.76).
6. The mice have a CV = 31.9%.

Chapter 5

1a. These conversions can be looked up, but you’ll have to use code to cal-
culate these.

1b. Here’s my version of the graph. Would it matter if I had switched
“diam, ht” to “ht, diam”?

> plot(diam,ht, pch = 16, las = 1, cex.lab = 1.5,
+ xlab = ”Diameter (cm)”, ylab = ”Height (m)”)

3b. Here’s the result for sample A:
shapiro.test(M$A)

> shapiro.test(M$A)

Shapiro-Wilk normality test

data: M$A
W = 0.74466, p-value = 0.02654

4. > control = c(2,3,4,5,6,7)
> trmt = c(5,3,4,5,6,9)
> boxplot(control,trmt) # You’ll need to improve this graph

Chapter 6

1b. That’s a parameter because it’s reporting the central tendency measure
for the population (all students that took the test). It is not a sample of
students that took the test. This, along with the variance estimate, are
usually incorrectly presented as statistics.

186 A Primer in Biological Data Analysis and Visualization Using R

2a. In general, we would consider p = 0.06 not to be statistically significant.
However, if α ≥ 0.06, then p = 0.06 would be considered statistically
significant. Notice that we need to use the “≥” symbol and not “>.”

6. The results might extend to females. This is where, as a student, you
might consider conducting the same study on female rats or another
mammal species. As the results stand, they extend only as far as the male
rats tested. These might have been all members of the same line of rats
and might not apply to other rat lines or rat species. It’s also questionable
to consider and report on beliefs in science.

Chapter 7

1a. > moths = c(1916,1563,1436,6035,3833,5031,13326,3130,6020,1889)
> shapiro.test(moths)

Shapiro-Wilk normality test

data: moths
W = 0.78848, p-value = 0.0105

> shapiro.test(log(moths))

Shapiro-Wilk normality test

data: log(moths)
W = 0.93315, p-value = 0.4796

This suggests these data are not normally distributed but they are after
log-transforming them. Therefore, we can proceed with a parametric
test.

1b. Here are our hypotheses:

H0: moths ≥ new
HA: moths < new

1c. This is a one-tailed test for whether the sample is less than 10,000. Note
that I’ve used a t-test on the logged data and that I’ve log-transformed
the test value.

> t.test(log(moths), mu = log(10000), alt = ”l”)

One Sample t-test

data: log(moths)
t = -4.652, df = 9, p-value = 0.0005993
alternative hypothesis: true mean is less than 9.21034
95 percent confidence interval:

-Inf 8.565095

Solutions to Select Problems 187

sample estimates:
mean of x
8.145499

1d. The new number of moths is significantly higher than previous samples
(t = −4.652, df = 9, p < 0.001).

3a. I chose to create a new variable of the differences (lf.diff). This sam-
ple is normally distributed (p = 0.696).

Chapter 8

1c. > milk.dat.stacked = stack(milk.dat)
> names(milk.dat.stacked) = c(”Bac.count”,”Farm”)
> head(milk.dat.stacked)

Bac.count Farm
1 24 Farm.1
2 15 Farm.1
3 21 Farm.1
4 27 Farm.1
5 33 Farm.1
6 23 Farm.1

1d. Here’s the code to accomplish this. The results are not shown.

> tapply(milk.dat.stacked$Bac.count, milk.dat.stacked$Farm,
+ shapiro.test)

2b. Here’s how to subset the dataframe in a way that collects just the fish
length values for the cold temperature and high pH treatment data into
an array.

> a = subset(my.sticks, Temp == ”C” & pH == ”H”)$Length
> shapiro.test(a)$p.value # repeat for other samples

[1] 0.492481

2c. Here’s the graph for just the main effect of temperature on stickleback
lengths.

> library(plotrix)
> M = tapply(my.sticks$Length,my.sticks$Temp, mean)
> SD = tapply(my.sticks$Length, my.sticks$Temp, sd)
> SEM = SD/sqrt(6) # there are 8 observations per sample
> CI95 = qt(0.975,5)*SEM
> a = barplot(M,xlab = ”Temperature”,ylab = ”Length (cm)”,
> las = 1,
+ ylim = c(0,6), names = c(”Cold”,”Warm”),cex.lab = 1.5)
> abline(h=0)
> plotCI(a, M, CI95, pch = NA, add = T)

188 A Primer in Biological Data Analysis and Visualization Using R

Cold Warm

Temperature

L
e

n
g

th
 (

c
m

)
0
1
2
3
4
5
6

Chapter 9

2b. > femur = c(38,56,59,64,74)
> humerus = c(41,63,70,72,84)
> plot(femur,humerus)
> cor.test(femur,humerus)

