


Use R!

Advisors:
Robert Gentleman · Kurt Hornik · Giovanni Parmigiani



Use R!
Series Editors: Robert Gentleman, Kurt Hornik, and Giovanni Parmigiani

Albert: Bayesian Computation with R
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Preface

Recent developments in genomics and molecular biology finally carry the
promise of understanding the functions of complex biological systems on a
whole genome level. These developments have led to enormous amounts of
data generated in highthroughput technologies, most prominently in gene
expression microarrays. Within the Bioconductor project, an increasing
number of researchers are trying to establish solutions for the analysis of
such data, combining knowledge from such diverse disciplines as statistics,
computer science, bioinformatics, and molecular biology.

With microarrays becoming a standard technology in many molecular
biology labs, there is increased demand for comprehensive yet easy to fol-
low instructions to the complex data analysis process. After many years of
teaching introductory Bioconductor courses we can identify the main topics
of interest, the common misunderstandings and pitfalls, and have learned to
better understand key problems with which beginners to the analysis tasks
are often challenged. In this book, we try to guide the readers through
each step of the data analysis process, beginning from import and data
processing to the generation of lists of differentially expressed genes and
finally the modeling and interpretation of these lists in downstream analy-
ses. Every chapter focuses on real data use cases that illustrate the problem,
and we present both executable code and detailed background informa-
tion for each step. A companion Webpage to this book can be found at
http://www.bioconductor.org/pub/docs/BioconductorCaseStudies
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The ALL Dataset

F. Hahne and R. Gentleman

Abstract

In this initial chapter we briefly describe the typical data prepro-
cessing steps for a sample dataset that will be used in many of the
following exercises.

1.1 Introduction

In the course of this book we frequently need a dataset that can be used to
demonstrate the usage of Bioconductor software. For many of the methods
we consider, the initial steps of the analyis procedure are more or less identi-
cal. Usually, they comprise subsetting of the data followed by a nonspecific
filtering step to remove probe sets that are not likely to be informative.
In this introductory chapter we briefly guide you through these first steps
needed to obtain data suitable for the various analyses.

1.2 The ALL data

The ALL data consist of microarrays from 128 different individuals with
acute lymphoblastic leukemia (ALL). There are 95 samples with B-cell ALL
and 33 with T-cell ALL and because these are different tissues and quite
different diseases we consider them separately, and typically focus on the
B-cell ALL tumors. Two different analyses have been reported in (Chiaretti
et al., 2004, 2005), which can be consulted for more detail. A number of
covariates are stored along with data, describing more general properties of
the patients such as age or sex but also a whole range of clinical parameters
about type and stage of the disease. Details about these can be found on
the manual page for this dataset. The data have been jointly normalized
using rma and stored in the form of an ExpressionSet (see Chapter 2 for
details on this class).

F. Hahne et al., Bioconductor Case Studies, DOI: 10.1007/978-0-387-77240-0 1,
© Springer Science+Business Media, LLC 2008



2 F. Hahne, R. Gentleman

1.3 Data subsetting

We first load the ALL package and attach the data to our work space.

> library("Biobase")

> library("ALL")

> library("genefilter")

> data("ALL")

An interesting subset, with two groups having approximately the same
number of samples in each group, is the comparison of the B-cell tumors
found to carry the BCR/ABL mutation to those B-cell tumors with no
observed cytogenetic abnormalities. These samples are labeled BCR/ABL
and NEG in the mol.biol covariate. The BCR/ABL mutation, also known
as the Philadelphia chromosome, was the first cytogenetic aberration that
could be associated with the development of cancer, leading the way to the
current understanding of the disease. In tumors harboring the BCR/ABL
translocation a short piece of chromosome 22 is exchanged with a segment
of chromosome 9. As a consequence, a constitutively active fusion protein
is transcribed which acts as a potent mitogene, leading to uncontrolled cell
division.

Not all leukemia tumors carry the Philadelphia chromosome; there
are other mutations that can be responsible for neoplastic alterations of
blood cells, for instance a translocation between chromosomes 4 and 11
(ALL1/AF4), and in one of the exercises we also use data from a subset of
these tumors.

First, we select those samples originating from B-cell tumors by searching
the BT variable (which distinguishes the B-cell from the T-cell tumors) for
entries beginning with the letter B using a regular expression.

> bcell = grep("^B", as.character(ALL$BT))

Next, we want to know which of the samples are of molecular types
BCR/ABL or NEG.

> types = c("NEG", "BCR/ABL")

> moltyp = which(as.character(ALL$mol.biol) %in% types)

Combining these two selection criteria gives us a data set for carrying
out comparisons between tumors harboring the BCR/ABL translocation
and those that did not have any of the tested molecular abnormalities.

> ALL_bcrneg = ALL[, intersect(bcell, moltyp)]

One more step is required. Some of the sample annotation data is kept
in variables of type factor . These are variables that can only take a number
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of discrete categorical values. The set of possible values of a factor is called
its levels (you may consult the manual page by typing “? factor”). Because
we have reduced the set of samples, we only need fewer factor levels than
were present in ALL, and the most succint way to reduce the set of levels
of a factor to those that are actually present is by calling the constructor
function factor on it again.

> ALL_bcrneg$mol.biol = factor(ALL_bcrneg$mol.biol)

> ALL_bcrneg$BT = factor(ALL_bcrneg$BT)

1.4 Nonspecific filtering

Some fraction of genes were not expressed at all in the cells that were
assayed, at least not to a level that we could detect with the microarrays
used here. For further genes, the data did not show enough variation to
allow any reliable detection of differential expression. It is a good idea to
remove probe sets for these genes before further analysis, and we can do
that on the basis of variance. You should consult Chapter 6 and Chapter 7
for more details on nonspecific filtering. Here, we show how to proceed using
the function nsFilter from the genefilter package to filter for a number of
different criteria, all controlled by the function’s various parameters. Setting
feature.exclude="^AFFX" removes the control probes, which can be iden-
tified by the prefix AFFX in their name. As a measure of dispersion for the
variance filtering step, we use the interquartile range (IQR), and we choose
the 0.5 quantile of the IQR values as a cutoff. This appears to be a reason-
able value for the biological setting and the microarray design used here,
but it is likely that you may need to adjust this value to your experiment. In
Chapter 6 we give an example how to derive a more data-driven cutoff value.

> varCut = 0.5

> filt_bcrneg = nsFilter(ALL_bcrneg, require.entrez=TRUE,

require.GOBP=TRUE, remove.dupEntrez=TRUE,

var.func=IQR, var.cutoff=varCut,

feature.exclude="^AFFX")

> filt_bcrneg$filter.log

$numDupsRemoved
[1] 968

$numLowVar
[1] 5212

$feature.exclude
[1] 19
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$numNoGO.BP
[1] 1779

$numRemoved.ENTREZID
[1] 404
> ALLfilt_bcrneg = filt_bcrneg$eset

1.5 BCR/ABL ALL1/AF4 subset

There are also other subsets of the data in which we might be interested.
The following code produces a subset consisting of samples from BCR/ABL
positive tumors harboring the t9;22 translocation and ALL1/AF4 positive
tumors with t4;11 translocations.

> types = c("ALL1/AF4", "BCR/ABL")

> moltyp = which(ALL$mol.biol %in% types)

> ALL_af4bcr = ALL[, intersect(bcell, moltyp)]

> ALL_af4bcr$mol.biol = factor(ALL_af4bcr$mol.biol)

> ALL_af4bcr$BT = factor(ALL_af4bcr$BT)

> filt_af4bcr = nsFilter(ALL_af4bcr,require.entrez=TRUE,

require.GOBP=TRUE, remove.dupEntrez=TRUE,

var.func=IQR, var.cutoff=varCut)

> ALLfilt_af4bcr = filt_af4bcr$eset

Note that nsFilter’s default choice of variance measure is not really
appropriate for this case because the sizes of the sample groups differ quite
a lot. See Chapter 8 for a more thourough discussion.
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R and Bioconductor
Introduction

R. Gentleman, F. Hahne, S. Falcon,
and M. Morgan

Abstract

In this chapter we cover basic uses of R and begin working with
Bioconductor datasets and tools. Topics covered include simple R
programming, R graphics, and working with environments as hash
tables. We introduce the ExpressionSet class as an example for a
basic Bioconductor structure used for holding genomic data, in this
case expression microarray data. And we explore some visualization
techniques for gene expression data to get a feeling for R’s extensive
graphical capabilities.

2.1 Finding help in R

To get started with R and Bioconductor it is important to know where
you can find help for the numerous functions, classes, and concepts you
are about to come across. The ? operator is the most immediate source
of information about R objects. Preceding the name of a function with ?

quickly gets you to the manual page of this function. Possible arguments
and return values should be introduced there, and you will find basic infor-
mation about the purpose and application of the function. A special flavor
of ? exists for classes. class ? foo will get you to the manual page of class
foo where you will often also find information about available methods for
this class.

Function apropos can be used to find objects in the search path partially
matching the given character string. find also locates objects, yet in a more
restrictive manner.

F. Hahne et al., Bioconductor Case Studies, DOI: 10.1007/978-0-387-77240-0 2,
© Springer Science+Business Media, LLC 2008
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> apropos("mean")

[1] "colMeans" "kmeans"
[3] "mean" "mean.Date"
[5] "mean.POSIXct" "mean.POSIXlt"
[7] "mean.data.frame" "mean.default"
[9] "mean.difftime" "rowMeans"

[11] "weighted.mean"
> find("mean")

[1] "package:base"

If you want to get information about a certain topic or concept, try
help.search. The function searches the help system for documentation
matching a given character string in the (file) name, alias, title, concept, or
keyword entries. Names and titles of the matched help entries are displayed.

> help.search("mean")

Moreover, there is a wealth of information just waiting for you out
on the Web: A very good introduction is R-Foundation (2007). For
many of the usual R-related questions you may most likely find an
answer in the R-FAQ at http://cran.r-project.org/faqs.html. More
specialized sources for help are the R and Bioconductor mailing lists
(http://www.r-project.org/mail.html, http://www.bioconductor.
org/mailList.html). You can subscribe to different sublists, regarding
your interests and level of expertise and post your questions to the R
society. Before doing so, you should read the posting guides. Often ques-
tions on the mailing lists are not answered because major posting rules
have been violated. It is also a good idea to search the online mailing
archives before posting a question. A lot of them have already been asked
and answered by someone else. A searchable Bioconductor archive can be
found at http://dir.gmane.org/gmane.science.biology.informatics.
conductor and the R archives at http://dir.gmane.org/index.php?
prefix=gmane.comp.lang.r.. All of these links can also be found on the
Bioconductor and R-Project Web pages.

Most of the Bioconductor packages contain another valuable source of
information through their package vignettes. Vignettes are supposed to
describe more thoroughly the steps needed to perform one or several of
the specific tasks for which the package was designed. Text and executable
code are bundled together in one document, similar to the document you
are reading right now, which makes it easy to reproduce individual steps on
your own machine or to introduce modifications specific to your own task.
The function openVignette in Biobase can be used to open PDF versions of
the available vignettes. Vignettes become available once you load a package
(see the next section for an introduction to the concept of packages).

http://cran.r-project.org/faqs.html
http://www.r-project.org/mail.html
http://www.bioconductor.
org/mailList.html
http://dir.gmane.org/gmane.science.biology.informatics.
conductor
http://dir.gmane.org/index.php?
prefix=gmane.comp.lang.r.
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Exercise 2.1
a. There are a number of different plotting functions available. Can you

find them?

b. Try to find out which function to use in order to perform a Mann–
Whitney test.

c. Open the PDF version of the vignette“Bioconductor Overview”which
is part of the Biobase package.

2.2 Working with packages

The design of R and Bioconductor is modular. A lot of the functionality is
provided by additional units of software called packages. There are many
hundreds of packages available for R and around 260 for Bioconductor.
Before we begin working with data, it is important that you learn how to
find, download, and install packages.

Different methods can be used for this task, and over time we expect
them to become more standardized. R packages are stored in libraries. You
can have multiple libraries on your computer, although most people have
only one on their personal machine. To add a package to your library, you
need to download and install it. After that, each time you want to use the
package, you need to load it. You do this using either the library function
or the function require.

Downloading packages can be done using the menu on a distribution of
R that has a GUI (Windows or Mac OS X). On these platforms you simply
select the packages you want from a list, and they are downloaded and
installed. Installing a package does not automatically load it into your R
session, you must do that. By default this mechanism will download the
appropriate binary packages.

You can use the function install.packages to download a specified list of
packages. One of the arguments to install.packages controls whether pack-
age dependencies should also be downloaded and for Bioconductor packages
we strongly recommend setting this to TRUE.

To make the installation of Bioconductor packages as easy as possible, we
provide a Web-accessible script called biocLite that you can use to install
any Bioconductor package along with its dependencies. You can also use
biocLite to install packages hosted on CRAN. Here is a sample session
illustrating how to use biocLite to install the graph and xtable packages.

> source("http://bioconductor.org/biocLite.R")

> biocLite(c("graph", "xtable"))

The command update.packages can be used to check for and install
new versions of already installed packages. Note that you need to supply
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update.packages with the URL to a Bioconductor repository in order to
update Bioconductor packages as well. The recommended way of updating
all your installed packages is:

> source("http://bioconductor.org/biocLite.R")

> update.packages(repos=biocinstallRepos(), ask=FALSE)

Exercise 2.2
What is the output of function sessionInfo?

2.3 Some basic R

Before we begin, let’s make sure you are familiar with the basic data struc-
tures in R and the fundamental operations that are necessary for both
application of existing software and for writing your own short scripts. If
you find it easy to answer the following five questions you are ready to pro-
ceed with this chapter and learn about the great stuff you can do with your
genomic data. If not, it might be a good idea to go back to the excellent
“Introduction to R” which you can find on the R Foundation home page at
http://cran.r-project.org/manuals/R-intro.html to acquire a more
solid foundation of the nitty-gritty details of the language.

Exercise 2.3
a. The simplest data structure in R is a vector. Can you create the

following vectors?
– x with elements 0.1, 1.1, 2.5, and 10
– An integer vector y with elements 1 to 100
– A logical vector z indicating the elements of y that are below 10
– A named character vector pets with elements dog, cat, and bird.
You can choose whatever names you like for your new virtual pets.

b. What happens to vectors in arithmetic expressions? What is the result
of

2 * x + c(1,2)

c. Index vectors can be used to select subsets of elements of a vector.
What are the three different types of index vectors? How do we index
a matrix or an array?

d. How can we select elements of a list? How do we create a list?

e. What is the difference between a data.frame and a matrix?

http://cran.r-project.org/manuals/R-intro.html
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2.3.1 Functions

Writing functions in R is easy. All functions take inputs and they return
values. In R the value returned by a function is either specified explicitly by
a call to the function return or it is simply the value of the last expression.
So, the two functions below will return identical values.

> sq1 = function(x) return(x*x)

> sq2 = function(x) x*x

These functions are vectorized. This means you can pass a vector x to the
function and each element of x will be squared. Note that if you use two
vectors of unequal length for any vectorized operation R will try to recycle
the shorter one. Although this can be useful for certain applications, it can
also lead to unexpected results.

Exercise 2.4
In this exercise we want you to write a function that we use in the next
section. It relies on the R function paste, and you may want to read the
function’s manual page. The function should take a string as input and
return that string with a caret prepended. Let’s call it ppc; what we want
is that ppc("xx") returns "^xx".

One of the places that user-defined functions are often used is with the
apply family of functions and in the next section we show some examples.

2.3.2 The apply family of functions

In R a great deal of work is done by applying some function to all elements of
a list, matrix, or array. There are several functions available for you to use;
apply, lapply, sapply are the most commonly used. The function eapply is
also available for applying a function to each element of an environment .
We show more about how to create and how to work with environments in
the next section.

To understand how the apply family of functions works, we use
them to explore some of the metadata for the Affymetrix®HG-U95Av2
GeneChip®. Because these data are stored in environments we make use
of the eapply function.

The hgu95av2MAP environment contains the mappings between Affymet-
rix identifiers and chromosome band locations. For example, in the code
below we find the chromosome band to which the gene, for probe 1001_at
(TIE1), maps.

> library("hgu95av2.db")

> hgu95av2MAP$"1001_at"

[1] "1p34-p33"
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We can extract all of the map locations for a particular chromosome or
part of a chromosome by using regular expressions and the apply family
of functions. First let’s be more explicit about the problem: say we want
to find all genes that map to the p arm of chromosome 17. Then we know
that their map positions will all start with the characters 17p. This is a
simple regular expression, ^17p, where the caret, ^, means that we should
match the start of the word. We do this in two steps: first we use eapply

and grep and ask for grep to return the value that matched.

> myPos = eapply(hgu95av2MAP, function(x) grep("^17p", x,

value=TRUE))

> myPos = unlist(myPos)

> length(myPos)

[1] 190

Here we used an anonymous function to process each element of the
hgu95av2MAP environment . We could have named it and then used it.

> f17p = function(x) grep("^17p", x, value=TRUE)

> myPos2 = eapply(hgu95av2MAP, f17p)

> myPos2 = unlist(myPos2)

> identical(myPos, myPos2)

[1] TRUE

Exercise 2.5
Use the function ppc that you wrote in the previous exercise to create a new
function that can find and return the probes that map to any chromosome
(just prepend the caret to the chromosome number) or the chromosome
number with a p or a q after it.

2.3.3 Environments

In R, an environment is a set of symbol–value pairs. These are similar to
lists, but there is no natural ordering of the values and so you cannot make
use of numeric indices. Also unlike lists, partial matching of the symbols
will not work. Otherwise they behave the same way. In the previous section
you have already used an environment that stored the mapping between
Affymetrix identifiers and chromosome band locations. Here, we show how
to work with your own environments.

We first create an environment and carry out some simple tasks, such as
storing things in it, removing things from it, and listing the contents.
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> e1 = new.env(hash=TRUE)

> e1$a = rnorm(10)

> e1$b = runif(20)

> ls(e1)

[1] "a" "b"
> xx = as.list(e1)

> names(xx)

[1] "a" "b"
> rm(a, envir=e1)

Exercise 2.6
a. Create an environment and put in the chromosomal locations of all

genes on chromosome 18 using your function from the last exercise.

b. Put into the environment a second function that takes the strings
of chromosomal locations and strips the “18” from each string. The
function gsub can help you with that.

c. Now write a function, myExtract, that takes an environment as an
argument and returns a vector of stripped chromosomal locations
(i.e., apply the stripping function in the environment to the vector of
chromosomal locations in the same environment).

2.4 Structures for genomic data

Genomic data can be very complex, usually consisting of a number of
different bits and pieces. In Bioconductor we have taken the approach
that these pieces should be stored in a single structure to easily manage
the data. The package Biobase contains standardized data structures to
represent genomic data. The ExpressionSet class is designed to combine
several different sources of information into a single convenient structure.
An ExpressionSet can be manipulated (e.g., subsetted, copied), and is the
input to or output of many Bioconductor functions.

The data in an ExpressionSet consist of

• assayData: Expression data from microarray experiments
(assayData is used to hint at the methods used to access different
data components, as we show below).

• metadata: A description of the samples in the experiment
(phenoData), metadata about the features on the chip or technology
used for the experiment (featureData), and further annotations for
the features, for example gene annotations from biomedical databases
(annotation).

• experimentData: A flexible structure to describe the experiment.
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The ExpressionSet class coordinates all of these data, so that you do not
usually have to worry about the details. However, an ExpressionSet needs
to be created in the first place, because it will be the starting point for
many of the analyses using Bioconductor software.

In this section we learn how to create and manipulate ExpressionSet
objects, and by doing that we again practice some basic R skills.

2.4.1 Building an ExpressionSet from .CEL and other files

Many users have access to .CEL or other files produced by microarray chip
manufacturer hardware. Usually the strategy is to use a Bioconductor pack-
age such as affyPLM, affy, oligo, limma, or arrayMagic to read these
files. These Bioconductor packages have functions (e.g., ReadAffy, expresso,
or justRMA in affy) to read CEL files and perform preliminary preprocess-
ing, and to represent the resulting data as an ExpressionSet or other type
of object. Suppose the result from reading and preprocessing CEL or other
files is named object, and object is different from ExpressionSet ; a good
bet is to try, for example,

> library(convert)

> as(object, "ExpressionSet")

It might be the case that no converter is available. The path then is to
extract relevant data from object and use this to create an ExpressionSet
using the instructions below.

2.4.2 Building an ExpressionSet from scratch

As mentioned before, the data from many high-throughput genomic
experiments, such as microarray experiments, usually consist of several
conceptually distinct parts: assay data, sample annotations, feature anno-
tations, and an overall description of the experiment. We construct each of
these components, and then assemble them into an ExpressionSet .

Assay data

One important part of the experiment is a matrix of “expression” values.
The values are usually derived from microarrays of one sort or another,
perhaps after initial processing by manufacturer software or Bioconductor
packages. The matrix has F rows and S columns, where F is the number
of features on the chip and S is the number of samples.

A likely scenario is that your assay data are in a “tab-delimited” text file
(as exported from a spreadsheet, for instance) with rows corresponding to
features and columns to samples. The strategy is to read this file into R
using the read.table command, converting the result to a matrix . A typical
command to read a tab-delimited file that includes column headers is
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> dataDirectory = system.file("extdata", package="Biobase")

> exprsFile = file.path(dataDirectory, "exprsData.txt")

> exprs = as.matrix(read.table(exprsFile, header=TRUE,

sep="\t", row.names=1, as.is=TRUE))

The first two lines create a file path pointing to where the assay data are
stored; replace these with a character string pointing to your own file, for
example,

> exprsFile = "c:/path/to/exprsData.txt"

(Windows users: note the use of / rather than \; this is because R treats
the \ character as an “escape” sequence to change the meaning of the
subsequent character.) See the help pages for read.table for more detail.
A common variant is that the character separating columns is a comma
(“comma-separated values”, or “csv” files), in which case the sep argument
might be sep=",".

It is always important to verify that the data you have read match your
expectations. At a minimum, check the class and dimensions of geneData

and take a peek at the first several rows.

> class(exprs)

[1] "matrix"
> dim(exprs)

[1] 500 26
> colnames(exprs)

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"
[14] "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
> head(exprs)

A B C D E F
AFFX-MurIL2_at 192.7 85.75 176.8 135.6 64.49 76.4
AFFX-MurIL10_at 97.1 126.20 77.9 93.4 24.40 85.5
AFFX-MurIL4_at 45.8 8.83 33.1 28.7 5.94 28.3
AFFX-MurFAS_at 22.5 3.60 14.7 12.3 36.87 11.3
AFFX-BioB-5_at 96.8 30.44 46.1 70.9 56.17 42.7
AFFX-BioB-M_at 89.1 25.85 57.2 70.0 49.58 26.1

G H I J K L M
AFFX-MurIL2_at 160.5 66.0 56.9 135.61 63.44 78.2 83.1
AFFX-MurIL10_at 98.9 81.7 97.8 90.48 70.57 94.5 75.3
AFFX-MurIL4_at 31.0 14.8 14.2 34.49 20.35 14.2 20.6
AFFX-MurFAS_at 23.0 16.2 12.0 4.55 8.52 27.3 10.2
AFFX-BioB-5_at 86.5 30.8 19.7 46.35 39.13 41.8 80.2
AFFX-BioB-M_at 75.0 42.3 41.1 91.53 39.91 49.8 63.5
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N O P Q R S T
AFFX-MurIL2_at 89.3 91.1 95.9 179.8 152.5 180.83 85.4
AFFX-MurIL10_at 68.6 87.4 84.5 87.7 108.0 134.26 91.4
AFFX-MurIL4_at 15.9 20.2 27.8 32.8 33.5 19.82 20.4
AFFX-MurFAS_at 20.2 15.8 14.3 15.9 14.7 -7.92 12.9
AFFX-BioB-5_at 36.5 36.4 35.3 58.6 114.1 93.44 22.5
AFFX-BioB-M_at 24.7 47.5 47.4 58.1 104.1 115.83 58.1

U V W X Y Z
AFFX-MurIL2_at 157.99 146.8 93.9 103.86 64.4 175.62
AFFX-MurIL10_at -8.69 85.0 79.3 71.66 64.2 78.71
AFFX-MurIL4_at 26.87 31.1 22.3 19.01 12.2 17.38
AFFX-MurFAS_at 11.92 12.8 11.1 7.56 20.0 8.97
AFFX-BioB-5_at 48.65 90.2 42.0 57.57 44.8 61.70
AFFX-BioB-M_at 73.42 64.6 40.3 41.82 46.1 49.41

Sample annotation

The information about the samples (e.g., experimental conditions or param-
eters, or attributes of the subjects such as sex, age, and diagnosis) is often
referred to as covariates. The information describing the samples can be
represented as a table with S rows and V columns, where V is the number
of covariates. An example of such a table can be input with

> pDataFile = file.path(dataDirectory, "pData.txt")

> pData = read.table(pDataFile,

row.names=1, header=TRUE, sep="\t")

> dim(pData)

[1] 26 3
> rownames(pData)

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"
[14] "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
> summary(pData)

gender type score
Female:11 Case :15 Min. :0.100
Male :15 Control:11 1st Qu.:0.328

Median :0.415
Mean :0.537
3rd Qu.:0.765
Max. :0.980

There are three columns of data, and 26 rows. Note that the rows of the
sample data table align with the columns of the expression data matrix:

> all(rownames(pData) == colnames(exprs))

[1] TRUE
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This is an essential feature of the relationship between the assay and
sample data; ExpressionSet will complain if these names do not match.

Sample data can take on a number of different forms. For instance, some
covariates might reasonably be represented as numeric values. Other covari-
ates (e.g., gender, tissue type, or cancer status) might be better represented
as factor objects (see the help page for factor for more information). It is
important that the sample covariates are encoded correctly; the colClasses

argument to read.table can be helpful in correctly inputting (and ignoring,
if desired) columns from the file.

Exercise 2.7
a. What class does read.table return?

b. Determine the column names of pData. Hint: apropos("name").

c. Use sapply to determine the classes of each column of pData. Hint:
read the help page for sapply.

d. What is the sex and Case/Control status of the 15th and 20th sam-
ples? What is the status for the sample(s) with score greater than
0.8?

Investigators often find that the meaning of simple column names does
not provide enough information about the covariate. What is the cryptic
name supposed to represent? In what units are the covariates measured? We
can create a data frame containing such metadata (or read the information
from a file using read.table) with

> metadata = data.frame(labelDescription=c("Patient gender",

"Case/control status", "Tumor progress on XYZ scale"),

row.names=c("gender", "type", "score"))

This creates a data.frame object with a single column called “labelDe-
scription”, and with row names identical to the column names of
the data.frame containing the sample annotation data. The column
labelDescription must be present; other columns are optional.

Bioconductor’s Biobase package provides a class called Annotated-
DataFrame that conveniently stores and manipulates tabular data in a
coordinated fashion. Create and view an AnnotatedDataFrame instance
with:

> adf = new("AnnotatedDataFrame", data=pData,

varMetadata=metadata)

> adf

An object of class "AnnotatedDataFrame"
rowNames: A, B, ..., Z (26 total)
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varLabels and varMetadata description:
gender: Patient gender
type: Case/control status
score: Tumor progress on XYZ scale

Some useful operations on an AnnotatedDataFrame include
sampleNames, pData (to extract the original pData data.frame), and
varMetadata. In addition, AnnotatedDataFrame objects can be subset
much as a data.frame:

> head(pData(adf))

gender type score
A Female Control 0.75
B Male Case 0.40
C Male Control 0.73
D Male Case 0.42
E Female Case 0.93
F Male Control 0.22
> adf[c("A","Z"), "gender"]

An object of class "AnnotatedDataFrame"
rowNames: A, Z
varLabels and varMetadata description:
gender: Patient gender

> pData(adf[adf$score > 0.8,])

gender type score
E Female Case 0.93
G Male Case 0.96
X Male Control 0.98
Y Female Case 0.94

Annotations and feature data

Metadata on features are as important as metadata on samples, and can be
very large and diverse. A single chip design (i.e., collection of features) is
likely to be used in many different experiments, and it would be inefficient
to repeatedly collect and coordinate the same metadata for each Expres-
sionSet instance. Instead, the idea is to construct specialized metadata
packages for each type of chip or instrument. Many of these packages are
available from the Bioconductor Web site. These packages contain informa-
tion such as the gene name, symbol, and chromosomal location. There are
other metadata packages that contain the information that is provided by
other initiatives such as GO and KEGG. The annotate package provides
basic data manipulation tools for the metadata packages.

The appropriate way to create annotation data for features is very
straight forward: we provide a character string identifying the type of chip
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used in the experiment. For instance, the data we are using are from the
Affymetrix HG-U95Av2 GeneChip :

> annotation = "hgu95av2"

It is also possible to record information about features that are unique to
the experiment (e.g., flagging particularly relevant features). This is done
by creating or modifying an AnnotatedDataFrame like that for adf but with
row names of the AnnotatedDataFrame matching rows of the assay data.

Experiment description

A basic description about the experiment (e.g., the investigator or lab where
the experiment was done, an overall title, and other notes) can be recorded
by creating a MIAME object. One way to create a MIAME object is to
use the new function:

> experimentData = new("MIAME", name="Pierre Fermat",

lab="Francis Galton Lab",

contact="pfermat@lab.not.exist",

title="Smoking-Cancer Experiment",

abstract="An example ExpressionSet",

url="www.lab.not.exist",

other=list(notes="Created from text files"))

Usually, new takes as arguments the class name and pairs of names and
values corresponding to different slots in the class; consult the help page
for MIAME for details of available slots.

Assembling an ExpressionSet

An ExpressionSet object is created by assembling its component parts, and
after all this work the final assembly is disappointingly easy:

> exampleSet = new("ExpressionSet", exprs=exprs,

phenoData=adf, experimentData=experimentData,

annotation="hgu95av2")

Note that the names on the right of each equal sign can refer to any object
of appropriate class for the argument. See the help page for ExpressionSet
for more information.

We created a rich data object to coordinate diverse sources of infor-
mation. Less rich objects can be created by providing less information. A
minimal expression set can be created with

> minimalSet = new("ExpressionSet", exprs=exprs)
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Of course this object has no information about sample or feature data
or about the chip used for the assay.

2.4.3 ExpressionSet basics

Now that you have an ExpressionSet instance, let’s explore some of the
basic operations. You can get an overview of the structure and available
methods for ExpressionSet objects by reading the help page:

> help("ExpressionSet-class")

When you print an ExpressionSet object, a brief summary of the contents
of the object is displayed (displaying the entire object would fill your screen
with numbers):

> exampleSet

ExpressionSet (storageMode: lockedEnvironment)
assayData: 500 features, 26 samples
element names: exprs

phenoData
sampleNames: A, B, ..., Z (26 total)
varLabels and varMetadata description:
gender: Patient gender
type: Case/control status
score: Tumor progress on XYZ scale

featureData
featureNames: AFFX-MurIL2_at, AFFX-MurIL10_at, ..., 31
739_at (500 total)
fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
Annotation: hgu95av2

Accessing data elements

A number of accessor functions are available to extract data from an
ExpressionSet instance. You can access the columns of the sample data
(an AnnotatedDataFrame) using $:

> exampleSet$gender[1:5]

[1] Female Male Male Male Female
Levels: Female Male
> exampleSet$gender[1:5] == "Female"

[1] TRUE FALSE FALSE FALSE TRUE

You can retrieve the names of the features using featureNames. For many
microarray datasets, the feature names are the probe set identifiers.
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> featureNames(exampleSet)[1:5]

[1] "AFFX-MurIL2_at" "AFFX-MurIL10_at"
[3] "AFFX-MurIL4_at" "AFFX-MurFAS_at"
[5] "AFFX-BioB-5_at"

The unique identifiers of the samples in the dataset are available via the
sampleNames method. The varLabels method lists the column names of the
sample data:

> sampleNames(exampleSet)[1:5]

[1] "A" "B" "C" "D" "E"
> varLabels(exampleSet)

[1] "gender" "type" "score"

Extract the expression matrix and the AnnotatedDataFrame of sample
information using exprs and phenoData, respectively:

> mat = exprs(exampleSet)

> dim(mat)

[1] 500 26
> adf = phenoData(exampleSet)

> adf

An object of class "AnnotatedDataFrame"
sampleNames: A, B, ..., Z (26 total)
varLabels and varMetadata description:
gender: Patient gender
type: Case/control status
score: Tumor progress on XYZ scale

Subsetting

Probably the most useful operation to perform on ExpressionSet objects
is subsetting. Subsetting an ExpressionSet is very similar to subsetting the
expression matrix that is contained within the ExpressionSet : the first argu-
ment subsets the features and the second argument subsets the samples.
Here are some examples. Create a new ExpressionSet consisting of the five
features and the first three samples:

> vv = exampleSet[1:5, 1:3]

> dim(vv)

Features Samples
5 3

> featureNames(vv)
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[1] "AFFX-MurIL2_at" "AFFX-MurIL10_at"
[3] "AFFX-MurIL4_at" "AFFX-MurFAS_at"
[5] "AFFX-BioB-5_at"
> sampleNames(vv)

[1] "A" "B" "C"

Create a subset consisting of only the male samples:

> males = exampleSet[, exampleSet$gender == "Male"]

> males

ExpressionSet (storageMode: lockedEnvironment)
assayData: 500 features, 15 samples
element names: exprs

phenoData
sampleNames: B, C, ..., X (15 total)
varLabels and varMetadata description:
gender: Patient gender
type: Case/control status
score: Tumor progress on XYZ scale

featureData
featureNames: AFFX-MurIL2_at, AFFX-MurIL10_at, ..., 31
739_at (500 total)
fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
Annotation: hgu95av2

2.5 Graphics

Graphics and visualization are important issues when dealing with complex
data such as the ones typically found in biological science. In this section
we work through some examples that allow us to create general plots in R.
Both R and Bioconductor offer a range of functions that generate various
graphical representations of our data. For each function there are usually
numerous parameters that enable the user to tailor the output to the spe-
cific needs. We only touch on some of the issues and tools. Interested readers
should look at Chapter 10 of Gentleman et al. (2005a) or for even more
detail Murrell (2005).

The function plot can be used to produce dot plots. Read through its
documentation (? plot) and also take a look into the documentation for
par, which controls most of the parameters for R’s base graphics. We now
want to use the plot function to compare the gene expression intensities of
two samples from our dataset on a log–log scale.
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Figure 2.1. Scatterplot of expression intensities for two samples.

> x = exprs(exampleSet[, 1])

> y = exprs(exampleSet[, 3])

> plot(x=x, y=y, log="xy")

From the plot in Figure 2.1 we can see that the measurements for each
probe are highly correlated between the two samples. They form an almost
perfect line along the 45 degree diagonal.

Exercise 2.8
The axis annotation of the plot in Figure 2.1 is not very informative. Can
you add more meaningful axis labels and a title to the plot? Can you change
the plotting symbols? Add the 45 degrees diagonal to the plot. [Hint: use
function abline.]

Proper visualization can help to detect possible problems or inconsisten-
cies in the data. In the simplest case one can spot such problems by looking
at distribution summaries. A good example for this is the dependency of
the measurement intensity of a microarray probe on its GC-content. To
demonstrate this, we need to load a more extended data set from the CLL
package which includes the raw measurement values for each probe from an
experiment using the Affymetrix HG-U95Av2 GeneChip. The basecontent

function from package matchprobes calculates the base frequencies for
each probe based on a sequence vector.
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> library("CLL")

> library("matchprobes")

> library("hgu95av2probe")

> library("hgu95av2cdf")

> library("RColorBrewer")

> data("CLLbatch")

> bases = basecontent(hgu95av2probe$sequence)

We now need to match the probes via their position on the array to
positions in the data matrix of the CLLbatch object. Because we have several
samples in the set, we use the rowMeans function to compute, for each probe,
the average of its expression values across arrays.

> iab = with(hgu95av2probe, xy2indices(x, y,

cdf="hgu95av2cdf"))

> probedata = data.frame(

int=rowMeans(log2(exprs(CLLbatch)[iab, ])),

gc=bases[, "C"] + bases[, "G"])

Now we are ready to plot the log2-transformed intensity values of the
probes grouped by their GC-content. An extraordinarily effective tool for
the visualization of distributions is the boxplot. In the code below, we
construct a set of boxplots, one box for each possible value of GC-content.
The result is shown in Figure 2.2.

> colorfunction = colorRampPalette(brewer.pal(9, "GnBu"))

> mycolors = colorfunction(length(unique(probedata$gc)))

> label = expression(log[2]~intensity)

> boxplot(int ~ gc, data=probedata, col=mycolors,

outline=FALSE, xlab="Number of G and C",

ylab=label, main="")

The first two lines of the above code chunk are concerned with creating a
set of colors for the boxes. We use the function brewer.pal from the package
RColorBrewer to obtain a set of basic colors and colorRampPalette to
interpolate between them, defining a unique color for each possible value
of gc.

An alternative visualization of univariate distributions is the density plot.
We can plot multiple densities in one panel using the function multidensity

from the package geneplotter. For this plot we focus on the ten biggest
groups. First, we find out which of the GC-content values occur most often.
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Figure 2.2. Boxplots of the distributions of log2-intensities from the CLL dataset
grouped by GC-content. Please refer to the manual pages of the functions
boxplot.stats and boxplot for details on the features shown in a boxplot.

> tab = table(probedata$gc)

> gcUse = as.integer(names(sort(tab, decreasing=TRUE)[1:10]))

> gcUse

[1] 13 11 12 10 14 9 15 8 16 17

Then we can call the plot function.

> library("geneplotter")

> multidensity(int ~ gc, data=subset(probedata,

gc %in% gcUse), xlim=c(6, 11),

col=colorfunction(12)[-(1:2)],

lwd=2, main="", xlab=label)

Exercise 2.9
Another useful distribution summary is plots of the empirical cumulative
distribution function. Create a plot similar to the one in Figure 2.3 using
the function multiecdf.
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Figure 2.3. Density plot of distributions of log2-intensities from the CLL dataset
grouped by GC content.
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Processing Affymetrix
Expression Data

R. Gentleman and W. Huber

Abstract

In this chapter we do an analysis of Affymetrix gene expression
data. We begin with the CEL files that contain the raw microar-
ray readings, discuss how to do quality assessment, and proceed to
normalization and the estimation of expression values. Finally, we
determine differentially expressed genes.

3.1 The input data: CEL files

The most widely used and generally most useful format in which Affymetrix
data can be obtained is the CEL format. Files in this format are produced
by the array scanner software. This format contains the microarray feature
intensity quantitations, or what might be called “the raw data”, and such
data are the starting point for quality assessment and expression analysis.

To import these data into Bioconductor, most users will be served by the
ReadAffy function from the affy package.

> library("affy")

> myAB = ReadAffy()

The function ReadAffy imports CEL files into R objects of class
AffyBatch. These are the basic containers for Affymetrix datasets in Bio-
conductor. By default, if ReadAffy is called with no further arguments, it
reads all CEL files in the current working directory. The current working
directory can be displayed using the function getwd and be changed with
the function setwd, or on Windows and Mac OS X through the GUI menus.
Alternatively, you can supply the names of the files that you want to import
in the filenames argument, as shown in the next code chunk.

F. Hahne et al., Bioconductor Case Studies, DOI: 10.1007/978-0-387-77240-0 3,
© Springer Science+Business Media, LLC 2008
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> myAB = ReadAffy(filenames=c("a1.cel", "a2.cel", "a3.cel"))

In fact, there are different versions of the CEL file format that corre-
spond to different generations of Affymetrix microarrays and of the vendor’s
software tools. The function ReadAffy is usually able to deal with these
automatically, and in most cases you will not need to worry about this. In
this chapter we make use of data from a cohort of patients with chronic
lymphocytic leukemia (CLL). The data are contained in the CLL package.
The author of the package has already performed the task of reading the
CEL files into an AffyBatch object (this saves you time and disk space), so
here we can start with that object already. The commands needed to load
the object are given next.

> library("CLL")

> data("CLLbatch")

> CLLbatch

AffyBatch object
size of arrays=640x640 features (91212 kb)
cdf=HG_U95Av2 (12625 affyids)
number of samples=24
number of genes=12625
annotation=hgu95av2
notes=

The data consist of 24 samples run on HG-U95Av2 Affymetrix GeneChip
arrays.

3.1.1 The sample annotation

An important aspect of the data analysis paradigm used in the Biocon-
ductor project is that all datasets should be self-contained, self-describing
objects. Basically that means that you should be able to find out every-
thing that is relevant about an experiment from the object that is stored
and used for the analysis. It also means that a little more effort is needed
at the outset to set up the necessary data structures, but this effort is
rewarded during all subsequent analyses, when you do not need to worry
about manually coordinating expression data, target gene annotation data,
sample annotations, and other experimental information. First let us look
at the names of the 24 samples in CLLbatch.

> sampleNames(CLLbatch)

[1] "CLL10.CEL" "CLL11.CEL" "CLL12.CEL" "CLL13.CEL"
[5] "CLL14.CEL" "CLL15.CEL" "CLL16.CEL" "CLL17.CEL"
[9] "CLL18.CEL" "CLL19.CEL" "CLL1.CEL" "CLL20.CEL"

[13] "CLL21.CEL" "CLL22.CEL" "CLL23.CEL" "CLL24.CEL"
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[17] "CLL2.CEL" "CLL3.CEL" "CLL4.CEL" "CLL5.CEL"
[21] "CLL6.CEL" "CLL7.CEL" "CLL8.CEL" "CLL9.CEL"

As you can see, they are not particularly useful; we need further
information about the samples in order to analyze the data.

These data come from 24 patients with CLL. Although a great number
of clinical covariates were collected, we restrict our attention to only one,
disease status, which is either progressive (abbreviated by progres.), stable
(stable), or missing (NA). In practice, such data will often be provided to
you in a spreadsheetlike format. In the package CLL, they are provided by
the data.frame object disease.

> data("disease")

> head(disease)

SampleID Disease
1 CLL10 <NA>
2 CLL11 progres.
3 CLL12 stable
4 CLL13 progres.
5 CLL14 progres.
6 CLL15 progres.

As is often the case, we need to do a little data reorganization before
starting with the analysis. First, the row names of the data.frame should
be a suitable set of identifiers, and here we use the SampleID column for
this purpose.

> rownames(disease) = disease$SampleID

Next, we remove the (uninformative) suffixes .CEL from the sample
names annotation of CLLbatch, in order to make them match the row names
of the disease data.frame.

> sampleNames(CLLbatch) = sub("\\.CEL$", "",

sampleNames(CLLbatch))

We construct a vector mt that contains the matching of the rows of
disease with the samples of CLLbatch.

> mt = match(rownames(disease), sampleNames(CLLbatch))

Next, we want to provide longer descriptions of the variables so that if
we return to the analysis in a few months (or years) we will still be able to
see what the variables were. This would also help anyone else who might
want to use the data.
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> vmd = data.frame(labelDescription = c("Sample ID",

"Disease status: progressive or stable disease"))

Finally, we are ready to construct an AnnotatedDataFrame object which
we can insert into CLLbatch for the annotation of the samples.

> phenoData(CLLbatch) = new("AnnotatedDataFrame",

data = disease[mt, ], varMetadata = vmd)

We drop one array for which we have no information on the disease status,
because for the analysis we intend this array will not be informative.

> CLLbatch = CLLbatch[, !is.na(CLLbatch$Disease)]

When you encounter sample annotation data in a spreasdheet, edit-
ing into a suitable format will let you use the read.AnnotatedDataFrame

function. The description of the format that the function expects and an
example file are provided in the Biobase package.

3.2 Quality assessment

Quality assessment and quality control (QA/QC) are an essential part of
any data analysis. We use the term quality assessment for the computation
and interpretation of metrics that are intended to measure quality, and the
term quality control for possible subsequent actions, such as removing data
from bad arrays or redoing parts of an experiment.

It is a good idea to identify and remove bad arrays as early in the process
as you can. There are now several different packages available for QA and
we recommend the package arrayQualityMetrics and the affyQAReport

function from the package affyQCReport for generating comprehensive
reports. Both of these packages make extensive use of other packages, and
both provide easy to read summaries that help to identify arrays that
appear to be problematic.

Here, we consider some of the components from which these packages
are constructed. The simpleaffy package computes a variety of statistics,
based primarily on recommendations from Affymetrix, that are intended
to assess the quality of the arrays. These statistics are computed using the
qc function and can be plotted to obtain a visual overview.

> library("affyQCReport")

> saqc = qc(CLLbatch)

> plot(saqc)
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Figure 3.1. QC summary statistics, as produced by the simpleaffy package. We
see that a number of arrays have actin3/actin5 ratios that are higher than the
recommended threshold.

The plot is shown in Figure 3.1.
We can assess whether one or more arrays are different from the others

using the dist2 function on either the raw intensity data, or on normalized
expression data. For each pair of arrays, this function computes the median
of the absolute values of their differences. This may be considered a measure
of distance.

> dd = dist2(log2(exprs(CLLbatch)))

A heatmap plot of dd is created using the code below, and the plot is
rendered in Figure 3.2. Because the levelplot function does not have a
means of automatically reordering rows and columns we do that manually
prior to the creation of the plot.

> diag(dd) = 0

> dd.row <- as.dendrogram(hclust(as.dist(dd)))

> row.ord <- order.dendrogram(dd.row)

> library("latticeExtra")

> legend = list(top=list(fun=dendrogramGrob,
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args=list(x=dd.row, side="top")))

> lp = levelplot(dd[row.ord, row.ord],

scales=list(x=list(rot=90)), xlab="",

ylab="", legend=legend)

The affyPLM package (Brettschneider et al., 2007; Bolstad et al., 2005)
provides another set of diagnostics that can be used to help assess array
quality. There is extensive documentation in that package to help interpret
and understand the different approaches that are taken there.

First we need to fit the basic probe-level model.

> library("affyPLM")

> dataPLM = fitPLM(CLLbatch)

There are two plots that should be examined, the plot of normalized
unscaled standard error (NUSE) and that of relative log expression (RLE).
In the NUSE plot (Figure 3.3, top), low-quality arrays are those that
are significantly elevated or more spread out, relative to the other arrays.

Figure 3.2. Between-array distances, as measured by their median absolute
difference.
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Figure 3.3. Top: NUSE plot; bottom: RLE plot. Both indicate that array CLL1
is potentially problematic.

NUSE values are useful for comparing arrays within one dataset, but their
magnitudes are not comparable across different datasets.

> boxplot(dataPLM, main="NUSE", ylim = c(0.95, 1.22),

outline = FALSE, col="lightblue", las=3,

whisklty=0, staplelty=0)

In the RLE plot (Figure 3.3, bottom), problematic arrays are indicated
by larger spread, by a center location different from y = 0, or both.
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> Mbox(dataPLM, main="RLE", ylim = c(-0.4, 0.4),

outline = FALSE, col="mistyrose", las=3,

whisklty=0, staplelty=0)

Both plots in Figure 3.3 indicate that array CLL1 is problematic.
Therefore, we drop it from our further analysis.

> badArray = match("CLL1", sampleNames(CLLbatch))

> CLLB = CLLbatch[, -badArray]

Exercise 3.1
Repeat the calculation of the NUSE and RLE plots for the data with the
array CLL1 removed.

3.3 Preprocessing

Expression microarray preprocessing comprises three major tasks: back-
ground correction, which aims to adjust the intensity readings for
nonspecific signal and hence to increase the array’s sensitivity; between-
array normalization, which aims to adjust the intensity readings for
technical variability between arrays due to subtle differences in handling,
labeling, hybridization, and scanning; and reporter summarization, which
computes a summary gene expression value for each gene from all the
features on the array that target its transcripts. For example, on the HG-
U95Av2 GeneChip array there are 409,600 probes that are intended to
target 12,625 different gene transcripts.

Between-array normalization methods have been designed for sets of
arrays from a single experiment, that is, for arrays which were hybridized
under similar conditions with samples that are related and were treated
consistently. These methods should not be used to combine microarrays
from different experiments, and will often give bad results if used for that
purpose. Instead, when there are several separate datasets that are to be
analyzed, we recommend preprocessing each set separately, in as similar
a fashion as possible, and then using an appropriate statistical model
to estimate the effects of interest from the combined data (Gentleman
et al., 2005b). To obtain useful estimates biological factors should not be
confounded with the experiments.

A comprehensive method that provides all three of the preprocess-
ing tasks is RMA. It is provided by the function rma in the affy
package (Irizarry et al., 2003).
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> CLLrma = rma(CLLB)

It accepts an instance of the AffyBatch class and returns an Expression-
Set object that can be used in downstream analyses.

The expression values calculated by rma are in log2 scale. A matrix with
the estimate expression values can be obtained by using the exprs method.
The following code extracts the expression data and obtains the dimen-
sions of the matrix containing the data. The same information can also be
obtained by calling the dim function directly on the ExpressionSet.

> e = exprs(CLLrma)

> dim(e)

[1] 12625 22
> dim(CLLrma)

Features Samples
12625 22

In Section 3.5, we explore different aspects of preprocessing in more
detail. Furthermore, the threestep function in the affyPLM package
provides a flexible interface for experimenting with different alternative
solutions for each of the three tasks, if that is of interest to you.

Exercise 3.2
How many probe sets are there in this dataset?

