
The R Book

The R Book

Second Edition

Michael J. Crawley
Imperial College London at Silwood Park, UK

http://www.bio.ic.ac.uk/research/mjcraw/therbook/index.htm

A John Wiley & Sons, Ltd., Publication

This edition first published 2013
C© 2013 John Wiley & Sons, Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the
copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and
Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and
Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names
used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is
not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative
information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a competent professional should
be sought.

Library of Congress Cataloging-in-Publication Data

Crawley, Michael J.
The R book / Michael J. Crawley. – 2e.

pages cm
Includes bibliographical references and index.
ISBN 978-0-470-97392-9 (hardback)

1. R (Computer program language) 2. Mathematical statistics–Data processing. I. Title.
QA276.45.R3C73 2013
519.50285′5133–dc23

2012027339

A catalogue record for this book is available from the British Library.

ISBN: 978-0-470-97392-9

Set in 10/12pt Times by Aptara Inc., New Delhi, India.

Chapters

Preface xxiii

1 Getting Started 1

2 Essentials of the R Language 12

3 Data Input 137

4 Dataframes 159

5 Graphics 189

6 Tables 244

7 Mathematics 258

8 Classical Tests 344

9 Statistical Modelling 388

10 Regression 449

11 Analysis of Variance 498

12 Analysis of Covariance 537

13 Generalized Linear Models 557

14 Count Data 579

15 Count Data in Tables 599

16 Proportion Data 628

17 Binary Response Variables 650

18 Generalized Additive Models 666

19 Mixed-Effects Models 681

20 Non-Linear Regression 715

21 Meta-Analysis 740

22 Bayesian Statistics 752

vi CHAPTERS

23 Tree Models 768

24 Time Series Analysis 785

25 Multivariate Statistics 809

26 Spatial Statistics 825

27 Survival Analysis 869

28 Simulation Models 893

29 Changing the Look of Graphics 907

References and Further Reading 971

Index 977

Detailed Contents

Preface xxiii

1 Getting Started 1
1.1 How to use this book 1

1.1.1 Beginner in both computing and statistics 1
1.1.2 Student needing help with project work 2
1.1.3 Done some R and some statistics, but keen to learn more of both 2
1.1.4 Done regression and ANOVA, but want to learn more advanced statistical

modelling 2
1.1.5 Experienced in statistics, but a beginner in R 2
1.1.6 Experienced in computing, but a beginner in R 2
1.1.7 Familiar with statistics and computing, but need a friendly reference manual 3

1.2 Installing R 3
1.3 Running R 3
1.4 The Comprehensive R Archive Network 4

1.4.1 Manuals 5
1.4.2 Frequently asked questions 5
1.4.3 Contributed documentation 5

1.5 Getting help in R 6
1.5.1 Worked examples of functions 6
1.5.2 Demonstrations of R functions 7

1.6 Packages in R 7
1.6.1 Contents of packages 8
1.6.2 Installing packages 8

1.7 Command line versus scripts 9
1.8 Data editor 9
1.9 Changing the look of the R screen 10

1.10 Good housekeeping 10
1.11 Linking to other computer languages 11

2 Essentials of the R Language 12
2.1 Calculations 13

2.1.1 Complex numbers in R 13
2.1.2 Rounding 14
2.1.3 Arithmetic 16
2.1.4 Modulo and integer quotients 17

viii DETAILED CONTENTS

2.1.5 Variable names and assignment 18
2.1.6 Operators 19
2.1.7 Integers 19
2.1.8 Factors 20

2.2 Logical operations 22
2.2.1 TRUE and T with FALSE and F 22
2.2.2 Testing for equality with real numbers 23
2.2.3 Equality of floating point numbers using all.equal 23
2.2.4 Summarizing differences between objects using all.equal 24
2.2.5 Evaluation of combinations of TRUE and FALSE 25
2.2.6 Logical arithmetic 25

2.3 Generating sequences 27
2.3.1 Generating repeats 28
2.3.2 Generating factor levels 29

2.4 Membership: Testing and coercing in R 30
2.5 Missing values, infinity and things that are not numbers 32

2.5.1 Missing values: NA 33
2.6 Vectors and subscripts 35

2.6.1 Extracting elements of a vector using subscripts 36
2.6.2 Classes of vector 38
2.6.3 Naming elements within vectors 38
2.6.4 Working with logical subscripts 39

2.7 Vector functions 41
2.7.1 Obtaining tables of means using tapply 42
2.7.2 The aggregate function for grouped summary statistics 44
2.7.3 Parallel minima and maxima: pmin and pmax 45
2.7.4 Summary information from vectors by groups 46
2.7.5 Addresses within vectors 46
2.7.6 Finding closest values 47
2.7.7 Sorting, ranking and ordering 47
2.7.8 Understanding the difference between unique and duplicated 49
2.7.9 Looking for runs of numbers within vectors 50
2.7.10 Sets: union, intersect and setdiff 52

2.8 Matrices and arrays 53
2.8.1 Matrices 54
2.8.2 Naming the rows and columns of matrices 55
2.8.3 Calculations on rows or columns of the matrix 56
2.8.4 Adding rows and columns to the matrix 58
2.8.5 The sweep function 59
2.8.6 Applying functions with apply, sapply and lapply 61
2.8.7 Using the max.col function 65
2.8.8 Restructuring a multi-dimensional array using aperm 67

2.9 Random numbers, sampling and shuffling 69
2.9.1 The sample function 70

2.10 Loops and repeats 71
2.10.1 Creating the binary representation of a number 73
2.10.2 Loop avoidance 74

DETAILED CONTENTS ix

2.10.3 The slowness of loops 75
2.10.4 Do not ‘grow’ data sets by concatenation or recursive function calls 76
2.10.5 Loops for producing time series 77

2.11 Lists 78
2.11.1 Lists and lapply 80
2.11.2 Manipulating and saving lists 82

2.12 Text, character strings and pattern matching 86
2.12.1 Pasting character strings together 87
2.12.2 Extracting parts of strings 88
2.12.3 Counting things within strings 89
2.12.4 Upper- and lower-case text 91
2.12.5 The match function and relational databases 91
2.12.6 Pattern matching 93
2.12.7 Dot . as the ‘anything’ character 95
2.12.8 Substituting text within character strings 96
2.12.9 Locations of a pattern within a vector using regexpr 97
2.12.10 Using %in% and which 98
2.12.11 More on pattern matching 98
2.12.12 Perl regular expressions 100
2.12.13 Stripping patterned text out of complex strings 100

2.13 Dates and times in R 101
2.13.1 Reading time data from files 102
2.13.2 The strptime function 103
2.13.3 The difftime function 104
2.13.4 Calculations with dates and times 105
2.13.5 The difftime and as.difftime functions 105
2.13.6 Generating sequences of dates 107
2.13.7 Calculating time differences between the rows of a dataframe 109
2.13.8 Regression using dates and times 111
2.13.9 Summary of dates and times in R 113

2.14 Environments 113
2.14.1 Using with rather than attach 113
2.14.2 Using attach in this book 114

2.15 Writing R functions 115
2.15.1 Arithmetic mean of a single sample 115
2.15.2 Median of a single sample 115
2.15.3 Geometric mean 116
2.15.4 Harmonic mean 118
2.15.5 Variance 119
2.15.6 Degrees of freedom 119
2.15.7 Variance ratio test 120
2.15.8 Using variance 121
2.15.9 Deparsing: A graphics function for error bars 123
2.15.10 The switch function 125
2.15.11 The evaluation environment of a function 126
2.15.12 Scope 126
2.15.13 Optional arguments 126

x DETAILED CONTENTS

2.15.14 Variable numbers of arguments (...) 127
2.15.15 Returning values from a function 128
2.15.16 Anonymous functions 129
2.15.17 Flexible handling of arguments to functions 129
2.15.18 Structure of an object: str 130

2.16 Writing from R to file 133
2.16.1 Saving your work 133
2.16.2 Saving history 133
2.16.3 Saving graphics 134
2.16.4 Saving data produced within R to disc 134
2.16.5 Pasting into an Excel spreadsheet 135
2.16.6 Writing an Excel readable file from R 135

2.17 Programming tips 135

3 Data Input 137
3.1 Data input from the keyboard 137
3.2 Data input from files 138

3.2.1 The working directory 138
3.2.2 Data input using read.table 139
3.2.3 Common errors when using read.table 139
3.2.4 Separators and decimal points 140
3.2.5 Data input directly from the web 140

3.3 Input from files using scan 141
3.3.1 Reading a dataframe with scan 141
3.3.2 Input from more complex file structures using scan 143

3.4 Reading data from a file using readLines 145
3.4.1 Input a dataframe using readLines 145
3.4.2 Reading non-standard files using readLines 147

3.5 Warnings when you attach the dataframe 149
3.6 Masking 150
3.7 Input and output formats 150
3.8 Checking files from the command line 151
3.9 Reading dates and times from files 151

3.10 Built-in data files 152
3.11 File paths 152
3.12 Connections 153
3.13 Reading data from an external database 154

3.13.1 Creating the DSN for your computer 155
3.13.2 Setting up R to read from the database 155

4 Dataframes 159
4.1 Subscripts and indices 164
4.2 Selecting rows from the dataframe at random 165
4.3 Sorting dataframes 166
4.4 Using logical conditions to select rows from the dataframe 169
4.5 Omitting rows containing missing values, NA 172

4.5.1 Replacing NAs with zeros 174
4.6 Using order and !duplicated to eliminate pseudoreplication 174

DETAILED CONTENTS xi

4.7 Complex ordering with mixed directions 174
4.8 A dataframe with row names instead of row numbers 176
4.9 Creating a dataframe from another kind of object 177

4.10 Eliminating duplicate rows from a dataframe 180
4.11 Dates in dataframes 180
4.12 Using the match function in dataframes 182
4.13 Merging two dataframes 183
4.14 Adding margins to a dataframe 185
4.15 Summarizing the contents of dataframes 187

5 Graphics 189
5.1 Plots with two variables 189
5.2 Plotting with two continuous explanatory variables: Scatterplots 190

5.2.1 Plotting symbols: pch 195
5.2.2 Colour for symbols in plots 196
5.2.3 Adding text to scatterplots 197
5.2.4 Identifying individuals in scatterplots 198
5.2.5 Using a third variable to label a scatterplot 200
5.2.6 Joining the dots 201
5.2.7 Plotting stepped lines 202

5.3 Adding other shapes to a plot 203
5.3.1 Placing items on a plot with the cursor, using the locator function 204
5.3.2 Drawing more complex shapes with polygon 205

5.4 Drawing mathematical functions 206
5.4.1 Adding smooth parametric curves to a scatterplot 207
5.4.2 Fitting non-parametric curves through a scatterplot 209

5.5 Shape and size of the graphics window 211
5.6 Plotting with a categorical explanatory variable 212

5.6.1 Boxplots with notches to indicate significant differences 213
5.6.2 Barplots with error bars 214
5.6.3 Plots for multiple comparisons 217
5.6.4 Using colour palettes with categorical explanatory variables 219

5.7 Plots for single samples 220
5.7.1 Histograms and bar charts 220
5.7.2 Histograms 221
5.7.3 Histograms of integers 224
5.7.4 Overlaying histograms with smooth density functions 225
5.7.5 Density estimation for continuous variables 226
5.7.6 Index plots 227
5.7.7 Time series plots 228
5.7.8 Pie charts 230
5.7.9 The stripchart function 231
5.7.10 A plot to test for normality 232

5.8 Plots with multiple variables 234
5.8.1 The pairs function 234
5.8.2 The coplot function 236
5.8.3 Interaction plots 237

xii DETAILED CONTENTS

5.9 Special plots 238
5.9.1 Design plots 238
5.9.2 Bubble plots 239
5.9.3 Plots with many identical values 240

5.10 Saving graphics to file 242
5.11 Summary 242

6 Tables 244
6.1 Tables of counts 244
6.2 Summary tables 245
6.3 Expanding a table into a dataframe 250
6.4 Converting from a dataframe to a table 252
6.5 Calculating tables of proportions with prop.table 253
6.6 The scale function 254
6.7 The expand.grid function 254
6.8 The model.matrix function 255
6.9 Comparing table and tabulate 256

7 Mathematics 258
7.1 Mathematical functions 258

7.1.1 Logarithmic functions 259
7.1.2 Trigonometric functions 260
7.1.3 Power laws 261
7.1.4 Polynomial functions 262
7.1.5 Gamma function 264
7.1.6 Asymptotic functions 265
7.1.7 Parameter estimation in asymptotic functions 266
7.1.8 Sigmoid (S-shaped) functions 267
7.1.9 Biexponential model 269
7.1.10 Transformations of the response and explanatory variables 270

7.2 Probability functions 271
7.3 Continuous probability distributions 272

7.3.1 Normal distribution 274
7.3.2 The central limit theorem 278
7.3.3 Maximum likelihood with the normal distribution 282
7.3.4 Generating random numbers with exact mean and standard deviation 284
7.3.5 Comparing data with a normal distribution 285
7.3.6 Other distributions used in hypothesis testing 286
7.3.7 The chi-squared distribution 287
7.3.8 Fisher’s F distribution 289
7.3.9 Student’s t distribution 291
7.3.10 The gamma distribution 293
7.3.11 The exponential distribution 296
7.3.12 The beta distribution 296
7.3.13 The Cauchy distribution 298
7.3.14 The lognormal distribution 299
7.3.15 The logistic distribution 300
7.3.16 The log-logistic distribution 301

DETAILED CONTENTS xiii

7.3.17 The Weibull distribution 301
7.3.18 Multivariate normal distribution 303
7.3.19 The uniform distribution 304
7.3.20 Plotting empirical cumulative distribution functions 306

7.4 Discrete probability distributions 307
7.4.1 The Bernoulli distribution 307
7.4.2 The binomial distribution 308
7.4.3 The geometric distribution 311
7.4.4 The hypergeometric distribution 312
7.4.5 The multinomial distribution 313
7.4.6 The Poisson distribution 314
7.4.7 The negative binomial distribution 315
7.4.8 The Wilcoxon rank-sum statistic 322

7.5 Matrix algebra 322
7.5.1 Matrix multiplication 323
7.5.2 Diagonals of matrices 324
7.5.3 Determinant 325
7.5.4 Inverse of a matrix 327
7.5.5 Eigenvalues and eigenvectors 328
7.5.6 Matrices in statistical models 331
7.5.7 Statistical models in matrix notation 334

7.6 Solving systems of linear equations using matrices 338
7.7 Calculus 339

7.7.1 Derivatives 339
7.7.2 Integrals 339
7.7.3 Differential equations 340

8 Classical Tests 344
8.1 Single samples 344

8.1.1 Data summary 345
8.1.2 Plots for testing normality 346
8.1.3 Testing for normality 347
8.1.4 An example of single-sample data 348

8.2 Bootstrap in hypothesis testing 349
8.3 Skew and kurtosis 350

8.3.1 Skew 350
8.3.2 Kurtosis 352

8.4 Two samples 353
8.4.1 Comparing two variances 354
8.4.2 Comparing two means 358
8.4.3 Student’s t test 358
8.4.4 Wilcoxon rank-sum test 361

8.5 Tests on paired samples 362
8.6 The sign test 364
8.7 Binomial test to compare two proportions 365
8.8 Chi-squared contingency tables 365

8.8.1 Pearson’s chi-squared 367
8.8.2 G test of contingency 369

xiv DETAILED CONTENTS

8.8.3 Unequal probabilities in the null hypothesis 370
8.8.4 Chi-squared tests on table objects 370
8.8.5 Contingency tables with small expected frequencies: Fisher’s exact test 371

8.9 Correlation and covariance 373
8.9.1 Data dredging 375
8.9.2 Partial correlation 375
8.9.3 Correlation and the variance of differences between variables 376
8.9.4 Scale-dependent correlations 377

8.10 Kolmogorov–Smirnov test 379
8.11 Power analysis 382
8.12 Bootstrap 385

9 Statistical Modelling 388
9.1 First things first 389
9.2 Maximum likelihood 390
9.3 The principle of parsimony (Occam’s razor) 390
9.4 Types of statistical model 391
9.5 Steps involved in model simplification 393

9.5.1 Caveats 393
9.5.2 Order of deletion 394

9.6 Model formulae in R 395
9.6.1 Interactions between explanatory variables 396
9.6.2 Creating formula objects 397

9.7 Multiple error terms 398
9.8 The intercept as parameter 1 398
9.9 The update function in model simplification 399

9.10 Model formulae for regression 399
9.11 Box–Cox transformations 401
9.12 Model criticism 403
9.13 Model checking 404

9.13.1 Heteroscedasticity 404
9.13.2 Non-normality of errors 405

9.14 Influence 408
9.15 Summary of statistical models in R 411
9.16 Optional arguments in model-fitting functions 412

9.16.1 Subsets 413
9.16.2 Weights 413
9.16.3 Missing values 414
9.16.4 Offsets 415
9.16.5 Dataframes containing the same variable names 415

9.17 Akaike’s information criterion 415
9.17.1 AIC as a measure of the fit of a model 416

9.18 Leverage 417
9.19 Misspecified model 418
9.20 Model checking in R 418
9.21 Extracting information from model objects 420

9.21.1 Extracting information by name 421
9.21.2 Extracting information by list subscripts 421

DETAILED CONTENTS xv

9.21.3 Extracting components of the model using $ 425
9.21.4 Using lists with models 425

9.22 The summary tables for continuous and categorical explanatory variables 426
9.23 Contrasts 430

9.23.1 Contrast coefficients 431
9.23.2 An example of contrasts in R 432
9.23.3 A priori contrasts 433

9.24 Model simplification by stepwise deletion 437
9.25 Comparison of the three kinds of contrasts 440

9.25.1 Treatment contrasts 440
9.25.2 Helmert contrasts 440
9.25.3 Sum contrasts 442

9.26 Aliasing 443
9.27 Orthogonal polynomial contrasts: contr.poly 443
9.28 Summary of statistical modelling 448

10 Regression 449
10.1 Linear regression 450

10.1.1 The famous five in R 453
10.1.2 Corrected sums of squares and sums of products 453
10.1.3 Degree of scatter 456
10.1.4 Analysis of variance in regression: SSY = SSR + SSE 458
10.1.5 Unreliability estimates for the parameters 460
10.1.6 Prediction using the fitted model 462
10.1.7 Model checking 463

10.2 Polynomial approximations to elementary functions 465
10.3 Polynomial regression 466
10.4 Fitting a mechanistic model to data 468
10.5 Linear regression after transformation 469
10.6 Prediction following regression 472
10.7 Testing for lack of fit in a regression 475
10.8 Bootstrap with regression 478
10.9 Jackknife with regression 481

10.10 Jackknife after bootstrap 483
10.11 Serial correlation in the residuals 484
10.12 Piecewise regression 485
10.13 Multiple regression 489

10.13.1 The multiple regression model 490
10.13.2 Common problems arising in multiple regression 497

11 Analysis of Variance 498
11.1 One-way ANOVA 498

11.1.1 Calculations in one-way ANOVA 502
11.1.2 Assumptions of ANOVA 503
11.1.3 A worked example of one-way ANOVA 503
11.1.4 Effect sizes 509
11.1.5 Plots for interpreting one-way ANOVA 511

11.2 Factorial experiments 516
11.3 Pseudoreplication: Nested designs and split plots 519

xvi DETAILED CONTENTS

11.3.1 Split-plot experiments 519
11.3.2 Mixed-effects models 522
11.3.3 Fixed effect or random effect? 523
11.3.4 Removing the pseudoreplication 523
11.3.5 Derived variable analysis 524

11.4 Variance components analysis 524
11.5 Effect sizes in ANOVA: aov or lm? 527
11.6 Multiple comparisons 531
11.7 Multivariate analysis of variance 535

12 Analysis of Covariance 537
12.1 Analysis of covariance in R 538
12.2 ANCOVA and experimental design 548
12.3 ANCOVA with two factors and one continuous covariate 548
12.4 Contrasts and the parameters of ANCOVA models 551
12.5 Order matters in summary.aov 554

13 Generalized Linear Models 557
13.1 Error structure 558
13.2 Linear predictor 559
13.3 Link function 559

13.3.1 Canonical link functions 560
13.4 Proportion data and binomial errors 560
13.5 Count data and Poisson errors 561
13.6 Deviance: Measuring the goodness of fit of a GLM 562
13.7 Quasi-likelihood 562
13.8 The quasi family of models 563
13.9 Generalized additive models 565

13.10 Offsets 566
13.11 Residuals 568

13.11.1 Misspecified error structure 569
13.11.2 Misspecified link function 569

13.12 Overdispersion 570
13.13 Bootstrapping a GLM 570
13.14 Binomial GLM with ordered categorical variables 574

14 Count Data 579
14.1 A regression with Poisson errors 579
14.2 Analysis of deviance with count data 581
14.3 Analysis of covariance with count data 586
14.4 Frequency distributions 588
14.5 Overdispersion in log-linear models 592
14.6 Negative binomial errors 595

15 Count Data in Tables 599
15.1 A two-class table of counts 599
15.2 Sample size for count data 600
15.3 A four-class table of counts 600
15.4 Two-by-two contingency tables 601
15.5 Using log-linear models for simple contingency tables 602

DETAILED CONTENTS xvii

15.6 The danger of contingency tables 604
15.7 Quasi-Poisson and negative binomial models compared 606
15.8 A contingency table of intermediate complexity 608
15.9 Schoener’s lizards: A complex contingency table 610

15.10 Plot methods for contingency tables 616
15.11 Graphics for count data: Spine plots and spinograms 621

16 Proportion Data 628
16.1 Analyses of data on one and two proportions 629
16.2 Count data on proportions 629
16.3 Odds 630
16.4 Overdispersion and hypothesis testing 631
16.5 Applications 632

16.5.1 Logistic regression with binomial errors 633
16.5.2 Estimating LD50 and LD90 from bioassay data 635
16.5.3 Proportion data with categorical explanatory variables 636

16.6 Averaging proportions 639
16.7 Summary of modelling with proportion count data 640
16.8 Analysis of covariance with binomial data 640
16.9 Converting complex contingency tables to proportions 643

16.9.1 Analysing Schoener’s lizards as proportion data 645

17 Binary Response Variables 650
17.1 Incidence functions 652
17.2 Graphical tests of the fit of the logistic to data 653
17.3 ANCOVA with a binary response variable 655
17.4 Binary response with pseudoreplication 660

18 Generalized Additive Models 666
18.1 Non-parametric smoothers 667
18.2 Generalized additive models 669

18.2.1 Technical aspects 672
18.3 An example with strongly humped data 675
18.4 Generalized additive models with binary data 677
18.5 Three-dimensional graphic output from gam 679

19 Mixed-Effects Models 681
19.1 Replication and pseudoreplication 683
19.2 The lme and lmer functions 684

19.2.1 lme 684
19.2.2 lmer 685

19.3 Best linear unbiased predictors 685
19.4 Designed experiments with different spatial scales: Split plots 685
19.5 Hierarchical sampling and variance components analysis 691
19.6 Mixed-effects models with temporal pseudoreplication 695
19.7 Time series analysis in mixed-effects models 699
19.8 Random effects in designed experiments 703
19.9 Regression in mixed-effects models 704

19.10 Generalized linear mixed models 710
19.10.1 Hierarchically structured count data 710

xviii DETAILED CONTENTS

20 Non-Linear Regression 715
20.1 Comparing Michaelis–Menten and asymptotic exponential 719
20.2 Generalized additive models 720
20.3 Grouped data for non-linear estimation 721
20.4 Non-linear time series models (temporal pseudoreplication) 726
20.5 Self-starting functions 728

20.5.1 Self-starting Michaelis–Menten model 729
20.5.2 Self-starting asymptotic exponential model 730
20.5.3 Self-starting logistic 730
20.5.4 Self-starting four-parameter logistic 731
20.5.5 Self-starting Weibull growth function 733
20.5.6 Self-starting first-order compartment function 734

20.6 Bootstrapping a family of non-linear regressions 735

21 Meta-Analysis 740
21.1 Effect size 741
21.2 Weights 741
21.3 Fixed versus random effects 741

21.3.1 Fixed-effect meta-analysis of scaled differences 742
21.3.2 Random effects with a scaled mean difference 746

21.4 Random-effects meta-analysis of binary data 748

22 Bayesian Statistics 752
22.1 Background 754
22.2 A continuous response variable 755
22.3 Normal prior and normal likelihood 755
22.4 Priors 756

22.4.1 Conjugate priors 757
22.5 Bayesian statistics for realistically complicated models 757
22.6 Practical considerations 758
22.7 Writing BUGS models 758
22.8 Packages in R for carrying out Bayesian analysis 758
22.9 Installing JAGS on your computer 759

22.10 Running JAGS in R 759
22.11 MCMC for a simple linear regression 760
22.12 MCMC for a model with temporal pseudoreplication 763
22.13 MCMC for a model with binomial errors 766

23 Tree Models 768
23.1 Background 769
23.2 Regression trees 771
23.3 Using rpart to fit tree models 772
23.4 Tree models as regressions 775
23.5 Model simplification 776
23.6 Classification trees with categorical explanatory variables 778
23.7 Classification trees for replicated data 780
23.8 Testing for the existence of humps 783

24 Time Series Analysis 785
24.1 Nicholson’s blowflies 785

DETAILED CONTENTS xix

24.2 Moving average 792
24.3 Seasonal data 793

24.3.1 Pattern in the monthly means 796
24.4 Built-in time series functions 797
24.5 Decompositions 797
24.6 Testing for a trend in the time series 798
24.7 Spectral analysis 800
24.8 Multiple time series 801
24.9 Simulated time series 803

24.10 Time series models 805

25 Multivariate Statistics 809
25.1 Principal components analysis 809
25.2 Factor analysis 813
25.3 Cluster analysis 816

25.3.1 Partitioning 816
25.3.2 Taxonomic use of kmeans 817

25.4 Hierarchical cluster analysis 819
25.5 Discriminant analysis 821
25.6 Neural networks 824

26 Spatial Statistics 825
26.1 Point processes 825

26.1.1 Random points in a circle 826
26.2 Nearest neighbours 829

26.2.1 Tessellation 833
26.3 Tests for spatial randomness 834

26.3.1 Ripley’s K 834
26.3.2 Quadrat-based methods 838
26.3.3 Aggregated pattern and quadrat count data 839
26.3.4 Counting things on maps 842

26.4 Packages for spatial statistics 844
26.4.1 The spatstat package 845
26.4.2 The spdep package 849
26.4.3 Polygon lists 854

26.5 Geostatistical data 856
26.6 Regression models with spatially correlated errors: Generalized least squares 860
26.7 Creating a dot-distribution map from a relational database 867

27 Survival Analysis 869
27.1 A Monte Carlo experiment 869
27.2 Background 872
27.3 The survivor function 873
27.4 The density function 873
27.5 The hazard function 874
27.6 The exponential distribution 874

27.6.1 Density function 874
27.6.2 Survivor function 874
27.6.3 Hazard function 874

xx DETAILED CONTENTS

27.7 Kaplan–Meier survival distributions 875
27.8 Age-specific hazard models 876
27.9 Survival analysis in R 878

27.9.1 Parametric models 878
27.9.2 Cox proportional hazards model 878
27.9.3 Cox’s proportional hazard or a parametric model? 879

27.10 Parametric analysis 879
27.11 Cox’s proportional hazards 882
27.12 Models with censoring 883

27.12.1 Parametric models 884
27.12.2 Comparing coxph and survreg survival analysis 887

28 Simulation Models 893
28.1 Temporal dynamics: Chaotic dynamics in population size 893

28.1.1 Investigating the route to chaos 895
28.2 Temporal and spatial dynamics: A simulated random walk in two dimensions 896
28.3 Spatial simulation models 897

28.3.1 Metapopulation dynamics 898
28.3.2 Coexistence resulting from spatially explicit (local) density dependence 900

28.4 Pattern generation resulting from dynamic interactions 903

29 Changing the Look of Graphics 907
29.1 Graphs for publication 907
29.2 Colour 908

29.2.1 Palettes for groups of colours 910
29.2.2 The RColorBrewer package 913
29.2.3 Coloured plotting symbols with contrasting margins 914
29.2.4 Colour in legends 915
29.2.5 Background colours 916
29.2.6 Foreground colours 917
29.2.7 Different colours and font styles for different parts of the graph 917
29.2.8 Full control of colours in plots 918

29.3 Cross-hatching 920
29.4 Grey scale 921
29.5 Coloured convex hulls and other polygons 921
29.6 Logarithmic axes 922
29.7 Different font families for text 923
29.8 Mathematical and other symbols on plots 924
29.9 Phase planes 928

29.10 Fat arrows 929
29.11 Three-dimensional plots 930
29.12 Complex 3D plots with wireframe 933
29.13 An alphabetical tour of the graphics parameters 935

29.13.1 Text justification, adj 935
29.13.2 Annotation of graphs, ann 935
29.13.3 Delay moving on to the next in a series of plots, ask 935
29.13.4 Control over the axes, axis 938
29.13.5 Background colour for plots, bg 939

DETAILED CONTENTS xxi

29.13.6 Boxes around plots, bty 939
29.13.7 Size of plotting symbols using the character expansion function, cex 940
29.13.8 Changing the shape of the plotting region, plt 941
29.13.9 Locating multiple graphs in non-standard layouts using fig 942
29.13.10 Two graphs with a common x scale but different y scales using fig 942
29.13.11 The layout function 943
29.13.12 Creating and controlling multiple screens on a single device 945
29.13.13 Orientation of numbers on the tick marks, las 947
29.13.14 Shapes for the ends and joins of lines, lend and ljoin 947
29.13.15 Line types, lty 948
29.13.16 Line widths, lwd 949
29.13.17 Several graphs on the same page, mfrow and mfcol 950
29.13.18 Margins around the plotting area, mar 950
29.13.19 Plotting more than one graph on the same axes, new 951
29.13.20 Two graphs on the same plot with different scales for their y axes 951
29.13.21 Outer margins, oma 952
29.13.22 Packing graphs closer together 954
29.13.23 Square plotting region, pty 955
29.13.24 Character rotation, srt 955
29.13.25 Rotating the axis labels 955
29.13.26 Tick marks on the axes 956
29.13.27 Axis styles 957

29.14 Trellis graphics 957
29.14.1 Panel box-and-whisker plots 959
29.14.2 Panel scatterplots 960
29.14.3 Panel barplots 965
29.14.4 Panels for conditioning plots 966
29.14.5 Panel histograms 967
29.14.6 Effect sizes 968
29.14.7 More panel functions 969

References and Further Reading 971

Index 977

Preface

R is a high-level language and an environment for data analysis and graphics. The design of R was heavily
influenced by two existing languages: Becker, Chambers and Wilks’ S and Sussman’s Scheme. The resulting
language is very similar in appearance to S, but the underlying implementation and semantics are derived
from Scheme. This book is intended as an introduction to the riches of the R environment, aimed at beginners
and intermediate users in disciplines ranging from science to economics and from medicine to engineering.
I hope that the book can be read as a text as well as dipped into as a reference manual. The early chapters
assume absolutely no background in statistics or computing, but the later chapters assume that the material
in the earlier chapters has been studied. The book covers data handling, graphics, mathematical functions,
and a wide range of statistical techniques all the way from elementary classical tests, through regression
and analysis of variance and generalized linear modelling, up to more specialized topics such as Bayesian
analysis, spatial statistics, multivariate methods, tree models, mixed-effects models and time series analysis.
The idea is to introduce users to the assumptions that lie behind the tests, fostering a critical approach to
statistical modelling, but involving little or no statistical theory and assuming no background in mathematics
or statistics.

Why should you switch to using R when you have mastered a perfectly adequate statistical package
already? At one level, there is no point in switching. If you only carry out a very limited range of statistical
tests, and you do not intend to do more (or different) in the future, then fine. The main reason for switching to
R is to take advantage of its unrivalled coverage and the availability of new, cutting-edge applications in fields
such as generalized mixed-effects modelling and generalized additive models. The next reason for learning
R is that you want to be able to understand the literature. More and more people are reporting their results in
the context of R, and it is important to know what they are talking about. Third, look around your discipline
to see who else is using R: many of the top people will have switched to R already. A large proportion of the
world’s leading statisticians use R, and this should tell you something (many, indeed, contribute to R, as you
can see below). Another reason for changing to R is the quality of back-up and support available. There is a
superb network of dedicated R wizards out there on the web, eager to answer your questions. If you intend
to invest sufficient effort to become good at statistical computing, then the structure of R and the ease with
which you can write your own functions are major attractions. Last, and certainly not least, the product is
free. This is some of the finest integrated software in the world, and yet it is yours for absolutely nothing.

Although much of the text will equally apply to S-PLUS, there are some substantial differences, so in
order not to confuse things I concentrate on describing R. I have made no attempt to show where S-PLUS is
different from R, but if you have to work in S-PLUS, then try it and see if it works.

xxiv PREFACE

Acknowledgements

S is an elegant, widely accepted, and enduring software system with outstanding conceptual integrity, thanks
to the insight, taste, and effort of John Chambers. In 1998, the Association for Computing Machinery (ACM)
presented him with its Software System Award, for ‘the S system, which has forever altered the way people
analyze, visualize, and manipulate data’. R was inspired by the S environment that was developed by John
Chambers, and which had substantial input from Douglas Bates, Rick Becker, Bill Cleveland, Trevor Hastie,
Daryl Pregibon and Allan Wilks.

R was initially written by Ross Ihaka and Robert Gentleman at the Department of Statistics of the University
of Auckland in New Zealand. Subsequently, a large group of individuals contributed to R by sending code
and bug reports. John Chambers graciously contributed advice and encouragement in the early days of R, and
later became a member of the core team. The current R is the result of a collaborative effort with contributions
from all over the world.

Since mid-1997 there has been a core group with write access to the R source, currently consisting of
Douglas Bates, John Chambers, Peter Dalgaard, Seth Falcon, Robert Gentleman, Kurt Hornik, Stefano Iacus,
Ross Ihaka, Friedrich Leisch, Uwe Ligges, Thomas Lumley, Martin Maechler, Guido Masarotto (up to June
2003), Duncan Murdoch, Paul Murrell, Martyn Plummer, Brian Ripley, Deepayan Sarkar, Heiner Schwarte
(up to October 1999), Duncan Temple Lang, Luke Tierney and Simon Urbanek.

R would not be what it is today without the invaluable help of the following people, who contributed
by donating code, bug fixes and documentation: Valerio Aimale, Thomas Baier, Roger Bivand, Ben Bolker,
David Brahm, Göran Broström, Patrick Burns, Vince Carey, Saikat DebRoy, Brian D’Urso, Lyndon Drake,
Dirk Eddelbuettel, John Fox, Paul Gilbert, Torsten Hothorn, Robert King, Kjetil Kjernsmo, Philippe Lambert,
Jan de Leeuw, Jim Lindsey, Patrick Lindsey, Catherine Loader, Gordon Maclean, John Maindonald, David
Meyer, Jens Oehlschlägel, Steve Oncley, Richard O’Keefe, Hubert Palme, José C. Pinheiro, Anthony Rossini,
Jonathan Rougier, Günther Sawitzki, Bill Simpson, Gordon Smyth, Adrian Trapletti, Terry Therneau, Bill
Venables, Gregory R. Warnes, Andreas Weingessel, Morten Welinder, Simon Wood, and Achim Zeileis.

If you use R you should cite it in your written work. To cite the base package, put:

R Development Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

You can see the most up-to-date citation by typingcitation() at the prompt. To cite individual contributed
packages, you may find the appropriate citation in the description of the package, but failing that you will
need to construct the citation from the author’s name, date, and title of the package from the reference manual
for the package that is available on CRAN (see p. 3).

Special thanks are due to the generations of graduate students on the annual GLIM course at Silwood. It
was their feedback that enabled me to understand those aspects of R that are most difficult for beginners,
and highlighted the concepts that require the most detailed explanation. Please tell me about the errors and
omissions you find, and send suggestions for changes and additions to m.crawley@imperial.ac.uk.

The data files used in this book can be downloaded from http://www.bio.ic.ac.uk/research/mjcraw/
therbook/index.htm.

M.J. Crawley
Ascot

September 2012

1
Getting Started

1.1 How to use this book

Try to put yourself in one of the following categories, then go to the appropriate category heading within this
section to find some suggestions about how you might get best value from this book:

� Beginner in both computing and statistics (Section 1.1.1);

� Student needing help with project work (1.1.2);

� Done some R and some statistics, but keen to learn more of both (1.1.3);

� Done regression and ANOVA, but want to learn more advanced statistical modelling (1.1.4);

� Experienced in statistics, but a beginner in R (1.1.5);

� Experienced in computing, but a beginner in R (1.1.6);

� Familiar with statistics and computing, but need a friendly reference manual (1.1.7).

1.1.1 Beginner in both computing and statistics

The book is structured principally with you in mind. There are six key things to learn: how to arrange your
data, how to read the data into R, how to check the data once within R, how to select the appropriate statistical
model and apply it correctly, how to interpret the output, and how to present the analysis for publication. It
is essential that you understand the basics thoroughly before trying to do the more complicated things, so
study Chapters 3–6 carefully to begin with. Do all of the exercises that are illustrated in the text on your
own computer. Now you need to do the hard part, which is selecting the right statistics to use. Model choice
is extremely important, and is the thing that will develop most with experience. Do not by shy to ask for
expert help with this. Never do an analysis that is more complicated than it needs to be, so start by reading
about the classical tests to see if one of these fits your purposes (Chapter 8). Finally, try to understand the
distinction between regression (Chapter 10) where the explanatory variable is continuous, and analysis of
variance (Chapter 11), where the explanatory variable is categorical. One of these two is likely to be the most
complicated method you will need.

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

2 THE R BOOK

1.1.2 Student needing help with project work

The first thing to ensure is that you know the difference between your response variable and your explanatory
variable, and the distinction between a continuous variable and a categorical variable (Chapter 5). Once you
have mastered this, then use the key at the beginning of Chapter 9 to see what kind of statistics you need
to employ. It is most likely that if your response variable is a count, where you typically have lots of zeros,
then you will want to use either the classical tests (Chapter 8) or count data in tables (Chapter 15). If your
response variable is a continuous measure (e.g. a weight) then you will want to use either regression (Chapter
10) if your explanatory variable is continuous (e.g. an altitude) or analysis of variance (Chapter 11) if your
explanatory variable is categorical (e.g. genotype). Do not forget to use the appropriate graphics (scatter plots
for regressions, box and whisker plots for ANOVA).

1.1.3 Done some R and some statistics, but keen to learn more of both

The best plan is to skim quickly through the introductory material in case you have missed out on some of
the basics. Certainly you should read all of the material in Chapter 2 on the fundamentals of the R language
and Chapter 5 on graphics. Then, if you know what statistical models you want to use, go directly to the
relevant chapter (e.g. regression in Chapter 10 and then non-linear regression in Chapter 20). Use the index
for finding help on specific topics.

1.1.4 Done regression and ANOVA, but want to learn more advanced statistical modelling

If you learned regression and ANOVA in another language, the best plan is to go directly to Chapters 10–12
to see how the output from linear models is handled by R. Once you have familiarized yourself with data
input (Chapter 3) and dataframes (Chapter 4), you should be able to go directly to the chapters on generalized
linear models (Chapter 13), spatial statistics (Chapter 26), survival analysis (Chapter 27), non-linear models
(Chapter 20) or mixed-effects models (Chapter 19) without any difficulty.

1.1.5 Experienced in statistics, but a beginner in R

The first thing is to get a thorough understanding of dataframes and data input to R, for which you should
study Chapters 3 and 4. Then, if you know what statistics you want to do (e.g. mixed-effects models in R),
you should be able to go straight to the appropriate material (Chapter 19 in this case). To understand the
output from models in R, you will want to browse Chapter 9 on statistical modelling in R. Then you will want
to present your data in the most effective way, by reading Chapter 5 on graphics and Chapter 29 on changing
the look of graphics.

1.1.6 Experienced in computing, but a beginner in R

Well-written R code is highly intuitive and very readable. The most unfamiliar parts of R are likely to be the
way it handles functions and the way it deals with environments. It is impossible to anticipate the order in
which more advanced users are likely to encounter material and hence want to learn about specific features of
the language, but vectorized calculations, subscripts on dataframes, function-writing and suchlike are bound
to crop up early (Chapter 2). If you see a name in some code, and you want to find out about it, just type the
name immediately after a question mark at the R prompt >. If, for example, you want know what rnbinom
does, type:

?rnbinom

GETTING STARTED 3

Recognizing mathematical functions is quite straightforward because of their names and the fact that their
arguments are enclosed in round brackets (). Subscripts on objects have square brackets []. Multi-line blocks
of R code are enclosed within curly brackets { }. Again, you may not be familiar with lists, or with applying
functions to lists; elements within lists have double square brackets [[]].

Look at the sections at the head of Chapter 2 as a starting point. The index is probably your most sensible
entry point for queries about specifics.

1.1.7 Familiar with statistics and computing, but need a friendly reference manual

If it is a topic you want to understand, then use the chapter list on pages v–vi and the Detailed Contents on
pp. vii–xxi to find the most appropriate section. For aspects of the R language, look at the sections mentioned
at the start of Chapter 2 on p. 12. You are likely to want to spend time browsing the contents of general
material such as Chapter 5 on graphics and Chapter 29 on changing the look of graphics. Your best bet, in
general, is likely to be to use the Index.

Get used to R’s help pages. If you know the name of the function for which you require help, just type
a question mark followed directly by the function name at R’s screen prompt >. To find out what all the
graphics parameters mean, for instance, just type:

?par

1.2 Installing R

I assume that you have a PC or an Apple Mac, and that you want to install R on the hard disc. If you have
access to the internet then this could hardly be simpler. First go to the site called CRAN (this stands for
Comprehensive R Archive Network). You can type its full address,

http://cran.r-project.org/

or simply type CRAN into Google and be transported effortlessly to the site. Once there, you need to
‘Download and Install R’ by running the appropriate precompiled binary distributions. Click to choose
between Linux, Mac OS and Windows, then follow the (slightly different) instructions. You want the ‘base’
package and you want to run the setup program which will have a name like R*.exe (on a PC) or R*.dmg
(on a Mac). When asked, say you want to ‘Run’ the file (rather than ‘Save’ it). Then just sit back and watch.
If you do not have access to the internet, then get a friend to download R and copy it onto a memory stick
for you.

1.3 Running R

To run R, just click on the R icon. If there is no icon, go to Programs, then to R, then click on the R icon. The
first thing you see is the version number of R and the date of your version. It is a good idea to visit the CRAN
site regularly to make sure that you have got the most up-to-date version of R. If you have an old version, it
is best to uninstall your current version before downloading the new one.

The header explains that there is no warranty for this free software, and allows you to see the list of current
contributors. Perhaps the most important information in the header is found under

citation()

which shows how to cite the R software in your written work. The R Development Core Team has done a
huge amount of work and we, the R user community, should give them due credit whenever we publish work
that has used R.

4 THE R BOOK

Below the header you will see a blank line with a > symbol in the left-hand margin. This is called the
prompt and is R’s way of saying ‘What now?’. This is where you type in your commands, as introduced on
p. 13. When working, you will sometimes see + at the left-hand side of the screen instead of >. This means
that the last command you typed is incomplete. The commonest cause of this is that you have forgotten one
or more brackets. If you can see what is missing (e.g. a final right-hand bracket) then just type the missing
character and press enter, at which point the command will execute. If you have made a mistake, then press
the Esc key and the command line prompt > will reappear. Then use the Up arrow key to retrieve your last
command, at which point you can correct the mistake, using the Left and Right arrow keys.

1.4 The Comprehensive R Archive Network

CRAN is your first port of call for everything to do with R. It is from here that you download and install R,
find contributed packages to solve particular problems, find the answers to frequently asked questions, read
about the latest developments, get programming tips and much more besides. These are the current headings
on the main website:

CRAN

Mirrors

What’s new?

Task Views

Search

About R

R Homepage

The R Journal

Software

R Sources

R Binaries

Packages

Other

Documentation

Manuals

FAQs

Contributed

It is well worth browsing through The R Journal (formerly R News). This is the refereed journal of the R
project for statistical computing. It features short to medium-length articles covering topics that might be of
interest to users or developers of R, including:

� Add-on packages – short introductions to or reviews of R extension packages.

� Programmer’s Niche – hints for programming in R.

GETTING STARTED 5

� Help Desk – hints for newcomers explaining aspects of R that might not be so obvious from reading the
manuals and FAQs.

� Applications – demonstrating how a new or existing technique can be applied in an area of current interest
using R, providing a fresh view of such analyses in R that is of benefit beyond the specific application.

1.4.1 Manuals

There are several manuals available on CRAN:

� An Introduction to R gives an introduction to the language and how to use R for doing statistical analysis
and graphics.

� A draft of the R Language Definition, which documents the language per se – that is, the objects that it
works on, and the details of the expression evaluation process, which are useful to know when programming
R functions. This is perhaps the most important of all the manuals.

� Writing R Extensions covers how to create your own packages, write R help files, and use the foreign
language (C, C++, Fortran, . . .) interfaces.

� R Data Import/Export describes the import and export facilities available either in R itself or via packages
which are available from CRAN.

� R Installation and Administration, which is self-explanatory.

� R: A Language and Environment for Statistical Computing (referred to on the website as ‘The R Reference
Index’) contains all the help files of the R standard and recommended packages in printable form.

These manuals are also available in R itself by choosing Help/Manuals (in PDF) from the menu bar. There
are also answers to Frequently Asked Questions (FAQs) and The R Journal, as mentioned above. The most
useful part of the site, however, is the Search facility which allows you to investigate the contents of most of
the R documents, functions, and searchable mail archives.

1.4.2 Frequently asked questions

R has three collections of answers to FAQs:

� the R FAQ, which is the general collection and contains useful information for users on all platforms
(Linux, Mac, Unix, Windows);

� the R Mac OS X FAQ for all users of Apple operating systems;

� the R Windows FAQ for all users of Microsoft operating systems.

You need to read the first of these, plus the appropriate one for your platform.

1.4.3 Contributed documentation

This contains a wide range of longer (more than 100 pages) and shorter manuals, tutorials, and exercises
provided by users of R. You should browse these to find the ones most relevant to your needs.

6 THE R BOOK

1.5 Getting help in R

The simplest way to get help in R is to click on the Help button on the toolbar of the RGui window (this stands
for R’s Graphic User Interface). Alternatively, if you are connected to the internet, you can type CRAN into
Google and search for the help you need at CRAN (see Section 1.4). However, if you know the name of the
function you want help with, you just type a question mark ? at the command line prompt followed by the
name of the function. So to get help on read.table, just type

?read.table

Sometimes you cannot remember the precise name of the function, but you know the subject on which
you want help (e.g. data input in this case). Use the help.search function (without a question mark) with
your query in double quotes like this:

help.search("data input")

and (with any luck) you will see the names of the R functions associated with this query. Then you can use
?read.table to get detailed help.

Other useful functions are find and apropos. The find function tells you what package something
is in:

find("lowess")

[1] "package:stats"

while apropos returns a character vector giving the names of all objects in the search list that match your
(potentially partial) enquiry:

apropos("lm")

[1] ". __C__anova.glm" ".__C__anova.glm.null" ". __C__glm"
[4] ". __C__glm.null" ". __C__lm" ". __C__mlm"
[7] "anova.glm" "anova.glmlist" "anova.lm"
[10] "anova.lmlist" "anova.mlm" "anovalist.lm"
[13] "contr.helmert" "glm" "glm.control"
[16] "glm.fit" "glm.fit.null" "hatvalues.lm"
[19] "KalmanForecast" "KalmanLike" "KalmanRun"
[22] "KalmanSmooth" "lm" "lm.fit"
[25] "lm.fit.null" "lm.influence" "lm.wfit"
[28] "lm.wfit.null" "model.frame.glm" "model.frame.lm"
[31] "model.matrix.lm" "nlm" "nlminb"
[34] "plot.lm" "plot.mlm" "predict.glm"
[37] "predict.lm" "predict.mlm" "print.glm"
[40] "print.lm" "residuals.glm" "residuals.lm"
[43] "rstandard.glm" "rstandard.lm" "rstudent.glm"
[46] "rstudent.lm" "summary.glm" "summary.lm"
[49] "summary.mlm" "kappa.lm"

1.5.1 Worked examples of functions

To see a worked example just type the function name (e.g. linear models, lm)

example(lm)

and you will see the printed and graphical output produced by the lm function.

GETTING STARTED 7

1.5.2 Demonstrations of R functions

These can be useful for seeing the range of things that R can do. Here are some for you to try:

demo(persp)
demo(graphics)
demo(Hershey)
demo(plotmath)

1.6 Packages in R

Finding your way around the contributed packages can be tricky, simply because there are so many of them,
and the name of the package is not always as indicative of its function as you might hope. There is no
comprehensive cross-referenced index, but there is a very helpful feature called ‘Task Views’ on CRAN,
which explains the packages available under a limited number of usefully descriptive headings. Click on
Packages on the CRAN home page, then inside Contributed Packages, you can click on CRAN Task Views,
which allows you to browse bundles of packages assembled by topic. Currently, there are 29 Task Views on
CRAN as follows:

Bayesian Bayesian Inference
ChemPhys Chemometrics and Computational Physics
ClinicalTrials Clinical Trial Design, Monitoring, and Analysis
Cluster Cluster Analysis & Finite Mixture Models
DifferentialEquations Differential Equations
Distributions Probability Distributions
Econometrics Computational Econometrics
Environmetrics Analysis of Ecological and Environmental Data
ExperimentalDesign Design of Experiments (DoE) & Analysis of Experimental Data
Finance Empirical Finance
Genetics Statistical Genetics
Graphics Graphic Displays & Dynamic Graphics & Graphic Devices & Visualization
HighPerformanceComputing High-Performance and Parallel Computing with R
MachineLearning Machine Learning & Statistical Learning
MedicalImaging Medical Image Analysis
Multivariate Multivariate Statistics
NaturalLanguageProcessing Natural Language Processing
OfficialStatistics Official Statistics & Survey Methodology
Optimization Optimization and Mathematical Programming
Pharmacokinetics Analysis of Pharmacokinetic Data
Phylogenetics Phylogenetics, Especially Comparative Methods
Psychometrics Psychometric Models and Methods
ReproducibleResearch Reproducible Research
Robust Robust Statistical Methods
SocialSciences Statistics for the Social Sciences
Spatial Analysis of Spatial Data
Survival Survival Analysis
TimeSeries Time Series Analysis
gR gRaphical Models in R

8 THE R BOOK

Table 1.1. Libraries used in this book that come supplied as part of the base package of R.

lattice lattice graphics for panel plots or trellis graphs
MASS package associated with Venables and Ripley’s book entitled Modern Applied Statistics using S-PLUS
mgcv generalized additive models
nlme mixed-effects models (both linear and non-linear)
nnet feed-forward neural networks and multinomial log-linear models
spatial functions for kriging and point pattern analysis
survival survival analysis, including penalised likelihood

Click on the Task View to get an annotated list of the packages available under any particular heading. With
any luck you will find the package you are looking for.

To use one of the built-in libraries (listed in Table 1.1), simply type the library function with the name
of the library in brackets. Thus, to load the spatial library type:

library(spatial)

1.6.1 Contents of packages

It is easy to use the help function to discover the contents of library packages. Here is how you find out
about the contents of the spatial library:

library(help=spatial)

Information on package "spatial"
Package: spatial
Description: Functions for kriging and point pattern analysis.

followed by a list of all the functions and data sets. You can view the full list of the contents of a library using
objects with search() like this. Here are the contents of the spatial library:

objects(grep("spatial",search()))

[1] "anova.trls" "anovalist.trls" "correlogram" "expcov"
[5] "gaucov" "Kaver" "Kenvl" "Kfn"
[9] "plot.trls" "ppgetregion" "ppinit" "pplik"
[13] "ppregion" "predict.trls" "prmat" "Psim"
[17] "semat" "sphercov" "SSI" "Strauss"
[21] "surf.gls" "surf.ls" "trls.influence" "trmat"
[25] "variogram"

Then, to find out how to use, say, Ripley’s K (Kfn), just type:

?Kfn

1.6.2 Installing packages

The base package does not contain some of the libraries referred to in this book, but downloading these is
very simple. Before you start, you should check whether you need to “Run as administrator” before you can
install packages (right click on the R icon to find this). Run the R program, then from the command line use
the install.packages function to download the libraries you want. You will be asked to highlight the

GETTING STARTED 9

mirror nearest to you for fast downloading (e.g. London), then everything else is automatic. The packages
used in this book are

install.packages("akima")
install.packages("boot")
install.packages("car")
install.packages("lme4")
install.packages("meta")
install.packages("mgcv")
install.packages("nlme")
install.packages("deSolve")
install.packages("R2jags")
install.packages("RColorBrewer")
install.packages("RODBC")
install.packages("rpart")
install.packages("spatstat")
install.packages("spdep")
install.packages("tree")

If you want other packages, then go to CRAN and browse the list called ‘Packages’ to select the ones you
want to investigate.

1.7 Command line versus scripts

When writing functions and other multi-line sections of input you will find it useful to use a text editor rather
than execute everything directly at the command line. Some people prefer to use R’s own built-in editor. It is
accessible from the RGui menu bar. Click on File then click on New script. At this point R will open a window
entitled Untitled - R Editor. You can type and edit in this, then when you want to execute a line or group
of lines, just highlight them and press Ctrl+R (the Control key and R together). The lines are automatically
transferred to the command window and executed.

By pressing Ctrl+S you can save the contents of the R Editor window in a file that you will have to
name. It will be given a .R file extension automatically. In a subsequent session you can click on File/Open
script . . . when you will see all your saved .R files and can select the one you want to open.

Other people prefer to use an editor with more features. Tinn-R (“this is not notepad” for R) is very good,
or you might like to try RStudio, which has the nice feature of allowing you to scroll back through all of the
graphics produced in a session. These and others are free to download from the web.

1.8 Data editor

There is a data editor within R that can be accessed from the menu bar by selecting Edit/Data editor
You provide the name of the matrix or dataframe containing the material you want to edit (this has to be
a dataframe that is active in the current R session, rather than one which is stored on file), and a Data
Editor window appears. Alternatively, you can do this from the command line using the fix function (e.g.
fix(data.frame.name)). Suppose you want to edit the bacteria dataframe which is part of the MASS
library:

library(MASS)
attach(bacteria)
fix(bacteria)

10 THE R BOOK

The window has the look of a spreadsheet, and you can change the contents of the cells, navigating with
the cursor or with the arrow keys. My preference is to do all of my data preparation and data editing
in a spreadsheet before even thinking about using R. Once checked and edited, I save the data from the
spreadsheet to a tab-delimited text file (*.txt) that can be imported to R very simply using the function called
read.table (p. 20). One of the most persistent frustrations for beginners is that they cannot get their data
imported into R. Things that typically go wrong at the data input stage and the necessary remedial actions
are described on p. 139.

1.9 Changing the look of the R screen

The default settings of the command window are inoffensive to most people, but you can change them if you
do not like them. The Rgui Configuration Editor under Edit/GUI preferences . . . is used to change the look
of the screen. You can change the colour of the input line (default is red), the output line (default navy) or
the background (default white). The default numbers of rows (25) and columns (80) can be changed, and you
have control over the font (default Courier New) and font size (default 10).