Pearson’s product-moment correlation

data: femur and humerus
t = 15.941, df = 3, p-value = 0.0005368
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.910380 0.999633

sample estimates:
cor

0.9941486

The femur and humerus lengths for these fossils follow a strong, positive
correlation (r = 0.994), which is highly significant (t = 15.9, df = 3, p <

0.001).
2e. This is consistent with these fossils being from the same species.
4a. You should first check out the different seed sources available in the

dataset:

> unique(Loblolly$Seed) # this asks for the unique types

[1] 301 303 305 307 309 311 315 319 321 323 325 327 329 331
14 Levels: 329 < 327 < 325 < 307 < 331 < 311 < ... < 305

Now we can subset the dataframe. I’ll choose to do this for seeds from
source 321:

> Loblolly.321 = subset(Loblolly, Seed == 321)

Solutions to Select Problems 189

Chapter 10

1a. > obs = c(295,86) # observed counts
> expP = c(0.75,0.25) # expected probabilities

2a. You should find that χ2 = 0.47.
3a. You should find that χ2 = 36.9.

Chapter 11

1. > my.stats = function(x) {
+ my.mean = mean(x)
+ my.sd = sd(x)
+ my.SEM = my.sd/sqrt(length(x))
+ return(data.frame(my.mean,my.sd,my.SEM))
+ }

3. Below are some useful lines of code:

> mpg = c(44,52,58,63,58)
> speed = c(20,30,40,50,60)
> plot(speed,mpg)
> mod = lm(mpg ∼ poly(speed,2))
> newx = seq(20,60,by = .1)
> lines(newx,predict(mod, list(speed = newx)),lwd = 2)

4a. > N0= 50
> r = 0.82
> K = 1000
> curve((K * N0 * exp(r*x))/(K + N0 * (exp(r*x)-1)),0,10,
+ ylab = ”N”, xlab = ”Time”, cex.lab = 1.5)

0 2 4 6 8 10

2
0
0
4
0
0
6
0
0
8
0
0

Time

N

190 A Primer in Biological Data Analysis and Visualization Using R

5a. There are at least two ways to subset the data. Below I show these for
the untreated sample (untr).

> attach(Puromycin)
> untr = Puromycin[state == ”untreated”,] # or use
> # dat = subset(Puromycin,state == ”untreated”)
> tr = Puromycin[state == ”treated”,]
> par(mfrow = c(1,2))
> plot(tr$conc,tr$rate, ylim = c(0,220), pch = 16,
+ xlab = ”Concentration”, ylab = ”Rate”,
+ main = ”Treated”)
> plot(untr$conc,untr$rate, ylim = c(0,220), pch = 16,
+ xlab = ”Concentration”, ylab = ”Rate”,
+ main = ”Untreated”)
> par(mfrow = c(1,1))

Chapter 12

2. This can be done easily without a for loop:

> sum(1:100)

[1] 5050

This is the correct answer, but it’s cheating! To accomplish this the hard
way, using a for loop, we can do the following:

> the.sum = 0 # recall ”sum” is a function, so avoid
> for (i in 1:100) {
+ the.sum = the.sum + i
+ }
> cat(”The sum is ”,the.sum,”\n”)

The sum is 5050

4b. Here’s my approach to modeling the growth of the zerbra mussel pop-
ulation:

> lambda = 145/100
> N = numeric(5)
> N[1] = 100
> for (i in 2:5) {
+ N[i] = lambda * N[i-1]
+ }
> N

[1] 100.0 145.0 210.2 304.9 442.1

Solutions to Select Problems 191

6. Here’s the graph of the logistic map when N1 = 0.5 and λ = 3.75.

> N = numeric(100)
> N[1] = 0.5
> lambda = 3.75
> for (i in 2:100) {
+ N[i] = N[i-1]*lambda*(1 - N[i-1])
+ }
> plot(N,type = ”l”, xlab = ”Time Step”, ylim = c(0,1),
+ cex.lab = 1.5, las = 1)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Time Step

N

Bibliography

Adler, J., 2012. R in a nutshell: A desktop quick reference. O’Reilly.
Crawley, M., 2012. The R book. Wiley.
Fagoonee, I., H. B. Wilson, M. P. Hassell, and J. R. Turner, 1999. The

dynamics of zooxanthellae populations: A long-term study in the field.
Science, 283:843–845.

Focht, D. R., C. Spicer, and M. P. Fairchok, 2002. The efficacy of duct tape
vs. cryotherapy in the treatment of Verruca vulgaris (the common wart).
Archives of Pediatrics & Adolescent Medicine, 156:971–974.

Gotelli, N. J., and A. M. Ellison, 2012. A primer of ecological statistics, 2nd
ed. Sinauer Associates.

Grolemund, G., 2014. Hands-on programming with R:Write your own func-
tions and simulations. O’Reilly Media.

