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Preface

Visualization is a vital tool for understanding and sharing insights
around data. The right visualization can help express a core idea or
open a space to examination; it can get the world talking about a
dataset or sharing an insight Figure P-1.

Figure P-1. Visualizations can take many forms, from views that sup‐
port exploratory analysis (top left), to those that provide quick over‐
views in a dashboard (bottom), to an infographic about popular
topics (top right).

Visualizations provide a direct and tangible representation of data.
They allow people to confirm hypotheses and gain insights. When
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incorporated into the data analysis process early and often, visuali‐
zations can even fundamentally alter the questions that someone is
asking.

Creating effective visualizations is hard. Not because a dataset
requires an exotic and bespoke visual representation—for many
problems, standard statistical charts will suffice. And not because
creating a visualization requires coding expertise in an unfamiliar
programming language—off-the-shelf tools like Excel, Tableau, and
R are ample enough to suffice.

Rather, creating effective visualizations is difficult because the prob‐
lems that are best addressed by visualization are often complex and
ill-formed. The task of figuring out what attributes of a dataset are
important is often conflated with figuring out what type of visualiza‐
tion to use. Picking a chart type to represent specific attributes in a
dataset is comparatively easy. Deciding on which data attributes will
help answer a question, however, is a complex, poorly defined, and
user-driven process that can require several rounds of visualization
and exploration to resolve. In this book, we focus on the process of
going from high-level questions to well-defined data analysis tasks,
and on how to incorporate visualizations along the way to clarify
understanding and gain insights.

Who Is This Book For?
This book is for people who have access to data and, perhaps, a suite
of computational tools but who are less than sure how to turn that
data into visual insights. We find that many data science books
assume that you can figure out how to visualize the data once collec‐
ted, and visualization books assume that you already have a well-
defined question, ready to be visualized. If, like us, you would like to
address these assumptions, then this book is for you.

This book does not cover how to clean and manage data in detail or
how to write visualization code. There are already great books on
these topics (and, when relevant, we point to some of them). Rather,
this book speaks to why those processes are important. Similarly,
this book does not address how to choose a beautiful colormap or
select a typeface. Instead, we lay out a framework for how to think
about data given the possibilities and constraints of visual explora‐
tion. Our goal is to show how to effectively use visualizations to
make sense of data.
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Who Are We?
The authors of this book have a combined three decades of experi‐
ence in making sense of data through designing and using visualiza‐
tions. We have worked with data from a broad range of fields:
biology and urban transportation, business intelligence and scien‐
tific visualization, debugging code and building maps. We have
worked with analysts from a variety of organizations, from small,
academic science labs to teams of data analysts embedded in large
companies. Some of the projects we have worked on have resulted
in sophisticated, bespoke visualization systems designed collabora‐
tively with domain specialists, and at other times we have pointed
people to off-the-shelf visualization tools after a few conversations.
We have taught university classes in visualization and have given
lectures and tutorials. All in all, we have visualized hundreds of
datasets.

We have found that our knowledge about visualization techniques,
solutions, and systems shapes the way that we think and reason
about data. Visualization is fundamentally about presenting data in
a way that elicits human reasoning, makes room for individual
interpretations, and supports exploration. We help our collabora‐
tors make their questions and data reflect these values. The process
we lay out in this book describes our method for doing this.

Overview of Chapters
Chapter 1 illustrates the process of making sense with visualizations
through a quick example, exposing the role that a visual representa‐
tion can play in data discovery.

Chapter 2 starts to get into details. It discusses a mechanism to help
narrow a question from a broad task into something that can be
addressed with an iterative visualization process. For example, the
broad question “Who are the best movie directors?” does not neces‐
sarily suggest a specific visualization—but “Find movie directors
who directed top-grossing movies using an IMDB dataset” can lead
more directly to an answer by way of a visualization or two. This
process creates an operationalized question, one that consists of par‐
ticular tasks that can be directly addressed with data.

This process of narrowing a question down to actionable tasks
requires input from multiple stakeholders. Chapter 3 lays out an
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iterative set of steps for getting to the operationalization, which we
call data counseling. These steps include finding the right people to
talk to, asking effective questions, and rapidly exploring the data
through increasingly sophisticated prototypes.

The numerical nitty-gritty of the book follows. Chapter 4 discusses
types and relations of data, and defines terms like dimensions, meas‐
ures, categorical, and quantitative. Chapter 5 then organizes com‐
mon visualization types by the tasks they fulfill and the data they
use. Then, Chapter 6 explores powerful visualization techniques that
use multiple views and interaction to support analysis of large, com‐
plex datasets. These three chapters are meant to provide an over‐
view of some of the most effective and commonly used ideas for
supporting sensemaking with visualizations, and are framed using
the operationalization and data counseling process to help guide
decision-making about which visualizations to choose.

With this understanding of getting to insight—from questions to
data to visualizations—the remainder of the book illustrates two
examples of carrying out these steps. The case study in Chapter 7
describes the creation of a business intelligence dashboard in collab‐
oration with a team of developers and analysts at Microsoft. The one
in Chapter 8 draws from science, presenting an example with a team
of scientists who work with biological data. These case studies illus‐
trate the flexibility of the process laid out in this book, as well as the
diverse types of outcomes that are possible.

This book is accompanied by a companion website. From this site
you can download the code and interactive versions of the visualiza‐
tions presented in Chapters 5 and 6, as well as other code and sup‐
plementary material.
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CHAPTER 1

Getting to an Effective
Visualization

Choosing or designing a good visualization is rarely a straightfor‐
ward process. It is tempting to believe that there is one beautiful vis‐
ualization that will show all the critical aspects of a dataset. That the
right visual representation will reveal hidden insights. That a perfect,
simple, and elegant visualization—perhaps just a line chart or a
well-chosen scatterplot—will show precisely what the important
variable was and how it varied in precisely the way to illustrate a
critical lesson.

This is often the impression that we, at least, are left with after read‐
ing data science case studies. But in our experience, this does not
match the reality of visual data analysis. It takes hard work, and trial
and error, to get to an insightful visualization. We start by thinking
about what we want to know, and we refine fuzzy questions into
actionable, concrete tasks. We clean, reshape, and restructure the
data into forms that we can put into a visualization. We work
around limitations in the data, and we try to understand what the
user wants to learn. We have to consider which visual representa‐
tions to use and what interaction mechanisms to support. Along the
way, we find other variables that tell us more about the dataset and
that help clarify our thinking. And no single visualization is ever
quite able to show all of the important aspects of our data at once—
there just are not enough visual encoding channels.
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Designing effective visualizations presents a paradox. On the one
hand, visualizations are intended to help users learn about parts of
their data that they don’t know about. On the other hand, the more
we know about the users’ needs and the context of their data, the
better we can design a visualization to serve them. The process
described in this book embraces this paradox: it leverages the
knowledge users have of their datasets, the context the data lives in,
and the ways it was collected—including its likely flaws, challenges,
and errors—in order to figure out the aspects of it that matter.

Put another way, this book is about the path from “I have some
data…” to “We know this because of these clear, concise, and
insightful visualizations.” We believe that creating effective visuali‐
zations is itself a process of exploration and discovery. A good visu‐
alization design requires a deep understanding of the problem, data,
and users.

Getting to Insight
We most often work with other people that have a dataset they are
trying to make sense of. The process of designing a visualization
usually starts when people walk into our office.

CLIENT: I have some data that I’d like to visualize. How should I
draw it?

The client seems to expect us to pull a visualization off the shelf, to
sculpt that perfect visualization. We almost always frustrate them by
asking what they hope to see.

Q: What is it about the data that you would like to visualize?
CLIENT: I want to see how profitable our stores are.
Q: What in your data indicates a store being profitable?
CLIENT: It means that the store has lots of sales of high-profit
items.
Q: How does profit vary by store?

And so on.

By the end of this process, we often find that the clients do not have
a visualization problem, but an operationalization one. Their strug‐
gles to choose a visualization stem from a lack of clarity about which
attributes of the data are most important and how those attributes
relate to one another. Once they can describe how the data
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attributes relate to the question they are trying to answer, finding an
appropriate visualization becomes much easier.

We have learned over the years that designing effective visualiza‐
tions to make sense of data is not an art—it is a systematic and
repeatable process. We have systematized this process into what we
believe are reproducible and clear steps.

This process tracks our understanding of four components:

Data
What data is available, and what does it mean? What does the
data look like, and what are its important aspects? Where did it
come from, and why was it originally collected?

Tasks
What needs to happen with the data? What are the low-level
questions and tasks that will support high-level goals?

Stakeholders
Who is involved with the data, the problem, and the goals?
What can they say about the problem to help design an effective
visualization? Who will view the final visualization, and what
sorts of things do we expect them to learn from it? What
domain knowledge do they bring to the table? What answers
would they find satisfying?

Visualization
How does the understanding of data, tasks, and stakeholders
come together? What representations of this data will fulfill the
tasks for the users?

Regardless of the visualization outcome, this process will almost cer‐
tainly lead to new discoveries and insights. These discoveries help to
inform the operationalization, but they will also likely steer the pro‐
cess down new and unexpected paths. The guidance and framework
in this book are meant to help identify opportunities for discovering
new knowledge and to make an otherwise messy process a bit more
structured.

Hotmap: Making Decisions with Data
As an example of how visualizations can help you to better under‐
stand a problem, and help an organization make decisions, we can
look back to 2006. Microsoft was rolling out its new mapping tool,
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Virtual Earth, a zoomable world map. The team behind Virtual
Earth had lots of questions about how their users were using this
new tool, so they collected usage data.

The usage data was based on traditional telemetry: it had great
information on what cities were most viewed, how many viewers
were in “street” mode versus “photograph” mode, and even infor‐
mation about viewers’ displays. They instrumented search and navi‐
gation, and they collected counts for the number of times that users
looked at certain sentinel regions. And because Virtual Earth was
built on top of a set of progressively higher-resolution image tiles,
the team was also archiving server logs that tracked how often indi‐
vidual tiles were downloaded.

Interviews with team members suggested that they did not have an
intuitive notion of how their tool was being used. In conversation,
one team member argued that people were likely to look at their
own homes; another thought that the overhead photography would
mostly be used over mountains. The goals were varied: they
included seeing whether the user experience was well balanced
across user needs and deciding how and where to invest in future
rounds of photography.

We addressed these questions with a visualization tool called Hot‐
map. Figure 1-1 shows a screen capture from the visualization tool,
focusing on the central United States. Hotmap uses a heatmap
encoding of the tile access values. This is a visualization technique
that uses a colormap to encode the access values at the geospatial
locations of the tiles. Colored spots on the map are places where
more users have accessed image tiles. The colormap is a logarithmic
color scale, so bright spots have many more accesses than dim ones.
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Figure 1-1. Hotmap, looking at the central United States. The white
box surrounds an anomaly in South Dakota.

Some of the brightest areas correspond to major population centers
—Chicago and Minneapolis on the right, Denver and Salt Lake City
in the middle, and West Coast cities on the left. Near the center,
though, is an anomalous shape: a bright spot where no big city
exists. There is a star shape around the bright spot, and an arc of
bright colors nearby. The spot is in a sparsely populated bit of South
Dakota—there was no obvious reason to the team why users might
zoom in there.

That point is, however, very close to the center of a map of the con‐
tinental US. In fact, the team learned that the center of the star cor‐
responds to the center of the default placement of the map in many
browsers. The bright spot with the star most likely corresponds to
users sliding around after inadvertently zooming in, trying to figure
out where they’ve landed; the arc seems to correspond to variations
in monitor proportions.

As a result of this usability challenge, many mapping tools—includ‐
ing Bing Maps (the successor product to Virtual Earth)—no longer
offer a zoom slider, which keeps users from accidentally zooming all
the way in on a single click.

A second screen capture, shown in Figure 1-2, reveals a bright spot
off the coast of Ghana. This spot exhibits the same star pattern cre‐
ated by users scrolling around to try to figure out what part of the
map they are viewing. This spot is likely only bright because it is at 0
degrees latitude, 0 degrees longitude, a point that GIS tools run into
often. While computers might find (0,0) appealing, it is unlikely that
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1 So many datasets have references to (0,0) that GIS practitioners refer to that location as
“null island.”

there is much there for the typical Virtual Earth user to find inter‐
esting.1

Figure 1-2. Hotmap, looking at the map origin (0,0).

This second bright spot inspired a hunt for bugs. The team rapidly
learned that Virtual Earth’s search facility would sometimes fail, and
instead of returning an error message, typos and erroneous searches
would sometimes redirect the user to (0,0). Interestingly, the bug
had been on the backlog for some time because the team had deci‐
ded that it was not likely to surface often. Seeing this image made it
clear that some users really were being confused by the error, so the
team prioritized the bug.

Although the Virtual Earth team started out using the Hotmap visu‐
alization expecting to find out about how users interacted with
maps, they gleaned much more than just a characterization of usage
patterns. Like many—dare we say most?—new visualizations, the
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2 See “Further Reading” on page 8 for other stories of how Hotmap has been used.

most interesting insights were those that the viewers were not antic‐
ipating to find.2

Where Visualization Is Useful
Is visualization the silver bullet to help us make sense of data? Not
always. There are two questions to consider to help you decide if
your data analysis problem is a good candidate for a visualization
solution.

First, could the analysis tasks be supported with an algorithm? A
crisp task such as “I want to know the total number of users who
looked at Seattle” suggests that an algorithm, statistical test, or even
a table of numbers might be the best way to answer the question. On
the other hand, “How do users explore the map?” is much fuzzier.
Fuzzy tasks are great candidates for a visualization solution because
they require you to look at the data from different angles and per‐
spectives, and to be able to make decisions and inferences based on
your own knowledge and understanding.

The second question to consider is “Is all the necessary information
contained in the dataset?” If there is information about the problem
that is not in the dataset which requires an expert to interpret the
data that is there, then visualization is a great solution. Going back
to our fuzzy question about exploring a map, we can imagine that it
is unlikely that there will be an explicit attribute in the data that
classifies a user’s exploration style. Instead, answering this question
requires someone to interpret other aspects of the data to bring
knowledge to bear about what aspects of the data imply an explora‐
tion style. Again, visualization enables this sort of flexible and user-
centric analysis.

For all but the crispest questions about explicitly measured phe‐
nomena, visualization is probably a good tool to throw at a problem.
In our experience, we have almost never come up against a problem
that cannot benefit from some amount of visualization.
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Further Reading
The Hotmap project is discussed in:

• Fisher, Danyel. "Hotmap: Looking at Geographic Attention.”
IEEE Transactions on Visualization and Computer Graphics 13
(2007): 1184–1191.

• Fisher, Danyel. "The Impact of Hotmap.” The Infovis 2009 Dis‐
covery Exhibition. Redmond, WA: Microsoft, 2009.
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CHAPTER 2

From Questions to Tasks

All visualization begins with a question about data. An analyst
wants to know something about a phenomenon in the world, or
wants to share their knowledge about it with someone else. She
believes the phenomenon they wish to examine is represented
somehow in the data.

The challenge in this process is that the question the analyst wishes
to address can seem far from the data. The analyst might be working
on a broad goal: say, “Are high-salary employees more productive
than less well-paid ones?” This leads to a process of making the
question measurable. What does the analyst mean by high-salary,
and productive? What visualization or set of visualizations would
demonstrate the relationship between these variables?

The process of breaking down these questions into something that
can actually be computed from the data is iterative, exploratory, and
sometimes surprising. This chapter describes how to refine high-
level questions into specific, data-driven tasks. The outcome of that
process is a set of concise design requirements for a visualization
tool that supports finding answers to those questions.

The general concept of refining questions into tasks appears across
all of the sciences. In many fields, the process is called operationali‐
zation, and refers to the process of reducing a complex set of factors
to a single metric. The field of visualization takes on that goal more
broadly: rather than attempting to identify a single metric, the ana‐
lyst instead tries to look more holistically across the data to get a
usable, actionable answer. Arriving at that answer might involve
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exploring multiple attributes, and using a number of views that
allow the ideas to come together. Thus, operationalization in the
context of visualization is the process of identifying tasks to be per‐
formed over the dataset that are a reasonable approximation of the
high-level question of interest.

A visualization is not the inevitable outcome of operationalization.
Exploring the data might show that the goal is best achieved with a
statistical analysis or with machine learning. Similarly, the outcome
of the process might show that a cluster analysis across multiple
attributes is more useful than a plot. We find that more often than
not, visualization is a vital component of getting to a successful
operationalization.

This chapter emphasizes the data aspects of this process. The next
chapter moves to the human side of the process: how to get the
information necessary to effectively operationalize the high-level
questions. Later chapters then look at how to translate the opera‐
tionalized questions into specific visualizations.

Example: Identifying Good Movie Directors
To guide the process through operationalization, this chapter exam‐
ines an exemplar question: “Who are the best movie directors?”

Nonspecific questions like this are how many data explorations
start. Answering a question like this requires a much more specific
task that can be precisely addressed with a dataset. Before we can be
more specific, we first need to take a step back: who needs to know
the answer to this question? The use case might be a film student
trying to assert that his dissertation is about one of the most influen‐
tial directors, or a hiring manager looking to hire a director for an
upcoming project, or a journalist putting together a splashy article
that will feature a top list.

Each of these users needs suggests different interpretations for the
notion of best director. The film student is looking for a way to
quantify and defend a notion of influence, whereas the hiring man‐
ager might want to limit themself to people working today who are
less accomplished and thus more affordable. For this example,
though, the user will be a journalist who is putting together an arti‐
cle about a new movie and wants to include a list of the best direc‐
tors.
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The goal of operationalization is to refine and clarify the question
until the analyst can forge an explicit link between the data that they
can find and the questions they would like to answer. For this exam‐
ple, the dataset at hand contains a list of movies rated by the film-
aficionado community. Each movie is associated with a director, a
number of raters, and an average rating score.

A Note on the Data
The dataset used for this chapter is comprised of two of IMDB’s
downloadable lists, directors.list and ratings.list. There is a copy of
the Jupyter notebook that parses them into cleaner CSVs on the
book’s companion website. The script cleans the data to remove
entries that the database refers to as not being movies, such as video
games and TV shows. The analysis and visualizations in this chap‐
ter are carried out in Python and recorded in a second Jupyter
notebook available at the same site.

With both data and a high-level question in hand, the visualization
work can begin. Data alone is not enough to dictate a set of design
requirements for constructing a visualization. What is missing here
is a translation of the high-level question “Who are the best movie
directors?” into a set of concrete tasks over the data.

The choice of dataset and operationalization is fundamentally a spe‐
cific perspective on a problem; they stand in for what the analyst
wishes to understand. In this example, there are other ways to frame
the inquiry and other types of data that could be collected. This is a
large part of why visualization is so important for answering ques‐
tions like these: it allows an analyst’s experience and knowledge to
layer directly on top of the data that is ultimately shown. The ana‐
lyst’s skills and experience allow them to make inferences about the
more abstract questions they are really interested in.

Making a Question Concrete
The process of operationalization winds its way from a general goal
or a broad question to specific tasks, and then to visualizations that
support those specific tasks based on concrete data.

To achieve this, the analyst searches for proxies. Proxies are partial
and imperfect representations of the abstract thing that the analyst
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is really interested in. For example, high movie ratings may be a rea‐
sonable proxy for best in our movie example. Selecting and inter‐
preting proxies requires judgment and expertise to assess how well,
and with what sorts of limitations, they represent the abstract con‐
cept.

In operationalization, there are two important types of proxies:

• A proxy task is a lower-level task that stands in for the original.
The result of a proxy task reflects on the answer to the original
question, but the proxy task itself is more closely related to the
data; it can be accomplished with quantitative tools, such as a
visualization or a statistical analysis.

• A proxy value is an attribute in the data that stands in for a
more abstract concept. This can be an existing attribute, or it
can be derived from the data.

Operationalizing a question often results in more questions, which
require further articulation of proxies. One step in this process is to
find places where a question is underspecified or does not directly
reference the data on hand, in order to identify where proxies are
necessary.

Collaboration with stakeholders crucially informs the process of
operationalizing questions. It helps to learn what data is available
and how the results will be used. Interviews help to identify the
questions and goals of the stakeholders with respect to the data and
to further understand what data is available or can be made avail‐
able. Throughout the process, an analyst translates questions and
goals into a description of the problem that is amenable to a data
solution. Interview techniques and prototyping are discussed in
more detail in Chapter 3.

In this book we advocate an approach of systematic operationaliza‐
tion in order to bolster explicit acknowledgment, validation, and
support of the range of possible proxy decisions for a question. This
systematic approach leaves open future possibilities and provides
guidance for making downstream decisions. The start to this pro‐
cess is getting to understand the question and what is available in
the data—and appreciating the gaps between them.