1.10 Good housekeeping

To see what variables you have created in the current session, type:

objects()

[1] "colour.factor" "colours" "dates" "index"
[5] "last.warning" "nbnumbers" "nbtable" "nums"
[9] "wanted" "x" "xmat" "xv"

To see which packages and dataframes are currently attached:

search()

[1] ".GlobalEnv" "nums" "nums"
[4] "package:methods" "package:stats" "package:graphics"
[7] "package:grDevices" "package:utils" "package:data sets"
[10] "Autoloads" "package:base"

At the end of a session in R, it is good practice to remove (rm) any variables names you have created (using,
say, x <- 5.6) and to detach any dataframes you have attached earlier in the session. That way, variables
with the same names but different properties will not get in each other’s way in subsequent work:

rm(x,y,z)
detach(worms)

The detach command does not make the dataframe called worms disappear; it just means that the variables
within worms, such as Slope and Area, are no longer accessible directly by name. To get rid of everything,
including all the dataframes, type

rm(list=ls())

but be absolutely sure that you really want to be as draconian as this before you execute the command.

GETTING STARTED 11

1.11 Linking to other computer languages

Advanced users can employ the functions .C and .Fortran to provide a standard interface to compiled
code that has been linked into R, either at build time or via dyn.load. They are primarily intended for
compiled C and Fortran code respectively, but the .C function can be used with other languages which can
generate C interfaces, for example C++. The .Internal and .Primitive interfaces are used to call
C code compiled into R at build time. Functions .Call and .External provide interfaces which allow
compiled code (primarily compiled C code) to manipulate R objects.

2
Essentials of the R Language

There is an enormous range of things that R can do, and one of the hardest parts of learning R is finding your
way around. Likewise, there is no obvious order in which different people will want to learn the different
components of the R language. I suggest that you quickly scan down the following bullet points, which
represent the order in which I have chosen to present the introductory material, and if you are relatively
experienced in statistical computing, you might want to skip directly to the relevant section. I strongly
recommend that beginners work thorough the material in the order presented, because successive sections
build upon knowledge gained from previous sections. This chapter is divided into the following sections:

� 2.1 Calculations

� 2.2 Logical operations

� 2.3 Sequences

� 2.4 Testing and coercion

� 2.5 Missing values and things that are not numbers

� 2.6 Vectors and subscripts

� 2.7 Vectorized functions

� 2.8 Matrices and arrays

� 2.9 Sampling

� 2.10 Loops and repeats

� 2.11 Lists

� 2.12 Text, character strings and pattern matching

� 2.13 Dates and times

� 2.14 Environments

� 2.15 Writing R functions

� 2.16 Writing to file from R

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

ESSENTIALS OF THE R LANGUAGE 13

Other essential material is elsewhere: beginners will want to master data input (Chapter 3), dataframes
(Chapter 4) and graphics (Chapter 5).

2.1 Calculations

The screen prompt > is an invitation to put R to work. The convention in this book is that material that you
need to type into the command line after the screen prompt is shown in red in Courier New font. Just press
the Return key to see the answer. You can use the command line as a calculator, like this:

> log(42/7.3)

[1] 1.749795

Each line can have at most 8192 characters, but if you want to see a lengthy instruction or a complicated
expression on the screen, you can continue it on one or more further lines simply by ending the line at a place
where the line is obviously incomplete (e.g. with a trailing comma, operator, or with more left parentheses
than right parentheses, implying that more right parentheses will follow). When continuation is expected, the
prompt changes from > to +, as follows:

> 5+6+3+6+4+2+4+8+
+ 3+2+7

[1] 50

Note that the + continuation prompt does not carry out arithmetic plus. If you have made a mistake, and you
want to get rid of the + prompt and return to the > prompt, then press the Esc key and use the Up arrow to
edit the last (incomplete) line.

From here onwards and throughout the book, the prompt character > will be omitted. The output from R
is shown in blue in Courier New font, which uses absolute rather than proportional spacing, so that columns
of numbers remain neatly aligned on the page or on the screen.

Two or more expressions can be placed on a single line so long as they are separated by semi-colons:

2+3; 5*7; 3-7

[1] 5
[1] 35
[1] -4

For very big numbers or very small numbers R uses the following scheme (called exponents):

1.2e3 means 1200 because the e3 means ‘move the decimal point 3 places to the right’;
1.2e-2 means 0.012 because the e-2 means ‘move the decimal point 2 places to the left’;
3.9+4.5i is a complex number with real (3.9) and imaginary (4.5) parts, and i is the square

root of –1.

2.1.1 Complex numbers in R

Complex numbers consist of a real part and an imaginary part, which is identified by lower-case i like this:

z <- 3.5-8i

14 THE R BOOK

The elementary trigonometric, logarithmic, exponential, square root and hyperbolic functions are all
implemented for complex values. The following are the special R functions that you can use with com-
plex numbers. Determine the real part:

Re(z)

[1] 3.5

Determine the imaginary part:

Im(z)

[1] -8

Calculate the modulus (the distance from z to 0 in the complex plane by Pythagoras; if x is the real part and
y is the imaginary part, then the modulus is

√
x2 + y2):

Mod(z)

[1] 8.732125

Calculate the argument (Arg(x+ yi)= atan(y/x)):

Arg(z)

[1] -1.158386

Work out the complex conjugate (change the sign of the imaginary part):

Conj(z)

[1] 3.5+8i

Membership and coercion are dealt with in the usual way (p. 30):

is.complex(z)

[1] TRUE

as.complex(3.8)

[1] 3.8+0i

2.1.2 Rounding

Various sorts of rounding (rounding up, rounding down, rounding to the nearest integer) can be done easily.
Take the number 5.7 as an example. The ‘greatest integer less than’ function is floor:

floor(5.7)

[1] 5

The ‘next integer’ function is ceiling:

ceiling(5.7)

[1] 6

You can round to the nearest integer by adding 0.5 to the number, then using floor. There is a built-in
function for this, but we can easily write one of our own to introduce the notion of function writing. Call it

ESSENTIALS OF THE R LANGUAGE 15

rounded, then define it as a function like this:

rounded <- function(x) floor(x+0.5)

Now we can use the new function:

rounded(5.7)

[1] 6

rounded(5.4)

[1] 5

The hard part is deciding how you want to round negative numbers, because the concept of up and down is
more subtle (remember that –5 is a bigger number than –6). You need to think, instead, of whether you want
to round towards zero or away from zero. For negative numbers, rounding up means rounding towards zero
so do not be surprised when the value of the positive part is different:

ceiling(-5.7)

[1] -5

With floor, negative values are rounded away from zero:

floor(-5.7)

[1] -6

You can simply strip off the decimal part of the number using the function trunc, which returns the
integers formed by truncating the values in x towards zero:

trunc(5.7)

[1] 5

trunc(-5.7)

[1] -5

There is an R function called round that you can use by specifying 0 decimal places in the second
argument:

round(5.7,0)

[1] 6

round(5.5,0)

[1] 6

round(5.4,0)

[1] 5

round(-5.7,0)

[1] -6

The number of decimal places is not the same as the number of significant digits. You can control the number
of significant digits in a number using the function signif. Take a big number like 12 345 678 (roughly

16 THE R BOOK

12.35 million). Here is what happens when we ask for 4, 5 or 6 significant digits:

signif(12345678,4)

[1] 12350000

signif(12345678,5)

[1] 12346000

signif(12345678,6)

[1] 12345700

and so on. Why you would want to do this would need to be explained.

2.1.3 Arithmetic

The screen prompt in R is a fully functional calculator. You can add and subtract using the obvious + and -
symbols, while division is achieved with a forward slash / and multiplication is done by using an asterisk *
like this:

7 + 3 - 5 * 2

[1] 0

Notice from this example that multiplication (5 × 2) is done before the additions and subtractions. Powers
(like squared or cube root) use the caret symbol ˆ and are done before multiplication or division, as you can
see from this example:

3ˆ2 / 2

[1] 4.5

All the mathematical functions you could ever want are here (see Table 2.1). The log function gives logs
to the base e (e = 2.718 282), for which the antilog function is exp:

log(10)

[1] 2.302585

exp(1)

[1] 2.718282

If you are old fashioned, and want logs to the base 10, then there is a separate function, log10:

log10(6)

[1] 0.7781513

Logs to other bases are possible by providing the log function with a second argument which is the base of
the logs you want to take. Suppose you want log to base 3 of 9:

log(9,3)

[1] 2

ESSENTIALS OF THE R LANGUAGE 17

Table 2.1. Mathematical functions used in R.

Function Meaning

log(x) log to base e of x
exp(x) antilog of x (ex)
log(x,n) log to base n of x
log10(x) log to base 10 of x
sqrt(x) square root of x
factorial(x) x! = x × (x − 1) × (x − 2) × · · · × 3 × 2
choose(n,x) binomial coefficients n!/(x! (n – x)!)
gamma(x) �(x), for real x (x–1)!, for integer x
lgamma(x) natural log of �(x)
floor(x) greatest integer less than x
ceiling(x) smallest integer greater than x
trunc(x) closest integer to x between x and 0, e.g. trunc(1.5) = 1, trunc(–1.5) = –1;

trunc is like floor for positive values and like ceiling for negative values
round(x, digits=0) round the value of x to an integer
signif(x, digits=6) give x to 6 digits in scientific notation
runif(n) generates n random numbers between 0 and 1 from a uniform distribution
cos(x) cosine of x in radians
sin(x) sine of x in radians
tan(x) tangent of x in radians
acos(x), asin(x),
atan(x)

inverse trigonometric transformations of real or complex numbers

acosh(x), asinh(x),
atanh(x)

inverse hyperbolic trigonometric transformations of real or complex numbers

abs(x) the absolute value of x, ignoring the minus sign if there is one

The trigonometric functions in R measure angles in radians. A circle is 2π radians, and this is 360◦, so a
right angle (90◦) is π /2 radians. R knows the value of π as pi:

pi

[1] 3.141593

sin(pi/2)

[1] 1

cos(pi/2)

[1] 6.123032e-017

Notice that the cosine of a right angle does not come out as exactly zero, even though the sine came out as
exactly 1. The e-017 means ‘times 10–17’. While this is a very small number, it is clearly not exactly zero
(so you need to be careful when testing for exact equality of real numbers; see p. 23).

2.1.4 Modulo and integer quotients

Integer quotients and remainders are obtained using the notation %/% (percent, divide, percent) and %%
(percent, percent) respectively. Suppose we want to know the integer part of a division: say, how many 13s

18 THE R BOOK

are there in 119:

119 %/% 13

[1] 9

Now suppose we wanted to know the remainder (what is left over when 119 is divided by 13): in maths this
is known as modulo:

119 %% 13

[1] 2

Modulo is very useful for testing whether numbers are odd or even: odd numbers have modulo 2 value 1 and
even numbers have modulo 2 value 0:

9 %% 2

[1] 1

8 %% 2

[1] 0

Likewise, you use modulo to test if one number is an exact multiple of some other number. For instance, to
find out whether 15 421 is a multiple of 7 (which it is), then ask:

15421 %% 7 == 0

[1] TRUE

Note the use of ‘double equals’ to test for equality (this is explained in detail on p. 26).

2.1.5 Variable names and assignment

There are three important things to remember when selecting names for your variables in R:

� Variable names in R are case sensitive, so y is not the same as Y.

� Variable names should not begin with numbers (e.g. 1x) or symbols (e.g. %x).

� Variable names should not contain blank spaces (use back.pay not back pay).

In terms of your work–life balance, make your variable names as short as possible, so that you do not spend
most of your time typing, and the rest of your time correcting spelling mistakes in your ridiculously long
variable names.

Objects obtain values in R by assignment (‘x gets a value’). This is achieved by the gets arrow <- which
is a composite symbol made up from ‘less than’ and ‘minus’ with no space between them. Thus, to create a
scalar constant x with value 5 we type:

x <- 5

and not x = 5. Notice that there is a potential ambiguity if you get the spacing wrong. Compare our
x <- 5, ‘x gets 5’, with x < - 5 where there is a space between the ‘less than’ and ‘minus’ symbol. In R,
this is actually a question, asking ‘is x less than minus 5?’ and, depending on the current value of x, would
evaluate to the answer either TRUE or FALSE.

ESSENTIALS OF THE R LANGUAGE 19

2.1.6 Operators

R uses the following operator tokens:

+ - * / %/% %% ˆ arithmetic (plus, minus, times, divide, integer quotient, modulo, power)
>= < <= == != relational (greater than, greater than or equals, less than, less than or equals,

equals, not equals)
! & | logical (not, and, or)
~ model formulae (‘is modelled as a function of’)
<- -> assignment (gets)
$ list indexing (the ‘element name’ operator)
: create a sequence

Several of these operators have different meaning inside model formulae. Thus * indicates the main effects
plus interaction (rather than multiplication), : indicates the interaction between two variables (rather than
generate a sequence) and ˆ means all interactions up to the indicated power (rather than raise to the power).
You will learn more about these ideas in Chapter 9.

2.1.7 Integers

Integer vectors exist so that data can be passed to C or Fortran code which expects them, and so that small
integer data can be represented exactly and compactly. The range of integers is from −2 000 000 000 to
+ 2 000 000 000 (-2*10ˆ9 to +2*10ˆ9, which R could portray as -2e+09 to 2e+09).

Be careful. Do not try to change the class of a vector by using the integer function. Here is a numeric
vector of whole numbers that you want to convert into a vector of integers:

x <- c(5,3,7,8)
is.integer(x)

[1] FALSE

is.numeric(x)

[1] TRUE

Applying the integer function to it replaces all your numbers with zeros; definitely not what you intended.

x <- integer(x)
x

[1] 0 0 0 0 0

Make the numeric object first, then convert the object to integer using the as.integer function like this:

x <- c(5,3,7,8)
x <- as.integer(x)
is.integer(x)

[1] TRUE

20 THE R BOOK

The integer function works as trunc when applied to real numbers, and removes the imaginary part when
applied to complex numbers:

as.integer(5.7)

[1] 5

as.integer(-5.7)

[1] -5

as.integer(5.7 -3i)

[1] 5
Warning message:
imaginary parts discarded in coercion

2.1.8 Factors

Factors are categorical variables that have a fixed number of levels. A simple example of a factor might be
a variable called gender with two levels: ‘female’ and ‘male’. If you had three females and two males, you
could create the factor like this:

gender <- factor(c("female", "male", "female", "male", "female"))
class(gender)

[1] "factor"

mode(gender)

[1] "numeric"

More often, you will create a dataframe by reading your data from a file using read.table. When you
do this, all variables containing one or more character strings will be converted automatically into factors.
Here is an example:

data <- read.table("c:\\temp\\daphnia.txt",header=T)
attach(data)
head(data)

Growth.rate Water Detergent Daphnia
1 2.919086 Tyne BrandA Clone1
2 2.492904 Tyne BrandA Clone1
3 3.021804 Tyne BrandA Clone1
4 2.350874 Tyne BrandA Clone2
5 3.148174 Tyne BrandA Clone2
6 4.423853 Tyne BrandA Clone2

This dataframe contains a continuous response variable (Growth.rate) and three categorical explanatory
variables (Water, Detergent and Daphnia), all of which are factors. In statistical modelling, factors are
associated with analysis of variance (all the explanatory variables are categorical) and analysis of covariance
(some of the explanatory variables are categorical and some are continuous).

ESSENTIALS OF THE R LANGUAGE 21

There are some important functions for dealing with factors. You will often want to check that a variable
is a factor (especially if the factor levels are numbers rather than characters):

is.factor(Water)

[1] TRUE

To discover the names of the factor levels, we use the levels function:

levels(Detergent)

[1] "BrandA" "BrandB" "BrandC" "BrandD"

To discover the number of levels of a factor, we use the nlevels function:

nlevels(Detergent)

[1] 4

The same result is achieved by applying the length function to the levels of a factor:

length(levels(Detergent))

[1] 4

By default, factor levels are treated in alphabetical order. If you want to change this (as you might, for
instance, in ordering the bars of a bar chart) then this is straightforward: just type the factor levels in the order
that you want them to be used, and provide this vector as the second argument to the factor function.

Suppose we have an experiment with three factor levels in a variable called treatment, and we want
them to appear in this order: ‘nothing’, ‘single’ dose and ‘double’ dose. We shall need to override R’s natural
tendency to order them ‘double’, ‘nothing’, ‘single’:

frame <- read.table("c:\\temp\\trial.txt",header=T)
attach(frame)
tapply(response,treatment,mean)

double nothing single
25 60 34

This is achieved using the factor function like this:

treatment <- factor(treatment,levels=c("nothing","single","double"))

Now we get the order we want:

tapply(response,treatment,mean)

nothing single double
60 34 25

Only == and != can be used for factors. Note, also, that a factor can only be compared to another factor with
an identical set of levels (not necessarily in the same ordering) or to a character vector. For example, you
cannot ask quantitative questions about factor levels, like > or <=, even if these levels are numeric.

To turn factor levels into numbers (integers) use the unclass function like this:

as.vector(unclass(Daphnia))

[1] 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1
[39] 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3

22 THE R BOOK

Table 2.2. Logical and relational operations.

Symbol Meaning

! logical NOT
& logical AND
| logical OR
< less than
<= less than or equal to
> greater than
= greater than or equal to
== logical equals (double =)
!= not equal
&& AND with IF
|| OR with IF
xor(x,y) exclusive OR
isTRUE(x) an abbreviation of identical(TRUE,x)

2.2 Logical operations

A crucial part of computing involves asking questions about things. Is one thing bigger than other? Are two
things the same size? Questions can be joined together using words like ‘and’ ‘or’, ‘not’. Questions in R
typically evaluate to TRUE or FALSE but there is the option of a ‘maybe’ (when the answer is not available,
NA). In R, < means ‘less than’, > means ‘greater than’, and ! means ‘not’ (see Table 2.2).

2.2.1 TRUE and T with FALSE and F

You can use T for TRUE and F for FALSE, but you should be aware that T and F might have been allocated
as variables. So this is obvious:

TRUE == FALSE

[1] FALSE

T == F

[1] FALSE

This, however, is not so obvious:

T <- 0
T == FALSE

[1] TRUE

F <- 1
TRUE == F

[1] TRUE

But now, of course, T is not equal to F:

T != F

[1] TRUE

To be sure, always write TRUE and FALSE in full, and never use T or F as variable names.

ESSENTIALS OF THE R LANGUAGE 23

2.2.2 Testing for equality with real numbers

There are international standards for carrying out floating point arithmetic, but on your computer these
standards are beyond the control of R. Roughly speaking, integer arithmetic will be exact between –1016

and 1016, but for fractions and other real numbers we lose accuracy because of round-off error. This is only
likely to become a real problem in practice if you have to subtract similarly sized but very large numbers. A
dramatic loss in accuracy under these circumstances is called ‘catastrophic cancellation error’. It occurs when
an operation on two numbers increases relative error substantially more than it increases absolute error.

You need to be careful in programming when you want to test whether or not two computed numbers are
equal. R will assume that you mean ‘exactly equal’, and what that means depends upon machine precision.
Most numbers are rounded to an accuracy of 53 binary digits. Typically therefore, two floating point numbers
will not reliably be equal unless they were computed by the same algorithm, and not always even then. You
can see this by squaring the square root of 2: surely these values are the same?

x <- sqrt(2)
x * x == 2

[1] FALSE

In fact, they are not the same. We can see by how much the two values differ by subtraction:

x * x - 2

[1] 4.440892e-16

This is not a big number, but it is not zero either. So how do we test for equality of real numbers? The
best advice is not to do it. Try instead to use the alternatives ‘less than’ with ‘greater than or equal to’, or
conversely ‘greater than’ with ‘less than or equal to’. Then you will not go wrong. Sometimes, however, you
really do want to test for equality. In those circumstances, do not use double equals to test for equality, but
employ the all.equal function instead.

2.2.3 Equality of floating point numbers using all.equal

The nature of floating point numbers used in computing is the cause of some initially perplexing features.
You would imagine that since 0.3 minus 0.2 is 0.1, and the logic presented below would evaluate to TRUE.
Not so:

x <- 0.3 - 0.2
y <- 0.1
x == y

[1] FALSE

The function called identical gives the same result.

identical(x,y)

[1] FALSE

The solution is to use the function called all.equal which allows for insignificant differences:

all.equal(x,y)

[1] TRUE

Do not use all.equal directly in if expressions. Either use isTRUE(all.equal(....)) or
identical as appropriate.

24 THE R BOOK

2.2.4 Summarizing differences between objects using all.equal

The function all.equal is very useful in programming for checking that objects are as you expect them to
be. Where differences occur, all.equal does a useful job in describing all the differences it finds. Here,
for instance, it reports on the difference between a which is a vector of characters and b which is a factor:

a <- c("cat","dog","goldfish")
b <- factor(a)

In the all.equal function, the object on the left (a) is called the ‘target’ and the object on the right (b) is
‘current’:

all.equal(a,b)

[1] "Modes: character, numeric"
[2] "Attributes: < target is NULL, current is list >"
[3] "target is character, current is factor"

Recall that factors are stored internally as integers, so they have mode = numeric.

class(b)

[1] "factor"

mode(b)

[1] "numeric"

The reason why ‘current is list’ in line [2] of the output is that factors have two attributes and these are stored
as a list – namely, their levels and their class:

attributes(b)

$levels
[1] "cat" "dog" "goldfish"

$class
[1] "factor"

The all.equal function is also useful for obtaining feedback on differences in things like the lengths
of vectors:

n1 <- c(1,2,3)
n2 <- c(1,2,3,4)
all.equal(n1,n2)

[1] "Numeric: lengths (3, 4) differ"

It works well, too, for multiple differences:

n2 <- as.character(n2)
all.equal(n1,n2)

[1] "Modes: numeric, character"
[2] "Lengths: 3, 4"
[3] "target is numeric, current is character"

ESSENTIALS OF THE R LANGUAGE 25

Note that ‘target’ is the first argument to the function and ‘current’ is the second. If you supply more than
two objects to be compared, the third and subsequent objects are simply ignored.

2.2.5 Evaluation of combinations of TRUE and FALSE

It is important to understand how combinations of logical variables evaluate, and to appreciate how logical
operations (such as those in Table 2.2) work when there are missing values, NA. Here are all the possible
outcomes expressed as a logical vector called x:

x <- c(NA, FALSE, TRUE)
names(x) <- as.character(x)

To see the logical combinations of & (logical AND) we can use the outer function with x to evaluate all
nine combinations of NA, FALSE and TRUE like this:

outer(x, x, "&")

<NA> FALSE TRUE
<NA> NA FALSE NA
FALSE FALSE FALSE FALSE
TRUE NA FALSE TRUE

Only TRUE & TRUE evaluates to TRUE. Note the behaviour of NA & NA and NA & TRUE. Where one of
the two components is NA, the result will be NA if the outcome is ambiguous. Thus, NA & TRUE evaluates
to NA, but NA & FALSE evaluates to FALSE. To see the logical combinations of | (logical OR) write:

outer(x, x, "|")

<NA> FALSE TRUE
<NA> NA NA TRUE
FALSE NA FALSE TRUE
TRUE TRUE TRUE TRUE

Only FALSE | FALSE evaluates to FALSE. Note the behaviour of NA | NA and NA | FALSE.

2.2.6 Logical arithmetic

Arithmetic involving logical expressions is very useful in programming and in selection of variables. If logical
arithmetic is unfamiliar to you, then persevere with it, because it will become clear how useful it is, once
the penny has dropped. The key thing to understand is that logical expressions evaluate to either true or false
(represented in R by TRUE or FALSE), and that R can coerce TRUE or FALSE into numerical values: 1 for
TRUE and 0 for FALSE. Suppose that x is a sequence from 0 to 6 like this:

x <- 0:6

Now we can ask questions about the contents of the vector called x. Is x less than 4?

x < 4

[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE

The answer is yes for the first four values (0, 1, 2 and 3) and no for the last three (4, 5 and 6). Two important
logical functions are all and any. They check an entire vector but return a single logical value: TRUE or
FALSE. Are all the x values bigger than 0?

26 THE R BOOK

all(x>0)

[1] FALSE

No. The first x value is a zero. Are any of the x values negative?

any(x<0)

[1] FALSE

No. The smallest x value is a zero.
We can use the answers of logical functions in arithmetic. We can count the true values of (x<4), using

sum:

sum(x<4)

[1] 4

We can multiply (x<4) by other vectors:

(x<4)*runif(7)

[1] 0.9433433 0.9382651 0.6248691 0.9786844 0.0000000 0.0000000
[7] 0.0000000

Logical arithmetic is particularly useful in generating simplified factor levels during statistical modelling.
Suppose we want to reduce a five-level factor (a, b, c, d, e) called treatment to a three-level factor called
t2 by lumping together the levels a and e (new factor level 1) and c and d (new factor level 3) while leaving
b distinct (with new factor level 2):

(treatment <- letters[1:5])

[1] "a" "b" "c" "d" "e"

(t2 <- factor(1+(treatment=="b")+2*(treatment=="c")+2*(treatment=="d")))

[1] 1 2 3 3 1
Levels: 1 2 3

The new factor t2 gets a value 1 as default for all the factors levels, and we want to leave this as it is for
levels a and e. Thus, we do not add anything to the 1 if the old factor level is a or e. For old factor level b,
however, we want the result that t2=2 so we add 1 (treatment=="b") to the original 1 to get the answer
we require. This works because the logical expression evaluates to 1 (TRUE) for every case in which the old
factor level is b and to 0 (FALSE) in all other cases. For old factor levels c and d we want the result that
t2=3 so we add 2 to the baseline value of 1 if the original factor level is either c (2*(treatment=="c"))
or d (2*(treatment=="d")). You may need to read this several times before the penny drops. Note
that ‘logical equals’ is a double equals sign without a space in between (==). You need to understand the
distinction between:

x <- y x is assigned the value of y (x gets the values of y);
x = y in a function or a list x is set to y unless you specify otherwise;
x == y produces TRUE if x is exactly equal to y and FALSE otherwise.

ESSENTIALS OF THE R LANGUAGE 27

2.3 Generating sequences

An important way of creating vectors is to generate a sequence of numbers. The simplest sequences are in
steps of 1, and the colon operator is the simplest way of generating such sequences. All you do is specify the
first and last values separated by a colon. Here is a sequence from 0 up to 10:

0:10

[1] 0 1 2 3 4 5 6 7 8 9 10

Here is a sequence from 15 down to 5:

15:5

[1] 15 14 13 12 11 10 9 8 7 6 5

To generate a sequence in steps other than 1, you use the seq function. There are various forms of this, of
which the simplest has three arguments:from, to, by (the initial value, the final value and the increment).
If the initial value is smaller than the final value, the increment should be positive, like this:

seq(0, 1.5, 0.1)

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

If the initial value is larger than the final value, the increment should be negative, like this:

seq(6,4,-0.2)

[1] 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0

In many cases, you want to generate a sequence to match an existing vector in length. Rather than having
to figure out the increment that will get from the initial to the final value and produce a vector of exactly the
appropriate length, R provides the along and length options. Suppose you have a vector of population
sizes:

N <- c(55,76,92,103,84,88,121,91,65,77,99)

You need to plot this against a sequence that starts at 0.04 in steps of 0.01:

seq(from=0.04,by=0.01,length=11)

[1] 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

But this requires you to figure out the length of N. A simpler method is to use the along argument and
specify the vector, N, whose length has to be matched:

seq(0.04,by=0.01,along=N)

[1] 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

Alternatively, you can get R to work out the increment (0.01 in this example), by specifying the start and the
end values (from and to), and the name of the vector (N) whose length has to be matched:

seq(from=0.04,to=0.14,along=N)

[1] 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

An important application of the last option is to get the x values for drawing smooth lines through a scatterplot
of data using predicted values from a model (see p. 207).

28 THE R BOOK

Notice that when the increment does not match the final value, then the generated sequence stops short of
the last value (rather than overstepping it):

seq(1.4,2.1,0.3)

[1] 1.4 1.7 2.0

If you want a vector made up of sequences of unequal lengths, then use the sequence function. Suppose
that most of the five sequences you want to string together are from 1 to 4, but the second one is 1 to 3 and
the last one is 1 to 5, then:

sequence(c(4,3,4,4,4,5))

[1] 1 2 3 4 1 2 3 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5

2.3.1 Generating repeats

You will often want to generate repeats of numbers or characters, for which the function is rep. The object
that is named in the first argument is repeated a number of times as specified in the second argument. At its
simplest, we would generate five 9s like this:

rep(9,5)

[1] 9 9 9 9 9

You can see the issues involved by a comparison of these three increasingly complicated uses of the rep
function:

rep(1:4, 2)

[1] 1 2 3 4 1 2 3 4

rep(1:4, each = 2)

[1] 1 1 2 2 3 3 4 4

rep(1:4, each = 2, times = 3)

[1] 1 1 2 2 3 3 4 4 1 1 2 2
[13] 3 3 4 4 1 1 2 2 3 3 4 4

In the simplest case, the entire first argument is repeated (i.e. the sequence 1 to 4 appears twice). You often
want each element of the sequence to be repeated, and this is accomplished with the each argument. Finally,
you might want each number repeated and the whole series repeated a certain number of times (here three
times).

When each element of the series is to be repeated a different number of times, then the second argument
must be a vector of the same length as the vector comprising the first argument (length 4 in this example). So
if we want one 1, two 2s, three 3s and four 4s we would write:

rep(1:4,1:4)

[1] 1 2 2 3 3 3 4 4 4 4

In a more complicated case, there is a different but irregular repeat of each of the elements of the first
argument. Suppose that we need four 1s, one 2, four 3s and two 4s. Then we use the concatenation function
c to create a vector of length 4 c(4,1,4,2) which will act as the second argument to the rep function:

ESSENTIALS OF THE R LANGUAGE 29

rep(1:4,c(4,1,4,2))

[1] 1 1 1 1 2 3 3 3 3 4 4

Here is the most complex case with character data rather than numbers: each element of the series is repeated
an irregular number of times:

rep(c("cat","dog","gerbil","goldfish","rat"),c(2,3,2,1,3))

[1] "cat" "cat" "dog" "dog" "dog" "gerbil"
[7] "gerbil" "goldfish" "rat" "rat" "rat"

This is the most general, and also the most useful form of the rep function.

2.3.2 Generating factor levels

The function gl (‘generate levels’) is useful when you want to encode long vectors of factor levels. The
syntax for the three arguments is: ‘up to’, ‘with repeats of’, ‘to total length’. Here is the simplest case where
we want factor levels up to 4 with repeats of 3 repeated only once (i.e. to total length 12):

gl(4,3)

[1] 1 1 1 2 2 2 3 3 3 4 4 4
Levels: 1 2 3 4

Here is the function when we want that whole pattern repeated twice:

gl(4,3,24)

[1] 1 1 1 2 2 2 3 3 3 4 4 4
[13] 1 1 1 2 2 2 3 3 3 4 4 4

Levels: 1 2 3 4

If you want text for the factor levels, rather than numbers, use labels like this:

Temp <- gl(2, 2, 24, labels = c("Low", "High"))
Soft <- gl(3, 8, 24, labels = c("Hard","Medium","Soft"))
M.user <- gl(2, 4, 24, labels = c("N", "Y"))
Brand <- gl(2, 1, 24, labels = c("X", "M"))

data.frame(Temp,Soft,M.user,Brand)

Temp Soft M.user Brand
1 Low Hard N X
2 Low Hard N M
3 High Hard N X
4 High Hard N M
5 Low Hard Y X
6 Low Hard Y M
7 High Hard Y X
8 High Hard Y M
9 Low Medium N X

30 THE R BOOK

10 Low Medium N M
11 High Medium N X
12 High Medium N M
13 Low Medium Y X
14 Low Medium Y M
15 High Medium Y X
16 High Medium Y M
17 Low Soft N X
18 Low Soft N M
19 High Soft N X
20 High Soft N M
21 Low Soft Y X
22 Low Soft Y M
23 High Soft Y X
24 High Soft Y M

2.4 Membership: Testing and coercing in R

The concepts of membership and coercion may be unfamiliar. Membership relates to the class of an object
in R. Coercion changes the class of an object. For instance, a logical variable has class logical and mode
logical. This is how we create the variable:

lv <- c(T,F,T)

We can assess its membership by asking if it is a logical variable using the is.logical function:

is.logical(lv)

[1] TRUE

It is not a factor, and so it does not have levels:

levels(lv)
NULL

But we can coerce it be a two-level factor like this:

(fv <- as.factor(lv))

[1] TRUE FALSE TRUE
Levels: FALSE TRUE

is.factor(fv)

[1] TRUE

We can coerce a logical variable to be numeric: TRUE evaluates to 1 and FALSE evaluates to zero, like this:

(nv <- as.numeric(lv))

[1] 1 0 1

This is particularly useful as a shortcut when creating new factors with reduced numbers of levels (as we do
in model simplification).

ESSENTIALS OF THE R LANGUAGE 31

Table 2.3. Functions for testing (is) the attributes of different categories of object
(arrays, lists, etc.) and for coercing (as) the attributes of an object into a specified form.
Neither operation changes the attributes of the object unless you overwrite its name.

Type Testing Coercing

Array is.array as.array
Character is.character as.character
Complex is.complex as.complex
Dataframe is.data.frame as.data.frame
Double is.double as.double
Factor is.factor as.factor
List is.list as.list
Logical is.logical as.logical
Matrix is.matrix as.matrix
Numeric is.numeric as.numeric
Raw is.raw as.raw
Time series (ts) is.ts as.ts
Vector is.vector as.vector

In general, the expression as(object, value) is the way to coerce an object to a particular class.
Membership functions ask is.something and coercion functions say as.something.

Objects have a type, and you can test the type of an object using an is.type function (Table 2.3). For
instance, mathematical functions expect numeric input and text-processing functions expect character input.
Some types of objects can be coerced into other types. A familiar type of coercion occurs when we interpret
the TRUE and FALSE of logical variables as numeric 1 and 0, respectively. Factor levels can be coerced
to numbers. Numbers can be coerced into characters, but non-numeric characters cannot be coerced into
numbers.

as.numeric(factor(c("a","b","c")))

[1] 1 2 3

as.numeric(c("a","b","c"))

[1] NA NA NA

Warning message:
NAs introduced by coercion

as.numeric(c("a","4","c"))

[1] NA 4 NA
Warning message:
NAs introduced by coercion

If you try to coerce complex numbers to numeric the imaginary part will be discarded. Note thatis.complex
and is.numeric are never both TRUE.

We often want to coerce tables into the form of vectors as a simple way of stripping off their dimnames
(using as.vector), and to turn matrices into dataframes (as.data.frame). A lot of testing involves
the NOT operator ! in functions to return an error message if the wrong type is supplied. For instance, if

32 THE R BOOK

you were writing a function to calculate geometric means you might want to test to ensure that the input was
numeric using the !is.numeric function:

geometric <- function(x){
if(!is.numeric(x)) stop ("Input must be numeric")
exp(mean(log(x))) }
Here is what happens when you try to work out the geometric mean of character data:

geometric(c("a","b","c"))

Error in geometric(c("a", "b", "c")) : Input must be numeric

You might also want to check that there are no zeros or negative numbers in the input, because it would make
no sense to try to calculate a geometric mean of such data:

geometric <- function(x){
if(!is.numeric(x)) stop ("Input must be numeric")
if(min(x)<=0) stop ("Input must be greater than zero")
exp(mean(log(x))) }
Testing this:

geometric(c(2,3,0,4))

Error in geometric(c(2, 3, 0, 4)) : Input must be greater than zero

But when the data are OK there will be no messages, just the numeric answer:

geometric(c(10,1000,10,1,1))

[1] 10

When vectors are created by calculation from other vectors, the new vector will be as long as the longest
vector used in the calculation and the shorter variable will be recycled as necessary: here A is of length 10
and B is of length 3:

A <- 1:10
B <- c(2,4,8)
A * B

[1] 2 8 24 8 20 48 14 32 72 20
Warning message: longer object length is not a multiple of shorter
object length in: A * B

The vector B is recycled three times in full and a warning message in printed to indicate that the length of the
longer vector (A) is not a multiple of the shorter vector (B).

2.5 Missing values, infinity and things that are not numbers

Calculations can lead to answers that are plus infinity, represented in R by Inf, or minus infinity, which is
represented as -Inf:

3/0

[1] Inf

ESSENTIALS OF THE R LANGUAGE 33

-12/0

[1] -Inf

Calculations involving infinity can be evaluated: for instance,

exp(-Inf)

[1] 0

0/Inf

[1] 0

(0:3)ˆInf

[1] 0 1 Inf Inf

Other calculations, however, lead to quantities that are not numbers. These are represented in R by NaN (‘not
a number’). Here are some of the classic cases:

0/0

[1] NaN

Inf-Inf

[1] NaN

Inf/Inf

[1] NaN

You need to understand clearly the distinction between NaN and NA (this stands for ‘not available’ and
is the missing-value symbol in R; see below). The function is.nan is provided to check specifically for
NaN, and is.na also returns TRUE for NaN. Coercing NaN to logical or integer type gives an NA of the
appropriate type. There are built-in tests to check whether a number is finite or infinite:

is.finite(10)

[1] TRUE

is.infinite(10)

[1] FALSE

is.infinite(Inf)

[1] TRUE

2.5.1 Missing values: NA

Missing values in dataframes are a real source of irritation, because they affect the way that model-fitting
functions operate and they can greatly reduce the power of the modelling that we would like to do.

You may want to discover which values in a vector are missing. Here is a simple case:

y <- c(4,NA,7)

34 THE R BOOK

The missing value question should evaluate to FALSE TRUE FALSE. There are two ways of looking for
missing values that you might think should work, but do not. These involve treating NA as if it was a piece of
text and using double equals (==) to test for it. So this does not work:

y == NA

[1] NA NA NA

because it turns all the values into NA (definitively not what you intended). This does not work either:

y == "NA"

[1] FALSE NA FALSE

It correctly reports that the numbers are not character strings, but it returns NA for the missing value itself,
rather than TRUE as required. This is how you do it properly:

is.na(y)

[1] FALSE TRUE FALSE

To produce a vector with the NA stripped out, use subscripts with the not ! operator like this:

y[! is.na(y)]

[1] 4 7

This syntax is useful in editing out rows containing missing values from large dataframes. Here is a very
simple example of a dataframe with four rows and four columns:

y1 <- c(1,2,3,NA)
y2 <- c(5,6,NA,8)
y3 <- c(9,NA,11,12)
y4 <- c(NA,14,15,16)

full.frame <- data.frame(y1,y2,y3,y4)

reduced.frame <- full.frame[!is.na(full.frame$y1),]

so the new reduced.frame will have fewer rows than full.frame when the variable in full.frame
called full.frame$y1 contains one or more missing values.

reduced.frame

y1 y2 y3 y4
1 1 5 9 NA
2 2 6 NA 14
3 3 NA 11 15

Some functions do not work with their default settings when there are missing values in the data, and
mean is a classic example of this:

x <- c(1:8,NA)
mean(x)

[1] NA

ESSENTIALS OF THE R LANGUAGE 35

In order to calculate the mean of the non-missing values, you need to specify that the NA are to be removed,
using the na.rm=TRUE argument:

mean(x,na.rm=T)

[1] 4.5

Here is an example where we want to find the locations (7 and 8) of missing values within a vector called
vmv:

vmv <- c(1:6,NA,NA,9:12)
vmv

[1] 1 2 3 4 5 6 NA NA 9 10 11 12

Making an index of the missing values in an array could use the seq function, like this:

seq(along=vmv)[is.na(vmv)]

[1] 7 8

However, the result is achieved more simply using the which function like this:

which(is.na(vmv))

[1] 7 8

If the missing values are genuine counts of zero, you might want to edit the NA to 0. Use the is.na
function to generate subscripts for this:

vmv[is.na(vmv)] <- 0
vmv

[1] 1 2 3 4 5 6 0 0 9 10 11 12

Or use the ifelse function like this:

vmv <- c(1:6,NA,NA,9:12)
ifelse(is.na(vmv),0,vmv)

[1] 1 2 3 4 5 6 0 0 9 10 11 12

Be very careful when doing this, because most missing values are not genuine zeros.

2.6 Vectors and subscripts

A vector is a variable with one or more values of the same type. For instance, the numbers of peas in six pods
were 4, 7, 6, 5, 6 and 7. The vector called peas is one object of length = 6. In this case, the class of the
object is numeric. The easiest way to create a vector in R is to concatenate (link together) the six values
using the concatenate function, c, like this:

peas <- c(4, 7, 6, 5, 6, 7)

We can ask all sorts of questions about the vector called peas. For instance, what type of vector is it?

class(peas)

[1] "numeric"

36 THE R BOOK

How big is the vector?

length(peas)

[1] 6

The great advantage of a vector-based language is that it is very simple to ask quite involved questions that
involve all of the values in the vector. These vector functions are often self-explanatory:

mean(peas)

[1] 5.833333

max(peas)

[1] 7

min(peas)

[1] 4

Others might be more opaque:

quantile(peas)

0% 25% 50% 75% 100%
4.00 5.25 6.00 6.75 7.00

Another way to create a vector is to input data from the keyboard using the function called scan:

peas <- scan()

The prompt appears 1: which means type in the first number of peas (4) then press the return key, then the
prompt 2: appears (you type in 7) and so on. When you have typed in all six values, and the prompt 7: has
appeared, you just press the return key to tell R that the vector is now complete. R replies by telling you how
many items it has read:

1: 4
2: 7
3: 6
4: 5
5: 6
6: 7
7:

Read 6 items

For more realistic applications, the usual way of creating vectors is to read the data from a pre-prepared
computer file (as described in Chapter 3).

2.6.1 Extracting elements of a vector using subscripts

You will often want to use some but not all of the contents of a vector. To do this, you need to master the use
of subscripts (or indices as they are also known). In R, subscripts involve the use of square brackets []. Our
vector called peas shows the numbers of peas in six pods:

peas

[1] 4 7 6 5 6 7

ESSENTIALS OF THE R LANGUAGE 37

The first element of peas is 4, the second 7, and so on. The elements are indexed left to right, 1 to 6. It could
not be more straightforward. If we want to extract the fourth element of peas (which you can see is a 5) then
this is what we do:

peas[4]

[1] 5

If we want to extract several values (say the 2nd, 3rd and 6th) we use a vector to specify the pods we want as
subscripts, either in two stages like this:

pods <- c(2,3,6)
peas[pods]

[1] 7 6 7

or in a single step, like this:

peas[c(2,3,6)]

[1] 7 6 7

You can drop values from a vector by using negative subscripts. Here are all but the first values of peas:

peas[-1]

[1] 7 6 5 6 7

Here are all but the last (note the use of the length function to decide what is last):

peas[-length(peas)]

[1] 4 7 6 5 6

We can use these ideas to write a function called trim to remove (say) the largest two and the smallest two
values from a vector called x. First we have to sort the vector, then remove the smallest two values (these
will have subscripts 1 and 2), then remove the largest two values (which will have subscripts length(x)
and length(x)-1):

trim <- function(x) sort(x)[-c(1,2,length(x)-1,length(x))]

We can use trim on the vector called peas, expecting to get 6 and 6 as the result:

trim(peas)

[1] 6 6

Finally, we can use sequences of numbers to extract values from a vector. Here are the first three values of
peas:

peas[1:3]

[1] 4 7 6

Here are the even-numbered values of peas:

peas[seq(2,length(peas),2)]

[1] 7 5 7

38 THE R BOOK

or alternatively:

peas[1:length(peas) %% 2 == 0]

[1] 7 5 7

using the modulo function %% on the sequence 1 to 6 to extract the even numbers 2, 4 and 6. Note that vectors
in R could have length 0, and this could be useful in writing functions:

y <- 4.3
z <- y[-1]
length(z)

[1] 0

2.6.2 Classes of vector

The vector called peas contained numbers: in the jargon, it is of class numeric. R allows vectors of six
types, so long as all of the elements in one vector belong to the same class. The classes are logical, integer,
real, complex, string (or character) or raw. You will use numeric, logical and character variables all the time.
Engineers and mathematicians will use complex numbers. But you could go a whole career without ever
needing to use integer or raw.

2.6.3 Naming elements within vectors

It is often useful to have the values in a vector labelled in some way. For instance, if our data are counts of 0,
1, 2, . . . occurrences in a vector called counts,

(counts <- c(25,12,7,4,6,2,1,0,2))

[1] 25 12 7 4 6 2 1 0 2

so that there were 25 zeros, 12 ones and so on, it would be useful to name each of the counts with the relevant
number 0 to 8:

names(counts) <- 0:8

Now when we inspect the vector called counts we see both the names and the frequencies:

counts

0 1 2 3 4 5 6 7 8
25 12 7 4 6 2 1 0 2

If you have computed a table of counts, and you want to remove the names, then use the as.vector function
like this:

(st <- table(rpois(2000,2.3)))

0 1 2 3 4 5 6 7 8 9
205 455 510 431 233 102 43 13 7 1

as.vector(st)

[1] 205 455 510 431 233 102 43 13 7 1

ESSENTIALS OF THE R LANGUAGE 39

2.6.4 Working with logical subscripts

Take the example of a vector containing the 11 numbers 0 to 10:

x <- 0:10

There are two quite different kinds of things we might want to do with this. We might want to add up the
values of the elements:

sum(x)

[1] 55

Alternatively, we might want to count the elements that passed some logical criterion. Suppose we wanted to
know how many of the values were less than 5:

sum(x<5)

[1] 5

You see the distinction. We use the vector function sum in both cases. But sum(x) adds up the values of
the xs and sum(x<5) counts up the number of cases that pass the logical condition ‘x is less than 5’. This
works because of coercion (p. 30). Logical TRUE has been coerced to numeric 1 and logical FALSE has been
coerced to numeric 0.

That is all well and good, but how do you add up the values of just some of the elements of x? We specify
a logical condition, but we do not want to count the number of cases that pass the condition, we want to add
up all the values of the cases that pass. This is the final piece of the jigsaw, and involves the use of logical
subscripts. Note that when we counted the number of cases, the counting was applied to the entire vector,
using sum(x<5). To find the sum of the values of x that are less than 5, we write:

sum(x[x<5])

[1] 10

Let us look at this in more detail. The logical condition x<5 is either true or false:

x<5

[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

You can imagine false as being numeric 0 and true as being numeric 1. Then the vector of subscripts [x<5]
is five 1s followed by six 0s:

1*(x<5)

[1] 1 1 1 1 1 0 0 0 0 0 0

Now imagine multiplying the values of x by the values of the logical vector

x*(x<5)

[1] 0 1 2 3 4 0 0 0 0 0 0

When the function sum is applied, it gives us the answer we want: the sum of the values of the numbers
0 + 1 + 2 + 3 + 4 = 10.

40 THE R BOOK

sum(x*(x<5))

[1] 10

This produces the same answer as sum(x[x<5]), but is rather less elegant.
Suppose we want to work out the sum of the three largest values in a vector. There are two steps: first

sort the vector into descending order; then add up the values of the first three elements of the reverse-sorted
array. Let us do this in stages. First, the values of y:

y <- c(8,3,5,7,6,6,8,9,2,3,9,4,10,4,11)

Now if you apply sort to this, the numbers will be in ascending sequence, and this makes life slightly harder
for the present problem:

sort(y)

[1] 2 3 3 4 4 5 6 6 7 8 8 9
[13] 9 10 11

We can use the reverse function, rev like this (use the Up arrow key to save typing):

rev(sort(y))

[1] 11 10 9 9 8 8 7 6 6 5 4 4
[13] 3 3 2

So the answer to our problem is 11 + 10 + 9 = 30. But how to compute this? A range of subscripts is
simply a series generated using the colon operator. We want the subscripts 1 to 3, so this is:

rev(sort(y))[1:3]

[1] 11 10 9

So the answer to the exercise is just:

sum(rev(sort(y))[1:3])

[1] 30

Note that we have not changed the vector y in any way, nor have we created any new space-consuming
vectors during intermediate computational steps.

You will often want to find out which value in a vector is the maximum or the minimum. This is a question
about indices, and the answer you want is an integer indicating which element of the vector contains the
maximum (or minimum) out of all the values in that vector. Here is the vector:

x <- c(2,3,4,1,5,8,2,3,7,5,7)

So the answers we want are 6 (the maximum) and 4 (the minimum). The slow way to do it is like this:

which(x == max(x))

[1] 6

which(x == min(x))

[1] 4

ESSENTIALS OF THE R LANGUAGE 41

Better, however, to use the much quicker built-in functions which.max or which.min like this:

which.max(x)

[1] 6

which.min(x)

[1] 4

2.7 Vector functions

One of R’s great strengths is its ability to evaluate functions over entire vectors, thereby avoiding the need for
loops and subscripts. The most important vector functions are listed in Table 2.4. Here is a numeric vector:

y <- c(8,3,5,7,6,6,8,9,2,3,9,4,10,4,11)

Some vector functions produce a single number:

mean(y)

[1] 6.333333

Table 2.4. Vector functions used in R.

Operation Meaning

max(x) maximum value in x
min(x) minimum value in x
sum(x) total of all the values in x
mean(x) arithmetic average of the values in x
median(x) median value in x
range(x) vector of min(x) and max(x)
var(x) sample variance of x
cor(x,y) correlation between vectors x and y
sort(x) a sorted version of x
rank(x) vector of the ranks of the values in x
order(x) an integer vector containing the permutation to sort x into ascending order
quantile(x) vector containing the minimum, lower quartile, median, upper quartile, and maximum of x
cumsum(x) vector containing the sum of all of the elements up to that point
cumprod(x) vector containing the product of all of the elements up to that point
cummax(x) vector of non-decreasing numbers which are the cumulative maxima of the values in x up to

that point
cummin(x) vector of non-increasing numbers which are the cumulative minima of the values in x up to

that point
pmax(x,y,z) vector, of length equal to the longest of x, y or z, containing the maximum of x, y or z for the

ith position in each
pmin(x,y,z) vector, of length equal to the longest of x, y or z, containing the minimum of x, y or z for the

ith position in each
colMeans(x) column means of dataframe or matrix x
colSums(x) column totals of dataframe or matrix x
rowMeans(x) row means of dataframe or matrix x
rowSums(x) row totals of dataframe or matrix x

42 THE R BOOK

Others produce two numbers:

range(y)

[1] 2 11

here showing that the minimum was 2 and the maximum was 11. Other functions produce several numbers:

fivenum(y)

[1] 2.0 4.0 6.0 8.5 11.0

This is Tukey’s famous five-number summary: the minimum, the lower hinge, the median, the upper hinge
and the maximum (the hinges are explained on p. 346).

Perhaps the single most useful vector function in R is table. You need to see it in action to appreciate
just how good it is. Here is a huge vector called counts containing 10 000 random integers from a negative
binomial distribution (counts of fungal lesions on 10 000 individual leaves, for instance):

counts <- rnbinom(10000,mu=0.92,size=1.1)

Here is a look at the first 30 values in counts:

counts[1:30]

[1] 3 1 0 0 1 0 0 0 0 1 1 0 0 2 0 1 3 1 0 1 0 1 1 0 0 2 1 4 0 1

The question is this: how many zeros are there in the whole vector of 10 000 numbers, how many 1s, and so
on right up to the largest value within counts? A formidable task for you or me, but for R it is just:

table(counts)

counts
0 1 2 3 4 5 6 7 8 9 10 11 13

5039 2574 1240 607 291 141 54 29 11 9 3 1 1

There were 5039 zeros, 2574 ones, and so on up the largest counts (there was one 11 and one 13 in this
realization; you will have obtained different random numbers on your computer).

2.7.1 Obtaining tables of means using tapply

One of the most important functions in all of R is tapply. It does not sound like much from the name,
but you will use it time and again for calculating means, variances, sample sizes, minima and maxima. With
weather data, for instance, we might want the 12 monthly mean temperatures rather than the whole-year
average. We have a response variable, temperature, and a categorical explanatory variable, month:

data<-read.table("c:\\temp\\temperatures.txt",header=T)
attach(data)
names(data)

[1] "temperature" "lower" "rain" "month" "yr"

The function that we want to apply is mean. All we do is invoke the tapply function with three arguments:
the response variable, the categorical explanatory variable and the name of the function that we want to apply:

tapply(temperature,month,mean)

1 2 3 4 5 6

ESSENTIALS OF THE R LANGUAGE 43

7.930051 8.671136 11.200508 13.813708 17.880847 20.306151
7 8 9 10 11 12

22.673854 23.104924 19.344211 15.125976 10.720702 8.299830

It is easy to apply other functions in the same way: here are the monthly variances

tapply(temperature,month,var)

and the monthly minima

tapply(temperature,month,min)

If R does not have a built in function to do what you want (Table 2.4), then you can easily write your own.
Here, for instance, is a function to calculate the standard error of each mean (these are called anonymous
functions in R, because they are unnamed):

tapply(temperature,month,function(x) sqrt(var(x)/length(x)))

1 2 3 4 5 6
0.1401489 0.1414445 0.1358934 0.1476242 0.1673197 0.1596439

7 8 9 10 11 12
0.1539661 0.1516091 0.1309294 0.1155612 0.1291703 0.1398438

The tapply function is very flexible. It can produce multi-dimensional tables simply by replacing the
one categorical variable (month) by a list of categorical variables. Here are the monthly means calculated
separately for each year, as specified by list(yr,month). The variable you name first in the list (yr)
will appear as the row of the results table and the second will appear as the columns (month):

tapply(temperature,list(yr,month),mean)[,1:6]

1 2 3 4 5 6
1987 3.170968 6.871429 8.132258 14.92667 15.60645 17.73667
1988 8.048387 8.248276 9.959375 12.74483 17.31935 18.71667
1989 8.841935 9.482143 11.919355 11.09333 20.40323 21.23667
1990 9.445161 11.028571 12.487097 13.80000 20.16129 18.51667
1991 6.980645 4.817857 12.022581 13.14333 15.58065 16.88000
1992 6.964516 8.686207 11.477419 13.35000 20.45806 22.21667
1993 10.119355 6.985714 11.209677 14.17000 17.79355 21.10000
1994 8.825806 7.217857 11.806452 12.61667 16.23226 20.86000
1995 8.309677 10.439286 10.667742 14.79667 18.74063 19.94483
1996 7.019355 6.065517 8.487097 13.99667 14.38710 21.93667
1997 4.932258 10.178571 13.370968 15.00667 18.17419 19.93000
1998 8.759375 11.242857 11.719355 12.55333 19.43226 19.35000
1999 9.523333 8.485714 11.790323 14.65000 18.94839 20.00667
2000 8.229032 10.324138 11.900000 12.59000 18.22581 20.63333
2001 7.067742 9.121429 9.012903 12.65667 18.96452 20.52667
2002 9.067742 11.396429 12.319355 15.68667 16.81290 19.67667
2003 8.012903 8.171429 13.425806 15.69000 17.36452 22.80000
2004 8.261290 8.993103 10.354839 15.17000 17.98065 21.73667
2005 9.116129 7.032143 10.787097 13.78333 17.12258 22.00000

44 THE R BOOK

The subscripts [,1:6] simply restrict the output to the first six months. You can see at once that January
(month 1) 1993 was exceptionally warm and January 1987 exceptionally cold.