The sample information that was stored with the raw data CLLB has been
transferred to the ExpressionSet .

> pData(CLLrma)[1:3,]

SampleID Disease
CLL11 CLL11 progres.
CLL12 CLL12 stable
CLL13 CLL13 progres.

You can conveniently use $ to access the sample annotation variables.

> table(CLLrma$Disease)

progres. stable
14 8

3.4 Ranking and filtering probe sets

At this stage of the analysis, we have obtained expression estimates for
each gene and each sample. The sensitivity of microarrays is such that
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we do not expect to reliably detect expression, and differential expression,
for more than, say, 50% of the genes on a genome-wide array such as the
HG-U95Av2. The signal for the remaining genes will essentially consist of
noise and will only aggravate the multiple testing problem (to which we
come back in Section 3.4.4). This suggests that some form of nonspecific
filtering of noninformative probe sets will have potentially great benefits in
the downstream analyses.

The nsFilter function in the genefilter package can be used to filter
out probe sets on a variety of criteria. The one we use here is based on
variability. Using the default settings we also filter out probe sets with
no Entrez Gene identifiers (they will not map to the annotation data and
hence will often not be of much use in downstream analyses) and Affymetrix
control probes (their names start with the letters AFFX).

> CLLf = nsFilter(CLLrma, remove.dupEntrez=FALSE,

var.cutof =0.5)$eset

3.4.1 Summary statistics and tests for ranking

Log fold-change

A naive first choice for comparing two groups is the average log fold-change.
It can be computed by using R base functions such as rowMeans applied to
the appropriate columns of the matrix exprs(CLLf). We can also use the
more convenient function rowttests.

> CLLtt = rowttests(CLLf, "Disease")

> names(CLLtt)

[1] "statistic" "dm" "p.value"

The function computes for each row the average log-ratio between the
two disease groups, the t-statistic, and the corresponding p-value by using
the Student’s t-distribution.

The variability of log-ratios often depends on the overall intensity of the
probe set in question. We can estimate the overall intensity by the average
log expression, which is computed in the code chunk below.

> a = rowMeans(exprs(CLLf))

Exercise 3.3
Plot the log-ratio, CLLtt$dm, against the average intensity, a, as in
Figure 3.4, to see if the distribution of log-ratios is a function of the aver-
age intensity in these data. Also plot log-ratio versus rank(a). Does the
variability of the log-ratio values depend on a?
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Figure 3.4. Scatterplot of log-ratio versus mean intensity (left panel) and versus
rank of mean intensity (right panel).

t-statistic

The t-statistic measures the difference in mean divided by an estimate of the
variance. When there are few replicates, the variance is not well estimated
and the t-statistic can perform poorly. Alternative statistics that borrow
information across genes often provide better results. An instance of such
a modified t-statistic is based on an empirical Bayes moderation approach,
implemented in the eBayes function in the limma package.

> library("limma")

> design = model.matrix(~CLLf$Disease)

> CLLlim = lmFit(CLLf, design)

> CLLeb = eBayes(CLLlim)

When sample sizes are moderate or large, say ten or more in each group,
there is generally no advantage (but also no disadvantage) to using the
Bayesian approach.

Exercise 3.4
Compare the t-statistics obtained under the two approaches. Do you agree
with the statement above, that for moderate or large sample sizes there is
little advantage to the Bayesian approach?

3.4.2 Visualization of differential expression

The volcano plot is a useful way to see the estimate of the log fold-change
and statistic you choose to rank the genes simultaneously. Figure 3.5 plots
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Figure 3.5. A volcano plot using a t-statistic: the horizontal line indicates an
untransformed p-value of 0.01, so points above it have smaller p-values than that.

p-values (more specifically, − log10 of the p-values) versus effect size. For
simplicity we assumed the t-statistic follows a t-distribution to obtain the
p-values. It is typical to add some guides to the plot, in the form of either
horizontal or vertical lines. In the figures here, we add a horizontal line that
corresponds to an untransformed p-value of 0.01, so that points above that
line have p-values less than 0.01.

To create a volcano plot you can use the following code.

> lod = -log10(CLLtt$p.value)

> plot(CLLtt$dm, lod, pch=".", xlab="log-ratio",

ylab=expression(-log[10]~p))

> abline(h=2)

Exercise 3.5
Generate a volcano plot using a moderated t-statistic (Figure 3.6). Does it
look the same as the plot using the usual t-statistic?

3.4.3 Highlighting interesting genes

Exercise 3.6
Can you highlight the top 25 genes with the smallest p-value (or selected
according to another criterion of your choice) with a different color and
symbol, as in Figure 3.7? (Hint: look at the function points with options
col="blue" and pch=18.)
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Figure 3.6. A volcano plot when using moderated t-statistic.
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Figure 3.7. A volcano plot with highlighting of the top 25 probe sets.
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3.4.4 Selecting hit lists and the multiple testing problem

When you get to this section, you have generated three statistics that can
be used to rank genes. Now we turn our attention to deciding on a cutoff.

Suppose we consider all genes attaining p-values less than 0.01. In a
single experiment, a p-value of less than 0.01 would be regarded as highly
significant. However, here we are testing many hypotheses simultaneously,
and the p-values no longer have the conventional meaning. We are testing
6098 null hypotheses (this is the number of probe sets in CLLf) in the
example dataset. If they are all true (i.e., if no genes are differentially
expressed) we expect 0.01 × 6098 ≈ 61 hypothesis rejections, which all
would be false positives.

Exercise 3.7
How many probe sets with p < 0.01 do you actually see using the t-test?
And with the moderated t-test?

Various approaches have been suggested for dealing with the multiple
testing problem. The multtest package provides implementations of many
of the options. Alternatively, the function topTable in the limma package
provides multiple testing adjustment methods, including Benjamini and
Hochberg’s false discovery rate (FDR), simple Bonferroni correction, and
several others. For details look at help files for topTable and p.adjust. The
following example lists the top ten genes and creates a report.

> tab = topTable(CLLeb, coef=2, adjust.method="BH", n=10)

> genenames = as.character(tab$ID)

Here, coef=2 specifies that we care for the second coefficient in the linear
model fit, that is, the between-group difference, as the parameter of interest.
The first coefficient is the intercept. The parameter n indicates how many
genes should be selected.

3.4.5 Annotation

First we load the annotate package,

> library("annotate")

find out which metadata package we need, and load it.

> annotation(CLLf)

[1] "hgu95av2"
> library("hgu95av2.db")
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Now we can retrieve more annotation information about the genes that
interest us, for example, their EntrezGene ID and gene symbol.

> ll = getEG(genenames, "hgu95av2")

1303_at 33791_at 37636_at 36131_at 36939_at 36129_at
"6452" "10301" "9767" "1192" "2823" "9905"
551_at 39400_at 41776_at 36122_at
"2033" "23102" "475" "5687"

> sym = getSYMBOL(genenames, "hgu95av2")

1303_at 33791_at 37636_at 36131_at 36939_at
"SH3BP2" "DLEU1" "PHF16" "CLIC1" "GPM6A"
36129_at 551_at 39400_at 41776_at 36122_at
"SGSM2" "EP300" "TBC1D2B" "ATOX1" "PSMA6"

We can use the following code to create an HTML page, useful for
instance to share results with collaborators.

> tab = data.frame(sym, signif(tab[,-1], 3))

> htmlpage(list(ll), othernames=tab,

filename="GeneList1.html",

title="HTML report", table.center=TRUE,

table.head=c("Entrez ID",colnames(tab)))

Look for the resulting file GeneList1.html in your R working directory.
You can open it with your favorite browser, or using the code below.

> browseURL("GeneList1.html")

To create a report with more annotation information, we can use the
annaffy package. Below are a few lines of code that create an HTML
report with links to various annotation sites.

> library("KEGG.db")

> library("hgu95av2.db")

> library("annaffy")

> atab = aafTableAnn(genenames, "hgu95av2.db", aaf.handler())

> saveHTML(atab, file="GeneList2.html")

By default aaf.handler returns 12 annotation types. You can select a
subset instead of reporting all of them.

> atab = aafTableAnn(genenames, "hgu95av2.db",

aaf.handler()[c(2,5,8,12)])

> saveHTML(atab, file="GeneList3.html")



40 R. Gentleman, W. Huber

3.5 Advanced preprocessing

As noted in Section 3.3, there are three operations that typically need to
be performed for microarray data preprocessing: background correction,
normalization, and reporter summarization. The “raw” feature intensity
data are typically provided in CEL files, one for each scanned array, whereas
the assignment of features to target genes is made in the so-called CDF
file, of which there is only one for each type of array. In this section, we
demonstrate how you can work with these data, in order to construct your
own custom analysis methods.

3.5.1 PM and MM probes

Many Affymetrix arrays have both perfect match (PM) and mismatch
(MM) probes on the arrays. The PM probes are intended to be comple-
mentary to the mRNA being probed, while the MM probes have the same
sequence except in the thirteenth position, where the base is changed to
its complementary base (e.g. if A in the PM, then T in the MM). The
PMs are designed to hybridize specifically to their target cDNA of interest,
however, hybridization of short oligonucleotide tends not to be perfectly
specific, and there is also a certain amount of nonspecific (or less specific)
hybridization from various other cDNA molecules. The intention of the
MMs is to measure this nonspecific hybridization. If that were the case,
then each MM should generally have lower intensities than its PM partner,
and its value could be subtracted from the PM value in order to obtain a
more accurate estimation of the signal due to specific hybridization of the
target. Let us check this out. The PM and MM values can be extracted
using the functions pm and mm.

> pms = pm(CLLB)

> mms = mm(CLLB)

Exercise 3.8
For the first array in the CLL data, can you make a scatterplot of the PM
values versus the MM values, as in Figure 3.8? What do you see, and how
might you interpret that? How many MM probes have larger intensities
than their corresponding PM probes?

Exercise 3.9
For the second array, can you make a histogram of the MMs for which
PM > 2000? As in Figure 3.9, compare it to the histogram where the PM
values are less than 2000.
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Figure 3.8. A plot of the PM values versus the corresponding MM values for array
CLL11.

Figure 3.9. Histogram of MM intensities for small (red) and large (blue) values
of PM intensities.

3.5.2 Background-correction

The feature intensities from Affymetrix microarrays are always positive,
even if the abundance of the intended target gene is zero. This is due to opti-
cal noise and, in many cases, cross-hybridization. Background-correction of
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the intensities is essential to obtain good sensitivity from the data (McGee
and Chen, 2006; Ritchie et al., 2007).

In this section, we explore the background-correction method of RMA
and compare it to an alternative method. In RMA, background-correction
is done by fitting a Normal-Exponential mixture model and subtracting a
background estimate from the PM value of each probe that is estimated in
such a way that the result is guaranteed to remain positive. Subsequently,
the data are logarithm transformed (Irizarry et al., 2003). In VSN, only one
overall background estimate is computed for the whole array, and this esti-
mate can be larger than some of the smaller feature intensities on the array.
Hence, some of the background-subtracted values can be zero or negative.
Subsequently, the so-called generalized logarithm transformation (Huber
et al., 2002) is applied, which deals more gracefully with nonpositive values
than the logarithm. The RMA background-correction is embedded within
the function rma, and it is not easy to get at the background-corrected inten-
sities before the probe set summarization, but we can use the following code
to produce them.

> bgrma = bg.correct.rma(CLLB)

> exprs(bgrma) = log2(exprs(bgrma))

The following code obtains the VSN background correction.

> library("vsn")

> bgvsn = justvsn(CLLB)

Exercise 3.10
Compare the results of the two background-correction methods to the orig-
inal values and between each other, as in Figure 3.10. You may want to do
the computations on a subset of the data to speed things up.

The return value of the call to justvsn above is an AffyBatch with
values that have been background-corrected, normalized between arrays,
and log2-transformed. In order to do the summarization of probe sets,
we could call the function rma with arguments normalize=FALSE and
background=FALSE, or we can use the function vsnrma, which is a wrapper
that performs all of these steps.

> CLLvsn = vsnrma(CLLB)

We can repeat the same analysis as in Section 3.4 to do nonspecific
filtering and testing for differential expression.
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Figure 3.10. Left: the RMA background-correction transformation: the orig-
inal PM intensities are plotted along the x-axis (on a logarithmic scale),
the RMA background-corrected and log2-transformed values along the y-axis.
Without background-correction, the curve would be a straight line. The
higher slope of the curve in the low-intensity range reflects the background
subtraction. Middle: similar to left panel, but with VSN background-cor-
rected and glog2-transformed values along the y-axis. Right: Comparison
of RMA background-corrected and log2-transformed values with the VSN
background-corrected and glog2-transformed values.

> CLLvsnf = nsFilter(CLLvsn, remove.dupEntrez=FALSE,

var.cutoff=0.5)$eset

> CLLvsntt = rowttests(CLLvsnf, "Disease")

Exercise 3.11
Compare the results with those obtained for CLLtt in Section 3.4. Pro-
duce a scatterplot between the t-statistics obtained for both cases, as in
Figure 3.11.

3.5.3 Summarization

We next show how to explore other probe set summarization methods.
First, we create a list of indices. Each element of the list indices corresponds
to a probe set and contains the row indices of the matrices pms and mms

corresponding to the probe set’s probes. These data are obtained from the
CDF file.

> pns = probeNames(CLLB)

> indices = split(seq(along=pns), pns)

As you see, there are indeed 12,625 probe sets.



44 R. Gentleman, W. Huber

−5 0 5

6−
4−

2−
0

2
4

6

RMA

N
S

V

Figure 3.11. Comparison of t-statistics obtained from data preprocessed with
RMA using default settings (x-axis) and with VSN for background-correction
and between-array normalization (y-axis). For the data shown here, there is
practically no difference.

> length(indices)

[1] 12625
> indices[["189_s_at"]]

[1] 15874 15875 15876 15877 15878 15879 15880 15881
[9] 15882 15883 15884 15885 15886 15887 15888 15889

Exercise 3.12
Can you plot the PM and MM intensities for the probes of one probe set
across a set of arrays, as in Figure 3.12?

Let us try out a naive summary method: for each sample, we take the
median of differences between the PM and MM values for each probe set.

> newsummary = t(sapply(indices, function(j)

rowMedians(t(pms[j,]-mms[j,]))))

> dim(newsummary)

[1] 12625 22

The code yielded a matrix with one row for each probe set and one
column for each sample.
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Figure 3.12. Intensities of eight PM probes and their associated MM probes from
the probe set 189_s_at, which targets the PLAUR gene. Shown are the data for
the first 12 samples of the CLLB dataset. Note how the profiles of most (but not
all) of the probes are correlated across samples, but have very different baselines
(this is the so-called probe effect). Also, in some cases the MM values are larger
than the PM values.

Exercise 3.13
Most biologists are unhappy when expression estimates are negative. What
percent of probe sets, for each array, yield negative values for each array?
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Two-Color Arrays

Florian Hahne and Wolfgang Huber

Abstract

In this case study, two RNA samples are compared to each other on
60 mer oligonucleotide microarrays using two-color labeling. The lab
covers data import, visualization, exploration and normalization of
the data, and the identification of differentially expressed genes.

4.1 Introduction

Transcription-profiling two-color microarrays are hybridized with two sam-
ples of cDNA that are obtained from the RNA samples of interest by reverse
transcription. Each of the two samples is labeled with a different dye. A pop-
ular choice is the Cy3 and Cy5 dyes. The dyes have different excitation
wavelengths, so the amount of bound cDNA from each of the two samples
at each position on the array can be determined by two passes of an opti-
cal scanner. This results in two grey-scale image files which are typically
stored in TIF format. The images are quantified by specialized image analy-
sis software that produces numeric summaries for each feature on the array.
Typically, we are most interested in the overall feature intensity for each
of the two wavelengths. Sometimes, additional statistics are useful, such
as a measured background intensity in the vicinity of the feature, which is
intended to estimate the background signal that would be obtained even
in the absence of the labeled cDNA sample, and spot shape descriptors,
which may be used to detect features of poor manufacturing quality.

The analysis in this lab starts from these numeric feature summaries.
There are many different file formats, and many variations of the tech-
nology, so importing the data into a suitable R data structure can be the
first challenge. The function read.maimages in the package limma provides
excellent functionality for this task; only if your image analysis software
produces an esoteric file format, will you need to adapt the function. In
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any case, you will need to make some decisions: which of the feature sum-
maries do you want to use for the subsequent statistical analysis, and which
identifier system for the features and the reporter sequences on the array?

4.2 Data import

In this lab, we use the CCl4 example dataset by Holger Laux, Timothy
Wilkes, Amy Burrell, and Carole Foy from LGC Ltd. in Teddington, UK.
In the experiment, rat hepatocytes were treated either with carbon tetra-
chloride (CCl4) or with dimethylsulfoxid (DMSO). In the early twentieth
century, CCl4 was widely used as a dry cleaning solvent, as a refrigerant,
and in fire extinguishers, however, it was found to have multiple toxic and
possible cancerogenous sideeffects. DMSO is commonly used as a solvent in
pharmaceutical applications, and here it served as negative control. Total
RNA was hybridized to Agilent®Rat Whole Genome microarrays. The
arrays use a two-color labeling scheme (Cy3 and Cy5), and the experiment
was done as a direct comparison with dye-swaps and three replicates each.
The integrity of the RNA was quantified from the electrophoretic trace of
the RNA samples by Agilent’s RNA Integrity Number (RIN); (Schroeder
et al., 2006). The initial samples had a RIN of 9.7. To study the effect
of RNA degradation, additional samples were generated by degrading the
CCl4-treated RNA sample with ribonuclease A, resulting in RINs of 5.0
and 2.5. The experimental design is described in more detail below.

Let us load the package CCl4 that contains these data.

> library("limma")

> library("CCl4")

> dataPath = system.file("extdata", package="CCl4")

The variable dataPath contains the name of the directory in which the
input data files are provided.

> dir(dataPath)

[1] "013162_D_SequenceList_20060815.txt"
[2] "251316214319_auto_479-628.gpr"
[3] "251316214320_auto_478-629.gpr"
[4] "... (16 more files) ..."
[5] "samplesInfo.txt"

Exercise 4.1
Use a text editor or a spreadsheet program to view these files. What does
each of them contain?
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Let us have a closer look at the samplesInfo.txt file. This is also called
the targets file. It contains one row for each array in the experiment. Its
columns describe the two cDNA samples hybridized to each array; in the
current case, there are four columns describing the RNA source and the
RNA quality of each of the two RNA samples. Another column is the name
of the corresponding image analysis file, which among other information
contains the array identifier. In general, the samplesInfo.txt file can have
columns that refer to properties of the arrays and properties that refer to
either of the two cDNA samples hybridized to the array.

We can read this file into R using

> adf = read.AnnotatedDataFrame("samplesInfo.txt",

path=dataPath)

> adf

An object of class "AnnotatedDataFrame"
rowNames: 251316214319_auto_479-628.gpr, 251316214320_auto_4
78-629.gpr, ..., 251316214394_auto_463-521.gpr (18 total)
varLabels and varMetadata description:
Cy3: name of the RNA sample that was labeled with Cy3
Cy5: name of the RNA sample that was labeled with Cy5
RIN.Cy3: Agilent's RNA integrity number for the Cy3 RNA s

ample
RIN.Cy5: Agilent's RNA integrity number for the Cy5 RNA s

ample

adf is an object of class AnnotatedDataFrame. This class is very similar
to the data.frame class that you might know from the R base package, but
in addition it allows you to annotate the variables that correspond to its
columns with more explicit information on the definition of each variable,
how it was measured, in which units, and the like. The targets file can be
prepared using a text editor or a spreadsheet program such as Microsoft
Excel or OpenOffice Calc.

Now let us read the intensity data into an RGList object in R. The data
files were produced by Genepix® image analysis software. We can use the
function read.maimages for this purpose. This function expects a data.frame
with mandatory column FileName as its input, and we construct this from
the object adf.

> targets = pData(adf)

> targets$FileName = row.names(targets)

> RG = read.maimages(targets, path=dataPath, source="genepix")
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Consult the help entry for read.maimages to see which other file formats
are supported. If the data files contain identifiers of the array features and
annotation of their target genes, these are read from the first intensity data
file.

> head(RG$genes)

Block Row Column ID Name
1 1 1 1 BrightCorner BrightCorner
2 1 1 2 BrightCorner BrightCorner
3 1 1 3 (-)3xSLv1 NegativeControl
4 1 1 4 A_44_P317301 AW523361
5 1 1 5 A_44_P386163 NM_001007719
6 1 1 6 A_44_P353916 NM_001025631

It is important to note that all data files are assumed to contain data
for the same array layout, that is, for the same target genes in the same
order. It is your responsibility to confirm that this is true; the read.maimages
function does not do any checking.

4.3 Image plots

It is interesting to look at the variation of background values over the array.
Consider image plots of the red and green background for the first array:

> par(mfrow=c(5,1))

> imageplot(log2(RG$Rb[,1]), RG$printer, low="white",

high="red")

> imageplot(log2(RG$Gb[,1]), RG$printer, low="white",

high="green")

> imageplot(rank(RG$Rb[,1]), RG$printer, low="white",

high="red")

> imageplot(rank(RG$Gb[,1]), RG$printer, low="white",

high="green")

> imageplot(rank(log(RG$R[,1])+log(RG$G[,1])),

RG$printer, low="white", high="blue")

The output of this is shown in Figure 4.1.

4.4 Normalization

An MA-plot displays the log-ratio of red intensities R and green intensities
G on the y-axis versus the overall intensity of each spot on the x-axis. The
log-ratio is

M = log2 R − log2 G = log2(R/G)
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Figure 4.1. False color image plots for the first array. From top to bottom: red
background with a logarithmic color scale, green background with a logarithmic
color scale, red background with a rank color scale, green background with a rank
color scale, rank of the average of logarithms of red and green foreground. In all
of the images, we can see traces of a scratch towards the right of the images. Also,
there is a pattern of horizontal stripes. In the bottom plot, we can see a gradient
from left to right. The color scale determines how the feature intensity values
are mapped to the range of colors. Often, the rank scale is more sensitive for the
detection of patterns than the logarithmic or untransformed scales. Patterns or
scratches such as seen here may affect the downstream analysis, but it is difficult
to say from these plots alone how consequential they really are for the bottomline
result.
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and the overall intensity is measured by

A =
1
2

(log2 R + log2 G) = log2

√
RG.

It is easy to compute these using the basic R arithmetic functions; there is
also a function in limma for this purpose.

> MA = normalizeWithinArrays(RG, method="none",

bc.method="none")

With the option method="none", we instruct the function normalize-

WithinArrays not to do any adjustments to the computed M values. With
the option bc.method="none", we specify that only the foreground R and
G values should be used.

We can produce the scatterplot between the M and the A values for the
first array using the following instructions.

> library("geneplotter")

> smoothScatter(MA$A[, 1], MA$M[, 1], xlab="A", ylab="M")

> abline(h=0, col="red")

Exercise 4.2
a. What does the plot look like when you use bc.method="subtract"

in the above call to normalizeWithinArrays?

b. Why did we use the function smoothScatter? Try also the plotMA

function from the limma package. How does it differ?
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M

Figure 4.2. MA-plot for the first array. Note the downward curvature of the
distribution at the lower end of the A range: for low intensity spots, M tends to
be negative, that is, the red color channel is dimmer than the green.
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In Figure 4.2, we noted that there is an imbalance between the red and
green intensities. There are also differences in the intensity distributions
between the different arrays, as we can see in the boxplot that is shown in
Figure 4.3.
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Figure 4.3. Boxplots and smooth density estimates of the distributions of the
log2 G values of the 18 arrays.
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> plotformula = log2(RG$G)~col(RG$G)

> boxplot(plotformula, ylim=c(5,9), outline=FALSE,

col="forestgreen", xlab="arrays",

ylab=expression(log[2]~G), main="boxplot")

In addition to the boxplot, we can also look at the distributions of the
G values on the different arrays with the multidensity function.

> multidensity(plotformula, xlim=c(5,9),

main="densities", xlab=expression(log[2]~G))

The result is shown in the lower panel of Figure 4.3.
The purpose of normalization is to adjust the data for unwanted imbal-

ances, drifts, or biases, such as those that we have seen above between the
color channels and between arrays. To keep things simple, in this lab we
focus on the subset of six arrays which were hybridized with the good RNA
sample of the CCl4 treated hepatocytes.

> rin = with(MA$targets, ifelse(Cy5=="CCl4", RIN.Cy5,

RIN.Cy3))

> rin

[1] 9.7 5.0 2.5 2.5 9.7 5.0 2.5 9.7 9.7 5.0 2.5 9.7 5.0 5.0
[15] 2.5 9.7 5.0 2.5
> select = (rin == max(rin))

> RGgood = RG[, select]

> adfgood = adf[select, ]

We have also created a subset version adfgood of the annotated dataframe
adf, which we need later on. Note the different indexing conventions: for
objects of type RGList , like RG, arrays are considered as“columns”, whereas
for the object adf, which is of type AnnotatedDataFrame, arrays are con-
sidered as “rows”. We use the function justvsn from the vsn package to
normalize the data from these 6 arrays. A more detailed introduction to
VSN is given in Chapter 5.

> library("vsn")

> ccl4 = justvsn(RGgood, backgroundsubtract=TRUE)

The resulting object ccl4 is of class NChannelSet . A useful plot for
checking whether the vsn normalization worked well is the scatterplot of
standard deviations versus the rank of the mean intensity of each feature.
The result is shown in Figure 4.4.
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Figure 4.4. For each feature, this plot shows the empirical standard deviation of
the normalized and glog-transformed data on the y-axis versus the rank of the
mean on the x-axis. The red dots, connected by lines, show the running median
of the standard deviation. It should be approximately horizontal, that is, show
no substantial trend.

> r = assayData(ccl4)$R

> g = assayData(ccl4)$G

> meanSdPlot(cbind(r, g))

In the next paragraph, we produce MA-scatterplots of the normalized
and glog-transformed data. However, before we proceed, let us first pay
some attention to the experimental metadata in the ccl4 object. Because
RGgood does not contain all the information that is needed for a valid and
complete NChannelSet , let us do some additional postprocessing of adfgood
at this point. First, we remove the .gpr extension from the sample names,
to be consistent with the output of limma’s read.maimages function.

> rownames(pData(adfgood)) = sub("\\.gpr$", "",

rownames(pData(adfgood)))

> pData(adfgood)

Cy3 Cy5 RIN.Cy3 RIN.Cy5
251316214319_auto_479-628 DMSO CCl4 9.0 9.7
251316214330_auto_457-658 CCl4 DMSO 9.7 9.0
251316214333_auto_487-712 DMSO CCl4 9.0 9.7
251316214379_auto_443-617 CCl4 DMSO 9.7 9.0
251316214382_auto_481-674 DMSO CCl4 9.0 9.7
251316214391_auto_475-599 CCl4 DMSO 9.7 9.0
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Figure 4.5. MA-plots of the six arrays after normalization and glog-transforma-
tion with vsn. Can you figure out what causes the little “clouds”above the M = 0
line in the left side of the plot?
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We also need to update the channel information in the varMetadata part
of adfgood. This indicates which of the columns refer to which channel.

> varMetadata(adfgood)$channel = factor(c("G", "R", "G", "R"),

levels = c("G", "R", "_ALL_"))

The factor variable channel needs to have a level _ALL_, which is des-
ignated for annotation columns that refer to the whole array. In the case
of adfgood, however, all its four columns are channel-specific. Now we are
ready to stick it onto ccl4.

> phenoData(ccl4) = adfgood

> validObject(ccl4)

[1] TRUE

Now let us construct an additional object, ccl4AM, that contains the
difference (M=r-g) and average (A=(r+g)/2) glog2 intensities.

> ccl4AM = ccl4

> assayData(ccl4AM) = assayDataNew(A=(r+g)/2, M=r-g)

Let us also update the channel information in the variable metadata of
the new object ccl4AM: because the two channels A and M are a combination
of both the red and the green intensities, all of the sample annotation
variables are now common (_ALL_), rather than channel-specific.

> varMetadata(phenoData(ccl4AM))$channel[] = "_ALL_"

> validObject(ccl4AM)

[1] TRUE

> smoothScatter(assayData(ccl4AM)$A[,2],

assayData(ccl4AM)$M[,2])

> abline(h=0, col="red")

The above code produces the MA-plot of the second array. The plots for
all six arrays are shown in Figure 4.5.

Here you have seen how to use the function justvsn from the package
vsn. There are also several other alternative normalization methods in the
package limma. Please see the limma vignette and the manual pages for
the functions normalizeWithinArrays and normalizeBetweenArrays.

4.5 Differential expression

Now we are ready to identify the differentially expressed genes in this exper-
iment. First, we need to construct a so-called model matrix . This matrix
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is a general mechanism used in the limma package to specify multiway
comparisons in complex microarray experimental designs. Here, the design
is rather simple: we just consider direct comparisons between two samples,
hepatocytes treated with the negative control (DMSO) and with CCl4.

> design = modelMatrix(pData(ccl4AM), ref="DMSO")

Found unique target names:
CCl4 DMSO

CCl4
251316214319_auto_479-628 1
251316214330_auto_457-658 -1
251316214333_auto_487-712 1
251316214379_auto_443-617 -1
251316214382_auto_481-674 1
251316214391_auto_475-599 -1

We can now call limma’s lmFit function to fit a linear model to the
data, separately gene per gene. As the independent variable, the linear
model takes the M value for the gene; as the dependent variables, it takes
the sample annotations, as provided through the matrix design.

> fit = lmFit(assayData(ccl4AM)$M, design)

Because of the small number of arrays, the use of the moderated t-
statistic is advisable (Tusher et al., 2001; Lönnstedt and Speed, 2002; von
Heydebreck et al., 2004; Smyth, 2004). In limma, this is done with the
eBayes function.

> fit = eBayes(fit)

The return value of this is an object of class MArrayLM .

> class(fit)

[1] "MArrayLM"
attr(,"package")
[1] "limma"
> names(fit)

[1] "coefficients" "rank" "assign"
[4] "qr" "df.residual" "sigma"
[7] "cov.coefficients" "stdev.unscaled" "pivot"

[10] "genes" "method" "design"
[13] "df.prior" "s2.prior" "var.prior"
[16] "proportion" "s2.post" "t"
[19] "p.value" "lods" "F"
[22] "F.p.value"
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Figure 4.6. Histogram of the raw per-gene p-values from the moderated t-test.
The horizontal “floor” of values in this plot corresponds to the large number
of features whose target genes are not differentially expressed. The sharp peak
at p < 0.001 corresponds to differentially expressed genes. The shape of this
histogram can be used to assess an experiment and its analysis: if the peak on
the left is missing, this indicates lack of power of the experiment or of the analysis
to detect differentially expressed genes. If the remainder of the distribution is not
fairly uniform, this can indicate overdispersion and/or a strong interfering effect
of another variable, for example, an unintended batch effect.

A first sanity check of the result can be obtained by looking at the
histogram of the raw per-gene p-values

> hist(fit$p.value, 1000)

The result of this is shown in Figure 4.6. Visually there seem to be plenty
of differentially expressed genes. Let us obtain a summary table of some
key statistics for the top ones.

> fit$genes = pData(featureData(ccl4AM))

> topTable(fit, number=10, adjust="BH")

Block Row Column ID Name logFC t
29304 1 285 52 A_44_P312606 BG153336 3.19 33.7
8210 1 80 73 A_44_P312605 BG153336 4.58 33.3
34156 1 332 63 A_44_P548559 XM_342120 3.35 31.1
20886 1 203 80 <NA> <NA> 3.04 29.5
40623 1 395 41 A_44_P196172 NM_138881 3.49 29.0
18619 1 181 79 A_44_P445344 NM_024134 3.23 27.5
21888 1 213 52 A_44_P139673 NM_031572 -2.49 -27.4
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21065 1 205 53 A_44_P953483 TC534656 2.40 25.5
24327 1 237 19 A_43_P15719 NM_001012197 2.87 24.9
16195 1 158 24 A_44_P109342 NM_031971 2.47 23.8

P.Value adj.P.Val B
29304 5.26e-10 1.31e-05 11.7
8210 5.91e-10 1.31e-05 11.7
34156 1.02e-09 1.50e-05 11.4
20886 1.53e-09 1.56e-05 11.2
40623 1.76e-09 1.56e-05 11.1
18619 2.69e-09 1.79e-05 10.9
21888 2.83e-09 1.79e-05 10.8
21065 4.98e-09 2.76e-05 10.5
24327 6.01e-09 2.96e-05 10.4
16195 8.67e-09 3.69e-05 10.1

In the table, t is the empirical Bayes moderated t-statistic. The corre-
sponding p-values have been adjusted for multiple testing to control the
false discovery rate and B is the empirical Bayes log odds of differen-
tial expression (Smyth, 2004). BG153336 is the identifier of an IMAGE
clone that has been mapped to the Smarcb1 gene (SWI/SNF related,
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Figure 4.7. The volcano plot shows, for each microarray feature, a measure of
effect size (average log-ratio) on the x-axis versus a measure of significance (neg-
ative logarithm of the p-value) on the y-axis. Note how features with the same
effect size can have quite different significance, and vice versa.
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matrix-associated, actin-dependent regulator of chromatin, subfamily b,
member 1).

We can look at the volcano plot, which relates p-values (on the y-axis)
and effect size (on the x-axis). It is shown in Figure 4.7.

> plot(fit$coefficients, -log10(fit$p.value), pch=".")

Finally, let us export the table of results of the statistical analysis
into a tabulator-delimited file, which you can import, for example, into
a spreadsheet program.

> write.fit(fit, file="fit.tab")
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Fold-Changes, Log-Ratios,
Background Correction,
Shrinkage Estimation, and
Variance Stabilization

W. Huber

Abstract

Microarray data are affected by experimental variability, which is a
combination of systematic and stochastic variability. The basic task
of microarray preprocessing is to extract quantities of interest from
the data while correcting for systematic variations and controlling
the stochastic variability. In this exercise we explore the concepts of
(log-)ratios, the role of background correction, the idea of shrinkage
estimation, and the generalized logarithm. Some tools for this are
provided by the package vsn.

5.1 Fold-changes and (log-)ratios

Microarray measurements in most cases carry no meaningful physical units.
This is in contrast to many other measurement instruments: clocks measure
seconds, weight scales measure kilograms, current meters measure ampères.
No such universal units are associated with the feature intensity values mea-
sured on a microarray. Although conceptually it is possible to define suitable
units (e.g., the number of target RNA molecules per cell), such a calibration
is rarely attempted in practice. However, one of the basic tenets of microar-
ray analysis is that expression values for the reporter (probe sequence) can
be compared across conditions. This motivates why we consider ratios or
log-ratios

q = log2

I1

I2
, (5.1)

F. Hahne et al., Bioconductor Case Studies, DOI: 10.1007/978-0-387-77240-0 5,
© Springer Science+Business Media, LLC 2008
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where I1 and I2 represent the intensities measured for the same reporter
across different conditions: either on two different arrays when a one-
channel microarray platform was used, or the two different color channels
in the case of a two-channel microarray. The use of log2, the logarithm to
base 2, is a popular convention in the field. Underlying the (log-)ratio is
the assumption of proportionality

I1 ≈ k · c1, I2 ≈ k · c2, (5.2)
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Figure 5.1. Top left: histogram of r1/g1, where r1 was drawn from a Normal
distribution with mean 2000 and standard deviation 50, and g1 from one
with mean 1000. Top right: histogram of r2/g2, where r2 was drawn from
a Normal distribution with mean 200 and standard deviation 50, and g2

from one with mean 100. The histograms in the bottom row show the same
data as those in the upper row, but with log-ratios instead of ratios. Their
distribution is less asymmetric.
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where k is an unkown constant, c1 is the true abundance of the target
molecule in condition 1, measurable in appropriately defined physical units,
for example, molecules per cell, and c2 is the abundance in condition 2. k
can be (and usually will be) different for each reporter. By taking the ratio
in Equation (5.1), k cancels out and we need not worry about the exact
definition of the units of c1 and c2. So it seems that the quantity I1/I2 is
an obvious estimator for the expression fold-change c1/c2. In the following
exercise, we see that considering the log-ratio has some advantages over the
ratio.

Exercise 5.1
a Generate two random samples r and g of Normal distributed values,

one with a mean of 2000 and standard deviation 50, and one with a
mean of 1000 and standard deviation 50. Plot their histogram, as in
Figure 5.1.

b Now repeat the above, but with two random samples that have means
of 200 and 100, respectively (use the same standard deviation as
before). Also plot their histogram.

c What do the distributions look like when you consider the log-ratio
log2(r/g) instead?

5.2 Background-correction and generalized
logarithm

Let us load two example datasets. The first is the kidney data that come
with the vsn package,

> library("vsn")

> data("kidney")

kidney is an ExpressionSet object with 8704 features and two samples.
The samples were obtained from two adjacent locations in kidney tissue
from a nephrectomy and their cDNA was labeled with Cy3 and Cy5.
The human cDNA microarray was spotted by Holger Sültmann at DKFZ
Heidelberg (Sültmann et al., 2005).

The second example dataset is in the CCl4 package.

> library("CCl4")

> data("CCl4")

It compares the transcription profiles of rat hepatocytes treated with car-
bon tetrachloride (CCl4) and with DMSO as a negative control. Extracted
cDNA was labeled with Cy3 and Cy5 and hybridized to Agilent Rat Whole
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Genome microarrays. Please consult the manual page for more information
on these data.

> ? CCl4

Here, we only consider the six arrays for which undegraded (“good”) RNA
was used, and drop those features that have no ID.

> selArrays = with(pData(CCl4),

(Cy3 == "CCl4" & RIN.Cy3 > 9) |

(Cy5 == "CCl4" & RIN.Cy5 > 9))

> selFeatures = !is.na(featureData(CCl4)$ID)

> CCl4s = CCl4[selFeatures, selArrays]

Exercise 5.2
Plot the histograms of the feature intensities of the two color channels for
the kidney data and for some of the CCl4s arrays, as in Figure 5.2. (Hint:
use the function multidensity from the geneplotter package.)

We can now contrast the data shown in Figure 5.2 with the predictions
of the model (5.2), the model that underlies the use of the log-ratio. The
microarray used for the CCl4 dataset was genomewide, and because not
all genes are expressed in hepatocytes, we expect that a certain fraction
of the features on the array targets unexpressed genes. However, all the
intensities are well above zero. Clearly, there is a nonzero background signal
that is measured even in the absence of the target molecules. Background-
correction methods offer a solution, and indeed in Figure 5.2 we see that for
the kidney data, which were background-corrected, many of the intensities
fall around zero. However, this immediately creates a problem for the log-
ratio: the log-ratio does not result in meaningful values for zero or negative
intensities. We must conclude that either the background correction method
or the concept of taking the log-ratio needs more thought.

Note that simply ignoring the weakly or unexpressed genes will not take
us very far: those cases where a gene is off under one condition and gets
switched on in another condition may be the most interesting ones, for
example, in a disease, as a response to a stimulus, or during a differentiation
process.

To better understand what to do, the following extension to the overly
simplistic model (5.2) is helpful.

I1 ≈ k · c1 + b1, I2 ≈ k · c2 + b2, (5.3)

where b1, b2 are positive numbers that represent the background signal.
Now what happens to the log-ratio? We get

q = log2

I1

I2
≈ log2

kc1 + b1

kc2 + b2
(5.4)
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Figure 5.2. Top: density estimates (smoothed histograms) of the green (solid
line) and red (dashed line) color channels of the kidney data. The range of the
data is [−561, 35481], the x-range of the plot has been limited to [−200, 1000]
for better display. The intensities in the kidney dataset have been obtained
from microarray image analysis software by subtracting a local background
estimate from the computed feature intensities. For some of the features, the
local background estimate, obtained from pixels surrounding each feature,
is higher than the feature quantitation. Often this happens for dim features
due to estimation noise. As an effect of the background subtraction, the
locations of the two distributions are similar. Bottom: density estimates
of the red and green color channels of an array from the CCl4s data. The
solid lines correspond to the green channel, the dashed lines to the red.
The range of the data is [37, 65535]; the x-range of the plot has been
limited to [0, 200] for better display. In contrast to the kidney data, no
local background subtraction was performed, and all intensities are positive.
Also, the locations of the distributions are more disparate. A further point
to note is that a large fraction of the data is concentrated at very low
intensities; most features are very dim, and only a few have intensities well
above background.
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and this quantity is compressed towards 0 in comparison to the true
logartihmic expression fold-change log2(c1/c2). Due to the background sig-
nal, we are losing sensitivity to detect differential expression. The idea of
background-correction is to estimate b1 and b2 and to subtract them from
the intensities, resulting in Ibc

1 = I1 − b̂1 and Ibc
2 = I2 − b̂2. The log-ratio

of these values can then be used as the fold-change estimate. However, this
creates another problem: if the estimator for the bi is unbiased, then it will
sometimes, because of noise in the data, produce estimates that are a bit
higher than the true value, and sometimes a bit lower. If at the same time
ci is 0, this means that the background corrected intensities Ibc

i can be zero
or negative. We have seen this in the kidney example in Figure 5.2. The
log-ratio of nonpositive values produces nonsensical results.

Three of the most common solutions to this problem are the following.
First, give up on background-correction and just use the uncorrected

values Ii, accepting the resultant loss in sensitivity.
Second, use a biased estimator b̂i that ensures that Ibc

i is always
positive (Irizarry et al., 2003; McGee and Chen, 2006; Ritchie et al., 2007).

Third, instead of the log-ratio log2(I
bc
1 ) − log2(I

bc
2 ) use the generalized

log-ratio (Huber et al., 2002; Durbin et al., 2002)

glog2(I
bc
1 ) − glog2(I

bc
2 ) (5.5)

The generalized logarithm with parameter a ∈ R is defined as

glog2(x) = log2

x +
√

x2 + a2

2
. (5.6)

This is the approach used in the package vsn. The theoretical motivation
for the choice of the function (5.6) is given in the references (Huber et al.,
2002, 2003, 2005). Essentially, the function glog2(x) smoothly interpolates
between the usual logarithm, log2(x), when x is large, and a linear function,
x/a + log(a/2), when x is small. glog2(x) is nonsingular and well behaved
even for x ≈ 0, whereas log2(x) has a singularity at 0.

Both of the latter two approaches require further specification: in the case
of biased background correction, one needs to decide how large that bias
should be in each case. With the generalized logarithm, one needs to choose
the parameter a. We explore some of this in the following. In practice,
the results from using biased background-correction followed by the usual
logarithm and from using an unbiased background-correction followed by
the generalized logarithm are often surprisingly similar. In Section 5.7, we
discuss the interpretation of the glog2-ratio as a shrinkage estimator of the
log2 fold-change.

Exercise 5.3
a. Plot the graph of the generalized logarithm.

glog2(x) = log2

(
1
2
x +

1
2

√
x2 + a2

)
(5.7)
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Figure 5.3. Graphs of the functions f(x) = log2(x + b) (dashed) and
h(x) = log2
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)
(solid) for a = b = 50.

Compare it to the graph of the so-called started logarithm log2(x +
b) (Rocke and Durbin, 2003). You may use a = b = 50 and an x-range
from –100 to 500, as in Figure 5.3, or try out different values for these
parameters.

b. How do the two functions behave as x → ∞?

c. Optional, difficult. How do the parameters a and b correspond to
each other so that the started log and the glog behave as similarly as
possible when applied to data?

Exercise 5.4
Make, for one of the arrays in the CCl4s dataset, a scatterplot of the red
versus the green intensities on the untransformed scale. As in Figure 5.4,
restrict the axis limits to c(30, 300). Draw the line through the origin
y = x into this plot. Also add the line y = 18 + 1.2x. Which one seems
to fit the data better? How could you formalize this question and find the
optimal parameters of the line y = y0 + s · x?
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Figure 5.4. For one of the arrays from the CCl4s dataset, the scatterplot shows
the red versus the green intensities, for values up to 300. The dashed line
is the intersect through the origin, y = x; the dotted line corresponds to
y = 18 + 1.2x.

5.3 Calling VSN

Now let us use the function justvsn from the vsn package to normalize the
CCl4s data. Depending on the speed of your computer, this can take a little
while, but it should not be more than a few minutes.

> CCl4sn = justvsn(CCl4s, backgroundsubtract=TRUE)

> class(CCl4sn)

CCl4sn is an NChannelSet object. The following lines extract the so-called
A and M values; essentially these correspond to a 45 degree rotation of the
scatterplot of red versus green, such that the average intensity is on the
x-axis and the difference on the y-axis.

> asd = assayData(CCl4sn)

> A = (asd$R+asd$G)/2

> M = (asd$R-asd$G)
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Figure 5.5. MA-plot of the first array in the normalized data CCl4sn. The scat-
terplot in the left panel uses an individual dot for each data point. The right
panel shows a smooth density representation of the data, individual points are
drawn only in the sparse regions.
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Figure 5.6. Smooth density estimates for the M values of the six arrays in the
CCl4sn data. For each array, the distribution is centered at 0, but two of the arrays
stand out for having a much wider distribution than the other four. Because all
six arrays have been hybridized with the same pair of biological samples, this
difference in width of the M distributions may indicate variability in the data
quality. Further investigation is necessary to make a more definitive conclusion.
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We can produce a normal scatterplot,

> plot(A[,6], M[,6], pch='.', asp=1, xlab="A", ylab="M")

> abline(h=0, col="blue")

or a variant of it that uses a false color representation of the point density.

> smoothScatter(A[,6], M[,6], nrpoints=300, asp=1,

xlab="A", ylab="M")

> abline(h=0, col="blue")

The plots are shown in Figure 5.5.
To assess the normalized data, we can look at the histograms (smooth

density estimates) of the M values (Figure 5.6).

> multidensity(M, xlim=c(-2,2), bw=0.1)

> abline(v=0, col="grey")

5.4 How does VSN work?

VSN tries to find for each array and, if the arrays use more than one dye
channel, for each of the dye channels, a background offset and a scaling
factor to make the data across arrays as similar as possible. Then it applies
the glog-transformation, as discussed in Section 5.2, and the differences
of the resulting values, the generalized log-ratios, can be used to quantify
differential expression.

Table 5.1. vsn glossary.

vsn The name of the R package.
vsn2 The basic model fitting function: it accepts eSet -like objects

(i. e., for the purpose of this glossary, objects of class Expres-
sionSet , NChannelSet , AffyBatch, RGList , and matrix ) and
returns a fit object of class vsn.

predict A function that accepts a fit object of class vsn and
applies it to an eSet -like object. It returns an object of the
corresponding class.

justvsn A wrapper around vsn2 and predict that accepts an
eSet -like object and returns an object of the same class,
with the expression data replaced by the normalized val-
ues. justvsn(x, ...) is equivalent to fit = vsn2(x, ...);

predict(fit, newdata = x, useDataInFit = TRUE).
vsn The basic model-fitting function in versions 1.x of the

package; this function is obsolete now.
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Formally, we can write this as follows. The VSN-normalized intensities
are, up to an overall additive offset,

hij = glog2

Iij − bj

kj
= mi + εij , (5.8)

where the index j = 1, . . . , d counts over the arrays and, if applicable, dye
channels, i counts over the array features, bj is a per-array background-
correction term, kj is a per-array scale factor, mi is the average intensity, on
the glog2 scale, of feature i, and εij are the residuals. VSN tries to find those
values for the parameters bj , kj , and mi that minimize the residuals εij ,
and to this end uses an outlier-resistant variant of least squares regression
called least trimmed sum of squares (LTS) regression (Rousseuw and Leroy,
1987; Huber et al., 2002). Different values of the parameter a of the glog2

function in Equation (5.6) can be absorbed by the parameters bj, kj , and
mi, so we can just as well set a = 1 without loss of generality.

An important tool for assessing whether the VSN fit worked is the plot
of mi versus the empirical standard deviation σi. σi is computed row by

Figure 5.7. Standard deviation versus mean relationship for the CCl4sn data. For
each feature, the plot shows the empirical standard deviation σi of the normalized
and glog-transformed data on the y-axis versus the rank of the mean mi on the
x-axis. The red dots, connected by lines, show the running median of the standard
deviatiqon. The rank of the smallest value is 1, the rank of the largest value is
43,628 (the number of features in CCl4sn). The rank scale is used for the x-axis
in order to distribute the data evenly along the x-dimension. This allows for a
better visual assessment of mean-variance trends compared to when the original
scale is used.
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row from the matrix of residuals εij ,

σ2
i =

1
d − 1

d∑
j=1

ε2
ij . (5.9)

Figure 5.7 shows the result of calling the function meanSdPlot on the 12
× 43628 matrix of red and green intensities in CCl4sn.

> meanSdPlot(cbind(assayData(CCl4sn)$R, assayData(CCl4sn)$G),

ylim=c(0, 1.4))

What should such a plot look like? We want the distribution of σi to
be concentrated at small values, and not see a significant trend of these
values as a function of the mean. Features with large σi have very different
intensities across the arrays (and/or channels); this could either be for a
biological reason, because they match a differentially expressed transcript,
or it could be a technical artifact that makes the data of certain features
excessively variable.

The other fitted parameters of Equation(5.8) can be examined by using
the coef method for vsn objects, and interested readers are referred to the
package vignette and the manual page of the vsn2 function.

