3-PLUS

GOMPANION
to APPLIED
REGRESSION

To the memory of my parents
Joseph and Diana

3-PLUS
GOMPANION

to APPLIED
REGRESSION

McMaster University

@SAGE Publications

Copyright © 2002 by Sage Publications, Inc.

All cights reserved. No part of this book may be reproduced or utilized in any form or by
any means, electromic or mechanical, including photocopying, recording, or by any infor-
mation storage and retrieval system, without permission in wriring from the publisher.

For mformaton:

Sage Publications, Inc.

2455 Teller Road

Thousand Qaks, California 21320
E-mail: order@sagepub.com

Sapge Publications Lid.
6 Bonhill Streer
London EC2A 4FU
United Kingdom

Sage Publications India Pvt. Lid.
M-32 Market

Greater Kailash [

New Delhi 110 048 India

Printed in the United States of America
Library of Congress Cataloging-in-Publication Data

Fox, John, 1947~

An R and 5-Plus companion to applied regression/by John Fox.
p. cm.

Includes bibliographical references and index.
1SBM 0-7612-2273-2
ISBN 0-7619-2280-6 (pbk.)

1. Regression analysis - - Data processing. 2. $-Plus. 3. R (Compurer program langnage)
1. Title.

QA278.2.F628 2002
519.5'36'0285--dc21

2002066787

This book is printed on actd-free paper.
02 03 04 05 10 9 8 7 6 § 4 3 2 1

Acquiring Editor: C. Deborah Langhton
Editonal Assistant: Veronica Novak
Production Editor: Diana Axelsen
Typesetter: Technical Typesetting Inc.
Print Buyer: Michelle Lee

Contents

Preface
Acknowledgments

1.

2.

Introducing R and 5-PLUS

K1Y s Basics

1141
1.1.2
1.1.3
11.4
1.1.5
1.1.6
1.1.7

Interacting with the Interpreter

§ Functions

Vectors and Variables

User-Defined Functions

Cleaning Up

Cornmand Editing and Output Management
When Things Go Wrong

An Extended Illustration: Duncan’s
Occupationai-Prestige Regression

1.2.1
1.2.2
1.2.3
1.2.4

Reading the Data
Examining the Data
Regression Analysis
Regression Diagnostics

S Functions for Basic Statistics

Reading and Manipulating Data
Data Input

2,141
2.1.2
213
2.1.4
2.1.5

Keyboard Input

File Input to 4 Data Frame
Importing Data

Accessing Data in S Libraries
Getting Data Out of §

Working with Data Frames

2.21
2,22
2,23
2.2.4

The Search Path

Missing Data

Numeric Variables and Factors
Modifying Data

ix
xvi

18

19
21
26
28

34

37
38

38
42
46
47
48

49

49
54
60
62

Matrices, Arrays, and Lists

2.31 Matrices
2.3.2 Arrays
2.3.3 Lists
2.3.4 |Indexing

Data Attributes, Modes, and Classes*
241 Datain 4

3. Exploring and Transforming Data

4.

g2

33

Examining Distributions

3.1.1 Histograms and Stem-and-Leaf Displays
3.1.2 Density Estimates

3.1.3 Quantile-Comparison Plots
3.1.4 Boxplots

Examining Relationships

3.2.1 Scatterplots
3.2.2 Bivariate Density Estimates
3.2.3 Parallel Boxplots

Examining Multivariate Data

3.3.1 Scatterplot Matrices
3.3.2 Conditioning Plots

Transforming Data

3.4.1 Transformations for Normality and Symmetry

3.4,2 Transformations to Equalize Spread
3.4.3 Transformations to Linearity

Fitting Linear Models

Linear Least Squares Regression

4,1.1 Simple Regression
4.1.2 Multiple Regression
4.1.3 Standardized Regression Coefficients

Dummy-Variable Regression

4.21 Factors
4.2.2 Contrasts
4,2.3 Ordered Factors

4.2.4 Fitting Additive Dummy-Regression Models

4.2.5 Dummy Regression with Interactions

Analysis of Variance Models
User-Specified Contrasts®
General Linear Hypotheses”

68

69
70
70
71

78
82

85
86

86
88

<90

91
93

93
98
100

102

102
105

106

109
113
115

119
119

119
123
124

126

126
127
130
130
133

136
142
145

EXE Data and Confidence Ellipses

More on 1m and Model Formulas 149

4.7.1 formula 149

4.7.2 data 150

4.7.3 subset 151

4,74 weights 151

4.7.5 na.action 151

4.7.6 method, model, x, y, qr* 152

4.7.7 singular.ok” 152

4.7.8 contrasts 152

4.7.9 offset (R only 153

5. Fitting Generalized Linear Models 155

The Structure of Generalized Linear Models 155

Models for Categorical Responses 158

5.2.1 Dichotomous Data 158

5.2.2 Polytomous Data 167

¥ Poisson Generalized Linear Models for Count Data 177

5.3.1 Poisson Regression 178

5.3.2 Log-Linear Models for Contingency Tables 181

Odds and Ends 185

5.4.1 Other Generalized Linear Models 185

5.4.2 Arguments t0 glm 188
Fitting Generalized Linear Models

by lterated Weighted Least Squares” 189

6. Diagnosing Problems in Linear and Generalized Linear Models 191

Unusual Data 192
6.1.1 Qutliers: Studentized Residuals 192
6.1.2 Leverage: Hat Values 194
6.1.3 Influence Measures 195
Nonnormal Errors 201
62,1 Box-Cox Transformation of y 203

6.2.2 Constructed-Variable Plot
for the Box-Cox Transformation 204
Nonconstant Error Variance 206
6.3.1 Score Tests for Nonconstant Error Variance 208
6.3.2 Other Approaches to Nonconstant Error Variance 208
Nonlinearity 210

6.4.1 Component + Residual and CERES Plots 210

Vil CONTEMTS

6.4.2 Box-Tidwell Transformations of the Predictors 214
6.4.3 Constructed-Variable Plots
for Box-Tidwell Transformations 215
Collinearity and Variable Selection 216
6.5.1 Variance-Inflation Factors 216
6.5.2 Variable Selection 220
Diagnostics for Generalized Linear Models 225
6.6.1 Outlier, Leverage, and Influence Diagnostics 225
6.6.2 Monlinearity Diagnostics 230
7. Drawing Graphs ’ 235
E&] A General Approach to 5 Graphics 236
7.1.1 Defining a Coordinate System: plot 236
7.1.2 Adding Graphical Elements: axis, points,
lines, text, and 50 on 239
7.1.3 Specifying Colors 246
Putting it Together: Effect Displays 247
Graphics Devices 255
8. Writing Programs 257
ERN Defining Functions 258
Working with Matrices* 261
Program Control: Conditionals, Loops, and Recursion 268
8.3.1 Conditionals 268
8.3.2 Loops (lteration) 269
8.3.3 Recursion 272
8.3.4 An Extended illustration: Binary Logistic Regression* 273
apply and its Relatives 278
Object-Oriented Programming in 5* 283
8.5.1 5 Version 3 283
8.5.2 5 Version 4 288
EX] writing 5 Programs 292
References 295
Index of Data Sets 299
Index of Functions, Operators, Contral Structures,
and Other Symbals 300
Author Index 305
Subject Index 306
About the Author

312

Preface

R and S-PLUS are statistical-computing environments, incorporat-
ing implementations of the S programming language. This book
aims to teach the use of R and S5-PLUS in the context of applied regres-
sion analysis—typically studied by social scientists and others in a second
course in applied statistics. As the title of the book implies, I assume that
the reader is learning or is otherwise familiar with the statistical meth-
ods that I describe; thus, this book is a companion to a text or course
on. modern applied regression, such as (but not necessarily) my own
Applied Regression, Linear Models, and Related Methods (Fox, 1997).!
Of course, different texts and courses have somewhat different content,
and if you encounter a topic that is unfamiliar, or that 1s not of interest,
feel free to skip it or to pass over it lightly.

The availability of cheap, powerful, and convenient computing has rev-
olutionized the practice of statistical data analysis, as it has revolutionized
other aspects of our society. Once upon a time, bur well within living
memory, data analysis was typically performed by statistical “packages”
running on mainframe computers, The primary input medium was the
punch card, large data sets were stored on magnetic tapes, and printed
output was produced by line printers; data were in rectangular “case-by-
variable” format. The job of the software was to combine instructions
for data analysis with a data set to produce a printed report. Computing
jobs were submitted in “batch mode,” rather than interactively, and a
substantial amount of time—hours, or even days—elapsed between the
submission of a job and its completion. .

Eventually, batch-orienred compurers were superseded by interactive,
time-shared, terminal-based computing systems and then successively by
personal computers and workstations, networks of computers, and the
Interner. Bur some statistical software still in use traces its heritage to
the days of the card reader and line printer. Statistical packages, such as
SAS and SPSS, have acquired a variety of accoutrements (such as graph-
ical interfaces and limited programming capabilities), but they are still

1. The ropics covered in this book correspond closely to thase 1n Fox (1997}, and many of che

examples zre drawn from thar source, My regresgion text also provides a general stansrical reference
for the methods discussed here.

principally oriented toward combining instructions with rectangular data
sets to produce printed output.?

This model of statistical computing often works well in the applica-
tion of standard methods of data analysis. It is relatively difficult, how-
ever, to do something that is nonstandard or to add to the capability
of a statistical package by programming a new technique. In contrast,
programming languages provide access to a variety of data and program-
ming structures, Developing statistical software in traditional program-
ming languages, such as C or FORTRAN, however, is a time-consuming
task.

S is a high-level computer programming language designed to facilitate
the implementation of statistical methods. It is embedded in a “program-
ming environment,” including an interpreter for the S language, with
which the user-programmer can interact in a conversational manner.® S
is one of several statistical programming environments; others include
Gauss, Stata, and Lisp-Stat.*

In a good statistical programming environment, one can have one's
cake and eat it too: Routine data analysis is convenient, but so are pro-

gramming and the incorporation of new statistical methods. I believe that
S balances these factors especially well:

W S is extremely capable “out of the box,” incorporating a wide range
of standard statistical applications, augmented by an even wider range
of freely available add-on libraries {(see below).

B The S programming language 15 easy to use (the easiest programming
language that I have encountered) and is finely tuned to the develop-
ment of statistical applications.

B The S programming language is also very carefully designed from the
point of view of computer science as well as statistics. Indeed, John
Chambers, the principal designer of S, won the 1998 Software System

Award of the Association for Computing Machinery (ACM) for the §
System.

2. Wath SAS, in particular, the situation is not so clear-cut, because there are several facilities for
programmung: The SAS DATA step 1s a simple programmng language for mantpulating data sers,
the IML {®*mteractive matnx language”) procedure provides a programming language for martrix
compurations, and the macro facility allows the user to build applications that incorporate DATA
steps and calls o SAS procedures. Nevertheless, programmung in SAS 15 substantially less consistent
and convenent than 1n a true statisncal programming environment, and 1t remains farr to say that
SAS principally 15 orented toward processing rectangular data sets to produce printed cutput.

3. A compiler translates a program writien in a programming language into an independently exe-
cutable program in machinc code. In contrast, an mierpreter translates and executes a program
under the control of the interpreter. Although 1t 1s 1n theory possible to write a compiler for a
gh-level. interactive language such as §, it is difficult to do so. Compiled programs usnally execute
more efficiently than interpreted programs. In advanced usc, R and $-PLUS both have facilities for
incerperating compiled programs wrnitten 1n FORTRAN and C.

4. Paralle! brief presentations of different statistical-campuung environments may be found in Stine
and Fox (1997},

B The two implementations of $—R and $-PLUS—are very solid, incor-

porating, for example, sound numerical algorithms for statistical com-
putations,

S is a product of Bell Labs, where it was developed, and continues to
be developed, by experts in statistical computing, including John Cham-
bers, Richard Becker, and Allan Wilks. Like most good software, S has
evolved substantially since its origins in the mid-1970s. The most recent
major versions still in use are 53 and S4, which have some significant
differences. Although Bell Labs originally distributed S directly, it is now
available only as the commercial product S-PLUS, sold by Insightful Cor-
poration. There are implementations of S-PLUS for Windows PCs and
for a variety of Unix/Linux systems. The most recent Windows versions
as I write this are S-PLUS 2000, which corresponds to the 53 language,
and 5-PLUS 6.0, which corresponds to the 54 langunage.

R is an independent, open-source, and free implementation of the §
language, developed by an international team of statisticians, now includ-
ing John Chambers. The current version is R 1.3.1, which runs on Win-
dows PCs, Macintoshes, and various flavors of Unix and Linux. Version
1.3.1 of R is relatively close to §3; version 1.4, still in development,
will move R toward $4.° There will remain some important differences
between the two implementations of the S language, but most are at a
relatively deep level and largely will not concern us; when necessary, 1
discuss differences between R and S-PLUS and between 53 and $4.

Diiferences Among Versions of S

} point out many smal! differences between S-PLUS and R and between
53 and 54 in boxes such as this one. The title of the box will tel! you
whether the information in it is relevant to your version of S.

It is easy to get tangled up in the nomenclature of implementations and
versions, so I will adopt the following simple rule for this book: 1 will
use “S” generically to refer both to R and S-PLUS and to the 83 and 54
language versions of S proper. As 1 mentioned, distinctions will be made
as necessary.

One of the great strengths of S is the ability to add new capabiliries
to the software. Not only is 1t possible 1o write functions {programs),
but it is convenient to combine related sets of functions and data in

5. Version 1.4 of R 1s due for release 1n December 2001; currently, three “minor”™ versions of R
(corresponding to the tenths place i the version number) are released yearly, so you will almost

surely be working with a newer version than the one described 1n this book. Significanr developments
will appear on the Web site for the book.

PREFACE

S-PLUS “library sections” and R “packages” ({both of which I will call
“libraries”). Currently, for example, there are more than 100 conrtributed
packages available on the R Web site (see below), many of them prepared
by experts in various areas of applied statistics, such as resampling meth-
ods, mixed models, and survival analysis. In the statistical literature, new
methods are often accompanied by implementations in S; indeed, S has
become a kind of lingua franca of statistical computing—at least among
statisticians,®

The computer output and graphs in this book were produced with R.
Note as well that the ritle of the book places R first. It may seem peculiar
to favor R in this manner—after all, S-PLUS came first—but there are
several good reasons to do so:

1. R is free software, which makes its use in college and university
courses (and other settings where cost is important) especially attrac-
tive. It is true that S-PLUS offers generous site-license plans to
educational instirutions, bur this is only helpful if your institurion
participates.

2. As mentioned, there are implementations of R for Macintoshes,
which are still used in many educational institutions,

3. While S-PLUS maintains some advantages—a graphical user interface
(GUI), for example—I believe that the current development of R is
more dynamic. R has excited a great deal of interest in the statistical-
computing community.

It is my expectation that most readers of the book will use a
Windows implementation of R or S-PLUS, and the presentation in
the text reflects that assumption, but virtually everything should
apply equally to other implementations. The Web site for the book,
http://www.socsci.mcmaster.ca/ jfox/Books/companion/, includes
brief instructions for downloading, installing, and using the Windows
version of R, and for downloading and installing add-on packages.”
The home page for R, http://www.r-project.oxg/, provides access to
a panoply of resources and information, including a link to the Com-
prehensive R Archive Network (CRAN), from which R software can
be downloaded. Information about S-PLUS is available from Insightful
Corporation at http://www, insightful.com/.

6. In econamenrics, for cxample, Stara appears to be more widely used. I hope that this book will
help to popularize § among social scienusts,

7. If you have difficulty accessing rhis Wcb sic, please check the Sage Publications Web site ar

wew. sagepub. com for up-to-date informanen. Search for “John Fox” and follow the links to the
Web site for the book.

PREFACE

In addition to instructions for obtaining and installing R, the Web site
for the book contains the following materials:

m Downloadable versions of the car {companion to applied regression)
library for R and 5-PLUS. This library includes software and data sets
described in the book.

® An appendix (referred to as the “Web appendix” in the text) contain-
ing brief information on using S for various extensions of regression
analysis not considered in the main body of the text: nonlinear regres-
sion, robust and resistant regression, nonparametric regression, Cox
* regression for survival data, mixed-effects models, structural-equation
models, and bootstrapping. I have relegated this material to a down-
loadable appendix in an effort to keep the text to a reasonable length.

I plan to update the appendix from time to time as new developments
warrant.

m Downloadable scripts for all of the examples in the text.
® Some information for instructors using R in their classes.

m Errata and updated information about R and $-PLUS.

This book is not intended as documentarion for R and S-PLUS*: It
is meant to be read, though not necessarily from cover to cover. Vari-
ous facilities of S are introduced as they are needed in the context of
detailed, worked-through examples. If you want to locate information
about a particular fearure, however, consult the index of functions and
operators, or the subject index, at the end of the book; there is also an
index of dara sets used in the text. Occasionally, more demanding mate-
rial {e.g., requiring a knowledge of martrix algebra) is marked with an
asterisk; this material may be skipped without loss of continuity, as may
the footnotes.’

Most readers will want to try out the examples in the text. You should
therefore install R or S-PLUS (and the car library) before you start to
work through the book. As you duplicate the examples in the text, feel
free to innovate, experimenting with § commands that do not appear

8. 5-PLUS comes with exrensive dacumentanan, Likewise, thorough decumenravon for R is avail-
able through the R Web sue. Both R and 5-PLUS have substanual {(and overlapping) user commu-
mities who contribure ro acnve and helpful e-mail hists. See the previausly mennoned Web sives for
details. [And remember to obgerve proper “nenquette”: Look for answers in the documentation
and frequently-asked-quesnons (FAQ) lists before posting a question to an e-mail discussion Ysr; che
people who answer your question arc volunteering their time.)

9. The foomotes to the text include several kinds of matenal: (1) references to other parts of the rext
and, occastonally, to other sources; (2) minor claboradon of powmts in the text; and (3) indications
of portions of the text that represent (I hope) 1nnocent distornon tor the purpose of sumplification,
The object is to present more complete and correct informanon without interrupang the How of the
text and without making the mamn text overly difficulr.

in the examples. You should also be aware that the examples in each
chapter are cumulative: Later examples often depend on earlier ones, so
do not expect to be able to work the examples starting in the middle

of a chaprer. The examples in different chapters are independent of each
other, however.

Here is a brief chapter synopsis:

Chapter 1 explains how to interact with the R or S-PLUS interpreter,
introduces basic concepts, and provides a variety of examples, including
an extended illustration of the use of S in dara analysis. The chapter ends
with a brief presentation of S functions for basic statistical methods.

Chapter 2 shows you how to read data into S from several sources and
how to work with data sets. There is also a discussion of basic data
structures such as vectors, matrices, arrays, and lists.

Chapter 3 discusses the exploratory examination and transformation of
data, with an emphasis on graphical displays.

Chapter 4 describes the use of S functions for fitring and testing linear

models, including simple and multiple regression, dummy regression, and
analysis of variance.

Chapter 5 focuses on generalized linear models in S. Particular attention

is paid to generalized linear models for categorical data and to Poisson
linear models for counts.

Chapter 6 describes methods—often called “regression diagnostics”—
for determining whether linear and generalized linear models adequately
describe the dara to which they are fit. Many of these methods are imple-
mented in the car library associated with this book.

Chapter 7 contains material on plotting in S, describing a step-by-step
approach to constructing complex S graphs.

Chapter 8 is an introducton to programming in 5, including a discus-
sions of function definition, operators and functions for handling matri-
ces, control structures, and object-oriented programming.

With the possible exception of the asterisked material, Chapters 1
and 2 contain general information that should be of interest to all read-
ers. Some readers (those who prefer to learn about general principles
before seeing concrete applications) may want to read Chapters 7 and 8
before Chapters 3 through 6. Although some topics are obviously log-
wcally dependent on others {e.g., regression diagnostics for generalized
linear models in Chapter é depends on material on generalized linear

models in Chapter S}, sections of Chapters 3 through é may be read as
needed.

I employ a few simple typographical conventions:

® Computer input and output, as well as S libraries, functions, and vari-
ables, are printed in 2 monospaced typewriter font.

m Occasionally, generic specifications (to be replaced by particular infor-
mation, such as a variable name) are given in typewriter italics.

B 5input and output are printed as they appear on the computer screen,
although I sometimes edit output for brevity or clarity; elided mate-
rial in computer output is indicated by three widely spaced periods

(..

® Sinpur is preceded by the > or + (continuation) prompts, as explained
in Chapter 1.

Graphical output is printed in many figures scattered throughout the
text; in normal use, graphs typically appear on the computer screen in
graphics windows, although both R and S-PLUS provide excellent facili-
ties for saving and printing graphs.

This book deals with the command-line interface to R and S-PLUS,
S-PLUS additonally employs a graphical user interface (GUI), which per-
mits the user to access many functions through menus and dialog boxes.
It is also possible to program graphical interfaces to user-built applica-
tions. Similar facilities for building graphical interfaces exist in R, but
they are not as extensive.

I have chosen to ignore the GUI in S-PLUS for several reasons: (1) It is
essentially self-explanatory to users familiar with standard Windows soft-
ware; in fact, this is one of the primary advantages of a menw/dialog-box
interface. (2) Many of the faciliries of S-PLUS are nor available through
the GUL (3) Perhaps most important, [believe that graphical interfaces
of this kind are best for casual or occasional use of staustical software.
Accomplished users generally prefer the command-line interface, espe-
cially if an analysis needs to be repeated or modified (and before we
begin, how do we know?). S0, be prepared to exercise your typing skills.

There is, of course, much to S beyond its application to regression
models. The 53 language is documented in two books: The New S Lan-
guage: A Programming Environment for Data Analysis and Graphics
(Becker, Chambers, & Wilks, 1988), which describes the details of 5'9;
and an edited volume, Statistical Models in S (Chambers & Hastie, 1992),
which describes the 53 object-oriented programming system and facilities
for specifying and fitting statistical models. Similarly, Chambers’s 1998
book, Programming With Data, describes the 54 language.

10. Actually, The New S Language describes 52, which 1s incorporared n 53.

PREFACE

There are several relatively advanced statistics texts that deal with
particular applications of S, such as to survival analysis (Therneau &
Grambsch, 2000) and mixed models (Pinheiro & Bates, 2000). Likewise,
some statistics texts that do not focus on 5 are nevertheless associated
with § libraries that implement the methods discussed in the book: Exam-
ples include resampling methods {(Efron & Tibshirani, 1994; Davison &
Hinkley, 1997), methods for dealing with missing dara (Schafer, 1997),
and nonparametric regression and smoothing (Hastie 8 Tibshirani, 1990;
Bowman & Azzalini, 1997; Loader, 1999). Additional sources may be
found on the R and 5-PLUS Web sites.

Two general texts on S are particularly worthy of mention here: The
third edition of Modern Applied Statistics With 5-PLUS (Venables &
Ripley, 1999) demonstrates the use of S for a wide range of statistical
applications. The book is associated with several S libraries, including
the MASS library, to which I make occasional reference. Venables and
Ripley’s text is generally more advanced and has a broader focus than
my book; there are also some differences in emphasis: For example, the
R and S-PLUS Companion has more material on diagnostic methods.
The same authors’ S Programmming (Venables 8 Ripley, 2000) provides
an advanced, in-depth treatment of programming in the various imple-
mentations and versions of the S language.

Acknowledgments

I am grateful to a number of individuals who provided valuable assis-
tance in writing this book: Douglas Bates, Georges Monette, and Sanford
Weisberg helped me with the car sofrware that accompanies the book.
Michael Friendly and three unusually diligent (and, at the tme anony-
mous) reviewers, Jeff Gill, J. Scotr Long, and William Jacoby, made many
excellent suggestions for revising the text, C. Deborah Laughron, my edi-
tor at Sage through several books, has been informative and supporrive,
as always, Finally, I wish to express my gratitude to the designers and
developers of § and R, and to those who have contributed S and R soft-
ware, for the wonderful resource that they have created.

;]
] ’l"ﬂ -

HAPTER 1

Introducing R
and S-PLUS

1 he purpose of this chapter is to introduce you to the S language
and to the R and S-PLUS interpreters. After describing some of the

basics of $, T proceed to illustrate its use in analyzing a typical, if small,
regression problem. The chapter concludes with a brief description of S
functions for familiar operations in basic statistics.

[know that many readers are in the habit of beginning a book at
Chapter 1, skipping the Preface. Please read the Preface before this firse
chapter: In particular, I assume that you have installed R or $-PLUS on
your computer and that you have access to the car library associated with
this book. Moreover, the Preface includes information on typographical
and other convenrions employed in the text.

S BASICS .

Figure 1.1 shows the R “Gu:” (graphical user interface) window imme-
diately after R is started. Under the opening message in the R Console is
the > {“greater than”) prompt. Although there are several ways to inter-
act with the R interpreter (see Section 1.1.6), [will assume, at least for

the present, that statements for the interpreter are typed directly into the
R Console.

W ale S St el Help_coicr im T

- IR A R

o O e AR St

B Copyright 2001, The R Pavelopmesn; Core Teme
Vegsion 1.3.1 12001=08=31)

R iz Irce goiowatrs and Comaf vith ABSOLUTELT NO EARRANTY.
Tou are welcome Lo rediztribuce xc apder CRCCEIR SROEliiong.
Type "liespae[p* or licence(] Tor daotcibutacn deverlm.

R i¥ o Sollaboranive proJAct wich meny concribucops,
Type copkribukprs(] ot Eore AREOCTSAELBS.

Type "damoll' foc 2owe Hzwds, hkelpl) for oo-line peip, or

help.start (1’ for m HYAL DTosseT imceciacs to help
Type Q] =0 @uix R

Iu.:.hm“ﬁm

Figure 1.1 The R “Gui” window, showing the R Console. (R version 1.3.1.)

The R “Gui”

The R Gui (unlike the graphical interface to S-PLUS) does not provide
access to statistical functions in R, Because the menus in the R Gui have
changed significantly from version to version, | defer a discussion of the
menus to the Web site for the text. | draw your attention, however, to

the Packages menu, which provides a convenient means of installing and
updating R libraries.

e VR rm— ey
e Er— —

Figure 1.2 shows the main S-PLUS window at the start of a session. Iru-
tially, the Object Browser subwindow has the focus, but I have brought
the Commands subwindow to the front and resized it. The Commands
window 1s similar to the R Console, and we can shift the focus to this
window simply by clicking in it.

k., e
e Y {“r-a" =
-

- Interacting with the Interpreter

»
g BT

Data analysis in § proceeds as an interactive dialog with the interpreter.
We type an S statement at the > prompt, press the Enter key, and the

e G Sen freed “Oul Stk dooh Optiors Aleden Al

D58 (o] £ AR e nmmlnritr—m.nF:“—"jmu agiﬁglw.mm] T,
iz le o v e T S ERRE i i e ik el et T AR M,-,pa-;wu
Wa

m b - Topyrighe [c) 159AB, TO01 ‘.I'.us;dt Coep,
. Pl wan + Copyrighk Lunent Technologen, Inc
_EMWBlllulelﬂ’ d 3 for W wing - FR
sippey [IPZNID0 date WELL Dz an C.\FroqTan r:.n:\:.nuguuu\munmx
\ E s!lhdllmsmw:
b

T

Figure 1.2 The main S-PLUS window, showing Object Browser and Com-
mands subwindows. The Commands window was brought to the
front and resized. (5-PLUS version 6.0.1.)

interpreter responds by executing the statement and, as appropriate,
returning a result, producing graphical output, or sending output to a
file or device.
The S language includes the usual arithmetic operations:
+ addition
- subtraction
* multplication
/ division
" exponentiation
Here are some simple examples of arithmetic in S:

> 248
[11 B
> 2-3
(1] -1
> 2%3
[1] &
> 2/3
[1] 0.6666667
> 2°3
[1] 8
}

INTRODUCING R AND S-PLLIS

Notice that outpur lines are preceded by [1]: When printed output con-
sists of many values spread over severa] lines, each line begins with the
index (number) of the first element in that line. An example will appear
shortly. Norice, as well, that after the interpreter executes a statement
and returns a value, it waits for the next statement, as signified by the >
pronlpt.

Several arithmetic operations may be combined to build up more or
less complex expressions:

> 472-3%32
[1] 10

In the usual notation, this statement is 4> — 3 x 2. § employs common
conventions for precedence of mathematical operators. So, for exam-
ple, exponentiation takes place before multiplication, which takes place
before subtraction; if two operations have equal precedence (such as addi-
tion and subtraction), then they take place from left to right:

> 1-G+4
{11 -1

You can always explicitly specify the order of evaluation of an expres-
sion by using parentheses; thus, the expression 4°2-3x2 is equivalent to

> (472)-(3+2)
{11 10

Be careful with the unary minus sign, - {negation), which has a higher
order of precedence than binary arithmetic operators:

> 2°-3

{11 0.125

> =2--3

Although spaces are not required to separare the elements of an arith-
metic expression, judicious use of spaces can help to clarify the meaning
of the expression: Compare the last S statement with the preceding one,
for example. Placing spaces around operators usually makes expressions

more readable (and, indeed, would improve the readability of some of
the preceding examples).

- S Functions

In addition to the common arithmetic operators, S includes many {liter-
ally hundreds) of functions, for mathematical operations, for staristical

1.1 § BASICS

data analysis, for making graphs, and for other purposes. Funcrion argu-
ments (values passed to functions) are specified within parentheses after
the function name. For example, to calculate the natural log of 100, that
is log,100 or In 100, we type:

> log(100)
[1] 4.60517

To compute the log of 100 ro the base 10, we specify:

> log(100, base=10)
f11 2

The log and logb Function in 4
In 54, the log function calculates natural logarithms; logb (with a base

argument) behaves like the log function in 53 and R. For example, in 54
the log of 100 to the base 10 is 1ogb(100, base=10).

In general, arguments to S funcrions may be specified in the order in
which they occur in the funcrion definition {to be described shortly) or
by name, followed by = (equal sign) and a value. Argument names may
be abbreviared, as long as the abbreviation is unique; thus, the previous
example may be more compactly rendered as

> log (100, b=10)
{1] =z

To obtain information about a function, use the help function. For
example:

> help(log)
lag package: base R Documentation

Logarithms and Expomentials
ﬁescription:

‘log’ computes matural logarithms, ‘legl(Q’ computes commoh (i.a.,
base 10) logarithms, and ‘leg2’ computes binary (i.e., base 2)
logarithms. The general form ‘log(x, base)’ computes logarithms
with base ‘base’ (‘leglQ’ and ‘logl' are only special cases).

. - " 4\‘-.
Usage: :
log(x)
log(x, base)

log10(x)

log2(x)

X: 2 numeric or complex vector,

base: positive number. The base with respect to which lagarithms
are computed. Defaults to e=‘exp(1)'.

Value:

A vector of the same length as ‘x’ containing the tramsformed
values., ‘log(0}’ gives ‘-Inf’ (when available).

An alternative that requires less typing is ro use the ? (help) operator,
for example, 71og. As explained in the Preface, the three widely separated
dots {. . .} mean that I have elided some information. Help informa-
tion is not printed in the R Co#nsole, but in a help window. Several help
formats are supported by R, including standard Windows help. S-Plus
also provides standard Windows help.

Because base 1s the second argument of the log functien, we can also

type

> 1log(100,10)
[2

An argument to a function may have a default value—a value that the
argument assumes if it is not explicitly specified in the function call. For
example, the base argument to the log function defaults to e >~ 2.718,
the base of the natural logarithms.

S is a functional programming language: Both the “primitive” pro-
grams that comprise the language and the programs that users write
are functions. Indeed, the distinction between primitives and user-defined
functions is somewhat artificial in S.' Even the arithmetic operators in §
are really functions and may be used as such:

> +7(2,3)
[1] &

We need to place quotation marks around *+’ (either single or double
quotes will do} so that the interpreter does not get confused, but our
ability to use + and the other arithmetic functions as in-fix operators,
as in 2+3, is really just “syntactic sugar,” simplifying the construction of

$ expressions but not fundamentally altering the functional character of
the language.

1. Sectnon 1.1.4 brefly discusses user-defined funchions; the topic 1s treated In greater depth mn

Chapter §. In both S-PLUS and R, expenienced programmers can also access programs wrtten n
FORTRAN and C.

Vectors and Variables

S would not be very convenient to use if we had to compute one value
at a time. The arithmetic operators, and most S functions, can operate
on more complex data structures than individual numbers. The simplest
of these data structures i5 a numeric vector, or one-dimensional “list” of
numbers.? Indeed, in S, an individual number is really a vector with a
single element. A simple way to construct a vector is with the ¢ function,
which combines its elements:

> c(1,2,53,4)
1] 1234

Many other functions also return vectors as results. For example,
the sequence operator (:) generates consecutive numbers, while the seq
(sequence) function does much the same thing, but more flexibly:

> 1:4
(1 1234

> 4:1
(1] 4 321

> =1:2
1 ~1 0 1 2

> seqfl,4)
[1] 1234

> seq(2, 8, by=2) # specify interval
[1] 246 8

> seq(D, 1, by=.1)
[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> seq(0, 1, length=11} # specify number of elements
(1] 0.0 0.1 0.2 0.3 0.4 0.50.6 0.7 0.8 0.9 1.0

The pound sign (#) signifies a comment: Text to the right of # is ignored
by the interpreter.

The standard arithmetic functions and operators apply to vectors on
an element-wise basis;

> C(1|2|3|4)/2
[1] 0.5 1.0 1.E 2.0

2. 1 refer to vectors as “lists™ using char term loosely, because hists it $ are a distnct data structure
(described in Chapter 2).

INTRODUCING R AND S-PLUS

> c(1,2,3,4)/c(4,3,2,1)
[1] ©.2500000 0.6666667 1.5000000 4.0000000

> log(e(0.1, 1, 10, 100), 10)
11 -1 0 1 2

If the operands are of different lengths, then the shorter of the two is
extended by reperition [as in c(1,2,3,4)/2 above]; if the length of the
longer operand is not a multiple of the length of the shorter, then a warn-
ing message is printed, but the interpreter proceeds with the operation:
> ¢(1,2,3.4) + ¢(4,3)
A(1ss77

> c(1,2,3,4) + c(4,3,2)

fil 5558

Warning message:

longer object length
is not & multiple of shorter object lehgth in:
c(l, 2, 3, 4) + c(4, 3, 2)

Operands of Different Lengths in S4
In 54, performing an arithmetic operation on operands of different lengths

produces an error (rather than a warning) when the length of the longer
operator is not a multiple of the length of the shorter one.

S would also be of little use if we were unable ro save the results
returned by functions; we do so by assigning values to variables, as in
the following example:

> x <- ¢(1,2,3,4)

> x

f11 123 4

The left-pointing arrow (<-) is the assignment operator; it is composed
of the two characters < (less than) and - {dash or minus), with no inter-
vening blanks, and is usually read as gets: “The variable x gets the value
c(1,2,3,4).”

The rule for naming variables in § is simple: Variable names are com-
posed of letters (a~z, A-Z), numerals {0-9), and periods (.}, and may be
arbitrarily long. The first character must be a letter or a period, but var-
able names beginning with a period are reserved by convention for special
purposes.’ Names in S are case sensitive; so, for example, x and X are

3. Nonstandard names may be used in a vanety of contexts, imcluding assignments, by enclosing the
names 1n single or double quotes {e.g., *first name’ <~ *Jabn'). In maest circumstances, however,
nonstandard names are best avoided.

1.1 5 BASICS

distinct variables. [t is generally a good idea to use descriptive names—tor
example, total. income rather than x2.* Typing the name of a variable
causes its value to be printed.

Once defined, variables may be used n S expressions in the normal
manner:

> x/2
[1] 0.5 1.0 1.5 2.0

including in the definition of other variables:

» y <- sqrtlx)

>y

{1] 1.000000 1.414214 1.732051 2.000000
In this example, sqrt is the square-root funcrion, so sqrt (x) is equiva-
lent to x~.5.

Unlike in many programming languages, in S variables are dynamically
defined and redefined: We need not tell the interpreter in advance how
many values x is to hold; whether it contains integers {whole numbers)
or real numbers: or whether it is a2 numeric variable, a character variable,
or something else. Moreover, if we wish, we may redefine the variable x:

» x <- morm{100) % 100 standard normal random humbers

*x

(1] -0.0Q4821767 -Q0.60571637 -0.39322377 0.43416765 0.28387745
(6] 1.35957233 0.06703925 0.07497876 0.34170083 0.61477147
{11] -0.81420864 -0.46709553 0.41896732 -0.51487725 -0.17473063
{16] 0.20457797 -0.15066077 1.74732395 -0.27819601 1.31427698
{21] -0.61184541 -0.57516762 0.04810963 0.94873165 0.57223627

> summary(x)
Min. 1st Qu. Median Mean 3rd Qu. Max.
~2.836800 -0.51550 0.03029 0.06216 0.58720 3.99900

The rnorm function generates standard-normal random numbers—in this
case, 100 of them. {Two additional arguments allow us to sample values
from a normal distribution with arbitrary mean and standard deviation;
the defaults, employed here, are mean=0 and sd=1.) Notice that when a
vector prints on more than one line, the number of the leading element
of each line is printed in brackets.

The function summary is an example of a gemeric function: How it
behaves depends on its argument. Applied (as here) to a numeric vec-
tor, summary prints the minimum and maximum values of the argument,
along with the mean, median, and first and third quartiles.

If we wish to print only one of the elements of a vector, we can specify
the index of the element within square brackets; for example, x[21] is

4. Two cammon namung styles are conventionally employed in S: (1) separaning patts of a name by
periods, 2s in total.incoma, or (2) saparating by uppercase lerers, as mn totalIncome. [prefer the
birst scyle, but this is purely a matter of taste,

the 21st element of the vector x:

> x[21]
[1] -0.6118454

Indexing in S is quite flexible. We may also specify a vector of indices:

> x[11:20]
[1] -0.6142086 -0.46708556 0.4189673 -0.5148772 -0.1747306
[6] 0.2045780 —0,1506608 1.7473240 -0.2781960 1.3142770

Negative indices cause the corresponding values of the vector to be omit-
ted:

> x[-(11:100)]
[1] ~0.04821767 -0.60571637 -0,39322377 0.43416765 0.28387745
[6] 1.35957233 0.06703925 0,07497876 0.34170083 0.61477147

The parentheses around 11:100 serve to avoid generating numbers from
—11 to 100!

A vector may also be indexed by a logical vector of the same length.
Logical values are either T {(or TRUE) or F (or FALSE)}, and frequently arise
through the use of comparison operators:

== equals

= not equals

<= less than or equals

< less than

> greater than

>= greater than or equals
Note, in particular, that the double equals (==) i1s used for testing equality,
because = is reserved for specifying function arguments.

Use of = for Assignment in S4

In 54, the equal sign (=) may also be used for assignment in place of the
arrow (<=}, except inside a function call, where = is exclusively employed |
to specify arguments by name, Because reserving the equal sign for spec-
ification of function arguments leads to clearer S expressions, | encourage
you to use the arrow for assignment, even in 4,

Logical values may also be used in conjunction with the logical oper-

ators.
& and

| or
! not
Here are some simple examples:

> 1 == 2
[1] FALSE

> 1 =2
[1] TRUE

> 1 <=2
(1] TRUE
>1 <2

[1] TRUE
>1>2

[1) FALSE
> 1 >=2
(1) FALSE
>T & T

[1] TRUE
>T&F

[1) FALSE
>F&F

[1} FALSE
>T | T '
[1] TRUE
>T | F

(1] TRUE
>F | F

[1] FALSE
> (T, B)
[1] FALSE TRUE

and a somewhat more extended example illustrating the use of the com-
parison and logical operators;

>z < x[1:10]

> Z

[1] -0,04821767 —0.650571637 -0.39322377 0,43416765 0.28387745
[6] 1.35957233 0.06703925 0.07497876 0.34170083 0.61477147

>z < -0.6
(1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

>z >0.b
[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

>z <=-0.51]2z>0,5 #% note <, > of higher precedence than |
(1] FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUL

> abs{z} > 0.5 # absolute value
[1) FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

> z[abs{z) > 0.5]
[1) -0.6057164 1.3595723 0.6147715

The following points are noteworthy:

m We need to be careful in typing =z < -0.5; although most spaces in
S expressions are optional, the space after < is crucial: z<-0.5 would

INTRODUCING R AND S5-PLUS

assign the value 0.5 to z° {As I mentioned, even when the spaces

are not required around operators, they usually belp to clarify an §
expression.)

® Logical operators have lower precedence than comparison operators,
and so z « -0.5 | z > 0.5 is equivalent to (z < -0.5) | (z >
0.5). When in doubt, parenthesize!

B The abs funcrion takes the absolute value of its argument.

B As the last expression illustrates, we can index a vector by a logical
vector of the same length, selecting the elements with TRUE indices.

In addition to the vectorized and (&) and or {|) operators presented
here, there are special and (k&) and or {I |} operators that take individ-
ual logical values as arguments. These are somerimes useful in writing
programs (see Chapter §).

User-Defined Functions

As you probably guessed, S includes functions for calculating many com-
mon statistical summaries, such as the mean of a vector:

> mean(x)
[1] 0.06216418

Recall thar x is a vector of 100 standard-normal random numbers. Were
there no mean funcrion, we could have calculated the mean straightfor-
wardly using sum and length:

> sum(x)/length(x)
(1] 0.06216418

To do this repeatedly every time we need a mean is inconvenient, so—in

the absence of the “primitive” function mean—we could define our own
mean function:

> my.mean <~ function(x) sum(x)/length(x)
>

5. Another occasional {and difficule to diagnose) source of errors 15 the arrempred use of the under-
score in variable names, as in
*x 1< 10
Error 1n 1 <- 0 : invalid (do_set) left-hand side to assigament

The underscore character (_) is a synonym far the assignmenr arrow (<-). The offending expression
15 therefore equivalent to x <- 1 <~ 0, which rries ro assign the value O to the numeral 1 and then

to x. Even correct use of the underscore leads to difficult-to-read expressions and should therefore
be discouraged.

1.1 § BASICS

8 We define a function using the function function. (I could not resist
writing that sentence!®) The arguments to function, here just x, are
the formal arguments of the funcrion being defined, my.mean. As
explained below, when the function my .mean is called, a real argument
will appear in the place of the formal argument. The remainder of

the function definition is an expression specifying the body of the
function.

m The rule for naming functions is the same as that for naming vari-
ables. I avoided using the name mean because I did not wish to redefine
the primitive function mean, which is a generic function with greater
utilicy than our simple version. Actually, we cannot damage the defi-
nitions of primitive functions, but if we define a function of the same
name, our version will be used in place of the standard function, and

is said to “shadow™ or “mask™ the standard function. This behavior
is explained in Chapter 2.

B The bodies of most user-defined functions are more complex than in
this example, consisting of a compound expression comprising sev-
eral simple § expressions, enclosed in braces and separated by semi-
colons or newlines. I introduce additional information about writing

funcrions as required, and take up the topic more systematically in
Chaprer 8.

Having defined the function my.mean, we may use it in the same man-
ner as the primitive functions. Indeed, many of the standard functions in
§ are not true primitives, but are themselves written in the § language.

> my.meanf{x)

{11 0.06216418
> my.mean(y)

[1] 1.536566

> my.mean(1:100)
{1] 50.5

As these examples illustrate, there is no necessary correspondence
berween the name of the formal argument x of the function my.mean
and the actual argument to the function, which need not be named x.
Funcrion arguments are evaluated by the interprerer, and it is the value
of the argument that is passed to the function, not its name. Function
arguments (and any variables that are defined within a function) are local
to the function: Local variables exist only while the function executes
and are distinct from global variables of the same name. In the example,

6. Actually, function 15 a “special form,” not a rrue function, because its arguments (here, the
formal argument x] are nar evaluared. The disnncnon 1s techmcal, and it will da no harm e think
of functien as a funcnon that returns 2 funcnon as us resulr.

the last call to my.mean passed the value 1:100 to the argument x, but
this did not change the contents of the global variable x:

> X

[1] -0.04821767 -0.60571637 -0.39322377 0.43416765 0.28387745
[6] 1.35957233 0©.06703925 0.07497876 0.34170083 0.61477147
(11] -0.61420864 -0.48709553 0.41896732 -0.51487725 -0.17473063

1:5 Cleaning Up

In R, user-defined variables and functions exist in a region of memory
called the “workspace.” The R workspace can be saved at the end of
a session (or even during the session), in which case it is automatically
loaded at the start of the next session. Different workspaces can be saved
in different directories, as a means of keeping several projects separate.
Starting R in a directory loads the corresponding workspace.’

The objects function hists the names of variables and functions resid-
ing in the R workspace:

> objects{}
[1] l‘last.wming" “my.mean" llxll |Iyll l!zll

The function objects requires no arguments, but we nevertheless need
to type parentheses after the function name. Were we to type only the
name of the function, then objects would not be called—instead the
definition of the objects function would be printed. (Try it!} The variable

last.warning was generated automatically by the R interpreter earlier
in the current session:

> last.warning
$"longer object length

is not a multiple of shorter object length"
c(1, 2, 3, 4) + c(4, 3, 2}

Saving Data in S-PLUS

In S-PLUS, user-defined objects are saved in files in a special data direc-
tory (named _data in the Windows version of 3, and .data in 54), and
therefore persist from session to session. As in R, projects can be kept

! separate by using difierent directories. The objects function lists objects
in the 5-PLUS data directory.

il

7. See the Web site for the book and the R documentanion for addinional infarmation on arpamzing
geparate projects.

It is natural in the process of using S to define variables—and occasion-
ally functions—that we do not want to retain. It is good general practice
in S-PLUS, and in R if you intend to save the workspace, to clean up after
yourself from time to time. We may use the remove function to delete the
variables x, vy, and =:

> remove(x, ¥, z)
> objects()
(1] "last.warning" "my.mean"

(I am keeping the function my.mean for use in Section 1.1.7.)

Using remove in S-PLUS

In S-PLUS, you must specify the names of objects as a character vec-
tor, rather than the objects themselves, as the argument to remove: For
example, remove(c('x’, *y’, ’21)).

Command Editing and Output Management EEL‘H\BE

in the course of typing an S command, you may find it necessary to cor-
rect or modify the command before pressing Enter. Both R and S-PLUS
support command-line editing:

m In S5-PLUS, you may use the left and right arrow keys or the mouse to
move the text-insertion cursor within the current command line; the
Home key moves the cursor to the beginning of the line, the End key
to the end of the line.

B R is somewhat less flexible: You must move the cursor with the left
and right arrow, Home, and End keys.

B The Delete key deletes the character under the cursor in R, and to the
right of the cursor in S-PLUS.

B In both R and S-PLUS, the Backspace key deletes the character to the
left of the cursor.

m The standard Windows Edit menu and keyboard shortcuts may be
employed, along with the mouse, to block, copy, and paste text.

B In addition, both R and S-PLUS implement a command-history mecha-
nism that allows you to recall (and edit) previously entered commands
without having to retype them. Use the up and down arrow keys to

INTRODUCING R AND 5-PLUS

move backward and forward in the command history. Press Enter in

the normal manner to submit a recalled (and possibly edited) com-
mand to the interpreter.

It is advantageous to use an editor to write funcrions: It is imprac-
tical to write any bur the simplest function at the command prompr.
The Script window in S-PLUS incorporates a reasonable, if minimal, pro-
gramming editor. Moreover, copy-and-paste operations may be used with
any plain-text {ASCII) editor, such as Windows Notepad. Simply prepare
your program in the editor, block and copy a function definition, and
paste this rext into the R Console or S-PLUS Commands window. Alrer-
natively, a program prepared in an editor may be saved to a file and read
into R or S-PLUS via the scurce function.

My personal preference is to use the shareware WinEdt programming
editor, which may be set up to work directly with R {see the R Web site
for details). Many people prefer the free Emacs editor, which is available
for a variery of platforms, including Windows, and which may also be
set up ro work with R or S-PLUS.

1 also use an editor for data analysis in S, blocking and submitting com-
mands for execution rather than typing them at the command prompt.
{In Notepad, you would block and copy the commands to be submitted,
pasting them directly into the R Console or S-PLUS Commands win-
dow.) This mode of operation makes it easy to fix errors, particulacly
in multiline commands, and to try our alternatives. When I work in the
editor, [build a permanent, reusable record of input to my S session as
a by-product.

As T work, [save text and graphical output from S in a word-
processing {e.g., Word or WordPerfect) document. I simply block and
copy text output from R or 5-PLUS, pasting it into the word processor,
and raking care to use a monospaced (i.e., typewriter) font, such as
Courier New. Similarly, I copy and paste graphs. In both R and S-PLUS,
right-clicking on a graphics window brings up a menu thar allows you
to save the graph to a file or copy it to the Windows clipboard; alter-
natively, you may use the File menu in R or the Edit menu in S-PLUS
when a graphics window has the focus. In R, copying the graph to the
clipboard as a Windows Metafile (rather than as a bitmap) generally
produces a more satisfactory result.

. When Things Go Wrong

No one is perfect, and it is impossible to use a computer withour mak-
ing mistakes. Part of the craft of computing is learning to recognize the

1.1 § BASICS

source of errors. | hope that the following advice and informaton will
help you to fix errors in § commands:

® Although it never hurts to be careful, do not worry too much about
generating errors. An advantage of working in an interactive system is
that you can proceed step by step, fixing mistakes as you go.

m If you are unsure whether a command is properly formulated, or
whether it will do what you intend, try it out and carefully examine
the result. You can often debug a command, or series of commands,
by trying it on a scaled-down problem with an obvious answer. If the
answer that you get differs from the one that you expected, focus your
attention on the nature of the difference.

® When you do generate an error, read the error or warning message
carefully. It is often possible to figure out the source of the error from
the message. Some of the most common errors are simply typing mis-
takes: For example, when the interpreter tells you that an object is not

found, suspect a typing error (or that you have forgotten to attach the
library containing the object).

B Sometimes, however, the source of an error may be subtle, particularly
because an 5 command can generate a sequence of funcrion calls {of
one function by another), and the error message may originate deep
within this sequence. The traceback function (called with no argu-
ments) provides information about the sequence of function calls lead-
ing up to an error. Although the formar of the ourpur from traceback
differs among R, 53, and 54, the general nature of the information
provided is similar. Here is a simple example employing R:

> letters

[11 lla“ |l‘°'|l |lc“ |Id|l Ilel Ilf“ Ilg' lh“ I|1“ .j" “kll Ill“ Ilmll Iln“ “nll
Elﬁ] l!pl‘ “q“ “rl' "5“ “t" llull Ilvll ||wll lell lIY“ |lzll
> my.mean(letters)

Error 10 sum(..., Na.Tm = na.rm) : 1nvalid "mode® of
argument

The variable letters contains the lowercase letters, and, of
course, calculating the mean of character data makes no sense. The
source of the problem is obvious here, but notice that the error occurs
in the sum function, not directly in my.mean; traceback shows the
{short) sequence of function calls culminaring in the error:

> traceback()
2: sum{x)
1: my.mean(letters)

m Remember that not all errors generare error messages. Indeed, the ones
that do not are more pernicious, because you may fail ro notice them.

Always check your output for reasonableness, and follow up suspi-
cious results.

m if you need to interrupt the execution of a command, you may do so
in R or 5-PLUS by pressing the Esc (escape) key, or in R by using the
mouse to press the Stop button in the toolbar.

AN EXTENDED ILLUSTRATION: DUNCAN’S
OCCUPATIONAL-PRESTIGE REGRESSION

In this section, I illustrate how to read data from a file into an S data
frame (data set), how to draw some simple graphs to examine the data,
how to perform a linear least squares regression analysis, and how to
check the adequacy of the preliminary regression model using a variety
of “diagnostic” methods. It is my intention both to introduce some addi-
tional capabilities of S and to convey the flavor of using S for statistical
data analysis. All of these topics are treated at length later in the book,
so you should not be concerned if you don’t understand all of the details.

The data in the file Duncan.txt were originally analyzed by Duncan
(1961). The first few lines of the data file are as follows:

type income education prestige

atcountant prof 62 86 82
pilot proef 72 76 83
architect pref 75 92 g0
author prof 55 g0 76
chemist prof 64 86 g0
Minister prof 21 84 a7
prefessor prof 64 93 93
dentist prof BO 100 20
reporter wc 67 87 52
engineer prof T2 86 85

The first row of the file consists of variable (column) names: type,
income, education, and prestige. Each subsequent row of the file
contains data for one observation, with values separated by spaces. In
this data set, the observations are occupations, and the first entry in each
row is the name of the occupation; note that there is no variable name
for the observation-name column. There are 45 occupations in all, only
10 of which are shown.

The variables are defined as follows:

B type: Type of occupation—te (blue collar), we (white collar), or prof
(professional or managerial).

m income: Percentage of occupational incumbents 1n tic 12ou ol o v,
sus who earned more than $3500 per year.

B education: Percentage of occupational incumbents in 1950 who were
high-school graduates.

m prestige: Percentage of respondents in a social survey who rated the
occupation as good or better in prestige.

Duncan performed a linear least squares regression of prestige on
income and education. He proceeded to use the regression equation
to predict the prestige levels of occupations for which the income and
educational levels were known but for which there were no direct prestige
ratings. Duncan did not employ occupational type in his analysis, and 1
largely ignore the variable here,

I]

Reading the Data ; 1.2

The first step is to read the data into an § data frame, using the
read.table function:

> Duncan <~ raad.table(’D:/data/Duncan.txt’, headar=T)
> Duncan

type income education prestigse

accountant prof 62 86 82
pilot prof 72 76 83
architect prof 75 92 a0
author prof BB 80 78
chemist prof G4 86 90
minister prof 21 84 87
professcr prof 64 93 23
dentist pref g0 100 90
reporter we 67 87 b2
engineer prof 72 86 88

> summary (Duncan} .

Type income education prestige
bc :21 Min. : 7.00 Min. : T7.00 Min. : 3.00
prof:i8 1st Qu.:21.00 ist Qu.: 26.00 ist Qu.:16.00
we : 6 Median :42.00 Median : 45.00 Median :41.00

Mean +41 ,87 Mean : B2.566 Mean -47.69
3rd Qu.:64.00 3rd Qu.: 84.00 3rd Qu.:81.00
Max. :81.00 Max. +100.00 Max. :97.00

8 The initial argument to read.table is the location of the file contain-
ing the data to be read. Note that the file name is given in quotes and
that forward slashes (/) are used rather than the standard Windows
back slashes (\) to separate directories in the path to the file.

INTRODUCING R AND 5-PLUS

@ The argument header=T tells read.table that the first row of the file
contains variable names.

® Here, I assign the data frame to the variable Duncan. I prefer to begin
the names of data frames with uppercase letters, to use lowercase
names for variables within data frames, and to name dara frames for
the files from which the dara were read. S enforces none of these con-
ventions, but I find that they help me to keep things straight.

The file buncan.-txt is supplied with the car library. As explained
in the next chapter, this and other data sets in an attached library are
available as data frames without being read explicitly- To duplicare the
example bere, make a copy of Duncan.txt.®

Typing Duncan implicitly invokes the generic print function, which
prints the data frame in a suitable format. (This is normally how objects
get printed in S.)

The generic summary function also has a “method” that is appropriate
for dara frames. As described in Chaprer 8, generic functions know how
to adapt their behavior to their arguments. Thus, a function such as
summary may be used appropriately with diverse kinds of objects. Because
the column in the data file corresponding to type contains character
data, the read.table function by default made type a factor—a kind of
variable appropriate for categorical dara. The summary function simply
counts the number of observations in each category of the factor. The
other variables—income, education, and prestige—are numeric, and
the summary function reports the minimum, maximum, median, mean,
and the first and third quartiles for each numeric variable.

“Attaching” the Duncan data frame allows us to access its columns by
name, much as if we had directly defined the variables in the dara set:

» attach{Duncan)
» prestige
(1] 82 83 90 76 90 87 93 90 52 88 57 89 97 58 73 38 76 81 45 92

{211 39 34 41 16 33 53 67 57 26 29 10 15 19 10 13 24 20 7 3 16
{411 6 11 8 41 10

Reading and manipulating dara is the subject of Chapter 2, where the
topic is developed in greater detail.

8. Afrer installing the car library on 2 Windows system, locare the subdirectory 11brary\car\data
under the man R directory. The zip archive Rdata.z1p in this subdirectory contaws all the dara
sets In car. Using a zip utility, éxtract the file Duncan. txt from the archive. Alternanvely, 1f you are
using 5-PLUS, rhe file Duncan. txt may be downloaded from the Web site for the book.

1.2 AN EXTENDED ILLIUSTRATION

Histegram ol prestige Histegram of presnuge

]
|
i

| — i 1 1 1 1 I 1 i T] 1
0 20 40 80 80 100 0 20 1 50 -] 100

14

10
1

Frequancy
Fraguency

2
1
2
| RS [(SRR (R

presige prastige

{a) (b)

Figure 1.3 Distribution of prestige.

Fxamining the Data 1.2.2

Before fitting a regression model to Duncan’s occuparional-prestige data,
it is advisable to become more intimartely acquainted with the data.
Figure 1.3(a) shows a histogram for the response variable prestige,
produced by a call to the hist funcrion:

> hist(prestige)
>

The function hist is different from the S functions that we previously
encountered in that it does not return a visible result,’ bur rather has
the “side effect” of drawing a graph; the graph appears in a separate
graphics window, and it may be copied to the Windows clipboard, saved
to a file, or printed.

The histogram in Figure 1.3(a) has perhaps too few bins (class inter-
vals) for a data set with n = 45 observations. A rough rule is that the
number of bins for a variable with fewer than 100 observations should
be no more than about 2./7. (Other, more flexible, rules are described
in Chapter 3.) Using S to calculare the recommended maximum number
of bins:

> 2usqrt(length(prestigel)
1] 13.41641

9. The hist function does, however, rerurn an prvisible resulc—a “list™ thar conrains rhe information
necessary to draw the histogram. To render rhus list visible, assign it to a vanable, e.g., rasult <-
hist(prestige), and then pnor rasult. Lists are discussed in Chaprer 2,

> hist(prestige, nclass=12)
>

S responds by drawing a histogram with 10 bins (balancing my request
against its desire to use “nice” numbers for the endpoints of the bins); the
result is shown in Figure 1.3(b). The distribution of prestige appears
to be bimodal, with observations stacking up near the lower and upper
boundaries. Because prestige is a percentage, this behavior is not alto-
gether unexpected, and we may find later on that we need to use a logit
(log-odds) or similar transformation of this variable. As it turns out,
however, it will prove unnecessary to transform prestige.

We should also examine the distributions of the predictor variables,
along with the relationship between prestige and each predictor, and
the relationship berween the two predictors. The pairs function in S
draws “scatterplot matrices”; the function is quite flexible, and I take
advantage of this flexibility by placing histograms for the variables along
the diagonal of the graph. To better discern the pairwise relationships
among the variables, I augment each scatterplot with a least squares line
and with a nonparametric-regression smooth.'®

> pairs(cbind(prestige,inconre,edication),
+ panel=function(x,y{

+ peints(x,y}

+ abline(lm(y~x), 1ty=2)

+ lines(lowess(x,y)})

+ i

+ diag.panel=function(x){

+ par (new=T)

+ hist(x, main="", axes=F, nclass=12)
+ }

*)

>

This expression is substantially more complex than the other S function
calls that we have encountered, and therefore requires some explanation:

m The cbind (column-bind) funcrion constructs a three-column matrix

from prestige, income, and education, as required by the pairs
function.

® The panel argument to pairs specifies a function that draws each
off-diagonal panel of the scatterplot matrix. The function must have

10. Nanparametnc regression is discussed in the Web appendix to the book, Here, the method 15
used simiply to pass a smooth curve through the dava.

two arguments (which 1 call x and y), representing the horizontal anu
vertical variables in each plot. The panel function can be a prede-
fined function or—as here—can be a so-called “anonymous” function,
defined “on the fly.”!! My panel function consists of three statements:

1. points(x,y) plots the points.

2. abline{1m(y~x), 1lty=2) draws a broken line (specified by the
line type,!? 1ty=2) with intercept and slope given by a linear
regression of y on x, computed by the 1m (linear-model) func-
tion. Note the sequence of events here: The Im function fits a
linear regression of y on x , returning a linear-model object; this
object is then passed as an argument to abline, which uses the
intercept and slope of the regression to draw a line on the plot.

* 3. lines(lowess(x,y)) draws a solid line (the default line type)
showing the nonparametric regression of y on x. Again, note
the sequence of operations: The lowess function computes and
returns coordinates for points on a smooth curve relating y to
x; these coordinates are passed as an argument to lines, which
connects the points with line segments on the graph.

Because there is more than one statement in the function body, these
statements are enclosed as a block in curly braces, { and }. Notice
how the lines are indented to reveal the structure of the expres-
sion; this convention is optional but advisable. If no panel function
is specified, then panel defaults to points: Try simply specifying
pairs(cbind (prestige,income,education)).

B8 The diag.panel argument similazly tells pairs what, in additon to
the variable names, to plot on the diagonal of the scatterplot matrix.
The functon supplied must take one argument (x), corresponding to
the current diagonal variable:

1. par(new=T) prevents the hist function from trying to clear the
graph: High-level § plotting functions, such as plot, hist, and
pairs, by default clear the current graphics device prior to draw-
ing a new plot. Other, lower-level plotting functions, such as
points, abline, and lines, do not clear the current graphics
device by default, but rather add elements to the graph.

2. hist(x, main="", axes=F, nclass=12) plots a histogram for
%, suppressing both the main title and the axes.

11. The funcuion is termed “ancnymous” because it literally is never given a name: The funcnon
objecr rerurned by function is lefr unassigned.

12, Chaptar 7 discusses the construcnion of S graphics, including selection of line types.

INTRODUCING R AND S-PLUS

e 1] iy 18-
restige Lo sl
0° o s %
L =
L&, 2
— "w o)
“a o i
imcgm L%
‘uu B’.,-nn
a0 % = & 3 18-
- o 2% |education].
. =
2, @ o

0 20 60 100 20 60 100

Figure 1.4 Scaterplot matrix for prestige, income, and education.

The scatterplot matrix for prestige, income, and education appears
in Figure 1.4. The variable names on the diagonal label the cells: For
example, the scatterplor in the upper righe-hand corner has education
on the horizontal axis and prestige on the vertical axis,

The pairs Function in S-PLUS
The pairs function in 5-PLUS does not take a diag.panel argument, so

it is not possible to place univariate displays, such as histograms, down
the diagonal of the scatterplot matrix.

Like prestige, education appears to have a bimodal distribution. $
used rather too many bins in plotting the distribution of income, but
some follow-up work (not shown) suggests that the distribution is best
characterized as irregular. The pairwise relationships among the variables
seem reasonably linear, but two or three observations appear to stand
out from the others.

If you frequently want to make scatterplot matrices like this, then
it would save work to write a function to do the repetitive parts of

1.2 AN EXTENDED ILLUSTRATION

the task:!3

> scatmat <- function(..., aneclasa=NULL) {

* pairs{cbind(...2,

+ panel=function(x,y){

+ pawnts(x,y)

+ abline(lml{y-x), lty=2)

+ lines(lawess(x,y))

+ },

* diag.panelsfunction(x){

+ par(new=T)}

- hist(x, main="", axes=F, nclass=nclass)
i
p
+
>

¥

Specifying nclass=NULL in the function definition provides a default
value for nclass, to be passed as an argument to hist. Note the use of
the special formal argument .. .; this argument will match any number
of real arguments when the function is called. For example:

> scatmat(prestige,income,education, nclass=12)
}

produces a graph identical to the graph as shown in Figure 1.4. {The
scatterplot. matrix function in the car library, described in Chapter 3,
is substantially more flexible than the scatmat function just defined.)

It is not convenient in S to identify individual observations in a scar-
terplot matrix, and so I proceed by drawing a separate scatterplot for the
rwo predictors, education and income:

> plot{income, education)

> # Use the mouse to identify peints:
> identify{income, education, row.names(Duncan))
[11 6 16 27

> raw.names(Duncan) (¢(6,16,27)] :
[1] "minister" "conductor" "RR.engineer"

The function plot is the workhorse high-level plotting function in S.
Called with two vectors as arguments, plot draws a scatterplor. The
identify funcdon allows us to label points interactively with a mouse.
The first two arguments to identify give the coordinates of the points,
and the third argument gives point labels; row.names (Duncan) extracts
the observation names from the Duncan dara frame to provide point
labels. The result is shown in Figure 1.5. Notice that identify returns

13. As mecnhoned, the paizs function n S-PLUS docs not 1ake a diag.panal argument, and so
scatmat will not wotk without modification, Try 1!

100
|
[]

o o ©
o | © minister o o B
«© -]
< e o
-
£ 8-+
] [<
Q
= 2 e
= o ©
@O o _
- Q
o c conductor ¢
%, s RR.engineer ©
Q
8 -— ﬂa g’
Q
o
T T T T
20 40 60 80
income

Figure 1.5 Scarterplot of education by income. Three points were labeled
interactively with the mouse.

the indices of the identified points [as I verify by indexing into the vec-
tor row.names {Duncan)|. To duplicate this figure, you have to move the
mouse cursor near each point to be identified, clicking the left mouse
button; after identifying the points, click the right mouse button to exit
from identify.

Ministers are unusual in combining relatively low income with a rel-
auvely high level of education; railroad conductors and engineers are
unusual in combining relatively high levels of income with relatively low
education. Additional work (not shown) confirms that ministers and con-
ductors are the observations that also stand out in the other scatterplots.
None of these observations, however, is an outlier in the usnvariate dis-
tributions of the three variables.

Ao e .

rZL?B“ Regression Analysis
REIN

Duncan’s interest in the data was in how prestige is related to income
and education in combination. I have thus far addressed the distribu-
tions of the three variables and the pairwise (that is, marginal} rela-

tionships between them. Following Duncan, I fit a linear least squares
regression to the data:

> duncan.model <- lm(prestige - income + education)
> duncan.model

Call:
lm{formula = prestige ~ income + educaticn)

Coaefficients:

(Intercept} income education
-6 .0647 0.5987 0.5458

Recall that I attached the Duncan data frame, and consequently 1 can
access the vanables 1n it by name. The argument to 1m is a linear-model
formula, with the response variable on the left of the tilde (~). The right-
hand side of the model formula specifies the predictor variables in the
regression. We read the formula as “prestige is modeled as income plus
education.”

The 1m function returned a linear-mode! object, which I assigned to
the variable duncan.model. Printing this object (by typing its name) pro-
duced a brief report of the results of the regression. The summary function
produces a more complete report:

> summary(duncan.model) ‘

Call:
lm(formula = prestige - income + education)

Residuals:
Min 10 Median a0 Max
-29.5380 -6.4174 0.6546 6.6051 34.6412

Coaefficients:

Estimate Std. Error t valus Pr(>|tl|)
(Intercept) —6.06466 4.27194 -1.420 0.163
income 0.59873 0.11967 5.003 1.058—05 #ukx
education 0.54583 0.098256 5.5B5 1.73e-06 *xx

Signif. codes: 0 ‘=xx’ 0.001 ‘%=’ 0.01 ‘= 0,05
!': 0.1 r 1

Residuzl standard error: 13.37 on 42 degrees of freedom

Multiple R-Squared: 0.8282, Adjusted R-squared: 0.82

F-statistic: 101.2 on 2 and 42 degrees of freedom,
p-value: 1.11e-0186

Both income and education have highly statistically significant, and
rather large, regression coefficients: For example, holding education con-
stant, a 1 percent increase in high-income earners is associated on average
with an increase of about 0.6 percent in high prestige ratings.

Notice that S writes very small {and very large) numbers in scien-
tific notation. For example, 1.05e-05 is to be read as 1.05 x 107% or
0.000010S, and 1.11e-016 = 1.11 x 107 is effectively 0.

If you find the “statistical significance™ asterisks that R prints annoy-
ing, as I do, you can suppress them by entering

> optionsz(shovw.signif.stars=F)
>

INTRODUCING R AND S-PLUS

Placing this statement in the Rprofile file in R’s etc subdirectory

will permanently banish the offending asterisks. You can use the same
approach to set other options in R.

Linear models are described in greater detail in Chapter 4.

Linear-Model Summaries in S-PLUS

The summary method for linear models in S-PLUS prints the correlation
matrix for the coefficient estimates by default. To suppress the coefficient
correlations, include the argument correlation = F. As well, 5-PLUS
does not print significance asterisks.

i P I — I
—— —

|
i

Regression Diagnostics

Assuming thar the regression in the previous section adequately summa-
rizes the data does not make it so. It is therefore wise after fitting a
regression model to check the model carefully. S includes some facili-
ties for “regression diagnostics,” and the car library associated with this

book substantially augments these capabilities, We may attach the car
library in the following manner:

> library(car)

Attaching packaga “car’:

The following object{s) are masked from package:base :
difbetas rstudent

The warning message indicates that the dfbetas and rstudent functions
in car will take precedence over functions with the same names in R’s
base library, Chapter 2 explains how objects in one library can mask those
in another. It is generally bad practice to mask objects in the base library,
but the versions of dfbetas and rstudent in car are more general than
the standard ones; see Chapter 6 on regression diagnostics for details.