Hartl, D. L., and D. J. Fairbanks, 2007. Mud sticks: On the alleged
falsification of Mendel’s data. Genetics, 175:975–979.

Hartvigsen, G., 2011. Using R to build and assess network models in biol-
ogy. Mathematical Modeling of Natural Phenomena 6:61–75.

Houck, M. A., J. A. Gauthier, and R. E. Strauss, 1990. Allometric scaling
in the earliest Archaeopteryx lithographica. Science 247:195–198.

Hurlbert, S. H., 1984. Pseudoreplication and the design of ecological field
experiments. Ecological Monographs, 54:187–211.

Marshall, W. F., H. Qin, M. R. Brenni, and J. L. Rosenbaum, 2005. Flagel-
lar length control system: Testing a simple model based on intraflagellar
transport and turnover. Molecular Biology of the Cell, 16:270–278.

Matloff, R., 2011. The art of R programming. No Starch Press.
Mendel, G., 1866. Versuche über pflanzen-hybriden. Verhandlungen des

naturforschenden vereines. Abh. Brünn, 4:3–47.
Meys, J., and A. de Vries, 2015. R for Dummies, 2nd ed. For Dummies.

194 Bibliography

Nelson, W. A., O. N. Bjornstad, and T. Yamanaka, 2013. Data from: Re-
current insect outbreaks caused by temperature-driven changes in system
stability. Dryad Digital Repository, 341:796–799.

R Core Team, 2020. R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria.

Rosner, B., 2015. Fundamentals of biostatistics. Cengage Learning.
Silver, N., 2012. The signal and the noise: Why so many predictions fail—but

some don’t. Penguin Press.
Templeton, C. N., E. Greene, and K. Davis, 2005. Allometry of alarm calls:

Black-capped chickadees encode information about predator size. Sci-
ence, 308:1934–1937.

Triola, M. M., M. F. Triola, and J. Roy, 2017. Biostatistics for the biological
and health sciences, 2nd ed. Pearson.

Venables, W. N., D. M. Smith, and the R Core Team, 2018. An introduction
to R. Network Theory Ltd.

White, C. R., and R. S. Seymour, 2003. Mammalian basal metabolic rate
is proportional to body mass2/3. Proceedings of the National Academy of
Sciences 100:4046–4049.

Zar, J. H., 2009. Biostatistical analysis. Prentice Hall.
Zhang, X., Lei, B., Yuan, Y. et al. Brain control of humoral immune re-

sponses amenable to behavioural modulation. Nature 581, 204-208
(2020). https://doi.org/10.1038/s41586-020-2235-7

Zuur, A., E. N. Ieno, and E. Meesters, 2009. A beginner’s guide to R.
Springer.

Index

α, 82
==, 32
$, 23
95% confidence intervals, 44

regression lines, 152

Accuracy, 27
Adding contrast letters

barplot, 111
boxplot, 110

Algorithm, 175
Analysis of variance (ANOVA)

defined, 106
interpreting, 119
normality, 113
one-way, 105
table, 109, 118
two-way, 114

Array, 8
Array notation, 10
Assignment

<- vs =, 8

Barplot, 59
Boxplot, 58
Bump chart, 64

Categorical data, 141
Central limit theorem (CLT), 172
Chaos, 179

Chickadees, 137
Chi-square test (χ2), 141
Coefficient of variation, 45
Confounding factor, 129
Contrast letters, 110
Correlation, 127

Add a best-fit line?, 128

Data, 37
arrays, 19
attributes of, 37
categorical, 37
characters, 9
continuous, 37
discrete, 37
entering, 19
interval, 38
nominal, 37
ratio, 38
saving to file, 34
sorting, 32
stacked, 31
unstacked, 31

Dataframe
creating, 29
renaming variables, 31

Differential equations, 164
Distribution, 37, 57

types, 48
Duct tape, 144

196 Index

Errors
causes of, 50
message, 7, 13, 15
Type I and Type II, 85

Excel files, 20
Experimental design, 78

factorial, 115
random assignment of

individuals, 79
Experimental unit, 79

Fibonacci series, 178
Function

argument, 11, 56
definition, 12
writing your own, 149

Graphing
function options, 71
multiple, 67

Histogram, 57
options, 71

Hypotheses
alternative, 92
null, 92

Indexing
two-dimensional

arrays, 34
Indexing arrays, 10
Inference, 80
Installing

R, 4
RStudio, 4

Interquartile range (IQR),
45, 58

Kruskal-Wallis test, 112
Kurtosis, 49

leptokurtosis, 50
mesokurtosis, 50
platykurtosis, 50

Legends, 57
Leptokurtic distribution, 48
Logistic map, 179

Matrix, 122
Mean

arithmetic, 38
weighted, 39

Median, 39, 58
Mesokurtic distribution, 48
Michaelis-Menton enzyme kinetics,

17, 160, 168
Mode, 40
Modeling, 163

differential equations, 164
exponential growth, 164
SIR model, 167

Non-parametric test, 46
Normality

testing for, 45
Null hypothesis, 77

One-tailed test, 93
Outlier, 50, 58

Packages, 14
Parameter, definition of, 75
Parametric test, 46
Percentile, 39, 58
Pie charts, 65
Platykurtic distribution, 48
Population, 74
Power analysis, 81
Precision, 27
Programming, 171