There is just one thing about tapply that might confuse you. If you try to apply a function that has
built-in protection against missing values, then tapply may not do what you want, producing NA instead of
the numerical answer. This is most likely to happen with the mean function because its default is to produce
NA when there are one or more missing values. The remedy is to provide an extra argument to tapply,
specifying that you want to see the average of the non-missing values. Use na.rm=TRUE to remove the
missing values like this:

tapply(temperature,yr,mean,na.rm=TRUE)

You might want to trim some of the extreme values before calculating the mean (the arithmetic mean is
famously sensitive to outliers). The trim option allows you to specify the fraction of the data (between 0
and 0.5) that you want to be omitted from the left- and right-hand tails of the sorted vector of values before
computing the mean of the central values:

tapply(temperature,yr,mean,trim=0.2)

1987 1988 1989 1990 1991 1992 1993
13.46000 13.74500 14.99726 15.16301 13.92237 14.32091 14.28000

2.7.2 The aggregate function for grouped summary statistics

Suppose that we have two response variables (y and z) and two explanatory variables (x and w) that we
might want to use to summarize functions like mean or variance of y and/or z. The aggregate function
has a formula method which allows elegant summaries of four kinds:

one to one aggregate(y ~ x, mean)
one to many aggregate(y ~ x + w, mean)
many to one aggregate(cbind(y,z) ~ x, mean)
many to many aggregate(cbind(y,z) ~ x + w, mean)

This is very useful for removing pseudoreplication from dataframes. Here is an example using a dataframe
with two continuous variables (Growth.rate andpH) and three categorical explanatory variables (Water,
Detergent and Daphnia):

data<-read.table("c:\\temp\\pHDaphnia.txt",header=T)
names(data)

[1] "Growth.rate" "Water" "Detergent" "Daphnia" "pH"

Here is one-to-one use of aggregate to find mean growth rate in the two water samples:

aggregate(Growth.rate~Water,data,mean)

Water Growth.rate
1 Tyne 3.685862
2 Wear 4.017948

Here is a one-to-many use to look at the interaction between Water and Detergent:

aggregate(Growth.rate~Water+Detergent,data,mean)

ESSENTIALS OF THE R LANGUAGE 45

Water Detergent Growth.rate
1 Tyne BrandA 3.661807
2 Wear BrandA 4.107857
3 Tyne BrandB 3.911116
4 Wear BrandB 4.108972
5 Tyne BrandC 3.814321
6 Wear BrandC 4.094704
7 Tyne BrandD 3.356203
8 Wear BrandD 3.760259

Finally, here is a many-to-many use to find mean pH as well as mean Growth.rate for the interaction
between Water and Detergent:

aggregate(cbind(pH,Growth.rate)~Water+Detergent,data,mean)

Water Detergent pH Growth.rate
1 Tyne BrandA 4.883908 3.661807
2 Wear BrandA 5.054835 4.107857
3 Tyne BrandB 5.043797 3.911116
4 Wear BrandB 4.892346 4.108972
5 Tyne BrandC 4.847069 3.814321
6 Wear BrandC 4.912128 4.094704
7 Tyne BrandD 4.809144 3.356203
8 Wear BrandD 5.097039 3.760259

2.7.3 Parallel minima and maxima: pmin and pmax

Here are three vectors of the same length, x, y and z. The parallel minimum function, pmin, finds the
minimum from any one of the three variables for each subscript, and produces a vector as its result (of length
equal to the longest of x, y, or z):

x

[1] 0.99822644 0.98204599 0.20206455 0.65995552 0.93456667 0.18836278

y

[1] 0.51827913 0.30125005 0.41676059 0.53641449 0.07878714 0.49959328

z

[1] 0.26591817 0.13271847 0.44062782 0.65120395 0.03183403 0.36938092

pmin(x,y,z)

[1] 0.26591817 0.13271847 0.20206455 0.53641449 0.03183403 0.18836278

Thus the first and second minima came from z, the third from x, the fourth from y, the fifth from z, and the
sixth from x. The functions min and max produce scalar results, not vectors.

46 THE R BOOK

2.7.4 Summary information from vectors by groups

The vector function tapply is one of the most important and useful vector functions to master. The ‘t’
stands for ‘table’ and the idea is to apply a function to produce a table from the values in the vector, based on
one or more grouping variables (often the grouping is by factor levels). This sounds much more complicated
than it really is:

data <- read.table("c:\\temp\\daphnia.txt",header=T)
attach(data)
names(data)

[1] "Growth.rate" "Water" "Detergent" "Daphnia"

The response variable is Growth.rate and the other three variables are factors (the analysis is on p. 528).
Suppose we want the mean growth rate for each detergent:

tapply(Growth.rate,Detergent,mean)

BrandA BrandB BrandC BrandD
3.88 4.01 3.95 3.56

This produces a table with four entries, one for each level of the factor called Detergent. To produce a
two-dimensional table we put the two grouping variables in a list. Here we calculate the median growth rate
for water type and daphnia clone:

tapply(Growth.rate,list(Water,Daphnia),median)

Clone1 Clone2 Clone3
Tyne 2.87 3.91 4.62
Wear 2.59 5.53 4.30

The first variable in the list creates the rows of the table and the second the columns. More detail on the
tapply function is given in Chapter 6 (p. 245).

2.7.5 Addresses within vectors

There is an important function called which for finding addresses within vectors. The vector y looks like
this:

y <- c(8,3,5,7,6,6,8,9,2,3,9,4,10,4,11)

Suppose we wanted to know which elements of y contained values bigger than 5. We type:

which(y>5)

[1] 1 4 5 6 7 8 11 13 15

Notice that the answer to this enquiry is a set of subscripts. We do not use subscripts inside the which
function itself. The function is applied to the whole array. To see the values of y that are larger than 5, we
just type:

y[y>5]

[1] 8 7 6 6 8 9 9 10 11

ESSENTIALS OF THE R LANGUAGE 47

Note that this is a shorter vector than y itself, because values of 5 or less have been left out:

length(y)

[1] 15

length(y[y>5])

[1] 9

2.7.6 Finding closest values

Finding the value in a vector that is closest to a specified value is straightforward using which. The vector
xv contains 1000 random numbers from a normal distribution with mean = 100 and standard deviation =
10:

xv <- rnorm(1000,100,10)

Here, we want to find the value of xv that is closest to 108.0. The logic is to work out the difference between
108 and each of the 1000 random numbers, then find which of these differences is the smallest. This is what
the R code looks like:

which(abs(xv-108)==min(abs(xv-108)))

[1] 332

The closest value to 108.0 is in location 332 within xv. But just how close to 108.0 is this 332nd value? We
use 332 as a subscript on xv to find this out:

xv[332]

[1] 108.0076

Now we can write a function to return the closest value to a specified value (sv) in any vector (xv):

closest <- function(xv,sv){
xv[which(abs(xv-sv)==min(abs(xv-sv)))] }

and run it like this:

closest(xv,108)

[1] 108.0076

2.7.7 Sorting, ranking and ordering

These three related concepts are important, and one of them (order) is difficult to understand on first
acquaintance. Let us take a simple example:

houses <- read.table("c:\\temp\\houses.txt",header=T)
attach(houses)
names(houses)

[1] "Location" "Price"

48 THE R BOOK

We apply the three different functions to the vector called Price:

ranks <- rank(Price)
sorted <- sort(Price)
ordered <- order(Price)

Then we make a dataframe out of the four vectors like this:

view <- data.frame(Price,ranks,sorted,ordered)
view

Price ranks sorted ordered
1 325 12.0 95 9
2 201 10.0 101 6
3 157 5.0 117 10
4 162 6.0 121 12
5 164 7.0 157 3
6 101 2.0 162 4
7 211 11.0 164 5
8 188 8.5 188 8
9 95 1.0 188 11
10 117 3.0 201 2
11 188 8.5 211 7
12 121 4.0 325 1

Rank

The prices themselves are in no particular sequence. The ranks column contains the value that is the rank of
the particular data point (value ofPrice), where 1 is assigned to the lowest data point andlength(Price)
– here 12 – is assigned to the highest data point. So the first element, a price of 325, happens to be the highest
value in Price. You should check that there are 11 values smaller than 325 in the vector called Price.
Fractional ranks indicate ties. There are two 188s in Price and their ranks are 8 and 9. Because they are tied,
each gets the average of their two ranks (8 + 9)/2 = 8.5. The lowest price is 95, indicated by a rank of 1.

Sort

The sorted vector is very straightforward. It contains the values of Price sorted into ascending order. If
you want to sort into descending order, use the reverse order function rev like this:

y <- rev(sort(x))

Note that sort is potentially very dangerous, because it uncouples values that might need to be in the same
row of the dataframe (e.g. because they are the explanatory variables associated with a particular value of
the response variable). It is bad practice, therefore, to write x <- sort(x), not least because there is no
‘unsort’ function.

Order

This is the most important of the three functions, and much the hardest to understand on first acquaintance.
The numbers in this column are subscripts between 1 and 12. The order function returns an integer vector
containing the permutation that will sort the input into ascending order. You will need to think about this

ESSENTIALS OF THE R LANGUAGE 49

one. The lowest value of Price is 95. Look at the dataframe and ask yourself what is the subscript in the
original vector called Price where 95 occurred. Scanning down the column, you find it in row number 9.
This is the first value in ordered, ordered[1]. Where is the next smallest value (101) to be found within
Price? It is in position 6, so this is ordered[2]. The third smallest value of Price (117) is in position
10, so this is ordered[3]. And so on.

This function is particularly useful in sorting dataframes, as explained on p. 166. Using order with
subscripts is a much safer option than using sort, because with sort the values of the response variable
and the explanatory variables could be uncoupled with potentially disastrous results if this is not realized
at the time that modelling was carried out. The beauty of order is that we can use order(Price) as a
subscript for Location to obtain the price-ranked list of locations:

Location[order(Price)]

[1] Reading Staines Winkfield Newbury
[5] Bracknell Camberley Bagshot Maidenhead
[9] Warfield Sunninghill Windsor Ascot

When you see it used like this, you can see exactly why the function is called order. If you want to reverse
the order, just use the rev function like this:

Location[rev(order(Price))]

[1] Ascot Windsor Sunninghill Warfield
[5] Maidenhead Bagshot Camberley Bracknell
[9] Newbury Winkfield Staines Reading

Make sure you understand why some of the brackets are round and some are square.

2.7.8 Understanding the difference between unique and duplicated

The difference is best seen with a simple example. Here is a vector of names:

names <- c("Williams","Jones","Smith","Williams","Jones","Williams")

We can see how many times each name appears using table:

table(names)

names
Jones Smith Williams

2 1 3

It is clear that the vector contains just three different names. The function called unique extracts these three
unique names, creating a vector of length 3, unsorted, in the order in which the names are encountered in the
vector:

unique(names)

[1] "Williams" "Jones" "Smith"

In contrast, the function called duplicated produces a vector, of the same length as the vector of names,
containing the logical values either FALSE or TRUE, depending upon whether or not that name has appeared
already (reading from the left). You need to see this in action to understand what is happening, and why it

50 THE R BOOK

might be useful:

duplicated(names)

[1] FALSE FALSE FALSE TRUE TRUE TRUE

The first three names are not duplicated (FALSE), but the last three are all duplicated (TRUE). We can mimic
the unique function by using this vector as subscripts like this:

names[!duplicated(names)]

[1] "Williams" "Jones" "Smith"

Note the use of the NOT operator (!) in front of the duplicated function. There you have it: if you want
a shortened vector, containing only the unique values in names, then use unique, but if you want a vector
of the same length as names then use duplicated. You might use this to extract values from a different
vector (salaries, for instance) if you wanted the mean salary, ignoring the repeats:

salary <- c(42,42,48,42,42,42)
mean(salary)

[1] 43

salary[!duplicated(names)]

[1] 42 42 48

mean(salary[!duplicated(names)])

[1] 44

Note that this is not the same answer as would be obtained by omitting the duplicate salaries, because two of
the people (Jones and Williams) had the same salary (42). Here is the wrong answer:

mean(salary[!duplicated(salary)])

[1] 45

2.7.9 Looking for runs of numbers within vectors

The function called rle, which stands for ‘run length encoding’ is most easily understood with an example.
Here is a vector of 150 random numbers from a Poisson distribution with mean 0.7:

(poisson <- rpois(150,0.7))

[1] 1 1 0 0 2 1 0 1 0 0 1 1 1 0 1 1 2 1 1 0 1 0 2 1 1 2 0 2 0 1 0 0 0 2 0
[36] 1 0 4 0 0 1 0 1 0 1 0 2 1 1 1 0 1 0 1 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0
[71] 2 1 1 1 1 0 1 0 1 0 0 1 1 0 1 0 2 1 1 2 0 1 0 1 0 0 0 1 1 0 1 2 2 0 1
[106] 0 0 0 0 0 0 1 0 0 2 1 2 0 2 0 2 2 1 1 0 2 0 1 1 2 2 2 1 1 1 1 0 0 0 1
[141] 0 2 1 4 0 0 2 1 0 1

We can do our own run length encoding on the vector by eye: there is a run of two 1s, then a run of two 0s,
then a single 2, then a single 1, then a single 0, and so on. So the run lengths are 2, 2, 1, 1, 1, 1, The
values associated with these runs were 1, 0, 2, 1, 0, 1, Here is the output from rle:

rle(poisson)

Run Length Encoding

ESSENTIALS OF THE R LANGUAGE 51

lengths: int [1:93] 2 2 1 2 1 1 2 3 1 2 1 ...
values : num [1:93] 1 0 2 1 0 1 0 1 2 1 ...

The object produced by rle is a list of two vectors: the lengths of the runs and the values that did the running.
To find the longest run, and the value associated with that longest run, we use the indexed lists like this:

max(rle(poisson)[[1]])

[1] 7

So the longest run in this vector of numbers was 7. But 7 of what? We use which to find the location of the
7 in lengths, then apply this index to values to find the answer:

which(rle(poisson)[[1]]==7)

[1] 55

rle(poisson)[[2]][55]

[1] 0

So, not surprisingly given that the mean was just 0.7, the longest run was of zeros.
Here is a function to return the length of the run and its value for any vector:

run.and.value <- function (x) {
a <- max(rle(poisson)[[1]])
b <- rle(poisson)[[2]][which(rle(poisson)[[1]] == a)]

cat("length = ",a," value = ",b, "\n")}
Testing the function on the vector of 150 Poisson data gives:

run.and.value(poisson)

length = 7 value = 0

It is sometimes of interest to know the number of runs in a given vector (for instance, the lower the number of
runs, the more aggregated the numbers; and the greater the number of runs, the more regularly spaced out).
We use the length function for this:

length(rle(poisson)[[2]])

[1] 93

indicating that the 150 values were arranged in 93 runs (this is an intermediate value, characteristic of a
random pattern). The value 93 appears in square brackets [1:93] in the output of the run length encoding
function.

In a different example, suppose we had n1 values of 1 representing ‘present’ and n2 values of 0 representing
‘absent’; then the minimum number of runs would be 2 (a solid block of 1s then a sold block of 0s). The
maximum number of runs would be 2n + 1 if they alternated (until the smaller number n = min(n1,n2)
ran out). Here is a simple runs test based on 1000 randomizations of 25 ones and 30 zeros:

n1 <- 25
n2 <- 30
y <- c(rep(1,n1),rep(0,n2))
len <- numeric(10000)
for (i in 1:10000) len[i] <- length(rle(sample(y))[[2]])
quantile(len,c(0.025,0.975))

52 THE R BOOK

2.5% 97.5%
21 35

Thus, for these data (n1 = 25 and n2 = 30) an aggregated pattern would score 21 or fewer runs, and a
regular pattern would score 35 or more runs. Any scores between 21 and 35 fall within the realm of random
patterns.

2.7.10 Sets: union, intersect and setdiff

There are three essential functions for manipulating sets. The principles are easy to see if we work with an
example of two sets:

setA <- c("a", "b", "c", "d", "e")
setB <- c("d", "e", "f", "g")

Make a mental note of what the two sets have in common, and what is unique to each.
The union of two sets is everything in the two sets taken together, but counting elements only once that

are common to both sets:

union(setA,setB)

[1] "a" "b" "c" "d" "e" "f" "g"

The intersection of two sets is the material that they have in common:

intersect(setA,setB)

[1] "d" "e"

Note, however, that the difference between two sets is order-dependent. It is the material that is in the
first named set, that is not in the second named set. Thus setdiff(A,B) gives a different answer than
setdiff(B,A). For our example:

setdiff(setA,setB)

[1] "a" "b" "c"

setdiff(setB,setA)

[1] "f" "g"

Thus, it should be the case that setdiff(setA,setB) plus intersect(setA,setB) plus setd-
iff(setB,setA) is the same as the union of the two sets. Let us check:

all(c(setdiff(setA,setB),intersect(setA,setB),setdiff(setB,setA))==
union(setA,setB))

[1] TRUE

There is also a built-in function setequal for testing if two sets are equal:

setequal(c(setdiff(setA,setB),intersect(setA,setB),setdiff(setB,setA)),
union(setA,setB))

[1] TRUE

ESSENTIALS OF THE R LANGUAGE 53

You can use %in% for comparing sets. The result is a logical vector whose length matches the vector on
the left:

setA %in% setB

[1] FALSE FALSE FALSE TRUE TRUE

setB %in% setA

[1] TRUE TRUE FALSE FALSE

Using these vectors of logical values as subscripts, we can demonstrate, for instance, that setA[setA
%in% setB] is the same as intersect(setA,setB):

setA[setA %in% setB]

[1] "d" "e"

intersect(setA,setB)

[1] "d" "e"

2.8 Matrices and arrays

An array is a multi-dimensional object. The dimensions of an array are specified by its dim attribute, which
gives the maximal indices in each dimension. So for a three-dimensional array consisting of 24 numbers in a
sequence 1:24, with dimensions 2 × 4 × 3, we write:

y <- 1:24
dim(y) <- c(2,4,3)
y

, , 1

[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8

, , 2

[,1] [,2] [,3] [,4]
[1,] 9 11 13 15
[2,] 10 12 14 16

, , 3

[,1] [,2] [,3] [,4]
[1,] 17 19 21 23
[2,] 18 20 22 24

This produces three two-dimensional tables, because the third dimension is 3. This is what happens when
you change the dimensions:

dim(y) <- c(3,2,4)
y

54 THE R BOOK

, , 1

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

, , 2

[,1] [,2]
[1,] 7 10
[2,] 8 11
[3,] 9 12

, , 3

[,1] [,2]
[1,] 13 16
[2,] 14 17
[3,] 15 18

, , 4

[,1] [,2]
[1,] 19 22
[2,] 20 23
[3,] 21 24

Now we have four two-dimensional tables, each of three rows and two columns. Keep looking at these two
examples until you are sure that you understand exactly what has happened here.

A matrix is a two-dimensional array containing numbers. A dataframe is a two-dimensional list containing
(potentially a mix of) numbers, text or logical variables in different columns. When there are two subscripts
[5,3] to an object like a matrix or a dataframe, the first subscript refers to the row number (5 in this example;
the rows are defined as margin number 1) and the second subscript refers to the column number (3 in this
example; the columns are margin number 2). There is an important and powerful convention in R, such that
when a subscript appears as a blank it is understood to mean ‘all of’. Thus:

� [,4] means all rows in column 4 of an object;

� [2,] means all columns in row 2 of an object.

2.8.1 Matrices

There are several ways of making a matrix. You can create one directly like this:

X <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)
X

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

ESSENTIALS OF THE R LANGUAGE 55

where, by default, the numbers are entered column-wise. The class and attributes of X indicate that it is a
matrix of three rows and three columns (these are its dim attributes):

class(X)

[1] "matrix"

attributes(X)

$dim
[1] 3 3

In the next example, the data in the vector appear row-wise, so we indicate this with byrow=T:

vector <- c(1,2,3,4,4,3,2,1)
V <- matrix(vector,byrow=T,nrow=2)
V

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 4 3 2 1

Another way to convert a vector into a matrix is by providing the vector object with two dimensions (rows
and columns) using the dim function like this:

dim(vector) <- c(4,2)

We can check that vector has now become a matrix:

is.matrix(vector)

[1] TRUE

We need to be careful, however, because we have made no allowance at this stage for the fact that the data
were entered row-wise into vector:

vector

[,1] [,2]
[1,] 1 4
[2,] 2 3
[3,] 3 2
[4,] 4 1

The matrix we want is the transpose, t, of this matrix:

(vector <- t(vector))

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 4 3 2 1

2.8.2 Naming the rows and columns of matrices

At first, matrices have numbers naming their rows and columns (see above). Here is a 4 × 5 matrix of random
integers from a Poisson distribution with mean 1.5:

56 THE R BOOK

X <- matrix(rpois(20,1.5),nrow=4)
X

[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 2 5 3
[2,] 1 1 3 1 3
[3,] 3 1 0 2 2
[4,] 1 0 2 1 0

Suppose that the rows refer to four different trials and we want to label the rows ‘Trial.1’ etc. We employ the
function rownames to do this. We could use the paste function (see p. 87) but here we take advantage of
the prefix option:

rownames(X) <- rownames(X,do.NULL=FALSE,prefix="Trial.")
X

[,1] [,2] [,3] [,4] [,5]
Trial.1 1 0 2 5 3
Trial.2 1 1 3 1 3
Trial.3 3 1 0 2 2
Trial.4 1 0 2 1 0

For the columns we want to supply a vector of different names for the five drugs involved in the trial, and use
this to specify the colnames(X):

drug.names <- c("aspirin", "paracetamol", "nurofen", "hedex", "placebo")
colnames(X) <- drug.names
X

aspirin Paracetamol nurofen hedex placebo
Trial.1 1 0 2 5 3
Trial.2 1 1 3 1 3
Trial.3 3 1 0 2 2
Trial.4 1 0 2 1 0

Alternatively, you can use the dimnames function to give names to the rows and/or columns of a matrix.
In this example we want the rows to be unlabelled (NULL) and the column names to be of the form ‘drug.1’,
‘drug.2’, etc. The argument to dimnames has to be a list (rows first, columns second, as usual) with the
elements of the list of exactly the correct lengths (4 and 5 in this particular case):

dimnames(X) <- list(NULL,paste("drug.",1:5,sep=""))
X

drug.1 drug.2 drug.3 drug.4 drug.5
[1,] 1 0 2 5 3
[2,] 1 1 3 1 3
[3,] 3 1 0 2 2
[4,] 1 0 2 1 0

2.8.3 Calculations on rows or columns of the matrix

We could use subscripts to select parts of the matrix, with a blank meaning ‘all of the rows’ or ‘all of
the columns’. Here is the mean of the rightmost column (number 5), calculated over all the rows (blank

ESSENTIALS OF THE R LANGUAGE 57

then comma),

mean(X[,5])

[1] 2

or the variance of the bottom row, calculated over all of the columns (a blank in the second position),

var(X[4,])

[1] 0.7

There are some special functions for calculating summary statistics on matrices:

rowSums(X)

[1] 11 9 8 4

colSums(X)

[1] 6 2 7 9 8

rowMeans(X)

[1] 2.2 1.8 1.6 0.8

colMeans(X)

[1] 1.50 0.50 1.75 2.25 2.00

These functions are built for speed, and blur some of the subtleties of dealing with NA or NaN. If such subtlety
is an issue, then use apply instead (p. 61). Remember that columns are margin number 2 and rows are
margin number 1:

apply(X,2,mean)

[1] 1.50 0.50 1.75 2.25 2.00

You might want to sum groups of rows within columns, and rowsum (singular and all lower case, in
contrast to rowSums, above) is a very efficient function for this. In this example, we want to group together
row 1 and row 4 (as group A) and row 2 and row 3 (group B). Note that the grouping vector has to have length
equal to the number of rows:

group=c("A","B","B","A")
rowsum(X, group)

[,1] [,2] [,3] [,4] [,5]
A 2 0 4 6 3
B 4 2 3 3 5

You could achieve the same ends (but more slowly) with tapply or aggregate:

tapply(X, list(group[row(X)], col(X)), sum)

1 2 3 4 5
A 2 0 4 6 3
B 4 2 3 3 5

Note the use of row(X) and col(X), with row(X) used as a subscript on group.

58 THE R BOOK

aggregate(X,list(group),sum)

Group.1 V1 V2 V3 V4 V5
1 A 2 0 4 6 3
2 B 4 2 3 3 5

Suppose that we want to shuffle the elements of each column of a matrix independently. We apply the
function sample to each column (margin number 2) like this:

apply(X,2,sample)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 2 1 3
[2,] 3 1 0 1 3
[3,] 1 0 3 2 0
[4,] 1 0 2 5 2

apply(X,2,sample)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 0 5 2
[2,] 1 1 2 1 3
[3,] 3 0 2 2 3
[4,] 1 0 3 1 0

and so on, for as many shuffled samples as you need.

2.8.4 Adding rows and columns to the matrix

In this particular case we have been asked to add a row at the bottom showing the column means, and a
column at the right showing the row variances:

X <- rbind(X,apply(X,2,mean))
X <- cbind(X,apply(X,1,var))
X

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.0 0.0 2.00 5.00 3 3.70000
[2,] 1.0 1.0 3.00 1.00 3 1.20000
[3,] 3.0 1.0 0.00 2.00 2 1.30000
[4,] 1.0 0.0 2.00 1.00 0 0.70000
[5,] 1.5 0.5 1.75 2.25 2 0.45625

Note that the number of decimal places varies across columns, with one in columns 1 and 2, two in columns
3 and 4, none in column 5 (integers) and five in column 6. The default in R is to print the minimum number
of decimal places consistent with the contents of the column as a whole.

Next, we need to label the sixth column as ‘variance’ and the fifth row as ‘mean’:

colnames(X) <- c(1:5,"variance")
rownames(X) <- c(1:4,"mean")
X

1 2 3 4 5 variance

1 1.0 0.0 2.00 5.00 3 3.70000
2 1.0 1.0 3.00 1.00 3 1.20000

ESSENTIALS OF THE R LANGUAGE 59

3 3.0 1.0 0.00 2.00 2 1.30000
4 1.0 0.0 2.00 1.00 0 0.70000
mean 1.5 0.5 1.75 2.25 2 0.45625

When a matrix with a single row or column is created by a subscripting operation, for example row <-
mat[2,], it is by default turned into a vector. In a similar way, if an array with dimension, say, 2 × 3 ×
1 × 4 is created by subscripting it will be coerced into a 2 × 3 × 4 array, losing the unnecessary dimension.
After much discussion this has been determined to be a feature of R. To prevent this happening, add the
option drop = FALSE to the subscripting. For example:

rowmatrix <- mat[2, , drop = FALSE]
colmatrix <- mat[, 2, drop = FALSE]
a <- b[1, 1, 1, drop = FALSE]

The drop = FALSE option should be used defensively when programming. For example, the
statement

somerows <- mat[index,]

will return a vector rather than a matrix if index happens to have length 1, and this might cause errors later
in the code. It should be written as:

somerows <- mat[index , , drop = FALSE]

2.8.5 The sweep function

The sweep function is used to ‘sweep out’ array summaries from vectors, matrices, arrays or dataframes. In
this example we want to express a matrix in terms of the departures of each value from its column mean.

matdata <- read.table("c: \\temp \\sweepdata.txt")
First, you need to create a vector containing the parameters that you intend to sweep out of the matrix. In this
case we want to compute the four column means:

(cols <- apply(matdata,2,mean))

V1 V2 V3 V4
4.60 13.30 0.44 151.60

Now it is straightforward to express all of the data in matdata as departures from the relevant column
means:

sweep(matdata,2,cols)

V1 V2 V3 V4
1 -1.6 -1.3 -0.04 -26.6
2 0.4 -1.3 0.26 14.4
3 2.4 1.7 0.36 22.4
4 2.4 0.7 0.26 -23.6
5 0.4 4.7 -0.14 -15.6
6 4.4 -0.3 -0.24 3.4
7 2.4 1.7 0.06 -36.6
8 -2.6 -0.3 0.06 17.4
9 -3.6 -3.3 -0.34 30.4
10 -4.6 -2.3 -0.24 14.4

60 THE R BOOK

Note the use of margin = 2 as the second argument to indicate that we want the sweep to be carried out
on the columns (rather than on the rows). A related function, scale, is used for centring and scaling data in
terms of standard deviations (p. 254).

You can see what sweep has done by doing the calculation long-hand. The operation of this particular
sweep is simply one of subtraction. The only issue is that the subtracted object has to have the same dimensions
as the matrix to be swept (in this example, 10 rows of 4 columns). Thus, to sweep out the column means, the
object to be subtracted from matdata must have the each column mean repeated in each of the 10 rows of
4 columns:

(col.means <- matrix(rep(cols,rep(10,4)),nrow=10))

[,1] [,2] [,3] [,4]
[1,] 4.6 13.3 0.44 151.6
[2,] 4.6 13.3 0.44 151.6
[3,] 4.6 13.3 0.44 151.6
[4,] 4.6 13.3 0.44 151.6
[5,] 4.6 13.3 0.44 151.6
[6,] 4.6 13.3 0.44 151.6
[7,] 4.6 13.3 0.44 151.6
[8,] 4.6 13.3 0.44 151.6
[9,] 4.6 13.3 0.44 151.6
[10,] 4.6 13.3 0.44 151.6

Then the same result as we got from sweep is obtained simply by

matdata-col.means

Suppose that you want to obtain the subscripts for a column-wise or a row-wise sweep of the data. Here
are the row subscripts repeated in each column:

apply(matdata,2,function (x) 1:10)

V1 V2 V3 V4
[1,] 1 1 1 1
[2,] 2 2 2 2
[3,] 3 3 3 3
[4,] 4 4 4 4
[5,] 5 5 5 5
[6,] 6 6 6 6
[7,] 7 7 7 7
[8,] 8 8 8 8
[9,] 9 9 9 9
[10,] 10 10 10 10

Here are the column subscripts repeated in each row:

t(apply(matdata,1,function (x) 1:4))

[,1] [,2] [,3] [,4]
1 1 2 3 4
2 1 2 3 4
3 1 2 3 4
4 1 2 3 4
5 1 2 3 4

ESSENTIALS OF THE R LANGUAGE 61

6 1 2 3 4
7 1 2 3 4
8 1 2 3 4
9 1 2 3 4
10 1 2 3 4

Here is the same procedure using sweep:

sweep(matdata,1,1:10,function(a,b) b)

[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 2 2 2 2
[3,] 3 3 3 3
[4,] 4 4 4 4
[5,] 5 5 5 5
[6,] 6 6 6 6
[7,] 7 7 7 7
[8,] 8 8 8 8
[9,] 9 9 9 9
[10,] 10 10 10 10

sweep(matdata,2,1:4,function(a,b) b)

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 1 2 3 4
[3,] 1 2 3 4
[4,] 1 2 3 4
[5,] 1 2 3 4
[6,] 1 2 3 4
[7,] 1 2 3 4
[8,] 1 2 3 4
[9,] 1 2 3 4
[10,] 1 2 3 4

2.8.6 Applying functions with apply, sapply and lapply

The apply function is used for applying functions to the rows or columns of matrices or dataframes. For
example, here is a matrix with four rows and six columns:

(X <- matrix(1:24,nrow=4))

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 5 9 13 17 21
[2,] 2 6 10 14 18 22
[3,] 3 7 11 15 19 23
[4,] 4 8 12 16 20 24

Note that placing the expression to be evaluated in parentheses (as above) causes the value of the result to be
printed on the screen. Often you want to apply a function across one of the margins of a matrix. Margin 1

62 THE R BOOK

refers to the rows and margin 2 to the columns. Here are the row totals (four of them):

apply(X,1,sum)

[1] 66 72 78 84

and here are the column totals (six of them):

apply(X,2,sum)

[1] 10 26 42 58 74 90

Note that in both cases, the answer produced by apply is a vector rather than a matrix. You can apply
functions to the individual elements of the matrix rather than to the margins. The margin you specify influences
only the shape of the resulting matrix.

apply(X,1,sqrt)

[,1] [,2] [,3] [,4]
[1,] 1.000000 1.414214 1.732051 2.000000
[2,] 2.236068 2.449490 2.645751 2.828427
[3,] 3.000000 3.162278 3.316625 3.464102
[4,] 3.605551 3.741657 3.872983 4.000000
[5,] 4.123106 4.242641 4.358899 4.472136
[6,] 4.582576 4.690416 4.795832 4.898979

apply(X,2,sqrt)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.000000 2.236068 3.000000 3.605551 4.123106 4.582576
[2,] 1.414214 2.449490 3.162278 3.741657 4.242641 4.690416
[3,] 1.732051 2.645751 3.316625 3.872983 4.358899 4.795832
[4,] 2.000000 2.828427 3.464102 4.000000 4.472136 4.898979

Here are the shuffled numbers from each of the rows, using sample without replacement:

apply(X,1,sample)

[,1] [,2] [,3] [,4]
[1,] 5 14 19 8
[2,] 21 10 7 16
[3,] 17 18 15 24
[4,] 1 22 23 4
[5,] 9 2 3 12
[6,] 13 6 11 20

Note that the resulting matrix has six rows and four columns (i.e. it has been transposed).
You can supply your own function definition (here x2 + x) within apply like this:

apply(X,1,function(x) xˆ 2+x)

[,1] [,2] [,3] [,4]
[1,] 2 6 12 20
[2,] 30 42 56 72
[3,] 90 110 132 156
[4,] 182 210 240 272

ESSENTIALS OF THE R LANGUAGE 63

[5,] 306 342 380 420
[6,] 462 506 552 600

This is an anonymous function because the function is not named.
If you want to apply a function to a vector (rather than to the margin of a matrix) then use sapply .

Here is the code to generate a list of sequences from 1:3 up to 1:7 (see p. 30):

sapply(3:7, seq)

[[1]]
[1] 1 2 3
[[2]]
[1] 1 2 3 4
[[3]]
[1] 1 2 3 4 5
[[4]]
[1] 1 2 3 4 5 6
[[5]]
[1] 1 2 3 4 5 6 7

The function sapply is most useful with complicated iterative calculations. The following data show decay
of radioactive emissions over a 50-day period, and we intend to use non-linear least squares (see p. 715) to
estimate the decay rate a in y = exp(–ax):

sapdecay <- read.table("c:\\temp\\sapdecay.txt",header=T)
attach(sapdecay)
names(sapdecay)

[1] "x" "y"

We need to write a function to calculate the sum of the squares of the differences between the observed (y)
and predicted (yf) values of y, when provided with a specific value of the parameter a:

sumsq <- function(a,xv=x,yv=y)
{ yf <- exp(-a*xv)
sum((yv-yf)ˆ2) }

We can get a rough idea of the decay constant, a, for these data by linear regression of log(y) against x, like
this:

lm(log(y)~x)

Coefficients:

(Intercept) x
0.04688 -0.05849

So our parameter a is somewhere close to 0.058. We generate a range of values for a spanning an interval on
either side of 0.058:

a <- seq(0.01,0.2,.005)

Now we can use sapply to apply the sum of squares function for each of these values of a (without writing
a loop), and plot the deviance against the parameter value for a:

plot(a,sapply(a,sumsq),type="l")

64 THE R BOOK

6
5

4
3

2sa
pp

ly
 (

a,
 s

um
sq

)

1
0

0.05 0.10 0.15 0.20
a

This shows that the least-squares estimate of a is indeed close to 0.06 (this is the value of a associated with
the minimum deviance). To extract the minimum value of a we use min with subscripts (square brackets):

a[min(sapply(a,sumsq))==sapply(a,sumsq)]

[1] 0.055

Finally, we could use this value of a to generate a smooth exponential function to fit through our scatter of
data points:

plot(x,y)
xv <- seq(0,50,0.1)
lines(xv,exp(-0.055*xv))

1.
0

0.
8

0.
6

0.
4

0.
2

0 10 20 30 40 50
x

y

ESSENTIALS OF THE R LANGUAGE 65

Here is the same procedure streamlined by using the optimize function. Write a function showing how
the sum of squares depends on the value of the parameter a:

fa <- function(a) sum((y-exp(-a*x))ˆ2)

Now use optimize with a specified range of values for a, here c(0.01,0.1), to find the value of a that
minimizes the sum of squares:

optimize(fa,c(0.01,0.1))

$minimum
[1] 0.05538411
$objective
[1] 0.01473559

The value of a is that minimizes the sum of squares is 0.055 38 and the minimum value of the sum of squares
is 0.0147.

What if we had chosen a different way of assessing the fit of the model to the data? Instead of minimizing
the sum of the squares of the residuals, we might want to minimize the sum of the absolute values of the
residuals. We need to write a new function to calculate this quantity:

fb <- function(a) sum(abs(y-exp(-a*x)))

Then we use optimize as before:

optimize(fb,c(0.01,0.1))

$minimum
[1] 0.05596058
$objective
[1] 0.3939221

The results differ only in the fourth digit after the decimal point, and you could not choose between the
two methods from a plot of the model. Sums of squares are not the only way of doing statistics, just the
conventional way.

2.8.7 Using the max.col function

The task is to work out the number of plots on which a species is dominant in the Park Grass dataframe.
This involves scanning each row of a matrix and reporting on the column number that contains the maximum
value.

data <- read.table("c:\\temp\\pgfull.txt",header=T)
attach(data)
names(data)

[1] "AC" "AE" "AM" "AO" "AP" "AR" "AS"
[8] "AU" "BH" "BM" "CC" "CF" "CM" "CN"
[15] "CX" "CY" "DC" "DG" "ER" "FM" "FP"
[22] "FR" "GV" "HI" "HL" "HP" "HS" "HR"
[29] "KA" "LA" "LC" "LH" "LM" "LO" "LP"
[36] "OR" "PL" "PP" "PS" "PT" "QR" "RA"
[43] "RB" "RC" "SG" "SM" "SO" "TF" "TG"
[50] "TO" "TP" "TR" "VC" "VK" "plot" "lime"
[57] "species" "hay" "pH"

66 THE R BOOK

The species names are represented by two-letter codes (so, for example, ‘AC’ is Agrostis capillaris). We
define the dominant as the species that has the maximum biomass on a given plot. The first task is to create a
dataframe that contains only the species abundances (we do not want the plot numbers, or the treatments, or
the values of any covariates). For the Park Grass data, the first 54 columns contain species abundance values,
so we select all of the rows in the first 54 columns like this:

species <- data[,1:54]

Now we use the function max.col to go through all of the 89 rows, and for each row return the column
number that contains the maximum biomass:

max.col(species)

[1] 22 22 22 1 32 32 22 1 22 22 22 1 22 22 1 1 22 22 22 4 2 2 51 2 1
[26] 1 22 22 1 1 2 5 1 4 2 2 1 4 22 22 22 4 2 2 25 25 2 2 5 25
[51] 32 1 22 22 2 2 1 1 51 2 2 27 2 2 2 2 35 51 51 1 2 2 1 1 32
[76] 32 1 1 1 1 1 1 14 1 2 1 1 2 2

To get the identity of the dominant, we then extract the name of this column, using the index returned by
max.col as a subscript to the object called names(species):

names(species)[max.col(species)]

Finally, we use table to count up the total number of plots on which each species was dominant. The code
looks like this:

table(names(species)[max.col(species)])

AC AE AO AP CN FR HL HS LH LP TP
26 23 4 2 1 19 3 1 5 1 4

So AC was dominant on more plots than any other species, with AE in second place and FR in third. The
total number of species that were dominant on one or more plots is given by determining the length of
this table:

length(table(names(species)[max.col(species)]))

[1] 11

So the number of species that were present in the system, but never attained dominance was
54 − 11 = 43:

length(names(species))-length(table(names(species)[max.col(species)]))

[1] 43

There is no such function as ‘min.col’, but you can easily emulate it by using max.col with the negatives
of your data. It makes no sense to do it with this example, because several species are absent from every plot,
and the function would just pick one of the absent species at random. But, anyway,

max.col(-species)

picks out the identity (the column number) of one of the zeros from each row of the dataframe. In a case
where there was a unique minimum in each row, then this would find it.

ESSENTIALS OF THE R LANGUAGE 67

2.8.8 Restructuring a multi-dimensional array using aperm

There are circumstances where you may want to reorder the dimensions of an array. Here is an example of
an array with three dimensions: two sexes, three ages and four income groups. For simplicity and ease of
illustration the values in the array are just the numbers 1 to 24 in order (2 × 3 × 4 = 24):

data <- array(1:24, 2:4)

The second argument to the array function specifies the number of levels in dimensions 1, 2, and 3 using
the sequence-generator 2:4 to produce the numbers 2, 3 and 4. This is what the array looks like:

data

, , 1

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

, , 2

[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

, , 3

[,1] [,2] [,3]
[1,] 13 15 17
[2,] 14 16 18

, , 4

[,1] [,2] [,3]
[1,] 19 21 23
[2,] 20 22 24

There are four sub-tables, each with 2 rows and 3 columns. Now we give names to the factor levels
in each of the three dimensions: these are called the dimnames attributes and are allocated as lists
like this:

dimnames(data)[[1]] <- list("male","female")
dimnames(data)[[2]] <- list("young","mid","old")
dimnames(data)[[3]] <- list("A","B","C","D")
dimnames(data)

[[1]]
[1] "male" "female"

[[2]]
[1] "young" "mid" "old"

[[3]]
[1] "A" "B" "C" "D"

68 THE R BOOK

You can see the advantage of naming the dimensions by comparing the output of the array with (below) and
without names (above):

data

, , A

young mid old
male 1 3 5
female 2 4 6

, , B

young mid old
male 7 9 11
female 8 10 12

, , C

young mid old
male 13 15 17
female 14 16 18

, , D

young mid old
male 19 21 23
female 20 22 24

Suppose, however, that we want the four income groups (A–D) to be the columns in each of the sub-tables,
and the separate sub-tables to represent the two genders. This is a job for aperm. We need to specify the
order ‘age then income then gender’ in terms of the order of their dimensions (row, column, sub-table, namely
2 then 3 then 1) like this:

new.data <- aperm(data,c(2,3,1))
new.data

, , male

A B C D
young 1 7 13 19
mid 3 9 15 21
old 5 11 17 23

, , female

A B C D
young 2 8 14 20
mid 4 10 16 22
old 6 12 18 24

This will be tricky to see at first, but you should persevere, because aperm is a very useful function.

ESSENTIALS OF THE R LANGUAGE 69

2.9 Random numbers, sampling and shuffling

When debugging a program it is often useful to be able to get the same string of random numbers as you had
last time. Use the set.seed function to control this:

set.seed(375)
runif(3)

[1] 0.9613669 0.6918535 0.7302684

runif(3)

[1] 0.9228566 0.1603804 0.9642799

runif(3)

[1] 0.52880907 0.08660864 0.29075809

If you reset the seed with the same value, you get the same random numbers as last time:

set.seed(375)
runif(3)

[1] 0.9613669 0.6918535 0.7302684

You might want to obtain part of the same series of random numbers, and we use .Random.seed like this:

current<-.Random.seed
runif(3)

[1] 0.9228566 0.1603804 0.9642799

runif(3)

[1] 0.52880907 0.08660864 0.29075809

runif(3)

[1] 0.02590182 0.85520652 0.31350305

Resetting .Random.seed recreates the same series of random numbers:

.Random.seed<-current
runif(3)

[1] 0.9228566 0.1603804 0.9642799

Randomization is central to a great many scientific and statistical procedures. Generating random numbers
from a variety of probability distributions is explained in Chapter 7 (p. 272). Here we are concerned with
randomizing (shuffling or sampling from) the elements of a vector, as we might use when planning a designed
experiment (e.g. allocating treatments to individuals). There are two ways of sampling:

� sampling without replacement (where all of the values in the vector appear in the output, but in a randomized
sequence; i.e. the values have been shuffled);

� sampling with replacement (where some values are omitted, and other values appear more than once in
the output).

70 THE R BOOK

2.9.1 The sample function

The default sample function shuffles the contents of a vector into a random sequence while maintaining all
the numerical values intact. It is extremely useful for randomization in experimental design, in simulation
and in computationally intensive hypothesis testing. The vector y looks like this:

y <- c(8,3,5,7,6,6,8,9,2,3,9,4,10,4,11)

Here are two different shufflings of y:

sample(y)

[1] 8 8 9 9 2 10 6 7 3 11 5 4
[13] 6 3 4

sample(y)

[1] 9 3 9 8 8 6 5 11 4 6 4 7
[13] 3 2 10

The order of the values is different each time sample is invoked, but the same numbers are shuffled in
every case, and all the numbers in the original vector appear once in the output (so if there are two 9s in the
original data, there will be two 9s in the shuffled vector). This is called sampling without replacement. You
can specify the size of the sample you want as an optional second argument. Suppose we want five random
elements from y, in any one sample:

sample(y,5)

[1] 9 4 10 8 11

sample(y,5)

[1] 9 3 4 2 8

The option replace=T allows for sampling with replacement, which is the basis of bootstrapping (see
p. 570). The vector produced by the sample function with replace=T is the same length as the vector
sampled, but some values are left out at random and other values, again at random, appear two or more times.
In this sample, 10 has been left out, and there are now three 9s:

sample(y,replace=T)

[1] 9 6 11 2 9 4 6 8 8 4 4 4
[13] 3 9 3

In this next case, there are two 10s and only one 9:

sample(y,replace=T)

[1] 3 7 10 6 8 2 5 11 4 6 3 9
[13] 10 7 4

More advanced options in sample include specifying different probabilities with which each element is
to be sampled (prob=). For example, if we want to take four numbers at random from the sequence 1:10
without replacement where the probability of selection (p) is 5 times greater for the middle numbers (5 and
6) than for the first or last numbers, and we want to do this five times, we could write:

p <- c(1, 2, 3, 4, 5, 5, 4, 3, 2, 1)
x <- 1:10

ESSENTIALS OF THE R LANGUAGE 71

sapply(1:5,function(i) sample(x,4,prob=p))

[,1] [,2] [,3] [,4] [,5]
[1,] 8 7 4 10 8
[2,] 7 5 7 8 7
[3,] 4 4 3 4 5
[4,] 9 10 8 7 6

Thus, the four random numbers in the first trial were 8, 7, 4 and 9 (i.e. column 1). To learn more about
sapply, see p. 63.

2.10 Loops and repeats

The classic, Fortran-like loop is available in R. The syntax is a little different, but the idea is identical; you
request that an index, i, takes on a sequence of values, and that one or more lines of commands are executed
as many times as there are different values of i. Here is a loop executed five times with the values of i from 1
to 5; we print the square of each value:

for (i in 1:5) print(iˆ2)

[1] 1
[1] 4
[1] 9
[1] 16
[1] 25

For multiple lines of code, you use curly brackets {} to enclose material over which the loop is to work.
Note that the ‘hard return’ (the Enter key) at the end of each command line is an essential part of the structure
(you can replace the hard returns by semicolons if you like, but clarity is improved if you put each command
on a separate line):

j <- k <- 0
for (i in 1:5) {
j <- j+1
k <- k+i*j
print(i+j+k) }

[1] 3
[1] 9
[1] 20
[1] 38
[1] 65

Here we use a for loop to write a function to calculate factorial x (written x!) which is

x! = x × (x − 1) × (x − 2) × (x − 3) . . . × 2 × 1

So 4! = 4 × 3 × 2 = 24. Here is the function:

fac1 <- function(x) {
f <- 1

72 THE R BOOK

if (x<2) return (1)
for (i in 2:x) {
f <- f*i}
f }

That seems rather complicated for such a simple task, but we can try it out for the numbers 0 to 5:

sapply(0:5,fac1)

[1] 1 1 2 6 24 120

There are two other looping functions in R: repeat and while. We demonstrate their use for the purpose
of illustration, but we can do much better in terms of writing a compact function for finding factorials (see
below). First, the while function:

fac2 <- function(x) {
f <- 1
t <- x
while(t>1) {
f <- f*t
t <- t-1 }
return(f) }

The key point is that if you want to use while, you need to set up an indicator variable (t in this case) and
change its value within each iteration (t <- t-1). We test the function on the numbers 0 to 5:

sapply(0:5,fac2)

[1] 1 1 2 6 24 120

Finally, we demonstrate the use of the repeat function:

fac3 <- function(x) {
f <- 1
t <- x
repeat {
if (t<2) break
f <- f*t
t <- t-1 }
return(f) }

Because the repeat function contains no explicit limit, you need to be careful not to program an infinite
loop. You must include a logical escape clause that leads to a break command:

sapply(0:5,fac3)

[1] 1 1 2 6 24 120

It is almost always better to use a built-in function that operates on the entire vector and hence removes
the need for loops or repeats of any sort. In this case, we can make use of the cumulative product function,
cumprod. Here it is in action:

cumprod(1:5)

[1] 1 2 6 24 120

ESSENTIALS OF THE R LANGUAGE 73

This is already pretty close to what we need for our factorial function. It does not work for 0! of course,
because the whole vector would end up full of zeros if the first element in the vector was zero (try 0:5 and
see). The factorial of x > 0 is the maximum value from the vector produced by cumprod:

fac4 <- function(x) max(cumprod(1:x))

This definition has the desirable side effect that it also gets 0! correct, because when x is 0 the function finds
the maximum of 1 and 0 which is 1.

max(cumprod(1:0))

[1] 1

sapply(0:5,fac4)

[1] 1 1 2 6 24 120

Alternatively, you could adapt an existing built-in function to do the job. x! is the same as �(x + 1), so

fac5 <- function(x) gamma(x+1)
sapply(0:5,fac5)

[1] 1 1 2 6 24 120

Until quite recently there was no built-in factorial function in R, but now there is:

sapply(0:5,factorial)

[1] 1 1 2 6 24 120

2.10.1 Creating the binary representation of a number

Here is a function that uses the while function in converting a specified number to its binary representation.
The trick is that the smallest digit (0 for even or 1 for odd numbers) is always at the right-hand side of the
answer (in location 32 in this case):

binary <- function(x) {
i <- 0
string <- numeric(32)
while(x>0) {

string[32-i]< -x %% 2
x <- x%% 2
i <- i+1 }

first <- match(1,string)
string[first:32] }
The leading zeros (1 to first – 1) within the string are not printed. We run the function to find the binary
representation of the numbers 15 to 17:

sapply(15:17,binary)

[[1]]
[1] 1 1 1 1

[[2]]
[1] 1 0 0 0 0

74 THE R BOOK

[[3]]
[1] 1 0 0 0 1

The next function uses while to generate the Fibonacci series 1, 1, 2, 3, 5, 8, . . . in which each term
is the sum of its two predecessors. The key point about while loops is that the logical variable controlling
their operation is altered inside the loop. In this example, we alter n, the number whose Fibonacci number
we want, starting at n, reducing the value of n by 1 each time around the loop, and ending when n gets down
to 0. Here is the code:

fibonacci <- function(n) {
a <- 1
b <- 0
while(n>0)

{swap <- a
a <- a+b
b <- swap
n <- n-1 }

b }
An important general point about computing involves the use of the swap variable above. When we

replace a by a + b on line 6 we lose the original value of a. If we had not stored this value in swap, we
could not set the new value of b to the old value of a on line 7. Now test the function by generating the
Fibonacci numbers 1 to 10:

sapply(1:10,fibonacci)

[1] 1 1 2 3 5 8 13 21 34 55

2.10.2 Loop avoidance

It is good R programming practice to avoid using loops wherever possible. The use of vector functions (p. 41)
makes this particularly straightforward in many cases. Suppose that you wanted to replace all of the negative
values in an array by zeros. In the old days, you might have written something like this:

for (i in 1:length(y)) { if(y[i] < 0) y[i] <- 0 }
Now, however, you would use logical subscripts (p. 39) like this:

y[y<0] <- 0

The ifelse function
Sometimes you want to do one thing if a condition is true and a different thing if the condition is false (rather
than do nothing, as in the last example). The ifelse function allows you to do this for entire vectors without
using for loops. We might want to replace any negative values of y by –1 and any positive values and zero by
+ 1:

z <- ifelse (y < 0, -1, 1)

Next we use ifelse to convert the continuous variable called Area into a new, two-level factor with
values big and small defined by the median Area of the fields:

data <- read.table("c:\\temp\\worms.txt",header=T)
attach(data)
ifelse(Area>median(Area),"big","small")

ESSENTIALS OF THE R LANGUAGE 75

[1] "big" "big" "small" "small" "big" "big" "big" "small"
[9] "small" "small" "small" "big" "big" "small" "big" "big"
[17]"small" "big" "small" "small"

You should use the much more powerful function called cut when you want to convert a continuous variable
like Area into many levels (p. 838).

Another use of ifelse is to override R’s natural inclinations. The log of zero in R is -Inf, as you see
in these 20 random numbers from a Poisson process with a mean count of 1.5:

y <- log(rpois(20,1.5))
y

[1] -Inf 0.6931472 -Inf 0.0000000 -Inf 0.0000000
[7] 0.0000000 -Inf 0.6931472 1.6094379 1.3862944 0.0000000
[13] 1.3862944 -Inf 0.0000000 0.0000000 0.6931472 0.6931472
[19] 0.0000000 -Inf

However, if we want the log of zero to be represented by NA in our particular application we can write:

ifelse(y<0,NA,y)

[1] NA 0.6931472 NA 0.0000000 NA 0.0000000
[7] 0.0000000 NA 0.6931472 1.6094379 1.3862944 0.0000000
[13] 1.3862944 NA 0.0000000 0.0000000 0.6931472 0.6931472
[19] 0.0000000 NA

2.10.3 The slowness of loops

To see how slow loops can be, we compare two ways of finding the maximum number in a vector of 10 million
random numbers from a uniform distribution:

x <- runif(10000000)

First, using the vector function max:

system.time(max(x))

user system elapsed
0.03 0.00 0.03

As you see, this operation took just 0.03 seconds to solve using the vector function max to look at the
10 million numbers in x. Using a loop, however, took more than 9 seconds:

pc <- proc.time()

cmax <- x[1]
for (i in 2:10000000) {
if(x[i]>cmax) cmax <- x[i] }
proc.time()-pc

user system elapsed
9.39 0.13 9.51

76 THE R BOOK

The functions system.time and proc.time produce a vector of three numbers, showing the user, system
and total elapsed times for the currently running R process. It is the third number (elapsed time in seconds,
9.51 in this case) that is typically the most useful.

2.10.4 Do not ‘grow’ data sets by concatenation or recursive function calls

Here is an extreme example of what not to do. We want to create a vector containing 100 000 numbers in
sequence from 1 to 100 000. First, the quickest way using the built-in sequence generator which is invoked
by the colon symbol (:)

test1 <- function(){
y <- 1:100000
}
Now we obtain the same result using a loop, where we tell R in advance how long the final vector is going to
be, using the numeric function. This is called preallocation.

test2 <- function(){
y <- numeric(100000)
for (i in 1:100000) y[i] <- i
}
Finally, the most inefficient way. Each time we go round the loop we concatenate the new value onto the
right-hand end of the vector that has been created up to this point. We start with a NULL vector, then build
it up, one step at a time, which looks like a neat idea, but is extremely inefficient, because changing the size
of a vector takes roughly the same size as setting a vector up from scratch, and we change the length of our
vector 100 000 times in this example. This ill-advised procedure is called re-dimensioning.

test3 <- function(){
y <- NULL
for (i in 1:100000) y <- c(y,i)
}

To compare the efficiency of the three methods, we shall work out how long each takes to complete the
task. The function called proc.time determines how much real time and computer processing unit (CPU)
time (in seconds) the currently running R process has already taken:

proc.time()

user system elapsed
53.15 5.14 2483.00

The user time is the CPU time charged for the execution of user instructions of the calling process, the system
time is the CPU time charged for execution by the system on behalf of the calling process, and the elapsed
time includes other stuff that the computer is doing, unrelated to your R session.