The 1m object duncan.model contains a variety of information about
the regression. The rstudent function uses some of this information to
calculate “studentized” residuals for the model. A histogram of the stu-
dentized residuals, in Figure 1.6(a), is unremarkable:

» hist{(rstudent (duncan.model), anclass=12)
>

1.2 AN EXTENDED ILLUSTRATION

Histogram of rstudent(duncan.modal)

B aed MANISIET & |
[& .
= £
o | R
o a
=
| =)
E‘ o - .E. -
a o
= =
- ¥ -
(19
% 3 | g ,
2 T g
{ w o
[’ Bl —
. 5 o o 0?9
'_[| - i G
o -) 2 0 rBggrier
3 T T T 1 ® T T T T T
2 4 0 1 2 3 2 1 D 1 2
rsiudent{duncan modsi) 1 Quanties

@) {b)

Figure 1.6 Histogram and ¢ quancile-comparison plot of the studentized

residuals from the regression of prestige on income and
aducation

Observe the sequence of operations here: retudent takes a linear-model
object {previously returned by lm) as an argument, returning studentized
residuals, which are passed to hist.

If the errors in the regression are really normally distributed with zero
means and constant variance, then the studentized residuals are each
t-distribured with # -~ p ~- 1 degrees of freedom, where p is the number
of coefficients in the model (including the regression constant).

The generic gq.plot function {from the car library) has a method for
linear models:

> qq.plot(duncan.model, labels=row.names(Duncan), simulata=T)
(1] 9 6

The resulting plot is shown in Figure 1.6(b). The function extracts the
studentized residuals and plots them against the quantiles of the appro-
priate ¢ distribution; if the studentized residuals are ¢-distributed, then
the plot should be approximately linear. The comparison line on the plot
is drawn through the quartiles of the two distributions. In this case, the
residuals pull away from the comparison line at both ends, suggesting
that the residual distribution is relatively heavy tailed, and raising the
possibility that we might do better here with a method of robust or resis-
tant regression than with least squares.!*

Setting simulate=T in the call to gqg.plot produces a bootstrapped
pointwise 95 percent confidence envelope for the strudentized residuals.

14, Robust and resistant regression in 5 are described 1n the Web appendix to che book.

The residuals stray near the boundaries of the envelope at both ends of
the distributon. Specifying the labels argument to gq.plot allows us
to identify points interactively; I identified the most extreme residual at
each end of the distribution—the occupations reporter and minister.
The gqq.plot function returns the indices of the two identified points.

To duplicate this graph, point the mouse successively at the two
extreme observarions, clicking the left mouse button when the cursor
is near each point. After identifying the points, exit from gq.plot by
clicking the right mouse button.

I proceed to check for high-leverage and influential observations by cal-

culating hat values and Cook’s distances, plotting these statistics against
the observation indices:

> plot(hatvalues(duncan.model))
> ablina(h = c(2,3)*3/45)

> identify(1:45, hat.values{duncan.model), row.names(Duncan))
(1] & 16 27

> plot(coockd{duncan.maodel)}}
> abline(h = 4/(45-3))

> identify(1:45, cookd(duncan.model), row.names(Duncan})
(1] 6 9 16 27

The plots are shown in Figure 1.7. The horizontal lines in the plot of
hat values, drawn by abline, are at twice and three times the average
hat value, p/n—rough cutoffs for noteworthy values. The horizontal line
in the index plot of Cook’s distances is at 4/(n — p), a rough cutoff for
this influence measure. As before, 1 nsed the identify functon to label
interesting observations with the mouse; in each case, identify returns

the indices of the identified points. Qur attention is drawn in particular
to the occupations minister and conductor.

- o HR.engmear o Mnisiar
= : N E L LR
S e ©
% ® T CONOUCF e ¥ o
= o g ©
s o mmster c
= oy = []
= e =T = o |
@ -
@ e 0 conductor
2 2 L
2 o o P s
= % o o p_00 £ = ——csepoder e]
< 8 4f0 é\o ol m%g E = o o .
@ by ') 0
° ° © o R
o &7 o 9 e P am o e
T T T T T T T T T T
o 10 20 30 40 ¢ 10 et 30 40
index index
{a) (b)

Figure 1.7 Index plots of hat values and Cook’s distances from the regression
of prestige on income and education.

AddedVarlable Plot Added-Variable Plot

40 RRengineer | 80 mirister ©
A 40
g =+ !
5 10 8 207
o o
£ 04 g 0
@ [
: :
A0 -20
20 4
40 -
a0

T i T T T B
40 40 20 O 20 40

moome | athers

education | others

Figure 1.8 Added-variable plots for income and education in Duncan’s
occupational-prestige regression.

Because observations in a regression can be jointly as well as individ-

ually influential, I also examine added-variable (parrial-regression) plots
for the predictors:

> av.plots(duncan.model, labels=row.names(Duncan})

1: (Intercept)
2:incama
3:education
Selection: 2

1: (Intercept)
2:income
3:education
Selection: 3

1: (Intercapt}
2:income
3:education
Selection: O
>

The av.plots function in car presents the user with a numbered menu o
select plots; I chose added-variable plots for the income and education
coefficients, and ignored the regression constant {intercepe).!® In each
plot, av.plots gave me an opportunity to identify points interactively
with the mouse. The added-variable plots, which appear in Figure 1.8,

15. Including the argument a8k=F to av.plots draws all the plots on a single page,

2 INTRODUCING R AND S-PLUS

confirm and strengthen our previous observations: We should be con-
cerned about the occupations minister and cenductor, which work
together to decrease the income coefficient and increase the education
coefficient, The occupation RR.engineer has relatively high leverage on
these coefficients, but is more in line with the rest of the data.

I next use the cr. plots funcrion to generate component-plus-residual
{partial-residual) plots for income and education:

> cr.plots{duncan.model}

1:incoma
2redugation
Selection: 1

1:incame
2:education
Salection: 2

1:income
2:education
Selection: 0
>

The cr.plots funcdon also interacts with the user through a text
menu. The component-plus-residual plots appear in Figure 1.2. Each
plot includes a least squares line (representing the regression plane
viewed edge on in the direction of the corresponding predictor) and a

Component+Residual Plot Component+Aesidual Plot
~ 30 7 HE e °
) g
+ -
m w
g]
= =
o]
s | 3
5 2
A a
e o
A x
3 B
=
g g
5 -
& O

20 49 60 80 100
education

Figure 1.9 Component-plus-residual plots for income and education in
Duncan’s occupational-prestige regression. The span of the
nenparametric-regression smoother was ser te 0.7,

1.2 AN EXTENDED ILLUSTRATION

Spread-Level Plot for duncan.model

n o
[17] -]
ER: By
5 = u o a0 ™
o = _".n___'é—”"b
i e g
= o
a 2 *° o
g A o o a
E o R o
3 o g

=
o) S
2 o
)
2 -
a =2 |
- g o

T T T T T
5 10 20 50 100

\h]

Fitted Valuas

Figure 1.10 Spread-level plot of studentized residuals from Duncan’s regres-
sion of prestige on 1ncome and education.

nonparametric-regression smooth (with the span of the smoother set to
0.7—see Section 3.2). The purpose of these plots is to detect nonlinearity,
evidence of which is slight here,

I check whether the size of the residuals changes with the ficted values,

using the spread.level.plot function, which has a method for linear
models:

> apread.level.plot(duncan.modal)

Suggested power transformation: 0.8653151

The graph produced by spread.level.plot, in Figure 1.10, shows lit-
tle association of residual spread with level, and the suggested power
transformation of the response variable, prestige®®’, is essentially no
transformation at all, Using the nev.test function in car, I follow up
with score tests for nonconstant variance, checking for an association of

residual spread with fitted values and with any linear combination of the
predictors:

> ncv.test(duncan, model)

Non—constant Variance Score Test

Variance formula: ~fitted.values

Chisquare = 0.3810967 Df =1 p = 0.5370169

» ncv. test{duncan.modal, var.formmla= ~ income + education)
Non-constant Variance Score Test

Variance formula: ~ income + education

Chisquare = 0.6976023 Df = 2 p = 0.7055334

Both tests are far from statistically significant.

Finally, on the basis of the influential-data diagnostics, I try removing
the observarions minister and conductor from the regression:

> remove <- which.names(c(’minister’, ’conductor’), Duncan}
> remove

[1} 6 16

> duncan.model.2 <~ yupdate(duncan.model, subset=~remove)
> summary(duncan.model.?2)

Call:

lm(formula = prestige ~ income + education, subset = -remove)

Regiduals:
Min 10 Median 30 Max
-28.612 -5.898 1,937 5.816 21.551

Coefficients;

Estimate Std. Errcr t value Pr(>jti)
(Intarcept) -§.40899 3.65263 -1.756 0.0870
inceme 0.86740 0.12198 7.111 1.31e-08
educatiaon 0.33224 0.09875 3.384 0.0017

Residual standard error: 11.42 on 40 degrees of freedom

Multiple R-Squared: 0,876, fdjusted R-squared: 0.8698
F-statistic: 141.3 on 2 and 40 degrees of freedom,
p-value: 0

Note the use of the which.names function in car to determine the indices
of minister and conductor; actually, I knew from my previous work
that these are observations 6 and 16. Rather than respecifying the regres-
sion model from scratch, I refit it using the update function, removing the
two observations via the subset argument to update. The coefficients of
income and education have changed substantially with the deletion of
these two observations. Further work (not shown) suggests that remov-
ing the occupations RR.engineer and reporter does not make much of
a difference.

Chapter 6 has more extensive information on regression diagnostics in
S, including use of functions in the car library.

. S FUNCTIONS FOR BASIC STATISTICS

The focus of this book is on using S for regression analysis, broadly
construed. In the course of developing this subject, we will encounteg,
and indeed have encountered, a varety of S functions for basic sta-

tistical methods (mean, hist, etc.), but the topic is not addressed
systematically.

Table 1.1

S Functions for basic statistical methods. All functions are present in both

R and 5-PLUS, unless marked [R] for R only or [$] for S-PLUS only. All
functions are in the R base library, unless the library is shown explicitly.
Chapter references are to the current text.

Method S Function(s) R Library Reference
Histogram hist Chaprer 3
Stem-and-leaf display stem Chapter 3
Boxplot boxplot Chapter 3
Scatterplot plot Chapter 3
Time-series plot ts.plot ts
Mean mean
Median median
Quanriles quantile
Extremes range, min, max
Variance var
Standard deviation stdev [5], sd [R]
Covariance matrix var
Correlations cor
Basic statistical dnorm, d%, df, dchisq, dbinem, etc. Chapter 3
distributions: normal, pnorm, pt, pf, pchisq, pbinom, etc.
t, F, chi-square, qnorm, gt, qf , qchisg, qbinom, etc.
binomial, etc. rnorm, rt, rf, rchisg, rbinom, etc.
Simple regression im Chapter 4
Mulriple regression im Chapter 4
Analysis of variance aov, 1lm, anova Chaprer 4
Contingency tables table, xtabs [R], crosstabs [9] Chapter §
Generating random sample, Tnorm, erc.
samples
t tests for means t.test
Tests for proportions prop.test, binom.test ctest
chi-square test for chisq.test ctest
independence
Various friedman. test, kruskal . test, ctest

nonparamerric tests

wileox.test, etc.

Because] expect that most readers of the book will be new w0 §, 1t

is worthwhile to draw an orienting road map of S functions for familiar
statistical operations, Rather than describing the use of S for basic applied
statistics at length, however, I simply prowvide in tabular form (Table 1.1)
the names of some of the S functions that implement these operations,
referring the interested reader to the on-line documentation {accessible,
recall, through the help command and ? operator). This table is not
meant to be complete.

All the functions listed are in libraries attached by default to the
S-PLUS search path. As indicated under R Library, some of these func-
tions are in R libraries other than the base library; these other libraries

INTRODUCING R AND 5-PLUS

are not attached by defaultr, but are part of the basic R distribution.
Where there is a substantial discussion of a function later in the present
text, this is indicated under Reference. Functions present only in one of
R or 5-PLUS are marked [R] or {S), as appropriate; other funcrions are
common to R and 5-PLUS, although the details of their implementation
may differ.

° g7 &

HAPTER 2

Reading and
Manipulating Data

%s [mentioned in the Preface, a rraditional sratistical computer pack-
2 Aage, such as SAS or SPSS, is designed primarily to transform rect-
angular data sers into printed reports and graphs. A rectangular dara set
has rows representing observations and columns representing variables.
S, in contrast, is a programming language embedded in a statistical com-
puting environment; it is designed to transform data objects into other
data objects, {generally brief) printed reports, and graphs.

S supports rectangular dara sets, in the form of data frames, but as
a programming language, it also supports a variety of other data struc-
tures, One by-product of this generality 15 flexibility: It is typically much
easier to accomplish rasks not directly designed into the software in §
than in a statistical package. Another by-product of generaliry, however,
is complexity. In this chapter, [atempt to cur through the complexiry
to explain what you need to know about dara in S in order to work
efficiently as a statistical data analyst:

m There are often many ways to accomplish a rask in S. For com-
mon tasks—reading data into an S data frame from a text file, for

example—I generally explain one or two good ways to proceed rather
than aiming at an exhaustive treatment.

® [limit the presentation to those aspects of the S language that are most
useful ro practicing data analysts. For example, [avoid a fully general
exposition of S modes and classes.

® | suggest that users of § adopt conventions thar will facilirate their
work and minimize confusion, even when the S language does not

enforce these conventions. ¥or example, I begin the names of data

frames with uppercase letters and the names of variables in data frames
with lowercase letrers.

Section 2.1 describes how to read data into S variables and dara
frames. Section 2.2 explains how to work with data stored in data
frames. Section 2.3 introduces matrices, higher-dimensional arrays, and
lists. Finally, Section 2.4 deals more abstractly with the organization of
data in S, mntroducing the notions of data modes, attributes, and classes.

DATA INPUT

Although there are many ways to read data into R and S-PLUS, I will
concentrate on just four; typing data directly at the keyboard, reading
data from an ASCII (plain-text) file into an S data frame, “importing”
data saved by a statistical package, and accessing data from a library. In
addition, I will explain how to generate certain kinds of patterned data.

q?%ﬁ Keyboard Input .

b cisiaSeln

It is impractical to enter large data sets directly at the keyboard, and it
is wasteful to reenter data that are already available in machine-readable
form. It 1s occasionally convenient, however, to enter small data sets
directly, and we frequently find it necessary to enter a few numbers, for
example, in the process of augmenting a graph.

We saw in the previous chapter how to use the ¢ {combine) function
to enter a vector of numbers:

> x <= ¢(1,2,5,4)
> x
1) 1234

The same procedure works for vectors of other types, such as character
data or logical data:

> names <- c{(’John’, 'Georges’, ’Mary’)
> namnes
[1] "JOhﬂ" “GBOTEGS" "ME.IY“

> v <= of(T,F)
> v

{1] TRUE FALSE

Character strings may be input between single or double quotation
marks: for example, ’John’ and "John" are equivalent.

Entering data in this manner works well for very short vectors.
Although entries may be continued over several lines simply by omitting
the terminal right parenthesis until the data are complete,! it is more
convenient to use the scan function, which prompts with the index of
the next entry.

To Mustrare, consider the dara in the following table, which originates
in an experiment conducted by Fox and Guyer (1978):

Sex
Condition Male | Female
Public Choice | 49 54
64 61
. 37 79
52 64
68 29
Anonymous 27 40
58 39
52 44
41 34
30 44

In this experiment, 20 four-person groups of subjects played 30 trials of a
game in which each subject could make either cooperative or competitive
choices, Half the groups were composed of women and half of men.
Half the groups of each sex were randomly assigned to a public-choice
condition in which the choices of all individuals were made known to the
group after each trial; the other groups were assigned to an anonymous-
choice condition in which only the aggregated choices were revealed. The
data in the table give the number of cooperative choices made in each
group, out of 30 x 4 = 120 choices in all.
To enter the number of cooperative choices as a vector:

> cogperation <- scan()
1: 49 64 37 52 68 b4

7: 61 79 g4 29

11: 27 58 52 41 30 4Q 39
18: 44 34 44

21:

Read 20 items

1. You may have noticed 1n some of the previous examples that when an $ statement is continued
on addinonal hines, the > prompt 15 replaced by the mrerpreter with the + (plus) prampt on the
confinuation hnes. S recognizes that a line 1s ta be continued whep it is syntactically incomplete—far
example, when a left parenthesis needs to be balanced by a night parenethesis or when the right
argument fo a binary operator, such as *, has not yet been entared,

READING AND MANIPULATING DATA

> cooperation
[1] 49 64 37 52 68 54 61 79 64 29 27 58 52 41 30 40 39 44

(19] 34 44
The number before the colon on each input line is the index of the next
observation to be entered; entering a blank line terminates scan, [entered
the data for the Male, Public-Choice treatment first, followed by the data
for the Female, Public-Choice treatment, and so on,

I could enter the condition and sex of each group in a similar manner,
but because the data are parterned, it is more economical to use the rep
{replicate) function. The first argument to rep specifies the dara to be
repeated; the second argument specifies the number of repetitions:

> Tep(5,3)
[11 555

> rep(c(1,2,3), 2
(1] 123123

When the first argument to rep is a vector, the second argument can be a

vector of the same length, specifying the number of times to repeat each
entry of the first argument:

> rep(1:3, 3:1)
11111223

In the current context, we may proceed as follows:

> condition <= rep(c{’public’, 'amonymous’}, «(10,10))
> condition

{1] "public"® “public® *public” "public”
[5] "public"] pUbliC" "pl.I.b].iC" "public"
[2] "public® "public® "ancoymous” "anonymaus"

[13] "anonymous" "anonymous” “anonymous” "anonymous"
[17] "anonymous” "anonymous" “anonymous” "anonymous®

> sex <- rep(rep{c(’male’, ’female’), c(5,5)), 2)

> sax

[1] "male® "mala" "malah "mala® Pmalat tfamale®
[7] "female” "femals" "female" "female! "male" "male"
[13] "male® "male® "mala® "fomale" "female” "femala"

[19] "femala" "female!

To construct the vector =zex, I used rep twice—first to generate five
‘male’ character strings followed by five *female’ character strings, and
then to repeat this pattern of 10 strings two times.

Finaily, it is convenienr to pur the three variables together in a dara
frame:

> Guyer <- data.frame(cooperation, condition, sex)
> Guyer

cooperation coandition sex
1 49 public male

2.1 DATA INPUT

41

P 64 public male
3 37 public male
19 34 anonymous female
20 44 aponymous female

In the process, condition and sex are converted from character variables
into facrors. The distinction is discussed in Section 2.2.3.

Both R and 5-PLUS have spreadsheet-like data editors that may be
used to enter, examine, and modify data frames. [find these editors use-
ful primarily for viewing the contents of data frames and for modifying
individual values, for example, to fix an error in the data, [n R, to enter
data into a new data frame, we may type:

> Guyer <- edit(as.data,frame(NULL))
>

This opens the data editor, into which we may rype variable names and
data values. Figure 2.1 shows the editor after the dara values have been
entered. (Out of laziness, [entered condition as P or A, and sex as M
or F.) An existing data frame can be viewed or edited by using the fix
function, as in fix(Guyer).

- Data Editor

.
[}

cooperetion|condicion

VEIY vars vVare yar7

649

37

32

L]

54

51

79

-

WS |anfin|bja|m

L

LR

ﬁ.
L
[=]

29

[
Bg

27

3 BN
.

58

e v o

g | 41

ot |30

= L& | 40

A 35

[g‘i&’qe

Rae196e] 34

u
H
4]
o= | [o= o= [[[|o= |0 | D0l |0]|a]wo]|a|w
o g | [[| 2|zl = ==

AR

Ll

Figure 2.1 The R dam editor.

The Data Editor in S-PLUS

In S-PLUS, we may enter a new data frame in the data editor by selecting
New — Data Set from the File menu. To view or edit an existing data
frame, double-click on its name in the Object Explorer window.

F—
—

File Input to a Data Frame

Delimited Data

The previous example shows how to construct a data frame from preex-
isting variables. More frequently, as illustrated in Chapter 1, we read data
from an ASCII (plain-text) file into an S data frame using the read. table
function. I assume that the input file is organized in the following manner:

B The first line of the file gives the names of the variables separated
by “white space” (one or more blanks or tabs); these names are
valid S variable names and, in particular, contain no embedded blanks.
If the first variable in the data file is to provide row names for the
data frame, then there is one fewer variable name than columns of
data; otherwise, there is one variable name for each column. 1 prefer
to use variable names that begin with lowercase letters.

B Each subsequent line contains data for one observation, with the data
values separated by white space. The data values in each line need
not appear in the same place as long as the number of values in
each line is the same; ensuring that the data values line up neatly in
columns makes it easier to examine the input file, however. Charac-
ter data either contain no embedded blanks (my preference} or are
enclosed in single or double quotes. Thus, for example, white. collar,
‘white collar’, and "white collar" are valid character-data val-
ues, but white collar is not, Character and logical data are automat-
ically converted to factors on input. You may avoid this conversion
by specifying the argument as.is=T to read.table, but representing
categorical data as factors is generally desirable.

B8 One variation on this simple scheme is worth mentioning: Many pro-
grams, such as spreadsheets, create ASCII files with data values sep-
arated by commas—so-called “comma-delimited files.” Supplying the
argument sep=’,’ to read.table accommodates this form of data. In

comma-delimited data, blanks may be included in unquoted character
strings, but commas may not.

® Missing data appear explicitly, preferably encoded by the characters
NA (not available); in particular, missing data are noz left blank. There
is, therefore, the same number of data values in each line of the input
file even when some of the values represent missing data. If different
characters are used to encode missing data, and it is inconvenient to
replace them in an editor, then you may specify the missing-data code
in the na.strings argument to read.table. For example, both SAS
and SPSS recognize the period (.) as an input missing-data indicator;
to read a file with period encoding missing data, use na. strings=’.".
For more details, see the on-line documentation for read.table.

This specification is more rigid than it needs to be, but it is clear and
usually is easy to satisfy. Most spreadsheet, database, and statistical pro-
grams are capable of producing ASCII files of this format, or produce files
that can be put in this form with minimal editing. Use an ASCII editor
(such as Windows Notepad or a programming editor) to edit data files.
If you use a word-processing program (such as Word or WordPerfect),
be careful to save the file as an ASCII file; read.table cannot read data
saved in the default formats employed by word-processing programs.

I use the data in the file Prestige.txt to illustrate.? This data set is
similar to the Duncan occupational-prestige data employed as an example
in the previous chapter, with occupations as observations. Here are a few
lines of the data file (recall that the ellipses represent omitted lines—there
are 102 occupations in all):

education income women prestige census type

GOV.ADMINISTRATORS 13.11 12351 11,16 68.8 1113 prof
GENERAL .MANAGERS 12.26 25879 4.02 69.1 1130 prof
ACCOUNTANTS 12.77 9271 15.70 6€3.4 1171 prof
COMMERCIAL . ARTISTS 11.09 6197 21.03 57.2 3314 prof
RADIO.TV.ANNOUNCERS 12.71 7662 11.15 &7.8 3337 wc
ATHLETES 11.44 8206 8.13 54.1 3373 KA
SECRETARIES 11.69 4036 97.51 46.0 4111 wc
ELEVATOR.CPERATORS 7.58 3682 30.08 20.1 6193 bc
FARMERS 65.84 3643 3.60 44.1 7112 HNA
FARM . WORKERS g2.60 16656 27.75 21.5 7182 be
ROTARY .WELL.DRILLERS &8.88 6860 0.00 35.3 77l be

The variables in the data set are defined as follows:

B education: the average number of years of education for occupationa
incumbents in the 1971 Census of Canada.

2. As in Chapter 1, you can extract this file from rhe car library or download 1t from the Web sir
for the book.

READING AND MANIPULATING DATA

B income: the average income of occupational incumbents, in dollars, in

the 1971 Census.

B women: the percenrage of accupational incumbents in the 1971 Census
who were women.

M prestige: the average prestige rating for the occupation obtained in
a sample survey conducted in Canada in 1966.

B census: the code of the occupation in the standard 1971 Census occu-
pational classification.

@ type: professional and managerial (prof), white-collar (we), blue-
collar (bc), or missing (NA).
To read the dara into S, [enter’:

> Prestige <- read.table(’D:/data/Prestige.txt’, header=T)
> Prestige

education 1ncoma women prestige c¢ensus type

GOV . ADMINISTRATORS 13,11 12351 11.186 68.8 1113 prof
GENERAL .MANAGERS 12,26 25879 4.02 69.1 1130 prof
ACCOUNTAKRTS 12,77 9271 15.70 63.4 1171 prof
COMMERCIAL.ARTISTS 11.09 6197 21.03 57.2 3314 praf
RADID.TV.ANNOUNCERS 12.7¥1 7562 11.15 57.6 3337 wc
ATHLETES 11.44 8206 8.13 54.1 3373 NA
SECRETARIES 11.59 4036 97.51 46,0 4111 wc
ELEVATOR . OPERATORS 7.58 3582 30.08 20.1 6193 b
FARMERS 6.8¢4 3643 3.60 42,1 T112 NA
FARM. WORKERS 8.60 1656 27.75 21.5 7182 bec
ROTARY . WELL . DRILLERS 3.88 6860 0.00 35.3 7711 be

Even though I am running R on a Windows system, directories in the file
system are separated by a / {forward slash) rather than by the standard
Windows \ {back slash); this is because the back slash has special mean-
ing in an S character string.* To keep things tidy, [prefer to name a dara
frame for the file from which the data were read, and to begin the name
of the data frame with an uppercase letter.

3. Including rhe argument header=T is unnecessary in R. When, as here, the first row of the data file,
cantaming vanable names, has one fewer entry than the dara lines that follow. 1n thus setup, the first
entry on #ach dara line represents the raw label for the corresponding observarion. Mevertheless, it
does not hurt to speaify headar=T, and gerang into the habit of domg so will save you grief when
you read a file wirh vanable mames but withoutr row pames,

4, The back slash serves as a so-called “escape™ character, Indicaning thar the next character has
special meamng: For example, \n represents a new-line character (e, go to the beginning of the
next Iinel, whele \t is the tab character Such special characters can be useful in creanng prinved
outpur, A back slash may be enrered in a character string as \\.

-

2.1 DATA INPUT

Occasionally, when we try to read a data set from a text file, some
of the input lines contain the wrong number of elements, producing an
error in read.table. To simulate this condition, I prepared a version of
the Prestige.txt dara file in which missing values (i.e., NAs) were erro-

neously replaced by blanks. Trying to read this file yields the following
result:

> Prestige <- read.table(’D:/data/Prestiga-bugged.txt’, header=T)
Error in scan(file = file, what = what, sap = sep, quote = quote,
skip = 0, : line 34 did not have 7 elements

Having determined that the data file Prestige-bugged.txt contains
at least one error, it is convenient to use the coupt.fields function
to discover whether there are other errors as well, and, if there are, to
determine their location:

> counts <- count.fields(’D:/data/Prestige-bugged.txt’)
> counts

7777777 777777777777 77777777777

(311 77776777 7777777 7777777 76777777
61 7 T 76T 7T 76T 7777 7T 77?777 7T T 7T 777777
1 7777777777777

> which(counts '= 7)

[1] 35 54 64 68

Once we know the locarion of the errors, it is simple the fix the input file
in a text editor that keeps track of line numbers. {Notice that read.table
reports that the 34th data line is in error, and that this corresponds to
the 35th line in the file, since the first line is the header.)

Fixed-Format Data

You may find it necessary to read data from a fixed-format inpur file
in which the data values are not separated by delimiters such as whire
space or commas. To illustrate the process of reading these kinds of
data, I have created a fixed-formar version of the Canadian occupational-

prestige data set, which I placed in the file Prestige-fixed. txt. The file
locks like this:

GOW ., ADMINISTRATORS 13.111235111.1668.81113prof
GENERAL . MANAGERS 12.2625879 4.0269.11130prof
ACCOUNTANTS 12.77 927115.7063.41171prof
TYPESETTERS 10.00 646213.5842.29511bc
EOOKBINDERS 8.55 361770.8735.29517be

The first 25 characrers in each line are reserved for the occupation name,
the next five spaces for the education value, the nexr five for income,
and so on. Notice how many of the data values run together, making

the file difficult to decipher: If you have a choice, fixed-format input is

best avoided. We may use the read.fwf (read fixed-width-format files)
function to input the data into an R data frame:

> Prestige <- data.frame(scan(’d:/data/Prestige-fixed.txt’,
+ liast(cccupation="", education=0, income=0, women=0,
+ prestige=0, census=0, type=""),

+ widthe=c(25, 5, 5, b, 4, 4, 4)))

>

The col.names argument to read.fwf supplies names for the vanables;
row.names indicates that one of the variables (here, occupation) should
be used to define row names; and the widths argument gives the field
width of each variable in the input file.

'rn_-—- —

Reading Fixed-Format Data in S-PLUS

$-PLUS does not have read. fwf, but much the same task may be accom-
plished with the scan function. Creating a data frame is a two-step pro-

cess, using scan to read the data into a list of data vectors and then
converting this list into a data frame. For example:

> Prestige <- data.frame(scan(’d:/data/Prestige—-fixXed.txt’,

+ list(occupation="", education=0, inceme=0, women=0,
] + prestige=0, census=0, type=""),

+ widths=c(25, 5, 5, 5, 4, 4, 4)))

>

The second argument tO scan is a list defining variable names and
types, with "+ (an empty character string—or any character string) indi-
cating character data and 0 {or any number) indicating numeric data. The r“
widths argument works as for read.fwf in R. It should be possible to

specify a row.names argument tO data. frame, but | have nat been able I
to get this to wark properly in 5-PLUS.

s

1.3 Importing Data

You will doubtless encounter data sets that have been prepared in another
statistical system, such as SAS or SPSS. If you have access to the other
program, then ir is generally straightforward to “export” the data as
an ASCII file, subsequently reading the data into S with read. table, as
described in the preceding section. Alternatively, R provides facilities for
“importing data” from other programs through functions in the foreign

library (which may be downloaded from the R Web site). Currently, func-
tions are available for importing data files from 53, SAS, SPSS, Minitab,
and Stata. There is also an R interface to the Excel spreadsheet program.’

e e e

Importing Data in S-PLUS

i S-PLUS, it is most straightforward to import data via the graphical inter-
face: Select Import Data—> From File from the File menu. §-PLUS will
read data from several statistical programs, including SAS, SPSS, Minitab
(54 only), Stata, and Systat, the mathematical programs Gauss and Matlab,
and a variety of spreadsheet and database programs.

d—

Accessing Data in S Libraries 214

Many S libraries, including the car library, contain data sets. In R, which
stores working data in memory, it is necessary to use the data function to
read a data frame from an attached library into memory. Then the data
frame may be attached in the normal manner For example, to access the
Duncan data frame from the car library in R:

> library(cax)

> data(Duncan)

» Duncan

type ioncome education prestige
accountant praf 62 86 82
pilot praf 72 76 83
architect prof 75 92 g0
author prof 55 g0 76
chemist prof 64 B6 90
minister prof 21 B4 87
profassor prof 64 93 93
janitor be 7 20 8
policeman be 34 47 41
vaiter be B 32 10

> attach(Duncan)
>

5. In addition, both R and S-PLUS have saphisricated faciliries for accessing dara stored in binary
formats, in database-management systems, on the Internet, and in other locations. These facilities
are described 1n the manuals for R and 5-PLUS.

READING AND MANIPULATING DATA

Accessing Data in S-PLUS Libraries
In 5-PLUS, it is sufficient to antach a library, via the library function, to

make the data sets in the library accessible. |f the data set is a data frame,
then the data frame may simply be attached in the normal manner. That
is, the data function is not needed and is not used in S-PLUS.

I have defined several variables in the course of this section, some of
which are no longer needed, so it is time to clean up:

> abjects()

(1] "Duncan" "Guyer" "Prestiga" “econdition"
[5] "cooperation" "names" Ygax! fyu
[9] noyih

» removelnames, v, x)
>

I retain the data frames Duncan, Guyer, and Prestige and the vectors

condition, cooperation, and sex for subsequent illustrations in this
chapter.

Reminder: Removing Objects in S-PLUS

Remember that in 5-PLUS the names of objects to be removed must be
given as a character vector: for example, remave (c{’names’, *x*, 'y’)).

f" Getting Data Out of S

[hope and expect that you will rarely have to get your data out of S to
use with another program, but doing so is nevertheless srraightforward.
As in the case of reading data, there are many ways to proceed, but
a particularly simple approach is to use the write.table function to
output a data frame to an ASCII file. The syntax for write.table is
essentially the reverse of that for read. table. For example, the following
command writes the Duncan data frame to a file:

> writa.table(Duncan, 'c:/temp/Duncan.txt’)
>

By default, row labels and variable names are included in the file. In
R, data values are separated by blanks, and all character strings are

2.2 WORKING WITH DATA FRAMES

quoted, whether or not they contain blanks. This default behavior can
be changed—see the documentarion for write.table.

Expotrting Data from 5-PLUS
In S-PLUS, data values exported by write.table are separated by com-

mas, and strings are not quoted. 5-PLUS can also export data in a variety
of other formats: Select Export Data—-To File from the File menu,

WORKING WITH DATA FRAMES

It is perfectly possible in S to analyze data stored in vectors, but I gen-
erally prefer to begin with a dara frame, typically read from a file via
the read.table function, or accessed from an S library. Almost all the
examples in this book use data frames from the car library.

In many statistical packages, such as SPSS, a single data set is active
at any given time; in other packages, such as SAS, individual statistical
procedures draw their data from a single source. This is not the case
in §, where data may be used simultaneously from several sources, pro-
viding substantial flexibility, but also the possibility of interference and
confusion.

The Search Path 2.2.1

When you type the name of a variable or a function, the R interpreter
looks for an object of that name in the locations specified by the search
path. To view the current search path, use the search function:

> search()
(1] ".GlobalEnv" "Duncan" "package :car"
(4] "Autoloads" 'package:base"

If, therefore, I type the name of the variable prestige, R will look first
in the “global environment” (the region of memory in which R stores
working data), then in the data frame Duncan {which I atrached to the
search path in the preceding section), then in the car library (which I
previously attached via the library function), then in a special list of
objects whose loading from libraries can take place automatically (and
which [will subsequently ignore), and, finally, in the R vase library.
Because there is no variable named prestige in the working data, but

there is such a variable in the Duncan data frame, when I type prestige,
I get the prestige variable from Duncan, as we may readily verify:

> prestige
[1] 82 83 90 76 90 87 93 90 52 88 57 89 97 59 73 38 76 81

[19] 45 92 39 34 41 16 33 53 67 57 26 29 10 15 19 10 13 24
[37) 20 7 316 6 11 B 41 1D

> Duncan[, ‘prestige’)
[1] 82 B3 90 76 90 87 93 90 52 88 57 89 97 59 73 38 76 81

[19] 45 92 39 34 41 16 33 53 €7 57 26 29 10 15 19 10 13 24
[37] 20 7 316 611 & 41 10

Typing Duncanf, 'prestige’] directly extracts the column named
prestige from the Duncan data frame.®

Suppose, now, that I attach the Prestige data frame to the search
path. The default behavior of the attach function is to attach a data

frame in the second position of the search path, after the global environ-
ment:

> attach(Prestige)

> search()

[1] ".GlobalEnv" “Prestige" "Dumncan"

[4) "package:car" "Autoloads" "package:base"

Consequently, the data frame Prestige is attached before the data frame
Duncan; and if [now simply type prestige, then the prestige variable
in Prestige will be located before the prestige variable in Duncan is
encountered:

> prestige

[1] 68.8 69.1 63.4 56.8 73.5 77.6 72.6 78.1 73.1 68.8
[11] 62.0 60.0 53.8 62.2 74.9 §5.1 82.3 58.1 58.3 72.8
[21) B4.68 59.6 66.1 B7.2 66.7 68.4 64.7 34.9 72.1 63.3

[91] 38.9 36.2 29.9 42.9 26.5 66.1 48.9 35.9 25.1 26.1
[101] 42.2 35.2

The prestige variable in Duncan is still there—it is just being “shad-
owed” or “masked” (that is, hidden) by prestige in Prestige:

> Duncan[, ‘prestige’]

[1] 82 83 90 76 90 87 93 90 52 88 57 89 97 59 73 38 76 81
[19]) 45 92 39 34 41 16 33 53 67 57 26 29 10 15 19 10 13 24
[37] 20 7 316 6 11 8 41 10

6. Information on indexing data frames 15 presented 1n Section 2.3.4.

Because variables in one data frame can shadow variables in another,
it is generally good practice to attach only one data frame at a time—
unless there is a valid reason for accessing data simultaneously from two

data frames. You can remove a data frame from the search path with the
detach function:

> detach(Prestige)

> search()

[1] ".GlobalEnv" "Dumcan" “package:car"
[4] "autolecads" "package:base"

Calling detach with no arguments detaches the second entry in the search
path.

Using detach in S-PLUS

in 5-PLUS, you need to specify the name of the data frame to be
i detached as a character string, rather than the object itself: e.g.,
detach(’Prestige’). This usage also works in R,

Now that Prestige has been detached, prestige again refers to the
variable by that name in the Duncan data frame:

> prestige
(1] 82 83 90 76 90 87 93 90 52 88 &7 89 97 59 73 38 76 81

[19] 45 92 39 34 41 18 33 53 67 57 26 29 10 15 19 10 13 24
[37] 20 7 3 16 6 11 B 41 10

Because the working data are the first item in the search path, glob-
ally defined variables shadow variables of the same names anywhere ¢lse
along the path. This is why I use an uppercase letter at the beginning
of the name of a data frame. Had 1, for example, named the data frame
prestige rather than Prestige, then the variable prestige within the
data frame would have been shadowed by the data frame itself. To access
the variable would then require a relatively awkward construction, such
as prestigel, 'prestige’].

Our focus here is on manipulating data, but it is worth mentioning that
S locates functions in the same way that it locates data. Consequently,
functions earlier on the path can shadow functions of the same name
later on the path.

In the previous chapter, I defined a function called my.mean, avoid-
ing the name mean so that the mean function in the base library would
not be shadowed. To understand the consequences of failing to take this

READING AND MANIPULATING DATA

precaution, note that the mean function in the base library can calculate
“trimmed” means as well as the ordinary arithmetic mean. For example:

> mean({prestige)
[1] 47.68889

> mean(prestige, trim=0.1)
[1] 47.2973

Specifying mean(prestige, trim=0.1) removes the largest and smallest
10 percent of the data, calculating the mean of the middle 80 percent of
observations. Trimmed means provide more efficient estimates of the cen-
ter of a heavy-tailed distribution—for example, when outliers are present;
in this example, trimming makes little difference.

Suppose that I define my own mean function, making no provision for
trimming:

> mean <= functienfx){

+ warning(*The mean function in the base package i3 shadowed’)
+ sum(x)/length(x)

+ }
>

The first line in my mean function prints a warning message. The purpose
of the warning is simply to verify that this function executes in place of
the mean function in the base library. Had I carelessly shadowed the base
mean function, I would not have politely provided a warning:

» mean(prestige)
(1] 47.69889
Warning message:

The mean functien in the base package is shadowed in: mean(prestige)

The essential point here is that because my mean function resides in
the global environment, it is encountered on the search path before the
mean function in the base package. Shadowing the base mean function is
inconsequential as long as my function is equivalent; but if, for example,
[try to calculate a trimmed mean, my function does not work:

> mean (prestige, trim=0.1)
Error in mean(prestige, trim = 0.1) : unused argumeat(s) (trim ...}

Shadowing standard $ functions is a practice generally to be avoided.
Suppose, for example, that a robust-regression function tries to calculate
a trimmed mean, bur fails because the base mean functon is shadowed
by my redefined mean function. If we are not on the lookout for this
problem, the resulting error message may prove cryptic.

2.2 WORKING WITH DATA FRAMES

Illustrating Function Shadowing in 54

The standard mean function is a generic function, and 54 does not permit
a nongeneric version of a function to shadow the generic. {Try it.) To
illustrate one function shadowing another in 5S4, let us instead use stdev:

» stdev < function (x) {

* warning ("The standard stdev functien 13 shadowed")
+ sqre(var(x))
+ }

Warning: Conflicting definitions of "stdev" on databases
"C:\Program Files\Ingightful\splus6\users\Adminjstrator"
and "splus"

> stdev (prestige)
Warning in stdev(prestige): The standard stdev function
is shadowed

(1] 17.204

> remove(’stdev’)
>

Note that 54 warns us of the conflict when our stdev is defined.
Remember to remove stdev when you are finished.

We can, however, use the same name for a variable and a function, as
long as the two do not reside in the working data. Consider the following
example:

> mean <- mean(prestige) # uses then overwrites our mean function
Warning megsage:
The mean function in the base package is shadowed in: mean(prestige)

> mean
[1] 47.68839

Recall that everything to the right of the # {pound sign) is a comment,
ignored by the S interpreter. Specifying mean <- mean(prestige) causes
our mean function to calculate the mean prestige and then stores the
result in a variable called mean, which has the etfect of destroying our
mean function (and good riddance to it). The varigble mean in the working
data does not, however, shadow the furiction mean in the base library:

> mean(prestige, trim=.1)
(1] 47.2973

Before proceeding, let us tidy up a bit:

» remove (mean)
» detach(Duncan)
>

The Search Path in S-PLUS

A word on the difference in the search path between R and $-PLUS: Data
and functions in S-PLUS are stored in files, which reside in data and
function directories. Here is an example of a search path in S-PLUS:

> search(}
(1] "C:\\Program Files\\Insightful\\splusé\\users\\Administrator"
[2] “Dunca.n"
(3] "car"

(4] "splus"
(5] "stat®
[6] "data®
[7]1 "trellash
(8] "alme3"
9] "menu"
[10] "sgui"
(11} "winspj"
[12] "main"

>

This example uses 5-PLUS version 6, based on S4; the listing of the search

path in 5-PLUS 2000, based on S3, looks different. The first directory
contains the working data, and is therefore analogous to the global envi-
ronment in R. {The cOncept of an environment in R does not correspond
precisely to a data base in S-PLUS—an environment is more nearly a list
of data bases—but the distinction is subtle, and | will not pursue it here.)
The Duncan data frame, added to the search path via the attach function,
is in the second position, followed by the car library. Notice that several
libraries appear by default at the end of the path.

ey

Missing data are a regrettably common feature of real data sets. Two

— m—
— e e e— o — —

Missing Data

kinds of issues arise in handling missing data:

@ There are relatively deep statistical issues concerning how best to use
available information in the presence of missing data (see, for exam-
ple, Little & Rubin, 1987; Schafer, 1997). I will ignore these issues
here, except 10 remark that § is well designed to exploit sophisticated
approaches to missing data (and, indeed, the methods described in

Schafer, 1997, are available in §7).

7. See the mssang library for 8-PLUS € and the less extensive norm library for R.

@ There are intellectually trivial but often practically vexing mechanical
issues concerning computing with missing data in S. These are the
subject of the present section. Partly these issues arise because of the
diverse data structures and kinds of functions available simultaneously
to the S user, but partly similar issues arise in all statistical computing
systems, although they may sometimes be disguised.

As we have seen, on data input, missing values are typically encoded
by the characters NA (not available). The same characters are used to print
missing information. Many functions in § know how to handle missing
data, although sometimes they have to be explicitly told what to do.

To illustrate, let us access the data set Freedman in the car library;
because the car library is already in the search path, all I need to do in

R is to use the data and attach functions; I also print out the first few
rows of Freedman:

> data(Freedman)

> attach(Freedman)

> Freedman(1:10,] # firse 10 rows
population nonwhite density crime

AKRDHN 675 7.3 746 2602
ALBANY 713 2.6 322 1388
ALBUQUERQUE NA 3.3 Ha 5018
ALLENTOWN 534 0.8 491 1182
ANAHETM 1261 1.4 1612 3341
ATLANTA 1330 22.8 770 2805
BAKERSFIELD 331 7.0 41 3306
BALTIMORE 1981 21.6 877 425
BEAUMONT 315 20.7 240 2117
BINGHAMTON 306 0.6 147 1063

These data, on 110 U.S. metropolitan areas, are originally from the
1970 Statistical Absiract of the United States, and were employed by
Freedman (1975) as part of a wide-ranging study of the social and
psychological effects of crowding. (Freedman argues, by the way, that
high density tends to intensify social interaction, and thus the effects of

crowding are not simply negative.) The variables in the data set are as
follows:

B population: toral 1968 population, in thousands.
B nonwhite: percentage nonwhite population in 1960.
R density: population per square mile in 1968.

B crime: number of serious crimes per 100,000 residents in 1969.

READING AND MANIPULATING DATA

Some of Freedman’s data are missing (for example, the population
and density for Albuquerque). Here are the values for density:

> density
(1] 746 322 NA 491 1612 770 41 877 240
[10] 147 272 1831 1262 832 630 N& NA 328
[19] 308 1832 640 1361 NA 883 194 320 2186

[100] NA NA 123 132 1170 166 383 419 406
[109] 220 613

Suppose, now, that [try to calculate the median density. (As we will
see shortly, the density values are highly positively skewed, so using the
mean as a measure of the center of the distribution would be a bad idea.)

> median{density)}
(1] NA

S tells me that the median density is missing. This is the pedantically cor-
rect answer: Several of the density values are missing, and consequently
we cannot, in the absence of those values, know the median, but this is
probably not what [had in mind when I asked for the median density.
By setting the na.rm (NA-remove) argument of median to TRUE, I instruct
S to calculate the median of the remaining, nonmissing values:

> median(density, na.rm=T)

(1] 412

Several other § functions that calculare’ staristical summaries, such as
mean and var {variance), also work like this, but not all S funcrions han-
dle missing data in this manner.

Most plotting functions simply ignore missing data. For example, to
construct a scatterplot of crime against aensity, including only the
observations with valid data for both variables, simply enter:

> plot(density, crime)
» identify(density, crime, row.names(Freedman))
[1]1 50 67 73

The resulting plot, including three observations identified with the mouse,
appears in Figure 2.2. (Recall that you identify observations by pointing
ar them with the mouse and clicking the left mouse button; you exit
from identify by clicking the right mouse button.) It is apparent that
density is highly positively skewed, making the plot very difficult to
read. I would like ro try plotting crime against the log of density, but
wonder whether the missing data will spoil the computation. The log
function in § behaves sensibly, however: The result has a missing entry
wherever—and only where—there was a missing entry in the argument:

* log(c(1,10,KA,100), base=10)
(11 0 1 nHA 2

2.2 WORKING WITH DATA FRAMES

o
=
3 2 > NEW.YORK
g14% °
= §§
Q L -]
R
5 © fao
g "" JERSEY. QY »
2 1&°% o PATERSON
&
Sl
= a
e o
(=]
- T T T T T T T
0 2000 6000 10000

density

Figure 2.2 Scatterplot of crime by density for Freedman’s dara on crowd-

ing and crime. Three Cities with high density were identified
interacrivety wich che mouse.

i
I

Logs in 54

Remember, in 54, you must use the function logb in place of log to
calculate logs to an arbitrary base.

QOther functions that compute on vectors in an element-wise fashion—
such as the arithmetic operators—behave similarly.

1, therefore, may proceed as follows, producing the graph in Figure 2.3:

> plot{log{density, base=10), crime)
>

This graph is much easier to read, and it now appears that there is a
weak, positive relationship between crime and density. ([will address
momentarily how to produce the lines in the plot.)

Staristical modeling functions in S have a special argument, na. action,
which specifies how missing data are to be handled; na.action is set to
a function that takes a data frame as an argument and returns a similar
data frame composed entirely of valid data. The simplest na.action is
na.omit, which removes all observations with missing data on any vari-
able in the compurarion. An alternative, for example, would be to supply
an na.action that imputes the missing values.

The prototypical statistical modeling function in $ is 1m (linear model),
which is described extensively in Chapter 4. For example, to fit a linear

READING AND MANIPULATING DATA

cnme
1000 2000 3000 4000 5000

b T 1 [1 T
15 20 25 3.0 3.5 4.0

kg(density, base = 10)

Figure 2.3 Scatterplot of crime by logipdensity, showing linear least
squares and nonparametric-regression {lowess) lines.

regression of crime on the log of density, removing observations with
missing data on either crime or density, enter:

> lm(crime ~ log{deasity, base=10))

Call:
lm({formula = crime ~ log(density, base = 10))

Coefficients:

(Intercept) log(density, base = 10)
1297.3 542.8

The 1m funcrion returns a linear-model object; because the returned object
was not saved in a variable, the interpreter simply printed a brief report

of the regression. To plot the least squares line on the scatterplot in Figure
2.3:

> abline(ln(crime ~ log{density, base=10)), lty=2)
>

The linear-model object returned by 1l is passed to abline, which draws
the regression line; specifying 1ty=2 (line type 2} produces a broken line.

In R, the default na.action is given by the na.action option, which
is initially set to na.omit:

» options{’na.action’)
$1a.action
(1] "na.omit"

There is another na.action function named na.exclude, which is simi-
lar to na.omit in that it removes observations with missing data from a

2.2 WORKING Wit LIAIA FhAvLs

statistical model. When quantities such as residuals are calculated, how-
ever, na.exclude causes entries corresponding to observations with miss-
ing dara to be NA, rather than simply absent from the result. Filling out
results with NAs can be advantageous because it preserves the number of
observations in the data set—for example, in plotting residuals against a
predictor, we need do nothing special to ensure that both variables have
the same number of entries. I suggest that you adopt na.exclude as the
default na.action. If you run across a modeling function that does not
yet support na.exclude, then you can use na.cmit.

na.action in S-PLUS

In S-PLUS, in contrast to R, there is no global na.action option.
The default na.action for statistical modeling functions such as 1m is

na.fail, which reports an error when missing data are encountered, To
change this behavior, supply an appropriate na.action argument, such

as pna.omit or na.exclude. The na.exclude function is available in 54
but not in S3.

Some functions in S, particularly older ones, make no provision for
missing data, and simply fail if an argumenr has a missing entry. In these
cases, we need somewhat tediously to handle the missing data ourselves.
A relatively straightforward way to do so is to use the is.na function
to test for missing data, and then to exclude the missing data from the
calculation.

For example, to locate all observations with valid data for both crime
and density, I enter:

> good<-!({is.na{density) | is.na(crime)})
> good

[1] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
(10] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE

E R I

I then use good ro select the valid observations by indexing {a topic
described in Section 2.3.4). For example, it is convenient to use the
lowess function to add a nonparametric-regression smooth to a scatter-
plot (see Figure 2.3}, but lowess makes no provision for missing data:

> lines{lowess{log{density([good], base=10), crime[goodl))
>

By indexing density and crime with the logical vector good, I extract
only the observations that have valid data for both variables.

Suppose, as is frequently the case, that we analyze a data set with a
complex pattern of missing data, fitting severa) statistical models to the
data. If the models do not all employ exactly the same variables, then it is

READING AND MANIPULATING DATA

likely that they will be fit to different subsets of nonmissing observarions.
Then if we compare models, for example, with an incremental F test or
a likelihood-ratio test, the comparison will be invalid.

To avoid this problem, we can first use na. omit to filter the dara frame
for missing data, including all variables that we intend to use in our data
analysis. For example, for Freedman’s data, we may proceed as follows,
assuming that we want to use all four variables in the data frame:

> detach(Freedman)

> Freedman.good <= na.omit{Freedman)

» attach(Freedman.good)

> Freedman.good[1:10,] # first 10 observatians
population noawhite deasity crime

AXRON B75 7.3 746 2602
ALBANY 713 2.8 322 1388
ALLENTOWN 534 0.8 491 1182
ANAHEIM 1261 1.4 1612 3341
ATLANTA 1330 22.8 770 2808
BAKERSFIELD 331 7.0 41 3308
BALTIMORE 1981 1.6 877 42856
BEAUMONT 315 20.7 240 2117
BINGHAMTON 306 0.6 147 1063
BIRMINGHAM 739 32.1 272 2285

> dim(Freedman. good)
(1] 100 4

Notice that [detach Freedman because there is no need to access
variables in both data frames simultaneously {and the variables in
Freedman.good, now in position 2 on the search list, will shadow those
in Freedman in any event): As mentioned, it is generally advisable to
have only one data frame attached at a time, unless there is a specific
reason to access data from several sources at once. The dim (dimension)
function tells us that there are 100 observations and 4 variables in the
Freedman.good data frame; all missing data have been removed.

Numeric Variables and Factors

If you construct § data frames as I have suggested, by reading data from
files using read.table, or from numeric and character vectors using
data.frame, your data frames will consist of two kinds of data: numeric
variables and factors. Both read.table and data.frame by default trans-
late character data into factors.

Before proceeding, let us clean up a bit:
> detach(Freedman.gaad)

2.2 WORKING WITH DATA FRAMES

> objects()

[1] "Duncan” "Freedman" "Freedman.good" “Guyer"
[5] “Prestige” “condition" “cooperation” “googd"
[9] "last.uarnlng” Hgay!!

> remove(good, Freedman.good)
>

Near the beginning of this chaprter, I entered data from Fox and Guyer’s
experiment on anonymity and cooperation into the “global” variables
cooperation, condition, and sex. (Variables created by assignment at
the command prompt are global variables defined in the working data.)

The latter two variables are character vectors, as we may verify for
condition:

> condition
(1] "publac" “public” "publaic! “public" “public"
[6] “public“ ”public" "public" “public" ”public"
[11] "anonymous" "anenymous' 'anonymous! "amonymous” 'anonymous‘
[16] "ananymous" "anonymous” 'anonymous" “anonymous' "ananymous"

> is.character{condition)
[1] TRUE

Note the use of the “predicate” function is.character. Types of data
are discussed more systemartically in Secrion 2.4,

After entering the data, I defined the data frame Guyaer, which also con-
tains variables named cooperation, condition, and sex. I now attach
the datra frame, but before doing so, I remove the global variahles so that
they do not shadow the variables of the same names in the dara frame:

> remove(cooperation, coanditiom, seX)

> attach(Guyer)
>

There is, by the way, a general lesson here: Because the global envi-
ronment is the first entry on the search path, global variables in general
shadow variables by the same names in data frames on the path. You
can take advantage of this fact, or it can be a source of trouble and
confusion. For example, when we make a change to a variable in an
artached data frame (e.g., cooperation{1] <- NA) the change is actually
made to a copy of the variable in the working data. Likewise, the assign-
ment ccoperation <— cooperation makes a copy of ccoperaticn in
the working data.

Let us take a look at the variable condition in the attached data
frame:

> condition
[1] public public public public public public
(7] public public public public anonymous ananymous
[13] anonymous anoaymous anonymous 3aNONYMOUs ANOAYMOUs anonyflous

READING AND MANIPULATING DATA

(19] anonymous anonymous
Levels: anonymous public

» is.character(condition)
[1] FALSE

> is.factor{condition)
(1] TRUE

As promised, the version of condition in the data frame is a facior
rather than a character vector. A factor is a representation of a categorical
variable; facrors are stored more economically than character vectors,
and the manner in which they are stored saves information about the
levels (category set) of a factor. When a factor is printed, its values are
not quoted (as they would be for a character vector), and {in R) the levels
are listed.

Most important, many functions in §, including the statistical modeling
functions such as 1m, know how to deal with factors. For example, when
the generic summary function is called with a data frame as its argument,
it prints various statistics for a numeric variable bur simply counts the
number of observations in each level of a factor:

> summary (Guyer)
cogperatian condition 8sex

Min,. :27.00 anoaymous:10 female:10
1st Qu.:38.50 public 10 male :1Q
Median :46.50

Mean :48.30

3rd Qu.:58.75

Max. :78.00

Factors have unordered levels. An extension, called ordered factors, is
discussed {along with facrors) in Chapter 4 on linear models.

.’2_3__;_5 Modifying Data

Shdiass

For the most part, data modification in S occurs naturally and unremark-
ably. When I wanted o plot crime against the log of density in Freed-
man’s data, for example, [simply specified log(density, base=10); in
this case, I did not even have to create a new variable, say log.density,
as one would have to do in a typical statistical package like SAS or
SPSS.® Similarly, in regressing crime on the log of density, [just used
log(density, base=10) on the right-hand side of the linear model.

8. An alternarive would have been 1o plot crame against densaty, using a log axis for densaty. See
Chapters 3 and 7 for general discussions of plottmg dara in §.

2.2 WORKING WITH DATA FRAMES

Creating new variables is similarly straightforward. Unless we take
explicit steps to the contrary, assignments in S create global variables in
the working data. So, for example, with the Guyer data frame arrached
{as is currently the case), ler us calculate the percentage of cooperative
choices in each group. Recall that the variable cooperation counts the
number of cooperarive choices out of 120 choices in all;

> perc.coop <- 100=cooperation/120
>

The variable perc.coop resides in the working data, not in the Guyer
data frame. It is generally harmless, and even desirable, to create global
variables from a currently artached data frame, as long as we are careful
to clean up after we are finished.

Suppose, instead, that I replace the variable cooperation in the data
frame with the percentage of cooperative choices:

> Guyer$cooperation <- 100%caoperation/120

> Guyer

cooperation condition Bex
1 40.83333 publi¢ male
2 53.33333 public male
3 30.83333 Public male

20 36.66667 anonymous female

Note the use of the $ (dollar sign) for indexing a variable in a data
frame: This “list-like” indexing is discussed in Section 2.3.4. Although the
variable cooperation in the data frame has been modified, the artached
version of the data frame is unaffected, as we may readily verify:

> cooperation
[1] 49 64 37 52 68 54 61 79 64 29 27 58 52 41 30 40 39 44 34 44

Detaching and reawaching the data frame makes the definition of
cooperaticn current:

> detach(Guyer)

> attach{Guyer}

> cooperation
[1] 40.83333 53.33333 30.83333 43.33333 56.66667 45.00000
[7] 50.83333 65.83333 53.33333 24.16667 22.50000 48.33333

[13] 43.33333 34.16667 25.00000 33.33333 32.50000 36.66667
(19] 28.33333 36.66667

A similar procedure may be employed to add a new variable to a data
frame. The following statement, for example, adds the logit {log-odds) of
cooperation to the Guyer data frame:

READING AND MANIPULATING DATA

> Guyer$logit.coop <- log{cooperation/(100~cooperation})
> Guyer

cooperation coadition seX logit.caop
1 40.83333 public male -0.37085958
2 53.33333 public male 0.13353139
3 30.83333 public male -0.80792270

LI |

20 36.66667 anoaymous female -0.54654371

The assignment takes place in the global version of Guyer, however
rather than in the previously attached version, and consequently the new
variable logit.coop is not immediately available:

> logit.coop
Error: Object "logit.caop" not foung
¥ detach{Guyer)
> attach(Guyer)
> logit.coop
(1] -0.37085958 0.13353139 -0.80792270 -0.26826399 0.26826359
[6] -0.20067070 0.03333642 0.65587579 0.13353139 -1.14356368
[11] -1.23676263 -0.06669137 -0.26826399 -0.E5587579 -1.05861229
(16] -0.69314718 -0.73088761 -0.54654371 -0.92798677 -0.54654371

Because of the awkwardness of detaching and reattaching the darta
frame, and the attendant possibility of error, I generally prefer to cre-
ate new and modified variables in the working data rather than directly
in an artached data frame. If | want to save the new or medified vari-
ables in the dara frame, then [can assign them to the dara frame when [
clean up.

Transforming numerical data is usually a straightforward operation,
simply employing mathemarical operators and funcrions. Caregorizing
numerical data and recoding categorical variables are often more com-
plicated matters. A number of functions in S are employed to create and
to deal with categorical datra, but I limit discussion to two that I find
particularly useful: the standard S function cut and the function recode
in the car library.

The cut function dissects the range of a numerical variable into class
intervals. The first argument to the function is the variable to be cat-
egorized; the second argument gives either the number of equal-width
intervals or a vector of cur points at which the division is to take place.

For example, to divide the range of ccoperaticn into four equal-width
intervals, [specify:

> coop.4 <— cut{cooperation, &)

> summary(coap.4)

(22.5,33.3] (33.3,44.2] (44.2,55] (55,65.9]
& 7 B 2

R responds by creating a facror, the levels of which are named for the inter-
vals. Because cooperation is not uniformly distributed acrass its range,
the several levels of coop.4 contain different numbers of observations.

2.2 WORKING WITH DATA FRAMES

Suppose, alternatively, that we want to dissect cooperation into three
levels containing roughly equal numbers of observations’ and to name
these levels *1low’, 'med’, and *high’; we may proceed as follows:

> coop.graups <~ cut(cooperation,

* quantile(cooperation, (0, 1/3, 2/3, 1)),
* include.lawest=T,
+ labels=c{’'low’', ’med?, ’*high’))

» summary {coop.groups)
low med high
T g 7

Note the use of the quantile function to locate the cut points. Had we
wished ro divide cooperation into four groups, for example, we would
simply have specified different quanriles: c(0, .26, .5, .75, 1).
|___ =

The cut Function in S-PLUS
in 5-PLUS, the cut function creates a category variable rather than a
factor. A category is an older S representation for categorical data. It is a

simple matter to “coerce” a category to a factor: For example, coop. 4 <-
as_factor{cut{coaperation, 4)).

The recode function may also be used to dissect a quantitative variable
into class intervals. For example:

> ¢aop.2 <~ recode{cooperation, °’lo:50=1; 50:h1=2")
> coop.2
[1]12112122211111111111

The recede function works as follows:

8 The first argament is the variable to be recoded, here cooperation.

8 The second argument is a character string (i.e., enclosed in single or
double 'quotes) containing the recode specifications.

B Recode specifications are of the form old.velues=new.value; there
may be several recode specifications separated by semicolons.

B The “old values” may be a single value, including NA; a range, of the
form minimwn:maximum, as in the example {where the special values
Lo and hi may be used to stand in for the smallest and largest val-
ues of the variable); a vector of values, typically specified with the

9. Roughly squal numbers of observamons 1n the three intervals are the best we can do, because
n = 20 15 not evenly divisible by 3.

READING AND MANIPULATING DATA

¢ {combine) function; or the special symbol else, which, if present,
should appear last.

B An observation that fits into more than one recode specification is
assigned the value of the first one encountered. For example, a group
with cocperation exactly equal to 50 would get the “new” value 1.

8 Character data may appear as both “old” and “new” values. You
must be careful with quotation marks, however: If single quotes are

employed to enclose the recode specifications, then double quotes must
be used for the values {and vice versa).

8 When a factor is recoded, the “old™ values should he specified as
characrer strings; the resulr i1s a factor, even if the “new” values are
numbers, unless the argument as.factor.result is set to FALSE.

B Characrer data may be recoded to numeric and vice versa. To recode a
character or numeric variable to a factor, set as.factor.result==TRUE

@ [f an observation satisfies none of the recode specifications, then the
“old™ value for that observation is carried over into the result.

To provide a richer context for some further illustrations of the use
of recode, I detach the Guyer data frame, do some housecleaning, and
attach the Womenlf data frame from the car library:

> detach{Guyer)

> remove(perc.coop, coop.4, coop.groups, coop.2)

> datafWomenlf)

> attach(Womenlf)

> sample.20 <~ sort(sample(orow(Womenlf}, 203) # 20 random obs.
»

sample.Z20

(1] 14 28 41 47 51 b6 66 72 76 80 99 104 117 118
(18] 129 131 153 177 188 224

> Womenlf[sample.20,] # 20 randomly selected rows
partic bincome children regioa

14 not.york 9 present Prairie
28 not.wark 19 present Oataric
41 pot.work & present BC
47 not.uork 7 present DOotario
51 parttime 10 preseat Prairie
66 mnot.work 17 absent Atlantic
66 not.wark 15 present Ontario
72 uwnot.work 17 present Ontario
76 parttime 38 present (Ontario
80 parttime 19 present BC
98 fulltime 15 absent Oatario

104 not.work 15 absent BC

2.2 WORKING WITH DATA FRAMES

117 not.work 19 absent BC
118 not.work 15 absent BC
129 parttime 13 present Prairie
131 parttime 19 present Ontario
153 not.work 5 absent BC
177 mot.work 15 present 0Ontaria
188 not.work 7 present BC
224 not.work 19 present [Quebec

The sample funcrion is used to pick a random sample of 20 rows in the
data frame, selecting 20 random numbers without replacement from 1
to the number of rows in Womenlf; the numbers are placed in ascending
order by the sort function.

The data in Womenlf originate in a social survey of the Canadian pop-
ulation conducted in 1977. The data pertain to married women berween
the ages of 21 and 30, with variables defined as follows:

m partic: labor-force participation, parttime, fulltime, or not.work
{not working ourside the home).

B hincome: husband’s income, in $1000s (acrually, family income minus
wife’s mcome).

8 children: presence of children in the household: present or absent.

B region: Atlantic, Quebec, Ontario, Prairie, BC (British Columbia).
Now consider the following recodes:

> working <— recode(partic,
+ " e('parttime’, *fulltime’)='yes’; 'not.wark’'='ma’ ")
> working[sample.20] # 20 sampled observations
(1] 20 no R0 ma yes a0 N0 XNo yes yes yes 10 0o 0o
[15] yes yes no no no no
Levels: no yes

> working.alt <- recode(partic, # equivalent to previous recods
+ ¥ ¢{'parttime’, ’fulltime’)='yes'; else='no’ ")

> all{working == working.alt) # check

(1] TRUE

> fulltime <- recode(partic,
+ " 1 fplltime’='yes'; 'parttime’='no’; ’‘not.work’=Ni ")
> fulltime [sample.20] # 20 sampled observatioas

[1] NA NA NA NA no NA NA NA no no yes NA Na NA
[15] no no NA N& N& NA
Levels: no yes

> region.4 <- recade (region, " ¢('Prairie’,’BC*)="West’ ")
> reglon.4[sample.2Q] # 20 sampled observations
[1] West Ontario West Dotario West Atlantic

READING AND MANIPULATING DATA

[7] Ontaric Ontario Ontaric West Ontario West
[13] West West West Ontario West Ontario
[19] West Quebec

Levels: Atlantic Ontario Quebec West

In all these examples, factors (either partic or regicn) are recoded, and
consequently recode returns factors as results.

m The first two examples yield identical results, with the second example
Mustrating the use of else. To verify that all of the values in working
and working.alt are the same, I use the all function along with the
element-wise comparison operator == {equals).

B In the third example, a factor fulltime is created, indicating whether
a woman who works outside of the home works full time or part time;
fulltime is NA {missing) for women who do not work outside the home.

8 The fourth and final example illustrates how values that are not
recoded (here Atlantic, Quebec, and Ontarioc in the factor region)
are simply carried over to the result.

I once more clean up before proceeding:

> detach{Womenlf)

> remove{working, working.alt, fulltime, vegion.4, sample.20)
>

. MATRICES, ARRAYS, AND LISTS

We have thus far encountered and used several data structures in S:

B Vectors: One-dimensional arrays of numbers or characrer strings.
Single numbers and character strings in S are treated as vectors of
lengeh 1.

B Factors: One-dimensional arrays of levels.

B Dara frames: Two-dimensional dara rables, with the rows defining
observations and the columns defining variables. Data frames are het-
erogeneols In the sense that some columns may be numeric and others
may be facrors (or may even contain character data or logical dara).

In this section, I describe three other common data structures: matrices,
arrays, and lists.

2.3 MATRICES, ARRAYS, AND LISTS

Matrices

You may be aware that much of applied statistics is paturally expressed
mathemartically using vectors and matrices. Matrices in § are two-
dimensional arrays of elements all of which are of the same mode—for
example, numbers, character strings, or logical values.

Matrices may be constructed using the matrix function, which
reshapes its first argument into a matrix with the specified number of
rows (the second argument) and columns (the third argument). For
example:

> A <- matrix(1:12, 3, 4) #& 3 rows, 4 columns
> A
(.1] [,2] (,3] (,4]
1.1 1 4 7 10
2,1 2 5 a8 11
(3,1 3 B 9 12

> B <= matrix(e¢('a’,’'®’,’'c?), 4, 3, byrau=T)
> B
(,11 [,21 (,3]
1,1 “a" "' "g"
[2,] "a" up" et
3,1 va* m"p" Ug!
[4,] "a" ‘“p" Y

A matrix is filled by columns, unless the optional argument byrov is set
to TRUE. The second example illustrates that if there are fewer elements
in the first argument than in the matrix being defined, then the elements
are simply recycled.

A defining characteristic of a matrix is that it has a dim {dimension)
attribute with two elements: the number of rows and the number of
columns. A vectog, in contrast, does not have a dim attribute!®:

> dim(A)
1] 3 4
> dim(B)
(1] 4 3

> v <~ sample(10,10) # permutation of 1 to 10
> v
[11 10 4 7 2@ b 2 2 6 8 1
> dim{v)}
NULL

10. More cortectly, a2 matnx 15 a vecror with a two-elemenr dim artnbute,

READING AND MANIPULATING DATA

Note that sample(10,10) produces a random permutation of the num-
bers from 1 ro 10.

For more on attributes in 5, see Section 2.4. S includes extensive facil-
ities for matrix computation, some of which are described in Chapter 8.

e MRS S

72.‘322ﬁ Arrays

)
T

Higher-dimensional arrays of homogeneous elements may be created with

the array function; here s an example employing a three-dimensional
array:

> array.3 <- array(1:24, c{4,3,2)) # 4 rows, 3 columns, 2 layers
> array.3

LI | 1

(.11 [.2]) (,3]
(1,] 1 5 g

[2,] 2] 10
(3,1 3 7 11
4,1 4 8 12
> H) 2

[,11 [,2] (,3]
1,1 12 17 21
(2,] 14 18 22
(3,] 15 19 23
(4.1 16 20 24

> dim(axray.3)
11 4 3 2

The order of the dimensions is row, column, and “layer” and the array
is filled with the index of the first dimension “moving” most quickly. We
will seldom require higher-dimensional arrays in this book.