5.5 Robust fitting and the “most genes not
differentially expressed” assumption

An important assumption that underlies the algorithm to fit Equation (5.8),
and hence the VSN method, is that for all features, except for a minority of
outliers, the residuals εij should be small. In other words, the assumption
is that for many features the abundance of their target is approximately
constant across arrays (and/or channels). Features that target differentially
expressed transcripts act as outliers.

In the following exercise, we explore the robustness of VSN against such
outliers. To this end, let us take the kidney data and computationally“spike
in” 33% of the features as if their targets were strongly upregulated.

> kidspike = kidney

> sel = runif(nrow(kidspike)) < 1/3

> delta = 100 + 0.4*abs(rowMeans(exprs(kidspike)[sel,]))

> exprs(kidspike)[sel,] = exprs(kidspike)[sel,] +

cbind(-delta,+delta)

The resulting data look somewhat artificial, as we see in Figure 5.8, but
are appropriate to investigate our question. Let us call vsn2 on these data,
using three choices of the parameter lts.quantile.
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Figure 5.8. Robustness and the “most genes not differentially expressed” assump-
tion. The three panels show results of using VSN on an (artificial) dataset with
a high fraction of differentially expressed features. Data for 2919 features, shown
in violet, have been computationally “spiked-in” as if their targets were strongly
upregulated. The VSN algorithm was not aware of the distinction between the
blue and violet data points. For lts.quantile=1, which corresponds to ordi-
nary nonrobust least sum of squares regression, the fit is heavily affected
by the violet outliers. For lts.quantile=0.5, which corresponds to least
trimmed sum of squares regression with a trimming quantile q = 50%,
the blue data points are distributed tightly around the M = 0 line,
and the algorithm has managed to disregard the outliers. The result for
lts.quantile=0.8 is in between. Note how the outliers not only affect the
estimation of the array scaling factors (kj in Equation (5.8)), but also of
the background-correction offsets (bj in Equation (5.8)). This explains why
the difference among the three panels is not just a shift in M -direction, but
also a change in the shape of the distributions of the transformed data.



76 W. Huber

> ltsq = c(1, 0.8, 0.5)

> vkid = lapply(ltsq, function(p) vsn2(kidspike,

lts.quantile=p))

vkid is a list of three vsn objects, one for each choice of lts.quantile. In
order to use the lattice package to visualize the result, we need to rearrange
the data into a suitable data.frame. The function getMA takes a vsn object
and returns a data.frame with columns A and M. We apply it to vkid.

> getMA = function(x)

data.frame(A = rowSums(exprs(x))/2,

M = as.vector(diff(t(exprs(x)))))

> ma = lapply(vkid, getMA)

Now we add two further columns to each data.frame: group is used for
the coloring of the points, and lts.quantile to arrange the data in three
panels. Finally, we can join the resulting list of data.frames into a single
one using the function rbind.

> for(i in seq(along=ma)) {

ma[[i]]$group = factor(ifelse(sel, "up", "unchanged"))

ma[[i]]$lts.quantile = factor(ltsq[i])

}

> ma = do.call("rbind", ma)

Now we are ready to plot Figure 5.8.

> library("lattice")

> lp = xyplot(M ~ A | lts.quantile, group=group, data=ma,

layout = c(1,3), pch=".", ylim=c(-3,3), xlim=c(6,16),

auto.key=TRUE,

panel = function(...){

panel.xyplot(...)

panel.abline(h=0)},

strip = function(...) strip.default(...,

strip.names=TRUE, strip.levels=TRUE))

> print(lp)

How does the robust least trimmed sum of squares (LTS) regression algo-
rithm work (Rousseuw and Leroy, 1987; Huber et al., 2002)? To answer this
question, it is instructive to contrast it with ordinary least squares regres-
sion. Ordinary least squares tries to minimize the sum of squared residuals,
that is, the sum of all ε2

ij in Equation (5.8). Because of this, one or a
few outlier data points that have very large residuals can dominate the fit
result. In spite of this drawback, the main reason for the popularity of ordi-
nary least squares is its computational simplicity, in particular for linear
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models. The computations are quick and are guaranteed to produce the
optimal solution. In contrast, LTS regression aims to minimize the sum of
squares of the smallest q percent of residuals, with 50 < q ≤ 100. Among
the remaining 100 − q percent of residuals, there may be outlying values,
but they do not affect the fit result. q can be chosen by the user; the lower
limit is 50% (Rousseuw and Leroy, 1987). So why don’t we always use LTS
with the maximally robust value q = 50%? One drawback is that it effec-
tively discards some of the data, so the precision of the resulting parameter
estimates is lower than with ordinary least sum of squares. However, in
the context of microarray applications, where there are many thousands of
data points, this is rarely a practical concern. A more significant drawback
of LTS is that it makes the optimization landscape more rugged. Depend-
ing on the data, there are more local minima, and there is a higher risk
of getting stuck in these. This can also, sometimes, happen to VSN and
therefore you should always carefully check the results of VSN.

What can you do when you do not want to, or cannot, rely on the “most
genes not differentially expressed” assumption and the robustness of the
VSN estimation algorithm? The recommended strategy in these cases is to
identify a subset of features on the array for which this assumption can be
assumed to hold, fit the model to these, and then apply it to all features.
This subset could, for example, consist of features that target externally
spiked in RNA, which has no relation to the biological samples, and is only
used for calibration. To demonstrate this, let us assume that we know that
100 features match targets which are equally abundant in both samples.

> normctrl = sample(which(!sel), 100)

> fit = vsn2(kidspike[normctrl, ], lts.quantile=1)

> vkidctrl = predict(fit, newdata=kidspike)

> ma = getMA(vkidctrl)

> ma$group = factor("other", levels=c("other",

"normalization control"))

> ma$group[normctrl] = "normalization control"

> lp = xyplot(M ~ A , group=group, data=ma,

pch=".", ylim=c(-3,3), xlim=c(4,16), auto.key=TRUE,

panel = function(...){

panel.xyplot(...)

panel.abline(h=0)})

> print(lp)

The result is shown in Figure 5.9.
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Figure 5.9. The same data as in Figure 5.8, however, now only a set of 100 features
(“spike in controls”) was used to fit the vsn model, which was then applied to all
data.

5.6 Single-color normalization

VSN can also be used for the joint normalization of multiple one-color
arrays. For the sake of demonstration, let us pretend that the green color
channels of the six arrays of the CCl4 dataset form a set of six single-color
arrays,

> esG = channel(CCl4s, "G")

> exprs(esG) = exprs(esG) - exprs(channel(CCl4s, "Gb"))

and call justvsn on the ExpressionSet object esG.

> nesG = justvsn(esG)

To assess the result, we can look at the intensity distributions on the
arrays before

> library("RColorBrewer")

> startedlog = function(x) log2(x+5)

> colors = brewer.pal(6, "Dark2")

> multiecdf(startedlog(exprs(esG)), col=colors,

main="Before normalization")

and after normalization,

> multiecdf(exprs(nesG), col=colors,

main="After normalization")
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Figure 5.10. The two panels in the upper row show the empirical cumulative
distribution functions of the six arrays in esG (before normalization, left) and
nesG (after normalization, right). The panel in the bottom row shows the
MA-plot between a pair of arrays.

and at the MA-plot between pairs of arrays.

> smoothScatter(getMA(nesG[, 1:2]))

> abline(h=0, col="red")

The result is shown in Figure 5.10.

5.7 The interpretation of glog-ratios

In Section 5.2, we explored how fold-change estimation might be improved
by suitable background-correction and the problem that this poses to the
naive log2-ratio estimator. One possible solution is the generalized log-
arithm transformation. In this section, we want to study the so-called
variance–bias trade-off a bit further. Let us do the following computational
experiment. First, we create two vectors g and r with the green and red
intensities from the kidney dataset, respectively.
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> g = exprs(kidney)[,1]

> r = exprs(kidney)[,2]

Then we create a small set of 29 artificial “spike-in” data points with A-
values from 2 to 16, and M -values of 1, which corresponds to a fold-change
of 2.

2 4 6 8 10 12 14 16

3−
2−

1−
0

1
2

3

A

M

Figure 5.11. The variance–bias trade-off and VSN’s property as a shrinkage esti-
mator. Shown is an MA-plot of the kidney data. Dark dots correspond to the
naive log2-ratio, as in Equation (5.1), and light dots to the glog2-ratio, as in
Equation (5.5). The two samples that are compared in these data were taken
from immediately adjacent pieces of tissue, so most of the genes are not differen-
tially expressed and have a true log fold-change of 0. Accordingly, both the naive
log2-ratio and the glog2-ratio are distributed around zero. However, for the naive
log2-ratio, the width of the distribution is bigger for small values of the average
intensity A, as can be seen from the “rocket shape” of the distribution. For the
glog2-ratio, the width is approximately constant throughout the range of A. (The
visually apparent widening in the intermediate range around A = 8 is solely due
to the larger density of data points; see Figure 5.7 for a visualization that avoids
this artifact.) The lines in this plot are drawn between a set of 29 data points
which we have artificially “spiked in” to have a naive log2-ratio of log2(2) = 1,
at various values of A. This demonstrates the shrinkage effect of VSN: for low
intensity data, the glog2-ratio (solid line), as an estimator of fold-change, shrinks
towards zero, but maintains a constant small variance. In contrast, the naive
log2-ratio (dashed line) is unbiased, but its variance increases for low average
intensities A.
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> Aspike = 2^seq(2, 16, by=0.5)

> sel = sample(nrow(kidney), length(Aspike))

> r[sel] = Aspike*sqrt(2)

> g[sel] = Aspike/sqrt(2)

Now we can compute A, the naive log2-ratio M.naive, as well as the glog2-
ratio M.vsn.

> A = (log2(r) + log2(g))/2

> M.naive = log2(r) - log2(g)

> fit = vsn2(cbind(g, r))

> M.vsn = exprs(fit)[,2] - exprs(fit)[,1]

The plot created by the following lines is shown in Figure 5.11.

> plot(A, M.naive, pch=".", ylab="M",

xlim=c(2,16), ylim=c(-3,3), col="grey")

> points(A, M.vsn, pch=".", col="mistyrose")

> sel = sel[order(A[sel])]

> lines(A[sel], M.vsn[sel], col="red", lwd=2)

> lines(A[sel], M.naive[sel], lwd=2, lty=2)

For another analysis of the topic of this section, please refer to the section
VSN, shrinkage, and background correction in the vsn package’s vignette
Introduction to robust calibration and variance stabilisation with vsn.

5.8 Reference normalization

So far, we have been using VSN to normalize a set of microarrays in order to
make them comparable among each other. Sometimes, we have an appli-
cation where we want to add a further array, or set of arrays, without
changing the normalization of the existing set. For example, suppose we
have used a set of training arrays for setting up a classifier that is able to
discriminate different biological states of the samples based on their mRNA
profile. Now we get new arrays to which we want to apply the classifier.
Clearly, we do not want to rerun the normalization for the whole, new, and
bigger dataset, as this would change the training data; neither can we nor-
malize only the new arrays among themselves, without normalizing them
“towards” the reference training dataset. What we need is a normalization
procedure that normalizes the new arrays with the existing dataset as a
reference and without changing the latter. This is possible with VSN.

Let us use the CCl4s example data to explore this. First, we call vsn2 on
the first five arrays only.
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Figure 5.12. Scatterplot of normalized red channel intensities after normalization
by reference (x-axis) and joint normalization (y-axis). There is good agreement.

> ref = vsn2(CCl4s[, 1:5], backgroundsubtract=TRUE)

Now we can call justvsn on the sixth array with the output from the
previous call as the reference.

> x6 = justvsn(CCl4s[, 6], reference = ref,

backgroundsubtract=TRUE)

We can compare this to what we got previously, in Section 5.3, for CCl4sn.

> plot(assayData(x6)$G, assayData(CCl4sn)$G[,6], pch=".",

asp=1)

> abline(a=0, b=1, col="red")

The scatterplot in Figure 5.12 shows that the results are approximately
the same. For further reading on reference normalization, as well as on some
of the other topics of this chapter, please refer to the vignettes Verifying and
assessing the performance with simulated data and Likelihood Calculations
for vsn of the vsn package, and to the references by Huber et al. (2002,
2003, 2005).
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Easy Differential Expression

F. Hahne and W. Huber

Abstract

In this short exercise, we explore the most basic approach to the
selection of differentially expressed genes between two classes: first,
a nonspecific filtering step to remove probes for genes that appear to
be not. Second, a probe-by-probe statistical test, and third, multiple
testing correction. There are many variations and improvements to
the procedure shown here, and you can learn more about these in
Chapter 7.

6.1 Example data

For this chapter, we use the ALL data, which have been obtained in a
microarray study of B- and T-cell leukemia. We want to find genes that are
differentially expressed between two distinct types of B-cell leukemia.

> library("Biobase")

> library("genefilter")

> library("ALL")

> data("ALL")

The data and the following steps with which we construct the subset of
interest, ALL_bcrneg, are described in more detail in Chapter 1. Briefly, we
select samples from B-cell lymphomas harboring the BCR/ABL translo-
cation and from lymphomas with no observed cytogenetic abnormalities
(NEG).

> bcell = grep("^B", as.character(ALL$BT))

> moltyp = which(as.character(ALL$mol.biol)

%in% c("NEG", "BCR/ABL"))

F. Hahne et al., Bioconductor Case Studies, DOI: 10.1007/978-0-387-77240-0 6,
© Springer Science+Business Media, LLC 2008



84 F. Hahne, W. Huber

> ALL_bcrneg = ALL[, intersect(bcell, moltyp)]

> ALL_bcrneg$mol.biol = factor(ALL_bcrneg$mol.biol)

The last line in the code above is used to drop unused levels of the factor
variable mol.biol.

6.2 Nonspecific filtering

Between these two groups we should be able to detect substantial differ-
ences in gene expression. But first let us explore how nonspecific filtering
can improve our analysis. To this end, we calculate the overall variability
across arrays of each probe set, regardless of the sample labels. For this, we
use the function rowSds, which calculates the standard deviation for each
row. A reasonable alternative would be to calculate the interquartile range
(IQR), for which we could employ the rowQ function from the genefilter
package.

> library("genefilter")

> sds = rowSds(exprs(ALL_bcrneg))

> sh = shorth(sds)

> sh

[1] 0.242

We can plot the histogram of the distribution of sds; see Figure 6.1. The
function shorth calculates the midpoint of the shorth (the shortest interval
containing half of the data), and is in many cases a reasonable estimator of
the “peak” of a distribution. Its value 0.242 is drawn as a dashed vertical
line in Figure 6.1.

> hist(sds, breaks=50, col="mistyrose", xlab="standard deviation")

> abline(v=sh, col="blue", lwd=3, lty=2)

There are a large number of probe sets with very low variability. We
can safely assume that we will not be able to infer differential expression
for their target genes. The target genes of these probe sets may not be
expressed in the samples, or the probe sets may lack the sensitivity to
detect expression. Hence, let us discard those probe sets whose standard
deviation is below the value of sh.

> ALLsfilt = ALL_bcrneg[sds>=sh, ]

> dim(exprs(ALLsfilt))

[1] 8812 79
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Figure 6.1. Histogram of sds.

A related approach would be to discard all probe sets with consistently
low expression values. The idea is similar: those probe sets most likely
match transcripts whose expression we cannot detect anyway, and hence
we need not test them for differential expression.

A more comprehensive approach to nonspecific filtering of probe sets
according to various criteria is provided by the function nsFilter from
the Category package, and that function’s documentation as well as an
application of it in Chapter 1 are further references on this topic.

To summarize, nonspecific filtering uses the biological knowledge that
there exists a substantial fraction of probe sets in a microarray experiment
that is not informative, either because the target gene is not expressed, or
because the probe set lacks sensitivity. Using this knowledge in the analysis
will, in general, improve the quality of the gene selection.

6.3 Differential expression

We can now perform probe-by-probe tests for differential expres-
sion (Dudoit et al., 2002). The function rowttests can deal with
ExpressionSets. It uses the t-test, row by row, to detect significant
differences in the location of the distribution of expression data of two
groups of samples defined by a factor variable. In this case, we use the
information about BCR/ABL mutation status in the column mol.biol of
ALLsfilt’s sample annotation as a grouping factor.
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> table(ALLsfilt$mol.biol)

BCR/ABL NEG
37 42

> tt = rowttests(ALLsfilt, "mol.biol")

> names(tt)

[1] "statistic" "dm" "p.value"

Take a look at the histogram of the resulting p-values in the left panel
of Figure 6.2.

> hist(tt$p.value, breaks=50, col="mistyrose", xlab="p-value",

main="Retained")

We see a number of probe sets with very low p-values (which correspond
to differentially expressed genes) and a whole range of insignificant p-values.
This is more or less what we would expect. The expression of the majority
of genes is not significantly shifted by the BCR/ABL mutation. To make
sure that the nonspecific filtering did not throw away an undue amount of
promising candidates, let us take a look at the p-values for those probe sets
that we filtered out before. We can compute t-statistics for them as well
and plot the histogram of p-values (right panel of Figure 6.2):

> ALLsrest = ALL_bcrneg[sds<sh, ]

> ttrest = rowttests(ALLsrest, "mol.biol")

> hist(ttrest$p.value, breaks=50, col="lightblue",

xlab="p-value", main="Removed")

Retained

p -value

y c n e u q e r F 
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0.0 0.2 0.4 0.6 0.8 1.0 

0 
0 2 

0 6 
0 0 1 

Figure 6.2. Histograms of p-values. The left panel shows those p-values retained
after nonspecic lering; the right panel shows those that were removed.
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Exercise 6.1
Comment on the plot; do you think that the nonspecific filtering was
appropriate?

6.4 Multiple testing correction

We use the p-values for ranking genes, and do not advocate interpreting
them as true probabilities. Nevertheless, the results of a multiple testing
adjustment can be informative for choosing selection cut-offs. Typically,
in the setting of a single statistical test we consider the data as providing
evidence against a given null hypothesis when it is sufficiently improbable
that these data arise by chance if the null hypothesis is true. When repeat-
edly doing tests, we need to raise the bar for what we consider “sufficiently
improbable”.

For example, if we do 8812 tests of a null hypothesis that is actually true,
using a significance level of 5%, then in 5% ≈ 441 cases we can expect to
reject the null hypothesis just by chance. Many approaches have been pro-
posed to address this problem (Pollard et al., 2005); here we just discuss
one that appears to be appropriate in many micrarray-related contexts:
the false discovery rate (FDR), that is, the expected proportion of false
positives among the genes that are called differentially expressed. The pro-
cedure of Benjamini and Hochberg is implemented in the multtest package
and we use the function mt.raw2adjp for this purpose. (Note that a more
formal treatment would need to take into account the multiple t-tests as
well as the implicit testing of the nonspecific filtering.)

> library("multtest")

> mt = mt.rawp2adjp(tt$p.value, proc="BH")

Finally, we can use the results of the t-tests to create a gene list containing
the ten highest-ranking genes with respect to the adjusted p-value,

> g = featureNames(ALLsfilt)[mt$index[1:10]]

print their gene symbols,

> library("hgu95av2.db")

> links(hgu95av2SYMBOL[g])

probe_id symbol
1 1635_at ABL1
2 1636_g_at ABL1
3 1674_at YES1
4 32434_at MARCKS
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5 37015_at ALDH1A1
6 37027_at AHNAK
7 39730_at ABL1
8 39837_s_at ZNF467
9 40202_at KLF9
10 40504_at PON2

and plot the data of the first one together with symbols indicating the value
of the mol.biol variable:

> mb = ALLsfilt$mol.biol

> y = exprs(ALLsfilt)[g[1],]

> ord = order(mb)

> plot(y[ord], pch=c(1,16)[mb[ord]],

col=c("black", "red")[mb[ord]],

main=g[1], ylab=expression(log[2]~intensity),

xlab="samples")

The result is shown in Figure 6.3.
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Figure 6.3. The ALLsfilt data for the top differentially expressed probe set across
the 79 samples. The value of the mol.biol variable is indicated by the plot
symbols.
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Differential Expression

W. Huber, D. Scholtens, F. Hahne,
and A. von Heydebreck

Abstract

In this chapter we will cover some of the basic principles of finding
differentially expressed genes. We cover nonspecific filtering, multi-
ple testing, the moderated test statistics provided by the limma
package, and gene selection by ROC curves.

7.1 Motivation

There are many different ways to detect differentially expressed genes.
Rather than prescribe a standard way of doing this, in this chapter we
explore a variety of these. The goal is to give you an overview of the existing
ideas so you can make an appropriate choice in your own analyses.

7.1.1 The gene-by-gene approach

In current practice, differential expression analysis is generally done using
a gene-by-gene approach. This ignores the dependencies between genes, for
example their interrelationships in regulatory modules. Clearly, this is not
satisfactory, and it will change as we learn more. For the purpose of this
chapter, we cover the gene-by-gene approach.

7.1.2 Nonspecific filtering

Most microarrays contain probes for many more genes than will be differ-
entially expressed. Indeed, one of the basic assumptions of normalization
is that most genes are not differentially expressed. To alleviate the loss of
power from the formidable multiplicity of gene-by-gene hypothesis testing,
we advise that some form of nonspecific prefiltering should be carried out.

F. Hahne et al., Bioconductor Case Studies, DOI: 10.1007/978-0-387-77240-0 7,
© Springer Science+Business Media, LLC 2008
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By nonspecific we mean that it is done without reference to the parameters
or conditions of the tested RNA samples. Its aim is to remove from consid-
eration that set of probes whose genes are not differentially expressed under
any comparison. We have found it most useful to select genes on the basis
of variability (von Heydebreck et al., 2004). Only the genes that show any
variation across samples can potentially be differentially expressed among
our groups of interest.

7.1.3 Fold-change versus t-test

The simplest approach is to select genes using a fold-change criterion. This
may be the only possibility in cases where few replicates are available. An
analysis solely based on fold-change, however, precludes the assessment of
significance of observed differences in the presence of biological and exper-
imental variation, which may differ from gene to gene. This is the main
reason for using statistical tests to assess differential expression.

In general, one might look at all sorts of differences between the distri-
butions of a gene’s expression levels under different conditions. Most often,
the location (e.g., mean or median) parameter is considered. This leads to
the t-test and its variations. There are also good reasons to consider other
properties of the distributions, such as the partial area under the Receiver
Operating Characteristic (ROC) curve of a threshold classifier (Pepe et al.,
2003).

One may distinguish between parametric tests, such as the t-test, and
nonparametric tests, such as the Mann–Whitney test or permutation tests.
Parametric tests usually have a higher power if the underlying model
assumptions, such as Normality in the case of the t-test, are at least
approximately fulfilled. Nonparametric tests have the advantage of making
less stringent assumptions on the data-generating distribution. In many
microarray studies, however, a small sample size leads to insufficient power
for nonparametric tests. A pragmatic approach in these situations is to
employ parametric tests, but to use the resulting p-values cautiously to
rank genes by their evidence for differential expression.

7.2 Nonspecific filtering

Let us load the dataset which we work on. In Chapter 1 you can find a
comprehensive description of the acute lymphoblastic leukemia data that
we use here.

> library("ALL")

> data("ALL")



7. Differential Expression 91

First, we construct a list of samples from tumors of B-cells.

> bcell = grep("^B", as.character(ALL$BT))

The BCR/ABL translocation – formally, t(9;22)(q34;q11), which is often
called the Philadelphia chromosome, producing a fusion gene consisting of
the BCR and the ABL1 genes – is relatively prominent in acute lymphocytic
leukemias and of therapeutic relevance. Here, we focus on the subset of
ALL samples that harbor this translocation and contrast it with the group
of samples for which none of the common cytogenetic aberrations (group
NEG) was detected.

> moltyp = which(as.character(ALL$mol.biol)

%in% c("NEG", "BCR/ABL"))

Let us now construct a new data object ALL_bcrneg that contains only
those samples that fulfill these two conditions.

> ALL_bcrneg = ALL[, intersect(bcell, moltyp)]

> ALL_bcrneg$mol.biol = factor(ALL_bcrneg$mol.biol)

The second line of the above code chunk cleans up the factor variable
ALL_bcrneg$mol.biol by removing the empty levels.

Now, if we are going to filter on the basis of variability, we might first want
to make sure that the variability is not dominated by its dependence on the
mean expression level. If it were, then selecting on the basis of variability
would be confounded with selection on the basis of absolute level. There
are good reasons, in essence due to the existence of probe-sequence specific
background and gain factor effects, not to use the absolute level for gene
selection. To check for an association we plot rowwise means versus rowwise
standard deviations and plot these together with a smoothed estimate of
their regression.

> library("vsn")

> meanSdPlot(ALL_bcrneg)

The result is shown in Figure 7.1.

Exercise 7.1
a. Comment on the plot; do you think that the relationship between

mean and standard deviation is sufficiently weak?

b. Have a look at the manual page of meanSdPlot. What is the use of the
ranks parameter?

Presuming that we decide that the relationship is not very strong, we
proceed. Our next step is to set aside those probe sets with low variability.
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Figure 7.1. Rowwise means versus rowwise standard deviations of the ALL data.

In the code below, we set aside the 80% lowest variability probe sets. We
choose such a high fraction because we want to limit the length of the
subsequent computations. The best choice for this fraction depends on the
array design and the biological samples, but in practice it will usually be
much lower.

> sds = esApply(ALL, 1, sd)

> sel = (sds > quantile(sds, 0.8))

> ALLset1 = ALL_bcrneg[sel,]

A potential drawback of this approach is found in situations where we
are interested in an experimental factor in which one group of samples has
few members. In this case, a gene which is differentially expressed between
that group and the other(s) may not have a large overall standard deviation.
How would you address this situation?

At this point you may want to try to look at some heatmaps of the data
to see if there are any obvious patterns. Consult the manual page of the
function by typing: ?heatmap.

7.3 Differential expression

In Bioconductor, the genefilter package allows you to easily select genes
using a variety of filters. Additionally, for some tests and comparisons we
have developed fast versions. These include rowttests, which perform a
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t-test for every row in a gene expression matrix; rowFtests, which does
F -tests; and rowQ, which calculates a quantile for each row.

First, and perhaps easiest is to use a t-test (Dudoit et al., 2002).

> library("genefilter")

> tt = rowttests(ALLset1, "mol.biol")

> names(tt)

[1] "statistic" "dm" "p.value"

Consult the manual page for rowttests for the meaning of the four differ-
ent elements of the return value tt. Many practitioners have learned that
small p-values do not always correspond to genes for which there have been
large changes. Let us look at the so-called volcano plot.

> plot(tt$dm, -log10(tt$p.value), pch=".",

xlab = expression(mean~log[2]~fold~change),

ylab = expression(-log[10](p)))

The result is shown in Figure 7.2.
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Figure 7.2. Volcano plot. Plotted along the x-axis is a measure of effect size
(here, the mean fold-change), along the y-axis a measure of significance (here,
the negative logarithm of the p-value). Some of the data points have a large
average fold-change, but low significance, and high significance does not always
imply large effect size.
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Exercise 7.2
Determine how many probe sets correspond to differentially expressed
genes, using the t-test results.

7.4 Multiple testing

One of the subject areas that has received a great deal of attention is that
of multiple testing. We provide a brief introduction to the functionality in
the multtest package (Pollard et al., 2005).

Many of the algorithms in the multtest package depend on random
permutations of the samples. The number of permutations is controlled by
the parameter B. In the following, we call mt.maxT to perform a permutation
test, using the Welch statistic.

> library("multtest")

> cl = as.numeric(ALLset1$mol.biol=="BCR/ABL")

> resT = mt.maxT(exprs(ALLset1), classlabel=cl, B=1000)

> ord = order(resT$index) ## the original gene order

> rawp = resT$rawp[ord] ## permutation p-values

Figure 7.3 shows the histogram of unadjusted permutation p-values as
given by the vector rawp. The high proportion of small p-values suggests
that indeed a substantial fraction of the genes is differentially expressed
between the two groups.

Figure 7.3. Histogram of the unadjusted p-values.
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> hist(rawp, breaks=50, col="#B2DF8A")

In order to control the familywise error rate (FWER), that is, the prob-
ability of at least one false positive in the set of significant genes, mt.maxT
used the permutation-based maxT procedure of Westfall and Young (1993).
We obtain 34 genes with an adjusted p-value below 0.05:

> sum(resT$adjp<0.05)

[1] 34

A comparison of this number to the height of the leftmost bar in the
histogram suggests that we are missing a large number of differentially
expressed genes. The FWER is a very stringent criterion, and in some
microarray studies, few or no genes may be significant in this sense, even if
many more are truly differentially expressed. A more sensitive criterion is
provided by the false discovery rate (FDR), that is, the expected proportion
of false positives among the genes that are called significant. We can use the
procedure of Benjamini and Hochberg (1995) as implemented in multtest
to control the FDR:

> res = mt.rawp2adjp(rawp, proc = "BH")

> sum(res$adjp[,"BH"]<0.05)

[1] 209

7.5 Moderated test statistics
and the limma package

We use the p-values for ranking genes, and do not advocate interpreting
them as true probabilities. Nevertheless, the results of a multiple testing
adjustment can be informative for choosing selection cut-offs. Note that a
more formal treatment would need to take into account the multiple t-tests
as well as the implicit testing of the nonspecific filtering.

A t-test analysis can also be conducted with functions of the limma
package (Smyth, 2004). First, we have to define the design matrix. One
possibility is to use an intercept term that represents the mean log2 inten-
sity of a gene across all samples (the first column in the below matrix,
consisting of 1s), and to encode the difference between the two classes in
the second column.

> library("limma")

> design = cbind(mean = 1, diff = cl)

Next a linear model is fitted for every gene by the function lmFit, and
an empirical Bayes moderation of the standard errors can be performed
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with the function eBayes (Smyth, 2004). This employs information from all
genes to arrive at more stable estimates of each individual gene’s variance.

> fit = lmFit(exprs(ALLset1), design)

> fit = eBayes(fit)

We can list the ten most differentially expressed genes using the function
topTable. The three probe sets with the lowest p-value all map to the ABL1
gene which is part of the fusion gene product caused by the t(9;22)(q34;q11)
translocation and which is known to be over-expressed and acting as a
strong oncogene in acute lymphoblastic leukemia.

> library("hgu95av2.db")

> ALLset1Syms = unlist(mget(featureNames(ALLset1),

env = hgu95av2SYMBOL))

> topTable(fit, coef = "diff", adjust.method = "fdr",

sort.by = "p", genelist = ALLset1Syms)

ID logFC AveExpr t P.Value adj.P.Val B
156 ABL1 1.100 9.196 9.034 4.879e-14 1.232e-10 21.293
1915 ABL1 1.153 9.000 8.588 3.877e-13 4.895e-10 19.341
155 ABL1 1.203 7.897 7.339 1.229e-10 1.034e-07 13.906
163 YES1 1.427 5.002 7.050 4.554e-10 2.875e-07 12.668
2066 PON2 1.181 4.244 6.665 2.571e-09 1.298e-06 11.032
2014 KLF9 1.779 8.621 6.392 8.623e-09 3.629e-06 9.889
1262 ALDH1A1 1.033 4.331 6.242 1.662e-08 5.997e-06 9.269
437 MARCKS 1.679 4.466 5.972 5.376e-08 1.697e-05 8.162
1269 AHNAK 1.349 8.444 5.805 1.097e-07 3.078e-05 7.489
1366 ANXA1 1.118 5.087 5.483 4.265e-07 1.077e-04 6.211

When you compare the resulting p-value with those from the parametric
t-test, you will see that they are almost identical:

> plot(-log10(tt$p.value), -log10(fit$p.value[, "diff"]),

xlab = "-log10(p) from two-sample t-test",

ylab = "-log10(p) from moderated t-test (limma)",

pch=".")

> abline(c(0, 1), col = "red")

The result is shown in Figure 7.4. Because of the large number of samples,
the empirical Bayes moderation is not so relevant here: in these dataset the
gene-specific variance can be well estimated from the data of each gene.

7.5.1 Small sample sizes

However, the empirical Bayes moderation may be quite useful in cases with
fewer replicates. Let us draw a subsample with three arrays from each group
from our data:
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Figure 7.4. Comparison of p-values from the unmoderated and moderated t-test
in a situation with a large number of samples in both groups.

> subs = c(35, 65, 75, 1, 69, 71)

> ALLset2 = ALL_bcrneg[, subs]

> table(ALLset2$mol.biol)

BCR/ABL NEG
3 3

We repeat the testing procedure in the same way as before,

> tt2 = rowttests(ALLset2, "mol.biol")

> fit2 = eBayes(lmFit(exprs(ALLset2), design=design[subs, ]))

and plot the results in Figure 7.5.

> plot(-log10(tt2$p.value), -log10(fit2$p.value[, "diff"]),

xlab = "-log10(p) from two-sample t-test",

ylab = "-log10(p) from moderated t-test (limma)",

pch=".")

> abline(c(0, 1), col = "red")

Let us have a look at a gene that has a small p-value in the normal t-test
but a large one in the moderated test.
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Figure 7.5. Comparison of p-values from the unmoderated and moderated t-test
in a situation with a small number of samples in both groups.
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Figure 7.6. Expression values of a probe set that has a highly significant p-value
in the unmoderated t-test, but is unremarkable in the moderated test. Note the
y-axis scaling: although the two groups look well separated, the absolute difference
is small. Most likely, this is a chance artifact. You can verify this by looking at the
expression values of this probe set in the other samples that were not used here.
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> g = which(tt2$p.value < 1e-4 &

fit2$p.value[, "diff"] > 0.02)

We plot its expression values and use different symbols and colors to
encode the sample classes.

> sel = (ALLset2$mol.bio == "BCR/ABL")+1

> col = c("black", "red")[sel]

> pch = c(1,16)[sel]

> plot(exprs(ALLset2)[g,], pch=pch, col=col,

ylab="expression")

The plot is shown in Figure 7.6.

7.6 Gene selection by Receiver Operator
Characteristic (ROC)

In this section we consider a method for finding differentially expressed
genes that, instead of the hypothesis testing approaches we have explored
so far, uses a classification-based approach. The approach was presented
by Pepe et al. (2003).

The aim is to find genes that might serve as potential markers, that is,
genes whose expression level, individually, is able to discriminate between
two groups. Let us call one group Control and the other one Disease. If we
denote by x the observed expression level of a given gene, we consider the
simple classification rule that all samples with x ≥ θ, for some choice of θ,
are predicted to be in the Disease class and all samples with x < θ in the
Control class. For different choices of θ, the performance of the classifier can
be measured by its specificity, that is, the probability that a true Control
sample is classified as a Control, and by its sensitivity, the probability that
a true Disease sample is classified as Disease. The plot of sensitivity versus
p = 1 − specificity is called the Receiver Operator Characteristic (ROC)
curve. An example is shown in Figure 7.7.

We would like to identify genes that have the best ability for detecting
whether a sample has the BCR/ABL translocation. This can be expressed
by the area under the ROC curve (AUC), or more generally, the pAUC.
The pAUC criterion, for a small value of p such as p = 0.2, is often more
relevant than the AUC because for a practical diagnostic marker we will
require high specificity, say, better than 80%, before even considering its
sensitivity.

Similar to rowttests, the package genefilter contains a function for row-
wise computation of the pAUC statistics. As arguments, the function takes
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Figure 7.7. Left: ROC curve of a probe set that separates well between BCR/ABL
positive and negative tumors. The (total) area under the curve (AUC) is the area
of the region surrounded by the x-axis, the line x = 1, and the plotted curve. The
partial area under the curve (pAUC) for p = 0.2 is the shaded area surrounded
by the x-axis, the line x = 0.2, and the curve. Right: The probe set’s data, sorted
and colored by the value of the molecular subtype.

an ExpressionSet object x, a character giving the name of the factor covari-
ate and the numeric scalar p. In addition, the function has an argument
flip. If it is set to TRUE (the default), then for each gene both classification
rules x < θ and x > θ are tested, and the (partial) area under the curve
of the better one of the two is returned. For our data this makes sense,
because the Disease classification is somewhat arbitrary and not necessar-
ily linked to higher expression values. Instead, we expect to find both over-
and underexpressed genes for each class. You can set flip to FALSE if you
only want to screen for genes which discriminate Disease from Control with
the x > θ rule. For more advanced classification rules you might want to
consider the functionality provided by the ROC package.

> rocs = rowpAUCs(ALLset1, "mol.biol", p=0.2)

Next we select the probe set with the maximal value of our pAUC
statistic, and plot the corresponding ROC curve.

> j = which.max(area(rocs))

> plot(rocs[j], main = featureNames(ALLset1)[j])

The result is shown in the left panel of Figure 7.7.
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Exercise 7.3
Plot the expression values of 1636_g_at, as in the right panel of Figure 7.7.

Exercise 7.4
How would you expect the ROC curve to look for a gene that does not
show any differential expression between the groups? How would an ”ideal”
ROC curve look? Why?

7.7 When power increases

In Sections 7.3 and 7.6 we have shown how to find differentially expressed
genes using two different criteria: location changes in the distribution of a
gene’s expression and the receiver operating characteristic curve of a simple
threshold classifier. Let us now compare these methods and focus on the
influence of sample size.

We want to see how the sample size affects the number of genes that
are found to be differentially expressed in the two methods. For this, we
repeatedly take random sample subsets of our data, of varying size, and
do the differential expression computations on each of these subsets, each
time resulting in a certain number of differentially expressed genes.

Let us first build wrapper functions around rowttests

> nrsel.ttest = function(x, pthresh=0.05) {

pval = rowttests(x, "mol.biol")$p.value

return(sum(pval < pthresh))

}

and rowpAUCs.

> nrsel.pAUC = function(x, pAUCthresh=2.5e-2) {

pAUC = area(rowpAUCs(x, fac="mol.biol", p=0.1))

return(sum(pAUC > pAUCthresh))

}

Note that the choices of thresholds are, as always, somewhat arbitrary,
and that the one for the t-test, pthresh, is not directly comparable to the
one for rowpAUCs, pAUCthresh.

What we need now is a function that does resampling for various dataset
sizes and plots the output. The code for this is straightforward, but some-
what tedious, so for simplicity we put a function that does this for you into
the package BiocCaseStudies; it is called resample. If you want you can
take a look at its code by typing resample.

Because the following computation can take a lot of time, for the purpose
of demonstration we construct a subset of ALLset1 with only 1000 probes.



102 W. Huber, D. Scholtens, F. Hahne, A. von Heydebreck

●●

●

●
●

●

●

5 10 15 20 25 30 35

05
001

051
002

052

nrsel.ttest

groupsize

seneg .pxe .ffid fo .on detceles

●

●

●

●
●

●

5 10 15 20 25 30 35

001
002

003
004

005

nrsel.pAUC

groupsize

seneg .pxe .ffid fo .on detceles
Figure 7.8. Comparing the number of differentially expressed genes for different
sample sizes. Left: t-test criterion. Right: pAUC criterion.

(If you are working on a powerful computer, you could call the following
code with ALLset1 instead of x.)

> library(BiocCaseStudies)

> x = ALLset1[sample(nrow(ALLset1), 1000), ]

Run the resampling function, once with nrsel.ttest and once with
nrsel.pAUC. You need to pass along x as well. Take a look at the output in
Figure 7.8.

> resample(x, "nrsel.ttest")

> resample(x, "nrsel.pAUC")

Exercise 7.5
Which of the two criteria seems more reasonable?

Topics for further study:

• In this vignette you have seen a number of different ways to determine
differentially expressed genes. What other ways are there to select
interesting genes?

• How do the results from the different methods you have seen here
overlap? What is the reason in those cases where they produce
different results?

• How could you formulate criteria to decide which selection method is
better (or more appropriate for your problem) than the others?

• How do the different methods deal with outliers and with missing
data?
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Annotation and Metadata

W. Huber and F. Hahne

Abstract

In this chapter we demonstrate the use of Bioconductor metadata
resources. After having obtained a list of reporters from a microarray
experiment and mapping them to their target genes, one will want to
use the annotation of the genes and gene products to better interpret
the experimental results. Often, it is beneficial to use gene annotation
in the course of the primary analysis, in order to narrow down the set
of data to be considered and ameliorate multiple testing problems,
or in order to explore specific biological hypotheses.

8.1 Our data

We make use of a subset of the ALL data. We refer you to Chapter 1 for a
comprehensive description of these data and of the following code, in which
we load the data and select those samples that were obtained from tumors
harboring either the BCR/ABL or the ALL1/AF4 translocation.

> library("ALL")

> data("ALL")

> types = c("ALL1/AF4", "BCR/ABL")

> bcell = grep("^B", as.character(ALL$BT))

> ALL_af4bcr = ALL[, intersect(bcell,

which(ALL$mol.biol %in% types))]

> ALL_af4bcr$mol.biol = factor(ALL_af4bcr$mol.biol)

We want to apply a nonspecific filtering step in order to remove probe sets
that are likely to be noninformative. We use the function nsFilter from the
genefilter package for that purpose. The default measure used by nsFilter

for the variance filtering step is the IQR. This is a reasonable choice as long
as the sizes of the sample groups are approximately similar. This is not the

F. Hahne et al., Bioconductor Case Studies, DOI: 10.1007/978-0-387-77240-0 8,
© Springer Science+Business Media, LLC 2008
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case for our BCR/ABL ALL1/AF4 subset, where the ALL1/AF4 positive
group is much smaller:

> table(ALL_af4bcr$mol.biol)

ALL1/AF4 BCR/ABL
10 37

For calculation of the IQR, 50% of the most extreme values are discarded
as outliers, thus the measure of variance will be dominated mainly by the
much larger BCR/ABL positive group. We could address this problem by
using a non-robust measure of variance like the standard deviation, however
this would make the filtering more susceptible to outliers. Instead, we will
look at the range between more extreme quantiles, here.

> qrange <- function(x)

diff(quantile(x, c(0.1, 0.9)))

> library("genefilter")

> filt_af4bcr = nsFilter(ALL_af4bcr, require.entrez=TRUE,

require.GOBP=TRUE, var.func=qrange, var.cutoff=0.5)

> ALLfilt_af4bcr = filt_af4bcr$eset

Now, let us load the packages with the necessary tools and annotation
data.

> library("Biobase")

> library("annotate")

> library("hgu95av2.db")

Our first step is to use the function rowttests to carry out a two-group
comparison and to select the top 100 genes.

> rt = rowttests(ALLfilt_af4bcr, "mol.biol")

> names(rt)

[1] "statistic" "dm" "p.value"

Exercise 8.1
Plot histograms of the t-statistic and of the p-values, such as in Figure 8.1.

Exercise 8.2
Create an ExpressionSet ALLsub with the 400 probe sets with smallest p-
values.

There are many variations and possible improvements to this probe set
selection procedure, but that is not the goal of this chapter. Here, the goal
is to get a reasonable list of probe sets and to subsequently use that to
demonstrate the use of metadata.
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Figure 8.1. Histograms of t-statistics and p-values.

Exercise 8.3
How many probe sets in ALL and how many probe sets in ALLsub map to
the same EntrezGene ID?

Exercise 8.4
Plot the expression profile of the CD44 gene, as in the left panel of
Figure 8.2.
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Figure 8.2. The left panel shows the expression profile of a probe set from
the ALLsub data. Square plot symbols correspond to the samples with the
ALL1/AF4 molecular subtype ands circle symbols to BCR/ABL. The right
panel is a barplot of frequencies with which the target genes of ALLsub map
to the different human chromosomes.



106 W. Huber, F. Hahne

Exercise 8.5
Produce a barplot, as in the right panel of Figure 8.2, that indicates for
each chromosome the number of genes probed by ALLsub that are on that
chromosome.

In the code chunk below, we show how to use the annaffy package to
produce a HTML table for a list of genes, in this case for the 400 genes
from the ALLsub.

> library("annaffy")

> anncols = aaf.handler(chip="hgu95av2.db")[c(1:3, 8:9, 11:13)]

> anntable = aafTableAnn(featureNames(ALLsub),

"hgu95av2.db", anncols)

> saveHTML(anntable, "ALLsub.html",

title="The Features in ALLsub")

> localURL = file.path("file:/", getwd(), "ALLsub.html")

We can point our HTML browser to this file.

> browseURL(localURL)

8.2 Multiple probe sets per gene

The annotation package hgu95av2.db provides information about the
genes represented on the array, including their EntrezGene identifiers1, Uni-
gene cluster identifiers, gene names, chromosomal location, Gene Ontology
annotation, and pathway associations (Wheeler et al., 2007; Mulder et al.,
2007). Although the term gene has many aspects and can mean different
things to different people, we operationalize it by identifying it with entries
in the Entrez database (Maglott et al., 2007). One problem that arises is
that some genes are represented by multiple probe sets on the chip.

There are no easy answers to the questions that stem from this, not
least because biology is more complex than the one gene–one transcript
model that underlies the design of arrays such as the one considered
here (ENCODE Project Consortium et al., 2007). In some cases, you may
wonder how to handle the fact that one probe set for a gene shows a cer-
tain pattern, and another one shows a different pattern. In other cases, you
might have several probe sets for one gene, but only one for another, yet
that imbalance should not affect your inference.

1http://www.ncbi.nlm.nih.gov/EntrezGene.
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Figure 8.3. Scatterplot of the data from two probe sets that both map to
EntrezGene 7013 (TERF1). Dark points correspond to ALL1/AF4 samples.

row

n
muloc

32255_i_at

32258_r_at

32256_r_at

1342_g_at

32257_f_at

1329_s_at

1361_at

71042
01022
31022
10034
40061
61041
20026
60040
10003
20002
91082
80090
12082
50011
82082
10036
23082
63082
10042
50056
40051
30062
50042
60094
50010
40072
80062
30026
50051
50091
10026
21021
10080
11013
30072
62021
20030
31073
70013
22042
30086
70021
40048
01042
11042
11080
60021

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 8.4. Heatmap of the data from seven probes mapping to EntrezGene 7013.
Note that the data for each probe set are median centered.

Exercise 8.6
Select some pairs of probe sets that are mapped to the same gene and plot
their expression values against each other. You can use Figures 8.3 and 8.4
as examples.

8.3 Categories and overrepresentation

A bit later in this chapter we consider using Gene Ontology annotation
data to try to find biological themes in the list of selected genes (The
Gene Ontology Consortium, 2000). In this section, we first address a more
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general question. Suppose that you can divide your genes into k groups.
For example, k might be 24 and represent chromosomes in humans. The
selection of differentially expressed genes defines another grouping: those
that have low p-values, and those that do not. These two categorizations
can be used to define a two-way contingency table. In our example it has
24 rows and two columns, and each table element contains the number of
genes that falls into the corresponding categories.

The question is now whether the two categorizations (membership on
a particular chromosome, and being or not being differentially expressed)
are associated. There are different tests for association in two-way tables,
Pearson’s χ2 test, provided by the R function chisq.test, and Fisher’s exact
test, provided by the function fisher.test, among them.

In general, we need to pay attention when doing such analyses to the fact
that there can be multiple probe sets per gene. Although annotations in the
annotation packages are given per probe set, that information is redundant
when the probe sets map to the same EntrezGene ID. Conclusions drawn
could be misleading if, for example, three redundant pieces of information
were treated as three independent pieces of information. For the current
set of example data, ALLsub, this is not a problem, due to the prefiltering
with nsFilter that we did above.

Here we have adapted a strategy that considers EntrezGene IDs as the
primary keys through which different types of annotation are mapped and
among which we search for overrepresentation. Depending on the ques-
tion of interest, a different approach may be needed, for example, when
considering annotation that is more closely related to the proteins.

Exercise 8.7
Create a data.frame chr with two columns gene_id and chromosome which
for each EntrezGene ID contains the chromosome to which it is mapped.

Exercise 8.8
Create a contingency table for the association of EntrezGene IDs with
their chromosome mapping and with being differentially expressed in the
ALLfilt_af4bcr data (remember the vector EGsub that you have created
earlier). Use the functions fisher.test and chisq.test to test for associ-
ation. (You may need to consult the man pages regarding its parameter
simulate.p.value to make fisher.test work for these data.)

Once we have established that there exists an association between chro-
mosomal location and being differentially expressed between BCR/ABL
and ALL1/AF4, we can try to pin down this association more specifically,
for example, by considering the residuals.

A sometimes used but generally inappropriate approach is to separately
test the contingency tables for each chromosome. This is usually done using
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a Hypergeometric sampling model (genes are either on a specific chromo-
some or not, and they are either differentially expressed or not). Note that
this is exactly the same as using Fisher’s test for the corresponding two-way
table, separately chromosome by chromosome.

Optional exercise: Use the Hypergeometric distribution to consider each
chromosome separately. How do these results compare with those found
above? Report the per-chromosome summary statistics. If any p-values are
significant, are there more or fewer genes than what you would expect by
chance?

8.3.1 Chromosomal location

In other settings we might be interested in where the genes are located, what
other genes are nearby, and perhaps in grouping genes by their location
before testing for overrepresentation.

Bioconductor annotation packages contain information on chromosomal
location in annotation objects with the CHRLOC suffix. The start location
is given as an integer number whose absolute value is the distance of the
transcription start site from the 5′ end of the chromosome. The values for
genes coded on the sense strand have a positive sign; those for genes on the
antisense strand have a negative sign.

Exercise 8.9
How many probe sets in ALLsub are on the sense strand?