This chapter both describes and illustrates the operationalization
process. It uses the movie director example to show how to refine a
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question into detailed, specific tasks. It discusses the four compo‐
nents that we use to describe an operationalized task.

A Concrete Movie Question
The example started with the high-level question “Who are the best
directors?” The dataset is a list of directors and a list of movies. The
first task is to operationalize best director. As a rough definition, a
good director has directed many good movies. But many good mov‐
ies is also ill-defined, and thus a proxy for good movie might in turn
be based on its rating on IMDB.

These decisions replaced one bit of ambiguity with three more. How
many of these best directors need to appear in the results? What
counts as good IMDB ratings, and what are many of them? For that
matter, a quick glance at the IMDB data reveals that there are short
films, TV episodes, video games, and so on—so what counts as a
movie?

It is possible to choose the measures arbitrarily: “More than five
movies with IMDB ratings greater than 9.8,” or “average movie rat‐
ing higher than 8.2,” or “no movies with a rating less than 5.” While
it is not uncommon to make these sorts of decisions based on rough
knowledge of the data, or even based on choosing nice, round num‐
bers, looking at the actual data is important. The top-rated items on
IMDB might turn out to have very high ratings but only one review.
Great directors might direct a few stinkers, so just looking at the
average rating might turn out to be a poor choice. The only way to
learn what the data says is to start digging into it.

Choosing a proxy allows the analyst to sanity-check their decisions;
it can be valuable to do this iteratively at each step, checking both
the quality of the data and of the proxy.

A quick glance at the first five data items in the dataset reveals non-
mainstream movies (Table 2-1). The alphabetical first movie in the
dataset is called #1, with a total of 12 raters; the second is the simi‐
larly obscure #1 Serial Killer. Since the scenario targets a general
audience, it should probably focus on movies that most people are
likely to know. A different scenario could suggest very different
proxies.
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Table 2-1. A quick glance at the first data items in the movie dataset
(which is sorted alphabetically) reveals that there could be movies with
positive ratings that have very few raters, implying an obscure (but
decent) movie.

ID Raters Score Title Director
0 12 6.4 #1 (2005) Breen, James (V)

1 35 6.0 #1 Serial Killer (2013) Yung, Stanley (I)

2 5 5.8 #137 (2011) Elliott, Frances

3 11 7.4 #140Characters: A Documentary About Twitter (2… Beasley, Bryan (I)

4 23 6.7 #30 (2013) Wilde, Timothy

… … … … …

The decision to stick with mainstream movies suggests a need for a
proxy for popularity. One choice could be the number of ratings for
each movie. By plotting the distribution of the number of ratings by
movies (Figure 2-1), we see that the vast majority of movies in the
dataset actually have very few ratings.

Figure 2-1. Distribution of ratings. This histogram shows the count of
number of ratings per film. Almost all the films have few ratings, with
a very long tail.
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1 Median and percentile are ways of characterizing a distribution of numbers. If one
were to sort the numbers, the 75th percentile would be 75% of the way down in the list.
The median would be at the halfway point.

This first plot shows that the number of ratings is heavily skewed.
One way to make this distribution more interpretable is to plot it on
a logarithmic scale. In Figure 2-2, the data has been bucketed; a film
with 1,000 ratings now appears in the bucket for log10(1000) = 3.
Taking the log of the number of ratings smooths the distribution,
more effectively showing its shape.

Figure 2-2. Distribution of the logarithm (base 10) of the number of
ratings. The peak is under 2: most films have under 100 ratings.

We can also compute some basic summarizing statistics about the
number of ratings: the median movie in the dataset has just 26 rat‐
ings while the 75th percentile is at 132 ratings.1 By looking up the
number of ratings for a sample of blockbusters, we note that movies
that anyone can name offhand have tens of thousands of ratings.
These are useful observations; perhaps it would be valuable to trim
to a slimmer set of movies to ensure that most are ones that a rea‐
sonable number of people have seen.

We want to choose a number, though, that’s fair to good movies,
even if they are not very popular—in this case, we pick, somewhat
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arbitrarily, the most-rated 25% of movies. This amounts to around
70,000 films with more than 132 ratings.

We next pivot and look at the distribution of ratings for the
slimmed-down set of movies, shown in Figure 2-3. This distribution
shows a distinct curve with a clear peak and noticeable drop-off: rat‐
ings above 7.5 seem different from lower ratings. (This distribution
has a median score of 6.6, and a 75th percentile of 7.4.)

Figure 2-3. Distribution of score. This histogram shows the count of
ratings, by bucket. Almost all ratings are extremely low, with a very
gradual tail.

Stepping back from our dive into the data, we can observe that we
have proceeded some distance along the operationalization. We
have defined a good director and decided that it is based on their
movies; we have focused on movies and chosen a set that are popu‐
lar enough to be part of the analysis. But there are still unanswered
questions: How will we rank directors against each other? What
makes for a “best” director?

A systematic approach to operationalization allows an analyst to see
the full range of decisions and helps in pulling together the set of
proxies that can inform a final answer. Ultimately, an interactive
visualization tool can enable exploration of multiple proxies to allow
for a set of justified, and validated, answers. For our running exam‐
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ple, we will continue with the operationalization after describing a
framework for making decisions explicit throughout the process.

Breaking Down a Task
Throughout the operationalization, we need to identify where in a
question or task there is a need for a more refined proxy. Doing so
systematically can make it easier to validate those decisions, as well
as to produce a road map of the process. This allows the analyst to
effectively revisit decisions once a better understanding of the prob‐
lem is gained.

An analyst can refine a task by first breaking it down into four spe‐
cific components. Identifying these components and how they do or
do not directly reference the data becomes a template for choosing
more specific tasks. The components are:

Objects
Things or events that exist in the world: in our example, a direc‐
tor and a movie are both objects. In other contexts, objects
might be a user or a sale of a single item. When a task is specific
enough, each object will be something that can be represented
in or computed from, the data. Fairly often, when the task is at
its most specific, an object will correspond to a single row in a
database.

Measures
The outcome variables that will be measured for the objects.
Quality of a director, happiness of a user, and sales of a store are
all measures. In a sufficiently specific task, the measure is either
an existing attribute in the dataset or one that can be directly
computed from the data. A measure is sometimes aggregated
across many items of data. In our example, a number of movies
are aggregated together to get a score for a single director.

Groupings (or partitions)
Attributes or characteristics of the data that separate the data
items into groups. For example, groupings might include store
region (western versus eastern), start date of players, whether
users have purchased an upgrade, or sales by year. In a specific
task, partitions are attributes of the objects or can be calculated
directly from those attributes. When the visualization is created,
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partitions will often manifest as groupings, separations across
charts, or filters.

Actions
Words that articulate the specific thing being done with the
data, such as compare, identify, characterize, etc. Actions guide
the process of choosing appropriate visualizations.

The action is useful for identifying the other components. Take this
task: Compare the amount of money spent in-game by players who
play more hours versus those who play fewer hours. The action is
compare. What is compared? The players (the object). What is it
about players that we want to compare? The money spent (the meas‐
ure). Finally, there is a specific partition on the objects. They will be
broken into two groups: those that play many hours and those that
play few hours.

The following components are the heart of an iterative process:

1. Refine the question into one or more tasks that, individually or
together, address the general question.

2. For each task:
a. Identify the components of the task.
b. Look for ambiguous components—namely, components that

are not directly addressable by the dataset.
c. For each ambiguous component, define a proxy by creating a

new question that addresses the component, and return to
step 1 with those questions.

d. If there are no ambiguous components then the task is
deemed actionable, and thus can be addressed with a visuali‐
zation or other computational technique.

Next, we’ll explicate some of the questions from the movie example
to illustrate how the components work in practice, beginning with
Example 2-1.
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Example 2-1. Breaking down the task to find good directors

Task: Identify the top directors who have directed many good, pop‐
ular movies

Action: Identify

Object: Director

Measure: Number of good, popular movies

Grouping: Filter out non-movies

Identifying top directors implies that there’s a meaningful sort on
the directors so that the top can be found (Example 2-2). Thus, we
can further refine the action to specify an ordering. Also, our first
look at the data showed that many movies are unpopular, which
implied a grouping to filter out unpopular movies.

Example 2-2. Refined task for good directors

Task: Rank order of directors by those who have directed many
good, popular movies

Action: Rank order

Object: Director

Measure: Number of good movies

Grouping: Filter out non-movies and unpopular movies

Filtering out unpopular movies is a subtask (Example 2-3), which
we addressed with a histogram of the number of ratings for movies.
The visualization of the distribution allowed us to determine a good
cut point for popular versus unpopular—namely, popular movies
were those in the top 25% of movies with the highest number of rat‐
ings.
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Example 2-3. Subtask for filtering unpopular movies

Task: Filter out movies with significantly fewer ratings

Action: Filter

Object: Movie

Measure: Number of ratings

Grouping: Separate into most popular and least popular movies

This subtask can be brought back into Example 2-2 as a proxy for
unpopular movies.

However, we still have some work to do on Example 2-2: the meas‐
ure number of good movies is ill-defined with respect to the data. We
need to refine this component by developing a proxy for a good
movie. Once we do that, we can then examine what it means to have
directed many of them.

These proxies require further elaboration. How many high-scoring
movies are required from directors? Do low-scoring movies count
against them? This process of identifying reasonable proxies is often
iterative. For example, in exploring and validating a proxy with the
data, it might become obvious that the effects of filtering by the
number of ratings was a mistaken approach.

At this point, we can recognize that we need a proxy measure for
good (Example 2-4). There are a variety of proxies that we can try
here, with various visualizations. The process continues onward.

Example 2-4. Subtask for good movies

Task: Quantify “a good movie”

Action: Quantify

Object: Movie

Measure: Goodness

Grouping: None
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Breaking down a task into components helps in guiding refinement
of a task into one that can be addressed with the data. The most
direct way to do so is to consider the question “Are the object, meas‐
ure, and grouping each directly described in the data?” For each of
these three components, is it clear which aspects of the data are
important or how to derive what we need from the data? If not,
repeat the process of formulating a subquestion in order to derive a
more specific answer.

Let’s take a look at a very different example—this time, from a
gameplay metrics scenario (Example 2-5).

Example 2-5. Exemplar task for analyzing a game

Task: Compare the amount of money spent in-game by players
who play more hours versus those who play fewer hours.

Action: Compare

Object: Players

Measure: Money spent

Grouping: Players who play many hours; players who play few
hours

In Example 2-5, the partition divides between many and few hours.
This component needs to be refined further, which leads to a new
question: “In the game, how many is ‘many’ hours for a player?”
The analyst might take a series of steps. They might look at the dis‐
tribution of hours played, or they might choose to filter out players
who have played zero hour or those who haven’t made it past the
tutorial, or they might look at other metrics that are important to
the game. These steps would help the analyst figure out good prox‐
ies for many and few hours.

When Tasks Lead to New Questions
There are four broad categories of new lines of inquiry that can
emerge from refining a question. First, as in the movie example, the
refinement process often reveals that a new analysis is needed to
answer these questions.
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Second, operationalizing can also lead in new directions. In the pro‐
cess of exploring who the best directors are, the analyst might notice
that some directors stick to a single genre; they might decide that
this analysis might be interesting divided across multiple genres.
They might also notice that both IMDB and Rotten Tomatoes have
scores on movies, and want to see how these results vary based on
Rotten Tomatoes scores instead of IMDB.

Third, the data itself can lead to new questions too. In exploratory
data analysis (EDA), for example, the data analyst discovers new
questions based on the data. The process of looking at the data to
address some of these questions generates incidental visualizations
—odd patterns, outliers, or surprising correlations that are worth
looking into further.

Finally, doing some analysis often leads to doing a round of data
cleaning. While data cleaning is largely out of the scope of this book,
odd outliers and surprising trends are, as often as not, the result of
dirty data.

Returning to the Example: Exploring Different
Definitions
There are several different possible definitions of best director.

Here is one: the best director has the most movies with more than
134 ratings. Table 2-2 shows the top scorers. The most prolific
directors in our dataset are Chuck Jones and Fritz Feleng (who
directed classic Looney Tunes animations), William Hanna (who
directed Tom and Jerry and other classic Hanna-Barbera cartoons),
and George Méliès (an early inventor of special effects and shorts).

Table 2-2. Top five directors by number of films over threshold

Director Avg. raters Avg. score Count Total raters
Jones, Chuck (I) 719 7.4 148 106,397

Freleng, Fritz 402 7.2 141 56,730

Hanna, William (I) 591 7.5 119 70,315

Méliès, Georges 717 6.1 114 81,769

White, Jules (I) 235 7.1 102 23,969
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Georges Méliès has 526 films on his IMDB page; only 114, however,
made it over the threshold of raters. The huge number of films is
explained by the fact that the films are shorts—more familiar on tel‐
evision now, but once also shown in theaters. This should be an
opportunity to do more data cleaning to join in another table that
will tell us whether a film is a short or not, and filter those out.
IMDB has a film duration data table; in a typical analysis process,
the next step would be to merge in this table, adding a new proxy for
what makes for a short film.

We might explore other definitions of best directors. For example,
the best directors might make the movies that people want to rate
the most. Table 2-3 is a list of the directors whose movies have, in
total, the most ratings.

Table 2-3. Top five directors by total number of ratings across all movies

Director Avg. raters Avg. score Count Total raters
Spielberg, Steven 245,717 7.2 36 8,845,795

Nolan, Christopher (I) 778,737 8.2 11 8,566,104

Tarantino, Quentin 526,689 7.8 13 6,846,955

Jackson, Peter (I) 371,219 7.6 16 5,939,505

Scorsese, Martin (I) 144,823 7.5 41 5,937,725

This list makes sense. These are very famous names who have direc‐
ted very familiar movies.

Different proxies yield different results. Ordering by the average
score for all movies by a single director might be one way to find the
very best directors. As seen in Table 2-4, the first on this list is a
director who has only one movie over the threshold: a Mongolian
movie from 2016 with 624 raters and an average score of 9.7. This
measure of popularity returns a very different set of results than the
previous measure: ten thousand times more people rated Quentin
Tarantino’s movies than Uranchimeg Urtnasan’s work.
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Table 2-4. Top five directors by average score

Director Avg. raters Avg. score Count Total raters
Urtnasan, Uranchimeg 624 9.7 1 624

Miller, George (XXXVII) 394 9.6 2 787

Chowdhury, Amitabh Reza 14,628 96 1 14,628

Biebert, Aaron 12,040 9.6 1 1,204

Arsyn, Ken 619 9.5 6 3,712

But can the quality of a director be measured based on just one or
two movies? Each step of data exploration leads to another step of
refining the question. Is it more important to have many raters, a
high average score, or a high minimum score?

The choice of metrics leads to very different outcomes. A slight
tweak determines whether you find directors of animated cartoons,
blockbuster directors, or a very diverse set of international directors.

How Specific Does the Process Get?
This process of refinement leads to a scary scenario. In Disney’s
Fantasia, in the Sorcerer’s Apprentice sequence, Mickey Mouse
attempts to stop an enchanted broom by chopping it in half and
instead produces two half-size enchanted brooms. Will our analysis
subtasks forever multiply?

The operationalization process is an iterative one and the end point
is not precisely defined. The answer to the question of how far to go
is, simply, far enough. The process is done when the task is directly
actionable, using the data at hand. The analyst knows how to
describe the objects, measures, and groupings in terms of the data—
where to find it, how to compute, and how to aggregate it. At this
point, they know what the question will look like and they know
what they can do to get the answer.

An actionable task means that it is possible to act on its result. That
action might be to present a useful result to a decision maker or to
proceed to a next step in a different result. An answer is actionable
when it no longer needs further work to make sense of it.

Low-level objects are ready to be interpreted from the data. Some‐
times they can be read directly off the data table, but more often it is
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more indirect; the analyst may need to carry out transformations on
the data, whether mathematical transformations or database joins.
For instance, in the movie example, the object is the director; the
proxy for the director is the result of aggregating multiple movies
together. Partitions and measures at the lowest level will resolve to
concrete manipulations of the objects.

The process ends when all the tools needed to answer a question are
in place—whether as a number, a visualization, or even as an inter‐
action across multiple visualizations representing multiple proxies.
The analyst might decide that the right cutoff for many hours of
gameplay is six hours—a number—or the hours played by the top
10% of players—a formula—or above the logical breakpoint, which
might be represented by a distribution. These results get propagated
back into any other tasks that depend on them.

Making Use of Results
This process of propagating results back into higher-level questions
is flexibile. Sometimes the low-level question does not have an exact
answer but instead resolves in its own visualization or interaction.
That visualization might help an analyst in making a decision, but it
might also imply parameters on the data. For example, the journalist
might realize that there are several possible cutoffs for defining what
it means to be a good movie. Rather than simply picking a specific
threshold, an analyst might instead propagate a mechanism for
dynamically determining cutoffs into higher-level tasks. Seeing a
variable propagated like this can be a cue that an interactive visuali‐
zation—rather than a static image—might be helpful.

Visualization is also important for supporting the operationalization
process, even if the end result is not an interactive visualization. In
the movie example, visualization helped us to understand the nature
and distribution of the data. Visualization can be more prominent
with more complex analysis tasks. If the analyst wanted to compare
ratings against popularity, it would be difficult to display that on a
list; if they wanted to explore hypotheses about how the popularity
of directors changes over time, more visual representations would
help them explore the data.
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Conclusion: A Well-Operationalized Task
A well-operationalized task, relative to the underlying data, fulfills
the following criteria:

• Can be computed based on the data
• Makes specific reference to the attributes of the data
• Has a traceable path from the high-level abstract questions to a

set of concrete, actionable tasks

A well-operationalized task is a first step toward creating a visualiza‐
tion. Chapter 4 begins to describe the ways in which the objects,
measures, and partitions can be shaped into aspects of a visualiza‐
tion. Chapters 5 and 6 construct visualizations based on them.

Written out in detail, this process can seem tedious, but in practice,
it is abbreviated and simplified. There are two important uses for
this systematization. First, the process of explicitly looking at com‐
ponents can help untangle knotty problems, decomposing places
where the analyst has made assumptions about the data. Explaining
precisely why the number of IMDB ratings is a proxy for popularity
forces the analyst to explore whether it is a good choice—and, per‐
haps, to revise that choice later.

The process also helps guide questions and interviews. Chapter 3
explains how to carry out operationalization with domain experts.
Recognizing the need to make decisions about proxies helps guide
these conversations. Every dataset has subtleties; it can be far too
easy to slip down rabbit holes of complications. Being systematic
about the operationalization can help focus our conversations with
experts, only introducing complications when needed.

Further Reading
The process outlined here is similar—and in many ways parallel—to
the Goal, Question, Metric (GQM) process found in the software
engineering space. GQM refines from a general goal to a specific
metric, usually oriented around process improvement so that the
consumer can have a single number that helps them know whether
they are succeeding in improving that process.

Our process is more exploratory and often comes earlier in the
cycle. A GQM analysis might choose a goal like “improve user
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retention.” In contrast, exploratory operationalization might start
with a question like “Do users come back to our site?” with the
awareness that the problem is multifaceted and complex, and might
require a variety of different metrics to describe. For more on GQM,
see:

• Basili, Victor, Gianluigi Caldiera, and Dieter Rombach. “The
Goal Question Metric Approach.” Encyclopedia of Software
Engineering. New York: Wiley, 1994.

The data visualization field has spent a great deal of effort trying to
understand the tasks that can be accomplished in a visualization.
Amar and Stasko, for example, explore a low-level analysis of tasks
carried out on a specific visualization. At the other end of the spec‐
trum, Brehmer and Munzner explore high-level tasks for visualiza‐
tion, starting with comparing presentation and exploration:

• Amar, Robert and John Stasko. “A Knowledge Task-Based
Framework for the Design and Evaluation of Information Visu‐
alizations.” Proceedings of the IEEE Symposium on Informa‐
tion Visualization (2004): 143–150.

• Brehmer, Mathew and Tamara Munzner. “A Multi-Level
Typology of Abstract Visualization Tasks.” IEEE Transactions
on Visualization and Computer Graphics 19 (2013): 2376–2385.
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1 This process is closely related to task analysis in interface design. The distinction is that
task analysis is typically oriented towards creating interfaces; this process, instead,
works with data, which warrants a unique set of considerations on the part of the
designer.

CHAPTER 3

Data Counseling, Exploration,
and Prototyping

The previous chapter outlined a way to analyze a real-world ques‐
tion and transform it into an actionable, operationalized task. This
analysis involves many steps that require decisions along the way:
identifying specific tasks that address the broad question; decom‐
posing each task into specific objects, measures, and groupings; and
finally building visualizations that validate and support these tasks.
Carrying out this process effectively requires sophisticated domain
expertise, knowledge of the data and the problem space, and a sense
of what would be a good answer to the question. This chapter dis‐
cusses a variety of techniques that support gaining this understand‐
ing through working with stakeholders and iterating on
visualization prototypes.