The function system.time calls the function proc.time, then evaluates your expression, and then
calls proc.time once more, returning the difference between the two proc.time calls as its output. We
can compare the efficiencies of our three different functions using system.time like this:

system.time(test1())

user system elapsed
0 0 0

ESSENTIALS OF THE R LANGUAGE 77

system.time(test2())

user system elapsed
0.16 0.02 0.17

system.time(test3())

user system elapsed
8.95 0.02 8.97

The first method is so lightening fast that it does not even register on the clock. The loop using a pre-determined
vector length is also very fast (0.16 seconds). In contrast, the last method, where we grew the vector at each
iteration, is staggeringly slow (8.95 seconds). The moral: do not grow vectors by repeated concatenation.

2.10.5 Loops for producing time series

Wherever we can, we use vectorized functions in R because this leads to compact, efficient and easily readable
code. Sometimes, however, we need to resort to using loops. Suppose we are interested in the dynamics of
a population which is governed by two parameters: the per capita reproductive rate (λ) and the maximum
supportable population (Nmax), which for convenience we shall set to 1.0). Next year’s population N (t + 1)
is given by this year’s population, N (t), multiplied by lambda, multiplied again by the fraction of Nmax that
is currently unrealized (i.e. (Nmax − N (t))/Nmax = 1 − N (t) in the current case). Thus, we have a difference
equation

N (t + 1) = λN (t)[1 − N (t)]

To simulate the dynamics of this population in R, we start by writing the difference equation as a function
(call it next.year for instance):

next.year <- function(x) lambda * x * (1 - x)

So if we begin with a population of N = 0.6 and set λ = 3.7 we can predict next year’s population like this:

lambda <- 3.7
next.year(0.6)

[1] 0.888

The population has increased by 48% (0.888 / 0.6 = 1.48). What happens in the second year?

next.year(0.888)

[1] 0.3679872

The population crashes to less than half its previous value (0.367 987 2/0.888 = 0.4144). We could go on
repeating these calculations, modelling year after year, but this is an obvious case where using a loop would
be the best solution. Let us assume that we want to model the population over 20 years. It is good practice
in cases like this to define a vector to contain the 20 population sizes at the outset (preallocation) using
numeric like this:

N <- numeric(20)

We set the initial population size (0.6) like this:

N[1] <- 0.6

78 THE R BOOK

Now if we run through a loop to simulate the years 2 through 20 using an index called t (for time), we can
invoke the function called next.year repeatedly, employing t as a subscript like this:

for (t in 2:20) N[t] <- next.year(N[t-1])

Finally, we might want to plot a time series of the population dynamics over the course of 20 years.

plot(N,type="l")
0.

9
0.

8
0.

7
0.

6
0.

5
0.

4
0.

3

5 10
Index

15 20

N

This famous difference equation is known as the quadratic map, and it played a central role in the
development of chaos theory (May, 1974). For large values of λ (as we used in the example above), the
function is capable of producing series of numbers that are, to all intents and purposes, random. This led to
a definition of chaos as behaviour that exhibited extreme sensitivity to initial conditions: tiny differences in
initial population size would lead to radically different time series in population dynamics.

2.11 Lists

Lists are extremely important objects in R. You will have heard of the problems of ‘comparing apples and
oranges’ or how two things are ‘as different as chalk and cheese’. You can think of lists as a way of getting
around these problems. Here are four completely different objects: a numeric vector, a logical vector, a vector
of character strings and a vector of complex numbers:

apples <- c(4,4.5,4.2,5.1,3.9)
oranges <- c(TRUE, TRUE, FALSE)
chalk <- c("limestone", "marl","oolite", "CaC03")
cheese <- c(3.2-4.5i,12.8+2.2i)

ESSENTIALS OF THE R LANGUAGE 79

We cannot bundle them together into a dataframe, because the vectors are of different lengths:

data.frame(apples,oranges,chalk,cheese)

Error in data.frame(apples, oranges, chalk, cheese) :
arguments imply differing number of rows: 5, 3, 4, 2

Despite their differences, however, we can bundle them together in a single list called items:

items <- list(apples,oranges,chalk,cheese)
items

[[1]]
[1] 4.0 4.5 4.2 5.1 3.9

[[2]]
[1] TRUE TRUE FALSE

[[3]]
[1] "limestone" "marl" "oolite" "CaC03"

[[4]]
[1] 3.2-4.5i 12.8+2.2i

Subscripts on vectors, matrices, arrays and dataframes have one set of square brackets [6], [3,4] or [2,3,2,1],
but subscripts on lists have double square brackets [[2]] or [[i,j]]. If we want to extract the chalk from the list,
we use subscript [[3]]:

items[[3]]

[1] "limestone" "marl" "oolite" "CaC03"

If we want to extract the third element within chalk (oolite) then we use single subscripts after the double
subscripts like this:

items[[3]][3]

[1] "oolite"

R is forgiving about failure to use double brackets on their own, but not when you try to access a component
of an object within a list:

items[3]

[[1]]
[1] "limestone" "marl" "oolite" "CaC03"

items[3][3]

[[1]]
NULL

There is another indexing convention in R which is used to extract named components from lists using the
element names operator $. This is known as ‘indexing tagged lists’. For this to work, the elements of the list
must have names. At the moment our list called items has no names:

names(items)

NULL

80 THE R BOOK

You can give names to the elements of a list in the function that creates the list by using the equals sign like
this:

items <- list(first=apples,second=oranges,third=chalk,fourth=cheese)

Now you can extract elements of the list by name

items$fourth

[1] 3.2-4.5i 12.8+2.2i

2.11.1 Lists and lapply

We can ask a variety of questions about our new list object:

class(items)

[1] "list"

mode(items)

[1] "list"

is.numeric(items)

[1] FALSE

is.list(items)

[1] TRUE

length(items)

[1] 4

Note that the length of a list is the number of items in the list, not the lengths of the individual vectors within
the list.

The function lapply applies a specified function to each of the elements of a list in turn (without the
need for specifying a loop, and not requiring us to know how many elements there are in the list). A useful
function to apply to lists is the length function; this asks how many elements comprise each component of
the list. Technically we want to know the length of each of the vectors making up the list:

lapply(items,length)

$first
[1] 5

$second
[1] 3

$third
[1] 4

$fourth
[1] 2

This shows that items consists of four vectors, and shows that there were 5 elements in the first vector, 3 in
the second 4 in the third and 2 in the fourth. But 5 of what, and 3 of what? To find out, we apply the function

ESSENTIALS OF THE R LANGUAGE 81

class to the list:

lapply(items,class)

$first
[1] "numeric"

$second
[1] "logical"

$third
[1] "character"

$fourth
[1] "complex"

So the answer is there were 5 numbers in the first vector, 3 logical variables in the second, 4 character strings
in the third vector and 2 complex numbers in the fourth.

Applying numeric functions to lists will only work for objects of class numeric or complex, or objects
(like logical values) that can be coerced into numbers. Here is what happens when we use lapply to apply
the function mean to items:

lapply(items,mean)

$first
[1] 4.34

$second
[1] 0.6666667

$third
[1] NA

$fourth
[1] 8-1.15i

Warning message:
In mean.default(X[[3L]], ...) :
argument is not numeric or logical: returning NA

We get a warning message pointing out that the third vector cannot be coerced to a number (it is not numeric,
complex or logical), so NA appears in the output. The second vector produces the answer 2/3 because logical
false (FALSE) is coerced to numeric 0 and logical true (TRUE) is coerced to numeric 1.

The summary function works for lists:

summary(items)

Length Class Mode
first 5 -none- numeric
second 3 -none- logical
third 4 -none- character
fourth 2 -none- complex

82 THE R BOOK

but the most useful overview of the contents of a list is obtained with str, the structure function:

str(items)

List of 4
$ first : num [1:5] 4 4.5 4.2 5.1 3.9
$ second: logi [1:3] TRUE TRUE FALSE
$ third : chr [1:4] "limestone" "marl" "oolite" "CaC03"
$ fourth: cplx [1:2] 3.2-4.5i 12.8+2.2i

2.11.2 Manipulating and saving lists

Saving lists to files is tricky, because lists typically have different numbers of items in each row so we cannot
use write.table. Here is a dataframe on species presence (1) or absence (0), with species’ Latin binomials
in the first column as the row names:

data<-read.csv("c:\\temp\\pa.csv",row.names=1)
data

Carmel Derry Daneswall Erith Foggen Highbury Slatewell Uppington York
Bartsia alpina 0 0 1 0 0 0 1 0 0
Cleome serrulata 1 1 0 0 0 1 0 0 0
Conopodium majus 0 0 0 0 0 0 0 1 1
Corydalis sempervirens 1 0 0 1 0 1 0 0 0
Nitella flexilis 1 0 0 0 0 0 0 0 1
Ranunculus baudotii 1 0 1 1 0 0 0 1 0
Rhododendron luteum 1 1 1 1 1 0 1 1 1
Rodgersia podophylla 0 1 0 0 0 1 0 0 0
Tiarella wherryi 0 0 1 1 1 0 0 0 0
Veronica opaca 1 0 0 0 0 1 1 1 0

There are two kinds of operations you might want to do with a dataframe like this:

� produce lists of the sites at which each species is found;

� produce lists of the species found in any given site.

We shall do each of these tasks in turn.
The issue is that the numbers of place names differ from species to species, and the numbers of species

differ from place to place. However, it is easy to create a list showing the column numbers that contain
locations for each species:

sapply(1:10,function(i) which(data[i,]>0))

[[1]]
[1] 3 7

[[2]]
[1] 1 2 6

[[3]]
[1] 8 9

ESSENTIALS OF THE R LANGUAGE 83

[[4]]
[1] 1 4 6

[[5]]
[1] 1 9

[[6]]
[1] 1 3 4 8

[[7]]
[1] 1 2 3 4 5 7 8 9

[[8]]
[1] 2 6

[[9]]
[1] 3 4 5

[[10]]
[1] 1 6 7 8

This indicates that Bartsia alpina (the first species) is found in locations 3 and 7 (Daneswall and Slatewell).
If we save this list (calling it spp for instance), then we can extract the column names at which each species
is present, using the elements of spp as subscripts on the column names of data, like this:

spp<-sapply(1:10,function(i) which(data[i,]>0))
sapply(1:10, function(i)names(data)[spp[[i]]])

[[1]]
[1] "Daneswall" "Slatewell"

[[2]]
[1] "Carmel" "Derry" "Highbury"

[[3]]
[1] "Uppington" "York"

[[4]]
[1] "Carmel" "Erith" "Highbury"

[[5]]
[1] "Carmel" "York"

[[6]]
[1] "Carmel" "Daneswall" "Erith" "Uppington"

[[7]]
[1] "Carmel" "Derry" "Daneswall" "Erith" "Foggen" "Slatewell" "Uppington" "York"

[[8]]
[1] "Derry" "Highbury"

[[9]]
[1] "Daneswall" "Erith" "Foggen"

84 THE R BOOK

[[10]]
[1] "Carmel" "Highbury" "Slatewell" "Uppington"

This completes the first task.
The second task is to get species lists for each location. We apply a similar method to extract the appropriate

species (this time from rownames(data)) on the basis that the presence score for this site is data[,j]
> 0:

sapply(1:9, function (j) rownames(data)[data[,j]>0])
[[1]]
[1] "Cleome serrulata" "Corydalis sempervirens" "Nitella flexilis" "Ranunculus baudotii"
[5] "Rhododendron luteum" "Veronica opaca"

[[2]]
[1] "Cleome serrulata" "Rhododendron luteum" "Rodgersia podophylla"

[[3]]
[1] "Bartsia alpina" "Ranunculus baudotii" "Rhododendron luteum" "Tiarella wherryi"

[[4]]
[1] "Corydalis sempervirens" "Ranunculus baudotii" "Rhododendron luteum" "Tiarella wherryi"

[[5]]
[1] "Rhododendron luteum" "Tiarella wherryi"

[[6]]
[1] "Cleome serrulata" "Corydalis sempervirens" "Rodgersia podophylla" "Veronica opaca"

[[7]]
[1] "Bartsia alpina" "Rhododendron luteum" "Veronica opaca"

[[8]]
[1] "Conopodium majus" "Ranunculus baudotii" "Rhododendron luteum" "Veronica opaca"

[[9]]
[1] "Conopodium majus" "Nitella flexilis" "Rhododendron luteum"

Because the species lists for different sites are of different lengths, the simplest solution is to create a separate
file for each species list. We need to create a set of nine file names incorporating the site name, then use
write.table in a loop:

spplists<-sapply(1:9, function (j) rownames(data)[data[,j]>0])

for (i in 1:9) {
slist<-data.frame(spplists[[i]])
names(slist)<-names(data)[i]

fn<-paste("c:\\temp\\",names(data)[i],".txt",sep="")
write.table(slist,fn)
}
We have produced nine separate files. Here, for instance, are the contents of the file called
c:\\temp\\Carmel.txt as viewed in a text editor like Notepad:

"Carmel"
"1" "Cleome serrulata"
"2" "Corydalis sempervirens"
"3" "Nitella flexilis"

ESSENTIALS OF THE R LANGUAGE 85

"4" "Ranunculus baudotii"
"5" "Rhododendron luteum"
"6" "Veronica opaca"

Perhaps the simplest and best solution is to turn the whole presence/absence matrix into a dataframe. Then
both tasks become very straightforward. Start by using stack to create a dataframe of place names and
presence/absence information:

newframe<-stack(data)
head(newframe)

values ind
1 0 Carmel
2 1 Carmel
3 0 Carmel
4 1 Carmel
5 1 Carmel
6 1 Carmel

Now extract the species names from the row names, repeat the list of names nine times, and add the resulting
vector species names to the dataframe:

newframe<-data.frame(newframe, rep(rownames(data),9))

Finally, give the three columns of the new dataframe sensible names:

names(newframe)<-c("present","location","species")
head(newframe)

present location species
1 0 Carmel Bartsia alpina
2 1 Carmel Cleome serrulata
3 0 Carmel Conopodium majus
4 1 Carmel Corydalis sempervirens
5 1 Carmel Nitella flexilis
6 1 Carmel Ranunculus baudotii

Unlike the lists, you can easily save this object to file:

write.table(newframe,"c:\\temp\\spplists.txt")

Now it is simple to do both our tasks. Here a location list for species = Bartsia alpina:

newframe[newframe$species=="Bartsia alpina" & newframe$present==1,2]

[1] Daneswall Slatewell

86 THE R BOOK

and here is a species list for location = Carmel:

newframe[newframe$location=="Carmel" & newframe$present==1,3]

[1] Cleome serrulata Corydalis sempervirens Nitella flexilis Ranunculus baudotii
[5] Rhododendron luteum Veronica opaca

Lists are great, but dataframes are better. The cost of the dataframe is the potentially substantial redundancy
in storage requirement. In practice, with relatively small dataframes, this seldom matters.

2.12 Text, character strings and pattern matching

In R, character strings are defined by double quotation marks:

a <- "abc"
b <- "123"

Numbers can be coerced to characters (as in b above), but non-numeric characters cannot be coerced to
numbers:

as.numeric(a)

[1] NA

Warning message:

NAs introduced by coercion

as.numeric(b)

[1] 123

One of the initially confusing things about character strings is the distinction between the length of a
character object (a vector), and the numbers of characters (nchar) in the strings that comprise that object.
An example should make the distinction clear:

pets <- c("cat","dog","gerbil","terrapin")

Here, pets is a vector comprising four character strings:

length(pets)

[1] 4

and the individual character strings have 3, 3, 6 and 7 characters, respectively:

nchar(pets)

[1] 3 3 6 7

When first defined, character strings are not factors:

class(pets)

[1] "character"

is.factor(pets)

[1] FALSE

ESSENTIALS OF THE R LANGUAGE 87

However, if the vector of characters called pets was part of a dataframe (e.g. if it was input using
read.table) then R would coerce all the character variables to act as factors:

df <- data.frame(pets)

is.factor(df$pets)

[1] TRUE

There are built-in vectors in R that contain the 26 letters of the alphabet in lower case (letters) and in upper
case (LETTERS):

letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p"
[17] "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

LETTERS

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P"
[17] "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

To discover which number in the alphabet the letter n is, you can use the which function like this:

which(letters=="n")

[1] 14

For the purposes of printing you might want to suppress the quotes that appear around character strings
by default. The function to do this is called noquote:

noquote(letters)

[1] a b c d e f g h i j k l m n o p q r s t u v w x y z

2.12.1 Pasting character strings together

You can amalgamate individual strings into vectors of character information:

c(a,b)

[1] "abc" "123"

This shows that the concatenation produces a vector of two strings. It does not convert two 3-character strings
into one 6-character string. The R function to do that is paste:

paste(a,b,sep="")

[1] "abc123"

The third argument, sep="", means that the two character strings are to be pasted together without any
separator between them: the default for paste is to insert a single blank space, like this:

paste(a,b)

[1] "abc 123"

Notice that you do not lose blanks that are within character strings when you use the sep="" option in
paste.

88 THE R BOOK

paste(a,b," a longer phrase containing blanks",sep="")

[1] "abc123 a longer phrase containing blanks"

If one of the arguments to paste is a vector, each of the elements of the vector is pasted to the specified
character string to produce an object of the same length as the vector:

d <- c(a,b,"new")

e <- paste(d,"a longer phrase containing blanks")

e

[1] "abc a longer phrase containing blanks"

[2] "123 a longer phrase containing blanks"

[3] "new a longer phrase containing blanks"

You may need to think about why there are three lines of output.
In this next example, we have four fields of information and we want to paste them together to make a file

path for reading data into R:

drive <- "c:"
folder <- "temp"
file <- "file"
extension <- ".txt"

Now use the function paste to put them together:

paste(drive, folder, file, extension)

[1] "c: temp file .txt"

This has the essence of what we want, but it is not quite there yet. We need to replace the blank spaces " "
that are the default separator with "" no space, and to insert slashes "\\" between the drive and the directory,
and the directory and file names:

paste(drive, "\\",folder, "\\",file, extension,sep="")

[1] "c:\\temp\\file.txt"

2.12.2 Extracting parts of strings

We being by defining a phrase:

phrase <- "the quick brown fox jumps over the lazy dog"

The function called substr is used to extract substrings of a specified number of characters from within a
character string. Here is the code to extract the first, the first and second, the first, second and third, . . . , the
first 20 characters from our phrase:

q <- character(20)
for (i in 1:20) q[i] <- substr(phrase,1,i)
q

[1] "t" "th" "the"
[4] "the " "the q" "the qu"

ESSENTIALS OF THE R LANGUAGE 89

[7] "the qui" "the quic" "the quick"
[10] "the quick " "the quick b" "the quick br"
[13] "the quick bro" "the quick brow" "the quick brown"
[16] "the quick brown " "the quick brown f" "the quick brown fo"
[19] "the quick brown fox" "the quick brown fox "

The second argument in substr is the number of the character at which extraction is to begin (in this case
always the first), and the third argument is the number of the character at which extraction is to end (in this
case, the ith).

2.12.3 Counting things within strings

Counting the total number of characters in a string could not be simpler; just use the nchar function directly,
like this:

nchar(phrase)

[1] 43

So there are 43 characters including the blanks between the words. To count the numbers of separate individual
characters (including blanks) you need to split up the character string into individual characters (43 of them),
using strsplit like this:

strsplit(phrase,split=character(0))

[[1]]
[1] "t" "h" "e" " " "q" "u" "i" "c" "k" " " "b" "r"
[13] "o" "w" "n" " " "f" "o" "x" " " "j" "u" "m" "p"
[25] "s" "a " "o" "v" "e" "r" " " "t" "h" "e" " " "l"
[37] "a" "z" "y" " " "d" "o" "g"

You could use NULL in place of split=character(0) (see below). The table function can then be
used for counting the number of occurrences of each of the characters:

table(strsplit(phrase,split=character(0)))

a b c d e f g h i j k l m n o p q r s t u v w x y z
8 1 1 1 1 3 1 1 2 1 1 1 1 1 1 4 1 1 2 1 2 2 1 1 1 1 1

This demonstrates that all of the letters of the alphabet were used at least once within our phrase, and that
there were eight blanks within the string called phrase. This suggests a way of counting the number of
words in a phrase, given that this will always be one more than the number of blanks (so long as there are no
leading or trailing blanks in the string):

words <- 1+table(strsplit(phrase,split=character(0)))[1]
words

9

What about the lengths of the words within phrase? Here are the separate words:

strsplit(phrase, " ")

[[1]]
[1] "the" "quick" "brown" "fox" "jumps" "over" "the" "lazy" "dog"

90 THE R BOOK

We work out their lengths using lapply to apply the function nchar to each element of the list produced
by strsplit. Then we use table to count how many words of each length are present:

table(lapply(strsplit(phrase, " "), nchar))

3 4 5
4 2 3

showing there were 4 three-letter words, 2 four-letter words and 3 five-letter words.
This is how you reverse a character string. The logic is that you need to break it up into individual

characters, then reverse their order, then paste them all back together again. It seems long-winded until you
think about what the alternative would be:

strsplit(phrase,NULL)

[[1]]
[1] "t" "h" "e" " " "q" "u" "i" "c" "k" " " "b" "r"
[13] "o" "w" "n" " " "f" "o" "x" " " "j" "u" "m" "p"
[25] "s" "a " "o" "v" "e" "r" " " "t" "h" "e" " " "l"
[37] "a" "z" "y" " " "d" "o" "g"

lapply(strsplit(phrase,NULL),rev)

[[1]]
[1] "g" "o" "d" " " "y" "z" "a" "l" " " "e" "h" "t"
[13] " " "r" "e" "v" "o" " " "s" "p" "m" "u" "j" " "
[25] "x" "o" "f" " " "n" "w" "o" "r" "b" " " "k" "c"
[37] "i" "u" "q" " " "e" "h" "t"

sapply(lapply(strsplit(phrase, NULL), rev), paste, collapse="")

[1] "god yzal eht revo spmuj xof nworb kciuq eht"

The collapse argument is necessary to reduce the answer back to a single character string. Note that the
word lengths are retained, so this would be a poor method of encryption.

When we specify a particular string to form the basis of the split, we end up with a list made up from
the components of the string that do not contain the specified string. This is hard to understand without an
example. Suppose we split our phrase using ‘the’:

strsplit(phrase,"the")

[[1]]

[1] "" " quick brown fox jumps over " " lazy dog"

There are three elements in this list: the first one is the empty string "" because the first three characters within
phrase were exactly ‘the’; the second element contains the part of the phrase between the two occurrences of
the string ‘the’; and the third element is the end of the phrase, following the second ‘the’. Suppose that we
want to extract the characters between the first and second occurrences of ‘the’. This is achieved very simply,
using subscripts to extract the second element of the list:

strsplit(phrase,"the")[[1]] [2]

[1] " quick brown fox jumps over "

ESSENTIALS OF THE R LANGUAGE 91

Note that the first subscript in double square brackets refers to the number within the list (there is only one
list in this case), and the second subscript refers to the second element within this list. So if we want to know
how many characters there are between the first and second occurrences of the word ‘the’ within our phrase,
we put:

nchar(strsplit(phrase,"the")[[1]] [2])

[1] 28

2.12.4 Upper- and lower-case text

It is easy to switch between upper and lower cases using the toupper and tolower functions:

toupper(phrase)

[1] THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG"

tolower(toupper(phrase))

[1] "the quick brown fox jumps over the lazy dog"

2.12.5 The match function and relational databases

The match function answers the question: ‘Where (if at all) do the values in the second vector appear in the
first vector?’ It is a really important function, but it is impossible to understand without an example:

first <- c(5,8,3,5,3,6,4,4,2,8,8,8,4,4,6)
second <- c(8,6,4,2)
match(first,second)

[1] NA 1 NA NA NA 2 3 3 4 1 1 1 3 3 2

The first thing to note is thatmatch produces a vector of subscripts (index values) and that these are subscripts
within the second vector. The length of the vector produced by match is the length of the first vector (15
in this example). If elements of the first vector do not occur anywhere in the second vector, then match
produces NA. It works like this. Where does 5 (from the first position in the first vector) appear in the second
vector? Answer: it does not (NA). Then, where does 8 (the second element of the first vector) appear in the
second vector? Answer: in position number 1. And so on. Why would you ever want to use this? The answer
turns out to be very general and extremely useful in data management.

Large and/or complicated databases are always best stored as relational databases (e.g. Oracle or Access).
In these, data are stored in sets of two-dimensional spreadsheet-like objects called tables. Data are divided
into small tables with strict rules as to what data they can contain. You then create relationships between
the tables that allow the computer to look from one table to another in order to assemble the data you want
for a particular application. The relationship between two tables is based on fields whose values (if not their
variable names) are common to both tables. The rules for constructing effective relational databases were
first proposed by Dr E.F. Codd of the IBM Research Laboratory at San Jose, California, in an extremely
influential paper in 1970:

� All data are in tables.

� There is a separate table for each set of related variables.

92 THE R BOOK

� The order of the records within tables is irrelevant (so you can add records without reordering the existing
records).

� The first column of each table is a unique ID number for every row in that table (a simple way to make
sure that this works is to have the rows numbered sequentially from 1 at the top, so that when you add new
rows you are sure that they get unique identifiers).

� There is no unnecessary repetition of data so the storage requirement is minimized, and when we need to
edit a record, we only need to edit it once (the last point is very important).

� Each piece of data is ‘granular’ (meaning as small as possible); so you would split a customer’s name into
title (Dr), first name (Charles), middle name (Urban), surname (Forrester), and preferred form of address
(Chuck), so that if they were promoted, for instance, we would only need to convert Dr to Prof. in the title
field.

These are called the ‘normalization rules’ for creating bullet-proof databases. The use of Structured Query
Language (SQL) in R to interrogate relational databases is discussed in Chapter 3 (p. 154). Here, the only
point is to see how the match function relates information in one vector (or table) to information in another.

Take a medical example. You have a vector containing the anonymous identifiers of nine patients
(subjects):

subjects <- c("A", "B", "G", "M", "N", "S", "T", "V", "Z")

Suppose you wanted to give a new drug to all the patients identified in the second vector called
suitable.patients, and the conventional drug to all the others. Here are the suitable patients:

suitable.patients <- c("E", "G", "S", "U", "Z")

Notice that there are several suitable patients who are not part of this trial (E and U). This is what the match
function does:

match(subjects, suitable.patients)

[1] NA NA 2 NA NA 3 NA NA 5

For each of the individuals in the first vector (subjects) it finds the subscript in the second vector (suitable
patients), returning NA if that patient does not appear in the second vector. The key point to understand is that
the vector produced by match is the same length as the first vector supplied to match, and that the numbers
in the result are subscripts within the second vector. The last bit is what people find hard to understand at
first.

Let us go through the output term by term and see what each means. Patient A is not in the suitable vector,
so NA is returned. The same is true for patient B. Patient G is suitable, so we get a number in the third position.
That number is a 2 because patient G is the second element of the vector called suitable.patients.
Neither patient M nor N is in the second vector, so they both appear as NA. Patient S is suitable and so
produces a number. The number is 3 because that is the position of S with the second vector.

To complete the job, we want to produce a vector of the drugs to be administered to each of the subjects.
We create a vector containing the two treatment names:

drug <- c("new", "conventional")

Then we use the result of the match to give the right drug to the right patient:

drug[ifelse(is.na(match(subjects, suitable.patients)),2,1)]

[1] "conventional" "conventional" "new" "conventional"

ESSENTIALS OF THE R LANGUAGE 93

[5] "conventional" "new" "conventional" "conventional"
[9] "new"

Note the use of ifelse with is.na to produce a subscript 2 (to use with drug) for the unsuitable patients,
and a 1 when the result of the match is not NA (i.e. for the suitable patients). You may need to work through
this example several times (but it is well worth mastering it).

2.12.6 Pattern matching

We need a dataframe with a serious amount of text in it to make these exercises relevant:

wf <- read.table("c:\\temp\\worldfloras.txt",header=T)
attach(wf)
names(wf)

[1] "Country" "Latitude" "Area" "Population" "Flora"
[6] "Endemism" "Continent"

Country

As you can see, there are 161 countries in this dataframe (strictly, 161 places, since some of the entries, such
as Sicily and Balearic Islands, are not countries). The idea is that we want to be able to select subsets of
countries on the basis of specified patterns within the character strings that make up the country names (factor
levels). The function to do this is grep. This searches for matches to a pattern (specified in its first argument)
within the character vector which forms the second argument. It returns a vector of indices (subscripts) within
the vector appearing as the second argument, where the pattern was found in whole or in part. The topic of
pattern matching is very easy to master once the penny drops, but it hard to grasp without simple, concrete
examples. Perhaps the simplest task is to select all the countries containing a particular letter – for instance,
upper-case R:

as.vector(Country[grep("R",as.character(Country))])

[1] "Central African Republic" "Costa Rica"
[3] "Dominican Republic" "Puerto Rico"
[5] "Reunion" "Romania"
[7] "Rwanda" "USSR"

To restrict the search to countries whose first name begins with R use the ˆ character like this:

as.vector(Country[grep("ˆ R",as.character(Country))])

[1] "Reunion" "Romania" "Rwanda"

To select those countries with multiple names with upper-case R as the first letter of their second or subsequent
names, we specify the character string as “blank R” like this:

as.vector(Country[grep(" R",as.character(Country)])

[1] "Central African Republic" "Costa Rica"
[3] "Dominican Republic" "Puerto Rico"

94 THE R BOOK

To find all the countries with two or more names, just search for a blank " ":

as.vector(Country[grep(" ",as.character(Country))])

[1] "Balearic Islands" "Burkina Faso"
[3] "Central African Republic" "Costa Rica"
[5] "Dominican Republic" "El Salvador"
[7] "French Guiana" "Germany East"
[9] "Germany West" "Hong Kong"
[11] "Ivory Coast" "New Caledonia"
[13] "New Zealand" "Papua New Guinea"
[15] "Puerto Rico" "Saudi Arabia"
[17] "Sierra Leone" "Solomon Islands"
[19] "South Africa" "Sri Lanka"
[21] "Trinidad & Tobago" "Tristan da Cunha"
[23] "United Kingdom" "Viet Nam"
[25] "Yemen North" "Yemen South"

To find countries with names ending in ‘y’ use the $ symbol like this:

as.vector(Country[grep("y$",as.character(Country))])

[1] "Hungary" "Italy" "Norway" "Paraguay" "Sicily" "Turkey"
[7] "Uruguay"

To recap: the start of the character string is denoted by ˆ and the end of the character string is denoted
by $. For conditions that can be expressed as groups (say, series of numbers or alphabetically grouped lists
of letters), use square brackets inside the quotes to indicate the range of values that is to be selected. For
instance, to select countries with names containing upper-case letters from C to E inclusive, write:

as.vector(Country[grep("[C-E]",as.character(Country))])

[1] "Cameroon" "Canada"
[3] "Central African Republic" "Chad"
[5] "Chile" "China"
[7] "Colombia" "Congo"
[9] "Corsica" "Costa Rica"
[11] "Crete" "Cuba"
[13] "Cyprus" "Czechoslovakia"
[15] "Denmark" "Dominican Republic"
[17] "Ecuador" "Egypt"
[19] "El Salvador" "Ethiopia"
[21] "Germany East" "Ivory Coast"
[23] "New Caledonia" "Tristan da Cunha"

Notice that this formulation picks out countries like Ivory Coast and Tristan da Cunha that contain upper-case
Cs in places other than as their first letters. To restrict the choice to first letters use the ˆ operator before the
list of capital letters:

as.vector(Country[grep("ˆ[C-E]",as.character(Country))])

[1] "Cameroon" "Canada"
[3] "Central African Republic" "Chad"

ESSENTIALS OF THE R LANGUAGE 95

[5] "Chile" "China"
[7] "Colombia" "Congo"
[9] "Corsica" "Costa Rica"
[11] "Crete" "Cuba"
[13] "Cyprus" "Czechoslovakia"
[15] "Denmark" "Dominican Republic"
[17] "Ecuador" "Egypt"
[19] "El Salvador" "Ethiopia"

How about selecting the counties not ending with a specified patterns? The answer is simply to use negative
subscripts to drop the selected items from the vector. Here are the countries that do not end with a letter
between ‘a’ and ‘t’:

as.vector(Country[-grep("[a-t]$",as.character(Country))])

[1] "Hungary" "Italy" "Norway" "Paraguay" "Peru" "Sicily"
[7] "Turkey" "Uruguay" "USA" "USSR" "Vanuatu"

You see that USA and USSR are included in the list because we specified lower-case letters as the endings
to omit. To omit these other countries, put ranges for both upper- and lower-case letters inside the square
brackets, separated by a space:

as.vector(Country[-grep("[A-T a-t]$",as.character(Country))])

[1] "Hungary" "Italy" "Norway" "Paraguay" "Peru" "Sicily"
[7] "Turkey" "Uruguay" "Vanuatu"

2.12.7 Dot . as the ‘anything’ character

Countries with ‘y’ as their second letter are specified by ˆ.y. The ˆ shows ‘starting’, then a single dot means
one character of any kind, so y is the specified second character:

as.vector(Country[grep("ˆ.y",as.character(Country))])

[1] "Cyprus" "Syria"

To search for countries with ‘y’ as third letter:

as.vector(Country[grep("ˆ..y",as.character(Country))])

[1] "Egypt" "Guyana" "Seychelles"

If we want countries with ‘y’ as their sixth letter:

as.vector(Country[grep("ˆ.{5}y",as.character(Country))])

[1] "Norway" "Sicily" "Turkey"

(Five ‘anythings’ is shown by ‘.’ then curly brackets {5} then y.) Which are the countries with four or fewer
letters in their names?

as.vector(Country[grep("ˆ.{,4}$",as.character(Country))])

[1] "Chad" "Cuba" "Iran" "Iraq" "Laos" "Mali" "Oman"
[8] "Peru" "Togo" "USA" "USSR"

96 THE R BOOK

The ‘.’ means ‘anything’ while the {,4} means ‘repeat up to four’ anythings (dots) before $ (the end of the
string). So to find all the countries with 15 or more characters in their name:

as.vector(Country[grep("ˆ.{15,}$",as.character(Country))])
[1] "Balearic Islands" "Central African Republic"
[3] "Dominican Republic" "Papua New Guinea"
[5] "Solomon Islands" "Trinidad & Tobago"
[7] "Tristan da Cunha"

2.12.8 Substituting text within character strings

Search-and-replace operations are carried out in R using the functions sub and gsub. The two substitution
functions differ only in that sub replaces only the first occurrence of a pattern within a character string,
whereas gsub replaces all occurrences. An example should make this clear. Here is a vector comprising
seven character strings, called text:

text <- c("arm", "leg", "head", "foot", "hand", "hindleg" "elbow")

We want to replace all lower-case ‘h’ with upper-case ‘H’:

gsub("h","H",text)

[1] "arm" "leg" "Head" "foot" "Hand" "Hindleg" "elbow"

Now suppose we want to convert the first occurrence of a lower-case ‘o’ into an upper-case ‘O’. We use sub
for this (not gsub):

sub("o","O",text)

[1] "arm" "leg" "head" "fOot" "hand" "hindleg" "elbOw"

You can see the difference between sub and gsub in the following, where both instances of ‘o’ in foot are
converted to upper case by gsub but not by sub:

gsub("o","O",text)

[1] "arm" "leg" "head" "fOOt" "hand" "hindleg" "elbOw"

More general patterns can be specified in the same way as we learned for grep (above). For instance, to
replace the first character of every string with upper-case ‘O’ we use the dot notation (. stands for ‘anything’)
coupled with ˆ (the ‘start of string’ marker):

gsub("ˆ.","O",text)

[1] "Orm" "Oeg" "Oead" "Ooot" "Oand" "Oindleg" "Olbow"

It is useful to be able to manipulate the cases of character strings. Here, we capitalize the first character in
each string:

gsub("(\\w*)(\\w*)", "\\U\\1\\L\\2",text, perl=TRUE)

[1] "Arm" "Leg" "Head" "Foot" "Hand" "Hindleg" "Elbow"

Here we convert all the characters to upper case:

gsub("(\\w*)", "\\U\\1",text, perl=TRUE)

[1] "ARM" "LEG" "HEAD" "FOOT" "HAND" "HINDLEG" "ELBOW"

ESSENTIALS OF THE R LANGUAGE 97

2.12.9 Locations of a pattern within a vector using regexpr

Instead of substituting the pattern, we might want to know if it occurs in a string and, if so, where it occurs
within each string. The result of regexpr, therefore, is a numeric vector (as with grep, above), but now
indicating the position of the first instance of the pattern within the string (rather than just whether the pattern
was there). If the pattern does not appear within the string, the default value returned by regexpr is –1. An
example is essential to get the point of this:

text

[1] "arm" "leg" "head" "foot" "hand" "hindleg" "elbow"

regexpr("o",text)

[1]-1 -1 -1 2 -1 -1 4

attr(,"match.length")

[1]-1 -1 -1 1 -1 -1 1

This indicates that there were lower-case ‘o’s in two of the elements of text, and that they occurred in
positions 2 and 4, respectively. Remember that if we wanted just the subscripts showing which elements of
text contained an ‘o’ we would use grep like this:

grep("o",text)

[1] 4 7

and we would extract the character strings like this:

text[grep("o",text)]

[1] "foot" "elbow"

Counting how many ‘o’s there are in each string is a different problem again, and this involves the use of
gregexpr:

freq <- as.vector(unlist (lapply(gregexpr("o",text),length)))

present <- ifelse(regexpr("o",text)<0,0,1)

freq*present

[1] 0 0 0 2 0 0 1

indicating that there are no ‘o’s in the first three character strings, two in the fourth and one in the last string.
You will need lots of practice with these functions to appreciate all of the issues involved.

The function charmatch is for matching characters. If there are multiple matches (two or more) then
the function returns the value 0 (e.g. when all the elements contain ‘m’):

charmatch("m", c("mean", "median", "mode"))

[1] 0

If there is a unique match the function returns the index of the match within the vector of character strings
(here in location number 2):

charmatch("med", c("mean", "median", "mode"))

[1] 2

98 THE R BOOK

2.12.10 Using %in% and which

You want to know all of the matches between one character vector and another:

stock <- c("car","van")
requests <- c("truck","suv","van","sports","car","waggon","car")

Use which to find the locations in the first-named vector of any and all of the entries in the second-named
vector:

which(requests %in% stock)

[1] 3 5 7

If you want to know what the matches are as well as where they are:

requests [which(requests %in% stock)]

[1] "van" "car" "car"

You could use the match function to obtain the same result (p. 91):

stock[match(requests,stock)][!is.na(match(requests,stock))]

[1] "van" "car" "car"

but this is more clumsy. A slightly more complicated way of doing it involves sapply:

which(sapply(requests, "%in%", stock))

van car car
3 5 7

Note the use of quotes around the %in% function. Note also that the match must be perfect for this to work
(‘car’ with ‘car’ is not the same as ‘car’ with ‘cars’).

2.12.11 More on pattern matching

For the purposes of specifying these patterns, certain characters are called metacharacters, specifically
\ | () [{ ˆ $ } * + ? Any metacharacter with special meaning in your string may be quoted by
preceding it with a backslash: \\, \{, \$ or *, for instance. You might be used to specifying one or more
‘wildcards’ by * in DOS-like applications. In R, however, the regular expressions used are those specified
by POSIX (Portable Operating System Interface) 1003.2, either extended or basic, depending on the value of
the extended argument, unless perl = TRUE when they are those of PCRE (see ?grep for details).

Note that the square brackets in these class names [] are part of the symbolic names, and must be included
in addition to the brackets delimiting the bracket list. For example, [[:alnum:]] means [0-9A-Za-z], except
the latter depends upon the locale and the character encoding, whereas the former is independent of locale
and character set. The interpretation below is that of the POSIX locale:

[:alnum:] Alphanumeric characters: [:alpha:] and [:digit:].
[:alpha:] Alphabetic characters: [:lower:] and [:upper:].
[:blank:] Blank characters: space and tab.
[:cntrl:] Control characters in ASCII, octal codes 000 through 037, and 177 (DEL).
[:digit:] Digits: 0 1 2 3 4 5 6 7 8 9.

ESSENTIALS OF THE R LANGUAGE 99

[:graph:] Graphical characters: [:alnum:] and [:punct:].
[:lower:] Lower-case letters in the current locale.
[:print:] Printable characters: [:alnum:], [:punct:]} and space.
[:punct:] Punctuation characters:

! " # $ % & () * +$, - ./: ; <=>? @ [\] ˆ _ ' { | } ~.
[:space:] Space characters: tab, newline, vertical tab, form feed, carriage return, space.
[:upper:] Upper-case letters in the current locale.
[:xdigit:] Hexadecimal digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f.

Most metacharacters lose their special meaning inside lists. Thus, to include a literal], place it first in the
list. Similarly, to include a literal ˆ, place it anywhere but first. Finally, to include a literal -, place it first or
last. Only these and \ remain special inside character classes. To recap:

� dot . matches any single character.

� caret ˆ matches the empty string at the beginning of a line.

� dollar sign $ matches the empty string at the end of a line.

� symbols \< and \> respectively match the empty string at the beginning and end of a word.

� the symbol \b matches the empty string at the edge of a word, and \B matches the empty string provided
it is not at the edge of a word.

A regular expression may be followed by one of several repetition quantifiers:

? the preceding item is optional and will be matched at most once.
* the preceding item will be matched zero or more times.
+ the preceding item will be matched one or more times.
{n} the preceding item is matched exactly n times.
{n, } the preceding item is matched n or more times.
{,m} the preceding item is matched up to m times.
{n,m} the preceding item is matched at least n times, but not more than m times.

You can use the OR operator | so that "abba|cde" matches either the string "abba" or the string "cde".
Here are some simple examples to illustrate the issues involved:

text <- c("arm","leg","head", "foot","hand", "hindleg", "elbow")

The following lines demonstrate the ‘consecutive characters’ {n} in operation:

grep("o{1}",text,value=T)

[1] "foot" "elbow"

grep("o{2}",text,value=T)

[1] "foot"

grep("o{3}",text,value=T)

character(0)

100 THE R BOOK

The following lines demonstrate the use of {n, } ‘n or more’ character counting in words:

grep("[[:alnum:]]{4, }",text,value=T)
[1] "head" "foot" "hand" "hindleg" "elbow"

grep("[[:alnum:]]{5, }",text,value=T)
[1] "hindleg" "elbow"

grep("[[:alnum:]]{6, }",text,value=T)
[1] "hindleg"

grep("[[:alnum:]]{7, }",text,value=T)
[1] "hindleg"

2.12.12 Perl regular expressions

The perl = TRUE argument switches to the PCRE library that implements regular expression pattern
matching using the same syntax and semantics as Perl 5.6 or later (with just a few differences). For details
(and there are many) see ?regexp.

2.12.13 Stripping patterned text out of complex strings

Suppose that we want to tease apart the information in these complicated strings:

(entries <- c ("Trial 1 58 cervicornis (52 match)", "Trial 2 60
terrestris (51 matched)", "Trial 8 109 flavicollis (101 matches)"))

[1] "Trial 1 58 cervicornis (52 match)"
[2] "Trial 2 60 terrestris (51 matched)"
[3] "Trial 8 109 flavicollis (101 matches)"

The first task is to remove the material on numbers of matches including the brackets:

gsub(" *$", "", gsub("\\(.*\\)$", "", entries))

[1] "Trial 1 58 cervicornis" "Trial 2 60 terrestris"
[3] "Trial 8 109 flavicollis"

The first argument " *$", "", removes the ‘trailing blanks’, while the second deletes everything .*
between the left \\(and right \\) hand brackets "\\(.*\\)$", substituting this with nothing "". The next
job is to strip out the material in brackets and to extract that material, ignoring the brackets themselves:

pos <- regexpr("\\(.*\\)$", entries)
substring(entries, first=pos+1, last=pos+attr(pos,"match.length")-2)

[1] "52 match" "51 matched" "101 matches"

To see how this has worked it is useful to inspect the values of pos that have emerged from the regexpr
function:

pos

[1] 25 23 25

ESSENTIALS OF THE R LANGUAGE 101

attr(,"match.length")

[1] 10 12 13

The left-hand bracket appears in position 25 in the first and third elements (note that there are two blanks
before ‘cervicornis’) but in position 23 in the second element. Now the lengths of the strings matching the
pattern \\(.*\\)$ can be checked; it is the number of ‘anything’ characters between the two brackets, plus
one for each bracket: 10, 12 and 13.

Thus, to extract the material in brackets, but to ignore the brackets themselves, we need
to locate the first character to be extracted (pos+1) and the last character to be extracted
pos+attr(pos,"match.length")-2, then use the substring function to do the extracting. Note
that first and last are vectors of length 3 (= length(entries)).

2.13 Dates and times in R

The measurement of time is highly idiosyncratic. Successive years start on different days of the week. There
are months with different numbers of days. Leap years have an extra day in February. Americans and Britons
put the day and the month in different places: 3/4/2006 is March 4 for the former and April 3 for the latter.
Occasional years have an additional ‘leap second’ added to them because friction from the tides is slowing
down the rotation of the earth from when the standard time was set on the basis of the tropical year in 1900.
The cumulative effect of having set the atomic clock too slow accounts for the continual need to insert leap
seconds (32 of them since 1958). There is currently a debate about abandoning leap seconds and introducing
a ‘leap minute’ every century or so instead. Calculations involving times are complicated by the operation of
time zones and daylight saving schemes in different countries. All these things mean that working with dates
and times is excruciatingly complicated. Fortunately, R has a robust system for dealing with this complexity.
To see how R handles dates and times, have a look at Sys.time():

Sys.time()

[1] "2014-01-24 16:24:54 GMT"

This description of date and time is strictly hierarchical from left to right: the longest time scale (years) comes
first, then month, then day, separated by hyphens, then there is a blank space, followed by the time, with hours
first (using the 24-hour clock), then minutes, then seconds, separated by colons. Finally, there is a character
string explaining the time zone (GMT stands for Greenwich Mean Time). This representation of the date and
time as a character string is user-friendly and familiar, but it is no good for calculations. For that, we need a
single numeric representation of the combined date and time. The convention in R is to base this on seconds
(the smallest time scale that is accommodated in Sys.time). You can always aggregate upwards to days or
year, but you cannot do the reverse. The baseline for expressing today’s date and time in seconds is 1 January
1970:

as.numeric(Sys.time())

[1] 1390580694

This is fine for plotting time series graphs, but it is not much good for computing monthly means (e.g.
is the mean for June significantly different from the July mean?) or daily means (e.g. is the Monday mean
significantly different from the Friday mean?). To answer questions like these we have to be able to access a
broad set of categorical variables associated with the date: the year, the month, the day of the week, and so
forth. To accommodate this, R uses the POSIX system for representing times and dates:

102 THE R BOOK

class(Sys.time())

[1] "POSIXct" "POSIXt"

You can think of the class POSIXct, with suffix ‘ct’, as continuous time (i.e. a number of seconds), and
POSIXlt, with suffix ‘lt’, as list time (i.e. a list of all the various categorical descriptions of the time,
including day of the week and so forth). It is hard to remember these acronyms, but it is well worth making
the effort. Naturally, you can easily convert to one representation to the other:

time.list <- as.POSIXlt(Sys.time())

unlist(time.list)

sec min hour mday mon year wday yday isdst
54 24 16 24 0 114 5 23 0

Here you see the nine components of the list. The time is represented by the number of seconds (sec),
minutes (min) and hours (on the 24-hour clock). Next comes the day of the month (mday, starting from 1),
then the month of the year (mon, starting at January = 0), then the year (starting at 0 = 1900). The day of the
week (wday) is coded from Sunday = 0 to Saturday = 6. The day within the year (yday) is coded from 0 =
January 1. Finally, there is a logical variable isdst which asks whether daylight saving time is in operation
(0 = FALSE in this case). The ones you are most likely to use include year (to get yearly mean values),
mon (to get monthly means) and wday (to get means for the different days of the week).

2.13.1 Reading time data from files

It is most likely that your data files contain dates in Excel format, for example 03/09/2014 (a character string
showing day/month/year separated by slashes).

data <- read.table("c:\\temp\\dates.txt",header=T)
attach(data)
head(data)

x date
1 3 15/06/2014
2 1 16/06/2014
3 6 17/06/2014
4 7 18/06/2014
5 8 19/06/2014
6 9 20/06/2014

When you read character data into R using read.table, the default option is to convert the character
variables into factors. Factors are of mode numeric and class factor:

mode(date)

[1] "numeric"

class(date)

[1] "factor"

For our present purposes, the point is that the data are not recognized by R as being dates. To convert a factor
or a character string into a POSIXlt object, we employ an important function called ‘strip time’, written
strptime.

ESSENTIALS OF THE R LANGUAGE 103

2.13.2 The strptime function

To convert a factor or a character string into dates using the strptime function, we provide a format
statement enclosed in double quotes to tell R exactly what to expect, in what order, and separated by what
kind of symbol. For our present example we have day (as two digits), then slash, then month (as two digits),
then slash, then year (with the century, making four digits).

Rdate <- strptime(as.character(date),"%d/%m/%Y")

class(Rdate)

[1] "POSIXlt" "POSIXt"

It is always a good idea at this stage to add the R-formatted date to your dataframe:

data <- data.frame(data,Rdate)

head(data)

x date Rdate
1 3 15/06/2014 2014-06-15
2 1 16/06/2014 2014-06-16
3 6 17/06/2014 2014-06-17
4 7 18/06/2014 2014-06-18
5 8 19/06/2014 2014-06-19
6 9 20/06/2014 2014-06-20

Now, at last, we can do things with the date information. We might want the mean value of x for each day of
the week. The name of this object is Rdate$wday:

tapply(x,Rdate$wday,mean)

0 1 2 3 4 5 6
5.660 2.892 5.092 7.692 8.692 9.692 8.892

The lowest mean is on Mondays (wday = 1) and the highest on Fridays (wday = 5).
It is hard to remember all the format codes for strip time, but they are roughly mnemonic and they are

always preceded by a percent symbol. Here is the full list of format components:

%a Abbreviated weekday name
%A Full weekday name
%b Abbreviated month name
%B Full month name
%c Date and time, locale-specific
%d Day of the month as decimal number (01–31)
%H Hours as decimal number (00–23) on the 24-hour clock
%I Hours as decimal number (01–12) on the 12-hour clock
%j Day of year as decimal number (0–366)
%m Month as decimal number (0–11)
%M Minute as decimal number (00–59)
%p AM/PM indicator in the locale
%S Second as decimal number (00–61, allowing for two ‘leap seconds’)
%U Week of the year (00–53) using the first Sunday as day 1 of week 1

104 THE R BOOK

%w Weekday as decimal number (0–6, Sunday is 0)
%W Week of the year (00–53) using the first Monday as day 1 of week 1
%x Date, locale-specific
%X Time, locale-specific
%Y Year with century
%y Year without century
%Z Time zone as a character string (output only)

Note the difference between the upper case for year %Y (this is the unambiguous year including the century,
2014), and the potentially ambiguous lower case %y (it is not clear whether 14 means 1914 or 2014).

There is a useful function called weekdays (note the plural) for turning the day number into the
appropriate name:

y <- strptime("01/02/2014",format="%d/%m/%Y")
weekdays(y)

[1] "Saturday"

which is converted from

y$wday

[1] 6

because the days of the week are numbered from Sunday = 0.
Here is another kind of date, with years in two-digit form (%y), and the months as abbreviated names (%b)

using no separators:

other.dates <- c("1jan99", "2jan05", "31mar04", "30jul05")

strptime(other.dates, "%d%b%y")

[1] "1999-01-01" "2005-01-02" "2004-03-31" "2005-07-30"

Here is yet another possibility with year, then month in full, then week of the year, then day of the week
abbreviated, all separated by a single blank space:

yet.another.date <- c("2016 January 2 Mon","2017 February 6 Fri","2018
March 10 Tue")

strptime(yet.another.date,"%Y %B %W %a")

[1] "2016-01-11" "2017-02-10" "2018-03-06"

The system is clever in that it knows the date of the Monday in week number 2 of January in 2016, and of the
Tuesday in week 10 of 2018 (the information on month is redundant in this case):

yet.more.dates <- c("2016 2 Mon","2017 6 Fri","2018 10 Tue")

strptime(yet.more.dates,"%Y %W %a")

[1] "2016-01-11" "2017-02-10" "2018-03-06"

2.13.3 The difftime function

The function difftime calculates a difference of two date-time objects and returns an object of class
difftime with an attribute indicating the units. You can use various arithmetic operations on a difftime

ESSENTIALS OF THE R LANGUAGE 105

object including round, signif, floor, ceiling, trunc, abs, sign and certain logical
operations. You can create a difftime object like this:

as.difftime(yet.more.dates,"%Y %W %a")

Time differences in days
[1] 1434 1830 2219
attr(,"tzone")
[1] ""

or like this:

difftime("2014-02-06","2014-07-06")

Time difference of -149.9583 days

round(difftime("2014-02-06","2014-07-06"),0)

Time difference of -150 days

2.13.4 Calculations with dates and times

You can do the following calculations with dates and times:

� time + number

� time – number

� time1 – time2

� time1 ‘logical operation’ time2

where the logical operations are one of ==, !=, <, <=, > or >=. You can add or subtract a number of seconds
or a difftime object from a date-time object, but you cannot add two date-time objects. Subtraction of
two date-time objects is equivalent to using difftime. Unless a time zone has been specified, POSIXlt
objects are interpreted as being in the current time zone in calculations.

The thing you need to grasp is that you should convert your dates and times into POSIXlt objects before
starting to do any calculations. Once they are POSIXlt objects, it is straightforward to calculate means,
differences and so on. Here we want to calculate the number of days between two dates, 22 October 2015
and 22 October 2018:

y2 <- as.POSIXlt("2015-10-22")
y1 <- as.POSIXlt("2018-10-22")

Now you can do calculations with the two dates:

y1-y2

Time difference of 1096 days

2.13.5 The difftime and as.difftime functions

Working out the time difference between two dates and times involves the difftime function, which takes
two date-time objects as its arguments. The function returns an object of class difftime with an attribute
indicating the units. For instance, how many days elapsed between 15 August 2013 and 21 October 2015?