Another useful concept related to chromosomal location comes from chro-
mosome bands. This information can be obtained from the MAP annotation
objects (e.g., hgu95av2MAP). In some cases the exact location is not known,
and a range is given. An example of using these for GSEA is given in
Chapter 13.

8.4 Working with GO

The Gene Ontology (GO) is a structured vocabulary of terms describing
gene products according to molecular function, biological process, and cel-
lular component (The Gene Ontology Consortium, 2000). The molecular
function of a gene product describes what it can do at the biochemical level
but without reference to where or when this activity might occur. The bio-
logical process of a gene product describes a biological objective to which
the gene product contributes. The cellular component ontology describes
locations, at the levels of subcellular structures and macromolecular com-
plexes. Examples of cellular components include nuclear inner membrane
and the ubiquitin ligase complex.
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GO terms can be linked by two relationships: is a and part of. For exam-
ple, a nuclear chromosome is a chromosome, and a nucleus is part of a cell.
The ontologies are structured as directed acyclic graphs (DAG). A parent
of a term is a more general GO term that precedes it in the DAG, that is,
which is linked to it by a chain of is a or part of relationships. For exam-
ple, the biological process term hexose biosynthesis has two parents, hexose
metabolism and monosaccharide biosynthesis. For precision and concise-
ness, all indexing of GO terms employs seven-digit tags with prefix GO:, for
example, GO:0008094.

There are three basic tasks. One is navigating the hierarchy, determining
parents and children of terms and deriving subgraphs of interest from the
overall graph. A second is resolving the mapping from a GO tag to its
natural language description, and the third is the mapping between GO
terms and genes or gene products. There are software tools in the packages
described here to allow users to perform these tasks.

The induced GO graph for a collection of genes is the graph that results
from taking the union of all GO terms annotated to the genes and also all
their parent terms.

Finding parents and children of different terms is handled by using the
PARENT and CHILDREN mappings. To find the children of "GO:0008094" we
use:

> library("GO.db")

> as.list(GOMFCHILDREN["GO:0008094"])

$`GO:0008094`
isa isa isa isa

"GO:0004003" "GO:0015616" "GO:0033170" "GO:0043142"

We use the term offspring to refer to all descendants (children, grand-
children, and so on) of a node. Similarly we use the term ancestor to refer
to the parents, grandparents, and so on, of a node.

> as.list(GOMFOFFSPRING["GO:0008094"])

$`GO:0008094`
[1] "GO:0003689" "GO:0004003" "GO:0015616" "GO:0017116"
[5] "GO:0033170" "GO:0033171" "GO:0043140" "GO:0043141"
[9] "GO:0043142"

8.4.1 Functional analyses

The packages annotate and GOstats provide much of the necessary func-
tionality for working with GO. Other packages you might want to consider
for statistical analyses are topGO and goTools.

The function hyperGTest will compute the Hypergeometric p-values for
overrepresentation of genes at all GO terms in the induced GO graph. The
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basic idea is simple. Consider an experimental method that identifies a set
of genes as, say, either differentially expressed or not. This set of genes
is called the gene universe. Then, for a specific GO term, the universe is
partitioned into those genes that are annotated at the term and those that
are not. You might think of this as an urn, with all genes in the universe
represented as balls in the urn. The genes annotated at the GO term are
black; the others are white. We can now ask whether the frequency of
black balls among the differentially expressed genes is surprisingly high,
or whether it is just consistent with the overall frequency of black balls in
the universe. If the black balls are overrepresented, one may conclude that
there appears to be an association between the GO term and the list of
interesting genes.

This test is performed many times, once for each GO category. Because of
the way that genes are annotated at GO terms, there are concerns with how
one might address the multiple testing issues that arise. Both the topGO
and GOstats packages implement a form of conditional testing that is
designed to address some of these concerns. More details on the conditional
testing paradigm can be found in Chapter 14 and Falcon and Gentleman
(2007). Gene set enrichment analysis (GSEA) is another approach and it
is considered in some detail in Chapter 13.

> library("GOstats")

To perform the test we first define the universe of genes and create a
parameter object to set the analysis options.

> affyUniverse = featureNames(ALLfilt_af4bcr)

> uniId = hgu95av2ENTREZID[affyUniverse]

> entrezUniverse = unique(as.character(uniId))

> params = new("GOHyperGParams",

geneIds=EGsub, universeGeneIds=entrezUniverse,

annotation="hgu95av2", ontology="BP",

pvalueCutoff=0.001, conditional=FALSE,

testDirection="over")

> mfhyper = hyperGTest(params)

Coming up with an appropriate approach to adjusting for the multiple
testing is not straightforward. The tests are not independent, the p-values
are related to the size of each category (i.e., the number of genes anno-
tated to it), and the sampling distribution is not clear. Despite this, many
people do use some sort of multiple testing adjustments. We often prefer a
pragmatic approach that considers the unadjusted p-values as well as the
size of the estimated effects, for example, the odds-ratios. We can plot the
histogram of unadjusted p-values; see Figure 8.5.
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Figure 8.5. Histogram of p-values for overrepresentation of genes at all GO terms
in the induced GO graph.

> hist(pvalues(mfhyper), breaks=50, col="mistyrose")

We see a peak on the left side, close to zero, which indicates that there
seem to be some categories that are enriched with genes beyond what is
expected by chance.

Exercise 8.10
Look at the GO categories that appear to be significantly overrepresented.
You could use a p-value cutoff of 0.001 (Hint: the summary method for
GOHyperGResult will help a lot.) Is there a pattern?

Exercise 8.11
Use the GOTERM annotation object to retrieve a more comprehensive
description of some of the categories.

8.5 Other annotations available

The Bioconductor annotation packages also contain mappings between
identifiers and PubMed IDs. These can be used together with functions
such as pm.getabst and pm.abstGrep to automatically download and search
relevant PubMed abstracts for key words. Every annotation package also
supplies mappings to PFAM and Prosite identifiers.



8. Annotation 113

8.6 biomaRt

In the previous sections we have used annotation information that is avail-
able in Bioconductor through static annotation packages. There is a lot of
additional information available in the numerous biological databases such
as Ensembl or Uniprot (Flicek et al., 2007; UniProt, 2007). We can access
these databases online, in R, using the package biomaRt. Here, we want
to use biomaRt to look up 3′ UTRs of our differentially expressed genes.
This information could for instance be used in the subsequent analysis of
regulatory sequences such as microRNA binding sites. We first need to cre-
ate an instance of the Mart class which stores the connection information
to the database. All available BioMart Web services can be listed using
the function listMarts. The function head reduces the output to the first
couple of entries.

> library("biomaRt")

> head(listMarts())
name

1 ensembl
2 compara_mart_homology_48
3 compara_mart_pairwise_ga_48
4 compara_mart_multiple_ga_48
5 snp
6 genomic_features

version
1 ENSEMBL 48 GENES (SANGER)
2 ENSEMBL 48 HOMOLOGY (SANGER)
3 ENSEMBL 48 PAIRWISE ALIGNMENTS (SANGER)
4 ENSEMBL 48 MULTIPLE ALIGNMENTS (SANGER)
5 ENSEMBL 48 VARIATION (SANGER)
6 ENSEMBL 48 GENOMIC FEATURES (SANGER)

We use Ensembl for our example.

> mart = useMart("ensembl")

Often BioMart databases contain more than one dataset. We can check
for available datasets using the function listDatasets.

> head(listDatasets(mart))
dataset

1 oanatinus_gene_ensembl
2 gaculeatus_gene_ensembl
3 cporcellus_gene_ensembl
4 lafricana_gene_ensembl
5 stridecemlineatus_gene_ensembl
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6 scerevisiae_gene_ensembl
description version

1 Ornithorhynchus anatinus genes (OANA5) OANA5
2 Gasterosteus aculeatus genes (BROADS1) BROADS1
3 Cavia porcellus genes (GUINEAPIG) GUINEAPIG
4 Loxodonta africana genes (BROADE1) BROADE1
5 Spermophilus tridecemlineatus genes (SQUIRREL) SQUIRREL
6 Saccharomyces cerevisiae genes (SGD1.01) SGD1.01

Our data are from human arrays, so we want to work with the hsapi-
ens gene ensembl set, and need to update our Mart object accordingly.

> ensembl = useDataset("hsapiens_gene_ensembl",

mart=mart)

For the Ensembl database biomaRt offers a set of convenience functions
for the most common tasks. The function getGene uses a vector of query IDs
to look up names, descriptions, and chromosomal locations of correspond-
ing genes. getGo can be used to fetch GO annotations and getSequences

retrieves different kinds of sequence information. getSNP and getHomolog

are useful to query SNP data or to map gene identifiers from one species
to another.

Exercise 8.12
Fetch the sequences of 3′ UTRs of our set of differentially expressed genes
using getSequence. Take a look at its manual page to learn about the func-
tion’s parameters. Think about which type of gene IDs we have available
for our set of genes.

biomaRt allows us to retrieve many different kinds of data in a very
flexible manner. To understand how its generalized query API works, we
first have to learn about the terms filter and attribute. A filter defines the
restriction on a query, for example, to show results only for a subset of
genes selected by a gene identifier. Attributes define the values we want to
retrieve, for instance, the IDs of PFAM domains for these genes. You can
get a list of available filters with listFilters

> head(listFilters(ensembl, group="GENE:"))
name description

1 affy_hc_g110 Affy hc g 110 ID(s)
2 affy_hc_g110-2 Affy hc g 110 ID(s)
3 affy_hg_focus Affy hg focus ID(s)
4 affy_hg_focus-2 Affy hg focus ID(s)
5 affy_hg_u133_plus_2 Affy hg u133 plus 2 ID(s)
6 affy_hg_u133_plus_2-2 Affy hg u133 plus 2 ID(s)
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and of available attributes with listAttributes.

> head(listAttributes(ensembl, group="PROTEIN:"))

name description
1 family Ensembl Family ID
2 family_description Family Description
3 interpro Interpro ID
4 interpro_description Interpro Description
5 interpro_short_description Interpro Short Description
6 pfam PFAM ID

For some BioMart databases, in particular for Ensembl, there are many
attributes and filters available, and you can control the number that are
listed by the above functions with the group parameter. The general-
purpose query interface of biomaRt is provided by the function getBM.

Exercise 8.13
For our set of differentially expressed genes, find associated protein
domains. Such domains are stored for instance in the PFAM, Prosite, or
InterPro databases. Try to find domain IDs for one or for all of these
sources.

8.7 Database versions of annotation packages

As of release 2.1 of Biconductor, the environment-based annotation pack-
ages are being phased out in favor of a new set of packages where the data
are stored in SQLite databases. Database variants all have the .db suffix,
so that the database variant of the hgu95av2 annotation package is called
hgu95av2.db. Every effort has been made to ensure that the database
variants can be used in essentially the same way as the environment-based
packages. However, by using a relational database API many operations
that used to be difficult are now much simpler.

The basic interface to these new packages is contained in the Annota-
tionDbi package, and its vignette should be consulted for details. Every
db annotation package exports some functions that can be used to access
the database directly. The names are mangled so that every package has a
different name for these. To get a connection to the database, the function
for the hgu133a.db package is hgu133a_dbconn.

> library("hgu133a.db")

> dbc = hgu133a_dbconn()
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Almost all of the interactions that were supported for the environment-
based annotation packages are also supported for the db versions. For
example, you can access the data directly using any of the standard sub-
setting or extraction functions that also work for environments: get, mget,
$, and [[.

> get("201473_at", hgu133aSYMBOL)

[1] "JUNB"
> mget(c("201473_at","201476_s_at"), hgu133aSYMBOL)

$`201473_at`
[1] "JUNB"

$`201476_s_at`
[1] "RRM1"
> hgu133aSYMBOL$"201473_at"

[1] "JUNB"
> hgu133aSYMBOL[["201473_at"]]

[1] "JUNB"

Some of the advantages to the new paradigm can be seen in the next
example, where we construct a table counting the number of terms in each
of the GO categories. The code using environment-based packages follows.
(It will work for db packages as well.)

> goCats = unlist(eapply(GOTERM, Ontology))

> gCnums = table(goCats)[c("BP","CC", "MF")]

We can use the xtable package to display the result; see Table 8.1.

> library("xtable")

> xtable(as.matrix(gCnums), display=c("d", "d"),

caption="Number of GO terms per ontology.",

label="ta:GOprops")

The code below uses the new db functionality. It is much faster.

> query = "select ontology from go_term"

> goCats = dbGetQuery(GO_dbconn(), query)

> gCnums2 = table(goCats)[c("BP","CC", "MF")]

> identical(gCnums, gCnums2)

[1] TRUE

Table 8.1. Number of GO terms per ontology.

x
BP 13916
CC 2007
MF 7878
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We can search for GO terms containing the word chromosome. We first
construct a SQL query, and then apply it.

> query = paste("select term from go_term where term",

"like '%chromosome%'")
> chrTerms = dbGetQuery(GO_dbconn(), query)

> nrow(chrTerms)

[1] 82
> head(chrTerms)

term
1 nuclear chromosome
2 cytoplasmic chromosome
3 mitochondrial chromosome
4 chromosome, pericentric region
5 condensed chromosome kinetochore
6 condensed nuclear chromosome kinetochore

Next we show how to find the GO identifier for “transcription factor
binding” and use that to get all Entrez Gene IDs with that annotation.
Here, we restrict our attention to the genes covered by the HG-U133A
GeneChip. Alternatively, you could use the org.Hs.eg.db package, which
annotates the whole human genome.

> query = paste("select go_id from go_term where",

"term = 'transcription factor binding'")
> tfb = dbGetQuery(GO_dbconn(), query)

> tfbps = hgu133aGO2ALLPROBES[[tfb$go_id]]

> table(names(tfbps))

IDA IEA IEP IGI IMP IPI ISS NAS NR TAS
106 83 2 2 8 59 30 91 27 366

Exercise 8.14
How many GO terms have the words transcription factor in them?

8.7.1 Mapping Symbols

In this section we address a more advanced topic. One of the problems
with the environment-based system was that the probe ID was used as
the primary key in most mappings which made it quite difficult to map
between entities where neither was the primary key. With the database-
based system that is much more straightforward. Let us consider a common
problem, mapping from gene symbols to some other form of identifier. This
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problem arises when publications give the symbol (or name) of a gene, but
not a systematic database identifier.

The code in the next segment consists of four functions, three helpers and
the main function findEGs that maps from symbols to Entrez Gene IDs. We
need to know about the table structure to write the helper functions as they
are basically R wrappers around SQL statements. The hgu95av2_dbschema

function can be used to obtain all the information about the schema.

> queryAlias = function(x) {

it = paste("('", paste(x, collapse="', '"), "'", sep="")

paste("select _id, alias_symbol from alias",

"where alias_symbol in", it, ");")

}

> queryGeneinfo = function(x) {

it = paste("('", paste(x, collapse="', '"), "'", sep="")

paste("select _id, symbol from gene_info where",

"symbol in", it, ");")

}

> queryGenes = function(x) {

it = paste("('", paste(x, collapse="', '"), "'", sep="")

paste("select * from genes where _id in", it, ");")

}

> findEGs = function(dbcon, symbols) {

rs = dbSendQuery(dbcon, queryGeneinfo(symbols))

a1 = fetch(rs, n=-1)

stillLeft = setdiff(symbols, a1[,2])

if( length(stillLeft)>0 ) {

rs = dbSendQuery(dbcon, queryAlias(stillLeft))

a2 = fetch(rs, n=-1)

names(a2) = names(a1)

a1 = rbind(a1, a2)

}

rs = dbSendQuery(dbcon, queryGenes(a1[,1]))

merge(a1, fetch(rs, n=-1))

}

The logic is to first look to see if the symbol is currently in use, and then
for those that were not found to search in the alias table, to see if there are
updated names. Each of the first two queries within the findEGs function
returns the symbol (the second columns of a1 and a2) and an identififer
that is internal to the SQLite database (the first columns). The last query
uses those internal IDs to extract the corresponding EntrezGene IDs.
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> findEGs(dbc, c("ALL1", "AF4", "BCR", "ABL"))

_id symbol gene_id
1 20 ABL 25
2 543 BCR 613
3 3781 AF4 4299
4 3946 ABL 4547

The three columns in the return are the internal ID, the symbol, and the
EntrezGene ID (gene_id).

8.7.2 Other capabilities

In many situations you may want to reverse a mapping. That is, you have
an annotation that goes from Affymetrix ID to symbol, and you would like
to have the mapping from symbols to Affymetrix IDs. This is easily done
using the revmap function.

> s1 = revmap(hgu133aSYMBOL)

> s1$BCR

[1] "202315_s_at" "214623_at" "217223_s_at"

Another useful tool in the AnnotationDbi package is the toTable func-
tion. It takes as input an instance of the Bimap class and returns a
data.frame. You may want to consult the documentation of the Anno-
tationDbi package for more details. In the code below we show how to
obtain GO information using toTable.

> toTable(hgu133aGO["201473_at"])

probe_id go_id Evidence Ontology
1 201473_at GO:0000074 IEA BP
2 201473_at GO:0006357 TAS BP
3 201473_at GO:0009987 IEA BP
4 201473_at GO:0000785 TAS CC
5 201473_at GO:0005634 IEA CC
6 201473_at GO:0003700 IEA MF
7 201473_at GO:0003702 TAS MF
8 201473_at GO:0003713 TAS MF
9 201473_at GO:0003714 TAS MF
10 201473_at GO:0043565 IEA MF
11 201473_at GO:0046983 IEA MF
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Supervised Machine Learning

R. Gentleman, W. Huber, and V. J. Carey

Abstract

In this chapter we cover some of the basic principles of supervised
machine learning. We mainly consider the two-class problem, but
also cover some multiclass prediction. We introduce some of the basic
concepts in machine learning such as the distance function, the so-
called confusion matrix , and cross-validation. We make extensive use
of the MLInterfaces package.

9.1 Introduction

Machine learning (ML) is typically divided into two separate areas, super-
vised ML and unsupervised ML. The first of these is referred to as
classification in the statistics literature, and the second is referred to as
clustering. Both types of machine learning are concerned with the analysis
of datasets containing multivariate observations. There is a large amount of
literature that can provide an introduction into these topics; here we refer
to Breiman et al. (1984) and Hastie et al. (2001).

In supervised learning, a p-dimensional multivariate observation x is asso-
ciated with a class label c. The p components of datum x are called features.
The objective is to “learn” a mathematical function f that can be evalu-
ated on the input x to yield a prediction of its class c. We consider the case
in which a training set of multivariate observations and associated class
labels is provided. We introduce software in Bioconductor that makes it
easy to estimate prediction functions f on the basis of a training set, and
to compute predictions using a distinct test set, for which class labels are
not available. We also consider methods for assessing the likely error rate
of the resulting classifiers.

One issue that typically arises in ML applications to high-throughput
biological data is feature selection. For example, in the case of microarray
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data one typically has tens of thousands of features that were collected
on all samples, but many will correspond to genes that are not expressed.
Other features will be important for predicting one phenotype, but largely
irrelevant for predicting other phenotypes. Thus, feature selection is an
important issue.

Fundamental to the task of ML is selecting a measure of similarity among
(or distance between) multivariate data points. We emphasize the term
“selecting” here because it can easily be forgotten that the units in which
features have been measured have no legitimate priority over other trans-
formed representations that may lead to more biologically sensible criteria
for classification. If we simply drop our expression data into a classification
procedure, we have made an implicit selection to embed our observations in
the feature space employed by the procedure. Oftentimes this feature space
has Euclidean structure. If we extended our expression data to include,
say, squares of expression values for certain genes, or products of values
taken on several genes, a given classification procedure may perform very
differently, even though the original data have only been deterministically
transformed. Effective classification requires attention to the possible trans-
formations (equivalently, distance metric in the implied feature space) of
complex machine learning tools such as kernel support vector machines.
In many cases the distance metric is more important than the choice of
classification algorithm, and MLInterfaces makes it reasonably easy to
explore different choices for distances. In this chapter we concentrate on
the problem of classifying samples, but the methods can also be applied to
classifying features (genes, if we are using expression microarrays).

9.1.1 Supervised machine learning check list

1. Filter out features (genes) that show little variation across samples,
or that are known not to be of interest. If appropriate, transform the
data of each feature so that they are all on the same scale.

2. Select a distance, or similarity, measure. What does it mean for two
samples to be close? Make sure that the selected distance embodies
your notion of similarity.

3. Feature selection: Select features to be used for ML. If you are using
cross-validation, be sure that feature selection according to your
criteria, which may be data-dependent, is performed at each iteration.

4. Select the algorithm: Which of the many ML algorithms do you want
to use?

5. Assess the performance of your analysis. With supervised ML, per-
formance is often assessed using cross-validation, but this itself can
be performed in various ways.
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9.2 The example dataset

For this chapter we need a dataset that allows for two, or more, group
comparisons. The ALL dataset contains over 100 samples, for a variety
of different subtypes of the disease. In the code below we load the data,
and then subset to the particular phenotypes in which we are interested.
The specific information we need is to select those with B-cell ALL, and
then within that subset, those that are NEG and those that are labeled as
BCR/ABL. The last line in the code below is used to drop unused levels of
the factor encoding mol.biol.

> library("ALL")

> data(ALL)

> bcell = grep("^B", as.character(ALL$BT))

> moltyp = which(as.character(ALL$mol.biol)

%in% c("NEG", "BCR/ABL"))

> ALL_bcrneg = ALL[, intersect(bcell, moltyp)]

> ALL_bcrneg$mol.biol = factor(ALL_bcrneg$mol.biol)

Exercise 9.1
How many samples for each class are in the BCR/ABL-NEG subset?

The comparison of BCR/ABL to NEG is difficult, and the error rates are
typically quite high. You could instead compare BCR/ABL to ALL1/AF4;
they are rather easy to distinguish and the error rates should be smaller.

9.2.1 Nonspecific filtering of features

Nonspecific filtering removes those genes that we believe are not sufficiently
informative for any phenotype, so that there is little point in considering
them further. For the purpose of this teaching exercise, we used a very strin-
gent filter so that the dataset is small and the examples will run quickly;
in practice you would probably use a less stringent filter.

We use the function nsFilter from the genefilter package to filter for a
number of different criteria. For instance, by default it removes the control
probes on Affymetrix arrays, which can be identified by their AFFX prefix.
We also exclude genes without Entrez Gene identifiers, and as suggested
above, we select the top 25% of genes on the basis of variability across
samples.

> ALLfilt_bcrneg = nsFilter(ALL_bcrneg, var.cutoff=0.75)$eset

Exercise 9.2
What kind of object is ALLfilt_bcrneg?
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9.3 Feature selection and standardization

Feature selection is an important component of machine learning. Typically
the identification and selection of features used for supervised ML relies on
knowledge of the system being studied, and on univariate assessments of
predictive capability. Among the more commonly used methods are the
selection of features that are predictive using t-statistic and ROC curves
(at least for two-sample problems).

In order to correctly assess error rates it is essential to accounted for the
effects of feature selection. If cross-validation is used then feature selection
must be incorporated within the cross-validation process and not performed
ahead of time using all of the data.

A second important aspect is standardization. For gene expression data
the recorded expression level is not directly interpretable, and so users must
be careful to ensure that the statistics used are comparable. This standard-
ization ensures that all genes have equal weighting in the ML applications.
In most cases this is most easily achieved by standardizing the expres-
sion data, within genes, across samples. In some cases (such as with a
t-test) there is no real need to standardize because the statistic itself is
standardized.

In the code segments below we standardize all gene expression values. It
is important that nonspecific filtering has already been performed. We first
write a helper function to compute the rowwise IQRs for us.

> rowIQRs = function(eSet) {

numSamp = ncol(eSet)

lowQ = rowQ(eSet, floor(0.25 * numSamp))

upQ = rowQ(eSet, ceiling(0.75 * numSamp))

upQ - lowQ

}

Next we subtract the row medians and divide by the row IQRs. Again,
we write a helper function, standardize, that does most of the work.

> standardize = function(x) (x - rowMedians(x)) / rowIQRs(x)

> exprs(ALLfilt_bcrneg) = standardize(exprs(ALLfilt_bcrneg))

9.4 Selecting a distance

To some extent your choices here are not always that flexible because
many ML algorithms have a certain choice of distance measure, say,
the Euclidean distance, built in. In such cases, you still have the choice
of transformation of the variables; examples are coordinatewise logarith-
mic transformation, the linear Mahalonobis transformation, and other
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linear or nonlinear projections of the original features into a (possibly
lower-dimensional) space.

If the ML algorithm does allow explicit specification of the distance met-
ric, there are a number of different tools in R to compute the distance
between objects. They include the function dist, the function daisy from
the cluster package (Kaufman and Rousseeuw, 1990), and the functions
in the bioDist package. The bioDist package is discussed in Chapter 12
of Gentleman et al. (2005a). Some ideas on visualizing distance measures
can be found in Chapter 10.5 of that reference.

Exercise 9.3
What distance measures are available in the bioDist package? Hint: load
the package and then look at the loaded functions, or read the vignette.

The dist function computes the distance between rows of an input
matrix. We want the distances between samples, thus we transpose the
matrix using the function t. The return value is an instance of the dist
class. Because this class is not supported by some R functions that we
want to use, we also convert it to a matrix.

> eucD = dist(t(exprs(ALLfilt_bcrneg)))

> eucM = as.matrix(eucD)

> dim(eucM)

[1] 79 79

We next visualize the distances using a heatmap. In the code below we
generate a range of colors to use in the heatmap. The RColorBrewer
package provides a number of different palettes to use and we have selected
one that uses red and blue. Because we want red to correspond to high
values, and blue to low, we must reverse the palette.

> library("RColorBrewer")

> hmcol = colorRampPalette(brewer.pal(10, "RdBu"))(256)

> hmcol = rev(hmcol)

> heatmap(eucM, sym=TRUE, col=hmcol, distfun=as.dist)

The result of this is shown in Figure 9.1.

Exercise 9.4
What do you notice most about the heatmap? What color is used to encode
objects that are similar? What color encodes objects that are dissimilar?

Exercise 9.5
Repeat this analysis using Spearman’s correlation distance. How much does
the heatmap change?
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Figure 9.1. A heatmap of the between-sample distances.

For the next exercise, we use a helper function from the bioDist package,
closest.top, that finds the nearest neighbors of a particular observation,
given a distance matrix x.

> closest.top("03002", eucM, 1)

[1] "09017"

Exercise 9.6
Compute the distance between the samples using the MIdist function from
the bioDist package. What distance does this function compute? Which
sample is closest to "03002" in this distance?

9.5 Machine learning

There are many different ML algorithms available in R and through its
many add-on packages. The user interfaces (i.e., the calling parameters
and return values of the machine learning algorithms that are available in
R) are quite diverse, and this can make switching your application code
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from one machine learning algorithm to another tedious. For this reason,
the MLInterfaces provides wrappers around the various machine learning
algorithms that accept a standardized set of calling parameters and produce
a standardized return value. The package does not implement any of the
machine learning algorithms, it just converts the in- and out-going data
structures into the appropriate format. In general, the name of the function
or method remains the same, but an I is appended, so we, for instance, use
the MLInterfaces functions knnI to interface to the functions knn from
the class package.

Exercise 9.7
Use library(help=MLInterfaces), ?MLearn, and openVignette() to
explore the package. Try to follow the example at the bottom of the MLearn

help page.

We start by looking at the k nearest neighbors (KNN) and diagonal lin-
ear discriminant analysis (DLDA) methods, because they are conceptually
simple and serve well to demonstrate most of the general principles.

It is easiest to understand most supervised ML methods in the setting
where one has both a training set on which to build the model, and a test
set on which to test the model. We begin by artificially dividing our data
into a test and training set. Such a dichotomy is not actually that useful and
in practice one tends to rely on cross-validation, or other similar schemes.

> Negs = which(ALLfilt_bcrneg$mol.biol == "NEG")

> Bcr = which(ALLfilt_bcrneg$mol.biol == "BCR/ABL")

> S1 = sample(Negs, 20, replace=FALSE)

> S2 = sample(Bcr, 20, replace = FALSE)

> TrainInd = c(S1, S2)

> TestInd = setdiff(1:79, TrainInd)

The term confusion matrix is typically used to refer to the table that
cross-classifies the test set predictions with the true test set class labels.
The MLInterfaces packages provides a function called confuMat that will
compute this matrix from most inputs.

In the next series of exercises you are introduced to the basic functions
in the MLInterfaces package and through them to several supervised
machine learning methods.

Exercise 9.8
Using the KNN, LDA, and DLDA methods predict the phenotype
(BCR/ABL or NEG) for the samples in the ALLfilt_bcrneg dataset. Esti-
mate the prediction error rates. Later in Section 9.6 we show how to use
cross-validation to estimate the prediction error rates.
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In every machine learning algorithm one can, at least conceptually, make
one of three decisions:

1. To classify the sample into one of the known classes as defined by the
training set.

2. To indicate doubt, the sample is somehow between two or more classes
and there is no clear indication as to which class it belongs.

3. To indicate that the sample is an outlier, in the sense that it is so dis-
similar to all samples in the training set that no sensible classification
is possible.

In the next series of exercises we guide you through some of the options
that are available. Unfortunately these concepts are not implemented in
all (or even most) machine learning algorithms and hence their usage is
problematic.

Exercise 9.9
For the KNN classifier, answer the following questions.

a. What happens when k is even and there is a tie?

b. Optional: Suppose that instead of Euclidean distance you wanted to
use some other metric, such as 1-correlation. How might you achieve
that?

c. How might you define outlier and doubt classes? Are there any
outliers, or hard to classify samples?

The preceding discussion and exercises used all of the features that passed
our nonspecific filtering procedure. But some are not likely to be predictive
of the phenotypes of interest, and so we now want to explore what happens
if we instead select genes that are able to discriminate between those with
BCR/ABL and those samples labeled NEG. We use the t-test to select
genes; those with small p-values for comparing BCR/ABL to NEG are
used. Although it is tempting to use all the data to do this selection, that
is not really a good idea as it tends to give misleadingly low values for the
error rates. You can, and probably should, use attenuated t-tests, and you
can select the ones to use by the observed p-value. But, these approaches
would complicate the exposition further, so we simply select those 50 genes
with the most extreme t-statistics.

In the code below, we compute the t-tests on the training set, then sort
them from largest to smallest, and then obtain the names of the 50 that
have the largest observed test statistics.
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> Traintt = rowttests(ALLfilt_bcrneg[, TrainInd], "mol.biol")

> ordTT = order(abs(Traintt$statistic), decreasing=TRUE)

> fNtt = featureNames(ALLfilt_bcrneg)[ordTT[1:50]]

Exercise 9.10
Repeat this exercise on the whole dataset. How many of the genes selected
on the training set were also selected when you used the whole dataset?

Now we can see how well the different machine learning algorithms work
when the features have been selected to help discriminate between the two
groups. First we use KNN.

> BNf = ALLfilt_bcrneg[fNtt,]

> knnf = MLearn( mol.biol ~ ., data=BNf, knnI(k=1,l=0),

TrainInd)

> confuMat(knnf)

predicted
given BCR/ABL NEG
BCR/ABL 15 2
NEG 5 17

Exercise 9.11
Repeat this with LDA and DLDA and compare the error rates obtained
for these three methods using selected genes with those obtained using all
of the genes.

9.6 Cross-validation

Assessing the error rate in supervised machine learning is important, but
potentially problematic. It is well known that the error rate is overly opti-
mistic if the same data are used to estimate it as were used to train the
model. This led to an approach that divided the data into two groups, as
was done in the previous section, one for training the model and one for
testing (or assessing the error rate). However, that approach is somewhat
inefficient, and cross-validation is generally preferable as an approach.

Cross-validation is a very useful tool that can be applied to many differ-
ent problems. It can be used for model selection, selecting parameter values
for a given algorithm, and for assessing error rates in classification prob-
lems, to name but a few of the many areas to which it has been applied.
The basic idea behind this method is quite simple: one must be willing
to believe that the dataset one has can be divided into two pieces, and



130 R. Gentleman, W. Huber, V. J. Carey

that for such a division it makes sense to fit a model to one piece, and
assess the performance of that model on the other. And under such an
assumption, there are typically many, nearly equivalent, ways to divide the
data so rather than do this once, we should consider many different divi-
sions. Then, for error rate assessment we fit our model to the training set,
estimate the error rate on the test set, aggregate over all divisions, and
thereby obtain an estimate of the error rate. In order to get an accurate
assessment it is important that all steps that can affect the outcome are
included in the cross-validation process. In particular, the selection of fea-
tures to use in the machine learning algorithm must be included within the
cross-validation step.

Perhaps the easiest method to understand, and the most widely used
method, is leave-one-out (LOO) cross-validation. In this scheme, each
observation is left out in turn, the remaining n − 1 observations are used
as the training set, and the left-out observation is treated as the test set.
There are many other ways to perform cross-validation, but all are more
complicated than the LOO scheme and hence require more thought. It is
also common to partition the data into tenths, and use one tenth as the
test set, while using the other nine tenths as the training set. Although
there are some esthetic reasons to use a partition one might also just use
randomly selected subsets, even if there is some overlap. This approach has
the benefit that there are in fact many more such subsets than partitions,
and hence one might obtain a better estimate of the mean error rate.

The MLInterfaces package has a mechanism for performing cross-
validation. The mechanism is based on specifying an xvalSpec parameter
to the MLearn function. The xvalSpec allows you to specify a type (if "LOO"
then the other parameters are ignored), a partition function (for specify-
ing the test and training sets), the number of partitions, and optionally a
function that helps to select features in each subset.

Because cross-validation is a very expensive operation, and these exer-
cises are intended to run on laptop computers, we first artificially reduce
the size of the dataset, to 1000 genes for the remainder of this section.

> BNx = ALLfilt_bcrneg[1:1000,]

The example below performs LOO cross-validation, using KNN. This
is a bit special, because the class provides a purpose-built function for
LOO cross-validation using KNN and we want to access it directly. The
one, slightly odd requirement is to specify that all samples are part of the
training set.

> knnXval1 = MLearn(mol.biol~., data=BNx, knn.cvI(k=1, l=0),

trainInd=1:ncol(BNx))
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In the code below, we show how you could perform essentially the
same analysis using the xvalSpec approach. This is a much more flexible
approach, but unfortunately it is less efficient especially with large datasets,
such as we are using. The first two arguments should be familiar. The third
argument, knnI, specifies that we use the knn function. The final argument,
xvalSpec, indicates the method that will be used for cross-validation and
LOO stands for leave-one-out.

> knnXval1 = MLearn(mol.biol~., data=BNx, knnI(k=1, l=0),

xvalSpec("LOO"))

Exercise 9.12
a. Describe in words the operation that the code is performing.

b. What information is provided by the confuMat function? How would
you use this to assess the performance of this machine learning
algorithm?

> confuMat(knnXval1)

predicted
given BCR/ABL NEG
BCR/ABL 31 6
NEG 16 26

Now, let us see what happens when we include feature selection in the
cross-validation. This can be done by invoking a helper function, fs.absT, as
part of xvalSpec. In order to include features that produce the top N two-
sample t-statistics (in absolute value) among all genes, pass fs.absT(N) as
the fourth argument to xvalSpec:

> lk3f1 = MLearn(mol.biol~., data=BNx, knnI(k=1),

xvalSpec("LOO", fsFun=fs.absT(50)))

> confuMat(lk3f1)

Exercise 9.13
a. In the example above we used 50 features for each of the cross-

validations. What happens if we only use 5? How would you interpret
these results? Which features were selected, and how many times,
when we used 5 features (Hint: fsHistory)?

b. Optional: Hard. Repeat the exercise above using tenfold cross-
validation. To do this you need to divide the data into ten groups
and use the group argument to xval.
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Cross-validation can be used for many different purposes. In the next
series of exercises we guide you through the use of cross-validation for
selection of the parameter k in KNN.

Exercise 9.14
Use cross-validation to estimate k, the number of nearest neighbors to use.
That is, for each of a number of values of k, estimate the cross-validation
error, and then select k as that value which yields the smallest error rate.

9.7 Random forests

In this section we describe random forests (Breiman, 1999) and provide
some examples and exercises based on the randomForest package (Liaw
and Wiener, 2002), but use the MLInterfaces interface. Basic use of ran-
dom forest technology is fairly straightforward. The only parameter that
seems to be very important is mtry. This controls the number of features
that are selected for each split. The default value is the square root of the
number of features but often a smaller value tends to have better perfor-
mance. In the code below we fit two forests with quite different values of
mtry to help see what effect that might have. The seed for the random
number generator is set to ensure repeatability.

It is not typical to produce a test and separate training set, as we have
done here, when using random forests. We use the MLearn interface, and
request that the different measures of variable importance be retained (they
are explained below).

> library("randomForest")

> set.seed(123)

> rf1 = MLearn( mol.biol~., data=ALLfilt_bcrneg,

randomForestI, TrainInd, ntree=1000, mtry=55,

importance=TRUE)

Next we use a much smaller value of mtry so that we can compare the
results.

> rf2 = MLearn( mol.biol~., data=ALLfilt_bcrneg,

randomForestI, TrainInd, ntree=1000, mtry=10,

importance=TRUE)

We can use the prediction function to assess the ability of these two
forests to predict the class for the test set. For each model we show the
confusion matrix for both the training and test sets. Naturally the error
rates are much smaller (zero in both cases) for the training set.
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> trainY = ALLfilt_bcrneg$mol.biol[TrainInd]

> confuMat(rf1, "train")

predicted
given BCR/ABL NEG
BCR/ABL 20 0
NEG 0 20

> confuMat(rf1, "test")

predicted
given BCR/ABL NEG
BCR/ABL 16 1
NEG 4 18

Now for the second model.

> confuMat(rf2, "train")

predicted
given BCR/ABL NEG
BCR/ABL 20 0
NEG 0 20

> confuMat(rf2, "test")

predicted
given BCR/ABL NEG
BCR/ABL 14 3
NEG 4 18

Exercise 9.15
Compare the error rates from the two different random forest fits. Compare
the error rates from the random forest fits to those for KNN.

9.7.1 Feature selection

One of the nice things about the random forest technology is that it provides
an indication of which variables were most important in the classification
process. The specific definitions of these measures are provided in the man-
ual page for the importance function, which can be used to extract the
measures from an instance of the randomForest class. These features can
be compared to those selected by t-test or selected by some other means.
In the next two code chunks we plot the variable importance statistics for
the two random forests. The output is shown in Figure 9.2.

> opar = par(no.readonly=TRUE, mar=c(7,5,4,2))

> par(las=2)

> impV1 = getVarImp(rf1)

> plot(impV1, n=15, plat="hgu95av2", toktype="SYMBOL")

> par(opar)
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Figure 9.2. Variable importance plots: the left panel is for the first random forest
model (mtry = 55), the right panel is for the second model (mtry = 10).

> par(las=2, mar=c(7,5,4,2))

> impV2 = getVarImp(rf2)

> plot(impV2, n=15, plat="hgu95av2", toktype="SYMBOL")

> par(opar)

Exercise 9.16
Are there any variables in common among the 15 most important for each
model?

9.7.2 More exercises

Again a number of interesting exercises present themselves.

Exercise 9.17
a. Reverse the role of the test set and the training set and see how the

estimated prediction errors change.

b. Use the whole dataset to build a random forest. How well does it do?
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A minor caveat to the use of random forests is that the method seems to
have difficulties when the sizes of the groups are not approximately equal.
There is a weight argument that can be given to the random forest function
but it appears to have little effect.

9.8 Multigroup classification

We now briefly consider the application of supervised machine learning
methods to a multiclass problem. We return to our original data, and
instead of considering a two-class problem, we consider three different
classes, BCR/ABL, NEG and ALL1/AF4. The code below creates an
expression set containing these three groups. We perform some nonspecific
filtering, and the rather cryptic last line of the code chunk drops unused
levels of the factor mol.biol. Please see Chapter 8 for a discussion on the
choice of varinance measure.

> Bcell = grep("^B", ALL$BT)

> ALLs = ALL[,Bcell]

> types = c("BCR/ABL", "NEG", "ALL1/AF4")

> threeG = ALLs$mol.biol %in% types

> ALL3g = ALLs[,threeG]

> qrange <- function(x)

diff(quantile(x, c(0.1, 0.9)))

> ALL3gf = nsFilter(ALL3g, var.cutoff=0.75,

var.func=qrange)$eset

> ALL3gf$mol.biol = factor(ALL3gf$mol.biol)

We artificially divide the data set into test and training sets, so that a
model can be built on the training set and tested on the test set. Because
the different subtypes have very different sizes, we attempt to balance our
selection.

> s1 = table(ALL3gf$mol.biol)

> trainN = ceiling(s1/2)

> sN = split(1:length(ALL3gf$mol.biol), ALL3gf$mol.biol)

> trainInd = NULL

> testInd = NULL

> set.seed(777)

> for(i in 1:3) {

trI = sample(sN[[i]], trainN[[i]])

teI = setdiff(sN[[i]], trI)

trainInd = c(trainInd, trI)

testInd = c(testInd, teI)

}
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> trainSet = ALL3gf[, trainInd]

> testSet = ALL3gf[, testInd]

Exercise 9.18
Now use the KNN procedure to make class predictions. Can you estimate
the class-conditional error rates? Can you control the procedure so that the
class-conditional error rates are treated equally?

Exercise 9.19
Repeat the above classification using random forests.
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Unsupervised Machine Learning

R. Gentleman and V. J. Carey

Abstract

In this chapter we explore the use of unsupervised machine learning,
or clustering. We cover distances, dimension reduction techniques,
and a variety of unsupervised machine learning methods including
hierarchical clustering, k-means clustering, and specialized methods,
such as those in the hopach package.

10.1 Preliminaries

Cluster analysis is also known as unsupervised machine learning, and has a
long and extensive history. There are many good references that cover some
of the topics discussed here in more detail, such as Gordon (1999), Kauf-
man and Rousseeuw (1990), Ripley (1996), Venables and Ripley (2002),
and Pollard and van der Laan (2005). Unsupervised machine learning is
also sometimes referred to as class discovery. One of the major differences
between unsupervised machine learning and supervised machine learning
is that there is no training set for the former and hence, no obvious role for
cross-validation. A second important difference is that although most clus-
tering algorithms are phrased in terms of an optimality criterion there is
typically no guarantee that the globally optimal solution has been obtained.
The reason for this is that typically one must consider all partitions of the
data, and for even moderate sample sizes this is not possible, so some
heuristic approach is taken. Thus we recommend that where possible you
should use different starting parameters.

The prerequisites to performing unsupervised machine learning are the
selection of samples, or items to cluster, the selection of features to be
used in the clustering, the choice of similarity metric for the comparison of
samples, and the choice of an algorithm to use. In this chapter we consider

F. Hahne et al., Bioconductor Case Studies, DOI: 10.1007/978-0-387-77240-0 10,
© Springer Science+Business Media, LLC 2008
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the problem of clustering samples, but most of the methods would apply
equally well to the problem of clustering genes.

There are two basic clustering strategies: hierarchical clustering
and 2) partitioning, as well as some hybrid methods. Hierarchical clus-
tering can be further divided into two flavors, agglomerative and divisive.
In agglomerative clustering, each object starts as its own single-element
cluster and at each stage the two closest clusters are combined into a new,
bigger cluster. This procedure is iterated until all objects are in one cluster.
The result of this process is a tree, which is often plotted as a dendrogram
(see Figure 10.3). To obtain a clustering with a desired number of clusters,
one simply cuts the dendrogram at the desired height. On the other hand,
divisive hierarchical clustering begins with all objects in a single cluster.
At each step of the iteration, the most heterogeneous cluster is divided into
two, and this process is repeated until all objects are in their own cluster.
The result is again a tree.

Partitioning algorithms typically require the number of clusters to be
specified in advance. Then, samples are assigned to clusters, in some fash-
ion, and a series of iterations, where (typically) single sample exchanges
or moves are proposed and the resulting change in some clustering criteria
computed; changes that improve the criteria are accepted. The process is
repeated until either nothing changes or some number of iterations is made.

10.1.1 Data

First we load the necessary packages and load the dataset we use for the
examples and exercises.

We use the ALL dataset, from the ALL package for this chapter. It
is described more completely in Chapter 1. Our goal is to demonstrate
how one can use various clustering methods, so we ignore the sample data.
We reduce the data to a manageable size by selecting those samples that
correspond to B-cell ALL and where the molecular biology phenotype is
either BCR/ABL or NEG. The code for selecting the appropriate subset is
given below; more details on the steps involved are given in Chapter 1.

> library("ALL")

> data(ALL)

> bcell = grep("^B", as.character(ALL$BT))

> moltyp = which(as.character(ALL$mol.biol)

%in% c("NEG", "BCR/ABL"))

> ALL_bcrneg = ALL[, intersect(bcell, moltyp)]

> ALL_bcrneg$mol.biol = factor(ALL_bcrneg$mol.biol)

> ALLfilt_bcrneg = nsFilter(ALL_bcrneg, var.cutoff=0.75)$eset

The filtering has selected 2638 genes that we consider of interest for
further investigation. This will still be too many genes for most applications
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Table 10.1. GO molecular function categories that correspond to transcription
factors.

GO Identifier Description
GO:0003700 Transcription factor activity
GO:0003702 RNA polymerase II transcription factor activity
GO:0003709 RNA polymerase III transcription factor activity
GO:0016563 Transcriptional activator activity
GO:0016564 Transcriptional repressor activity

and often one will want to use other criteria to further reduce the genes
under study. Here, we focus on transcription factors; these are important
regulators of gene expression. As it turns out, finding the set of known
transcription factors for any species is not such an easy problem. We use the
GO identifiers in Table 10.1 that were used by Kummerfeld and Teichmann
(2006) as their reference set of known transcription factors.

For each annotation of a gene to a GO category, there is an evidence code
that indicates the basis for mapping that gene to the category. We drop
all those that correspond to IEA, which stands for inferred from electronic
annotation. We show the code for this task below.

> GOTFfun = function(GOID) {

x = hgu95av2GO2ALLPROBES[[GOID]]

unique(x[ names(x) != "IEA"])

}

> GOIDs = c("GO:0003700", "GO:0003702", "GO:0003709",

"GO:0016563", "GO:0016564")

> TFs = unique(unlist(lapply(GOIDs, GOTFfun)))

> inSel = match(TFs, featureNames(ALLfilt_bcrneg), nomatch=0)

> es2 = ALLfilt_bcrneg[inSel,]

This leaves us with 249 transcription factor coding genes for our machine
learning exercises.

10.2 Distances

As we noted in the other machine learning exercise, no machine learning
can take place without some notion of distance. It is not possible to cluster
or classify samples without some way to say what it means for two things
to be similar. For this reason, we again begin by considering distances.
The dist function in R, the bioDist package, and the function daisy in
the cluster package all provide different distances that you can use. It is
always worth spending some time considering what it means for two objects
to be similar and to then select a distance measure that reflects your belief.
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Many machine learning methods have a built-in distance, often not obvious
and difficult to alter, and if you want to use those methods you may need
to use their metric. But it is important to realize that if you do use different
measures of distance, they will have an impact on your analysis.

We begin by making use of the Manhattan metric; you might choose a
different metric to compute distances between samples. Because we have no
a priori belief that any one gene is more important than any other, we first
center and scale the gene expression values before computing distances.
Finally, we produce a heatmap based on the computed between-sample
distances (Figure 10.1). There are no obvious groupings of samples based
on this heatmap. We choose colors for our heatmap from a palette in the
RColorBrewer package. Because the palette goes from red to blue, but
we want high values to be red, we must reverse the palette, as is done in
the code below.

> iqrs = esApply(es2, 1, IQR)

> gvals = scale(t(exprs(es2)), rowMedians(es2),

iqrs[featureNames(es2)])

> manDist = dist(gvals, method="manhattan")

> hmcol = colorRampPalette(brewer.pal(10, "RdBu"))(256)

Figure 10.1. A heatmap of the distances between samples. Blue corresponds to
small distances, red to large.
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> hmcol = rev(hmcol)

> heatmap(as.matrix(manDist), sym=TRUE, col=hmcol,

distfun=function(x) as.dist(x))

Another popular visualization method for distance matrices is to use
multidimensional scaling to reduce the dimensionality to two or three, and
to then plot the resulting data. There are several different methods avail-
able, from the classical cmdscale function to Sammon mapping via the
sammon function in the MASS package. Again we see little evidence of any
grouping of the samples (Figure 10.2).

> cols = ifelse(es2$mol.biol == "BCR/ABL", "black",

"goldenrod")

> sam1 = sammon(manDist, trace=FALSE)

> plot(sam1$points, col=cols, xlab="Dimension 1",

ylab="Dimension 2")

Exercise 10.1
a. In the code above we obtained a two-dimensional reduction. Obtain

a three-dimensional reduction, and if you have it installed, view this
using the rgl package, so that you can rotate the points in three
dimensions.
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Figure 10.2. The two-dimensional projection of the between-sample distances
obtained using Sammon mapping. Samples with the BCR/ABL phenotype are
indicated with dark circles, and those with the NEG phenotype by light circles.
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b. Repeat the example using classical multidimensional scaling.

c. Repeat the exercise, but first restrict the genes you use to the 50
genes that best separate the two groups via their t-statistics.