We call this collaborative process data counseling. We chose this
name because working with stakeholders is a back-and-forth pro‐
cess of conducting interviews; of diving deeply into a user’s intents
around data; and of understanding the stories of where the data
comes from, what problems are associated with it, and what it can
mean.1 Data counseling is interwoven with exploring data, develop‐
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ing visualization prototypes, and collecting feedback on these pre‐
liminary results. This chapter describes techniques for these steps as
well.

A major visualization project can require multiple interviews and
rounds of prototypes in an intensively collaborative process. Recog‐
nizing the ecosystem of stakeholders involved in a project can help
uncover needs and increase the impact of the data analysis results. A
smaller project might entail just one or two informal interviews and
putting the data into a graphing program like Tableau.

Sometimes an analyst needs to make sense of data without a team
around them. The strategies in this chapter still apply to prototyping
and refining visualization solutions in such conditions. These tech‐
niques are applicable at all scales.

Technique 1: Data Counseling
Data counseling is a technique that brings domain expertise into the
operationalization process to help inform decisions about good
proxies as well as to uncover insights using the resulting visualiza‐
tions. This expertise is uncovered through interviews with a variety
of stakeholders in a project. The goal of these interviews is to gain
an understanding of the questions and data, as well as to get feed‐
back on proxies, explorations, and visualization designs.

Arguably, the hardest part of data counseling is figuring out who the
stakeholders are and what questions to ask them. The rest of this
section describes some of the types of stakeholders that can be
encountered during this process and provides guidance for conduct‐
ing interviews.

Identifying Stakeholders
When it comes to tackling a problem, who is invested in the results?
Who will use the results, and who will they present those results to?
If the visualization produces valuable insights who will act on those
insights, and what will they do with them? There is likely a whole
ecosystem of people that have been, are, or would like to be involved
with the data and the problem—the people who produce and store
the data, the people who want to consume it, and those who will
make decisions based on it.
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All the people who are invested in the problem in some way, shape,
or form are the stakeholders. Identifying these stakeholders is crucial
for data counseling. Different stakeholders can give different per‐
spectives on the data and the problem, and potentially provide
unanticipated paths to insight. The process of interviewing and
examining the data itself may uncover new stakeholders who can
provide fresh perspectives.

There are a number of recurring types of stakeholders. This list is by
no means complete, but it can work as guidance for identifying
some of the important people in the ecosystem of a problem. A sin‐
gle person could embody one, some, or all of these roles:

Analyst
A person who works directly with the data, searching and
exploring to make discoveries. These stakeholders are the peo‐
ple most likely to use visualizations designed for the problem.

Data producer
A person who collects, creates, and curates the data. Data pro‐
ducers can often shed light on the nuances and quirks of how
the data was attained and can be invaluable during the data
cleaning process.

Gatekeeper
A person with the power to approve or block the project,
including authorizing people to spend time talking about the
data and problem. The gatekeeper’s perspective can be useful
for understanding the high-level goals and potential impact of
the project. In some settings, a gatekeeper may require a pro‐
posal to carry out an analysis.

Decision maker
A person who wants to use the insights gleaned from the data to
execute on a decision. Decision makers are often one step
removed from analysts, and act as the analysts’ customers. They
often have a different interpretation of goals and questions than
those who are closer to the data.

Connector
A person who may not be directly involved with the data or the
question but can identify other people to talk with. Connectors
can help fit together diverse perspectives on a problem and fig‐
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ure out what analysis needs to happen. In our experience, good
connectors are worth their weight in gold.

Conducting Interviews
The operationalization process proceeds through information
gleaned from interviews; later rounds of interviews provide feed‐
back on intermediate results and final designs. The role of the inter‐
viewer is to ask questions that will guide the stakeholders toward
elucidating the information necessary for working through an oper‐
ationalization and designing visualizations.

Interviewing can be very challenging, but it can also one of the best
parts of the work—how many jobs allow you, even require you, to
talk to experts about the deepest, most interesting parts of their
problems? Interviewing is not easy, though, and requires practice
and experience. The necessary skills include how to keep a conver‐
sation moving along and on track, how to elicit meaningful respon‐
ses, how to revise questions based on responses, and how to
interpret both subtle cues and detailed responses. While this section
provides several strategies to help with these tasks, gaining compe‐
tency in these skills is a matter of practice.

In conducting an interview, there is a sweet spot with regard to the
amount of structure in the conversation. Unstructured interviews,
on the one hand, resemble casual conversations—the interviewer
goes in with little expectation of where the conversation will go and
does little to guide it in any one direction. This style of interview can
uncover unknown needs and goals, but it can take a significant
amount of time to get to anything useful. On the other hand, for‐
mally structured interviews are like giving a stakeholder a verbal
survey, where the interview is completely scripted and strictly gui‐
ded. While efficient, this type of interview leaves little room for dis‐
covering new insights.

The most effective data counseling sessions aim for a spot in the
middle: semistructured interviews. The interviewer does some prepa‐
ration in developing initial questions. The rest of the interview is
then open to exploring ideas that come up during the conversation.
Be prepared, but also be open.

The initial set of questions for an interview should be open-ended
and address the problem, data, and context in order to help under‐
stand where the interviewee sits: their perspective on the problem,
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how they see the scope of the problem, and how they expect to
interact with it.

Some useful interview questions might include:

• What are the goals of the project? How do those goals fit with
the organizational needs?

• Who would act on the insights and results of this analysis?
What decisions are they looking to make?

• What questions can be answered with this data?
• What do you already know from the data, and what else do you

expect to find?
• What do you want to do with the data that is not currently pos‐

sible? If you could do that, what else would you want to do
next?

These general questions are meant to get a conversation going and
to help in establishing the start of the analysis process. They lead to
more specific questions that help clarify understanding of the prob‐
lem and the data, confront assumptions on the part of the stake‐
holder and the analyst, and shape the description of the problem
into something that a visualization can solve.

Interviews often start in the wrong place
It is easy to begin this analysis in the wrong place. When people
come to us with visualization questions, they often start with very
specific questions: “How do I tie together two scatterplots with a
gradient color pattern?” These types of questions tend to be the
result of people struggling to force their data into the visualizations
that they know best and finding that those either don’t fully support
the extent of the data they have or don’t really support an insightful
analysis.

The conversation searches out the more abstract question and often
finds that the question the person really wants to solve has a very
different visualization solution.

Librarians know this challenge well. When someone asks for, say, an
issue of a news magazine, librarians are trained to gently probe for
the underlying information need. What does the reader really want
to know? Sometimes the question might be better solved with an
entirely different source: if the reader who wants the latest Time
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magazine is hoping it will contain a map of Somalia, an atlas would
fulfill their need better.

What would it look like in the data?
The process of data counseling often entails chasing down particular
meanings of unclear words and identifying good proxies. The ques‐
tion “What would this look like in the data?” can lead to illuminat‐
ing results. For example, if a journalist were trying to find “good
movies” in the database, in the interview we might ask questions like
“What would the data show for good movies?” and “What would
bad movies look like?” This can help interviewees nail down
specifics.

Fairly often, the interviewee will not be sure what a “good movie”
would look like. The process of articulating a list of possibilities, as
outlined in Chapter 2, can be highly informative in itself.

Making questions specific
Low-level questions arise when trying to make general tasks more
concrete and actionable, such as defining what a specific dimension
means or how the objects that appear in a task actually look in the
data. Finding these poorly defined terms in the interview is a cue to
ask more questions to clarify those concepts more concretely. It can
be useful to ask stakeholders what these terms mean within their
workflow or to show an aspect of the data by pulling it up in a
spreadsheet.

Certain action terms are also useful cues during these interviews: the
verbs a stakeholder uses when discussing data can help inform the
visualization. For example, interviewees might talk about comparing
data items in describing a task. This invites a follow-up question:
“Would you like to compare one item to another, or group many
items together?” Similarly, words such as select, identify, or group
can translate directly into tasks that can be supported with a visuali‐
zation.

Other words, like shape, structure, and size, can help in deciding
what kinds of visual encodings to use or what characteristics of the
data the stakeholder is most interested in seeing. The visualization
types described in Chapters 5 and 6 will help you recognize and
know what to do with visualization keywords like these during
interviews.
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Breaking out of dead ends
Interviews can reach a point that feels like a dead end: the stake‐
holder has answered the planned question but the problem still
seems inscrutable. There are a couple of strategies that can be used
here:

• Try to rephrase the stakeholder’s response back to them. This
strategy allows the stakeholder to correct any misinterpretations
and it also can prompt the stakeholder to explain their ideas in a
more familiar terms.

• Try to ask the same or similar questions in different ways. Often
a specific phrase or choice of words will click with the stake‐
holder and cause them to respond in a way that makes more
sense.

• Try exploring a different conversational topic. It’s not unusual
that another topic will illuminate this one.

One of the most important things you can do in interviews is to
keep the stakeholders talking. The more they talk, the more likely it
is that they will share a response that clarifies a topic or opens up a
new avenue of inquiry.

The interviewer’s toolbox
There are several tools that are a part of the interview toolkit. Com‐
monly used interviewing tools include pen and paper, voice
recorder, camera, and video recorder. We advocate for voice record‐
ing of interviews, in large part because it is difficult to take detailed
notes while also trying to think of follow-up questions based on
what is being said. We try to transcribe an interview shortly after it
is conducted to ensure the context is fresh in our minds. We rarely
transcribe an interview word for word, but instead transcribe the
most important or complex details. Transcribing is useful for ana‐
lyzing the interview results, as well as for making it easy to refer
back to the conversation later in the design process.

Conducting Contextual Interviews
In general, a first interview does not get into detailed analysis; it can
be useful to get a general overview of the problem, identify stake‐
holders, and establish the stakeholders’ expertise. It is in follow-up
interviews where details begin to emerge.
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There is often a big difference between talking to someone in a con‐
ference room as opposed to sitting at their desk. In a conference
room, people will often tell a very general story; at their desks, they
will more likely show their processes in very specific ways. For
follow-up interviews, the contextual interview is a particularly useful
tool. Contextual interviews take place in the stakeholder’s work
environment and consist of demonstrations of the tools and data
inspection methods that the stakeholder currently uses. These types
of interviews can bring to light aspects of a problem that might not
have come up in a strictly verbal interview. They help show how the
data works in practice: what happens with current capabilities and
how users handle and understand the data they see.

A contextual interview often starts by asking the stakeholder to
either walk through a specific analysis task they have already per‐
formed or conduct some of their work for that day with the inter‐
viewer present. The stakeholder talks through each step they are
taking; the interviewer can interrupt with clarifying questions or use
these as launching points for further explorations. The following
starting questions can help the interviewer understand what works,
what does not work, and what does not yet exist:

• What is the work process you currently use? What tools are
involved?

• What challenges do you have in analyzing the data?
• Are there limitations within the system? If so, how do you work

around them?
• Do you understand what the system is doing to the data and

any algorithms that are being applied, or is this a black box?

Technique 2: Exploring the Data
While talking with stakeholders can be very informative, there is no
substitute for reaching deep into the data. We like to start exploring
the data as early as possible, for a few reasons. First, it is useful to
understand how it is structured and what data is available. Second,
each operationalization needs to be checked against the data, and
third, it helps to start addressing fine-grained tasks.

In Chapter 2, for example, exploring the data helped us determine
which fields were available in trying to evaluate what would make
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for a good director. It also helped us choose appropriate cutoffs in
trying to define terms like highly rated movie.

Working through the analysis, then, brings forward a variety of vis‐
ualization tools to explore the data. Tools like Excel and Tableau, or
R and Pandas, make it easy to rapidly generate visualizations that
can highlight distributions of data, its major dimensions, and the
values within. These tools also make it easy to check whether a data‐
set makes sense—for example, to confirm that a hierarchy really is
layered appropriately or to ensure that there are only a small num‐
ber of categories for a specific dimension of the data.

Sometimes it becomes clear that the problem is so specialized that it
needs a bespoke visualization tool created from scratch. This hap‐
pens when the data to be explored is not amenable to an off-the-
shelf tool. Both Hotmap, described in the Preface, and the case study
in Chapter 8 are examples of situations in which it was necessary to
explore complex data with novel visuals. These bespoke tools can be
created using visualization-specific languages like Vega, D3, or Pro‐
cessing.

These can be fast-and-loose data prototypes: the goal is to get ideas
up and going as quickly as possible, as opposed to carefully consid‐
ering software architecture for long-term use and reusability. Rap‐
idly discarding bad prototypes is as much a critical part of
visualization as it is of other design areas.

Making the decision to create a custom data exploration tool
requires weighing the development time against the significance of
the analysis—if it is possible to get 80% of the way to a good deci‐
sion using Excel, then it may not be worth spending three months to
develop a custom solution. Bespoke exploration visualization tools
instead come into play later, when an operationalization is well
established and verified, and the focus is on going back and answer‐
ing the high-level question.

If the high-level goals of a project can often be met with off-the-shelf
tools then it is great to be considered a hero for quickly resolving the
problem! Custom tools, in contrast, can be great ways to better
understand what is lacking in the current ecosystem of visualiza‐
tions. These insights are invaluable when designing a custom visual‐
ization tool.
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One challenge is knowing when, and how, to start digging into the
data. Oftentimes the stakeholders already have some way of analyz‐
ing or visualizing the data that they find to be insufficient for their
question. This is usually good place to start. For example, are they
looking at many static visualizations? Add interactivity to support
exploration. Are they using only one kind of visualization? Take a
different perspective on the data and visualize it in a different way
using another type of visualization. Use these early data explorations
for a deeper conversation about what works and what doesn’t, and
why. This process also provides a chance to better understand the
stakeholders’ perspectives on the data. Chapter 8 discusses a case
study where scientists had a pre-existing set of technologies; adding
interactivity and new representations helped reveal that there were
entirely new questions to ask, too.

Technique 3: Rapid Prototyping for Design
Even from fairly early stages in the process, prototypes of the final
tool can be a helpful model. The intention behind prototypes is to
explore the visualization design space, as opposed to the data space.
A typical project usually entails a series of prototypes; each is a tool
to gather feedback from stakeholders and help explore different
ways to most effectively support the higher-level questions that they
have. The repeated feedback also helps validate the operationaliza‐
tion along the way.

Rapid prototyping is a process of trying out many visualization ideas
as quickly as possible and getting feedback from stakeholders on
their efficacy. Throughout the data counseling process, multiple
rounds of rapid prototyping can help in understanding how the
problem is formulated. In early phases, sketches on a whiteboard
can help to better understand what types of visualizations to use and
how stakeholders might interact with them. Later on, higher-fidelity
techniques can explore the space of possible visualization designs.
The design concept of “failing fast” informs this: by exploring many
different possible visual representations, it quickly becomes clear
which tasks are supported by which techniques.

The Range of Prototypes
The term prototypes refers to a broad range of techniques and tools,
from paper to programming. The fidelity of these prototypes, as well
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as the time and energy required to create them, lives on a spectrum
(Figure 3-1).

Figure 3-1. Prototypes range from low-fidelity sketches to high-fidelity
working models.

One end of the spectrum is characterized by low-fidelity (or lo-fi)
prototypes. These include mock-ups quickly sketched on paper or a
whiteboard with impressions of what the data might look like, and
fast, digital mock-ups that may include some controls for explaining
interaction ideas, such as slide jumps in PowerPoint or Keynote.
Figure 3-2 is an example of a quick interface mock-up made during
the design process. Lo-fi digital mock-ups can also incorporate
charts generated in a tool like Excel or Tableau with fake or sampled
data to explore possible visualization representation ideas. These lo-
fi prototypes are great for communicating the gist of an idea in an
interview, or for recording high-level ideas when planning out how
to explore the data. Lo-fi prototypes are, by nature, fast and easy to
produce.

Lo-fi sketches play a critical role in interviews. Creating these proto‐
types can help us to understand what the implications of the data
might be, and clarify the usefulness of different proxies. If a diagram
is confusing to explain and design on a whiteboard, it may require
too much detail to fit on a screen.

Communicating ideas with lo-fi prototypes can rapidly help estab‐
lish whether the visualization designer is on the same page as the
stakeholders. Drawing pictures of possible interfaces can start new
conversations about the problem and its constraints. Figure 3-2
shows one instance: a stakeholder was discussing relational data,
and drawing this data on the whiteboard allowed the stakeholder to
see what it might feel like to visualize the data as a network. The
multiple colored lines allowed the stakeholder to start thinking
about how to view multiple modalities of the data; the directed
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edges were actually built from a sample of the data. Drawing this
prototype helped the client realize that there was more structure to
the data then they had been communicating: every node in the
graph represented by a box actually occurred at a specific time, and
it was important in the analysis to expose the temporal dimension of
the data.

Figure 3-2. A lo-fi prototype exploring the idea of a weighted, directed
graph layout. This sketch was hand-drawn on a whiteboard during
an interview session, based on sample data, by manually looking at
the spreadsheet and drawing out the relationships.

Lo-fi slideware can help ensure that designs will make sense to users,
especially when incorporating interactive features into the design.
The slideware in Figure 3-3 shows one step in the feedback cycle,
illustrating the result of a specific interaction mechanism. This
image was manually assembled in a variety of different tools. The
prototype sketch is meant to help the user understand how the final
interaction will work.
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Figure 3-3. This slideware image of a design stage shows iteration
from a previous version. The images were created in a variety of dif‐
ferent tools.

On the other end of the prototype spectrum are high-fidelity (or hi-
fi) custom visualizations which must be created from scratch. These
hi-fi prototypes are meant to largely contain the core functionality
of an envisioned visualization tool, including all necessary visualiza‐
tions of the data and interaction mechanisms. They will often, how‐
ever, gloss over many backend issues such as smooth integration
with existing workflows or fully fleshed out features for saving and
loading. Just as for bespoke visualizations created for our own data
exploration, languages like D3 or Processing can help in creating hi-
fi prototypes rapidly.

Hi-fi prototypes are meant to be thrown away. In our experience,
however, hi-fi prototypes are often the tools that get deployed and
adopted by some users, particularly to those frantic to get into their
data. Regardless, the point is not to worry about the code other than
to confirm that ideas can work.
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Using a Data Management Pipeline
Using a data analytics engine to handle data management can allow
an analyst to rapidly iterate through different ways of looking at the
data. Many off-the-shelf data visualization systems provide both a
data pipeline, which consists of database connectors and data
cleaning and shaping facilities, and a visualization system. Until
recently, however, doing this prototyping meant that analysts were
constrained to the visual mappings available in the system.

A few tools have begun to allow developers to incorporate their
own custom visuals: Google Sheets, Microsoft Excel, and Microsoft
PowerBI all have custom add-in mechanisms. PowerBI also pro‐
vides dashboard tools like cross-filtering between custom add-ins.

Eliciting Feedback
Identifying stakeholders during data counseling is useful not only to
help with the operationalization, but also to garner feedback on pro‐
totypes. With rapid prototyping as a strategy, we go back to our
stakeholders early and often with our visualizations to ensure that
the operationalization has directed an effective visualization.

Eliciting useful feedback, however, goes beyond asking stakeholders
if they like what they see—approval is necessary, but not sufficient.
Part of the problem with seeking approval is that interviewees
(sometimes unconsciously) wish to give positive feedback to an
interviewer; this can be particularly problematic within a friendly
team. A stakeholder might say they like a visualization that is not
informative but looks nice.

We like to focus instead on what the visualization can and cannot
do. A contextual interview where the stakeholder uses the visualiza‐
tion can be particularly insightful for uncovering weaknesses in the
design or problems with the operationalization. Keeping questions
focused on aspects of the data that are being shown forces the stake‐
holder to more directly confirm or refute the efficacy of what they
are seeing.
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And, Repeat
It is very difficult to get a good (or even adequate) operationaliza‐
tion of a problem the first time around. Getting this right often
requires multiple interviews with stakeholders, interspersed with
some data exploration and rapid prototyping.

For example, consider an operationalization that leads to a distribu‐
tion of values in a histogram. That distribution helps show that
there are outliers at one end of the range that had not been in the
original problem description; stakeholders may then realize the out‐
liers are actually quite interesting, which leads to a new task and a
new representation.

The process is often a very iterative one. Talk with some stakehold‐
ers, try some ideas with the data, share those ideas with the stake‐
holders. And, repeat.

Conclusion
This chapter looked at several core techniques for supporting opera‐
tionalization: data counseling, data exploration, and rapid prototyp‐
ing. These techniques bring a variety of different perspectives on the
problem and the data in order to build, refine, and support an oper‐
ationalization of a problem. All of these techniques are useful on
their own, but using them in combination provides a powerful suite
of tools.