233 Lists

Lists are one-dimensional data structures composed of potentially herero-
geneous elements. Indeed, the elements of a List may themselves be—and
usually are—complex data structures, including other lists. Here is an
example of a list, constructed with the 1ist function:

> list.1 <- list{mat.l=A. mat.2=B. vec=v)} # 3-item list

2.3 MATRICES, ARRAYS, AND Lzl

» list.1l
$mat .1

.11 [,21 [,31 [,4]
1,1 1 4 7 10
(2,] 2 5 8 11
(3,] 3 6 9 12
§mat .2

(,11 (.21 [,3]
[1 ’] g M Hean
Ez ’] |lau IIblI Len
Es ’] Hail g nen
[4’] Lr Ll L

$vac .
(1] 10 4 7 3 658 3 2 6 8 1

This list contains a numeric matrix, a character matrix, and a numeric
vector. Notice that [named the elements in the call to the 1ist function;
these are arbitrary names thar I chose, not standard arguments to 1ist.
Because they permit us to collect related information regardless of its
form, lists provide the foundation for the class-based object system in S.
Classes are described mn Section 2.4 and in Chapter 8. Data frames, for

example, are lists with some special properties that permit them to behave
somewhat like matrices.

Indexing 3

A common operation in S is to extract some of the elements of a vec-
tor, matrix, array, or list by specifying the indices of the elements ro be
extracted. Indices are specified between square brackets—[and 1.1 have
already used this construction on several occasions, and it is now time to
consider indexing more systematically.

As we saw in the first chaptes, a vector may be indexed by a single
number or by a vector of numbers; indeed, indices may be specified out
of order, and an index may be repeated to extract the corresponding
element more than once:

- v

(1110 4 7 2 5 3 2 6 8 1

> viz2]
(1] ¢

> v(c(4,2,68)]
(11943

> vleg(a,2,4)]
[11 9489

PR T borsy

4

“wl T o

%
3
'I LR "

e
-

READING AND MANIPULATING DATA

Specifying negative indices suppresses the corresponding elements of
the vector:

> v(-¢(2,4,6,8,10)]
(11 10 7 5 2 8

If a vector has a names attribute, then we can also index the elements

by name'’:

> names(v) <- letters([1:10]
> names (V)
[1] “a.“ Ian |Jcll Iidll Ilen IJfll |ngl tlhll I|i|l IIJ‘JJ

> vlc(?fr,’1r,1g")]

fig
3gz2

Finally, a vector may be indexed by a logical vector of the same length:

>v <8
a b c d e £ g h i j
FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE

> v[v < 6] # all entries less than 6
befgj
45321

Any of these forms of indexing may be used on the left-hand side of
the assignment operator to replace elements of a vector. For example:

> yv <~ v # make copy of ¥

> v
a b cdef g h i j
i 4 7 9 5 3 2 6 8 1
» vwl[c(1,3,5] <= c(1,2,3)
> vy

+ abcdefghi)]j
1429332681
> W[C(Jb’,’d’,‘f,,’h’,1_]-‘)] - 0
>y
abcdefghtj
1020302080
> remove(vy)

L1. The vector lattera contams the 26 lowetcase letters ttom 'a’ to *z”; LETTERS similarly con
rains the uppercase lecters.

2.3 MATRICES, ARRAYS, AND LISTS

Indexing extends straightforwardly to matrices and to higher-dimensio-
nal arrays. Indices corresponding te different dimensions of the array are
separated by commas; if the index for a dimension is lefr unspecified,
then all of the elements along that dimension are selected.

I demonstrate with the matrix A:

> A

(,11 (,2]1 [,3] [,4]
1,1 1 4 7T 10
[2,1] 2 5 a8 11
(3,] 3 6 9 12

> A[2,3] # element 1n row 2, columm 3
(1] 8

> Alc(1,2), 2] # rows 1 and 2, column 2
[1] 45

> Alef1,2), c(2,3)] # rows 1 and 2, calumns 2 and 3
1] [,2]

1,] 4 7

2,1 5 8

> Afe(1,2),] # Tows 1 and 2, all columns
(,11 [,2]1 (,3]1 [,4]

(1,] 1 4 7 10

(2,1 2 5 8 11

Notice that the second example, A[2,3], returns a single-element vector
rather than a 1 x 1 matrix; likewise, the third example, Ale(1,2),
2], returns a vector with two elements rather than a 2 x 1 matrix.
More generally in indexing a matrix or array, dimensions of extent

1 are automatically dropped. Specifying drop=F circumvents this
behavior:

> Alc(1,2), 2, drop=F] # returns 1-column matrix

[,1]
f1,] 4
f2,] 5

Negative indices, row or column names (if they are defined), and logi-

cal vecrors of the appropriate length may also be used to index a matrix
or a higher-dimensional array:

» A(,—c(1,3)] # omit columns 1 and 3
.11 [,2]
[1,] 4 10
r2,] 5 11
[12

READING AND MANIPULATING DATA

» Af-1,-21 # omit row 1 and column 2
(,11 (,2] (,3]

n,] 2 8 11

(2,] 3 9 12

> rownames{A) <- c{’one’, 'two?, ’'three’) # set Tow names

> colnames (A} <~ c(’w’,'x?,'y?, ’z") # set column mames
> A

¥ X

one 14

two 25

three 3 6

> Alc(Peme’ ,*two?), c(’x’,y")]
Xy

one 4 7

two 5 8

> Ale(T,F,T),]

WXy Z
one 147 10
three 3 6 9 12

Used on the left of the assignment arrow, we may replace indexed
elements in a matrix or array:

> AL <~ A % make a copy of A

> AR

WXy z
one 14710
two 25 8 11
three 3 6 9 12

> AA[1,] < 0 # set first row to zeros

> AA

WXy z
one 000 DO
two 25811
three 3 6 9 12

> ramovef(Ad)
>

Lists may be indexed much as vectors, but some special considerations
apply. Recall the list that I constructed earlier:

> list.1
$mat.1

(,11 [,2]1 (,3] (,4]
Flyd 1 4 7 10
[2,1] 2 5 g8 11
3,1 3 6 g 12

2.3 MATRICES, ARRAYS, AND LiSTs

$mat .2
(,1] (,21 [,3]
] Uugt ubn "C”
] uan “b" Wew
[3'] Hgt A uen
(4,]

Ilall !«Ibl-i] c b

(1] 10 4 ¥ 9 6 3 2 6 8 1

» list.10c(2,3)] # elements 2 and 3
$mat .2
(,1]1 £,2] [,3]
[1 ,] Hgu "b" "
[2,] llau llbll ncu
ts’] nau Wt uen
[4’] ¥ I.Jbll chu

$vec
(11 10 4 7 9 5 3 2 6 8 1

> list.1[2] # returns a one-element list
$mat,2
(.11 .21 (3]
[1 :] Ngt MRt weR
[2'] gt HpH nen
[3'] IIaII ubn "C"
£4 ’] L] alk |1bu I cl!

Even when we specify a single element of the list, as in the last exam-
ple, we get a single-element list rather than (in this case) a martrix. To
extract the matrix in position 2 of the list, we may use double-bracket
notation:;

> list.1([2]] # returns a matrix
(,11 (.21 (,3]

[1’] ran ubu nclr

[2'] #aM eyt Heh

[3,] fign H ngn

[4’] gl nbn fhen

The distinction between a one-element list and the element itself is subtle,
but it can occasionally trip us up if we are not careful.

If the list elements are named, then we can use the names in indexing
the list:

» list.1(’mat.1’] # produces a one-element list

$mat.1

[,11 (,21 (,31 (,4]

1,] 1 4 7 10

(2,] 2 5 8 11

(3.1 3 6 9 12

READING AND MANIPULATING DATA

> list.1({['mat.1’]] # extracts a single element
{,1]1 [.2] (,3] (,4]

[1,] 1 4 7 10

(2,] 2 5 5 11

(3,] 3 6 9 12

An element name may also be used (either quoted, or if it is a legal §
name, unquoted) after the § (dollar sign) to extract a list element:

> list.1¥mat.1

£,1] £,2]1 (.31 (,4]
(1,1 1 4 7 10
2,1 2 5 8 11
[3,] 3 G g 12

Used on the left-hand side of the assignment arrow, dollar-sign indexing

allows us to replace list elements, to define new elements, or to delete an
element:

> list.1%mat.1 <- matrix(1l, 2, 2) # replace element
» ligt.1$title <= ’an arbitrary list’ # new element
> list.1$mat.2 <= NULL # delete element
» list.1
$mat.1

(,1] [.2]

Bl 1 1
[2,] 1 1

$vec
1] 10 4 7 9 5 3 2 6 8 1

$ritle
[1] "an arbitraxy list"

Dara frames may be indexed either as lists or as matrices. Recall the
Guyer data frame:

> Guyer)
cooperation condition sex logit.coap

1 40.83333 public male -0.37085358

2 53.33333 public male 0.13353139

3 30.83333 public male -0.80792270

19 28.33333 anonymous female -0, 927988677
20 36.66667 anonymous female -0.54654371

> attach(Guyer)
>

Because no row names were specified when I entered the data, the row
names are simply the character representation of the row numbers.

2.3 MATRICES, ARRAYS, AN

Indexing Guyer as a matrix:

> Guyer(,1] # first column
{1] 40.83333 53.33333 30.83333 43.33333 B6.66667 45.00000
{7] 50.83333 65.83333 53.33333 24.16667 22.50000 48.33333
(13] 43.33333 34.1666T 25.00000 33.33333 324.50000 36.66667
(19] 28.33333 36.66667

> Guyer(,’cooperation’] # equivalent
(1] 40.83333 53.33333 30.83333 43.33333 56.66667 45.00000
[7] 50.83333 65.83333 53.33333 24.16667 22.50000 48,33333
(13] 43.33333 34.16667 25.00000 33.33333 32.50000 36.66667
(19] 28.33333 36.66667

» Guyer[c(1,2),] # rows 1 and 2
cooperation condition sex logit.coop

1 40.83333 public male -0.3708596

2 53.33333 public male 0.1335314

> Guyer{e('1*,'2*), ’cooperation®]
[1] 40.83333 53.33333

> Guyer[-(6:20),] # drop rows 6 through 20
cooperation condition sex logit.coop

1 40.83333 public male =0.3708596
2 53.33333 public male 0.1335314
3 30.83333 public male —0.8079227
4 43.33333 public male -0.2682640
5 56 .,66667 peblic male 0.2682640
> Guyer(sex == 'female’ & condition == ’public’,]

cooperation condition sex logit.coop
8 45.00000 public female -0.20067070
7 50.83333 public female 0.03333642
8 65.83333 public female 0.65587579
9 53.33333 public female 0.13353139
10 24.16667 public female —1.14356368

Alrerpatively, indexing the data frame Guyer as a list:

> Guyer§cooperation
[1] 40.83333 53.33333 30.83333 43.33333 56.66667 45.00000
(7] 50.83333 65.83333 53.33333 24.16667 22.50000 48.33333
[13] 43.33333 34.16667 25.00000 33.33333 32.50000 36,66667
[10] 28.33333 36.66667

> Guyer[[’cooperatian’]]
(1] 40.83333 53.33333 30.83333 43.33333 56.66667 45.00000
(7] 50.83333 65.83333 53.33333 24.16667 22.50000 48.33333
(13] 43.33333 34.16667 25.00000 33.33333 32.50000 36.66667
(18] 28.33333 36.66667

READING AND MANIPULATING DATA

» Guyer{’cooperation’]
cooperation
1 40.83333
53.33333
3 30.83333

20 36.66667

Notice that specifying Guyer[’cooperation®] returns a one-column
data frame rather than a vector.

As has become my habir, I clean up before continuing:

> detach(Guyer)
> remove(A, B, v, array.3, list.1)
>

. DATA ATTRIBUTES, MODES, AND CLASSES*

This section deals more abstractly with data in S. I aim to introduce
the topic rather than to cover it exhaustively. The informarion here is
occasionally useful in routine dara analysis, and certainly useful for pro-
gramming in S, but you may safely skip the section on first reading,.

All objects in § have ar least two “attributes”: mode and length. For

example, numeric data are of mode numeric and character data of mode
character:

> x < 1:10

> mode(x)

(1] “gumeric”
> length(x)
(1] 10

> y <- c(ane", "two", "three™)
» mode(y)

[1] "character"

> length(y)

f11 3

Lists are of mode list, as are data frames and the objects produced
by statistical modeling functions such as 1m (linear model):

* list.2 <- list(x, y)
> mode(list.2)

[1] "list*

> leagth(list.2)

[1] 2

2.4 DATA ATTRIBUTES, MODES, AML ALY

» mode(Guyer)
[1] “list"

> length(Guyer)
(1] 4

> attach(Duncan)

> mod <~ lm(prestige -~ income + education) # regression model
> mad

Call:

Im{formnla = prestige - income + eduncatiom)

Coefficients:
(Intercept) income education
—6.0647 0.5987 0.5458

> mode(mod)

(1] "'list"

> length(mod)

1] 12

> names(mad)
(1] "coefficients" ‘“residuals" "effects"
[4] "rank® “fitted.values" "assign"
{71 “qz" "df.residual" ‘xlevels"
(10] "call" ¥ tarms" "mpdel"

There is a distinction between the printed representation of an object
(such as the linear-model object med) and its internal structure. We do not
normally interact directly with an object produced by a modeling func-
tion, and therefore do not need to see jts internal structure; interaction
with the object is the province of functions created for that purpose (for
example, the generic summary function).

Because all objects in S have a mode and a lengrh, so do functions
(and even S expressions):

> mode{mean)
[1] “function*
> length(mean)
] 1

-

Objects may have attributes beyond mode and length, as we may dis-
cover with the attribustes function. For example, a matrix has a dim

(dimension) attribute of length two, and may have a dimnames (dimen-
sion names) attribute as well:

» A<-matrix(1:15, 3, 5) # 3 rows, 5 columns
> A
(,1] (,2] (,3] [,4] [,5]
(1,1 1 4 7 10 13
(2,1 2 5 B 11 14
(3,] 3 6 9 12 1ib

READING AND MAMIPULATING DATA

> rownames (A)<~¢('a’,’b’,'c’)

> colnames (A)<~c{'v’,'w','x?,'y!, '2%)
» attributes(A)

$dim

(11 3 5

$dimnames
$dimnames [[1]]
[1] Bah Hph N~H

$dimmames [[2]]
[1] "'V" rluu rlxu “Y" rlzn

The class-based, object-oriented programming system in 53 and R is
driven by objects thar have a class arribute. For example, dara frames

are of class data. frame (and also have other auributes appropriate to
this kind of objecr):

> attributes(Duncan)
$namea
(1] “type" *income" "educatioa" "prestige"

$class
[1] "data.frame"

$row.names

[1] "accountant" "pilot"

(3] "architect” "anthor"
[5] *chemiat" "minister"
[43] "janitor" "paliceman"

[45] "waiter"

Likewise, factors, such as the variable type in the currently attached

Duncan data frame, are of class factor (and also have a levels
attribute):

> type

[1] prof prof praf prof prof prof praf prof we prof prof
[12] prof prof prof prof wc prof prof prof prof we wc
(23l we wc bBe B bc b be Bec bc bec be

[341 b¢ bc be bBec bBe be b bec be bec be
(451 be

Levels: b¢ prof wc

» attributes{type)
$levels
[1] "bc“ "Per“ "'H‘c"

$class
(1] rfactor"

2,4 DATA ATTRIBUTES, MQDES, AND CLASSES

To discover whether an object has a class {and, if so, what that class
is), you can use the class function:

» class(Duncan)
[1] "data.frame"

> class(type)
(1] "factor"

> class(A)
NULL

The variable A, recall, 1s a matrix, and matrices in S3 and R have no
class. (That may be a bad pun, but if it is, I don’t quite understand it.)
Object-oriented programming in $ is taken up briefly in Chapter 8.

Standard 5 functions exist to create dara of different modes and for
many classes (comstructor functions), to test for modes and classes (pred-
icate functions), and to convert data to a particular mode or class (coer-
cion functions).

Constructor functions conventionally have the same name as their
mode or class. For example:

> num <- numeric(5) # create oumeric vector of zeras of length 5

> nuam
[1] o0oO0O0OD

» fac <= fagtor(c{’a’,'b’,'¢’,'c’,’p?,'a’)) # create factor
> fac

Mllabcchba

Levels: a b c

By convention, predicates in S prefix the characters “is.” to the name
of the mode or class:

> is.pumeric{oum} # predicate for mode numeric
[1] TRUE

> is.numeric(fag)
(1] FALSE

> is.facter{fac) # predicate for class fagtor
1] TRUE
The names of coercion functions employ the prefix “as.™:

» ¢har <- as.character{fac) # coerce ta mede character
> char
[1] Ilall “b“ 'I'CH Ilcll Ilbll Ilall

> as.mumerig{fac) # coerce to mode numeric
[1] 123321

> as.numeric(char)
[1] NA NA NA NA NA NA

READING AND MANIPULATING DATA

Warning message:
NAs intreduced by coercion

The last two examples illustrate that coercion may cause information to
be lost.

Constructor, predicate, and coercion functions are occasionally avail-
able for types of objects that, strictly speaking, are neither modes nor
classes. For example:

» B <- matrix{1:9, 3, 3)

> B

[,1]1 ,21 [,3]

(1,1 147

(2,] 258

(3,1 369

matrix censtructor

» is.matrix(B) # matrix predicate
(1] THUE

> as.vector(B) # coercée to vector
1] 123456789

I do nort bother to clean up at the end of the current chapter, because
I will not save the R workspace. More generally, in this book I assume
that each chapter represents an independent S session.

Data Storage and Housekeeping in S-PLUS

Because all globally defined objects are stored in files in the working-data
directory, they normally persist from session to session. 5-PLUS can be
set to prompt for saving global objects when the session is terminated,
and housekeeping can be performed at that point.

Data in 54

The preceding sections describe the organization of dara in R and 83.
Data in 54 are organized in a somewhat different manner, though the
ditferences are mostly transparent in everyday use. Most fundamentally,
all objects in $4 have a class, as well as a mode and length. For example!?:

> vec <= 1:10

> char.vec <— letters[1:5]

> mat - matrix{(1:12, 3, 4)

12, By the way, this 15 truc not anly of data abjecrs, but of other objects as well—such as funcnons
and expressians. In 83 and R, all objects have a length and a mode, but not necessarily a class. The
ability te mampulate obyects such as expressions and functions 15 very powerful in advanced use
of 5. T mvite the reader to apply the class, mede, and length funchons to a vanery of abjects.

2.4 DATA ATTRIBUTES, MODES, AND CLASSES

> vec
(1] 1 2 3 4 5 6 7 B 8 10

> char.vec
[1] L ublr neu "d" hgh

» mat

(,11 (,2] (,3] (,4]
(1,] 1 4 7 10
[2,] 2 5 g8 11
(3.] 3 6 9 12

> class{vec)
(1] "integer"
> mode(vec)
(1] "numeric"
> length(veg)
[1] 10

> class(char.vec)
(1] “character"

> mode(char.veg)
[1] "chazacter"

> length(char.vec)
[1] s

> ¢lass(mat)
(1] "matrix"
> mode (mat)
(1] “numeric”
» length(mat)
[1] 12

The predicate and coercion functions familiar from 53 work in 54

as well, bur S4 also provides the general functions is and as for these
purposes:

> is.matrix(mat)
W

> is.matrix{vec)

(11 F

> is{mat, ‘matzix’)
(11T

> as.vector{mat)
1] 1 2 3 4 5 6 7 8 9 10 11 12

> as{mat, ’'vector'}
(11 1 2 3 4 5 6 7 B 9 10 11 12

READING AND MANIPULATING DATA

Finally, classes in 54 are not implemented via a class attribute
(although the 53 class system, based on the class attribute, 1s still sup-

ported for “backwards comparibility”). The S4 class system is described
briefly in Chapter 8.

HAPTER 3

Exploring and
Transforming Data

xamination—particularly graphical examinatiop—of data is an

important prelude to statistical modeling, and a step that is skipped
at the peril of the data analyst. Although it employs a very simple graph-
ical approach, which imposes some limitations on the kinds of graphs
that can be created, S provides very strong facilities for constructing sta-
tistical graphs. Indeed, the original developers of § were also important
innovators in statistical graphics (see, for example, Chambers, Cleveland,
Kleiner, & Tukey, 1983).

This chapter assumes general familiarity with standard procedures for
exploratory datra analysis, statistical graphics, and data transformation,
and shows how these procedures are implemented in 5. I make occa-
sional reference to freely available S libraries, including the car library
associated with this book. The chapter takes up the following topics:

8 Distributional displays, mcluding histograms, stem-and-leaf displays,
density estimates, boxplots, and quantile-comparison plots.

8 Plots of the relationship between two variables, including various ver-

sions of scamerplots, scatterplot smoothers, bivariate densicy estimates,
and parallel boxplots.

8 Multivariate displays, including scatterplot matrices, coplots, and
(briefly) dynamic three-dimensjonal scatterplots.

B Transformations of data to symmetry, constant spread, and lineariry.

The general focus is on graphical tools that are broadly useful in sta-
tistical data analysis.

EXPLORING AND TRANSFORMING DATA

EXAMINING DISTRIBUTIONS
Pl
; E‘%ﬁ Histograms and Stem-and-Leaf Displays

The most common graph of the distribution of a quantitative variable is
the bistogram, which dissects the range of the variable into class intervals,
called bins (usually of equal width), and counts the number of obser-
vations falling in each bin. The counts {or percentages, proportions, or
densities, calculated from them) are plotted in a bar graph. An example,
constructed by the following S commands, appears in Figure 3.1:

> library(car)

> data{Prestige)
» attach(Prestige)
> Prestige(1:5,] # first 5 obs.
edication income women prestige cemnsns type

GOV. ADMINISTRATORS 13.11 12351 11.16 68.8 1113 prof
GENERAL . MANAGERS 12.26 26872 4,02 69.1 1130 prof
ACCOUNTANTS 12.77 9271 15.70 63.4 1171 prof
PURCHASING.UFFICERS 11.42 8B6S 9.11 56.8 1175 prof
CHEMISTS 14.62 8403 11.68 73.5 2111 pref

> hist(income)
>

The Canadian occupational-prestige data set, on which this example 1
based, was introduced in the previous chapter

Histogram of income

40

Frequency
20 30

10

o | —
T T T T T T 1
0 5000 10000 15000 20000 285000 30000

INGome

Figure 3.1 Histogram of income in the Canadian occupational-prestige data

Fod BEAAMNL SIS LT3 e e s an

Histcgram of ingome

25
|

Frequency

T i T T 1 T
0 5000 10000 15000 20000 25000

Incame

Figure 3.2 Revised histogram of income.

I find thar the rule that R uses ro determine the number of bins,
together with its effort ro produce “nice™ cur points between the bins,
often produces too few bins. The function n.bins in car implements a
number of rules for calculating the desired number of bins; the default
rule used by n.bins, from Freedman and Diaconis {1981}, sets the rec-
ommended number of bins to

[nm(max - min)‘\

2(0:- Q) I
where 7 is the number of observations, max — min is the range of the
data, Q, — is the interquartile range, and the “ceiling”™ brackets
indicate rounding up to the next integer. Applying this rule vo income

in the Canadian occupational-prestige dara produces the histogram in
Figure 3.2:

» n.bins(income)

(1] 15

» hist(income, nclass=n.bins{(income), cal=1)
> box()

>

The nclass argument to bist suggests the number of bins to employ, and
col=1 specifies thar the histogram bars are to be drawn in black; finally,
box () draws a rectangle around the histogram.! Alternatively, you can
use the breaks argument ro hist to set the endpoints of the bins, as in
breaks=seq(0, 30000, 2500). Note that the lowest and highest break

1. Chaprter 7 imcludes a discussion of color use 1n R and S-FLUS.

EXPLORIMNG AND TRAMSFORMIMNG DATA

points should include all of the data. The break points do not have to
be evenly spaced (but histograms with unequal-width bins are difficult to

interpret). You may also wish to take a look at the truehist function in
the MASS library.

The stem function in S creates stem-and-leaf displays:

> stem(income)
The decimal point is 3 digit(s) to the right of the |

016979

2 | 44689001125556667999
4 [012233456777881111234566889
6 | 01233556679301145679
B [000012334488993936
10 | 4004

12 | 45

14 | 026

18 | &

1813

20 |

22 |
241 39

hist and stem in S-PLUS

The hist function in S-PLUS does a better job, in my experience, of
picking the number of bins for a histogram; moreover, the S-PLUS version

of the function incorporates several rules as options for suggesting the
number of bins, rendering the n.bias function in car unnecessary. The
S-PLUS version of stem is also more capable than the R version, and
allows, for example, for timming outliers.

Density Estimates .

Nonparametric density estimation often produces a more satisfactory rep-
resentation of a distribution by smoothing the histogram. The kernel-
density estimate at the value x of a variable X is defined as

. 1 2 X —X;
i = 5 oK (S52),
where the x, are the » observations on the variable; K is a kernel

function—a symmetric, single-peaked density function, such as the nor-
mal densicy; and b is a bandwidth parameter, which controls the degree

3.1 EXAMINING DISTRIBUTIONS

Histogram of income

3

Dansity

000000 000004 000008 000012

0 S000 10000 13000 20000 25000

ncame

Figute 3.3 Nonparametric kernel-density estimates for the distribution of
incame, using the default bandwidth (heavier line) and half the
default bandwidth (lighter line).

of smoothing: Larger values of the bandwidth produce smoother densiry
estimates. The factor 1/nf ensures that the densiry estimate encloses an
area of 1.

The density function in- S implements kernel-density estimation, by
default using a normal kernel?:

hist(income, nclass=n.bins{income), praobability=T,
ylab=’Density’)

lines(density(income), lud=2)

points(income, rep(0, length(income)), pch="|")

box ()

lines(density{income, adjust=.5), lwd=l)

VOV W W VW WV

This example, which produces Figure 3.3, illustrates how an § graph can
be built up by successive calls to graphics functions.? The hist function
constructs the histogram, with probability=T specifying density scaling
(i.e., the areas of the histogram bars sum to 1) and ylab=’Density’ fur-
nishing the label for the vertical axis of the graph. The lines function
draws the densiry estimate on the graph, the coordinates of which are cal-
culated by the call to density; 1wd=2 specifies a line of double thickness.

2. Several freely available § librartes prownide sophisncated facilides for density esnmanon. Ses,
particular, the sm Iibrary (Bowman & Azzalini, 1997} and the locfit library [Loader, 1999}, Nan.
parametric depsity esumanon is extensively described in Silverman (1988).

3. Chapter 7 describes 1n more derail haw ta conseruct graphs in S.

EXPLORING AND TRANSFORMING DATA

The points function is used to draw a one-dimensional scarterplot (or
“rugplot™) at the bottom of the graph, using a vertical bar as the plotting
symbol, with the horizontal coordinates given by income and the vertical
coordinates all 0s. The second call to density, with adjust=0.5, speci-
fies a bandwidth half the default value and therefore produces a rougher
densicy estimate (shown in the figure as a lighter line, 1wd=1).

Density Estimation in S-PLUS
The function density in $-PLUS does not take an adjust argument, but

several methods are available to select the bandwidth for the density esti-
mate. See help(density) for details.

1.3 Quantile-Comparison Plots

We often want to compare the distribution of a variable with a theo-
retical reference distribution, such as the normal distribution. An effec-
tive graphical means of doing so is provided by the guantile-comparison
plot, plotting the ordered data against the corresponding quantiles of the
reference distribution. If the data conform to the reference distribution,
then the quantile-comparison plot should be linear, within sampling error.
§ provides the qqnorm function for making quantile-comparison plots
against the normal distribution, but [prefer the qq.plot function in the
car library. By default, qq.plot compares the data to the normal distri-

bution, and provides a 95 percent pointwise confidence envelope around
a line fir to the plot:

> qq.plot{income, labels=row.names{Prestige))
(1] 26 17 2¢ 2

The resulting graph is shown in Figure 3.4. The argument labels=
row.names(Prestige) allows us to label points interactively by their
occupation names: Placing the mouse cursor near a point and clicking
the left button causes the point label to appear on the plot; clicking the
right mouse button exits from qq.plot. Notice that qq.plot returns the
indices of the labeled points.

The qq.plot function can also be used to plot the data against any
reference distribution for which there are quantile and density functions
in 5, which includes just about any distribution that you may wish to
use. Simply specify the “root”™ word for the distribution. For example,
the root for the normal distribution is norm (with density funcrion dnorm
and quantile function qnorm); the root for the chi-square distribution is

3.1 EXAMINING DISTRIBU LIOQNS

L

S _ GENERALMANAGERS ©

& PHYSICIAN
g LAWYERS @

o | OSTEOPATHS.CHROPRACTQRS o

[=]

[=

[Ty

income

b
g
o
-
O]

narm quantiles

Figure 3.4 Normal quanrile-comparison plot for income. The broken lines
give a pointwise 95 percent confidence envelope around the fit-

ted solid line. Several points were labeled interactively with the
mouse,

chisq (dchisg and gchisg). Root words for some other commonly used
distributions are binom, for the binomial distribution; £ for the F distri-
burion; t for the ¢ distribution; and unif for the uniform distribution.

In addition to density and guantile functions, S also provides cumula-
tive distribution functions {CDFs, prefix p) and pseudo-random-number
generators (prefix r): For example, pnorn gives cumulative probabilities
for the normal distributions, while rnorm generates normal random vari-
ables. Table 3.1 summarizes the principal arguments to these probability
functions.

To illustrate, I use the rchisq funcrion to generate a random sample
from the chi-square distribution with 3 degrees of freedom, and plot

the sample against the distribution from which it was drawn (producing
Figure 3.5):

> qq.plot(rchisq(100,3), distribution=’chisq’, df=3)
>

Boxplots CES

-
el
= -nt‘

5,

i AT

Finally, among these univariate displays, Figure 3.6 shows a boxplot of
income, produced by the following 5 commands:

> boxplot(income, ylab=’incame’)

> identify(repti,length(:.ncome)), inCome, row.names(Prestige))
[1] 2 17 24¢ 25 26

EXPLORING AND TRARMSFORMING DATA

Table 3.1

Arguments for some standard probability functons in 5. Most of
the arguments are self-explanatory. For the binomial distribution,
size represents the number of binomial trials, while prob repre-
sents the probability of success on each trial. Mot all arguments are
shown for all functions; consult the R or S-PLUS on-line documen-

ration for details.

Distribution

Density Function

Quantile Function

Normal
Chi-square
F

t

Binomial
Uniform

dnorm (%, mean=0, sd=1)
dchisq(x, df)

df (x, af1, df2)

dt(x, d4f)

dbinem(x, size, prob)
dunif{x, min=0, max=1)

qnorm(p, mean=0, sd=1)
qchisq(p, 4f)

qf (p, 4fl, df2)

gt(p, df)

gbinam(p, size, prob)
qunif(p, min=0, max=1)

Distribution

Distribution Function

Random Number Function

Normal
Chi-square
F

i

Binomial
Uniform

prnormi¢, mean=0, sd=1)
pchisq(q, df)

pflq, d4dft, df2)

ptlq, 4f)

pbinom(q, size, prob)
punif (g, min=0, max=1)

rmorn(n, mean=0, sd=1)
rchisq(n, df)

rf(n, df1, 4f2)

rt{n, df)

rbinom{n, size, prob)
runif(n, min=0, max=1)

The call to boxplot is self-explanatory. The identify function is used
to label points on the plot interactively; I take advantage of the fact that
in R the points in a boxplot are all graphed at the horizontal coordinate
1, while the vertical coordinates are given by the variable plotted, here

income.
@
o
2
g
g
chizg quarnties
Figure 3.5 Quantile-comparison plot of a sample of size n = 100 from x2(3

against the distribution from which the sample was drawn.

3.2 EXAMINING RELATIONSHIPS 9

_4 PHYSICANS B GENEFRAL_MANAGERS
2
s o LAWYERS
RATHS CHROPRACTORS <
B - — 3 VETERINARANS
o] L
£ g ;
§ -
o
8 -
L) '
o e S

Figure 3.6 Boxplot of income. Several observations were labeled interac-
tively with the mouse.

Point Labels for Boxplots in S-PLUS

The same general approach works In 5-PLUS, but the points are plotted
at horizontal coordinates of 50, rather than 1. That is, we enter rep(50,
length(income)) to specify horizontal coordinates to identify.

EXAMINING RELATIONSHIPS

Scatterplots .3:2.T

The scatterplot, possiBly the most useful of all statistical graphs for data
analysis, is the standard graph for examining the relationship between
two guantitative variables. [will show you how to make several kinds of
scatterplots in S.

When it is presented with two numeric-vector argument, which it
interprets as giving horizontal and vertical coordinates, respectively, the
default behavior of the plot function is to make a scatterplot.* Contin-
uing, with the Canadian occupational-prestige data, [enter (producing
Figure 3.7):

> plot{income, prestige)
>

4. plot I1s a generic function, and so, as explained in more detail 1n Chaprer 8, 1ts behavior depends
on the class of its first argument.

EXPLORING AND TRANSFORMING DATA

>}
[u}
oo Q
€O o o
[+ u@ Q
Qo o o
B o w
=] 0000
o © 09030
=] Q
k7 6 L@
[
g_ ‘3 o o
o
o _| og &QQ‘?
N % o
o @
fs
o o5 qf
a &
R T
o
L 1 J 1 |

0 5000 10000 15000 20000 25000

Incams

Figure 3.7 Simple scatterplot of prestige by income for the Canadian
occupational-prestige dara.

Interpretation of a scatterplot is often assisted by enhancing the plot
with least squares and nonparametric-regression lines. The scattexrplot

funcrion in car does this by default, and also adds marginal boxplots for
the two variables (as in Figure 3.8):

> scatterplot(income, prestige, span=.6, lwd=3,
+ labels=rownames(Prestige))
(11 2 17 21 24

@ The nonparametric-regression curve on the plot is drawn by a local-
regression smoother. Local regression works by firting a least squares
line in the neighborhood of each observation, placing greater weight
on points closer to the focal observation. A fitted value for the focal
observation is extracted from each local regression, and the resulting
fitted values are connected to produce the nonparametric-regression
line. The proportion of observations included in each local fir, called
the span of the local regression (and specified by the span argument
to scatterplot, here span=.6), controls the smoothness of the result:
Larger spans produce smoother regression curves.’

@ The labels argument supplies names for the points, permitting us to
identify observations interactively with the mouse: Point the mouse at
an observation and click the left button; click the right button to exit
from scattexrplot, which returns the indices of the identified points.

§. Nonparamernie repression 15 described m muoch more derail in the Web appendix to the book.

3.2 EXAMINING RELALOMNIMIE

PHYSICIANS ©
. UNVERSITY.TEACHERS © FLANYE
o & ,
-]
GENERAL MANAGERS ©
”
E -
&
g1
/
a
g4 oo
o
o
T T 1 1 1 1
0 5000 10000 15000 20000 25000
NEOme

Figure 3.8 Enhanced scatrerplot of prestige by income. Several points were
idencified interactively with the mouse.

® Finally, specifying the line width as 1wd=3 makes the regression lines
on the plot thicker than they would be by default (1wd=1).

Coded Scatterplots

A categorical variable can be encoded on a scatterplot by using a differ-
ent plotting symbol or color for each of its categories. The scatterplot
function in car may be used to create coded scatterplots, for example,
for prestige by income, coded by type of occupation (Figure 3.9):

> scatterplot(prestige ~ income | type, span=.8)
>

The variables for the scatterplot are given in a formula, as y~z| groups.
[selected span=. 8 because of the relatively small number of observations
in the occupational groups: Using a small span in a small dara set tends to
produce a nonparametric-regression curve thar is too rough. The legend
on the graph, automatically generated by the scatterplot function, is
placed interactively with the mouse: Click the left burton to position the
upper-left corner of the legend. Although the reproduction of the graph in
Figure 3.9 is in monochrome, in the original graph each group is plotted
in a different color

The overall scatterplot of prestige by income (Figure 3.8) suggests a
nonlinear relationship between the two variables, but the coded scatter-
plot indicates that the relationship between prestige and inceme may

well be linear within occupational types. The slope of the relationship

EXPLORING AND TRAMSFORMING DATA

prastige

Figure 3.9 Scatterplor of prestige by income, coded by type of occupation.

looks steepest for blue-collar occupations, and least-steep for professional
and managerial occupations.

Jittering Scatterplots

Discrete, quantitative variables typically result in uninformative scat-

terplots. The example in Figure 3.10(a) was produced by the following S
statemernts:

> detach(Preatige)
> data(Vocahb)
> attach(Vocab)

> plot{educatian, vocabulary)
>

The dara for this illustration come from the 1989 U.S, General Social Sur-
vey, conducted by the National Opinion Research Center The two vari-
ables in the plot are education in years (education) and the respondent’s
score on a 10-word vocabulary test (vocabulary). Because education
can only take on 21 distinct values, and vocabulary only 11 distinct val-
ues, many of the nearly 1000 observations in the data set are overplotted;
indeed, in a larger data set, all of the possible 11 x 21 = 231 plotting

positions might be occupied, producing a meaningless rectangular grid
of dots.

3.2 EXAMINING RELATIONSHIPS

ROCOOGo IR}

2 -l > 209 2 YT L LTI
> 900900030 . T,
- 9n ocogoovOoOCORa s | LEEEN TV T I EY TR
Yoo et aadvies = cpadsddwsdidc
3 = s00000000000 R 22480985880
3 > 6 0040QOD0DDCOD H o ° oBasfv@hpad) c :
3w spoeoQgO0CQUORORE O = T EERLE 310 | P TR AL
- ° covgomoeoada o o]] ‘o Pudaliid P
w~ - ee ococeoga & o S 3% PgdAYdP o @ g
@ ©9 o cagoo o 2% % o%f sw :
s - o o8 oo o = s F® 09,8 @ |
T T T T T T T T T T
o 5 11 15 2t L 3 5] 15 20
sducaloh plierqadusansn
{a) (b)

ynetjvacabulary lactor = 2

nllaediecalion, laclse x 3)

<)

Figure 3.10 Scatterplots of vocabulary by educationm: (a) unjittered; (b)

default jittering; (c) twice default jittering, with least squares and
lowess lines.

Jittering the data by adding a small random quantity to each coordi-
nate (Cleveland, 1994) serves to separare the overplotred points. We can
use the jitter function in S for this purpose:

> plot{jitter(education), jitter{vocabulary))
-

The result is shown in Figure 3.10(b). We can control the degree of jitter-
ing via the argument factor; for example, specifying factor=2 doubles

the jitter (vielding, in my opinion, a more satisfactory result for the cur-
rent example):

> plot(jitter(education, factor=2), jitter(vocabulary, factor=2))
>

To complete the picture, 1 add least squares and nonparametric-
regression lines (using, note, the original, unjictered data for these
computations), producing Figure 3.10(c):

> abline(1m(vocabulary ~ education), lwd=3, lty=2)
> lines{lowess{education, vocabulary, £=.2), lwd=3)
>

EXPLORING AMD TRANSFORMING DATA

The least squares line on the graph is computed by 1m and drawn by
abline; the argument 1wd to abline sets the width of the regression line,
while the line type 1ty=2 specifies a broken line. The lowess function
(an acronym for locally weighted regression) returns coordinates for the
local-regression curve, which is drawn by lines; the span of the local
regression is set by the argument £ to lowess. Of course, I could have
more conveniently used the scatterplot function in car to make the
graph in Figure 3.10(c), but I wanted to demonstrate how to construct
a simple plot from its components {a topic described in detail in Chap-
ter 3.10).

The relationship between vocabulary and education appears nearly
linear, and we can also discern other features of the dara that previ-
ously were hidden by overplotting, such as the relarively large number of
respondents with 12 years of education.

FEreme Sw

i8.2.2 - Bivariate Density Estimates

Another context in which scatterplors are frequently uninformative is
in large dara sets, particularly where the relationship between the two
variables in the plot is weak, and therefore much of the plot is filled. An
example, using a moderately large data set, appears in Figure 3.11, and
is produced wirh the following S commands:

> detach(Vocab)

data (SLID)
attach(sLID)
plot{education, wages)

v v v

wages

L}
m ee o

educaton

Figure 3.11 Scatterplot of wages by education in the SLID/Ontario data.

3.2 EXAMINING RELATIONSHIPS

The SLID data are drawn from the 1994 Canadian Survey of Labour
and Income Dynamics; the data ser includes only respondents from the
province of Onrtario. The rwo variables in the scatterplot are years of
education {(education) and the individuals’ composite hourly wage rate,
in dollars (wages). Examination of the data reveals thar education is
measured to the nearest tenth of a year and that there are only 126
different values of this variable among the roughly 4000 individuals who
have valid data on both education and wages. In contrast, there are
more than 1500 distinct values of wages:

> valid <- !(is.na{wages) | is.na(educatiaon))
> sum{valid)

[1] 4014
> sort{unique(education[valid]))

(1] 0.0 1.0 1.5 2,0 3.0 4.0 4.1 4.5 4.8 5.0 5.5 5.0
[13) 6.4 6.5 7.0 7.3 7.5 7.6 8.0 8.2 8.3 8.5 8.8 9.0
[25] 9.1 9.2 9.4 9.5 9.6 9.8 9.9 10.0 10.1 10.2 10.3 10.4

(109] 18.0 i8.1 18.2 18.3 18.

8.4 18.6 18.7 18.8 19.0 19.1 19.2
[121] 19.3 15.4 159.5 19.7 19.9

> length(,Last.value) # number of distinct values
(1] 126

> length{unique{wages[valid]))
(1] 1533

A simpler R equivalent to the first command is:

> valid <- complete.cases(Wages, education)
>

Summing a logical variable counts the pumber TRUE: In evaluaring
sum{valid), S “coerces” the logical variable valid ro a numeric vector
of 0s and 1s. The automatic variable ,Last.value allows us to access
the previous result without recomputing it.

We can improve this scatterplor somewhat by jittering education and
by making the plotting symbals smaller, but the graph still conveys a rela-
tively poor impression of the relationship between wages and education,
Figure 3.12 employs both of these strategies, but also adds a bivariate
kernel-density plot to the graph, using the sm.density function in the
sm library (described in detail in Bowman & Azzalini, 1997):

> library(sm)

> sm.density(cbind(education[valid], wages[valid]),
+ display=’image’, Xlab~'Education’,

+

ylab='Wages®, col=gray(seq(l, 0, length=100)))

W

points({jitter(education, amount=.25), wages, cex=.1B)
bax()

L")

EXPLORING AND TRAMSFORMING DATA

50

Wages

o 5 iD 15 20

Educaton

Figure 3,12 Bivariate density estimate for education and wages, A jittered

scatterplot, least squares line, and lowess line are added to the
plot.

> lines{lowess{educationfvalid], wages[valid], £=1/3), lwd=3)
> apline(lm(wages ~ education), lty=2, lud=3)

> remove(valid)

>

To create a bivariate density plot, the sm.density function expects a
matrix as its first argument, which I construct from education and wages
with ¢bind (“bind columns®); display='image’ and col=gray(seq(l,
0. length=100)) produce a gray-scale plot, with darker values indicat-
ing a higher density of dara.® I add the jittered observations to the density
plot with the points function, specifying cex=. 15 to shrink the points to

15 percent of their normal size.” The rest of the commands are familiar
from previous examples.

Parallel Boxplots

Parallel boxplots help us to visualize the relationship between a quantita-
tive response variable and a categorical predictor. An illustration, based
on data from Ornstein (1976) on interlocking directorates among 248
major Canadian corporations, appears in Figure 3.13. The figure was

6. Colar specificahon works differently 1 5-PLUS, as descnibed in Chapter 7.

7. The graplues parameter cex denotes character expansion; graphics parameters are discussed m
Chapter 7.

3.2 EXAMINING RELATIONSHIPS

a2
2 |
S o
o1
381 o
26
= 53
£ 8-
5 !
-] ¥
£ F : _— 130
Z ; 27
= r e
o : 3
[= —‘_ —. JS—— l |
| | 1 |
CAN OTH UK - us

Figure 3.13 Parallel boxplots of interlocks by nation of control for Orn-
stein’s interlocking-directorate data.

produced by the following S statements:

> detach{SLID)

» data({Drnstein)

» attach(Drnstein}

> Drnstein{sort({sample(248,5)),] # sample 5 obs.
assets seCtor nation interlacks

73 3879 wOoD CAN 27
152 809 MAN UK 0
174 589 MIN OTH 23
193 495 MAN CAN 0
217 359 AGR Us 0

» boxplot(interlocks ~ nation, ylab='Number of Interlocks?)
> identify(as.numeric(nation), interlocks)
1] 1 2 3 5 6 91327

The variables in the data set include the assets of the corporation (in
millions of dollars), the corporation’s sector of operation, the nation
in which the firm is controlled, and the number of interlocking direc-
torate and executive positions (interlocks) maintained berween each
company and others in the data set, The identify function is used to
label individual points interactively; because the names of the compa-
nies were not given in the original source, there is no third argument to
identify, and the firms are labeled simply by position within the data
set, which is in descending order by assets: The identified points, which
have low observarion numbers, are therefore among the largest firms in
the data set. Specifying as.numeric(nation) converts the factor nation
into numbers suitable for plotting as horizontal coordinates.

EXPLORING AND TRANSFORMING DATA

Parallel Boxplots in S-PLUS

The boxplec function in $-PLUS does not support specifying the plot as
a formula. Instead, the split function may be used to divide the data
into groups for plotting, as in boxplot(split(interlaocks, nation)).
Because of the manner in which boxplot in S-PLLS scales the horizontal
axis, it is relatively inconvenient to identify individual points in the plot.

— - e maeirisscoma]

EXAMINING MULTIVARIATE DATA

Because the media on which we draw graphs (paper, computer displays)
are two dimensional, examining multivariate dara is intrinsically more
difficult than examining univariate or bivariate data. Three-variable data
are a special case, however, and features such as perspecuve and motion
can convey a sense of depth in a three-dimensional scatterplot. The most
effective software of this kind allows the user to manipulate—for exam-
ple, rotate or rock—the display, to mark points, and to plot surfaces,
such as regression surfaces, along with poines.

Dynamic three-dimensional displays are currently absent from R,
although one can construct three-dimensional static graphs (three-
dimensional surface plots appear in Chaprer 7, for example), and a link
is provided to the independent XGobi and GGobi systems for visualizing
data in three and more dimensions (Swayne, Cook, & Buja, 1998).
Relatively primitive facilities for three-dimensional dynamic graphics are
available in S-PLUS; see, in particular, the spin and brush functions.

Partly because it is difficule to convey the use of dynamic-graphics sys-
tems on the printed page, and partly because these facilities are relatively
underdeveloped in §, I do not pursue the topic here, I refer the interested
reader to the $-PLUS documentation and to other software. In addition
to XGobi and GGobi, Cook and Weisberg’s (1999) Arc system, built on
the Lisp-Stat statistical computing environment (Tierney, 1990), is partic-
ularly noteworthy for its three-dimensional dynamic regression graphics,
providing much more than is currently available in S,

Scatterplot Matrices

Scatterplot matrices show the pairwise (i.e.,, marginal) relationships
among a set of vaniables. In S, scatterplot matrices are constructed by the

3.3 EXAMINING MULTIVARIATE DATA

prestige

20 40 BD BO

o

14

a8 B 10

100

a0

o 20

20 40 &0 B8O

Figure 3.14 Scatterplot matrix for the Canadian cccupational-prestige data.

pairs function. An example, using the Canadian occupational-prestige
data, appears in Figure 3.14:

> detach(Dmstein)

> attach(Prestige)

> pairs(cbind{prestige, income, education, womea))
>

I usually want to augment the scatterplots in a scatterplot marrix
and place distributional displays, such as density estimates, on the diag-
onal. The pairs function supports these features through its pamnel
and diag.panel arguments (as illustrated in Chapter 1 using Duncan’s
occupational-prestige data). Because it is tedious to define panel functions
each time, however, I prefer to let the scatterplot.matrix function in
car do most of the work:

> scatterplot.matrix{cbind(prestige, income, education, women),
+ diagonal='density’, span=.75)
>

The result is shown in Figure 3.15. Other values for the diagenal
argument to scatterplot.matrix are ’boxplot’, ’histogram’, and
'qqplet’ (all of which may be abbreviated—e.g., diag="hist’ or even
d=’h’).

Incidentally, the general rule for abbreviating the name of an argu-
ment to a function is that you must supply as many characters as are

EXPLORING ANMD TRANSFORMING DATA

20 40 80 8¢

14

5 B 10

Figure 3.15 Scatterplor matrix for the Canadian occuparticnal-prestige
data, with density estimates on the diagenal, created by the
scattarplot.matrix function.

necessary to identify the argument uniquely. Because no other argument
to scatterplot.matrix begins with the letter “d,” for example, d
is a suitable abbreviation for diagonal. I adopt a similar convention
for character-string arguments to functions in ear {such as the value
‘histogram’ for the argument diagomal). My general practice in the
text, however, is to spell out arguments and their values fully.

The scatterplot.matrix function also supports marking points by
groups: Type help{scatterplot.matrix) for details.

Trelfis Graphics in S-PLUS and Lattice Graphics in R

$-PLUS includes the relatively new “Trellis graphics” system for drawing
multipanel graphical displays, such as scatterplot matrices and condition-
ing plots (described in the next section). The Trellis graphics function for
scatterplot matrices is called splom. Most of Trellis graphics, including
splom, has been implemented in the lattice library for R, which, as |
write this, is still in a preliminary form.

3.3 EXAMINING MULTIVARIATE DATA

Conditioning Plots

Tracing out the average value of a response variable conditional on one
or several predictors is the essence of regression analysis. Often, we focus
on the relationship between the response and one predictor, holding other
predictors constant at particular values—that is, conditionally fixing the
values of other predictors. This idea of “statistical control” is typically
realized in a staristical model thar makes more-or-less strong assumptions
about the nature of the relationship of the response to the predictors,
such as an assumption of linearity. Indeed, firting regression models in S
is the principal focus of this text.

Conditioning plots (coplots), due to Cleveland {1993), implement sta-
tistical control graphically in the absence of a statistical model. To con-
struct a coplet, we focus on a particular predictor, and set each other
predicror to a relatively narrow range of values (if the predictor is quan-
titative) or to a specific value (if it is categorical). The subranges for a
quantitative predictor are typically set to overlap {and are termed “shin-
gles”) rather than to partition the data into disjoint subsets (or bins).
Then, for each combination of values of the conditioning predictors, we
construct a scatterplot relating the response to the focal predictor, arrang-
ing these scatterplots in an array. Because each panel of a coplot describes
a subset of the data, this method works best for large data sets, which can
be subdivided without producing sparse subsets. Moreover, if we condi-
tion on more than two, or perhaps three, predictors, the array of coplots
becomes unwieldy and difficult to comprehend. The coplot function in
S permits ar most two conditioning predictors, although we can always
subset the data ourselves and construct a coplet for each part.?

To illustrate coplots, I return to the SLID data set, plotting the log of

wages against education, conditioning on the numeric variable age and
the factor sex:

> detach(Prestige)
> attach(SLID)

> coplot{log(wages) ~ education | age + sex, pamel=panel.car,
+ col=gray(.5), lwd=3, cex=0.4)

Missing rows: 3 6 7 8 10 11 13 15 16 17 18 19 21

Using the log transformation of wages serves to reduce the skew in this
variable and to make its partial relationship to education more nearly
linear: See the next section of the chapter, on transformations.

8. Trellis graphics, mentioned in the previous section, powerfully generalize coplots, permmitting any

number of conditioning vanables. We do nor require Trellis graphics for the applications described
in this book.

EXPLORING AND TRANSFORMING DATA

As in pairs, the panel argument to coplot specifies a function to
draw the panels. The default in R is points, which produces a bare scat-
terplot. The panel. car function draws a lowess line and a least squares
line on each scatterplot. Note the use of col=gray(.5), cex=0.4, and
1wd=3 to tone down the points and emphasize the lines in the plots, The
marginal panels at the right and top give, respectively, the levels at which
sex and age are fixed. Thus, the top row of the plot array pertains to
males and the bottom row to females; age increases from left to right.
The age ranges overlap (by default, the overlap includes 50 percent of
the observations in adjacent panels), with a roughly equal number of
observations in each column of the plot array. The coplot appears in
Figure 3.16.

The coplot function in S-PLUS

In S-PLUS, the default panel function for coplot is panel.smooth, which
adds a lowess line to each panel {and which is also availabie in R). Spec-

ifying the point color as col=gray(.5) does not work in S-PLUS, where
colors must be given by number. {Color selection in R and S-PLUS is
discussed in Chapter 7.)

. TRANSFORMING DATA

Variable transformarions serve a variety of purposes in data analysis, and
are used in particular to make distributions more symmetric or normal,
to stabilize spread (variarion}, and to render relationships between vari-
ables more nearly linear. These purposes frequently, but not necessarily,
harmonize with one another.

The “family” of powers and roots, where a variable x is replaced by
%' = x%, is often useful n these contexts. For example, x’ = x> when
p=2,x = /x when p = 1/2, and ¥’ = 1/x when p = —1.

It is sometimes convenient to replace these simple powers and

roots with the essentially similar Box-Cox family of transformations
(Box & Cox, 1964):

xf =1

when p £ 0,
log,x whenp=20.

= xm=

We may, in any event, treat the log transformation {to any base) as a
kind of “zeroth” power.

The family of powers and roots and the Box-Cox family only make
sense when all of the dara values are positive, a charactenistic that we

3.4 TRANSFORMING DATA

Given: age
20 40 80 80
I (|] P
| I |
S |
| S —
 mpr—
]
—
1 i i I
- i
o™
- =
(4]
3 3
g =
S 1= &
= =
< 0
=]
w3
L=

education

Figure 3.16 Conditioning plot (ceplet) of wages by education, controlling
for age and sex, for the SLID data.

can always impose on the dara by adding a sufficiently large constant
(called a start) to each data value. Because their effect on the shape of
the distribution of a variable is the same, we treat ordinary powers and
corresponding Box-Cox powers interchangeably.

Powers and roots are easy to calculate directly in S, as is the Box-
Cox family. For convenience, car provides the box.cox funcrion, which
automatically computes a suitable start when there are negative or zero
values in the data:

> box.cox(1:5, 2)
[1] 0.5 2.0 4.5 8.0 12.56

> box.cox(0:5, 2)

[1] 0.0078125 0.6328125 2.2578125 4.8823125 8.5078125

[6] 13.1328125

Warning messaga:

start = 0.125 added to data prior to transformation in:
box.cox(Q:5, 23

EXPLORIMG AND TRANSFORMING DATA

Proportions that get close to the boundaries of O and 1 (or percent-

ages thar get close to 0 and 100) often do not respond well to power
transformations. Among several similar, generally useful, transformations
of proportions—the logit transformation, the probit transformation, the
inverse-arcsine transformation, and some others-—the logit transforma-
tion is the most commonly employed:

logit(p) = log, 77—

The logit transformation, howevet, breaks down for proportions of pre-
cisely O or 1. We can get around this problem by remapping the interval
(0, 1) to {.025, .975), for example.

Again, the logit transformation is simple to calculate in S, either from
proportions or percentages. The logit function in car takes care of
remapping proportions or percentages when there are Os or 1s {or 0 or
100 percent) in the data:

> logit(seq(0.1, 0.9, 0.1})
[1]1 -2.19722 -1.38629 -0.84730 -0.40547 0.00000 0.40847
[71 0.84730 1.38629 2.18722

> logit(seq(0, 1, 0.1))
[1] -3.66356 -1.99243 ~1.29505 ~0.80012 -0,38467 0.00000
[7] 0.38467 0.80012 1.29505 1,99243 3.66356
Warning message:
Proportions remapped to (0.025,0.975) in: logit(seq(0, 1, 0.1)}

To illustrate the use of the logit transformation, I apply it to the
distribution of the gender composition of occupations in the Canadian
occupational-prestige data:

> detach(SLID)

» attach(Prestige)

» plot{density(wamen, from=0, to=100))

> plat(density(logit({women), adjust=.75))

Warning message:

Proportions remapped to (0.025,0.975) in: logit(women)

The resulting density plots—before and after the logit transformation—
are shown in Figure 3.17. The density plot for the untransformed per-
centages is confined to the domain 0 to 100. The untransformed data, in
panel (a), stack up near the boundaries, especially near 0; the transformed
data, in panel (b), appear better behaved, and the densicy plot reveals
three apparent concentrations or groups of occupations.

3.4 TRANSFORMING DATA 109

dansilyix = woman, irom = 0, o = 100} dansiy(x = lagitiwomen), adust = 0 75)

0015
[e——
T,
s

-
Q7
- .

0 005 o ma
) i
Q05 010
ik s ki

Qengdy
Qensny

040

BED T T 1 T
0 20 40 60 20 100 ot 2 0 2 4

H= 102 Bandwdth =11 32 N=102 Bandwulh =0 44968
(a) {b)

Figure 3.17 Distibution of women in the Canadian eccuparional-prestige
darta, {a) before and (b) after logit transformation.

Using plot with density in S-PLUS

Entering plot(density(women, from=0, to=100)) in S-PLUS graphs
the density estimate as a sequence of points rather than as a line. To

plot the density estimate as a line, instead enter plot (density(vwomen,
from=0, to=100), type=’1’). Recall that the demsity function in
$-PLUS does not recognize the argument adjust.

T
="

Transformations for Normality and Symmetry “E&T:
2

All the univariate displays discussed in Section 3.1 are useful for
examining the distribution of a varable for symmetry, but normal
quantile-comparison plots are most appropriate for checking departures
from normality. Positive skew can be “corrected” by moving the variable
“down the ladder” of powers and roots from x% {i.e., no transforma-
tion) to %13, %0 x=1 etc.; negative skews by moving “up the ladder”
to x¥, x¥| etc.

Cne way to select a transformation to symmerry is by trial and error,
replotting the dara for different powers and examining the resules. The
Ask function in cax facilitates the process of trial and error:

EXPLORING AND TRAMSFORMING DATA

transformed ingome

hanm quanties

Figure 3.18 Normal quantile-comparison plot for the Box-Cox cube-root

transformation of income in the Canadian occupational-prestige
data,

> Ask(p, function(p) qq-plot{box.cox{income, p),

+ ylab=’transformed income’))
Eonter p : 0

Epter p - 1/2

Enter p : 1/3

Enter p :

>

The second argument to Ask is the function to be called repeatedly; in
this case, the funcrion is “defined on the fly” and takes a single argument,
the power p for the Box-Cox transformation of income in the Prestige
data set; I then simply call the qq.plot funcrion for the transformed data.
The first argument to Ask is the argument to be modified, in this case
the power p. (If the function called by Ask takes additional, non-varying,
arguments, then these are specified by name as subsequent arguments to
Ask.) When you enter a value in response to the prompt from Ask, make
sure that the R Console {or S-PLUS Commands window) has the focus,
by clicking in its window, if necessary, ot selecting its window from the
Window menu. Enter an empry line to exit from Ask.

Recall that the distribution of income is positively skewed, so we
should transform the variable down the ladder of powers and roots;
[successively try the powers p = 0, p = 1/2, and p = 1/3. Both the
log (p = 0) and cube-root (p = 1/3) transformations work reasenably
well here. The normal quantile-comparison plot produced by p = 1/3 is
shown in Figure 3.18: The transformed distribution of income is quite
symmetric now, but heavy railed relative to the normal distribution.

3.4 TRANSFORMING DATA

Another, if less interactive, approach to finding a transformation to
symmetry is to generate a sequence of plots in a for loop’:

> for {p in c(1/2, 1/3, 0, -1/3, -1/2, -1))
+ qq.plot(box.cox{income, p),

+ ylab=paste(’transformed income, p =’,p))
>

The gq.plot function is called once for each of six values of p. Here,
paste is used to compose the label for the vertical axis. This approach
works in the Windows version of R, where we can record a sequence of
plots, by selecting Recording in the History menu, which appears when
a graphics window has the focus. Use the Page Up and Page Down keys
to move through the recorded plots.'®

Maximum-Likelihood Estimation of Normalizing Powers*

An alernative to trial and error is to estimate the normalizing trans-
formation parameter A in x*, The box . cox . powers function in car finds
normalizing transformations for individual variables or multinormalizing
transformations for several variables, by the method of maximum like-

lihood. For example, for income in the Canadian occupational-prestige
data:

» summary{box.cox.pawers(income))
Box-Cox Transformation to Normality

Est.Power Std.Err. Wald(Pawer=0) Wald(Power=1)
0.1793 0.1108 1.6179 =7.4062

L.R. test, power = 0: 2.7103 af =1 p = 0,0997
L.R. test, power = 1: 47.261 d4f =1 p=24a0

The function box.cox.powers returns an object. Simply printing the
object produces just the estimated power(s); the summary method for the
object, however, prints a more complete report.

In this case, the maximum-likelihood estimate of the- normalizing
power is A= 0.18; we have strong evidence that A 15 not equal to 1; and
we cannot reject the hypothesis that A = 0 (the log transformation). We
know from our previous work that A = 0.18 will make the distriburion
of income symmetric, hut it still will have heavier tails than the normal
distribution.

9. Laops and other S programming caonstructs are described in Chaprer 8.

10. Altetnatively, we may place all a1x plots on the same page, for example, 1n a 2 X 3 array; thus

can be accomplished in S by specifying par (mfrowmc(2,3)) prior to the for loop that draws the
plats.

EXPLORING AND TRANSFORMING DATA

Likewise, to find transformations of income and education that make
their joint distribution as close to bivariate normal as possible:

> summary(box.cox.powers(cbind(income,education)))
Bax-Cox Transformations to Multinormality

Est.Power Std.Err. Wald{Power=0) Wald{Power=1)
income 0.2617 0.1014 2.5799 -7.2800
education 0.4242 0.4033 1.0517 -1.4278

L.R. test, all powers = 0: 7.694 df =2 p = 0.0213
L.R. test, all powers = 1: 48.8727 df =2 p =20

That is A, = 0.26 = 1/4 and A, = 0.42 ~ 1/2. According to the Wald
tests (which under the srated hypotheses follow an asymprotic standard
normal distribution), the transformation of income is statistically signif-
icant but that of education i1s not. Applying these transformations to
each variable produces the scatterplot in Figure 3.19:

» scatterplot(income™ .25, education”.5, span=.75, lwd=3)
>

It is apparent from the scatterplot that while the univariate distributions
of transformed income and education are quite symmetric, their joint
distribution does not appear to be bivariate normal.

40

3.5

educatior™d b

2.0

Figure 3.19 Scatterplot of education’® by income®.

3.4 TRANSFORMING DATA

1

Transformations to Equalize Spread i:?.ﬂl;z

We previously examined the relationship between number of interlocks
and nation of control among the 248 large Canadian corporations in
QOrnstein’s interlocking-directorate dara ser {Figure 3.13). As is often the
case, there is an association berween level and spread in these dara:
Nations with a relatively high level of interlocks (Canada, Other) show
more variation than nations with fewer interlocks on average (U.XK., U.S.).
A spread-level plot (Tukey, 1977) is a scatterplot of log-interquartile-
range versus log-median and may be constructed directly from the data

by the spread.level.plot function in car:

> detach(Prestige)

> attach(Ornstein)

> spread.level.plot(interlocks + 1 ~ nation)
LowerHinge Median UpperHinge Hinge—Spread

us
UK
CAN
OTH

Suggested power transformation:

>

2 6.0
4 9.0
6 13.0
4 16.5

13
14
30
24

0.15345

11
10
24
20

The graph produced by spread.level.plot is shown in Figure 3.20.
When, as here, there is a positive association berween spread and level,

Spread-Level Piot for Interlocks + 1 by nation

CAN o
o
o]
g - .
o
'E L.
g ©]
m -
o
£ v
I b
o
«Usg
e ° UK
f T 7
6 10 12 14 16
Median:

Figure 3.20

Spread-level plot for the reladonship between number of
interlocks and natien of control in Ornstein’s interlocking-

directarare dara.

EXPLORING AND TRAMSFORMING DATA

o | —— 8
o ; I~ =
1
1
1+] : —— T
=] : 1 '
+ . — :
g] ~ %
1 1
g ' - 2
= (=2 | = [1)
£~ " £
— £
=y T =
—_ 1 _—
u 1
2 |.n_ = 1 r
o : : :
L] L) L)
r T 1 T
L] 1 1 1
1 1 1 1
o 1 1] 1
o P P et mr—— r——— et]
1 L]] I
CaN OTH UK us

Figure 3.21 Parallel boxplots for logy;(interlocks+1) by nation of con-
trol.

we can make the spreads more nearly equal by transforming the variable
down the ladder of powers and roots. Suppose a line is fit to the spread-
level plor and thar the slope of the line is b; a spread stabilizing power
transformation is then given by p =1 - 5.

The expression interlocks + 1 appears on the left-hand side of the
formula passed to spread.level.plot. I used the start of 1 because
some firms have O interlocks. The function returns a table giving the
first quartile (“lower hinge”), median, third quarrile {“upper hinge”),
and 1nterquartile range (“hinge-spread”), along with the suggested power
rransformation of interlocks + 1. The suggested power, p = 0.15, 15
close to the log transformarion. Figure 3.21 shows parallel boxplots for
the log-transformed dara:

old.margins <- par{(mar=c(5.1, 4.1, 4.1, 4.1))

boxplot (log(interlocks+i,10) - natiom,
ylab="logl0(Interlocks + 1)’)

pawer .axis(power=0, base=10, at=c(1,10,100),
axis.title=’Interlocks + 17)

par {mar=ald.margins)

remaovaf{old.margins)

LPERVER' R B R

The spreads in the transformed data for the four groups are much less
different than those in the untransformed dara (Figure 3.13).

The production of the boxplot is very simple, taking just one com-
mand; I use logs to the base 10 for interpretability. The remaining S state-
ments leave space for, and then plot, the right-side axis, which rranslates
the log scale back to the number of interlocks (plus 1). The car function
power.axis draws the additional axis (treating the log transformation
as the zero power). After making the plot, I restore the original margins

log X, V% x%, %

Wy

logy

Figure 3.22 Mosteller and Tukey’s buiging rule for finding linearizing trans-
formarions: When the bulge points down, transform y down the
ladder of powers and roots; when the bulge points up, trans-
form y up; when the bulge points left, transform x down; when
the bulge points right, transform x up.

of the plot window."" The functions box.cox.axis and prob.axis in
car may be used similarly to produce axes on the untransformed scale
carresponding to Box-Cox and logit transformations.

Transformations to Linearity §

Another common applicarion of power transformations is to linearize
nonlinear relationships. An analytic approach to linearizing transforma-
tions is discussed in Chapter 6; here I consider trial and error, guided
by Mosteller and Tukey’s (1977) bulging rule, which (s illustrated in
Figure 3.22.

An example appears in Figure 3.23. Panel (a) of this figure shows the
relationship berween infant-mortality rate (infant deaths per 1000 live
births) and GDP per capita (in U.S. dollars) for 193 nations of the world;
the data are from the United Nations (1998). Because the relationship is

11. Many plobal graphics parameters 1n S are set or gueried with the par funcrion, The mar setong
is for the plot margms; see belp(par) for details. Graphics parameters are discussed in Chapter 7.

EXPLORING AMD TRANSFORMING DATA

o aSlerra.Leone
8 150 4 @ Afghanisian
1]
&
8
2 109 5 b < lraq
E ¥ oGabton
E <
=

o o Afghanistan

olrag

Iransformad anigni mortalty

. Tonga ¢
-1 T iy £ Lo 7 ! H
4 5 8 1 B 3 10

tansiptmed GDP/Capita

e s R TR

(b)

Figure 3.23 Relationship between infant morality {per 1000) and GDP per
capita {U.S. dollars) for 193 nations: (a) original scarterplot; (b)
with both variables log-transformed.

monotone (infant mortality decreases with GDP, though at a declining
rate) and simple (the direction of curvarure of the relationship does not
change), power transformation of one or both variables is a promising
strategy. The graph is produced by the following § commands:

> detach{Ornstein)
> data(UN)

3.4 TRANSFORMING DATA

1

» UN[1:5,] # first 5 obs.
infant.mortality gdp
Afghanistan 164 2848
Albania 32 863
Algeria 44 1531
American—Samoa 11 NA
Andorra A NA

> attach(UN)
> scatterplot(gdp, infant.mortality, labsls=row.names(UN))

ri]

1 63 65 87 107 166

There are 207 nations in all, but some data are missing. Using the mouse,

I identified a few observations in the scatterplot.