for loop, 172
while loop, 172
if-else conditional statement,

172
languages, 171

Pseudoreplication, 88
p-value, 83

Index 197

R
capabilities of, 2
entering data in, 19
errors, 15
help from within, 5
installing, 4
installing packages, 14
simple calculations using, 7
warnings, 15

Ramanujan, Srinivasa, 180
Randomized controlled trial, 87
Range, 42
Regression

Add a best-fit line?, 128
linear, 128, 131
nonlinear, 153
testing assumption, 134
time series, 139

R functions, 68
abline(), 135
aov(), 108
as.factor(), 108
as.numeric(), 41
axis(), 64
barplot(), 59
bartlett.test(), 107
boxplot(), 20, 59
c(), 19
cat(), 177
chisq.test(), 141
class(), 108
coef(), 159
cor(), 131
cor.test(), 128
curve(), 11, 156
data.frame(), 29, 30, 106, 116
diff(), 42
exp(), 158
expression(), 64
fitted(), 135
floor(), 68
function, 166

getwd(), 34
head(), 116
hist(), 41, 57
if(), 172
install.packages(), 15
interaction.plot(), 120
kruskal.test(), 114
kurtosis(), 50
layout(), 66
legend(), 57, 64
length(), 10
library(), 14, 15
lines(), 63, 71, 135, 138, 167
lm(), 132, 135
log(), 7
matrix(), 61
max(), 110
mean(), 20
median(), 20
names(), 22, 31
nls(), 158
numeric(), 173
ode(), 165
order(), 33
pairs(), 69, 129
par(), 67
paste(), 64
pie(), 66
plot(), 71
plotCI(), 123
points(), 63, 64, 71
predict(), 152
qqline(), 46
qqnorm(), 46, 167
range(), 42
read.csv(), 22
read.table(), 21
rep(), 10, 80
rgamma(), 178
rm(), 22
rnorm(), 11, 173
round(), 28

198 Index

R functions (continued)
runif(), 173
sample(), 80
sd(), 43
seq(), 10
shapiro.test(), 46
signif(), 28
skewness(), 49
sort(), 33
sqrt(), 7
stack(), 31, 106
subset(), 32
sum(), 9, 12
summary(), 10, 108, 119
Sweave(), xi
table(), 40
tapply(), 107
text(), 71, 110
t.test(), 92
TukeyHSD(), 109, 121
unique(), 188
unstack(), 31
var(), 43
var.test(), 100
weighted.mean(), 39
which(), 51
which.max(), 41
wilcox.test(), 99, 102
with(), 166
write.csv(), 23, 34

RStudio
installing, 4
script files, 12

Sample, 74
Sampling unit, 80
Scatterplot, 63

options, 71

Scientific method, 75
Script files, 12
Significant figures, 28
SIR model, 165
Skewed data, 49
Stacking data, 30, 106
Standard deviation, 42
Standard error of the mean (SEM),

43
Standard normal distribution, 11
Statistics, 73

definition of, 74, 75
descriptive, 74
inference, 80

Subsetting data, 31

Text, adding to graph, 71
Transforming data, 52
t-test

independent samples, 99
one- and two-tailed, 89
one-sample, 89
paired, 95, 98
two-sample, 99

Tukey Honest Significant Difference
test, 109

Variable, 9
Variables

naming, 22
Variance, 43

Warning messages, 15
Warts, 144
Welch test, 100
Working directory, 22

Zebra mussels, 178

	Table of Contents
	Preface to the Second Edition
	Acknowledgments
	Introduction
	1. Introducing Our Software Team
	2. Getting Data Into R
	3. Working with Your Data
	4. Tell Me About My Data
	5. Visualizing Your Data
	6 An Overview of Science, Hypothesis Testing, Experimental Design, and Inference
	7. Hypothesis Tests: Using One- and Two-Sample Tests
	8. Hypothesis Tests: Differences Among Multiple Samples
	9. Hypothesis Tests: Linear Relationships
	10. Hypothesis Tests: Observed and Expected Values
	11. A few More Advanced Procedures
	12. An Introduction to Computer Programming
	13. Final Thoughts
	Appendix: Solutions to Select Problems
	Bibliography
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