Chapter 4 looks at the nature of the data itself. Understanding the
types of data, and the tasks that can be carried out with it, leads to
Chapter 5 and a look at the core visualizations for basic data types.
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CHAPTER 4

Components of a Visualization

The previous two chapters outlined the process of refining a ques‐
tion into tasks. Chapter 2 broke each task down into components:
actions, objects, measures, and partitions. These terms help identify
where and how to turn fuzzy tasks into specific, actionable ones.
Then, Chapter 3 discussed in more detail how to solicit the use sce‐
narios and user stories that motivate the decisions made about prox‐
ies during operationalization.

The process in Chapter 2 concluded with a well-operationalized task
and promised that this can lead to a visualization. But it did not dis‐
cuss how to translate an operationalized task into a visualization.
There is one step left before we can start doing visualization: we
must understand the data..

This chapter takes the first step to translating these descriptions into
visualizations. Understanding the characteristics of the data will
make it easier to select an appropriate visualization. Chapter 5 then
describes specific visualizations to match the data characteristics
outlined here—more specifically, its dimensions and measures, how
it is grouped and aggregated. In Chapter 6, we’ll look at how views
can be combined to support rich, dynamic analysis of complex tasks
and data.
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1 Though the distinction between a metric and a measure makes for entertaining online
debates, this book sees the two as effectively synonymous.

Dimensions and Measures
The attributes of the data serve particular roles in a task. A dimen‐
sion is an attribute that groups, separates, or filters data items. A
measure is an attribute that addresses the question of interest and
that the analyst expects to vary across the dimensions. Both the
measures and the dimensions might be attributes directly found in
the dataset or derived attributes calculated from the existing data.

In different fields, these terms get somewhat different names. In the
sciences, it’s more common to talk about independent variables
(those that the experimenter manipulates) and dependent variables
(the outcomes of the experiment). The intuition is the same for task
operationalization, although in many business intelligence scenar‐
ios, for example, the data analyst cannot actually control who walks
into the store or visits the website.

The term metric is sometimes used to describe a measure that stands
as a proxy for a desired value.1 One virtue of a visualization
approach is the ability to handle multiple metrics at once. Rather
than trying to reduce everything to a single number, the analyst can
look at several different measures. For example, it is reasonable to
say “The fastest route is getting faster, and that’s good, but the var‐
iance is really brutal.” Chapter 6 discusses several techniques to vis‐
ualize multiple metrics.

Example: International Towing & Ice Cream
This section discusses different data types with a motivating exam‐
ple. Sue is a data analyst for International Towing & Ice Cream
(ITIC), a fictional company that provides a variety of important
roadside services. ITIC’s products and services are purchased on the
road, so their location is important—and, as in any ice cream deliv‐
ery service, so is the temperature (Table 4-1).
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Table 4-1. Sample metrics

Time Customer Sales
location
(lat)

Sales
location
(lon)

Product
category

Product Temperature Revenue

June 17,
10:30 am

0121 47.6062 -122.332 Roadside Towing 84 $100

June 17,
10:35 am

0232 33.26 -112.04 Roadside Flat 96 $50

June 17,
10:37 am

0304 37.52 -122.16 Delivery Ice
cream

103 $10

The operationalization and data counseling process helped Sue real‐
ize that she wants to display sales grouped by product categories.
Because product purchases vary over time—on a daily cycle, a
weekly rhythm, and by season—she will want to look at sales, divi‐
ded among categories, over time and locations. For example, Sue
might look at the total revenue by product; in this case, the product
is the dimension, while the revenue is a measure.

Dimensions
The dimensions of the data are the ways in which the data varies.
Chapter 2 discussed partitions on the data; these partitions can be
seen as dimensions.

In the ITIC example, there are a number of dimensions:

• Temperature
• Time
• Product
• Location

There are several different types of data here. When choosing good
visualizations to explore data, it is important to recognize the type,
as different charts are designed to optimize different data types. For
example, a visualization that works well for showing time of day
may not be effective for showing geospatial location.

The next section looks at the types of data used in visualizations; the
visualizations in Chapter 5 are indexed on these data types. A user
may have data that needs to be changed into a different representa‐
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tion. The following section describes a selection of ways to trans‐
form between data types.

Types of Data
Chapter 5 examines a variety of charts. The charts are indexed to the
user task and can be selected based on the types of dimensions and
measures.

Data attributes can be divided into three principal types:

Continuous (interval and ratio) data
Consists of ordered, equally and meaningfully spaced values.
Ratio data has a meaningful zero point, and so can be added or
subtracted: 10 feet plus 20 feet adds to 30 feet. Interval values,
on the other hand, lack a meaningful zero point. As such, differ‐
ences between interval values can be computed, but two interval
values cannot be added together: values like dates, pH readings,
and oven temperatures are interval data. In the ITIC example,
the temperature and time of day are both continuous data. In
many scenarios, ratio data is a likely measure: revenue and sales
amount are examples of ratio data.

Ordinal data
Consists of discrete values that are ordered, but that cannot be
meaningfully added or subtracted. Rankings are a good example
of ordinal data: if a runner comes in first in one race and ninth
in another, they did not come in a total of tenth, and it is not
clear how to compare them to the runner who came in fifth
twice.

Categorical data
Consists of discrete values; every item falls into a single cate‐
gory. Categorical data has no particular ordering—north does
not logically come before or after west. In visualization, know‐
ing something about the cardinality—the number of distinct
values—of categorical data is important. In using categorical
data for an axis or a color scale, there should be few enough cat‐
egories that it makes sense to group the data into them and for
the list of categories to be readable and comparable.

In addition, there are three specialized forms of data that are worth
discussing on their own as they have specific mappings to visualiza‐
tion chart types:
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Temporal data
This is a form of interval data that has a time component. While
a single timestamp refers to a single time (e.g., “November 20,
2010, 8:01 am”), it can be interpreted in a broad variety of ways.

Temporal data is often interpreted cyclically and hierarchically.
Time comes in cycles (e.g., “every day at 8:00 am,” or “weekdays
from 8 to 9 am”). Time may be grouped into ranges (e.g.,
“November 2010”), and can be placed against a number of cal‐
endars (e.g., fiscal years, calendar years, workdays). Times can
be subtracted to get a duration, which is ratio data. Visualiza‐
tion toolkits often offer powerful tools for organizing temporal
data.

Geographical data
Refers to places; it is inherently two-dimensional (or three-
dimensional, in some cases). It may come in the form of posi‐
tions, outlines of shapes, or names of places. It can often be
grouped into categorical data with the help of an atlas to assign
zip codes, city names, or other relevant groupings.

Relational data
This is data that connects two other points: this might be from a
hierarchy or a network. For example, the fact that some number
of commuters go from one place to another is relational data; so
is the fact that one person reports to another. When data items
are categorized, they sometimes are represented as relational;
the relation is between the data item and its category.

Transforming Between Dimension Types
Different data types can be difficult to fit into particular visualiza‐
tion types. Often, transforming between data types may help sim‐
plify the data into a form that can be processed more easily. This
section highlights a few of the most common and useful transforma‐
tions:

Categorical-to-ordinal and ordinal-to-categorical
Categorical data almost always has to be interpreted in some
order or another. Conversely, many visualizations are marked
as taking categorical data when the user has ordinal data. Each
type may be interpreted as the other, as needed, ensuring that
the order in ordinal data is always preserved.
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Continuous to ordinal
Continuous data can be difficult to deal with as a dimension so
it is sometimes transformed into ordinal data. In the ITIC
example, the analyst might group a number of entries together
into hot and cool temperatures, or might separate mornings and
afternoons. This process makes analysis far more tractable—it is
useful to make statements like “We sold twice as much ice
cream on hot days as we did on cool days.” Unfortunately, this
imposes a hard line on otherwise smooth data: if 80 degrees and
above is considered hot, then a day when it’s one degree cooler
(–79 degrees) is now a qualitatively different sort of day than an
80-degree day. When a continuous measure is broken into
ordered groups, it is referred to as binning.

Ordinal to continuous
While ordinal values cannot be directly added, they can be
assigned point values. This is familiar from sporting events, like
the Olympics, where top scores tend to be very similar. As such,
the rank is a more useful measure then the actual value. To
assign overall winners across multiple rounds, though, each
rank is transformed into points. The points can then be added
and ranked.

Reducing cardinality for categorical data
Categorical data refers to the data column within its context. A
company’s entire product catalog probably has too many items
to be analyzed with categorical techniques unless the analyst is
looking specifically at a particular subproduct. Rolling together
smaller categories into an other category, for example, can
reduce cardinality; so can finding implicit or explicit hierarchies
in the data.

Drilldowns
The drilldown is a common interactive technique between sev‐
eral hierarchical dimensions. Drilling down merely means mov‐
ing the focus of attention from a higher-level dimension to a
single, lower-level component: an analyst might drill down
from a view that shows multiple years to focus on the year 2012,
and then look at the months within it. Drilling from nation to
region to state to city is common, or from business units to
teams, or feature areas in telemetry data to features to specific
events.
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Rollups
The rollup is the logical opposite of the drilldown: grouping
items that share a hierarchical level and shifting the focus up a
level.

Pivoting data
The pivot operation summarizes items that have been grouped
together. For example, in the ITIC example, communicating
total revenue by product category would require that the data
be pivoted along that column. (Roadside total revenue would
then add to $150; total delivery to $10.)

Pivoting in Tools
Pivoting can be initially confusing to many data analysts, despite its
tremendous power. Microsoft Excel does not pivot data by default:
given a table of numbers, Excel plots the first column on the x-axis
and the second on the y-axis. This can be difficult to work with if
you have raw data. Tools like Excel’s Pivot Tables, Tableau, and
Microsoft PowerBI all work instead on pivoted data. In R, the pivot
operation is supported with the plyr package; conveniently, Pandas
calls the operation “pivot.”

Dimensionality Reduction and Clustering
In the machine learning work that is increasingly important for
dealing with large datasets, some core techniques fall under the
umbrellas of dimensionality reduction and clustering. Although it is
far outside the scope of this book to discuss how these techniques
work, it is worth briefly considering what these techniques do to
data for consideration in an operationalization.

Dimensionality reduction is a way of reducing a large number of dif‐
ferent measures into a smaller set of metrics. The intent is that the
reduced metrics are a simpler description of the complex space that
retains most of the meaning. For example, a movie recommenda‐
tion service might keep hundreds of individual dimensions about a
user, such as the set of movies that she has reviewed and watched.
These dimensions are both difficult to interpret alone and far too
sparse to be useful: most movies have been watched by compara‐
tively few users. Dimensionality reduction attempts to reduce these
to a smaller set of useful dimensions, such as “likes horror movies,”
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which can be more directly analyzed and inspected. The outcome
dimensions are usually continuous; depending on the technique,
they may even produce ratio data, so that one movie is twice as
much a horror film as another.

Clustering techniques are similarly useful for reducing a large num‐
ber of items into a smaller set of groups. A clustering technique finds
groups of items that are logically near each other and gathers them
together. For example, the movie recommender service might clus‐
ter users into groups. Analysts can then carry out analyses on indi‐
vidual groups.

Examining Actions
Chapter 2 discussed some of the core actions in tasks, but left the
concept rather broad. The action helps identify candidate visualiza‐
tions and encodings. Some single visualizations can address multi‐
ple actions: a bar chart can allow a user to find a specific value,
identify the largest or smallest value, roughly guess an average, or
compare two or more bars to each other. On the other hand, some
tasks are particularly well-supported by one visualization or
another; for example, a node-link diagram can be great for tracing
paths through a network.

Some of the actions that often come up describe:

• Finding and reading individual values in the data
• Characterizing the distribution of a dimension: minimum, max‐

imum, outliers, central tendency, sort order, etc.
• Identifying the trend of a metric over time (or some other

dimension)

There are also more complex actions:

• Comparing a value across a category (“dollars from store A ver‐
sus store B”)

• Comparing a metric to another metric (“height versus weight of
subjects” or “salary distribution of men versus women”)

• Contrasting a metric with many others (“Seattle versus other
cities”)

• Clustering values (“divide consumers into market segments”)
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Many of these actions look like statistical tasks (e.g., “I want to know
if men or women spend, on average, more money at our store”),
Indeed, if an analyst needs only one or two of these tasks—“I want
to know if men or women spend an average of more money at our
store”—then a visualization probably is not necessary.

Multiple tasks, however, are often linked: an analyst may want to be
able to explore the distribution to find reasonable cutoffs, or explore
subdivisions of the data across a range of different dimensions. For
example, an analyst may want to see how a distribution of product
sales looks when the data is partitioned by store, or product, or even
by the display aisle, or an analyst may want to switch from making
comparisons of older women versus younger women to older
women versus older men. A visualization tool can often support this
more open-ended exploration better than statistical tests.

Action keywords can cue which visualization to use. Tasks like
“Compare one object to another across multiple dimensions” are a
cue that the analyst might want to compare multiple series. In con‐
trast, “How is this item different?” suggests that the analyst might
want to pull out a single item to compare to a background set of
items. “Are any items different?” is a cue to look for visualizations
that help show outliers.

The next two chapters look at how to choose a visualization based
on the operationalization and the concepts described here.
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CHAPTER 5

Single Views

It does not necessarily take a sophisticated visual representation to
make a compelling point or understand a complex dataset. Many of
the most discussed, most viral, and most interesting visualizations
are based on basic chart types. In this chapter, we’ll take a look at
some of the familiar core chart types. This is well-trodden territory
—a sample of some different approaches can be found in “Further
Reading” on page 83, including attempts to taxonomize the space in
different ways.

This chapter takes a somewhat different approach to organizing
core chart types. It is organized around the things that the analyst
knows, and wants to know, about the data. This follows from the
process of operationalizing the data (Chapter 2), interviewing users
(Chapter 3), and understanding the data’s shape and the actions we
can take with it (Chapter 4). The operationalization has helped
reveal something about how the data is structured and what ques‐
tions there are about it. This knowledge can be used to select chart
types based on specific data questions.

Depending on the analyst’s task and question, visualizations can
emphasize different results from the same dataset. For example, the
United States Consumer Financial Protection Bureau (CFPB) has
released information about consumer complaints and how they
were resolved across a number of different financial products.
Among other columns, the data describes the class of financial
products to which a complaint applies and the type of relief that the
complaint received. The examples in the following figures aggregate
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that data to just three dimensions: the product, the number of
claims that had some form of relief, and the number of claims that
did not.

Data Sources and Demos
The data sources used in this chapter were collected from publicly
available repositories. The raw data is cited in “Datasets” on page 85
and on the book’s website. These examples are not meant to be
used to draw broad conclusions; in many cases, the data is simpli‐
fied for illustrative purposes.

Interactive Vega and VegaLite code to create most of the visualiza‐
tions in this chapter and in Chapter 6 can also be found on the
book’s website.

Different chart types support different types of questions. If the ana‐
lyst wants to see how two different groups compare relative to each
other, a scatterplot (Figure 5-1) might be an appropriate choice. If
the numbers are components of a larger value, they can be added
together to get a stacked bar chart (Figure 5-2). Conversely, to com‐
pare the numbers to each other, the analyst might choose a clustered
bar chart (Figures 5-3 and 5-4).

Figure 5-1. A scatterplot emphasizes the relationship between cases
that received relief and those that did not for five different products.
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Figure 5-2. A stacked bar chart emphasizes the total number of com‐
plaints.

Figure 5-3. A clustered bar chart emphasizes the contrast between the
number of people who requested relief and those who attained it.

Figure 5-4. A different clustering emphasizes the different sizes of the
populations who didn’t receive relief (and the similarity of those who
did).
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The list of visuals in this section can never be exhaustive, and new
chart types are being created all the time. This set, however,
addresses many of the major categories and the vast majority of
charts found in the wild. The list of charts is arranged by a set of
common data questions according to which they are most effective
at supporting.

This chapter first gives a quick primer of perceptual concepts that
underlie the construction of these basic charts. After that, the charts
are organized by data question. An overview of that organization is
shown in Table 5-1. The language here is intentionally informal
because it is meant to work as a reference for helping to map an
operationalization to visualization solutions.

Table 5-1 uses the data types from “Types of Data” on page 48. C is
for categorical, Q for continuous (quantitative), and O for ordinal
data. V represents any data type that can be mapped to a drawing
attribute, like color or line thickness. If a drawing supports Q×Q,
that means it supports a dataset with two continuous columns.

Table 5-1. Questions and their corresponding visualizations in this
chapter

Section Chart and data types Figure thumbnail(s)
“Question: How Is a
Measure Distributed?”
on page 61

Histograms and joint
distributions
C, Q, Q×Q, Q×C, C×C  

“Question: How Do
Groups Differ from
Each Other?” on page
66

Bar charts, pie charts
C×Q, C×O, C×C×O

 

“Question: Do
Individual Items Fall
into Groups? Is There a
Relationship Between
Attributes of Items?”
on page 70

Scatterplots and
heatmaps
Q×Q, Q×Q×V(×V…)
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Section Chart and data types Figure thumbnail(s)
“Question: How Does
an Attribute Vary
Continuously?” on
page 72

Line charts
Q×O, Q×C×O  

“Question: How Are
Objects Related to
Each Other in a
Network or
Hierarchy?” on page 73

Network visualizations
Network (×V…) on
nodes and edges

 

Tree visualizations
Network (×V…) on
nodes and edges;
Network×Q×V on nodes

 

“Question: Where Are
Objects Located?” on
page 79

Map visualizations
Map×V;
Locations×V(×V…)

 

“Question: What Is in
This Text?” on page 81

Text visualizations,
including word clouds

Overall Perceptual Concerns
The strengths and weaknesses of human perception drive much of
the design of visualizations. Basic perceptual concepts apply across
all visualization types. The term encoding channel refers to the ways
that an attribute is represented in the visualization. In a bar chart,
for example, bar length encodes a value, whereas the textual bar cap‐
tion encodes the category. Different channels have very different
perceptual properties, which can be described in terms of how
quickly and accurately a reader can interpret them as well as how
much they stand out from each other.

There is a well-known hierarchy of accuracy: overall, readers are
faster and more accurate when comparing lengths or positions than
area (see Figure 5-5). Roughly, the hierarchy runs from length to arc
angle, to area to color hue and intensity (Figure 5-5). All else being
equal, then, bar charts (which use length) are likely to be preferable
to treemaps, which use area. (To read more on this topic, see the
article by Cleveland and McGill cited under “Relevant Articles” on
page 84.)
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Figure 5-5. Difficulty in comparison increases roughly from left to
right: comparing length with a shared baseline and with different
baselines, comparing angles, comparing square areas or circular
areas, and comparing color. Each of these shows three values in the
proportion 5:1:3.

Color is difficult to use effectively. A small number of well-chosen
colors can be highly distinguishable, particularly for categorical
data, but it can be difficult for users to distinguish between more
than a handful of colors in a visualization. Nonetheless, color is an
invaluable tool in the visualization toolbox because it is a channel
that can carry a great deal of meaning and be overlaid on other
dimensions. A number of the visualizations described in this chap‐
ter use a color scale, such as heatmaps and choropleths. There are a
variety of perceptual effects, such as simultaneous contrast and
color deficiencies, that make precise numerical judgments about a
color scale difficult, if not impossible. As such, it is vital to choose
color palettes with care.

There are other important conventions. Lines should connect things
that go together, and in most cases, it should be meaningful to look
halfway along a line. Objects in visualizations that are stacked atop
each other are typically read as to be summed together: their total
area is the sum of the areas of their components (Figure 5-2). This is
as true in a stacked bar chart as it is in a treemap. Conversely, when
areas are discontinuous—two different bars side by side—the ana‐
lyst expects the viewer to compare them. Closer-together things are
easier to compare than further-apart things; thus, a clustered bar
chart suggests that the bars in each cluster should be considered in
relation to each other, and then the clusters themselves in relation to
one another (Figures 5-3 versus 5-4).

None of the data visualizations in this chapter use a three-
dimensional perspective. There is an entire research area dedicated
to 3D data—physical structures, bodies, weather systems—and
many tools meant to visualize things that truly have three spatial
dimensions. In our experience and in the experience of many oth‐
ers, using three dimensions tends to lead to challenges in percep‐
tion: points in space occlude each other; perspective makes it hard
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to compare sizes; the extra dimension of depth tends to obscure
information. Thus, visualization design principles tend to reserve
3D visualization techniques to tasks that are meant to explore the
3D shape of spatial data.

There are a number of excellent resources on the topic of perception
for visualization; see “Further Reading” on page 83.

Question: How Is a Measure Distributed?
In this section, we start with a single variable and look at ways to
examine how it is distributed. There are a group of subquestions
around distributions. Are there some values that recur? Are there
outliers? This first class of visualizations is meant to help us under‐
stand the distribution of one or two data columns.