To search for linearizing transformations by trial and error, I invoke
the Ask function:

> Ask(p, function{p) scatterplot{box.cox(gdp,p[1]),

+ box.cox{infant.moxrtality, pl(2]1),

+ xlab='transformed GDP/capita’,

+ ylab='transformed infant mortalaty’,
+ labela=row.names(UN)))

Enter p : ¢(0,1)

Epter p : c(0,0)

Enter p :

>

Because Ask expects only one changing argument, I specify this argu-
ment, p, as a two-element vector; the first element, pl1], is used for a
Box-Cox power transformation of gdp, the second element, p[2], for
the transformation of infant .mortality. The bulge in the original scat-

terplor [Figure 3.23(a)] points down and to the /eft, and I therefore try
transforming both infant morality and GDP per capita down the ladder

of powers and roots. My second attempt, specifying “0” powers (i.e.,

log transformartions) for both variables, produces Figure 3.23{b). These
transformations serve not only substantially to straighten the relationship

between the variables, but also to make each variable more symmetric,
rendering the scatterplot much easier to examine.

e o

cHAPTER 4
Fitting Linear Models

S provides excellent facilities for specifying and ficting linear and
. related statistical models. The basic S function for fitting linear
models by least squares is lm. The model is specified by a formuia—a
special notartion in which the arithmetic operators +, -, *, /, and - rake
on meanings different from their ordinary ones. I augment these facilities
in car with funcrions for resting hyporheses, as described in this chapter,
and for regression “diagnostics,” discussed in Chaprer 6.

The current chapter begins with linear regression models, the specifica-
tion of which is very simple, and gradually introduces more complex linear
models. The chapter concludes with a general discussion of 1m. I take up
the closely related ropic of generalized linear models in the nexr chapter;
other regression models are described in the Web appendix to the texr.

LINEAR LEAST SQUARES REGRESSION .

Simple Regression £

The data frame Davis in car contains data on the measured and reported
heights and weights of 200 men and women engaged in regular exercise’:

> library(car)

1. Some of the dara values are mussing, however: There are 182 complere observanons for the
regression reported below.

FITTING LINEAR MODELS

» data(Davis)
> pames(Davis)
(1] "sex" "weight" "height" "repwt® “repht"

> Dayis[1:5,]
sex weight height repwt repht

1 M 77 182 77 180
2 F 53 161 51 159
3 F 83 161 54 158
4 M 68 177 0 175
B ¥ 59 157 59 155

Here, weight and repwt are in kilograms, and height and repht are in
centimeters. One of the objects of the researcher who collected these data
(Davis, 1990) was to determine whether reports of height and weight are
sufficiently accurate to replace the acrual measurements, which suggests
regressing each measurement on the corresponding report; I focus here
on weight.

Let v = weight and x = repwt; then the simple linear regression model
yi' =a + Bxi' + 8l

is fit in § in the following manner:

> attach(Davis)
» davis.mod <- Im(weight - Tepwt)
> davis.mod

Call:
Im(formula = weight -~ repwt)

Coefficients;
(Intercept) reput
5.336 0.928

The formula weight ~ repwt, with the response variable on the left-
hand side of the tilde {~-) and the predictor on the right, specifies the
regression of weight on repwt.

As is my usual practice, I attach the Davis data frame to make the
variables in it visible on the search path. An aleernative is to supply
a data argument to 1m, as in 1m(weight ~ repwt, data=Davis). This
approach has the advantage of associating the model explicitly with a
data frame—which may avoid problems, for example, if the model is
updated when the data frame is no longer attached. It is my experience,
however, thar new users of § find it simpler to attach a data frame to
the search path.

The 1m function returns a linear-model objecr, which I save in
davis.mod. Printing the object produces a brief report. The summary

4.1 LINEAR LEAST SQIJARES REGRESSION

method for linear models yields more information:
> summary(davis.mod)

Call:
1m{faormnula = weight - repwt)

Residuals:
Min 10 Median 3Q Max
-7.048 -1.868 -0.728 0.601 108.705

Coefficients:

Estimate 3td. Error t value Pr(>|t])
(Intercept) 5.3363 3.0368 1.76 0.08
repwt 0.9278 0.0453 20.48 <Ze-186

Residual standard error: 8.42 on 181 degrees of freedom

Multiple R-Squared: 0.699, Adjusted R-squared: 0.697
F-statistic: 420 on 1 and 181 degrees of freedom,
pvalue: 0

Handling Missing Data with 1n in 5-PLUS

Recall that the default na.action for 1m in S-PLUS is na.fail. There
is missing data in Davis’s data set, and sO it is necessary to set

na.action=na.omit Of na.exclude to make this example work. An
alternative is to filter the data set for missing data prior to attaching it; for
example, Davis.good <~ na.omit{Davis).

If individuals are unbiased reporters of their weight, then the regres-
sion intercept should be 0 and the slope 1; the least squares regression
coefficients are close to 0 and 1, although the intercept 1s nearly signifi-
cantly different from 0, as the ¢ test for the intercept demonstrates. The
t test for the slope shows that it is highly significantly different from 0; as
well, the slope estimate is almost rtwo standard errors from 1, and so it is
nearly significantly different from 1. The squared correlation, R* = .699,
is by most standards quite large, but it is not large in the current context,
where we are contemplating replacing a measurement by a report. The
residual standard deviation is 8.42 kg, a large average error of prediction.

I should have started {of course!) by plotting the data, and I now do
so belatedly:

» plot(repwt, weight)
> abline(davis.mod)

> abline(D, 1, lty=2)
>

FITTING LINEAR MODELS

12 »

waight
100 120 140 160
| |

80

60

40

. 40 a0 BO 100 120

repwt

Figure 4.1 Scatterplot of measured weight (weight} by reported weight
{repwt) for Davis’s data.

The function abline plots a line on the graph given its intercept and
slope—eicher directly, as in abline((}, 1, 1lty=2), which plots a bro-
ken line (line type 2) with intercept 0 and slope 1, or by extracting the
regression coefficients from an 1m object, as in abline{davis.mod). The
resulting graph, which appears in Figure 4.1, reveals an extreme outlier,
interactively identified as observation 12:

> identify(repwt, weight)
(1] 12
>

Recall that to identify a point, place the mouse cursor near the point and
press the left mouse burtton; to exit from identify, press the right mouse
button.

Because the outlier is ar a relatively low-leverage point, the regres-
sion line 1s not greatly affected, and the least squares line is quite close
to the line of unbiased reporting. Nevertheless, the outlier appears to
Increase the intercept of the regression line slightly and to decrease its
slope slightly; moreover, the outlier inflates the residual standard error
and substantially decreases the correlation.

It seems bizarre thar an individual who weighs more than 160 kg
would reporr ber weighr as less than 60 kg, but there is a simple expla-
nation: On data entry, subject 12’ height in centimerers and weight in
kilograms were inadvertently exchanged. The proper course of action
would be to correcr the data, bur to extend the example, I insread will use

4.1 LINEAR LEAST SQUARES REGRESSHUN t

e update function to refit the model removing the 12th observation:

> davis.mod.Z <- update(davis.mad, subset=-12)
> summary{davis._mod.2)

Call:
lm{formula = weight ~ repwt, subsat = -12)

Residuals:
Min 1) Median 34 Max
-7.530 =-1.101 -0.132 1.129 6.389

Coafficients:

Estimate Std. Error t value Pr{>|t])
(Intercept) 2.7338 0.8148 3.36 0.00097
repwt D.9584 0.0121 78.93 < Ze-1B

Residual standard arror: 2.25 on 180 degrees of freedom

Multiple R-Squared: 0.972, Adjusted R-squared: 0.972
F-statistic: 6.23e+003 on 1 and 180 degrees of freedom,
p-value: 0

Equivalently, I could have used 1m to fit a new model, specifying the
subset argument, but update generally is a more convenient way to
make small changes to 2 model. As expected, the intercept is now even
closer to 0 and the slope closer to 1; the squared correlation is much
larger; and the standard deviation of the residuals is much smaller (if not
wholly negligible). Paradoxically (because of the smaller error variance),
the intercept and slope are now significantly different from the respective
values of 0 and 1.

AR

Multiple Regression | 4.1.2

Fitting a multiple linear regression is equally simple. To provide an illus-
trarion, let us return to the Canadian occupational-prestige data, intro-
duced in Chapter 2:

> datach(Davis)

> data{Prestige)

» attach(Prestige)

> pames(Prestige)

[1] “education" "inCome" “womea" "prestige" "cCensus"
(6] "type"

Then let us regress occupational prestige, y, on the average number
of years of education of eccupational incumbents, x,; their average level

of income, x,; and the percentage of women in the occupation, x;—fitting

FITTING LINEAR MCDELS

the model

yy=a A lell + B?.x.z + BJle + &y

> prestige.mad <— lm(prestige ~ incoms + education + Women)
> summary({prestige.mad)

Call:
Im{formula = prestige ~ income + education + women)

Residuals:
Min 1] Median 30 Max
-19.825 -~-5.333 =-0.136 5.159 17.504

Coefficients:
Estimate Std. Error t value Pr{>Itl)
(Intercept) -6.7394334 3.239089 -2.10 0.039

income 0.001314 0.000273 4.73 7.6e~06

education 4 186637 0.388701 10.77 < Ze-18

women -0.0083058 0.030407 -0.29 0.770

Residual standard error: 7.85 on 98 degrees of fresdom

Multiple R-Squared: 0.788, Adjusted R-squared: 0.792

F-statistic: 129 on 3 and 98 degrees of freedom,
p-value: 0

There is, therefore, strong evidence that occupational prestige is related
to the income and education levels of the occupations, but not to their

gender composition. We will revisic this model in Chapter 6 on regression
diagnostics.

Standardized Regression Coefficients

I am not terribly enamoured of standardized regression coefficients, but
obtaining them in § is not hard: One way to proceed is by standardizing

all of the variables to mean 0 and standard deviation 1, using the scale
function:

> Prestige.scaled <~ data.frame(scale(
+ prestige(,c(’prestige’, ’income', ’education’, ’‘women’)]))

» Prestige.scaled(1:5,]

prestige income education Women
GOV.ADMINISTRATORS 1.27680 1.30787 0.86935 -0.56167

' GENERAL .MANAGERS 1.28424 4.498398 0.55781 -0.78673
ACCOUNTANTS 0.96293 0.58246 0.74473 -0.41857
PURCHASING.OFFICERS 0.57931 0.48684 0.24994 -0.62629
CHEMISTS 1.54998 0.37803 1.42277 -~0.54528

4.1 LINEAR LEAST SQUARES REGRESSION

1

> sunmary{lm{prestige ~ incame + education + women,
+ data=Prestige.scaled))

Call:
ln{formula = prestige ~ iacome + education + wamea,
data = Prestige.scaled)

Coafficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -2.66e-16 4.52e¢-02 -5.9¢-15 1.00
1acome 3.2de-01 6.86e-02 2.73 7.68e-08
education 6.64e-01 6.16=2-02 10.77 < 2e-16
Women -1.64e-02 5.61e-02 -0.29 0.77

Residual standard error: 0.466 on 98 degrees of freedom

As an alternative to attaching the Prestige.scaled data frame, I have
instead specified a data argument to 1m {as explained previously). In
this manner, I avoid detaching the Prestige data frame, which I intend
to use below: Having both Prestige and Prestige.scaled atrached
simultaneously 1s not useful, because the variables in the more recently
attached Prestige.scaled would shadow those in Prestige.

The intercept of the standardized regression model is pecessarily 0
{(within rounding error). We can suppress the intercept by specifying -1
in the model formula, but doing so changes the residual degrees of free-
dom and, hence, the residual standard error, coefficient standard errors,
and ¢ values*:

> summary(lm(prestige - income + education + women - 1,
+ data=Prestiga.scaled))

Call:
Im(formula = prestige ~ income + sducation + women - 1,
data = Prestige.scaled)

Coefficients:

Estimate Std. Error t value Pr{>|t])
10.¢ome 0.3242 0.0682 4. 75 6.8e-0d
education 0.6640 0.0613 10.83 < Ze-16
wamen =-0.0164 0.0558 -0.29 0.77

Residual standard error: 0.454 on 99 degrees of fraeedom

2. In any even, the standard errars of the standardized regression coetficients are nor strictly correce:
Computing standardized coefficients requires estimates of the standard devianons of the variables,
which are also subject to sampling varianon.

& FITTING LINEAR MODELS

DUMMY-VARIABLE REGRESSION
U "7%? Factors

In dummy-variable regression (also called analysis of covariance), there
are both quantitative and categorical predictors. In §, categorical predic-
tors are most naturally treated as factors. Recall that the read.table
function by default makes factors of character dara.

Consider, for example, the variable type (type of occupation) in the
currently attached Prestige data frame:

> type
(1] prof prof prof prof prof prof prof prof prof prof prof prof
[13] prof prof prof prof prof prof praf praf prof prof prof prof

(25] prof prof prof bc prof prof we prof we NA we we¢

(971 bc¢ bc be be be be
Levels: be prof wc

We can tell that type is a factor (1) because its values are printed
unquoted and (2) because {in R) the levels (i.e., categories) of the factor
are printed below the values. The three levels represent blue-collar {bc),
professional and managerial {prof), and white-collar (wc) occupations,
The levels were automatically alphabetized when the factor was created;
more about this later.

Some of the occupations have missing type; because I intend to fir
several models to these data, 1t will be safest to ensure that all models
use the same subser of valid observations, A simple way to make sure
that this is the case is to create, and then attach, a new version of the
data frame consisting only of complete observations:

» detach(Prestige)

> Prestige.2 <= pa.omit(Prestige)
> attach(Prestige.2)
> type
(1] prof prof prot prof praf prof prof prof prof praf prof prof
(13] prof prof prof prof prof prof prof prof prof prof prof prof

[25] prof prof prof bc prof prof wc prof we we wc Wc

(971 b be
Levels: bc prof we

Facrors are vectors of class factor; they encode level membership
numerically, with informarion abour the levels of the factor saved in a

4.2 DUMMY-VARIABLE REGRESSION

levels attribute:

> class(type)
(1] "factar™

> unclass(type)

[11 2 22222222202222222222222%22212322
[31] 323333333333333333333133311111
(61 1111111111111111111311111111111
P11 1 2111111

attr{,"levels")
[1] nhet “prof“ ggpn

The unclass function removes the class attribute of its argument, in this

instance causing type to be printed by the default print method rather
than by the print method for factors. This allows us to see the internal
structure of the object.

Contrasts : 4.2,

Because a facror is intrinsically categorical, it would be entirely mean-
ingless to treat its numeric levels as a quantitative predictor 1 a linear
model. Instead, we need to code dummy regressors or contrasts to rep-
resent the levels of the factor, We could do this manually, but § will code
contrasts for us automatically. I assume that the notion of coding dummy
regressors, and the particular coding schemes that are described here, are
at least somewhar familiar.

How S codes dummy regressors is controlled by the contrasts option;

> options(’contrasts’)

$contrasts
unordered ordered
"contr.treatment" "contr.poly"

Two values are provided by this oprion: one for unordered factors (the
current context), and the other for ordered factors {to be described later
in this section). Each value corresponds to a function that converts a
factor into an appropriate set of contrasts,

Default Contrasts in S-PLUS

In S-PLUS, the default contrast type for unordered factors is contz . he lmert,
which is described later in this section.

FITTING LINEAR MODELS

We can see how the conrrasts for a factor are coded by using the
contrasts function:

> contrasts(type)

praof wc
be g o
prof 1 Q
we 01

The 0/1 coding scheme employed by contr.treatment is often termed
dummy coding or indicator coding. The first level of the factor is taken as
the “reference” or “baseline™ category. The choice of reference category

is essentially arbitrary, and we can modify it, if we wish, in the following
manner:

» cantrasts(type) <- contr.treatment(levels(type), base=2)
> contrasts {type)

be we
bc 10
prof 0 O
1 {on 0 1

Dummy coding produces easy-to-interpret regression coefficients, but
other choices are available in S,

Helmert Coding

> contrasta(type) <= ’'contr.helmert’
> contrasta(type)

[,11 [,2]
be ~L =l
prof 1 -1
we 0 2

Helmert coding produces orthogonal (i.e., uncorrelated) contrasts when
there are equal numbers of observations at the different levels of the
factor; whether or not there are equal observarions at the different levels,
the coefficients for the Helmert regressors compare each level with the
average of the “preceding” ones,

Deviation Coding

> contrasts(type) <~ 'coantr.sum’
> contrasts{type)
(.11 [.2]
be 1 0
prof 8] 1
weC -1 ~1

4.2 DUMMY-VARIABLE REGRESSION

> contrasts(type) <- NULL
>

Deviation coding results from so-called “sigma” or “sum-to-zero” con-
straints on the coefficients of the over-parametrized model: The coefficient
for the last level (here wc) 1s impliaitly constrained equal to the sum of the
coefficients for the other levels, and the redundant last coefficient is omit-
ted from the model. Each coefficient compares the corresponding level of
the factor to the average of the other levels. [Entering contrasts(type)
<- NULL ensures that the contrasts option applies once more to type.]

An alrernative to changing the contrasts of individual factors is to reset
the global contrasts option. For example:

> options{(contrasts = c¢(’contr.helmert’, 'contr.poly’))
>

Finally, as explained in Section 4.7, contrasts may be assigned to fac-
tors in the call to 1m.
Before proceeding, I return the contrasts option to its defaule value:

> options(contrasts = c{’contr.treatment’, ’contr,.poly’)
>

Changing the Contrast Type in 5-PLUS

in $-PLUS, you cannot change the contrast type for a factor simply by
specifying a character string with the name of the contrast function.
Instead, you may take the following approach:

> contragts(type) <~ contr.treatmeat(c("be", "wc"; "prof™))

> contrasts(type) <- contr.helmert(levels(type))

> contrasts(type) <— contr.sum(levels(type))

Notice that to specify the baseline level for centr.treatment, it is
necessary to give the levels explicitly, with the baseline listed first,

There is an additional complication in $4: You must explicitly copy the
factor there, type) from the attached data frame into the working data
before making a change to it, by entering type <- type. This operation
takes place automatically in 53 (and R).

0

FITTING LINEAR MODELS

T

[{

(423" Ordered Factors

An ordered factor may be created in the following manner:

> type.ard <— ordered(type, levels=c('bgc’, ’wc’, 'prof’))
> type.ord

(1] prof prof prof prof prof prof prof prof prof prof prof prof
(97] be be
Levels: bc < wec < prof

> round(contrasts{type.ord), 3)
L -Q

b -0.707 0Q.408

we 0.000 ~0.816

prof 0.707 0.408

I specified the levels of the factor explicitly to avoid ordering them alpha-
betically, which would be inappropriate here: The conventional order of
these levels is be (blue-collar occupations), we (white-collar occuparions),
prof (professional and managerial accupations).

Because type.ord is an ordered factor, contrasts are created by default
using contr.poly, which codes orthogonal polynomials when the fac-
tor levels are equally spaced and there are equal numbers of observa-
tions at the different levels. The first term (labeled .L) represents a linear
trend; the second (.Q), a quadratic trend. In general, the order of the
polynomial (two, in this example) is one less than the number of lev-
els {three). Polynomial contrasts are most compelling when the ordered
factor is a quantitative discrete variable—for example, number of sur-
viving grandparents—but they are also useful for ordinal predictors such

as type.ord. Helmert contrasts may also be of interest for an ordered
factor.

4&.4 Fitting Additive Dummy-Regression Models

Suppose that we want to regress prestige on income, education, and

type of occupation. The additive dummy-regression model takes the
form

»w=a + B]xf'l + Bzxfl + 'y]dll oe '}"de T £,y

where y = prestige, x, = income, x, = education, and the specific
form of the ds depends on the coding scheme used for the three categories
of type—say, “rreatment” cONtrasts.

4.2 DUMMY.VARIABLE REGRESSION

|

To fit this model, we simply need to add the facror type to the right-
hand side of the model formula:

> prestige.mod.l <- lm{prestige ~ incame + education + type)
> summary(prestige.mod.1)

Call:
lm{formula = prestige ~ income + education + type)

Residuals:
Min 1G Median 3Q Max
-14.953 -4.449 0.168 5.0587 18,632

Coefficaients:*
Estimate Std. Erxror t value Pr(>|t]|)

(Intercept) —0.622929 B.2237525 -0.12 0.91

income 0.001013 C.000221 4.59 1.4e-05
education 3.673166 0.840502 5.73 1.2e~07
typepraf 6.038571 3.866855 1.56 a.12

typewc ~2.737231 2.513932 -1.09 0.28
Residual standard error: 7.09 on 93 degrees of freedom
Multiple R-Squared: 0.835, Adjusted R-squared: 0.8528
F—~statistic: 118 on 4 and 93 degrees of freedam,

p-value: 0

Because the first level of type (i.e., be) is the baseline level, we obtain
coefficients for the levels prof and we, along with the regression constanr
(the “Intercept”) and coefficients for income and education.

The ¢ values in the regression summary are adequate for testing one-
degree-of-freedom effects, such as those of income and education in
this model, bur because the choice of coding and baseline category is
essentially arbitrary, we usually wanr to test the two coefficients for type

simultaneously. S provides the anova function to test terms in a linear
model:

> anova(prestige.mod.1)
Analysis of Variance Tabla

Response: prestaige
Df Sum Sq Mean Sq F value Pr(>F)

income 1 14022 14022 278.56 <2e-18
education 1 9053 9053 179.85 <2e-18
type 2 591 296 5.87 0.004
Residuals 93 4681 50

The sums of squares reported by the anova function are, however,
“sequential” sums of squares: for income igroring education and type;
for education 4fter income but igmoring type; and for type after

FITTING LIMEAR MODELS

income and education.® For nonorthogonal data {i.e., when regressors
for different terms in the model are correlared), sequential sums of
squares do not, in general, correspond to meaningful hypotheses abour
parameters in the model. Here, however, the last test, for type, gives us
what we want, and we already have ¢ values for the single-df effects,
income and education.

The anova function may also be used to calculate ap incremental {or
“extra-sum-of-squares”) F test contrasting two nested linear models. For
example, we may omit type from the model, and contrast the result with
the full model, obtaining the same F statistic for type as before;

> prestige.mod.0 <- lm(prestige ~ income + education)
> anova(prestige.mad.0, prestige.med.1)
Analysis of Variance Table

Model 1: prestige ~ income + education

Hodel 2: prestige - income + education + type
fes.Df Res.Sum Sq Df Sum Sq F value Pr{>F)

1 95 5272

2 53 4681 2 591 5.87 0.004

The Anova function in car (note the uppercase A, to distinguish it from
anova) calculates a proper test for each of the terms in the linear model*;
in the case of one-df effects, these F tests are simply %

> Anova(prestige.-mod.1)
Anava Table (Type II tests) |

Response: preatige
Sum Sq Df ¥ value Pr{>F)

income 1059 1 21.03 1._4e-05
educatian 1655 1 32,89 1.2e-07
type 591 2 5.87 0.004

Residuals 4681 893

A last point on the addirive dummy-regression model: By omirting the
regression constant from the model, we can force S to fir a different
intercept for each group. This practice is potentially confusing, however,
because the hypothesis that the resulting three coefficients for type are all
0 is no longer equivalent to the hypothesis of no type effects, Moreover,
in models without a constant, R? loses its usual interpretation, as does

3. Follawng popular rerminolagy introduced by the SAS statisrical computer packape, sequennal
sums of squares are often called Type I sums of squares. The anova funcnon mn S«-PLUS {bur not
R| can alsa calculate so-called Type NIl sums af squares, which would give us the result char we
are looking for here, but which introduce addinonal consideranons 1n models with interacnons. [
discuss Type I1 and Type LI sums of squares Jater m this chaprer.

4. By defaulr, the Anova function calculates Type II sums of squares, bur it can calculate Type IIf

supos of squares as well. For this addidive model, Type T and Type I sums of squares are identical-
See foomam 3.

4.2 DUMMY-VARIABLE REGRESSION

13

the omnibus F test for the model, I suggest that you generally avoid this
kind of specification.

The constant is suppressed by including -1 on the right-hand side of
the model formula:

> prestige.mod.2 <~ Im(prestige ~ income + education + type - 1)
> summary(prestige.mod.?)

Coefficients:

Estimate Std. Error t value Pr{>Itl)
income 0.00:013 0.000221 4.59 1.4e-05
education 3.673166 0_.640502 5.73 1.2e-07
typebc -0.622929 5.227525 =-0.12 0.91
typeprof 5.416041 8.6921566 D.62 0.53
typeuc -3.3601680 6.960162 =0_.48 0.63

Hesidual standard error: 7.09 aon 93 degrees of freedom

Multiple R-Squaxed: 0.981, Adjusted R-squared: (.98
F-statistic: 966 on 6 and 93 degrees of freedom,
p—value: Q

> Anova(prestige.mod_2)
Anova Table {(Type II tests)

Response: prestige
Sum Sq Df F value Pr{(>F)

incame 1059 1 21.03 1.4e-05
education 1655 1 32.89 1.2e-07
type 923 3 6.11 0.00077

Residuals 4681 93

The F tests for income and education are the same as before, but, as

explained, the F for type now tests a different, and uninteresting, hypoth-
esis.

Dummy Regression with Interactions

The additive dummy-regression model fits identical slopes in all the levels
of a factor. Building interactions into the model permits different slopes
at different levels (“different slopes for different folks™).

Interactions are specified by colons (:) in the model formula; for exam-
ple, T use update to add interactions to the dummy-regression model for

RITTING LINEAR MODELS

the prestige data (as explained below):
> prestige. mod.3 <- update(prestige.mod.l,

+ . =~ . + 1ncome:type + education:type)

> summary{prestige.mod.3)

Call:

1m({formula = prestige ~ income + education + type + lacome:type +
education:type)

Residuals:
Min 1Q Median 30 Max
-13.46 -4.23 1.35 3.83 19.63

Coefficients:

Estimate Std. Error t value Pr{>|tl)
{(Intercept) 2.28e+00 7.06e+00 0.32 0.748
income 3.5%e~03 5.D6e-D4 6.33 9.6e2-09
education 1.71e+00 9.57e-01 1.79 0.077
typeprof 1.54e+01 1.37e+01 1.12 0.266
typeuc =3.35e+01 1.77e+01 -1.90 0.061
income: typeprof -2.90e~-03 5.99%-04 -4.85 §5.3e-06
income:typewc -2.07e-03 8.94e-04 -2.32 0.023

educatian:typeprof 1.39e+00 1.29e+00 1.08 0.284
education:typewc 4.29e+00 1.76e+Q0 2.44 0.017

Residual standard error: 6.32 on 89 degrees of freedom

Multiple R-Squared: 0.875, Adjusted R-squared: 0.863
F-statistic: 77.6 on 8 and 89 degrees of freedom,
p-value: Q

> Anova(prestige.mod.3)
Anova Table (Type II tests)

Response: prestige
Sum Sq Df F valus Pr(>F)

income 1132 1 28.35 7.5e-07
education 1068 1 26.75 1.4e-06
type 591 2 7.40 0.0011
income : type 952 2 11.92 2.6e-05
education:type 238 2 2.99 0.0556
Residuals 3553 89

This specification fits the model
¥, =+ Bix, + Boxa+ nd, + vod,;
+ 6yyx,,d,, + 512-"‘:1 da+ 6pnxpd, + 623%,d,, + &,

Rather than specifying the model from scratch, | have updated the pre-
vipusly fit additive model (prestige.mod.1). In the formula argument

4.2 DUMMY-VARIABLE REGRESSION

(i.e., the second argument) to update, the periods (.} are to be read as
“the previous value,” and so lm reuses the previous left-hand side of
the model, and adds interactions between income and type and between
education and type to the previous right-hand side.

The Type II tests computed by Anova obey the principle of marginal-
¢ry, and are summarized in the following table; for example, the “main-
effect” test for income ignores the interacrions between income and type,
to which income is marginal (but not between education and type):

Sum of Squares for |alter.. ignoring...

income education, type, income:type
education:type

education income, type. aducation:type
income:type

type income, education income:type,

education:type

income:type income, education, type,

aducation:type

education:type income, education, type,
income:type

The “ignoring/after” terminology is a shorthand: For example, the
sum of squares for income ignoring income:type and after education
and type is calculated by contrasting the residual sums of squares for
rwo (nested) models: the model including income, education, type,
and education:type; and the model including education, type, and
education:type {but omitting income), The denominator for the F-test
is taken from the estimated error variance for the full model. The Anova
function calculates the various sums of squares without acrually refitting
the model,

In writing the formula for a linear model, it is not necessary to sep-
arately specify interactions and their lower-order relatives, such as main
effects; using asterisks (*) generates an interaction and all of the terms
marginal to it. Thus, the previous model (prestige.mod.3) could have
been fit as:

» lm(prestige ~ incomextype + education*type)

S linear-model formulas also make provision for nested effects: The
term A Y%in% B is interpreted as “A nested within B.” In the current
dummy-regression context, we can use nesting to fit separate education
and income slopes at each level of occupational type:

> lm(prestige ~ type + (income + education} ¥in¥ type)

Parentheses in model formulas are expanded in the usual manner: Thus,
(income + sducation) %in% type is equivalent to income %in% type
+ education %inj type.

FITTING LINEAR MODELS

Nesting Effects in 5-PLUS

In S-PLUS, (income + education) %inY type does not expand to incame

%in}, type + education %in} type. if we desire the second specification,
we need to enter it directly.

Suppressing the regression constant fits a separate intercept for each
type, as well as separate slopes:

> lm(prestige ~ type + (incame + education) %in% type - 1)

Call:
ln(formula = prestige ~ type + (income + education} %in% type - 1)

Coefficients:
typebc typepraf typewc
2,27575 17.62765 -31.26090
typebctincome typeprof:income typewc: income
0.00352 0.00062 0.00145
typebcreducation typeprof:education typewc:education
1.71327 3.10108 6.00415

This kind of parametrization, however, makes it relatively difficult to
test for type effects and interactions with type. In particular, a properly
formulared analysis of variance for the nested model tests the hypotheses
{1) that all the intercepts are zero, {2) that all the income slopes are zero,
and (3) thar all the education slopes are zero—not, for example, that
the education slopes are equal to each other.

. ANALYSIS OF VARIANCE MODELS

It is, from one point of view, unnecessaryto consider analysis of variance
models separately from the general class of linear models, but doing so
helps to clarify how interactions among factors are handled in S.

Let us begin by detaching the Prestige data frame and accessing
data from an experiment on conformity reported by Moore and Krupat
(1971);

> detach(Prestige.?2)
> data{Moore)
» attach(Maare)

» Moore

partoar.status conformity fcategory fscore
1 low 8 low 37
2 low 4 high 57

4.3 ANALYSIS OF VARIANCE MODELS

3 low 8 high 65
44 high 10 hagh B2
45 high 15 medium 44

The 45 subjects in the experiment interacted with a partner who was
of either relatively low or relatively high status (as recorded in the
factor partner.status). In the course of the experiment, the subjects
made intrinsically ambiguous judgments, exchanging these judgments
with their partners; the partners’ judgments were manipulated so thart
they disagreed with the subjects on 40 critical trials., After exchanging
initial judgments, the subjects were given the opportunity to change their
judgments. The variable conformity records the number of times in
these 40 trials that each subject deferred to his or her partner’s judgment.
The variable £score is a measure of “authoritarianism,™ and fcategory
is a categorized version of this variable, dissecting fscore into thirds,
labeled low, medium, and high.

Employing partner.status and fcategory as facrors, Moore and
Krupat performed a two-way analysis of variance of conformity.’ To
replicate their analysis, I start by re-ordering the levels of the factor
fcategory, because the alphabetical order is not what we want. (I could
treat fcategory as an ordered factor, but do not do so.)

> feategory <- factor(fcategory, levels=c(’low’,’'medium’,’high’))
> fcabegory

(1] low high high low low low medium medium

f21] medium high low high medium
Levels: low medium high

Next, [use the tapply (table-apply) function to find the mean and
standard deviation of conformity, along with the frequency count of
observations, for all combinations of levels {cells) of the two factors®:

> means <- tapply(conformity, list(fcategory, partner.status), mean)
> means
bhigh low
low 17.400 8.900
medium 14,273 7.280
hagh 11.857 12.625

5. Actuaily, Moore and Kropat categorized authontarianism separaiefy wathun each level of partmet’s
starus. The results [present here are similar ta chews, but my procedure 1s more defensible.

The reader may want ta consider varations on the analysiss Using fscore, the quanttarive ver-
sion of authortanarusm, in place of the factar fcategoxy, produces a dummy regressian. Because

conformity 1s a disgused proportion (conforming responscs out of 4Q), a logir wansformation of
conformty/40 might be tned.

6, The tapply funcnion, and other funcnans in the “apply” famuly, are described in Chaprer 8.

FITTING LINEAR MODELS

> tapply(conformity, list{(fcategary, partner.status),
+ function(x} sqgrt(vaxr(x)))
hagh low
low 4 .8056 2.6437
medium 33,9520 3.9476
high 3.9340 7.3473

> tapply(conformity, list(fcategory, partner.status), length)

high low
low 5 1o
medium 11 4
high 7 8

The first argument to tapply is the variable to be summarized; the second
argument is a list of factors; and the rhird argument is the function to
be applied. Note how I define a function for the standard deviation “on
the fly,” as the square root of the variance: It would be simpler to use sd
(in R) or stdev (in 5-PLUS), but the example illustrates how to employ
an anonymous function as an argument to tapply. [assign the means

to a variable so that I can conveniently plot them, along with the data
(Figure 4.2}

» Fcat <- as.numeric(fcategory)

> plot(c(C.5, 3.5}, range(conformity), xlab='F category’,

+ ylab='Conformity’, type=’n’, axes=F)

> axas(1, at=1:3, labels=c(’low’, ’medium’, ‘hagh®)) # x-axis
> axis(2) # y-axas

> box()

> points(jitter(Fcat [partner.status == ’law’]),

+ conformity[partner.status == ?low’], pch='L’)

> points(jitter(Fcat [partoner.status == ’high’l),

+ conformity[paxtoer.status == ’high'], pch="H’)

> lines{1:3, meansf,1], lty=1, 1lwd=3, type='b’', pch=19, cex=2)
» lines{(1:3, meansf,2?], lty=3, lwd=3, type='b’, pch=l, cex=2)
> legend(locatar(1), c(’high’,’low’}, lty=c(1,3),

+ lud=c(3,3), pch=e(19,1))

>

Here is a brief explanation of the commands used to draw this graph’:

B The function as.numeric “coerces” the factor fcategory to numbers,
which are used for horizontal coordinates in the graph.

W Specifying type='n’ in the call to plot sets up the coordinate space
for the graph withour plotting the dara.

B The axis function draws tick marks and tick labels, while box places
a frame around the graph.

T Chapter 7 describes S graphics In greater detail, mcluding a general straregy for building up
complex graphs

4.3 ANALYSIS OF VARIANCE MODELS

® The points function adds the data, using the plotting character 'L’
for low partner’s status and *H’ for high partner’s starus. Jittering the
points horizontally helps to separate them visually.

® The lines function plots the profiles of means, providing different
symbols {(pch=19 and peh=1) and line rypes (1ty=1 and 1ty=3) for the
two levels of partner.status.

m Finally, legend adds a legend to the graph, positioning it with the
mouse via the locator function, as explained in the preceding chapter.
{Click the left mouse button to set the upper-left corner of the legend.)

e ——

legend in S-PLUS

In the S5-PLUS version of legend, the argument marks is used in place of
pch to specify plotting characters.

The standard deviation in the low-status, high-authoritarian condition
is substantially larger than in the other conditions, and the plot reveals
that two of the eight observations in this condition have especially large
conformity scores; I label these observations interactively with the mouse:

> identify(Fcat, conformity)
[1] 16 19

Because the profiles of means in Figure 4.2 are not parallel, fcategory
and partner.status appear to interact in affecting conformity, much

L 16
& H [‘ow
&
2
£ 7
k.
&
e

L L
I 1 T
low mathum nigh
F category

Figure 4.2 Conformity by partner’s starus and authoritarianism for Moore
and Krupar's experiment. The points are jittered horizontally to
avoid overplotting.

FITTING LINEAR MODELS

in the manner that Moore and Krupat anticipated. [invite the reader to
redo the analysis described immediarely below, removing observations 16
and 19.

How to formulate hypotheses, contrasts, and sums of squares in
two-way and higher-way analysis of variance is the subject of a grear
deal of controversy and confusion. This is not the place to disentangle
the issue (see, for example, the discussion in Fox, 1997, Section 8.2}, but
I will make the following brief points:

m The essential goal in analysis of variance is to test meaningful hypothe-
ses about differences among cell means and their averages. Contrast
" coding and sums of squares should follow from the hypotheses.

m Issues only arise in so-called “unbalanced” data=<thar is, when the
numbers of observations in different cells are unequal, as is the case
for Moore and Krupat’s experiment.

@ It is difficult to go wrong if you construct tests that conform to the
principle of marginality, always ignoring higher-order relatives (e.g.,
the interaction A:B) when tesung lower-order terms {e.g., the main
effect 4). This approach produces what are sometimes termed Type II
sums of squares,

@ If you are careful, however, you can test lower-order terms after their
higher-order relatives—for example the main effect of A after the B
main effect gzd the A:B interaction. The main effect of 4, in this con-
struction, represents the effect of A averaged over the categories of B,
Whether or not this effect really is of interest is another matter, which
depends on context. The incremental sum of squares for a term after
everything else in the model is sometimes called a Type Il sum of
squares. In S, to get properly formulared Type I sums of squares, you
should use contr.sum or contr.helmert to code factors; in particular,
using contr.treatment with Type IIl sums of squares will produce
tests of generally meaningless hypotheses.

B Analogous issues arise in other linear models: Consider a dummy-
regression model with one facror (A) and one quantitative predictor
{or covartare, X). Suppose that we test the hypothesis that the “main
effect” of 4 is 0 in the model that includes interactions between A
and X. This tests that the intercepts for the different levels of A are the
same; but if the slopes vary across the levels of 4, then the separation
among the levels varies with the value of X, and assessing this sepa-
ration at X = 0 1s probably not meaningful. To justify Type M sums
of squares, we could express X as deviations from its mean, making
the test for differences in intercepts a test for differences among levels
of A at the average score of X. Proceeding in this manner produces a
meaningful, but not necessarily interesting, test.

4.3 ANALYSIS OF VARIANCE MODELS

1

In light of these considerations, I fit an analysis of variance model to
Moore and Krupat’s data employing sum-to-zero contrasts and calculat-

ing both Type Il and Type III tests:

> options(contrasts=c{’contr.sum’, ’contr.pely?))
> moore.mod <- lm{confoermity ~ fcategory * partner.status)

> summary(moare.mod)

Call;

lm{forrmula = conformity ~ feategory * partner.status)

Residuals:
Min 10 Median 3Q Hax
-8.625 -2.900 -0.273 2.727 11.375

Estimate Std. Error t walue Pr(>|tl|)

Coefficients:

(Intercept) 12.051 0.
feategaryl 1.099 1.
feategaryl -1.288 1.
partner,statusl 2.459 0.
fcategoryl:partner.statusl 1,791 1,
fcategory2:partoer.statusil 1.052 1.

728
0286
061
728
026
061

16.56
1.07
-1.22
3.38
1.74
0.99

Residual standard error: 4.58 on 39 degrees of freedom

Multiple R-Squared: 0.324,

> Anova{maore.mod)
Anava Table (Type II tests)

Response: coanformity

Sum Sq Df F value
fcategary i2 2 0.28
partner.status 212 1 10.12
feategory:partner. status 175 2 4.18
Residuals 818 39

> Anova(moore.mod, type="IIY*)
Anova Table (Type III tests)

Response: conformity

Sum Sq Df F value
(Intercept) 5763 1 274.36
featagary 6 2 0.86
partner.status 240 1 11.42
fcategory:partner,status 175 2 4.138
Residuals 818 39

Notice that when sum-to-zero contrasts are employed (in this case, by
resetting the global contrasts option), the coefficients for the factor are

Pr{>F)
0.7596
0.0029
0.0228

Pr{>F)
<2a-18
0.4315
0.0017
0.022¢

Adjusted R-squaraed: 0.237
F-statistic: 3.73 on § and 39 degrees of freedom, p-value: 0.0074

<2e-16
0.2908
0.2314
a.0017
0.0889
0.3273

FITTING LINEAR MODELS

numbered, rather than named for the factor levels. Here, for example,
the two coefficients for feategory, which has levels low, medium, and
high, are called fcategoryl and fcategory2, rather than (as I would
prefer) fcategorylow and fcategorymedium, If you do not remember
the categories for a factor, or their order, you can recover this information
by specifying, for example, levels(fcategory).

In this instance, the Type II and Type III tests produce similar results.
You may wish to repeat the analysis with Helmert (contr.helmert) and
indicator (contr.treatment) contrasts.

‘ USER-SPECIFIED CONTRASTS*

There are times when we are interested in testing finer-grain, single-
degree-of-freedom hypotheses about differences among the levels of a
facror. Suppose thar the vector g represents the population factor-level
means in a one-way analysis of variance (or the raveled cell means for
a two-way or higher-way classification). If there are # means, then there
are p — 1 degrees of freedom for differences among them.

Let the contrast matrix C be a p x {# — 1) matrix of rank p — 1, each
of the columns of which sums to 0. Then.

=1 [3]

is a linear model for the cell means {where 1 is a p x 1 vecror of 1%).
The trick is to formulate C so that the {p — 1) x 1 parameter vector 7y
represents interesting contrasts among the level means. Because [1, Cl is

nonsingular (reader: why?), we can solve for the parameters as a linear
transformarion of the means:

MEE®

A parricularly simple way to proceed (though not the only way) is to
make the columns of C mutually orthogonal. Then, the rows of [1, C]™?
are proportional to the corresponding columns of [1, C], and we can
directly code the contrasts of interest among the means in the columns
of C.

None of this requires chat the factor have equal numbers of observa-
tions at its several levels, but if these frequencies are equal, then nor only
are the columns of C orthogonal, but the columns of the model matrix
X constructed from C are orthogonal as well. Under these circumstances,

4.4 USER-SPECIFIED COMNTRASTS

we can partition the regression sum of squares for the model into one-
degree-of-freedom components due to each contrast.

Baumann and Jones {as reported in Moore & McCabe, 1993) con-
ducted an experiment in which each of 66 children was assigned at
random to one of three experimental groups, 22 subjects to a group.
The groups represent different methods of teaching reading: a standard
method (called “Basal”) and two new methods {called “DRTA” and
“Strat”). The researchers conducted two pretests and three posttests of
reading comprehension. I focus here on the third posttest. The data for
the study reside in the data frame Baumann:

> detach(Moaore)
> data({Baumann)
> attach(Baumann}

> Baumann

group pretest.l pretest.2 post.test.l post.test.2 post.test,.3
1 Basal 4 3 5 4 41
2 Basal 6 5 9 5 41
23 DRTA 7 2 7 6 31
24 DRTA 7 6 5 6 10
65 Strat 5 3 g 8 45
66 Strat 8 3 4 6 42

The researchers were interested in whether the new methods produce
betrer results than the standard method and whether the new methods
differ in their effectiveness:

> tapply(post .test.3, group, mean)
Basal DRTA Strat
41.045 46.727 44,273

> tapply(post.test.3, group, function(x) sqrt(var(x)))}
Basal DRIA Strat

5.6356 7.3884 5.7668

» plat(group, post.test.3, xlab=’Group’, ylab=’Reading Score’)
>

Plotting scores against a factor produces parallel boxplots {Figure 4.3).
The means and boxplots suggest that there may be differences among
the groups—specifically, berween the new methods and the standard
one.

It appears natural here to define rwo contrasts; (1) Basal versusthe
average of DRTA and Strat and {2) DRTA versus Strat:

> contrasts(group} <- matrix(ec(1,-0.5,-0.5, 0,1,-1), 3, 2)

FITTING LINEAR MODELS

e
0] !
m o p——
S 4 ! :
r
@ r
g i |
ar 3
=
9 :
g 9 : :
r
r '
0 ' .
@ : : :
1 : —
O 1
ﬂ- P PR
i 5 T T
Basal DATA Strat)
Group

Figure 4.3 Pasttest reading score by condition for Baumann and Jones’s dara,

> contrasts(group)
£,1] [,2]
Basal 1.0 0
DRTA -0.8 1
Strat -0.5 -1

> summary{lm{post.test.3 ~ group})

Call:
1n{formula = post.test.3 ~ group)

Residuyals:
Min 10 Median 3Q Max
~-16.73 -3.61 1.11 3.95 12,95

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 44.015 0.777 56.63 <2e-16
groupl -2.970 1.089 -2,70 0.0088
group? 1.227 0.852 1.29 0.2020

Residual standard errar: 6.31 an 63 degrees of freedom
Multiple R-Squared: 0.125, Adjusted R-squared; 0.0967
F-statistic; 4.48 on 2 and 63 degrees of freedom,

p—value: 0.0152

The ¢ sratistics for groupl and group? test the rwo hypotheses of interest,
and so we have strong evidence that the new methods are superior to the
old, but lictle evidence of a difference in efficacy berween the two new
methods.

User-specified contrasts may also be used for factors in more complex
linear models, including multifactor models wich interactions,

4.5 GENERAL UINEAR HYPOTHESES

1

GENERAL LINEAR HYPOTHESES*

A general marrix formulation of the linear models considered in this
chapter 1s

y=XB+e,

where y is an # x 1 vector conraining the response; X is an # x p model
matrix, the first column of which usually contains 1s; B is a p x 1 vector
of model parameters; and & is an 7# x 1 vector of errors. Assuming that
X is of full-column rank, the least squares regression coefficients are

b = (X'X)~Xy.

All the hyportheses described in this chapter, and others that I have
not discussed, can be tested as general linear hypotheses, of the form
Hy: LB = c, where L is a g x p hypothesis marrix (of rank g), conraining
prespecified constants, and ¢ is a prespecified g x 1 vector, most often
containing Os, Under H,, the test statistic

_ (Lb — ¢y [L{IXX})~'L']~{Lb — ¢)

K =

follows an. F distribution with g and 7 — ¢ degrees of freedom; s is the
estimated error variance for the model.
Here are two nonstandard examples:

Duncan’s occupational-prestige regression. Suppose that we want
to test that the coefficients of income and education are the same.
Because both income and education in the Duncan data set are per-
centages (of relatively high-income earners and of high-school graduares,

respectively), this hypothesis arguably makes some sense. Using the
linear.hypothesis function in car:

> detach (Baumann}

> data(Duncan)

> attach(Duncan)

> duncan.mod <- lm(prestige ~ income + aducation)
> summary{duncan_mod)

Coefficients:

Estimate Std. Error t value Fr(>|t{)
(Intercept} -6.0647 4.2718 -1.42 0.186
income 0.5987 0.1197 5.00 1.1e-pD3

sducation 00,5458 0.0983 5.56 1.Te-06

FITTING LINEAR MODELS

> linear.hypothesis(duncan.mad, c(0, 1, ~1})

F~Tast
55 = 12.195 SSE = 7506.7 F = 0.068233 Df = 1 and 42
p = 0.7952

In this case, the hypothesis matrix consists of a single row, L = {0, 1, —1),
contrasting the income and education coefficients; the right-hand-side
vector for the hypothesis is implicitly ¢ = (0). The test shows that the
difference between the two coefficients is not statistically significant.

Dauvis’s regression of measured on reported weight, 1 previously fir
two models ro Davis’s dara; davis.mod includes a bad observarion, while
davis.mod.2 deletes the bad {12th) abservation:

> detach(Duncan)
» davis.mod

Call:

lo{formula = weight ~ repwt)

Coefficients:

(Intercept) repwt
5.336 0.928

> davis.mod. 2

Call:
lm(formula = weight - repwt, subset = -12)
Coefficieats:
(Intercept) repwt
2.734 0.958

If individuals are unbiased reporters of their weight, then the intercept

should be 0 and the slope 1, we can test these values simulraneously as
a linear hypothesis:

> diag(2) # order-2 identify matrix
[.11 [,2]

[1.] 1 0

[2.] D 1

» lipear,hypothesis(davis.mod, diag(2), c(0.1l))

F-Test

85 = 245.97 3SE = 12828 F=1733 Df =32 and 181
p = 0.17927

> lineax.hypothesis(davis.mod.2, diag(2), c(0,1))

F-Test

35 = 59.691 S5E = 914.3 F = 5.8757 Df = 2 and 180

p = 0.0033733

Here, the hypothesis matrix L is just an order-2 identify matrix, con-
structed in § by diag(2), while the night-hand-side vector is ¢ = {0, 1)".

4.6 DATA AND CONFIDENCE ELUPSES 1

Even though the regression coefficients are closer to 0 and 1 when obser-
vation 12 is omitted, the hypothesis of unbiased reporting is acceptable
for the original data set but not for the corrected data (because the error
sumn of squares is much smaller when observation 12 is deleted).

DATA AND CONFIDENCE ELLIPSES -

Data cllipses and ellipsoids (i.e., the generalization of ellipses beyond
two dimensions) provide a visual interpretation of correlation. Moreover,
when variables are bivariately or multivariately normally distributed,
data ellipses and ellipsoids represent estimated probability contours, con-
raining expected fractions of the data (see, for example, Monette, 1990).

The data.ellipse function in car draws data ellipses for a pair
of variables. Illustrating with income and education in Duncan’s
occupational-prestige data [Figure 4.4(a)l:

> data.ellipse(1ncome, aducation, levels=c¢(.5,.75,.9,.95))
> identify(income, educatian, row._names{Duncan))
[1] 6 16 27

The contours are set to enclose 50, 75, 90, and 95 percent of bivarate-
normal data. Three observations identified with the mouse—representing
ministers, railroad conductors, and railroad engineers—are outside of the
95 percent normal contour

Earlier in this chapter, I regressed prestige on income and education,
placing the resulting 1m object in duncan.mod. The following command
draws a 95 percent joint-confidence region for the coefficients of income
and education in this regression:

» confidence.ellipse(duncan.mod)
>

The 95 percent confidence ellipse in Figure 4.4(b) is the rescaled 90
degree rotation of the 25 percent data ellipse in Figure 4.4{a) (see, ¢.g.,
Fox, 1997, Section 9.4.4; Monette, 1990). Thus, the positively correlated

predictors income and education produce negatively correlated coeffi-
e 8
cients.

8. The confidance.ellipse function alsa draws approximate confidence ellipses For the coefficients
of generalized linear models, distussed 1n the next chapter The scatterplot.matrix function
car has faciliies for drawmg data ellipses as well. Similar functions are provided by the ellipse
librars for R.

148 FHETTING LINEAR MODELS

"3SNOW JY1 UITm A[3AHIRIDNUT PIYIIUIPT 319 SUCNIBATISQO 331Y)
‘(e} uy *s30101pard 3sam) vo eStagexd Jo uolssaadal oY) Ul UOTIRINDS PUE SUGOUT JO
s1URYjR02 23 Joj asdifs ssuspyuod-juiol yuadaad ¢¢ (q} erep a8nsaad-jeuonednido
sueaUN(] M ToT1eanpe pue swedut Jof sasdi)e viep Juantad ¢g pue ‘06 ‘SL 0S (e}

by 2andiy

(q) (=)
118Dk 802 Lol BUICIL

§0 ®O 40 90 &0 ¥O0 EOD

1 1 i | ! 1 I

- £0

- ¥0 4
=
c
8

- G0 =
S
g

~ 890 x
)
o
=

— 20

- 80

UOEINDS

4.7 MORE ON 1m AND MODEL FORMULAS

14

MORE ON 1m AND MODEL FORMULAS m

The 1m function has several additional useful arguments, and some of the
arguments that I discussed have uses thar were not mentioned. The args
function prints out the arguments to 1m (as it will for any function):
> args(lm)
function (formula, data = list(), subset, weights, na.action,
method = "gr", model = TRUE, x = FALSE, y = FALSE, gr = TRUE,

singular.ok = TRUE, contrasts = NULL, offset = NULL, ...)
NULL

These are the arguments for the R implementation of lm; the arguments
for the S-PLUS implementation are nearly the same.
Here is some additional information about the arguments to 1m; for

further dertails, you can type help(lm) to access the on-line documenta-
tion.

formula

As we have seen, a model formula for lm consists of a left-hand side,
specifying the response variable, and a right-hand side, specifying the
terms in the model; the two sides of the formula are separated by a tilde
{~). We read the formula a ~ b as “a is modeled as b,” or “a is regressed
onb.”

The left-hand side of the formula can be any valid S expression that
evaluates to a numeric vector of the appropriate length. On the left side
of the formula, the arithmetic operators —, +, %, /, and ~ have their usual
meanings, and we can call whatever functions are appropriate to our
purpose. For example, with reference to Moore and Krupart’s data, we
could replace the number of conforming responses with the percentage
of conforming responses:

> 1lm{100*=conformity/40 ~ partner.statussfcategory, data=Moore)
or (using the logit function in car) with the log-odds of conformity-
> Im(logit(conformity/40) ~ partaer.statussfcategory, data=Moore)

The right-hand side of the model formula may include factors and
expressions that evaluate to numeric vectors and matrices. Because sev-
eral operators have special meaning in formulas, anthmertic expressions
that use them have to be “protected.” Expressions are protected auto-
matically when they are inside function calls: For example, the + in
the term log(a + b) has its usual arithmetic meaning on the right-
hand side of a model formula, even though a + b does not when it is
unprotected,

FITTING LINEAR MODELS

The identity function 1() may be used to protect otherwise unpro-
tected arithmetic expressions in model formulas. For example, to regress
prestige on the sum of education and income in Duncan’s data ser
(thus implicitly forcing the coefficients of these two predictors to be
equal), we may write:

> lm{prestige ~ I(income + education), data=Duncan)

I have already described most of the special operators that appear on
the right of linear-model formulas. In the following table (adapted from
Chambers & Hasue, 1992, p. 29), 4 and B represent elements in a linear
model: numeric vectors, matrices, factors, or expressions {such asd + e
or d=e) composed from these:

Expression | Interpretation Example

A+ B include bath 4 and B income + education
A-B exclude B from A asbxd - a:b:d

A:B all interactions of A and B type:education

AxB A+ B+ A:B typexeducation

B %in% A |B nested within 4 education %in% type
A/B A+ B %in% A type/education

ATk all effects crossed up to order k | (2 + b + d} "2

The last two operators, / and -, are new to us: / is a shorthand
for nesting, in the same sense as = is a shorthand for crossing; and
builds crossed effects up to the order given in the “exponent.” Thus,
the example in the table, (a + b + d)"2, expands to all main effects
and pairwise interactions among a, b, and &: thatis;a + b + d + a:b +
a:d + b:d. MNote that this is equivalent to another example in the table,
asb+d - a:b:d. The intercept, represented by 1 in model formulas, is
included in the model unless it is explicitly excluded, by specifying -1 in
the formula.

4.7.2 data

When 1m is called from the command line, the data argument defaults
to the “global environment,” and so objects will be found in the normal
manner along the search path, such as in an artached data frame. The
data argument can also be set to a list structure with named components,
typically a data frame.

4.7 MORE ON 1m AND MODEL FORMULAS 1

" ———r

subset E-?l—-z-3

As the term implies, the subset argument may be used to fit a model to
a subset of observations. Several forms are possible:

B A logical vector, as in

> lm{weight ~ repwt, data=Davis,
* subset = sex == ’F’} # fit oanly to women

B A numeric vector of observation indices:

> lm(weight ~ repwt, data=Davis,
+ subset=1:100) # use only abs. 1 to 100

® A numeric vector with negative entries, indicating observations to be
omitted from the fit:

> Im(prestige ~ income + education, data=Duncan,
+ subset=-¢(6,16)) # exclude obs. 6, 16

B A character vector containing the row names of the observarions to
be included (an option for which ir is hard to provide a compelling
example).

weights - 474

If it is specified, the weights argument takes a numeric vector of length
equal to the number of observations, and produces a weighred least
squares fit. Letting w, represent the weight attached to observation ¢ and
e, the residual for observation i, coefficients are computed to minimize
the weighted residual sum of squares, - w,e?. Weighted least squares
regression is appropriate when the error variance is different for differ-

ent observations, but is known up to a constant of proportionality (see
Section 6.3).

A T e
L Sq.: S

na.action ~#75

ERCPS
-

In R, the default na.action is given by the na.action option, which
is initially set to ‘na.omit’, deleting observations with missing data. In
$-PLUS, there is no general missing-data default option, and na.action
in 1m defaults to na.fail, which produces an error when it encounters
missing data. The function na.exclude is similar to na.cmit, but saves
information about the deleted observations: This information may be

FITTING LINEAR MODELS

used by functions, such as residuals, that do computations on linear-
model objects. Although I will not pursue the possibility here, you can
handle missing data in other ways by writing suitable missing-dara func-
tions and using these in place of na.omit, na.fail, or na.exclude.

Because we usually fit more than one model to the data, it is generally
advantageous to handle missing data outside of 1m, to ensure that all
models are fit to the same subset of valid observations. To do otherwise
is to invite inconsistency. This is true, incidenrally, not only in S but in
other statistical software as well.

methed, model, x, y, gqr*

These are technical arguments, relating to how the computations are

performed and whar information is stored in the returned linear-model
object.

singular.ok*

Under normal circumstances, S builds a full-rank model matrix, removing
redundant dummy regressors, for example. Under some circumstances,
however—perfect collinearity, for example, or when there is an empty
cell in an analysis of variance—the model matrix may be of deficient
rank, and not all the coefficients in the linear model will be estimable.
If singular. ok is TRUE, then S will fit the model anyway, automat-
ically omitting the redundant {or “aliased”) parameters, In $-PLUS,
singular.ok defaults to FALSE; in R, only singular.ock = TRUE is
currently supported.

contrasts

This argument allows you to specify contrasts for factors in a linear
model, in the form of a list with named elements. For example:

> Im(conformity ~ partner.status * fcategory,
+ contrasts=list(partner.status=contr.sumn, fcategory=contr.poly))

4.7 MORE ON lm AND MODEL FORMULAS 1

Rl iy EE

An offset is a term added to the right-hand side of a model with no
associated parameter to be estimated—it implicitly has a fixed coefficient
of 1. In a linear model, specifying a variable as an offset is equivalent
to subtracting the variable from the response. Offsets are of more use in
generalized linear models {discussed in Chapter 5) than in linear models.

CHAPTER 5

Fitting Generalized
Linear Models

% synthesis due to Nelder and Wedderburn (1972), generalized lin-
~ 1. ear models (GLMs) substantially extend the range of application of
linear statistical models by accommodating response variables with non-
normal conditional distributions. Except for the error, the right-hand side
of a generalized linear model is essentially the same as for a linear model,
and thus the formulas used to specify the right-hand side of GLMs in
S are the same as those described in the preceding chapter. Despite the
diversity and broad applicability of generalized linear models, the exten-
sion of the procedures for firting linear models in S to GLMs is largely
straightforward.

Section 5.1 summarizes the general structure of GLMs, and introduces
the glm function in S. The most commonly used GLMs in social research
{(beyond models with normal errors) are models for categorical dara and
for count data, which are described in Sections 5.2 and §.3, respectively.
Section 5.4 briefly takes up the less frequently employed gamma and
inverse-Gaussian GLMs, and summarizes the arguments to the glm func-
tion in S.

THE STRUCTURE OF GENERALIZED
LINEAR MODELS

A generalized linear model consists of three components:

1. A random component, specifying the conditional distribution
of the response variable, y,, given the predictors. Traditionally,

FITTING GENERALIZED LINEAR MODELS

the random component is an exponential family—the normal
(Gaussian), binomial, Poisson, gamma, or inverse-Gaussian family
of distributions—but, as I will explain, the implementation of
generalized linear models in § is somewhat broader.

A linear function of the regressors, called the linear predictor,
M =a+lell+--.+kalk

on which the expected value p, of y, depends. The xs may include
quantirative predicrors, but they may also include transformations
of predictors, polynomial terms, contrasts generated from facrors,
interaction regressors; and so on. That is, the linear predictor is as
general as in the linear model of the previgus chapter

An invertible link function g(w,) = m;, which transforms the expec-
tation of the response to the linear predictor. The inverse of the
link function is sometimes called the mean function: g='(n;) = n,.
Standard link functions and their inverses are shown in Table 5.1.
The logit, probit, and complementary log-log links are for bino-
mial data, where y, represents the observed proportion and u, the
expected proportion of “successes” in #, binomial trials—that is,
i, 18 the probability of a success. For the probit link, ® is the
standard-normal cumulative distribution function, and ®-! is the
standard-normal quantile function. An important special case is
binary data, where all the binomial trials are 1, and therefore all
the observed proportions y, are either 0 or 1.

Generalized linear models in S are fit with the glm function. Most
of the arguments of glm are similar to those of lm: For example, the
response variable and regressors are given in a model formula, and data,
subset, and na.action arguments determine the data on which the
model is fit. In addition, the family argument to glm is used to specify

Table 5.1 Standard link functions and their inverses: u, is the expected value

of the response; 7, is the linear predictor.

Link

m =gl =g (m)

Identicy i, n,

Log log, ¢, em
Inverse ut 7t
Inverse square u? 2
Square root Vi n?
Logat log, TE';;,' e
Probit Plu,) ()

Complementary log-log

IOge[_ nge[l T Ju'l)]

1 — exp(-—- exp(m)

5.1 THE STRUCTURE OF GENERALIZED LINEAR MODELS

Table 5.2 Default (canonical) link, response range, and conditional variance
function for generalized linear model families; ¢ is the dispersion
parameter, 7, is the linear predictor, and 4, 1s the expectation of
(the response}. In the binomial family, #, is the number of trials.

Fanly Default Link Range of v, Viy,|n,}
gaussian identity (—oa, +oo} &
binomial logit 5'-17'& (1 —)}
poisson log 0,120 i
Gamma inverse (0, ca) Pl
inverse.gaussian 1/mu"2 {0, =) pu?

a family-generator function, which may itself rake additional arguments,
such as a link function.

The names of the generator funcrions for the five standard exponential
families are given in Table 5.2, along with the default (or canonical) link,
the range of the response variable, and the conditional variance of the
response for each family. All family names start with lowercase letters,
except for the Gamma family {to avoid confusion with the gamma function
in S). Canonical links are not only the ones most commonly used, but
they also arise naturally from the general formula for distributions in
the exponential families. Nevertheless, other links may be more appro-
priate for the specific problem at hand, and, indeed, one of the strengths
of the GLM paradigm—in contrast, for example, with transformation
of the response variable in a linear model (as described in Chapter 6)—is
the separation of the link function from the conditional distribution of
the response.

For distributions in the exponential families, the variance is a function
of the mean together with a dispersion parameter ¢. For the binomial
and Poisson distributions, the dispersion parameter is fixed to 1; for the
Gaussian distribution, the dispersion parameter is the usual error vari-
ance, often symbolized by o2, as in Chaptér 4.

Table 5.3 shows the links available for each family-generator func-
tion. Note that these differ somewhat in R and S-PLUS. Nondefault
links are selected via a link argument to the family generator functions:
for example, bincmial (1ink=probit). The quasi, quasibinomial, and
quasipoissen family generarors do not correspond to exponential fam-
ilies; these family generators are described in Section 5.4. If no family
argument is supplied to glm, then the gauszian family, with 1dentity
link, is assumed, resulting in a fit identical to that of 1m, albeit computed
less efficiently—like using a sledge hammer to ser a rack.

GLM:s are typically fit to data by the method of maximum likelihood.
Denote the maximum-likelihood estimates of the regression parameters

158 EITTING GENERALIZED LINEAR MQODELS

Table 5.3 Family generators and link functions for glm: S, available in S-PLUS; R,
available in R. In each case, the default link 1s shown in boldface.

link
family identity inverse log logit probit cloglog Sqrt 1/mu"2
gaussian SR R R
binomial R S,K SR SR
poisson SR S,R SR
Gamma SR 5R 5R
inverse.gaussian R R R R
quasi S.R SR SR SR SR SR SR SR
quasibinemial R R R
guagipoissan R R R

as &, B,..., ﬁL These imply an estimate of the mean of the response,
ﬁ': = g-I(& + le:l e e ka:k}'

The log-likelihood for the model, maximized over the regression coef-
ficients, is

loge ‘LCI = Z:J.Oge p(ﬁ'n ¢§ y:)’
=1
where p{-) is the probability or probability-density function correspond-
ing to the family employed. A “saturared” model, which dedicates one
parameter to each observation, and hence fits the data perfectly, has log-

likelibood

logr Ll = Zloge p(yﬂ ¢; yl)'

r=]
Twice the difference berween these log-likelihoods defines the residual

deviance under the model, a generalization of the residual sum of squares
for linear models:

Diy;) = 2{log, L, — log, Ly).

Dividing the deviance by the estimated dispersion produces the scaled
deviance: D{y; L)/ ¢.

MODELS FOR CATEGORICAL RESPONSES

52‘] Dichotomous Data

As 1 explained, three link functons are provided for the binomial family:
the logit, probit, and complementary log-log links. The logit and probit

5.2 MODELS FOR CATEGOR|CAL RESPOMNSES

1

10 ——————
0.8
= 0.6 -
!
i
1]
= 04 -l
0.2 ~ - logit
==+ piobn
- = complameniary log-log
0.0 T T T T T
-4 2 0 2 4
' 1

Figure 5.1 Companson of logirt, probu, and complementary log-log hnks,
The probir link is rescaled to march the vanance of the logistic
distribution, 72 /3.

links approach probabilities of 0 and 1 symmetrically and—once their
variances are equated--are very similar. The complementary log-log link
is asymmetric and may therefore be useful when the logit and probit links
are inappropriate. The logit, probit, and complementary log-log links are
compared in Figure 8.1,

The response for a binomial GLM may be specified in several forms:

B For binary data, the response may be a variable or an S expression
thar evaluates to 0s (“failure”) and 1s (“success™); a logical variable
or expression (with TRUE representing success and FALSE failure); or
a factor (in which case the first category is taken to represent failure
and the others success).

B For binomial data, the response may be a two-column matrix, with
the first column giving the count of successes and the second the count
of failures for each binomial observation.

® Also for binomial data, the response may be a vector giving the pro-
portion of successes, while the binomial denominators (total counts or
numbers of trials) are given by the weights argument to gln.

Binary Data

To illustrare fitring a binomial GLM, let us turn to a logistic regression
(linear logit model) from Long’s (1997) text on categorical data analysis.
This example draws on data from the 1976 U.S. Panel Study of Income
Dynamics, originally employed in a different context by Mroz (1987).

FITIING GENERALIZED LINEAR MODELS

The same data are used by Berndt (1991) as an exercise in linear logis-
tic regression. The data are in the data frame Mroz; printing 10 of the

#n = 753 observations at random:
> library(car)

> data(Mroz)
> Mroz[sort(sample(753,10)),] # sample 10 abs.

1fp k5 k618 age wc hc lug inc
48 yes O 2 34 no no 1.2447% 5.000
67 yes O 0 655 yes yes 2.2654b 14.000
151 yes Q 2 42 yes yes 1.49503 27.500
197 yes @ 1 36 noe no 1.88442 11.100
288 yes O 2 34 no a0 0.88727 3.800
365 yes 0 2 46 no no 0.91629 12.400
489 omc O 0 44 no oo 0.51422 18.800
516 mo 1 2 36 oo yes 0.87148 17.045
617 mo 2 1 30 no no 0.48838 16.200
666 ma 1 3 35 no oo 0.90876 24.000

The variables in this data frame are defined as follows (using the variable
names employed by Long):

Variable Description) Remarks

Lfp Wife’s labor-force participation Factor: no, yes

k5 Number of children aged 5 and younger 0-3, few 3s

k618 MNumber of children aged 6 to 18 0-8, few > 5

age Wife’s age in years 30-60, single years
we Wife’s college attendance Factor: no, yes

he Husband’s college attendance Factor, no, yes
lwg Log of wife’s estimated wage rate See text

inc Family income excluding wife’s income $1000s

With the exception of lwg, the definition of these variables is straightfor-
ward. The log of the woman’s estimated wage rate is based on her actual
earnings if she is in the labor force; if the woman is not in the labor
force, then this variable is based on the predicted value from a regres-
sion of log wages on the other predictors in the model (for women in
the labor force, of course). As I will explain in Chapter 6 (on regression
diagnostics), this definition of expected earnings creates a problem for
the logistic regression.

Because the default contrast type in R is “treatment”™ contrasts, the fac-
tors will generate 0/1 dummy regressors, with no as the baseline category

5.2 MOODELS FOR CATEGORICAL RESPONSES

(see Section 4.2). Fitring a linear logit model to Mroz’s data is simple:

> attach{Mroz}

> mod.mroz <- glm(lfp ~ kS + k618 + age + wc + hc + lug + inc,
+ family=binomial)

> summary(mod.mroz)

Call:
glm(formula = 1fp ~ kS + k618 + age + uwc + he + lwg + inc,
family = binomial)

Deviance Residuals:
Min 10 Median 30 Max
-3.106 -1.090 0.598 0.971 2.189

Caefficients:
Estimate Std. Errar z value Pr{>{zl|)
(Intercept) 3.18214 0.684432 4.84 7 .8e-07

k5 -1.46201 0.19697 -7.43 1.1e-13
k618 -0.06457 0.06800 -0.85 0,34231
age -0.06287 0.01278 -4.82 8.7e-07
wcyes 0.80727 Q22897 3.51 0.00045
hcyes 0.11173 0.20603 0.54 0.58760
lug 0.60469 0.15081 4.01 6.1e-05
ine ~0.03445 0.00821 =-4.20 2.7e-05

(Dispersion parameter for binomial family takea ta be 1)

Null deviance: 1029.75 on 752 degrees of freedom
Residual deviance: 905.27 on 745 degrees of freedon
AIC: 921.3

Number of Fisher Scoring iterations: 3

Reminder; Default Contrasts in S-PLUS

Recall that, in 5-PLUS, the default contrast type for unordered factors
is Helmert contrasts—which for dichtornous factors, such as in Mroz's
data, produces the coding —1 and +1 for the leveis no and yes, respec-
tively. To produce the results reported here, change the default contrasts
t0 contr.treatment, or change the contrasts for the individual factors in
the model.