106 THE R BOOK

difftime("2015-10-21","2013-8-15")

Time difference of 797 days

If you want only the number of days to use in calculation, then write

as.numeric(difftime("2015-10-21","2013-8-15"))

[1] 797

If you have times but no dates, then you can use as.difftime to create appropriate objects for
calculations:

t1 <- as.difftime("6:14:21")

t2 <- as.difftime("5:12:32")

t1-t2

Time difference of 1.030278 hours

You will often want to create POSIXlt objects from components stored in different vectors within a
dataframe. For instance, here is a dataframe with the hours, minutes and seconds from an experiment with
two factor levels in four separate columns:

times <- read.table("c:\\temp\\times.txt",header=T)
attach(times)
head(times)

hrs min sec experiment
1 2 23 6 A
2 3 16 17 A
3 3 2 56 A
4 2 45 0 A
5 3 4 42 A
6 2 56 25 A

Because the times are not in POSIXlt format, you need to paste together the hours, minutes and seconds into
a character string, using colons as the separator:

paste(hrs,min,sec,sep=":")

[1] "2:23:6" "3:16:17" "3:2:56" "2:45:0" "3:4:42" "2:56:25" "3:12:28"
[8] "1:57:12" "2:22:22" "1:42:7" "2:31:17" "3:15:16" "2:28:4" "1:55:34"
[15] "2:17:7" "1:48:48"

Now save this object as a difftime vector called duration:

duration <- as.difftime (paste(hrs,min,sec,sep=":"))

Then you can carry out calculations like mean and variance using the tapply function:

tapply(duration,experiment,mean)

A B
2.829375 2.292882

which gives the answer in decimal hours.

ESSENTIALS OF THE R LANGUAGE 107

2.13.6 Generating sequences of dates

You may want to generate sequences of dates by years, months, weeks, days of the month or days of the
week. Here are four sequences of dates, all starting on 4 November 2015, the first going in increments of one
day:

seq(as.POSIXlt("2015-11-04"), as.POSIXlt("2015-11-15"), "1 day")

[1] "2015-11-04 GMT" "2015-11-05 GMT" "2015-11-06 GMT" "2015-11-07 GMT"
[5] "2015-11-08 GMT" "2015-11-09 GMT" "2015-11-10 GMT" "2015-11-11 GMT"
[9] "2015-11-12 GMT" "2015-11-13 GMT" "2015-11-14 GMT" "2015-11-15 GMT"

the second with increments of 2 weeks:

seq(as.POSIXlt("2015-11-04"), as.POSIXlt("2016-04-05"), "2 weeks")

[1] "2015-11-04 GMT" "2015-11-18 GMT" "2015-12-02 GMT" "2015-12-16 GMT"
[5] "2015-12-30 GMT" "2016-01-13 GMT" "2016-01-27 GMT" "2016-02-10 GMT"
[9] "2016-02-24 GMT" "2016-03-09 GMT" "2016-03-23 GMT"

the third with increments of 3 months:

seq(as.POSIXlt("2015-11-04"), as.POSIXlt("2018-10-04"), "3 months")

[1] "2015-11-04 GMT" "2016-02-04 GMT" "2016-05-04 BST" "2016-08-04 BST"
[5] "2016-11-04 GMT" "2017-02-04 GMT" "2017-05-04 BST" "2017-08-04 BST"
[9] "2017-11-04 GMT" "2018-02-04 GMT" "2018-05-04 BST" "2018-08-04 BST"

the fourth with increments of years:

seq(as.POSIXlt("2015-11-04"), as.POSIXlt("2026-02-04"), "year")

[1] "2015-11-04 GMT" "2016-11-04 GMT" "2017-11-04 GMT" "2018-11-04 GMT"
[5] "2019-11-04 GMT" "2020-11-04 GMT" "2021-11-04 GMT" "2022-11-04 GMT"
[9] "2023-11-04 GMT" "2024-11-04 GMT" "2025-11-04 GMT" "2026-11-04 GMT"

If you specify a number, rather than a recognized character string, in the by part of the sequence function,
then the number is assumed to be a number of seconds, so this generates the time as well as the date:

seq(as.POSIXlt("2015-11-04"), as.POSIXlt("2015-11-05"), 8955)

[1] "2015-11-04 00:00:00 GMT" "2015-11-04 02:29:15 GMT"
[3] "2015-11-04 04:58:30 GMT" "2015-11-04 07:27:45 GMT"
[5] "2015-11-04 09:57:00 GMT" "2015-11-04 12:26:15 GMT"
[7] "2015-11-04 14:55:30 GMT" "2015-11-04 17:24:45 GMT"
[9] "2015-11-04 19:54:00 GMT" "2015-11-04 22:23:15 GMT"

As with other forms of seq, you can specify the length of the vector to be generated, instead of specifying
the final date:

seq(as.POSIXlt("2015-11-04"), by="month", length=10)

[1] "2015-11-04 GMT" "2015-12-04 GMT" "2016-01-04 GMT" "2016-02-04 GMT"
[5] "2016-03-04 GMT" "2016-04-04 BST" "2016-05-04 BST" "2016-06-04 BST"
[9] "2016-07-04 BST" "2016-08-04 BST"

108 THE R BOOK

or you can generate a vector of dates to match the length of an existing vector, using along= instead of
length=:

results <- runif(16)

seq(as.POSIXlt("2015-11-04"), by="month", along=results)

[1] "2015-11-04 GMT" "2015-12-04 GMT" "2016-01-04 GMT" "2016-02-04 GMT"
[5] "2016-03-04 GMT" "2016-04-04 BST" "2016-05-04 BST" "2016-06-04 BST"
[9] "2016-07-04 BST" "2016-08-04 BST" "2016-09-04 BST" "2016-10-04 BST"
[13]"2016-11-04 GMT" "2016-12-04 GMT" "2017-01-04 GMT" "2017-02-04 GMT"

You can use the weekdays function to extract the days of the week from a series of dates:

weekdays(seq(as.POSIXlt("2015-11-04"), by="month", along=results))

[1] "Wednesday" "Friday" "Monday" "Thursday" "Friday" "Monday"
[7] "Wednesday" "Saturday" "Monday" "Thursday" "Sunday" "Tuesday"
[13] "Friday" "Sunday" "Wednesday" "Saturday"

Suppose that you want to find the dates of all the Mondays in a sequence of dates. This involves the use of
logical subscripts (see p. 39). The subscripts evaluating to TRUE will be selected, so the logical statement you
need to make is wday == 1. (because Sunday is wday == 0). You create an object called y containing
the first 100 days in 2016 (note that the start date is 31 December 2015), then convert this vector of dates into
a POSIXlt object, a list called x, like this:

y <- as.Date(1:100,origin="2015-12-31")

x <- as.POSIXlt(y)

Now, because x is a list, you can use the $ operator to access information on weekday, and you find, of
course, that they are all 7 days apart, starting from the 4 January 2016:

x[x$wday==1]

[1] "2016-01-04 UTC" "2016-01-11 UTC" "2016-01-18 UTC" "2016-01-25 UTC"
[5] "2016-02-01 UTC" "2016-02-08 UTC" "2016-02-15 UTC" "2016-02-22 UTC"
[9] "2016-02-29 UTC" "2016-03-07 UTC" "2016-03-14 UTC" "2016-03-21 UTC"
[13]"2016-03-28 UTC" "2016-04-04 UTC"

Suppose you want to list the dates of the first Monday in each month. This is the date with wday == 1
(as above) but only on its first occurrence in each month of the year. This is slightly more tricky, because
several months will contain five Mondays, so you cannot use seq with by = "28 days" to solve the
problem (this would generate 13 dates, not the 12 required). Here are the dates of all the Mondays in the year
of 2016:

y <- as.POSIXlt(as.Date(1:365,origin="2015-12-31"))

Here is what we know so far:

data.frame(monday=y[y$wday==1],month=y$mo[y$wday==1])[1:12,]

monday month
1 2016-01-04 0
2 2016-01-11 0
3 2016-01-18 0
4 2016-01-25 0

ESSENTIALS OF THE R LANGUAGE 109

5 2016-02-01 1
6 2016-02-08 1
7 2016-02-15 1
8 2016-02-22 1
9 2016-02-29 1
10 2016-03-07 2
11 2016-03-14 2
12 2016-03-21 2

You want a vector to mark the 12 Mondays you require: these are those where month is not duplicated (i.e.
you want to take the first row from each month). For this example, the first Monday in January is in row
1 (obviously), the first in February in row 5, the first in March in row 10, and so on. You can use the not
duplicated function !duplicated to tag these rows

wanted <- !duplicated(y$mo[y$wday==1])

Finally, select the 12 dates of the first Mondays using wanted as a subscript like this:

y[y$wday==1][wanted]

[1] "2016-01-04 UTC" "2016-02-01 UTC" "2016-03-07 UTC" "2016-04-04 UTC"
[5] "2016-05-02 UTC" "2016-06-06 UTC" "2016-07-04 UTC" "2016-08-01 UTC"
[9] "2016-09-05 UTC" "2016-10-03 UTC" "2016-11-07 UTC" "2016-12-05 UTC"

Note that every month is represented, and none of the dates is later than the 7th of the month as required.

2.13.7 Calculating time differences between the rows of a dataframe

A common action with time data is to compute the time difference between successive rows of a dataframe.
The vector called duration created above is of class difftime and contains 16 times measured in decimal
hours:

class(duration)

[1] "difftime"

duration

Time differences in hours

[1] 2.385000 3.271389 3.048889 2.750000 3.078333 2.940278 3.207778
[8] 1.953333 2.372778 1.701944 2.521389 3.254444 2.467778 1.926111
[15] 2.285278 1.813333

attr(,"tzone")
[1] ""

You can compute the differences between successive rows using subscripts, like this:

duration[1:15]-duration[2:16]

Time differences in hours

[1] -0.8863889 0.2225000 0.2988889 -0.3283333 0.1380556
[6] -0.2675000 1.2544444 -0.4194444 0.6708333 -0.8194444
[11] -0.7330556 0.7866667 0.5416667 -0.3591667 0.4719444

110 THE R BOOK

You might want to make the differences between successive rows into part of the dataframe (for instance, to
relate change in time to one of the explanatory variables in the dataframe). Before doing this, you need to
decide on the row in which you want to put the first of the differences. You should be guided by whether the
change in time between rows 1 and 2 is related to the explanatory variables in row 1 or row 2. Suppose it is
row 1 that we want to contain the first time difference (–0.8864). Because we are working with differences
(see p. 785) the vector of differences is shorter by one than the vector from which it was calculated:

length(duration[1:15]-duration[2:16])

[1] 15

length(duration)

[1] 16

so you need to add one NA to the bottom of the vector (in row 16):

diffs <- c(duration[1:15]-duration[2:16],NA)
diffs

[1] -0.8863889 0.2225000 0.2988889 -0.3283333 0.1380556 -0.2675000
[7] 1.2544444 -0.4194444 0.6708333 -0.8194444 -0.7330556 0.7866667
[13] 0.5416667 -0.3591667 0.4719444 NA

Now you can make this new vector part of the dataframe called times:

times$diffs <- diffs
times

hrs min sec experiment diffs
1 2 23 6 A -0.8863889
2 3 16 17 A 0.2225000
3 3 2 56 A 0.2988889
4 2 45 0 A -0.3283333
5 3 4 42 A 0.1380556
6 2 56 25 A -0.2675000
7 3 12 28 A 1.2544444
8 1 57 12 A -0.4194444
9 2 22 22 B 0.6708333
10 1 42 7 B -0.8194444
11 2 31 17 B -0.7330556
12 3 15 16 B 0.7866667
13 2 28 4 B 0.5416667
14 1 55 34 B -0.3591667
15 2 17 7 B 0.4719444
16 1 48 48 B NA

You need to take care when doing things with differences. For instance, is it really appropriate that the
difference in row 8 is between the last measurement on treatment A and the first measurement on treatment
B? Perhaps what you really want are the time differences within the treatments, so you need to insert another
NA in row number 8? If so, then:

times$diffs[8] <- NA

ESSENTIALS OF THE R LANGUAGE 111

2.13.8 Regression using dates and times

Here is an example where the number of individual insects was monitored each month over the course of
13 months:

data <- read.table("c:\\temp\\timereg.txt",header=T)
attach(data)
head(data)

survivors date
1 100 01/01/2011
2 52 01/02/2011
3 28 01/03/2011
4 12 01/04/2011
5 6 01/05/2011
6 5 01/06/2011

The first job, as usual, is to use strptime to convert the character string "01/01/2011" into a date-time
object:

dl <- strptime(date,"%d/%m/%Y")

You can see that the object called dl is of class POSIXlt and mode list:

class(dl)

[1] "POSIXlt" "POSIXt"

mode(dl)

[1] "list"

We start by looking at the data using plot with the date dl on the x axis:

windows(7,4)
par(mfrow=c(1,2))
plot(dl,survivors,pch=16,xlab ="month")
plot(dl,log(survivors),pch=16,xlab ="month")

80
40

0

Jan May Sep Jan
month

su
rv

iv
or

s

4
3

2
1

0

Jan May Sep Jan
month

lo
g

(s
ur

vi
vo

rs
)

Inspection of the relationship suggests an exponential decay in numbers surviving, so we shall analyse a
model in which log(survivors) is modelled as a function of time. There are lots of zeros at the end of
the time series (once the last of the individuals was dead), so we shall use subset to leave out all of the
zeros from the model. Let us try to do the regression analysis of log(survivors) against date:

112 THE R BOOK

model <- lm(log(survivors)~dl,subset=(survivors>0))

Error in model.frame.default(formula = log(survivors) ~ dl,
subset = (survivors > :
invalid type (list) for variable 'dl'

Oops. Why did that not work? The answer is that you cannot have a list as an explanatory variable in a linear
model, and as we have just seen, dl is a list. We need to convert from a list (class = POSIXlt) to a
continuous numeric variable (class = POSIXct):

dc <- as.POSIXct(dl)

Now the regression works perfectly when we use the new continuous explanatory variable dc:

model <- lm(log(survivors)~dc,subset=(survivors>0))

You would get the same effect by using as.numeric(dl) in the model formula. We can use the output
from this model to add a regression line to the plot of log(survivors) against time using:

abline(model)

You need to take care in reporting the values of slopes in regressions involving date-time objects, because the
slopes are rates of change of the response variable per second. Here is the summary:

summary(model)

Call:
lm(formula = log(survivors) ~ dc, subset = (survivors > 0))

Residuals:
Min 1Q Median 3Q Max

-0.27606 -0.18306 0.04492 0.13760 0.39277

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.040e+02 1.531e+01 19.86 2.05e-07 ***
dc -2.315e-07 1.174e-08 -19.72 2.15e-07 ***

Residual standard error: 0.2383 on 7 degrees of freedom
Multiple R-squared: 0.9823, Adjusted R-squared: 0.9798
F-statistic: 389 on 1 and 7 DF, p-value: 2.152e-07

The slope is –2.315 × 10–7; the change in log(survivors) per second. It might be more useful to
express this as the monthly rate. So, with 60 seconds per minute, 60 minutes per hour, 24 hours per day, and
(say) 30 days per month, the appropriate rate is

-2.315E-07 * 60 * 60 * 24 * 30

[1] -0.600048

We can check this out by calculating how many survivors we would expect from 100 starters after two
months:

100*exp(-0.600048 * 2)

[1] 30.11653

which compares well with our observed count of 28 (see above).

ESSENTIALS OF THE R LANGUAGE 113

2.13.9 Summary of dates and times in R

The key thing to understand is the difference between the two representations of dates and times in R. They
have unfortunately non-memorable names.

� POSIXlt gives a list containing separate vectors for the year, month, day of the week, day within the year,
and suchlike. It is very useful as a categorical explanatory variable (e.g. to get monthly means from data
gathered over many years using date$mon).

� POSIXct gives a vector containing the date and time expressed as a continuous variable that you can use
in regression models (it is the number of seconds since the beginning of 1970).

You can use other functions like date, but I do not recommend them. If you stick with POSIX you are less
likely to get confused.

2.14 Environments

R is built around a highly sophisticated system of naming and locating objects. When you start a session in
R, the variables you create are in the global environment .GlobalEnv, which is known more familiarly as
the user’s workspace. This is the first place in which R looks for things. Technically, it is the first item on the
search path. It can also be accessed by globalenv().

An environment consists of a frame, which is collection of named objects, and a pointer to an enclosing
environment. The most common example is the frame of variables that is local to a function call; its enclosure
is the environment where the function was defined. The enclosing environment is distinguished from the parent
frame, which is the environment of the caller of a function.

There is a strict hierarchy in which R looks for things: it starts by looking in the frame, then in the enclosing
frame, and so on.

2.14.1 Using with rather than attach

When you attach a dataframe you can refer to the variables within that dataframe by name.
Advanced R users do not routinely employ attach in their work, because it can lead to unexpected

problems in resolving names (e.g. you can end up with multiple copies of the same variable name, each of a
different length and each meaning something completely different). Most modelling functions like lm or glm
have a data= argument so attach is unnecessary in those cases. Even when there is no data= argument
it is preferable to wrap the call using with like this:

with(dataframe, function(...))

The with function evaluates an R expression in an environment constructed from data. You will often use
the with function with other functions like tapply or plot which have no built-in data argument. If your
dataframe is part of the built-in package called datasets (like OrchardSprays) you can refer to the
dataframe directly by name:

with(OrchardSprays,boxplot(decrease~treatment))

114 THE R BOOK

Here we calculate the number of ‘no’ (not infected) cases in the bacteria dataframe which is part of the
MASS library:

library(MASS)

with(bacteria,tapply((y=="n"),trt,sum))

placebo drug drug+
12 18 13

Here we plot brain weight against body weight for mammals on log–log axes:

with(mammals,plot(body,brain,log="xy"))

without attaching either dataframe. Here is an unattached dataframe called reg.data:

reg.data <- read.table("c:\\temp\\regression.txt",header=T)
with which we carry out a linear regression and print a summary:

with (reg.data, {
model <- lm(growth~tannin)
summary(model) })

The linear model fitting function lm knows to look in reg.data to find the variables called growth and
tannin because the with function has used reg.data for constructing the environment from which lm
is called. Groups of statements (different lines of code) to which the with function applies are contained
within curly brackets. An alternative is to define the data environment as an argument in the call to lm like
this:

summary(lm(growth~tannin,data=reg.data))

You should compare these outputs with the same example using attach on p. 450. Note that whatever form
you choose, you still need to get the dataframe into your current environment by using read.table (if, as
here, it is to be read from an external file), or from a library (like MASS to get bacteria and mammals,
as above). To see the names of the dataframes in the built-in package called datasets, type:

data()

To see all available data sets (including those in the installed packages), type:

data(package = .packages(all.available = TRUE))

2.14.2 Using attach in this book

I use attach throughout this book because experience has shown that it makes the code easier to understand
for beginners. In particular, using attach provides simplicity and brevity, so that we can:

� refer to variables by name, so x rather than dataframe$x

� write shorter models, so lm(y~x) rather than lm(y~x,data=dataframe)

� go straight to the intended action, so plot(y~x) not with(dataframe,plot(y~x))

Nevertheless, readers are encouraged to use with or data= for their own work, and to avoid using attach
wherever possible.

ESSENTIALS OF THE R LANGUAGE 115

2.15 Writing R functions

You typically write functions in R to carry out operations that require two or more lines of code to execute,
and that you do not want to type lots of times. We might want to write simple functions to calculate measures
of central tendency (p. 116), work out factorials (p. 71) and such-like.

Functions in R are objects that carry out operations on arguments that are supplied to them and return one
or more values. The syntax for writing a function is

function (argument list) { body }

The first component of the function declaration is the keyword function, which indicates to R that you
want to create a function. An argument list is a comma-separated list of formal arguments. A formal argument
can be a symbol (i.e. a variable name such as x or y), a statement of the form symbol = expression
(e.g. pch=16) or the special formal argument ... (triple dot). The body can be any valid R expression or
set of R expressions over one or more lines. Generally, the body is a group of expressions contained in curly
brackets { }, with each expression on a separate line (if the body fits on a single line, no curly brackets are
necessary). Functions are typically assigned to symbols, but they need not be. This will only begin to mean
anything after you have seen several examples in operation.

2.15.1 Arithmetic mean of a single sample

The mean is the sum of the numbers
∑

y divided by the number of numbers n = ∑
1 (summing over the

number of numbers in the vector called y). The R function for n is length(y) and for
∑

y is sum(y), so
a function to compute arithmetic means is

arithmetic.mean <- function(x) sum(x)/length(x)

We should test the function with some data where we know the right answer:

y <- c(3,3,4,5,5)

arithmetic.mean(y)

[1] 4

Needless to say, there is a built-in function for arithmetic means called mean:

mean(y)

[1] 4

2.15.2 Median of a single sample

The median (or 50th percentile) is the middle value of the sorted values of a vector of numbers:

sort(y)[ceiling(length(y)/2)]

There is slight hitch here, of course, because if the vector contains an even number of numbers, then there
is no middle value. The logic here is that we need to work out the arithmetic average of the two values of
y on either side of the middle. The question now arises as to how we know, in general, whether the vector
y contains an odd or an even number of numbers, so that we can decide which of the two methods to use.
The trick here is to use modulo 2 (p. 18). Now we have all the tools we need to write a general function to
calculate medians. Let us call the function med and define it like this:

116 THE R BOOK

med <- function(x) {
odd.even <- length(x)%%2
if (odd.even == 0) (sort(x)[length(x)/2]+sort(x)[1+ length(x)/2])/2
else sort(x)[ceiling(length(x)/2)]
}

Notice that when the if statement is true (i.e. we have an even number of numbers) then the expression
immediately following the if function is evaluated (this is the code for calculating the median with an
even number of numbers). When the if statement is false (i.e. we have an odd number of numbers, and
odd.even == 1) then the expression following the else function is evaluated (this is the code for
calculating the median with an odd number of numbers). Let us try it out, first with the odd-numbered vector
y, then with the even-numbered vector y[-1], after the first element of y (y[1] = 3) has been dropped
(using the negative subscript):

med(y)

[1] 4

med(y[-1])

[1] 4.5

You could write the same function in a single (long) line by using ifelse instead of if. You need to
remember that the second argument in ifelse is the action to be performed when the condition is true, and
the third argument is what to do when the condition is false:

med <- function(x) ifelse(length(x)%%2==1, sort(x)[ceiling(length(x)/2)],
(sort(x)[length(x)/2]+sort(x)[1+ length(x)/2])/2)

Again, you will not be surprised that there is a built-in function for calculating medians, and helpfully it is
called median.

2.15.3 Geometric mean

For processes that change multiplicatively rather than additively, neither the arithmetic mean nor the median
is an ideal measure of central tendency. Under these conditions, the appropriate measure is the geometric
mean. The formal definition of this is somewhat abstract: the geometric mean is the nth root of the product
of the data. If we use capital Greek pi (�) to represent multiplication, and ŷ (pronounced y-hat) to represent
the geometric mean, then

ŷ = n
√

�y.

Let us take a simple example we can work out by hand: the numbers of insects on 5 plants were as follows:
10, 1, 1000, 1, 10. Multiplying the numbers together gives 100 000. There are five numbers, so we want the
fifth root of this. Roots are hard to do in your head, so we will use R as a calculator. Remember that roots are
fractional powers, so the fifth root is a number raised to the power 1/5 = 0.2. In R, powers are denoted by the
ˆ symbol:

100000ˆ0.2

[1] 10

ESSENTIALS OF THE R LANGUAGE 117

So the geometric mean of these insect numbers is 10 insects per stem. Note that two of the data were exactly
like this, so it seems a reasonable estimate of central tendency. The arithmetic mean, on the other hand, is a
hopeless measure of central tendency in this case, because the large value (1000) is so influential: it is given
by (10 + 1 + 1000 + 1 + 10)/5 = 204.4, and none of the data is close to it.

insects <- c(1,10,1000,10,1)

mean(insects)

[1] 204.4

Another way to calculate geometric mean involves the use of logarithms. Recall that to multiply numbers
together we add up their logarithms. And to take roots, we divide the logarithm by the root. So we should be
able to calculate a geometric mean by finding the antilog (exp) of the average of the logarithms (log) of the
data:

exp(mean(log(insects)))

[1] 10

So here is a function to calculate geometric mean of a vector of numbers x:

geometric <- function (x) exp(mean(log(x)))

We can test it with the insect data:

geometric(insects)

[1] 10

The use of geometric means draws attention to a general scientific issue. Look at the figure below, which
shows numbers varying through time in two populations. Now ask yourself which population is the more
variable. Chances are, you will pick the upper line:

25
0

20
0

15
0

10
0N

um
be

r
50

0

5 10 15 20
Index

118 THE R BOOK

But now look at the scale on the y axis. The upper population is fluctuating 100, 200, 100, 200 and so on.
In other words, it is doubling and halving, doubling and halving. The lower curve is fluctuating 10, 20, 10,
20, 10, 20 and so on. It, too, is doubling and halving, doubling and halving. So the answer to the question is
that they are equally variable. It is just that one population has a higher mean value than the other (150 vs. 15
in this case). In order not to fall into the trap of saying that the upper curve is more variable than the lower
curve, it is good practice to graph the logarithms rather than the raw values of things like population sizes
that change multiplicatively, as below.

5

6
5

4
3lo

g
nu

m
be

rs

2
1

10
Index

15 20

Now it is clear that both populations are equally variable. Note the change of scale, as specified using the
ylim=c(1,6) option within the plot function (p. 193).

2.15.4 Harmonic mean

Consider the following problem. An elephant has a territory which is a square of side 2 km. Each morning,
the elephant walks the boundary of this territory. He begins the day at a sedate pace, walking the first side
of the territory at a speed of 1 km/hr. On the second side, he has sped up to 2 km/hr. By the third side he
has accelerated to an impressive 4 km/hr, but this so wears him out, that he has to return on the final side at
a sluggish 1 km/hr. So what is his average speed over the ground? You might say he travelled at 1, 2, 4 and
1 km/hr so the average speed is (1 + 2 + 4 + 1)/4 = 8/4 = 2 km/hr. But that is wrong. Can you see how
to work out the right answer? Recall that velocity is defined as distance travelled divided by time taken. The
distance travelled is easy: it is just 4 × 2 = 8 km. The time taken is a bit harder. The first edge was 2 km
long, and travelling at 1 km/hr this must have taken 2 hr. The second edge was 2 km long, and travelling at
2 km/hr this must have taken 1 hr. The third edge was 2 km long and travelling at 4 km/hr this must have
taken 0.5 hr. The final edge was 2 km long and travelling at 1 km/hr this must have taken 2 hr. So the total
time taken was 2 + 1 + 0.5 + 2 = 5.5 hr. So the average speed is not 2 km/hr but 8/5.5 = 1.4545 km/hr.
The way to solve this problem is to use the harmonic mean.

ESSENTIALS OF THE R LANGUAGE 119

The harmonic mean is the reciprocal of the average of the reciprocals. The average of our reciprocals is:

1

1
+ 1

2
+ 1

4
+ 1

1
= 2.75

4
= 0.6875.

The reciprocal of this average is the harmonic mean

4

2.75
= 1

0.6875
= 1.4545.

In symbols, therefore, the harmonic mean, ỹ (y-curl), is given by

ỹ = 1(∑
(1/y)

)
/n

= n∑
(1/y)

.

An R function for calculating harmonic means, therefore, could be

harmonic <- function (x) 1/mean(1/x)

and testing it on our elephant data gives

harmonic(c(1,2,4,1))

[1] 1.454545

2.15.5 Variance

A measure of variability is perhaps the most important quantity in statistical analysis. The greater the
variability in the data, the greater will be our uncertainty in the values of parameters estimated from the data,
and the less will be our ability to distinguish between competing hypotheses about the data.

The variance of a sample is measured as a function of ‘the sum of the squares of the difference between
the data and the arithmetic mean’. This important quantity is called the ‘sum of squares’:

SS =
∑

(y − ȳ)2.

Naturally, this quantity gets bigger with every new data point you add to the sample. An obvious way to
compensate for this is to measure variability as the average of the squared departures from the mean (the
‘mean square deviation’.). There is a slight problem, however. Look at the formula for the sum of squares, SS,
above and ask yourself what you need to know before you can calculate it. You have the data, y, but the only
way you can know the sample mean, ȳ, is to calculate it from the data (you will never know ȳ in advance).

2.15.6 Degrees of freedom

To complete our calculation of the variance we need the degrees of freedom (d.f.). This important concept
in statistics is defined as follows:

d.f. = n − k,

which is the sample size, n, minus the number of parameters, k, estimated from the data. For the variance,
we have estimated one parameter from the data, ȳ, and so there are n − 1 degrees of freedom. In a linear

120 THE R BOOK

regression, we estimate two parameters from the data, the slope and the intercept, and so there are n − 2
degrees of freedom in a regression analysis.

Variance is denoted by the lower-case Latin letter s squared: s2. The square root of variance, s, is called
the standard deviation. We always calculate variance as

variance = s2 = sum of squares

degrees of freedom
.

Consider the following data:

y <- c(13,7,5,12,9,15,6,11,9,7,12)

We need to write a function to calculate the sample variance: we call it variance and define it like this:

variance <- function(x) sum((x - mean(x))ˆ2)/(length(x)-1)

and use it like this:

variance(y)

[1] 10.25455

Our measure of variability in these data, the variance, is thus 10.254 55. It is said to be an unbiased estimator
because we divide the sum of squares by the degrees of freedom (n − 1) rather than by the sample size, n, to
compensate for the fact that we have estimated one parameter from the data. So the variance is close to the
average squared difference between the data and the mean, especially for large samples, but it is not exactly
equal to the mean squared deviation. Needless to say, R has a built-in function to calculate variance called
var:

var(y)

[1] 10.25455

2.15.7 Variance ratio test

How do we know if two variances are significantly different from one another? One of several sensible ways
to do this is to carry out Fisher’s F test, which is simply the ratio of the two variances (see p. 287). Here is a
function to print the p value (p. 347) associated with a comparison of the larger and smaller variances:

variance.ratio <- function(x,y) {

v1 <- var(x)
v2 <- var(y)

if (var(x) > var(y)){
vr <- var(x)/var(y)
df1 <- length(x)-1
df2 <- length(y)-1}

else {
vr <- var(y)/var(x)
df1 <- length(y)-1
df2 <- length(x)-1}

2*(1-pf(vr,df1,df2)) }

ESSENTIALS OF THE R LANGUAGE 121

The last line of our function works out the probability of getting an F ratio as big as vr or bigger by chance
alone if the two variances were really the same, using the cumulative probability of the F distribution, which
is an R function called pf. We need to supply pf with three arguments: the size of the variance ratio (vr),
the number of degrees of freedom in the numerator (df1 = 9) and the number of degrees of freedom in the
denominator (df2 = 9).

Here are some data to test our function. They are normally distributed random numbers but the first set
has a variance of 4 and the second a variance of 16 (i.e. standard deviations of 2 and 4, respectively):

a <- rnorm(10,15,2)

b <- rnorm(10,15,4)

Here is our function in action:

variance.ratio(a,b)

[1] 0.01593334

We can compare our p with the p value given by the built-in function called var.test:

var.test(a,b)

F test to compare two variances

data: a and b
F = 0.1748, num df = 9, denom df = 9, p-value = 0.01593
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.04340939 0.70360673
sample estimates:
ratio of variances

0.1747660

2.15.8 Using variance

Variance is used in two main ways: for establishing measures of unreliability (e.g. confidence intervals) and
for testing hypotheses (e.g. Student’s t test). Here we will concentrate on the former; the latter is discussed in
Chapter 8.

Consider the properties that you would like a measure of unreliability to possess. As the variance of the
data increases, what would happen to the unreliability of estimated parameters? Would it go up or down?
Unreliability would go up as variance increased, so we would want to have the variance on the top (the
numerator) of any divisions in our formula for unreliability:

unreliability ∝ s2.

What about sample size? Would you want your estimate of unreliability to go up or down as sample size,
n, increased? You would want unreliability to go down as sample size went up, so you would put sample size
on the bottom of the formula for unreliability (i.e. in the denominator):

unreliability ∝ s2

n
.

122 THE R BOOK

Finally, consider the units in which unreliability is measured. What are the units in which our current
measure is expressed? Sample size is dimensionless, but variance is based on the sum of squared differences,
so it has dimensions of mean squared. So if the mean was a length in cm, the variance would be an area in cm2.
This is an unfortunate state of affairs. It would make good sense to have the dimensions of the unreliability
measure and of the parameter whose unreliability it is measuring the same. That is why all unreliability
measures are enclosed inside a big square root term. Unreliability measures are called standard errors. What
we have just worked out is the standard error of the mean,

seȳ =
√

s2

n
,

where s2 is the variance and n is the sample size. There is no built-in R function to calculate the standard
error of a mean, but it is easy to write one:

se <- function(x) sqrt(var(x)/length(x))

You can refer to functions from within other functions. Recall that a confidence interval (CI) is ‘t from
tables times the standard error’:

CI = tα/2,d.f. × se.

The R function qt gives the value of Student’s t with 1 – α/2 = 0.975 and degrees of freedom d.f. =
length(x)-1. Here is a function called ci95 which uses our function se to compute 95% confidence
intervals for a mean:

ci95 <- function(x) {
t.value <- qt(0.975,length(x)-1)
standard.error <- se(x)
ci <- t.value*standard.error

cat("95 Confidence Interval = ", mean(x) -ci, "to ", mean(x) +ci,"\n") }
We can test the function with 150 normally distributed random numbers with mean 25 and standard
deviation 3:

x <- rnorm(150,25,3)

ci95(x)

95% Confidence Interval = 24.76245 to 25.74469

If we were to repeat the experiment, we could be 95% certain that the mean of the new sample would lie
between 24.76 and 25.74.

We can use the se function to investigate how the standard error of the mean changes with the sample
size. First we generate one set of data from which we shall take progressively larger samples:

xv <- rnorm(30)

Now in a loop take samples of size 2, 3, 4, . . . , 30:

sem <- numeric(30)
sem[1] <- NA

for(i in 2:30) sem[i] <- se(xv[1:i])

ESSENTIALS OF THE R LANGUAGE 123

plot(1:30,sem,ylim=c(0,0.8),
ylab="standard error of mean",xlab="sample size n",pch=16)

You can see clearly that as the sample size falls below about n = 15, so the standard error of the mean
increases rapidly. The blips in the line are caused by outlying values being included in the calculations of the
standard error with increases in sample size. The smooth curve is easy to compute: since the values in xv
came from a standard normal distribution with mean 0 and standard deviation 1, so the average curve would
be 1/

√
n, which we can add to our graph using lines:

lines(2:30,1/sqrt(2:30))

0.
8

0.
6

0.
6

0.
2

0.
0

0 5 10 15
sample size n

st
an

da
rd

 e
rr

or
 m

ea
n

20 25 30

You can see that our single simulation captured the essence of the shape but was wrong in detail, especially
for the samples with the lowest replication. However, our single sample was reasonably good for n > 24.

2.15.9 Deparsing: A graphics function for error bars

There is no function in the base package of R for drawing error bars on bar charts, although several contributed
packages use the arrows function for this purpose (p. 204). Here is a simple, stripped-down function that is
supplied with three arguments: the heights of the bars (yv), the lengths (up and down) of the error bars (z)
and the labels for the bars on the x axis (nn).

The process of deparsing turns an unevaluated expression into a character string. One of the important
uses of deparsing is in functions that produce output that you want to label with the particular names of the
variables that were passed to the function. For instance, if the function is written in terms of a continuous
response variable y and a categorical explanatory variable x, you might want to label the axes of a plot
produced by the function with, say, clipping and biomass in place of x and y. For instance, if the
function is written in terms of a continuous response variable yv, you might want to label the axes of a
plot produced by the function with, say, biomass in place of yv. Inside the error.bars function, the
barplot function uses the deparse function to create the appropriate text for ylab.

124 THE R BOOK

error.bars <- function(yv,z,nn){
xv <-
barplot(yv,ylim=c(0,(max(yv)+max(z))),names=nn,ylab=deparse(substitute(yv)
))
g=(max(xv)-min(xv))/50
for (i in 1:length(xv)) {

lines(c(xv[i],xv[i]),c(yv[i]+z[i],yv[i]-z[i]))
lines(c(xv[i]-g,xv[i]+g),c(yv[i]+z[i], yv[i]+z[i]))
lines(c(xv[i]-g,xv[i]+g),c(yv[i]-z[i], yv[i]-z[i]))

}}

Here is the error.bars function in action with the plant competition data (p. 426):

comp <- read.table("c:\\temp\\competition.txt",header=T)
attach(comp)
names(comp)

[1] "biomass" "clipping"

se <- rep(28.75,5)
labels <- as.character(levels(clipping))
ybar <- as.vector(tapply(biomass,clipping,mean))

Now invoke the function with the means, standard errors and bar labels:

error.bars(ybar,se,labels)

60
0

50
0

40
0

30
0

yb
ar

20
0

10
0

0

control n25 n50 r10 r5

Here is a function to plot error bars on a scatterplot in both the x and y directions:

xy.error.bars <- function (x,y,xbar,ybar){
plot(x, y, pch=16, ylim=c(min(y-ybar),max(y+ybar)),

xlim=c(min(x-xbar),max(x+xbar)))

ESSENTIALS OF THE R LANGUAGE 125

arrows(x, y-ybar, x, y+ybar, code=3, angle=90, length=0.1)
arrows(x-xbar, y, x+xbar, y, code=3, angle=90, length=0.1) }

We test it with these data:

x <- rnorm(10,25,5)
y <- rnorm(10,100,20)
xb <- runif(10)*5
yb <- runif(10)*20

xy.error.bars(x,y,xb,yb)

12
0

11
0

10
0

90
80

y

15 20 25 30 35
x

70
60

50

2.15.10 The switch function

When you want a function to do different things in different circumstances, then the switch function can
be useful. Here we write a function that can calculate any one of four different measures of central tendency:
arithmetic mean, geometric mean, harmonic mean or median (see pp. 115–119 for explanations of the separate
functions). The character variable called measure should take one value of Mean, Geometric, Harmonic or
Median; any other text will lead to the error message Measure not included. Alternatively, you can
specify the number of the switch (e.g. 1 for Mean, 4 for Median).

central <- function(y, measure) {
switch(measure,

Mean = mean(y),
Geometric = exp(mean(log(y))),
Harmonic = 1/mean(1/y),
Median = median(y),

stop("Measure not included")) }

126 THE R BOOK

Note that you have to include the character strings in quotes as arguments to the function, but they must not
be in quotes within the switch function itself.

central(rnorm(100,10,2),"Harmonic")

[1] 9.554712

central(rnorm(100,10,2),4)

[1] 10.46240

2.15.11 The evaluation environment of a function

When a function is called or invoked a new evaluation frame is created. In this frame the formal arguments are
matched with the supplied arguments according to the rules of argument matching (below). The statements
in the body of the function are evaluated sequentially in this environment frame.

The first thing that occurs in a function evaluation is the matching of the formal to the actual or supplied
arguments. This is done by a three-pass process:

� Exact matching on tags. For each named supplied argument the list of formal arguments is searched for
an item whose name matches exactly.

� Partial matching on tags. Each named supplied argument is compared to the remaining formal arguments
using partial matching. If the name of the supplied argument matches exactly with the first part of a formal
argument then the two arguments are considered to be matched.

� Positional matching. Any unmatched formal arguments are bound to unnamed supplied arguments, in
order. If there is a . . . argument, it will take up the remaining arguments, tagged or not.

� If any arguments remain unmatched an error is declared.

Supplied arguments and default arguments are treated differently. The supplied arguments to a function
are evaluated in the evaluation frame of the calling function. The default arguments to a function are evaluated
in the evaluation frame of the function. In general, supplied arguments behave as if they are local variables
initialized with the value supplied and the name of the corresponding formal argument. Changing the value
of a supplied argument within a function will not affect the value of the variable in the calling frame.

2.15.12 Scope

The scoping rules are the set of rules used by the evaluator to find a value for a symbol. A symbol can be
either bound or unbound. All of the formal arguments to a function provide bound symbols in the body of
the function. Any other symbols in the body of the function are either local variables or unbound variables.
A local variable is one that is defined within the function, typically by having it on the left-hand side of
an assignment. During the evaluation process if an unbound symbol is detected then R attempts to find a
value for it: the environment of the function is searched first, then its enclosure and so on until the global
environment is reached. The value of the first match is then used.

2.15.13 Optional arguments

Here is a function called charplot that produces a scatterplot of x and y using solid red circles as the
plotting symbols: there are two essential arguments (x and y) and two optional (pc and co) to control

ESSENTIALS OF THE R LANGUAGE 127

selection of the plotting symbol and its colour:

charplot <- function(x,y,pc=16,co="red"){
plot(y~x,pch=pc,col=co)}
The optional arguments are given their default values using = in the argument list. To execute the function
you need only provide the vectors of x and y:

charplot(1:10,1:10)

to get solid red circles. You can get a different plotting symbol simply by adding a third argument

charplot(1:10,1:10,17)

which produces red solid triangles (pch=17). If you want to change only the colour (the fourth argument)
then you have to specify the variable name because the optional arguments would not then be presented in
sequence. So, for navy blue solid circles, you put:

charplot(1:10,1:10,co="navy")

To change both the plotting symbol and the colour you do not need to specify the variable names, so long as
the plotting symbol is the third argument and the colour is the fourth:

charplot(1:10,1:10,15,"green")

This produces solid green squares. Reversing the optional arguments does not work:

charplot(1:10,1:10,"green",15)

(this uses the letter g as the plotting symbol and colour no. 15). If you specify both variable names, then the
order does not matter:

charplot(1:10,1:10,co="green",pc=15)

This produces solid green squares despite the arguments being out of sequence.

2.15.14 Variable numbers of arguments (. . .)

Some applications are much more straightforward if the number of arguments does not need to be specified
in advance. There is a special formal name . . . (triple dot) which is used in the argument list to specify that
an arbitrary number of arguments are to be passed to the function. Here is a function that takes any number
of vectors and calculates their means and variances:

many.means <- function (...) {
data <- list(...)
n <- length(data)
means <- numeric(n)
vars <- numeric(n)
for (i in 1:n) {

means[i] <- mean(data[[i]])
vars[i] <- var(data[[i]])

}
print(means)
print(vars)
invisible(NULL)

}

128 THE R BOOK

The main features to note are these. The function definition has . . . as its only argument. The ‘triple dot’
argument . . . allows the function to accept additional arguments of unspecified name and number, and this
introduces tremendous flexibility into the structure and behaviour of functions. The first thing done inside the
function is to create an object called data out of the list of vectors that are actually supplied in any particular
case. The length of this list is the number of vectors, not the lengths of the vectors themselves (these could
differ from one vector to another, as in the example below). Then the two output variables (means and vars)
are defined to have as many elements as there are vectors in the parameter list. The loop goes from 1 to the
number of vectors, and for each vector uses the built-in functions mean and var to compute the answers we
require. It is important to note that because data is a list, we use double [[]] subscripts in addressing its
elements.

Now try it out. To make things difficult we shall give it three vectors of different lengths. All come from
the standard normal distribution (with mean 0 and variance 1) but x is 100 in length, y is 200 and z is
300 numbers long:

x <- rnorm(100)
y <- rnorm(200)
z <- rnorm(300)

Now we invoke the function:

many.means(x,y,z)

[1] -0.039181830 0.003613744 0.050997841
[1] 1.146587 0.989700 0.999505

As expected, all three means (top row) are close to 0, and all three variances are close to 1 (bottom row).
You can use . . . to absorb some arguments into an intermediate function which can then be extracted by

functions called subsequently. R has a form of lazy evaluation of function arguments in which arguments are
not evaluated until they are needed (in some cases the argument will never be evaluated).

2.15.15 Returning values from a function

Often you want a function to return a single value (like a mean or a maximum), in which case you simply leave
the last line of the function unassigned (i.e. there is no ‘gets arrow’ on the last line). Here is a function to return
the median value of the parallel maxima (built-in function pmax) of two vectors supplied as arguments:

parmax <- function (a,b) {
c <- pmax(a,b)

median(c) }

Here is the function in action: the unassigned last line median(c) returns the answer

x <- c(1,9,2,8,3,7)

y <- c(9,2,8,3,7,2)

parmax(x,y)

[1] 8

If you want to return two or more variables from a function you should use return with a list containing
the variables to be returned. Suppose we wanted the median value of both the parallel maxima and the parallel

ESSENTIALS OF THE R LANGUAGE 129

minima to be returned:

parboth <- function (a,b) {
c <- pmax(a,b)
d <- pmin(a,b)
answer <- list(median(c),median(d))
names(answer)[[1]] <- "median of the parallel maxima"
names(answer)[[2]] <- "median of the parallel minima"
return(answer) }

Here it is in action with the same x and y data as above:

parboth(x,y)

$"median of the parallel maxima"

[1] 8

$"median of the parallel minima"

[1] 2

The point is that you make the multiple returns into a list, then return the list. The provision of multi-argument
returns (e.g. return(median(c),median(d)) in the example above) has been deprecated in R and
a warning is given, as multi-argument returns were never documented in S, and whether or not the list was
named differs from one version of S to another.

2.15.16 Anonymous functions

Here is an example of an anonymous function. It generates a vector of values but the function is not allocated
a name (although the answer could be).

(function(x,y){ z <- 2* xˆ2 + yˆ2; x+y+z })(0:7, 1)

[1] 2 5 12 23 38 57 80 107

The function first uses the supplied values of x and y to calculate z, then returns the value of x + y + z
evaluated for eight values of x (from 0 to 7) and one value of y (1). Anonymous functions are used most
frequently with apply, tapply, sapply and lapply (p. 63).

2.15.17 Flexible handling of arguments to functions

Because of the lazy evaluation practised by R, it is very simple to deal with missing arguments in function
calls, giving the user the opportunity to specify the absolute minimum number of arguments, but to override
the default arguments if they want to. As a simple example, take a function plotx2 that we want to work
when provided with either one or two arguments. In the one-argument case (only an integer x > 1 provided),
we want it to plot z2 against z for z = 1 to x in steps of 1. In the second case, when y is supplied, we want it
to plot y against z for z = 1 to x:

plotx2 <- function (x, y = zˆ2) {
z <- 1:x
plot(z,y,type="l") }

130 THE R BOOK

In many other languages, the first line would fail because z is not defined at this point. But R does not
evaluate an expression until the body of the function actually calls for it to be evaluated (i.e. never, in the
case where y is supplied as a second argument). Thus for the one-argument case we get a graph of z2 against
z and in the two-argument case we get a graph of y against z (in this example, the straight line 1:12 vs. 1:12).
We rescale the windows (width then height in inches) so that the graphs come out looking roughly square
rather than elongated:

windows(7,4)

par(mfrow=c(1,2))

plotx2(12)

plotx2(12,1:12)

14
0

10
0

60

y

20
0

2 6
z

8 10 12

12
8

10
6

y

4
2

2 644
z

8 10 12

It is possible to access the actual (not default) expressions used as arguments inside the function. The
mechanism is implemented via promises. You can find an explanation of promises by typing ?promise at
the command prompt.

2.15.18 Structure of an object: str

Here is one of the simplest objects in R – a vector of length 7 containing real numbers:

(y <- seq(0.9,0.3,-0.1))

[1] 0.9 0.8 0.7 0.6 0.5 0.4 0.3

We can ask R about the structure of the object called y using str:

str(y)

num [1:7] 0.9 0.8 0.7 0.6 0.5 0.4 0.3

We discover that it is numeric (in both class and mode), a vector of length 7 [1:7], and (because the
vector is short) we see all of the values listed. For longer vectors we would see the first few values, depending
on what would fit on a single printed line (as affected by the number of decimal places displayed).

What about a slightly more complicated object? Here is a dataframe with two columns:

data <- read.table("c:\\temp\\spino.txt",header=T)
str(data)

'data.frame': 109 obs. of 2 variables:
$ condition: Factor w/ 5 levels "better","much.better",..: 4 1 1 4 4 4 1 5 4 1 ...
$ treatment: Factor w/ 3 levels "drug.A","drug.B",..: 1 2 2 3 2 2 1 1 2 2 ...

ESSENTIALS OF THE R LANGUAGE 131

We learn that data is a dataframe with 109 rows and 2 columns, then we get detailed information on each
of the columns in turn. The first is a variable called condition which is a factor with five levels (the first
two levels of which (in alphabetical order) are better and much.better). The second variable is called
treatment and is a factor with three levels. The numbers are the integer representations of the factor levels
in the first 10 rows of the dataframe. Because we can see only factor levels 1 and 2, we would need to do
more work to discover what factor level 4 of condition, or level 3 of treatment, actually represented:

levels(data$condition);levels(data$treatment)

[1] "better" "much.better" "much.worse" "no.change" "worse"
[1] "drug.A" "drug.B" "placebo"

We often want to know about the structure of model objects. Here is the simplest case, with a linear
regression model (see p. 450 for details):

reg <- read.table("c:\\temp\\tannin.txt",header=T)
reg.model <- lm(growth~tannin,data=reg)
str(reg.model)

List of 12
$ coefficients : Named num [1:2] 11.76 -1.22
..- attr(*, "names")= chr [1:2] "(Intercept)" "tannin"
$ residuals : Named num [1:9] 0.244 -0.539 -1.322 2.894 -0.889 ...
..- attr(*, "names")= chr [1:9] "1" "2" "3" "4" ...
$ effects : Named num [1:9] -20.67 -9.42 -1.32 2.83 -1.01 ...
..- attr(*, "names")= chr [1:9] "(Intercept)" "tannin" "" "" ...
$ rank : int 2
$ fitted.values: Named num [1:9] 11.76 10.54 9.32 8.11 6.89 ...
..- attr(*, "names")= chr [1:9] "1" "2" "3" "4" ...
$ assign : int [1:2] 0 1
$ qr :List of 5
..$ qr : num [1:9, 1:2] -3 0.333 0.333 0.333 0.333 ...
.. ..- attr(*, "dimnames")=List of 2
..$: chr [1:9] "1" "2" "3" "4" ...
..$: chr [1:2] "(Intercept)" "tannin"
.. ..- attr(*, "assign")= int [1:2] 0 1
..$ qraux: num [1:2] 1.33 1.26
..$ pivot: int [1:2] 1 2
..$ tol : num 1e-07
..$ rank : int 2
..- attr(*, "class")= chr "qr"
$ df.residual : int 7
$ xlevels : Named list()
$ call : language lm(formula = growth ~ tannin, data = reg)
$ terms :Classes 'terms', 'formula' length 3 growth ~ tannin
.. ..- attr(*, "variables")= language list(growth, tannin)
.. ..- attr(*, "factors")= int [1:2, 1] 0 1
..- attr(*, "dimnames")=List of 2
..$: chr [1:2] "growth" "tannin"

132 THE R BOOK

..$: chr "tannin"

.. ..- attr(*, "term.labels")= chr "tannin"

.. ..- attr(*, "order")= int 1

.. ..- attr(*, "intercept")= int 1

.. ..- attr(*, "response")= int 1

.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>

.. ..- attr(*, "predvars")= language list(growth, tannin)

.. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"

..- attr(*, "names")= chr [1:2] "growth" "tannin"
$ model :'data.frame': 9 obs. of 2 variables:
..$ growth: int [1:9] 12 10 8 11 6 7 2 3 3
..$ tannin: int [1:9] 0 1 2 3 4 5 6 7 8
..- attr(*, "terms")=Classes 'terms', 'formula' length 3 growth ~

tannin
..- attr(*, "variables")= language list(growth, tannin)
..- attr(*, "factors")= int [1:2, 1] 0 1
..- attr(*, "dimnames")=List of 2
..$: chr [1:2] "growth" "tannin"
..$: chr "tannin"
..- attr(*, "term.labels")= chr "tannin"
..- attr(*, "order")= int 1
..- attr(*, "intercept")= int 1
..- attr(*, "response")= int 1
..- attr(*, ".Environment")=<environment: R_GlobalEnv>
..- attr(*, "predvars")= language list(growth, tannin)
..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
..- attr(*, "names")= chr [1:2] "growth" "tannin"
- attr(*, "class")= chr "lm"

There are 12 elements in the list representing the structure of this linear model object: coefficients, residuals,
effects, rank, fitted values, assign, qr, residual degrees of freedom, xlevels, call, terms and model. Each of
these, in turn, is broken down into components; for instance, the two coefficients are numbers (11.76 and
–1.22), and their names are (Intercept) and tannin. You should work down the list and see if you can
figure out why each row is an important part of the model.

For more complicated models, the structure is even more involved. Here is the structure of a generalized
linear model with a binary response and binomial errors:

data <- read.table("c:\\temp\\spino.txt",header=T)
attach(data)
y <- factor(1+(condition=="better")+(condition=="much.better"))
model <- glm(y~treatment,binomial)
summary(model)

Call:
glm(formula = y ~ treatment, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9741 -0.9741 -0.7747 1.3953 1.6431

ESSENTIALS OF THE R LANGUAGE 133

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6131 0.3444 -1.780 0.075 .
treatmentdrug.B 0.1141 0.4617 0.247 0.805
treatmentplacebo -0.4367 0.5581 -0.783 0.434

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 139.67 on 108 degrees of freedom
Residual deviance: 138.54 on 106 degrees of freedom
AIC: 144.54

We have carried out a one-way analysis of deviance with a two-level response (improved or not) and a three-
level factor as explanatory variable (treatment). There was no significant difference between drug.B
and the placebo, nor between either of these and drug.A (the intercept). Here is the structure of the object
called model:

str(model)

As you will see, this is a very large object, comprising a list with 30 components covering all aspects of
the model: the coefficients, fitted values, effects plus all the details of the family and the model formula.
I recommend you work your way slowly down the whole list and try to understand why each of the rows
represents an essential piece of information about the model.

2.16 Writing from R to file

You often want to save an object that you have created in R.

2.16.1 Saving your work

To save your current R session, so that you can load it again later and continue your work where you left off,
use save like this:

save(list = ls(all=TRUE), file= "c:\\temp\\session")

Then, on another occasion, when you want to restore the data, use load like this:

load(file= "c:\\temp\\session")

2.16.2 Saving history

It is very useful to be able to see all of the lines of R code that one has typed during a particular session.
You may want to copy the lines into a text editor to make minor alterations, or you may simply want to paste
multiple lines back into R to repeat certain operations. To see all of your lines of input code just type:

history(Inf)

This opens a window called R History through which you can scroll, highlight and copy using Ctrl + C.
You could then open a new Untitled R Editor window (File > New Script) and paste the selected lines of

134 THE R BOOK

code using Ctrl + V. Alternatively, you might want to save the entire history to file, for use on a subsequent
occasion:

savehistory(file = "c:\\temp\\session18.txt")

To retrieve the history for use on another occasion use:

loadhistory(file = "c:\\temp\\session18.txt")

Then you can access it by history(Inf)in the new session.