Histogram (Categorical)

Figure 5-6. Categorical histogram. One categorical variable. This
chart shows the distribution of car styles in the cars dataset.

Description
This is a Categorical × Ratio chart, which can be drawn as a bar
chart. Given a list of categorical data, each bar represents the
frequency of items in a particular category. Subquestions center
around comparing bars: What category has the most, or the
fewest, items? Does some category stand out from the others?
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Histogram (Quantitative)

Figure 5-7. Quantitative Histogram. One quantitative variable. This
chart shows the distribution of car ratings for the city-mpg field.

Description
A quantitative histogram shows the distribution of a continuous
or ordinal variable. It can help identify whether the data is
skewed in one direction or another—that is, whether the data is
top-heavy or bottom-heavy, or whether there are gaps in the
middle of the range or outliers at the end. If there is a small
enough number of discrete values, they can be treated as cate‐
gories. Otherwise, the data is binned into ranges and each range
gets its own bar. It is valid for a bin to have no items.

This chart is not really different from the categorical histogram.
Fundamentally, it follows the instructions in “Transforming
Between Dimension Types” on page 49 to transform a continu‐
ous variable into an ordinal one by binning, then aggregating
on the count within the bins.

Limitations
The effectiveness of the histogram is based on the effectiveness
of the binning. Different choices of bins—varying where the
bins start or the bin size—can produce very different-looking
results for the same data.
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Smoothed Histogram

Figure 5-8. Smoothed histogram. One quantitative variable. This plot
shows a kernel density estimate of the city-mpg field of the cars data‐
set. Smoothed with a narrow bandwidth, the dataset shows sharp
peaks. Smoothed with a wider bandwidth, the dataset shows a
gaussian-like distribution.

Description
A histogram can be smoothed into a continuous curve, known
as a probability distribution function. Applying a smoothing
function implicitly suggests that the underlying data is smooth,
and that the data points are a sample drawn from a broader set
of possibilities. Like binning functions, smoothing functions are
extremely sensitive to parameters and algorithms.

Limitations
The smoothed histogram entirely hides the underlying values,
and the y-axis can be difficult for users to interpret. Contrast
Figures 5-7 and 5-8, which are drawn with the same data.
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Box Plot

Figure 5-9. Box plot. One continuous variable, conditioned on one or
more categorical variables; this chart shows the variation of the city-
mpg field, this time across multiple car body styles.

Description
A box plot shows a less detailed summary of a single distribu‐
tion. At the cost of detail, users can more easily glance at how
distributions differ. The box plot family allows you to compare
multiple distributions against each other. It can identify such
features as the average, standard deviation, and outliers for
multiple distributions. Figure 5-9 shows a common use of box
plots: to compare one measure across multiple dimensions.

A box plot is computed by choosing series of aggregate values
over the distribution—usually the median and the quartiles—
for the continuous variable. Other implementations choose
instead to render the mean and standard deviations of a distri‐
bution.

Limitations
A box plot cannot show multiple peaks or other features of the
distribution; it also hides the underlying number of entries.
Some box plots can render outliers, although this does not scale
to large numbers of points. Other variants, such as the whisker,
bean, and violin plots add additional richness to the box plot
(see “Further Reading” on page 83).
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Density Plot for Two Dimensions

Figure 5-10. Categorical density plot. Two categorical variables. This
chart shows the number of cars, grouping body style by make.

Figure 5-11. Continuous density plot. Two continuous variables. This
chart shows the joint distribution of efficiency, as measured in MPG,
against the weight of the car.

Description
The density plot shows how two variables change together.
Darker spots show places where lots of points occur; lighter
spots show places where there are fewer points. Density plots
can be used to compare relative distributions between two dif‐
ferent variables, as well as to find outliers. In the categorical ver‐
sion, it can be used to find how often different pairs of variables
go together.

As in a histogram, continuous variables are bucketed. Each cell
contains the number of items in which a pair of values co-
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occur. A density plot may also plot a continuous versus a cate‐
gorical variable.

Notes
The density plot is a first cousin to the more familiar scatterplot.
Where a scatterplot shows individual points, however, a density
shows regions. As a result, density plots are far more scalable
than scatterplots. At a large number of points, a scatterplot can
become a black blob, whereas a density plot can be tuned. Den‐
sity plots come in many variants, including ones that highlight
individual outliers, ones that use smooth curves to show den‐
sity, and ones that choose non-square binning algorithms (see
“Further Reading” on page 83).

Question: How Do Groups Differ from Each
Other?
The second major group of questions are those that compare multi‐
ple groups. Are boys taller than girls? Do people buy more chips or
soda? When data values are broken out by categories, the visualiza‐
tions in this section can show how the values of those categories
compare.

Bar Chart

Figure 5-12. Bar chart. One categorical variable, one ordinal. Bar
length shows the average efficiency by body style using the same data
as in Figure 5-9.
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Figure 5-13. Paired (or multiple) series bar chart. One ordinal, two
categorical variables. Efficiency by body style is now divided into die‐
sel versus gas cars.

Description
A bar or column chart is a common choice for comparing a sin‐
gle measure per group. A clustered bar chart provides two cate‐
gories: a major one and a minor one. The task, then, can be
more complex: users might compare bars within a cluster or
between clusters, or compare the overall shapes of clusters to
each other.

The bar chart is useful for comparing values across categories.
Users are very good at tasks like mentally sorting bars, identify‐
ing extremes, and estimating the average and variance across
bars.

Notes
Bars should be ordered in some reasonable order. If the catego‐
rical value is based on ordinal data—such as years—then they
should be in that order. Otherwise, bars can be ordered from
highest to lowest value. In a multiple-view or clustered bar
chart, the order should remain consistent.
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When a dataset is separated across a categorical variable, each
category is sometimes referred to as a series; in a multiline chart
or a clustered bar chart, each line or bar represents a series.

Limitations
A bar chart begins to be incomprehensible when there are too
many categories, except in the case where the bar chart is show‐
ing individual values of bucketed, sequential data. If the task is
to cluster pairs of bars into groups based on their relative size,
then a scatterplot (Figure 5-16) might be a more appropriate
tool.

Pie Chart

Figure 5-14. Pie (or doughnut) chart. One continuous, one categorical
variable. The CFPB data shows the ways that complaints have been
closed.

Description
A pie (or doughnut) chart is a variant on a bar chart: it maps
wedge angle instead of height to a value. By filling a full 360
degrees around, the pie connotes parts of a whole. Pies can be
effective for showing certain aspects of the data: this takes up
more than half, for example. It can be difficult, however, to
accurately compare pie wedges to each other unless they are
very different in size.
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Heatmap

Figure 5-15. Heatmap. Two categorical or continuous variables result
in a color variable. The CFPB data shows the number of complaints
over time, by product. The data is broken out by month and year.

Description
A heatmap is a two-dimensional analogue to a bar chart: it visu‐
alizes the aggregation or value that sits in each bucket. Just as a
bar chart is a general mechanism that can be used to render a
histogram, the density plot shown in Figure 5-15 is rendered
with a heatmap. Many tasks that are carried out with a heatmap
might also be fulfilled with a clustered bar chart.

A heatmap allows the user to look across or down the dimen‐
sions, looking for commonalities or differences. For example, in
Figure 5-15, the user can look across to see patterns in how
products are similar or vary, and up to see how company
responses vary.

Notes
A heatmap is a first cousin of a density plot, except rather than
using merely the count of items, it shows a measure. The term
heatmap gets used in many contexts; this use is common, but
not exclusive. The term can also refer to density plots, for exam‐
ple, and occasionally to treemaps.

Limitations
When a heatmap has many rows or columns, it becomes impor‐
tant to order them to show patterns and trends. Furthermore,
dense heatmaps suffer from a host of perceptual problems asso‐
ciated with color, making accurate judgments of individual val‐
ues sometimes impossible.
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Question: Do Individual Items Fall into
Groups? Is There a Relationship Between
Attributes of Items?
Scatterplots fulfill two sets of closely related tasks. By visualizing
items by their attributes, they can help us look at relationships
between those attributes or at groupings in the items themselves. Is
there a relationship between height and weight? Do mobile users dif‐
fer from desktop users with regard to session length or click-through
rate?

Scatterplot

Figure 5-16. Scatterplot. Two continuous variables. Additional con‐
tinuous, ordinal, or categorical variables can be added for size, color,
and shape. This shows the relation between curb weight and MPG for
five different styles of car.
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Description
A scatterplot places data points on perpendicular axes. The two
major axes are used to lay out the points spatially; additional
attributes can be used for color, size, or shape.

Scatterplots encourage the user to look at groupings in space.
They can identify outliers or groups, such as the points that are
in each cluster or the points that are along a main trendline. If
the points are colored with an additional categorical variable,
then they can address questions about whether different cate‐
gories behave differently from each other.

Notes
Too many simultaneous encodings will be overwhelming to the
reader; colors must be easily distinguishable, and of a small
enough number that the reader can interpret them.

Many users find scatterplots difficult to interpret with their two
abstract axes. In an infographic, some designers help guide
users by highlighting and annotating regions with comments
like “People who had high math scores but low written ones,” or
individual points with comments like “This drink costs $0.50
and has 150 calories.”

Limitations
When encoding a third dimension with color or shape, occlu‐
sion can get in the way: a user cannot see that a red dot and a
blue dot have been drawn in the same place. Also, some tools
will draw all of one set of points before they draw any of the
next; the reader can be misled by this unintentional bias.
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Question: How Does an Attribute Vary
Continuously?
Temporal data occurs in almost every context, so line charts are
some of the most common forms of charts. How is a stock, a heart
rate, or Twitter traffic doing compared to last month? Is the trend
periodic, trending, or noisy?

Line and Area Charts

Figure 5-17. Line chart. One ordinal, one continuous variable. This
chart shows a count of consumer complaints by year and month for
the CFPB data.

Figure 5-18. Stacked area chart. One ordinal, one continuous, and
one categorical variable. This chart shows the count of consumer com‐
plaints, like Figure 5-17, but broken out by product. Mortgages stabi‐
lized while credit reporting grew (this shows the same data as
Figure 5-15).

Description
The line chart family draws a value for each point along a con‐
tinuous axis. The independent axis is often time, but it can be
anything that varies continuously, such as distance. For points
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that are not in the dataset, the chart shows an interpolated
value; a core assumption of a line chart is that the points in
between are meaningful and well defined.

A line chart shows change over a continuous variable. That
might be a trend (Profits went up!) or a repeating pattern (Peo‐
ple read our web page on weekends! This bike ride is hilly!). Use
multiple lines sharing one set of axes to see how multiple sets
covary.

A stacked line chart lays multiple lines over each other with the
top of one acting as the baseline of the next.

Limitations
In any stacked chart, it can be difficult to see how much the
upper layers have changed. In Figure 5-18, for example, the
spike in the bottom green layer in January 2013 makes it appear
that all categories spiked.

Question: How Are Objects Related to Each
Other in a Network or Hierarchy?
Networks and hierarchies help track the connections between items.
Is this person connected to that one? Does this online group have an
internal structure? How many people are in this reporting structure?
Which product line is selling best?

Node-Link View

Figure 5-19. Node-link view. A relational variable, in which pairs of
data values are linked to each other, plus additional metadata on the
nodes and edges. This data from the Les Miserables dataset shows
coappearance in the novel between characters. The network has been
truncated to 40 nodes for legibility.
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Figure 5-20. Circular network layout. A relational variable, in which
pairs of data items are linked to each other, plus additional metadata
on the nodes and edges. This shows the same data as Figure 5-19.

Description
A node-link view draws nodes representing data items, and
lines representing links between them. In a force-directed lay‐
out such as Figure 5-19, nodes and lines are placed so that con‐
nected nodes are nearer each other, while nodes that are not
directly connected are further apart; these views help users
identify clusters of interconnected nodes. A circular layout like
Figure 5-20 maintains an ordering between nodes.

Node-link diagrams are good for understanding connection. A
user may be able to pick out well-connected nodes, as well as
identify clusters of nodes and isolates. In an ordered circular
layout, it is easier to see similar nodes have similar patterns of
connection. When an additional dimension is shown using
color or shape, tracking homophily—whether well-connected
nodes are similar with respect to the additional dimension—
becomes possible

74 | Chapter 5: Single Views



Limitations
Node-link views are effective for showing only small networks.
Researchers have found that the most successful node-link dia‐
grams showed small networks with no more than 10–50 nodes
and 20–100 links. At this scale, node-link diagrams are good at
showing the overall structure of a sparse graph, although den‐
sity has a strong impact on readability—a highly connected
graph can lead to what’s known as a hairball. A very few, far
larger networks visualized using node-link views have been suc‐
cessful in presenting the general shape of the network. (See
“Further Reading” on page 83.)

Rendering node-link view layouts is a research field in its own
right, based on what types of tasks will be supported by the vis‐
ualization. Consider aggregating groups of nodes together to see
relationships between them, or providing a drilldown into
regions.

Adjacency Matrix

Figure 5-21. Adjacency matrix. A relational variable, in which pairs
of data items are linked to each other, plus an additional metadata
field mapped to color for the edges. This chart shows the same data as
Figures 5-19 and 5-20
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Description
An adjacency matrix shows the connections between data items
in a heatmap, where the measure is whether a pair of items are
connected.

The adjacency matrix shows connection between pairs directly;
each cell represents an edge. Identifying whether a pair of items
is connected is a straightforward task, but pathfinding is more
difficult. In addition, with an appropriate ordering, cliques and
near-cliques become visible.

Notes
An adjacency matrix can be more difficult for novices to under‐
stand than a node-link diagram. For smaller and sparser net‐
works, a node-link diagram is almost always better. Detecting
patterns is very order-dependent; much research has been done
on ordering the cells in a matrix in order to bring out patterns.

Adjacency matrices are not a particularly compact representa‐
tion; the fairly small matrix in Figure 5-21 still takes up a large
amount of space.
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Tree View

Figure 5-22. Tree view. One hierarchical set of dimensions, perhaps
coded with one or two other dimensions (both nodes and edges can be
colored and sized). This is a hierarchy of the types of complaints to the
CFPB and the percentage of them that received relief. The second
layer of the tree corresponds to the values in Figures 5-1 through 5-4.

Description
A tree view uses a node-link diagram to draw a hierarchy. The
color of nodes and edges, as well as the thickness of edges, can
be mapped to additional dimensions of the dataset. As such, a
tree view is good for looking for individual items buried in a
hierarchy that are unusual in size or color.

Notes
When trees get large, it can be difficult to pick out individual
nodes. In interactive systems, it can be convenient to collapse
subtrees together into abstracted nodes, and to elide nodes
toward the roof. This sort of level of detail interaction allows
users to more easily navigate the tree.
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Treemap and Sunburst

Figure 5-23. Treemap. A hierarchical value, associated with a size
and a color for each leaf node. Non-leaf nodes do not get their own
colors. This represents the same data as Figure 5-22 but adds a second
dimension for size: the number of complaints.

Figure 5-24. Sunburst plot. A hierarchical value, associated with a
size and color for each node, including both leaf and internal nodes.
This chart shows the same data and mapping as Figure 5-23.
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Description
Treemaps and sunburst plots look at relative sizes of things in a
hierarchy. For example, a hard drive has folders that each take
up space, subfolders take up fractions of their space, and so on.
Similarly, a company might organize its products in a hierarchy
(categories of products, divided into individual products, divi‐
ded into editions). Each node is associated with both a size and
a color. As with the tree view, color can be mapped to a value or
category, but it is far easier to read the total area than with a tree
view.

A sunburst plot can make it harder to compare the size of areas,
especially between layers, but easier to compare the depth.

Limitations
It can be difficult to accurately compare relative area in these
visualizations, especially for oddly shaped pieces or between dif‐
ferent layers.

Question: Where Are Objects Located?
Maps are perhaps the most familiar visualizations: many children
grow up playing with map puzzles many years before they
encounter their first bar chart. As such, they make familiar reference
points to place data. Which state has the most millionaires? Where
are the stores that have sold the most snow shovels?
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Geographical Map

Figure 5-25. Choropleth. Values correspond to regions, such as states
or counties. This chart uses census data to look at the percentage of
the population with income over $200,000.

Figure 5-26. Dotplot map. A scatterplot, where the x- and y-axes are
geographical (or a list of geographical points); additional dimensions
for size, color, or shape. Dots are located at the centroid of each zip
code; the first digit encodes color.

Description
Geographical visualizations are an entire field in themselves.
The choice of choropleth and dotplot here represents just two
classic charts from an extremely rich history. Choropleths fill in
regions; dotplots place data at points of interest.
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Maps can be used for understanding how places vary or are
similar, for understanding regional differences, and more.

Notes
One great virtue of maps is that if the audience is reasonably
familiar with the area, there is no actual need to label what the
space means. Neither Figure 5-25 nor 5-26 has a legend or
labels on the states, which is a reasonable omission for people
familiar with the geography of the United States.

Limitations
In a choropleth, a great deal of emphasis is given to land area
even though size and population are unrelated—a high value in
US states like Alaska or Montana (which have a very large area
but a low population) might seem more significant than a high
value in tiny Rhode Island (which has approximately the same
population as Montana, but 1/145 of the land mass).

The spatial distribution of dots in a dotplot is the same, regard‐
less of the dimension being shown with color. For example,
most dotplot maps of the United States look somewhat the
same: a lot of points on the East Coast, fewer on the West Coast,
and fewer still in the center. This is true whether measuring
number of millionaires, voters, or sinks sold.

Maps also have the disadvantage that they consume the most
powerful encoding channels in the visualization toolbox—posi‐
tion and size—on an aspect that is held constant. This leaves
less effective encoding channels like color for showing the
dimension of interest.

Question: What Is in This Text?
Visualizing textual data is a common user need. Unfortunately,
there is no definitive technique for resolving it. Most approaches fall
into the same patterns that are discussed throughout this chapter.
They can be found by operationalizing the question further: what is
it that the analyst needs to know from the text? Some popular
approaches start with counting patterns and frequencies of words or
phrases and visualizing these patterns in line charts, bar charts, net‐
works, and so on. There are many subtleties with regard to recog‐
nizing word roots and stemming, choosing what aspects to visualize,
and handling a set of words with a very high cardinality.
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Word Cloud

Figure 5-27. Word cloud. This is a word cloud of the text of the Pref‐
ace to this book. Color in this chart is arbitrary.

Description
One popular choice for visualizing text is a word cloud. A word
cloud is, at heart, something like a bar chart: entities are sized to
their counts. It relaxes constraints on position and color, which
then get assigned with fairly arbitrary layout algorithms. A word
cloud allows the reader to understand the relative frequency of
words, and roughly identifies the top handful of words.

Limitations
Perceptually, a word cloud can be challenging: long words, and
letters with ascenders and descenders, can make size difficult to
estimate. It might be more effective—if less visually interesting
—to simply print a bar chart of word frequency.

Conclusion
This chapter has examined several major classes of visualizations.
There are a set of shared encoding channels: the placement of items
(spatial), color, size. There are also a number of perceptual rules
used to help enhance the degree to which visualizations bring out
distinctions in questions.

This ties back to the process of operationalization by linking the
question to user needs. For example, imagine an analyst who wishes
to create a visualization showing that stores in region A are more
likely to sell blue jeans than stores in region B. The question that the
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data counseling process suggests to ask is, “What would it look like
to show this?”

The analyst might decide to group stores together by region and
show the sum of jeans sold, or the proportion of products. They
might decide to plot them on a map. In the former case, they lose
granularity (data on individual stores) at the gain of seeing overall
trends. Plotting has the opposite effect: it may be hard to see trends
against bigger population patterns.

Further Reading
The basic chart types are one of the most well-studied and explored
areas of data visualization. This section highlights a (very) few core
books:

Bertin, Jacques. Semiology of Graphics: Diagrams, Graphs, Maps,
trans. William J. Berg (Redlands, CA: ESRI Press, 2010).

• Jacques Bertin’s seminal volume is a dense and challenging read
(and the English translation is imperfect). However, the work is
a treasure trove. Bertin lays out the principles of good informa‐
tion design based on cartography, typography, color theory, and
perception. He then walks through, in great detail, the advan‐
tages and disadvantages of different chart representations of
datasets with qualitative, quantitative, and spatial data types.

Few, Stephen. Information Dashboard Design: Displaying Data for
At-a-Glance Monitoring (Sebastopol, CA: O’Reilly, 2006).

• Stephen Few takes an opinionated approach to creating infor‐
mation dashboards. In this book, he lays out basic principles of
what makes for a good information dashboard. His notes apply
both to the individual charts discussed in this chapter and the
multiple views in Chapter 6.

Wilkinson, Leland. The Grammar of Graphics (Mew York: Springer,
1999).