The printout produced by summary is very similar to the printout for
a linear model. The ratios of the coefficients to their standard errors
are Wald statistics for testing the hypothesis that the corresponding
regression parameters are (; these are asymptotically normally dis-
tributed under the null hypothesis {but can be problematic in binomial
GLMs). In addition, the summary includes the deviance and degrees

FITTING GENERALIZED LINEAR MODELS

of freedom for a model with only an intercept (the null deviance), the
residual deviance and degrees of freedom for the fitted model, and the
Akiake information criterion (AlC). I discuss residuals for GLMs in
Chapter 6.

The AIC is an index of fit that takes account of the parsimony of the
model by penalizing for the number of parameters; it is defined as

AIC = ~2 x (maximized log-likelibood) + 2 x (number of paramerers),

and thus smaller values are indicative of a better fit to the dara. In the
current context, the AIC is just the residual deviance plus twice the num-
ber of regression coefficients (including the intercept). The AIC is used
to compare the fit of alternative {and not necessarily nested) models with
different numbers of parameters, and is typically employed for model
selection,

The anova function may be used to compute a likelihood-ratio test
or F test for nested GLMs. The type of test is selected via an optional
test argument, set either to *Chisq’ (for the likelihood-ratio test) or to
F; the default is to report sequential differences in the deviance but no
test statistic. Because anova uses the estimated dispersion parameter in
calculating the denominaror of F sratistics, there is no sense in specifying
F tests when the dispersion parameter is fixed, as in a binomial model
(but see the discussion of the quasibinomial and quasipoisson families
in Section 5.4).

For example, to compute a likelihood-ratio test for the coefficient of
k5 in the logistic regression for Mroz’s data:

> anova(update(mod.mraz, . ~ . - k&), mod.mraz, test=’Chisqg’)
Analysis of Deviance Table

Model 1: 1fp ~ k618 + age + wc + he + lwg + inc

Model 2: 1fp -~ kb + k€18 + age + wc + he + lwg + imc
Resid. Df Resid. Dev Df Deviance P(>|Chil)

1 T46 872

2 745 808 1 66 3.be-16

The generic Anova function in car will also handle GLMs, calculating
likelthood-rario, Wald, or F tests, specified via the test argument (with
’LR’ as the default, and *Wald’ and ’F’ as options). Likelihood-ratio
tests and F tests require refitting the model, while Wald tests do not.
Moreover, the F tests computed by Anova base the estimated dispersion
on the Pearson statistic (by defaulr), and therefore are not the same as
likelihood-ratio tests even when, as in the binomial and Poisson models,
the dispersion is fixed.

As in the case of linear models, Anova will compute either Type I or
Type-III tests (selected via the type argument). For the Mroz regression,
there is no distinction berween the two types of tests, because there are

5.2 MODELS FOR CATEGORICAL RESPONSES

no higher-order terms in the model; as well, because in this case each
term in the model has only 1 degree of freedom, the Wald chi-square
statistics provided by Anova are simply the squares of the zs printed out
by the summary function.

For example, to obtain a likelihood-ratio test for each term in the
model fit to Mroz’s data;

> Anova(mod.mroz)
Anava Table (Type II tests)

Respanse: 1fp
LR Chisq Df Pr{>Chisq)

k5 66.5 1 3.3e-16
k818 0.9 1 0.34204
age 26,6 1 4. 2e-07
we 12.7 1 0.00036
he 0.3 1 0.58749
1lug i7.0 { 3.7e-05
inc 8.6 1 1.0e-05

In analogy to the analysis of variance for a linear model, this table is
termed an analysis of deviance.

Binomial Data -

Fitting a GLM with binomial denominators greater than 1 is espe-
cially useful in analyzing a contingency table that includes a dichotomous
response variable. Consider, for example, the data given in Table 5.4,
from Campbell, Converse, Miller, and Stokes’ (1960) classic study of vot-
ing in the 1956 U.S. presidential election. The body of the table gives fre-
quency counts for combinations of categories of the predictors (perceived

Table 5.4 Voter turnout by perceived cleseness of the election and intensity
of partisan preference for the 1956 U.S. presidential election. Fre-
quency counts are shown in the body of the table. Source of data:
Campbell et al. (1960, Table 5-3).

: . Turnout Logi:
Perceived Intensity of . —
Closeness Preference Voted Did Not Vote log, v
One-sided Weak 9 35 0.847
Medmm 121 49 0.904
Strong 64 24 0.981
Close Weak 214 87 0.900
Medium 284 76 1.318

Strong 201 25 2.084

FITTING GEMERALIZED LINEAR MODELS

o _ Close
(4]
) [+ -]
T = 4 0
: 7t
= Q"‘I 4 4
n " / =
d . / : |
- =
3 ® &
€ S “ o
g e
~ o ,’ One-Sided o
(]
L=~] (=]
=] T 1
Weaak Madium

Intensity ol Praferance

Figure 5.2 Voter turnout by perceived closeness of the election and intensity

of partisan preference.

closeness of the election and intensity of partisan preference) and the
response {whether or not the respondent reported voting in the election),

The final column of Table 5.4 shows the sample logit for each combi-
nation of categories of the predictors, computed as the log-odds of voting.
These logits are graphed in Figure 5.2, much as one would graph cell
means in an analysis of variance when the response variable is quantita-
tive. Voter turnout appears to increase with intensity of preference, but
much more dramatically when the election is perceived close than when
it is perceived one sided.

To analyze the dara with a binomial logit model, we may define vari-
ables containing the predictors (as factors) and the cell counts of suc-
cesses and failures, I enter preference, which has three caregories, as
an ordered factor; because the alphabetical ordering of the levels of
closeness and preference is not what we want, I specify the levels
explicitly:

.

> closeness <- factor(rep{c(’one.sided’. ’close’), c(3.3)},
+ levels>c(‘one.sided’, ’close’))

> preference <- ordered(rep(c(’weak’, 'medium’, ’strong’), 2),
+ levels=c(’weak', ‘medium’, ’strong’)}

»> vated <= c(91, 121, 64, 214, 284, 201)

> did.not.vote <~ c(39, 49, 24,6 87, 76, 25)
>

Then, to check the data (and reproduce Table 5.4):

> logit.turnout <- log(voted/did.not.vote)
> data.frame(closenessa, preference, voted, did.aot.vote,
+ logit=logit. turnaut)

5.2 MODELS FOR CATEGORICAL RESPONSES

claoseness preference voted did.not.vete logit

1 one.sided weak 91 39 0.84730
2 on=.sided medium 121 49 0.90387
3 one.sided strong 64 24 (0.98083
4 claose weak 214 87 0.8q007
5 close medium 284 6 1.31824
] close strong 201 25 2.08443

Figure 5.2 is constructed as follows:

> par(mar=c(56.1, 4.1, 4.1, 4.1)) # leave room for right axis

> plot(rep(1:3, 2), logit.turnout, type=‘n’, axes=F,

+ xlab=’Intensity of Preference’, .

+ ylab="Logit{Vaoted/Did Not Vote}*)

» axis(l, at=1:3, labels=c('Weak', ’*Medium’, ’Strong’)) # x-axis
> ax1s(2) # y-axis

> prob.axis(side='right’, at=seq(.7, .85, by=.08),

* axis,. title='Proportion{Voted)’) # right y-axis

> bax()

> points(1:3, logit.turnomt[1:3], pch=1, type=’b’,

+ lty=1, lwd=3, cex=2) # one-sided

> points(1:3, logit.turnout[4:6], pch=16, type='b’,

+ lty=2, lwd=3, cex=2) # close

> text(lacator(2), c(’Clase’, ’'One-Sided’}) # positian the labels
>

Note the use of the prob.axis function from car to draw a right-
side probability axis, preceded by setting the mar (margins) graphics
parameter to leave enough room art the right for the axis title, The text
function is used along with locator to place the labels *Close’ and
’One-lsided’ on the graph: Click rthe left mouse button w position each
label.

We want to fit the logit-model analog of a two-way analysis of variance
to the dara of Campbell et al. (1960):

> options(contrasts=c{’contr.sum?, ’contr.poly?’))
> mod.campbell <= glm(cbind(voted, did.not.vote) =
+ closeness * preference, family=binomial)

> summary{mod.campbell)

Call:

glo(formula = cbind{voted, did.nat.vote) ~ closemess = preference,
family = binomial)

Deviance Residuzls:
1] o 0o 0 0 0 O

1, Chaprer 7 descnibes a general strategy For construcung graphs in §.

FITTING GENERALIZED LINEAR MODELS

Coefficients:

Estimate Std. Error z value Pr(>izl)
(Intercept) 1.1728 0.0746 15.71 < 2e-186
closenessl -0.2618 0.0746 -3.51 0.00045
preference.L 0.4659 0.1352 3.35 0.00082
preference.(] 0.0752 0.1184 0.63 0.52558
closenessl:preference.l, -0.3715 0.1392 -2.67 D.00762
closenessl:preference.Q -0.066% 0.118¢ -0.57 0.57196

(Dispersion parameter for binomial family takea to be 1)

Null deviance; 3.4832e+01 on § degrees of freedom

Residual deviance: -3.7914e-14 on 0 degrees of freedom
AIC: 44.09

Number of Fisher Scoring iteratioas: 2

The residuals for this model are all 0, and, consequently, the residual
deviance is 0 as well (—3.79 x 10~"* ~ 0, within rounding error): The
model, which has six independent parameters, necessarily firs the six
binomial proportions perfectly. A model of this type is called a saturated
model. Had we fit an equivalent binary logit model to the 1275 individ-
ual observations comprising Campbell et al’s data set, we would have
obrained exactly the same estimated coefficients and standard errors, but
a nonzero deviance for the six-coefficient model. Differences in deviance
between alternative models (and, consequently, likelihood-ratio tests),
however, would be unchanged.

Examining the Wald tests for the coefficients of the model, there is
strong evidence (p < .01) for an interaction between perceived closeness
of the election and the linear trend over intensity of preference. An anal-

ysis of deviance table, produced by the Anova function, combines the 2
degrees of freedom for preference:

> Anova{mod.campbell}
Anova Table (Type II tests)

Responze: cbind{voted, did.not.vote)
LR Chisg Df Pr(>Chisq)

closeness 8.28 1 0.004
prefarence 19.11 2 7.1e-06
closeness:preference 7.12 2 0.028

As 1n an analysis of variance, the Type II tests for the “main effects”
should not be interpreted here in the presence of the significant inter-
action between closeness and preference. Had we specified Type III
tests, we could have interpreted each of the main-effects tests as an aver-
age over the levels of the other factor (These tests, however, would be of
dubious nterest in light of the interaction.)

5.2 MODELS FOR CATEGORICAL RESPONSES

1

Polytomous Data

There are several procedures for analyzing polytomous (multiple-
category) responses. One approach is to resolve an m-category polytomy
into a set of #7 —~ 1 nested dichotomies. Another approach is to general-
ize the binomial GLM to a multinomial logit or probit model. Finally,

specialized logit and probit models have been introduced for ordered
categorical responses.

Nesfed Dichotomies

Nested dichotomies are based on successive binary divisions of the
category sef of a polytomous response. They are, perhaps, best explained
by an example: The dara frame Womenlf conrains dara drawn from a
social survey of the Canadian population conducted in 1977; the data
are for #n = 263 married women between the ages of 21 and 30.

> data{Womenlf)
> Womenlf [sort(sample(263, 10)),]1 # sample 10 obs.
partic hincome children region

16 not.work 15 present Atlantic
43 parttime 28 absent Ontaria
86 fulltime 27 absent BC
83 fulltime 1§ absent Ontario
102 not.waork 23 present Atlantic
108 not.gork 19 present Ontario
173 oot.work 7 present Oantaria
184 fulltime 18 absent Datario
185 not.work 13 abseat Q0Ontario
240 not work 13 present Quebec

The following variables are included in this dara set?:

® partic: labor-force partcipation, a factor with levels not.work,
parttime, and fulltime.

B hincome: husband’s income, in thousands of dollars.

B children: presence of children in the household, a facror with levels
absent and present.

B region: a factor with levels Atlantic, Quebec, Ontario, BC, and
Prairie.

2.1 have listed the levels of partic in their natural order, and of region from east to west, bus the
levels are 1n alphabeucal order in the dara frame.

FITTING GENERALIZED LINEAR MODELS

Using the recode function from car, | define two nested dichotomies
to represent the three categories of labor-force participation—working

versus not working outside the home and part-time versus full-time
work:

> attach(Womenlf}
> working <~ recode(partac, " ’mot.work’ = ’'no’; else = ’yes’ ")

> fulltame <~ recade (partac,
- # *fulltime* = ‘yes’; ‘parttime’ = *na’; ‘not.work’ = NA ")

> working
[1] no no no 0o no no no yeés No 00 ho yes NG 0o no
fald]

[16] a0 no oo no mo yes no yes y@s no no no no yes

(256] no yes no no no mo oo no
Levels: no yes

> fulltime

[11 NA NA NA NA NA NA NA yes NA NA NA yes NA NA NA
[16] NA NA NA NA NA no NA yes yes NA NA NA NA NA yes
[341 NA NA NA NA NA NA NA yes NA no NA no mo NA no

[266] NA yes NA NA NA NA NA NA
Levels: no yes

B In forming a ser of nested dichoromies, each compound category is
subdivided until there are only elementary categories left. Thus, the
yes category for the working dichotomy, which comprises women
working part time and full time, is subdivided into the two categories,
yes and no, of the fulltime dichotomy.

m Even when, as here, there are only three caregories in the polyromy,
there is more than one way of forming nested dichotomies. For exam-
ple, we could alternatively define the dichotomies {full time vs. part
time or not working} and [part time vs. not working}. Models for
alternative sets of nested dichotomies are not equivalent, and so this
approach should only be used when there is a substantively compelling
resolution of the polytomy into a specific set of nested dichotomies.
For example, in work on education, it is common to employ so-
called continmation dichotomies: {less than high school vs. some high
school or more}, {incomplete high school vs. high-school graduate or

morte}, {high-school graduate vs. some postsecondary or more}, and so
forth.,

® Except for the highest-level dichotomy (working, in the example),
other dichotomies are defined only for subsets of observations. For

example, women who are not working outside the home are NA for
the fulltime dichoromy,

5.2 MCDELS FOR CATEGORICAL RESPONSES

I proceed by fitting a binomial GLM separately to each nested
dichotomy. By the mode of formation of nested dichotomies, models
fit to different dichotomies are statistically independent, This means,
for example, that we can sum chi-square test statistics and degrees of
freedom over the models and can combine the models to get fitted
probabilities for the several categories of the polytomy (see below).

For the women’s labor-farce participation data:

> options(contrasts=c(’contr.treatment’, ’contr.paly’))

> mod.working <- glm(working ~ hincome * children + region,
+ family=binomial)

> summary(mod.working)

Coefficients:

Estimate Std. Error z value Pr(>|zl)

(Intercept) 1.2677 0.5527 2.29 0.022
hincome =-0.0453 0.0206 -2.20 0.027
childrenpresent =-1.6043 0.3018 =5.32 1.1e-07
regionBC 0.3420 0.5848 0.58 0.5569
regionlntario 0.1878 0.4675 0.40 0.688
regionfrairie 0.4719 0.5566 0.85 0.387
0.4894 -0.36 0.729

regionQuebec -0.1731

> mad.fulltime <~ glm(fulltame ~ hincome + children + region,
+ family=binomial}
> summary(mod.fulltime)

Coefficients:

Estimate Std. Exror z value Pr(>|z])

(Intercept) 33,7616 1.0568 3.86 0.00037
hincaome ~0.1048 0.0403 -2.60 0.00936
childrenpresent ~2.7478 0.8687 -4.83 1.4e-06
regionBC -1.1826 1.0274 -1.16 0.24977
regionOntario -0.1488 0.8468 -0.18 0.86057
, regironPrairie -0.3817 0.9630 -0.41 0.68417
0.9328 0.16 0.87359

regionfQuebec 0.1484
» Anova(mod.workang)
Anova Table (Type II tests)

Response: working
LR Chisg Df Pr{>Chisq)

hincome 5.13 1 0.024
children 30.55 1 3.3e-08
reglon 2.43 & Q0.657

» Anova(mod.fulltims)
Anova Table (Type Il tests)

FITTING GEMERALIZED LINEAR MODELS

Response: fulltime
LR Chisq Df Pr{>Chisq)

hincome 7.8 1 0.0051
children 31.¢ 1 1.6e=-08
reglon 2.7 4 0.6178

In this example, the results are broadly similar for the two dichotomies:
Working outside the home, and working full time among those working
outside the home, both decline with husband’s income and presence of
children. In both cases, there is no evidence of regicn effects. We could,
if we wished, manually add the corresponding likelihoad-ratio chi-square
statistics and degrees of freedom {e.g., for the region effects) across the
two analysis of deviance rables.

Reminder: Handling Missing Data in $-PLUS i

Remember that, unlike R, 5-PLUS does not have an na. action option.
The default aa.action for glm {as for 1m) is na.fail. Because the ‘

fulltame dichotomy has NAs for women who are not in the labor
force, it is necessary to include the argument na.action=na.omit or
na.action=na.exclude in the call to glm.

To graph the results, I begin by refitring the models, eliminating region:

> mod.working.l <- update(mad.workang, . ~ . - regian)
> mod.fulltame.l <- update(mod.fulltime, . = . = region)
>

Then, using the expand. grid function, I construct an artificial data frame
for all combinations of values of the predictors, letting hincome and
children range over their values (1 to 45, and absent, present, respec-
nvely)3:

» predictars <- expand.graid{hincome=l:45,

+ children=c(’absent’, ’'present’})

> predictors

hincome children

1 1 absent
2 2 absent
3 3 absent
44 44 absent
45 45 absent
46 1 present
47 2 present
89 44 present
80 45 present

3. Herc husband’s incame 15 discrete, but we can take the same approach for a continuous predictor
wsing enough values along 1ts range to supgpest 2 smooth curve.

3.2 MODELS FOR CATEGORICAL RESPONSES

Chiidren Absent Chiicren Present
o
@ -
(=]
E >
= F.]
g 8 3
g &
wr
T 2 o
= =
[T IS ol %
a_memm——_ _
- e
o | i T
2 1 1 1 1 1
0 10 20 30 40
Husband's income Husband's income

Figure 5.3 Futed probabilities for the womens laborforce participation

data from binary logit models @it to the woxking and fulltaime
dichotomies.

The predict funcrion rerurns fitred values for the two models:

p.vwork <~ predict(mod.working.1l, predictors, type=’response’)

p.fulltime <- predict(mod.fulltime.l, predictors,
type='response’)

P.full <= p.work * p.fulltime

p.part <— p.work * (1 - p.fulltime)

pP.not <— 1 - p.work

Wow W WV o+ VY

Specifying the argument type=’respease’ to predict yields firted values
on the probability scale; the default, type=’1ink’, produces fitted val-
ues on the logit scale. The fitted values for the fulltime dichotomy are
conditional on working outside the home; I multiply by the probability
of working to produce unconditional fitted probabilities of working full
time. The unconditional probability of working part time is found simi-
larly, and the probability of not working outside the home is calculated
as the complement of the probability of working,

So as not to clutter the graph unduly, I use the mfrow plot parameter
to create two panels: one for children absent and the other for children
present. The result is shown in Figure 5.3%

> par(mfrow=c(1,2}) # 1 row and 2 columns of plots
> plot{e(1,45), c(0,1},

+ type='n’, xlab=“Husband’s Income", ylab='Fitted Probability’,
+ main='Children Absent?)

> lines(1:45, p.not[1:45], lty=1, lwd=3) # mot working

4 General strategies for constructing complex graphs are described 1 Chapter 7.

FITTING CENERALIZED LIMEAR MQDELS

> lines(1:45, p.part[1:45], lty=2, lwd=3) # part—time
> lines(1:45, p.fulll1:45], 1ty=3, 1wd=3) # full-time
> legend(locatar{l), lty=1:3, lwd=3,

+ legend=c('not working’, ’part-time’, ’full-time’'})

> plot{c(1,48), (0,1},

¥ type=’n’, xlab="Husband’s Income", ylab='Fitted Probability’,
+ main='Children Present’}

> lines(1:45, p.not(46:90], 1lty=1, lwd=3)

> lineg({1:45, p.part(46:90], lty=2, lud=3)

> lines(1:45, p-full(46:90], lty=3, lwd=3)

>

Note that the horizontal axis label (the x1lab argument to plot) is
enclosed in double quotes because a single quote {in the form of the
apostrophe in Husband’ s) appears in the label, The legend for the graph
is positioned with the mouse using the locator function.

Multinomial Logit Model

The multinomial logit model is an alternative to nested dichotomies
for a polytomous response. Aside from trearing one of the categories—
say, the first—as an arbitrary baseline (to impose the constraint that the
fitted probabilities across the m categories of the response sum to 1),
the multinomial logit model treats the categories of the response sym-
metrically. Letting u, denote the probability that observation i falls in
response category j, the model is given by the equations®

_ EJ{P(CY; + Bl;xrl e Bbxrk)
14 3 explog + B + -+ + BreXu)

i, forj=2,...,m,

py=1~3%m, (for category 1).
=2

The as and Bs are then logistic-regression coefficients for log-odds of
membership in each category relative to the first:

, ;
loge—-i- =a;+ByXy + o+ Byxy forj=2,...,m.
When m = 2, this is just the usual binomial logit model. Moreover, for
the log-odds berween any pair of response categories j and j # 1,

loge fi - logc(."Llj'/""fl)

p‘:f lu-'rr'l{p'll
1, #‘rlr"
= log, — ~ log, —
L] #.l g! #”

= (ﬂ’} - af‘) + (Blj‘ - Bl;’)xrl e (Bh — qu’)x:k'

5. § assume here that the mode] has constant rerms—the or,s—but this 15 not a requirement

5.2 MODELS FOR CATEGORICAL RESPONSES

Thus, the logistic-regression coefficients for the log-odds of membership
in caregory ; versus ;' are given by differences in the corresponding
parameters of the multinomial logit model.

The multinomial logit model cannot be fit by glm, but the multinom
function in the nnet library {one of the R and 5-PLUS libraries associated
with Venables & Ripley, 1999) will do the trick; some functions in nnet
require the MASS library, so I load that as well:

> library(nnet)

> labrary(MASS)

> mod.multinom <- multinom{particaipation -~ hincome + children)
weights: 12 (6 variable)

initial value 288.935032

iter 10 value 211.454772

final value 211.440964

converged

> summary(mod.multinom, cor=F, Wald=T)
Re-fitting to get Hessian

Call:
multinom(formula = participation ~ hincome + children)

Coefficients:

(Intercept) hincome childrenpresent
parttime -1.4323 0.0068926 0.021456
fulltime 1.9828 -0.0972300 -2.558605
Std. Errors:

(Inotercept} hincome childrenpresent
parttime 0.59247 0.023455 0.46504
fulltime 0.48418 0.028096 0.36220

Value/3E (Wald statistics):

{Intercept) hincome childrenpresent
parttime -2.4175 0.29387 0.045744 ?
fulltime 4_.0953 -3.46067 -7.064106

Residual Deviance: 422.388
AIC: 434.88

Specifying cor=F as an argument to summary suppresses printing the cor-
relarion matrix of the coefficient estimates, while Wald=T prints out the
Wald statistic for each coefficient. Examining the Wald statistics, the coef-
ficients for the logit of parttime versus the baseline not .work are, apart
from the regression constant, small and nonsignificant, while the coef-
ficients for the logit of fulltime versus not.work are much larger and
highly staristically significant. Apparently, husband’s income and presence

FITTING GENERALIZED LINEAR MODELS

of children primarily affect the decision to work full time, as opposed to
part time or not to work outside the home.

Taking an approach similar to the one I employed for nested binomial
logit models, we can obtain and plot fited probabilities for the three
categories of the response as a function of the rwo predictors:

> p.fait <~ predict(mod.multinom, predactors, type=’prabs’)
>

Specifying type='probs’ returns fitted probabilities for each cate-
gory of the response. The default, type=’class’, applies the so-called
“Bayes predicrion rule” to assign each observation to the highest-
probability category. Printing out the first few fitted probabilities:

> data.frame(predictors, p.f1t3[1:5,] # first 5 rows:
hincome children not.work parttime fulltime

1 absent 0.12770 0.030700 0.84160

absent 0.13847 0.033519 0.82801

absent 0.1499%¢ 0.036546 0.81352

absent 0.16212 0.035788 0.79810

abseat 0.17501 0.043249 0.78174

[I I N B
oW M

Plots of the fitted values are shown in Figure 5.4. The S statements to
produce these graphs are similar to those employed for Figure 5.3, and
so [omit the details. Comparing the fits from Figures 5.3 and 5.4, we
can see that the rwo models produce similar, but not identical resules. In
particular, for the nested-dichotomies model, the probability of working
part time turns down at high levels of husband’s income when children
are present, while, for the multinomial logit model, this probability con-
tinues to rise gradually. Because high husband’s income is a region of the
predictor space where data are sparse, we should not overinterpret this
difference, and the rwo models have similar degrees of overall fit to the

Chidren Absent Ghiidren Present
= (=]
— i Working
@ _| ™. - = parkime = |
=] ‘ ~ e Mb—ume =
z = i
T a T o |
% a 2 o
e
o o
% o7 % o
iL ol -
o N s, e — = e
=] o —
o | o | e N S e
o 2 T =T T T
0 10 20 30 4% 0] 10 20 ap 40
Husband's some Husband's eome

Figure 5.4 Fitted probabibities from the mulunomial legit model fit to the
women'’s labor-force participation data.

5.2 MODELS FOR CATEGORICAL RESPONSES

data: Both models use six parameters, and the deviance for the multino-
mial logit model is 422.9, while that for the combined nested logit models
is 424.3 (only slightly worse). In this example, however, the multinomial
logit model draws our attention more cleacly to the fact that the rwo

predictors primarily serve to differentiate full-time work from the ocher
IWO response categories.

Proportional-Odds Model

There are several statistical models for ordinal responses, developed,
for example, in Agresti (1984), Clogg and Shihadeh {1994}, and Powers
and Xie {2000). Using continuation dichotomies, as described previously,
is one approach that is sometimes applicable. Another common approach
is the proportional-odds logistic regression model.

Suppose that there is a continuous, but unobservable, response vari-
able, £, that is a linear funcdon of k predictors plus a random error:

£a=a+31x!1+“'+35x:k+sr'

We cannort observe £ directly, bur instead implicitly dissect its range into
m class intervals at the (unknown) cut points @, < @y < -+- < &
producing the observed ordinal response variable y. That is,

1 if § < ay,
2 if o, < § < ay,

=11

Y=
m—1 fo,,<§<a,,
| m if &, 1 <é&.

The cumulative probability distribution of y is given by
PriY, < j) =Pr{{, < a))
=Prlo +Byxy +-- + Bixp T & S)
=Prle, s, —a~ B1x; — - — Bl

for j = 1,2,...,m — 1. If the errors £, are independendy distributed
according to the standard logistic distribution, then we get the ordered
logit modelt: '
Pe(¥, > j)

Pr(Y, <)

=(o—a)+Bixg+ -+ BeXy

logit[Pr(Y, > j}] = log,

forg=1,2, v got =~ 1.

&. Alternanvely, if the errors are normally distributed, then we obtam the ordered probit model.
Because the normal and logisuc distributions are very similay, so are the ordered lopt and probu
models

FITTING GENERALIZED LINEAR MODELS

Probabihty

— Priy 1)
— - Priy>2)
==s Prly=3)

Figure 5.5 The proportional-odds model: Cumulative probabilities, Pry >
i), plotted against the linear predictor, 7, for a fourcategory
ordered response.

Because the equations for logit{Pr(Y, > ;)] for different values of j differ
only in their intercepts, the regression curves for the cumulative prob-
abilities Pr(Y, > ;) are horizonreally parallel, as illustrated in Figure 5.5;
in this figure, the cumulative probabilities are plotted for a four-category
response against an imagined linear predictor i = o + By, + - - + By,
The designation “proportional odds” follows from the constant differ-
ence berween the cumulative log-odds (logits) for different categories,
which translares into a consrant ratio of odds.

Assuming that the errors follow a standard logistic distribution fixes the
scale of the latent response £ but not its origin; a consequence is that the
general intercept « is not identified independently of the cut points «,. Set-
ting « = 0 to fix the origin of £, the negatives of the category boundaries
(i.e., the ~a;} become the intercepts for the logistic regression equations.

Compared with logit models for nested dichotomies, or with the multi-
nomial logit model, both of which use {m — 1){k + 1) parameters, the
proportional-odds model is relatively parsimonious, with only # + k — 1
independent parameters. A corollary is that the proportional-odds model
1§ mote restrictive than these other models and may not fit the data well.
The models are not propetly nested to perform a likelihood-test—that is,
the proportional-odds model is not a specialization of either the nested-
dichotomies model or the multinomial logit model—but comparison of
the relative fit of the models {e.g., via the AIC) can be informative, There
is also a score test (as far as [know, unavailable in S) of the proportional-
odds assumption. An “informal” likelihood-ratio test, comparing the
deviances for the proportional-odds and multinomial logit models, usu-
ally produces results similar to the score test for proportional odds.

5.3 POISSON GENERALIZED LINEAR MODELS FOR COUNT DATA

The proportional-odds model may be fit in S using the polr function
in the MASS library, which was loaded previously (Venables & Ripley,
1999). For the women’s labor-force data, we may proceed as follows:

> mod.polr <~ polr(participation ~ hincome + childrean)
> summary(mod.polr)

Re-fitting to get Hessian

Call:
polr{formula = participation - bincome + childyen)

Coefficients: .
Value 5td. Error t value
hincoms -0.053301 0.01948 -2.7655
childrenpresent -1.971957 0.28695 -6.8722

Intercepts:

Value Std. Error t value
not.worklparttime -1.882 0.386 -4.794
parttime|fulltime -0.941 0.370 -2.544

Residual Deviance: 441.66
AIC: 449.66

The AIC for the proportional-odds model (4492.7) is substantially larger
than that for the multinomial logit model fit eaclier (434.9), casting doubt
on the assumption of proportional odds. A rough analysis of deviance

yields a p value of 00008, suggesting the inadequacy of the proportional-
odds model:

> 1 - pchisg(441.66 - 422.88, df = 6 - 4)
(1] 8.3555e-05

The fit of the proportional-odds model, shown in Figure 5.6, is also
quite different from that of the multinomial logit model (Figure 5.4)
and the nested-dichotomies model (Figure 5.3). Fitted values to produce
Figure 5.6 are obtained much as for the multinomial logit model:

> p.fit <~ predict(mod.polr, predictors, type=’probs’)
»

POISSON GENERALIZED LINEAR :
MODELS FOR COUNT DATA

Poisson generalized linear models arise in two common formally identical
but substantively distinguishable contexts: when the response variable in
a regression model takes on nonnegative integer values, such as a count,

8 FITTING GENERALIZED LINEAR MQDELS

Chlidren Absent Chilidren Present
o o
@ | =~ parttme © _‘
=z ° «=+ fulkbme 2 °
§ =- g =
=}
: i
s T
g = o 24
g ° g °
'S o 'S o
L=
o . e
o | o Rl ot 2
2 T I = I T T T
0 16 a0 0 to 20 30 40
Husbarg's tncome Hustand's Income
Figure 5.6 Firted probabilities from the proportional-odds model fit to the

and to analyze associations among categorical variables in a contingency
table of counts. The default link for the poisson family generator is the

log link.

rj-l e . -
i5.3.47 Poisson Regression

Recall Ornstein’s (1976) data on interlocking-directorate and top execu-
tive positions among 248 major Canadian firms, introduced in Chapter 3:

> data{Ornstein)

> Drnsteinlsort(gsample(248,10)),]
agsets sector nation interlocks

23
26
7
64
a8
145
173
177
182
212

Ornstein performed a least squares regression of the number of interlocks
maintained by each firm on the firm’s assets and dummy variables for
the firm’s nation of control and sector of operation. Because the response

14163
12810
12080
4298
2801
888
590
566
540
375

AGR
TRN
MIN
AGH
WaD
wap

CAN
CAN
us
OTH
CAN
CAN
Us
Us
CAN
us

women’s labor-force participation data.

sample 10 cbs.

4
40
29
15
18

L m i R = T R K

5.3 POISSON GENERALIZED LINEAR MODELS FOR COUNT DATA

Frequency

0 20 40 60 a0 100

Number of iteriocks

Figure 5.7 Distribution of number of interlocks maintained by 248 large
Canadian corporations.

variable {(interlocks) is a count, a Poisson linear model might be prefer-
able. Indeed, the marginal distribution of number of interlocks, in Figure
5.7, shows many zero counts and a substantial positive skew.

To construct this graph, I first use the table function to find the fre-
quency distribution of counts:

> attach{Orastein)

» tab <- table(interlocks}
> tab

1nterlacks

a 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15
28 18 14 11 8 14 11 6 12 7 4 12 9 8 4 3

54 107

11
The numbers on top of the frequencies are the different values of
interlocks: Thus, there are 28 firms with O interlocks, 19 with 1

interlock, 14 with 2, and so on. The graph is produced by plotring the
ordered unique values of interlocks against the counts:

» x <~ sort(unique(interlocks))

» plot(x, tab, type=*h’, xlab='Number of Interlocks’,
+ ylab='Frequency’)

> points{x, tab, pch=16)

>

Specifying type="h’ in the call to plot produces the vertical {“histogram-
like”) lines, while the points function adds the filled circles {pch=18) at
the tops of the lines.

FITTING GENERALIZED LINEAR MQDELS

Using glm to fit a Poisson regression model is very simple:

> mod.orastein <- glm(interlocks ~ assets + nation + sectar,
+ family=poisson)
> summary(mod.ornstein)

Call:

glm(farmula = interlocks ~ assets + natian + Sector,
family = paisson)

Deviance Residuals:
Main 1] Median 30 Max
-5.991 -2.477 -0.858 1.347 T.361

Coofficients:

Estimate Std. Error z value Pr{>lzl)
(Intercept) 2.32e+00 5.18e-02 44.83 < 2e-16
assets 2.09e-05 1,20e-06 17.34 < Z2e-16

gectorMIN 6.21e-01
sectorTRN 6.78e-01
gectorw0D 7.12a-01

. 68202 8.29 < 2e-16
.48e~02 9.07 < 2e-16
.Bie=02 9.46 < 2e-16

natioalTH ~1.63e-01 7.35e-02 -2.22 0.0265
nationUK ~5.77e-01 8.90e-02 -6.49 8.7e-11
nationis -8.26e-01 4.89e-02 -16.90 < Ze-16
gectorBNK -4.09e-01 1.56e-01 -2.62 0.0087
sectorCON -6.20e-01 2.11e-01 ~2.93 0.0034
sectorfFIN 6.77e-01 6.87e-02 9.85 < 2Ze-16
sectorHLD 2.08e~01 1.19e-D1 1.76 0.0736
sectorMAN 5.27e~-02 7.52e-02 0.70 0.4839
sectorMER 1.78e-01 8.65a-02 2.08 0.0399

i}

T

7

(Dispersion parameter for poisscn family taken toc be 1)
Null deviance: 3737.0 on 247 degrees of freedom

Residual deviance: 1887.4 on 234 degrees of freedom
AIC: 2813

Number of Fisher Scoring iterations: 4

> Anova(mod.ornstein)
Anova Table (Type II tests)

Hesponse! ipterlocks
LR Chisq Df Pr{(>Chiaq)

assets 391 1 <2a-16
nation 329 3 <2e-16
Sectar 361 9 <2e-16

The analysis of deviance, produced by the Anova function from car,
shows that all three predictors have highly sratistically significant effects.

5.3 POISSON GENERALLZED LINEAR MODELS FOR COUNT DATA

Log-Linear Models for Contingency Tables

Poisson GLMs may also be used to fir log-linear models 1o a conrin-
gency table of frequency counts, where the object is to model association
among the variables in the rable (see, e.g., Fienberg, 1980; Agresti, 1990;
Powers & Xie, 2000). The variables constituting the classifications of
the table are treated as “predictors” in the Poisson model, while the cell
count plays the role of the “response.”

In Section 5.2.1, I introduced Campbell et al.’s data on voter murnout
in the 1956 U.S. presidential election, using a binomial logit model to
analyze a three-way conringency table for turnout by perceived closeness
of the election and intensity of partisan preference. The binomial logit
model treats turnout as the response.

An alternative is to construct a log-linear model for the expected cell
count. Let us reenter the data in the following format, raveling the 2 x
3 x 2 table of counts into a 12-element vector and using the expand.grid

function to generate a data frame with all combinations of categories of
the three variables in the table:

> counts <— c(91, 39, 121, 49, 64, 24, 214, 87, 284, 76, 201, 25)

LY

Campbell <- expand.grid(turnout=c(’voted’,’did.not.vote’),
prefersace=c(’weak’, ‘medium’, ’strong’),.
closeness~c(’one.aidad’, ’close’)}

+ +

W

cbind{Campbell, counts)
turnout prefersnce closeness counts

1 vated weak one.arded 91
2 did.not.vote weak one.sided 39
3 vated medium one.sided 121
4 dad.oot.vote medium one.sided 49
B voted strong one.sided 64
6 did.oot.vote strong one.sided 24
T voted weak close 214
8 did.not.vote weak close a7
9 vated medium cloge 284
10 did.nat.vote medium close 76
11 voted strong cloae 201
12 did.not.vote strong close 25

Notice that the leftmost argument to expand.grid (here turnout) is the
one whose values change most quickly.

Log-linear models are usually defined using sum-to-zero contrasts, and
so I reset the contrasts option for unordered factors accordingly:

> options(contrasts=c(’coantr.sum’, ’contr.paly’))
g ;

FITTING GENERALIZED LINEAR MQDELS

[then fit a “saturated” log-linear model to the data by a Poisson regres-
sion of the cell counts on all main effects and interactions among the
three factors in the contingency table”:

> attach(Campbell)

> mod.loglin <- glm{counts ~ closeness * preference » turaout,
+ family=poisson)
> summary(mod.loglin)

Call:

glm{formula = counts ~ closeness * preference = turaocut,
family = poisson)

Deviance Residuals:
fi] 0 o o 0 D O 0 O 0O O Q@ OQ

Coefficients:

Estimate Std. Error z wvalue
(Intercept) 4 .3777 0.0373 117.35
clogenessl —0.3446 0.0373 -9.24
prefereacel 0.1238 0.0499 2.48
preierence?2 0.2891 0.0483 5.98
turnoutl 0.5862 0.0373 15.71
clogenessl:preferencel -0.0698 0.045%9 ~1.40
closenesal:prafereace2 0.0215 0.0483 0.48
clogenessliturnoutl ~-0.1309 0.0373 -3.51
preferencel :turnoutl -0.1494 0.0499 -2.99
preference2;turnoutl —Q.0307 0.0483 -0.63
closenessl:preferencel:turnoutli 0.1177 0.0499 2.36
closenessl:preference2:turnoutl 0.0273 0,0483 0.57

.

(Dispersion parameter for paisson family taken to be 1)

Null deviance: 6.6929e+02 on 11 degrees of freedom
Regidual deviance: -4.4415e~16 on 0 degrees of freedom
AIC: 98.62

Number of Fisher Scoring iterations: -4

Because the saturated model has as many parameters {12) as there
are cells in the table, the deviance under the model is 0. An anal-
ysis of deviance reveals that the highest-order term, closeness x
preference x turmout, is statistically significant, suggesting that the
association berween any pair of the variables depends on the level of the

T In structural apalogy re terms m an ANOVA model, two-wav and higher-order terms m a lop-

linear model are aften called “mnteractions,” but they are more clearls conceprualized as association
paramerers.

5.3 PQISS50N GEMNERALIZED LINEAR MODELS FOR COUNT DATA

hird:

> Anova(mod.loglin)
dngva Table (Type II tests)

Reapouse: counts
LR Chisq Df Pr{>Chisq)

closeness 200 1 < 2e-16
preference 96 2 6.8e-13
turoout 376 1 < 2e-18
closeness:preference 1 2 0.540
closenass:turnout 1 0.004
prefersance:turnout 19 2 7.1e-05
closeness:preference: turnout T 2 0.028

> detach(Campbell)
>

As mentioned, I previously treated turnout as the response variable
for a logit model fit to the three-way rable. As long as a log-linear model
for the table includes the one-way and rwo-way terms for the predicrors,
closeness and preference, along with the one-way term for turnout,
It is equivalent to a binomial logit model with turnout as the response.
Therefore, the likelihood-ratio test for the ¢loseness x preferesnce x
turnout association in the log-linear model is identical to the likelihood-
ratio test for the closeness x preference interaction in the logit model
for turnout.

Preparing Data for Fitting a Log-Linear Mode]

Contingency tables are more naturally represented as multi-way arrays
of counts, rather than as vectors. Indeed, the table function, the xtabs
function (in R), and the crosstabs function (in $-PLUS) all take individ-
ual observations as input and return contingency tables in the form of
arrays.

I do not have the original data set that produced Campbell et al.’s
table, but if I did, I could proceed as follows®:

> campbell <~ table(turmout, preference, closeness)
> campbell
+ » Closeness = one.sided

preference
turnout veak medium strong
vated 91 121 64
did.not.vote 39 49 24

8. Because | do nort have the data, the mput and ourpur shawn here are simujated.

FITTING GENERALIZED LINEAR MODELS

, » closeness = clase

preference
turnout weak medium strong
votad 214 284 201
did.nat.vote 87 76 25

In R, applying the as.data.frame coercion function to the table object
ravels the table into a form suitable for input to glm, producing the same
results as above (using the automatically generated vatiable Freq as the
response in the Poisson GLM)’:

- » Campbell <- as.data.frame{campbell)

> Campbell

turnout preference closeness Freg
1 vated weak one.sided 91
2 did.oot.vote weak ope.sided 39
3 voted medium opoe.s1ded 121
4 4did.not.vote medium ooe.sided 49
5 voted gtrong one.sided 64
6 did.not.vate astrong one.sided 24
7 vated weak close 214
8 did.pot.vote waak claose 87
g vated medium close 284
10 did.not.vote medium cloge 76
11 vated stroag clase 201
12 dad.not.vate strong close 25

> mod.loglin <- glm{Freq ~ closeness * preference =* turnout,
+ family=poisson, data=Camphbell)
>

= —

Raveling Tables in S-PLUS

In $-PLUS, applying as.data.frame to a table object does not produce
a data frame suitable for input to glm. (Try itl) You may instead use the
following simple function:

» ravel.table <= function(table){
cbind(expand. grid(dimnnamea(table)),
Freqeas.vector(table)

}

9. An alternative is 1o usc the loglin funcuon in § {or the logln funcoon in the HASS hbrary, which
pravides a formula-based front end t0 1oglan): loglin fits mcrarchical log=lincar models 1o rables
wn the form of multdimensional arrays, using the method of ieranve proparnional fimng. I see lirtle
advanrage ta this approach, however.

5.4 ODDS AND ENDS

18

py)

Figure 5.8 Gamma densities for various values of the shape parameter, ¢ =

1/d.

ODDS AND ENDS

Other Generalized Linear Models

Garmma Models

Though less common than binomial and Poisson GLMs, gamma
models are also potentially useful. The gamma distribution requires a
nonnegative, continuous response variable.'” The gamma distribution is
appropriate when the conditional standard deviation of the response y
1s probortional to its mean u, that is, when the coefficient of variation

V{yin)/u is constant. The specific shapc of distributions in the gamma
family depends on a shape parameter iy, which, in a gamma GLM,
is the inverse of the dispersion parameter. Some representative gamma
distributions are shown in Figure 5.8.

Quasi-Likelihood Estimation

As you may be aware, GLMs are fit to data by an iterated weighted
least squares (TWLS) procedure (see Section $.5). Aside from its com-
putational advantages, [WLS produces coefficient standard errors and a

10. The inverse-Ganssian famly 15 also appropriare for continuous nonnegative data, but although [
have seen thearetical discussions of inverse-Gaussian GLMs, Thave never encountered an applicanon.

FITTING GENERALIZED LINEAR MODELS

varicty of other useful quantities as by-products. For GLMs in the expo-
nential families, IWLS yields maximum-likelihood estimates, bur the pro-
cedure requires only the link and variance functions. In guasi-likelithood
estimation, this property of IWLS is exploited to calculate estimates for
an arbitrary combination of link and variance functions, in the absence
of an explicit conditional distriburion for the response.

The resulting estimates share many of the properties of maximum-
likelthood estimates, including asymptotic normality, asymptotic unbias,
and the usual covariance matrix for the estimates. This is not an unfamiliar
idea: When we apply least squares regression to a model with nonnormal
errars, for example, the resulting estimates are unbiased, asymptotically
normal, and have the usual covariance matrix, as long as the assump-
‘tions of linearity, constant error variance, and independence hold. When
the errors are nonnormal, moreover, the least squares estimates are not
in general maximum-likelihood estimates, but are still maximally effi-
cient among linear unbiased estimators {by the Gauss-Markov theorem),
though no longer necessarily among @/l unbiased estimators.

In S, quasi-likelihood estimation for GLMs is achieved by specifying
the quasi family generator, with Link and variance as arguments. These
arguments default to ’identity’ and °counstant’, respectively, a com-
bination that yields linear least squares estimates. Of course, there would

be no reason to compute the least squares estimates in this convoluted
manner.

Overdispersed Binomial and Poisson Models

As we have seen, the binomial and Poisson GLMs fix the dispersion
parameter ¢ to 1. It is possible, however, to fit versions of these mod-
els in which the dispersion is a free parameter, to be estimated along
with the coefficients of the linear predictor, although the resulting error
distribution is not an exponential family.

It turns out that the regression coefficients are unaffected by allow-
ing dispersion different from 1, but the coefficient standard errors are
multiphed by the square root of ¢. Because the estimated dispersion typ-
ically exceeds 1, this inflates the standard errors; put another way, failing
to account for “overdispersion” produces misleadingly small srandard
errors, overstating the precision of the estimated coefficients.

So-called overdispersed binomial and Poisson models arise in several
different circumstances. For example, in modeling proportions, it is
possible that the probability of success u varies for different individuals
who share identical values of the predictors {this is called “unmodeled
heterogeneity”) or that the individual successes and failures for a “bino-

mial” observauon are not independent, as required by the binomual
distribution.

5.4 QDDS AND ENDS

The Ancva function in car estimartes the dispersion parameter when
F tests are requested, and thus applies a correcrion for overdispersion
in binomial and Poisson GLMs. In R, essentially the same effect can be
achieved by employing the quasibinomial and quasipoissen families in
fitting the GLM in the first place. The summary of the resulting fired model
provides coefficient standard errors and ¢ tests corrected for dispersion.
For example, for Ornstein’s interlocking-directorate regression:

> mod.orastein.q <— update{mod.orastein, famly=quasipoisson)
> summary{mod.oranstein.q)

Call:
glm{formula = interlocks ~ assets + nation + sector,
fam1ly = quasipoissen)

Coefficients:

Eatimate Std. Exrrar t value Pr{>it])
(Intercept) 2.325e+00 1.458e-01 15,943 < 2e-16
assets 2.085e-05 3.38le~-0D6 6.167 3.03e-09
nat1o0o0TH -1.63Z2e-01 2.068e-01 -0.789 0.430733

gectorTRN 6.778e-01 2.102e-01 3.244 0.001444
sectorWlD 7.115e~01 2.116e~01 3.363 0.000902

(Dispersion parameter for quasipoisson family taken to be 7.3079)
Null deviance: 3737.0 on 247 degrees of freedom

Residual deviance; 1887.4 on 234 degrees of freedom

AIC: NA

Number af Fasher Scoring 1terations: 4

» Anova(mad.arnstein.q, test=’F’')
Anova Table (Type II tests)

Respanse: interlaocks

Ss Df F Pr(>F)
assets '390.90 1 49.4311 2.23Te-11
nation 328.94 3 13.8656 2.363e-08
sector 361.46 9 5.,0787 2.81%9e~-06

Residuals 1850.45 234
>

Note the use of update to change the family argument to glm. In this
case, the estimated dispersion, ¢ = 7.9079, is substantially greater than
1, producing much larger standard errors than were obtained from the
standard Poisson regression model.

FITTING GENERALIZED LINEAR MOQODELS

e
E—re

Overdispersed Poisson and Binomial Models in S-PLUS

Although the quasipoisson farmly is not present in 5-PLUS, the same
result can be achieved using the quasi family generator—for example,
update(mod.ornstein, family=quasi(link=log, var='mu’)}.A sim-

ilar approach can be taken to fit overdispersed binomial GLMs, using
family=quasi(link=lagit, var="mu{l-mu)’), as long as none of the
observed y values is 0 or 1—a stipulation that precludes fitting an overdis-
persed binomial GLM to binary data by this method.

“Rolling Your Own” Generalized Linear Mode!

In addition to the flexibilicy provided by the standard and quasi fam-
ily generators, it is also possible to add family generarors, link func-
tions, and variance functions to S—assuming, of course, that you have
the necessary statistical knowledge and programming prowess. Venables
and Ripley’s MASS library, for example, includes a family generator for
negative-binomial GLMs, an alternarive to the Poisson GLM for overdis-
persed count data.

Arguments to glm

The glm funcrion in R takes the following arguments {and the arguments
to glm in S-PLUS are nearly identical):
> args(glm)
function (formula, family=gaussian, data=list(}, weights=NULL,
subaet=NULL, na.action~na.fail, start=NULL, ocffset=NULL,

contral=glm.control(...), model=TRUE, method="glm.fit",
x=FALSE, y=TRUE, contrasts=NULL, ...}

I have already discussed in some detail the use of the formula and family
arguments, The data, subset, na.action, and contrasts arguments
work as in 1m {see Section 4.7).

Here are a few comments on the other arguments to glm:

weights

These are so-called "prior™ weights, as for 1m, not to be confused with
the weights employed in the IWLS fitting procedure (see Section 5.5).4

11. In §-PLUS, applving rhe weaghta funcnon to a fitted glw abject yiclds the weights from the final
TWLS 1crabon, not the priar weighes.

5.5 ATTING GENERALUIZED LINEAR mODELS

As mentioned previously, the weights argument may be used to specify
binomial denominators in a binomial GLM.

start

This argument supplies start values for the coefficients in the linear
predictor; it is usually safe to let glm find its own start values.

offset (R only)

As for a linear model, an offset is included in the linear predicror with
a fixed coefficient of 1, but {unlike in a linear model) in a GLM this is
not generally the same as simply subtracting the offset from the left-hand
side of the madel. Equivalently, one may use the effset function as part
of the specification of the linear predictor in the glm model formula.

control

This argument allows the user to set several technical parameters, in
the form of a list controlling the [WLS firting algorithm: epsilon, the
convergence criterion (which defaults to 0.0001), representing the max-
imum relative change in the deviance before a solution is declared and
iteration stops; maxit, the maximum number of iterations {default, 10);
and trace {default, FALSE), which, if TRUE, causes a record of the IWLS
iterations to be printed. These control parameters can also be specified
directly as arguments to glm. The ability to control the TWLS fitting pro-
cess is sometimes useful—for example, when convergence problems are
encountered.

model, methed, x, ¥

As for linear models, these are technical options.

FITTING GENERALIZED LINEAR MODELS]
BY ITERATED WEIGHTED LEAST SQUARES*

As mentioned, maximum-likelihood estimates for generalized linear mod-
els in S are obrained by iterated weighted least squares (IWLS5), also called
iteratively reweighted least squares (IRLS). It occasionally helps to know
some of the details.

IWLS proceeds by forming a quadratic local approximation to the
log-likelihood function; maximizing this approximate log-likelihood is a

FITTING GEMERALIZED LINEAR MODELS

linear weighted least squares problem. Suppose that the vector g% con-

tains the current estimates of the regression parameters of the GLM.

From these estimates, we calculate the current values of the linear predic-

tor, 7! = x,3%; the Fireed values, pi! = g~1{n); the variance function,
P = V(pf”)/d.a, the working response,

)
[r) f#) L ;
= TL (y: p‘s)(ay")

0 1
¥ = 73
z".fﬂ [(317,/3#;)“]]

where the ¢, are fixed constants {e.g., in the binomial family, ¢; = »;).
Then we perform a weighted least squares regression of z on the xs in
the linear predictor, minimizing the weighted sum of squares }_,, w,(z, —
x'B)?, where x| is the rth row of the model matrix, obtaining new esti-
mates of the regression paramerters, ¥, This process is imitiated with
suitable starting values, B'%, and continues until the coefficients stabilize
at the maxtmum-llkehhood estimates, 3.

The estimated asymptotic covariance matrix of § is obtained from the
last iteration of the IWLS procedure, as

and the weights

T(B) = XWX,
where W = diag{w,}.

Binomial logistic regression provides a relatively simple illustration; we
have (after algebraic manipulation):

= [1 +exp(-")] "
(-),

(an,)“* 1
ow/ " p(1-pfy

= + (3, - W),

"]-nv

12. The values

o,
are called working residuals and play a role 1n duagnosocs for GLMs (see Section 6.6).

oMl :n =y, - #m](aﬂf)

CATER 6

Diagnosing Problems in
inear and Generalized
_inear Models

Regression diagnostics are methods for determining whether a fit-
ted regression medel adequately represents the data. [construe the
term “regression” broadly in this chapter to include methods that are
appropriate for linear and generalized linear models. Because most of
the methods for diagnosing problems in linear models extend naturally
to generalized linear models, I deal at greater length with linear-model
diagnostics, briefly introducing the extensions ro GLMs.

Linear models fit by least squares make strong, and often unrealis-
tic, assumptions about the structure of the dara. When these assump-
tions are violated, least squares estimates can behave badly and may even
completely misrepresent the dara. Regression diagnostics can reveal such
problems and often point the way toward solutions.

Section 6.1 describes methods for detecting unusual data, including
outliers, high-leverage points, and influential observations. Section 6.2
deals with detecting and correcting nonnormally distributed errors, and
Section 6.3 with nonconstant error variance. Section é.4 takes up the
problem of nonlinearity. Collinearity and the related topic of variable
selection are the subjects of Section 6.5. The final section of the chap-
ter considers the extension of diagnostic methods to generalized linear
models, such as logistic and Poisson regression,

Most of the merhods discussed in this chapter are programmed in the
car library. Many of these methods can also be obtained straightfor-
wardly, bur more tediously, by using standard facilities available in S.

DIAGNQOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

For example, added-variable plots (described in Section 6.1.3} are con-
structed by regressing a particular predictor and the response on all the
other predictors, computing the residuals from these auxiliary regres-
sions, and plotting one set of residuals against the other. This is nor hard
to do in §, although the steps are somewhat more complicated when
there are factors, interactions, or polynomial terms in the model. It is my
experience, however, that diagnostic methods are much more likely to be
employed when their use is convenient. Thus, the av.plots function in
car makes all the added-variable plots for a linear or generalized linear
model available through a menu, and adds such enhancements as a least
squares line and point identification.

As well, some of the diagnostic functions in ¢ar are more general than
similar functions in standard S. For example, cookd in car is a generic
function, with methods for linear and generalized linear models, while
cooks.distance in R is applicable only to linear models.

UNUSUAL DATA

Unusual data can wreak havoc with least squares estimates and may
prove interesting in their own right. Unusual data in regression include
outliers, high-leverage points, and influential observations.

%?:E% Outliers: Studentized Residuals

Regression outliers are y values that are unusual conditional on the values
of the predictors. The standard statistics for detecting regression outliers
are the siudentized residuals for the model.!

There are several equivalent routes to the studentized residuals, but
one that is particularly illuminating is via the mean-shift outlier model

}'::a+n81x1l+"'+8erk+‘ydi+sn

where d is a dummy regressor coded 1 for a particular observation {ler
us say the first) and O for all others. If y # 0, then the conditional
expectation of the first observation differs systematically from the others.
The ¢ statistic for testing the null hypothesis Hy: ¥ = 0 (which has n— k-
2 degrees of freedom) is the studentized residual for the first observation.

1. Unfortunately, although the terminalogy thar I emplay is the mose cammon, 1t 1s nar univer-

sal. Whar I call “studentized residuals™ are sometimes rermed “externally studentized residuals” or
“deleted studennzed residuals.”

6.1 UNUSUAL DATA

To obrain a complete set of studentized residuals, we could refit the
mean-shift model » times, once for each observation in the data set. In
practice, there are much more efficient ways to do the compurtation that
do not require refitting the model.

Generally, our attention is drawn ro the largest {(absolute) studentized
residual, and this presents a problem: Even if the studentized residuals
were independent, which they are not, there would be an 1ssue of simul-
taneous inference involved in picking the largest of # test statistics, The
dependence of the studentized residuals complicates the issue. We can
deal with this problem (1) by Bonferroni adjustment of the p value for
the largest absolute studentized residual, multiplying the usual two-tail
p by =, or {2) by constructing a quantle<omparison plot of the studen-
tized residuals with a confidence envelope thar takes their dependence
into account.

In Chapter 1, I introduced Duncan’s occupational-prestige data,
regressing prestige on occupational income and education levels:

> library{cazx}

Attaching Package “package:car”:
The folleowing object(s) are masked fram package:bage :
dfbetas ratudeat

> data{Duncan)
» attach{Duncan}

> mod.duncan <~ lm{prestige ~ income + education)
>

Note that the rstudent function in car masks rstudent in the R
base library: Studentized residuals are standardly available in R via the
rstudent function; car provides a generic version of rstudent, with
methods for linear and generalized linear models.

The gq.plot function in car has a method for linear models, plot-
ting studentized residuals against the corresponding quantiles of ¢ with
n — k — 2 degrees of freedom. Setting the argument simulate to TRUE
generates a 23 percent pointwise confidence envelope for the studentized

residuals, using a parametric version of the bootstrap.? The method used
is from Atkinson {1983).

» gq.plot(mod.duncan, simulatesT, labels~raw.names(Duncan))
11 6

The resulting plot is shown in Figure 6.1. The qq.plot functon returns
the index of the observation with the largest studentized residual

2. Bootswap methods m § are descnbed 1 che Web appendix to the book.

DIAGNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

q - minister o

Siudentized Residuals(med.duncan)

t Quantles

Figure 6.1 Quantile-comparison plot of studentized residuals from Duncan’s
occupational-prestige regression, showing the pointwise 95 per-
cent simulated confidence envelope. The observation minister
was identified inreracrively with the mouse.

(minister), which strays outside of the confidence envelope and which I
identified interactively with the mouse: Point identificarion 1n gg.plet is
turned on by supplying the labels argument; to identify a point, place
the mouse cursor near it and press the left button; press the right but-
ton to exit from qg.plot. The distriburion of the studentized residuals
looks heavy-tailed compared with the reference ¢ distribution: Perhaps
a method of robust regression would be more appropriate for these
data.?

The generic outlier.test function in car, which has a method for
linear models, performs a Bonferroni 7 test for the largest absolute stu-
dentized residual (3.1345, for minister):

> gutlier.test(mod.duncan, labels=row.names(Duncan))
maxlrstudent | df unadjusted p Bonferroni p
3.1345 41 0.0031772 0.14297

Observation: miniaster

The Bonferroni-adjusted p value is not statistically significant.

Leverage: Hat Values

Observations that are relatively far from the center of the predictor space,
taking account of the correlational pattern among the predictors, have

3. § functions for rabusr and resistant regression are described in the Web appendix to the text.

6.1 UNUSUAL DATA

potentially greater influence on the least squares regression coefficients;
such points are said to have “high leverage.” The most common mea-
sures of leverage are the har values, so called because they arise from
the relationship berween the firred values {i.e., ¥, or “y hat”} and the
observed response (y,). The fitted values are linear combinations of the
observations, ¥, = 37, b, ¥,, and so &, represents the weight attached to
¥, in the determination of §,. The hat value, b, = ¥, #Z, summarizes the

=1
weights associated with y, in the determination of all of the fitted values.*

The average hat value is b = (k + 1)/n, where &+ 1 is the number of coef-
ficients in the regression model (including the constant). A rough rule is
that hat values that exceed 2/ (or, in small samples, 3b) are noteworthy.

The generic function hatvalues in car has methods for linear and gen-
eralized linear models. One way of examining the hat values (and other
individual-observation diagnostic statistics) is to construct an index plot,
graphing the har values against the corresponding observarion indices.
For example, Figure 6.2 shows an index plot for the hatr values from
Duncan’s occupational-prestige regression:

> plot(hatvalues(mod.duncan))
> abline(h=c(2, 3)*3/45, lty=3) # reference lines

> identify(1:45, hatvalues(mod.duncan), row.names(Duncan))
[11 6 16 27

[used abline to draw horizontal reference lines at 24 and 34. The
occupations railroad engineer (RR.engineer), conductor, and minister,
interactively identified with the mouse, stand out from the rest.

Influence Measures

An observation that combines “outlyingness” with high leverage exerts
influence on the regression coefficients, in the sense that if the observation
is removed, the coefficients change substantially.

-

4. * The vector of fitted valnes 15 given by
§ = Xb
= XX¥) ' Xy
= Hy,
where
H =k} = (X}XK)'K,

called the hat matrix, projects y into the subspace spanned by the columns of the model mamx X
Because H = H'H, the hat valuoes 4, are sunply the diagonal entries of the har matrix.

DIAGNOSING PROBLEMS IN LINEAR AND GEMERALIZED LINEAR MOQDELS

- = AR.enginaer
[-
(=3
§ 8
€ o b Skl S ESRALRE T T
= o rmisler
B "
B T
g e e e e
3 o
2 57 .
.g 3, aga’ Un L] °]
L i e 5 ua° & b2
g-‘“ ° %, s uuaoa oog ¥
a o‘p o
i i T 1 T
) 0 10 20 30 a0
Inclesx

Figure 6.2 Index plot of the hat values from Duncan's occupational-prestige
regression. The horizontal lines show twice and three times the

average hat value. Three observations were identified with the
mouse.

dfbeta and dfbetas

The most direct measure of influence, termed dfbeta,, assesses the
impact on the jth coefficient of delering the ith observation:

dfbeta, = b,_, ~ b,

where b, is the coefficient computed using all of the data and by, is
the same coefficient computed with observation ¢ omitted. The compu-

tation of the dfbeta, can be accomplished without having to refit the
model.

The dfbera, are expressed in the metric (units of measurement) of the
coefficient b,. A standardized version, dfberas;, divides dfbeta, by the
standard error of &,.

The standard dfbetas function in R takes a linear model as its argu-
ment and returns all of the dfberas,. The generic dfbetas function in
caxr shadows the standard function and provides methods for both linear

and generalized linear models. The car library also contains the function
dfbeta.

Let us calculate dfberas, for Duncan’s regression and display the first
few values:

> dfba.duncan <- dfbetas(mod.duncan)
> dfba.duncan(1:5,] # first 5 obs.
(Intercept) income education
1 -2.2534e-02 6.6621e-04 0.03594387
2 ~2.5435e-02 5.0877e¢-02 -0.00811827
3 =9.1867e-03 6.4837e-03 0.00561927
4 -4,7204e-05 -6.0177e~05 0.00013975
5 -6.5817e~02 1.7005e~02 0.08677706

6.1 UNUSUAL DATA

1

© manstar
D =
= a ganductor
(=]
3 21
L+
=
b= o
o %%F!
o g¥ - o,
] 9 G 5
HR.engneer ©
T T T T
-1.0 05 0.0 05
INCOTTE

Figure 6.3 dfbetas, values for the income and education coefficients in
Duncan’s cccupational-prestige regression.

We could examine each column of the dfbetas matrix separately (e.g., via
an index plot), but because we are not really interested here in influence
on the regression intercept, and because there are just two slope coeffi-
cients, I instead plot influence on the income coefficient against influence
on the education coefficient (Figure 6.3):

> plot(dfbs.duncan(,c(2,3)]} # for bl and b2

> jdentify(dfbs.duncan(,2], dfbs.duncan(,3], row.names{Duncan))
(1] 6 16 27

The negative relationship berween the dfbetas; values for the two pre-
dictors reflects the positive correlation of the predicrors themselves. Two
pairs of values stand our: The observations minister and conductor
make the income coefficient smaller and the education coefficient larger.
(I also identified the occupation railroad engineer in the plot.)

Coolk’s Distance

A pracrical’ problem with dfbeta, or dfbetas, is their large number:
These sets of diagnostic statistics contain # values for each of the £ + 1
regression coefficients—that is, # x (& + 1) values in all. Several sum-
mary measures have been proposed, the most commonly used of which is
Cook’s D,, a scale-invariant measure of the distance berween the regres-
sion coefficients with the ith observation absent and present.

Cook’s distance may be expressed as

e h

I I

B = :
T 2k+1) 1=,

where e’ is the squared residual for the ith observarion, s? is the variance
of the residuals, and 4; is {as above) the hat value for observation i. The

DIAGNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

° minister
n —
o
=
b
8 o7
=
3
2 m
3 e
s © conducior
COl
£ 24
=]
o L
d o m———a L L L T T e R
°
=] 2 °o°°= ° e o
5 2000® % ggeacn po e o2 poveug ogon
I i L T
0 10 20 ao 40
Index

Figure 6.4 Index plot of Cook’s distances for Duncan’s occupational-prestige
regression. The horizontal line is at 4/(z — k& — 1). Two observa-
tions were identified with the mouse.

firse factor may be thought of as a measure of outlyingness and the second
as a measure of leverage. The value 4/(n — k — 1) has been suggested as
a rough cutoff for noteworthy values of D,.

The generic function cookd in car has methods for linear-model and
generalized-linear-model objects. Applying this function to Duncan’s
regression once again draws attention to the occuparions minister and
conductor (see Figure 6.4):

» plot{cookd(mod.duncan))

> abline(h=4/42, lty=2)

> identify(1:45, cookd(mod.duncan), raw.names(Duncan))
f1] 6 16

The “bubble plot™ in Figure 6.5 combines the display of studentized
residuals, hat values, and Cook’s distances, with the areas of the circles
proportienal to Cook’s D,*:

> plat(hatvalues(mod.duncan), rstudent (mod.duncan), type=:n‘)
» cook €- sqrt(cookd(mod.duncan))

> points(hatvalues(mod.duncan), rstudent(mod.duncan),

+ cex=10*cook/max {cook))

> ablinet(h=c(-2, 0, 2), lty=2)

> abline{v=c(2, 3)*3/45, lty=2)

> ldentify(hatvalues(mod.duncan), rstudent{mod.duncan),

+ row.names(funcan))

[1] 6 8 16 27

The plot function is used to set up the coordinate space for the graph,
without plotring the points (via the argument type=’n’). Then points

5. In Chapter 8, I describe how ro wnire a funcuon for constrecting graphs of s kind.

6.1 UNUSUAL DATA

rstudent{mod.duncan)

-1 obao®
q:-oo

"= S F Bt aiaenn
%‘%"0

0.06 o1

015 020 025

hatvaiues{mod duncan)

Figure 6.5

Plot of hat values, studentized residuals, and Cook’s distances
for Duncan’s occupational-prestige regression. The size of the cir-

cles is proportional to Cook’s D,. Several observations have been
identified with the mouse.

is emploved to add circles to the graph, with radius proportional to the
square root of Cook’s D and, consequently, area proportional to Cook’s
D; this is accomplished (in R) via the cex (“character-expansion”) argu-
ment to points; the factor 10 scales the circles to a reasonable size and
was determined by trial and error. The abline function draws horizon-

tal and vertical lines on the graph. Finally, unusnal points are labeled
interactively with identify.

Joop:

Wod WY VW VY

[The odd construction as.vector(cookd(mod.duncan)) is required by
53 to strip away the names attribute of the vector of Cook’s distances,
which otherwise causes a problem for the cex argument to peoints.) See

—

Drawing Circles in 5-PLUS

Vectorized use of the argument cex is not supported by S-PLUS. An aiter-
native, which works in both S-PLUS and R, is to draw the circles in a for

cook <— sgrt{as.vector(coockd(mod.duncan)))
max.cook <— max{caok)
hat <~ hatvalues (mod.duncan)
rstud <- rstudent(mad.duncan)
far (i in 1:length{cook))

points(hat[i], rstud(i], cex=10=cook[i]/max.cook)

;

Chapter 7 for more information on drawing graphs, and Chapter 8 for a
discussion of programming constructs such as for loops.

DIAGNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

Added-Variable Plots

A potential defect of single-observation deletion diagnostics is that they
can fail to identify influential pairs or subsets of observations, which
can mask each other’s presence. Added-variable plots (also called partial-
regression plots) reduce the higher-dimensional regression problem ro a
series of two-dimensional plots and show leverage and influence of the
observations on each coefficient of the model.

The added-variable plot for the first predictor, x,, is formed by regress-
ing both the response variable y and the predictor x; on all of the other
predictors, X, ... , %,. The residuals from these regressions (say, e, 4
and e, .} are then plotted against each other. It turns our that the
slope from the simple regression of e,; , on ey, . is the multiple
regression slope by, that the residuals from this simple regression are the
multiple-regression residuals, ¢;, and that the standard error of the simple
regression slope is (except for degrees of freedom) the multiple-regression
standard error for by. A similar added-variable plot can be constructed
for each coefficient of the model, including the constant, and coefficients
for dummy regressors and interaction regressors.