2.16.3 Saving graphics

For speed and simplicity, you can click on a graph (the bar on top of the R Graphics Device goes darker
blue) then press Ctrl + C (to copy the graph), then switch to a word processor and paste using Ctrl + V.
For publication-quality graphics, however, you will want to save each figure in a separate file as a PDF or
PostScript file. There are a great many options (see ?pdf and ?postscript for details) but the basics are
very simple. Here we set the graphics device to produce a PDF:

pdf("c:\\temp\\fig1.pdf")

Now, any plot directives are sent to this file. To switch off writing graphics to file, type:

dev.off()

2.16.4 Saving data produced within R to disc

It is often convenient to generate numbers within R and then to use them somewhere else (in a spreadsheet,
say). Here are 1000 random integers from a negative binomial distribution with mean mu=1.2 and clumping
parameter or aggregation parameter (k) size = 1.0, that I want to save as a single column of 1000 rows
in a file called nbnumbers.txt in the temp directory on the c: drive:

nbnumbers <- rnbinom(1000, size=1, mu=1.2)

There is general point to note here about the number and order of arguments provided to built-in functions
like rnbinom. This function can have two of three optional arguments: size, mean (mu) and probability
(prob) (see ?rnbinom). R knows that the unlabelled number 1000 refers to the number of numbers
required because of its position, first in the list of arguments. If you are prepared to specify the names of the
arguments, then the order in which they appear is irrelevant: rnbinom(1000, size=1, mu=1.2) and
rnbinom(1000, mu=1.2, size=1) would give the same output. But if optional arguments are not
labelled, then their order is crucial: sornbinom(1000, 0.9, 0.6) is different fromrnbinom(1000,
0.6, 0.9) because if there are no labels, then the second argument must be size and the third argument
must be prob.

To export the numbers I use write like this, specifying that the numbers are to be output in a single
column (i.e. with third argument 1 because the default is 5 columns):

write(nbnumbers,"c:\\temp\\nbnumbers.txt",1)

Sometimes you will want to save a table or a matrix of numbers to file. There is an issue here, in that the
write function transposes rows and columns. It is much simpler to use the write.table function which
does not transpose the rows and columns. Here is a matrix of 1000 rows and 100 columns made up of random

ESSENTIALS OF THE R LANGUAGE 135

integers from a Poisson distribution with mean 0.75:

xmat <- matrix(rpois(100000,0.75),nrow=1000)

write.table(xmat,"c:\\temp\\table.txt",col.names=F,row.names=F)
The function adds made-up row names and column names unless (as here) you specify otherwise. You have
saved 1000 rows each of 100 Poisson random numbers with λ = 0.75.

Suppose that you have counted the number of different entries in the vector of negative binomial numbers
(above):

nbtable <- table(nbnumbers)
nbtable

0 1 2 3 4 5 6 7 8 9 11 15
445 248 146 62 41 33 13 4 1 5 1 1

and you want write this output to a file. If you want to save both the counts and their frequencies in adjacent
columns, use

write.table(nbtable,"c:\\temp\\table.txt",col.names=F,row.names=F)
but if you only want to export a single column of frequencies (445, 248, . . .) use

write.table(unclass(nbtable),"c:\\temp\\table.txt",col.names=F,row.names=F)

2.16.5 Pasting into an Excel spreadsheet

Writing a vector from R to the Windows Clipboard uses the function writeClipboard(x) where x is a
single vector of characters, so you need to build up a spreadsheet in Excel by pasting (Ctrl + V) one column
at a time. Remember that character strings in dataframes are converted to factors on input unless you protect
them by as.is(name) on input. For example:

writeClipboard(as.character(factor.name))

Go into Excel and press Ctrl + V, and then back into R and type:

writeClipboard(as.character(numeric.variable))

Then go into Excel and press Ctrl + V in the second column, and so on.

2.16.6 Writing an Excel readable file from R

Suppose you want to transfer an entire dataframe called data to Excel (rather than one column, as above):

data <- read.table("c:\\temp\\worms.txt",header=T)
write.table(data,"clipboard",sep="\t",col.names=NA)
Then, in Excel, just press Ctrl + V or click on the Paste icon (the Clipboard). Your variable names will appear
in the first row of the spreadsheet, with (unheaded) row numbers in the leftmost column.

2.17 Programming tips

� Know exactly what you are trying to achieve.

� Keep it simple.

136 THE R BOOK

� Clever is good, but clear is better.

� Test each line as you go along, to make sure it does what you want it to do.

� Put plenty of comments in the code, using # for documentation.

� Use variable names and function names that are self-explanatory.

� Do not use attach in programs.

� Use with, or refer to variables within named dataframes.

� Try different ways of doing the same thing, and select the fastest method.

� Use indents (tabs) to improve clarity of loops and if statements.

� Build up the program from small, independently tested functions.

� Stop tinkering once it works effectively.

3
Data Input

You can get numbers into R through the keyboard, from the Clipboard or from an external file. For a single
variable of up to 10 numbers or so, it is probably quickest to type the numbers at the command line, using
the concatenate function c like this:

y <- c (6,7,3,4,8,5,6,2)

For intermediate sized variables, you might want to enter data from the keyboard using the scan function.
For larger data sets, and certainly for sets with several variables, you should make a dataframe externally (e.g.
in a spreadsheet) and read it into R using read.table (p. 139).

3.1 Data input from the keyboard

The scan function is useful if you want to type (or paste) a few numbers into a vector called x from the
keyboard:

x <-scan()

1:

At the 1: prompt type your first number, then press the Enter key. When the 2: prompt appears, type in your
second number and press Enter, and so on. When you have put in all the numbers you need (suppose there
are eight of them) then simply press the Enter key at the 9: prompt.

1: 6
2: 7
3: 3
4: 4
5: 8
6: 5
7: 6
8: 2
9:

Read 8 items

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

138 THE R BOOK

You can also use scan to paste in columns of numbers from the Clipboard. In the spreadsheet, highlight
the column of numbers you want, then type Ctrl + C (the accelerator keys for Copy). Now go back into
R. At the 1: prompt just type Ctrl + V (the accelerator keys for Paste) and the numbers will be scanned
into the named variable (x in this example). You can then paste in another set of numbers, or press Return to
complete data entry. If you try to read in a group of numbers from a row of cells in Excel, the characters will
be pasted into a single multi-digit number (definitely not what is likely to have been intended). So, if you are
going to paste numbers from Excel, make sure the numbers are in columns, not in rows, in the spreadsheet.
If necessary, use Edit/Paste Special/Transpose in Excel to turn a row into a column before copying the
numbers.

3.2 Data input from files

The easiest way to get data into R is to make your data into the shape of a dataframe before trying to read
it into R. As explained in detail in Chapter 4, you should put all of the values of each variable into a single
column, and put the name of the variable in row 1 (called the ‘header’ row). You will sometimes see the rows
and the columns of the dataframe referred to as cases and fields respectively. In our terminology, the fields
are the variables and the cases are rows.

Where you have text strings containing blanks (e.g. place names like ‘New Brighton’) then read.table
is no good because it will think that ‘New’ is the value of one variable and ‘Brighton’ is another, causing
the input to fail because the number of data items does not match the number of columns. In such cases, use
a comma to separate the fields, and read the data from file using the function read.csv (the suffix .csv
stands for ‘comma separated values’). The function read.csv2 is the variant for countries where a comma
is used as the decimal point: in this case, a semicolon is the field separator.

3.2.1 The working directory

It is useful to have a working directory, because this makes accessing and writing files so much easier, since
you do not need to type the (potentially long) path name each time. For instance, we can simplify data entry
by using setwd to set the working directory to "c:\\temp":

setwd("c:\\temp")
To find out the name of the current working directory, use getwd() like this:

getwd()

[1] "c:/temp"

If you have not changed the working directory, then you will see something like this:

getwd()

[1] "C:/Documents and Settings/mjcraw/My Documents"

which is the working directory assumed by R when you start a new session. If you plan to switch back to the
default working directory during a session, then it is sensible to save the long default path before you change
it, like this:

mine<-getwd()
setwd("c:\\temp")
...
setwd(mine)

DATA INPUT 139

If you want to view file names from R, then use the dir function like this:

dir("c:\\temp")
To pick a file from a directory using the browser, invoke the file.choose function. This is most used in
association with read.table if you have forgotten the name or the location of the file you want to read
into a dataframe:

data<-read.table(file.choose(),header=T)

Just click on the file you want to read, and the contents will be assigned to the frame called data.

3.2.2 Data input using read.table

Here is an example of the standard means of data entry, creating a dataframe within R using read.table:

setwd("c:\\temp\\")
data <- read.table(yield.txt",header=T)
head(data)

year wheat barley oats rye corn
1 1980 5.9 4.4 4.1 3.8 4.4
2 1981 5.8 4.4 4.3 3.7 4.1
3 1982 6.2 4.9 4.4 4.1 4.0
4 1983 6.4 4.7 4.3 3.7 4.1
5 1984 7.7 5.6 4.9 4.7 4.7
6 1985 6.3 5.0 4.6 4.6 4.3

You can save time by using read.delim, because then you can omit header=T:

data <- read.delim("yield.txt")

Or you could go the whole way down the labour-saving route and write your own text-minimizing function,
which uses the paste function to add the suffix .txt as well as shortening the function name from
read.table to rt like this:

rt <- function(x) read.table(paste("c:\\temp\\",x,".txt",sep=""),
header=TRUE)

Then simply type:

data <- rt("yields")

3.2.3 Common errors when using read.table

It is important to note that read.table would fail if there were any spaces in any of the variable names
in row 1 of the dataframe (the header row, see p. 161), such as Field Name, Soil pH or Worm Density, or
between any of the words within the same factor level (as in many of the field names). You should replace all
these spaces by dots ‘.’ before saving the dataframe in Excel (use Edit/Replace with " " replaced by ".").
Now the dataframe can be read into R. There are three things to remember:

� The whole path and file name needs to be enclosed in double quotes: "c:\\abc.txt".

� header=T says that the first row contains the variable names (T stands for TRUE).

� Always use double \\ rather than \ in the file path definition.

140 THE R BOOK

The most common cause of failure is that the number of variable names (characters strings in row 1) does
not match the number of columns of information. In turn, the commonest cause of this is that you have left
blank spaces in your variable names:

state name population home ownership cars insurance

This is wrong because R expects seven columns of numbers when there are only five. Replace the spaces
within the names by dots and it will work fine:

state.name population home.ownership cars insurance

The next most common cause of failure is that the data file contains blank spaces where there are missing
values. Replace these blanks with NA in your spreadsheet before reading the file into R.

Finally, there can be problems when you are trying to read variables that consist of character strings
containing blank spaces (as in files containing place names). You can use read.table so long as you
export the file from the spreadsheet using commas to separate the fields, and you tell read.table that the
separators are commas using sep="," (to override the default blanks or tabs (\t):

map <- read.table("c:\\temp\\bowens.csv",header=T,sep=",")
However, it is quicker and easier to use read.csv in this case (see below).

3.2.4 Separators and decimal points

The default field separator character in read.table is sep=" ". This separator is white space, which is
produced by one or more spaces, one or more tabs \t, one or more newlines \n, or one or more carriage
returns. If you do have a different separator between the variables sharing the same line (i.e. other than a tab
within a.txt file) then there may well be a special read function for your case. Note that all the alternatives
to read.table have the sensible default that header=TRUE (the first row contains the variable names):

� for comma-separated fields use read.csv("c:\\temp\\file.csv");

� for semicolon-separated fields read.csv2("c:\\temp\\file.csv");

� for tab-delimited fields with decimal points as a commas, use
read.delim2("c:\\temp\\file.txt").

You would use comma or semicolon separators if you had character variables that might contain one or more
blanks (e.g. country names like ‘United Kingdom’ or ‘United States of America’).

If you want to specify row.names then one of the columns of the dataframe must be a vector of unique
row names. This can be a single number giving the column of the table which contains the row names,
or character string giving the variable name of the table column containing the row names (see p. 176).
Otherwise, if row.names is missing, rows numbers are generated automatically on the left of the dataframe.

The default behaviour of read.table is to convert character variables into factors. If you do not want
this to happen (you want to keep a variable as a character vector) then use as.is to specify the columns that
should not be converted to factors:

murder <- read.table("c:\\temp\\murders.txt",header=T,as.is="region")

3.2.5 Data input directly from the web

You will typically use read.table to read data from a file, but the function also works for complete URLs.
In computing, URL stands for ‘universal resource locator’, and is a specific character string that constitutes a

DATA INPUT 141

reference to an Internet resource, combining domain names with file path syntax, where forward slashes are
used to separate folder and file names:

data2 <- read.table
("http://www.bio.ic.ac.uk/research/mjcraw/therbook/data/cancer.txt",
header=T)

head(data2)

death treatment status
1 4 DrugA 1
2 26 DrugA 1
3 2 DrugA 1
4 25 DrugA 1
5 7 DrugA 1
6 6 DrugA 0

3.3 Input from files using scan

For dataframes, read.table is superb. But look what happens when you try to use read.table with a
more complicated file structure:

read.table("c:\\temp\\rt.txt")
Error in scan(file, what, nmax, sep, dec, quote, skip, nlines, na.strings

line 1 did not have 4 elements

It simply cannot cope with lines having different numbers of fields. However, scan and readLines come
into their own with these complicated, non-standard files.

The scan function reads data into a list when it is used to read from a file. It is much less friendly for
reading dataframes than read.table, but it is substantially more flexible for tricky or non-standard files.

By default, scan assumes that you are inputting double precision numbers. If not, then you need to use the
what argument to explain what exactly you are inputting (e.g. ‘character’, ‘logical’, ‘integer’, ‘complex’ or
‘list’). The file name is interpreted relative to the current working directory (given by getwd()), unless you
specify an absolute path. If what is itself a list, then scan assumes that the lines of the data file are records,
each containing one or more items and the number of fields on that line is given by length(what).

By default, scan expects to read space-delimited or tab-delimited input fields. If your file has separators
other than blank spaces or tab markers (\t), then you can specify the separator option (e.g. sep=",") to
specify the character which delimits fields. A field is always delimited by an end-of-line marker unless it
is quoted. If sep is the default (""), the character \ in a quoted string escapes the following character, so
quotes may be included in the string by escaping them ("she.said \"What!\".to.him"). If sep is
non-default, the fields may be quoted in the style of .csv files where separators inside quotes ('' or "")
are ignored and quotes may be put inside strings by doubling them. However, if sep = "\n" it is assumed
by default that one wants to read entire lines verbatim.

With scan, you will often want to skip the header row (because this contains variable names rather than
data). The option for this is skip = 1 (you can specify any number of lines to be skipped before beginning
to read data values). If a single record occupies more than one line of the input file then use the option
multi.line =TRUE.

3.3.1 Reading a dataframe with scan

To illustrate the issues involved with scan, and to demonstrate why read.table is the preferred way of
reading data into dataframes, we use scan to input the worms dataframe (for details, see Chapter 4).

142 THE R BOOK

We want to skip the first row because that is a header containing the variable names, so we specify
skip = 1. There are seven columns of data, so we specify seven fields of character variables "" in
the list supplied to what:

scan("t:\\data\\worms.txt",skip=1,what=as.list(rep("",7)))
Read 20 records

[[1]]
[1] "Nashs.Field" "Silwood.Bottom" "Nursery.Field"
[4] "Rush.Meadow" "Gunness.Thicket" "Oak.Mead"
[7] "Church.Field" "Ashurst" "The.Orchard"

[10] "Rookery.Slope" "Garden.Wood" "North.Gravel"
[13] "South.Gravel" "Observatory.Ridge" "Pond.Field"
[16] "Water.Meadow" "Cheapside" "Pound.Hill"
[19] "Gravel.Pit" "Farm.Wood"

[[2]]
[1] "3.6" "5.1" "2.8" "2.4" "3.8" "3.1" "3.5" "2.1" "1.9" "1.5" "2.9" "3.3"

[13] "3.7" "1.8" "4.1" "3.9" "2.2" "4.4" "2.9" "0.8"

[[3]]
[1] "11" "2" "3" "5" "0" "2" "3" "0" "0" "4" "10" "1" "2" "6" "0"

[16] "0" "8" "2" "1" "10"

[[4]]
[1] "Grassland" "Arable" "Grassland" "Meadow" "Scrub" "Grassland"
[7] "Grassland" "Arable" "Orchard" "Grassland" "Scrub" "Grassland"

[13] "Grassland" "Grassland" "Meadow" "Meadow" "Scrub" "Arable"
[19] "Grassland" "Scrub"

[[5]]
[1] "4.1" "5.2" "4.3" "4.9" "4.2" "3.9" "4.2" "4.8" "5.7" "5" "5.2" "4.1"

[13] "4" "3.8" "5" "4.9" "4.7" "4.5" "3.5" "5.1"

[[6]]
[1] "FALSE" "FALSE" "FALSE" "TRUE" "FALSE" "FALSE" "FALSE" "FALSE" "FALSE"

[10] "TRUE" "FALSE" "FALSE" "FALSE" "FALSE" "TRUE" "TRUE" "TRUE" "FALSE"
[19] "FALSE" "TRUE"

[[7]]
[1] "4" "7" "2" "5" "6" "2" "3" "4" "9" "7" "8" "1" "2" "0" "6" "8" "4" "5" "1"

[20] "3"

As you can see, scan has created a list of seven vectors of character string information. To convert this list
into a dataframe, we use the as.data.frame function which turns the lists into columns in the dataframe
(so long as the columns are all the same length):

data <-
as.data.frame(scan("t:\\data\\worms.txt",skip=1,what=as.list(rep("",7))))

In its present form, the variable names manufactured by scan are ridiculously long, so we need to replace
them with the original variable names that are in the first row of the file. For this we can use scan again, but
specify that we want to read only the first line, by specifying nlines=1 and removing the skip option:

header <- unlist(scan("t:\\data\\worms.txt",nlines=1,what=as.list
(rep("",7))))

DATA INPUT 143

Now, we replace the manufactured names by the correct variable names in data:

names(data)<-header
head(data)

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 F 4
2 Silwood.Bottom 5.1 2 Arable 5.2 F 7
3 Nursery.Field 2.8 3 Grassland 4.3 F 2
4 Rush.Meadow 2.4 5 Meadow 4.9 T 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 F 6
6 Oak.Mead 3.1 2 Grassland 3.9 F 2

This has produced the right result, but you can see why you would want to use read.table rather than
scan for reading dataframes.

3.3.2 Input from more complex file structures using scan

Here is an image of a file containing information on the identities of the neighbours of five individuals from
a population: the first individual has one neighbour (number 138), the second individual has two neighbours
(27 and 44), the third individual has four neighbours, and so on.

138
27 44
19 20 345 48
115 2366
59

See if you can figure out why the following three different readings of the same file rt.txt produce such
different objects; the first has 10 items, the second 5 items and the third 20 items:

scan("c:\\temp\\rt.txt")
Read 10 items
[1] 138 27 44 19 20 345 48 115 2366 59

scan("c:\\temp\\rt.txt",sep="\n")
Read 5 items
[1] 138 2744 192034548 1152366 59

scan("c:\\temp\\rt.txt",sep="\t")
Read 20 items
[1] 138 NA NA NA 27 44 NA NA 19 20 345 48 115
[14] 2366 NA NA 59 NA NA NA

The only difference between the three calls to scan is in the specification of the separator. The first uses
the default which is blanks or tabs (the 10 items are the 10 numbers that we are interested in, but information
about their grouping has been lost). The second uses the new line "\n" control character as the separator (the
contents of each of the five lines have been stripped out and trimmed to create meaningless numbers, except
for 138 and 59 which were the only numbers on their respective lines). The third uses tabs "\t" as separators
(we have no information on lines, but at least the numbers have retained their integrity, and missing values
(NA) have been used to pad out each line to the same length, 4. To get the result we want we need to use

144 THE R BOOK

the information on the number of lines from method 2 and the information on the contents of each line from
method 3. The first step is easy:

length(scan("c:\\temp\\rt.txt",sep="\n"))
Read 5 items
[1] 5

So we have five lines of information in this file. To find the number of items per line were divide the total
number of items

length(scan("c:\\temp\\rt.txt",sep="\t"))
Read 20 items
[1] 20

by the number of lines: 20 / 5 = 4. To extract the information on each line, we want to take a line at a time,
and extract the missing values (i.e. remove the NAs). So, for line 1 this would be

scan("c:\\temp\\rt.txt",sep="\t")[1:4]
Read 20 items
[1] 138 NA NA NA

then, to remove the NA we use na.omit, to remove the Read 20 items we use quiet=T and to leave
only the numerical value we use as.numeric:

as.numeric(na.omit(scan("c:\\temp\\rt.txt",sep="\t",quiet=T)[1:4]))
[1] 138

To complete the job, we need to apply this logic to each of the five lines in turn, to produce a list of vectors
of variable lengths (1, 2, 4, 2 and 1):

sapply(1:5, function(i)
as.numeric(na.omit(
scan("c:\\temp\\rt.txt",sep="\t",quiet=T)[(4*i-3):

(4*i)])))

[[1]]
[1] 138

[[2]]
[1] 27 44

[[3]]
[1] 19 20 345 48

[[4]]
[1] 115 2366

[[5]]
[1] 59

That was about as complicated a procedure as you are likely to encounter in reading information from a file.
In hindsight, we might have created the data as a dataframe with missing values explicitly added to the rows
that had less than four numbers. Then a single read.table statement would have been enough.

DATA INPUT 145

3.4 Reading data from a file using readLines

An alternative is to use readLines instead of scan. Here is a repeat of the example of reading the worms
dataframe (above).

3.4.1 Input a dataframe using readLines

line<-readLines("c:\\temp\\worms.txt")
line

[1] "Field.Name\tArea\tSlope\tVegetation\tSoil.pH\tDamp\tWorm.density"
[2] "Nashs.Field\t3.6\t11\tGrassland\t4.1\tFALSE\t4"
[3] "Silwood.Bottom\t5.1\t2\tArable\t5.2\tFALSE\t7"
[4] "Nursery.Field\t2.8\t3\tGrassland\t4.3\tFALSE\t2"
[5] "Rush.Meadow\t2.4\t5\tMeadow\t4.9\tTRUE\t5"
[6] "Gunness.Thicket\t3.8\t0\tScrub\t4.2\tFALSE\t6"
[7] "Oak.Mead\t3.1\t2\tGrassland\t3.9\tFALSE\t2"
[8] "Church.Field\t3.5\t3\tGrassland\t4.2\tFALSE\t3"
[9] "Ashurst\t2.1\t0\tArable\t4.8\tFALSE\t4"
[10] "The.Orchard\t1.9\t0\tOrchard\t5.7\tFALSE\t9"
[11] "Rookery.Slope\t1.5\t4\tGrassland\t5\tTRUE\t7"
[12] "Garden.Wood\t2.9\t10\tScrub\t5.2\tFALSE\t8"
[13] "North.Gravel\t3.3\t1\tGrassland\t4.1\tFALSE\t1"
[14] "South.Gravel\t3.7\t2\tGrassland\t4\tFALSE\t2"
[15] "Observatory.Ridge\t1.8\t6\tGrassland\t3.8\tFALSE\t0"
[16] "Pond.Field\t4.1\t0\tMeadow\t5\tTRUE\t6"
[17] "Water.Meadow\t3.9\t0\tMeadow\t4.9\tTRUE\t8"
[18] "Cheapside\t2.2\t8\tScrub\t4.7\tTRUE\t4"
[19] "Pound.Hill\t4.4\t2\tArable\t4.5\tFALSE\t5"
[20] "Gravel.Pit\t2.9\t1\tGrassland\t3.5\tFALSE\t1"
[21] "Farm.Wood\t0.8\t10\tScrub\t5.1\tTRUE\t3"

Each line has become a single character string. As you can see, we shall need to strip out all of the tab marks
(\t), thereby separating the data entries and creating seven columns of information. The function for this is
strsplit:

db<-strsplit(line,"\t")
db

[[1]]
[1] "Field.Name" "Area" "Slope" "Vegetation" "Soil.pH" "Damp" "Worm.density"

[[2]]
[1] "Nashs.Field" "3.6" "11" "Grassland" "4.1" "F" "4"

[[3]]
[1] "Silwood.Bottom" "5.1" "2" "Arable" "5.2" "F" "7"

[[4]]
[1] "Nursery.Field" "2.8" "3" "Grassland" "4.3" "F" "2"

146 THE R BOOK

and so on for 21 elements of the list. The new challenge is to get this into a form that we can turn into a
dataframe. The first issue is to get rid of the list structure using the unlist function:

bb<-unlist(db)

[1] "Field.Name" "Area" "Slope" "Vegetation" "Soil.pH" "Damp"

[7] "Worm.density" "Nashs.Field" "3.6" "11" "Grassland" "4.1"

[13] "F" "4" "Silwood.Bottom" "5.1" "2" "Arable"

[19] "5.2" "F" "7" "Nursery.Field" "2" "3"

[25] "Grassland" "4.3" "F" "Rush.Meadow" "2.4"

and so on up to 147 items. We need to give this vector dimensions: the seven variable names come first, so
the appropriate dimensionality is (7,21):

dim(bb)<-c(7,21)
bb

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] "Field.Name" "Nashs.Field" "Silwood.Bottom" "Nursery.Field" "Rush.Meadow" "Gunness.Thicket" "Oak.Mead"
[2,] "Area" "3.6" "5.1" "2.8" "2.4" "3.8" "3.1"
[3,] "Slope" "11" "2" "3" "5" "0" "2"
[4,] "Vegetation" "Grassland" "Arable" "Grassland" "Meadow" "Scrub" "Grassland"
[5,] "Soil.pH" "4.1" "5.2" "4.3" "4.9" "4.2" "3.9"
[6,] "Damp" "F" "F" "F" "T" "F" "F"
[7,] "Worm.density" "4" "7" "2" "5" "6" "2"

and so on for 21 rows. This is closer, but the rows and columns are the wrong way around. We need to
transpose this object and drop the first row (because this is the header row containing the variable names):

t(bb)[-1,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] "Nashs.Field" "3.6" "11" "Grassland" "4.1" "F" "4"
[2,] "Silwood.Bottom" "5.1" "2" "Arable" "5.2" "F" "7"
[3,] "Nursery.Field" "2.8" "3" "Grassland" "4.3" "F" "2"
[4,] "Rush.Meadow" "2.4" "5" "Meadow" "4.9" "T" "5"
[5,] "Gunness.Thicket" "3.8" "0" "Scrub" "4.2" "F" "6"
[6,] "Oak.Mead" "3.1" "2" "Grassland" "3.9" "F" "2"
[7,] "Church.Field" "3.5" "3" "Grassland" "4.2" "F" "3"
[8,] "Ashurst" "2.1" "0" "Arable" "4.8" "F" "4"
[9,] "The.Orchard" "1.9" "0" "Orchard" "5.7" "F" "9"
[10,] "Rookery.Slope" "1.5" "4" "Grassland" "5" "T" "7"
[11,] "Garden.Wood" "2.9" "10" "Scrub" "5.2" "F" "8"
[12,] "North.Gravel" "3.3" "1" "Grassland" "4.1" "F" "1"
[13,] "South.Gravel" "3.7" "2" "Grassland" "4" "F" "2"
[14,] "Observatory.Ridge" "1.8" "6" "Grassland" "3.8" "F" "0"
[15,] "Pond.Field" "4.1" "0" "Meadow" "5" "T" "6"
[16,] "Water.Meadow" "3.9" "0" "Meadow" "4.9" "T" "8"
[17,] "Cheapside" "2.2" "8" "Scrub" "4.7" "T" "4"
[18,] "Pound.Hill" "4.4" "2" "Arable" "4.5" "F" "5"
[19,] "Gravel.Pit" "2.9" "1" "Grassland" "3.5" "F" "1"
[20,] "Farm.Wood" "0.8" "10" "Scrub" "5.1" "T" "3"

DATA INPUT 147

That’s more like it. Now the function as.data.frame should work:

frame<-as.data.frame(t(bb)[-1,])
head(frame)

V1 V2 V3 V4 V5 V6 V7
1 Nashs.Field 3.6 11 Grassland 4.1 F 4
2 Silwood.Bottom 5.1 2 Arable 5.2 F 7
3 Nursery.Field 2.8 3 Grassland 4.3 F 2
4 Rush.Meadow 2.4 5 Meadow 4.9 T 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 F 6
6 Oak.Mead 3.1 2 Grassland 3.9 F 2

All we need to do now is add in the variable names: these are in the first row of the transpose of the object
called bb (above):

names(frame)<-t(bb)[1,]
head(frame)

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 F 4
2 Silwood.Bottom 5.1 2 Arable 5.2 F 7
3 Nursery.Field 2.8 3 Grassland 4.3 F 2
4 Rush.Meadow 2.4 5 Meadow 4.9 T 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 F 6

The complexity of this procedure makes you appreciate just how useful the function read.table really is.

3.4.2 Reading non-standard files using readLines

Here is a repeat of the example of the neighbours file that we analysed using scan on p. 141:

readLines("c:\\temp\\rt.txt")
[1] "138\t\t\t" "27\t44\t\t" "19\t20\t345\t48" "115\t2366\t\t"
[5] "59\t\t\t"

The readLines function had produced a vector of length 5 (one element for each row in the file), with the
contents of each row reduced to a single character string (including the literal tab markers \t). We need to
spit this up within the lines using strsplit: we split first on the tabs, then on the new lines in order to see
the distinction:

strsplit(readLines("c:\\temp\\rt.txt"),"\t")
[[1]]
[1] "138" "" ""

[[2]]
[1] "27" "44" ""

[[3]]
[1] "19" "20" "345" "48"

148 THE R BOOK

[[4]]
[1] "115" "2366" ""

[[5]]
[1] "59" "" ""

strsplit(readLines("c:\\temp\\rt.txt"),"\n")
[[1]]
[1] "138\t\t\t"
[[2]]
[1] "27\t44\t\t"
[[3]]
[1] "19\t20\t345\t48"
[[4]]
[1] "115\t2366\t\t"
[[5]]
[1] "59\t\t\t"
The split by tab markers is closest to what we want to achieve, so we shall work on that. First, turn the
character strings into numbers:

rows<-lapply(strsplit(readLines("c:\\temp\\rt.txt"),"\t"),as.numeric)
rows

[[1]]
[1] 138 NA NA

[[2]]
[1] 27 44 NA

[[3]]
[1] 19 20 345 48

[[4]]
[1] 115 2366 NA

[[5]]
[1] 59 NA NA

Now all that we need to do is to remove the NAs from each of the vectors:

sapply(1:5, function(i) as.numeric(na.omit(rows[[i]])))

[[1]]
[1] 138

[[2]]
[1] 27 44

[[3]]
[1] 19 20 345 48

DATA INPUT 149

[[4]]
[1] 115 2366

[[5]]
[1] 59

Both scan and readLines were fiddly, but they got what we were looking for in the end. You will need a
lot of practice before you appreciate when to use scan and when to use readLines. Writing lists to files
is tricky (see p. 82 for an explanation of the options available).

3.5 Warnings when you attach the dataframe

Suppose that you read a file from data, then attach it:

murder <- read.table("c:\\temp\\murders.txt",header=T,as.is="region")
The following warning will be produced if your attach function causes a duplication of one or more names:

attach(murder)

The following object(s) are masked _by_ .GlobalEnv:
murder

The reason in the present case is that we have created a dataframe called murder and attached a variable
from this dataframe which is also called murder. This shows the cause of the problem: the dataframe name
and the third variable name are identical:

head(murder)

state population murder region
1 Alabama 3615 15.1 South
2 Alaska 365 11.3 West
3 Arizona 2212 7.8 West
4 Arkansas 2110 10.1 South
5 California 21198 10.3 West
6 Colorado 2541 6.8 West

This ambiguity might cause difficulties later. A much better plan is to give the dataframe a unique name
(like murders, for instance). We use the attach function so that the variables inside a dataframe can be
accessed directly by name. Technically, this means that the dataframe is attached to the R search path, so that
the dataframe is searched by R when evaluating a variable. We could tabulate the numbers of murders by
region, for instance:

table(region)

region
North.Central Northeast South West

12 9 16 13

If we had not attached the dataframe, then we would have had to specify the name of the dataframe first
like this:

table(murder$region)

150 THE R BOOK

3.6 Masking

You may have attached the same dataframe twice. Alternatively, you may have two dataframes attached that
have one or more variable names in common. The commonest cause of masking occurs with simple variable
names like x and y. It is very easy to end up with multiple variables of the same name within a single session
that mean totally different things. The warning after using attach should alert you to the possibility of such
problems. If the vectors sharing the same name are of different lengths, then R is likely to stop you before
you do anything too silly, but if the vectors are of the same length then you run the serious risk of fitting the
wrong explanatory variable (e.g. fitting the wrong one from two vectors both called x) or having the wrong
response variable (e.g. from two vectors both called y). The moral is:

� use longer, more self-explanatory variable names;

� do not calculate variables with the same name as a variable inside a dataframe;

� always detach dataframes once you have finished using them;

� remove calculated variables once you are finished with them (rm; see p. 10).

The best practice, however, is not to use attach in the first place, but to use functions like with instead
(see p. 113). If you get into a real tangle, it is often easiest to quit R and start another R session.

The opposite problem occurs when you assign values to an existing variable name (perhaps by accident);
the original contents of the name are lost.

z <- 10

...

...
z <- 2.5

Now, z is 2.5 and there is no way to retrieve the original value of 10.

3.7 Input and output formats

Formatting is controlled using escape sequences, typically within double quotes:

\n newline
\r carriage return
\t tab character
\b backspace
\a bell
\f form feed
\v vertical tab

Here is an example of the cat function. The default produces the output on the computer screen, but you can
save the output to file using a file=file.name argument:

data<-read.table("c:\\temp\\catdata.txt",header=T)
attach(data)
names(data)

[1] "y" "soil"

model<-lm(y~soil)

DATA INPUT 151

Suppose that you wanted to produce a slightly different layout for the ANOVA table than that produced
by summary.aov(model):

summary.aov(model)

Df Sum Sq Mean Sq F value Pr(>F)
ind 2 99.2 49.60 4.245 0.025 *
Residuals 27 315.5 11.69

with the sum of squares column before the degrees of freedom column, plus a row for the total sum of squares,
different row labels, and no p value, like this:

ANOVA table
Source SS d.f. MS F
Treatment 99.2 2 49.6 4.244691
Error 315.5 27 11.68519
Total 414.7 29

First, extract the necessary numbers from the summary.aov object:

df1<-unlist(summary.aov(model)[[1]] [1])[1]
df2<-unlist(summary.aov(model)[[1]] [1])[2]
ss1<-unlist(summary.aov(model)[[1]] [2])[1]
ss2<-unlist(summary.aov(model)[[1]] [2])[2]

Here is the R code to produce the ANOVA table, using catwith multiple tabs ("\t\t") and single new-line
markers ("\n") at the end of each line:

{cat("ANOVA table","\n")
cat("Source","\t\t","SS","\t","d.f.","\t","MS","\t\t","F","\n")
cat("Treatment","\t",ss1,"\t",df1,"\t",ss1/df1,"\t\t",

(ss1/df1)/(ss2/df2),"\n")
cat("Error","\t\t",ss2,"\t",df2,"\t",ss2/df2,"\n")
cat("Total","\t\t",ss1+ss2,"\t",df1+df2,"\n")}

Note the use of curly brackets to group the five cat functions into a single print object.

3.8 Checking files from the command line

It can be useful to check whether a given filename exists in the path where you think it should be. The function
is file.exists and is used like this:

file.exists("c:\\temp\\Decay.txt")

[1] TRUE

For more on file handling, see ?files.

3.9 Reading dates and times from files

You need to be very careful when dealing with dates and times in any sort of computing. R has a robust system
for working with dates and times, but it takes some getting used to. Typically, you will read dates and times

152 THE R BOOK

into R as character strings, then convert them into dates and times using the strptime function to explain
exactly what the elements of the character string mean (e.g. which are the days, which are the months, what
are the separators, and so on; see p. 103 for an explanation of the formats supported).

3.10 Built-in data files

There are many built-in data sets within the datasets package of R. You can see their names by typing:

data()

To see the data sets in extra installed packages as well, type:

data(package = .packages(all.available = TRUE))

You can read the documentation for a particular data set with the usual query:

?lynx

Many of the contributed packages contain data sets, and you can view their names using thetry function. This
evaluates an expression and traps any errors that occur during the evaluation. The try function establishes a
handler for errors that uses the default error handling protocol:

try(data(package="spatstat"));Sys.sleep(3)
try(data(package="spdep"));Sys.sleep(3)
try(data(package="MASS"))

where try is a wrapper to run an expression that might fail and allow the user’s code to handle error recovery,
so this would work even if one of the packages was missing.

Built-in data files can be attached in the normal way; then the variables within them accessed by their
names:

attach(OrchardSprays)
decrease

3.11 File paths

There are several useful R functions for manipulating file paths. A file path is a character string that looks
something like this:

c:\\temp\\thesis\\chapter1\\data\\problemA
and you would not want to type all of that every time you wanted to read data or save material to file. You
can set the default file path for a session using the current working directory:

setwd("c:\\temp\\thesis\\chapter1\\data")
The basename function removes all of the path up to and including the last path separator (if any):

basename("c:\\temp\\thesis\\chapter1\\data\\problemA")
[1] "problemA"

The dirname function returns the part of the path up to but excluding the last path separator, or "." if there
is no path separator:

DATA INPUT 153

dirname("c:\\temp\\thesis\\chapter1\\data\\problemA")

[1] "c:/temp/thesis/chapter1/data"

Note that this function returns forward slashes as the separator, replacing the double backslashes.
Suppose that you want to construct the path to a file from components in a platform-independent way. The

file.path function does this very simply:

A <- "c:"
B <- "temp"
C <- "thesis"
D <- "chapter1"
E <- "data"
F <- "problemA"

file.path(A,B,C,D,E,F)

[1] "c:/temp/thesis/chapter1/data/problemA"

The default separator is platform-dependent (/ in the example above, not \, but you can specify the separator
(fsep) like this:

file.path(A,B,C,D,E,F,fsep="\\")

[1] "c:\\temp\\thesis\\chapter1\\data\\problemA"

3.12 Connections

Connections are ways of getting information into and out of R, such as your keyboard and your screen. The
three standard connections are known as stdin() for input, stdout() for output, and stderr() for
reporting errors. They are text-mode connections of class terminal which cannot be opened or closed, and
are read-only, write-only and write-only respectively. When R is reading a script from a file, the file is the
‘console’: this is traditional usage to allow in-line data.

Functions to create, open and close connections include file, url, gzfile, bzfile,
xzfile, pipe and socketConnction. The intention is that file and gzfile can be used gen-
erally for text input (from files and URLs) and binary input, respectively. The functions file, pipe,
fifo, url, gzfile, bzfile, xzfile, unz and socketConnection return a connection
object which inherits from class connection: isOpen returns a logical value, indicating whether the con-
nection is currently open; isIncomplete returns a logical value, indicating whether the last read attempt
was blocked, or for an output text connection whether there is unflushed output. The functions are used like
this:

file(description = "", open = "", blocking = TRUE,
encoding = getOption("encoding"), raw = FALSE)

For file the description is a path to the file to be opened or a complete URL, or "" (the default) or
"clipboard". You can use filewith description = "clipboard" in modes "r" and "w" only.
There is a 32Kb limit on the text to be written to the Clipboard. This can be raised by using, for example,
file("clipboard-128") to give 128Kb. For gzfile the description is the path to a file compressed
by gzip: it can also open for reading uncompressed files and those compressed by bzip2, xz or lzma.
For bzfile the description is the path to a file compressed by bzip2. For xzfile the description is the

154 THE R BOOK

path to a file compressed by xz or lzma. A maximum of 128 connections can be allocated (not necessarily
open) at any one time.

Not all modes are applicable to all connections: for example, URLs can only be opened for reading. Only
file and socket connections can be opened for both reading and writing. For compressed files, the type of
compression involves trade-offs: gzip, bzip2 and xz are successively less widely supported, need more
resources for both compression and decompression, and achieve more compression (although individual files
may buck the general trend). Typical experience is that bzip2 compression is 15% better on text files than
gzip compression, and xz with maximal compression 30% better. With current computers decompression
times even with compress = 9 are typically modest, and reading compressed files is usually faster than
uncompressed ones because of the reduction in disc activity.

3.13 Reading data from an external database

Open Data Base Connectivity (ODBC) provides a standard software interface for accessing database man-
agement systems (DBMS) that is independent of programming languages, database systems and operating
systems. Thus, any application can use ODBC to query data from a database, regardless of the platform it is on
or the DBMS it uses. ODBC accomplishes this by using a driver as a translation layer between the application
and the DBMS. The application thus only needs to know ODBC syntax, and the driver can then pass the
query to the DBMS in its native format, returning the data in a format that the application can understand.
Communication with the database uses SQL (‘Structured Query Language’).

The example we shall use is called Northwind. This is a relational database that is downloaded for Access
from Microsoft Office, and which is used in introductory texts on SQL (e.g. Kauffman et al., 2001). The
database refers to a fictional company that operates as a food wholesaler. You should download the database
from http://office.microsoft.com. There are many related tables in the database, each with its
unique row identifier (ID):

� Categories: 18 rows describing the categories of goods sold (from baked goods to oils) including Category
name as well as Category.ID

� Products: 45 rows with details of the various products sold by Northwind including CategoryID (as above)
and Product.ID

� Suppliers: 10 rows with details of the firms that supply goods to Northwind

� Shippers: 3 rows with details of the companies that ship goods to customers

� Employees: 9 rows with details of the people who work for Northwind

� Customers: 27 rows with details of the firms that buy goods from Northwind

� Orders: empty rows with orders from various customers tagged by OrderID

� Order Details: 2155 rows containing one to many rows for each order (typically 2 or 3 rows per order),
each row containing the product, number required, unit price and discount, as well as the (repeated)
OrderID

� Order Status: four categories – new, invoiced, shipped or completed

� Order Details: empty rows

� Order Details Status: six categories – none, no stock, back-ordered, allocated, invoiced and shipped

� Inventory: details of the 45 products held on hand and reordered.

DATA INPUT 155

The tables are related to one another like this:

� Orders and Order Details are related by a unique OrderID;

� Categories and Products are related by a unique CategoryID;

� Employees and Orders are linked by a unique EmployeeID;

� Products and Order Details are linked by a unique ProductID;

� and so on.

3.13.1 Creating the DSN for your computer

To analyse data from these tables in R we need first to set up a channel through which to access the
information. Outside R, you need to give your computer a data source name (DSN) to associate with the
Access database. This is a bit fiddly, but here is how to do it in Windows 7, assuming you have Microsoft
Office 2010 and have already downloaded the Northwind database (you will need to figure out the equivalent
directions for Mac or Linux, or if you are not using Office 2010):

� Go to Computer, click on Drive C: and then scroll down and click on the Windows folder.

� Scroll down and click on SysWOW64.

� Scroll way down and double-click on odbcad32.exe.

� The ODBC Data Source Administrator window should appear.

� Click on the Add button.

� Scroll down to Microsoft Access Driver (*.mdb,*.accdb) and click on Finish.

� The ODBC Microsoft Access Setup window should appear.

� In the top box write “northwind” (with no quote marks).

� In the second box write “example” (with no quote marks).

� Then, under Database, click on Select.

� Browse through the directory to the place where you put Northwind.accdb.

� Accept and you should see “northwind” has been added to the ODBC Data Source list.

� Click on OK at the bottom of the window to complete the task.

Fortunately, you need only do this once. Now you can access Northwind from R.

3.13.2 Setting up R to read from the database

If you have not done so already, you will need to obtain the package called RODBC that provides access to
databases from within R. So start up R (run as administrator) then type:

install.packages("RODBC")

Open the library and tell R the name of the channel through which it can access the database (as set up in the
previous section) using the function odbcConnect:

156 THE R BOOK

library(RODBC)
channel <- odbcConnect("northwind")

You communicate with the database from R using SQL. The syntax is very simple. You create a dataframe in
R from a table (or more typically from several related tables) in the database using the function sqlQuery
like this:

new.datatframe <- sqlQuery(channel, query)

The channel is defined using the odbcConnect function, as shown above. The skill is in creating the (often
complicated) character string called query. The key components of an SQL query are:

SELECT a list of the variables required (or * for all variables)
FROM the name of the table containing these variables
WHERE specification of which rows of the table(s) are required
JOIN the tables to be joined and the variables on which to join them
GROUP BY columns with factors to act as grouping levels
HAVING conditions applied after grouping
ORDER BY sorted on which variables
LIMIT offsets or counts

The simplest cases require only SELECT and FROM.
Let us start by creating a dataframe in R called containing all of the variables (*) and rows from the table

called Categories in Northwind:

query <- "SELECT * FROM Categories"
stock <- sqlQuery(channel, query)

This is what the R dataframe looks like – there are just two fields ID and Category:

stock

ID Category
1 1 Baked Goods & Mixes
2 2 Beverages
3 3 Candy
4 4 Canned Fruit & Vegetables
5 5 Canned Meat
6 6 Cereal
7 7 Chips
8 8 Condiments
9 9 Dairy Products
10 10 Dried Fruit & Nuts
11 11 Grains
12 12 Jams & Preserves
13 14 Pasta
14 15 Sauces
15 16 Snacks
16 17 Soups
17 18 Oils

DATA INPUT 157

More usually, you will want to select only some of the variables from a table. From the table called
Inventory, for example, we might want to extract only ProductID and OnHand to make a dataframe
called quantities:

query <- "SELECT ProductID,OnHand FROM Inventory"
quantities <- sqlQuery(channel, query)
head(quantities,10)

ProductID OnHand
1 1 200
2 2 300
3 3 400
4 4 200
5 5 150
6 6 100
7 7 100
8 8 50
9 9 50
10 10 100

This would be a lot more informative if we could see the product names rather than their ID numbers.
The names are in a different table called Products. We need to relate the two tables Inventory and
Produces. The variable relating the two tables isProductID fromInventory andID fromProducts.
The convention is to expand the variable names by adding the table name in front of the variable name, and
separating the two names by a full stop, like this:

query <- "SELECT Products.ProductName, Inventory.OnHand FROM
Inventory INNER JOIN Products ON Inventory.ProductID = Products.ID "

quantities <- sqlQuery(channel, query)
head(quantities,10)

ProductName OnHand
1 Northwind Traders Chai 200
2 Northwind Traders Syrup 300
3 Northwind Traders Cajun Seasoning 400
4 Northwind Traders Olive Oil 200
5 Northwind Traders Boysenberry Spread 150
6 Northwind Traders Dried Pears 100
7 Northwind Traders Curry Sauce 100
8 Northwind Traders Walnuts 50
9 Northwind Traders Fruit Cocktail 50
10 Northwind Traders Chocolate Biscuits Mix 100

So that is how we relate two tables.
The next task is data selection. This involves the WHERE command in SQL. Here are the cases with more

than 150 items on hand:

query <- "SELECT Products.ProductName, Inventory.OnHand FROM
Inventory INNER JOIN Products ON Inventory.ProductID = Products.ID
WHERE Inventory.OnHand > 150 "

158 THE R BOOK

supply <- sqlQuery(channel, query)
head(supply,10)

ProductName OnHand
1 Northwind Traders Chai 200
2 Northwind Traders Syrup 300
3 Northwind Traders Cajun Seasoning 400
4 Northwind Traders Olive Oil 200
5 Northwind Traders Crab Meat 200
6 Northwind Traders Chicken Soup 500

Using WHERE with text is more challenging because the text needs to be enclosed in quotes and quotes
are always tricky in character strings. The solution is to mix single and double quotes to paste together the
query you want:

name <- "NWTDFN-14"

query <- paste("SELECT ProductName FROM Products WHERE
ProductCode='",name,"'",sep="")

code <- sqlQuery(channel, query)
head(code,10)

ProductName
1 Northwind Traders Walnuts

This is what the query looks like as a single character string:

query

[1] "SELECT ProductName FROM Products WHERE ProductCode='NWTDFN-14'"

You will need to ponder this query really hard in order to see why we had to do what we did to select the
ProductCode on the basis of its being "NWTDFN-14". The problem is that quotes must be part of the
character string that forms the query, but quotes generally mark the end of a character string. There is another
example of selecting records on the basis of character strings on p. 197 where we use data from a large
relational database to produce species distribution maps.

While you have the Northwind example up and running, you should practise joining together three
tables, and use some of the other options for selecting records, using LIKE with wildcards * (e.g. WHERE
Variable.name LIKE "Product*").

4
Dataframes

Learning how to handle your data, how to enter them into the computer, and how to read them into R are
among the most important topics you will need to master. R handles data in objects known as dataframes. A
dataframe is an object with rows and columns (a bit like a matrix). The rows contain different observations
from your study, or measurements from your experiment (these are sometimes called cases). The columns
contain the values of different variables (these are often called fields). The values in the body of a matrix can
only be numbers, but the values in the body of a dataframe can be numbers, but they could also be text (e.g.
the names of factor levels for categorical variables, like male or female in a variable called gender), they could
be calendar dates (e.g. 23/5/04), or they could be logical variables (TRUE or FALSE). Here is a spreadsheet
in the form of a dataframe with seven variables, the leftmost of which comprises the row names, and other
variables are numeric (Area, Slope, Soil pH and Worm Density), categorical (Field Name and Vegetation) or
logical (Damp is either true = T or false = F).

Field Name Area Slope Vegetation Soil pH Damp Worm Density

Nash’s Field 3.6 11 Grassland 4.1 F 4
Silwood Bottom 5.1 2 Arable 5.2 F 7
Nursery Field 2.8 3 Grassland 4.3 F 2
Rush Meadow 2.4 5 Meadow 4.9 T 5
Gunness’ Thicket 3.8 0 Scrub 4.2 F 6
Oak Mead 3.1 2 Grassland 3.9 F 2
Church Field 3.5 3 Grassland 4.2 F 3
Ashurst 2.1 0 Arable 4.8 F 4
The Orchard 1.9 0 Orchard 5.7 F 9
Rookery Slope 1.5 4 Grassland 5 T 7
Garden Wood 2.9 10 Scrub 5.2 F 8
North Gravel 3.3 1 Grassland 4.1 F 1
South Gravel 3.7 2 Grassland 4 F 2
Observatory Ridge 1.8 6 Grassland 3.8 F 0
Pond Field 4.1 0 Meadow 5 T 6
Water Meadow 3.9 0 Meadow 4.9 T 8
Cheapside 2.2 8 Scrub 4.7 T 4

(Continued)

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

160 THE R BOOK

(Continued)

Field Name Area Slope Vegetation Soil pH Damp Worm Density

Pound Hill 4.4 2 Arable 4.5 F 5
Gravel Pit 2.9 1 Grassland 3.5 F 1
Farm Wood 0.8 10 Scrub 5.1 T 3

Perhaps the most important thing about analysing your own data properly is getting your dataframe
absolutely right. The expectation is that you will have used a spreadsheet such as Excel to enter and edit the
data, and that you will have used plots to check for errors. The thing that takes some practice is learning
exactly how to put your numbers into the spreadsheet. There are countless ways of doing it wrong, but only
one way of doing it right. And this way is not the way that most people find intuitively to be the most obvious.

The key thing is this: all the values of the same variable must go in the same column. It does not sound
like much, but this is what people tend to get wrong. If you had an experiment with three treatments (control,
preheated and prechilled), and four measurements per treatment, it might seem like a good idea to create the
spreadsheet like this:

control preheated prechilled
6.1 6.3 7.1
5.9 6.2 8.2
5.8 5.8 7.3
5.4 6.3 6.9

However, this is not a dataframe, because values of the response variable appear in three different columns,
rather than all in the same column. The correct way to enter these data is to have two columns: one for the
response variable and one for the levels of the experimental factor called Treatment (control, preheated and
prechilled). Here are the same data, entered correctly as a dataframe:

Response Treatment
6.1 Control
5.9 Control
5.8 Control
5.4 Control
6.3 Preheated
6.2 Preheated
5.8 Preheated
6.3 Preheated
7.1 Prechilled
8.2 Prechilled
7.3 Prechilled
6.9 Prechilled

A good way to practice this layout is to use the Excel function called PivotTable (found under Data on the
main menu bar) on your own data: it requires your spreadsheet to be in the form of a dataframe, with each of
the variables in its own column.

Once you have made your dataframe in a spreadsheet and corrected all the inevitable data entry and
spelling errors, then you need to save the dataframe in a file format that can be read by R. Much the

DATAFRAMES 161

simplest way is to save all your dataframes from the spreadsheet as tab-delimited text files. In Excel, for
instance, you click on File/Save As . . . / then from the ‘Save as type’ options choose ‘Text (Tab delim-
ited)’. There is no need to add a suffix, because Excel will automatically add ‘.txt’ to your file name.
This file can then be read into R directly as a dataframe, using the read.table function as explained in
Chapter 3.

It is important to note that read.table would fail if there were any spaces in any of the variable names
in row 1 of the dataframe (the header row), such as Field Name, Soil pH or Worm Density (above), or between
any of the words within the same factor level (as in many of the field names). These should be replaced by
dots ‘.’ before the dataframe is saved from the spreadsheet. Also, it is good idea to remove any apostrophes,
as these can sometimes cause problems because there is more than one ASCII code for quotation marks. Now
the dataframe can be read into R. Think of a name for the dataframe (say, ‘worms’ in this case) and then
allocate the data from the file to the dataframe name using the gets arrow <- like this:

worms <- read.table("c:\\temp\\worms.txt",header=T)
Once the file has been imported to R we often want to do four things:

� use attach to make the variables accessible by name within the R session;

� use names to get a list of the variable names;

� use head to look at the first few rows of the data;

� use tail to look at the last few rows of the data.

Typically, the commands are issued in sequence, whenever a new dataframe is imported from file (but see
p. 113 for superior alternatives to attach):

attach(worms)
names(worms)

[1] "Field.Name" "Area" "Slope" "Vegetation"
[5] "Soil.pH" "Damp" "Worm.density"

head(worms)

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2

tail(worms)

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

162 THE R BOOK

To see the contents of the whole dataframe, just type its name:

worms

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

Notice that R has expanded our abbreviated T and F into TRUE and FALSE. The object called worms now
has all the attributes of a dataframe. For example, you can summarize it, using summary:

summary(worms)

Field.Name Area Slope Vegetation
Ashurst : 1 Min. :0.800 Min. : 0.00 Arable :3
Cheapside : 1 1st Qu.:2.175 1st Qu.: 0.75 Grassland:9
Church.Field: 1 Median :3.000 Median : 2.00 Meadow :3
Farm.Wood : 1 Mean :2.990 Mean : 3.50 Orchard :1
Garden.Wood : 1 3rd Qu.:3.725 3rd Qu.: 5.25 Scrub :4
Gravel.Pit : 1 Max. :5.100 Max. :11.00
(Other) :14

Soil.pH Damp Worm.density
Min. :3.500 Mode :logical Min. :0.00
1st Qu.:4.100 FALSE:14 1st Qu.:2.00
Median :4.600 TRUE :6 Median :4.00
Mean :4.555 NA's :0 Mean :4.35
3rd Qu.:5.000 3rd Qu.:6.25
Max. :5.700 Max. :9.00

Values of continuous variables are summarized under six headings: one parametric (the arithmetic mean) and
five non-parametric (maximum, minimum, median, 25th percentile or first quartile, and 75th percentile or
third quartile). Tukey’s famous five-number function (fivenum; see p. 42) is slightly different, with hinges

DATAFRAMES 163

rather than first and third quartiles. Levels of categorical variables are counted. Note that the field names are
not listed in full because they are unique to each row; six of them are named, then R says ‘plus 14 others’
(Other) :14.