• This book expresses a particular sequence of creating visuals by
mapping from data through geometric primitives and placing
them on scales. These core insights make it easy to generalize
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many visualization techniques and have influenced visualiza‐
tion systems from Tableau, to the ggplot package in R, to Vega.

Meirelles, Isabel. Design for Information. (Beverly, MA: Rockport
Publishers, 2013).

• Trained as a designer, Isabel Meirelles presents the history and
best practices for understanding, critiquing, and creating visual‐
izations from a design perspective.

Steele, Julie and Noah Illinski. Designing Data Visualizations (Sebas‐
topol, CA: O’Reilly, 2011).

• This is a useful guide to core visualizations, with a stronger
emphasis on how to design and present visualizations.

Munzner, Tamara. Visualization Analysis and Design (Natick, MA:
AK Peters/CRC Press, 2014).

• This textbook is an overview of the state of the art of the data
visualization field. It covers data abstraction, provides percep‐
tual guidelines, and discusses faceting into multiple views.
Many topics in this book were influenced by Munzner’s
approach.

Relevant Articles
Cleveland, William S. and Robert McGill. “Graphical Perception:
Theory, Experimentation, and Application to the Development of
Graphical Methods.” Journal of the American Statistical Association
79 (1984): 531–554.

• This brief and readable journal article builds a hierarchy of core
perceptual tasks in visualization. Its insight is that comparing
length is the core perceptual task of a bar chart, whereas com‐
paring angle is core to a pie chart. Comparing these two percep‐
tual tasks can help evaluate the difficulty of understanding a
visualization.

Wickham, Hadley and Lisa Stryjewski. "40 Years of Boxplots,” tech‐
nical report from had.co.nz (2012)
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• This paper provides an invaluable overview of different box plot
variants, including the bean and violin plots, as well as 2D ana‐
logues.

Sarikaya, Alper and Michael Gleicher. “Scatterplots: Tasks, Data,
and Designs.” IEEE Transactions on Visualization and Computer
Graphics 28 (2018).

• This paper discusses several major variants of scatterplots and
density plots.

Ghoniem, Mohammed, Jean-Daniel Fekete, and Philippe Casta‐
gliola, “On the Readability of Graphs Using Node-Link and Matrix-
Based Representations: a Controlled Experiment and Statistical
Analysis.” Information Visualization 4 (2005): 114–135.

• This paper explores the readability challenges around large and
high-density node-link diagrams for low-level tasks like finding
nodes, edges, and paths between nodes.

Datasets
Copies of the data used in this chapter (in both pre-processed and
raw form), along with Vega and VegaLite code to create the visuali‐
zations in this chapter and in Chapter 6, can be found on the book’s
website. The datasets used are:

CFPB
The CFPB Consumer Complaint Data about financial products
and services. The dataset is made available on Data.gov, with
data as of September 26, 2015.

Cars
The Automobile dataset is based on the 1985 Ward’s Automo‐
tive Yearbook, courtesy of the UCI Machine Learning Reposi‐
tory.

Les Miserables
This dataset, showing character coappearance in Victor Hugo’s
Les Miserables, first appeared in Donald E. Knuth’s The Stan‐
ford GraphBase: A Platform for Combinatorial Computing
(Addison-Wesley, 1993). It is available from the UCI Network
Data Repository.
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Zip code
The zip code dataset was composed from US Census Bureau
data by CivicSpace Labs, and is available for download from
Tom Boutell’s website.

Census
The census data, aggregated at the state level and examining
total household income, is available from American FactFinder
(US Census).
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CHAPTER 6

Multiple and Coordinated Views

The previous chapter provided a gallery of single-chart visualiza‐
tions. This chapter brings those views together into interactive, con‐
nected visuals called multiple linked views (MLVs). An MLV
leverages multiple visualizations by linking the information shown
in each view to the others through user interactions.

MLVs are vital to understanding large and complex data. They allow
many different attributes to be viewed at once by splitting them up
across a set of views and partitioning the data items to find interest‐
ing trends. They can be designed to help guide a user toward the
most interesting data items, to show multiple perspectives on data,
or to allow the user to dive more deeply into a dataset. In an MLV
system, a dataset is shown in multiple simple visualizations, with the
data items shown in the different charts corresponding to each
other. The charts in each visualization can be used to highlight, con‐
trol, or filter the data items shown in the others.

There are a number of well-defined MLV design patterns, each of
which supports a different set of analysis tasks. This chapter covers
five of the best-known patterns: small multiples, scatterplot matrices
(SPLOMs), overview+detail, multiform views and dashboards, and
overlays. Small multiples and SPLOMs are series of small visualiza‐
tions that use the same view but show different parts of the data.
Overview+detail pairs two views, one as an overview of the com‐
plete dataset and the other as a detailed view of a subset of the data.
Multiform views and dashboards use different types of visualiza‐
tions with each view optimized for a subset of attributes. Lastly,
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overlays are multiple visualizations drawn on a common, shared
axis.

This chapter discusses appropriate tasks and provides examples for
each of these. There are characteristic interactions that go with most
of these design pattern. The chapter describes the ways that users
might interact with these visualizations. Table 6-1 provides an over‐
view.

Table 6-1. The design space of multiple linked views

MLV type Supported task Data Interaction What is shared
Small
multiples

Understand and
identify differences
between subsets or
measures of the
data

Each view shows a
partitioned subset,
or a different
measure, of the data

Usually static Different data,
same attributes,
same view; or,
same data,
different
attributes, same
view

SPLOM Understand
relationships and
correlation between
the attributes

Each scatterplot
shows all of the data
items for every pair
of attributes

Brushing and
linking highlights
the same data
items in different
views

Same data,
different
attributes, same
view

Multiform
views and
dashboards

Understand
relationships and
correlation between
the attributes

Each view shows all
of the data items,
but different
attributes

Brushing and
linking highlights
the same data
items in different
views

Same data,
different
attributes,
different views

Overview
+detail

Find interesting
data items and
understand those in
detail

Large datasets
where all data items
and attributes
cannot easily be
shown at once

Selection in
overview;
navigation in
detail

Same data,
different
attributes,
different views

Overlay Compare two
datasets that share
a common attribute

Different, but
joinable, datasets

Usually static Different data,
shared attribute,
shared axis

Small Multiples
The small multiples design pattern—sometimes also called a trellis
chart—focuses on showing subsets of a dataset, meaningfully parti‐
tioned. The pattern allows an analyst to quickly look across these
subsets and compare them in order to find trends, patterns, and
outliers.
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This pattern is common in everyday interfaces. In online shopping
sites, a search query is presented as a grid. In this grid, the results
are partitioned based on specific products, and each individual view
in the grid gives quick information about what the product looks
like, its price, and its rating. Similarly, weather forecasts typically
show forecasts for several days with small multiples. Here, the fore‐
cast data is partitioned by day; each individual view shows informa‐
tion about the day’s temperatures, cloud cover, and precipitation.
The layout supports quick skims down the views to get a sense of
how the weather will change over the course of the days.

The views in a small multiple must maintain consistency, so it is easy
to read down or across each individual view to directly compare the
data subsets across each attribute. Maintaining the same view of the
data while varying the data items is a hallmark of small multiples.

A small-multiples display shows the same visualization repeated
across a row, column, or grid of views. Small multiples come in two
variants: they can be split by dimension, or they can show differing
measures. When a visualization has been split by dimension, each
individual view is a visualization of the same attributes, but the
views show different subsets of the data, split along a partitioning
attribute. The partitioning attribute is typically an ordinal or catego‐
rical value—as in Figure 6-1—a binned continuous value.

When a visualization shows multiple measures, each individual view
shows most of the same attributes for all the data. Each individual
view varies one dimension or measure from its neighbors. In
Figure 6-9, the three views all show the same dimensions, but vary
on the measure: population, engineers, and hurricanes per state.

Small multiples are particularly good for supporting comparison of
subsets of the data across several attributes of interest—words such
as these in an operationalized task point to a small multiples design
pattern. For example, the small multiples of choropleth maps in
Figure 6-1 support comparison of the percentage of the population
in states in the US across different salary ranges.
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Figure 6-1. Small multiples of choropleths. In each choropleth, the
percentages of the states’ populations for a specific salary range are
shown—the small multiple views are partitioned over the set of salary
ranges.

In Figure 6-1, percentage and geographic location are shown in each
view, and the data is partitioned by salary range. Each individual
view in the small multiples display supports statements like “The
state of Alaska has a comparatively lower percentage of residents in
the lowest salary range.” The full display supports statements like
“California and Virginia stand out for their unusual distribution of
salary at both the lowest and highest ranges.”

One virtue of a small multiples view that is split by dimension is that
all the views share the same spatial placement and the same color
scale. The shared color scale is useful here because the multiple visu‐
alizations have the same meaning. The reader learns to interpret
that yellow means a high percentage while purple is low, and can
then effectively look across the charts to compare a specific color,
pattern, or spatial location.

Often it is not obvious from a task which attributes should partition
versus define the views, and trying different combinations can be
useful. It is often fruitful to explore different small multiples during
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the early EDA stages to not only help in understanding the data, but
also enable further refinement of the operationalization.

Conditioning and Generative Grammars
The concept of conditioning on a variable cuts across many visuali‐
zation types. This is the statistical term for partitioning one
attribute by another. Any single-view visualization can be changed
into a small multiples view by conditioning on one or two dimen‐
sions; many visualizations can be overlaid by choosing another
color to represent conditioning on a second dimension.

A bar chart is a small multiple of single bars, partitioned on an
attribute. A clustered bar chart is a hierarchy of small multiples
within a small multiples display. This sort of logic drives The Gram‐
mar of Graphics, which reduces every point on a visualization to a
mark drawn in a particular way as described by the data; tools like
ggplot and Vega explore this philosophy further. See “Further Read‐
ing” on page 83.

Scatterplot Matrices
Scatterplot matrices (SPLOMs) are related to small multiples in that
they use the same visualization—a scatterplot—across a matrix lay‐
out. Instead of showing subsets of data items across a few choice
attributes, as in a small multiples display, they instead show the
complete dataset in a matrix of scatterplots. More specifically, a
SPLOM pairs each (usually) continuous numeric attribute against
every other attribute in a (diagonally symmetric) matrix layout of
scatterplots (Figure 6-2). As with other scatterplots, as discussed in
Chapter 5, items in the scatterplot may also be colored and sized by
additional attributes.
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Figure 6-2. A SPLOM comparing attributes of cars in the scatterplots,
with a color encoding indicating whether the cars are all-, rear-, or
front-wheel drive. This chart helps show, for example, that rear- and
front-wheel-drive cars can be separated by their curb weight in con‐
junction with city-mpg or highway-mpg more than by their width and
length.

A SPLOM is primarily useful for characterizing relations between
attributes in the earliest stages of EDA. Finding these relationships
can help in narrowing down which attributes may be of most inter‐
est for further study during later EDA stages.

Overview+Detail
The overview+detail design pattern is essential for navigating and
exploring large datasets in order to find interesting data items. It
applies to any dataset that is too big—in terms of the number of data
items, the number of attributes, or both—to show all at once. This
design pattern includes an overview visualization that helps in find‐
ing interesting subsets of the data, and a linked detail view that
shows the low-level attribute values associated with the selected sub‐
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sets. Words in a task such as locate and find may indicate an over‐
view+detail design pattern.

This design pattern is common in email clients, which provide an
overview of the inbox showing the sender, subject, and date for all
emails. Selection of an email in this overview then triggers a detailed
email view to show the complete contents of the message. This is a
flexible, user-driven process that supports a number of tasks: read‐
ing new emails, finding emails sent last night, or going back to a
specific topic from yesterday, to name a few. The overview pane
gives just enough information to make the selection, which is then
shown in its entirety in the detail view. This detail view updates with
each new selection.

Overview+detail is also frequently used as a navigation aid to pro‐
vide context for movement around virtual spaces, such as maps,
video games, or images. For example, Figure 6-3 is a screenshot
from a photo viewing application. The overview is a small, contex‐
tual view that supports panning and zooming; the detail view shows
a zoomed, detailed portion of the photo.

Figure 6-3. Some photo-viewing apps support overview+detail for
panning and zooming an image. Here, the overview in the bottom-
right corner indicates which part of the image is being shown in the
larger detail view.
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1 This visualization tool is discussed in “MizBee: A Multiscale Synteny Browser.” See
“Further Reading” on page 104.

The overview+detail design pattern supports guided navigation to
help find interesting subsets of the data. This pattern looks across
many data items, using either one or several attributes as a measure
of interestingness. The overview may use an attribute that is shown
in other views, or a new, summarizing metric created from the
underlying data. A selection in the overview triggers an update in
the detail view to show the underlying details about the selected
subset. This is typically a one-way interaction where selection in the
overview drives what is shown in the detail view, but not vice versa.

What makes for interestingness? It is any attribute that helps figure
out what subsets are worth looking at in the dataset. If the analyst is
looking for places where data has extreme values, for example, it
might be the count of items in that area, the maximum value of an
attribute, or the average. It might be a synthetic value, such as an
anomaly score. The case study in Chapter 8 has an overview that
uses a distance function to help guide users to the most interesting
bits of detail.

Figure 6-4 shows a dataset of genes located within a chromosome.1

There are thousands of genes, far too many to reasonably show in a
single view. Instead, the overview on the left shows regions of inter‐
est, each of which contains a set of related genes, shown as colored
bars along the chromosome. These bars can be selected, triggering
the detail view on the right. This detail view shows the individual
genes within the selected region.
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Figure 6-4. Overview+detail views in a tool for exploring genetic data.
The overview on the left shows regions of interest, color-coded based
on a similarity function. Selecting a region of interest triggers the
detail view on the right to show the location of individual genes
within the selected region.

Overviews and details can nest for larger and more complex data‐
sets. Figure 6-4 is actually part of a larger system that has two levels
of overview to support looking across complete genomes—this sys‐
tem is shown in Figure 6-5. This visualization tool, called MizBee,
supports selection of chromosomes of interest in the left view,
regions of interest in the middle view, and detailed analysis of genes
in the right view. A video of this system in action can be found on
the book’s website.
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Figure 6-5. This tool for visualizing comparative genomics data has
two levels of overview. Selecting a chromosome in the overview on the
left triggers a more detailed overview of the selected chromosome in
the middle view. In this middle view, regions of interest are selected to
then trigger low-level details about individual genes in the detail view
on the right.

Overview+detail supports open-ended exploration across the com‐
plete dataset and is useful for helping a user build a mental model of
what is interesting within a dataset and what more detailed relation‐
ships should be explored. Choosing a good proxy for interestingness
is essential to an effective overview+detail—oftentimes, the over‐
view is designed to support a range of metrics that the user can
switch between dynamically. It is often later in the process that a
good understanding of what is interesting emerges. Furthermore,
developing overview+detail tools typically requires some significant
programming, making them somewhat heavyweight for early EDA.
These tools are often developed later in the process, and often serve
as the final visualization design.

Multiform Views and Dashboards
A single view can usually only effectively show three or four
attributes. When trying to determine how multiple attributes are
related to each other, then, a multiform linked visualization can

96 | Chapter 6: Multiple and Coordinated Views



show the connections between multiple attributes. A multiform vis‐
ualization shows attributes across multiple visualizations, each tail‐
ored to most effectively show a small subset of the attributes. In this
design pattern, no one view is best or primary and any one view by
itself is insufficient.

Each view shows all of the data items, but just a portion of the data
attributes. The views themselves are each designed to be most effec‐
tive for showing one or a few of the attributes, and many views can
be shown at once to support finding patterns, trends, and correla‐
tions across many attributes. Instead of primarily supporting char‐
acterization of patterns in the data items, like a small multiples
visualization, a multiform visualization supports characterization of
patterns in the attributes.

This design pattern uses an interaction technique called brushing
and linking, where selecting data items in one view triggers high‐
lighting of those selected items in the other views, supporting fine-
scale analysis of relationships across the attributes.

For example, in Figure 6-6 the view on the left is showing 2D spatial
locations for each data item, with a metric encoded at each point,
using color. We know from Chapter 5 that color is relatively ineffec‐
tive for precisely comparing quantitative values; thus, the linked bar
chart view on the right shows the metric for each data point using
spatial encoding (height). The views are linked such that when the
mouse hovers over a data item in the left view, the corresponding
bar is highlighted in the right view—the interaction can be viewed
in the video on the book’s website.
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Figure 6-6. In this multiform visualization, both views are showing
the same attribute across all the data items. On the left, that attribute
is encoded with color, along with the spatial location of each data
item. To overcome the perceptual challenges of making fine-scale
comparisons of the attribute values using color, the linked view on the
right encodes the attribute using a bar chart. The two views are linked
together with brushing.

A multiform visualization such as this can give users access to a
broad set of attributes across the complete dataset, making it partic‐
ularly useful in the middle of the data counseling process.

Dashboards are a type of multiform visualization used to summarize
and monitor data. These are most useful when proxies have been
well validated and the task is well understood. This design pattern
brings a number of carefully selected attributes together for fast, and
often continuous, monitoring—dashboards are often linked to
updating data streams. While many allow interactivity for further
investigation, they typically do not depend on it. Dashboards are
often used for presenting and monitoring data and are typically
designed for at-a-glance analysis rather than deep exploration and
analysis. An example of a business dashboard is shown in
Figure 6-7.

98 | Chapter 6: Multiple and Coordinated Views



Figure 6-7. This sample business intelligence dashboard represents a
number of different measures and dimensions of a dataset: single
numbers summarize important features; scatterplots, bar charts, line
charts, and maps address specific tasks. The cells are linked together:
choosing a specific element in one panel acts as a filter or highlight
against the others.

Overlays
A final MLV design pattern, overlays, uses a shared coordinate sys‐
tem to orient views together—these views are similar in that they
share a common coordinate system, but could be different in the
visualization type they use. This variation makes it easy to find pat‐
terns and trends among a small number of attributes along a com‐
mon attribute, such as time or space. This form often occurs with
geospatial and temporal data; the weather map in Figure 6-8 is an
example. In this visualization, three different attributes are layered
in the same view: temperature using color, pressure using isolines
(contours), and wind speed and direction using wind-barb icons. All
three attributes are using the same coordinate system, namely geo‐
spatial location over the continental United States. By visualizing
these three attributes together, it is easier to make inferences about
relationships between them.
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Figure 6-8. Overlays are often seen using a geospatial attribute as a
common axis. In this weather map, temperature, pressure, and wind
speed are overlaid on a map of the United States.

Besides comparing attributes, overlays are also good for saving pix‐
els and presenting more information in a single display more com‐
pactly. On the other hand, they can add more visual complexity.
Making detailed judgments about the weather attributes in
Figure 6-8 requires a fair amount of attention—too much detail in
an overlay can overwhelm a user quickly. Interaction can help with
visual clutter, such as highlighting a specific layer of the overlay
when a label in the legend is rolled over. In general, overlays are a
great option when your analysis requires a small set of attributes to
compare and the shared coordinate system is familiar.

Axis Alignment and Scale Consistency
One important aspect of all of these forms of multiple visualizations
is finding and aligning shared axes. In general, if two different parts
of a visualization are meant to show the same scale, they should be
aligned and sized the same way. In a small multiple view of histo‐
grams, for example, ensuring that the bins are consistent among the
histograms makes it far easier for the user to compare bins to each
other. Similarly, when overlaying several series with different
ranges, it is worth considering whether the percentage change is
most important, which would allow for a common y-axis.
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The principles of alignment and consistency play into Figure 6-9,
which illustrates the value of maintaining consistent axes while
showing independent color scales. The three maps show very differ‐
ent data—the population, percentage of the population that are
engineers, and number of hurricanes. The shared coordinate system
and aligned axes help the reader compare the maps; the different
color palettes emphasize that the attributes, scales, and meaning are
very different between the three charts.

Figure 6-9. These three choropleths illustrate the value of aligning
scales and maintaining coordinate systems. The maps show the popu‐
lation of each state, the percentage of the population that are engi‐
neers, and the number of hurricanes. (The very different map styles
suggest that engineers do not cause hurricanes.)

Interacting with Multiple Linked Views
Many of these MLV design patterns support the concept of linking
views by interacting with the data. The role of linked-view interac‐
tions is to select data in one view that is then reflected in another
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view, using the data as a selector. This is broadly referred to as
brushing and linking.

The concept of brushing and linking brings together two subtly dif‐
ferent types of interaction intentions: cross-highlighting and cross-
filtering. For example, in a SPLOM it is common to select data items
in one of the scatterplots to see how they are reflected in others; this
is known as cross-highlighting. Cross-highlighting can be imple‐
mented when individual data points correspond in multiple charts.

Cross-filtering means that the selection on one chart removes data
items from other charts. It might make sense, instead, to cross-filter
on ranges or values of attributes—for example, by dragging along an
attribute to mean “all data items with these values along this
attribute.”