The av.plots function in car works for both linear and generalized
linear models, presenting the user with 2 menu of plots®:

> av.plots(mod.duncan, labels»row.names({Duncan))

1:(Intercept)
2:income
3:education
Selection: 2

1: (Intercept)
2:income
3:education
Selection: 3

1: {Intercept)
2:income
J:educatian

Selection: 0
>

I bave selected the added-variable plots for the income and education
coefficients in Duncan’s regression (shown in Figure 6.6); entering 0 exirs
from the menu. Notice how the occupations minister and conductor
act jointly to depress the income coefficient and inflate the education
coefficient; the occupation railroad engineer has high leverage on both
coefficients, but is more or less in line with the rest of the data.

6. Alremanvely, the argument ask=F causes all of the plats to be drawn on a single “page.”

6.2 NONNORMAL ERRORS

20

Added-Variable Plot Added-variable Plot
30 - HA sngineer 2 €0 minsier =i
30 1 40
g 20 g
5 S 20
EART 9.
3 5
g °7 : °7
2 2
s [B 20 -
20 =
40
=30 +
1 T T T T
40 20 0 20 40
incoms | othars educabon | others

Figure 6.6 Added-variable plots for the incame and education coefficients
in Duncan’s occupational-prestige regressicn. Several peints were
interactively identified with the mouse.

Sall {1990) has suggested a generalization of the added-variable plot,
termed a leverage plot, that constructs a single graph for a multiple-
degree-of-freedom term such as a set of dummy regressors. The plot
shows leverage and influence on the hypothesis that all of the coefficients
in the term are 0. It should be understood that an observation can change
the individual coefficients in a term substantially without affecting the F
for the hypothesis that the term is 0, and thus leverage plots are poten-
tially less informarive than separate added-variable plots for each coeffi-
cient. There is a leverage .plots function in car, which works only for
linear models.

NONNORMAL ERRORS n

Least squares regression performs best when the errors are normally dis-
tributed. Substantially nonnormal errors can compromise the efficiency of
least squares (e.g., in the case of heavy-tailed errors) and can cast doubt
on the reasonableness of estimating the conditional mean of y given the
xs {e.g., when the errors are skewed). The distribution of the regression
residuals is the key to discovering the distribution of the errors, although
the relationship berween the two is not altogether simple: Even if the
errors are notmally and independently distributed with constant vari-
ance, the residuals have different variances and are dependent. Moreover,
because they are weighted averages of the dara, the residuals tend ro look

normal even when the errors are not, a phenomenon sometimes termed
“supranormality.”

DIAGNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

A quantile-comparison plot of studentized residuals against the ¢ distri-
bution, as described in Section 6.1.1, is useful in drawing our attention to
the tail behavior of the residuals, clearly revealing heavy-tailed or skewed
distributions. A nonparametric density estimate, however, does a better
job of conveying a general sense of the shape of the distribution of the
residuals.

In Chapter 5, I fit a Poisson regression to Ornstein’s data on interlock-
ing directorates among Canadian corporations, regressing the number of
interlocks maintained by each firm on the firm’s assets, nation of con-
trol, and sector of operation. Because number of interlocks is a count,
the Poisson model is a natural starting point, but the original source
employed a least squares regression similar to the following’:

detach{Duncan)

data(Drnstein)

attach({Ornstein}

mod.ornstein <- lm{interlacks + 1 ~ assets + nation + sector)
Anova (mod.ornstein)

Anava Table (Type II tests)

v v V ¥ Vv

Response: jinterlocks + 1
Sum Sg Df F value Pr(>F)

assaets 16904 1 175.06 < 2e-16
nation 3449 3 11.91 2.8e-Q7
gactar 3706 9 4.26 3.9e-05

Residuals 22895 234

Qur interest here 1s to examine the residuals from this regression, and so
I have not printed a summary of the model (as I would do, of course,
were we really inrerested in the results of the analysis). T bave also added
1 to the number of interlocks because we will shortly consider power
transformations of the response variable and want to avoid values of 0;
in a linear model, adding 1 to the response simply increases the regression
constant by 1.

Quantile-comparison and density plots of the studentized residuals, in
Figure 6.7, are produced by the following § statements:

> qq.plot (mod. ornstein, sim=T)

> plot(density(rstudent (mod.ornstein)), main='rstudent”)
>

The studentized residuals are positively skewed, a condition that often
can be corrected by transforming y down the ladder of powers and

roots. Trial and error here suggests the square-root transformation of
interlocks.

7. Ornstemn (1976) employed both assets and the log of assets in the regression. Na criticism is

imphed here, by the way: As far as [knaw, in the 1970s sociologists did not use Poisson regression
models for count data.

6.2 NONNORMAL ERROR>

rstudent

Denslty

Studentzed Residualsimod.omstain)

I Quantiles N=248 Handwdh=0.2611

Figure 6.7 Quantile-comparison plot and nonparamerric density estimare
for the distriburion of the studentized residuals from Qrnstein'’s
interlocking-directorate regression.

Reminder: Density Plots in 5-PLUS

Recall that to make a density plot in $-PLUS, you have to supply the
argument type='1"’ to the plot function:

> plot{density(rstudent(mod.ornstein)), type=’1’)
>

Box-Cox Transformation of y

The Box-Cox regression model (Box & Cox, 1964) is an alrernative to
guided trial and error for transforming the response:

y!M = a+ﬁ1x:'1 ool 3kx|fz + £

where

A
-1
P R for A # 0,

’ log, ¥ for A =0.

The normalizing power-transformation parameter A is estimated, along
with the regression coefficients and error variance, by the method of max-
imum likelihood.

DIAGHOSING PROBLEMS IN LINEAR AND GEMERALIZED LINEAR MQDELS

log-Likeilfrood
log-Likefiwood

-2 -1 0 1 2 0.1 02 0.2 0.4 05
lambda lambda

Figure 6.8 Profile log-likelihood for the transformation parameter A in the
Box-Cox model applied to Ornstein’s interlocking-direcrorate
regression.”

The boxcox function in Venables and Ripley’s (1999) MASS library fits

the Box-Cox model, producing a plot of the profile log-likelihood against
the transformation parameter A:

» library(MAS3)
>» boxcox({mod.orngtein)
>

The resulting plot is shown in the left panel of Figure 6.8. By default,
boxcox plots over the range —2 < A < 2, bur we can focus more closely

on the value of A that maximizes the likelihood, as shown in the right
panel of Figure 6.8:

> boxcox(mod.ornstein, lambda=seg(.1, .5, by=.01))
»

Thus, A ~ 0.3, with the 95 percent confidence interval for A running
from just under 0.2 to just over 0.4—quite a sharp estimate.

Constructed-Variable Plot
for the Box-Cox Transformation

Atkinson (1985) suggests an approximate score test and diagnostic plot
for the Box-Cox transformation of y, based on the constructed variable

=X [loge (Z'L) ==] ’
¥

where ¥ is the geometric mean of y; that is, J = {y, x ¥, x -+» x p)"
The constructed variable is added to the regression, and the z statistic

6.2 NONNORMAL ERRORS

for this variable is the approximate score statistic for the transforma-
tion. An added-variable plot for the constructed variable in the auxiliary
regression—<alled a constructed-variable plot—shows leverage and influ-
ence on the decision to transform y.

The box.cox.var function in car facilitates the computation of the
constructed variable, Thus, for Ornstein’s regression:

» mod.ornstein, cv <- update(mod.ornstein,
+ . ~ . *+ box.cox.var(interlocks + 1))

> summary (mod.ornstein.cv)

Estimate Std, Error t value Pr(»|tl)
(Intercept) 1.41le+01 1.03e+0Q 13.66 <« 2e-16
assets -3.57e-05 §.22e~-05 ~0.57 0.5673

box. cox.var{interlocks + 1) 6.94e-01 3.91e=-02 17.73 < 2e-16

> av.plots(med.arnstein.ev, 'box,cox.var(interlocks + 1)’)
>

We are only interested in the ¢ test and added-variable plot for the
constructed variable, and we can request the latter directly from the
av.plots function, bypassing the menu; the constructed-variable plot
is shown in Figure 6.9. The z staristic for the constructed variable
demonstrates thar there is very strong evidence of the need to trans-
form y (cf. the likelihood-ratio test, which may be read roughly off

Added-Variable Plot

interlocks + 1 | olnars

1 T T Y T T
-4 -20 o 20 40 60

boxcoxvar{imardocks + 1) | othars

Figure 6.9 Constructed-variable plot for the Box-Cox transformation of y in
Ornstein’s interlocking-direcrorare regression.

DIAGHNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

Figure 6.8%). The constructed-variable plot suggests thar this evidence is

spread through the data, rather than being dependent on a small fraction
of the observations.

. NONCONSTANT ERROR VARIANCE

One of the assumptions of the standard linear model is thar the condi-
tional variance of y (the error variance) is everywhere the same. Because
the regression surface is generally high dimensional, it is not possible to
look directly at the distribution of the residuals around the fitted surface.
A common pattern of nonconstant error variance, however, is for the
spread of y ro increase with its level, a pattern thar can be detecred by
plotting residuals against fitted values—projecting the higher-dimensional
point cloud onto a two-dimensional surface. It is important to realize that
plots of this kind are not infallible: Incorrectly modeling the dependence
of the mean of y on the xs can also produce nonconstant spread in a plot
of residuals against ficted values (see, e.g., Cook, 1998, Section 1.2.1).
Because the residuals do not have the same variance, even when the
error variance is constant, [prefer to plot studentized residuals against

fitted values. For example, for Ornstein’s interlocking-directorate regres-
sion (Figure 6.10):

> plot{fitted.values(mod.ornstein), rstudent (mod.ornstein))
» abline(h=0, lty=2) # zera line
>

Although the skewness in the ficted values makes the plot difficult to
examine, it appears that the residual spread increases with the level of
the fitted values. The diagonal lining up of the points on the lower left
reflects the fact that the number of interlocks cannot be less than 0, an
observarion that suggests that a linear model is not altogether appropri-
ate for these data. Recall the Poisson GLM fit to Ornstein’s data in the
preceding chapter. .

An alternative diagnostic adapts Tukey’s (1977) spread-level plot, plot-
ting the log of the absolute studentized residuals against the log of the
fitted values, This approach also produces a suggested spread-stabilizing
power transformation of y. The spread.level.plot function in car has

8. The likelihood-rario chi-square stanisuc, on 1 degree of freedam, is rwice the difference m the
log-likelthaad at A = X {the maximumy-likelihood estumate) and at A = 1 {corresponding 0 no trans-
formation). Here, the test stakistic is approximately 2{1250 ~ 1169) = 162, which is overwhelmingly
stanstically significant. The test statisnc can be computed more accurately by assignung the {invisible)
result of the boxcox function ta a vaniable and examining it. (By default, bexcox plots rather than

prints its result when a graphics window is apen.) In the current example, the more precise value of
the LR rasr stanshic 1s 2{1243.2 — 1169.1) = 145.2.

6.3 NONCONSTANT ERROR VARIANCE

rstudentimed.omatain)

4] 20 40 60 BD 100
fited values{imod.omsigin)

Figure 6.10 Plot of studentized residnals against fitted values for Ornstein’s
interlocking-directorate regression.

a method for linear models:

> spread.level.plot{mod.ornstein)

Suggested power transformation: 0.32222

Warning message:

Start = 2 added to fitted values to avaid O ar Rnegative values.
in: spread.level.plot.lm{mod.ornstein)

Because there are some negative fitted values, the function adds a start of
2 before taking logs. The spread-level plot, shown in Figure 6.11, has an
obvious tilt to it. The suggested transformation, approximately the 1/3

power, 1s similar to the normalizing transformation estimated previously
by the Box-Cox method.

Spread-Level Plotfor mod.ornsteln

G 500

Absclta Studenhized Reasiduals
0.0580

0005
1

T) T T 7) I
5 10 20 B0 100

-
na

Fittad Values + 2

Figure 6.11 Spread-leve! plot of studentized residuals against fitted values for
Ornstein’s interlocking-directorate regression.

DIAGNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

Hﬂ Scare Tests for Nonconstant Error Variance
Breusch and Pagan (1979) and Cook and Weisberg (1283) suggest a score

test for nonconstant error variance in a linear model, based on the rela-
tionship

Vie)=glva + 1120+ + VpZp)

Here, the z, are predictors of the error variance, and the funcrion g{) of
the linear predictor vy + ¥, + -+ - + ¥,2,, need not be known. In rypical
applications, the zs are the same as tf)e predictors in the linear model
(i.e., the xs), or there is just one z, the fitted values ¥ from the linear
model—in which case we test for a dependence of spread on level.

The ncv. test function in car implements this score test. Let us apply
ncv.test to test for the dependence of spread on level (the default) in
Ornstein’s regression, and for a more general dependence of spread on the
predictors in the regression {given in a one-sided formula as the optional
second argument 1o ncv. test):

> ncy.test{mod.ornstein)

Non-constant Variance Score Test

Variance formula: ~fitted.values

Chisquare = 46.985 Df = 1 P = 7.1518e-12

> nev.test{mod.ornstein, ~ assets + nation + sectar)
Non-constant Variance Score Test

Variance formula: ~ asgets + nation + sector
Chisquare = 74.735 Df = 13 p = 1.0663e-10

Both tests are highly statistically significant, and the difference between
the two suggests that the relationship of spread to level does not entirely
account for the pattern of nonconstant error variance in these dara. This
conclusion is slightly misleading, however: In addition to nonconstant
error variance, the partial relationship between interlocks and assets
is nonlinear. Transforming assets to straighten the relationship simpli-
fies the pattern of nonconstant error variance to a more straighrforward
dependence of spread on level. I invite the reader to examine the data
moare closely. The more general lesson here is that the problems of non-
constant spread and nonlineariry can be related.

Other Approaches to Nonconstant
Error Variance

I have suggested transformation as a strategy for stabilizing error vari-
ance, but other approaches are available, In particular, if the pattern

6.3 NONCONSTANT ERROR VARIANCE

of error variance is known up to a constant of proportionality, then
weighted least squares (WLS) regression may be employed in preference
to ordinary least squares {OLS). WLS fits the regression model by mini-
mizing the weighted sum of squared residuals, Y w,e?, where the weight
w, attached to observation ¢ is inversely proportional to the variance of
the error &,.

In 5, WLS is performed by specifying the weights argument to 1m, giv-
ing the weighr w, for each observation. If, for example, we had reason to
believe that the error variance in Ornstein’s regression were proportional
to assets, V(g,) = o x assets,, then we could fit the model weighring
each observation inversely in proportion to this variable:

> Im(interlocks ~ assets + nation + sector, weighte=1/assets)

Still another approach, which does not require that we know the
form of dependence of V{s) on the xs, 1s to correct the estimated
covariance matrix of the regression coefficients for nonconstant spread.
“Heteroscedasticity-consistent standard errors” were introduced by
White {1980).° Subsequent work has suggested small modifications to
White’s procedure {see Long and Ervin, 2000).

White’s approach is implemented in the heem (“hereroscedasticity-
consistent covariance matrix”) function in car. The specific form of
the correction employed is given by the type argument, which defaults
to *hc3’, the method recommended by Long and Erviny White's orig-
inal correction corresponds to *hc0’. These corrections may also be
employed in the linear.hypothesis and Anova functions. For example,
for Ornstein’s regression:

> Anava(mod.orastein, vhite.adjust='he3?')
Anova Table (Type II tests)

Response: interlocks + 1
Sum 8q Df F value Pr(>F)

assets 14387 1 149.0 < 2e-16
nation 4542 3 15.7 2.5e~09
sectox 5211) 6.0 1.5e-07

Residuals 22595 234

Compare these F tests with the standard tests reported previously in Sec-
tion 6.2,

9. ~ White proposed esomatng the covanance marrix of the regression coefficients b by
Viby = (XXX Sxeex),

where § = diag{e?), m place of the usual ?[b} = XX

DIAGNOSING PROBLEMS IN LINEAR AND GEMERALIZED LINEAR MODELS

. NONLINEARITY

The standard linear model assumes that the expectation of the error
1s everywhere 0; nonlinearity, construed broadly, covers any violation
of this assumption—that is, any systematic departure from the func-
tional form specified in the model. Because the regression surface is gen-
erally high dimensional, one cannet look directly for departures from
the model (but see the methods of nonparametric regression described
in the Web appendix to the book). Instead, I focus here on nonlinearity in
the more conventional sense of a nonlinear partial relationship between
the response and a particular predictor.

(3

Component + Residual and CERES Plots

Component + residual plots (also called partial-residual plots) are a sim-
ple graphical device for detecting nonlinearity in multiple regression. The
partial residuals for the predicror x, are formed by adding the fitted linear
component in this predictor to the least squares residuals:

e, = e, +bx,.

The partial residuals e, are then plotted against x,.'° Interpretation of
component + residual plots is often enhanced by adding a least squares
line to the plot {representing the regression surface viewed edge on in the
direction of x,) and a nonparametric-regression smooth.

The cr.plots function in car constructs component 4 residual plots
for linear and generalized linear models, by default via a text menu pre-
sented to the user, much in the manner of the av.plots function. Con-
sider, by way of example, the Canadian occuparional-prestige regression
(discussed in Chapter 4 and refic here):

detach(Ornstein)

data(Prestige)

attach(Prestige)

mod.prestige <- lm(prestige ~ income + education + women)
cr.plots{mad.prestige)

v oV Y VY

1:Change span = Q.5
2:income

10. This sounds similar to the added-vanable plor far x,, bur represents a different two-dimensional
projection of the (k + 1)-dimensional point clovd of the data. Added-variable plots are usually more

suitable for detecting leverage and influence on the regression coefficients than they are for revealing
nonlmeartry. See Cook (1996).

6.4 NOMLINEARITY

Jieducation
4:Women
Selection: 2

[}

1:Change span 0.5
2:income

3:education

4 :women

Selection: 3

1:Change span = 0.5
2:income

3:education

4 1women

Selection: 4

1:Change span = 0.5
2:income

3:education

4:vaomen

Selection: 0O

>

The first selection {Change span) may be used to adjust the span of the
local-regression smoother, which initially is set to 0.5. The plots that are
produced appear in Figure 6.12, All three component + residual plots
show some nonlinearity: prestige appears to increase with income, but
at a declining rate; prestige also seems to increase with education, but
here the relationship is nearly linear, and the departure from linearity is
not simple—with the direction of curvature changing. Finally, the par-
tial relationship between prestige and percentage women is weak bur
apparently nonmonotone, with higher levels of prestige associated with
percentages near 0 and 100, and lower levels in the middle.

Because the relationship of prestige to income is monotone and sim-
ple, a power transformation may serve to straighten it; in contrast, we
can try to model the relationship of prestige to women as a quadraric,
via poly (see below). Using the Ask function facilitates trial-and-error
selection of a power transformation for income:

> Ask(p, function(p) cr.plots(lm(prestige ~ box.cox(income, p)

+ + education + poly(women, 2))., ’'box.cox{income, p)’))
Enter p ¢ 1

Enter p : .B

Enter p : 0

Enter p : -.5

Enter p :

>

Specifying *box. cox(income, p)° as the second argument to cr.plots
produces only one component 4 residual plot each time the model is

DIAGNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MQDELS

Component+Residual Piot Component+Rasidual Piat
g E}
¥ B
g {0 2
1 £
4 4
FAR] B £
B 5]
2 .20 §
5 8
IE I T 1 1 I 1 1 1 I 1
0 5000 15000 25000 6 8 10 12 14 18
ncoma ’ aducalion

10-1§$°g a

00
=] & o
[=] [+

104§ Ty
[=]

a0 - o

Component+Hesidualipresiige}
=
i
o
=
|
|
d
F
i
o 0°
F-] £+
=]
% a

0 20 40 60 B0 G

warmean

Figure 6.12 Component + residual plots for the Canadian occupational-

prestige regression.

refir, bypassing the cr.plots menu. The resulting plots {not shown) sug-
gest that a log transformation does a reasonable job of straightening the

regression. Fitting and summarizing the resulting model:

> mog.prestige.2 <- lm(prestige - log(income, 10) + education
+ + poly(women, 2))

> summary{mod.prestige.2)

Call:

ln(formula = prestige ~ log(income, 10) + education
+ + poly(women, 2))

Residuals:
Min 1¢ Median 3Q Max
-14.82 -5.5¢ 0.63 4.04 18.5%

Coefficients:

Estimate Std. Error t wvalue Pr(>|t|)
(Intercept) ~110.600 13.982 -7.91 4.2e-12

6.4 NONLINEARITY 2

log(income, 10) 31.094 4.316 7.20 1.3e-10
education 3.770 0.347 10.85 < 2Qe-18
poly(women, 2)1 15.088 9.336 1.62 0.109
poly(women, 2)2 15.871 6.970 2.29 Q.025
Residual standard error: 6.95 on 97 degreeg of freedom
Multiple R-Squared: 0.843, Adjusted R-squared: 0.337
F-statistic: 131 on 4 and 97 degrees of freedom,
p-value: 0

The term poly(women, 2} in the linear model fits orthogonal polyno-
mial regressors of degree 1 (i.e., a linear term) and 2 (i.e., a quadratic
term uncorrelated with the linear term). Except for the orthogonality of
the linear and quadratic terms, this is equivalent to specifying women +
I{women"2) in the model formula. [It is necessary to use the identity func-
tion I() to “protect” the expression women~2 because exponentiation has
special meaning within a model formula, as explained in Section 4.7.]
The two specifications are equivalent in the sense that when the linear
and quadratic components are combined, they trace out the same partial-
regression curve. Therefore, both forms ot the model have identical fits to
the data. Orthogonal polynomials have computational advantages, how-
ever, and they allow us to examine the # statistics for the coefficients to
see the statistical significance of each term.

Using Ask in S-PLUS

Using the Ask function to refit the model repeatedly, displaying a
component + residual plot for each fit, takes advantage of the “scoping”
rules in R {the rules according to which the interpreter resolves references
to variables in S expressions). The different scoping rules in 53 and 54
make it more difficult to use Ask in this manner. We can, however,
proceed as follows:

> ask(p, function(p) {
+ assign(’income.p’, box.cox(income, p), frame=1}
+ cr.plotg(lm(prestige ~, income.p

I + + education + poly{women,2)), ’income.p’)
+

»

A general consideration of scoping in 5 is well beyond the level of this
i{ book; see, for example, Venables and Ripley (2000, Section 3.4) and a
brief discussion in the Web appendix to the text. A cautionary note is
in order, however: Using the assign function with frame =1 assigns a
value to the global variable income.p; if a global variable by this name
| already exists, its value will be overwritten, |

DIAGNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

A potential problem with component 4 residual plots is that they
can be fooled by strong nonlinear relationships among the predictors, a
phenomenon called “leakage.” One way to deal with this problem is to
fit a polynomial {typically, quadratic) regression in the focal predictor x;
rather than only a linear term. The cr.plots function accommodates this
procedure via its order argument; the default, order =1, corresponds to
a linear fit. A relared approach, introduced by Cook {1993), is to use a
nonparametric-regression smoother to adjust for nonlinear relationships
among the predictors, a method that he terms CERES {for combining
conditional expectations and residuals). The ceres.plots function
in car implements Cook’s approach., For the Canadian occuparional-
prestige regression, higher-order component + residual plots and CERES

plots are nearly identical to the standard component 4 residual plots in
Figure 6.12.

——

4.2 Box-Tidwell Transformations of the Predictors

L ST]

As in transforming the response, transformations of the predictors in
regression can be estimated by maximum-likelihood. This possibility was
suggested by Box and Tidwell (1962), who introduced the model

yr=a+31x3’+'“+3kx;¥+£u

Where the usual assumptions are made about the errors: g ~ NID(0, o2).
Of course, we do not necessarily want to transform alf of the predictors,
and in some contexts—such as when dummy regressors are present in
the model—it does not even make sense to do so.

The Box-Tidwell regression model is a nonlinear model, which, in prin-
ciple, can be fit by nonlinear least squares.'’ Box and Tidwell describe
a more efficient computational approach, which is programmed in the
box.tidwell function in car. Let us apply this function to the Cana-
dian occupational-prestige regression, estimating power-transformation
parameters for income and education,’? but specifying a quadratic par-
tial regression for women:

> box.tidwell(prestige ~ income + education,
+ other.x= ~poly(women, 2))
income education
Initial Power ~—0.81030 2.24354
Score Statistic —-5.30128 2.40556

11. Wanlmear least squares is taken up in the Web appendix o the book.

12. Recall, hawever, that the curvature of the relationship of prestige ta education changes direc-
tion, and s0 a power transformarion 1s nat altagether apprapriace here.

6.4 NOMNLINEARITY

p-value 0.00000 0.01615
MLE of Power -Q.03777 2.19283

iterations = 12

The one-sided formula for the argument otker.x indicates the terms in
the model that are not to be transformed—here the quadratic in women.
The score tests for the power transformations of income and education
suggest that both predictors need to be transformed; the maximum-
likelihood estimates of the transformation parameters are ¥, = —0.04
for income {effectively, the log transformation of income), and ¥, = 2.2
for education (effecrively, the square of education).

Constructed-Variable Plots
for Box-Tidwell Transformations

Constructed variables for the Box-Tidwell transformations of the predic-
tors are given by x,log, x,. These can be easily computed and added to
the regression model to produce approximate score tests and constructed-
variable plots. Indeed, these constructed variables are the basis for Box
and Tidwell’s computational approach to fitting the model and yield the
score statistics printed by the box.tidwell function.

To obtain constructed-variable plots (Figure 6.13) for income and
education in the Canadian occuparional-prestige regression:

> mod.prestige.cv <~ Im(prestige ~ income + education
+ 4+ poly(women, 2) + I{income*log(income))

+ + I(educationxlog{education)))

> summary{mod.prestige.cv)

Coefficients:
Estimate Std. Errar t walue Pri{»ltl)

I(income = log(income)) -2.430e-03 4.584e-04 -5.301 7. 46e-07
I{education » log(education)) 5,298e+00 2,202e+00 2.406 0.0181

> av,plots(mod.prestige.cv)

1:(Intercept)

2:income

3:education

4:poly(women, 2)1

5:poly(women, 2)2

6:I(income * log(income))
7:I(education * log(education))

DIAGNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

Added-Variabls Piof Addad-Yariabls Piat

prasige |olhars
prasuge | others

-1§ -

Kincome * lngincome)) | athans Yeducation " log{aducalion) | others

Figure 6.13 Construcred-variable plots for the Box-Tidwell transformation

of income and education in the Canadian occupational-prestige
regressiofl.

Selection: &
Selection: 7

Selection: Q
>

Note, once again, the use of the identity finction 1() to “protect” the
multiplication operator *, which would otherwise be interpreted specially
within a model formula, inappropriately generating “main effects” and
an “interaction” (see Section 4.7).

The constructed-variable plot for income reveals some high-leverage
points in determining the transformation of this predictor, but even when

these points are removed, there is still substanrial evidence for the trans-
formation in the rest of the data.

. COLLINEARITY AND VARIABLE SELECTION

Variance-Inflation Factors

When there are strong linear relationships among the predictors in a
regression analysis, the precision of the estimated regression coefficients

6.5 COLLIMEARITY AND WARIABLE SELECTION

declines. The estimated sampling variance of the jth regression coefficient
may be written as

]
4

1
i—g

s
n—1)s

I

Vib) = (

where s? is the estimated error variance, s? is the sample variance of x ;
and 1/(1 — R%), called the variance-inflation factor (VIF)) for b;, is a func-
tion of the multiple correlation R, from the regression of x, on the other
xs. The variance-inflation factor is the simplest and most direct measure
of the harm produced by collinearity: The square root of the VIF indi-
cates how much the confidence interval for 8, is expanded relative to
similar, uncorrelated data. If we wish to explicate the collinear relation-
ships among the predictors, then we can examine the coefficients from
the regression of each predictor with a large VIF on the other predictors.

The variance-inflation factor is not applicable, however, to sets of
related regressors for multiple-degree-of-freedom effects, such as con-
trasts constructed to represent a factor or polynomlal regressors, Fox and
Monette (1292) generalize the notion of variance inflation by considering
the relative size of the joint confidence region for the coefficients associ-
ated with a related set of regressors.!? The resulting measure is called a
generalized variance-inflation factor {or GVIF), If there are p regressors
in a rerm, then GVIF*?* is a one-dimensional expression of the decrease
in precision of estimation due to collinearity—analogous to taking the
square root of the usual variance-inflation factor, When p = 1, the GVIF
reduces to the usual VIE

The vif function in caxr calculates variance-inflation factors for the
terms in a linear model. When each term has 1 degree of freedom, the
usual VIF is returned; otherwise, the GVIF is calculated.

As a first example, consider the data on the 1980 U.S. Census under-

count in the data frame Ericksen {from work by Ericksen, Kadane, &
Tukey, 1989):

> detach(Prastige)
> data(Ericksen)
> BEricksen

13. - Let R, represent the correlation matnx among the regressors 1n the set n question, R, the
correlanion macrix among the acher regressors in the model, and R the correlation matrix amaong all
of the regressors in the madel. Fox and Monette show that the squared area, volume, or hypervalume
of the yoint confidence region for the coefficients 1 exther set 15 expanded by the generalized variance-

mnflanan factar
det R det R,y
der R
relative to stmular data 1n which the twa sers of regressors are uncorrelated with each other. This

measure 15 independenr of the bases selected 1o span the subspaces of the rwa sets of regressars and
sa, for cxample, 15 independent of the contrast-codmg scheme employed for a facror.

GVIF =

DIAGNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

minority crime poverty language highschoal

Alabama 26.1 49 18.9 0.2 43.5
Alaska 5.7 62 10.7 1.7 17.6
Arizona 18.9 81 13.2 3.2 27.6
San.Prancisco 24.3 107 13.7 9.2 26.0
Washington.DC 72.6 102 18.6 1.1 32.89
housing city conventional undercount
Alabama 7.6 state 0 -0.04
Alaska 23.6 state 100 3.35
Arizeona 8.1 state 18 2.48
San.Francisco 20.3 city Q 5.18
Washington.DC 21.0 city 0 5.93

These variables describe 66 areas of the United States, including 16
major cities, the 38 states without major cities, and the remainders of

the 12 stares thar conrain the 16 major cities. The following variables
are included:

minority: percentage of residents who are black or Hispanic.
crime: serious crimes per 1000 residents.

poverty: percentage of residents who are poor.

language: percentage having difficulty speaking or writing English.

highschool: percentage of those 25 years of age or older who have
not finished high school.

housing: percentage of dwellings in small, multtunic buildings.

city: a factor with levels state and city.

conventional: percentage of households counted by personal enumer-
ation (rather than by mail-back questionnaire with follow-ups).

undercount: the estimated percentage undercount (with negative num-
bers indicating an estimated overcount).

Let us regress the Census undercount on the other variables:

> mod.census <~ lm{undercount ~ ., data=Ericksen)
> summary{mod.census)

Call:
In(formula = undercount = ., data = Ericksena)
Residuals:

Min i Median 30 Max

~2.8356 —-0.2033 -0.0553 0.7050 4.2457

6.5 COLLINEARITY AND VARIABLE SELECTION

Coefficlients:

Estimate Std. Error £ value Pr(»|:t|)
(Intercept) -0.61141 1.72084 —0.36 0.72368

minority 0.07983 0,02261 3.53 0.00083
crime 0.03012 0.01300 2.32 0.02412
poverty -0.17837 0.08482 -2.10 0.04012
language 0.21512 0.09221 2.33 0.02320
highschool 0.06129 0.04477 1.37 0.17642
housing -0.03496 0.02463 -1.42 0.16126
citystate ~1.15998 0.77064 ~1.51 0.13779
conventionmal 0.03699 0.00925 4.00 0.00019

Residual standard error: 1.43 oan 57 degrees of freedom

Multiple R~Squared: 0.708, Adjusted R—squared: 0.667

F-atatistic: 17.2 on 8 and 57 degrees of freedom,
p-value: 1.042-012

Note the compact model formula: When we include the data argument
to 1m, we may use a2 dot {-) on the right-hand side of the model formula
to represent all the variables in the data frame with the exception of the
response (here undercount).

Checking for collinearity, we see that three coefficients (for minority,
poverty, and highschool) have variance-inflation factors exceeding 4,
indicating that confidence intervals for these coefficients are more than
twice as wide as they would be for uncorrelated predictors:

> vif{mod.census)

minority crime poverty langnage highschool

5.,0091 3.3436 4,6252 1.63%6 4.6192
housing city conventiaonal
1.8717 3.5378 1.6913

To illustrate the computation of generalized variance-inflation factors,
I return to Ornstein’s interlocking-directorate regression, where it turns
out that collinearity is relatively slight:

> vif(mod.ornstein)
GVIF Df GVIF~(1/2Df)

assets 2.6748 1 1.63b5
nation 1.4347 3 1.,0620
sector 3.6538 9 1.0744

Other, more complex approaches to collinearity include principal-
components analysis of the predictors or standardized predictors and
singular-value decomposition of the model matrix or the mean-centered
model matrix, These, too, are simple to implement in S. S¢e the princomp
and prcomp functions (in the mva library in R) and the svd and eigen
functions (discussed in Chapter 8).

DIAGNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

Variable Selection

Collinearity is a problem with the data, not (necessarily) with the regres-
sion model. That is, it is perfectly possible to have a well-specified regres-
sion model for which the data do not conrain sufficient information to
produce informative coefficient estimates. For this reason, there can be no
general solution to the problem of collinearity, and merhods that purport
to provide a general solution do so at the expense of implicitly chang-
ing the questions asked of the data or imposing, often surreptitiously,
additional constraints on the model.

The situation is somewhat different, however, when the goal of the
regression analysis is to produce a prediction equation, rather than to
understand the manner in which the predictors influence the response. As
long as the x values for new observations to be predicted are within the
configuration of x values on which the prediction equation was devel-
oped, we can hope for success.

Perhaps the most common approach in this setting is variable selec-
tion, where we seek to reduce the predictors to an optimal subset. Vari-
able selection can also be useful in the absence of collinearity, although
selection of noncollinear predictors is relatively straightforward. Finally,
by way of preamble, in performing variable selection we should seek to
avoid capitalizing on chance—an objective that can be achieved by some
form of cross-validation.**

There are two general (and many specific) approaches to variable selec-
tion: Stepwise methods seek good subsets of predictors by adding or sub-
tracting terms one at a time; optimal subset methods, in contrast, locate
the subset of predictors of a given size that maximizes some measure of
fit to the data, perhaps even by enumerating all the subsets of predictors.

Several funcrions in S may be employed for variable selection. Ler us
look at step and regsubsets; in R, step is in the base library and
regsubsets in the leaps library.

Variable-Selection Functions in S-PLUS

In 5-PLUS, the standard step function is somewhat different from the one
described here, which instead corresponds more ciosely to the stepAIC
function in the MASS library, As well, there is no regsubsets function, but
the leaps function performs the same task, albeit with different syntax.
See help(step) and help{leaps) for details.

14, In crass-validarion, the daca are divided 110 twa or more parts; a sratistical model fit 1o part @
the data 15 then rested on the remamder. Sce, for example, Fox (1997, Chaprer 16).

6.5 COLLINEARITY AND VARIABLE SELECTION

The step function, as the name implies, takes a stepwise approach to
variable selection and can perform both forward and backward selec-
tion (i.e., adding terms to, and eliminating terms from, the model). An
advantage of step is that it 1s applicable to a broad range of models
(e.g., many GLMs) and that it respects multiple-degree-of-treedom terms
and relations of marginality among terms: step will not, for example,
remove one of a set of contrasts for a factor, nor will it remove a main
effect that is marginal to an interaction that is retained in the model. A
disadvantage of all stepwise methods is that they may fail to find optimal
subsets of predictors. Researchers using these methods are also prone to
overinterpret the results: There are often muany subsets of predictors of a
given size that are nearly equally good. This, of course, is not the faule
of the step function.

By default, step attempts to maximize the AIC {Akiake information
criterion, see Section 5.2) by both adding and subtracting rerms. Applying
step to the model that I fit to the Census undercount data produces the
following result:

> census.sStep <- step(mod.census)
Start: AIC= 56.21

undercount ~ minority + crime + poverty + langmage + highschool +
housing + city + conventiomal

Df Sum of Sg RSS AIC
<pone> 116.0 b5.2
~ haghschool 1 3.8 119.8 55.3
- housing 1 4.1 120.1 655.5
- eity 1 4.6 120.6 55.8
- poverty 1 9.0 126.0 68.1
- crime 1 10.9 126.% 59.2
~ language 1 11.1 127v.1 59.2
- minority 1 26.4 141.4 66.3
- conventional 1 32.5 148.5 69.5

Starting with the full model, step has discovered thar the AIC goes
up when any one of the predictors 1s eliminated, and, consequently,
it immediately terminares, returning a linear-model object identical to the
original model:

> summary{census.step)

Call:
Im{formula = undercount ~ miaority + Crime + poverty + language +
highschool + housing + city + conventional, data = Ericksen)

The AIC applies a relatively light penaley for lack of parsimony, adding
twice the number of parameters to the deviance for the model. The alter-
native BIC {Bayes information criterion) applies a heavier penalty, adding
log,n times rhe number of parameters to the deviance. The step function

DIAGNQOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

accommodates the BIC through the argument k, which specifies the mul-

tiple of the number of parameters to employ as a penalty. Here, n = 66,
and so:

> census.step.bic <~ step(mod.census, k=log(66))
Start: AIC= T74.92

undercount ~ minority + crime + poverty + language + highschool +
housing + city + conventional

Df Sum of §q RSS AIC

- highschool 1 3.8 119.8 72.9
~ housing 1 4.1 120.1 73.0
- city 1 4.6 120.6 73.3
<none> 116.0 74.9
~ paveTty 1 9.0 125.0 75.6
- c¢rime 1 10.9 126.9 76.7
- language 1 11.1 127.1 76.7
-~ minority 1 25.4 141.4 83.8
- conventional 1 32,56 148.5 87.0

Step: AIC= 72.86

undercount ~ minority + crime + poverty + language + housiag +
¢city + cooventianal

Df Sum of 359 R3S AIC

-~ housing 1 2.3 122.1 69.9
- city 1 4.2 124.0 T1.0
- poverty 1 5.2 125.0 V1.5
~ crime 1 7.4 127.2 72.6
<none> 119.8 72.9
~ language 1 8.1 127.9 73.0Q
~ minority 1 30.8 150.6 83.8
~ conveational 1 31.0 150.8 83.9

Step: AIC= 66.33
undercount ~ minority + crime + language + coaventional

Df Sum of Sq RSS AIC
<poper 131.,3 66.3

~ language 1 12.5 143.8 68.2
- crime 1 14.7 146.0 €9.1
- conventional 1 26.6 157.8 7T4.3
- mineority 1 59.8 191.1 86.9

Using the BIC (still labeled AIC in the output), step eventually settles

on a subset of four predictors: language, crime, conventional, and
minority.

6.5 COLLINEARITY AND VARIABLE SELECTION

We can start step in a forward direction by beginning with a model
including only the regression constant and supplying candidate predictors
via the scope argument:

> census, step.forward <— step{lm(underconnt -~ 1, data=Ericksen),
+ scope= ~ minority + crime + poverty <+ language

+ + highschoal + housing + city + conventional,

+ k=log(66))

Start: AIC= 122.58

underceunt ~ 1

Df Sum of Sg RSS5 AIC

+ minority 1 196 201 82
+ city 1 178 219 &8
+ crime 1 175 221 B8
+ language 1 111 286 105
+ poverty 1 64 333 115
+ housing 1 41 356 120
<none> 397 123
+ highschaol 1 8 389 125
+ conventional 1 0.041 397 127

Step: AIC= 81.87
nndercoynt ~ minority

Df Bum of Bq R3S AIC

+ highschool 1 30 171 75
+ language 1 30171 T
+ crime 1 29 172 76
+ conventional 1 27 174 7T
+ city 1 17 184 80
<none> 201 82
+ poverty 1 12 188 82
+ housing 1 2 199 B85
= minarity 1 196 397 123

Step: AIC= 66.33
undercount ~ minority + coaventional + crime + language

Df Sum of 8 RSS AIC

<nane> 131.3 66-3
+ paverty 1 6.5 124.8 ©7.2
- language 1 12.5 143.8 68.2
— Crime 1 14.7 146.0 §9.1
+ housing 1 2.2 128.1 69.4
+ city 1 1.9 129.3 €69.5
+ highschool 1 0.4 130.2 70.3
- conventicnal 1 26.6 167.8 74.3
=~ minority 1 59.8 191.1 B86.8

DIAGNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

In this case, we arrive at the same subsert of predictors by both
approaches, but starting with the full model is generally more reliable.

Using an efficient computational method, the regsubsets funcrion in
the leaps library finds the optimal subset of predictors of each size. By
default, the function returns only optimal subsets and only computes
subsets up to size 8; these defaults can be changed using the nbest and
AVIIAxX arguments, respectively.

The leaps library includes plot and summary methods for objects
returned by regsubsets, but I prefer the subsets function in car. By
default, subsets plots the BIC for each model against the number of

predictors, automarically generating a code for the predictors in the
model:

» library{leaps)

> census.subsets <= regsubsets{undercount ~ ., nbest=10,
+ data=Ericksen)

> subsets(census.subsets)

>

Alternatively, we could plot the R? for each model, the adjusted R?, the
residual sum of squares, or Mallowss C, staristic. The BIC plot appears
in the left-hand panel of Figure 6.14. The plot.subsets function posi-
tions the legend interactively, with a left-button mouse click indicating
the upper-left corner of the legend. This graph clearly conveys the large
number of models that are roughly equally effective, but it is impossible
to read the individual models.-In the right-hand panel, I focus on subsets
of three to five predictors, which have the lowest BICs:

> subgetsz{census.subsets, min.sizew3, max.size=5, legend=F)
>

F . mnaniy 42 e
o= s r enma
g p: povarty aq - m
o, | = i
5 8 ! hg: lghschool 4 the
o he: housing B _ m=f-kns-cn
g 20 A ct alysta g 48 e or AR
5 R conventional & AL,
;% (':!5 45 .'ﬁ me-ct-Hhg-cn
G mHclon GedefiehER
i n mpen m-p-kbgkcn
50 < meeren -
M-Cr-p-cn
52 trer-ken
1

T T
3.0 as 4.0 45 5.0

Subsel Size Subget 5lza

Figure 6.14 Plots of BIC against subset size for up to 10 best subsets of
each size. The initial model is for the regression of the Census
undercount on 8 predictors.

6.6 DIAGNOSTICS FOR GENERALIZED LINEAR MODELS 2

I could also restrict the vertical axis of the plot, by specifying the ylim
argument to subsets.

For this example, the model with the smallest BIC overall {including
the predictors minority, crime, language, and conventional) is the

same as the one identified by the stepwise approach.

Most of the diagnostics of the preceding sections extend relarively
straightforwardly to generalized linear models. These extensions typically
take advantage of the computation of maximum-likelihood estimates for
generalized linear models by iterated weighted least squares. The final
weighted least squares fit linearizes the model and provides a quadratic
approximation to the log-likelihood. Approximate diagnostics are then
either based directly on the weighted least squares solution or derived
from statistics easily calculated from this solution. Seminal work on the
extension of linear least squares diagnostics to generalized linear models
was done by Pregibon {1981), Landwehr, Pregibon, and Shoemaker
(1984), Wang {1985, 1987), and Williams (1987).

The following functions in car have methods for generalized linear
models: rstudent, hatvalues, cookd, dfbeta, dfbetas, outlier.test,
av.plots, cr.plots, and ceres.plots, [will illustrate the use of these
functions selectively, rather than exhausrively repeating all the topics cov-
ered for linear models in the previous sections of the chapter,

DIAGNOSTICS FOR GENERALIZED
LINEAR MODELS

Outlier, Leverage, and Influence Diagnostics 6.6.1

Hat Values

Hat values for a generalized linear model can be taken directly from the
final iteration of the [WLS procedure for finting the model, and have the
usual interpretation—except that, unlike in a linear model, the hat values

in a generalized linear model depend on y as well as on the configurarion
of the xs.

Residuals

Several kinds of residuals can be defined for generalized linear models:

B Response residuals are simply the differences between the observed
response and its estimated expected value: y, — 4,.

DIAGNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

Working residuals are the residuals from the final WLS fit. These may

be used ro define partial residuals for component + residual plots (see
below).

Pearson residuals are casewise components of the Pearson goodness-
of-fit statistic for the model:

J,l{-”.(y' - ﬁ':) ,
vV Vi)

where ¢ is the dispersion parameter for the model and V(y,|%,) is the
variance of the response given the linear predictor (see Chapter 5).

Standardized Pearson residuals correct for the conditional response
variation and for the leverage of the abservations:

o, = Y _ﬁ‘:)
JVln)—)

Dewiance residuals, d,, are the square roots of the casewise components
of the residual deviance, attaching the sign of y, ~ ..

Standardized deviance residuals are
d,
Tp, =~

Several different approximations rto studentized residuals have been
suggested. To calculate exact studentized residuals would require
literally refitting the model, deleting each observation in turn and
noting the decline in the deviance; this procedure, of course, is
computationally unattractive. I use Williams’s approximation:

rstudent, = \/(1 — b)r3, + h,rh,

where, once again, the sign is taken from y, — ji,. A Bonferroni outlier
test using the standard normal distribution may be based on the largest
absolute studentized residual.

influence Measures

An approximation to Cook’s distance influence measure is

2
TP ' ‘br

LR A2 X :
blk+1) 1-h

6.6 DIAGNQOSTICS FOR GENERALIZED LINEAR MODELS

This is essentially Williams’s definition, except that I divide by the esti-
mated dispersion ¢ to scale D, as an F statistic rather than as a chi-square
statistic.

Approximate values of dfbeta, and dfbetas, may be obtained directly
from the final iteration of the I'WLS procedure.

I am aware of two extensions of added-variable plots to generalized
linear models: Suppose that the focal regressor is x,. Wang (1985) pro-
ceeds by refitting the model with x, removed, extracting the working
residuals from this fit. Then, x, is regressed on the other xs by WLS, using
the weights from the last IWLS step and obtaining residuals. Finally, the
two sets of residuals are plotred against each other. The Arc software
developed by Cook and Weisberg (1999) employs a similar procedure,
except that weights are not used in the least squares regression of x, on
the other xs. The av.plots function in the car library implements both
approaches, with Wang’s procedure as the default.

To illustrate some of these results, recall from Chapter 5 the binary
logistic regression of labor-force participation on husband’s income and
presence of children for young married Canadian women:

data(Womenlf)

attach({Womenlf)

mod.working <- glm{partic '= ’nmot.work’ -~ hincome + children,
fanlly=binomial)

summary (mod .working}

v o4 VYW

Call:

glm(formula = partic '= ’mot.work’ ~ hincome =+ children,
family = binemial)

Deviance Residuals:
Main 10 Medizn 30 Max
-1.677 -0.885 -0.777 Q.929 1.997

Coefficients;

Estimate Std. Error z value Pr(r»|zl)
(Intercept) 1.3353 0.383b 3.48 10,0005
hincome -0,0423 Q.0198 -2.14 0.0323
childrenpresent -1.5756 0.2921 -5.39 6.9e-08

(Digpersion parameter for binomial family taken to be 1)

Null deviance: 366.15 on 262 degrees of freedom
Residual deviance: 319.73 on 260 degrees of freedom
AIC: 326.7

Number of Fisher Scoring iterations: 3

The expression partic != ’'not.work’ creates a logical vector, which
serves as the binary response variable in the model.

DIAGNQSING PROBLEMS IN LINEAR AMD GENERALIZED LINEAR MODELS

1677

[+
o
L=}

@ o

£

2 é“

B

é =l o

E (2] o

3 21 . B -

© :&;o < o o
N o Q@2 & -]
g | %, ogd’og'&-’lc. L q:ﬁ
o

Indax

Figure 6.15

Index plet of Cook’s distances from the logistic regression of
wemen’s labor-force participation on husband's income and

presence of children. Two observations were identified interac-
tvely with the mouse.

To calculate and plot Cook’s distances for this fit (Figure 6.15):

> plot(cookd(mod.working))
> identify{l:length(partic), cookd(mod.working))

(11 76 77

The expression 1:length(partic) generates the observation indices to
be used as horizontal coordinates by identify.

Note that I have extracted the Cook’s distances twice; it would have
been more efficient to save the values in a variable, but unless the data set
is large, the calculation is nearly instantaneous anyway. Clearly, abserva-
tions 76 and 77 have much larger Cook’s distances than any of the other

observations.

Let us follow up by calculating and plotting dfbeta, (Figure 6,16):

> dft <- dfbeta(mod.working)

> dibl1:5,]
{Intercept)
1 0.0021293 —-0.00014152
2 -—0.0025005 0.00018620
3 0.0273334 —-0.00181673
4 0.0161297 —0.00107207
8 0.0089899 -0,.00066398

first 5 obs.
bhincome childrenpresent

~0.0102200
~0. 0104562
-0.0057556
~0. 0091358
~0.0097021

> plot(dfp(,2]. ylab=’dfbeta(hincome}’) # for bl
> identify(1:length(partic), dftl,2])

[1] 78 77

> plot(dfb[,3], ylab='dfbetalchildren)’') # for b2

>

6.6 DIAGNQSTICS FOR GENERALIZED LINEAR MODELS 2

o 77 i J] a
_{ 2 { g o ’ a ag aﬂ'
S C I T
§ = - a i | “ bt I
P = o | 2 @ 40
E = e 3 i o ° a‘: g g 1¢ B % %3‘"309 ":’u 0:.
2 % 25 =
E S » oo ong unoé' u: m:°° E
2 m o] [=1
B S dagdbo S WESLIISSA| § S
% 2 i e H“J“f&q‘f’“- % 2 LR
Jaa 2 BT T 0 ”; ST Aol 0 S IS o
¥ nu : ‘o g = a a 2 A 2
§ i) < :ono L é"nn Duﬂk “q, a o®
=] L] s d = e
T T T T T T T T T T T T
0 50 10 150 200 250 0 50 100 150 200 2580
dax it

Figure 6.16 Index plots of dfbeta for the coefficients of husband’s income
and presence of children.

Comparing the dfbeta, values to the magnitudes of the coefficients 1n
the logistic regression, none of the observations appears terribly influen-
tial, although ocbservations 76 and 77 do stand cut in their impact on
the husband’s income coefficient. These two observations are for women
who were in the labor force despite having children and high-income hus-
bands. Removing just one of these two observations does not alter the
results much (as the approximate dfbeta values suggest, and the reader
can confirm), but removing both observations changes the coefficient of
husband’s income by more than 40 percent:

> summary(update {mod.working, subset=-c(76, 77)))

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Iatercept) 1.6090 0.4051 3.97 7.le-05
hincome -0.0603 0.0212 -2.85 0.0044
childreapresent =1.6476 0.2977 -—-B.53 3.le—08

Two factors combine to produce this result: (1) The linear approxima-
tions involved in calculating delerion diagnostics for GLMs rend to under-
state the effect of deleting observations, and (2} observarions 76 and 77,
as an influendal pair, partly mask each other’s presence.

Notice the banding in the index plot of dfbeta, for the children coef-
ficient. The four bands are produced by the binary response and the
dummy regressor, each of which takes on only two values. When the
response is discrete, diagnostic plots for GLMs often show these kinds of
effects.

0 DIAGNOSING PROBLEMS IN LINEAR AND GENERALIZED LINEAR MODELS

#%%5.2: Nonlinearity Diagnostics

(SR

Component + residual and CERES plots also extend straightforwardly
to generalized linear models. Nonparametric smoothing of the resulting
scatterplots can be important to interpretation, especially in models for
binary responses, where the discrereness of the response makes the plots
difficult to examine. Similar effects can occur for binomial and Poisson
dara.

Component 4 residual and CERES plots use the linearized model from
the last step of the TWLS fit. For example, the parrial residual for x, adds
the working residual to b,x,; the component - residual plor graphs the
partial residual against x,.

An illustrative component 4 residual plot, for assets in Ornstein’s
interlocking-directorate Poisson regression (from Chapter 5), appears in
Figure 6.17 and is constructed by the following 5 commands:
detach(Womenlf)
attach(Dranstein)

mod.ornstein.pois <- glm(interlocks ~ assets + nation + sector,
family=poisson)
cr,plots{mod.ornstein.pois)

v + v v V¥

1:Change span = 0.5
2:assets

3ination

4:sector

Selection: 2

Componant+Residual Plot

doou -t]
o

Component+Residuel(intedocks)
1

T] 1]

0 50000 100000 150000

assets

Figure 6.17 Component + residual plot for assets in Ornstein’s
interlocking-directorate Poisson regression.

B.& DIAGNOSTICS FOR GENERALIZED LINEAR MODELS

Component+Residual Plot

2

8

=

2]

E

3

=

B

:

5

8

[

5

&)
T 1 1 1 1
4 8 8 10 12

log(assets)

Figure 6,18 Component + residual plot for log(assets) in the respecified

Poisson regression model for Ornstein’s interlocking-directorate
data.

This plot i1s difficult to examine because of the substantial positive skew in
assats, burt it appears as if the assets slope is a good deal steeper at the
left than at the right. I therefore investigated transforming assets down
the ladder of powers and roots, eventually arriving at the log transfor-

mation, the component 4 residual plot for which appears quite straight
(Figure 6.18):

» mod.ornstein.pois.2 <- glm(interlacks ~ log(assets) + nation
+ + sector, family=poisson)

» cr.plots(mod.ornstein.pois.2, ’log(assets)’)
-]

The Box-Tidwell constructed-variable plot for power transformation
of an x also extends directly to generalized linear models, augmenting the
model with the constructed variable x;log,x,. For example, for Ornstein’s
interlocking-directorate Poisson regression, we may proceed as follows,

fiting an auxiliary model and obraining an added-variable plot for the
constructed variable (Figure 6.19):

> mod.ornstein.pois.cv <~ update(mod.ornstein.pois,
* . ~ . + I(assets*log(assets)))

> summary(mod.ornstein.pois.cv)

Cocfficienta:

Estimate Std. Error z value Pri>iz])
(Intercept) 2.14e+00 5.36e-02 39.89 < 2e-16
assets 2.81e~0D4 1.69e-05 16.656 < 2e-16

DIAGMOSING PROBLEMS IN LIMEAR AND GEMERALIZED LINEAR MODELS

Added-Varlabia Plot

10

=

interflocks |cthers

-20000 0 10000 20000

assets - loglassets)) | othera

Figure 6.19 Constructed-variable plot for the power rtransformation of
assets in Ornstein’s interlocking-directorare Poiscn regressicn.

I(assets * loglassets)) -2,18e-05 1.41e-06 =15.42 < 2e~16

> av.plots{mod.ornstein,pois.cv, *I(assets * log(asaets})’)
{11 1 2

The z test statistic for the constructed variable leaves little doubt about
the need for transforming assets. The constructed-variable plot supports
the transformanon,

An estimate of the transformation parameter can be obtained from the
coefficient of assets in the original Poisson regression (2.09 x 10-3) and
the coefficient of the constructed variable (—2.18 x 10-5):

L =218 x 105
A=t S tos 0043

that is, essentially the log transformartion, A = 0.

I conclude with a reexamination of the binary logistic-regression model
fit to Mroz's women’s labor-force participation data (in Chapter 5).
Recall that one of the predictors in this model—the log of the woman’s
expected wage rate {Lwgl—has a peculiar definition: For women in the
labor force {for whom the response variable in the regression, 1£p, is 1),
lug is the log of the actual wage rate; while for women not in the labor
force (for whom 1£p is 0), Lwg is the log of the predicted wage rate.

15, Essennally the same calcnlanon 1s the basis of Box and Tidwell’s ireranive procedure for finding
transformanons in linear least squares regression,

6.6 DIAGNOSTICS FOR GENERALIZED LINEAR MODELS 2

Component+Residual Plot

10 -

ComponenkResiduai(ip)

twg

Figure 6.20 Component + residual plot for lwg in the binary logistic regres-
sion for Mroz's women’s labor-force participation dara.

To obtain a component + residual plot for 1wg (Figure 6.20):

detach(Ornstein)

data(Mroz)

attach(Mroz)

mod.mroz <- glm(lfp ~ k5 + k618 + age + wc + hc + lug + inc,
family=hinomial)

cr.plots(mod.nroz, ‘lwg’)

VoW o+ VYW WV

The peculiar split in the plot reflects the binary response variable, with the
lower cluster of points corresponding to Lfp = 0 and the upper cluster
to 1fp = 1. [t is apparent that lwg is much less variable when Lfp = 0,
inducing an artifacrual curvilinear relationship berween 1wg and 1£p: We
expect firred values (such as the values of 1wg when 1£p = 0} to be more
homogeneous than observed values, because fitred values lack a residual
component of variation.

I leave it to the reader to construct component + residual or CERES
plots for the other predictors in the model.

HAPTER 7

Drawing Graphs

{_\’} ne of the strengths of S is its ability to produce high-quality sta-
«— * nstical graphs. This strength reflects the origin of S at Bell Labs,
long a center for innovation in statistical graphics.

From one point of view, standard S graphics are very simple: Making
graphs in S is like drawing in ink on a piece of paper. Once an object
is drawn, it cannot be erased {except by drawing over it, for example
in another color), and if a graph is to be changed in some fundamental
way, it Is necessary to redraw it. Interaction with S graphs is limired to
identifying points and locating coordinates. Graphics windows can also
be resized in the normal manner—by dragging a side or corner with the
mouse. There is currently a great deal of interest in extending graphics in
R and 5-PLUS. R, for example, may be linked to the XGobi and GGobi
systems for interactive three-dimensional graphics (Swayne et al. 1998),
and S-PLUS provides several extensions to the § graphics system. This
chapter, however, focuses on standard S graphics.

The simplicity of S graphics is also one of its attracrions. First, pursu-
ing the ink-on-paper analogy, the user can build up a complex S graph
in a sequence of simple operations. Showing you how to do this is the
principal task of the present chapter.

Second, although the graphical model in $ is simple, there are many
useful and sophisticated kinds of graphs that are already programmed
in 5. Frequently, there is a plet method that produces a standard graph
or set of graphs for objects of a given class (try plotting a data frame
or a linear-model object, for example). Indeed, one of the goals of the
car library is to provide functions thar make it easy to create graphs—
such as added-variable plots and component + residual plots—that are
useful in regression analysis (see, in particular, Chapters 3 and 6). In
most instances, you will be able to use an existing function to create the

DRAWING GRAPHS

graph that you waat in 2 single command; the present chapter shows
you how to proceed on those relatively rare occasions when you have to
innovate.

This chapter, as well as the following chapter on programming, deals
with general matters, and I have employed many of the techniques dis-
cussed here in the earlier parts of the book. Rather than introducing this
material near the beginning of the book, however, I prefer to regard pre-
vious examples of § graphs as background and motivation.

. A GENERAL APPROACH TO S GRAPHICS

It helps to think concretely about drawing graphs. When I want to con-
struct an especially complicated graph, for example, I generally start with
a rough paper sketch, showing all the elements of the graph. I can then
think more clearly about how to get § to draw what [need.

For the most part, the discussion in this chapter is confined to two-
dimensional coordinate plots, and a logical first step in drawing such
a graph is to define a coordinate system. Sometimes that first step will
include drawing axes and axis labels on the graph, along with a rece-
angular frame enclosing the plotting region; sometimes, however, these
elements will be omitted or added in separate steps, in order to assert
greater control over what is plotted. The guts of the graph generally con-
sist of plotted points, lines, text, and, occasionally, shapes and arrows.
Such elements are added as required to the plot. The current section
describes, in a general way, how to perform these tasks.

B Defining a Coordinate System: plot

In 5, plet is a generic function, the default method for which can be
used to make a variety of point and line graphs; plot can also be used
to define a coordinate space, which is my main reason for discussing it
here. The list of arguments to the R implementation of plet.default is
also a good starting point for understanding how to use the § plotting
system':
> args(plot.default)
function (x, y = NULL, type = "p", xlim = NULL, ylim = NULL,
log = "", main = NULL, sup = NULL, xlab = NULL, ylab = NULL,
ann = par(“aon"), axes = TRUE, frame,plot = axes,

1. The arguments to rhe 5-PLUS version of plot.default are |ess miorManve,

7.1 A GENERAL APPROACH TO § GRAPHICS

panel.first = NULL, panel.last NULL, col = par(“cel"),
bg = NA, pch = par{"pch"), cex = 1, lty = par("lty"),
lab = par{"lab"), lwd = paxr("lwd"), asp = NA, ...}

NULL

To see in full derail what the arguments mean, consult the documenta-
tion for plot.default?; the following points are of immediate interest,
however:

® The first two arguments, x and y, can provide, respectively, the hor
izontal and vertical coordinates of points or lines to be plotred and
also define a data-coordinate system for the graph. The argument x
is required. In constructing a complex graph, a good starting point 1s
often to use x and y to establish the range of the axes—which can

be as simple as specifying each of these arguments as a two-element
vector

® type, naturally enough, determines the type of graph to be drawn, of
which there are several: The default type, 'p*, plots points at the coor-
dinates specified by x and y. The character used to draw the points is
given by the argument pch; in R, but not in $-PLUS, peh may designate
a vector of characters, which may therefore differ for different points.
Specifying type='1" produces a line graph; specifying type='n’ sets
up the plotting region to accommodate the data but plots nothing.
Other types of graphs available in both R and S5-PLUS include: ‘v’
both points and lines; *o?, points and lines overlaid; 'h’, “histogram-
like™ vertical lines; and 's’ and ’S’, “stairstep-like” lines, starting
horizontally and vertically, respectively.

® The arguments x1im and ylim may be used to define the limits of the
horizontal and vertical axes; usually, these arguments are unnecessary,
because 5 will pick reasonable limits from x and y, but they provide an
addirional measure of control over the graph. For example, extending
the limits of an axis can provide room for explanatory text: contracring
the limits can cause some data to be omitted from the graph.

B The log argument makes it easy to define logarithmic axes: lLog='x’
produces a logged horizontal axis, Log="y’, a logged vertical axis, and
log="xy’ {or leg="yx'), logged axes for both variables.

® x1ab and ylab take character-string arguments. which are used to label
the axes; similarly, the argument main may be used to place a title
above the plot {or the title function may be called subsequently to
add a title). The default axis label, NULL, is potentially misleading, in

2. In general, 1n this chaprer, | will nor discuss all of the argumenrs availzble for che praphics func:
tions thar [describe. Details are available m che documensanon for R and §-PLUS.

DRAWING GRAPHS

that by default plot constructs labels from the arguments x and y. To
suppress the axis labels, either specify empty labels—e.g., x1ab=""—o0r
{in R) set ann=FALSE.

m Serting axes=FALSE and (in R} frame.plot=FALSE, respectively, sup-
presses drawing axes and a box around the plotting region.

m In R, the argument col may be used to specify the color {or colors) for
the points and lines drawn on the plot; in S-PLUS, col gives the color
for the plot as a whole. Color selection is described in Section 7.1.3.

m cex {for “character expansion”) specifies the relative size of points
in the graph; the default size is cex=1, In R, cex may be a vector,
indicating the size of each point individually; in 5-PLUS, cex is a single
value applying to all points (and text) in the graph.

m The arguments 1ty and Lwd select the rype and width of lines drawn
on the graph; see Section 7.1.2 for more information on drawing lines.

For example, the following command sets up the blank plot n
Figure 7.1, with axes and frame, but without axis labels:

> plot{c(0,1), c(0,1), type='n’, xlab="", ylab="")
>

Several arguments to plet, such as pch and col, take their defaults
from the par function. This function is used to set and retrieve a variety
of graphics parameters. For instance,

> par(’col’)
{1] "black"

ip

04 né 0B

02
il

oo

0.0 02 04 06 0.8 10

Figure 7.1 Empty plot, produced by plot(c(0,1), ¢(0,1), type=’n’,
xlab-__ll 1] i Ylab.; n Il) 3

7.1 A GENERAL APPROACH TO S GRAPHICS

To change the general defaulr plotting color to red, for example, we could
(in R) enter par(col=’red’}; in S-PLUS, colors are specified only by
number—see Section 7.1.3. To print our the current values of all the
plotting parameters, call par with no arguments:

5 paz()

§adj

(1] 0.5

$ann
[1] TRUE

Sask
(1] FALSE

$yaxs
[1] Hyu

Byaxt
[1] llsll

$vlog
[1] FALSE

Table 7.1 presents brief descriptions of some of the plotting parameters
that can be set by par; many of these can also be used as arguments
to plot and other graphics funcrions. For complete information on the

plotring parameters available in R and 5-PLUS, see the documentation
for par.

Adding Graphical Elements: axis, points,
lines, text, and so on

Having defined a coordinate system, we rypically want to add graphical
elements, such as points and lines, to the plot. Several functions useful
for this purpose are described here.

As you might expect, points and lines add points and lines to the
current plot; either function can be used to plot points, lines, or both,
but their default behavior follows their names. The argument pch is used
to select the plotring symbol, as the following example {which produces
Figure 7.2) illustrates:

> plot(1:25, xlab=’Symbol Number’, ylab="" type=’n’)
> far (pch in 1:25) points(pch, pch, pch=pch)

> lines(1:25, type='h’, lty=2)

>

240 DRAWING GRAPHS

Table 7.1 Some plotting parameters set by par: [R], R only; [S], S-PLUS only.

Parameter Default Value Purpose

adj 0.5 Text-string justification: 0 = left,
0.5 = centered, 1 = right

ann [R] TRUE Annotate graph

cex 1 Relative character expansion

cal *black’ [R], 1 [5] Default colox

las a Orientation of axis labels: 0 = parallel
1o axis

1ty 'solid’ [R], 1[5] Default hine type

lwd 1 Default line width

mar c(5.1, 4.1, 4.1, 2.1) Plot margins in lines of texr: bottom,
left, top, right

mfcol, mfrow c(i,1) Plot array, filled by columns or rows:
number of rows, columns

new FALSE If FALSE, next high-level plotting
function clears plots

pch 1 Plotting symbol: number or character

pin Current values Size of plot in inches: width, heighr

pty ‘m? Type of plotting region: ’m’ maximal;
's’ square

srt 0 Rorarion of character strings, in degre

usr Current values Range of data (“user™) coordinates:
X-min, x-max, y-min, y-max

Symbol Number
Figure 7.2 Plonting symbecls (pch) by number.

7.1 A GENERAL APPROACH TO § GRAPHICS

The plot function sets up the coordinate system for the graph. A for

loop cycles through the plotting symbols, numbered from 1 through 25,
and points is used to place each symbol on the plot at the coordinates
corresponding to its number. Finally, the lines function draws broken
vertical lines {selected by lty=2: see below) up to the symbols; because
lines is given only one vector of coordinates, these are intecpreted as ver-
tical coordinates, to be plotted against their indices as horizontal coordi-
nates (here, the integers from 1 through 25). Specifying type='h’ draws
spike-like (or histogram-like) lines up to the points.

As mentioned in the preceding section, in R {but not in 5-PLUS) pch
can be given a vector of symbol numbers, and line types may be specified
by name as well as by number; consequently, 2 more compact way of
producing the plot in Figure 7.2 in R would be:

> plot(1:25, pch=1:25, xlab='8Symbol Number’, ylab="")
> lines(1:25, type=’h’, lty='dashed’}
>

One can also plot arbitrary characters, as the following example
(shown in Figure 7.3) illustrates:

> plot(1:26, xlab=’letters’, ylab="", type=’a’, axes=F)
> box(}
> for (letter in 1:26)

+ points(letter, 27 - letter, pch=letters{letter])
>

Again, a more compact version in R replaces rhe for loop with a
single call to points; and in R, we can replace the separate call o

letters

Figure 7.3 Plomng characters—the lower case lerters.

DRAWING GRAPHS

e
ey

T T T
1 2 a 4

T
H - e

Lire Type {ity}

Figure 7.4 Line types (1ty), by number.

box, which places a frame around the plotting region, by the argument
frame.plot=T in the inital call to plot.

As shown in Figure 7.4, several different line types are available in §
plots:

> plot(c{1,?), <{0,1), type='n’, axss=F,

+ xlab='Line Type (lty)’, ylab="")

> box()

> axis(1, at=1:6) # x-axis

> for (1ty in 1:6) limes(c(lty, lty, lty + 1),
+ c(0, 0.5, 1), lty=lty)
>

The lines function connects the points whose coordinates are given by
its first two arguments, x and y. If a coordinate is Na, then the line drawn
will be disconunuous. Line type (1ty) may be specified by number {as
here) or, in R, by name, such as 'solid’, ’dashed’, and so on. Line
width is given by the Lwd parameter, which defaults to 1. The exact effecr
varies according to the graphics device used to display the plot, but the
general unit seems to be pixels: Thus, for example, 1wd=2 specifies a line
2 pixels wide.

Note the use of axis in creating Figure 7.4. The first argument to this
function indicates the position of the axis: 1 corresponds to the bottom
of the graph, 2 to the left side, 3 to the rop, and 4 ro the righe side.
The at argument controls the location of tick marks. There are several
other arguments as well. Of particular note is the labels argument: If
1abels=T, then numerical labels are used for the tick marks; otherwise,
labels takes a vector of character strings [e.g., c(’male’, ’'female’)}]
to provide tick labels.