The two functions by and aggregate allow summary of the dataframe on the basis of factor levels. For
instance, it might be interesting to know the means of the numeric variables for each vegetation type. The
function for this is by:

by(worms,Vegetation,mean)

Vegetation: Arable
Field.Name Area Slope Vegetation Soil.pH Damp Worm.density

NA 3.866667 1.333333 NA 4.833333 0.000000 5.333333

Vegetation: Grassland
Field.Name Area Slope Vegetation Soil.pH Damp Worm.density

NA 2.9111111 3.6666667 NA 4.1000000 0.1111111 2.4444444

Vegetation: Meadow
Field.Name Area Slope Vegetation Soil.pH Damp Worm.density

NA 3.466667 1.666667 NA 4.933333 1.000000 6.333333

Vegetation: Orchard
Field.Name Area Slope Vegetation Soil.pH Damp Worm.density

NA 1.9 0.0 NA 5.7 0.0 9.0

Vegetation: Scrub
Field.Name Area Slope Vegetation Soil.pH Damp Worm.density

NA 2.425 7.000 NA 4.800 0.500 5.250

Notice that the logical variableDamp has been coerced to numeric (TRUE= 1,FALSE= 0) and then averaged.
Warning messages are printed for the non-numeric variables to which the function mean is not applicable
(e.g. the factor levels for Field.name and Vegetation), but this is a useful and quick overview of the
effects of the five types of vegetation.

You can also fit models using by: here is worm density as a function of soil pH for each vegetation
type:

by(worms, Vegetation, function(x) lm(Worm.density ~ Soil.pH, data=x))

Vegetation: Arable
Call:
lm(formula = Worm.density ~ Soil.pH, data = x)

Coefficients:
(Intercept) Soil.pH

-9.689 3.108

--

etc. for each level of vegetation in alphabetical order
--

Vegetation: Scrub

Call:
lm(formula = Worm.density ~ Soil.pH, data = x)

164 THE R BOOK

Coefficients:
(Intercept) Soil.pH

4.4758 0.1613

4.1 Subscripts and indices

The key thing about working effectively with dataframes is to become completely at ease with using subscripts
(or indices, as some people call them). In R, subscripts appear in square brackets []. A dataframe is a two-
dimensional object, comprising rows and columns. The rows are referred to by the first (left-hand) subscript,
the columns by the second (right-hand) subscript. Thus

worms[3,5]

[1] 4.3

is the value in row 3 of Soil.pH (the variable in column 5). To extract a range of values (say the 14th to
19th rows) from worm density (the variable in the seventh column) we use the colon operator : to generate a
series of subscripts (14, 15, 16, 17, 18 and 19):

worms[14:19,7]

[1] 0 6 8 4 5 1

To extract a group of rows and a group of columns, you need to generate a series of subscripts for both the
row and column subscripts. Suppose we want Area and Slope (columns 2 and 3) from rows 1 to 5:

worms[1:5,2:3]

Area Slope
1 3.6 11
2 5.1 2
3 2.8 3
4 2.4 5
5 3.8 0

This next point is very important, and is hard to grasp without practice. To select all the entries in a row the
syntax is ‘number comma blank’. Similarly, to select all the entries in a column the syntax is ‘blank comma
number’. Thus, to select all the columns in row 3 we type

worms[3,]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2

whereas to select all the rows in column 3 we need

worms[,3]

[1] 11 2 3 5 0 2 3 0 0 4 10 1 2 6 0 0 8 2 1 10

This is a key feature of the R language, and one that causes problems for beginners. Note that these two
apparently similar commands create objects of different classes:

class(worms[3,])

[1] "data.frame"

DATAFRAMES 165

class(worms[,3])

[1] "integer"

You can create sets of rows or columns. For instance, to extract all the rows for Field.Name and
Soil.pH (columns 1 and 5) use the concatenate function, c, to make a vector of the required column
numbers c(1,5):

worms[,c(1,5)]

Field.Name Soil.pH
1 Nashs.Field 4.1
2 Silwood.Bottom 5.2
3 Nursery.Field 4.3
4 Rush.Meadow 4.9
5 Gunness.Thicket 4.2
6 Oak.Mead 3.9
7 Church.Field 4.2
8 Ashurst 4.8
9 The.Orchard 5.7
10 Rookery.Slope 5.0
11 Garden.Wood 5.2
12 North.Gravel 4.1
13 South.Gravel 4.0
14 Observatory.Ridge 3.8
15 Pond.Field 5.0
16 Water.Meadow 4.9
17 Cheapside 4.7
18 Pound.Hill 4.5
19 Gravel.Pit 3.5
20 Farm.Wood 5.1

The commands for selecting rows and columns from the dataframe are summarized in Table 4.1.

4.2 Selecting rows from the dataframe at random

In bootstrapping or cross-validation we might want to select certain rows from the dataframe at random.
We use the sample function to do this: the default replace = FALSE performs shuffling (each row is
selected once and only once), while the option replace = TRUE (sampling with replacement) allows for
multiple copies of certain rows and the omission of others. Here we use the default replace = F to select
a unique 8 of the 20 rows at random:

worms[sample(1:20,8),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5

166 THE R BOOK

12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6

Table 4.1. Selecting parts of a dataframe called data. Suppose that n is one of the row numbers in your dataframe
that you want to select or remove, and m is one of the columns. Note that the syntax [n,] selects all of the columns,
while [,m] selects all of the rows.

command meaning
data[n,] select all of the columns from row n of the dataframe
data[-n,] drop the whole of row n from the dataframe
data[1:n,] select all of the columns from rows 1 to n of the dataframe
data[-(1:n),] drop all of the columns from rows 1 to n of the dataframe
data[c(i,j,k),] select all of the columns from rows i, j, and k of the dataframe
data[x > y,] use a logical test (x > y) to select all columns from certain rows
data[,m] select all of the rows from column m of the dataframe
data[,-m] drop the whole of column m from the dataframe
data[,1:m] select all of the rows from columns 1 to m of the dataframe
data[,-(1:m)] drop all of the rows from columns 1 to m of the dataframe
data[,c(i,j,k)] select all of the rows from columns i, j, and k of the dataframe
data[,x > y] use a logical test (x > y) to select all rows from certain columns
data[,c(1:m,i,j,k)] add duplicate copies of columns i, j, and k to the dataframe
data[x > y,a != b] extract certain rows (x > y) and certain columns (a != b)
data[c(1:n,i,j,k),] add duplicate copies of rows i, j, and k to the dataframe

Note that the row numbers are in random sequence (not sorted), so that if you want a sorted random sample
you will need to order the dataframe after the randomization.

4.3 Sorting dataframes

It is common to want to sort a dataframe by rows, but rare to want to sort by columns. Because we are sorting
by rows (the first subscript) we specify the order of the row subscripts before the comma. Thus, to sort the
dataframe on the basis of values in one of the columns (say, Slope), we write

worms[order(Slope),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3

DATAFRAMES 167

10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4

There are some points to notice here. Because we wanted the sorting to apply to all the columns, the
column subscript (after the comma) is blank: [order(Slope),]. The original row numbers are retained
in the leftmost column. Where there are ties for the sorting variable (e.g. there are five ties for Slope = 0)
then the rows are in their original order. If you want the dataframe in reverse order (ascending order) then use
the rev function outside the order function like this:

worms[rev(order(Slope)),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6

Notice now that when there are ties (e.g. Slope = 0), the original rows are also in reverse order.
More complicated sorting operations might involve two or more variables. This is achieved very simply

by separating a series of variable names by commas within the order function. R will sort on the basis of
the left-hand variable, with ties being broken by the second variable, and so on. Suppose that we want to
order the rows of the database on worm density within each vegetation type:

worms[order(Vegetation,Worm.density),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0

168 THE R BOOK

12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8

Notice that as with single-condition sorts, when there are ties (as in grassland with worm density = 2), the
rows are in their original sequence (here, 3, 6, 13). We might want to override this by specifying a third
sorting condition (e.g. soil pH):

worms[order(Vegetation,Worm.density,Soil.pH),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8

The rule is this: if in doubt, sort using more variables than you think you need. That way you can be
absolutely certain that the rows are in the order you expect them to be in. This is exceptionally important
when you begin to make assumptions about the variables associated with a particular value of the response
variable on the basis of its row number.

DATAFRAMES 169

Perhaps you want only certain columns in the sorted dataframe? Suppose we want vegetation, worm.density,
soil pH and slope, and we want them in that order from left to right. We specify the column numbers in the
sequence we want them to appear as a vector: c(4,7,5,3):

worms[order(Vegetation,Worm.density),c(4,7,5,3)]

Vegetation Worm.density Soil.pH Slope
8 Arable 4 4.8 0
18 Arable 5 4.5 2
2 Arable 7 5.2 2
14 Grassland 0 3.8 6
12 Grassland 1 4.1 1
19 Grassland 1 3.5 1
3 Grassland 2 4.3 3
6 Grassland 2 3.9 2
13 Grassland 2 4.0 2
7 Grassland 3 4.2 3
1 Grassland 4 4.1 11
10 Grassland 7 5.0 4
4 Meadow 5 4.9 5
15 Meadow 6 5.0 0
16 Meadow 8 4.9 0
9 Orchard 9 5.7 0
20 Scrub 3 5.1 10
17 Scrub 4 4.7 8
5 Scrub 6 4.2 0
11 Scrub 8 5.2 10

You can select the columns on the basis of their variables names, but this is more fiddly to type, because you
need to put the variable names in quotes like this:

worms[order(Vegetation,Worm.density),
c("Vegetation", "Worm.density", "Soil.pH", "Slope")]

4.4 Using logical conditions to select rows from the dataframe

A very common operation is selecting certain rows from the dataframe on the basis of values in one or more
of the variables (the columns of the dataframe). Suppose we want to restrict the data to cases from damp
fields. We want all the columns, so the syntax for the subscripts is [‘which rows’, blank]:

worms[Damp == T,]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

170 THE R BOOK

Note that because Damp is a logical variable (with just two potential values, TRUE or FALSE) we can refer
to true or false in abbreviated form, T or F. Also notice that the T in this case is not enclosed in quotes:
the T means true, not the character string "T". The other important point is that the symbol for the logical
condition is == (two successive equals signs with no gap between them; see p. 26).

The logic for the selection of rows can refer to values (and functions of values) in more than one
column. Suppose that we wanted the data from the fields where worm density was higher than the median
(>median(Worm.density)) and soil pH was less than 5.2. In R, the logical operator for AND is the &
(‘ampersand’) symbol:

worms[Worm.density > median(Worm.density) & Soil.pH < 5.2,]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5

Suppose that we want to extract all the columns that contain numbers (rather than characters or logical
variables) from the dataframe. The function is.numeric can be applied across all the columns of worms
using sapply to create the appropriate subscripts like this:

worms[,sapply(worms,is.numeric)]

Area Slope Soil.pH Worm.density
1 3.6 11 4.1 4
2 5.1 2 5.2 7
3 2.8 3 4.3 2
4 2.4 5 4.9 5
5 3.8 0 4.2 6
6 3.1 2 3.9 2
7 3.5 3 4.2 3
8 2.1 0 4.8 4
9 1.9 0 5.7 9
10 1.5 4 5.0 7
11 2.9 10 5.2 8
12 3.3 1 4.1 1
13 3.7 2 4.0 2
14 1.8 6 3.8 0
15 4.1 0 5.0 6
16 3.9 0 4.9 8
17 2.2 8 4.7 4
18 4.4 2 4.5 5
19 2.9 1 3.5 1
20 0.8 10 5.1 3

We might want to extract the columns that were factors:

worms[,sapply(worms,is.factor)]

DATAFRAMES 171

Field.Name Vegetation
1 Nashs.Field Grassland
2 Silwood.Bottom Arable
3 Nursery.Field Grassland
4 Rush.Meadow Meadow
5 Gunness.Thicket Scrub
6 Oak.Mead Grassland
7 Church.Field Grassland
8 Ashurst Arable
9 The.Orchard Orchard
10 Rookery.Slope Grassland
11 Garden.Wood Scrub
12 North.Gravel Grassland
13 South.Gravel Grassland
14 Observatory.Ridge Grassland
15 Pond.Field Meadow
16 Water.Meadow Meadow
17 Cheapside Scrub
18 Pound.Hill Arable
19 Gravel.Pit Grassland
20 Farm.Wood Scrub

Because worms is a dataframe, the characters have all been coerced to factors, so
worms[,sapply(worms,is.character)] produces the answer NULL.

To drop a row or rows from the dataframe, use negative subscripts. Thus to drop the middle 10 rows (i.e.
row numbers 6 to 15 inclusive) do this:

worms[-(6:15),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

Here are all the rows that are not grasslands (recall that the logical symbol ! means NOT):

worms[!(Vegetation=="Grassland"),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8

172 THE R BOOK

15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

If you want to use minus signs rather than logical NOT to drop rows from the dataframe, the expression
you use must evaluate to numbers. The which function is useful for this. Let us use this technique to drop
the non-damp fields:

worms[-which(Damp==F),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

which achieves the same end as the more elegant

worms[!Damp==F,]

or, even simpler,

worms[Damp==T,]

4.5 Omitting rows containing missing values, NA

In statistical modelling it is often useful to have a dataframe that contains no missing values in the response
or explanatory variables. You can create a shorter dataframe using the na.omit function. Here is a sister
dataframe of worms in which certain values are NA:

data <- read.table("c:\\temp\\worms.missing.txt",header=T)
data

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
2 Silwood.Bottom 5.1 NA Arable 5.2 FALSE 7
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
7 Church.Field 3.5 3 Grassland NA NA NA
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2

DATAFRAMES 173

14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
19 Gravel.Pit NA 1 Grassland 3.5 FALSE 1
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

By inspection we can see that we should like to leave out row 2 (one missing value), row 7 (three missing
values) and row 19 (one missing value). This could not be simpler:

na.omit(data)

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

and you see that rows 2, 7 and 19 have been omitted in creating the new dataframe. Alternatively, you can
use the na.exclude function. This differs from na.omit only in the class of the na.action attribute
of the result, which gives different behaviour in functions making use of naresid and napredict: when
na.exclude is used the residuals and predictions are padded to the correct length by inserting NAs for
cases omitted by na.exclude (in this example they would be of length 20, whereas na.omit would give
residuals and predictions of length 17).

new.frame <- na.exclude(data)

The function to test for the presence of missing values across a dataframe is complete.cases:

complete.cases(data)

[1] TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[12] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE

You could use this as a less efficient analogue of na.omit(data), but why would you?

data[complete.cases(data),]

174 THE R BOOK

It is well worth checking the individual variables separately, because it is possible that one or more
variables contribute most of the missing values, and it may be preferable to remove these variables from the
modelling rather than lose the valuable information about the other explanatory variables associated with
these cases. Use summary to count the missing values for each variable in the dataframe, or use applywith
the function is.na to sum the missing values in each variable:

apply(apply(data,2,is.na),2,sum)

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
0 1 1 0 1 1 1

You can see that in this case no single variable contributed more missing values than any other.

4.5.1 Replacing NAs with zeros

You would need to think carefully before doing this, but there might be circumstances when you wanted to
replace the missing values NA by zero (or by some other missing-value indicator). Continuing the missing-
worms example, above, where the dataframe called data contained five missing values, this is how to replace
all the NAs by zeros:

data[is.na(data)]<-0

4.6 Using order and !duplicated to eliminate pseudoreplication

In this rather more complicated example, you are asked to extract a single record for each vegetation type,
and that record is to be the case within each vegetation type that has the greatest worm density. There are two
steps to this: first order all of the rows in a new dataframe using rev(order(Worm.density)), then
select the subset of these rows which is not duplicated (!duplicated) within each vegetation type in the
new dataframe (using new$Vegetation) :

new <- worms[rev(order(Worm.density)),]
new[!duplicated(new$Vegetation),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7

4.7 Complex ordering with mixed directions

Sometimes there are multiple sorting variables, but the variables have to be sorted in opposing directions. In
this example, the task is to order the database first by vegetation type in alphabetical order (the default) and
then within each vegetation type to sort by worm density in decreasing order (highest densities first). The
trick here is to use order (rather than rev(order)) but to put a minus sign in front of Worm.density
like this:

DATAFRAMES 175

worms[order(Vegetation,-Worm.density),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

Using the minus sign only works when sorting numerical variables. For factor levels you can use the rank
function to make the levels numeric like this:

worms[order(-rank(Vegetation),-Worm.density),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
8 Ashurst 2.1 0 Arable 4.8 FALSE 4

176 THE R BOOK

It is less likely that you will want to select columns on the basis of logical operations, but it is perfectly possible.
Suppose that for some reason you want to select the columns that contain the character ‘S’ (upper-case S). In
R the function for this is grep, which returns the subscript (a number or set of numbers) indicating which
character strings within a vector of character strings contained an upper-case S. The names of the variables
within a dataframe are obtained by the names function:

names(worms)

[1] "Field.Name" "Area" "Slope" "Vegetation"
[5] "Soil.pH" "Damp" "Worm.density"

so we want our function grep to pick out variables numbers 3 and 5 because they are the only ones containing
upper-case S:

grep("S",names(worms))

[1] 3 5

Finally, we can use these numbers as subscripts [,c(3,5)] to select columns 3 and 5:

worms[,grep("S",names(worms))]

Slope Soil.pH
1 11 4.1
2 2 5.2
3 3 4.3
4 5 4.9
5 0 4.2
6 2 3.9
7 3 4.2
8 0 4.8
9 0 5.7
10 4 5.0
11 10 5.2
12 1 4.1
13 2 4.0
14 6 3.8
15 0 5.0
16 0 4.9
17 8 4.7
18 2 4.5
19 1 3.5
20 10 5.1

4.8 A dataframe with row names instead of row numbers

You can suppress the creation of row numbers and allocate your own unique names to each row by altering
the syntax of the read.table function. The first column of the worms database contains the names of the
fields in which the other variables were measured. Up to now, we have read this column as if it was the first
variable (p. 161).

DATAFRAMES 177

worms2 <- read.table("c:\\temp\\worms.txt",header=T,row.names=1)
worms2

Area Slope Vegetation Soil.pH Damp Worm.density
Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
Church.Field 3.5 3 Grassland 4.2 FALSE 3
Ashurst 2.1 0 Arable 4.8 FALSE 4
The.Orchard 1.9 0 Orchard 5.7 FALSE 9
Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
North.Gravel 3.3 1 Grassland 4.1 FALSE 1
South.Gravel 3.7 2 Grassland 4.0 FALSE 2
Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
Pond.Field 4.1 0 Meadow 5.0 TRUE 6
Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
Cheapside 2.2 8 Scrub 4.7 TRUE 4
Pound.Hill 4.4 2 Arable 4.5 FALSE 5
Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

Notice that the field names column is not now headed by a variable name, and that the row numbers, as
intended, have been suppressed.

4.9 Creating a dataframe from another kind of object

We have seen that the simplest way to create a dataframe in R is to read a table of data from an external
file using the read.table function. Alternatively, you can create a dataframe by using the data.frame
function to bind together a number of vectors. Here are three vectors of the same length:

x <- runif(10)
y <- letters[1:10]
z <- sample(c(rep(T,5),rep(F,5)))

To make them into a dataframe called new, just type:

new <- data.frame(y,z,x)
new

y z X
1 a TRUE 0.72675982
2 b FALSE 0.83847227

178 THE R BOOK

3 c FALSE 0.61765685
4 d TRUE 0.78541650
5 e FALSE 0.51168828
6 f TRUE 0.53526324
7 g TRUE 0.05552335
8 h TRUE 0.78486234
9 i FALSE 0.68385443
10 j FALSE 0.89367837

Note that the order of the columns is controlled simply by the sequence of the vector names (left to right)
specified within the data.frame function.

In this next example, we create a table of counts of random integers from a Poisson distribution, then
convert the table into a dataframe. First, we make a table object:

y <- rpois(1500,1.5)
table(y)

y
0 1 2 3 4 5 6 7

344 502 374 199 63 11 5 2

Now it is simple to convert this table object into a dataframe with two variables, the count and the frequency,
using the as.data.frame function:

short<-as.data.frame(table(y))
short

y Freq
1 0 344
2 1 502
3 2 374
4 3 199
5 4 63
6 5 11
7 6 5
8 7 2

In some cases you might want to expand a dataframe like the one above such that it had a separate row
for every distinct count (i.e. 344 rows with y = 0, 502 rows with y = 1, 374 rows with y = 2, and so on).
This is very straightforward using subscripts. We need to create a vector of indices containing 344 repeats of
1, 502 repeats of 2 and so on. Note that these repeats are of the row numbers (1, 2, 3, . . . , 8), not repeats of
the values of y (0, 1, 2, . . . , 7).

index<-rep(1:8,short$Freq)

This simple command has produced a vector with the right number of repeats of each of the row numbers

length(index)

[1] 1500

hist(index,-0.5:8.5)

DATAFRAMES 179

50
0

40
0

30
0

20
0

10
0

0

Fr
eq

ue
nc

y

0 2 4 6 8
index

Histogram of index

To get the long version of the dataframe, we just use index as the row specifier [index,]:

long<-short[index,]

Here is a look at the bottom of this long dataframe:

tail(long)

y Freq
7.1 6 5
7.2 6 5
7.3 6 5
7.4 6 5
8 7 2
8.1 7 2

Note the way that R has handled the duplicate row numbers, creating a nested series to indicate the repeats
of each of the original row numbers.

A longer-winded alternative might use lapply with rep to do the same thing:

long2 <- as.data.frame(lapply(short,
function(x) rep(x, short$Freq)))

tail(long2)

y Freq
1495 6 5
1496 6 5
1497 6 5
1498 6 5

180 THE R BOOK

1499 7 2
1500 7 2

Note the use of the anonymous function in lapply to generate the repeats of each row by the value specified
in Freq. Before you did anything useful with this longer dataframe, you would probably want to get rid of
the redundant column called Freq.

4.10 Eliminating duplicate rows from a dataframe

Sometimes a dataframe will contain duplicate rows where all the variables have exactly the same values in
two or more rows. Here is a simple example:

dups <- read.table("c:\\temp\\dups.txt",header=T)
dups

var1 var2 var3 Var4
1 1 2 3 1
2 1 2 2 1
3 3 2 1 1
4 4 4 2 1
5 3 2 1 1
6 6 1 2 5
7 1 2 3 2

Note that row number 5 is an exact duplicate of row number 3. To create a dataframe with all the duplicate
rows stripped out, use the unique function like this:

unique(dups)

var1 var2 var3 var4
1 1 2 3 1
2 1 2 2 1
3 3 2 1 1
4 4 4 2 1
6 6 1 2 5
7 1 2 3 2

Notice that the row names in the new dataframe are the same as in the original, so that you can spot that row
number 5 was removed by the operation of the function unique.

To view the rows that are duplicates in a dataframe (if any) use the duplicated function to create a
vector of TRUE and FALSE to act as the filter:

dups[duplicated(dups),]

var1 var2 var3 var4
5 3 2 1 1

4.11 Dates in dataframes

There is an introduction to the complexities of using dates and times on pp. 101–113. Here we illustrate a
simple example:

DATAFRAMES 181

nums <- read.table("c:\\temp\\sortdata.txt",header=T)
attach(nums)
head(nums)

name date response treatment
1 albert 25/08/2003 0.05963704 A
2 ann 21/05/2003 1.46555993 A
3 john 12/10/2003 1.59406539 B
4 ian 02/12/2003 2.09505949 A
5 michael 18/10/2003 2.38330748 B
6 ann 02/07/2003 2.86983693 B

The idea is to order the rows by date. The ordering is to be applied to all four columns of the dataframe. Note
that ordering on the basis of our variable called date does not work in the way we want it to:

nums[order(date),]

name date response treatment
53 rachel 01/08/2003 32.98792196 B
65 albert 02/06/2003 38.41979568 A
6 ann 02/07/2003 2.86983693 B
10 cecily 02/11/2003 6.81467570 A
4 ian 02/12/2003 2.09505949 A
29 michael 03/05/2003 15.59890900 B
67 william 03/09/2003 38.95014474 A

This is because of the format used for depicting the date is a character string in which the first characters are
the day, then the month, then the year, so the dataframe has been sorted into alphabetical order, rather than
date order as required. In order to sort by date we need first to convert our variable into date-time format
using the strptime function (see p. 103 for details):

dates <- strptime(date,format="%d/%m/%Y")
dates

[1] "2003-08-25" "2003-05-21" "2003-10-12" "2003-12-02" "2003-10-18"
[6] "2003-07-02" "2003-09-27" "2003-06-05" "2003-06-11" "2003-11-02"

Note how strptime has produced a date object with year first, then a hyphen, then month, then a hyphen,
then day, and this will sort into the desired sequence. We bind the new variable to the dataframe like this:

nums <- cbind(nums,dates)

Now that the new variable is in the correct format, the dates can be sorted correctly:

nums[order(dates),]

name date response treatment dates
49 albert 21/04/2003 30.66632632 A 2003-04-21
63 james 24/04/2003 37.04140266 A 2003-04-24
24 john 27/04/2003 12.70257306 A 2003-04-27
33 william 30/04/2003 18.05707279 B 2003-04-30
29 michael 03/05/2003 15.59890900 B 2003-05-03
71 ian 06/05/2003 39.97237868 A 2003-05-06

182 THE R BOOK

50 rachel 09/05/2003 30.81807436 B 2003-05-09
69 elizabeth 12/05/2003 39.39536726 B 2003-05-12

4.12 Using the match function in dataframes

The worms dataframe above contains fields of five different vegetation types:

unique(worms$Vegetation)

[1] Grassland Arable Meadow Scrub Orchard
Levels: Arable Grassland Meadow Orchard Scrub

and we want to know the appropriate herbicides to use in each of the 20 fields. The herbicides are in a separate
dataframe that contains the recommended herbicides for a much larger set of plant community types:

herbicides <- read.table("c:\\temp\\herbicides.txt",header=T)
herbicides

Type Herbicide
1 Woodland Fusilade
2 Conifer Weedwipe
3 Arable Twinspan
4 Hill Weedwipe
5 Bracken Fusilade
6 Scrub Weedwipe
7 Grassland Allclear
8 Chalk Vanquish
9 Meadow Propinol
10 Lawn Vanquish
11 Orchard Fusilade
12 Verge Allclear

The task is to create a vector of length 20 (one for every field in worms) containing the name of the
appropriate herbicide. The first value needs to be Allclear because Nash’s Field is grassland, and the sec-
ond needs to be Twinspan because Silwood Bottom is arable, and so on. The first argument in match
is worms$Vegetation and the second argument in match is herbicides$Type. The result of this
match is used as a vector of subscripts to extract the relevant herbicides from herbicides$Herbicide
like this:

herbicides$Herbicide[match(worms$Vegetation,herbicides$Type)]

[1] Allclear Twinspan Allclear Propinol Weedwipe Allclear Allclear
[8] Twinspan Fusilade Allclear Weedwipe Allclear Allclear Allclear
[15] Propinol Propinol Weedwipe Twinspan Allclear Weedwipe

Levels: Allclear Fusilade Propinol Twinspan Vanquish Weedwipe

You could add this information as a new column in the worms dataframe:

worms$hb <- herbicides$Herbicide[match(worms$Vegetation,herbicides$Type)]

or create a new dataframe called recs containing the herbicide recommendations:

DATAFRAMES 183

recs <- data.frame(
worms,hb=herbicides$Herbicide[match(worms$Vegetation,herbicides$Type)])

recs

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density hb
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4 Allclear
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7 Twinspan
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2 Allclear
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5 Propinol
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6 Weedwipe
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2 Allclear
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3 Allclear
8 Ashurst 2.1 0 Arable 4.8 FALSE 4 Twinspan
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9 Fusilade
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7 Allclear
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8 Weedwipe
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1 Allclear
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2 Allclear
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0 Allclear
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6 Propinol
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8 Propinol
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4 Weedwipe
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5 Twinspan
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1 Allclear
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3 Weedwipe

4.13 Merging two dataframes

Suppose we have two dataframes, the first containing information on plant life forms and the second containing
information of time of flowering. We want to produce a single dataframe showing information on both life
form and flowering time. Both dataframes contain variables for genus name and species name:

(lifeforms <- read.table("c:\\temp\\lifeforms.txt",header=T))

Genus species lifeform
1 Acer platanoides tree
2 Acer palmatum tree
3 Ajuga reptans herb
4 Conyza sumatrensis annual
5 Lamium album herb

(flowering <- read.table("c:\\temp\\fltimes.txt",header=T))

Genus species flowering
1 Acer platanoides May
2 Ajuga reptans June
3 Brassica napus April
4 Chamerion angustifolium July
5 Conyza bilbaoana August
6 Lamium album January

184 THE R BOOK

Because at least one of the variable names is identical in the two dataframes (in this case, two variables are
identical, namely Genus and species) we can use the simplest of all merge commands:

merge(flowering,lifeforms)

Genus species flowering lifeform
1 Acer platanoides May tree
2 Ajuga reptans June herb
3 Lamium album January herb

The important point to note is that the merged dataframe contains only those rows which had complete entries
in both dataframes. Two rows from the lifeforms database were excluded because there were no flowering
time data for them (Acer platanoides and Conyza sumatrensis), and three rows from theflowering database
were excluded because there were no life-form data for them (Chamerion angustifolium, Conyza bilbaoana
and Brassica napus).

If you want to include all the species, with missing values (NA) inserted when flowering times or life forms
are not known, then use the all=T option:

(both <- merge(flowering,lifeforms,all=T))

Genus species flowering lifeform
1 Acer platanoides May tree
2 Acer palmatum <NA> tree
3 Ajuga reptans June herb
4 Brassica napus April <NA>
5 Chamerion angustifolium July <NA>
6 Conyza bilbaoana August <NA>
7 Conyza sumatrensis <NA> annual
8 Lamium album January herb

One complexity that often arises is that the same variable has different names in the two dataframes that
need to be merged. The simplest solution is often to edit the variable names in your spreadsheet before reading
them into R, but failing this, you need to specify the names in the first dataframe (known conventionally as
the x dataframe) and the second dataframe (known conventionally as the y dataframe) using the by.x and
by.y options in merge. We have a third dataframe containing information on the seed weights of all eight
species, but the variable Genus is called name1 and the variable species is called name2.

(seeds <- read.table("c:\\temp\\seedwts.txt",header=T))

name1 name2 seed
1 Acer platanoides 32.0
2 Lamium album 12.0
3 Ajuga reptans 4.0
4 Chamerion angustifolium 1.5
5 Conyza bilbaoana 0.5
6 Brassica napus 7.0
7 Acer palmatum 21.0
8 Conyza sumatrensis 0.6

Just using merge(both,seeds) fails miserably: you should try it, to see what happens. We need to inform
the merge function that Genus and name1 are synonyms (different names for the same variable), as are
species and name2.

DATAFRAMES 185

merge(both,seeds,by.x=c("Genus","species"),by.y=c("name1","name2"))

Genus species flowering lifeform seed
1 Acer palmatum <NA> tree 21.0
2 Acer platanoides May tree 32.0
3 Ajuga reptans June herb 4.0
4 Brassica napus April <NA> 7.0
5 Chamerion angustifolium July <NA> 1.5
6 Conyza bilbaoana August <NA> 0.5
7 Conyza sumatrensis <NA> annual 0.6
8 Lamium album January herb 12.0

Note that the variable names used in the merged dataframe are the names used in the x dataframe.

4.14 Adding margins to a dataframe

Suppose we have a dataframe showing sales by season and by person:

frame <- read.table("c:\\temp\\sales.txt",header=T)
frame

name spring summer autumn winter
1 Jane.Smith 14 18 11 12
2 Robert.Jones 17 18 10 13
3 Dick.Rogers 12 16 9 14
4 William.Edwards 15 14 11 10
5 Janet.Jones 11 17 11 16

We want to add margins to this dataframe showing departures of the seasonal means from the overall mean
(as an extra row at the bottom) and departures of the people’s means (as an extra column on the right).
Finally, we want the sales in the body of the dataframe to be represented by departures from the overall
mean.

people <- rowMeans(frame[,2:5])
people <- people-mean(people)
people

[1] 0.30 1.05 -0.70 -0.95 0.30

It is very straightforward to add a new column to the dataframe using cbind:

(new.frame <- cbind(frame,people))

name spring summer autumn winter people
1 Jane.Smith 14 18 11 12 0.30
2 Robert.Jones 17 18 10 13 1.05
3 Dick.Rogers 12 16 9 14 -0.70
4 William.Edwards 15 14 11 10 -0.95
5 Janet.Jones 11 17 11 16 0.30

Robert Jones is the most effective sales person (+ 1.05) and William Edwards is the least effective (–0.95).
The column means are calculated in a similar way:

186 THE R BOOK

seasons <- colMeans(frame[,2:5])
seasons <- seasons-mean(seasons)
seasons

spring summer autumn winter
0.35 3.15 -3.05 -0.45

Sales are highest in summer (+ 3.15) and lowest in autumn (–3.05).
Now there is a hitch, however, because there are only four column means but there are six columns in

new.frame, so we cannot use rbind directly. The simplest way to deal with this is to make a copy of one
of the rows of the new dataframe

new.row <- new.frame[1,]

and then edit this to include the values we want: a label in the first column to say ‘seasonal means’ then the
four column means, and then a zero for the grand mean of the effects:

new.row[1] <- "seasonal effects"
new.row[2:5] <- seasons
new.row[6] <- 0
new.row

name spring summer autumn winter people
1 seasonal effects 0.35 3.15 -3.05 -0.45 0

Now we can use rbind to add our new row to the bottom of the extended dataframe:

(new.frame <- rbind(new.frame,new.row))

name spring summer autumn winter people
1 Jane.Smith 14.00 18.00 11.00 12.00 0.30
2 Robert.Jones 17.00 18.00 10.00 13.00 1.05
3 Dick.Rogers 12.00 16.00 9.00 14.00 -0.70
4 William.Edwards 15.00 14.00 11.00 10.00 -0.95
5 Janet.Jones 11.00 17.00 11.00 16.00 0.30
6 seasonal effects 0.35 3.15 -3.05 -0.45 0.00

The last task is to replace the counts of sales in the dataframe new.frame[1:5,2:5] by departures from
the overall mean sale per person per season (the grand mean, gm= 13.45). We need to use unlist to stop R
from estimating a separate mean for each column, then create a vector of length 4 containing repeated values
of the grand mean (one for each column of sales). Finally, we use sweep to subtract the grand mean from
each value:

gm <- mean(unlist(new.frame[1:5,2:5]))
gm <- rep(gm,4)
new.frame[1:5,2:5] <- sweep(new.frame[1:5,2:5],2,gm)
new.frame

name spring summer autumn winter people
1 Jane.Smith 0.55 4.55 -2.45 -1.45 0.30
2 Robert.Jones 3.55 4.55 -3.45 -0.45 1.05
3 Dick.Rogers -1.45 2.55 -4.45 0.55 -0.70
4 William.Edwards 1.55 0.55 -2.45 -3.45 -0.95

DATAFRAMES 187

5 Janet.Jones -2.45 3.55 -2.45 2.55 0.30
6 seasonal effects 0.35 3.15 -3.05 -0.45 0.00

To complete the table we want to put the grand mean in the bottom right-hand corner:

new.frame[6,6] <- gm[1]
new.frame

name spring summer autumn winter people
1 Jane.Smith 0.55 4.55 -2.45 -1.45 0.30
2 Robert.Jones 3.55 4.55 -3.45 -0.45 1.05
3 Dick.Rogers -1.45 2.55 -4.45 0.55 -0.70
4 William.Edwards 1.55 0.55 -2.45 -3.45 -0.95
5 Janet.Jones -2.45 3.55 -2.45 2.55 0.30
6 seasonal effects 0.35 3.15 -3.05 -0.45 13.45

The best per-season performance was shared by Jane Smith and Robert Jones who each sold 4.55 units more
than the overall average in summer.

4.15 Summarizing the contents of dataframes

The usual function to obtain cross-classified summary functions like the mean or median for a single vector
is tapply (p. 245), but there are three useful functions for summarizing whole dataframes:

� summary summarize all the contents of all the variables;

� aggregate create a table after the fashion of tapply;

� by perform functions for each level of specified factors.

Use ofsummary andbywith the worms database was described on p. 163. Theaggregate function is used
like tapply to apply a function (mean in this case) to the levels of a specified categorical variable (Veg-
etation in this case) for a specified range of variables (Area, Slope, Soil.pH and Worm.density)
which are specified using their subscripts as a column index, worms[,c(2,3,5,7)]:

aggregate(worms[,c(2,3,5,7)],by=list(veg=Vegetation),mean)

veg Area Slope Soil.pH Worm.density
1 Arable 3.866667 1.333333 4.833333 5.333333
2 Grassland 2.911111 3.666667 4.100000 2.444444
3 Meadow 3.466667 1.666667 4.933333 6.333333
4 Orchard 1.900000 0.000000 5.700000 9.000000
5 Scrub 2.425000 7.000000 4.800000 5.250000

The by argument needs to be a list even if, as here, we have only one classifying factor. Here are the
aggregated summaries cross-classified by Vegetation and Damp:

aggregate(worms[,c(2,3,5,7)],by=list(veg=Vegetation,d=Damp),mean)

veg d Area Slope Soil.pH Worm.density
1 Arable FALSE 3.866667 1.333333 4.833333 5.333333
2 Grassland FALSE 3.087500 3.625000 3.987500 1.875000

188 THE R BOOK

3 Orchard FALSE 1.900000 0.000000 5.700000 9.000000
4 Scrub FALSE 3.350000 5.000000 4.700000 7.000000
5 Grassland TRUE 1.500000 4.000000 5.000000 7.000000
6 Meadow TRUE 3.466667 1.666667 4.933333 6.333333
7 Scrub TRUE 1.500000 9.000000 4.900000 3.500000

Note that this summary is unbalanced because there were no damp arable or orchard sites and no dry
meadows.

5
Graphics

Producing high-quality graphics is one of the main reasons for doing statistical computing. The particular
plot function you need will depend on the number of variables you want to plot and the pattern you wish to
highlight. The plotting functions in this chapter are dealt with under four headings:

� plots with two variables;

� plots for a single sample;

� multivariate plots;

� special plots for particular purposes.

Changes to the detailed look of the graphs are dealt with in Chapter 29.

5.1 Plots with two variables

With two variables (typically the response variable on the y axis and the explanatory variable on the x
axis), the kind of plot you should produce depends upon the nature of your explanatory variable. When the
explanatory variable is a continuous variable, such as length or weight or altitude, then the appropriate plot
is a scatterplot. In cases where the explanatory variable is categorical, such as genotype or colour or gender,
then the appropriate plot is either a box-and-whisker plot (when you want to show the scatter in the raw
data) or a barplot (when you want to emphasize the effect sizes).

The most frequently used plotting functions for two variables in R are the following:

� plot(x,y) scatterplot of y against x;

� plot(factor, y) box-and-whisker plot of y at each factor level;

� barplot(y) heights from a vector of y values (one bar per factor level).

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

190 THE R BOOK

5.2 Plotting with two continuous explanatory variables: Scatterplots

The plot function draws axes and adds a scatterplot of points. Two extra functions, points and lines,
add extra points or lines to an existing plot. There are two ways of specifying plot, points and lines
and you should choose whichever you prefer:

� Cartesian plot(x,y)

� formula plot(y~x)

The advantage of the formula-based plot is that the plot function and the model fit look and feel the same
(response variable, tilde, explanatory variable). If you use Cartesian plots (eastings first, then northings, like
the grid reference on a map) then the plot has ‘x then y’ while the model has ‘y then x’.

At its most basic, the plot function needs only two arguments: first the name of the explanatory variable
(x in this case), and second the name of the response variable (y in this case): plot(x,y). The data we
want to plot are read into R from a file:

data1 <- read.table("c:\\temp\\scatter1.txt",header=T)
attach(data1)
names(data1)

[1] "x1" "y1"

Producing the scatterplot could not be simpler: just type

plot(x1,y1,col="red")

with the vector of x values first, then the vector of y values (changing the colour of the points is optional).

60
50

40y1

30
20

0 20 40 60 80 100

x1

Notice that the axes are labelled with the variable names, unless you chose to override these with xlab and
ylab. It is often a good idea to have longer, more explicit labels for the axes than are provided by the variable

GRAPHICS 191

names that are used as default options (x1 and y1 in this case). Suppose we want to change the label x1 into
the longer label ‘Explanatory variable’ and the label on the y axis from y1 to ‘Response variable’. Then we
use xlab and ylab like this:

plot(x1,y1,col="red",xlab="Explanatory variable",ylab="Response
variable")

60
50

40

R
es

po
ns

e
va

ria
bl

e

30
20

0 20 40 60 80 100
Explanatory variable

The great thing about graphics in R is that it is extremely straightforward to add things to your plots. In
the present case, we might want to add a regression line through the cloud of data points. The function for
this is abline which can take as its argument the linear model object lm(y1~x1) as explained on p. 491:

abline(lm(y1~x1))

60
50

40

R
es

po
ns

e
va

ria
bl

e

30
20

0 20 40 60 80 100

Explanatory variable

192 THE R BOOK

Just as it is easy to add lines to the plot, so it is straightforward to add more points. The extra points are in
another file:

data2 <- read.table("c:\\temp\\scatter2.txt",header=T)
attach(data2)
names(data2)

[1] "x2" "y2"

The new points (x2,y2) are added using the points function like this:

points(x2,y2,col="blue",pch=16)

and we can finish by adding a regression line through the extra points:

abline(lm(y2~x2))

60
50

40

R
es

po
ns

e
va

ria
bl

e

30
20

0 20 40 60 80 100

Explanatory variable

This example shows a very important feature of the plot function. Notice that several of the lower values
from the second (blue) data set have not appeared on the graph. This is because (unless we say otherwise at
the outset) R chooses ‘pretty’ scaling for the axes based on the data range in the first set of points to be drawn.
If, as here, the range of subsequent data sets lies outside the scale of the x and y axes, then points are simply
left off without any warning message.

One way to cure this problem is to plot all the data with type="n" so that the axes are scaled to
encompass all the points from all the data sets (using the concatenation function, c), then to use points and
lines to add both sets of data to the blank axes, like this:

plot(c(x1,x2),c(y1,y2),xlab="Explanatory variable",
ylab="Response variable",type="n")

points(x1,y1,col="red")
points(x2,y2,col="blue",pch=16)

GRAPHICS 193

abline(lm(y1~x1))
abline(lm(y2~x2))

60
50

40

R
es

po
ns

e
va

ria
bl

e

30
20

0 20 40 60 80 100

Explanatory variable

Now all of the points from both data sets appear on the scatterplot. You might want to take control of the
selection of the limits for the x and y axes, rather than accept the ‘pretty’ default values. In the last plot, for
instance, the minimum on the y axis was about 13 (but it is not exactly obvious). You might want to specify
that the minimum on the y axis was zero. This is achieved with the ylim argument, which is a vector of
length 2, specifying the minimum and maximum values for the y axis: ylim=c(0,70). You will want to
control the scaling of the axes when you want two comparable graphs side by side, or when you want to
overlay several lines or sets of points on the same axes.

A good way to find out the axis values is to use the range function applied to the data sets in aggregate:

range(c(x1,x2))

[1] 0.02849861 99.93262000

range(c(y1,y2))

[1] 13.41794 62.59482

Here the x axis needs to go from 0.02 up to 99.93 (0 to 100 would be pretty) and the y axis needs to go from
13.4 up to 62.6 (0 to 70 would be pretty). This is how the axes are drawn; the points and lines are added
exactly as before:

plot(c(x1,x2),c(y1,y2),xlim=c(0,100),ylim=c(0,70),
xlab="Explanatory variable",ylab="Response variable",type="n")

points(x1,y1,col="red")
points(x2,y2,col="blue",pch=16)
abline(lm(y1~x1))
abline(lm(y2~x2))

194 THE R BOOK

70
50

60
40

R
es

po
ns

e
va

ria
bl

e

30
0

10
20

0 20 40 60 80 100

Explanatory variable

Adding a legend to the plot to explain the difference between the two colours of points would be useful. The
thing to understand about the legend function is that the number of lines of text inside the legend box is de-
termined by the length of the vector containing the labels (2 in this case:c("treatment","control").
The other two vectors must be of the same length as this: one for the plotting symbols pch=c(1,16) and
one for the colours col=c("red","blue"). The legend function can be used with locator(1) to
allow you to select exactly where on the plot surface the legend box should be placed. Click the mouse button
when the cursor is where you want the top left of the box around the legend to be.

legend(locator(1),c("treatment","control"),pch=c(1,16), col=c("red","blue"))

70
50

60
40

R
es

po
ns

e
va

ria
bl

e

30
0

10
20

0 20

treatment
control

40 60 80 100

Explanatory variable

GRAPHICS 195

This is about as complicated as you would want to make any figure. Adding more information would begin
to detract from the message.

5.2.1 Plotting symbols: pch

There are 256 different plotting symbols available in Windows (0 to 255). Here is a graphic showing all of
them in sequence, from bottom left to top right:

plot(0:10,0:10,xlim=c(0,32),ylim=c(0,40),type="n",xaxt="n",yaxt="n",
xlab="",ylab="")
x <- seq(1,31,2)
s <- -16
f <- -1
for (y in seq(2,40,2.5)) {
s <- s+16
f <- f+16
y2 <- rep(y,16)
points(x,y2,pch=s:f,cex=0.7)
text(x,y-1,as.character(s:f),cex=0.6) }

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

U

15

«

196 THE R BOOK

The basic plotting symbols (pch) are shown in the bottom two rows, with their pch number immediately
beneath. The default value, pch=1, is a small open circle in black. Note that values between 26 and 32 are not
implemented at present and are ignored (blanks are plotted). Values for pch between 33 and 127 represent
the ASCII character set, while values between 128 and 255 are the symbols from the Windows character set.
The symbols for pch=19 and pch=20 are solid circles of different sizes (pch = 20 is the ‘bullet point’
and is two-thirds the size of pch=19). The difference between pch=16 and pch=19 is that the latter uses
a border, and so it is larger when line width lwd is large relative to character expansion cex. The symbol for
pch=46 is the ‘dot’ and is treated specially (it is a rectangle of side 0.01 inch, scaled by cex, and if cex
= 1 (the default), each side is at least one pixel, which is 1/72 inch on the pdf, postscript and xfig
devices, so that the dot does not disappear on scaling down the image.

5.2.2 Colour for symbols in plots

The plotting symbols (pch) numbered 21 to 25 allow you to specify the background (fill) colour and the
border colour separately. In the illustration below, the background colours (bg) 1 to 8 are shown in the
columns and numbered on the x axis. The border colours (col) 1 to 8 are shown in the rows and numbered
on the y axis.

plot(0:9,0:9,pch=16,type="n",xaxt="n",yaxt="n",ylab="col",xlab="bg")
axis(1,at=1:8)
axis(2,at=1:8)
for (i in 1:8) points(1:8,rep(i,8),pch=c(21,22,24),bg=1:8,col=i)

8
7

6
5

4
co

l
3

2
1

1 2 3 4 5

bg

6 7 8

Some combinations are visually more effective than others. Black borders in row 1 (col = 1) are effective
with all the shapes and fill colours, but red borders in row 2 (col = 2) work well only with green, pale
blue, yellow and grey fill colours. If you specify only col, then open (white) symbols bordered with the
specified colour are produced. If you specify only bg, then solid symbols filled with the specified colour,
but bordered in black, are produced. If you specify both col and bg with the same colours, then solid,
apparently unbordered symbols are produced. If you specify both col and bg using different colours, then

GRAPHICS 197

solid symbols with contrasting borders are produced. Note that for bordered plotting symbols you need to use
the argument pt.bg in the legend function in place of the usual bg for the interior colour of the symbol
(because bg controls the background colour of the whole legend box).

5.2.3 Adding text to scatterplots

It is very easy to add text to graphics. Suppose you wanted to add the text ‘(b)’ to a plot at the location x =
80 and y = 65; just type text(80,65,"(b)").

In this example we want to produce a map of place names, and the place names are in a file called
map.places.csv, but their coordinates are in another, much longer file called bowens.csv, containing
many more place names than we want to plot. If you have factor level names with spaces in them (e.g.
multiple words), then the best format for reading files is comma-delimited (.csv) rather than the standard
tab-delimited (.txt). You read them into a dataframe in R using read.csv in place of read.table:

map.places <- read.csv("c:\\temp\\map.places.csv",header=T)
attach(map.places)
names(map.places)

[1] "wanted"

map.data <- read.csv("c:\\temp\\bowens.csv",header=T)
attach(map.data)
names(map.data)

[1] "place" "east" "north"

There is a slight complication to do with the coordinates. The northernmost places are in a different 100 km
square so, for instance, a northing of 3 needs to be altered to 103. It is convenient that all of the values that
need to be changed have northings < 60 in the dataframe:

nn <- ifelse(north<60,north+100,north)

This says change all of the northings for which north < 60 is TRUE to nn <- north+100, and leave
unaltered all the others (FALSE) as nn <- north.

The default graphics window in R is a square measuring 7 inches by 7 inches (quaintly old-fashioned,
isn’t it?). But our map is rectangular, roughly 80 km wide and 50 km high (a rectangle in landscape format).
Allowing for the margins, we want to make the plotting region 9 units wide and 7 units high. We achieve this
via the windows function:

windows(9,7)

We begin by plotting a blank space (type="n") of the right size (eastings from 20 to 100 and northings
from 60 to 110) with blank axis labels and no tick marks or numbers:

plot(c(20,100),c(60,110),type="n",xlab="",ylab="",xaxt="n", yaxt="n")

The trick is to select the appropriate places in the vector called place and use text to plot each name in
the correct position (east[ii],nn[ii]). For each place name in wanted we find the correct subscript
for that name within place using the which function to find ii:

for (i in 1:length(wanted)){
ii <- which(place == as.character(wanted[i]))
text(east[ii], nn[ii], as.character(place[ii]), cex = 0.6) }

198 THE R BOOK

Wytham Meads
Wytham Wood

Farmoor Botley

Cumnor

Kennington
Appleton

Cothill
Radley

Abingdon
Tubney

Marcham

Hinton Waldrist
Buckland

Pusey
Buscot

Faringdon

Coleshill Charney Bassett

Fernham
Watchfield

Uffington
Shrivenham

Whitehorse Hill
Ashbury Letcombe Bassett

Wantage

Grove
Denchworth Steventon

Didcot
Harwell Wallingford

Aston Tirrold
AERE Harwell

Blewbury
Chum MoulsfordFarnborough

East IlsleyFawley

Brightwalton

Kingstone Down

Upper Lambourn

Lambourn

East Garston
Shefford

Compton
Streatley

Basildon

Ashampstead Pangbourne

Sulham
Reading

Bradfield

Yattendon
HermitageWelford

Chilton Foliat

Wilderness
Kintbury

Inkpen
Shalbourne

Walbury Camp

Boxford Fence Wood

Speen
Cold Ash

Thatcham
Newbury

Greenham Common

Beenham
Pingewood

Swallowfield
Farley Hill

Riseley

Windsor

Old Windsor
Cranbourne

Windsor Great Park

Arborfield

Twyford

Woodley

Bracknell
Ascot

Swinley Park
Nine Mile Ride

Bagshot Health

Sandhurst

Winnersh
Wokingham

Shurlock Row

Binfield

Cookham
Cliveden Reach

Maidenhead

BrayKnowl Hill

White Waltham

Burghfield
Grazely

Theale

Silchester

Mortimer
Aldermaston

Elcot
Hungerford

Peasemore
Beedon

Drayton
Sutton Courtenay

Friford

5.2.4 Identifying individuals in scatterplots

The best way to identify multiple individuals in scatterplots is to use a combination of colours and symbols. A
useful trick is to use as.numeric to convert a grouping factor (the variable acting as the subject identifier)
into a colour and/or a symbol. Here is an example where reaction time is plotted against duration of sleep
deprivation for 18 subjects:

data <- read.table("c:\\temp\\sleep.txt",header=T)
attach(data)
plot(Days,Reaction)

I think you will agree that the raw scatterplot is uninformative; the individuals need to stand out more clearly
from one another. The main purpose of the graphic is to show the relationship between sleep deprivation
(measured in days) and reaction time. Another aim is to draw attention to the differences between the 18
subjects in their mean reaction times, and to differences in the rate of increase of reaction time with the
duration of sleep deprivation. Because there are so many subjects, the graph is potentially very confusing.
One improvement is to join together the time series for the individual subjects, using a non-intrusive line
colour. Let us do that first. We need to create a vector s to contain the numeric values (1 to 18) of the
Subject identity numbers (which range, with gaps, between 308 and 372):

s <- as.numeric(factor(Subject))

This vector will be used in subscripts to select the x and y coordinates of each subject’s time series in turn.
Next, the subjects, k, are taken one at a time in a loop, and lines with type="b" (both points and lines)
are drawn in a non-intrusive colour (gray is useful for this):

GRAPHICS 199

plot(Days,Reaction,type="n")
for (k in 1:max(s)){
x <- Days[s==k]
y <- Reaction[s==k]
lines(x,y,type="b",col="gray")
}

Next, we need to select plotting symbols and colours for each subject. The colour-filled symbols pch=21,
pch=22 and pch=24 are very useful here. Let us use the non-black colours (bcol from 2 to 8) for each of
the first two plotting symbols (sym), then use colours 2 to 5 for the third plotting symbol for the remaining
subjects:

sym <- rep(c(21,22,24),c(7,7,4))
bcol <- c(2:8,2:8,2:5)

Finally, we can take each subject in turn and use points to add the coloured symbols (each with black
edges, col=1) to the graph:

for (k in 1:max(s)){
points(Days[s==k],Reaction[s==k],pch=sym[k],bg=bcol[k],col=1)
}

45
0

40
0

35
0

R
ea

ct
io

n
30

0
25

0
20

0

0 2 4 6 8
Days

I think that there is insufficient room on the plotting surface to insert a legend with 18 labels in it. For a plot as
complicated as this, it is best to put the explanations of the plotting symbols in the text. Perhaps the clearest
pattern to emerge from the graphic is that subject 331 (the yellow-filled circle) clearly had a hangover on day
6, because he/she was the third fastest reactor after 9 days of deprivation.

200 THE R BOOK

5.2.5 Using a third variable to label a scatterplot

The following example concerns the response of a grass species Festuca rubra as measured by its biomass
in small samples (FR) to two explanatory variables, soil pH and total hay yield (the mass of all plant species
combined). A scatterplot of pH against hay shows the locations of the various samples. The idea is to use the
text function to label each of the points on the scatterplot with the dry mass of F. rubra in that particular
sample, to see whether there is systematic variation in the mass of Festuca with changes in hay yield and
soil pH.

data <- read.table("c:\\temp\\pgr.txt",header=T)
attach(data)
names(data)

[1] "FR" "hay" "pH"

plot(hay,pH)
text(hay, pH, labels=round(FR, 2), pos=1, offset=0.5,cex=0.7)

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

2 3 4 5 6
hay

7 8 9

pH

The labels are centred on the x value of the point (pos=1) and are offset half a character below the point
(offset=0.5). They show the value of FR rounded to two significant digits (labels=round(FR, 2))
at 70% character expansion (cex=0.7). There is an obvious problem with this method when there is lots of
overlap between the labels (as in the top right), but the technique works well for more widely spaced points.
The plot shows that high values of Festuca biomass are concentrated at intermediate values of both soil pH
and hay yield.