Interestingly, there’s little consensus on the exact specification of
these two different intentions. Selecting a region can mean filtering
to only a set of data items, or it can mean highlighting those points.

Figure 6-10 shows a cross-selection tool in action. The dataset (from
World Bank Development Data) shows a series of countries, listed
by the percentage of their population aged 15–64, and the percent‐
age over 64. A scatterplot on the right side plots these two numbers
against each other. The user has made a selection within the scatter‐
plot; this highlights the corresponding data in both the lists.
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Figure 6-10. Cross-selection. The three views—two sorted bar charts
and a scatterplot—are linked together. The user has selected a region
of the scatterplot (grey box, orange dots), and the selected values cor‐
respondingly light up on the bar charts. This is based on the World
Bank dataset.

MLVs and the Operationalization Process
The different types of MLVs tend to be useful at different stages in
the operationalization process.

The SPLOM tends to be used early. It is designed to help an analyst
dig around in an unfamiliar dataset, or to look at lots of different
attributes and see whether there are any interesting correlations
between them. SPLOMs are usually an exploratory tool, used when
a user can’t yet decide which dimensions will make good partitions
or measures. It can help clarify the nature of the data and identify
which dimensions will be interesting to visualize and explore.

Similarly, small multiples are a good way to rapidly scan how sub‐
sets of the data items compare to each other across several
attributes. They are often useful at the early stages but continue to
be useful later, when the final task is to compare aspects of the data
by a partition.

Interactive multiform views often occur in the middle parts of the
operationalization process. Brushing and linking between two views
can help identify the parts of the data where interesting phenomena
occur. The middle part of analysis is also where overview+detail vis‐
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ualizations are helpful—when you know enough about the data to
be able to identify an interestingness measure and can use it to more
richly explore the details of individual data items. Overlays are great
here too, when it is known which few attributes are likely to be most
important.

At the end of the operationalization, a dashboard is often the result
of relentless pruning of ideas for proxies. Having examined the
attributes and their interactions, the user now knows which proxies
are useful for answering questions, and which attributes are most
important. It begins to make sense to create multiple visualizations
for different tasks. Each highly curated visualization helps to answer
a definite and specific question.

Conclusion
Multiple linked views are design patterns that provide important
support for making sense of complex and large datasets. Breaking
up the data across multiple views avoids overwhelming a user with
extremely dense visualizations, and also allows for optimization of
each view based on the characteristics of the underlying data and
task.

These design patterns are often used in conjunction with each other.
Chapter 7 uses a variety of different visuals, with interactive linking
between an overview-and-detail and a series of overlays. Similarly,
Chapter 8 illustrates an example of an MLV system that combines
an overview+detail with small multiples, small multiples with over‐
lays, and a two-level overview flow.

Further Reading
Meyer, Miriah, Tamara Munzner, and Pfister Hanspeter. “MizBee:
A Multiscale Synteny Browser.” IEEE Transactions on Visualization
and Computer Graphics 15 (2009): 897–904. This paper describes
the MizBee system, which combines the overview+detail pattern
with small multiples, overlays, and multiform views in a single tool
to address a series of tasks in biology.
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Datasets
In addition to the datasets in Chapter 5, this chapter also uses:

World Bank development data
Data from the World Bank about development indicators of
countries, compiled from officially recognized international
sources’ World Statistics eXplorer.
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CHAPTER 7

Case Study 1: Visualizing
Telemetry to Improve Software

The previous chapters of this book explore the data counseling pro‐
cess: how to move from an ambiguous question to a more precise
one, and how to refine a design through iteration into a final visuali‐
zation. This description, however, has missed some of the twists and
turns in the data counseling process. Data counseling goes through
a series of iterations, each of which casts new light on the questions,
but encounters dead ends. Ideas that seem insightful in a sketch turn
out not to scale, or are not interpretable when used with real data.
At each of these steps, the goal itself may change as new aspects
come to light.

To see how this process can evolve in the real world, this chapter
reviews a case study from a team that Danyel worked with at Micro‐
soft. To protect sensitive information, this study obfuscates some
images and details slightly. In addition, this telling reduces some of
the complexity.

Introduction
One of Danyel’s roles at Microsoft is to consult with teams from the
rest of the company about visualization. Jacqueline, who works on a
data science team, emailed him a question: “How would we show
distributions so that they pop for users?”
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It can be hard to answer such a question without more context.
What sort of distributions? Are they based on data, or are they
abstract functions? What aspects of them should pop out? For
example, Jacqueline might want to let her users see whether a given
distribution is close to an expected distribution, or whether it has
outliers. The designer does not yet have enough information to fig‐
ure out what sort of visualization to create.

In some cases, hearing this sort of low-level question can be a sign
that a team has reached a dead end. The goal in data counseling is to
help them work back out—to discover what their real need is and
then operationalize a visualization that helps with that.

Project Background
Danyel and Jacqueline discussed her question in a first data counsel‐
ing interview. The goal of the interview was to learn more about the
real question: who is going to look at these distributions and what
do they want to decide? In this case, Jacqueline’s team was not stuck.
She had assembled a data science team with a clear notion of the
problem they wanted to solve. Her team was building a tool, and
they knew precisely what it was for and who would use it. Their
question was instead figuring out the right way to present that infor‐
mation to users.

Their tool was a backend tool meant to support product teams get‐
ting ready to ship software to end users. Those product teams are
very concerned about customer satisfaction and want to ensure that
they ship software their end users will find satisfying.

The product team’s high-level goal, then, is: “As we update software
versions, show whether new versions are more satisfying to users.”
Customer satisfaction can be measured through surveys and inter‐
views, and one of the most frequently cited drivers of satisfaction is
the speed at which the application runs. Users complain when appli‐
cations take too long to start up, and studies have shown that users
stop using software that feels laggy. As a result, software responsive‐
ness is one proxy for the desired outcome, which is customer satis‐
faction.

This proxy is used throughout the build and ship process. Software
developers and maintainers want to know whether their system is
fast enough for end users to enjoy using. Managers want to know
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1 Now known as Skype for Business.

which features need more resources to get the product up to a qual‐
ity bar.

To address these questions, product teams instrument applications
to produce telemetry, which monitors end-user actions during the
beta process and logs them to the product teams’ servers. The tele‐
metry logs show how long operations take, which can be used to fig‐
ure out the responsiveness of the application.

A product consists of dozens or hundreds of functions, each of
which can be instrumented. This team uses the speed of a function
as a proxy for its responsiveness.

In Chapter 2, we suggest refining the goal with the proxies. We
could rephrase it as “Show whether the responsiveness of the func‐
tions within the software improved between versions."”

Responsiveness is not a single number. If a population of a hundred
users uses a piece of software that carries out a single function, their
experiences will vary; it will be faster for some than others. One user
might be behind a slow network, while another might be on a com‐
puter that is having a bad day. Some users will be sitting at new
computers connected to fast networks but might ask to do some‐
thing that takes a lot of server time. The responsiveness of an opera‐
tion is a distribution across these user experiences. The teams
wanted to be able to characterize and distinguish these groups of
users.

Jacqueline’s analysis team was building tools to analyze these tele‐
metry results. They had a pilot customer who was releasing beta ver‐
sions of Lync.1 Lync is a business communications tool that lets
users have one-on-one chats and multiparty voice and video calls, as
well as share screens, presentations, and notes. It connects to a com‐
pany directory of users, allowing users to look each other up. The
Lync development team, aware that responsiveness would be impor‐
tant, had built in telemetry and logging features. (Some of this case
study has also been discussed in another paper; see “Further Read‐
ing” on page 124.)

The Lync team was measuring responsiveness for these individual
features. In addition, they measured the overall performance for
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scenarios. A scenario is a sequence of logically connected features.
For example, one scenario might be named “start session,” and
would consist of features like “connect to server,” “authenticate user
with server,” “check for missed calls,” and “populate list of con‐
tacts.” In this scenario, the analysts might want to be able to say
things like “making a connection has improved since the last build,
but ending a call is still taking too long.”

In describing these proxies in terms of the operationalization, then,
we could refine the goal a little further: For each feature and sce‐
nario, across different groups of users, is the speed in one build bet‐
ter than in previous builds?

The Data
The raw data is the telemetry, which comes in the form of reports.
Each logged report starts with information that applies to a single
user and a single session:

Location: Redmond
Software Version: 123.4
Platform: 64 bit Windows 7
Running in the Laboratory: No
System Memory: 16 GB
Network Speed: 10 MBpS
...

The report then logs events when a user carries out a feature and
what scenario it goes with. Each of these is associated with a dura‐
tion (see Table 7-1).

Table 7-1. Sample of event log

Session ID Scenario Feature Duration (ms)
S1 Startup Connect to server 300

S1 Startup Log in 250

S1 Startup Download contacts 135

S1 Search for user Search entry box appears 20

…

Each row in the table represents a single record—the lowest level of
the data. The goal refers to various groupings: the distribution of
performance by different categories of user, different features and
scenarios, and different software versions. Jacqueline wanted to
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design a system that would offer the Lync team the opportunity to
aggregate across different groupings. The analyst should be able to
choose to look only at users looking at low-memory systems, or
those running Windows 7. Example 7-1 shows how we can break
this goal down, following the process in Chapter 2.

Example 7-1. Breaking down the Lync team’s task

Task: Compare the duration for carrying out a scenario across dif‐
ferent builds and features

Action: Compare

Object: The set of all event records that describe a single feature or
scenario

Measure: Duration

Grouping: Build, analyst-selected features

Determining How to Compare Builds
This revised goal is still ambiguous: we do not yet know how to
carry out a comparison between two different groups of durations.
For two builds, there is a distribution of values representing the
speed. The system should have an ability to help the user decide
which distribution is better.

Historically, the Lync product team used a dashboard of data, pre‐
sented as a grid of colored lights; each row in the grid corresponded
to one feature, and each feature had a desired responsiveness. The
grid showed the percentage of users who got the desired perfor‐
mance, color-coded red, yellow, or green (Figure 7-1). For example,
if starting a call should be faster than half a second, and 60% of users
had a less responsive experience, then a red dashboard light would
warn that starting a call is problematic.
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Figure 7-1. Sample performance dashboard (sketch). Build numbers
are across the top; features scroll down. Green lights indicate features
and builds that have acceptable performance for a large percentage of
users; red lights indicate those with a smaller percentage (danger) and
yellow a middling percentage (caution).

The proxy metric used in this tool is the percentage of sessions that
are better than the threshold. This can be problematic. It is entirely
possible to make a change that makes some people’s experience a lit‐
tle better and others’ much worse, but that turns the light from yel‐
low to green. It is hard to drill down into the lights: while a yellow
light might show that 20% of sessions see poor performance, is this
the same set of users each time or is it randomly distributed? Is it
possible to identify which subpopulations are failing? These thresh‐
olds strip out much of the richness of the raw data and make it
harder to interpret. The team was unsatisfied with the existing
proxy: they wanted to bring that richness back in and to help com‐
municate the data to their end users.

This is where Jacqueline brought Danyel in. The existing presenta‐
tion of the data was hiding its richness. We began to look at some
responsiveness data from the telemetry logs, picking out one feature
and one build. A histogram of that data can be seen in Figure 7-2.
The thick vertical line shows the acceptable performance threshold,
at 5,000 ms. The team had been exploring whether a Gaussian curve
would approximate the data well, and plotted the best fit with a red
curve.

112 | Chapter 7: Case Study 1: Visualizing Telemetry to Improve Software



Figure 7-2. The gray bars are a histogram of connecting to a login
server; the red curve is a best-fit Gaussian curve. The vertical black
line represents 5,000 ms, the desired threshold for this scenario.

A number of different insights are quickly visible in this histogram.
The first is that this feature always takes at least 4,000 ms. Above
that threshold, this histogram seems bimodal. A bimodal curve sug‐
gests that there are two different populations here: one group who
almost all have a good experience, and a second population who
have a poor one. These are the sorts of things that it might be useful
to show in the tool because they give a strong cue where to look fur‐
ther.

Seeing the bimodal curve might encourage a user to start figuring
out what is different between these two populations, and break them
down. Is there a difference between the users who see a 4,000–5,000
ms response, and those who see a 5,000–8,000 ms response? For
example, it might be that the longer time represents users who are
logged in from a remote network or mobile application. Separating
these populations can lead to locating bugs or fixing performance
errors in the code.

This also leads to thinking more about the goal of making the soft‐
ware better. Improving responsiveness could have a number of
meanings—it could involve shrinking the gap between the two pop‐
ulations or moving the entire distribution leftward. For example, the
fact that the minimum time is four seconds suggests that there
might be a hardcoded timeout somewhere in the system. Is that
true?
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Seeing the richness embedded in the data, as in Figure 7-2, con‐
vinced all of us that it is critical to let users see the full distribution.

Comparing Distributions to Understand
“Better”
With this two-peaked histogram, the team now wanted to allow
users to split apart the two peaks and explore different user popula‐
tions. There are two subtasks:

• For each scenario and feature, characterize how the distribution
of speed has changed since previous builds. In what ways has it
improved?

• Within a single build, for a given scenario and feature, charac‐
terize the distribution of speed. If there are multiple peaks,
identify the factors upon which they vary.

These comparisons both suggest grouping the data. The per-session
data can help cluster users; they can be grouped by location, or by
their system configuration. Similarly, sessions can be divided by
software version. As such, a single distribution curve is not enough;
we want to see multiple distributions at once. This, then, is where it
is important to compare distributions.

Danyel decided to produce a few data sketches to help the team
think about what it would look like to compare distributions (see
Figures 7-3 and 7-4). As a starting point, he took performance infor‐
mation from two beta builds. These are two fairly similar datasets,
enough so that putting them next to each other does not reveal
obvious differences. The question was, were there visualizations that
would allow analysts to pick them apart?
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Figure 7-3. A data sketch of a stacked bar chart comparing two distri‐
butions.

Figure 7-4. A data sketch of a clustered bar chart comparing two dis‐
tributions.

Neither of these sketches was quite right. The paired bars are diffi‐
cult to interpret as seeing one distribution requires reading past the
other data. The stacked bars make it difficult to read the differences
in the curve.

After bringing these sketches to the team, along with several other
comparisons, Danyel decided to take a look instead at a smoothed
density estimate curve. Smoothed curves highlight differences
between the distributions and also take care of the fact that some
distributions may have more data than others.
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The team liked the smoothed histogram because they felt that the
comparison helped users see the data more directly. They decided to
adopt the smoothed histogram as one of the core visuals that would
appear in their final tool. As seen in Figure 7-5, several features in
the final tool compare smoothed histograms directly to each other.

Figure 7-5. A screenshot from a more finished part of the final tool. It
provides smoothed curves across different user groups, builds, or con‐
ditions.

The next step in the process was to work back upward. The team
now had a low-level instrument for comparing sets of distributions,
which they would use to compare user groups, builds, and other
attributes. We now needed to resolve a broader question: how
would users know which distributions were worth examining?

Multiple Scenarios
Jacqueline’s team wanted to ensure that the final tool would appeal
to release managers. Release managers ensure that all features of the
product are ready to ship at the same time, and are responsible for
knowing which components will be ready on time. Release mangers
worry about trade-offs between features: a server cache that speeds
up “look up address” might slow down “confirm user is online.”
How could they provide release managers with a holistic sense of
the entire application?

As Jacqueline explained, release managers have two different tasks
with regard to this data:

• Identify which scenarios have (or have not) improved since pre‐
vious builds and which scenarios have the best (and worst) per‐
formance.
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• For any given scenario, identify which features are the most
problematic.

We used these two tasks to motivate the design for the final tool. It
would be based on a dashboard, which would provide an overview
of scenarios across multiple builds. Release managers could then
zoom in on any scenario to see the constituent features.

Sketching Dashboards
We began a process of searching out and sketching interface designs
in between meetings, and sharing and critiquing them during meet‐
ings. The goal of the process was to see what interactions and visual‐
izations emerged from the designs and to understand what we
wanted to let release managers see.

For example, one team member brought in Figure 7-6 as a possible
model. We looked it over as a group. The team felt that the heatmap
made for a good overview. They liked the way that it shows that for
a number of features (down the left side), multiple versions can be
compared (across). While on the surface this is much like the lights
grid (Figure 7-1), the important part was the idea of being able to
zoom in on the cells.

Figure 7-6. Heatmap. The team found this illustration a helpful way
to think about the problem despite the fact that it shows sales data.

A different team member noted that there were too many features
and scenarios to compare at once, and added a hierarchical compo‐
nent (Figure 7-7). The top-level view shows scenarios but hides
lower-level features. This forces the designer to choose a color for
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each scenario, even though a scenario is made up of multiple fea‐
tures. In the sketch, each scenario is colored by its worst feature.

Figure 7-7. A sketch for the performance dashboard. This lo-fi sketch
helped us think about the hierarchy of data (categories, subcatego‐
ries), the necessity for color-coding, and a possible way to bubble per‐
formance histograms to the surface.

The team began to iterate on the sketches. Figure 7-8 was an attempt
to show a set of metrics: whether the scenario passes or fails is map‐
ped to color, success thresholds are drawn with a white bar, and the
histogram (blue) compares scenarios across multiple builds.

Figure 7-8 helped clarify what the group really needed. This sketch
dedicates a lot of horizontal space to past versions; while it is useful
to see how the current version compares to the last one or two, com‐
paring it to more remote history is not a key task. Also, the aggre‐
gate task on the right, Scenario (All), is not quite right; there is no
proxy that aggregates multiple scenarios together.
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Figure 7-8. A second sketch for the performance dashboard. Adding
data sketches indicated the importance of scales and showing thresh‐
olds.

The team used these as starting points as they looked at the hier‐
archical interaction design for their tool.

Turning Back to the Data
Sketching is useful to clarify tasks, but it is very important to come
back to the data. The team had begun to converge on a plan—the
system would start with a high-level dashboard, which would lead to
low-level purpose-built visualizations to compare histograms. As
they began to work on incorporating the data into the dashboard,
they noticed that in lots of cases, there were far more failures than
working cases. In beta versions of the software, calls would some‐
times not connect, servers would be disabled, and networks would
be disconnected.
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Danyel drew a handful of sketches for how to handle failures in a
histogram. Failed tests could be marked as taking a lot of time or
could be removed from the chart. The team brought these designs
back to their prospective users to try to better understand their
needs. They learned that in the beta phase, failures were understood
differently from responsiveness problems and would only confuse
the histogram.

Final UI for High-Level Goals
We combined these ideas to create a single visualization system. The
top-level view allowed users to pick a scenario. Once they had
selected it, they could see each of the features in Figure 7-9. Each
gray box represents a feature; each small dot represents a number of
users trying that feature.

Figure 7-9. The final top-level overview is a scenario and feature
selector. Each rectangle represents a single scenario; the colored dots
below cue success rates and amount of usage. The three circles on each
panel are buttons leading to detailed charts.

Each rectangle show a scenario or feature. The colored bar, dots,
and stars all give information about success of the scenario or fea‐
ture. Each box also contains three circular control buttons. One of
the control buttons leads to the histogram for the most recent ver‐
sion, across different user groups (Figure 7-5). Another leads to a
comparison tool that allows users to compare populations across
multiple builds (Figure 7-10).
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Figure 7-10. Comparing three versions of the software in a detail
view, split by two countries.

Figure 7-10 shows an analysis in the tool of performance in two dif‐
ferent countries—we’ll call them Green and Blue—for three differ‐
ent versions of the software (the newest version is at the bottom).
The service has a data center hosted in Blue; as such, most Blue cus‐
tomers experience consistently similar performance. Customers in
Green, however, experience very different performance: some users
do well, but a great many do poorly. It turns out that the support
team receives many support calls from Green customers related to
poor and inconsistent performance and that these graphs support
their claims.

The middle build seems to show similar curves in Green and Blue—
had the team managed to fix the problems here? After studying the
data in more detail, they realized that build 0710 was offered only
very briefly. As a result, only people with very good network con‐
nections—in Green and in Blue—had access to the data, and so only
users in Green who had good network connections got the data.
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This accidental experiment suggested that the challenge with
Green’s performance was in handling poor network connections,
and the development team began to work on optimizing their sys‐
tem for bad networks. It also made visible, however, that the visuali‐
zation wasn’t showing the number of users as clearly as it should.
Seeing that the number of users was way down would have clarified
the issue.

Additional Visualizations
The team added additional visualizations to the tool based on other
sorts of comparisons. For example, some release managers wanted
to see how the software was evolving across many versions and a
long development process. The notched bar chart provides both a
summary of the number of users and the broad scale of the distribu‐
tion. In Figure 7-11, for example, there is much more data about
build 4420 than about the more recent versions, showing that per‐
formance is not obviously improving yet.