10.3 How many clusters?

Now that we have decided on a distance to use, we can ask one of the
more fundamental questions that arises in any application of unsupervised
machine learning: How many clusters are there? And unfortunately, even
after a lot of research there is no definitive answer. The references given
above provide some methods, and there are newer results as well, but none
has been found to be broadly useful. We recommend visualizing your data,
as much as possible, for instance, by using dimension reduction methods
such as multidimensional scaling, as well as special-purpose tools such as
the silhouette plot of Kaufman and Rousseeuw (1990); (see Section 10.8).

Another popular method is to examine the dendrogram that is produced
by some hierarchical clustering algorithm to see if it suggests a particular
number of clusters. Unfortunately, this procedure is not really a good idea.
If you compare the four dendrograms in Figure 10.3 they do not convey
a coherent message. The third from the top suggests that there might be
three clusters, but the other three are much less suggestive.

The hopach package contains two functions that can be used to estimate
the number of clusters. They are based on approaches that are related to
the silhouette plot that is described in Section 10.8. In the code chunk
below we demonstrate their use, on both the samples and the genes from
our example dataset.

> mD = as.matrix(manDist)

> silEst = silcheck(mD, diss=TRUE)

> silEst

[1] 2.000 0.163
> mssEst = msscheck(mD)

> mssEst

[1] 4.0000 0.0777
> d2 = as.matrix(dist(t(gvals), method="man"))

> silEstG = silcheck(d2, diss=TRUE)

> silEstG

[1] 3.000 0.107
> mssEstG = msscheck(d2)

> mssEstG

[1] 6.0000 0.0489
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Divisive Clustering

Figure 10.3. Four different dendrograms, clustering samples. The first three (top
to bottom) were computed using agglomerative hierarchical clustering with dif-
ferent linkage methods, the bottom one used divisive hierarchical clustering.
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The silcheck function returns a vector of length two; the first element
is the recommended number of clusters, whereas the second element is the
average silhouette for that number of clusters. The return value of msscheck
is also of length two, the first value again being the recommended number of
clusters, and for this function the second value is the median split silhouette
(MSS).

We can see that silcheck recommends two, whereas mssEst recommends
four. If instead, we consider clustering genes then the two methods recom-
mend three and six clusters, respectively. These estimates could be used
when we consider the partitioning methods described in Section 10.5.

Exercise 10.2
Repeat the exercise of assessing how many clusters there are, using another
distance measure.

10.4 Hierarchical clustering

We now briefly discuss different hierarchical clustering methods. There are
two basic strategies that can be used in hierarchical clustering. Divisive
clustering begins with all objects in one cluster and at each step splits one
cluster to increase the number of clusters by one. Agglomerative clustering
starts with all objects in their own cluster and at each stage combines two
clusters, so that there is one less cluster. Agglomerative clustering is one of
the very few clustering methods that have a deterministic algorithm, and
this may explain its popularity. There are many variants on agglomerative
clustering, and the manual page for the function hclust provides some
details. Divisive hierarchical clustering can be performed by using the diana

function from the cluster package.
We first compute the clusterings and then show how to plot them and

manipulate the outputs. The hclust function returns an instance of the
hclust class, and diana returns an object of class diana. These are S3 classes,
and hence the objects are lists, with certain named components.

> hc1 = hclust(manDist)

> hc2 = hclust(manDist, method="single")

> hc3 = hclust(manDist, method="ward")

> hc4 = diana(manDist)

We can plot the resulting dendrograms, and the results are shown in
Figure 10.3.



10. Unsupervised Machine Learning 145

> par(mfrow=c(4,1))

> plot(hc1, ann=FALSE)

> title(main="Complete Linkage", cex.main=2)

> plot(hc2, ann=FALSE)

> title(main="Single Linkage", cex.main=2)

> plot(hc3, ann=FALSE)

> title(main="Ward's Method", cex.main=2)

> plot(hc4, ann=FALSE, which.plots=2)

> title(main="Divisive Clustering", cex.main=2)

> par(mfrow=c(1,1))

The order in which the leaves are plotted (from left to right) is stored in
the slot order. For example, hc1$order is the leaf order in the dendrogram
hc1 and hc1$labels[hc1$order] yields the sample labels in the order in
which they appear.

Dendrograms can be manipulated using the cutree function. You can
specify the number of clusters via the parameter k and the function will
cut the dendrogram at the appropriate height and return the elements of
the clusters. Alternatively, you can directly specify the height at which to
cut via the parameter h.

Exercise 10.3
Cut each of the different clusterings into three clusters. Compare the
outputs using, for example, the table function.

Although the dendrogram has been widely used to represent distances
between objects, it should not be considered a visualization method. Den-
drograms do not necessarily expose structure that exists in the data. In
many cases they impose a preconceived structure (a tree) on the data, and
when that is the case it is dangerous to interpret the observed structure.

Hierarchical clustering creates a new set of between-object distances,
corresponding to the path lengths between the leaves of the dendrogram.
It is interesting to ask whether these new distances reflect the distances that
were used as inputs to the hierarchical clustering algorithm. The cophenetic
correlation (e.g., Sneath and Sokal (1973, p. 278)), implemented in the
function cophenetic, can be used to measure the association between these
two distance measures.

In the code below we show how to compute the cophenetic correlation
for complete linkage hierarchical clustering.

> cph1 = cophenetic(hc1)

> cor1 = cor(manDist, cph1)

> cor1

[1] 0.524
> plot(manDist, cph1, pch="|", col="blue")
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Figure 10.4. A scatterplot of actual distances (on the x-axis) versus the cophenetic
distances (on the y-axis) for the hierarchical clustering hc1.

The result is shown in Figure 10.4. The bands in the y direction are due
to the discrete nature of the between-sample distances based on trees. For
tree-based distances all objects in two subtrees are the same distance from
each other.

Exercise 10.4
Compute the cophenetic correlation for the other three dendrograms and
comment on which, if any of them, seem to have a particularly good or
particularly bad fit.

10.5 Partitioning methods

Let us now turn to partitioning methods. Typically, the algorithms require
us to specify the number of clusters into which they should partition the
data. There is no generally reliable method for choosing this number,
although we may use the estimates we obtained in Section 10.3. Partition-
ing algorithms have a stochastic element: they depend on an essentially
arbitrary choice of a starting partition, which they iteratively update to
try to find a good solution.

A simple implementation of a partitioning clustering algorithm,
k-means clustering, is provided by the function kmeans. The k-means
method attempts to partition the samples into k groups such that the sum
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of squared distances from the samples to the assigned cluster centers is
minimized. The implementation allows you to supply either the location of
the cluster centers, or the number of clusters using the centers parameter.
It is often a good idea to try multiple choices of random starting partitions,
which can be specified by the nstart parameter. The function returns the
partition with the best objective function (the smallest sum of squared
distances), but that does not mean that there is not a better partition that
has not been tested.

In the code below, we call kmeans twice; in both cases we request two
groups, but we try 5 different random starts with the first call, and 25 with
the second.

> km2 = kmeans(gvals, centers=2, nstart=5)

> kmx = kmeans(gvals, centers=2, nstart=25)

Exercise 10.5
What values are returned by kmeans? Do the two calls find the same
clusters?

Exercise 10.6
Which one of the categorical phenotypic variables for our expression set
best aligns with the output of the k-means clustering algorithm?

10.5.1 PAM

Partitioning around mediods (PAM) is based on the search for k repre-
sentative objects, or medoids, among the samples. Then k clusters are
constructed by assigning each observation to the nearest medoid with a
goal of finding k representative objects that minimize the sum of the dis-
similarities of the observations to their closest representative object. This
method is implemented by the pam function, from the cluster package. It
is much more flexible than the kmeans function in that one can specify dif-
ferent distance metrics to use or supply a distance matrix to use, rather
than a data matrix.

> pam2 = pam(manDist, k=2, diss=TRUE)

> pam3 = pam(manDist, k=3, diss=TRUE)

We can compare the two clusterings, but need to do a little checking to
ensure that the orderings are the same.
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> all(names(km2$cluster) == names(pam2$clustering))

[1] TRUE
> pam2km = table(km2$cluster, pam2$clustering)

> pam2km

1 2
1 62 0
2 3 14

Exercise 10.7
How many items are classified in the same way by the two methods
(k-means and PAM)? How many are classified differently? Can you deter-
mine which ones they are? And, then using the cluster centers, as reported
by the different methods, which of the two methods is better? How do the
cluster centers for the two methods compare?

Exercise 10.8
Repeat Exercise 10.6 for PAM clustering into three groups.

10.6 Self-organizing maps

self-organizing maps (SOMs)[Self-organizing maps (SOMs)] were proposed
by Kohonen (1995) as a simple method for allowing data to be sorted
into groups. The basic idea is to lay out the data on a grid, and to then
iteratively move observations (and the centers of the groups) around on
that grid, slowly decreasing the amount that centers are moved, and slowly
decreasing the number of points considered in the neighborhood of a grid
point. For our examples we use a four-by-four grid, so that there are at
most 16 groups.

We examine two implementations, one in the kohonen package, and the
SOM function in the package class. The second of these is described in more
detail in Venables and Ripley (2002). We do note that there are others, such
as that provided by the som package and readers might want to consider
that version as well. Unfortunately the default values, calling sequences and
return values for these different implementations tend to vary and so you
as a user will need to use some caution in comparing them.

First we demonstrate the use of SOMs using the kohonen package. We
fit three different models: the first uses the default values, and the next
two calls change some of these. We set the seed for the random number
generator to ensure that readers get the same answers we do.
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> set.seed(123)

> s1 = som(gvals, grid=somgrid(4,4))

> names(s1)

[1] "data" "grid" "codes"
[4] "changes" "alpha" "radius"
[7] "toroidal" "unit.classif" "distances"

[10] "method"
> s2 = som(gvals, grid=somgrid(4,4), alpha=c(1,0.1),

rlen=1000)

> s3 = som(gvals, grid=somgrid(4,4, topo="hexagonal"),

alpha=c(1,0.1), rlen=1000)

> whGP = table(s3$unit.classif)

> whGP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 9 2 1 1 1 1 1 7 10 1 19 1 1 15 8

The output is an instance of the kohonen class. And the last call (to
table) in the code above, tells us which sample is assigned to which of the
16 possible groups. There are two groups with more than ten observations
in them, and nine with only one. The groups with only one are problematic,
and although they may represent clusters, it is not clear that they do.

Exercise 10.9
Read the man page for the kohonen class. What are the components of this
class? How do the results of using the default values compare to the other
two?

Another important aspect of understanding the data would be to consider
the samples in the different groups and to visualize them.

Exercise 10.10
We choose two of the larger clusters in the output of the first clustering.
Create a heatmap comparing those in cluster 13 to those in cluster 14.

Next we consider the SOM from the class package. This function returns
the grid that the map was laid out on, as well as a matrix of representatives;
one then uses the knn1 function to match a sample to its nearest represen-
tative. We begin by setting the seed for the random number generator to
ensure that readers get the same output as we do.

> set.seed(777)

> s4 = SOM(gvals, grid=somgrid(4,4, topo="hexagonal"))

> SOMgp = knn1(s4$code, gvals, 1:nrow(s4$code))

> table(SOMgp)
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SOMgp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 1 9 5 1 1 2 0 2 11 1 17 1 3 6 19

Now we can see that there are some groups that have no values in them,
whereas others tend to have between 10 and 15. To further refine the clus-
ters, down to just a few, we might next ask whether any of the cluster
centroids are close to each other, suggesting that merging of the clusters
might be worthwhile. We compute the distance matrix comparing cluster
centers next, and from that computation we see that clusters (1, 2, 5, 6)
can be collapsed, as can (3, 10), (4,15), (7,9), (8, 11, 13, 14). We make this
observation based on the zero entries in the distance matrix, cD, computed
below.

> cD = dist(s4$code)

> cD

1 2 3 4 5 6 7 8
2 0.000
3 0.857 0.857
4 1.573 1.573 1.813
5 0.000 0.000 0.857 1.573
6 0.000 0.000 0.857 1.573 0.000
7 0.839 0.839 1.132 1.571 0.839 0.839
8 1.182 1.182 1.558 1.796 1.182 1.182 1.219
9 0.839 0.839 1.132 1.571 0.839 0.839 0.000 1.219
10 0.857 0.857 0.000 1.813 0.857 0.857 1.132 1.558
11 1.182 1.182 1.558 1.796 1.182 1.182 1.219 0.000
12 2.669 2.669 3.132 3.046 2.669 2.669 2.888 2.565
13 1.182 1.182 1.558 1.796 1.182 1.182 1.219 0.000
14 1.182 1.182 1.558 1.796 1.182 1.182 1.219 0.000
15 1.573 1.573 1.813 0.000 1.573 1.573 1.571 1.796
16 2.176 2.176 2.445 2.648 2.176 2.176 2.167 2.290

9 10 11 12 13 14 15
2
3
4
5
6
7
8
9
10 1.132
11 1.219 1.558
12 2.888 3.132 2.565
13 1.219 1.558 0.000 2.565
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14 1.219 1.558 0.000 2.565 0.000
15 1.571 1.813 1.796 3.046 1.796 1.796
16 2.167 2.445 2.290 3.788 2.290 2.290 2.648

So, we can then remove the redundant codes and remap the data into
clusters using the knn1 function as above.

> newCodes = s4$code[-c(2,5,6,10, 15, 9, 11, 13, 14),]

> SOMgp2 = knn1(newCodes, gvals, 1:nrow(newCodes))

> names(SOMgp2) = row.names(gvals)

> table(SOMgp2)

SOMgp2
1 2 3 4 5 6 7
3 20 11 4 5 17 19

> cD2 = dist(newCodes)

> cmdSOM = cmdscale(cD2)

As we see there are now four reasonably large groups, and three smaller
ones.

Exercise 10.11
Compare this clustering with k-means output with k set to 4. What happens
if you remove the arrays that correspond to the small clusters and redo the
k-means analysis?

10.7 Hopach

The hopach package (Pollard and van der Laan, 2005) uses a hybrid
approach to clustering. It makes use of both a hierarchical approach as
well as a partitioning method. In Section 10.3 we introduced two functions
from this package for assessing how many clusters are in the data. In this
section we use hopach to cluster our samples.

> samp.hobj = hopach(gvals, dmat = manDist)

> samp.hobj$clust$k

[1] 3

This suggests that there are three clusters. We should first see what sizes
they are.

> samp.hobj$clust$sizes

[1] 24 28 27
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We next consider hopach clustering for the genes. In this case, we fol-
low the advice in Pollard and van der Laan (2005) and use the cosangle
distance between genes.

> gene.dist = distancematrix(t(gvals), d = "cosangle")

> gene.hobj = hopach(t(gvals), dmat = gene.dist)

> gene.hobj$clust$k

[1] 40

So we see that hopach is suggesting that there are 40 clusters of genes
and their sizes are shown in the output below.

> gene.hobj$clust$sizes

[1] 1 1 1 2 1 1 3 1 1 1 1 3 3 1 1 1 11
[18] 57 53 28 1 1 2 1 4 1 1 1 4 1 1 1 1 3
[35] 1 5 1 1 1 45

Next one can try to identify important, possibly functional relationships
for the genes in the different clusters. A fairly straightforward process would
be to use the GOstats package to perform an analysis on these genes.

10.8 Silhouette plots

Silhouette plots can be produced using the silhouette function in the
cluster package. It can be defined for virtually any clustering algorithm,
and provides a nice way to visualize the output.

The silhouette for a given clustering, C, is calculated as follows. For
each item j, calculate the average dissimilarity d̄jl of item j with other
genes in the cluster Cl, for all l. Thus, if there are L clusters, we would
compute L values for each item. If item j is assigned to cluster l∗ then let
aj = d̄jl∗ , and let bj = minl�=l∗ d̄jl.The silhouette of item j is defined by the
formula: Sj = (bj − aj)/ max(aj , bj). Heuristically, the silhouette measures
how similar an object is to the other objects in its own cluster versus those
in some other cluster. Values for Sj range from 1 to −1, with values close to
1 indicating that the item is well clustered (is similar to the other objects
in its group) and values near −1 indicating it is poorly clustered, and that
assignment to some other group would probably improve the overall results.

We revisit the PAM clusterings, because there are plotting methods for
them. These are shown in Figure 10.5.

> silpam2 = silhouette(pam2)

> plot(silpam2, main="")
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Figure 10.5. Silhouette plots for the PAM clustering of the ALL data: left: two
clusters; right: three clusters.

> silpam3 = silhouette(pam3)

> plot(silpam3, main="")

We can see that there are several samples which have negative silhouette
values, and fairly natural questions include“Which samples are these?” and
“To what cluster are they closer?” This can be easily determined from the
output of the silhouette function.

> silpam3[silpam3[,"sil_width"] < 0,]

cluster neighbor sil_width
12026 2 1 -3.97e-05
27003 2 3 -3.21e-02
43004 2 3 -3.30e-02
43001 2 1 -4.15e-02
28031 2 3 -7.80e-02

Exercise 10.12
How many samples have negative silhouette widths for the pam2 clustering?
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Exercise 10.13
For one of the hierarchical clustering algorithms, divide the data into four
clusters and produce a silhouette plot for those four clusters. You will need
to read the manual page for the silhouette function to see how to provide
the necessary input data.

10.9 Exploring transformations

Cluster discovery can be aided by the use of variable transformations. We
have mentioned multidimensional scaling above in connection with distance
assessment. The principal components transformation of a data matrix re-
expresses the features using linear combinations of the original variables.
The first principal component is the linear combination chosen to possess
maximal variance, the second is the linear combination orthogonal to the
first possessing maximal variance among all orthogonal combinations, and
further principal components are defined (up to p for a rank p matrix) in
like fashion. Principal components are readily computed using the singular
value decomposition (see the R function svd) of the data matrix, and the
prcomp function will compute them directly. We illustrate the process using
the following filtering of the ALL data to 50 genes.

> rtt = rowttests(ALLfilt_bcrneg, "mol.biol")

> ordtt = order(rtt$p.value)

> esTT = ALLfilt_bcrneg[ordtt[1:50],]

With the raw variables, a five-gene pairwise display is easy to make;
we color it with class labels even though we are describing tasks for
unsupervised learning (Figure 10.6).

> pairs(t(exprs(esTT)[1:5,]),

col=ifelse(esTT$mol.biol=="NEG", "green", "blue"))

Here is how we compute the principal components. We transpose the
expression matrix so that gene expression levels are regarded as features
of sample objects. In this unsupervised re-expression of the data, clusters
corresponding to the different phenotypes are more readily distinguished
than they are in the pairwise scatterplot of raw gene expression values
(Figure 10.7).

> pc = prcomp(t(exprs(esTT)))

> pairs(pc$x[,1:5], col=ifelse(esTT$mol.biol=="NEG",

"green", "blue"))
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Figure 10.6. A pairs plot for the first five genes in the filtered ALL data.
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Figure 10.7. A pairs plot for the first five principal components computed from
the filtered ALL data.
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Figure 10.8. A biplot for the first two principal components computed from the
filtered ALL data.

Biplots enhance the pairwise principal components display by providing
information on directions in which the original variables are transformed
to create principal components (Figure 10.8).

> biplot(pc)

Exercise 10.14
Certain probe set names are prominent in the biplot. Using two-sample
tests, explain their roles in discriminating the two phenotypes.

Exercise 10.15
Create a less stringent filtering of the ALL data and generate the associated
pairs and biplot displays.
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10.10 Remarks

We have given a rudimentary view of the tools available in R for unsu-
pervised machine learning. Most of the ones we have discussed have
substantially more capabilities than we have considered and there are many,
that are worthwhile that we have not been able to present.

Furthermore, it seems that there is still a great deal of research that
can be done in this area. Current topics that need to be addressed are
the detection of outlying items and the development of tools that can use
additional genomic information in developing and devising the clustering
(we gave a simple example, because we concentrated on features obtained
from specific GO categories).
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Using Graphs for Interactome
Data

T. Chiang, S. Falcon, F. Hahne, and W. Huber

Abstract

Many data types and many models of biological systems are best
described in terms of graphs. Protein–protein interaction data are
a prominent example. In this chapter, we explore a curated dataset
of protein interactions and perform a statistical analysis of the rela-
tionship between protein interaction and coexpression. We also show
how to access large-scale protein–protein interaction datasets from
the IntAct repository at the EBI.

11.1 Introduction

There are three main packages in Bioconductor that handle graphs: the
package graph for data structures, RBGL for algorithms, and Rgraphviz
for graph layout. A more detailed description of their capabilities can be
found in Carey et al. (2005). In the first part of this chapter, we consider a
protein interaction dataset, perform some initial data exploration, and show
that there is a statistically significant association between the fact that two
proteins physically interact and that they appear coexpressed based on the
data from a microarray experiment. The analysis follows section 22.2 of
Gentleman et al. (2005a), which in turn is based on Ge et al. (2001) and
Balasubramanian et al. (2004).

We create two graphs, one whose edges indicate that two genes are in
the same co-expression cluster and the other where an edge indicates that
their protein products physically interact. If there is an association between
co-expression and protein interaction, then we anticipate that when there is
an edge between two genes in one graph, there will also be an edge between
them in the other graph. We can test this hypothesis by counting how many
edges the two graphs have in common and comparing this number to how
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much overlap we would expect “by chance”. More precisely, we generate a
reference distribution by randomly permuting the node labels on either one
of the two graphs and for each permutation count the common edges. The
comparison of the observed number of common edges with the permutation
distribution gives us an indication of how significant the overlap is.

First, we load the packages that we need for this chapter.

> library("Biobase")

> library("graph")

> library("Rgraphviz")

> library("RColorBrewer")

> library("RBGL")

> library("yeastExpData")

> library("Rintact")

The yeastExpData package contains two curated datasets: ccyclered
contains co-expression clusters obtained from a microarray experiment
measuring gene expression during the yeast cell-cycle; litG contains
protein–protein interactions (PPI) extracted from published papers.

> data("ccyclered")

> data("litG")

Exercise 11.1
a. What type of object is litG? How do you find out more about this

class?

b. Use the nodes method to extract the first five nodes of litG.

c. Explore the ccyclered data to determine what type of R object it is
and what kind of data it contains.

11.2 Exploring the protein interaction graph

A graph consists of one or more connected components. You can find them
using the connectedComp function from the RBGL package.

> cc = connectedComp(litG)

> length(cc)

[1] 2642
> cclens = sapply(cc, length)

> table(cclens)



11. Using Graphs 161

cclens
1 2 3 4 5 6 7 8 12 13 36 88

2587 29 10 7 1 1 2 1 1 1 1 1

Exercise 11.2
a. What are the elements of cc?

b. How many connected components are there? What is the size of the
largest connected component? How many singletons are there?

We can use the subGraph function to create two new graphs sg1 and
sg2 that represent the largest and second largest connected components of
litG.

> ord = order(cclens, decreasing=TRUE)

> sg1 = subGraph(cc[[ord[1]]], litG)

> sg2 = subGraph(cc[[ord[2]]], litG)

Now we plot sg1 and sg2 using Rgraphviz. The layout step is done
using function layoutGraph and function renderGraph is responsible for the
subsequent plotting. There are many options for the color and type of the
nodes and edges. If you are interested in the details or in producing more
complex graphics, please refer to Section 12 and the documentation of the
Rgraphviz package.

> lsg1 = layoutGraph(sg1, layoutType="neato")

> lsg2 = layoutGraph(sg2, layoutType="neato")

> renderGraph(lsg1)

> renderGraph(lsg2)

The result is shown in Figure 11.1.

Exercise 11.3
Lay out the graphs using the dot and twopi layout engines.

Next, let us compute the shortest path between a pair of nodes in the
largest component. This can be a useful computation in some applications.
In a protein–protein interaction graph it has no apparent biological inter-
pretation, and we do it only to illustrate this piece of functionality of the
RBGL package.
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Figure 11.1. The two largest PPI connected components.

> sps = sp.between(sg1, "YHR129C", "YOL039W")

> pth = sps[[1]]$path_detail

> pth

[1] "YHR129C" "YPL174C" "YOR098C" "YOR160W" "YAL005C"
[6] "YAL040C" "YJL157C" "YBR200W" "YFL039C" "YDR382W"

[11] "YLR340W" "YOL039W"

Exercise 11.4
What sort of object is sps? What does the manual page say about it? Can
you plot the graph and identify that this indeed is the shortest path? (You
could color these nodes differently from the rest as shown in Figure 11.2.)

The diameter of a graph is defined as the length of the longest short-
est path between any two nodes. To compute this we use the function
johnson.all.pairs.sp.

> allp = johnson.all.pairs.sp(sg1)

Exercise 11.5
What type of object is allp? What data does it contain? What is the
diameter of sg1? Is the longest shortest path unique in this graph?

11.3 The co-expression graph

Let us now have a look at the co-expression clusters. Cho et al. (1998) pre-
sented the k-means clustering of 2885 Saccharomyces cerevisiae genes into
30 clusters with measurements taken over two cell cycles. Their clustering
is stored in the dataframe ccyclered. Each row corresponds to a gene, and
its cluster membership is indicated by integer numbers from 1 to 30 in the
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Figure 11.2. The largest connected component of litG and the shortest path
between nodes YHR129C and YOL039W.

column Cluster. Our first step is to create a cluster graph in which edges
are between all genes that are in the same cluster. There is a specialized
graph class clusterGraph that can be used to describe such graphs. We need
to compute the set of genes in each cluster, and we do that by building a list
in which each entry represents a cluster and consists of a character vector
with the names of the genes in the cluster.

Exercise 11.6
Use the split function and the Y.name and Cluster columns of the ccyclered

data frame to create a named list clusts whose elements correspond to the
clusters, such that each list element is a vector of gene names in that cluster.

Next we use the clusts list from the previous exercise to create a
clusterGraph instance using new:

> cg = new("clusterGraph", clusters = clusts)

Exercise 11.7
How many connected components does the cluster graph cg have?
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11.4 Testing the association between physical
interaction and coexpression

It is now easy to determine how many pairs of genes have both a protein–
protein interaction and are found in the same expression cluster. To
compute this, find the intersection of the cluster graph and the literature
graph using intersection:

> commonG = intersection(cg, litG)

Exercise 11.8
How many edges are common to the two graphs (cg and litG)?

Now we try to determine whether the number of common edges is
statistically interesting. We do this by generating a null distribution via
permutation of node labels on the observed graph. Here is a function that
can be used to generate values from the desired null distribution. Unfor-
tunately, running this function with the current implementation is very
slow.

> nodePerm = function (g1, g2, B=1000) {

n1 = nodes(g1)

sapply(1:B, function(i) {

nodes(g1) = sample(n1)

numEdges(intersection(g1, g2))

})

}

Exercise 11.9
Describe what the nodePerm function is doing to make sure you understand
how it works.

Because the nodePerm function is slow, we’ve computed 500 iterations
ahead of time. Load the precomputed result as follows:

> data("nPdist")

> summary(nPdist)

Exercise 11.10
Plot the nPdist data and decide if the number of edges in common between
litG and cg is statistically interesting.
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11.5 Some harder problems

In this section we present some problems that are more open-ended. They
are not formally part of this chapter, but are here for those who are par-
ticularly interested in these sorts of applications. To answer the last two
questions you need to obtain a Bioconductor package called ScISI.

• Which of the expression clusters have intersections with the literature
clusters?

• Are there expression clusters that have many literature cluster edges
going between them? (This could suggest that the expression cluster-
ing was too fine, or that the co-citations of the genes in the literature
are not cell-cycle related.)

• Do the genes involved in known cell-cycle regulated protein complexes
tend to cluster together in both graphs?

• Is the expression behavior of genes that are involved in multiple pro-
tein complexes different from that of genes that are known to be
involved in only one complex?

11.6 Reading PSI-25 XML files from IntAct
with the Rintact package

11.6.1 Introduction

Rintact is an R package mainly used to parse the PSI-25 files generated by
the IntAct data repository. IntAct collects, curates, and stores thousands
of protein interactions. Currently, there are three main functions within
Rintact:

1. psi25interaction

2. psi25complex

3. intactXML2Graph

The first function, psi25interaction, takes either a PSI-MI 2.5 XML file
from IntAct or an URL containing the Web address of where such an XML
file can be obtained. The XML file must contain binary protein–protein
interaction data. Examples for such data are direct physical interactions,
complex co-membership, and synthetic genetic interactions. The second
function, psi25complex, also takes a PSI-MI 2.5 XML file or URL as an
input parameter, but this file must contain protein complex membership
information. The third function, intactXML2Graph, can either take an inter-
action or complex XML file and returns a graph data structure upon which
analysis can be made. In principle, these three functions can take any XML
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file that adheres to the PSI-MI 2.5 standards. We have constructed these
functions, however, to work primarily with the IntAct PSI-MI 2.5 XML
files, as there are subtle implementation differences between repositories
such as IntAct and DIP , both of which use the PSI-MI 2.5 standards. In
this vignette, we demonstrate the use of these functions on sample PSI-MI
2.5 datasets for both protein interactions as well as the manually curated
protein complexes.

11.6.2 Loading R Packages

We begin by loading the various R packages which we use. Our primary
focus is with the Rintact package, but we also examine and exploit statis-
tical methods found in various Bioconductor packages for the analysis of
the interaction data obtain from IntAct .

> library("Rintact")

> library("ppiStats")

> library("apComplex")

> library("xtable")

11.6.3 Obtaining the interaction information

We first demonstrate the use of the function psi25interaction. We can
either download the IntAct PSI-MI 2.5 XML file to a local file system, or
we can simply use the URL (of where the file can be obtained) as the input
parameter. Here, we use a file that is part of the examples which come with
the Rintact package.

> fn = system.file("PSI25XML", "interactionSample.xml",

package="Rintact")

> eg = psi25interaction(fn)

> class(eg)

[1] "interactionEntry"
attr(,"package")
[1] "Rintact"

We see that the output of psi25interaction is an instance of the class
interactionEntry. This class has five slots:

> slotNames(eg)

[1] "organismName" "taxId" "releaseDate"
[4] "interactors" "interactions"

Three of them contain simple character vectors:
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> organismName(eg)

[1] "Homo sapiens"
[2] "Human adenovirus E"
[3] "Human papillomavirus type 1a"
> taxId(eg)

[1] "9606" "130308" "10583"
> releaseDate(eg)

[1] "2007-04-27"

organismName records all the organisms for which interactions were
assayed. For each organism, we have also included its taxonomy identi-
fication code. Because IntAct does not currently version its weekly release,
we have added the releaseDate as a time stamp to act as a surrogate version
number.

Let us investigate the structure of the interactions slot. It is a list that
holds all the binary interactions given in the XML file, along with infor-
mation about each particular interaction. Each element of the list is an
instance of the class intactInteraction. This class has nine slots:

> length(interactions(eg))

[1] 5
> class(interactions(eg)[[1]])

[1] "intactInteraction"
attr(,"package")
[1] "Rintact"
> interactions(eg)[[1]]

interaction ( EBI-987168 ):
---------------------------------
[ interaction type ]: pull down
[ experiment ]: pubmed 16249186 , intact EBI-965562
[ confidence value ]: NA
[ bait ]: EBI-491274
[ prey ]: EBI-448924
[ neutral component ]: NA
[ inhibitor ]: EBI-987160

> slotNames(interactions(eg)[[1]])

[1] "intact" "interactionType" "expPubMed"
[4] "expIntAct" "confidenceValue" "bait"
[7] "prey" "inhibitor" "neutralComponent"

The various slots contain information that is relevant for each individual
interaction. interactionType details what manner of interaction was found
between the bait protein and the prey protein, which are specified in the
bait and prey slots. Another attribute is the experimental confidence value



168 T. Chiang, S. Falcon, F. Hahne, W. Huber

given in the confidenceValue slot. This confidence value is reported by the
experimenters; it does not report scores derived by third parties.

We can extract the names of the bait and prey proteins for all of the
interactions in the eg dataset:

> egbait = sapply(interactions(eg), bait)

> egprey = sapply(interactions(eg), prey)

We now have two character vectors, egbait and egprey, that are aligned
with each other: the ith protein in egprey is found by the ith protein in
egbait.

> egbait

[1] "EBI-491274" "EBI-491274" "EBI-963841" "EBI-491274"
[5] "EBI-963841"
> egprey

[1] "EBI-448924" "EBI-448924" "EBI-491274" "EBI-448924"
[5] "EBI-765551"

The IntAct accession codes are useful as unique and uniform identifiers
in the IntAct repository, but we usually want to translate them to other
identifier schemes such as the HUGO gene name or Ensembl gene identi-
fier. The PSI-MI 2.5 XML files from IntAct contain a lookup table for this
purpose. This lookup table is stored in the interactors slot of the interac-
tionEntry object eg, in the form of a character matrix. Its rows are indexed
by the IntAct accession numbers of the molecules in the data structure,
and it has seven columns.

> interactors(eg)

uniprotId geneName
EBI-491274 "P06400" "RB1"
EBI-987160 "Q6H1D8" "E1A"
EBI-448924 "Q01094" "E2F1"
EBI-963841 "P06465" "E7"
EBI-765551 "O00716" "E2F3"

fullName locusName
EBI-491274 "Retinoblastoma-associated protein" NA
EBI-987160 "E1A" NA
EBI-448924 "Transcription factor E2F1" NA
EBI-963841 "Protein E7" NA
EBI-765551 "Transcription factor E2F3" NA

orfName organismName taxId
EBI-491274 NA "Homo sapiens" "9606"
EBI-987160 NA "Human adenovirus E" "130308"
EBI-448924 NA "Homo sapiens" "9606"
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EBI-963841 NA "Human papillomavirus type 1a" "10583"
EBI-765551 NA "Homo sapiens" "9606"

The IntAct accession codes can be translated into any of the associated
identifier schemes. Two further properties are given for each molecule: the
organism in which the molecule is native and the corresponding taxon-
omy ID. Most of the interactions found in IntAct will be protein–protein
interactions; other types of interactions, however, are also stored such as
small molecule-to-protein interactions as well as gene–gene interactions.
As a result, there will be times when a molecule cannot be mapped to a
locus name or an ORF, and so on. We also remark that interactions have
been tested between proteins of different organisms (e.g., a human pro-
tein against a viral one). Thus the organism attribute is vital to keep such
interactions in the proper context.

Using the lookup table is quick and efficient because of the subsetting
functionality of R. For instance, say we would like to translate the following
IntAct accession codes

> bts = egbait[3:4]

into gene names:

> interactors(eg)[bts, c("geneName","fullName")]

geneName fullName
EBI-963841 "E7" "Protein E7"
EBI-491274 "RB1" "Retinoblastoma-associated protein"

11.6.4 Obtaining protein complex composition information

Now we demonstrate the parser function psi25complex.
The parameters of psi25complex are identical to those of

psi25interaction, althpugh its output only contains three slots:

> fn2 = system.file("PSI25XML/complexSample.xml",

package="Rintact")

> comps = psi25complex(fn2)

> slotNames(comps)

[1] "releaseDate" "interactors" "complexes"

Again releaseDate serves as a surrogate version number, and the inter-

actors holds a lookup table that can be used to translate the IntAct
accession codes. The complexes slot is a list of intactComplex objects. Each
list entry is an instance of the class intactComplex , which itself has seven
slots.
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> length(complexes(comps))

[1] 174
> class(complexes(comps)[[1]])

[1] "intactComplex"
attr(,"package")
[1] "Rintact"
> slotNames(complexes(comps)[[1]])

[1] "intactId" "shortLabel" "fullName"
[4] "organismName" "taxId" "members"
[7] "attributes"

These slots describe the multiprotein complex. The three most impor-
tant ones are fullName, attributes, and members slots. The fullName slot
gives the exact name of the multiprotein complex and the attributes slot
gives a short description as to the known functionality of the complex. The
interactors slot gives the members of the complex and their multiplicity.

> complexes(comps)[[1]]

complex ( EBI-706546 )
---------------------------------
[ short label ]: bcl2_bcl2_human
[ full name ]: BCL-2 homodimer
[ organism ]: Homo sapiens
[ taxonomy ID ]: 9606
[ attributes ]:

curated-complex: Role of homodimer is unclear, may act as rese
rvoir of protein for heterodimer formation.

complex-synonym: Bcl2 homodimer; Bcl-2:Bcl-2; Bcl2:Bcl2;
kd: 0.0
[ members ]:
intActId multiplicity

4 EBI-77694 2

11.6.5 Creating graph objects with Rintact

Now we investigate the function intactXML2Graph. Whereas the functions
psi25interaction and psi25complex allow us to parse the PSI-MI 2.5 XML
files and to obtain all the information available for protein interaction and
complex data, intactXML2Graph takes either an XML file, or a URL to such
a file, and converts this into an R graph object. Much of the information
obtained from either psi25interaction or psi25complex will be muted as it
is not necessary in the graph representation.
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> s1 = system.file("PSI25XML", "human_stelzl-2005-1_01.xml",

package="Rintact")

> s2 = system.file("PSI25XML", "human_stelzl-2005-1_02.xml",

package="Rintact")

> stelzl = intactXML2Graph(c(s1,s2), type="interaction",

directed=TRUE)

> class(stelzl)

> stelzl1 = removeSelfLoops(stelzl)

Often, IntAct will take one dataset and split it into multiple XML files.
The intactXML2Graph function can combine all of the PSI-MI 2.5 files from a
single experiment and construct the graph from the amalgamation of these
files. The output from intactXML2Graph is an intactGraph object. If the
XML file contained protein complex membership data, the output would
be an instance of the intactHyperGraph object.

We can now investigate the human protein–protein interaction graph by
rendering a subset of the bait-to-prey relationships. First we calculate the
degrees of the directed bait to prey graph stelzl1 after having removed
self-loops. The deg object is a list that contains both the in- and out-degree
statistic for each protein. We define a subset of the bait which we call the
activeBait by imposing that these bait find at least 10 different prey and
at most 15 different prey. On the union of the activeBait and their prey,
we can generate a bait-to-prey subgraph (stelzlSG) and render its pictorial
representation.

> deg = degree(stelzl1)

> activeBait = names(which(deg$outDegree > 10 &

deg$outDegree<15))

> proteins = union(activeBait, unlist(adj(stelzl1,

activeBait)))

> stelzlSG = subGraph(proteins, stelzl1)

To differentiate between a bait protein and a prey protein in stelzlSG, we
color each vertex representing a protein from the activeBait subset yellow
and each of the prey is colored blue.

> graph.par(list(nodes=list(fill="steelblue", label="")))

> baitCol = rep("yellow", length(activeBait))

> names(baitCol) = activeBait

> nodeRenderInfo(stelzlSG) <- list(fill=baitCol)

It is of interest to note that the graph stelzlSG obtained on the adja-
cency of the activeBait proteins forms a single connected component
(Figure 11.3).
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Figure 11.3. These two (equivalent) graphs shows the bait which found between
10 and 15 different prey proteins. Each of the bait proteins has been colored yellow
and the prey proteins colored blue. The graph in the left panel has been rendered
in the neato layout whereas the graph in the right panel has been rendered in the
twopi layout.

> stelzlSG <- layoutGraph(stelzlSG, layoutType="neato")

> renderGraph(stelzlSG)

> stelzlSG <- layoutGraph(stelzlSG, layoutType="twopi")

> renderGraph(stelzlSG)



12

Graph Layout

F. Hahne, W. Huber, and R. Gentleman

Abstract

In this chapter we demonstrate how to lay out and render graphs
using tools from the Rgraphviz and graph packages.

12.1 Introduction

Laying out and rendering a graph is important to aid in understanding the
relationships within it. However, these tasks are not trivial. The spatial
position of each node in the layout of a graph depends on the location of
every other node in the plot and on the edges between them. Often we aim
to minimize the number of edges that cross. In addition, nodes as well as
edges can be represented with different symbols, colors, and the like. There
are two distinct processes: layout , which places nodes and edges in a (usu-
ally two-dimensional) space, and rendering, which is the actual drawing of
the graph on a graphics device. The first process is typically the more com-
putationally expensive and relies on sophisticated algorithms that arrange
the graph’s components based on different criteria. The arrangement of the
nodes and edges depends on various parameters such as the desired node
size, which again may be a function of the size of the node labels. Render-
ing of a graph is often subject to frequent changes and adaptions, and it
makes sense to separate the two processes in the software implementation.
It is also important to realize that the process of getting a good layout is
iterative, and using default parameter settings seldom yields good plots.

The code available for doing graph layout in Bioconductor is based
mainly on the Graphviz project (Gansner and North, 1999) and the Boost
graph library (Siek et al., 2002). However, because the rendering of a graph
is separated from the layout, one can use other graph layout algorithms, as
long as the requirements of the rendering interface are met.

F. Hahne et al., Bioconductor Case Studies, DOI: 10.1007/978-0-387-77240-0 12,
© Springer Science+Business Media, LLC 2008
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In the process of laying out a graph layout some amount of informa-
tion is generated, mostly regarding the locations and dimensions of nodes
on a two-dimensional plane and the trajectories of the edges. Bioconduc-
tor graph objects contain a slot renderInfo to hold this information. The
typical workflow of a graph layout is to pass a graph object to the layout
function, which returns another graph object containing all the necessary
information for subsequent rendering. The process of calling a layout algo-
rithm is encapsulated in the layoutGraph function. Calling this function
without any further arguments will result in using one of the Graphviz
layout algorithms via the the Rgraphviz package. There are a number of
parameters for fine-tuning of the graph layout and we introduce some of
them later in the chapter.

The rendering of a graph relies solely on R’s internal plotting capabilities.
As for all other plotting functions in R, many parameters controlling the
graphical output can be tuned. However, because there are several parts
of a graph one might want to modify (e.g., nodes, edges, captions), setting
the graphical parameters is slightly more complex than for other plots. We
have established a hierarchy to set global defaults, graph-specific parame-
ters, and settings that apply only to individual rendering operations. In the
course of this chapter we show the different ways to control the graph ren-
dering. There is much more information about graph rendering in chapters
21 and 22 of Gentleman et al. (2004) .

In order to explore the capabilites for plotting graphs in R we initially
use a protein–protein interaction (PIP) dataset containing data that were
extracted from biomedical literature. It is part of the yeastExpData
package and we can load it as a predefined graph object:

> library("yeastExpData")

> data("litG")

> litG

A graphNEL graph with undirected edges
Number of Nodes = 2885
Number of Edges = 315

The whole graph is too big for demonstrating the plotting capabilites of
Rgraphviz, and we want to focus on something more compact. For this
purpose we can choose one of the graph’s smaller connected components
using the functions connectedComp from RGBL and subGraph. For now let
us use a connected subgraph containing 12 nodes:

> library("RBGL")

> cc = connectedComp(litG)

> len = sapply(cc, length)

> table(len)
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len
1 2 3 4 5 6 7 8 12 13 36 88

2587 29 10 7 1 1 2 1 1 1 1 1
> ord = order(len, decreasing=TRUE)

> g = subGraph(cc[[ord[4]]], litG)

Instead of the fourth-largest, you could choose other connected compo-
nents of different sizes for the examples in this section and compare the
results.

12.2 Layout and rendering using Rgraphviz

The Graphviz library offers five different layout algorithms. Look at the
documentation of agopen in Rgraphviz, or of the Graphviz library, for a
more detailed description of these algorithms. dot is a hierarchical layout
algorithm for directed graphs with four main phases: cycles are broken,
nodes are assigned to layers, nodes are rearranged in layers to minimize
edge crossings, and finally edges are computed as splines. neato is a layout
algorithm for undirected graphs and is closely related to multidimensional
scaling. It creates a virtual physical model and optimizes for low-energy
configurations. It was recently augmented with a scalable stress majoriza-
tion algorithm. twopi is a circular layout. Basically, one node is chosen as
the center and put at the origin. The remaining nodes are placed on a
sequence of concentric circles centered about the origin, each a fixed radial
distance from the previous circle. All nodes adjacent to the center node
are placed on the first circle; all nodes adjacent to the node on the first
circle except the center node are placed on the second circle; and so forth.
fdp implements the Fruchterman–Reingold heuristic including a multigrid
solver that handles larger graphs and clustered undirected graphs. Finally,
circo is a circular layout suitable for graphs with multiple cyclic structures.

We can lay out our graph without setting any further options using the
layoutGraph function and immediately plot it with renderGraph. The default
layout algorithm used is dot .

> library("Rgraphviz")

> x = layoutGraph(g)

> renderGraph(x)

The result is shown in the left panel of Figure 12.1.

12.2.1 Rendering parameters

The layout of a graph is the initial step of graph plotting, but here we start
with the setting of parameters in the rendering step. You will soon find out
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Figure 12.1. A plot of g using the Rgraphviz defaults for layout and the
default global rendering settings (left) and the same graph rendered with
user-defined global settings.

that the two processes, although separated in the software implementation,
are tightly connected. There is a hierarchy to set rendering parameters for
a graph. The levels of this hierarchy are

1. The session: These are the defaults that will be used for a parameter
if not set somewhere further down the hierarchy. You can change the
session defaults at any time using the function graph.par.

2. Rendering operation: Defaults can be set for a single render-
ing operation, that is, a call to renderGraph using its graph.pars

argument.

3. Individual nodes or edges: Parameters for individual nodes or edges
can be set using the nodeRenderInfo and edgeRenderInfo functions.

We now use our example dataset to further explore these options. The
result shown in the left panel of Figure 12.1 is very basic. The default
settings produce simple output with both nodes and edges drawn in black
and nodes labeled with their names. The node names are often too long for
a useful display and the software has to use a tiny font size to make them
fit. For now we may decide not to plot node names at all and we can set a
global parameter with graph.par to do that; the easiest way is to define an
empty string. We might also decide to fill all nodes with gray color and to
increase the line width of the edges a bit. Note the structure that is used
to set the parameters, with list items nodes, edges, and graph (the latter is
not used in this instance). This structure allows us to control the rendering
of nodes, edges, and graphwide features separately.
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> graph.par(list(nodes=list(label="", fill="lightgray"),

edges=list(lwd=3)))

> renderGraph(x)

We can revert graph.par changes by setting the respective list item to
NULL.

> graph.par(list(nodes=list(label=NULL)))

Instead of defining global settings with graph.par we could also provide
a list with the same structure to renderGraph through its graph.pars argu-
ment. Those will only be applied in the respective rendering operation,
whereas options set using the function graph.par are retained throughout
the whole R session.

Exercise 12.1
Try laying out the graph using Graphviz’s four other layout algorithms
as shown in Figure 12.2. layoutGraph has an argument layoutType to do
that. Also add a title to the plots stating the algorithm that you used.
The parameter that controls the title is a graph-specific parameter and it
is called main.Which of the layouts do you prefer for g?

One might be interested in highlighting certain nodes or in coding cat-
egories of nodes or edges by certain colors (Figure 12.3). To this end,
options for individual nodes and edges can be set using the nodeRenderInfo

and edgeRenderInfo functions. Both nodeRenderInfo and edgeRenderInfo are
replacement functions that operate directly on the graph object. When you
change a parameter in the graph object this will be carried on across all fur-
ther rendering and layout operations. The settings made by edgeRenderInfo

and nodeRenderInfo take precedence over all default settings.
The parameters to be set have to be given as named lists, where each

list item can contain named vectors for certain options. For example, the
following code sets the fill color of nodes YBR088C and YDR097C to red.

> nodeRenderInfo(x) = list(fill=c(YBR088C="red",

YDR097="red"))

The names of the vectors have to match the node or edge names of the
graph. Node names are straightforward (the result of calling the function
nodes on a graph object), however edge names are made up of the names
of the connected nodes separated by ~, the tilde symbol. An edge between
nodes A and B would be named A~B (for a directed graph A~B is the edge
fom A to B, and B~A is the edge from B to A). For undirected graphs the two
are equivalent. edgeNames returns the names of all edges in a graph. The
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Figure 12.2. These plots show g laid out with Rgraphviz using the neato,
twopi, circo, and fdp options.

following code changes the line type of the edges between nodes YMR167W
and YBR088C and nodes YMR167W and YBR088C to “dotted”.

> edgeRenderInfo(x) = list(lty=c("YBR088C~YMR167W"="dotted",

"YDR097C~YMR167W"="dotted"))

Exercise 12.2
Change the text color and the border color of some of the nodes. Increase
the line width for some of the edges. You can find a complete list of these
parameters in the documentation to nodeRenderInfo and edgeRenderInfo or
in the vignette of the Rgraphviz package.
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Figure 12.3. g laid out and rendered with user-defined layout and rendering
attributes.

12.2.2 Layout parameters

Many of the parameters one may want to change for a graph have an impact
on the actual layout. For instance, changing the size of a node may affect
the position of neighboring nodes and of the connecting edges. Thus, all
parameters that have an influence on the layout have to be given to the
layout algorithm. For Graphviz there are a multitude of layout parameters,
some specific only to certain layout types such as dot or neato. All these
parameters can be specified in the call to layoutGraph. You may want to
consult the documentation of the Rgraphviz package for more details.
Parameters can either be passed as nested named lists, similar to the input
to graph.par, or individually for nodes and edges as named lists through
the edgeAttrs and nodeAttrs arguments. In order to better fit the node
names we can tell Graphviz to use ellipses instead of circles and to adjust
the sizes of the nodes to accommodate the node labels.