7.1 A GENERAL APPROACH TO S GRAPHICS 2

@) ()

one

anather stnng

thrae
axampla laxi

Figure 7.5 Plotting character strings with text.

The text function places character strings on a plot; the function has
several arguments thar determine the position, size, and font thar are
employed. For example, the following commands produce Figure 7.5(a):

> plat(e(0,1), <(0,1), axes=F, type='n?, xlab="", ylab="")
bax{}
text (x=c(,2, .B), y=c(.2, .7},
c{’example text?, ’another string®))
title(’(a)’)

v v o+ v

I often find it helpful to use the locator function along with text
to position text with the mouse; locator returns a list with vectors of
% and y coordinates corresponding to the position of the mouse cursor
when the left button is clicked. Figure 7.5(b) was constructed as follows:

> plot(c(0,1), <(0,1), axes=F, type='n’, xlab="", ylab="")
> box()

> text{locatar{3), c{’one’,*two’,?three’))
» title(’ (b))
»

To position each of the three texr strings, I moved the mouse cursor to a
point in the plot and clicked the left butten. Called with no arguments,
locator () returns pairs of coordinates corresponding to left clicks, until
the right mouse button is pressed.

Another useful argument to text, not employed in these examples, is
adj, which controls the horizontal justificarion of texu 0 specifies left
justification, 0.5 centering (the initial defaulr, given by par), and 1 righr
justification. In R, if two values are given, adj=c(x,), then the second
controls vertical justification.

DRAWING GRAPHS

{a) arrows (b) sagmeants

Figure 7.6 The arrows and segmeats funcricns.

As their names suggest, the arrows and segments funcrions may be
used to add arrows and line segments to a plot. For example, the follow-
ing statements produce Figure 7.6{a) and (b):

plot{c(1,5), c(0,1), axes=F, type=’n’, xlab="", ylab="")
arrows(x0=1:5, yO=rep(0.1, 5),

x1=1:5, yl=seq(0.3, 0.9, len=5), code=3)
title(’(a) azxrows?)

Vot vV

plot(e{1,5), c(0,1), axes=F, types’n’, xlab="", ylab="")
segments(x0=1:5, yO=rep(0.1, 5),

x1=1:5, yl=seq(0.3, 0.9, len=5))
title(’(b) segments’) .

LR B

The argument cede=3 to arrows produces double-headed arrows in R.

Arrows and Line Segments in S-PLUS

The 5-PLUS implementation of arraws does not support the code argu-

ment and draws only single-headed arrows. As welil, the arguments to
arrows and segments in 5-PLUS are called x1, y1, x2, and y2 (rather
than x0, vy0, z1, and y1).

Another self-descriptive function is polygon, which takes as its first
two arguments vectors defining the x and y coordinates of the vertices of
a closed figure; for example, to produce Figure 7.7:

> plot(c(0,1), e(0,1), type=’a’, xlab="",k ylab="")
> polygon(c(.2,.8,.8), (.2,.2,,8), col=1)

> polygon(c(.2,.2,.8), c{.2,.8,.8))
>

The col argument, if specified, gives the color to use in filling the polygon
(see the discussion of colors in Section 7.1.3)."

7.1 A GENERAL APPROACH TO § GRAPHICS

2

0é

04

02
1

oa

Figure 7.7 Filled and unfilled triangles produced by polygon.

The legend funcuon may be used to draw a legend on a plot; the
function has a number of arguments, and its use differs somewhar in R
and S-PLUS. An illustranon using R appears in Figure 7.8:

> plot{c(1,5), =(0,1), axes=F, type='n’, xlab="" 6 ylab="",

+ frame.plot=T)

> legend(locator(l), legend=c('group A’, ’group B’, ’group C’),
+ lty=1;3, pch=l:3)

>

Note the use of locator to position the legend: I find thar this is often
easier than computing where the legend should be placed. In S-PLUS, the
pch argument would be replaced by marks.

—— group A
e - gmmB
- group G

Figure 7.8 Using the legend function.

DRAWING GRAPHS

. Specifying Colors

Using different colors is often the most effective means of distinguish-
ing graphical elements such as lines or points. Although 1 am limited to
monochrome graphs in this book, the specification of colors in S graphs
is nevertheless straightforward to describe.

Plotting functions such as lines and points specify color via the col
argument; in R, the col argument is vectorized, allowing you to select a
separate color for each point. In both R and $-PLUS, colors may be spec-
ified by number. The following commands display the numbered colors
in R:

» piechart(rep(l, length(palette())), col=palette(}))
and in S-PLUS:

> piechart(rep(1,16), cal=1:18)

In R, the numbered colors are given by a color palette; calling the
palette function with no arguments prints out the current palette:

> palette(}

[1] "black" rad" "green3" 'blue" “eyan" '"magenta
(7] "yellow" ‘"yhite"

This function may also be employed to reset the color palette. Like-
wise, the numbered colors employed for S-PLUS graphsheet plots may be
examined and reset in the Color Schemes dialog box, accessible through
the Options menu.

That is the end of the color story for standard S-PLUS graphs, but R is
more flexible: First, colors in R may be referenced by name as well as by
number. For example, using the default palette, col=>red’ is equivalent
to col=2. The full ser of color definitions appears in the editable file
rgb.txt, which resides in the R etc subdirectory.

Second, R permits you to specify colors as RGB (red, green, blue)

values. For example, the rainbow function creates a spectrum of RGB
colors:

> rainbow(10)

(1] "#FFO0DQ0" "#FFI900" "#CCFFOO" “#33FF00" "#0DOFF66" "#OOFFFF"
(7] "#0D0E6FF" "#3300FF" "#CCOOFF" "#FF0099"

Similarly, the gray function creates gray levels from black {gray(@}] to
white [gray (1}]:

> gray(0:8/8)
(1] "#000000" "#202020" "#404040" "#606060" "#2808080" “#AFYFOF"
(7] "#BFBFEF" "#DFDFDF" "#FFFFFF"

The color codes are represented as hexadecimal (base 16) numbers of
the form "#RRGGRE", where each pair of hex digits encodes the intensity

of one of the three primary colors—from 00 (i.e., 0 in decimal) to FF
{i.e., 255 in decimal). To get a sense of how this works, try each of the
following commands:

> piechart(rep(1,100), col=rainbow(100), labels=rep("", 100))

> piechart(rep(1,100), col=gray(0:100/100), labels=rep("", 100))

PUTTING IT TOGETHER: EFFECT DISPLAYS .

As I explained, most of the graphs that you want to create in routine
data analysis are easily obtained in S. The aim of this chapter is to show
you how to construct the small proportion of graphs that require custom
work. By their nature, such graphs are diverse, and it would be futile
to try to cover their construction exhaustively. Instead, I will develop an
example that is sufficiently rich to demonstrate many of the techniques
described in the preceding section.

“Effect displays” are graphical representarions of linear or generalized
linear models thar are most useful for understanding models with inter-
actions {see Fox, 1987, for a general description): Briefly, effect displays
focus on the high-order terms in a linear model, showing each such term
along with its lower-order relarives and setting other terms in the model
to typical values.

Effect displays are perbaps best understood through an example, so
let us consider a logit model fit by Cowles and Davis (1987) to data
on volunteering for psychological experiments. These authors were inter-
ested in the personality facrors that predispose individuals to volunteer;
in particular, they expected that the standard personality dimensions of
introversion-extraversion and stability-neuroricism would interact in their
effect on volunteering. Both of these personaliry dimensions were assessed
by scales that take on integer values between O and 24. Cowles and
Davis’s data, on 1421 subjects, are in the data frame Cowles in the car
library:

> library({car)
» data(Cowles)
» dim{Cawles)
[1] 1421 4

> Cowles(sort(sample (1421, 10)),] # sample 10 obs.

neuroticism extraversion sex volunteer
108 14 8 female na
283 10 12 female no
311 LY 16 wmale no

355 22 13 male 1o

DRAWING GRAPHS

1070 14 12 female na
1071 4 8 female no
1206 15 13 male yes
1222 12 2 male yes
1304 10 9 female yes
1416 4 10 female yes

Cowles and Davis fit the following model to their data:

> mod.cowles <~ glm{valunteer ~ Neuroticism * extraversion + sex,
+ data=Cowles, family=binamjal)
> summary(mod.cowles)

Coefficients:

Estamate Std. Error z value Pr(>|z|)
(Intexcept) -2.36820 0.50104 =-4.71 2.5e—086
negroticism 0.11078 0.03763 2.94 0.0032
extraversian 0.16682 0.03770 4.42 9.7e-06
sexmale -0.24715 0.11161 =2.21 0.0268

Heuroticism:extraversion -~0.00855 0.00293 -2.82 0.0035

The anticipated interaction between neuroticism and extraversion
proves highly statistically significant, but it is not easy to appreciate the
nature of the interaction directly from the coefficients of the model: We
can see that volunteering is positively related to each of these predictors
when the other predictor is 0 and that the slope for each predictor
declines as the value of the other predictor increases. Beyond that, how-
ever, we need to make mental calculations to interpret the interaction.
The main effect of sex is also statistically significant, with males less
inclined to volunteer than females, at fixed levels of neuroticism and
extraversion. The sex main effect is much easier to interpret from its
coefficient than the interaction is: When the probability of volunteering
is near .5, thar probabilicy is approximately —.247/4 = — 062 lower for
males than for females.

Because the structure of the model is relatively simple, with two guan-
titative predictors (neuroticism and extraversion) and a factor (sex),
one approach that works here is to plot the full response surface. I pro-
ceed by calculating fitted values under the model for all combinations of
the predictors; the 25 x 25 x 2 = 1250 combinations are conveniently

generated by the expand.grid function, and predict can then be used
to find the fitted values:

> neuroticism <- 0:24
> extraversion <- 0:24
» gex <- c(’male’, ’female!’)

7.2 PUTTING IT TOGETHER: EFFECT DISPLAYS

> graph.data <- expand.grid{aneuroticism=neuroticism,

+ extraversion=extraversion, sex=sex)
> graph.data$fit <- predict(mod.cowles, newdata=graph.data,
+ type='response?’)
> graph.data
neuroticism extraversion sex fic
1 0 0 male 0.068795
2 1 0 male 0.076239
3 2 0 male 0.084416
- 3 0 male 0.093382
5 4 0 male 0.103192
6 5 0 male 0.113%04
7 6 0 male 0.128572
a8 7 0 male 0.138248
9 a 0 male 0.151982
10 2] 0 male 0.166816
1248 22 24 female 0.393356
1245 23 24 female 0.371051
1280 24 24 female 0.349283

Supplying type=’response’ as an argument to predict produces firted
values on the probabilicy scale, rather than on the logit scale.
I proceed to construct three-dimensional plots of the logisric-regression

surface, using the persp function to graph the data for males and females
separately; the result is shown in Figure 7.9:

» prab <~ matrix(graph.dataBfit{graph.data$sex=="male’], 25, 25)

> persp(neuroticism, extraversion, prob,

+ phi=30, theta=45, expand=0.65, d=2, shade=0.75,

+ ticktype='detailed’, zlab=’Probability(Volunteer)’,

+ main=’Males’)

prob <- matrix(graph.data$fit([graph.data$sex=='femals’], 25, 25)

persp(neuraticism, extraversian, prob,
phi=30, theta=45, expand=0.65, d=2, shade=0.75,
ticktype=’detailed’, zlab='Probability(Volunteer)?,
main=’Females’)

Y o+ + WV

To draw these graphs, the fitted probabilities for males, and then for
females, are extracted, and each set of fitted values is reshaped into a
25 x 25 matrix. The first two arguments to persp pertain to the variables
defining the “floor” of the figure—here the predictors neurcticism and
extraversion, each a vecror of values running from 0 to 24; the vertical
values, defining the height of the surface at each point on the predictor
grid, are given by the matrix of fitted probabilities, in prob. The remain-
ing arguments control the orientation and appearance of the graph (see
the documentation for persp).

DRAWING GRAPHS

hamungmﬂ.ggqaq%d

0
Figure 7.9

|

Fitted probabiliry of volunteering as a function of extraversion,
neuroticism, and sex.

{l

Surface Plots in S-PLUS

The graphs in Figure 7.9 were drawn by the persp function in R; the 5-
PLUS version of persp has somewhat different arguments. The wireframe
function in the S-PLUS trellis library {(a version of which will likely
eventually find its way into the lattice library in R} can also draw threp-

I dimensional surface plots of this kind.

A different strategy for plotting the response surface in a two-
dimensional graph is employed in Figure 7.10: Here I let one of the

7.2 PUTTING IT TOGETHER: EFFECT DISPLAYS

Smably-Npuntcessm

0.4 048 0.8
i |

Frobebility of Voluntaadng

0.2
|

T
0 6 12 18 24

Introverstor-Extraversion

Figure 7.10 Effect display for the interaction between extraversion
and neuroticism. Each line represents a different value of
neurcticism (N}, given at the right of the plot.

predictors, neuroticism, range over its values, setting the other predic-
tor, extraversion, successively to the values 0, 6, 12, 18, and 24._ Instead
of drawing separate plots for males and females, I take advantage of
the fact that sex enters the model additively and simply average over
the two categories of this factor (which may be thought of as obtaining
fitted values for a group composed half of males and half of females).
The vertical bars on the plot give £1 standard error around the fit at
selected points; these error bars are computed on the logit scale and then
translated to the probability scale.
Ler us consider, step by step, how Figure 7.10 is constructed:

1. The first step is to compute the quantities to be plotted. I could use
the predict funcrion, working on the logit scale and subsequently aver-
aging the values obtained for women and men, but [also want standard
errors for the averages. Instead, I construct a model matrix at the points
in the predictor space where fitted values are desired, using the value
0.5 for the dummy regressor for sex and adding a column of 1s for the

constant and a product column for the neurcticism x extraversion
interacrion:

> extraversion <- 0:24

> neuroticism <- seq(D, 24, by=6)

> graph.data <- expand.grid(neuroticism=peuroticism,

* extraversion=extraversion)

» X < cband(constant=l, as.matrix(graph.data), sex=0.5,

+ fleuro.extra=graph.datadnevroticism * graph.datalextraversion)

DRAWING GRAPHS

> X

constant neuroticism extraversion sex neuro.extra
1 1 Q 0 0.5 Y]
2 1 B 0 0.5 0
3 1 12 Q0 0.5 0
4 i 13 0 0.5 0
& 1 24 0 0.5 0
6 1 0 10.5 0
7 1 6 10.5 6
8 1 12 1 0.5 12
9 1 18 1 0.5 18
10 1 24 10.56 24
121 1 0 24 0.5 0
122 1 6 24 0.5 144
123 1 12 24 0.5 288
124 1 18 24 0.5 432
125 1 24 24 0.5 576

2.* Let X, represent the model matrix for the predicted values; the
predicted values on the logit scale are then simply X,b, where b is the
vector of logistic-regression coefficients. Similarly, the standard errors at
the ficted values are the square roots of the diagonal entries of X,V X5,
where V,, is the covariance matrix of the coefficients; &1 standard error
around the fitted values represents an approximate pointwise 2/3 confi-
dence interval for the population logistic-regression surface. Finally, both
the fitted values and the endpoints of the intervals are translated to the
probability scale using the relationship p = 1/{1 + exp(—logit)):

» logit < X %% coefficients(mod.cowles)

» se <= asqrt(diag(X ¥%=% Var(mod.cowles) ¥*J t(X)))
> prob <- matrix(1/(l+exp(-logit)), 5, 25,)

> low <= matrix(1/(l+exp(-(logit - se))), &, 25)
> high <- matrix(l/(l+exp(-(logat + se))), 5, 25)
> prob

(.1] (,2] (,3] [,4] (.5l (.€] (.71
[1,] 0.077146 0.089892 0.10450 0.12118 0.14009 0.16142 0.18529
(2,1 0.139780 0.154254 0.16993 0,18685 0.20504 0.22450 0.24526
(3,1 0.240040 0.251943 0.26423 0.27690 0.28993 0.30332 0.31705
(4,] 0.380411 0.383450 0.38650 0.38955 0.39262 0.39569 0.39878
[5,] 0.544098 0.534548 0.52497 0.51538 0.50577 0.49616 0.48655

[,22] (,231 [,24a] (,25]
[1,]1 0.73524 0.76641 0.79494 0.82080
[2,] 0.64758 0.67347 0.69834 0.72210
(3,1 0.54871 0.56455 0.58026 0.59581
[4,] 0.44584 0.44802 0.45221 0.45540
[5,]1 0.34741 0.33875 0.3301% 0.32174

The 5 rows and 25 columns of the matrices prob, low, and high
correspond respectively to the § values of neurcticism (0, 6, 12, 18,

7.2 PUTTING IT TOGETHER: EFFECT DISPLAYS

and 24) and 25 values of extraversion {0, 1,2, ..., 24) ar which the
fir is evaluared.

Although this step is a bit more difficult, the aim is simple: to produce
fitted values on the logit scale (logit) and their standard errors (se)
for each combination of values of the predictors. The fitted values on
the logit scale are then translated to the probabilicy scale {prob). The
standard errors are used to calculate +1-standard-error intervals around
the fitted values on the logit scale, and these limits are also translated to
the probabilicy scale (low and high).

3. Next, I set up a coordinate system for the graph, making sure to
include the confidence limits around the fit (Low and high) and leav-
ing room for explanatory text to be placed on the plot {high + 0.05;
x1lim=c(0,30)]. The argument xaxt=’n’ suppresses the horizontal axis.

This step and the remaining steps are shown {cumulatively) in the panels
of Figure 7.11:

> plot(range(extraversion), range(c(low, high + 0.08)), type=’a’,
+ xlab=Intraversion-Extraversion?,

+ ylab=’Probability of Volunteering?’,

* xaxt=’n’, xlim=c(0,30))
>

4. I use the axis function to add the horizonral axis ro the plot, plac-
ing tick marks from O to 24 {and therefore allowing extra room to the
right, since the horizontal axis runs to 30):

> axis(1l, at=seq(0, 24, by=6))
-

5. Looping through the five values of neuroticism, I draw a line on

the graph for each value, and then place a label immediately to the right
of the line, using the text function and setting adj=0°:

» for (neuro in 1:5){

+ lines (extraversion, prob[neuro,])

, text (25, prob[neura,25],

+ paste(’N = *, neuroticism(neuro]),
* adj=0)

+)y

>

6. Next, I use the arrows function in R to place error bars around
some of the fitted values; the variables extra and neuro hold the indices
at which error bars are placed. The argument code=3 to arrows pro-
duces double-headed “arrows,” angle=90 specifies arrow “heads” at

3. Loops and other programming canstructs are described in the next chapter.

DRAWING GRAPHS

(a) step 3 (b) step &
on on
£ E
5 O 3 ©-
£ K]
Z g 5 @ |
> 2 =
T =T -6 -
2 o] 5 =
9)
£ 3- g g4
O o
T] 1 1
0 5 12 18 24
niroversion-Extraverson ntroversun-Exiraverson
(c) step B (dystep &
'g o N= [v] g o«
w [=] -1} L=
_g N= 6 .E
3 w | L w
2 o N= 12 -§ =
T - | Ne=t18| 5 «
=] [~
] Ne2d F
[7]
£ 37 £ 3
& d
1 | I 4 I
0 8 12 18 24
nroverson-Exiraversion niraverswn-Bctraversan
{e)step 7
= Sty N ragsm
E [
i
&
B
=
2
=
-
=
-
H
g
i

nirovarswon-Baraverson

Figure 7.11 Successive steps in building the effect plot.

right angles to the shafts, and length=0.05 controls the length of the
arrow heads:

> extra <- seq(l, 25, by=6)

> for (memro 1m c(l, 3, 8)){

+ arrows{extraversion[extral], low[neuro, extral,
extraversion[extral , high[neuro, extral,
angle=90, code=3, lty=2, length=0.05)

}

v + + +

P T N N S

Plotting Error Bars in S-PLUS

Recalt that the arrows function in S-PLUS is not as capable as in R. In
S-PLUS, we can plot error bars as vertical lines with segments or write
our own simple function to add fancier error bars to plots.

7. The final step is to place the label *Stability-Neuroticism® at
the upper right of the graph. I use the mouse {via the locator function)
to set the label on the plot; adj=1 right-justifies the rext, making it easier

to position the label, and cex=0.75 prints the label smaller than the rest
of the text:

> text(locator(l), ’Stability-Neuroticism’, adj=1, cex=0.75)
>

GRAPHICS DEVICES .

Grapbics devices in S send graphs to graphics windows, to files, or to
“hard-copy” devices such as printers and plotters. It almost always makes
sense to create graphs in windows, saving them to files, sending them
to hard-copy devices, or copying and pasting them into other programs
as desired. A new graphics window may be created directly in the Win-
dows version of R with the windows function, and in S-PLUS with the
graphsheet function.*

It is sometimes useful to have multiple graphics windows so that
graphs can be juxtaposed on the screen. An alternative is to create several
graphs on the same device [e.g., using par (mfrow=c(rows, colums)],
to use graphsheets with multiple pages in S-PLUS, or to acrivate the
graphics history in R. All these mechanisms are explained in the R and
S-PLUS documentation.

If multiple devices are defined, only one is current at any given time.
High-level graphics functions, such as_plot, automartically open a graph-
ics window if there is no current graphics device or clear the current
device. The function dev.1ist returns a list of all open devices, dev. cur
returns the number of the current device, and dev.set sets the current
device. A newly created graphics device becomes the current device.

An R graphics window or S-PLUS graphsheet “page”™ may be copied
to the clipboard when its window has the focus and then pasted into

4 There are other funcrions that create graphics devices, including trellis.device, which should
be vsed with trellis graphics {created by functions in the trellis library in S-PLUS and lattice
libeary im R).

DRAWING GRAPHS

another application, such as a graphics editor or word-processing pro-
gram. Almost ail of the graphs in this book were created in this manner.
A graph also may be saved to a file in a variety of graphics formats
or printed via the File menu (or, in R, by right-clicking in the graphics
window).

Writing Programs

This book is principally about using S to fit linear and generalized
linear models, tasks that can be accomplished routinely by using the
built-in capabilities of S and readily available libraries. Moreover, existing
statistical procedures programmed in S extend far beyond the realm of
linear and generalized linear models. Nevertheless, the main advantage
of working in a statistical programming environment—rather than with
a statisrical package—is programmabilicy.

S is a full-fledged programming language, with a variery of data and
control structures. My object, however, is not to provide the background
required to become an accomplished S programmer, but rather to convey
the basic programming concepts and procedures that will enable you to
use 5 more effectively in routine (and not-so-routine) dara analysis. I have
in mind primarily the “quick-and-dirty™ programs that can facilitate your
work in S rather than polished programs written for general use.

Further information may be found in several places, not least the doc-
umentation for R and S$-PLUS, In addition, Venables and Ripley (2000)
is an excellent advanced source on programming in S.

B The first section of the chapter reviews function definition in S.

8 Matrix algebra is the common language of much of applied statistics.
The second section shows how to perform a variety of mattix opera-
tions in S.

B The S programming language provides a range of control structures.
The third section takes up conditionals, loops, and recursion. This sec-
tion also includes an extended illustration employing the programming
techniques described in the chapter.

WRITING PROGRAMS

@ The fourth section introduces the apply function and its relatives,
which can be useful for avoiding loops in S programs, producing
cleaner, and sometimes more efficient, programs.

8 The fifth section describes class-based, object-oriented programming
in S.

B The concluding section of the chapter provides some general advice
about writing S programs.

The material in this chapter could have been placed earlier in the book,
and from one point of view it would have been more logical to do so:
After all, in the course of the preceding chapters, I occasionally intro-
duced examples that made use of the programming concepts and struc-
tures described here. I feel, however, that this earlier marerial morivates
the discussion in this chapter.

The data structures that we will require in this chapter—vectors, matri-

ces, data frames, and lists—are already familiar (and were described in
Chapter 2).

. DEFINING FUNCTIONS

S is a funcrional programming language, and writing programs in
S entails defining functions. Let us begin with 2 simple but useful exam-
ple: Take a look again at Figure 6.5 on regression diagnostics. This is
a scatterplot of hat values versus studentized residuals from a linear
model; the points are plotted as circles with areas proportional to Cook’s
distances. Imagine that you want to draw this graph rourinely for linear
and generalized linear models, so that it makes sense to encapsulate the

construction of the graph in a function. The following function does the
trick, with a few bells and whistles:

» influence.plot <~ function(model, scale=10, col=c(1,2),
+ labels=names (ratod), ...){
hatval <— hatvalues(model)
rstud <— rstudent(model)
cook <- sqrt(as.vector{cookd(model)))
as.vector is needed for 83

scale <— scala/max(cook)
p <= length{coef(model))
n <~ length{rstud)
cutoff <- sqrt(4/(n ~ p)) # for sqrt of Cook’s D
plot(hatval, rstud, xlab=’Hat-Values?’,

ylab="Studentized Residuals’, type='n’, ...)
abline(v=c(2, 3)#p/n, 1lty=2) # reference lines
abline(h=c(-2, 0, 2), lty=2) # reference lines

P T I

8.1 DEFINING FUNCTIONS

+ for (i in 1:n) # loop over observations

+ points¢hatval[il, rstudli], cex=scalescook[i].

-+ col=if (coek[i] > cutoff) col[2] else ecol[l])
+ if (labels[1] != FALSE) identify(hatwval, rstud, labels)
-+ }

>

In practice, I would not enter a function definirion directly at the com-
mand prompt, but rather would use an editor to compose the function,
as explained in Chapter 1.

All the techniques employed in the influence.plot function, includ-
ing control structures such as loops (for) and conditionals (if), are dis-
cussed later in the current chapter. Let us concentrate, for the present, on
the general structure of this example.

Functions are defined using the functien special form. The argu-
ments to function specify the formal (or dummy) arguments of
influence.plet, which include model, scale, col, labels, and .. .;
these dummy arguments are matched to real arguments when the func-
tion is called, for example, in the following command:

> influence.plot(Im(prestige ~ income + education, data=Duncan))

The equals sign (=) is used to assign the default value of an argument in
the function definition {e.g., 10 for scale), just as it is used to specify
a value for the argument when the function is called. Here the result
returned by the 1m function matches the argument model; scale, col, and
labels are unspecified and hence receive their default values; and . . . is
simply missing from the function call.

The formal argument . .. is special, in thar it may be matched by any
number of real arguments when the function is called; within the func-
tion, . .. may be referenced as a local variable. In influence.plot, ...
serves to “soak up” extra arguments to be passed to the plet function;
failing to specify ... when influence.plot is called simply means that
no additional arguments are passed to plot. Variables defined within the
body of the function are also local to the function.

When a function is called, its arguments may be specified by posi-
tion (i.e., in the order given in the function definition}, by name, or by
both. The usual convention is to specify the first one or two arguments
by position and any remaining arguments by name; if arguments are
skipped (either because they are not needed or because default values are
to be used), then the remaining arguments must be specified by name, as
must arguments thar are supplied our of order. Named arguments may be
abbreviared as long as the abbreviation is unique. For example, because
no other argument to influence.plot begins with the letter s, the argu-
ment scale may be abbreviated to scal, sca, sc, or s.

WRITING PROGRAMS

Although formal arguments are associated with real arguments when
the function 1 called, an argument is not evaluated until its first use.
At that point, the argument is evaluated in the environment from which
the function was called. In contrast, default values for arguments, if they
exist, are evaluated in the environment of the function itself. This pro-
cess of “lazy evaluation” frequently proves efficient and convenient—for
example, the default value of one argument can depend on another argu-
ment or even on a value compured in the body of the funcrion (e.g., the
default value of labels in influence.plot references the local variable
rstud)—but it can occasionally trip up the unwary programmer.

The remainder of the function definition is an 5 expression defining the
body of the function. This is usually a compound expression, enclosed
in braces, { }. The value returned by the function may be given in an
explicit call to the return function or—more typically—is the value of
the last expression executed in the function body.

The details of influence.plot should be largely self-explanarory, but
note the following:

B The call to plot sets up the coordinate space for the graph.

8 The function =bline is used to place vertical and horizontal reference
lines on the plot—the former at twice and three times the average hat
value, and the latter at studentized residuals of —2, 0, and 2.

B So that the function will work both in R and in 5-PLUS, the circles
are plotted by calls to peints in a for loop over the observation

indices 1 to » (rather than in a vectorized call to points, as would be
appropriate only in RJ.

8 The relative diameters of the circles are controlled by the cex (char-
acter expansion) argument, set to be proportional to the square root
of Cook’s distance; the scale factor establishes the general size of the
circles. {S3 requires that observation names be stripped by as.vector
from the Cook’s distances, before these quantities are passed to cex.)

8@ The circles are plotted in different colors, depending on whether
Coolc’s D exceeds the cutoff 4/(n — p); the colors to be used are given
by the cel argument to the funcrion.

B Finally, unless the 1abels argument is set to FALSE, the identify func-
tion is called to label points interactively; by default, the point labels
are taken from the observation names associated with the studentized
residuals, Because identify returns the indices of the identified points,
and because this result becomes the value returned by the i f statement
that terminates the function, influence.plot returns these indices as
well. Remember that points are identified by clicking the left mouse
button; to exit from influence.ploet, click the right button.

8.2 WORKING WITH MATRICES

T+ o i H
o] minisfer !
] - ' i
£ JE P R L ESRLECTTEE
g} 1 v
7 - 1 1
T - R : FlFIanglnear—
g | g H
g 23 ™ Jl 1 ' =
B orfuiasaatogunnnmmennn s EERE—— PRSI E R
S = Rl : !
g -] % : :
TR & . ootk D
porter '. :
9 S ' :
1 T =— H T
0.08 - Q10 0.18 0.20 025

Hat-Values

Figure 8.1 Graph produced by the inflnence.plot function. Several peints
were identified interactively with the mouse.

Let us try out influence.plot on Duncan’s occupational-prestige
regression:

> library(car)
> data(Duncan)

> influence.plot (lm{prestige ~ income + education, data=Duncan),
+ ylim=c(-3, 4), col=gray(ec(0.5, 0)))
[11 6 8 16 27

The resulting graph appears in Figure 8.1. [ser col=gray(c(.75, 0)
(1.e., medium gray and black) because the default colors in R (black and
red) would not reproduce properly in the book; specifying ylim=c(-3,
4) expands the range of the vertical axis and is present to illustrate the
use of an argument passed down to plot, via

WORKING WITH MATRICES* '

S incorporates extensive facilities for matrix and linear algebra. This sec-
tion concentrates on basic matrix operations.
Let us begin by defining some matrices via the matrix function; recall

that matrix fills matrices by columns, unless the argument byrow is set
to TRUE:

» & <= matrax(e(l, 2, -4, 3, 5, 0), 2, 3)
> B <- matrix(l:6, 2, 3)
> C ¢~ matrix{e(2, -2, 0, 1, -1, 1, 4 ,4, -4), 3, 3, byrou=T)

WRITING PROGRAMS

[,11 [,21 [,3]
[1,] 1 -4 5
[2.] 2 3 0

[,11 [,21 [,3]
[1,] 1 3 5
[2.] 2 4 6

(,11 [,21 [,3]
[1,] 2 =2 0
[2,] 1 -1 1
(3,1 4 4 -1

Matrix addition, subtraction, negation, and the product of a matrix
and a scalar use the usual operators; addition and subtraction require

matrices of the same order:

>A+ B

(.11 [,2] [,3]
[1,] 2 -1 10
(2,1 4 7 6

>A~B

(.11 [,2] [,3]
[1.1 0 -7 4]
[2.]1 0 -1 -6

> A+ C # A and C not of same oxder
Error in A + C : non-conformable arrays

> 2%A

[.11 [,21 [,3]
[1,] 2 -8 1p
[2,] 4 6 0

> ~A

[,11 [.2] [,3]
1,7 =1 4 =5
[2,] -2 -3 0

Using * to multiply two matrices forms the element-wise product

(for matrices of the same order). The srandard marrix product is formed

with the inner-product operartor, %*%, which requires thatr the matrices
be conformable for multiplication:

> A Y C

[,11 [,21 L,3]

[1.] 18 22
[2,1 7 -7

=24
3

8.2 WORKING WITH MATRICES

In matrix products, vectors are treated as row or column vectors, as
required:

> a <- rep{l, 3)
> b «<- c{l, 5, 3)

> C Y a

[.1]
[1,] 0
[2,] 1
[3.] 4
>a ¥+t C

[,11 [,2]1 [.3]
[1.1 7 1 -3

>atb %
[.1]
[1,] 9

The last example illustrates that the inner product of two vectors of the
same length, a %% b, is a scalar {actually, a 1 x 1 matrix). The outer
product may be obtained via the outer function:

» outer(a, b)

[,11 [,21 [.3]
[1,] 1 B 3
[2.] 1 5 3
2,1 1 5 3

The cuter function may be used with operations other than multipli-
cation; an optional third argument, which defaults to ’#’, specifies the

function to be applied to pairs of elements from the first two arguments.
The function t returns the transpose of a matrix:

> t(B)

[,1]1 [,2]
[1,] 1)
2,1 3 4
(3.1 & 6

The solve function provides the inverse of a square, nonsingular
matrix:

> aolve(C)

(.11 [,2] [,3]
[1,]1 -2.4227e~-16 0.5 1.2500e-01
[2.] ~5.00008-01 0.5 1.2500e-01
[3,] -5.0000e-01 1.0 6.2063e-17

As is typically the case in computer calculations with real numbers, there
are small rounding errors, since the first and third diagonal entries should

WRITING PROGRAMS

be 0; rounding the result makes it easier to read:

> round(solvel(C), 3)

[,11 [,21 [,3]
[1,] 0.0 0.5 0.125
[2,] -0.5 0.5 0.125
[3,] -0.5 1.0 0.000

The fractions function in the MASS library is also helpful here:

» library(MASS)

> fractiona(solve(C))
[,11 [.21 [,31

[1,] 0 1/2 1/s8

[2,]1 -i/2 1/2 /8

[3,] -1/2 1 Q

The solve funcrion may be used more generally to solve systems of
linear simultaneous equations; for example, to solve Cx = b for x:

> salve(C, b)
[1] 2.875 2.375 4.500

In this example, the answer 15 simply x = C~'b, as we may easily verify:

> saolve(C) %% b
[,1]

[1,] 2.875

[2,1 2.375

[3,] 4.500

If the system of equations is overdetermined, solve pravides the least
squares fit; for example, in

> D <= matrax{c(1l, 2, 3, 6, 7, 8), 3, 2, byrow=T)
> D

[,11 [.2]1
[1,] 1 2

> solve(D, b) # 3 inconsistent eqns., 2 unknowns
[1] -1.7248 1.9494

we obtain (D'D)™'Drb.
Underdetermined systems produce an error:

> msolve(A, c(1,2)) # 2 egns., 3 unknowns

Error in solve.default{A, c(1, 2)) : singular matrix ‘a’ in solve

Consider, now, finding the least squares coefficients for a linear
model with model matrix X and response vector y, using the Canadian

8.2 WORKING WITH MATRICES

occupational-prestige dara as an example:

data(Prestige)
attach(Prestige)

X <- cbind(l, as.matrix(Prestigel,1:31)) # attach the constant
y <- Prestigel[,4]

v v Vv

v

%[1:5,] # first 5 rows
education income women

GOV. ADMINISTRATORS 1 13.11 12351 11.16
GENERAL . MANAGERS 1 12.26 25879 4.02
ACCOUNTANTS 1 12.77 8271 15.70
PURCHASING .OFFICERS 1 11.42 8865 9.11
CHEMISTS 1 14.62 8403 1l.68

> y # prestige
[1] e8.8 €9.1 &3
[13] 53.8 62.2 7

tﬂul»‘!-

6.8 73.5 77.6 72.6 78.1 73.1 68.8 62.0 60.0
55.1 82.3 58.1 58.3 72.8 84.6 59.6 66.1 87.2
[97] 48.9 35.9 25.1 26.1 42.2 35.2

Notice that selecting a single column from the data frame (here, col-
umn 4, which is prestige) produces a vector rather than a one-column
matrix: In indexing, S automatically drops dimensions with extent 1. We

can circumvent this behavior by specifying drop=F (see Section 2.3.4 on
indexing):

> Prestigel,4, drop=F]

preatige
GOV . ADMINISTRATORS 68.8
GENERAL . MANAGERS €9.1
ACCOUNTANTS 63.4
TYPESETTERS 42.2
BOOKBINDERS 36.2

In this case, however, either a vector or a one-column matrix will do.
The usual formula for the least squares coefficients is b = (X'X)™'X'y. It
is simple to write this formula directly as an § expression':

> solve(t(X) %% X) As% t(X) %k y

[,1]
[1,] -6-794334%2
[2.] 4-1866373
[3,] 0.0013136
[4,]1 -0.0089052

1. As mentionied above, acive{X, y) alsa praduces the least squares fir, but my purpose here 1s to
dlusrrare translanng 2 familiar maoix formula into an 8 expression—and whar is more familiar than
the formula for the least squares caetficients?

WRITING PROGRAMS

This approach-—forming and inverting X' X~—will break down in certain
instances, and there are numerically superior methods for solving least
squares problems.? Unless the data are ill conditioned or the data set
very large, however, the computation will go through just fine, as we may
verify via the 1m function for the current illustration:

> Im(preatige — education + i1ncome + women)

(Intercept) education ANcome women
~6.79433 4.18664 0.00131 -0.00891

Among their other virtues {and despite their deficiencies), quick and dirty
computations are often useful in learning how statistical methods work.

The eigen function calculates eigenvalues and eigenvectors of square
matrices (including asymmetric matrices, which may have complex eigen-
values and eigenvectors). For example, an eigenanalysis of the correlation
matrix for the predictors in the Canadian occupational-prestige regres-
sion is provided by the following commands:

» R <~ cor(chbind{education, income, women))
> R # correlation matrix

education ifncame vomen
education 1.000000 0.57768 0©.061853
income 0.577580 1.00000 -0.441059
women 0.061853 -0.44106 1.000000

> eigen(R)
$values
[1] 1.89770 1.08964 0.24266

$vactora

women income education
education 0.56106 -0.605273 0.568467
inicome 0.7212% 0.022711 -0.69230
womern ~0.406821 -0.795694 -0.449830

The eigenvectors—the columns of the list component $vectors—are
each normalized to length 1, and therefore give the “loadings” for a
principal-components analysis based on the correlations, while the eigen-
values give the collective variation accounted for by each component.
Principal-components analysis can also be performed by the princomp
and prcomp functions (in the mva library in R). Other matrix facror-
izations available in S include the singular-value, QR, and Cholesky
decompositions: See the on-line help for svd, gr, and chol.

2. We may do a bt berter n large data sets by formung squares and cross-products as crosspred(X)
and crossprod{¥, y), but computations via the QR decomposirion of the model matnix X, for
example, will be more numerieally stable in ill-conditioned problems, for axample, when the columns
of X are neatly collinear (see Chambers, 1992). This is the default approach taken by the 1w funcuan

8.2 WORKING WITH MATRICES

The determinant of a square matrix may be computed in R or 54 by
the function det; for example:

> det(R)
[1] 0.43653

Calculating Determinants in S3

The determinant function det does not exist in $3. A simple approach,
which may break down in certain ill-conditioned problems, is to compute

the determinant as the product of the eigenvalues:

» det <— function(X) prod(eigen(X, only.values=T)3jvalues)

Depending on its argument, the function diag may be used to extract
or to set the main diagonal of a matrix, to creare a diagonal matrix from
a vector, or to create an identity martrix of specified order:

> diag(R) # extract diagonal
aducation income women
1 1 1

» diag(R) <- NA # set diagonal

>R

education income womernl
education NA 0.57758 0.061853
iricome 0.577580 NA ~D.441059
women 0.061853 -0.44106 HA

> diag{1:3) # makKe diagonal matrix
(.11 [,21 [,3]
(1,] 1 0 0
0 2 0

‘(3.1 o o 3

> diag(3) # order-3 identity matrix
.11 [,21 [.3]

(1,] 1 0 0

[z o 1 o

(3,1 o o 1

The MASS library includes a function, ginv, for computing generalized
inverses of square and rectangular matrices. Further facilities for matrix
compuration are provided by the Matrix library. Ar the rime of writing,
the Matrix library is available for R and for §3, but not for 4.

WRITING PROGRAMS

PROGRAM CONTROL: CONDITIONALS,
LOOPS, AND RECURSION

. Conditionals

The basic construct for conditional evaluation in § 15 the if statement,
which takes one of the following two general forms:

1. if (logical.condition) command
2. if (logical.condition) command else alternative.command

In these constructions, if the first element of logical. condition
evaluates to TRUE or to a nonzero number, then command is
evaluated and its value is returned.

m If logical.condition evaluates to FALSE or 0 in the first form,
then NULL is returned.

8 If logical. condition evaluates to FALSE or 0 in the second
form, then alternative.command is evaluated and its value
returned.

® In either case, command (or alternative.command) may be a
compound S command, with the elementary commands that
compose it enclosed in braces and separated by semicolons or
new lines; when a compound command is evaluated, the value
returned 15 the value of its last elementary command. {Some

examples of compound commands appear below in the context
of loops.)

The if statement is usually used in writing functions. Here, for exam-
ple, is a simple function that returns the absolute value of 2 number:

> abs.1 <- function(x) if (x < 0) -x else x
> abs.1(-5)
(11 s

> abs.1(5)
(11 &

Of course, in a real application we would use the abs function in S for
this purpose.

When zbs . 1 is applied to a vector, it does not produce the result that we
{probably) intended, because only the first element in the condition x < 0
(which in the following illustration is TRUE) controls the action taken:

> abs.1(-3:3) # the first elemant, -3, controls the result
f1] 3 2 1 0-1-2-3

8.3 PROGRAM CONTROL: CONDITIONALS, LOOPS, AND RECURSION

The ifelse function in § provides a vecrorized conditional, as required
here:

» abs.2 <- function(x) ifelse(x < 0, -x, x)
> abs.2(-3:3)
[113210123

The general format of ifelse is
ifalse(wector.condition, true.vector, false.vector)

The three arguments of ifelse are all vectors of the same length;
wherever an element of vector.condition is TRUE, the corresponding
element of true.vector is selected; where vector. condition is FALSE,
the corresponding element of false.vectoris returned.

More complex conditionals can be handled by cascading if/else
statements. For example, the following function returns -1, 0, or 1
according to the sign of a number—negative, zero, or positive, consecu-
tively.

> s1gn.1 <= functian(x) {
+ if (x < 0) -1

+ alse if (x> 0) 1
+ else 0

+ }

> sign.1(-5)

[1] -1

Once again, this is an arrificial example, because this functionality is
provided by the sign function in S.

The same technique may be applied to the ifelse function, for exam-
ple, to provide a vector of signs:

> s1gn.2 <- functien(x) {

+ ifalsa {(x < 0, -1,
+ ifelsalx > 0, 1, 0))
+ } §

> sign.2(c(-5, 0, 10))
[1] -1 0 1

Alternatively, complex conditionals can be handled by the switch
function (see the R or 5-PLUS documentation for examples).

Loops (Iteration) ;

At
AT

The for, while, and repeat starements in S are used to implement
loops. Consider, for example, the task of computing the factorial of a

WRITING PROGRAMS

nonnegative integer:

nl=nn-—1j---(2){1),
0r=1.

» fact.l <= function (x){

+ if (x €= 1) return{l)

+ f <- 1 # initialize

+ for (i in 1:x) £ <- £ * i # accurmlate product
+ f # returm rasult

+

;

> fact.1(5)
[1] 120 '

This, too, is an artificial problem: We can calculate the factorial of »
very easily in S, either as gamma (n+1) or, for » > 0, as prod(1:n). Note
how, in this example, I initialize the local variable £ to 1, accumulate
the factorial product in the loop, and implicitly return the product as the

result of the funcrion. It is also possible to return a resulc explicitly—for
example, return(f).

integer Arithmetic in 54

A subtle problem arises in 54 when the fact. 1 function computes a large
result: In 54, when all numbers in a calculation are integers, “integer
arithmetic” ({rather than “real arithmetic”) is performed. This can cause
an integer "overflow” if the result is a very large number. Try computing
fact.1(15), for example. To circumvent this problem, we can initialize
the computation at £ <~ 1.0 (rather than at £ <~ 1), which is repre-

sented internally by S4 as a real number, causing the computation to be
done in real arithmetic.

The general format of the for statement is
for (loop.variable in walues) command

In executing the loop, loop.variable successively takes on the values in
the vector or list values; command is usually (but not in the preceding
example) a compound command enclosed in braces, { }, and is evaluated
each time through the loop using the current value of loop.variable.

In contrast, while loops iterate (repeat) as long as the specified condi-
tion holds true; for example:

> fact.2 <= function (x){

+ i<~ £ <=1 # initialize

+ while (i <= x) {

+ f<-f*1 # accumulate product
+ i<-1+1 # inecrement counter
-

}

8.3 PROGRAM CONTROL: CONDITIONALS, LOOPS, AND RECURSION

+ f # return rasult

+ }

> fact.2(5)
[1] 120

The general format of a while loop is

while (logical.condition) command

where command, which is typically a compound command, is executed as
long as logical.condition holds.
Finally, repeat loops iterate until a break is executed:

> fact.3 <= function{x){

+ if ({!is.nmmeric{x)) || (x != flaoor{x))

+ Il {x < 0) 1] (lemgth(x) > 1))

+ stop(’argument must be a Non—Negativa intager’)
+ i<-f <- 1 # initialize

+ repeat {

+ f <- f* i # accumulate praduct

+ i <~ 1+ 1 # increment coumnter

+ if i » x) break # termination test

+
i
+

}
f # return result
}
> fact.3(5)
(1] 120

» fact.3(1.5)
Errar in fact.3{1.5) : argument must be 2 Non-Negative integer

Note the use of the | | {double-or) operator here: || differs from | in two
respects:

1. | applies element-wise to vectors, while | | takes single-element log-
ical arguments.

2. || evaluates its right argument only if its left argument is FALSE.
This second characteristic can be exploited to prevent the evalua-
tion of an expression that would otherwise cause an error—in the

illustration, x != floor(x) is not evaluated i x is not numeric,
for example.

Similar comments apply to the && {double-and) operator: The right
argument of && is evaluated only if its left argnment is TRUE.

This example also illustrates how the stop function may be used to
interrupt the execution of a function, signaling an error—in this case
when the input to fact. 3 is inappropriate. As a general matter, checking
input to a function is good programming pracrice.

WRITING PROGRAMS

The general format of repeat loops is simply
repeat command

If the loop is not to repeat endlessly, there must be a termination test in
command, which is almost always a compound command.

Recursion

Recursion is at times an elegant alternative to looping; recursive functions
are functions that call themselves:

» fact.4 ¢- function(x){

+ if (% <= 1) 1 # termination condition
+ elsa x * fact.4(x - 1) # recursivae call
+ }

> fact.4(s)

[1] 120

This recursive implementation of the factorial relies on the properties
nl = nx (n— 1)1 and 0! = 1! = 1. A potential pitfall of the procedure,
however, is that the name of the function can change by assignment (here
to factorial): .

» factarial <- fact.4

> removel(fact.4)

» factorial(5) # tries to call the remaovad fact.4
Exror in factorial(5) : couldn’'t find function "fact.4"

Consequently, a safer approach is to use the special Recall function {in
place of the function’s name) to implement the recursive call:

> fact.5 <- function(x}{

* if (x<¢= 1)1
- alse x » Recall(x - 1) # recursive call
+ >

> fact,.5(8)
(1] 120

» factorial <- fact.b

> tamove(fact.5)

> factorial(s) # sti1ll works with fact.5 remaved
(11 120

B.3 PROGRAM CONTROL: CONDITIONALS, LOOPS, AND RECURSION

27

An Extended {llustration: Binary "Eﬁé.ﬁ

Logistic Regression*

With the exceprion of the introductory influence.plot function in
Section 8.1, all of the preceding programming examples have been trivial;
their purpose was transparency. The purpose of the current section is
to ulustrate how the programming techniques described in this chapter
can be applied to a2 more complex problem. To this end, I develop two
programs for ftting binary logistic-regression models. Although they are
more realistic, these examples are in another sense artificial, because
logistic regression is handled perfectly well by the glm function {as
described in Chapter 5); indeed, checking results against glm will tell us
whether my programs work properly.

Estimation by the Newton-Raphson Method

The Newton-Raphson method 1s a common iterative approach to
estimating a logistic-regression model. The method may be succinctly
described as follows:

1. Choose initial estimates of the regression coefficients, such as by =
0 {where the subscript 0 indicates that these are initial values).

2. At each ireration ¢, update the regression coefficients by the for-
mula

b: = br»—l. e {X!Vr—IX)FIX’(Y - pr—l),

where X is the model matrix, with x/ as its ith row; y is the response
vector (containing Os and 1s); p,_, is the vector of fitted response
probabilities from the previous iteration, the jth entry of which is

1

p:,r—l = T CKP(-X:b,_l);

and V, , is a diagonal matrix, with diagonal entries p, ,_,(1 —
Pr.:—l)'

3. Step 2 is repeated until b, is close enough to b,_,. Ar convergence,
the estimated asymptotic covariance matrix of the coefficients is

given by (X'VX)™', which is, conveniently, a by-product of the pro-
cedure.

Programming the Newton-Raphson method in S is straightforward:

> lreg <— function(X, y, max.iter=10, tal=1E-6){
+ # { is the model matrix
+ # y is the response vactor of Os and is

i

P 'i

WRITING PROGRAMS

max.iter is the maximum number of iterations
tal is a-convergence criterion
X ¢ cbind(l, X} # add coastant
b <~ b.last <— Tep(0, ocol{X)) # initializs coafficiants
it €-= 1 # initialize iteratioa counter
while (it <= max.iter){
p < as.vector(1/(1 + exp(-X %% b)))
V <= diag(p = (1 - p))
var.b <— solve(t(X) %% V %% X
b <= b + var.b %% t(X) %% (y - p) # update coef.
if (max(abs({b - b.last}/(abs(b,last) + 0.01*tol)) < tol}
break
b.last <- b # update previcus coef.
it <¢- it + 1 # incremant counter
}
if (it > max.iter) warning(’maximum iterations exceeded')
list(caafficients=as.vector(b), var=var.b, iterations=it)

}

T T T 2 T T T T T

The only slightly tricky point here is the test for convergence, which
checks that the maximum absolute proportional change in the coefficients
is less than some small tolerance, by default 10-%: In calculating relative
changes, I protect against dividing by numbers very close to 0 by adding
a fraction of the tolerance to the denominator.? To protect against a run-
away calculation, the argument max. iter specifies the maximum number
of iterations (implemented in a while loop), which defaults ro 10. The
function begins by appending a column of 1s to the model matrix for the
regression intercept. The function returns a list consisting of the regres-
sion coefficients, their estimated covariance matrix, and the number of
iterations performed.

To illustrate the application of this function, I return to Mroz’s labor-

force participation data, employed as an example of logistic regression in
Section 5.2.

> data(Mroz)

> attach(Mroz)

Mroz[1:5,] # first 5 obs,

1fp k& k618 age wc hc lug ine

v

l yas 1 0 32 no no 1.210165 10.91
2 yes O 2 30 no oo 0,328504 19.50
3 yes 1 3 35 no no 1,514128 12.04
4d yes O 3 34 no no 0.092115 6.80
5 yes 1 2 31 yes nao 1.5242B0 20.10

3. The convergence test could be incorporated into the terminanop, candirian for the while loap, but
1 wanted to illustrate breaking out of a loop. I mvite the reader ta reprogram lreg in this manner

Be careful, however, that the Joop does not termunare the first rime thrangh, since b and b, 1ast both
start at 0,

8.3 PROGRAM CONTROL; CONDITIONALS, LOOPS, AND RECURSION

The response variable, 1fp, and two of the predictors, wc and hc, are
factors. Because {unlike glm) the lreg function will not handle factors
properly, these variables must be converted to numeric data.® This is
easily done with the recode function in car:

1fp <~ racode(lfp, " ’yes’=ml; 'no'=0 ", as.factor=F)

we <= recode(we, " ’yes’=1; ’no’=0 ", as.factor=F)

he <- racodalhe, " *yes’=1; ’'no’=0 ", as.factor=F)

mad.mroz <- lreg(cbind(k5, k618, age, wc, hc, lwg, incl), 1fp)

v Y ¥V YV

Finally, I extract the coefficients from mod.mroz and compute their stan-
dard errors:

> mod.mrqzfcoefficiants

(1] 3.182140 -1.462913 -0.064571 -0.062B71 0.BO7274 0.111734
(7] 0.604693 -D.034446

> sqrt{diag{mod.mrozdvar))

(1] 0.6443751 0.1970006 0.0680008 0.0127831 0.2209799 0.2060397
(7] 0.1508176 0.0082084

I invite the reader to compare these values with those computed by glm
(as reported in Section 5.2).

Estimation by General Optimization

Another approach to fitting the logistic-regression model is to let a
general-purpose optimizer do the work of maximizing the log-likelihood,

loge L = Zyl loge ps + (1 - y:) loge (1 - pl) L]

where, as before, p, = 1/[1 + exp(—x/b)] is the fitted probability of
response for observation i.

Optimizers work by evaluaring the gradient (vector of partial deriva-
tives) of the “objective function” (here the log-likelthood) at the current
estimates of the parameters, iteratively improving the parameter estimates
using the information in the gradient; iteration ceases when the gradient
is sufficiently close to 0. Information on the matrix of second deriva-
tives {the Hessian} may be used as well. Depending on the optimizer,
expressions for the gradient and Hessian may be supplied by the user,
or these quantities may be approximated numerically by taking differ-
ences; if expressions for the derivatives are available, then it is usually
advantageous ro use them,

4. If we were sariously programming a lagisnc-regression function, it would be desirable for the
fancnon o handle a model formula—a ropic beyond the scope of this chapter

WRITING PROGRAMS

In the current context, the gradient and Hessian are very simple:

0 loge
=3
3log L
o™ xryX
dbab’ ’

where X is the model matrix, x; is the /th row of X written as a column,
and V = diag{p,(1 - p;)}.

Several general optimizers are available in S, including the optim and
nlm functions in R, and plminb, nlmin, and ms in S-PLUS. I will illustrate
how to proceed using optim; because, by default, optim minimizes the
criterion function, I work with the negative of the log-likelihood (i.e.,
half the deviance) and the negarive gradient:

> lreg.2 <~ function(X, y, method=’BFGS’){

+ X <~ cbind(l, Y)

+ neglogl, <— function(b, X, y) {

+ p <— as.vector(1/({1 + exp(-X ¥« b}))

+ - gum{y=logl{p} + {1 — y)+log(l - p2)

+ }

+ grad <- function(b, X, y){

+ p <= as.vactor(l/{1 + exp(-X %«L b)))

+ - apply(({y - p)*X), 2, sum)

¥

+ rasult <- optim(rep(0, ncol(X)), neglogl, gr=grad,
+ hessian=T, method=method, X=X, y=y)

+ list(coefficiants=resultfpar, var=solve(result$hassian),
+ deviance=2#resultfvalue,

+ converged=resulticonvergence == 0)

+ }

>

In the 1reg.2 function:

1. The negauvc log-likelihood and the ncgative gradient arc defined
as local functions, neglogL and grad, respectively. Like local vari-

ables, local functions exist only within the funcrion in which they
are defined.

2. Even though X and y are local variables in 1reg.2, they are passed
as arguments to neglogl and grad, along with the parameter vec-
tor b. In R, this is not strictly necessary, but it is in S-PLUS, and
doing so allows me to show you how to pass additional arguments
through the optimizer.’

5. A consideration of “scoping™ rules far R and §-PLUS i above the level of this boak; see, for

exampie, Venables and Ripley (2000, Chaprer 3) and a briaf oéatment 1n the Web appendix o the
£ext,

B.3 PROGRAM CONTROL: CONDITIONALS, LOOPS, AND RECURSION

£

The optim function in R provides several general oprimizers. [
have had good luck with the BFGS method for this kind of prob-
lem, so I have made this the default, but by providing an explicit
method argument to lreg.2, and passing this argument down to

optim, [also have made it easy to substirute another method. See
help(optim) for derails.

m The first argument to optim gives start values for the
parameters—in this case, a vector of 0Os.

B The second argument gives the objective function to be mini-
mized (here, the local function neglogl), and the third argument
gives the gradient (gr=grad). The first argument of the objec-

tive function and gradient must be the parameter vector (in this
example, b).

® Specifying hessian=T asks optim to return the Hessian, the
inverse of which provides the estimated covariance matrix of the
coefficients. The Hessian is computed numerically: optin does
not allow us to supply an expression for the Hessian.

® As explained, the method argument specifies the oprimization
method to be employed.

m The two remaining arguments, X and y {the model matrix and
the response vector), are passed by optim to neglogl and grad.

If the gradient is not given as an argument, optim will compute it
numerically. As I mentioned, it is generally a good idea ro supply
an expression for the gradient, if one is available.

optim returns a list with several components. I pick out the
parameters, the Hessian, the value of the objective function at the

minimum, and a code indicating whether convergence has been
achieved.

Trying out lreg.2 on Mroz’s data produces the following results:

> mod.mroz,2 <- lreg.2(cbind(kG, k618, age, we, hc, lwg, inc), 1lfp)
» mod.mroz.2¥cosfficients

[1]
(71

3.182114 -1.462898 -0.064569 -0.062870 0.B07268 0.111731
0.604687 -0.034247

> sqrt(diag(mod.mroz.2$var))

(1]
(7]

0.6444435 0.1570014 0.0680002 0.0127858 0.2299802 0.20603%4
0.1508174 0.0082086

> mod.mroz.2%converged

(1]

TRUE

WRITING PROGRAMS

Optimization in S-PLUS

Unlike aptim in R, the generally similar nlminb function in S-PLUS per-
mits the specification of an expression for the Hessian. Here is a version
of 1reg.2 that uses nimink:

> lreg.2 <- function(X, vi{
X <- cbind(1, X)
X <~ neol(X)
tri <- outer(l:k, 1:k, "<=") # triangle
neghogl <- function(b, X, y) {
P <- as.vector(1/(1 + exp(-X %% b))
~ sum{y=log(p) + (1 ~ y)*log(l - p))
}
grad <- function(b, X, y, tri){
P < as.vector(1l/(1 + exp(-X %+ b)))
grad <~ - colSums((y - p)=X)
hess <~ (£{X) %} diag(p*(1 - p}) %% X)[tri]
list(gradient=grad, hessian=hess)
}
Iresult <- nlminb{rep(0, ncol(X)), neglogl, gradient=grad,
hessian=T, X=X, y=y, tri=tri)
list{coefficients=rasultfpar, deviance=2*rasult$objective,
var=solve(result$bessian), gradisnt=result$grad.norm,
mezsage=rasultinessage)

+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
>

Notice that alminb expects grad to return both the gradient and a
vector giving one triangle of the Hessian.

Estimation by Iterated Weighted Least Squares

A third approach to the problem, which [will leave as an exercise for
the reader, is to use iterared weighted least squares (IWLS) to compute
the logistic-regression coefficients {as glm does). The relevant formulas
(for binomial logistic regression) are given in Section 5.35.

. apply AND ITS RELATIVES

Avoiding loops and recursion can make $§ programs more compact, ¢as-
ier to read, and sometimes more efficient in execution. S provides several
facilities that we have already encountered—for example, marrix fune-
tions and operators and vectorized functions—that encourage us ro write
loopless expressions for tasks that would require loops in lower-level pro-
gramming languages, such as FORTRAN and C. The apply funcrion,

8.4 apply AND ITS RELATIVES

and its relatives lapply, sapply, and tapply, can also help us to avoid
loops or recursion.

The apply function invokes {“applies”) another function along speci-
fied coordinates of an array. Although this is a useful facility for manipu-
lating higher-dimensional arrays (for example, in working with mult~way
contingency tables), in most instances the array in question is a2 matrix
or data frame (treated as a matrix).

By way of example, consider the data frame DavisThin in the car
library: The data represent the responses of 191 subjects to a seven-item
“drive for thinness” summated-rating scale and are part of a larger data
set for a study of eating disorders; each item is scored from 0 to 3. The
scale is to be formed by summing the items (DT1 through DT7) for each
subject:

> detach(Mroz)

> data{DavisThin)

> DavasThin[1:10,] # first 10 rows
DT1 DT2 DT2 DT4 DTS DT6 DI7

Q

=@ NG D W e
W oo o é cooo
WoeWNELED oo oo
MOoOWNCoCO O OO

HPoORNOD OO DDOoO
MmN oe ODOoo o
wowMNoo oOODOo
coWoooQOoOOoO

0

> dim{DavisThin)
(11 191 7

We can calculate the scale score for each subject by applying the sum
function along the rows (the first coordinate) of the data frame:

> DavisThin$thin.drive <- apply(DavisThinm, 1, sum)

> DavisThin$thin,drave
1 2 3 4 5 & 7 B 9 10 11 12 13 14 15 16
0 0 0 0 0 1 8 19 3 15 14 4 7 12 15 0

177 178 179 180 1B1 182 183 184 185 186 187 188 189 190 161
o 3 6 14 0 0o 0 ©O0 6 2 Q 7?7 2 4 0

The numbers above the sums are the row names (subject numbers) from
the DavisThin data frame. Notice that I have chosen to add a variable
(thin.drive) to the data frame, rather than to define the scale in the
working data.

Similarly, if we are interested in the column means of the data frame,
they may be simply calculared as follows, by averaging along the second

WRITING PROGRAMS

{column) coordinate:

> apply(DavisThin, 2, mean)

DT1 DT2 DT3 DTa DTS
0.46597 1.02094 0.95612 0.34031 1.109958
DI6 DT7 thia.drive

0.93194 0.56545 5.39267

To extend the example, imagine that some items comprising the scale
are missing for certain subjects; to simulate this situation, I will eliminate
the scale from the data frame and arbitrarily replace some of the dara
with Nas:

» DavisThin$thin.drive <— NULL # remove thin.drive
» DavisThin[1,2] <= DavisThin[2,4] <= DavisThin[l0,3] <- NA
» DavisThin(1:10,] # first 10 rows

DT1 DT2 DT3 DT4 DTS DT6 DT7

1 o NA O O 0 O O
2 0 a o N @ 0 DO
3 o 0 o o0 o0 0O 0
4 o 0 o 0 0 0 ©O
) c 0 0o 0 0 0 Q@
e c 1 o0 o0 o 0 0
7 c 2 2 0 2 2 0
8 2 3 3 2 3 3 3
9 o ¢ 0o 0 3 0 0
10 3 3 NA 1 3 3 O

If we simply apply sum over the rows of the data frame, then the
result will be missing for observations with any missing items, as we may
readily verify:

> apply(DavisThin, 1, sum)[1:10] & first 10

1 2 3 4 5 6 7 8 910
¥ANA D O 0O 1 B19 3 NA

A simple alternative is to average over the items that are present, mul-
tiplying the resulting mean by 7 (to restore 0 to 21 as the range of the

scale); this procedure is easily implemented by defining an anonymous
funcaon in the call to apply:

> apply(DavisThin, 1, function(x) 7*mean{x, na.rm=T)) [1:10]

1 2 3 4 5 o 7 8 9

0.000 0.000 0.000 0,000 0.000 1.000 §8.000 19,000 3.000
10
15.167

Last, suppose that we are willing to work with the average score if
more than half of the seven items are valid, bur want the scale to be NA
if there are four or more missing items:

> DavisThin(1,2:5] <- NA # create some mors misging data
> DavisThin(1:10,] # first 10 rows

B.4 apply AND ITS RELATIVES

DT1 DT2 DT3 DT4 DTS5 DT6 DTV

W oo~ ;O WM

—
=

0O NA NA NA NA QO D
o 0 0 NA O 0O O
c 0 a O a0 0 O
o 0 o0 o 0 0 0
o 0 o0 0 0 0 O
a 1 o o0 0 0 4@
o 2 2 0 2 2 0
2 3 3 2 3 3 3
6 0o 0 0 3 0 0
3 3 NA 1 3 3 0

> make.scale <—- function(items){

+
+

if(sum(is.na(items)) »>= 4) NA
else 7*mean{items, na.rm=T)

+ K
> apply{DavisThin, 1, maka.scala)([1:10] # firat 10
1 2 3 4 5 6 7 8 L?]
NA 0.000 0.000 0.000 0.000 1.000 8.000 19.000 3.000
10
15.197

The lapply and sapply funcrions are similar to apply, but reference
the successive elements of a list. To illustrate, I convert the data frame
DavisThin to a list:

* thin.list <- as.list{DavisThin}
» thin.list

$DT1

(1] o00DD00203100100002302003003000

(181 00 0D2102000

$DT2

(11N 0 D D O 1 2 3 0 3 0 1 3 3 3 0 2 0 3 0

(1811 ¢ o 0 0 1 1 0 D 0O O 0

$DT?

(1100000003 0030002003002000003000

(18] 0 00 0O CQ Q01000

The list elements are the variables from the data frame. To calculate the
mean of each element {eliminating missing data):

> lapply(thin.list, mean, na.rm=T)

$DT1

(1] 0.46597

WRITING PROGRAMS

$DT2
(1] 1.0263

$DT3
(1] 0.95767

$DT4
(1] 0.34392

$DT5
(1] 1.1158

$DT6
(1] 0.93194

$DT?
(1] 0.56545

Notice that additional arguments to the function that is applied may be
specified {here, the na.rm argument to mean); this 1s true for apply as
well.

The lapply function returns a list as its result; sapply works similarly,

bur tries to simplify the result, in this case returning a vector with named
elements:

> sapply(thin.list, mean, na.rm=T)
DT1 DT2 DT3 DT4 DTs DTe DT7
0.46597 1.02632 0.95767 0.343%2 1,116579 0.53194 0.56545

Finally, tapply (“table apply™) applies a function to each cell of a
“ragged array” containing data for a variable cross—classified by one or

more factors. I recall an example from Section 4.3, employing Moore
and Krupat’s conformity data:

» data(Moara)
> attach(Moora)

> Moore
partner.status conformity fcategory fscore
1 low 8 law 37
law 4 high 57
3 low 8 high 65
44 high 1o high 52
45 bhigh 15 nedium 44

The factor partner.status has levels low and high; the factor

fcategory has levels low, medium, and high; and the response,
conformity, is a numeric variable. We may, for example, use tapply

8.5 OBJECT-QRIENTED PROGRAMMING IN §

to calculare the mean conformity for each combination of levels of
partner.status and fcategory:

> tapply(conformity,
+ list(Status=partner,status,
+ Authoritarianism=fcategory), mean)

Autharitarianism
Status high low medium
high 11.857 17.4 14.273
low 12.625 8.9 7.250

> detach(Moore)
>

Because [did not explicitly order the levels of the factors, the levels
appear in alphabetical order—not what we probably would want.

OBJECT-ORIENTED PROGRAMMING IN §* .

QObject-oriented programming in S is based on simple procedures of
“object dispatch,” where functions can be written to adapt their behavior
auromatically to the classes of their arguments, as explained below. The
general notion of object dispatch is implemented differently in $ versions
3 and 4. R, up to version 1.3.1 (the current version at the time that I am
writing), implements the $3 object-oriented programming system; there
are plans to incorporate S4 classes into R version 1.4.6

S Version 3

In S3, the class attribute of an object determines the specific behavior
of a generic function by invoking a method function appropriate to the
object’s class. Not all objects in § have a class attribute, however. In
its simplest form, the class artribute of an object consists of a character
vector with a single element, giving the class of the object. For example,
the 1m function returns a linear-model object of class *1m’:

> mod.prastiga <- lm(prestige ~ income + education + women,
+ data=Prestige)

6. Rather rhan replacing the $3-style object system i R, the 54 object system will be implemented
primarily ac a methods [ibrary.

WRITING PROGRAMS

> attributes (mod.prestige)

$names
[1] "coefficiants® "residuals" "affacts"
[4] "rank" “fitted.valuaes" "assign"
(7] "qr* "df .residual” “tlavels"
(10] "call”® "terms" *modal®
$class
(1] "1m"

The function class may be used to extract or {on the left-hand side of
an assignment) to set an object’s class:

-

» class{mad.prastige)
[1] " 1m”

Generic funcrions are written to invoke methods determined (in most
instances) by the class of their first argument. For example, the generic
print function has the following definition:

> print
function (x, ...)
UseMethod("print")

When print is called with an argument of class *1m’, for example, it
looks for a function named print. 1m; if such a function exists, it is called
as print.lm(x, ...). Indeed, it is perfectly proper to call print.1lm
directly; thus, all of the following commands are equivalent:

> mod.prestige
Call:

ln(formula = prestige ~ i1ancome + education + women,
data = Prastiga)

Coefficiants:
(Intercept) 1ncome aducation woman
-6.79433 0.00131 4.18664 -0,008491

> print{mod.prestige)

Call:

lm(formula = prestige ~ income + education + women,
data = Prestige)

Coefficients:
(Intercept) income aducation woman
=-6.79433 0.00131 4,18664 -0.00891

> print.lm(mod.prestiga)
Call:

lm{formula = prestige ~ income + education + waomen,
data = Prestiga)

8.5 OBIECT-ORIENTED PROGRAMMING IN 5

Coefficlents:
(Intercept) income aducation women
-6.79433 0.00131 4,18664 -0.00891

Recall thar the print function is called automatically by any S statement
that is not an assignment—for example, when we simply type the name
of an object.