As the release teams looked at the tool, they pointed out that geog‐
raphy was turning out to be a major factor for user performance.
The team added a visualization of performance by country to help
guide searches (Figure 7-12).
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Figure 7-11. A visualization to compare multiple builds. Thickness of
the bars is mapped to the number of users of that version; color is
mapped to other attributes of the build.

Figure 7-12. A visualization to compare performance by geography,
for one build. Countries in green see better performance for this fea‐
ture and build; countries in red see worse.
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The analytics system was internally deployed, and was wired up for
four different internal online services as a core telemetry tool. Those
four teams used it to guide and manage their release process. Core
features from this tool were incorporated into its successors, which
are now part of the next generation of internal telemetry manage‐
ment systems.

Conclusion
This design remained close to both the data and the customers
throughout. As we worked our way through the operationalization,
making our questions more and more specific, we were able to fig‐
ure out what visualizations would best address the questions.
Sketching data often helped clarify the questions and also helped to
identify edge cases and considerations we hadn’t thought about
before.

This process used all the tools of the data counseling process: inter‐
views with users of the system to understand their interpretations of
the data, sketches of ideas for interfaces, and plots of the data itself.
These sketches, diagrams, and ideas enabled us to create a tool that
allowed product teams to understand their deployed programs.
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CHAPTER 8

Case Study 2: Visualizing
Biological Data

Chapter 7 described a fairly straightforward case of a business intel‐
ligence challenge. This chapter chooses a somewhat more complex
example from a very different domain. The question in this scenario
was a challenge to operationalize: it required substantial scientific
background. The complex scientific data meant that both the mean‐
ing and use of the data required more technical context and collabo‐
ration to operationalize.

This project was a collaboration with a team of biologists, led by
Prof. Angela DePace at the Harvard Medical School. Miriah and her
colleagues worked with this group for two years. During that time
Miriah carried out a series of data counseling interviews, getting to
know the ways that the biologists approached their data. In the pro‐
cess she developed a series of visualization prototypes, and the sci‐
entists used the prototypes to progressively refine their
operationalization. These prototypes initially helped Miriah to
understand the problem, then later to help shape the biologists’
analysis. The final version became a vital component of the group’s
analysis pipeline.

This chapter illustrates how the techniques presented in Chapter 6
allowed the scientists to organize their data and to make sense of
how a multitude of attributes relate to each other. The result used
various design patterns (overview+detail, small multiples, interac‐
tive multiform views, and overlays) to give the scientists a detailed,
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intensive understanding of their data. In the course of building pro‐
totypes, the scientists realized that there were more ways to analyze
their data than they had expected. The visualization tool allowed
them not only to learn new things about their data but to think
about their analysis differently.

This chapter simplifies the process, and leaves out some of the data
counseling iterations in order to make the case study reasonable in
length and scope. A fuller description can be found in an academic
paper about the project (see “Further Reading” on page 139).

Background
The DePace Lab focuses on developmental biology, and is particu‐
larly interested in understanding how genes influence the physical
features of animals. The scientists there are studying a set of funda‐
mental toolkit genes—genes that are shared across many species,
from flies to cats to apes to humans, and control the development of
body parts in developing embryos. What is remarkable about these
genes is that they are nearly the same in many species, and yet these
species are physically very different. For example, the genes that
control the development of eyes are very similar across a wide range
of species even though a human’s eyes are different from a cat’s
eyes, or a fly’s.

A grand challenge in biology is understanding how these sets of
similar genes produce such different results. Biologists know that
differences between species are related to when and where these
genes are turned on and off in developing embryos. What they do
not yet understand is how these differences relate to physical traits
or how these differences are encoded in the genome. Shedding light
on these questions is the focus of the DePace Lab.

The scientists at the DePace Lab tackle these questions by studying
fruit flies. They measure which genes are turned on or off, or more
specifically, how much genes are on or off—called gene expression—
in developing fruit fly embryos. Their data consists of gene expres‐
sion measurements for about 50 genes, measured at 6 time points
for every cell in an embryo. They are collecting this data for multiple
different species of flies. By comparing the data across the different
species, the lab hopes to link differences in gene expression to differ‐
ences in physical features.
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Setting the Context
The project began when a mutual colleague connected Miriah and
Angela DePace. Angela was in the process of running experiments
and collecting data, and was looking for new ways to analyze and
compare datasets. A lunch meeting turned into a tour of the DePace
Lab, followed by a series of informal interviews with members of the
lab that included walkthroughs of their data analysis pipeline.

The group were already creating static visualizations in MATLAB to
examine their data. They were overwhelmed with those first plots:
dozens of variations of parameters looking at multiple types of data.
There were too many different plots to understand, and they hoped
Miriah could help them organize the way they thought about the
data. Miriah rolled up her sleeves and took a look.

The researchers were comparing datasets—the gene expression
measurements for different embryos—by trying to find cells in one
embryo that had significantly different gene expression from cells in
another embryo. They had developed an algorithm for finding these
so-called outlier cells.

To analyze where the resulting outliers turned up in a particular
embryo, the group visualized the data using a flattened, 2D repre‐
sentation of the embryo. The representation was created by map‐
ping each cell in the football-shaped embryo to a 2D map where the
head cells are on the left, tails cells on the right, and the back down
the middle with the belly split along the top and bottom.

While the most natural representation of the data might seem to be
a 3D view, the group preferred these 2D views because it was easier
to quickly get a gist of the data than it was with a 3D representation
that required interaction to spin the embryo around to see all sides.
Figure 8-1 shows the cells represented as a 3D embryo at the top,
and the flattened, 2D representation is at the bottom.
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Figure 8-1. The top image shows the locations of cells in an embryo in
a 3D view. The cells are colored here according an associated gene
expression value. The bottom image shows the same embryo as a flat‐
tened, 2D view: head at the left, tail on the right; the belly wraps on
the top and bottom edges. The images were generated using the Point‐
CloudXplore visualization software.

In Figure 8-2, the locations of the outliers from one embryo are
shown using the 2D representation. The first thing to notice is that
the outliers appear to cluster in regions as opposed to being scat‐
tered randomly. This was interesting to the biologists because cells
that are spatially near each other are likely to have similar gene
expression—a clustering algorithm found this to be true. The clus‐
ters are visually encoded using shape and color: all the pink triangle
outliers are similar to each other, the blue circles are similar, and so
on. The implication of this similarity is that whole groups of cells in
one embryo could be significantly different from cells in another
embryo.
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Figure 8-2. A visualization of outlier cells in an embryo using the 2D
representation. Each point—either black or encoded with color+shape
—is a single outlier cell. Each combination of color+shape is a clus‐
tered group, so all the teal circles or the pink triangles are in one
group. Image courtesy of Angela DePace.

Zooming in a Level
Next, the biologists wanted to understand more specifically which
genes were different in the outlier cells. In this project, a cell is char‐
acterized by a number of genes, which are measured at a number of
different time points.

They created heatmap visualizations like the one shown in
Figure 8-3 to examine the gene expression data of the outliers. The
heatmap encodes gene expression values using color. Each column
corresponds to a single cell, and the rows are time points and genes.
Grouped columns correspond to the clusters of cells in the outlier
cell plot in Figure 8-2, such as the pink triangles and teal circles.
This visualization allowed the biologists to characterize the clusters
of cells based on the patterns of gene expression. For example, all
cells in group bx—the third column, which corresponds to the blue
x’s—are expressed fairly strongly at every time point for the fkh
gene.
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Figure 8-3. Small-multiples display of the outlier cells’ gene expression
measurements partitioned by the cluster groups. Clusters of cells are
the columns; genes + time points are the rows. This view is linked to
Figure 8-2 through labels: the blue circles correspond to the column bo
and the blue x’s to the column bx. Image courtesy of Angela DePace.

Characterizing the gene expression of each cluster was just one part
of the solution; however, the biologists also needed to be able to
characterize how this gene expression is different from the corre‐
sponding cells in another embryo. For each cell in the heatmap, they
would create a corresponding heatmap, visualizing the gene expres‐
sion data for the most similar cells in the other embryo. The result
was hundreds of heatmaps. The group was overwhelmed and had
trouble making sense of the pile of data.

Starting from Existing Material
It is common for groups to have created visualizations that address
some of the challenges they face. Understanding why these existing
artifacts were created and where their limitations are can be an
invaluable part of the data counseling process. In this case, the fact
that the team was hitting a wall in organizing the mass of visualiza‐
tions they had created was a good indication that a more nuanced,
bespoke solution was in order.
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Improving the Existing Approach
We spent some time watching the scientists working with their visu‐
alizations and trying to understand what made this process difficult.
We designed our first prototype to overcome the challenge of hav‐
ing to compare hundreds of heatmaps.

We observed that the scientists would use the 2D outlier cell view to
ground their analysis of the heatmaps. For each cluster of cells in the
2D view, they would examine the corresponding set of heatmaps.
This would entail flipping between the sheets of paper that repre‐
sented the different heatmaps. This task of orientation—“what point
in visualization 2 corresponds to this point in visualization 1?”—
suggests an MLV design pattern that links two views together via
user interaction. We wanted to reduce the feeling of being over‐
whelmed by the sheer volume of comparisons they were doing,
which suggested an overview+detail design pattern that allows a
user to get details on demand. The fact that the scientists would
refer back to the 2D view (Figure 8-2) suggested that this visualiza‐
tion would make a great overview.

We built our first software prototype in Processing. This prototype,
shown in Figure 8-4, is an MLV system consisting of both a multi‐
form component and an overview+detail component. The left two
views represent different views of the overall data. The leftmost is a
heatmap that shows the gene expression values for all of the outlier
cells, again partitioned based on the clustered sets of outliers; the
middle view shows the spatial position in 2D of the outlier cells
within the context of the complete set of embryo cells. Selecting a
cluster in the heatmap highlights the associated cells in the spatial
view. The middle view also serves as an overview of the data, where
individual cells can be selected, causing expression profile details
about those cells to be shown in the rightmost detail view. This
detail view additionally shows a heatmap of the corresponding cells
against which the selected cell was compared.
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Figure 8-4. Screenshot of the first interactive software prototype we
created. This tool used both the multiform and overview+detail
design patterns for linked views. A video of this prototype in action
can be found at the book’s website.

In short, the prototype used the group’s existing visualizations but
replaced the manual look-ups between multiple sheets of paper with
interactivity in software.

We deployed this prototype to the group. Three of the lab members
integrated it into their data analysis workflow, replacing their use of
the static plots with the new tool. After a week of use, we went back
and conducted several contextual interviews with the group to
understand how the interactivity impacted their analysis and under‐
standing. The interviews revealed that the tool allowed them study
individual outlier cells in detail and easily compare an outlier to the
set of corresponding cells in order to understand what differences in
the gene expression patterns exist. These capabilities led the group
to come to the conclusion that the outlier detection algorithm was
too restrictive, resulting in a rethinking of their computational
approach.
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Similarity, Not Outliers
We had to revisit the operationalization. Instead of using an outlier
detection algorithm to understand how the embryos differed, the
group decided on a looser approach that simply characterized how
similar each cell in one embryo was compared to corresponding
cells in the other embryo. The task then became finding cells with
low similarity. We updated the overview in the middle of the proto‐
type to show a measure of similarity (our interestingness measure)
for every cell in the embryo—an example of this view is shown in
Figure 8-5. This similarity was computed from comparisons with
the set of corresponding cells in the comparison embryo. This color-
coding helped the group to locate the cells that were most different
and to view the details of those cells on demand.

Figure 8-5. An updated 2D view of all the cells in an embryo; each cell
is now color-coded by how similar it is to the most similar nearby cell
in the other embryo. This visualization shows patterns of similarity
and dissimilarity across the embryo.

The refined prototype let the group quickly explore many more dif‐
ferent cells than the first version, and led them to make some inter‐
esting biological observations. Their exploration also highlighted
that the experimental measurements from one of the species was
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plagued with low-level noise, causing the biologists to go back and
modify their experimental procedures and recapture the data.

Visualization for Debugging Data
The situation described here is not unusual. Almost every experi‐
ence we have had with visualization has involved discovering chal‐
lenges in the data available and errors in the data collection and
cleaning process, and forcing us to reconsider the operationaliza‐
tion. This is a healthy process—and a strong argument for getting
to the data as soon as possible.

Using this prototype, the group began asking new questions of their
data: what would a different similarity metric reveal? Could a differ‐
ent measure other than gene expression similarity help find cells of
interest? How would their understanding change if they were to
compare across multiple embryos?

In short, the interactive visualization caused the biologists to brain‐
storm about many new types of questions. The design of the tool,
namely the overview+detail components, guided the group’s fram‐
ing of these questions in terms of using a metric to guide the investi‐
gation into a set of cells of interest.

A Final Version
We now knew that we would want to let the biologists play with dif‐
ferent ways to compute similarity. We wanted to increase the flexi‐
bility of the tool and to allow the group to continue to expand the
questions they wanted to answer.

We also wanted to revisit the visualizations themselves and apply
good visualization design principles. One of the first changes we
proposed to the group was to move away from using color to encode
the gene expression measurements. Instead, we suggested using a
specific temporal visualization to express the six time points for
each gene.
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Thus, we moved away from a heatmap view for a single cell’s gene
expression measurements:

And instead, visualized it using line plots:

To compare gene expression across multiple cells, we created a
small-multiples visualization of the line plots, which we call a curve‐
map. In the curvemap shown in Figure 8-6, we partitioned the data
by gene along the columns, and by cells along the rows. This small-
multiples view allowed us to stack up a set of line plots for user-
selected cells that a user can quickly scan down, for each gene, to
look for detailed differences between the cells.
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Figure 8-6. A curvemap of data, where the rows are cells and the col‐
umns are genes. The topmost row is a user-selected cell of interest,
with the rest of the rows showing data for comparison cells. Scanning
down the columns shows that the gt gene values are noticeably differ‐
ent over time in the comparison cells, while the ftz gene looks much
more similar.

This visualization was a big change. The group initially resisted the
new way of looking at the gene expression values; they were accus‐
tomed to the color-based heatmap. Once we showed them mock-
ups of the new visualization using the group’s actual data, however,
they agreed that the new representation was easier to interpret.
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It is important to sketch and prototype with actual data whenever
possible in order to get buy-in from stakeholders, as well as to
ensure that the real data does not break the design.

The new prototype again uses the overview+detail display from the
original prototype to allow users to navigate to the cells they are
most interested in studying in detail—only this time, the detail view
is a curvemap (Figure 8-7). In this new tool, the scientist would
select a cell in the 2D cell view; the system would then update the
detailed view on the right to show that cell’s gene expression along
with the set of cells it corresponds to in the comparison embryo. A
video of the tool in action can be found at the book’s website.

Figure 8-7. The final tool designed for the lab—MulteeSum—uses a
variety of MLV patterns: overview+detail, small multiples, overlays,
and multiform views. The tool also supports flexible upstream compu‐
tations of metrics that compare cells. A video of the tool in action can
be found on the book’s website.

It turned out to be difficult to scan through a vertical column of
many line charts. In response to feedback from the biologists, we
augmented the small multiples display with overlay plots at the bot‐
tom of each column. These overlays support direct comparison of
the time curves and make it easy to see differences. For example, the
hb gene curve expresses very differently in the test cell (shown in
red) from its most similar neighbors (shown in black). These over‐
lays are important in the characterization of differences in when and
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where genes are expressed, which get back to the lab’s high-level
task.

This system supports the biologists in experimenting with different
similarity metrics. The biologists can compute a variety of similarity
metrics offline and load them all into the visualization tool. The tool
takes in the multiple metrics and supports their investigation with
another layer of overview that lets the biologist select a specific met‐
ric—this overview, in the upper left of the tool, is itself another
small multiples display of available similarity metrics.

We created this interactive prototype in Processing and deployed it,
along with a specification for a generic file format to support the
upstream similarity computations, to the group. We followed up
with the lab several weeks after deployment. The resulting tool sup‐
ported a much broader set of analysis goals than we had initially
imagined at the start of the collaboration, and is now one of the pri‐
mary tools used by the DePace Lab as they analyze their data and
continue their biological analysis.

Conclusion
The success of this project can be traced to several strategies. First,
we needed to acquire a relatively deep understanding of the problem
domain of the lab before we could actually understand how to build
better tools. Interviews and observations got us part of the way
there, but actually digging into the data by building a prototype hel‐
ped in solidifying our understanding of the tasks the group were
doing, and needed to do.

Second, we were able to get started by beginning with the existing
visualization approach and searching for places where it ran into
challenges. In this case, we took the existing views the group were
creating and made them interactive.

The process of visualization taught the biologists more about the
work they were carrying out than simply making sense of the data at
hand. Only after we had built a visualization centered on outliers
did they realize that outliers were an insufficiently general proxy to
help them address their questions. Seeing their data in a new way
led to a reformulation of the questions they were asking in the first
place. It also identified significant errors in the data that they went
back and corrected through new experimental procedures.
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There is always a tension between the desire to maintain familiar
visual patterns and the possibility that rejecting them will illuminate
new issues. Our design maintained the 2D layout of cells, for exam‐
ple. On the other hand, changing from a heatmap to a curvemap
helped clarify the different gene patterns and allowed the biologists
to visually cluster genes together.

And finally, although not explicitly covered in this summary of the
project, we iterated with the lab with many lo-fi prototypes, from
sketches to mock-ups in Illustrator. The software prototypes were
also developed with a throwaway mentality that let us avoid getting
bogged down in implementation details and instead focus on get‐
ting our ideas into the hands of our users quickly. We found that it
was important to present new ideas to the group with their own
data, such as the shift from heatmaps to curvemaps. This allowed
the group to engage with ideas as they would in their daily work‐
flow, as well as allowing us to ensure that the real data would not
break our design ideas. Watching the videos of our first interactive
version and the final one, available at the book’s website, gives a
sense of how the technology changed over the course of the collabo‐
ration.

Further Reading
Figures 8-2 and 8-3 courtesy of Angela DePace.

The tool discussed in this chapter is described in an academic paper:
see Meyer, Miriah et al., “MulteeSum: A Tool for Comparative Spa‐
tial and Temporal Gene Expression Data.” IEEE Transactions on
Visualization and Computer Graphics 16 (2010): 908–917.

The biologists’ research is described in Fowlkes, Charless et al., “A
Conserved Developmental Patterning Network Produces Quantita‐
tively Different Output in Multiple Species of Drosphila.” PLoS
Genetics 7 (2011): e1002346.
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CHAPTER 9

Conclusions

Data visualization is a powerful way to make sense of the world, to
share ideas with other people, and to help us understand what hid‐
den meanings lie in our data. The skill of visualization is in finding
ways to figure out what questions can be asked of the dataset, and
what visual mappings will support answering those questions.

Creating effective visualizations is a process that entails working
closely with a variety of stakeholders. It means gaining an under‐
standing of where the data comes from and how it works, from the
people who own or create it. It means learning what is being done
with the data now, and what decisions are going to be made with it,
from the people who are making those decisions. It means getting to
know how users ultimately mean to interpret the data.

Creating effective visualizations also requires mapping questions to
data, and data to visualizations. These mappings develop through
many iterations of sketches and data-driven prototypes that let ana‐
lysts see, as quickly as possible, what their data means and how they
can interpret it. Sometimes the result is an interactive system of
complex multiple linked views, and sometimes it requires just load‐
ing the data into an off-the-shelf tool.

Experiencing moments when meaning emerges from data can be
incredibly exciting. These moments—when clients furrow their
brows and say, “That’s odd, I need to know more about that”—are
what drive our work.
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We hope this book will drive your excitement, too.

—Danyel Fisher, Seattle, Washington
Miriah Meyer, Salt Lake City, Utah

December, 2017
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well-operationalized, characteris‐
tics of, 26

telemetry visualization (see visualiz‐
ing telemetry to improve software,
case study)

temperature (in ITIC data), 47
temporal data, 49

in overlays, 99
textual data, visualizing, 81
time, 49

(see also temporal data)
time (in ITIC data), 47
toolkit genes, study of, 126
tree views, 77
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The animal on the cover of Making Data Visual is the dwarf gour‐
ami (Trichogaster lalius). Native to South Asia, these omnivorous,
freshwater fish are typically found near the surface of slow-moving
water in streams and lakes. Dwarf gouramis grow to about 3.5
inches in length. Males are diagonally striped in red and blue with
narrow, pointed dorsal fins, whereas females are silvery with larger,
rounded fins.

Because of their labyrinth organ—an auxiliary breathing organ that
allows them to utilize oxygen directly from the air—these fish can
survive in poorly oxygenated water as long as they have access to the
surface. Slow-moving and still water provide an opportunity for
males to build “bubble nests” out of dead, floating plant matter,
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are important to the world. To learn more about how you can help,
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