> x = layoutGraph(x, attrs=list(node=list(shape="ellipse",

fixedsize=FALSE)))

> renderGraph(x)

Exercise 12.3
What are the different shapes in Rgraphviz that can be used for node
drawing? What does the drawNodes argument of renderGraph do?
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12.3 Directed graphs

In the previous example the direction of an edge was not important. When-
ever two proteins were reported to be interacting in a paper they were
connected by an edge. In directed graphs the edge from node A to node B is
distinct from the edge from node B to node A. When plotting, the direction
of an edge is usually indicated by little arrows. There may, however, be
reciprocated edges and we show in the next section how to deal with them.

In the remainder of this chapter we use a directed graph as an example
to show a typical workflow for producing informative and appealing plots.
The data are a graph representation of the integrin-mediated cell adhesion
(IMCA) pathway as provided by the KEGG pathway database. In KEGG,
pathways are collections of proteins, protein complexes, and processes that
are shown to be interacting in the same biological function (Kanehisa and
Goto, 2000). Functions comprise cellular processes such as cell division
or apoptosis, biochemical reactions, and even certain diseases. Integrin-
mediated cell adhesion is one of the processes that keeps cells attached
to each other in tissues. A large number of proteins, protein complexes,
and subprocesses are involved in the regulation of this pathway. KEGG
also offers graphical representations of their pathways and in Figure 12.4
we can see the KEGG image of the IMCA pathway. There are different
features used in this plot such as colors, shapes, and positions of nodes
that encode a lot of the pathway’s structure. The cellular location of the
pathway components is resembled by the positioning of the nodes, with
the cell membrane components on the left side of the plot whereas on
the right side there are the more general cellular processes that feed into
the pathway. Note that the actual graph structure tells you only about
the connections between nodes, and all additional information is added

Figure 12.4. The integrin-mediated cell adhesion pathway as rendered by KEGG
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through the controlled layout and the rendering. We now want to use the
infrastructure in R to produce a similar output. Let us first naively plot
our IMCA graph and see how this compares to the KEGG rendering.

> data("integrinMediatedCellAdhesion")

> IMCAGraph

A graphNEL graph with directed edges
Number of Nodes = 52
Number of Edges = 91
> IMCAGraph = layoutGraph(IMCAGraph)

> renderGraph(IMCAGraph)

The result in Figure 12.5 is not impressive. The node labels are unread-
able because the font size is too small, there is no color or grouping, and the
layout is not structured to resemble the cellular architecture. As mentioned

Figure 12.5. The integrin-mediated cell adhesion pathway as rendered by
graphviz using default settings.
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before, producing good graph plots is an art and needs a considerable
amount of fine tuning. In R we have the tools to do this tuning and we
can iteratively improve the outcome. At each step you should render the
graph to check the results of your settings.

Let us first start with the node labels. The default behavior of render-

Graph is to compute a common font size for all node labels in a way that
they all fit their node. There are some long node names in the graph, and
we can determine the length of each node name using the function nchar.

> names(labels) = labels = nodes(IMCAGraph)

> nc = nchar(labels)

> table(nc)

nc
3 4 5 6 7 13 16 18 37

25 13 7 2 1 1 1 1 1
> long = labels[order(nc, decreasing=TRUE)][1:4]

> long

Phosphatidylinositol signaling system
"Phosphatidylinositol signaling system"

cell proliferation
"cell proliferation"

cell maintenance
"cell maintenance"

cell motility
"cell motility"

We need to deal with these four long names specially. One option would
be to use an alternative name, maybe an abbreviation. Alternatively, we
could include line feeds into the strings in order to force multi-line text.
This is what we do. The escape sequence for line feeds in R is \n.

> labels[long] = c(paste("Phosphatidyl-\ninositol\n",

"signaling\nsystem", sep=""), "cell\nproliferation",

"cell\nmaintenance", "cell\nmotility")

Because we want to change a property of individual nodes we have to
use nodeRenderInfo for the setting. As shown before, the function matches
rendering parameters by the name of the list item and nodes by the names
of the items of the individual vectors. The parameter we want to modify is
label.

> nodeRenderInfo(IMCAGraph) = list(label=labels)

> renderGraph(IMCAGraph)

The four labels are now plotted as multi-line strings but this has not
changed the layout. Remember that rendering and layout are two distinct
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processes, and for changes to affect the latter you have to re-run layout-

Graph. Another layout change we may want to do at this point is to further
increase the size of the nodes with long names to give them a little bit
more room for the labels. Also, we do not want a fixed size for all the nodes
but rather allow Graphviz to adapt the node size to fit the labels. This is
controlled by the logical layout parameter fixedsize. KEGG laid out the
pathway from left to right and we can set this in the graphwide rankdir

attribute.

> attrs = list(node=list(fixedsize=FALSE),

graph=list(rankdir="LR"))

> width = c(2.5, 1.5, 1.5, 1.5)

> height = c(1.5, 1.5, 1.5, 1.5)

> names(width) = names(height) = long

> nodeAttrs = list(width=width, height=height)

> IMCAGraph = layoutGraph(IMCAGraph, attrs=attrs,

nodeAttrs=nodeAttrs)

> renderGraph(IMCAGraph)

It also makes sense to use a rectangular shape for all but the “Phos-
phatidylinositol signaling system” node which actually comprises a fairly
substantial cellular subprocess and we want it to be highlighted accord-
ingly. The best way to do that is to set the global shape attribute for nodes
in attrs and adjust for the single “Phosphatidylinositol signaling system”
node in nodeAttrs.

> attrs$node$shape="rectangle"

> shape = "ellipse"

> names(shape) = long[1]

> nodeAttrs$shape = shape

> IMCAGraph = layoutGraph(IMCAGraph, attrs=attrs,

nodeAttrs=nodeAttrs)

> renderGraph(IMCAGraph)

The other three nodes with the long names and also the “F-actin” node
represent processes rather than physical objects and we do not want to
plot shapes for them, but display plain text of the node names instead
(Figure 12.6).

> plaintext = rep("transparent", 4)

> names(plaintext) = c(long[2:4], "F-actin")

> nodeRenderInfo(IMCAGraph) = list(fill=plaintext,

col=plaintext)

> renderGraph(IMCAGraph)
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Figure 12.6. The integrin-mediated cell adhesion pathway as rendered by
Rgraphviz after a considerable amount of fine tuning.

Exercise 12.4
What is still missing in our graph is some color. Looking at Figure 12.4
we can see that there seem to be different classes of nodes, some colored
green and others remaining transparent. Reproduce this color scheme for
our plot.

12.3.1 Reciprocated edges

There is an option recipEdges that determines how reciprocated edges in
a graph will be handled. The two options are combined (the default) and
distinct. The combined option will display them as a single edge with an
arrow on both ends whereas distinct shows them as two separate edges.
Note that the layout of a graph may change significantly depending on the
selection made here. For distinct edges we need more space and most of
the layout algorithms are likely to take that extra space into account.
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Figure 12.7. The integrin-mediated cell adhesion pathway as rendered by
Rgraphviz with distinct reciprocated edges.

The following code plots our IMCA graph with distinct reciprocated
edges (Figure 12.7):

> IMCAGraph = layoutGraph(IMCAGraph, attrs=attrs,

nodeAttrs=nodeAttrs, recipEdges="distinct")

> renderGraph(IMCAGraph)

12.4 Subgraphs

We have considerably improved the presentation of our graph just by chang-
ing the node shapes and colors. However, the topological properties of the
pathway are still not captured in our output. For instance, there are col-
lections of nodes that represent structures or processes that are known to
be closely related. Also, there is some notion of inputs and outputs for the
pathway that we would like to show in the layout. The layout algorithm
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itself does not know about these properties and tries to arrange nodes
purely by the edges connecting them. We have to explicitly tell Graphviz
that we want certain nodes to be kept together and we can do that by
means of subgraphs. This concept is distinct from that of subgraphs in the
graph package.

In the context of graph layout, subgraphs are organizatorial units within
a graph and they can be specified using layoutGraph’s subGList argument
which is a list of lists, with each sublist containing one to three of the
following elements.

• graph: The actual graph object for this subgraph. This is the only
mandatory element of the inner lists. The easiest way to define this
is to use the subGraph function from the graph package.

• cluster: A logical value noting if this is a cluster or a subgraph.
A value of TRUE (the default, if this element is missing) indicates
a cluster. In Graphviz , subgraphs are used as an organizational
mechanism but are not necessarily laid out in such a way that they
are visually together. Clusters are laid out as a separate graph, and
thus Graphviz will tend to keep nodes of a cluster together.

• attrs: A named vector of attributes, where the names are the
attribute and the elements are the value. If there are no attributes
to specify for this subgraph then attrs is unnecessary. For more
information about layout attributes, see the documentation of
layoutGraph

In the following code we specifiy the cell membrane components, the
cytoskeleton components, and the affected downstream processes as indi-
vidual subgraphs. We also add information about inputs and outputs to
the pathway through the sink and source layout attributes.

> sg1 = subGraph(c("ITGA", "ITGB", "ILK", "CAV"), IMCAGraph)

> sg2 = subGraph(c("cell maintenance", "cell motility",

"F-actin", "cell proliferation"), IMCAGraph)

> sg3 = subGraph(c("ACTN", "VCL", "TLN", "PXN", "TNS", "VASP"),

IMCAGraph)

> subGList = vector(mode="list", length=3)

> subGList[[1]] = list(graph=sg1, attrs=c(rank="source"),

cluster=TRUE)

> subGList[[2]] = list(graph=sg2, attrs=c(rank="sink"))

> subGList[[3]] = list(graph=sg3)

> IMCAGraph = layoutGraph(IMCAGraph, attrs=attrs,

nodeAttrs=nodeAttrs, subGList=subGList)

> renderGraph(IMCAGraph)

The plot in Figure 12.8 is pretty close to the KEGG image which most
likely was produced manually. The integrins and other cell membrane
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Figure 12.8. Layout of the integrin-mediated cell adhesion pathway using
subgraphs to reflect its topology.

components are all lined up on the left side of the plot and the affected
downstream processes are located together on the right margin. Actin and
the other cytoskeleton components form a nice cluster.

Exercise 12.5
The components of the MAP-kinase signaling pathway (“GRB2”, “SOS”,
“Ras”,“Raf”,“MEK”,“ERK”) are still a bit scattered. Use another subgraph
to keep them closer together.

12.5 Tooltips and hyperlinks on graphs

The amount of information one can include in a graph plot is limited
by the available space on the screen. Interactivity can help overcome
this limitation, but R’s graphical engine does not offer much interaction.
A straightforward way to produce interactive output is to use clickable
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HTML. The imageMap method for graph objects in the biocGraph package
creates code that can be embedded in a HTML document and that allows
for drilldown starting from a static graph image to more detailed informa-
tion. In this section we show an example using a bipartite graph of co-cited
genes in the PubMed literature. Edges connect genes to papers in which
they were cited, and clicking on a “paper” node should directly link to the
respective abstract on PubMed.

Our example data are in the annotation package org.Hs.eg.db which
offers mapping from EntrezGene identifiers to PubMed citations and we
first have to create a graph object from that. We start with one gene
(EntrezGene ID 1736) and fetch all papers that cite this gene.

> library("org.Hs.eg.db")

> library("biocGraph")

> g1 = "1736"

> paps = org.Hs.egPMID[[g1]]

> genes = mget(paps, org.Hs.egPMID2EG)

> names(genes) = paps

> len = sapply(genes, length)

> table(len)

len
1 2 3 4 5 58 107 208 211 375
15 1 2 1 2 1 1 1 1 1

422 426 503 716 718 773 791 1538 1746 1860
1 1 1 1 1 1 1 1 1 1

11328 17988
1 1

There are papers that cite a lot of genes and it is unlikely that they
refer to interesting properties of specific genes, so we remove them. Let’s
remove every paper that mentions more than five genes. To easily distin-
guish between paper and gene nodes we prepend LL and PM to the node
names.

> sel = len < 5

> genes = genes[sel]

> paps = paps[sel]

> LLstring = function(i) paste("LL", i, sep=":")

> PMstring = function(i) paste("PM", i, sep=":")

> nd = c(LLstring(unique(unlist(genes))),

PMstring(paps))

> ed = lapply(nd, function(z) list(edges=integer(0)))

> names(ed) = nd
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We can use these data now to create the graph object bpg:

> for(i in 1:length(genes)) {

p = PMstring(names(genes)[i])

g = LLstring(genes[[i]])

ed[[p]] = list(edges=match(g, nd))

}

> bpg = new("graphNEL", nodes=nd, edgeL=ed,

edgemode="directed")

Let’s tweak some of the layout and rendering parameters using the tools
described earlier to get a more appealing output.

> nt = match(substr(nodes(bpg), 1, 2), c("LL", "PM"))

> fill = c("lightblue", "salmon")[nt]

> shape = c("ellipse", "rect")[nt]

> names(fill) = names(shape) = nodes(bpg)

> attrs = list(node=list(fixedsize=TRUE, shape=shape))

> nodeRenderInfo(bpg) = list(fill=fill)

> graph.par(list(nodes=list(fontsize=10)))

We have to draw the plot (as shown in Figure 12.9) on a bitmap device
stored as a file because this file will later be embedded in the HTML

Figure 12.9. A bipartite co-citation graph of PubMed IDs and Entrez genes.
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document. Either jpeg or png is good choice for that. For sufficient space for
the graph we have to increase the dimension of the plotting device using
the width and height arguments. Note that renderGraph returns a graph
object with information about the pixel coordinates of each node added
to its renderInfo slot, so we need to make sure that we assign the out-
put back into bgp. The image file will be created in your current working
directory.

> imgname = "graph.png"

> png(imgname, width=1024, height=768)

> bpg = layoutGraph(bpg, layoutType="neato", attrs=attrs)

> bpg = renderGraph(bpg)

> dev.off()

The imageMap method for graph objects has four mandatory arguments:
object which is the graph object, a connection con to the HTML document,
tags which is a named list of HTML tags for links and tooltips, and ima-

gename which is the image file with which the HTML image map will be
associated. You should consult imageMap’s documentation for more details.
For setting up the HTML file connection we can use the openHtmlPage

function which will generate the necessary HTML headers.

> fhtml = "index.html"

> con = openHtmlPage(fhtml, paste("PubMed co-citations of",

"gene '1736' Please click on the nodes"))

We have already set up the file connection and the graph object and we
have plotted it in the image file, so the only thing we still need is the list
of tags. PubMed offers a query syntax to directly retrieve paper abstracts
for valid PubMed identifiers via a URL and we use that as hyperlinks for
our graph:

> pnodes = nodes(bpg)[nt==2]

> links = character(length(pnodes))

> tooltips = pnodes

> links = paste("http://www.ncbi.nih.gov/entrez/query.fcgi",

"?tool=bioconductor&cmd=Retrieve&db=PubMed&",

"list_uids=", gsub("PM:", "", pnodes), sep="")

> names(links) = names(tooltips) = pnodes

> tags = list(HREF=links, TITLE=tooltips)

Now that we have all the bits and pieces together we can start to assemble
the HTML document
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> imageMap(bpg, con=con, tags=tags, imgname=imgname)

> closeHtmlPage(con)

and have a look at the result by pointing a Web browser to it.

> fhtml

> browseURL(fhtml)





13

Gene Set Enrichment Analysis

R. Gentleman, M. Morgan, and W. Huber

Abstract
Gene Set Enrichment Analysis (GSEA) is an important method for
analyzing gene expression data. It is useful for finding biological
themes in gene sets, and it can help to increase the statistical power
of analyses by aggregating the signal across groups of related genes.
In this chapter, we introduce tools available in the Category and
GSEABase packages for carrying out gene set enrichment analysis.

13.1 Introduction

In this case study, we see how to use gene set enrichment analysis (GSEA);
Subramanian et al. (2005); Tian et al. (2005); Jiang and Gentleman (2007).
We primarily concentrate on the two-sample problem, where the data can
be divided into two distinct groups, and we want to understand the set of
differentially expressed genes between the two groups. We use a subset of
the ALL dataset as described in Chapter 1.

The basic idea behind GSEA is to use predefined sets of genes, usually
derived from functional annotation or from results of prior experiments, in
order to better interpret the experiment that we are analyzing. The idea is
similar to the one of Hypergeometric testing of 2x2 contingency tables (see
Chapter 14 for more details on that approach). Perhaps the most important
difference is that in GSEA there is no need to make a hard cutoff between
genes that are differentially expressed and those that are not. Rather, we
determine a continuous-valued score, for example, the t-statistic, and see
whether its values are associated with the gene sets of interest.

Any collection of gene sets can be used, and in many cases users will
avail themselves of predefined gene sets, such as those available from GOA
or KEGG. In this chapter we concentrate on KEGG, chromosome bands,
and protein domains, because many other examples have been presented of
applying these procedures to GO annotations.

F. Hahne et al., Bioconductor Case Studies, DOI: 10.1007/978-0-387-77240-0 13,
© Springer Science+Business Media, LLC 2008
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In release 2.1 of Bioconductor the GSEABase package was introduced.
It contains software infrastructure for performing GSEA analyses. The
basic concepts are simple: the GeneSet class represents a set of genes that
are all described by a common set of identifiers such as EntrezGene IDs.
A GeneSetCollection object is a collection of gene sets. GSEABase pro-
vides tools for performing set operations on gene sets, such as union and
intersection, as well as ways to construct specific gene set collections, such
as those for GO and KEGG, and using different types of inputs, such as a
Bioconductor annotation package or an ExpressionSet .

There are a number of other Bioconductor packages that provide GSEA-
type analyses. They include PGSEA, sigPathways, and GlobalAncova.
For the Hypergeometric testing approach, the packages GOstats and
topGO provide specialized methods that try to remove redundancy by
taking advantage of the nested structure of the Gene Ontologies (The Gene
Ontology Consortium, 2000).

13.1.1 Simple GSEA

Prior to conducting a GSEA analysis, we recommend making a basic data
quality assessment followed by filtering genes to remove those that do not
show much variation across samples (and hence have little ability to dis-
criminate any samples). It is essential that sample annotation, such as
phenotypic characteristics, not be used in this filtering step.

Next we compute a test statistic for each remaining gene, possibly using
some form of moderation or regularization with an empirical Bayes method.
It does not really matter how this step is carried out, but it is important
that you make a choice that you are comfortable with, and that the result-
ing quantity have a similar distribution, and interpretation, for all genes
being used. In particular, one should avoid statistics that have a different
baseline for each gene, for example, statistics that are proportional to the
observed intensity. In the following examples, which consider a two-group
comparison, we use the t-statistic.

Now, the basic idea is that under the null hypothesis of no difference
in mean expression between the two groups, the per-gene t-statistics tk
have a t-distribution. If we further assume that the genes, and hence the
observed t-statistics, are independent, their sum, taken over the genes in a
gene set, divided by the square root of the number of genes, should have
an approximately Normal distribution with mean zero and variance one,
by the central limit theorem. So that with

zK =
1√
|K|

∑
k∈K

tk, (13.1)

where K denotes the gene set, and |K| the number of genes in the gene
set, the zk have approximately a standard Normal distribution. And so,
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one can potentially identify interesting gene sets by comparing their zK to
the quantiles of a standard Normal distribution. The assumption that the
the genes are independent is quite strong, but in practice the test seems to
lead to reasonable results.

An alternative approach is to make use of a permutation test to assess
which gene sets have an unusually large absolute value of zK . The usual null
hypothesis is that the sample labels are not related to the observed values of
gene expression, and hence by permuting labels we can generate a reference
distribution for any test statistic of interest. When there are relatively few
observations one will typically compute all possible permutations, but even
for modest sample sizes it is not practical to compute all permutations and
instead we sample some large number (typically 1000) of permutations.
The observed value of the zK -statistic is then compared to the reference
distribution to obtain a p-value.

13.1.2 Visualization

The use of graphical tools can help to better understand how well the
data are being modeled and they provide diagnostic checks on various
assumptions you might have made.

A Q–Q plot of the observed test statistics (or p-values) versus an appro-
priate reference distribution will help to visually identify how extreme some
of the per gene set statistics are. Once specific gene sets are identified as
being of interest, heatmaps of the gene set data can be very informative.
The functions KEGG2heatmap and GO2heatmap can easily be extended to other
situations.

For two-sample comparisons we use plots that show the mean expression
value in each group. Two specialized functions are the GOmnplot and KEG-

Gmnplot. It would also be useful to produce side-by-side boxplots on a per
gene basis in situations where there are sufficient samples.

13.1.3 Data representation

The GSEABase package provides basic software tools for dealing with
gene sets. A gene set is a set of genes that someone (possibly you) has
determined are of interest. These gene sets can be grouped together into col-
lections, and most analyses will be performed on collections. GSEABase
provides tools for performing the usual set operations such as unions and
intersection on gene sets.

A gene set in the GeneSet class is represented, essentially, as a character
vector of identifiers together with information denoting the identifier system
to which the identifiers refer. An alternative representation, which may be
especially useful in the context of gene set collections, is as an incidence
matrix, where, say, the rows correspond to the different gene sets, and
there is one column for each gene. The entries in the matrix A[i, j] are
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either 1 or 0, depending on whether gene j is in gene set i. The incidence
matrix is very useful for many of the computations we want to carry out
and is used in most of the examples. The incidence function from the
GSEABase package can be used to compute the incidence matrix from
a gene set collection. Simple operations such as computing column or row
sums will tell you how many gene sets a gene is in, or how many genes are
in a particular gene set.

When an analysis identifies multiple gene sets as significant, we have
found it valuable to characterize the amount of overlap between them. This
can easily be computed from the incidence matrix. Gene sets that overlap
substantially may be complementary, or one may be able to determine that
the effect seems to be due to only one of the gene sets. Some examples and
more explicit discussion were given by Jiang and Gentleman (2007).

13.2 Data analysis

We begin by describing the preprocessing steps that are used on the data,
and follow that with applications using KEGG pathways and chromosome
location. We note that the use of chromosome location is sensible for these
data, as they are derived from cancer cells, and it is well known that some
of the genomic alterations that are related to cancer tend to cluster by
genomic location, perhaps due to amplification or deletion of DNA, or due
to methylation or demethylation events.

13.2.1 Preprocessing

For this chapter, we use the ALL data, which have been obtained in a
microarray study of B- and T-cell leukemia. We want to find genes that are
differentially expressed between two distinct types of B-cell leukemia.

> library("ALL")

> data("ALL")

The data and the following steps with which we construct the subset of
interest, ALL_bcrneg, are described in more detail in Chapter 1. Briefly, we
select samples with B-cell leukemia harboring the BCR/ABL translocation
and those samples with no observed cytogenetic abnormalities (NEG).

> bcell = grep("^B", as.character(ALL$BT))

> moltyp = which(as.character(ALL$mol.biol)

%in% c("NEG", "BCR/ABL"))

> ALL_bcrneg = ALL[, intersect(bcell, moltyp)]

> ALL_bcrneg$mol.biol = factor(ALL_bcrneg$mol.biol)
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The last line in the code above is used to drop unused levels of the fac-
tor variable mol.biol. Nonspecific filtering removes the probe sets that we
believe are not sufficiently informative, so that there is little point in con-
sidering them further. We use the function nsFilter from the genefilter
package to apply a number of different criteria. For instance, by default the
function removes the control probes on Affymetrix arrays, which can be
identified by their AFFX prefix. It also excludes probe sets without Entrez-
Gene ID, and for instances of multiple probe sets mapping to the same
EntrezGene ID, only the probe set with the largest variability is retained.
The choice of the var.cutoff parameter indicates that we select the top
50% of probe sets on the basis of variability.

> library("genefilter")

> ALLfilt_bcrneg = nsFilter(ALL_bcrneg, var.cutoff=0.5)$eset

Exercise 13.1
a How many samples are in our subset? How many are BCR/ABL and

how many NEG?

b How many probe sets have been selected for our analysis?

13.2.2 Using KEGG

KEGG (Kanehisa and Goto, 2000) provides mappings of genes to pathways
and this information is included in most Bioconductor annotation packages.
Many investigators are interested in whether there is some indication that
certain pathways are implicated in their analysis. One way to make that
assessment is to perform a gene set analysis on the KEGG pathways.

We use code from the GSEABase package to compute the incidence
matrix that maps between probes and the pathways. The function GeneSet-

Collection can produce gene sets for a number of different inputs, including
an instance of the ExpressionSet class, which is what we use.

> library("GSEABase")

> gsc = GeneSetCollection(ALLfilt_bcrneg,

setType=KEGGCollection())

> Am = incidence(gsc)

> dim(Am)

[1] 194 1666

We next compute a reduced ExpressionSet object nsF that retains only
those features (genes) that are mentioned in the incidence matrix Am and
whose features are in the same order as the columns of Am.

> nsF = ALLfilt_bcrneg[colnames(Am),]
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Exercise 13.2
How many gene sets and how many genes are represented by the incidence
matrix? How many gene sets have fewer than ten genes in them? What is
the largest number of gene sets in which a gene can be found?

Next we compute the per gene test statistics using the rowttests func-
tion from the genefilter package. There are several other functions in
genefilter for performing fast rowwise statistics (e.g., rowFtests).

> rtt = rowttests(nsF, "mol.biol")

> rttStat = rtt$statistic

Exercise 13.3
How many test statistics are positive? How many are negative? How many
have a p-value less than 0.01?

In the next code segment, we reduce the incidence matrix by removing
all gene sets that have fewer than ten genes in them.

> selectedRows = (rowSums(Am)>10)

> Am2 = Am[selectedRows, ]

Finding general trends requires that you use gene sets with a reasonable
number of genes, and here we have operationalized that by setting our cut-
off at ten. This cutoff is arbitrary, and in any analysis you should think
about whether to do this, and if so, what value might be used on the basis
of what you are interested in finding.

Now it is fairly easy to compute the per gene set test statistics and to
produce a Normal Q–Q plot; see Figure 13.1.

> tA = as.vector(Am2 %*% rttStat)

> tAadj = tA/sqrt(rowSums(Am2))

> names(tA) = names(tAadj) = rownames(Am2)

> qqnorm(tAadj)

We see that there is one pathway that has a remarkably low observed
value (less than −5) so we take a closer look at this pathway.

> library("KEGG.db")

> smPW = tAadj[tAadj < (-5)]

> pwName = KEGGPATHID2NAME[[names(smPW)]]

> pwName

[1] "Ribosome"
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Figure 13.1. The per gene set Q–Q plot.

Now we can produce some summary plots based on the genes anno-
tated at this pathway. The mean plot presents a comparison of the average
expression value for each of our two groups, for each gene in the specified
pathway.

> KEGGmnplot(names(smPW), nsF, "hgu95av2", nsF$"mol.biol",

pch=16, col="darkblue")

That is, each point in the left panel of Figure 13.2 represents one gene
and the value on the x-axis is the mean in the BCR/ABL samples whereas
the value on the y-axis is the mean value in the NEG samples.

Exercise 13.4
Many of the points in Figure 13.2 appear to lie above the diagonal. Is this
to be expected?”

And finally we can produce a heatmap for the genes in the ribosome
pathway. We use the KEGG2heatmap function to do most of the hard work,
and the result is shown in the right panel of Figure 13.2.
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Figure 13.2. The left panel shows the scatterplot of within-group means for the
genes in the ribosome pathway. The right panel shows a heatmap for these genes.
The black and white bars at the top indicate the two disease types, BCR/ABL
and NEG.

> sel = as.integer(nsF$mol.biol)

> KEGG2heatmap(names(smPW), nsF, "hgu95av2",

col=colorRampPalette(c("white", "darkblue"))(256),

ColSideColors=c("black", "white")[sel])

Exercise 13.5
What sorts of things do you notice in the heatmap? The gene labeled
41214_at has a very distinct pattern of expression. Can you guess what is
happening? Hint: look at which chromosome it is on.

As a further exercise, produce corresponding plots for the pathway with
the largest positive average t-statistic.

13.2.3 Permutation testing

The assumptions on which we based the test above are somewhat strong,
and it is of some interest to consider alternative approaches. For GSEA it
is straightforward to compute a permutation test. The gseattperm function
in the Category package can be used to compute the permutation test. It
takes as inputs the gene expression data, phenotypic data for the samples,
and the incidence matrix representing the gene sets of interest. The value
returned by gseattperm is a matrix with columns Lower and Upper. For
each row (gene set) the Lower column gives the proportion of permutation
t-statistics that were smaller than the observed t; the Upper column gives
the proportion of the permutation t-statistics that were larger than the
observed t-statistic.
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In the code chunk below we compute the permutation distribution based
on 1000 permutations. We use a p-value cutoff of 0.025 that corresponds to
a two-sided hypothesis test at the 0.05 level. Because we are carrying out
a permutation test and want the results to be reproducible we begin by
setting the seed for the random number generator. For users that are going
to use permutation distributions, we recommend familiarizing themselves
with the different pseudo-random number generators in R and the role of
the seed, and using these tools with care.

> set.seed(123)

> NPERM = 1000

> pvals = gseattperm(nsF, nsF$mol.biol, Am2, NPERM)

> pvalCut = 0.025

> lowC = names(which(pvals[, 1]<=pvalCut))

> highC = names(which(pvals[, 2]<=pvalCut))

In the next code chunk we print some of the resulting pathway names.
There is one in lowC and 21 in highC.

> getPathNames(lowC)

[1] "03010: Ribosome"

> getPathNames(highC)

[1] "04360: Axon guidance"
[2] "05130: Pathogenic Escherichia coli infection - EHEC"
[3] "05131: Pathogenic Escherichia coli infection - EPEC"
[4] "04520: Adherens junction"
[5] "04510: Focal adhesion"

Exercise 13.6
What permutation-base p-value is the most extreme? What does the
heatmap look like for this gene set?

Exercise 13.7
Compare the p-values from the parametric analysis to those from the
permutation analysis.

13.2.4 Chromosome bands

Another interesting application is to use the mapping of genes to chromo-
some bands as the gene sets. In doing this, you are studying whether there
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are anomalies in the pattern of gene expression that relate to chromosomal
location. In many cancers there are underlying genomic changes, such as
amplifications or deletions that cause coordinated changes in gene expres-
sion as a function of chromosomal location. In other settings, a separate
justification for using chromosomal location would be needed. The chromo-
some band information can be obtained from the metadata variable with
the suffix MAP, so for us it is hgu95av2MAP.

Exercise 13.8
What does the manual page say is the interpretation of the MAP position
17p33.2?

Exercise 13.9
Just as we did for the KEGG analysis, we need to remove probe sets that
have no chromosome band annotation. Follow the approach used in the
KEGG analysis and create a new ExpressionSet object nsF2. We will use it
later in this chapter.

Relevant MAP positions can be computed using the MAPAmat function
from the Category package.

> EGtable = toTable(hgu95av2ENTREZID[featureNames(nsF2)])

> entrezUniv = unique(EGtable$gene_id)

> chrMat = MAPAmat("hgu95av2", univ=entrezUniv)

> rSchr = rowSums(chrMat)

Exercise 13.10
How many genes were selected? How many map positions?

Exercise 13.11
Further reduce chrMat so that only bands with at least five genes are
retained. Produce a Q–Q plot and identify the interesting bands. Use
Google or some other search engine to determine what might be inter-
esting about these bands.
Do an analysis similar to the one we performed on the KEGG pathways.
Produce mean plots, heatmaps, and so on. Try to identify a set of interesting
bands.

Exercise 13.12
Reorder the columns of chrMat so that they are in the same order as the
corresponding features in the ExpressionSet object nsF2.
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13.3 Identifying and assessing the effects
of overlapping gene sets

Once the potentially interesting gene sets have been identified, it is useful
to consider how much overlap there is between them. In some cases the list
can be reduced by identifying gene sets that are redundant, or that perhaps
have been identified because they overlap with another gene set that really
is important. It is possible to consider higher levels of overlap, say between
three gene sets, but here we restrict our attention to two gene sets at a
time.

To assess the amount of overlap we suggest using a simple statistic which
is the number of genes in common, divided by the number of genes in the
smaller of the two gene sets. This statistic is 0 when there are no genes in
common and 1 if one of the two gene sets is a subset of the other. Com-
putation can be performed using the methods in the GSEABase package,
but is easy enough using generic algebra on the incidence matrix.

We consider the permutation analysis reported in Section 13.2.3 and
consider all gene sets with permutation p-values less than 0.025 as interest-
ing. To compute our index, we simply take the submatrix of the incidence
matrix that corresponds to the interesting gene sets (as identified earlier)
and then take the matrix product with its transpose. The diagonal elements
of Amx are the sizes of each gene set, and the off-diagonal elements are the
number of genes in common.

> Ams = Am2[union(lowC, highC),]

> Amx = Ams %*% t(Ams)

> minS = outer(diag(Amx), diag(Amx), pmin)

> overlapIndex = Amx/minS

The resulting matrix, overlapIndex, is plotted in Figure 13.3.

Exercise 13.13
How many genes are in each of the four pathways, 04512, 04940, 04510,
04514? How many are in the overlap for each pair?

In order to determine whether there is evidence that both of the gene
sets in a pair are involved in the observed relationship with the t-statistic,
or whether one of the two is perhaps only implicated due to the shared
genes, we consider a number of different linear models.

First we fit a linear model to each of the two gene sets separately, and
observe that the corresponding p-values are less than 0.05. But when both
are included in the model, only one remains significant.

> P04512 = Ams["04512",]

> P04510 = Ams["04510",]
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Figure 13.3. Overlap between the gene sets as measured by overlapIndex.

> lm1 = lm(rttStat ~ P04512)

> summary(lm1)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0948 0.0378 2.51 0.0123
P04512 0.5783 0.2774 2.08 0.0372
> lm2 = lm(rttStat ~ P04510)

> summary(lm2)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0715 0.0385 1.86 0.063565
P04510 0.5913 0.1604 3.69 0.000235
> lm3 = lm(rttStat ~ P04510+P04512)

> summary(lm3)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.070 0.0386 1.815 0.06971
P04510 0.541 0.1724 3.139 0.00173
P04512 0.237 0.2973 0.796 0.42627

We next divide the genes into three groups: those that are in 04512
only, those that are in both sets, and those that are in 04510 only. Using
these variables in our linear regression shows that only the second and
third variables are significant. This suggests that the pathway 04512 only
appears to be interesting because of the genes it shares with the 04510
pathway.
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> P04512.Only = ifelse(P04512 != 0 & P04510 == 0, 1, 0)

> P04510.Only = ifelse(P04512 == 0 & P04510 != 0, 1, 0)

> Both = ifelse(P04512 != 0 & P04510 != 0, 1, 0)

> lm4 = lm(rttStat ~ P04510.Only + P04512.Only + Both)

> summary(lm4)

Call:
lm(formula = rttStat ~ P04510.Only + P04512.Only + Both)

Residuals:
Min 1Q Median 3Q Max

-4.167 -1.034 -0.183 0.884 7.211

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0689 0.0386 1.78 0.0749 .
P04510.Only 0.5650 0.1804 3.13 0.0018 **
P04512.Only 0.4088 0.4842 0.84 0.3985
Both 0.6972 0.3353 2.08 0.0377 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
' ' 1

Residual standard error: 1.53 on 1662 degrees of freedom
Multiple R-Squared: 0.0086, Adjusted R-squared: 0.00
681
F-statistic: 4.81 on 3 and 1662 DF, p-value: 0.00245

We also recommend checking the sign of the t-statistic, to make sure that
effects are concordant (as they are here).

Exercise 13.14
Repeat this analysis for the other pair of pathways, 04940 and 04514.





14

Hypergeometric Testing Used
for Gene Set Enrichment
Analysis

S. Falcon and R. Gentleman

Abstract

After the set of interesting genes has been determined, say those that
are differentially expressed, a next step in the analysis is to attempt
to find functional relationships among those genes that might help
better elucidate the underlying biology. These methods typically rely
on existing or predefined sets of genes. In this chapter we show how
to carry out Hypergeometric tests to identify potentially interesting
gene sets.

14.1 Introduction

The Category and GOstats packages provide extensive facilities for the
testing of over- and underrepresentation of gene sets in a specified list
of interesting genes. In this chapter we focus most of our examples on
the gene set collection induced by the Gene Ontology GO; (The Gene
Ontology Consortium, 2000). However, the techniques demonstrated can
be easily translated for use with other gene set collections supported by
the Category package including KEGG, PFAM, and chromosome band
annotation and these are covered in the exercises.

In this chapter we describe the preprocessing required to construct inputs
for the main testing function, hyperGTest, the algorithms used, and the
structure of the return value. We use a microarray data set (Chiaretti et al.,
2004, 2005) from a clinical trial in acute lymphoblastic leukemia (ALL) to
work an example analysis. In the ALL data, we focus on the patients with
B-cell derived ALL, and in particular on comparing the group with
BCR/ABL translocations to those with no observed cytogenetic abnor-
malities (NEG).

F. Hahne et al., Bioconductor Case Studies, DOI: 10.1007/978-0-387-77240-0 14,
© Springer Science+Business Media, LLC 2008
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To get started, load the packages needed for this analysis:

> library("Biobase")

> library("ALL")

> library("hgu95av2.db")

> library("annotate")

> library("genefilter")

> library("GOstats")

> library("RColorBrewer")

> library("xtable")

> library("Rgraphviz")

14.2 The basic problem

The reasoning behind this approach is that there is some universe of objects
(in our case genes) that are of potential interest, and that these objects can
be divided into two groups (those that are interesting and those that are
not). In addition, there are other characteristics of the objects that are
also binary, such as belonging to a particular GO category, or having a
particular biological property. And hence one would like to ask whether
there is an association between being interesting and having the particular
property. This question is easily answered using basic probability, and the
resulting test is also widely known as Fisher’s exact test.

The probability calculation can be carried out in two different ways, but
the resulting test statistics and p-values are identical. Consider an urn con-
taining one ball for each gene in the universe and imagine that those that
are interesting are colored black, and those that are not interesting are col-
ored white. Then, under the null hypothesis that there is no relationship
between being interesting and being in a given GO category containing
K genes, we can model the number of interesting genes using a Hypergeo-
metric distribution. If there are j interesting genes in the GO category, we
simply compute the probability of seeing j or more black balls in K draws,
without replacement, from the urn. This probability is symmetric, in the
sense that we could also have described the problem with the balls colored
according to the GO category, and select, without replacement, one ball for
each gene in our gene list. Another way of thinking about this is to draw
the balls from the urn that represent genes annotated at the given term
and fill out a two-way table as shown in Table 14.1.

In principle there is no reason why either grouping needs to be binary.
You could have three types of genes (really interesting, sort of interest-
ing, and not interesting) and a category that has three levels. If so, the
multivariate generalizations of the Hypergeometric distribution will be
needed.
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Table 14.1. The two-way table for testing overrepresentation of a GO term among
a selected list of interesting genes.

Interesting (Black) Not (White)
In GO term n11 n12

Not in GO term n21 n22

Selection of the universe is very important; making it too large, or too
small, will have a large impact on the observed p-values. Our recommen-
dation is to include in the universe only those genes that could have been
selected as interesting. Practically speaking, for a microarray experiment
that means that the universe consists of all genes that are represented by
probes on the array. In other settings one may want to use all genes from
an organism, but you should be very cautious in doing this, it will make
your p-values more extreme, and suggest relationships where none exist.

A second practical issue that arises in the analysis of microarray exper-
iments is that often some genes are represented by more than one probe
on the array. This is also problematic, and in order for the Hypergeometric
probabilities to be correct, you must restrict yourself to a single value for
each gene. You could take a different approach, and develop the correct
probability model to deal with multiple probes per gene, but the software
in the GOstats and Category packages should not be used directly for
those applications.

Some issues naturally arise, such as multiple testing. You will be carrying
out hundreds, if not thousands, of tests and one might wonder if appropriate
p-value correction methods cannot be found. It seems that this is difficult,
and our approach here is described in Falcon and Gentleman (2007) which
is similar to that of Alexa et al. (2006). And, you may also want to con-
sider the gene set enrichment analysis (GSEA)[gene set enrichment analyis]
(Subramanian et al., 2005; Tian et al., 2005; Jiang and Gentleman, 2007)
as an alternative.

14.3 Preprocessing and inputs

We propose a template that can be used for any analysis in which one
wishes to determine if a gene set from a collection of gene sets is over- or
underrepresented relative to a specified list of genes. The template consists
of the following steps.

1. Perform nonspecific filtering.

2. Define the gene universe.

3. Determine a subset of interesting genes.

4. Test for over- or underrepresentation in the collection of gene sets.
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To perform an analysis using the Hypergeometric-based tests, one needs
to define a gene universe (the balls in the urn) and a list of interesting genes
from the universe. Although it is clear that the selected gene list determines
to a large degree the results of the analysis, the fact that the universe has
a large effect on the conclusions is, perhaps, less obvious. It is worth noting
that the effect of increasing the universe size with genes that are irrelevant
to the questions at hand, in general, has the effect of making the p-values
look more significant. For example, in a universe of 1000 genes where 400
have been selected, suppose that a GO term has 40 gene annotations from
the universe of 1000. If 10 of the genes in the interesting gene list are among
the 40 genes annotated in this category, then the Hypergeometric p-value is
0.99. However, if the gene universe contained 5000 genes, the p-value would
drop to 0.001.

For microarray data, one can use the unique gene identifiers assayed
in the experiment as the gene universe. However, the presence of a gene
on the array does not necessarily mean much. Some arrays, such as those
from Affymetrix, attempt to include probes for as much of the genome
as possible. Because not all genes will be expressed under all conditions
(a widely held belief is that about 40% of the genome is expressed in any
tissue), it may be sensible to reduce the universe to those that are expressed.

To identify the set of expressed genes from a microarray experiment, we
propose that a nonspecific filter be applied and that the genes that pass the
filter be used to form the universe for any subsequent functional analyses.
Below, we outline the nonspecific filtering procedure used for the example
analysis.

Once a gene universe has been established, one can apply any number
of methods to select genes. For the example analysis we use a simple t-test
to identify differentially expressed genes among the two subgroups in the
sample population.

14.3.1 Nonspecific filtering

First we load the ALL data object and extract the subset of the data we
wish to analyze: subjects with either no cytogenetic abnormality (NEG)
or those harboring BCR/ABL translocations. In Chapter 1 you can find a
more detailed explanation about the ALL data and the individual steps of
the subsetting.

> data(ALL)

> bcell = grep("^B", as.character(ALL$BT))

> types = c("NEG", "BCR/ABL")

> moltyp = which(as.character(ALL$mol.biol) %in% types)

> ALL_bcrneg = ALL[, intersect(bcell, moltyp)]

> ALL_bcrneg$mol.biol = factor(ALL_bcrneg$mol.biol)
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Exercise 14.1
a. How many samples are in the subset? How many have the BCR/ABL

phenotype?

b. What is the name of the annotation package associated with these
data? How many probe sets are represented in the dataset?

The genefilter package provides the nsFilter function that makes it
easy to apply our standard nonspecific filter to an ExpressionSet . In the
call to nsFilter shown below, we indicate that probe sets must have an
EntrezGene ID and an annotation in the GO BP ontology. We’ve also
asked to filter out lowvariance probe sets using the IQR function with a
cutoff of 0.5 and to remove features with an ID beginning with the string
“AFFX”.

> varCut = 0.5

> filt_bcrneg = nsFilter(ALL_bcrneg, require.entrez=TRUE,

require.GOBP=TRUE, remove.dupEntrez=TRUE,

var.func=IQR, var.cutoff=varCut,

feature.exclude="^AFFX")

> names(filt_bcrneg)

[1] "eset" "filter.log"
> ALLfilt_bcrneg = filt_bcrneg$eset

Exercise 14.2
What does nsFilter’s remove.dupEntrez argument do?

Exercise 14.3
How many probe sets were removed because they duplicated a mapping to
an EntrezGene ID?

Your nonspecific filtering needs may not be met by the filtering options
provided by the nsFilter function. For example, because there is an imbal-
ance of men and women by group, we continue the filtering by removing
probe sets that measure genes on the Y chromosome.

Exercise 14.4
Remove probe sets that measure genes located on the Y chromosome. (Hint:
use the hgu95av2CHR environment.)

We also remove any probe sets that do not have a gene symbol
annotation.
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> hasSymbol = sapply(mget(featureNames(ALLfilt_bcrneg),

envir=hgu95av2SYMBOL), function(x)

!(length(x) == 1 && is.na(x)))

> ALLfilt_bcrneg = ALLfilt_bcrneg[hasSymbol, ]

The gene identifiers corresponding to the probe sets that remain after the
nonspecific filtering define the gene universe we use for the Hypergeometric
tests.

> affyUniverse = featureNames(ALLfilt_bcrneg)

> entrezUniverse = unlist(mget(affyUniverse,

hgu95av2ENTREZID))

Exercise 14.5
Define an alternate gene universe based on the entire microarray chip.

Summary of nonspecific filtering
Our nonspecific filtering procedure removed probes missing EntrezGene

or Symbol identifiers as well as those lacking a mapping to at least one
GO term. The interquartile range was used with a cutoff of 0.5 to select
probes with sufficient variability across samples to be informative; probes
with little variability across all samples are inherently uninteresting. The
set of remaining probes was refined by ensuring that no two probe sets map
to the same EntrezGene identifier. For those probes mapping to the same
EntrezGene ID, the probe with largest the IQR was selected. Because of an
imbalance of men and women by group, probes measuring genes on the Y
chromosome were dropped. Finally, we removed probe sets missing a gene
symbol annotation.

Producing a set of EntrezGene identifiers that map to a unique set of
probes at the nonspecific filtering stage is important because genes are
mapped to GO categories using EntrezGene IDs and we want to avoid
double-counting any GO categories. In all, the filtering left 4229 genes.

14.3.2 Gene selection via t-test

We apply a standard t-test to identify a set of genes with differential
expression between the BCR/ABL and NEG groups.

> ttestCutoff = 0.05

> ttests = rowttests(ALLfilt_bcrneg, "mol.biol")

> smPV = ttests$p.value < ttestCutoff

> pvalFiltered = ALLfilt_bcrneg[smPV, ]

> selectedEntrezIds = unlist(mget(featureNames(pvalFiltered),

hgu95av2ENTREZID))
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Exercise 14.6
How many probe sets have a p-value less than the cutoff?

We did not make use of any p-value correction methods, or modified t-
statistics, because our focus is on Hypergeometric testing. But you could
make use of the capabilities of the limma package should you desire.

A detail often omitted from gene set association analyses is the fact that
the t-test, and most similar statistics, are directional. For a given gene,
average expression might be higher in the BCR/ABL group than in the
NEG group, whereas for a different gene it might be the NEG group that
shows the increased expression. By only looking at the p-values for the test
statistics, the directionality is lost. The danger is that an association with
a gene set may be found where the genes are not differentially expressed
in the same direction. One way to tackle this problem is by separating
the selected gene list into two lists according to direction and running two
analyses. A more elegant approach is the subject of further research.

14.3.3 Inputs

Often one wishes to perform many similar analyses using slightly different
sets of parameters. To facilitate this, the main interface to the Hypergeo-
metric tests, hyperGTest, takes a single parameter object as its argument.
This argument is a GOHyperGParams instance. There are also param-
eter classes KEGGHyperGParams and PFAMHyperGParams defined in
the Category package that allow for testing for association with KEGG
pathways and PFAM protein domains, respectively.

Using a parameter class instead of individual arguments makes it easier to
organize and execute a series of related analyses. For example, one can cre-
ate a list of GOHyperGParams instances and perform the Hypergeometric
test on each using R’s lapply function.

In the absence of a parameter class, this could be achieved using map-

ply, but the result would be less readable. Because parameter objects
can be copied and modified, they tend to reduce duplication of code. We
demonstrate this in the following example.

Below, we create a parameter instance by specifying the gene list, the
universe, the name of the annotation data package, and the GO ontology
we wish to interrogate. For the example analysis, we have stored the vector
of EntrezGene identifiers making up the gene universe in entrezUniverse.
The interesting genes are stored in selectedEntrezIds. If you are following
along with your own data and have an ExpressionSet instance resulting
from a nonspecific filtering procedure, you can create the entrezUniverse

and selectedEntrezIds vectors using code similar to that shown below. Be
sure to verify that no gene IDs are duplicated in the universe set.
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> ## if you are following along with your own data...