Suppose that we invoke the (hypothetical) generic function fun with
argument arg; if there is no method function for arg’s class, or if arg has
no class, then S looks for a method named fun.default. For example,
classless objects are printed by print.default, If, under these circum-
stances, there is ne defaule function, S reports an error.

Method selection is slightly more complicated for objects whose class-
attribute vector contains more than one element. Consider, for example,
an object returned by the glm function:

> mod.mroz <~ glm{lfp ~ ., family=binemial, data=Mroz)
» class({mod.mroz)
[1] llglmll |Ilmll

If we invoke a generic funcrion with mod.mroz as its argument, say
fun(mod.mroz), then S will look first for a method named fun.glm;
if a funcrion by this name does not exist, then it will search nexr for
fun.lm, and finally for fun.default. We say that the object mod.mroz is
of {primary) class “glm” and inberits from class "1n". Inheritance permits
economical programming through generalization, but it can also get you
into trouble (if, for example, there is no funcrion fun.glm, but fun.lm is
inappropriate for mod.nroz 7).

“Quick-and-dirty” programming, which is the focus of this chapter,
generally does not require writing object-oriented funcrions, bur under-
standing concretely how the object system in S works is often useful.
To this end, consider the following object-oriented version of my first

logistic-regression program (from Section 8.3.4), which employs the
Newton-Raphson algorithm:

> lreg.3 <- function(X, y, predictors=colnames(i), max.iter=10,
+ tol=1E~6, constant=T){
if (tis.numeric(X) || tisz.matrix{¥))

stap(’X mlist be a nuMeric matrix’)
if (!is.oumeric(y) |1 !all(y =0 | y == 1))

stop(’y must coatain oaly Os and 1s?)
if (nrow(X) != length(y))

stop(’X and y coatain differeat oumbars af observatioas’)
if (constant) {

X <= ¢bind(l, %)

colaoames (X)) [1] <—- *Coastant’

}

¥ b+ + + v+ F

7. In a case like this, the programmer of fun.lm should be careful to create a funcnon fun.gia,
which calls the default method or reports an errar (as apprapriate),

WRITING PROGRAMS

b <— b.last <~ rep(0, ncal (X))
it <= 1
vhile (it <= max.iter)q
P <= as.vector(l/(1 + exp(-X %+% b)))
Vv <= diag(p = (1 -~ p))
var.b <~ solve(t(X) %*% V %% X)
b <~ b+ var.b %% t(X) %% (y - p)
if (max(abs(b - b.last)/(abs{b.last) + 0.01*tol)) < tol)
break
b.last <~ b
it <= it + 1
b
dev <- =2xgsum(y+log(p) + (1 - yJ)*log(l - p))
if (it > max.iter) warning(‘maximum iterations exceedad?)
result <= list(coefficients=as.vector(b), var=var.h,
deviance=dev, convVerged= it <= max.iter,
predictors=predictors)
class(result) <- ’lreg’
result

iy

v + 4+ F F o+ + T+ttt

B As in Section 8.3.4, the first two arguments of lreg.3 are the model
matrix X and the response vector y, which contains Os and 1s.

@ In rewriting the function, I provided for predictor names, which, by
default, are the column names of the model matrix X, and allowed the
regression constant to be suppressed.

m The funcrion begins by performing some checks on the data.

@ Before returning an objecr {called result in lreg.3) containing
logistic-regression coefficients, their covariance martrix, and so on, the
function assigns to the object the class *1reg’.

Applying 1lreg.3 to Mroz’s data:

» mod.mroz.3 <- lreg.3(cbind(kS, k618, age, we, he, lwg, inc), lfp)
» class(mod.nroz.3)
[1] Ylreg"

> mod.mraz.3
Scoefficiants

[1] 3.182140 -1.462913 -0.064571 -0.062871 0.807274 0.111734
[7]1 0.604693 -0,034446

$var

(1] (,2] (.3] (.4] [.5]
[1,] 0.41521927 ~0.063051B6 —2.3035e~-02 ~7.6663e-03 0.01281877
(2.] -0.06305186 0.03880924 1.9573e-03 1.2216e-03 ~0.00454977

[7,] 0.00014344 2.2746e-02 ~1.0779e-04
(8,1 -0.00048973 -1.0779e~04 6.7377e-08

8.5 OBJECT-ORIENTED PROGRAMMING IN S

$deviance
[1] g05.27

$converged
(1] TRUE

$predictors
[1] I|Cunstantll Ilksll llk:GiBll llagell ““C“
[6] l‘lhcll “1“8" L] incll

attr(,"class")
E1] "lreg"

>

We may now write ’lreg’ methods for standard generic functions,
such as print and summary:

> print.lreg <- fumction{x) {

-+

+ + + + +

»
+
+
EN
+
N
S
+
N
+
+
a4

coef <~ X$coefficients

names(coef) <— x$predictors

print(coef)

if (tx$converged) cat(’\n *»*= lreg did not converge sx\n’)
invisible(x)

}

summary.lrag <- function(object) {

b <- objacticoefficients
se <~ sqrt{diag(objactivar))
z <- b/ss
table <- cbind(b, se, z, 2*({l-ponorm{abs{z))))
colnamas{table) <— c{’Coefficieat’, 'Std.Error", ’z', 'p’)
rownames(table) <- objactipredictors
priat{table)
cat (*\nDeviance =’, object$deviance,’\n’)
if ('object$convargad)
cat(’\n Nota: #*=+ lrep did not converge *#*\n’)

}

> mod.myoz.3
Constant k5 k518 age we he
3.182140 -1,462913 -0,064571 ~0.062871 0.BO7274 0.111734

lug ine

0.604693 -0,034446 y

» summary (mod.mroz, 3)

Canstant 3.182140 0.6443751 4.93834

k5
k618
age
we
hc
lug
inc

Casfficient Std.Error z ¥
7.8792e-07

=-1.462913 0.1970006 ~7.42593 1.119le~13
-0.064571 0.0680008 -0.94956 3.4234e-01
~0.062871 0.0127831 -4.91826 8.7317e-07
0.807274 0.2299799 3.51019 4.477Ba-04
0.111734 0.2060397 0.54229 5.B762e~-01
0.604693 0.1508176 4,00943 6.0B64e-05
-0.03444¢6 0.0082084 -4,19650 2.7107e-08

Deviance = 905.27

WRITING PROGRAMS

The print.lreg method prints a brief report, while the ourput produced
by summary.lreg is somewhat more extensive. Note the use within these
methods of print and cat to produce output. We are already familiar
with the generic function print; the cat function may also be used for
printed output: Each “new-line” character (’\n?) in the argument to cat
causes output to resume at the start of the next line. It is conventional
for the first argument of a method to be the same as the first argument
of the corresponding generic function (here x for print and object for
summary).

It is also conventional for print methods to pass through their prin-
cipal argument as an invisible result and for summary methods to create
and return objects, According to this scheme, summary. 1reg would pro-
duce an object of class Lreg.summary, to be printed by a corresponding
print method (i.e., print.1lreg.summary, which I would then have to
write), but that seems an unnecessary complication here.

e T

EFZE S Version 4

="

The object system in S4, while broadly similar to that in 53, is more
formal, consistent, and pervasive. There is, however, backward compat-
ibility to S3 classes, so that most software written in the older object-

oriented style still works (including the example developed in the previous
section).

In S4, every object belongs to one and only one class.® Classes are
defined globally, via the setClass funcrion. Adapting the earlier example,

[define a class of ’Llreg’ objects to contain the results of a logistic
regression:

» setClass(’lreg’, .

+ Tepresentation(coefficients='numeric’, var=’matrix’,
+ iterations="numeric’, deviance=’numeric’,

+ predictors=’character’))

>

B. That some abjects in S3 do nat have a class arnbuke can occasionally be a cause of incanve-
nience. Suppose, for example, that we wanr to define a methad fun.matrix for the genenc function
fun o be applied ro matrix objects. Marrices in 53, however, are unclassed gbjects, The data.class
funcrion can aften be of help here: data,class rerurns the class of an objecr, 1f it has ane; arher-
wise, 1f returnis another identiffer, such as *matrix? for a mamx object or *numeric' for a numeric
vector, Thus, a generic function might be writen in the following manner to accommadare abjects
with and withaur 2 ¢1ass artribute:

> fun <- function{object, ...}

+ a1f (1s.ml)l(class{object)}) clasz(chject} <- data,class{object)

+ UseMethod(’fun’, object}

+}

8.5 OBJECT-ORIENTED PROGRAMMING IN §

The first argument to setClass is the name of the class being defined,
here ’Lreg’. The second argument calls the representation function to
define the slots that compose objects of class '1reg’; each argument to
representation is a slot name that identifies the kind of data (e.g., a
numeric vector, a matrix, a character vector) that the slot is to contain.

My S4 object-criented logistic-regression program uses the Newton-
Raphson algorithm (as explained in Section 8.3.4):

> lreg.4 <- function(X, y, predictors=colnamez(X),

T T I B 2 2 T N B A A A

constant>T, max.iter=10, tol=1E-6){

if (lis.numeric(X) 1| !'is.matrix(X))
stop('X must be a numeric matrix’)
if (tis.numeric(y) || !lall(y == 0 | y == 1))

stop(’y must contain oaly Os and 1s‘)
if (arow(X) '= length(y))
stop(’X and y contain different numbers of observations’)
if (comstant) {
X <= cbind(1l, %)
colopames(X) [1] <- ’Canstant’
}
b <- b.last < rep{0, ncol(X))
it <« 1
while (it <= max.itez){
p <- as.vector(1/(1 + exp(-X %+% b)))
V <~ dlag(p * (1 - p))
var.b <~ solve(t(X) %+% V %% X)
b < b+ var.b %% t(X) %% (y — P
if (max{abs(b - b.last)/(abs(b.last) + 0.01xtol)) < tol)
break
b.last <~ b
it <~ it + 1
}
if (i > max.iter) warning(’maximum iteratioms exXceeded')
result <- new(’lreg’,coefficients=b,var=var.b,iterations=it,
deviance=-2+sum(y*log(p) + (1 - y)*log(l - p)),
predictors=predictors)
result

}

This function creates the class *1reg’ object result by calling the gen-
eral object-constructor function new and supplying the contents of each
slot; 1reg.4 rerminates by returning the object result.

Let us try out lreg.4 on Mroz’s dara:

> mod.mraz.4 <- lreg.4(cbiad(k5, k618, age, wc, hc, lwg, inc), 1fp)
» class(mod.mroz.4)
[1] I!lregu

> mod.mroz.4
An object of class "lreg"

3lot
(1]
(7]

"coefficients":

3.182140 ~1.462913 ~0.064571 ~D.062871 0.807274 0.111734
0.604693 ~0.034446

WRITING PROGRAMS

Slot “var":
Consatant k5 k618 age
Coastant 0.41521927 ~0.063051B6 -0.023034861 -7.6663e-003
k5 -0.06305186 0.03880924 0.001957324 1.2216e-003
k618 -0.02303486 0.00195732 0.004624113 3.7474e-004

lwg -0,00673674 0.00014344 0.022745938 -1.0779e-004
inc -0,00025326 -0,00048973 -0.000107789 6€.7377e-005

Slot "iterations':

(11 5

5lot "deviance":

(1] 905.27

Slot "predictors":

(1] "Constant" "k&" nkglgh "aga™ o
{6] “h.C" “lwg" "]..U.C“

In S3, typing the name of an object (or entering any statement that
is Not an assignment) causes the generic print function to be invoked,
similarly, in $4, typing the name of an object invokes the show function.
Because [have not yet defined a *show’ method for objects of class
*lreg’, the default method—which in $4 is the function simply named
show—is invoked; show has the following definition:

» shaw

automatic display of the value of a task., This is a generic
#4 with default method a call to ‘print()?

function{abject)
{
print{object)
invisible (NULL)
}

I proceed to define a *show’ method for objects of class *1reg’ by calling
the setMethod funcrion:

> setMethod(’show’, signaturelobject=’1lreg’),
+ definition=function{object){

+ coef <~ object@coefficients

+ namesg(caef) <~ object@predictors

* print(coef)

+ ¥

+

>

B The first argument to setMethod gives the name of the method that
we wish to create (here, 'show’).

8.5 OBJECT-ORIENTED PROGRAMMING IN §

m The second argument indicates the signarure of the method—thar is,
the kind of objects to which it applies. In 54, methods ¢an have com-
plex signatures that depend upon the classes of several arguments;
in this instance, however, the show method has only one argument,
object, and the method is meant to apply to objects of class '1reg’.

m The final argument to setMethod defines the methed function;
this may be a preexisting function or, as here, a function defined
“on the fly.” Methods in §4 have to employ the same arguments as
the generic function (e.g., the single argument object for a ’show’
method). Notice that the operator @ (the at sign) is used to extract the
contents of a slot (much as $ is used to exeract a list element).

Let us verify that the new method works properly:

> mod.mroz.4
Constant k5 k618 age we he lvg
3.1821 -1.4629 -0.064571 -0.062871 0.80727 0.11173 0.60468

ine
—0.034446

The *show’ method for objects of class ? 1reg’ reports only the regres-
sion coefficients. I next define a ’summary’ method that outputs more
informarion about the logistic regression:

> setMethod{’summary’, signature(object=’lreg’),

+ definition=function(abject, ...){

+ b < object@coefficients

+ se <— sqrt{diag(cbjectdvar))

+ z <~ b/se

+ table <— cbind{b, se, 2z, 2#(l-pnorm{abs(z))))
+ colnames{table) <~ c{’Coefficilent’, *Std.Error’, *z*, 'p’)
+ rovnames (table) <— abject@predictars

+ print (table)

> cat(*\nDeviance =’, cbject@deviance,’\n’)

%

+

>

}

Because the generic summary function has rwo arguments, object
and . . ., so must the method, even though . .. is never used in the body
of the method. (In a generic function, the argument ... can be used to

“soak up” different arguments for different methods.) Applying summary
to the model produces the desired result:

> summary{mod.mroz.4)
Coefficient Std.Error Zz P
Coastant 3.1B2140 0.6443751 4.93834 7.8792e~-007
k5 ~1.482913 0.1970006 ~7.42593 1.1191e-013
k6lB ~0.064571 0.0680008 -0.94956 3.4234e-001

WRITING PROGRAMS

age ~0.062871 0.0127831 -4.91820 8.7317e-007
we 0.807274 0.2299799 3.51019 4.4778e~-004
bhe 0.111734 0.2060397 0,54229 §,8762e—001
lug 0.604693 0.1508176 4.00943 6.0864e-005
ing -0.034446 0,0082084 -4.19650 2,7107e~005

Deviance = 905.265914855628

Finally, a word about inheritance in 54: Recall that in $3 an object can
have more than one class. The first class is the object’s primary class, but
if a method for a particular generic function does not exist for the pri-
mary class, methods for the second, third, and so on, classes are searched
for successively. In S4, in contrast, each object belongs to one and only
one class. Inheritance is (as it should be) a relationship between classes
and not a property of objects. If one class extends another class, then the
first class inherits the methods of the second. Inheritance is established
by the setIs function: setIs(’classA’, *classB’) asserts that classA
extends, and therefore can inherit methods from, classB; pur another
way, objects of class *classA’ also belong to class ’classB’,

The object-oriented programming system in $4 is more complex than
thar in S3—indeed, I have only scratched the surface here, showing how
to do in $4 what we previously learned to do in 53. The 54 object system
is quite new; whether its added complexity will prove productive for
developing statistical software remains to be seen. At the moment, almost
all object-oriented software in $ uses the older approach.

. WRITING S PROGRAMS

Programming is a craft. Like most crafts, it is a combination of art and
science; and as is true of most crafts, facility in programming is partly the
producr of experience. The purpose of this section is to give general, mis-

cellaneous, and mostly unoriginal, advice ahout the craft of programming
in S, organized as brief points:

® Program experimentally. One of the advantages of programming in an
interpreted environment is the ability to type S statements and have
them immediately evaluated. You can therefore try out key parts of
your program, and correct them, before incorporating them into the
program. Often, you can simply copy a debugged statement from the
R Console {or S-PLUS Commands window) into your program editor.

m Work from the bottom up. You will occasionally encounter a moder-
ately large programming project. It is almost always helpful to break a
large project into smaller parts, each of which can be programmed as
an independent function. In a truly complex project, these functions

8.6 WRITING 5§ PROGRAMS

may be organized hierarchically, with some calling others. If some of
these smal! functions are of more general utility, then you can maintain
them as independent programs and reuse them; if the small functions
are unique to the current project, then they may eventually be incorpo-
rated as local functions. Tradirionally, large projects were programmed
“from the top doewn”—Dbeginning with the highest level of generality—
bur a functional, interpreted programming language such as S makes
it easier to “build the language up” to the program.’

m [f possible and reasonable, avoid loops, Programs that avoid loops are
generally easier to read and often are more efficient, especially if a loop
would be executed a very large number of rimes. Some processes, such
as numerical optimization, are intrinsically iterative, but in many other
cases loops can be avoided by making use of vectorized calculations,
matrix operations, functions such as apply, or even recursion., Some-

times, however, a loop will be the most natural means of expressing a
computation,

@ Test your program. Before worrying about speed, memory usage, ele-
gance, and so on, make sure that your program provides the right
answer Program developmenr is an iterative process of refinement,
and getting a program to funcrion correctly is the key first step. In
checking out your program, try to anticipate all of the circumstances
that the program will encounter and test each of them. Furthermore,
in “quick-and-dirty” pregramming, the rime that you spend writing
and debugging your program will probably be vastly greater than
the time the program spends executing. Remember the programmer’s
adage!®; “Make it right before you make it faster.” {And emphasize

the “quick”—in the sense of quick program development—as opposed
to the “dirty.”)

B Learn to use debugging tools. It is rare to write a program that works
correctly the first time thart it is tried, and debugging is therefore an
important programming skill. Working in an interpreted environment
simplifies debugging: As explained in Section 1.1.7, the traceback
function can help you te locate the source of an error. Often, all chat is
required to pinpoint the error is to add statements to the program that
call the print or cat funcrions to print out partial results. Similarly,
inserting calls to the browser funcrion in a program (see the on-line
help) allows interacrive inspecrion of local variables. Both R and S-
PLUS also provide a variety of more sophisticated debugging tools: In

9. See Graham (1994, 1996} for an eloquent discussion of these poiats in relatign to angther func-
ronal programm:ng language—Lisp.

10, This dictum, and a great deal of other good advice on programming, originares m Kernighan
and Plauger (1974}, see also Kernighan and Pike (1999).

WRITING PROGRAMS

particular, take a look at the documentation for the debug function in
R and the inspect funcrion in S-PLUS.

B Document the program. Unless your program is to be used only once
and then thrown away, its use should be documented in some man-
ner. The best documentation is to write programs in a transpatent
and readable style—use descriptive variable names; avoid clever bur
opaque tricks: do not pack too many operations into one line of pro-
gram code; indent program lines (for example, in loops) to reveal the
structure of the program. You can also add a few comments to the
beginning of a function to explain what the function does and whar its
arguments mean (look back at the lreg function in Section 8.3.4, for
example). [t is my assumption that you are programming for yourself,
rather than for others, and this decreases rhe burden of preparing doc-

umentation, but you want to understand your own programs when
you return to them a month or a year later.

References

Agresti, A, (1984), Analysis of ordinal caiegorical data, New York: Wiley.

Agresti, A, (1990). Categorical data analysis. New York: Wiley.

Atkinson, A, C. {1985). Plots, transformations and regression: An mtroduction to graph-
1cal methods of diagnostic regression analysis. Oxford, UK: Oxford University Press.

Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The new S language: A program-
ming environment for data analysis and graphics. Pacific Grove, CA: Wadsworth,

Berndt, E. R. (1991). The pracuce of econometrics: Classic and contemporary. Reading,
MA: Addison-Wesley,

Bowman, A. W., & Azzalini, A. (1997). Applied smoothing techmigues for data analysis:
The kernel approach with 5-Plus illustrations. Oxford, UK: Oxfard University Press.

Box, G. E. P, & Cox, D. R. {1964). An analysis of transformations. Journal of the Royal
Statistical Society, Series B 26, 211-252.

Box, G. E. P, & Tidwell, P. W. (1962}. Transformation of the independemt variables.
Technomeirics 4, 531-550.

Breusch, T. 5., & Pagan, A. R. (197%). A simple test for hereroscedasticity and random
coefficient variation. Econometrica 47, 1287-1254,

Campbell, A., Converse, P. E., Miller, W. E., & Stokes, D. E. (1960). The American voter,
New York: Wiley.

Chambers,]. M. (1992). Linear models. In J. M. Chambers 8¢ T. J. Hastie (Eds.), Stazis-
tical models in S (pp. 95-144), Pacific Grave, CA: Wadsworth.

Chambers,]. M. {1998). Programming with dma: A guide to the 5 language. New York:
Springer.

Chambers, J. M., Cleveland, W. S,, Kleiner, B., & Tukey, P. A. (1983), Graphical methods
for data anatysis. Belmont, CA: Wadsworth.

Chambers, J. M., & Hastie, T.]J. {1992). Sraristical models. In J. M. Chambers & T. J.
Hastie {Eds.), Siaustical models in § (pp. 13—44). Pacific Grove, CA: Wadsworth,

Chambers, J. M., & Hasue, T.]J. {Eds.). (1992). Statistical models in S, Pacific Grove,
CA: Wadsworth.

Cleveland, W. 5, (1993). Visughzing data. Summit, NJ: Hobart Press.

Cleveland, W. S. (1994). The elements of grapbing data. (rev. ed.). Summiy, NJ: Hobart
Press.

Clogg, C. C., & Shihadeh, E. S. {1994), Statistical models for ordinal variables. Thousand
Oaks, CA: Sage.

Cook, R. D. (1993). Exploring partial residual plaes. Technometrics 35, 351-362.

REFERENCES

Cook, R. D. (1996), Added-variable plots and curvature 1 linear regression. Technomer-
rics 38, 275-278,

Cook, R, D. (1958). Regression graphbics: Ideas for siudying regressions through graphics.
New York: Wiley.

Cook, R, D., & Weisberg, 5. (1983). Diagnostics for heterascedasticity 1n regression.
Biomeirtka 70, 1-10.

Cook, R. D., & Weisberg, S. (1999). Applied regression including compuzing and graph-
tes, New York: Wiley.

Cowles, M., & Dawvis, C. (1987). The subject matter of psychclogy: Volunteers. British
Journal of Social Psychology 26, 97-102.

Davis, C. (13%0). Body image and weight preoccupation: A comparnison berween exercis-
ing and non-exercising women, Appetite 15, 13-21.

Davisen, A. C., & Hinkley, D. V. {1997). Bootstrap methods and thewr applicatzon.
Cambridge, UK: Cambridge University Press.

Duncan, O. D. (1961), A socioeconomic index for all cccupations, In A.]. Ress, Ju (Ed.),
Occupations and sociaf status (pp. 109-138). New York: Free Press.

Efeon, B., & Tibshirani, R, J. {1993). An tniroduction 1o the bootsirap. New York:
Chapman & Hall.

Ericksen, E, P, Kadane, . B., & Tukey, J. W. (1989%). Adjustng the 1990 Census
of Population and Housing. Journal of the American Siatistical Association 84,
927-944,

Fienberg, 5. E. (1280). The analysis of cross-classified categorical data (2nd ed)).
Cambridge, MA: MIT Press.

Fox, J. {1987). Effect displays for generalized linear models, In C. C, Clogg {Ed.}, Socio-
logical methodoiogy 1987 (Vol. 17, pp. 347-361). Washington, DC: American Scer-
clogical Associanion.

Fox, J. {1997). Applied regression analysis, linear models, and related methods. Thousand
Qaks, CA: Sage.

Fox, J., 8¢ Guyer, M. {1978). “Public” choice and cooperation 1n n-person prisoner’s
dilemma. fournal of Conflict Resoluuzon 22, 469-481.

Fox, J., & Monette, G. (1922). Generalized collincanty diagnostics. Journal of ihe Amer-
ican Statistical Association 87, 178-183,

Freedman, D., & Diaconis, P. (1281). On the histogram as a density estimator. Zeitschrift
frur Wahrschemlichkenstheorie und verwandie Gebiete 57, 453-476.

Freedman, [. L. {1975). Crowding and bebavior. New York: Viking.

Graham, P, (1994). On Lisp: Advanced Techmques for Common Lisp. Englewood Cliffs,
MJ: Prentice Hall,

Graham, F. (1996). ANSI Common Lisp. Englewoad Cliffs, NJ: Prentice Hall,

Hastie, T. J., & Tibshirani, R.]J. {1990). Gewneralized additwwe models. London:
Chapman & Hall,

Kernighan, B, W.,, & Pike, R. (1999). The praciice of programmung. Reading MA:
Addison-Wesley,

Kermghan, B, W,, 8¢ Plauger, P. 1. (1974). The elements of programmng style. New York:
MecGraw-Hill,

REFERENCES

Landwehz, J. M., Pregibon, D., & Shoemaker, A. C. (1980). Some graphical procedures
for studying a logistic regression fit. Proceedings of the Business und Ecomomics
Staustics Section, American Stattstical Associanon, 15-20.

Little, R, J. A., & Rubin, D. B. (1987). Staisucal analysis unib missing data. New York:
Wiley.

Loader, C. (1995). Local regresston and likelibood. New York: Springer,

Lang, J. S. (1997). Regression models for categorical and limied dependent varables.
Thousand Qaks, CA: Sage.

Lang, [. S., & Ervin, L. H. (2000). Using heteroscedasity consisient standard errors in
the linear regression model. Amertcan Statsstician 54, 217-224.

Menete, G. (1930). Geometry of multiple regression and interacnive 3-D graphics, In
J. Fox and J. S. Long (Eds.), Modern methods of data analysis (pp. 209-256).
Mewbury Park, CA: Sage.

Moare, D. S., & McCabe, G. P. (1593). Iniroduction to the practice of statistics (2nd
ed.). New York: Freeman,

Moore, I. C., Jr, & Krupas, E. (1971). Relarionship berween source status, authoritarn-
anism, and conformity 1n a social setting. Sociomerry 34, 122-134.

Mosteller, £ W., & Tukey, J. W. (1977). Data analysts and regression: A second course
1 statistics. Reading, MA: Addison-Wesley.

Mroz, T. A, {1987). The sensitivity of an empirical model of marned women’s hours of
work to economic and statisnical assumptions. Econometrica 35, 765-799.

Neldes, J. A., & Wedderbura, R, W, M. {1972), Generalised linear models, Journal of the
Rovyal Statistcal Society, Series A 135, 370-384,

Ornstein, M, D. (1976), The boards and executives of the largest Canadian corporations:
Size, composition, and imetlacks, Canadian Journal of Scewology 1, 411437,

Pinheiro, J. C., & Bares, D. M. (2000). Mixed-effects models in § and S-PLUS, New
York: Springer,

Powers, D, A., & Xie, Y, {2000). Siatsstrcal methods for caiegorical data analysis,
San Diepo; Academuce Press,

Prepibon, D, (1981), Lopistic repression diagnostucs, Asnnals of Statsnes 9, 705-724.

Sall,], (1920}, Leverage plots for general linear hypotheses, Americarn Stausicign 44,
308--3135,

Schafer,]. L. (1997), Andh;sfs of mcomplete multivariate data. New York: Chapman &
Hall,

Silverman, B, W, (1986), Denstty esttmaion for staustics and data analysts, London:
Chapman & Hall,

Stine, R., & Fox,]. (Eds.). (1997). Statistrcal computing envtromments for social research.
Thousand Oaks, CA: Sage,

Swayne, D, E, Cook, D,, 8 Buja, A, {1998}, XGobi: Interactive dynamic data visualiza-
tion in the X Window sysiem. Journal of Computational and Graphical Statistics 7,
1-20,

Therneau, T. M., & Grambsch, P. M, {2000), Modeling surwval data, New York:
Springer.

Tierney, L, {1990), Lisp-Star: An object-criented environment for siatistical computing
and dynamic graphics. New York: Wiley,

REFEREMNCES

Tukey, J. W, (1577). Exploratory data anaiysis, Reading, MA: Addisan-Wesley.

United Naticns, {1998), Sccial indicators. Available on line at hupi/fwww.un.org/Depts/
unsd/social/main.htm,

Venables, W, M., & Ripley, B. D, (1999}, Modern applied staustics with S-PLUS (3rd
ed,), New York: Springer.

Venables, W, N., & Ripley, B. D, (2000), S programming. New York: Springer.

Wang, P. C, (1985). Adding a variable in generalized linear models, Technometrics 27,
273-276,

Wang, P. C, {1987). Residual plots for detecting nonlinearity in generalized linear models.
Technometrics 29, 435438,

White, H. (1980). A heterskedastic consistent covariance matrix estimator and a direct
test of heteroskedasticity, Econometrica 48, 817-838,

Williams, D. A, (1987). Generalized linear model diagnostics using the deviance and
single case deletions, Apphed Siatistrcs 36, 181-191,

Index of Data Sets

The following data frames are all in the car library.

Baumann, methods of teaching reading,
143-144

Cowles, volunteering for an experiment,
247-255

Davis, measured and reported weight and
height, 119-123, 146-147

DavisThin, drive for thinness scale,
279-282

Duncan, prestige of U,S occupations,
18-34, 43, 47-53, 145-148,
193-201, 261

Ericksen, U.S. Census undercount,
217-225

Freedman, population density aud crime
in U.S, citles, 55-60

Guyer, anonymity and cooperation, 2
39-42, 48, 61-65, 76-79

Moora, conformiry, parmer’s status, and
authoritarianism, 136-142, 282-283

Mroz, U.S. married women's labor-foree
participation, 159-163, 233,
274-275, 285-288

Ornstein, interlocking directorates among
Canadian firms, 100-101, 113-114,
178-180, 187-188, 202-209,
230-232

Prastige, prestige of Canadian
occupations, 43-51, 86-96, 103-104,
108-112, 123-136, 210-216, 265

SLID, Survey of Labour and Income
Dynamics [Ontario), 98-100,
105-107

UN, infant-mortality and GDP, 115-117
Vocab, vocabulary and education, 96-98

Womenlf, Canadian married women’s
labor-force participation, 66-63,
167-177, 227-229

29¢

Index of Functions,
Operators, Control

Structures, and
Other Symbols

Functions in the car library are marked [car],

+, addldon, 34, 115, 145, 262

&2, and, 12, 271

=, argument specification, 5, 259

-y assignment, 12n

=, assignmens, 10

<~-, assignment, 8, 12n, 72, 74

vy v character string, 38, 42, 66

#, comment, 7

+» compact lefr or right-side {mode] formula),
135, 219

{ }, compound statement, 23, 260, 268, 270

*, crossing (model formula), 119, 135, 150,
214

", crassed up to order {model farmula), 119,
150, 213

/, division, 34, 149

?, documentation, 6, 35

==, equals, 10, 68

\, escape next character, 44n

~, exponenuation, 3—4, 142

~, exclude rerm {model formulal, 115, 135,
150

;» Expression separator, 13, 268

{), function call, 3

>, greater than, 10-11

>=, greater than or equals, 10-11

(), grouping, 4, 12

%in’%, nested within {model formula),
135-134, 150

+, include term {model formula), 149-150

{1, indexing, 9-10, 50, 71-75, 77-78

%#%, inner praduct, matrix praduct, 262-263

\» interacuon (maodel formula), 133, 150

~, 15 modeled as {model formula), 27, 120

<, less than, 10-11

<= less than or equals, 1011

$, list element, 63, 77, 251

LL 11, list element, 75, 77

=, multiplicanon, 3, 149, 262

/, nesting (madel formula), 119, 150

I, hot, 10~11

=, not equals, 10-11

1, oz, 12, 271

:, sequence, 7

@, slot extracrion, 251

-, subtraction, negaticn, 3—4, 149, 262

&, vecrorized and, 10-12

|, vectarized or, 10~12, 271

.+ ., unspecified arguments (madel formula),
25, 259, 261, 291

ablinae, add line to graph given intercept
and slope, 23, 38, $7-98, 121-122,
199, 206, 260

abs, absalute value, 12, 268

all, all clements TRUE?, 68

anova, analysis of variance or deviance table,
35, 131-i32, 162

INDEX OF FUNCTIONS, OPERATORS, CONTROL STRUCTURES, AND OTHER SymBoLs 30

Anova {car], analysis of variance or deviance
table, 132-135, 132n, 162-163, 166,
180, 183, 187, 209

aov, analysis of variance, 35

apply, apply a function to margins of an
array, 137n, 278-280, 223

args, print function arguments, 149

array, array comnstzuctor, 70

arraws, draw arrows on graph, 244,
253255

as, general coercion, 83

as.character, coerce 10 made character, 81

as,data,frame, coerce to dara frame, 1B4

Ask [car], supply function arguments
interactively, 109-110, 117, 211, 213

as.aumeric, caerce 10 mode numeric, Bl,
101, L38

assign, assign value o varable, 213

as.vector, cotrce 10 vector, 8283, 199, 260

attach, add dara frame to search list, 20, 50,
54, 63-64

attributeg, of abject, 79-80

av.plots [car]|, added-variable plots, 31-32,
192, 200, 205, 215-216, 225, 227, 232

axis, add an axis to a graph, 138, 239, 242,
253

binomial, GLM family generator, 157-158

binom,test, exacr test for a propOrtion, 35

box, frame graph dara region, 87, 138,
241-242

boxcox, Box-Cox tegression, 204

box.cox [car|, Box-Cox power
transformarions, 107, 110-111, 117,211

box.cox,axis [car], axis for Box-Cox
teansformed variable, 115

bax.cox,powers [car], normalizing
transformations, 111-112

box. coX.var {car|, constructed variable for
Box-Cox regression, 205

boxplet, 35, 91-92, 101-102, 114

box.tidwell [car|, Box-Tidwell regressicn,
214-215

braeak, terminare loop, 271

browser, debugging, 293

e, tcombine, 7, 38, 66

cat, prinked output, 293

cbind, join by celumns, 22

ceres.plots [car], 214, 22§

chisq.test, test for independence in a
contingency rable, 35

chal, Cholesky decomposition, 266

class, of object, B1, 82n, 83, 284, 286

coloames, sccond component of dimnares,
74

confidence.ellipse [car], 147-[48, 147n

contrasts, sct Or view contrasts, 128-130,
143-144

contr .helmert, Helmerr contrasts, 129

contr .paly, cthogonal-palynomial contrases,
130

contr . sum, deviation-coded cantrasts, 129

contr,treatment, dummy-coded cantrasts,
128-129, 161

cookd {car], Cook’s distances, 30, 192,
198-199, 225, 228

cooks.distance, Cook’s distances, 192

coplot, conditianing plots, 105-106

car, carrelations, 35, 266

count.fields, in each line of a dara file, 45

crossprod. sums of squares and products,
266n

crosstabs, contingency table, 35, 183

cr.plots |car], companent + residual plots,
32-33, 210-214, 225, 230-231, 233

cut, dissect range of vanable, 64-65

data, read data from a library, 47

data.class, class of object or substitute for
class, 288n

data.ellipse [car], 147148

data.frame, dara frame constructor, 40, 60

dbinom, binomial probability-mass function,
35, 92

dchisg, thi-square density, 35, 91-92

debug, execute funcrion line-by-line, 294

density, kernel densicy estimation, 839-90,
102, 202203

det, dererminant, 267

detach, remove data frame or library from
search path, 51, 63-64

dev,cur, current graphics device, 255

dev,list, list of open graphies devices, 255

dev,set, set current graphics device, 253

df, F density, 35, 92

dfbeta [car|, coefficient change an case
deletion, 196, 225, 228

dfbetas {car}, standardized coefficient
change on case deletion, 28, 196, 225

diag, martix diagonal, diagonal matrix,
identity marrix, 267

dim, dimension attribute, 69

dnorm, normal densicy, 35, 20, 92

302 INDEX OF FUNCTIONS, OPERATORS, CONTROL STRUCTURES, AND OTHER SYMBOL

dt, t densicy, 35, 52
dunif, uniform densicy, 92

edit, edit and return object, 41

e1gen, cipenvalues and eigenvextors, 219,
266

else, conditional evaluarion, 268

axpand .grid, all combinations of values,
170, 181, 248-249

factor, constructor for class facrar, 81, 137,
164

fix, edir and alter object, 41

floor, round dewn, 271

for, iteration, 111, 199, 239, 241, 253-254,
259-160, 265-270

fractiens, write numbers as rarional
fractions, 264

friedman,test, Friedman rank-sum test, 33

function, function definitipn, 13, 230,
258-260

gamma, gamma function, 270

Gamma, GLM family penerator, 157-158

gaussian, GLM family generator, 157158

ginv, generalized inverse, 267

glm, generalized linear model, 156-159, 161,
185, 169-170, 180, 182, 184, 187-189,
248, 273, 275, 285

graphshest, new graphics device, 255

gray, generate RGB gray levels, 246-247

hatvalues [car], 30, 195, 152, 225
bcem [car], hetercscedasticity-cansistent
cactficient covariance matrix, 209
help, documentation, 5-6, 35, 149
hist, hiscogram, 21-23, 29, 35, 86-89

1, identity functien, 150, 213, 216

identaify, point identification, 25-28, 30, 55,
51-52, 101, 122, 139, 195, 228, 260

if, condiwional evaluation, 259-260, 268

ifelse, vecrorized conditional. 269

inspect, debugging, 294

inverse.gaussian, GLM family generaror,
157-158

invisible, return bur do not print result,
287=-288

1s, general predicare, 83

is.character, predicate for made charaeter,
61

is.factar, predicate for class facter, 81

is.matrix, marrix predicare, 82-83

is,na, missing-data predicate, 59

is.numeric, predicate for mode numeric, 81

iicter, randamly perturh coardinates, 97, 99

kruekal .tast, Kruskal-Wallis rank-sum test,
s

lapply, apply a function to list elememnts,
279, 281-282

legend, add a legendroagraph, 138-13%,172,
245

length, number of elements, 12, 78-79, 82n,
B3, 138

levels, of a factar, 142

leverage.plots [car], 201

library, atrach library to search path, 28,
47

linear.hypothesis [ear], test of, 145-147,
209

lines, add lines o a graph, 23, 89, 97-98,
138-139, 239, 241-242, 246, 253

lizt, list canstruetar, 70-71

1w, linear model, 26-27, 29, 35, 57-59,
97-98, 119121, 123-124, 131, 133,
135-136, 149-153, 209, 211, 219,
266, 2660, 283

locator, réturn mouse cocrdinates, 163,
172, 243, 245, 255

log, logarithm, 56, 56, 62, 149

logb, logarithm with base, 5, 57

logit [cax], logic rransformarions, 108

loglin, log-linear model, 184n

loglm, log-linear madel, 184n

lowess, local linear regression smoother, 59,
97-98

matrix, matrix constructor, 69, 82, 249, 261
Dax, maximum, 335

mean, 12, 35, 52, 56, 137, 280

median, 35, 56

mia, minimum, 35

mode. of object, 78-79, 82n, 83

ms, general oprimization, 276

multinem, multinomial logit model, 173

INDEX OF FUNCTIONS, OPERATORS, CONTROL STRUCTURES, AND OTHER sSYmBoLs 30

na,exclude, remove missing dara, 151-152,
170

na.fail, signal errar with missing dara,
151-152, 170

namas, names atrribuce, 72-73

na,omit, remove missing data, 60, 126,
151-152, 170

n.bins [car], number of histogram bins, 87

ncv. test [car], test of non-copstant error
variance, 33, 208

new, general farmal-abject constructor, 289

nlm, general optimzation, 276

almin, general aptimzarian, 276

alminb, general aptimization, 276-278

nrow, number of rows, 66

aumeric, constructor for mode numeric, 81

abjects, list abjects, 14

optim, general optimization, 276-278

options, ser or query optians, 27, 58, 127,
129, 141, 165, 181

ordered, constructor for class ordered
{factor), 130, 164

outar, general outer praduct, 263

outlier. test [car], 124, 225

pairs, scatterplot matrix, 22-24, 103

par, S¢t ar query graphics parameters, 23,
111n, 165, 171, 238-240, 243, 255

pbinom, binomial CDF, 35, 92

pchisq, chi-square CDF, 33, 92, 177

persp, perspecrive surface plot, 249-250)

pf, F CDF, 35, 92

piechart, 246-247

plot, peneric graphs, 25, 35, 93, 93n, 109,
138, 143, 179, 195, 198, 202-203, 224,
236-245, 253, 255, 260

plot.defanlt, defaujr plot methad,
136-237

paorm, normal CDF, 35, 91-92

points, add point-symbols to a graph, 23,
89-90, 138~139, 179, 198-159, 235,
241, 246, 260

poisson, GLM family generator, 157-158,
178

polr, proporticnal-ocdds logistic regression,
177

poly, orthogona) polynomial regressars, 211,
213

polygon, draw a polygen on a graph, 244

power axis [car], axis for powertransfarmed
variable, 114

prcomp, principal-components analysis, 219,
268

praedict, predicted values from model, 171,
174, 177, 248-249, 251

princomp, principal-components analysis,
219, 266

print, generic output, 20, 285-286,
287-288, 290, 293

print.default, default print mechod, 28BS

print.lm, priat method for linear-madd
objects, 285-284

prob.axas [car}, axis far logit-transformed
variable, 115

prod, product, 270

prop.test, tests for proporrians, 35

pt, t CDF, 35, 92

punif, uniform CDF, 92

gbinom, binomial quantile funcrion, 35, 92

gchisg, chi-square quantile function, 35,
51-52

qf, F quantile function, 35, 92

gaorm, normal quantile function, 35, 90, 92

ggnorm, normal quantile-comparison plots,
20

qq.plot [car], quantile-comparison plots,
29-30, 90-92, 110-111, 193194, 202

qr, QR decomposition, 266

4t, ¢ quantile fupction, 35, 92

guantile, sample quantiles, 35, 65

quasi, GLM family generatar, 157-158, 185,
188

quasibinomial, GLM family generator,
157-158, 187

quasipoisson, GLM family generator,
157-158, 187-188

quaif, unform quantile function, 22

rainbaw, generate RGB colarcs, 246-247

rapge, minimum and maximum, 35

rbinom, binomial random numbers, 35, 52

rchisqg, chi-square random numbers, 35,
$1-92

read, fuf, read hxed-widrh-format files, 46

read,table, read data from file to data
frame, 19-20, 42446, 60, 126

Recall, recursion, 272

recode [car], recode variable, 6468, 168,
275

regsubsets, subset regression, 220, 224

remove, delete objects, 15, 48

rep, replicare data, 40

304 INDEX OF FUNCTIONS, OPERATORS, CONTROL STRUCTURES, AND OTHER SYMBOL

repeat, iteration, 269, 271272

return, terminate function and return result,
260, 270

rf, F random numbers, 35, 92

tnorm, normal random numbers, 2, 35,
91-b2

round, round-off numbers, 264

rovnames, fiest component of dimnames, 74,
20

row.names, row names of dara frame, 25-26

rstudent {cax], studentized residuals, 28—
30, 193, 199, 225

tt, ! random numbers, 35, 32

runif, uniform random numbers, 52

sample, random sample, 35, 66-67, 6970,
101

sapply, apply a function ro list elements,
279, 281-282

scale, standardize variables, 124

scam, input dara, 3940, 46

scatterplot.matrix [ear], 25, 94-95, 98,
103-104, 117, 147n

sd, standard deviarion, 35, 138

search, search path, 49-51, 54

segments, add line segments to a graph, 244,
255

seq, generare sequence, 7

setClass, define formal class, 288-28%

setls, define farmal inheritance, 292

setMethad, define formal method, 290-291

show, generic display, 290-291

sign, of number, 269

sm,density, bivariate kernel-density
esmimarian, 99

salve, solve linear equarions, least-squares
fix, marrix inverse, 263-265, 265n

sort, order data, 66-67, 179

source, read commands from file, 16

split, divide data inte groups, 102

splom, scatrerplor matrix, 104

spread.lavel, plaot {car}, 33, {13-114,
206-207

Eqrt, square-roat, 9

stdev, standard deviation, 35, 33, 138

stem, stem-and-leaf display, 35, 88

step, stepwise madel selection, 220-224

stepAll, stepwise model selection, 220

stop, termindre funcrion and signal error,
271

subsets [car], plor regression subsers,
224-225

sum, 12, 99, 279280

summary, generic summaries, 9, 20, 27-28,
62,79, 111, 120121, 161, 163, 173,
224,287-288, 251

svd, singular-value decompoesition, 219, 266

switch, condirianal evaluation, 269

t, marrix transpose, 263

table, continpency table, 35, 179, 183

tapply, apply a funcrion to cells of a rapged
array, 137-138, 1370, 272, 282283

text, add texr ra a graph, 165, 239, 243,
253, 255

traceback, debugging, 17, 293

trellis.device, new graphics device, 255n

truehist, histogram, 88

t5.plot, time-series plog, 35

t.test, ¢ 1ests for means, 35

unclass, remove class ateribure, 127

unique, distinet values, 92, 179

updata, refit model, 34, 123, 134-135, 170,
187

var, variance or covariance marrix, 35, 56,
138

vaf [car], variance-inflaton facrors, 217,
219

varning, print warning message, 286

weights, observarion weighrs, 188n

vhich, TRUE indices, 45

vhich.uames [car], observation indices, 34

vhile, iteration, 269-271, 274, 274

wilcox.test, one and two sample Wilcaxan
tescs, 35

windaws, new graphics device, 255

vireframe, 3D surface plot, 250

write.table, output data frame ro ASCII
file, 48-40

xtabs, contingency table, 35, 183

Author Index

Agresti, A, 175, 1§81
Akinson, A, C, 123, 104
Azzalim, A, xvi, 89n, 99

Bares, D. M., xvi

Becker, R. A, xv

Berndr, E. R, 159

Bowman, A, W, xvi, 85n, 99
Box, G. E. B, 106, 203, 214
Breusch, T. 5., 208

Buja, A, 102

Campbell, A,, 163, 175

Chambers,). M., xv, 85, 266n
Cleveland, W, §., 85, 97, 105

Clogg, C. C, 17§

Converse, I £, 163

Cook, D,, 102

Cook, R. D., 102, 206, 210n, 214, 227
Cowles, M. 247

Cox, D, R., 106, 203

Davis, C., 120, 247
Bavison, A. C., xw
Diaconis, P, §7

Dunean, O. D,, L8

Efren, B., st
Ericksen, E. B, 217
Ervin, L. H., 20%

Fienberg, 5 E., 181

Fox,)., ix, %, 39, 140, 147, 217, 220n, 247

Freedman, D., 87
Freedman, J. L., 35

Graham, I, 293n
Grambsch, B M., xvi
Guoyer, M., 39

Hasre, T. J., xv, xvi
Hinkley, D. V., xvi

Kadane,]. B,, 217
Kermighan, B. W, 293n
Kleiner, B., 85

Krupar, E,, 136

Landwehr, . M., 225
Lirrle, R, J. A, 54

Loader, €, xvi, §9n
Long, J. &, 159, 209

McCabe, G. P, 143
Miller, W. E., 163
Monenre, G, 147, 217
Moore, I, 5,, 143
Moore,). C, I, 136
Mosteller, £ W, 115
Mroz, T. A, 159

Nelder, J. A., 155
Ornstein, M, D,, 100, 178, 202n

Pagan, A, R, 208

Pike, R., 293n

Pinheiro, J. C.. xvi
Plauger, I ., 293n
Powers, D, A, L75, 181
Pregibon, D., 225

Ripley, B. D., xwi, 173, 177, 204, 213, 257, 276
Rubir, D. B.. 54

Sall,)., 201

Schater, J. L., xvi, 34
Shihadeh, E. 5. 175
Shoemaker, A. C,, 225
Silverman. B. W, 39n
Ste, R, x

Scokes, D. E,, 163
Swayne, D. E, 102, 235

Therneau, T. M.. xvi

Tibshirani, R. J., xvi

Tidwell, I. W, 214

Tierney, L., 102

Tukey, J. W., 113, 115, 206, 217
Tukey, B A., 85

Venables, WL N., xw, 173, 177, 204, 213, 257,
176

Wang, B G, 225, 227
Wedderburn, R, W. M., LS55
Weasherg, 5, 102, 227
Whire, H,, 209

Wilks, A, R., xv

Williams, D. A, 225

Xie ¥, L75, 181

30

Subject Index

Abbreviation of arguments, 5, 103104, 259
Added-variable {(partial-regression) plots, 31,
192, 200-201, 2100
for constructed variables, 205-206
for GLMs, 227
Akiake information criterion (AIC), 182,
176177, 221
Analysis of covariance. Sec regression,
dummy
Analysis aof deviance {for GLM), 162~163,
166, 170, 177, 180
Analysis of variance, 35, 131-133, 136-142,
182g, 209
Applying a functian
aver an array, 279-281
over a list, 281-282
over a table, 137-138, 282-283
Arithmetic, 34
vecrorized, 7-8
Arrays, 70, 73-74, 183, 279
ragged, 282
Assignment, 8, 10, 12n, 64, 72, 74, 76
and printing, 9, 285
Arributes, 69, 78-80
Axes, 138, 165, 236-237, 242, 253
labels, 237-238, 240
logarithmic, 237
suppressing, 23, 238

Basic statistics, 34-36
Bayes infarmatian cricerion {BIC), 221-225
Baves prediction rule, 174
Binary dara, 159-163
Binomial

data, 156, 163-166

family {for GLM), 156
Block of statements. See compound expressions
Boostrapping, xiii, 29, 193, 193n
Banferrom test, for outliers, 193=194
Boxplots. 35, 21-%4

parallel, 100, 114, 144-145
Bubble platr of Cook’s distances, 198-199,

258-281

Bulging rule, 115

306

C (programming languape), x, bn, 278
car library, 1, 28, 85, 104, 191, 235,
diagnastics, 28-2%, 192195, 217
graphics, 29, 87, 103, 113-115, 192-1%4,
200-201, 205-207, 210, 214,
224-225
hypothesis rests, 132, 145, 162, 180, 187,
194, 208209
obraining, xiii
ather functions, 64-66, 107-108, 168,214
Categorical dara, 20, 64, 158-184
CERES plots, 214
for GLMs. 230
Character data, 38, 42, 6061, 66, 78
Chalesky decompaosition, 266
Classes, 71, 80-82, 82n, 93n, 127, 283-293
Coercian, 81
Collinearigy, 216-220
Colar, use of, 87n, 100, 238, 240, 244-247,
260-261
Comma-delimited files, 42
Command line, xv
editing, 1§
Comments, 7, 53, 254
Comparison operators, 10-11
Compiler, xn
Complementary log-log, link function,
156-159
Companent + residual (pardal-residual)
plors, 32, 210-214, 226, 230-231
Compound expressions, 13, 23, 268-272
Conditionals, 255, 268-249
Conditioning plots {coplats), 105-106
Confidence envelope
for quantile-comparisan plats, 20
far studentized residuals, 29-30, 153-194
Confidence interval, for response surface, 252
Canfidence region, joint, 147-148
Constructed-variable plats
for Box-Cox regression, 204-206
for Box-Tidwell repression, 213-216,
231-232
Contingency tables
chi-square test far independence 1n, 35
constructing, 35, 183-184

SUBJECT INDEX 307

logit madels for, 163-166
log-linear models for, 181-184
raveling, 184
Cantinuation dichotomies, 168, 175
Contrasts, 127-130, 152, 221
deviation-caded (sum-to-zerq), 128-122,
140-141, 181
dummy-caded (treatment, indicarar), 128,
140, 160~161
Helmert, 128, 140, 1561
interactions, 144
orthagonal-palynamial, 130 (see also
orthogonal polynomial regressats)
user-specified, 142-144
Coanvergence, testing for, 274
Caok’s distances, 30, 197-199, 224-228,
2582560
Coordinates, locating, 243. See also
identification of paints
Cootdinate space, far graph, defining, 138,
198, 236-237. 241, 253, 260
Correlations, 35
CRAN {Comptehensive R Archive Netwotk),
xii
Crossed effects 150. See also interacrions
Cross-validation, 220, 2200
Cumulative distribution functions (CDFs),
91-92

Data
binary, 159-163, 230
binomial, 156, 163-166, 230
categorical, 20, 64, 158-184
charactet, 38, 42, 60-61, 66, 78
count, 177-184, 202n, 230
dichotamous, 158-166
editing, 41-42
exparting, 49
fixed-formar, reading, 45-46
imparting, 46—47
ipput from file, 18-19, 4244
ipput fram keyboard, 3842
in libraries, 47
logical, 38, 29
missing, 43, 54-60, 124, 151-152, 156,
242, 280
in madels, 150, 156
numetic, 20, 60, 66, 78
ardinal, 175-177
patterned, 40
polytomous, 167178
working, 49-51, 61-64 (se¢ also global
enviTonment)
Database management systems, 47n
Dara frames, 15-19, 37, 4041, 61, 68, 78,
80, 279
araching, 20, 4748, 50, 64, 120

detaching, 51, 64
file ipput into, 4247
indexing, 7678
missing data, removing, 60
Debugging, 16-28, 293-254
Default values, of arguments, 6, 259
Density estimation, nonparametric, 88-90,
103, 108-109, 202-203
bivariate, 98—-100
Density funcrions, 20-92
Deviance, 158, 161-162, 166, 175, 182,
276, See also analysis of deviance
residuals, 226
Dfbeta, 196, 227-229
Dibetas, 126-197, 227
Diagnostics. See added-variable plats;
Lomponent + residual plots; Coak’s
distances, hat values: leverage plats,
spread-level plats; studentized residuals;
variance-inflation factors
Dichotomous dara, 158-166
Dichotomies, nested, 167-172, 176
Dispersion parameter (for GLM), 157, 188
Distributions, staristical, 35, 90-92
Documemation, xriin, 5-6, 35, 257, 294
specific, 149, 237, 2370, 232, 253, 266,
2659, 277, 293

Editing
command-line, 15
dara, 4142
fupcrions, 16, 259, 252
Effect displays, 247-255
Eigenvalues and eigenvectars, 219, 266
Ellipse, data and confidence, 147-148
Emacs (editor), 16
Errars, 16-18, 271, 293
in dara input, 435
Escape character (\), use of, 44n
Excel, 47
Exponential families of distriburians,
156-157
Exparting daca, 4849
Extremes, 35

Factors, 20, 41, 6062, 68, 80, 126-129,
181, 192, 217, See also contrasts
cacreing to numeric, 101, 138
levels of, 62, 124, 137, 142, 167n
ordered, 62, 127, 130
recading, 64-68
variable selectian and, 221
FAQs (frequently asked questions), xiiin
Farmulas, model, 27, 95, 119-120, 134-135,
142-150, 156
compact, 219

308 SUBIECT INDEX

ane-vimed, 2123
te¢.~~~ing " ichmet . _perators in,
v =150, 213, 216
FORTRAN, x, 6n, 278
F tests. See aisa analysis of variance; linear
hypaothesis
corrected for nonconstant errar variance,
209
for GLMs, 162, 187
Functians, 4
ananymous, 23, 138, 280
arguments, 5-6, 13, 25, 149, 259-240
caercion, 31-83
construceor, 81-82
editing of, 16, 259
family generatar (for GLM), 157158
generic, 7, 20, %3n, 132-1%3, 195, 198,
236, 283-293
link (in GLMs), 156-158
lacal, 276, 293
methads, 20, 283-223
modeling, 57-38, 78
pand, 23-24, 103, 106
predicae, 61, 81-83
recursive, 272
side effects of, 21
user-defined, 6, 12-14, 25, 258-251
value of, 260

Gauss (programming enviconment), ix, 47
Gaussian family (for GLM), 156
Generalized linear models (GLMs), 155-158.
See alsa log-linear madels; quasi-
likelihood; regression, gamma; regression,
logistic; regression, negative-binomial;
regression, Poisson
diagnastics for, 225-233
GGabi, 102, 235
Glabal environment, 49, 52, 54, 81, 150, See
also warking data
Global variables, 13-14, 51, 61, 63
Gradient, in aptimization, 275-278
Graph, type of, 237
Graphics. See also plotring
devices, 23, 255-256
interactive, 235, 243 (see alsa coordinates,
lacating; idemification of paints)
margins, 115n
parameters, 100n, 111n, 115n, 165, 171,
238-240
Trellis, 104, 105n
windows, 16, 21, 235, 255
GUI {graphical user interface), xi, xv, 1-2

Hat marrix, 195n
Hat values, 30, 194-1%%, 225, 258 260

Help. See dacumentatian

Hessian, 11 opamization, 275-278

Heteropeneity, unmodeled, 186

Heteroscedasticity. See nonconstant etrar
variance

Heteroscedasticity-consistent standard errors,
209

Histograms, 21-23, 28-29 3§, 85-88

History, command, 15-16

Ideniification of points, 25-26, 30-31, 20,
94, 101, 194, 228, 260

Identity function, 150, 213, 21§

Importing data, 46

Indexing, 9-10, 63, 71-78, 265

to remove missing daca, 59

Index plots, 30, 195, 197

Influential data, 30

Inheritance, of methads, 285, 252

Inteper arithmetic, in 54, 270

Inveractions, 133-136, 135, Lés6, 182n, 183,
122, 248

Interpreter, x, xn, 1-2

Interrupt execution, 18

Inverse-Gaussian family {for GLM), 156,
1B5n

[nverge-link functian {mean function, in
GLM), 156

Invisible gutput, 21pn, 288

Iterated weighted least squares (TWLS,
iterarively reweighted least squares),
185, 185-1%50, 225, 230, 278

Ieration, 111, 241, 253, 259-260, 269-272

avoiding, 272, 293

Lazy evaluation, of arpuments, 260
Length (anribute), 78-79, 82, 82n
Lerrers,

lowercase, 17, 72n

uppercase, 72n
Leverage, in regression. See hat values
Leverage plots, 201
Libraries, ix, 2, 20, 47, 8%n

car (see cax library)

foreign, 46

lattice, 104, 255n

leaps, 220, 224

locfit, 8%n

MASS, xvi, 173, 177, 184n, 188, 204, 220

264, 267

Matrix, 267

methods, 283n

ova, 266

nnat, 173

sm, 8%9n, 29

trellis, 104, 255n

SUBJECT INDEX 30

Library sections, 3-PLUS, xii
Likelihood-ratio tests,
for Box-Cox model, 205, 206n
i GLMs, 162-163, 166, 170, 183
for proportional odds {informal),
176-177
Linear hypothesis, rest of, 145-147, 209
Linear models, See analysis of variance;
regression, dummy; regression, linear
Linear predictar {in GLM), 156, 176
Linear simultaneous equarions, salving, 264
Link funcrions {in GLM), 156-158
Linux, xi
Lisp-Stat, ix, 102
Lists, 70-71, 74-78, 281
Local functions, 276, 253
Local variables, 13, 259-260, 276
Logical daia, 38, 99
Logical aperators, 10-12, 271
Logit
link function, 156-159-
log-adds, 164, 172-173, 176
models {see regression, binary logistic;
regression, binomial lagistic;
tegression, multinomial logistic;
tegression, proportional-odds
lagistic)
transformation, 108, 115
transforming to probabilities, 252-253
Log-linear madels, 181-184
Log link function, 178
Loops, See iteration

Macintosh, xi—xii
Mallows’s C,, 224
Masking of objects, 13, 28, 50-53, 60-61,
196
Matlab, 47
Matrices, 6970, 73-74, 261-267, 279, 2188n
arithmetic, 262-263
decampositians {Chalesky, QR, sinpular-
value), 266, 266n
determinant, 267
diagonal, 267
cigenvalues and eigenvectors, 219, 266
generalized inverse, 267
idemity, 267
inverse, 263
main diagonal of, 267
transpose, 263
Maximum-likelihood estimarion
of Box-Cax madel, 203-204
of Box-Tidwell madel, 214-215
of GLMs, 157, 188-185, 225
in lagistic regression, 275-276
of normalizing powers, 111-112,
203-206

Mean-shift ourlier model, 152
Minitab, 47

Missing data, See data, missing
Mixed-effects models, xiii, xv1
Mode {arcribute). 78-79, 82, 82n

Names,

conventions for, 5n, 20, 37-38, 42, 31

of hles, 19

nanstandard, Bn

af observations, 15

rules for, 8, I3
Nested dichotomies, 167-172, 176
Nested effects, 135-136, 150
Newton-Raphson method. 273-274, 285,

289

Nancanstant error variance, 33, 206-209
Nonlinearity, 208, 210=-216, 230-233
Nannormal errors, 201-206
Nonparametric tests, 35
Numeric data, 20. 60, 66, 78

Object-oriented programming, xv, 80,
283-292

Observations, removing {fram madels, 34,
123

Oftser, in lincar or generalized linear madel,
153, 189

Operators, precedence of, 12, See also
arithmeric; assignment; comparison
aperators; logical operators

Optimizarion, general, 275-278

Options, seming, 27-28, 127, 129, 181

Orthogonal polvnonmual regressors, 213, See
also regression, polynamial;

cantrasts, orthoganal-palynomial
Outliers, See studentized residuals
Overdispersion, 186-188

Packages, R, xii. See also libraries
Parentheges, use of in expressians, 4, 12
Parrial-regression plots. See added-variable
plots
Partial-residual plots. See component +
residual ples
Parrial residuals, 210
for GLMs, 226, 230
Pearson residuals, 226
Permutation, randam, 70
Plowing. See also axes; color; graphics
arraws, 236, 244, 253-254
characrers, size of, 238, 240, 260
circles, 199
crrar bars, 253-255
frame, 138, 236, 2138, 242
legend, 25. 139, 245

310 SUBIECT INDEX

lines, 23, 58, 95, 122, 139, 195. 236=242
line segments, 244
missing data in, 242
multivariate data, 102108
poims, 23, 139, 179, 236, 23°
polygons, 236, 244=245
“rug” {on axis), %0
symbols, 232-241
text, 236, 240, 243, 253-255
Plots, recording, 111
Paisson family (for GLM]), 136, 178
Palytamous data, 167-178
Principal-components analysis, 219, 266
Principle of marpinaliry, 140, 221
Probability distributions, 20-52
Probit link funciion, 156-159
Profile log-likelihood, 204
Prompts, command line (>, 4}, xv, 1-2, 4,
3%n
Propoctions. tests for, 35
Pscudo-random numbers. See random-
number generation

Quantile-comparison plots, 22-30, $0-91,
193-15%4, 202

Quantile funcrions, 90, 92

Quantiles, 35, 65

Quasi-likelihood, 185-186

Quotation marks, around sirings, 6, 38, 42,
172

QR decamposition, 266, 266n

R, ix—xiii, 1, §
color specification, 232
Cansale, 1, 6, 110, 252
editing data, 41
abtaining, xiii
54 classes in, 283
Random-number generation, 3, 21-%2
Recoding variables, 6468, 168, 275
Recursion, 272
Regressian,
binary lagistic, 159-163, 227, 273278,
285-2%91
binomial logistic, 163-166, 172, 181-183,
185~190, 232-233, 247-248
Box-Cox, 203-206
Box-Tidwell, 214-216, 232n
Cox, xii1
diagnostics, Sez added-variable plots;
companemnt + residual plots: Cook’s
distances; hat values; leverage plots:
spread-level plots; studentized
residuals; variance-inflation factors
dummy, 126-136, 140

gamma, 185
intercepr {canstant), suppressing, 125,
132, 136
linear, 23, 26-27, 35, 11%-125
multinomial logistic, 172-177
negative-binomial, 188
nonlinear, xiii, 214n
nonparamerric, xiii, xvi, 5%, 94, 97-98,
106, 210-211
ardered probit, 175n
overdispersed binomial and Poissan,
186=188
Poissan, 178-180, 202, 206, 231-232
polynomial, 192, 211-214, 217
proportional-odds {ordered) logistic,
175177
quadratic, 211-214
robust, xiii, 194, 1%4n
stepwise, 220-224
subset, 220, 224-225
weighted least squares, 151, 190, 209, 226
Removing objects, 15, 48
Resampling methods, xvi. See also
bootstrapping
Response residuals, 225
Response surface, plotring, 248-255

5, versions of, xi
$3 lanpuage, xi, xv
determinants, 267
54 lanpuage, xi, xv
asgsignmeny, 10, 129
classes, 288292
dara, 82-84
interger arithmetic, 270
logarithms in, 5, 57
operands of different lengths, 8,
Sampling, 35, 67
SAS, ix, xn, 37, 43, 4647
Saturated madel, 158, 166, 182
Scarrerplat matrices, 22=214, 102~104, 147n
Scarrerplots, 25-26, 35, 23-95
coded, 35-96
jitered, 96-28, 99
one-dimensional, 20
three-dimensional, 102
Scientific notation, 27
Scripts, far examples, xiii
Scope, rules for, 213, 276n
Scare tests
for nonconstant error variance, 33, 208
for nanlinearity, 215
for nonnormahy, 205
for proportional adds, 176
Search path, 49-54, 61, 120, 150
Sequences, 7
Shadowing, of abjects. See masking

SUBIECT INDEX 31

Signature, of methed, 251
Singularvalue decomposition, 219, 266
Slars, in 54 abjects, 289-291
Sarting, 67
Spaces, use of in expressions, 4, 11-12
S-PLUS, ix—xiii, xvi, 1-3
Ask, using, 213
categaries (vs, factars), 65
Commands window, 2, 110, 292
contrasts, 127, 129, 161
data, 14, 41-42, 46, 49, 51, 82
graphics, elements, 100n, 106, 139, 199,
239, 244, 255
graphics, specific, 24, 88, 90, 93, 102,
104, 109, 203
graphics, Trelhs, 104, 255
linear-made!l summaries, 28
missing data in, 59, 121, 170
nesting effects, 136
Object Browser, 2
optimizarian, 278
averdispersed Poisson and binomial
models, 188
Script window, 16
search path, 54
variable selection, 220
Spread-level plats, 33, 113, 206-207
SPSS, ix, 37, 43, 4647
Standardized coefficients, 124—-125
Standardized deviance residuals, 226
Standardized Pearson residuals, 226
Siata, ix, 47
Statistical programming enviranments, ix
Stem-and-leaf displays, 35, 88
Structural-equation models, xii
Studentized residuals, 28-29, 192-154,
198152, 202, 206-207, 226, 258, 260
Subset of observations, finting madel ta, 34,
123,151, 156
Summated-rating scale, forming, 279-281
Surface plot, 3D, 249250
Survival analysis, xvi
Systat, 47

Time-series plots, 35
Title, of plot, 237
Transformations
Box-Cax family, 106-107, 110, 115,
203-206
Box-Tidwell, of predictors, 214216, 231
for linearicy, 115-117,211-212, 214-216,
231

for normalicy and symmetry, 109-112,
203-206
logit, 108, 115
power (including log), 33, 106-116, 202,
206, 211, 214, 214n, 231
spread-stabilizing, 113-115, 206
Trellis graphics, 104, 105n, 255
? tests
for constcucted variables, 208
for <onrtasts, 144
for means, 35
for regression caefficients, 131-132, 213
Types [, II, and IlI sums of squares and tests,
132n, 140-141, 162, 166
Typographical conventions, xv, 1

Unix, xi
Updating models, 34, 123, 133-135, 187

Variables. See assignment; plabal variables;
lacal variables; names

Varnable selection, 220-225

Variance, 35

Variance-mflation facrors, 217-219, 217n

Vecrars, 7, 68

Wald tests
far Bax-Cox rtansformations, 112
in GLMs, 162-163, 166
in multinomial logistic regression, 173
Warnings, 14, 17, 53
Web appendix, xiii, 133n, 194n, 210, 213,
214n, 27én
Web site
far texc, xii, 20n, 43n
R, xi, 47
Sage, xii
S-PLUS, xii
Weighted leasy squares, 151, 120, 209, 226
Windows {aperating system), xi—xii, xv, 6,
15, 44
clipboard, 16, 21, 255
Notepad, 16, 43
WinEd {editor), 16
Working data, 43-51, 61-64, S¢e also globa
environment
Warking residuals, 190n, 226, 230
Working response, 190

XGobi, 102, 235

About the Author

JOHN FOX is Professor of Sociology at McMaster University in Hamilton,
Ontario, Canada. He was previously Professor of Sociology and of Mathematics
and Statistics at York University in Toronto, where he also directed the Starist-
cal Consulting Service at the Institute for Social Research. Professor Fox earned
a Ph.D. in sociology from the University of Michigan in 1972, He has delivered
numerous lecrures and workshops on statistical topics, at such places as the sum-
mer program of the Inter-University Consortium for Political and Social Research
and the annual meetings of the American Sociological Association. His recent
and current work includes research on statistical methods (for example, work
on three-dimensional statistical graphs) and on Canadian society (for example, a
study of political polls in the 1995 Quebec sovereignty referendum). He is author
of many articles, in such journals as Sociological Methodology, The Journal of
Computational and Graphical Statistics, The Journal of the American Statisti-
cal Association, The Canadian Review of Sociology and Anthropology, and The
Canadian Journal of Sociology. He has written several other books, including
Applied Regression Analysis, Linear Models, and Related Methods (Sage, 1997),
Nornparametric Simple Regression (Sage, 2000), and Multiple and Generalized
Nonparametric Regression (Sage, 2000).