> entrezUniverse = unlist(mget(featureNames(yourData),

hgu95av2ENTREZID))

> pvalFiltered = yourData[hasSmallPvalue, ]

> selectedEntrezIds = unlist(mget(featureNames(pvalFiltered),

hgu95av2ENTREZID))

Here is a description of all the arguments needed to construct a
GOHyperGParams instance.

geneIds: A vector of gene identifiers that defines the selected list of genes.
This is often the output of a test for differential expression among
two sample groups. For most expression arrays, this will be a vector
of EntrezGene IDs. If you are using the YEAST annotation package,
the vector will contain systematic names.

universeGeneIds: A vector of gene identifiers that defines the universe of
possible genes. We recommend using the set of gene IDs that result
from nonspecific filtering. The identifiers should be of the same type
as the geneIds.

annotation: A string giving the name of the annotation data package that
corresponds to the chip used in the experiment.

ontology: A two-letter string specifying one of the three GO ontologies: BP,
CC, or MF. The hyperGTest function only tests a single GO ontology
at one time.

pvalueCutoff: A numeric value between zero and one used as a cutoff for
p-values generated by the Hypergeometric test. When the test being
performed is nonconditional, this is only used as a default value for
printing and summarizing the results. For a conditional analysis, the
cutoff is used during the computation to perform the conditioning:
child terms with a p-value less than pvalueCutoff are conditioned out
of the test for their parent term.

conditional: A logical value. If TRUE, the test performed uses the con-
ditional algorithm. Otherwise, a standard Hypergeometric test is
performed.

testDirection: A string that can be either “over” or “under”. This deter-
mines whether the test performed detects over- or underrepresented
GO terms.
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> hgCutoff = 0.001

> params = new("GOHyperGParams", geneIds=selectedEntrezIds,

universeGeneIds=entrezUniverse, annotation="hgu95av2.db",

ontology="BP", pvalueCutoff=hgCutoff, conditional=FALSE,

testDirection="over")

14.4 Outputs and result summarization

14.4.1 Calling the hyperGTest function

The hyperGTest function returns an instance of class GOHyperGResult .
When the input parameter object is a KEGGHyperGParams or PFAMHy-
perGParams instance, the result will instead be a HyperGResult object (the
GO case is special because of the relationship among GO terms). Most of
the reporting and summarization methods demonstrated here will work the
same, except for those that deal specifically with GO or the GO graph.

As shown below, printing the result at the R prompt provides a brief
summary of the test performed and the number of significant terms found.

> hgOver = hyperGTest(params)

> hgOver

Gene to GO BP test for over-representation
1841 GO BP ids tested (6 have p < 0.001)
Selected gene set size: 713

Gene universe size: 4229
Annotation package: hgu95av2

14.4.2 Summarizing a GOHyperGResult object

The summary function returns a data.frame summarizing the result
(Table 14.2). By default, only the results for terms with a p-value less than
the cutoff specified in the parameter instance will be returned. However,
you can set a new cutoff using the pvalue argument. You can also set a
minimum number of genes for each term using the categorySize argument.
For GOHyperGResult objects, the summary method also has a htmlLinks

argument. When TRUE, the GO term names are printed as HTML links to
the GO Web site.

Exercise 14.7
a. What columns are included in the data.frame returned by the summary

method when called on a GOHyperGResult instance?
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Table 14.2. Top six overrepresented GO terms with at least 100 gene annotations
identified by hyperGTest.

Count Size Term
GO:0007154 241 1170 cell communication
GO:0007165 225 1086 signal transduction
GO:0006955 65 257 immune response
GO:0022610 57 209 biological adhesion
GO:0007155 57 209 cell adhesion
GO:0009966 51 182 regulation of signal transduct

b. How many GO IDs have a p-value less than 0.05 and include at least
350 genes?

c. There are many accessor functions that provide programmatic access
to the results contained in a GOHyperGResult instance. Read the help
page for HyperGResult-accessors and explore the available accessor
functions

14.4.3 Generating an HTML report of test results

To make it easier for nontechnical users to review the results, the htmlReport

function generates a HTML file that can be viewed in any Web browser.

> htmlReport(hgOver, file="ALL_hgo.html")

Exercise 14.8
Use the browseURL function to view the HTML report produced by
htmlReport.

14.4.4 Results in detail

You can explore the relationships among significant GO terms using the
termGraphs function. This function returns a list where each element
is a subgraph of the GO DAG. The subgraphs consist of nodes that
are connected in the DAG, and where all nodes are significant, by the
Hypergeometric test.

> sigSub = termGraphs(hgOver)

Exercise 14.9
How many connected graphs did termGraphs return? How many terms are
in each graph?
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cell communication 241/1170

signal transduction 225/1086

regulation of signal transduction 51/182

Figure 14.1. The three terms shown above all came up as significant using the
standard Hypergeometric test. Arrows in the plot point from child (more spe-
cific) to parent (more general) term. The values printed after the node name
are: the number of interesting genes annotated at that node/the number of genes
annotated at that node.

We show one of these subgraphs in Figure 14.1, where there are three
significant terms. The first has 51 interesting genes out of 182, the second
has those 51 plus another 174 interesting genes (total of 225), and the third
has the 225 from the signal transduction node, plus an additional 16 (prob-
ably from other nodes that are not shown). When comparing the signal
transduction to the cell communication node, we see that although
there are 94 more genes annotated at the cell communication only 16 of
them are in our list of interesting genes. And one must wonder whether
that is substantial additional information, or whether we are merely seeing
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the effect for the signal transduction node again. In the next section,
we use the conditional test to try to answer this question.

> plotGOTermGraph(sigSub[[1]], hgOver, max.nchar=100)

14.5 The conditional hypergeometric test

Figure 14.1 shows that there is considerable overlap in the genes annotated
at signal transduction and cell communication and this leads to the follow-
ing question. Is there additional evidence to mark the cell communication
term significant beyond that provided by its significant child?

One way to answer this question is to perform a conditional Hypergeo-
metric test that uses the relationships among the GO terms to adjust the
results. We have implemented a method that conditions on all child terms
which are themselves significant at a specified p-value cutoff. Given a sub-
graph of one of the three GO ontologies, we test the leaves of the graph,
that is, those terms with no child terms. Before testing the terms whose
children have already been tested, we remove all genes annotated at signifi-
cant children from the parent’s gene list. This continues until all terms have
been tested. The procedure is described in Falcon and Gentleman (2007)
and is similar to the approach described in Alexa et al. (2006), but was
developed independently.

To perform a conditional test, we need to create a new GOHyperGParams
instance with the conditional slot set to TRUE. This provides an opportunity
to demonstrate the convenience of the parameter object design. Instead of
having to call hyperGTest with an almost identical argument list, which
could be error prone, we can simply make a copy of the parameter object
and modify the relevant parts.

> paramsCond = params

> conditional(paramsCond) = TRUE

A similar approach works to create a parameter object for testing a
different GO ontology or to create an object for testing under- rather than
overrepresentation.

> hgCond = hyperGTest(paramsCond)

> hgCond

Gene to GO BP Conditional test for over-representation
1841 GO BP ids tested (4 have p < 0.001)
Selected gene set size: 713
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Gene universe size: 4229
Annotation package: hgu95av2

Exercise 14.10
a. Summarize the result of the conditional test using summary.

b. List the GO terms that are marked significant by the standard
Hypergeometric test and not by the conditional test.

Now let’s look at the conditional results for the three terms shown in
Figure 14.1.

> terms = nodes(sigSub[[1]])

> df = summary(hgCond, pvalue=0.5)[ , c("Term", "Pvalue")]

> df$Pvalue = round(df$Pvalue, 3)

> df$Term = sapply(df$Term, function(x) {

if (nchar(x) <= 20) x

else paste(substr(x, 1, 20), "...", sep="")

})

> df[terms, ]

Term Pvalue
GO:0007154 cell communication 0.000
GO:0007165 signal transduction 0.005
GO:0009966 regulation of signal... 0.000

In the conditional test, the middle term, signal transduction is no longer
significant at the 0.001 level suggesting that there is not enough evidence
beyond that provided by the annotation from regulation of signal to claim
significance of the more general term. We also observe that the parent term,
cell communication, remains significant in the conditional analysis. This is
because the implementation only conditions on a node’s children, not all of
its offspring.

14.6 Other collections of gene sets

Instead of testing for overrepresentation of GO terms, one can test other
gene set collections such as chromosome band annotation, KEGG, and
PFAM. The Category code was designed to make it easy for developers
to add new category databases. We do note that the conditional testing is
not always applicable, and some care should be taken if using it on gene
sets other than those for GO.

In the exercises below, the main difference between different gene sets
is the class used to represent the necessary parameters. They are: ChrMa-
pHyperGParams for chromosome band testing, KEGGHyperGParams for
KEGG pathways, and PFAMHyperGParams for PFAM domains.
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14.6.1 Chromosome bands

The chromosome bands form a tree that can be used similarly to the GO
graph for performing a test for overrepresentation. Because of the similar
hierarchical structure, the same conditional analysis described above can
be applied to a chromosome band analysis.

Exercise 14.11
Create a ChrMapHyperGParams object and perform a test for over rep-
resentation of chromosome bands using a standard and a conditional test
scheme.

14.6.2 KEGG

The Kyoto Encyclopedia of Genes and Genomes (KEGG), Kanehisa et al.
(2006), provides, among other resources, a mapping of genes to pathways.
As with GO, this information is included in most Bioconductor annotation
packages.

Exercise 14.12
Determine if any KEGG pathways are overrepresented in the gene
list. Are there any pathways that are underrepresented? Hint: create a
KEGGHyperGParams instance.

14.6.3 PFAM

PFAM (Finn et al., 2006) is a database providing information about protein
binding domains. Most Bioconductor annotation data packages contain a
PFAM map linking genes to PFAM identifiers. The hyperGTest function can be
used to assess overrepresentation of one or more protein binding domains.

Exercise 14.13
Repeat the test procedure using the PFAM data to define the gene set
collection.
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Solutions to Exercises

2 R and Bioconductor Introduction

Exercise 2.1

a > apropos("plot")

[1] ".__C__recordedplot"
[2] ".__M__KEGGmnplot:annotate"
[3] ".__M__MAplot:affy"
[4] "..."

b > help.search("mann-whitney")

c > library("Biobase")

> openVignette("Biobase")

Exercise 2.2

sessionInfo prints version information about R and all loaded packages.
This is helpful when posting on one of the R or Bioconductor mailing lists
in order to provide detailed information about the software you are using.

> sessionInfo()

R version 2.7.0 Under development (unstable) (2007-10-16
r43183)

i686-pc-linux-gnu

F. Hahne et al., Bioconductor Case Studies, DOI: 10.1007/978-0-387-77240-0 15,
© Springer Science+Business Media, LLC 2008
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locale:
C

attached base packages:
[1] tools stats graphics grDevices datasets
[6] utils methods base

other attached packages:
[1] geneplotter_1.17.4 lattice_0.17-4
[3] annotate_1.17.4 xtable_1.5-2
[5] AnnotationDbi_1.1.9 RSQLite_0.6-4
[7] DBI_0.2-4 hgu95av2cdf_2.0.0
[9] hgu95av2probe_2.0.0 matchprobes_1.11.0

[11] CLL_1.2.4 affy_1.17.3
[13] preprocessCore_1.1.5 affyio_1.7.9
[15] RColorBrewer_1.0-2 GO_2.0.1
[17] class_7.2-39 hgu95av2_2.0.1
[19] BiocCaseStudies_1.1.2 Biobase_1.17.8
[21] weaver_1.5.0 codetools_0.1-3
[23] digest_0.3.1

loaded via a namespace (and not attached):
[1] KernSmooth_2.22-21 grid_2.7.0

Exercise 2.3

a > x = c(0.1, 1.1, 2.5, 10)

> y = 1:100

> z = y < 10

> pets = c(Rex="dog", Garfield="cat", Tweety="bird")

b Arithmetic expressions in R are vectorized. The operations are per-
formed element by element. If two vectors of unequal length are used
in the same expression, R recycles the shorter of the two vectors.

> 2 * x + c(1,2)

[1] 1.2 4.2 6.0 22.0

c Index vectors can be of type logical , integer , and character (for the
special case of named vectors).
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> ##logical

> y[z]

[1] 1 2 3 4 5 6 7 8 9

> ## integer

> y[1:4]

[1] 1 2 3 4

> y[-(1:95)]

[1] 96 97 98 99 100

> ## character

> pets["Garfield"]

Garfield
"cat"

Matrices and arrays can be indexed similarly to vectors. Each
dimension is separated by a comma in the square brackets.

> m = matrix(1:12, ncol=4)

> m[1,3]

[1] 7

d List items are selected using the $ operator or the [[ operator. The
latter accepts all three types of index vectors; the former always inter-
prets its right-hand argument literally as a name. Note that [ returns
a list even if only one element is selected. You can use the [[ operator
to get to the content of a single list element. Lists are created using
the list function.

> l = list(name="Paul", sex=factor("male"), age=35)

> l$name

[1] "Paul"

> l[[3]]

[1] 35

e A matrix is a rectangular table of elements of equal type. In a
data.frame, each column may have different type. R matrices and
arrays are implemented as vectors with a dimension attribute, and
data frames as a list of vectors that are all enforced to have the same
length, but may be of different type.



224 15. Solutions to Exercises

Exercise 2.4

> ppc = function(x) paste("^", x, sep="")

Exercise 2.5

> myFindMap = function(mapEnv, which) {

myg = ppc(which)

a1 = eapply(mapEnv, function(x)

grep(myg, x, value=TRUE))

unlist(a1)

}

Exercise 2.6

a > theEnv = new.env(hash=TRUE)

> theEnv$locations = myFindMap(hgu95av2MAP, 18)

b > theEnv$strip = function(x) gsub("18", "", x)

c > myExtract = function(env) env$strip(env$locations)

> myExtract(theEnv)[1:5]

420_at 36469_at 808_at 862_at 35817_at
"p11.2" "q12" "q21.2" "q21.3" "q23"

Exercise 2.7

a > class(pData)

[1] "data.frame"

b > names(pData)

[1] "gender" "type" "score"

c > sapply(pData, class)

gender type score
"factor" "factor" "numeric"
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d > pData[c(15, 20), c("gender", "type")]

gender type
O Female Case
T Female Case

> pData[pData$score > 0.8,]

gender type score
E Female Case 0.93
G Male Case 0.96
X Male Control 0.98
Y Female Case 0.94

Exercise 2.8

> plot(x=x, y=y, log="xy",

xlab="gene expression sample #1",

ylab="gene expression sample #3",

main="scatterplot of expression intensities",

pch=20)

> abline(a=0, b=1)
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Figure 15.1. Scatterplot of expression intensities for two samples.
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Figure 15.2. ECDF plot of distributions of log2-intensities from the CLL dataset
grouped by GC-content.

Exercise 2.9

> multiecdf(int ~ gc, data=subset(probedata, gc %in% gcUse),

xlim=c(6, 11), col=colorfunction(12)[-(1:2)],

lwd=2, main="", ylab="ECDF")

3 Processing Affymetrix Expression Data

Exercise 3.1

> dataPLMx = fitPLM(CLLB)

> boxplot(dataPLM, main="NUSE", ylim = c(0.95, 1.3),

outline = FALSE, col="lightblue", las=3,

whisklty=0, staplelty=0)

> Mbox(dataPLM, main="RLE", ylim = c(-0.4, 0.4),

outline = FALSE, col="mistyrose", las=3,

whisklty=0, staplelty=0)
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Exercise 3.2

There are lots of ways to do that, some of them are listed below.

> dim(e)[1]

[1] 12625
> nrow(e)

[1] 12625
> dim(exprs(CLLrma))[1]

[1] 12625
> nrow(CLLrma)

Features
12625

> length(featureNames(CLLrma))

[1] 12625

Exercise 3.3

> par(mfrow=c(1,2))

> myPlot = function(...){

plot(y = CLLtt$dm, pch = ".", ylim = c(-2,2),

ylab = "log-ratio", ...)

abline(h=0, col="blue")

}

> myPlot(x = a, xlab="average intensity")

> myPlot(x = rank(a), xlab="rank of average intensity")

Exercise 3.4

Plot the two. Perhaps also use an ROC curve?

> plot(CLLtt$statistic, CLLeb$t[,2], pch=".")

Exercise 3.5

> plot(CLLtt$dm, -log10(CLLeb$p.value[,2]), pch=".",

xlab="log-ratio", ylab=expression(log[10]~p))

> abline(h=2)
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Exercise 3.6

> plot(CLLtt$dm, lod, pch=".", xlab="log-ratio",

ylab=expression(log[10]~p))

> o1 = order(abs(CLLtt$dm), decreasing=TRUE)[1:25]

> points(CLLtt$dm[o1], lod[o1], pch=18, col="blue")

Exercise 3.7

> sum(CLLtt$p.value<=0.01)

[1] 243
> sum(CLLeb$p.value[,2]<=0.01)

[1] 261

Exercise 3.8

The values, transformed to a log2 scale, can be plotted using the code
below.

> smoothScatter(log2(mms[,1]), log2(pms[,1]),

xlab=expression(log[2] * "MM values"),

ylab=expression(log[2] * "PM values"), asp=1)

> abline(a=0, b=1, col="red")

Let us look at their relative size.

> table(sign(pms-mms))

-1 0 1
1414590 31828 2993182

In a large number of cases, the MM value is larger than the PM value.
The simple story of MM measuring nonspecific hybridization and PM the
sum of nonspecific and specific hybridization is hard to hold.

Exercise 3.9

The two histograms look very different. And we can confirm that, as sug-
gested by the scatterplot in Figure 3.8, the intensities of the MM probes
strongly correlate to those of the PM probes. The histogram for low values
is quite skewed, whereas that corresponding to larger PM values is more
symmetric.

> grouping = cut(log2(pms)[,1], breaks=c(-Inf, log2(2000),

Inf), labels=c("Low", "High"))
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> multidensity(log2(mms)[,1] ~ grouping, main="", xlab="",

col=c("red", "blue"), lwd=2)

> legend("topright", levels(grouping), lty=1, lwd=2,

col=c("red", "blue"))

Exercise 3.10

First, we create a subset sel of 500 randomly selected PM probes; this is
enough to sample the background-correction transformation and reduces
the file size of the plots.

> sel = sample(unlist(indexProbes(CLLB, "pm")), 500)

> sel = sel[order(exprs(CLLB)[sel, 1])]

Then we create the vectors yo, yr, and yv with the original, RMA
background-corrected, and VSN background-corrected intensities for the
first array,

> yo = exprs(CLLB)[sel,1]

> yr = exprs(bgrma)[sel,1]

> yv = exprs(bgvsn)[sel,1]

and plot them. The result is shown in Figure 3.10.

> par(mfrow=c(1,3))

> plot(yo, yr, xlab="Original", ylab="RMA", log="x",

type="l", asp=1)

> plot(yo, yv, xlab="Original", ylab="VSN", log="x",

type="l", asp=1)

> plot(yr, yv, xlab="RMA", ylab="VSN", type="l", asp=1)

Exercise 3.11

We need to pay attention to the fact that the nonspecific filtering selected
different sets of probe sets. In inboth, we determine those that are in
common.

> inboth = intersect(featureNames(CLLvsnf),

featureNames(CLLf))

> plot(CLLtt[inboth, "statistic"],

CLLvsntt[inboth, "statistic"],

pch=".", xlab="RMA", ylab="VSN", asp=1)

The scatterplot is shown in Figure Chapter 3.11.
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Exercise 3.12

We can use the matplot function to do this. You should probably either
transform the data to the log scale, or use log-scaling in the plot, as we
have done. PMs are plotted using a P and MMs using a M. It is worth
noting that for many of the probes, there is no clear separation between
the MM values and the PM values (e.g. probe 1); for others the MM values
seem to be higher(!) than the PM values (e.g. probe 3), and for others the
PM values are larger than the MM values.

> colors = brewer.pal(8, "Dark2")

> Index = indices[["189_s_at"]][seq(along=colors)]

> matplot(t(pms[Index, 1:12]), pch="P", log="y", type="b",

lty=1, main="189_s_at", xlab="samples",

ylab=expression(log[2]~Intensity),

ylim=c(50,2000), col=colors)

> matplot(t(mms[Index, 1:12]), pch="M", log="y", type="b",

lty=3, add=TRUE, col=colors)

The result is shown in Figure Chapter 3.12.

Exercise 3.13

We can compute the percentage, for each array, by first creating a logical
matrix where TRUE corresponds to a negative value and FALSE corresponds
to a nonnegative value. Then the column sums of that matrix are the
proportions, and if we multiply by 100 we get percentages.

> colMeans(newsummary<0)*100

[1] 20.2 19.6 19.4 18.3 21.0 22.6 21.7 19.6 21.7 21.1
[11] 18.9 18.7 20.6 23.1 19.6 21.0 18.6 21.6 21.4 19.6
[21] 19.7 19.8

4 Two-Color Arrays

Exercise 4.1

There are 18 files with the extension .gpr. They contain the output of
the image analysis, that is, the quantified red and green intensities for each
feature on the arrays. The 18 files correspond to the 18 arrays. A description
of what was hybridized to these arrays is in the file samplesInfo.txt.
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Exercise 4.2

a By subtracting the background estimate, many of the resulting val-
ues are negative, and the application of the logarithm leads to NA

values. The scatterplot then also makes the imbalances between the
red and the green color channels more apparent; this is seen in the
more pronounced curved shape of the distribution.

b plotMA plots each data point as a dot, whereas smoothScatter plots
the density of the data points with a smooth false color map. In
data-dense regions, the latter may be more informative. When the
number of data points is large, smoothScatter also uses less time to
display and the plot is more compact to store in the vector graphics
file format produced by R’s PDF device.

5 Fold-Changes, Log-Ratios, Background
Correction, Shrinkage Estimation,
and Variance Stabilization

Exercise 5.1

a > r1 = rnorm(10000, mean=2000, sd=50)

> g1 = rnorm(10000, mean=1000, sd=50)

> hist(r1/g1, breaks=33, col="azure")

b > r2 = rnorm(10000, mean=200, sd=50)

> g2 = rnorm(10000, mean=100, sd=50)

> ratio = r2/g2

> ratio = ratio[(ratio>0)&(ratio<6)]

> hist(ratio, breaks=33, col="azure",

main="Histogram of r2/g2", xlab="r2/g2",

sub="restricted to [0,6]")

c > hist(log2(r1/g1), breaks=33, col="azure")

> hist(log2(r2/g2), breaks=33, col="azure")



232 15. Solutions to Exercises

Exercise 5.2

For the kidney data:

> library("geneplotter")

> pcol = c("green3", "red1")

> plty = 1:2

> multidensity(exprs(kidney), xlim=c(-200, 1000),

main = "kidney", xlab="Intensity",

lty = plty, col = pcol, lwd = 2)

> legend("topright", c("green", "red"),

lty = plty, col = pcol, lwd = 2)

For the CCl4 data:

> multidensity(cbind(assayData(CCl4s)$G[,1],

assayData(CCl4s)$R[,1]), xlim=c(0, 200),

main = expression(CCl[4]), lwd=2, xlab="Intensity",

col = pcol, lty = plty)

Exercise 5.3

a > px = seq(-100, 500, length=50)

> f = function(x, b) log2(x+b)

> h = function(x, a) log2((x+sqrt(x^2+a^2))/2)

> matplot(px, y=cbind(h(px, a=50), f(px, b=50)),

type="l", lty=1:2, xlab="x", ylab="f, h")

b Repeat the plot command above, with

> px = seq(0, 1e8, length=50)

c This question is very nicely explored in a paper by Rocke and Durbin
(2003).

Exercise 5.4

> axl = c(30, 300)

> plot(assayData(CCl4s)$R[,1],

assayData(CCl4s)$G[,1],

xlim=axl, ylim=axl, pch=".", col="grey",

asp=1)

> abline(a=0, b=1, col="blue", lty=2, lwd=3)

> abline(a=18, b=1.2, col="red", lty=3, lwd=3)
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The comparison of the dashed line with the data shows that there are
systematic dye-related differences between the two channels. The dotted
line shows that they can be fitted by an affine transformation, that is, a
shift and a scaling of the data from one dye to adjust them to the other.

6 Easy Differential Expression

Exercise 6.1

The histogram indicates that the nonspecific filtering step did not remove a
large number of probe sets that would have been detected as differentially
expressed. Hence, we have managed to enrich the filtered set of 8812 probe
sets in ALLsfilt for those that are potentially differentially expressed, and
to deplete it from uninformative“background”probe sets. We have reduced
the size of multiple testing adjustments without a major loss in sensitivity.

7 Differential Expression

Exercise 7.1

a There is a weak relationship but it is not dominant. We may safely
proceed with the nonspecific filtering based on variablility.

b It switches between plotting the x-axis (means) on the original scale
(FALSE) or on the rank scale (TRUE). The latter distributes the data
more evenly along the x-axis and allows a better visual assessment of
the standard deviation as a function of the mean.

Exercise 7.2

The number of probe sets with p-value less than 0.05 and mean log2 fold-
change larger than 0.5 is

> sum(tt$p.value<0.05 & abs(tt$dm)>0.5)

[1] 224

This choice of thresholds is of course arbitrary.

Exercise 7.3

> mtyp = ALLset1$mol.biol

> sel = rep(1:2, each=rev(table(mtyp)))

> plot(exprs(ALLset1)[j, order(mtyp)], pch=c(1,15)[sel],
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col=c("black", "red")[sel],

main=featureNames(ALLset1)[j],

ylab=expression(log[2]~expression~level))

> legend("bottomleft", col=c("black", "red"),

pch=c(1,15), levels(mtyp), bty="n")

Exercise 7.4

The curve for a bad discriminator would be close to the diagonal because the
classification would be almost random. The curve for a perfect discriminator
shows both high sensitivity and high specificity over the whole plot, that
is, a rectangle from [0,1] to [1,1].

Exercise 7.5

The identification of differentially expressed genes by area under the ROC
curve is not so much affected by the sample size as the t-statistic is. For
the t-test the number of differentially expressed genes increases constantly
with the sample size. For the ROC curves this number stabilizes with a
sufficient sample size.

8 Annotation and Metadata

Exercise 8.1

> hist(rt$statistic, breaks=100, col="skyblue")

> hist(rt$p.value, breaks=100, col="mistyrose")

Exercise 8.2

> sel = order(rt$p.value)[1:400]

> ALLsub = ALLfilt_af4bcr[sel,]

Exercise 8.3

First, we map from the Affymetrix identifiers to EntrezGene IDs.

> EG = as.character(hgu95av2ENTREZID[featureNames(ALL)])

> EGsub = as.character(hgu95av2ENTREZID[featureNames(ALLsub)])
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Then, we find the multiplicity by a frequently used and efficient idiom of
the R language. The two calls to the function table work as follows. The
inner one counts for each EntrezGene ID the number of probe sets that are
mapped to it. The outer one tabulates how often each count is seen, one,
two, three, . . . times.

> table(table(EG))

1 2 3 4 5 6 7 8 9
6897 1555 506 101 23 12 8 5 1
> table(table(EGsub))

1
400

There are 6897 instances of EntrezGene IDs that are matched by exactly
one probe set in ALL, whereas 1555 EntrezGene IDs are matched by two
probe sets. That the probe sets in ALLsub all map to a unique EntrezGene
ID is no coincidence. This has been achieved by our call to the nsFilter

function above (type ? nsFilter to find out more about this).

Exercise 8.4

> syms = as.character(hgu95av2SYMBOL[featureNames(ALLsub)])

> whFeat = names(which(syms =="CD44"))

> ordSamp = order(ALLsub$mol.biol)

> CD44 = ALLsub[whFeat, ordSamp]

> plot(as.vector(exprs(CD44)), main=whFeat,

col=c("sienna", "tomato")[CD44$mol.biol],

pch=c(15, 16)[CD44$mol.biol], ylab="expression")

Exercise 8.5

First, we create the data.frame z that contains the mapping between probe
sets and chromosome identifiers; then we use the function table to produce
the table of frequencies.

> z = toTable(hgu95av2CHR[featureNames(ALLsub)])

> chrtab = table(z$chromosome)

> chrtab

1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 3 4 5 6 7
40 21 23 20 9 20 7 12 16 6 14 26 9 7 13 21 13 13 42 21
8 9 X Y

13 20 14 1

To plot the frequencies entries in the numeric order of the chromosomes,
we need one extra step constructing chridx, as in the code below.
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> chridx = sub("X", "23", names(chrtab))

> chridx = sub("Y", "24", chridx)

> barplot(chrtab[order(as.integer(chridx))])

Exercise 8.6

First, we compute a list probeSetsPerGene that contains, for each Entrez-
Gene ID, the list of probe sets that are mapped to it.

> probeSetsPerGene = split(names(EG), EG)

> j = probeSetsPerGene$"7013"

> j

[1] "1329_s_at" "1342_g_at" "1361_at" "32255_i_at"
[5] "32256_r_at" "32257_f_at" "32258_r_at"

Then we plot the data for the first and seventh probe set of Entrez Gene
ID 7013.

> plot(t(exprs(ALL_af4bcr)[j[c(1,7)], ]), asp=1, pch=16,

col=ifelse(ALL_af4bcr$mol.biol=="ALL1/AF4", "black",

"grey"))

We can also consider a heatmap.

> library("lattice")

> mat = exprs(ALL_af4bcr)[j,]

> mat = mat - rowMedians(mat)

> ro = order.dendrogram(as.dendrogram(hclust(dist(mat))))

> co = order.dendrogram(as.dendrogram(hclust(dist(t(mat)))))

> at = seq(-1, 1, length=21) * max(abs(mat))

> lp = levelplot(t(mat[ro, co]),

aspect = "fill", at = at,

scales = list(x = list(rot = 90)),

colorkey = list(space = "left"))

> print(lp)

What is the effect of the median centering? What does the heatmap look
like if you do not do the centering?

Exercise 8.7

> ps_chr = toTable(hgu95av2CHR)

> ps_eg = toTable(hgu95av2ENTREZID)

> chr = merge(ps_chr, ps_eg)
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> chr = unique(chr[, colnames(chr)!="probe_id"])

> head(chr)

chromosome gene_id
1 16 5595
2 1 7075
3 10 1557
4 11 643
6 5 1843
7 11 4319

We see that in chr some EntrezGene IDs are mapped to multiple
chromosomes (you might want to investigate which ones):

> table(table(chr$gene_id))

1 2
9030 12

Here, for simplicity, we just remove conflicting mappings.

> chr = chr[!duplicated(chr$gene_id), ]

Exercise 8.8

> isdiff = chr$gene_id %in% EGsub

> tab = table(isdiff, chr$chromosome)

> tab

isdiff 1 10 11 12 13 14 15 16 17 18 19 2 20
FALSE 907 309 506 478 151 270 252 366 515 122 548 547 221
TRUE 40 21 23 20 9 20 7 12 16 6 14 26 9

isdiff 21 22 3 4 5 6 7 8 9 X Y
FALSE 94 249 466 331 388 498 411 298 313 377 25
TRUE 7 13 21 13 13 42 21 13 20 14 0

> fisher.test(tab, simulate.p.value=TRUE)

Fisher's Exact Test for Count Data with simulated
p-value (based on 2000 replicates)

data: tab
p-value = 0.02449
alternative hypothesis: two.sided
> chisq.test(tab)

Pearson's Chi-squared test
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data: tab
X-squared = 40.6, df = 23, p-value = 0.01324

Exercise 8.9

> chrloc = toTable(hgu95av2CHRLOC[featureNames(ALLsub)])

> head(chrloc)

probe_id start_location Chromosome
1 1039_s_at 61231991 14
2 1065_at -27475410 13
3 106_at -25098589 1
4 1113_at 6696744 20
5 1118_at 40715788 5
6 1135_at 120957186 10

A little complication arises because some genes, and hence some probe
sets, have multiple (alternative) transcription start sites and therefore are
annotated at multiple locations.

> table(table(chrloc$probe_id))

1 2 3 4 5 6 9
343 34 14 4 1 1 1

We can collapse this table such that for each probe set we only record
the strand, which is unique.

> strds = with(chrloc,

unique(cbind(probe_id, sign(start_location))))

> table(strds[,2])

-1 1
192 206

Exercise 8.10

We call the summary method, with p = 0.001.

> sum = summary(mfhyper, p=0.001)

> head(sum)

GOBPID Pvalue OddsRatio ExpCount Count Size
GO:0006955 GO:0006955 2.93e-08 2.65 24.731 53 264
GO:0007154 GO:0007154 6.62e-07 1.72 111.101 154 1186
GO:0007165 GO:0007165 1.15e-06 1.72 102.951 144 1099
GO:0019882 GO:0019882 2.61e-06 6.07 3.466 14 37
GO:0002376 GO:0002376 3.02e-06 2.12 32.881 59 351
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GO:0006687 GO:0006687 4.21e-06 58.92 0.656 6 7
Term

GO:0006955 immune response
GO:0007154 cell communication
GO:0007165 signal transduction
GO:0019882 antigen processing and presentation
GO:0002376 immune system process
GO:0006687 glycosphingolipid metabolic process

In total, the table sum contains 25 categories. Several relate to the immune
system and lymphocyte proliferation. This is not surprising given the role
that B-cells play and the fact that the disease studied is a leukemia.

Exercise 8.11

For each GO identifier, an object of class GOTerms can be retrieved from
the GOTERM annotation object that is supplied in the GO.db package. It
contains various pieces of information about that category, as shown below.

> GOTERM[["GO:0032945"]]

GOID: GO:0032945
Term: negative regulation of mononuclear cell

proliferation
Ontology: BP
Definition: Any process that stops, prevents or

reduces the frequency, rate or extent of
mononuclear cell proliferation.

Synonym: negative regulation of PBMC proliferation
Synonym: negative regulation of peripheral blood

mononuclear cell proliferation

Exercise 8.12

> utr = getSequence(id=EGsub, seqType="3utr",

mart=ensembl, type="entrezgene")

> utr[1,]

1
3utr "CTTCGTTTTTGATTGTGTTGGTGTC..."
entrezgene "10950"

2
3utr "ATTATTCAGTGCCACAAATTGAAAG..."
entrezgene "11034"

3
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3utr "CTCTCTGCTGAATATGGGGTTGGTG..."
entrezgene " 241"

4
3utr "ATCAGGAGGCATCACTGAGGCCAGG..."
entrezgene "10410"

5
3utr "AGGAACAATTTAGTTTTAAGGACTT..."
entrezgene " 2322"

Exercise 8.13

> domains = getBM(attributes=c("entrezgene", "pfam",

"prosite", "interpro"), filters="entrezgene",

value=EGsub, mart=ensembl)

> interpro = split(domains$interpro, domains$entrezgene)

> interpro[1]

$`25`
[1] "IPR000719" "IPR008266" "IPR000980" "IPR001245"
[5] "IPR001452" "IPR001720" "IPR011511" "IPR015015"
[9] "IPR000719" "IPR008266" "IPR000980" "IPR001245"

[13] "IPR001452" "IPR001720" "IPR011511" "IPR015015"
[17] "IPR000719" "IPR008266" "IPR000980" "IPR001245"
[21] "IPR001452" "IPR001720" "IPR011511" "IPR015015"
[25] "IPR000719" "IPR008266" "IPR000980" "IPR001245"
[29] "IPR001452" "IPR001720" "IPR011511" "IPR015015"
[33] "IPR000719" "IPR008266" "IPR000980" "IPR001245"
[37] "IPR001452" "IPR001720" "IPR011511" "IPR015015"
[41] "IPR000719" "IPR008266" "IPR000980" "IPR001245"
[45] "IPR001452" "IPR001720" "IPR011511" "IPR015015"
[49] "IPR000719" "IPR008266" "IPR000980" "IPR001245"
[53] "IPR001452" "IPR001720" "IPR011511" "IPR015015"
[57] "IPR000719" "IPR008266" "IPR000980" "IPR001245"
[61] "IPR001452" "IPR001720" "IPR011511" "IPR015015"
[65] "IPR000719" "IPR008266" "IPR000980" "IPR001245"
[69] "IPR001452" "IPR001720" "IPR011511" "IPR015015"
[73] "IPR000719" "IPR008266" "IPR000980" "IPR001245"
[77] "IPR001452" "IPR001720" "IPR011511" "IPR015015"
[81] "IPR000719" "IPR008266" "IPR000980" "IPR001245"
[85] "IPR001452" "IPR001720" "IPR011511" "IPR015015"
[89] "IPR000719" "IPR008266" "IPR000980" "IPR001245"
[93] "IPR001452" "IPR001720" "IPR011511" "IPR015015"
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Exercise 8.14

We can use the same type of query as for finding terms that contain the
word chromosome. The % wild card matches zero or more arbitrary charac-
ters, hence we are looking for all terms that contain the words transcription
factor at their beginning, in the middle, or in the end.

> query = paste("select term from go_term where term",

"like '%transcription factor%'")
> tf = dbGetQuery(GO_dbconn(), query)

> nrow(tf)

[1] 35
> head(tf)

term
1 RNA polymerase I transcription factor complex
2 transcription factor TFIIIB complex
3 transcription factor TFIIIC complex
4 transcription factor activity
5 RNA polymerase I transcription factor activity
6 RNA polymerase II transcription factor activity

9 Supervised Machine Learning

Exercise 9.1

> table(ALL_bcrneg$mol.biol)

BCR/ABL NEG
37 42

Exercise 9.2

> class(ALLfilt_bcrneg)

[1] "ExpressionSet"
attr(,"package")
[1] "Biobase"

Exercise 9.3

The distances available include Kullback-Leibler distance, mutual infor-
mation distance, Euclidean distance, Manhattan distance, and correlation
distance (using Pearson, Spearman, or Kendall’s tau). See the dist function
and the daisy function in the cluster package for other distances.
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Exercise 9.4

The diagonal band of blue squares is probably the most prominent feature,
but it is merely indicating that each sample is distance zero from itself.
After that you might notice that there are some bluish colored blocks along
the diagonal, the most prominent one being in the top-left corner. The
dendrogram also suggests that those samples are similar to each other, and
some distance from the others.

Exercise 9.5

Because the bioDist package is loaded we can simply call the spearman.dist
function. All other steps are essentially the same, as before.

> spD = spearman.dist(ALLfilt_bcrneg)

> spD@Size

[1] 79
> spM = as.matrix(spD)

Figure 15.3. A heatmap of the between-sample distances, for the same data as
in Figure 9.1, but now using Spearman’s correlation instead of the Euclidean
distance.
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> heatmap(spM, sym=TRUE, col=hmcol,

distfun=function(x) as.dist(x))

In this heatmap, the samples seem to be farther from each other (darker
red colors predominate), but there are a small number that are quite close,
as evidenced by the light blue rectangle in the middle of the heatmap.

Exercise 9.6

> cD = MIdist(ALLfilt_bcrneg)

> cM = as.matrix(cD)

> closest.top("03002", cM, 1)

[1] "09017"

Exercise 9.7

We use the MLearn interface to the machine learning code. We make use of
the MLearn interface to the different machine learning tools, provided by
MLearn.

The function, confuMat, can be used to compute the confusion matrix,
and from that we can estimate the error rates.

> kans = MLearn( mol.biol ~ ., data=ALLfilt_bcrneg,

knnI(k=1,l=0), TrainInd)

> confuMat(kans)

predicted
given BCR/ABL NEG
BCR/ABL 14 3
NEG 8 14

> dldans = MLearn( mol.biol ~ ., ALLfilt_bcrneg, dldaI,

TrainInd)

> confuMat(dldans)

predicted
given BCR/ABL NEG
BCR/ABL 12 5
NEG 8 14

> ldaans = MLearn( mol.biol ~ ., ALLfilt_bcrneg, ldaI,

TrainInd)

> confuMat(ldaans)

predicted
given BCR/ABL NEG
BCR/ABL 12 5
NEG 6 16
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Exercise 9.8

a Ties are broken at random. This suggests that it might not be all
that helpful to select a value of k that is even, as different users
would potentially classify samples differently, given the same data.

b This is difficult with the current implementation. You would essen-
tially need to do the nearest neighbor finding directly from the
distance matrix, and this will be somewhat slow. The closest.top

function, from the bioDist package could be used.

c The knn function has a parameter prob that if set to TRUE will cause
the proportion of votes for the winning class to be returned. This
could be used. Also, the parameter l can be used; in that case doubt
is encoded as NA. The concept of outlier is more difficult, but could
potentially be handled in a preprocessing step. Any object that is a
long way from all other objects could be identified as an outlier and
removed. This does not help with pairs of outliers, or triples.

Exercise 9.9

We repeat the steps taken above, but use all of the data.

> alltt = rowttests(ALLfilt_bcrneg, "mol.biol")

> ordall = order(abs(alltt$statistic), decreasing=TRUE)

> fNall = featureNames(ALLfilt_bcrneg)[ordall[1:50]]

> intersect(fNall, fNtt)

[1] "1635_at" "1674_at" "40504_at" "37015_at"
[5] "40202_at" "32434_at" "39837_s_at" "37403_at"
[9] "40480_s_at" "41815_at" "33774_at" "36591_at"

[13] "34472_at" "37014_at" "31786_at" "39329_at"
[17] "32542_at" "33362_at" "33440_at" "40196_at"
[21] "40051_at" "38032_at" "40795_at" "40516_at"
[25] "32134_at" "40132_g_at" "671_at" "35912_at"
[29] "36617_at" "38994_at"

Exercise 9.10

We simply redo the calls with

> dldtt = MLearn( mol.biol ~ ., BNf, dldaI, TrainInd)

> confuMat(dldtt)

predicted
given BCR/ABL NEG
BCR/ABL 10 7
NEG 5 17
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> ldatt = MLearn( mol.biol ~ ., BNf, ldaI, TrainInd)

> confuMat(ldatt)

predicted
given BCR/ABL NEG
BCR/ABL 12 5
NEG 8 14

In all cases the error rates are lower, which is nice.

Exercise 9.11

Each sample is left out, in turn, and because k = 1 the class of that sample
is determined by its nearest neighbor in the remaining n − 1 samples. For
larger values of k, then more nearest neighbors would be used in the pre-
diction. The confusion matrix is produced by the confuMat function, and it
can be used to estimate either the overall error rate, or the class conditional
error rates.

> knnCM = confuMat(knnXval1)

> knnCM

predicted
given BCR/ABL NEG
BCR/ABL 31 6
NEG 16 26

> #overall error rate

> (knnCM[1,2] + knnCM[2,1])/sum(knnCM)

[1] 0.278
> #class conditional error rates

> knnCM[1,2]/sum(knnCM[1,])

[1] 0.162
> knnCM[2,1]/sum(knnCM[2,])

[1] 0.381

So it seems that it was harder to predict the NEG phenotype than the
BCR/ABL phenotype.

Exercise 9.12

a > lk3f2 = MLearn(mol.biol~., data=BNx, knnI(k=1),

xvalSpec("LOO", fsFun=fs.absT(5)))

> confuMat(lk3f2)

> table(unlist(fsHistory(lk3f2)))

The error rate seems to be bit higher when only five features are
selected.
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Exercise 9.13

This is quite an interesting problem. Basically, what you need to do is to
try out the KNN algorithm, for a variety of values of k, and see what value
of k gives the lowest error rate.

> knnXval2 = MLearn(mol.biol~., data=BNx, knn.cvI(k=2, l=0),

trainInd=1:ncol(BNx))

> confuMat(knnXval2)

> knnXval3 = MLearn(mol.biol~., data=BNx, knn.cvI(k=3, l=0),

trainInd=1:ncol(BNx))

> confuMat(knnXval3)

> knnXval5 = MLearn(mol.biol~., data=BNx, knn.cvI(k=5, l=0),

trainInd=1:ncol(BNx))

> confuMat(knnXval5)

Exercise 9.14

We are only concerned with the errors for the test set because those for the
training set are known to be overly optimistic. Error rates can be computed
for either all predictions combined, or on a per class basis. It is often the
case that error rates can be quite different for different classes, so we also
compute the class conditional error rates. Note that the error rates are a
bit worse for model 2, which had a much smaller value of mtry.

> cf1 = confuMat(rf1)

> overallErrM1 = (cf1[2,1] + cf1[1,2])/sum(cf1)

> overallErrM1

[1] 0.128
> perClass1 = c(cf1[1,2], cf1[2,1])/rowSums(cf1)

> perClass1

BCR/ABL NEG
0.0588 0.1818

And now for model 2.

> cf2 = confuMat(rf2)

> overallErrM2 = (cf2[2,1] + cf2[1,2])/sum(cf2)

> overallErrM2

[1] 0.179
> perClass2 = c(cf2[1,2], cf2[2,1])/rowSums(cf2)

> perClass2
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BCR/ABL NEG
0.176 0.182

For KNN we had the following error rates:

> cfKNN = confuMat(knnf)

> (cfKNN[1,2] + cfKNN[2,1])/sum(cfKNN)

[1] 0.179
> #class conditional error rates

> cfKNN[1,2]/sum(cfKNN[1,])

[1] 0.118
> cfKNN[2,1]/sum(cfKNN[2,])

[1] 0.227

And in this case, it seems that KNN has the lower overall error rate, 0.179
compared to 0.128 for model 1 and 0.179 for model 2.

Exercise 9.15

We can obtain the importance measure by calling the importance function.

> impvars = function(x, which="MeanDecreaseAccuracy", k=10) {

v1 = order(importance(x)[,which], decreasing=TRUE)

importance(x)[v1[1:k],]

}

> ivm1 = impvars(rf1@RObject, k=20)

> ivm2 = impvars(rf2@RObject, k=20)

> intersect(row.names(ivm1) , row.names(ivm2))

[1] "X39837_s_at" "X40132_g_at" "X1467_at"
[4] "X36638_at" "X41815_at" "X1674_at"
[7] "X38385_at"

The other importance measure is called MeanDecreaseGini, and we leave
that part of the problem to the reader.

Exercise 9.16

Reversing the role of the test and training sets is quite simple, we use model
2.

> rfRev = MLearn( mol.biol~., data=ALLfilt_bcrneg,

randomForestI, TestInd, ntree=2000, mtry=10,

importance=TRUE)

> rfRev
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MLInterfaces classification output container
The call was:
MLearn(formula = mol.biol ~ ., data = ALLfilt_bcrneg, me
thod = randomForestI,

trainInd = TestInd, ntree = 2000, mtry = 10, importa
nce = TRUE)

Predicted outcome distribution for test set:

BCR/ABL NEG
20 20

and for the confusion matrix

> cfR = confuMat(rfRev)

> cfR

predicted
given BCR/ABL NEG
BCR/ABL 17 3
NEG 3 17

> overallErr = (cfR[2,1] + cfR[1,2])/sum(cfR)

> overallErr

[1] 0.15
> perClass = c(cfR[1,2], cfR[2,1])/rowSums(cfR)

> perClass

BCR/ABL NEG
0.15 0.15

We can see from the confusion matrix that the error rate observed is
roughly comparable to that obtained with the other split, as we expected,
inasmuch as the two sets were roughly the same size.

It is also quite simple to use the whole dataset to fit a random forest.

> rfAll = MLearn( mol.biol~., data=ALLfilt_bcrneg,

randomForestI, 1:79, ntree=1000, mtry=10,

importance=TRUE)

> rfAll@RObject

Call:
randomForest(formula = formula, data = trdata, ntree =
1000, mtry = 10, importance = TRUE)

Type of random forest: classification
Number of trees: 1000

No. of variables tried at each split: 10

OOB estimate of error rate: 21.5%
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Confusion matrix:
BCR/ABL NEG class.error

BCR/ABL 26 11 0.297
NEG 6 36 0.143

Exercise 9.17

Using KNN is quite straightforward. We demonstrate its use for k = 1; you
might want to try other methods.

> knn1MV = knn(t(exprs(trainSet)), t(exprs(testSet)),

trainSet$mol.biol)

> tab1 = table(knn1MV, testSet$mol.biol)

> tab1

knn1MV ALL1/AF4 BCR/ABL NEG
ALL1/AF4 5 0 0
BCR/ABL 0 16 13
NEG 0 2 8

> s3 = table(testSet$mol.biol)

Class conditional error rates are estimated by considering those with the
correct classification (on the diagonal of the table produced above). For
example, of the 18 BCR/ABL samples in the test set, 16 are correctly
classified, so that the class conditional error rate is 0.11.

It is not so easy to handle unbalanced data. One can, in principle, find
k nearest neighbors, and then compare the proportion of nearest neighbors
to the class counts.

10 Unsupervised Machine Learning

Exercise 10.1

a The three-dimensional reduction is obtained by specifying the
parameter k in the call to sammon.

> sam2 = sammon(manDist, k=3, trace=FALSE)

b The R function is cmdscale.

> cmd1 = cmdscale(manDist)
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c This is somewhat more involved and requires the use of a number of
tools. Plotting the points that are computed via Sammon mapping
yields a fairly good separation of the data into two groups, which we
expect, because we essentially forced that to be true by our selection
of the genes with large t-statistics.

> rtt = rowttests(ALLfilt_bcrneg, "mol.biol")

> ordtt = order(rtt$p.value)

> esTT = ALLfilt_bcrneg[ordtt[1:50],]

> dTT = dist(t(exprs(esTT)), method="manhattan")

> sTT = sammon(dTT, trace=FALSE)

Exercise 10.2

We use the maximum distance, but you could have chosen any other. We
suggest examining some of the distance measures in the bioDist package.

> dsol = as.matrix(dist(gvals), method="maximum")

> silcheck(dsol, diss=TRUE)

[1] 3.000 0.112
> msscheck(dsol)

[1] 3.0000 0.0575

Exercise 10.3

We first use cutree as described above.

> hc13 = cutree(hc1, k=3)

> hc23 = cutree(hc2, k=3)

> hc33 = cutree(hc3, k=3)

> hc43 = cutree(hc4, k=3)

And now we need to compare the outputs. It is relatively easy to do that
for the hclust objects, and unfortunately less so for comparisons with the
diana object.

> table(hc13, hc33)

hc33
hc13 1 2 3

1 22 0 15
2 2 18 0
3 1 0 21
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Exercise 10.4

The code to compute the cophenetic correlations, and to compute the
correlation with the original distances is given below.

> cph2 = cophenetic(hc2)

> cor2 = cor(manDist, cph2)

> cor2

[1] 0.396
> cph3 = cophenetic(hc3)

> cor3 = cor(manDist, cph3)

> cor3

[1] 0.494
> cph4 = cophenetic(hc4)

> cor4 = cor(manDist, cph4)

> cor4

[1] 0.503

> stopifnot( cor2 == min(cor1, cor2, cor3, cor4) )

We see that for single-linkage clustering the cophenetic correlation is
much lower than for the other three, suggesting that it is a relatively poor
choice of hierarchical clustering method. The other three values are quite
similar.

Exercise 10.5

The values returned can be examined by using names and by checking the
manual page. One of the components returned is the cluster allocation, and
we can use the table command to see if there are different allocations.

> names(km2)

[1] "cluster" "centers" "withinss" "size"
> table(km2$cluster, kmx$cluster)

1 2
1 0 62
2 17 0

Exercise 10.6

There are 21 phenotypic variables available. Of these you can find out which
are factors by simply using an apply-type function, as is shown in the code
below. Notice that we are going to use either variables that are explicitly
factors, or those that are implicitly factors (because a logical variable can
take only two values it is really a factor). We also do a quick check to



252 15. Solutions to Exercises

make sure that samples in the expression set are in the same order as the
values in the clustering (this is harder with the pam output because the
clustering vectors from it are not named, (at least not as of version 1.11.6).
If the value returned by the second command below is not TRUE then all
other computations are going to be incorrect and some corrective action is
needed.

> sapply(pData(es2), function(x) is.factor(x) ||

is.logical(x) )

cod diagnosis sex
FALSE FALSE TRUE
age BT remission

FALSE TRUE TRUE
CR date.cr t(4;11)

FALSE FALSE TRUE
t(9;22) cyto.normal citog

TRUE TRUE FALSE
mol.biol fusion protein mdr

TRUE TRUE TRUE
kinet ccr relapse
TRUE TRUE TRUE

transplant f.u date last seen
TRUE FALSE FALSE

Then for each of those variables, such as say, mdr, we can form a two-way
table and use any one of your favorite tests for association. In the example
below, we use the χ2 test, but there are many others that you could use.

> tt1 = table(es2$mdr, km2$cluster)

> test1 = chisq.test(tt1)

> test1$p.value

[1] 0.0935

You can then repeat this for each categorical variable and select the one
with the best p-value as that variable that most closely aligns with the
clustering.

Exercise 10.7

The answer is a little bit tricky, because the cluster labels are completely
arbitrary. So we first create a two-way table, showing how the clusters
align. We want to make this a bit interesting so we compute a three cluster
k-means solution to compare with the three cluster PAM solution from
above.
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> km3 = kmeans(gvals, centers=3, nstart=25)

> table(km3$cluster, pam3$clustering)

1 2 3
1 27 6 4
2 0 16 0
3 0 5 21

There are 79 objects, and hence 3081 different pairs of objects. So for the
comparison of interest we need to find out how many of those pairs went in
the same cluster in both samples, how many pairs went in different clusters
(these are both concordant values), and finally how many pairs were in one
cluster, under one algorithm, but not in one cluster in the other.

> outSamekm3 = outer(km3$cluster, km3$cluster,

FUN = function(x,y) x==y)

> outSamepam3 = outer(pam3$clustering, pam3$clustering,

FUN = function(x,y) x==y)

> inSBoth = outSamekm3 & outSamepam3

> ##then we subtract 79, because an obs is in the same

> ## cluster as itself this just means that the diagonal

> ## is TRUE and divide by two

> sameBoth = (sum(inSBoth) - 79)/2

> ##not in the same one, in both are those FALSE entries

> notSBoth = (!outSamekm3) & (!outSamepam3)

> notSameBoth = sum(notSBoth)/2

> ##those that are different, are TRUE in one and FALSE

> ## in the other or vice versa

>

> diffBoth = ((!outSamekm3) & outSamepam3) |

(outSamekm3 & (!outSamepam3))

> discordant = sum(diffBoth)/2

Thus we see that there are 712 pairs that are put in the same group
in both clusterings. There are 1680 pairs that were not put in the same
cluster, for either algorithm. And there were 689 pairs that were put in the
same cluster for one of the algorithms, but not for the other.

Exercise 10.8

Basically repeat the steps given above, only now the table will have three
groups instead of two.
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Exercise 10.9

The first run has the samples more evenly spread among the 16 groups;
there are no clusters of size 1, whereas for both other methods there are a
number of clusters of size 1. In the code below we first show the distribution
of samples among the 16 clusters for method 1, and then the number of
clusters of different sizes for method 2. Notice that most of the clusters are
of size 1.

> table(s1$unit.classif)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8 3 9 5 5 3 3 5 3 2 5 5 8 5 4 6

> table(table(s2$unit.classif))

1 2 7 9 16 19
10 1 1 1 2 1
> table(table(s3$unit.classif))

1 2 7 8 9 10 15 19
9 1 1 1 1 1 1 1

Comparing clusterings is a bit hard, as there are no obvious labels to put
on the clusters. We might want to devise some code that will tell us which
samples were clustered together in two methods, and which number were
together in one, not together in the other, and finally how many pairs were
in different clusters for both outputs. But this is another topic, and one for
which we do not have room.

Exercise 10.10

We first identify the samples, and then subset the expression values. Then
we define some colors, so that we can easily tell the two groups apart.

> intOnes = s1$unit.classif == 13 | s1$unit.classif == 14

> gvsub = gvals[intOnes,]

> gvclasses = s1$unit.classif[intOnes]

> sideC = ifelse(gvclasses==13, "yellow", "blue")

> heatmap(t(gvsub), ColSideCol=sideC)

Exercise 10.11

So, we want to repeat our k-means analysis, as described above but with
k = 4.

> km2sol = kmeans(gvals, centers=4, nstart=25)

> table(km2sol$cluster, SOMgp2)
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SOMgp2
1 2 3 4 5 6 7

1 0 12 1 2 1 0 5
2 3 5 2 0 0 12 0
3 0 0 1 0 0 2 13
4 0 3 7 2 4 3 1

The results seem remarkably concordant. Next we remove those samples
that correspond to the smaller groups and repeat the k-means analysis.

> dropInds = SOMgp2 %in% c("1", "4", "5")

> gvals2 = gvals[!dropInds,]

> km3 = kmeans(gvals2, centers=4, nstart=50)

> table(km3$cluster, SOMgp2[!dropInds])

1 2 3 4 5 6 7
1 0 12 1 0 0 0 6
2 0 1 0 0 0 14 0
3 0 0 1 0 0 2 13
4 0 7 9 0 0 1 0

Exercise 10.12

This can be found directly from silpam2 by mimicking the code above.

> ans = silpam2[silpam2[, "sil_width"] < 0, ]

So there are five observations with negative silhouette widths.

Exercise 10.13

For this problem we make use of the output of diana, and hence work with
hc4.

> dcl4 = cutree(hc4, 4)

> table(dcl4)

dcl4
1 2 3 4

28 15 22 14
> ## we presume the labels are in the order

> ## given to the \indexTerm{clustering} algorithm

>

> sild4 = silhouette(dcl4, manDist)

We can compute the silhouette, and using the methods discussed in
Section 10.8 we can plot this, or perform other operations on it.
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Exercise 10.14

An example probe set is 33232_at. Try

> t.test(exprs(esTT)["33232_at",]~esTT$mol.biol)

Welch Two Sample t-test

data: exprs(esTT)["33232_at", ] by esTT$mol.biol
t = 4.46, df = 76.8, p-value = 2.726e-05
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
0.71 1.85

sample estimates:
mean in group BCR/ABL mean in group NEG

8.66 7.37

Exercise 10.15

One way to do this is to increase the value of K in:

> esTT.K = ALLfilt_bcrneg[ordtt[1:K],]

and then repeat the steps shown above to develop the principal
components and biplot visualizations.

11 Using Graphs for Interactome Data

Exercise 11.1

a RobjectlitG is an instance of the graphNEL class. You can use the
manual page to find out more; type class?graphNEL.

b > nodes(litG)[1:5]

[1] "YBL072C" "YBL083C" "YBR009C" "YBR010W" "YBR031W"

c The ccyclered data is stored in a data.frame. Please also have a look
at the manual page of this class.

> class(ccyclered)

> str(ccyclered)

> dim(ccyclered)

> names(ccyclered)



15. Solutions to Exercises 257

Exercise 11.2

a Each element of cc is a character vector of node names defining one
of the connected components of the graph.

> cc[[7]]

[1] "YBR118W" "YAL003W" "YLR249W"

b There are 2642 connected components. The largest component
consists of 88 nodes. There are 2587 singletons.

Exercise 11.3

Again, we first create the layouts using the function layoutGraph. These
can then be plotted using renderGraph, as above.

> lay12neato = layoutGraph(sg1, layoutType="dot")

> renderGraph(lay12neato,

graph.pars=list(nodes=list(fillcolor="steelblue2")))

> lay12twopi = layoutGraph(sg2, layoutType="twopi")

> renderGraph(lay12twopi,

graph.pars=list(nodes=list(fillcolor="steelblue2")))

Exercise 11.4

The sps object is a list. The manual page for sp.between describes its
structure.

To plot individual nodes and edges with different colors we have to use
the nodeRenderInfo and edgeRenderInfo functions:

> fill = rep("steelblue2", length(pth))

> names(fill) = pth

> nodeRenderInfo(lsg1) = list(fill=fill)

> edges = paste(pth[-length(pth)], pth[-1], sep="~")

> lwd = rep(5, length(edges))

> col = rep("steelblue2", length(edges))

> names(lwd) = names(col) = edges

> edgeRenderInfo(lsg1) = list(col=col, lwd=lwd)

> renderGraph(lsg1)
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Exercise 11.5

allp is a matrix of the shortest path distances between all pairs of nodes.
You can find the diameter by finding the maximum value in allp.

> max(allp)

[1] 13

The longest shortest path is not unique:

> sum(allp == max(allp))

[1] 36

Exercise 11.6

> clusts = with(ccyclered, split(Y.name, Cluster))

Exercise 11.7

> ccClust = connectedComp(cg)

> length(ccClust)

[1] 30

Exercise 11.8

The return value of the intersection method is a new graph object con-
taining the common set of nodes and edges between the two input graphs.
So the number of common edges between the graphs is simply the number
of edges in the returned graph:

> numEdges(commonG)

[1] 42

Exercise 11.9

The nodePerm function takes two graphs, g1 and g2, as inputs along with
the number of permutation-based tests to perform, B. The function loops
B times. For each iteration, the node labels of g1 are permuted and the
number of common edges between the permuted g1 and g2 is computed.
The return value is a numeric vector with length equal to B such that
each element gives the number of common edges for the corresponding
permutation.
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Figure 15.4. Barplot of frequencies in the permutation distribution of the num-
ber of common edges in nPdist. The observed number of common edges
numEdges(commonG)=42 is larger than any of the permutation values, which
indicates that there are significantly more common edges than what would
be expected if co-expression and protein interaction were unrelated.

Exercise 11.10

> barplot(table(nPdist))

12 Graph Layout

Exercise 12.1

> graph.par(list(graph=list("cex.main"=2.5)))

> x = layoutGraph(g, layoutType="neato")

> renderGraph(x, graph.pars=list(graph=list(main="neato")))

> x = layoutGraph(g, layoutType="twopi")

> renderGraph(x, graph.pars=list(graph=list(main="twopi")))

> x = layoutGraph(g, layoutType="circo")

> renderGraph(x, graph.pars=list(graph=list(main="circo")))

> x = layoutGraph(g, layoutType="fdp")

> renderGraph(x, graph.pars=list(graph=list(main="fdp")))
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Exercise 12.2

This exercise is open-ended and it has no unique solution. Consult the
documentation of renderParameters for its parameters.

> ? renderParameters

Exercise 12.3

Currently Rgraphviz supports the following node shapes: “circle”,
“ellipse”, and “rect”.

> ? layoutParameters

drawNodes can be used for user-defined node plotting. It takes a function
which will be called to render a single node. Alternatively, a named list of
functions with list names equal to node names can be used to render each
node differently.

Exercise 12.4

> colors = rep("lightgreen", length(nodes(IMCAGraph)))

> names(colors) = nodes(IMCAGraph)

> transp = c("ITGB", "ITGA", "MYO", "ACTN", "JNK", "p110",

"Phosphatidylinositol signaling system",

"PI5K", "MYO-P", "cell maintenance", "cell motility",

"F-actin", "cell proliferation")

> colors[transp] = "transparent"

> nodeRenderInfo(IMCAGraph) = list(fill=colors)

> renderGraph(IMCAGraph)

Exercise 12.5

> sg4 = subGraph(c("GRB2", "SOS", "Ha-Ras", "Raf",

"MEK", "ERK"), IMCAGraph)

> subGList = append(subGList, list(list(graph=sg4)))

> IMCAGraph = layoutGraph(IMCAGraph, attrs=attrs,

nodeAttrs=nodeAttrs, subGList=subGList)

> renderGraph(IMCAGraph)
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13 Gene Set Enrichment Analysis

Exercise 13.1

a There are 79 samples, and the table below shows how many of each
type.

> table(ALLfilt_bcrneg$mol.biol)

BCR/ABL NEG
37 42

b 5038 distinct genes (as determined by Entrez Gene ID) have been
selected.

Exercise 13.2

There is one gene set for each row of the incidence matrix, so there are 194
gene sets. We can find out how many gene sets have fewer than 10 genes
by computing rowSums(Am), so there are 67 gene sets. The largest number
of gene sets a gene is in can be found by finding the largest of the column
sums, which is 32 gene sets for 976_s_at.

Exercise 13.3

There are 794 positive statistics, and 872 negative ones. There are 134 with
p-values less than 0.01.

Exercise 13.4

You should notice that all of the points lie above the 45 degree line, indicat-
ing that they have higher y values than x values. Or, that the mean value
in the NEG group is larger than the mean value in the BCR/ABL group.

Exercise 13.5

Although the mean plot seemed to suggest a strong separation between the
two groups, we see from the heatmap that the distinction is not that clear.

The row in the heatmap that corresponds to the gene labeled 41214_at
indicates that the gene is on in some samples and off in others. It is on
the Y chromosome, and hence we are seeing a pattern of expression that
distinguishes the male samples from the females.
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Exercise 13.6

> apply(pvals, 2, min)

Lower Upper
0.022 0.000
> rownames(pvals)[apply(pvals, 2, which.min)]

[1] "03010" "04510"

Exercise 13.7

To obtain the p-values from the permutation approach we must obtain the
rowwise minima of the permutation p-values. The p-values for the paramet-
ric approach can be obtained by calling pnorm, and then taking the smaller
of the observed p-value or one minus it.

> permpvs = pmin(pvals[,1], pvals[,2])

> pvsparam = pnorm(tAadj)

> pvspara = pmin(pvsparam, 1-pvsparam)

> plot(permpvs, pvspara, xlab="Permutation p-values",

ylab="Parametric p-values")

Exercise 13.8

It indicates that the gene is on the p arm of chromosome 17 in band 3,
subband 3, subsubband 2.

Exercise 13.9

> ## depending on which annotation infrastructure we use

> ## hgu95av2MAP will either be an environment or an

> ## AnnDbBimap object

> fnames = featureNames(ALLfilt_bcrneg)

> if(is(hgu95av2MAP, "environment")){

chrLocs = mget(fnames, hgu95av2MAP)

mapping = names(chrLocs[sapply(chrLocs,

function(x) !all(is.na(x)))])

}else{

mapping = toTable(hgu95av2MAP[fnames])$probe_id

}

> psWithMAP = unique(mapping)

> nsF2 = ALLfilt_bcrneg[psWithMAP, ]
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Figure 15.5. Scatter plot comparing the permutation p-values to those obtained
from using a Normal approximation.

Exercise 13.10

The value returned by MAPAmat is a matrix where the rows are the chromo-
some bands and the columns are the genes. So there are 5003 genes and
1070 map positions.

> dim(chrMat)

[1] 1070 5003

Exercise 13.11

> chrMat = chrMat[rowSums(chrMat) >= 5, ]

> dim(chrMat)

[1] 547 5003

Exercise 13.12

> EGlist = mget(featureNames(nsF2), hgu95av2ENTREZID)

> EGIDs = sapply(EGlist, "[", 1)
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> idx = match(EGIDs, colnames(chrMat))

> chrMat = chrMat[, idx]

Now you can simply repeat the analysis using the new incidence matrix
chrMat.

Exercise 13.13

> rowSums(Ams)[c("04510", "04512", "04514", "04940")]

04510 04512 04514 04940
96 31 52 27

> Amx["04512", "04510"]

[1] 21
> Amx["04940", "04514"]

[1] 17

Exercise 13.14

Example code

> P04514 = Ams["04514",]

> P04940 = Ams["04940",]

> P04514.Only = ifelse(P04514 != 0 & P04940 == 0, 1, 0)

> P04940.Only = ifelse(P04514 == 0 & P04940 != 0, 1, 0)

> Both = ifelse(P04514 != 0 & P04940 != 0, 1, 0)

> lm5 = lm(rttStat ~ P04514.Only + P04940.Only + Both)

> summary(lm5)

Call:
lm(formula = rttStat ~ P04514.Only + P04940.Only + Both)

Residuals:
Min 1Q Median 3Q Max

-4.173 -1.052 -0.169 0.865 7.205

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0751 0.0381 1.97 0.0486 *
P04514.Only 0.7490 0.2605 2.87 0.0041 **
P04940.Only 0.7346 0.4837 1.52 0.1290
Both 1.0056 0.3718 2.70 0.0069 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.52 on 1662 degrees of freedom
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Multiple R-Squared: 0.0104, Adjusted R-squared: 0.00863
F-statistic: 5.83 on 3 and 1662 DF, p-value: 0.000581

The answer is a bit less clear here. Genes only in 04514 give an extremely
small p-value, whereas those in both and those only in 04940 have a lesser
effect.

14 Hypergeometric Testing Used for Gene Set
Enrichment Analysis

Exercise 14.1

a > numSamp = length(ALL_bcrneg$mol.biol)

> table(ALL_bcrneg$mol.biol)

BCR/ABL NEG
37 42

b > annotation(ALL_bcrneg)

[1] "hgu95av2"

> length(featureNames(ALL_bcrneg))

[1] 12625

Exercise 14.2

See the description of the remove.dupEntrez argument in the manual page
for nsFilter.

Exercise 14.3

The filter.log component of the nsFilter return value provides infor-
mation about the number of probe sets removed by each step of the
filter.

Exercise 14.4

> chrN = mget(featureNames(ALLfilt_bcrneg), envir=hgu95av2CHR)

> onY = sapply(chrN, function(x) any(x == "Y"))

> onY[is.na(onY)] = FALSE

> ALLfilt_bcrneg = ALLfilt_bcrneg[!onY, ]
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Exercise 14.5

> ## an alternate universe based on the entire chip

> chipAffyUniverse = featureNames(ALLfilt_bcrneg)

> chipEntrezUniverse = mget(chipAffyUniverse, hgu95av2ENTREZID)

> chipEntrezUniverse = unique(unlist(chipEntrezUniverse))

Exercise 14.6

> sumpv = sum(smPV)

There are 713 probe sets with p-values less than 0.05.

Exercise 14.7

a > df = summary(hgOver)

> names(df)

[1] "GOBPID" "Pvalue" "OddsRatio" "ExpCount"
[5] "Count" "Size" "Term"

b > df = summary(hgOver, pvalue=0.05, categorySize=350)

> nrow(df)

[1] 21

c > ? HyperGResult-accessors

Exercise 14.8

> browseURL("ALL_hgo.html")

Exercise 14.9

> numG = length(sigSub)

> sizes = sapply(sigSub, numNodes)

> sizes

1 2 3
3 2 1

are displayed above.
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Exercise 14.10

a > dfcond = summary(hgCond, categorySize=50)

> ## trim the term names for display purposes

> trimTerm = function(x) {

if (nchar(x) <= 20)

x

else

paste(substr(x, 1, 20), "...", sep="")

}

> dfcond$Term = sapply(dfcond$Term, trimTerm)

> sizeOrd = order(dfcond$Size, decreasing=TRUE)

> dfcond[sizeOrd, c("Count", "Size", "Term")]

Count Size Term
GO:0007154 241 1170 cell communication
GO:0006955 65 257 immune response
GO:0007155 57 209 cell adhesion
GO:0009966 51 182 regulation of signal...

b > stdIds = sigCategories(hgOver)

> condIds = sigCategories(hgCond)

> setdiff(stdIds, condIds)

[1] "GO:0007165" "GO:0022610"

Exercise 14.11

> params = new("ChrMapHyperGParams",

conditional=FALSE, testDirection="over",

universeGeneIds=entrezUniverse,

geneIds=selectedEntrezIds,

annotation="hgu95av2", pvalueCutoff=0.05)

> paramsCond = params

> conditional(paramsCond) = TRUE

> hgans = hyperGTest(params)

> hgansCond = hyperGTest(paramsCond)

> summary(hgans, categorySize=10)

ChrMapID Pvalue OddsRatio ExpCount Count Size
7p15 7p15 0.000644 4.98 3.38 10 20
1q21 1q21 0.000823 2.93 7.77 17 46
7p 7p 0.008175 2.04 11.65 20 69
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8q24 8q24 0.009560 2.73 5.23 11 31
7p1 7p1 0.012335 2.20 8.27 15 49
3q25 3q25 0.013347 4.25 2.19 6 13
14q22 14q22 0.039695 2.97 2.70 6 16
7 7 0.046208 1.38 32.75 42 194

Exercise 14.12

> kparams = new("KEGGHyperGParams",

geneIds=selectedEntrezIds,

universeGeneIds=entrezUniverse,

annotation="hgu95av2",

pvalueCutoff=0.05,

testDirection="over")

> kans = hyperGTest(kparams)

> summary(kans)

KEGGID Pvalue OddsRatio ExpCount Count Size
04916 04916 0.0215 2.18 7.32 13 42
04810 04810 0.0220 1.68 17.78 26 102
05217 05217 0.0230 3.61 2.44 6 14
04640 04640 0.0290 2.00 8.37 14 48
04520 04520 0.0339 2.08 6.97 12 40
04360 04360 0.0370 1.87 9.41 15 54
04510 04510 0.0473 1.58 16.38 23 94

Term
04916 Melanogenesis
04810 Regulation of actin cytoskeleton
05217 Basal cell carcinoma
04640 Hematopoietic cell lineage
04520 Adherens junction
04360 Axon guidance
04510 Focal adhesion
> kparamsUnder = kparams

> testDirection(kparamsUnder) = "under"

> kansUnder = hyperGTest(kparamsUnder)

> summary(kansUnder)

KEGGID Pvalue OddsRatio ExpCount Count Size
04650 04650 0.0100 0.353 12.20 5 70
04664 04664 0.0229 0.251 6.80 2 39
05211 05211 0.0229 0.251 6.80 2 39



15. Solutions to Exercises 269

00020 00020 0.0257 0.000 3.31 0 19
00380 00380 0.0369 0.179 4.71 1 27
00051 00051 0.0379 0.000 2.96 0 17
04080 04080 0.0412 0.394 8.89 4 51
04012 04012 0.0412 0.394 8.89 4 51
04370 04370 0.0412 0.282 6.10 2 35
00071 00071 0.0434 0.187 4.53 1 26

Term
04650 Natural killer cell mediated cytotoxicity
04664 Fc epsilon RI signaling pathway
05211 Renal cell carcinoma
00020 Citrate cycle (TCA cycle)
00380 Tryptophan metabolism
00051 Fructose and mannose metabolism
04080 Neuroactive ligand-receptor interaction
04012 ErbB signaling pathway
04370 VEGF signaling pathway
00071 Fatty acid metabolism

Exercise 14.13

> pparams = new("PFAMHyperGParams",

geneIds=selectedEntrezIds,

universeGeneIds=entrezUniverse,

annotation="hgu95av2",

pvalueCutoff=hgCutoff,

testDirection="over")

> pans = hyperGTest(pparams)

> summary(pans)

PFAMID Pvalue OddsRatio ExpCount Count Size
PF01023 PF01023 0.000129 30.12 1.171 6 7
PF01833 PF01833 0.000365 6.47 2.676 9 16
PF07714 PF07714 0.000402 3.19 7.360 17 44
PF08337 PF08337 0.000777 Inf 0.669 4 4

Term
PF01023 PF01023
PF01833 PF01833
PF07714 PF07714
PF08337 PF08337
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B. Gunawan, M. Vingron, L. Füześı, and A. Poustka. Gene expression in kidney

http://cran.r-project.org/
manuals/R-intro.html


References 275

cancer is associated with cytogenetic abnormalities, metastasis formation, and
patient survival. Clinical Cancer Research, 11:646–655, 2005.

The Gene Ontology Consortium. Gene Ontology: tool for the unification of
biology. Nature Genetics, 25:25–29, 2000.

L. Tian, S. A. Greenberg, S. W. Kong, et al. Discovering statistically significant
pathways in expression profiling studies. Proc. Natl. Acad. Sci. of the U.S.A.,
102(38):13544–13549, 2005.

V. Tusher, R. Tibshirani, and G. Chu. Significance analysis of microarrays applied
to the ionizing radiation response. Proc. Natl. Acad. Sci. of the U.S.A., 98:
5116–5121, 2001.

UniProt. The universal protein resource (UniProt). Nucleic Acids Res, 35
(Database issue):193–197, 2007.

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S (4e). Springer,
New York, 2002.

A. von Heydebreck, W. Huber, and R. Gentleman. Differential expression with
the Bioconductor project. In Encyclopedia of Genetics, Genomics, Proteomics
and Bioinformatics. Wiley, New York, 2004.

P. Westfall and S. Young. Resampling-Based Multiple Testing: Examples and
Methods for p-Value Adjustment. Wiley, New York, 1993.

D. L. Wheeler, T. Barrett, D. A. Benson, S. H. Bryant, K. Canese, V. Chetvernin,
D. M. Church, M. DiCuccio, R. Edgar, S. Federhen, L. Y. Geer, Y. Kapustin,
O. Khovayko, D. Landsman, D. J. Lipman, T. L. Madden, D. R. Maglott,
J. Ostell, V. Miller, K. D. Pruitt, G. D. Schuler, E. Sequeira, S. T. Sherry,
K. Sirotkin, A. Souvorov, G. Starchenko, R. L. Tatusov, T. A. Tatusova,
L. Wagner, and E. Yaschenko. Database resources of the National Center for
Biotechnology Information. Nucleic Acids Res, 35(Database issue):5–12, 2007.





Index

?(), 5
[(), 223
[[(), 116, 223

A-value, 52, 70, 80
aaf.handler(), 39
abline(), 21
acute lymphoblastic leukemia (ALL),

1, 90, 91, 96, 207
Affymetrix, 25, 26, 28, 34, 40, 41
affyQAReport(), 28
Agilent, 48
agopen(), 175
ALL1/AF4, 2, 4, 103, 104, 108, 135
annotation, 38, 39, 103, 104, 106–109,

112–117, 119
apply(), 9, 10
apropos(), 5
attribute, 114, 115

background correction, 32, 40, 42, 63,
66

biased, 68
background-correction, 41–44, 65, 66,

68, 73, 75, 79
biased, 68

barplot, 259
basecontent(), 21
BCR/ABL, 2, 4, 83, 85, 86, 91, 99,

100, 103, 104, 108, 123, 127,
128, 135, 138, 141, 196, 197,
199, 207, 210, 212, 245, 249,
261

Benjamini and Hochberg, 87
between-array normalization, 32
biocLite(), 7
BioMart, 113, 115
biplot, 156, 256

Bonferroni correction, 38
Boost graph library, 173
boxplot, 22, 53, 54, 195
boxplot(), 23
boxplot.stats(), 23
brewer.pal(), 22
browseURL(), 216

carbon tetrachloride (CCl4), 48, 54,
58

CDF, 40, 43
CEL, 12, 25, 26, 40
Chi Square Test, 252
chisq.test(), 108
circo, 175
class

AffyBatch, 25, 26, 33, 42, 72
AnnotatedDataFrame, 15–19, 28,

49, 54
Bimap, 119
character , 195, 222
ChrMapHyperGParams, 219, 220
clusterGraph, 163
data.frame, 8, 15, 16, 27, 49, 76,

108, 119, 215, 223, 235, 256
diana, 144, 250
dist , 125
environment , 5, 9–11
eSet , 72
ExpressionSet , 1, 5, 11, 12, 15–19,

33, 65, 72, 78, 85, 100, 104,
194, 197, 202, 211, 213

factor , 2, 57, 84, 91, 197
GeneSet , 194, 195
GeneSetCollection, 194
GOHyperGParams, 213, 214, 218
GOHyperGResult , 112, 215, 216
GOTerms, 239



278 Index

graph, 165, 170, 174, 177, 188–190,
258

graphNEL, 256
hclust , 144, 250
HyperGResult , 215
intactComplex , 169
intactGraph, 171
intactHyperGraph, 171
intactInteraction, 167
integer , 222
interactionEntry , 166, 168
interactions, 167
interactors, 168
KEGGHyperGParams, 213, 215,

219, 220
list , 8
logical , 222
MArrayLM , 58
Mart , 113, 114
matrix , 8, 12, 72, 223
MIAME , 17
NChannelSet , 54, 55, 70, 72
organismName, 167
PFAMHyperGParams, 213, 215,

219
randomForest , 133
releaseDate, 167
RGList , 49, 54, 72
vector , 8
vsn, 76

class discovery, 137
classification, 121, 122, 128, 129
classifier, 121
CLL, 26, 27, 40
closest.top(), 126, 244
cluster, 186
cluster graph, 163, 164
clustering, 121, 137, 138, 143–149,

151–153, 157, 252–254
cmdscale(), 141, 249
coef(), 74
colorRampPalette(), 22
confuMat(), 127, 131, 243, 245
confusion matrix, 121, 127, 132, 243,

248
connected components, 160, 161, 163,

171, 174, 175, 257
connectedComp(), 160, 174
cophenetic(), 145

cophenetic correlation, 145, 146, 251
CRAN, 7
cross-validation, 121, 122, 124, 127,

129–132, 137
leave-one-out (LOO), 130
ten-fold, 131

cutree(), 145, 250

daisy(), 125, 139, 241
dendrogram, 138, 142–146
density estimate, 53
density plot, 22
diagonal linear discriminant analysis

(DLDA), 127, 129
diameter, 162, 258
diana(), 144, 255
dim(), 33
dimension reduction, 137
Dimethylsulfoxid (DMSO), 58
dimethylsulfoxid (DMSO), 48
DIP, 166
directed acyclic graph (DAG), 110,

216
dist(), 125, 139, 241
dist2(), 29
distance, 121, 122, 124–126, 137,

139–142, 144–147, 150, 241,
242, 244, 250, 251

correlation, 125, 241
cosangle, 152
Euclidean, 124, 128, 241, 242
Kullback–Leibler, 241
Manhattan, 140, 241
mutual information, 241

dot, 175, 179
dot plot, 20
dye-swap, 48

eapply(), 9, 10
eBayes(), 35, 58, 96
edgeNames(), 177
edgeRenderInfo(), 176–178, 257
empirical Bayes moderation, 35, 96
empirical cumulative distribution

function (ECDF), 23, 79
expresso(), 12
exprs(), 19, 33



Index 279

F-test, 93
factor(), 3
false discovery rate (FDR), 38, 87,

95
familywise error rate (FWER), 95
feature, 121–125, 128–133, 137, 242,

245
feature selection, 121, 122, 124, 130,

131, 133
feature space, 122
featureNames(), 18
filter, 114, 115
find(), 5
findEGs(), 118
Fisher’s exact test, 108, 109, 208
fisher.test(), 108
fold-change, 63, 68, 79, 80, 90, 93
fs.absT(), 131
fsHistory(), 131
function, 9

GC-content, 21, 22
Gene Ontology (GO), 106, 107,

109–112, 114, 116, 117,
119, 139, 193, 194, 209–216,
218–220

gene set enrichment analysis (GSEA),
109, 111, 193, 194, 200, 209

gene universe, 209, 210, 212–214
Genepix, 49
generalized log-ratio, 68, 72, 79
generalized logarithm (glog), 42, 55,

57, 63, 65, 68, 72, 73, 79, 80
GeneSetCollection(), 197
get(), 116
getBM(), 115
getGene(), 114
getGo(), 114
getHomolog(), 114
getMA(), 76
getSequence(), 114
getSequences(), 114
getSNP(), 114
getwd(), 25
GO2heatmap(), 195
GOA, 193
GOmnplot(), 195
graph, 159–165, 170, 171, 173–177,

179–188, 190, 257, 258

directed, 175, 177, 180
undirected, 175, 177

graph layout, 173–177, 179, 181–187,
189

graph rendering, 173–177, 179, 181,
182, 189

graph.par(), 176, 177, 179
Graphviz, 173–175, 177, 179, 183, 186
grep(), 10
gseattperm(), 200
gsub(), 11

hclust(), 144
head(), 113
heatmap, 29, 92, 125, 126, 140, 149,

195, 202, 242, 243
help, 5, 6
help.search(), 6
HG-U133A GeneChip, 117
HG-U95Av2 GeneChip, 9, 17, 21, 26,

32, 34
hgu133a_dbconn(), 115
hgu95av2_dbschema(), 118
hierarchical clustering, 137, 138, 142,

144–146, 151, 154, 251
agglomerative, 138, 143, 144
divisive, 138, 143, 144

hopach(), 151
hopach clustering, 152
htmlReport(), 216
HUGO, 168
Hypergeometric distribution, 208
Hypergeometric test, 193, 194, 207,

210, 212–214, 217, 219
conditional, 218, 219

hyperGTest(), 110, 207, 213–216,
218, 220

image plot, 50, 51
imageMap(), 188, 190
importance(), 133
incidence(), 196
incidence matrix, 196–198, 203
index vector, 8, 222
induced GO graph, 110, 112
install.packages(), 7
IntAct, 159, 165–169, 171
intactXML2Graph(), 165, 170, 171
InterPro, 115



280 Index

intersection(), 164, 258
IQR, 3, 84, 103, 104, 124, 212
IQR(), 211

justRMA(), 12
justvsn(), 42, 54, 57, 70, 72, 78, 82

k nearest neighbors (KNN), 127–130,
132, 133, 136, 246, 247, 249

k-means clustering, 137, 146–148,
151, 254, 255

KEGG, 180, 181, 183, 186, 193, 194,
196, 197, 202, 213, 219, 220

KEGG2heatmap(), 195, 199
KEGGmnplot(), 195
kmeans(), 146, 147
knn(), 127, 131, 244
knn1(), 149, 151
knnI(), 127, 131

lapply(), 9, 213
layoutGraph(), 161, 174, 175, 177,

179, 183, 186, 257
least trimmed sum of squares (LTS),

73, 76, 77
levelplot(), 29
library, 7
library(), 7
linear discriminant analysis (LDA),

127, 129
linear model, 38, 58, 95, 203
list(), 223
listAttributes(), 115
listDatasets(), 113
listFilters(), 114
listMarts(), 113
lmFit(), 58, 95
log fold-change, 34, 35
log-ratio, 34, 50, 60, 63–66, 68, 80

M-value, 52, 58, 70, 72
MA-plot, 50, 52, 55, 57, 71, 79, 80
machine learning, 121, 122, 124–131,

139, 140, 243
supervised, 121, 122, 124, 127, 129,

135, 137
unsupervised, 121, 137, 142, 157

Mahalonobis transformation, 124
mailing list, 6
Mann–Whitney test, 90
MAPAmat(), 202, 263
mapply(), 213
matplot(), 230
maxT procedure, 95
meanSdPlot(), 74, 91
median split silhouette (MSS), 144
medoid, 147
mget(), 116
MIdist(), 126
mismatch probe (MM), 40, 41, 44, 45,

228, 230
MLearn(), 127, 130, 132, 243
mm(), 40
model matrix, 57
msscheck(), 144
mssEst(), 144
mt.maxT(), 94, 95
mt.raw2adjp(), 87
multidensity(), 22, 54, 66
multidimensional scaling, 141, 142,

175
multiecdf(), 23
multiple testing, 34, 38, 60, 83, 87,

89, 94, 103, 111, 233
myExtract(), 11

names(), 251
nchar(), 182
neato, 172, 175, 179
new(), 17, 163
nodePerm(), 164, 258
nodeRenderInfo(), 176–178, 182, 257
nodes(), 160, 177
nonspecic lering, 86
nonspecific filtering, 1, 3, 34, 42,

83–87, 89, 90, 103, 123, 124,
128, 135, 197, 209–214, 229,
233

normalization, 40, 47, 54, 89
normalizeBetweenArrays(), 57
normalizeWithinArrays(), 52, 57
nrsel.pAUC(), 102
nrsel.ttest(), 102
nsFilter(), 3, 4, 34, 85, 103, 108,

123, 197, 211, 235, 265
NUSE, 30, 31



Index 281

openHtmlPage(), 190
openVignette(), 6
ordinary least squares, 76

p.adjust(), 38
package, 7, 8, 221

affy, 12, 25, 32
affyPLM, 12, 30, 33
affyQCReport, 28
ALL, 2, 138, 193, 210
annaffy, 39, 106
annotate, 38, 110
AnnotationDbi, 115, 119
arrayMagic, 12
arrayQualityMetrics, 28
base, 49
Biobase, 6, 7, 11, 15, 28
BiocCaseStudies, 101
biocGraph, 188
bioDist, 125, 126, 139, 242, 244,

250
biomaRt, 113–115
Category, 85, 193, 200, 202, 207,

209, 213, 219
CCl4, 48, 65
class, 127, 130, 148, 149
CLL, 21, 26, 27
cluster, 125, 139, 144, 147, 152,

241
genefilter, 3, 34, 84, 92, 99, 103,

123, 197, 198, 211
geneplotter, 22, 66
GlobalAncova, 194
GO.db, 239
GOstats, 110, 111, 152, 194, 207,

209
goTools, 110
graph, 7, 159, 173, 186
graphviz, 181
GSEABase, 193–197, 203
hgu133a.db, 115
hgu95av2, 115
hgu95av2.db, 106, 115
hopach, 137, 142, 151
kohonen, 148
lattice, 76
limma, 12, 35, 38, 47, 52, 55, 57,

58, 89, 95, 213
MASS, 141

matchprobes, 21
MLInterfaces, 121, 122, 127, 130,

132
multtest, 38, 87, 94, 95
oligo, 12
org.Hs.eg.db, 188
PGSEA, 194
randomForest, 132
RBGL, 159–161
RColorBrewer, 22, 125, 140
RGBL, 174
rgl, 141
Rgraphviz, 159, 161, 173–176,

178, 179, 184, 185, 260
Rintact, 165, 166
ROC, 100
ScISI, 165
sigPathways, 194
simpleaffy, 28, 29
som, 148
topGO, 110, 111, 194
vsn, 54, 56, 57, 63, 65, 68, 70, 72,

81, 82
xtable, 7, 116
YEAST, 214
yeastExpData, 160, 174

pairs plot, 155, 156
pam(), 147, 252
partial area under the curve (pAUC),

99, 100, 102
partitioning, 138, 146, 151
partitioning around mediods (PAM),

147, 148, 152, 252
paste(), 9
pData(), 16
Pearson’s χ2 test, 108
perfect match probe (PM), 40–45,

228–230
permutation distribution, 259
permutation test, 90, 200, 201
PFAM, 112, 114, 115, 213, 219, 220
phenoData(), 19
Philadelphia chromosome, 2, 91
plot(), 20
plotMA(), 52, 231
pm(), 40
pm.abstGrep(), 112
pm.getabst(), 112
pnorm(), 262



282 Index

points(), 36
prcomp(), 154
predict(), 72
preprocessing, 32, 33, 40, 63
principal components, 154
Prosite, 112, 115
PSI-MI 2.5 file, 165, 166, 168, 170,

171
psi25complex(), 165, 169, 170
psi25interaction(), 165, 166, 169,

170
PubMed, 112, 188, 190

q–q plot, 198
q-q plot, 195
QA (quality assessment), 28
qc(), 28
QC (quality control), 28, 29

R-FAQ, 6
random forests, 132–136, 248
rbind(), 76
read.maimages(), 47, 49, 50, 55
read.table(), 12, 13, 15
ReadAffy(), 12, 25, 26
Receiver Operator Characteristic

(ROC), 89, 90, 99–101, 124,
234

reference distribution, 160
reference normalization, 81, 82
renderGraph(), 161, 175–177, 179,

182, 190, 257
renderParameters(), 260
reporter summarization, 32, 40, 42,

43
require(), 7
resample(), 101
return(), 9
revmap(), 119
RLE, 30, 31
RMA, 32, 42–44, 229
rma(), 1, 32, 33, 42
RNA Integrity Number (RIN), 48
RNA integrity number (RIN), 48
rowFtests(), 93, 198
rowMeans(), 22, 34
rowpAUCs(), 101
rowQ(), 84, 93
rowSds(), 84

rowttests(), 34, 85, 92, 93, 99, 101,
104, 198

sammon(), 141, 249
Sammon mapping, 141, 250
sampleNames(), 16, 19
sapply(), 9, 15
search path, 5
Self-organizing maps (SOMs), 148
self-organizing maps (SOMs), 148
sensitivity, 99
sessionInfo(), 8, 221
setwd(), 25
shortest path, 161–163, 258
shorth, 84
shorth(), 84
shrinkage estimator, 63, 68, 80
silcheck(), 144
silhouette(), 152–154
silhouette plot, 142, 152, 153
single-linkage clustering, 251
smoothScatter(), 52, 231
SNP, 114
SOM(), 148, 149
sp.between(), 257
spearman.dist(), 242
specificity, 99
split(), 163
spot shape descriptors, 47
SQLite, 115
standardization, 124
standardize(), 124
Student’s t-distribution, 34, 36
subGraph(), 161, 174, 186
subgraph, 174, 185–187
summary(), 215, 219
support vector machines, 122
svd(), 154

t(), 125
t-distribution, 194
t-statistic, 34–36, 43, 44, 86, 104, 105,

124, 128, 131, 142, 193, 194,
200, 203, 205, 250

moderated, 35–37, 58, 60, 95
t-test, 38, 85, 87, 90, 93–95, 97, 98,

101, 102, 124, 128, 133, 210,
212, 213, 234



Index 283

moderated, 59, 97, 98
table(), 145, 149, 235, 251
target file, 49
termGraphs(), 216
test set, 121, 127, 130, 132, 134, 135,

246, 249
threestep(), 33
tooltip, 187
topTable(), 38, 96
toTable(), 119
training set, 121, 127–130, 132, 134,

135, 137, 246, 247
two-color array, 47, 48
twopi, 172, 175

update.packages(), 7, 8

variance–bias trade-off, 79, 80
varLabels(), 19
varMetadata(), 16
vignette, 6
visualization, 5, 47, 141, 145
volcano plot, 35–37, 60, 61, 93
VSN, 42–44, 54, 70, 72–75, 77, 78, 80,

81, 229
vsn(), 72
vsn2(), 72, 74, 81
vsnrma(), 42

Welch statistic, 94

xval(), 131
xvalSpec(), 131


	Cover
	Bioconductor Case Studies
	0387772391
	Preface
	Contents
	List of Contributors
	1 The ALL Dataset
	1.1 Introduction
	1.2 The ALL data
	1.3 Data subsetting
	1.4 Nonspecific filtering
	1.5 BCR/ABL ALL1/AF4 subset

	2 R and Bioconductor Introduction
	2.1 Finding help in R
	2.2 Working with packages
	2.3 Some basic R
	2.3.1 Functions
	2.3.2 The apply family of functions
	2.3.3 Environments

	2.4 Structures for genomic data
	2.4.1 Building an ExpressionSet from .CEL and other files
	2.4.2 Building an ExpressionSet from scratch
	2.4.3 ExpressionSet basics

	2.5 Graphics

	3 Processing Affymetrix Expression Data
	3.1 The input data: CEL files
	3.1.1 The sample annotation

	3.2 Quality assessment
	3.3 Preprocessing
	3.4 Ranking and filtering probe sets
	3.4.1 Summary statistics and tests for ranking
	3.4.2 Visualization of differential expression
	3.4.3 Highlighting interesting genes
	3.4.4 Selecting hit lists and the multiple testing problem
	3.4.5 Annotation

	3.5 Advanced preprocessing
	3.5.1 PM and MM probes
	3.5.2 Background-correction
	3.5.3 Summarization


	4 Two-Color Arrays
	4.1 Introduction
	4.2 Data import
	4.3 Image plots
	4.4 Normalization
	4.5 Differential expression

	5 Fold-Changes, Log-Ratios, Background Correction, Shrinkage Estimation, and Variance Stabilization
	5.1 Fold-changes and (log-)ratios
	5.2 Background-correction and generalized logarithm
	5.3 Calling VSN
	5.4 How does VSN work?
	5.5 Robust fitting and the “most genes not differentially expressed” assumption
	5.6 Single-color normalization
	5.7 The interpretation of glog-ratios
	5.8 Reference normalization

	6 Easy Differential Expression
	6.1 Example data
	6.2 Nonspecific filtering
	6.3 Differential expression
	6.4 Multiple testing correction

	7 Differential Expression
	7.1 Motivation
	7.1.1 The gene-by-gene approach
	7.1.2 Nonspecific filtering
	7.1.3 Fold-change versus t-test

	7.2 Nonspecific filtering
	7.3 Differential expression
	7.4 Multiple testing
	7.5 Moderated test statistics and the limma package
	7.5.1 Small sample sizes

	7.6 Gene selection by Receiver Operator Characteristic (ROC)
	7.7 When power increases

	8 Annotation and Metadata
	8.1 Our data
	8.2 Multiple probe sets per gene
	8.3 Categories and overrepresentation
	8.3.1 Chromosomal location

	8.4 Working with GO
	8.4.1 Functional analyses

	8.5 Other annotations available
	8.6 biomaRt
	8.7 Database versions of annotation packages
	8.7.1 Mapping Symbols
	8.7.2 Other capabilities


	9 Supervised Machine Learning
	9.1 Introduction
	9.1.1 Supervised machine learning check list

	9.2 The example dataset
	9.2.1 Nonspecific filtering of features

	9.3 Feature selection and standardization
	9.4 Selecting a distance
	9.5 Machine learning
	9.6 Cross-validation
	9.7 Random forests
	9.7.1 Feature selection
	9.7.2 More exercises

	9.8 Multigroup classification

	10 Unsupervised Machine Learning
	10.1 Preliminaries
	10.1.1 Data

	10.2 Distances
	10.3 How many clusters?
	10.4 Hierarchical clustering
	10.5 Partitioning methods
	10.5.1 PAM

	10.6 Self-organizing maps
	10.7 Hopach
	10.8 Silhouette plots
	10.9 Exploring transformations
	10.10 Remarks

	11 Using Graphs for Interactome Data
	11.1 Introduction
	11.2 Exploring the protein interaction graph
	11.3 The co-expression graph
	11.4 Testing the association between physical interaction and coexpression
	11.5 Some harder problems
	11.6 Reading PSI-25 XML files from IntAct with the Rintact package
	11.6.1 Introduction
	11.6.2 Loading R Packages
	11.6.3 Obtaining the interaction information
	11.6.4 Obtaining protein complex composition information
	11.6.5 Creating graph objects with Rintact


	12 Graph Layout
	12.1 Introduction
	12.2 Layout and rendering using Rgraphviz
	12.2.1 Rendering parameters
	12.2.2 Layout parameters

	12.3 Directed graphs
	12.3.1 Reciprocated edges

	12.4 Subgraphs
	12.5 Tooltips and hyperlinks on graphs

	13 Gene Set Enrichment Analysis
	13.1 Introduction
	13.1.1 Simple GSEA
	13.1.2 Visualization
	13.1.3 Data representation

	13.2 Data analysis
	13.2.1 Preprocessing
	13.2.2 Using KEGG
	13.2.3 Permutation testing
	13.2.4 Chromosome bands

	13.3 Identifying and assessing the effects of overlapping gene sets

	14 Hypergeometric Testing Used for Gene Set Enrichment Analysis
	14.1 Introduction
	14.2 The basic problem
	14.3 Preprocessing and inputs
	14.3.1 Nonspecific filtering
	14.3.2 Gene selection via t-test
	14.3.3 Inputs

	14.4 Outputs and result summarization
	14.4.1 Calling the hyperGTest function
	14.4.2 Summarizing a GOHyperGResult object
	14.4.3 Generating an HTML report of test results
	14.4.4 Results in detail

	14.5 The conditional hypergeometric test
	14.6 Other collections of gene sets
	14.6.1 Chromosome bands
	14.6.2 KEGG
	14.6.3 PFAM


	15 Solutions to Exercises
	2 R and Bioconductor Introduction
	3 Processing Affymetrix Expression Data
	4 Two-Color Arrays
	5 Fold-Changes, Log-Ratios, Background Correction, Shrinkage Estimation, and Variance Stabilization
	6 Easy Differential Expression
	7 Differential Expression
	8 Annotation and Metadata
	9 Supervised Machine Learning
	10 Unsupervised Machine Learning
	11 Using Graphs for Interactome Data
	12 Graph Layout
	13 Gene Set Enrichment Analysis
	14 Hypergeometric Testing Used for Gene Set Enrichment Analysis

	References
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