You can also use a third variable to choose the colour of the points in your scatterplot. Here the points
with FR above median are shown in red, the others in black:

plot(hay,pH,pch=16,col=ifelse(FR>median(FR),"red","black"))
legend(locator(1),c("FR>median","FR<=median"),pch=16,col=c("red","black"))

GRAPHICS 201

7.
0

6.
5

6.
0 FR>median

FR<=median

5.
5

5.
0

pH

4.
5

4.
5

3.
5

2 3 4 5 6
hay

7 8 9

For three-dimensional plots see image, contour and wireframe on p. 931.

5.2.6 Joining the dots

Sometimes you want to join the points on a scatterplot by lines. The trick is to ensure that the points on the x
axis are ordered: if they are not ordered, the result is a mess, as you will see below.

smooth <- read.table("c:\\temp\\smoothing.txt",header=T)
attach(smooth)
names(smooth)

[1] "x" "y"

Begin by producing a vector of subscripts representing the ordered values of the explanatory variable.
Then draw lines with this vector as subscripts to both the x and y variables:

plot(x,y,pch=16)
sequence <- order(x)
lines(x[sequence],y[sequence])

If you do not order the x values, and just use the lines function, this is what happens:

plot(x,y,pch=16)
lines(x,y)

202 THE R BOOK

14
10

8

y

6
4

0 2 4
x

6 8 10

14
10

8

y

6
4

0 2 4
x

6 8 10

There is a plot option type="b" (this stands for ‘both’ points and lines) which draws the points and
joins them together with lines. You can choose the plotting symbol (pch) and the line type (lty) to
be used.

5.2.7 Plotting stepped lines

When plotting square edges between two points, you need to decide whether to go across and then up, or up
and then across. The issue should become clear with an example. We have two vectors from 0 to 10:

x<-0:10
y<-0:10
plot(x,y)

There are three ways we can join the dots: with a straight line

lines(x,y,col="red")

with a stepped line going across first then up, using lower-case ‘s’

lines(x,y,col="blue",type="s")

or with a stepped green line going up first, then across using upper-case ‘S’ (‘upper case, up first’ is the way
to remember it):

lines(x,y,col="green",type="S")

GRAPHICS 203

10
8

6
4y

2
0

0 2 4
x

6 8 10

5.3 Adding other shapes to a plot

Once you have produced a set of axes using plot it is straightforward to locate and insert other kinds of
things. Here are two unlabelled axes, without tick marks (xaxt="n"), both scaled from 0 to 10 but without
any of the 11 points drawn on the axes (type="n"):

plot(0:10,0:10,xlab="",ylab="",xaxt="n",yaxt="n",type="n")

You can easily add extra graphical objects to plots:

� rect rectangles

� arrows arrows and headed bars

� polygon more complicated filled shapes, including objects with curved sides

For the purposes of demonstration we shall add a single-headed arrow, a double-headed arrow, a rectangle
and a six-sided polygon to this space.

We want to put a solid square object in the top right-hand corner, and we know the precise coordinates to
use. The syntax for the rect function is to provide four numbers:

rect(xleft, ybottom, xright, ytop)

Thus, to plot the square from (6,6) to (9,9) involves:

rect(6,6,9,9)

204 THE R BOOK

You can fill the shape with solid colour (col) or with shading lines (density, angle) as described on
p. 920.

5.3.1 Placing items on a plot with the cursor, using the locator function

You might want to point with the cursor and get R to tell you the coordinates of the corners of the rectangle.
You can use the locator() function for this. The rect function does not accept locator as its argument,
but you can easily write a function (here called corners) to do this:

corners <- function(){
coos <- c(unlist(locator(1)),unlist(locator(1)))
rect(coos[1],coos[2],coos[3],coos[4])

}
Run the function like this:

corners()

Then click in the bottom left-hand corner and again in the top right-hand corner, and a rectangle will be drawn
from your screen-supplied pointers.

Drawing arrows is straightforward. The syntax for the arrows function is to draw a line from the point
(x0, y0) to the point (x1, y1) with the arrowhead, by default, at the ‘second’ end (x1, y1):

arrows(x0, y0, x1, y1)

Thus, to draw an arrow from (1,1) to (3,8) with the head at (3,8) type:

arrows(1,1,3,8)

A horizontal double-headed arrow from (1,9) to (5,9) is produced by adding code=3 like this:

arrows(1,9,5,9,code=3)

A vertical bar with two square ends (e.g. like an error bar) uses angle = 90 instead of the default
angle = 30):

arrows(4,1,4,6,code=3,angle=90)

Here is a function that draws an arrow from the cursor position of your first click to the position of your
second click:

click.arrows <- function(){
coos <- c(unlist(locator(1)),unlist(locator(1)))
arrows(coos[1],coos[2],coos[3],coos[4])

}
To run this, type

click.arrows()

then click the cursor on the two ends.
We now wish to draw a polygon. To do this, it is often useful to save the values of a series of locations.

Here we intend to save the coordinates of six points in a vector called locations to define a polygon for
plotting:

locations <- locator(6)

GRAPHICS 205

After you have clicked over the sixth location, control returns to the screen. What kind of object has locator
produced?

class(locations)

[1] "list"

It has produced a list, and we can extract the vectors of x and y values from the list using $ to name the
elements of the list (R has created the helpful names x and y):

locations

$x
[1] 5.484375 7.027344 9.019531 8.589844 6.792969 5.230469

$y
[1] 3.9928797 4.1894975 2.5510155 0.7377620 0.6940691 2.1796262

Now we draw a lavender-coloured polygon like this:

polygon(locations,col="lavender")

Note that the polygon function has automatically closed the shape, drawing a line from the last point to
the first.

5.3.2 Drawing more complex shapes with polygon

The polygon function can be used to draw more complicated shapes, including curved ones. In this example
we are asked to shade the area beneath a standard normal curve for values of z that are less than or equal

206 THE R BOOK

to –1. First draw the probability density (dnorm) line for the standard normal (mean = 0 and standard
deviation = 1):

z <- seq(-3,3,0.01)
pd <- dnorm(z)
plot(z,pd,type="l")

Then fill the area to the left of z ≤ –1 in red:

polygon(c(z[z<=-1],-1),c(pd[z<=-1],pd[z==-3]),col="red")

0.
4

0.
3

0.
2

pd
0.

1
0.

0

–3 –2 –1 0
z

1 2 3

Note the insertion of the point (-1, pd[z == -3]) to create the right-angled corner to the polygon on
the z axis at z = –1 and pd set to the same value as when z is –3 to make sure that the bottom line is
horizontal.

5.4 Drawing mathematical functions

The curve function is convenient for this. Here is a plot of x3 – 3x between x = –2 and x = 2:

curve(xˆ3-3*x, -2, 2)

GRAPHICS 207

2
1

0
xˆ

3–
3

*
x

–1
–2

–2 –1 0
x

1 2

Here is the more cumbersome code to do the same thing using plot:

x <- seq(-2,2,0.01)
y <- xˆ3-3*x
plot(x,y,type="l")

With plot, you need to decide how many segments you want to generate to create the curve (using seq
with steps of 0.01 in this example), then calculate the matching y values, then use plot with type="l".
This stands for ‘type = line’ (rather than the default points) and can cause problems if you misread the
symbol as a number ‘one’ rather than a lower-case letter ‘L’.

5.4.1 Adding smooth parametric curves to a scatterplot

Up to this point our response variable was shown as a scatter of data points. In many cases, however, we
want to show the response as a smooth curve. The important tip is that to produce reasonably smooth-looking
curves in R you should draw about 100 straight-line sections between the minimum and maximum values of
your x axis.

The Ricker curve is named after the famous Canadian fish biologist who introduced this two-parameter
hump-shaped model for describing recruitment to a fishery y as a function of the density of the parental stock,
x. We wish to compare two Ricker curves with the following parameter values:

yA = 482x e−0.045x , yB = 518x e−0.055x .

The first decision to be made is the range of x values for the plot. In our case this is easy because we know
from the literature that the minimum value of x is 0 and the maximum value of x is 100. Next we need to
generate about 100 values of x at which to calculate and plot the smoothed values of y:

xv <- 0:100

208 THE R BOOK

Next, calculate vectors containing the values of yA and yB at each of these x values:

yA <- 482*xv*exp(-0.045*xv)
yB <- 518*xv*exp(-0.055*xv)

We are now ready to draw the two curves, but we do not know how to scale the y axis. We could find the
maximum and minimum values of yA and yB then use ylim to specify the extremes of the y axis, but it is
more convenient to use the option type="n" to draw the axes without any data, then use lines to add the
two smooth functions later. The blank axes are produced like this:

plot(c(xv,xv),c(yA,yB),xlab="stock",ylab="recruits",type="n")

We want to draw the smooth curve for yA as a dashed blue line (lty = 2, col = "blue"),

lines(xv,yA,lty=2,col="blue")

and the curve for yB as a solid red line (lty = 1, col = "red"),

lines(xv,yB,lty=1,col="red")

Next, we want to see which (if either) of these lines best describes our field data, by overlaying a scatter of
points (as black solid circles, pch = 16) on the smooth curves:

info <- read.table("c:\\temp\\plotfit.txt",header=T)
attach(info)
names(info)

[1] "x" "y"

points(x,y,pch=16)

40
00

20
00

30
00

re
cr

ui
ts

0
20

00

0 20 40 60 80 100

stock

You can see that the blue dotted line is a much better description of our data than is the solid red line.
Estimating the parameters of non-linear functions like the Ricker curve from data is explained in Chapter 20.

GRAPHICS 209

5.4.2 Fitting non-parametric curves through a scatterplot

It is common to want to fit a non-parametric smoothed curve through data, especially when there is no obvious
candidate for a parametric function. R offers a range of options:

� lowess (a non-parametric curve fitter);

� loess (a modelling tool);

� gam (fits generalized additive models; p. 666);

� lm for polynomial regression (fit a linear model involving powers of x).

We will illustrate each of these options using the jaws data. First, we load the data:

data <- read.table("c:\\temp\\jaws.txt",header=T)
attach(data)
names(data)

[1] "age" "bone"

Before we fit our various curves to the data, we need to consider how best to display the results together.
Without doubt, the graphical parameter you will change most often just happens to be the least intuitive to
use. This is the number of graphs per screen, called somewhat unhelpfully, mfrow. This stands for ‘multiple
frames by rows’. The idea is simple, but the syntax is hard to remember. You need to specify the number of
rows of plots you want, and number of plots per row, in a vector of two numbers. The first number is the
number of rows and the second number is the number of graphs per row. The vector is made using concatenate
c in the normal way. The default single-plot screen is par(mfrow=c(1,1)). Two plots side by side is
par(mfrow=c(1,2)) and a panel of four plots in a 2 × 2 square is par(mfrow=c(2,2)).

To move from one plot to the next, you need to execute a new plot function. Control stays within the
same plot frame while you execute functions like points, lines or text. Remember to return to the
default single plot when you have finished your multiple plot by executing par(mfrow=c(1,1)). If you
have more than two graphs per row or per column, the character expansion cex is set to 0.5 and you get
half-size characters and labels.

par(mfrow=c(2,2))

Let us now plot our four graphs with different smooth functions fitted through the jaws data. First, the
simple non-parametric smoother called lowess. You provide the lowess function with arguments for the
explanatory variable and the response variable, then provide this object as an argument to the lines function
like this:

plot(age,bone,pch=16,main="lowess")
lines(lowess(age,bone),col="red")

It is a reasonable fit overall, but a poor descriptor of the jaw size for the lowest five ages. Let us try loess,
which is a model-fitting function. We use the fitted model to predict the jaw sizes:

plot(age,bone,pch=16,main="loess")
model <- loess(bone~age)
xv <- 0:50
yv <- predict(model,data.frame(age=xv))
lines(xv,yv,col="red")

210 THE R BOOK

This is much better at describing the jaw size of the youngest animals, but shows a slight decrease for the
oldest animals which might not be realistic. Next, we use a generalized additive model (gam, from the library
mgcv) to fit bone as s(age), a smooth function of age:

library(mgcv)
plot(age,bone,pch=16,main="gam")
model <- gam(bone~s(age))
xv <- 0:50
yv <- predict(model,list(age=xv))
lines(xv,yv,col="red")

The line is almost indistinguishable from the line produced by loess. Finally, a polynomial:

plot(age,bone,pch=16,main="cubic polynomial"))
model <- lm(bone~age+I(ageˆ2)+I(ageˆ3))
xv <- 0:50
yv <- predict(model,list(age=xv))
lines(xv,yv,col="red")

As so often with polynomials, the line is more curvaceous than we really want. Note the use of capital I (the
‘as is’ function) in front of the quadratic and cubic terms. The fit is good for young animals, but is rather wavy
where we might expect to see an asymptote. It tips up at the end, whereas the last two smoothers tipped down.

0 10 20 30 40 50

0
20

60
10

0
14

0
b

o
n

e

lowess

age
0 10 20 30 40 50

0
20

60
10

0
14

0

b
o

n
e

loess

age

0 10 20 30 40 50

0
20

60
10

0
14

0
b

o
n

e

gam

age
0 10 20 30 40 50

0
20

60
10

0
14

0

b
o

n
e

cubic polynomial

age

GRAPHICS 211

Because it is a built-in function and does not require any external packages to be loaded, my
recommendation is for loess (top right); it is a reasonable fit, and is not over-curvaceous. You fit a
model, then use predict with a specified vector of values for the explanatory variable, then draw the curve
using lines.

5.5 Shape and size of the graphics window

The default graphics window is a square, measuring 7 inches by 7 inches (I know it should be metric, but it
is not). This is fine for most purposes, but it needs to be changed if you want to put two graphs side by side,
using par(mfrow=c(1,2)).

data <- read.table("c:\\temp\\pollute.txt",header=T)
attach(data)

If you use the default window the graphs will come out looking far too narrow:

par(mfrow=c(1,2))
plot(Population,Pollution)
plot(Temp,Pollution)

10
0

80
60

40
20

10
0

80
60

40
20

P
ol

lu
tio

n

P
ol

lu
tio

n

0 1000 2000 3000

Population
45 50 55 60 65 70 75

Temp

The simplest solution is to use the mouse to drag up the base of the graphics window until you obtain a
more pleasing shape. Alternatively, you can invoke the windows function, specifying first the width then

212 THE R BOOK

the height in inches. The best choice for this case is (7,4):

windows(7,4)
par(mfrow=c(1,2))
plot(Population,Pollution)
plot(Temp,Pollution)

10
0

80
60

40
20

10
0

80
60

40
20

P
ol

lu
tio

n

P
ol

lu
tio

n

0 1000 2000 3000

Population

45 50 55 60 65 70 75

Temp

5.6 Plotting with a categorical explanatory variable

When the explanatory variable is categorical rather than continuous, we cannot produce a scatterplot. Instead,
we choose between a barplot and a boxplot. I prefer box-and-whisker plots because they convey so much
more information, and this is the default plot in R with a categorical explanatory variable.

Categorical variables are factors with two or more levels (see p. 20). Our first example uses the factor
called month (with levels 1 to 12) to investigate weather patterns at Silwood Park:

weather <- read.table("c:\\temp\\SilwoodWeather.txt",header=T)
attach(weather)
names(weather)

[1] "upper" "lower" "rain" "month" "yr"

There is one bit of housekeeping we need to do before we can plot the data. We need to declare month to
be a factor. At the moment, R thinks it is just a number:

month <- factor(month)

Now we can plot using a categorical explanatory variable (month) and, because the first variable is a
factor, we get a boxplot rather than a scatterplot:

plot(month,upper)

Note that there are no axis labels in the default box-and-whisker plot, and to get informative labels we should
need to type:

plot(month,upper,ylab="daily maximum temperature",xlab="month")

GRAPHICS 213

30
20

10
0

1 2 3 4 5 6 7 8 9 10 11 12
month

da
ily

 m
ax

im
um

 te
m

pe
ra

tu
re

The boxplot summarizes a great deal of information very clearly. The horizontal line shows the median
upper daily temperature for each month. The bottom and top of the box show the 25th and 75th percentiles,
respectively (i.e. the location of the middle 50% of the data, also called the first and third quartiles). The
vertical dashed lines are called the ‘whiskers’. For the upper whisker, we see one of two things: either the
maximum value or, when there are outliers present, the largest data point that is less than 1.5 times the
interquartile range above the 75th percentile. The quantity ‘1.5 times the interquartile range of the data’ is
roughly 2 standard deviations, and the interquartile range is the difference in the response variable between
its first and third quartiles. Points more than 1.5 times the interquartile range above the third quartile and
points more than 1.5 times the interquartile range below the first quartile are defined as outliers and plotted
individually. Thus, when there are no outliers the whiskers simply show the maximum and minimum values
(as shown here only in month 12). Boxplots not only show the location and spread of data but also indicate
skewness (which shows up as asymmetry in the sizes of the upper and lower parts of the box). For example, in
February the range of lower temperatures was much greater than the range of higher temperatures. Boxplots
are also excellent for spotting errors in the data when the errors are represented by extreme outliers. Note that
the box-and-whisker plot is based entirely on the data points themselves; there are no estimated parameters
like means or standard deviations. The whiskers always end at data points, so the upper and lower whiskers
are typically asymmetric, even when there are outliers both above and below (e.g. in November).

5.6.1 Boxplots with notches to indicate significant differences

Boxplots are very good at showing the distribution of the data points around the median, but they are not
so good at indicating whether or not the median values are significantly different from one another. Tukey
invented notches to get the best of both worlds. The notches are drawn as a ‘waist’ on either side of the
median and are intended to give a rough impression of the significance of the differences between two medians.
Boxes in which the notches do not overlap are likely to prove to have significantly different medians under an
appropriate test. Boxes with overlapping notches probably do not have significantly different medians. The

214 THE R BOOK

size of the notch increases with the magnitude of the interquartile range and declines with the square root of
the replication, like this:

notch = ±1.58
IQR√

n
,

where IQR is the interquartile range and n is the replication per sample. Notches are based on assumptions
of asymptotic normality of the median and roughly equal sample sizes for the two medians being compared,
and are said to be rather insensitive to the underlying distributions of the samples. The idea is to give roughly
a 95% confidence interval for the difference in two medians, but the theory behind this is somewhat vague.

Here are the Silwood Weather data (above) with the option notches=TRUE:

30
20

10
0

1 2 3 4 5 6 7 8 9 10 11 12
month

da
ily

 m
ax

im
um

 te
m

pe
ra

tu
re

There is no significant difference in daily maximum temperature between July and August (the notches for
months 7 and 8 overlap completely), but maxima in September are significantly lower than in August. If the
boxes do not overlap (e.g. months 9 and 10) then the difference in their medians will be highly significant
under the appropriate test.

When the sample sizes are small and/or the within-sample variance is high, the notches are not drawn
as you might expect them (i.e. as a waist within the box). Instead, the notches are extended above the 75th
percentile and/or below the 25th percentile. This looks odd, but it is an intentional feature, supposed to act as
a warning of the likely invalidity of the test (see p. 217).

5.6.2 Barplots with error bars

Rather than use plot to produce a boxplot, an alternative is to use a barplot to show the heights of the
mean values from the different treatments. We need to begin by calculating the heights of the bars, typically
by using the function tapply to work out the mean values for each level of the categorical explanatory

GRAPHICS 215

variable. Data for this example come from an experiment on plant competition, with five factor levels in a
single categorical variable called clipping: a control (unclipped), two root clipping treatments (r5 and
r10) and two shoot clipping treatments (n25 and n50) in which the leaves of neighbouring plants were
reduced by 25% and 50%. The response variable is yield at maturity (a dry weight) called biomass.

trial <- read.table("c:\\temp\\compexpt.txt",header=T)
attach(trial)
names(trial)

[1] "biomass" "clipping"

First, calculate the heights of the bars using tapply to compute the five mean values:

means <- tapply(biomass,clipping,mean)

Then the barplot is produced very simply:

barplot(means,xlab="treatment",ylab="mean yield",col="green")

60
0

50
0

40
0

30
0

20
0

10
0

0

control
treatment

m
ea

n
yi

el
d

n25 n50 r10 r5

Unless we add error bars to such a barplot, the graphic gives no indication of the extent of the uncertainty
associated with each of the estimated treatment means, and hence is unsuitable for publication. There is no
built-in function for drawing error bars on barplots, but it easy to write a function to do this. One obvious
issue is that the y axis as drawn by the previous call to barplot is likely to be too short to accommodate
the error bar extending from the top of the tallest bar. Another issue is that it is not obvious where to centre
each of the error bars (i.e. the x coordinates of the middles of the bars).

The next decision to make is what kind of bar to draw. Many journals prefer plus or minus one standard
error of the mean. An old fashioned approach is to use plus or minus the 95% confidence interval of the
mean. Perhaps the most informative error bar is plus or minus one half of the least significant difference
between two means (because then non-overlapping bars indicates significant difference, and overlapping bars
indicates non-significance; see p. 515). On the assumption that you want to publish your work in Science or
Nature, we shall use plus or minus one standard error of the mean, because this is their error bar of choice.
First, work out the error variance from the ANOVA table of lm(y~x) where x is categorical. Now calculate

216 THE R BOOK

the replication per factor level, and use this to compute sem, the standard error of the mean. Work out the
mean values that will be represented by the heights of the bars using tapply. To scale the top of the y axis,
add the standard error to the largest of the means. Determine the labels for the bars from the factor levels of
the explanatory variable using nn <- as.character(levels(x)). Find the locations of the centres
of the bars along the x axis using xs <- barplot. Here is the function in full:

seBars <- function(x,y){
model <- lm(y~factor(x))
reps <- length(y)/length(levels(x))
sem <- summary(model)$sigma/sqrt(reps)
m <- as.vector(tapply(y,x,mean))
upper <- max(m)+sem
nn <- as.character(levels(x))
xs <- barplot(m,ylim=c(0,upper),names=nn,

ylab=deparse(substitute(y)),xlab=deparse(substitute(x)))

for (i in 1:length(xs)) {
arrows(xs[i],m[i]+sem,xs[i],m[i]-sem,angle=90,code=3,length=0.1) }

}
You run it like this, specifying the categorical variable first, then the continuous response variable:

seBars(clipping,biomass)

60
0

50
0

40
0

30
0

20
0

10
0

0

control

clipping

bi
om

as
s

n25 n50 r10 r5

For comparison, here are the box-and-whisker plots for the same data, without and with notches:

windows(7,4)
par(mfrow=c(1,2))
plot(clipping,biomass)
plot(clipping,biomass,notch=T)

GRAPHICS 217

65
0

70
0

60
0

50
0

40
0

55
0

45
0

control n50 r10 r5 control n50 r10 r5

illustrating the curious behaviour of the notches when the sample sizes are small.

5.6.3 Plots for multiple comparisons

When there are many levels of a categorical explanatory variable, we need to be cautious about the statistical
issues involved with multiple comparisons (see p. 531). Here we contrast two graphical techniques for
displaying multiple comparisons: boxplots with notches, and Tukey’s ‘honest significant difference’.

The data show the response of yield to a categorical variable (fact) with eight levels representing eight
different genotypes of seed (cultivars) used in the trial:

data <- read.table("c:\\temp\\box.txt",header=T)
attach(data)
names(data)

[1] "fact" "response"

plot(response~factor(fact),notch=TRUE)

15
10

5

1 2 3 4 5 6 7 8
factor(fact)

re
sp

on
se

218 THE R BOOK

Because the genotypes (factor levels) are unordered, it is hard to judge from the plot which levels might
be significantly different from which others. We start, therefore, by calculating an index which will rank the
mean values of response across the different factor levels:

index <- order(tapply(response,fact,mean))
ordered <- factor(rep(index,rep(20,8)))
boxplot(response~ordered,notch=T,names=as.character(index),
xlab="ranked treatments",ylab="response")

15
10

5

123 4 56 78
ranked treatments

re
sp

on
se

There are several points to clarify here. We plot the response as a function of the factor called ordered
(rather than fact) so that the boxes are ranked from lowest mean yield on the left (cultivar 6) to greatest
mean on the right (cultivar 5). We change the names of the boxes to reflect the values of index (i.e. the
original values of fact: otherwise they would read 1 to 8). Note that the vector called index is of length
8 (the number of boxes on the plot), but ordered is of length 160 (the number of values of response).
Looking at the notches, no two adjacent pairs of medians appear to be significantly different, but the median
of treatment 4 appears to be significantly greater than the median of treatment 6, and the median of treatment
5 appears to be significantly greater than the median of treatment 8 (but only just).

The statistical analysis of these data might involve user-specified contrasts (p. 434), once it is established
that there are significant differences to be explained. This we assess with a one-way analysis of variance to
test the hypothesis that at least one of the means is significantly different from the others (see p. 501):

model <- aov(response~factor(fact))
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
factor(fact) 7 925.7 132.24 17.48 <2e-16 ***
Residuals 152 1150.1 7.57

GRAPHICS 219

Indeed, there is compelling evidence (p<0.0001) for accepting that there are significant differences between
the mean yields of the eight different crop cultivars.

Alternatively, if you want to do multiple comparisons, then because there is no a priori way of
specifying contrasts between the eight treatments, you might use Tukey’s honest significant difference (see
p. 531):

plot(TukeyHSD(model))

2–
1

5–
1

8–
1

5–
2

8–
2

6–
3

5–
4

8–
4

8–
5

8–
7

95% family-wise confidence level

Differences in mean levels of factor(fact)

–10 –5 0 5

Comparisons having intervals that do not overlap the vertical dashed line are significantly different. The
vertical dashed line indicates no difference between the mean values for the factor-level comparisons indicated
on the y axis. Thus, we can say that the contrast between cultivars 8 and 7 (8–7) falls just short of significance
(despite the fact that their notches do not overlap; see above), but the comparisons 7–6 and 8–6 are both
significant (their boxes do not overlap, let alone their notches). The missing comparison labels on the y axis
of the HSD plot have to be inferred from a knowledge of the number of factor levels (8 in this example). So,
since 8 vs. 7 is labelled, the next one up must be 8–6 and the one above that is 7–6, then we find 8–5 labelled,
so it must be 7–5 above that and 6–5 above that, then 8–4 labelled, and so on.

5.6.4 Using colour palettes with categorical explanatory variables

You can create a vector of colours from a palette, then refer to the colours by their subscripts within the
palette. The key is to create the right number of colours for your needs. Here, we use the built-in heat.colors
to shade the temperature bars in Silwood Weather. We want the colours to grade from cold to hot then back

220 THE R BOOK

to cold again from January to December:

data <- read.table("c:\\temp\\silwoodweather.txt",header=T)
attach(data)
month <- factor(month)

season <- heat.colors(12)
temp <- c(11,10,8,5,3,1,2,3,5,8,10,11)
plot(month,upper,col=season[temp])

30
20

10
0

1 2 3 4 5 6 7 8 9 10 11 12

Colouring the other parts of the box-and-whisker plot is explained on p. 918.

5.7 Plots for single samples

When we have a just one variable, the choice of plots is more restricted:

� hist(y) histograms to show a frequency distribution

� plot(y) index plots to show the values of y in sequence

� plot.ts(y) time series plots

� pie(x) compositional plots like pie diagrams

5.7.1 Histograms and bar charts

A common mistake among beginners is to confuse histograms and bar charts. Histograms have the response
variable on the x axis, and the y axis shows the frequency (or the probability density) of different values of
the response. In contrast, a bar chart has the response variable on the y axis and a categorical explanatory
variable on the x axis.

GRAPHICS 221

Let us look at an example: the response variable is the growth rate of daphnia in different water qualities;
there are four different detergents and three different clones of daphnia.

data<-read.table("c:\\temp\\daphnia.txt",header=T)
attach(data)
names(data)

[1] "Growth.rate" "Water" "Detergent" "Daphnia"

The histogram shows the frequency with which each growth rate was observed over the experiment as a
whole. There are many different bar charts we could draw: here are the mean growth rates cross-classified by
clone and detergent:

par(mfrow=c(1,2))
hist(Growth.rate,seq(0,8,0.5),col="green",main="")
y <- as.vector(tapply(Growth.rate,list(Daphnia,Detergent),mean))
barplot(y,col="green",ylab="Growth rate",xlab="Treatment")

0
4

8
12

0 2 4 6 8
Growth.rate Treatment

G
ro

w
th

 r
at

e

Fr
eq

ue
nc

y

0
2

4

There is a superficial similarity between the two plots in that both have numerous green vertical bars. But
there the similarity ends. The histogram on the left has Growth.rate on the x axis, but the bar plot on
the right has Growth.rate on the y axis. The y axis on the histogram shows the count (frequency) of the
number of times that values from a given interval of growth rates were observed in the whole experiment. The
y axis on the bar plot shows the arithmetic mean growth rate for that particular experimental treatment. There
is no need to labour the point, but you must be absolutely sure that you understand the difference between a
histogram and a bar plot, and try not to refer to a bar chart as a histogram or vice versa.

5.7.2 Histograms

The divisions of the x axis into which the values of the response variable are distributed and then counted are
called bins. Histograms are profoundly tricky, because what you see depends on the subjective judgements of
where exactly to put the bin margins. Wide bins produce one picture, narrow bins produce a different picture,
unequal bins produce confusion.

par(mfrow=c(2,2))
hist(Growth.rate,seq(0,8,0.25),col="green",main="")
hist(Growth.rate,seq(0,8,0.5),col="green",main="")
hist(Growth.rate,seq(0,8,2),col="green",main="")
hist(Growth.rate,c(0,3,4,8),col="green",main="")

222 THE R BOOK

0
1

2
3

4
5

6
7

0 2 4 6 8 0 2 4 6 8

0
2

4
6

8
10

12
0 2 4 6 8 0 2 4 6 8

Growth.rate Growth.rate

Growth.rate Growth.rate

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

D
en

si
ty

Fr
eq

ue
nc

y

0
10

20
30

40

0.
00

0.
10

0.
20

0.
30

The bins are 0.25 units wide in the lop left-hand histrogram, 0.5 wide in the top right, 2.0 wide in the bottom
left, and there are three different widths (3, 1, then 4) in the bottom right. The narrower the bins, the lower
the peak frequencies (note that the y scale changes: 7, 12, 40). Small bins produce multimodality (top left),
broad bins unimodality (bottom right). When there are different bin widths (bottom right), the default in R is
for hist to convert the counts (frequencies) into densities (so that the total green area is 1.0).

The convention adopted in R for showing bin boundaries is to employ square and round brackets, so that
[a,b) means ‘greater than or equal to a but less than b’ [square then round), and (a,b] means ‘greater
than a but less than or equal to b’ (round then square]. The point is that it must be unequivocal which bin gets
a given number when that number falls exactly on a boundary between two bins. You need to take care that
the bins can accommodate both your minimum and maximum values.

The function cut takes a continuous vector and cuts it up into bins which you can then use for counting.
To show how it works, we shall use cut with the daphnia data to produce the density distribution shown
above in the bottom right. First, we create a vector of bin edges. To do this, we need to know the range of the
growth rates:

range(Growth.rate)

[1] 1.761603 6.918344

So a lower bound of 0 and an upper bound of 8 will encompass all of the data. We want edges at 3 and 4, so
the vector of bin edges is:

edges <- c(0,3,4,8)

The next bit is what can seem confusing at first. We create a new vector called bin which contains the names
of the bins (the factor levels) into which each value of growth rate will be placed. Obviously, this new vector

GRAPHICS 223

is the same length as Growth.rate. It is a factor with as many levels as there are bins (three in this case).
The names of the factor levels indicate the bin margins and the edge convention, indicated by round and
square brackets (0,3] in this default case:

bin <- cut(Growth.rate,edges)
bin

[1] (0,3] (0,3] (3,4] (0,3] (3,4] (4,8] (4,8] (3,4] (4,8] (0,3] (3,4]
[12] (0,3] (3,4] (4,8] (4,8] (4,8] (4,8] (4,8] (0,3] (3,4] (3,4] (3,4]
[23] (3,4] (3,4] (3,4] (4,8] (4,8] (0,3] (0,3] (3,4] (3,4] (4,8] (4,8]
[34] (0,3] (3,4] (4,8] (0,3] (0,3] (3,4] (3,4] (3,4] (4,8] (4,8] (4,8]
[45] (4,8] (3,4] (0,3] (3,4] (4,8] (4,8] (4,8] (3,4] (4,8] (4,8] (0,3]
[56] (3,4] (0,3] (4,8] (4,8] (4,8] (0,3] (3,4] (4,8] (0,3] (0,3] (0,3]
[67] (4,8] (4,8] (4,8] (0,3] (0,3] (0,3]
Levels: (0,3] (3,4] (4,8]

is.factor(bin)

[1] TRUE

As you can see, the default of the cut function is to produce bins with the round bracket on the left and the
square bracket on the right: (0,3] (3,4] and (4,8]. This is the option right = TRUE (the right-hand value
will be included in the bin (square bracket), and the left-hand value will appear in the next bin to the left,
if one exists). If you want to include the left-hand value in the bin and exclude the right-hand value (as you
might with a mapping study), then you need to specify the option right = FALSE in the cut function
(see the example on p. 842). Counting the number of cases in each bin could not be simpler:

table(bin)

bin
(0,3] (3,4] (4,8]

21 22 29

To get the heights of the bars for the density plot we need to allow for the areas of the rectangles. First, the
total of the counts,

sum(table(bin))

[1] 72

and the relative widths of the bins,

diff(edges)

[1] 3 1 4

(table(bin)/sum(table(bin)))/diff(edges)

bin
(0,3] (3,4] (4,8]

0.09722222 0.30555556 0.10069444

224 THE R BOOK

These are the heights of the three bars in the density plot (bottom right, above). They do not add to
1 because the bars are of different widths. It is the total area of the three bars that is 1 under this
convention.

5.7.3 Histograms of integers

Histograms are excellent for showing the mode, the spread and the symmetry (skew) of a set of data, but the
R function hist is deceptively simple. Here is a histogram of 1000 random integers drawn from a Poisson
distribution with a mean of 1.7. With the default ‘pretty’ scaling to produce eight bars, the histogram produces
a graphic that does not clearly distinguish between the zeros and the ones:

values <- rpois(1000,1.70)
hist(values,main="",xlab="random numbers from a Poisson with mean 1.7")

0
10

0
20

0
30

0
40

0
50

0

0 2 4 6 8
random numbers from a Poisson with mean 1.7

Fr
eq

ue
nc

y

With low-value integer data like this, it is much better to specify the bins explicitly, using the breaks
argument. The most sensible breaks for count data are –0.5 to + 0.5 to capture the zeros, 0.5 to 1.5 to capture
the 1s, and so on; breaks=(-0.5:8.5)generates such a sequence automatically. Now the histogram
makes clear that 1s are roughly twice as frequent as zeros:

hist(values,breaks=(-0.5:8.5),main="",
xlab="random numbers from a Poisson with mean 1.7")

GRAPHICS 225

0
10

0
50

15
0

20
0

25
0

30
0

0 2 4 6 8
random numbers from a Poisson with mean 1.7

Fr
eq

ue
nc

y

That’s more like it. Now we can see that the mode is 1 (not 0), and that 2s are substantially more frequent
than 0s. The distribution is said to be ‘skewed to the right’ (or ‘positively skewed’) because the long tail is on
the right-hand side of the histogram.

5.7.4 Overlaying histograms with smooth density functions

If it is in any way important, then you should always specify the break points yourself. Unless you do this,
the hist function may not take your advice about the number of bars or the width of bars. For small-integer
data (less than 20, say), the best plan is to have one bin for each value. You create the breaks by starting at
–0.5 to accommodate the zeros and going up to max(y) + 0.5 to accommodate the biggest count. Here are
158 random integers from a negative binomial distribution with µ = 1.5 and k = 1.0:

y <- rnbinom(158,mu=1.5,size=1)
bks <- -0.5:(max(y)+0.5)
hist(y,bks,main="")

To get the best fit of a density function for this histogram we should estimate the parameters of our particular
sample of negative binomially distributed counts:

mean(y)

[1] 1.772152

var(y)

[1] 4.228009

mean(y)ˆ2/(var(y)-mean(y))

[1] 1.278789

226 THE R BOOK

In R, the parameter k of the negative binomial distribution is known as size and the mean is known as mu.
We want to generate the probability density for each count between 0 and 11, for which the R function is
dnbinom:

xs <- 0:11
ys <- dnbinom(xs,size=1.2788,mu=1.772)
lines(xs,ys*158)

60
50

40
30

20
10

0

0 2 4
y

Fr
eq

ue
nc

y

6 8

Not surprisingly, since we generated the data, the negative binomial distribution is a very good description of
the frequency distribution. The frequency of 1s is a bit low and of 0s is a bit high, but the other frequencies
are very well described.

5.7.5 Density estimation for continuous variables

The problems associated with drawing histograms of continuous variables are much more challenging. The
subject of density estimation is an important issue for statisticians, and whole books have been written about
it (Silverman, 1986; Scott, 1992). You can get a feel for what is involved by browsing the ?density help
window. The algorithm used indensity.default disperses the mass of the empirical distribution function
over a regular grid of at least 512 points, uses the fast Fourier transform to convolve this approximation with
a discretized version of the kernel, and then uses linear approximation to evaluate the density at the specified
points. The choice of bandwidth is a compromise between smoothing enough to rub out insignificant bumps,
and smoothing too much so that real peaks are eliminated. The rule of thumb for bandwidth is

b = max(x) − min(x)

2(1 + log2 n)

GRAPHICS 227

(where n is the number of data points; for details see Venables and Ripley, 2002). We can compare hist
with Venables and Ripley’s truehist for the Old Faithful eruptions data:

library(MASS)
attach(faithful)

The rule of thumb for bandwidth gives:

(max(eruptions)-min(eruptions))/(2*(1+log(length(eruptions),base=2)))

[1] 0.192573

but this produces much too bumpy a fit. A bandwidth of 0.6 looks much better:

windows(7,4)
par(mfrow=c(1,2))
hist(eruptions,15,freq=FALSE,main="",col=27)
lines(density(eruptions,width=0.6,n=200))
truehist(eruptions,nbins=15,col=27)
lines(density(eruptions,n=200))

0.
0

0.
2

0.
4

0.
6

1.5 2.5 3.5 4.5 1.5 2.5 3.5 4.5

0.
0

0.
2

0.
4

0.
6

eruptions eruptions

D
en

si
ty

Note that although we asked for 15 bins, we actually got 18. Note also, that although both histograms have
18 bins, they differ substantially in the heights of several of the bars. The left hist has two peaks above
density = 0.5 while truehist on the right has three. There is a sub-peak in the trough of hist at about
3.5 but not of truehist. And so on. Such are the problems with histograms. Note, also, that the default
probability density curve (on the right) picks out the heights of the peaks and troughs much less well than
our bandwidth of 0.6 (on the left).

5.7.6 Index plots

The other plot that is useful for single samples is the index plot. Here, plot takes a single argument which
is a continuous variable and plots the values on the y axis, with the x coordinate determined by the position
of the number in the vector (its ‘index’, which is 1 for the first number, 2 for the second, and so on up to
length(y) for the last value). This kind of plot is especially useful for error checking. Here is a data set
that has not yet been quality checked, with an index plot of response$y:

response <- read.table("c:\\temp\\das.txt",header=T)
plot(response$y)

228 THE R BOOK

5
10

15
20

0 20 40 60 80 100
Index

re
sp

on
se

$y

The error stands out like a sore thumb. We should check whether this might have been a data entry error, such
as a decimal point in the wrong place. But which value is it, precisely, that is wrong? What is clear is that
it is the only point for which y > 15, so we can use the which function to find out its index (the subscript
within y):

which(response$y > 15)

[1] 50

We can then use this value as the subscript to see the precise value of the erroneous y:

response$y[50]

[1] 21.79386

Having checked in the lab notebook, it is obvious that this number should be 2.179 rather than 21.79, so we
replace the 50th value of y with the correct value:

response$y[50] <- 2.179386

Now we can repeat the index plot to see if there are any other obvious mistakes

plot(response$y)

That’s more like it.

5.7.7 Time series plots

When a time series is complete, the time series plot is straightforward, because it just amounts to joining
the dots in an ordered set of y values. The issues arise when there are missing values in the time series,
particularly groups of missing values for which periods we typically know nothing about the behaviour of the
time series.

GRAPHICS 229

There are two functions in R for plotting time series data: ts.plot and plot.ts. Here is ts.plot in
action, producing three time series on the same axes using different line types:

data(UKLungDeaths)
ts.plot(ldeaths, mdeaths, fdeaths, xlab="year", ylab="deaths", lty=c(1:3))

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

de
at

hs

1974 1975 1976 1977 1978 1979 1980
year

The upper, solid line shows total deaths, the heavier dashed line shows male deaths and the faint dotted line
shows female deaths. The difference between the sexes is clear, as is the pronounced seasonality, with deaths
peaking in midwinter.

The alternative function plot.ts works for plotting objects inheriting from class=ts (rather than
simple vectors of numbers in the case of ts.plot).

data(sunspots)
plot(sunspots)

230 THE R BOOK

0
50

10
0

15
0

20
0

25
0

1750 1800 1850 1900 1950
Time

su
ns

po
ts

The simple statement plot(sunspots) works because sunspots inherits from the time series class, and
has the dates for plotting on the x axis built into the object:

class(sunspots)

[1] "ts"

is.ts(sunspots)

[1] TRUE

str(sunspots)

Time-Series [1:2820] from 1749 to 1984: 58 62.6 70 55.7 85 83.5 94.8 ...

5.7.8 Pie charts

Statisticians do not like pie charts because they think that people should know what 50% looks like. Pie
charts, however, can sometimes be useful to illustrate the proportional make-up of a sample in presentations.
The function pie takes a vector of numbers, turns them into proportions, and divides up the circle on the
basis of those proportions. It is essential to use a label to indicate which pie segment is which. The label is
provided as a vector of character strings, here called data$names. Because there are blank spaces in some
of the names (‘oil shales’ and ‘methyl clathrates’) we cannot use read.table with a tab-delimited text file
to enter the data. Instead, we save the file called piedata as a comma-delimited file, with a ‘.csv’ extention,

GRAPHICS 231

and input the data to R using read.csv in place of read.table, like this:

data <- read.csv("c:\\temp\\piedata.csv")
data

names amounts
1 coal 4
2 oil 2
3 gas 1
4 oil shales 3
5 methyl clathrates 6

The pie chart is created like this:

pie(data$amounts,labels=as.character(data$names))

oil

coal
gas

oil shales

methyl clathrates

You can change the colours of the segments if you want to (p. 910).

5.7.9 The stripchart function

For sample sizes that are too small to use box-and-whisker plots, an alternative plotting method is to use the
stripchart function. The point of using stripchart is to look carefully at the location of individual
values within the small sample, and to compare values across cases. The stripchart plot can be specified
by a model formula y~factor and the strips can be specified to run vertically rather than horizontally. Here
is an example from the built-in OrchardSprays data set where the response variable is called decrease
and there is a single categorical variable called treatment (with eight levels A–H). Note the use of with
instead of attach:

data(OrchardSprays)
with(OrchardSprays,

stripchart(decrease ~ treatment,
ylab = "decrease", vertical = TRUE, log = "y"))

232 THE R BOOK

A B C D E F G H

2
5

10
20

50
10

0
de

cr
ea

se

This has the general layout of the box-and-whisker plot, but shows all the raw data values. Note the logarithmic
y axis, log = "y", and the vertical alignment of the eight strip charts.

5.7.10 A plot to test for normality

Here is a simple function that plots a data set and compares it to a plot of normally distributed data with the
same mean and standard deviation:

normal.plot <- function(y) {
s <- sd(y)
plot(c(0,3),c(min(0,mean(y)-s * 4*

qnorm(0.75)),max(y)),xaxt="n",xlab="",type="n",ylab="")
for your data's boxes and whiskers, centred at x = 1

top <- quantile(y,0.75)
bottom <- quantile(y,0.25)
w1u <- quantile(y,0.91)
w2u <- quantile(y,0.98)
w1d <- quantile(y,0.09)
w2d <- quantile(y,0.02)
rect(0.8,bottom,1.2,top)
lines(c(0.8,1.2),c(mean(y),mean(y)),lty=3)
lines(c(0.8,1.2),c(median(y),median(y)))
lines(c(1,1),c(top,w1u))
lines(c(0.9,1.1),c(w1u,w1u))
lines(c(1,1),c(w2u,w1u),lty=3)
lines(c(0.9,1.1),c(w2u,w2u),lty=3)

GRAPHICS 233

nou <- length(y[y>w2u])
points(rep(1,nou),jitter(y[y>w2u]))
lines(c(1,1),c(bottom,w1d))
lines(c(0.9,1.1),c(w1d,w1d))
lines(c(1,1),c(w2d,w1d),lty=3)
lines(c(0.9,1.1),c(w2d,w2d),lty=3)
nod <- length(y[y<w2d])
points(rep(1,nod),jitter(y[y<w2d]))

#for the normal box and whiskers, centred at x = 2

n75 <- mean(y)+ s * qnorm(0.75)
n25 <- mean(y)- s * qnorm(0.75)
n91 <- mean(y)+ s * 2* qnorm(0.75)
n98 <- mean(y)+ s * 3* qnorm(0.75)
n9 <- mean(y)- s * 2* qnorm(0.75)
n2 <- mean(y)- s * 3* qnorm(0.75)

rect(1.8,n25,2.2,n75)
lines(c(1.8,2.2),c(mean(y),mean(y)),lty=3)
lines(c(2,2),c(n75,n91))
lines(c(1.9,2.1),c(n91,n91))
lines(c(2,2),c(n98,n91),lty=3)
lines(c(1.9,2.1),c(n98,n98),lty=3)
lines(c(2,2),c(n25,n9))
lines(c(1.9,2.1),c(n9,n9))
lines(c(2,2),c(n9,n2),lty=3)
lines(c(1.9,2.1),c(n2,n2),lty=3)
lines(c(1.2,1.8),c(top,n75),lty=3,col="gray")
lines(c(1.1,1.9),c(w1u,n91),lty=3,col="gray")
lines(c(1.1,1.9),c(w2u,n98),lty=3,col="gray")
lines(c(1.2,1.8),c(bottom,n25),lty=3,col="gray")
lines(c(1.1,1.9),c(w1d,n9),lty=3,col="gray")
lines(c(1.1,1.9),c(w2d,n2),lty=3,col="gray")

label the two boxes

axis(1,c(1,2),c("data","normal")) }

The plots are like extended box-and-whisker plots, in that they show the median inside a box defined by the
25th and 75th percentiles, with solid whiskers running from the 9th percentile to the 91st percentile, and
dotted whiskers running to the 2nd and 98th percentiles. Outliers are defined as values outside the 2nd to the
98th percentiles and are plotted as open circles.

Here are our strongly non-normal test data:

y <- rnbinom(100,1,0.2)

Here is the test:

normal.plot(y)

234 THE R BOOK

–1
0

10
0

20
30

data normal

Our data (on the left) are non-normal in several obvious ways: the median is lower than the mean (the solid
line is below the horizontal dotted line inside the box), the 75th percentile is rather low (the top of the normal
box on the right is higher), and our data have two serious outliers (the open circles). Most obviously, however,
our data have no negative values, which normally distributed data with a mean and standard deviation as
specified would certainly be expected to have (the 9th and 2nd percentiles on the right-hand box are both well
below zero, but our minimum value was 0).

5.8 Plots with multiple variables

Initial data inspection using plots is even more important when there are many variables, any one of which
might contain mistakes or omissions. The principal plot functions when there are multiple variables are:

� pairs for a matrix of scatterplots of every variable against every other;

� coplot for conditioning plots where y is plotted against x for different values of z;

� xyplot where a set of panel plots is produced.

We illustrate these functions with the ozone data.

5.8.1 The pairs function

With two or more continuous explanatory variables (i.e. in a multiple regression; see p. 395) it is valuable to
be able to check for subtle dependencies between the explanatory variables. The pairs function plots every
variable in the dataframe on the y axis against every other variable on the x axis: you will see at once what
this means from the following example:

GRAPHICS 235

ozonedata <- read.table("c:\\temp\\ozone.data.txt",header=T)
attach(ozonedata)
names(ozonedata)

[1] "rad" "temp" "wind" "ozone"

The pairs function needs only the name of the whole dataframe as its first argument. We exercise the option
to add a non-parametric smoother to the scatterplots:

pairs(ozonedata,panel=panel.smooth)

60 70 80 90 0 50 100 150

0
50

10
0

15
0

0
50

15
0

25
0

0 50 150 250

60
70

80
90

5 10 15 20

5
10

15
20

rad

temp

wind

ozone

The response variables are named in the rows and the explanatory variables are named in the columns. Thus,
in the upper row, labelled rad, the response variable (on the y axis) is solar radiation. In the bottom row the
response variable, ozone, is on the y axis of all three panels. There appears to be a strong negative non-linear
relationship between ozone and wind speed, a positive non-linear relationship between air temperature and
ozone (middle panel in the bottom row) and an indistinct, perhaps humped, relationship between ozone and
solar radiation (left-most panel in the bottom row). As to the explanatory variables, there appears to be a
negative correlation between wind speed and temperature.

236 THE R BOOK

5.8.2 The coplot function

A real difficulty with multivariate data is that the relationship between two variables may be obscured by the
effects of other processes. When you draw a two-dimensional plot of y against x, then all of the effects of the
other explanatory variables are squashed flat onto the plane of the paper. In the simplest case, we have one
response variable (ozone) and just two explanatory variables (wind speed and air temperature). The function
is written like this:

coplot(ozone~wind|temp,panel = panel.smooth)

Given : temp

wind

o
zo

n
e

60 70 80 90

5

15
0

15
0

10
0

50
0

10
0

50
0

5 10 15 20

10 15 25 2015105

We have the response (ozone) on the left of the tilde and the explanatory variable on the x axis (wind) on
the right, with the conditioning variable after the conditioning operator | (here read as ‘given temp’). An
option employed here is to fit a non-parametric smoother through the scatterplot to emphasize the contrasting
trends in each of the panels.

The coplot panels are ordered from lower left to upper right, associated with the values of the condi-
tioning variable in the upper panel (temp) from left to right. Thus, the lower left-hand plot is for the lowest
temperatures (56–72◦F) and the upper right plot is for the highest temperatures (82–96◦F). This coplot

GRAPHICS 237

highlights an interesting interaction. At the two lowest levels of the conditioning variable, temp, there is
little or no relationship between ozone concentration and wind speed, but in the four remaining panels (at
higher temperatures) there is a distinct negative relationship between wind speed and ozone. The hard thing
to understand about coplot involves the ‘shingles’ that are shown in the upper margin (given temp in
this case). The overlap between the shingles is intended to show how much overlap there is between one
panel and the next in terms of the data points they have in common. In this default configuration, half of the
data in a panel is shared with the panel to the left, and half of the data is shared with the panel to the right
(overlap = 0.5). You can alter the shingle as far as the other extreme, when all the data points in a panel
are unique to that panel (there is no overlap between adjacent shingles; overlap = -0.05).

5.8.3 Interaction plots

These are useful when the response to one factor depends upon the level of another factor. They are a
particularly effective graphical means of interpreting the results of factorial experiments (p. 516). Here is an
experiment with grain yields in response to irrigation and fertilizer application:

yields <- read.table("c:\\temp\\splityield.txt",header=T)
attach(yields)
names(yields)

[1] "yield" "block" "irrigation" "density" "fertilizer"

The interaction plot has a rather curious syntax, because the response variable (yield) comes last in
the list of arguments. The factor listed first forms the x axis of the plot (three levels of fertilizer), and
the factor listed second produces the family of lines (two levels of irrigation). The lines join the mean
values of the response for each combination of factor levels:

interaction.plot(fertilizer,irrigation,yield)

12
0

11
5

11
0

10
5

10
0

95
90

N NP P

fertilizer

m
ea

n
of

 y
ie

ld

irrigation

irrigated
control

238 THE R BOOK

The interaction plot shows that the mean response to fertilizer depends upon the level of irrigation, as
evidenced by the fact that the lines are not parallel.

5.9 Special plots

5.9.1 Design plots

An effective way of visualizing effect sizes in designed experiments is the plot.design function which
is used just like a model formula:

plot.design(Growth.rate~Water*Detergent*Daphnia)

4.
5

4.
0

3.
5

3.
0

Wear BrandB
BrandC
BrandA

BrandD

Clone3

Clone1

Water Detergent Daphnia
Factors

Clone2

Tyne

m
ea

n
of

 G
ro

w
th

.r
at

e

This shows the main effects of the three factors, drawing attention to the major differences between the
daphnia clones and the small differences between the detergent brands A, B and C. The default (as here)
is to plot means, but other functions can be specified such as median, var or sd. Alternatively, you can
supply your own anonymous function. Here, for instance, are the standard errors for the different factor
levels:

plot.design(Growth.rate~Water*Detergent*Daphnia,
fun=function(x) sqrt(var(x)/3))

GRAPHICS 239

0.
9

0.
8

0.
7

0.
6

fu
nc

tio
n(

x)
 s

qr
t(

va
r(

x)
/3

)
of

 G
ro

w
th

.r
at

e

0.
5

0.
4

Wear
BrandD

BrandC

BrandA

BrandB

Clone2

Clone1

Water Detergent

Factors

Daphnia

Tyne

5.9.2 Bubble plots

The bubble plot is useful for illustrating variation in a third variable across different locations in the x–y plane.
Here is a simple function for drawing bubble plots (see also p. 940):

bubble.plot <- function(xv,yv,rv,bs=0.1){
r <- rv/max(rv)
yscale <- max(yv)-min(yv)
xscale <- max(xv)-min(xv)
plot(xv,yv,type="n", xlab=deparse(substitute(xv)),

ylab=deparse(substitute(yv)))
for (i in 1:length(xv)) bubble(xv[i],yv[i],r[i],bs,xscale,yscale) }
bubble <- function (x,y,r,bubble.size,xscale,yscale) {

theta <- seq(0,2*pi,pi/200)
yv <- r*sin(theta)*bubble.size*yscale
xv <- r*cos(theta)* bubble.size*xscale
lines(x+xv,y+yv) }

The example data are on grass yields at different combinations of biomass and soil pH:

ddd <- read.table("c:\\temp\\pgr.txt",header=T)
attach(ddd)
names(ddd)
[1] "FR" "hay" "pH"
bubble.plot(hay,pH,FR)

240 THE R BOOK

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

2 3 4 5 6
hay

pH

7 8 9

In the vicinity of hay = 6 and pH = 6 Festuca rubra shows one very high value, four intermediate values,
two low values and one very low value. Evidently, hay crop and soil pH are not the only factors determining
the abundance of F. rubra in this experiment.

5.9.3 Plots with many identical values

Sometimes, especially with count data, it happens that two or more points fall in exactly the same location in
a scatterplot. In such a case, the repeated values of y are hidden, one buried beneath the other, and you might
want to indicate the number of cases represented at each point on the scatterplot.

numbers <- read.table("c:\\temp\\longdata.txt",header=T)
attach(numbers)
names(numbers)
[1] "xlong" "ylong"

The first option is to ‘jitter’ the points within the plot function. This means to increase or decrease their
x and/or y coordinates by a small random amount until each data point shows separately:

plot(jitter(xlong,amount=1),jitter(ylong,amount=1),xlab="input",ylab="count")

GRAPHICS 241

65
60

55
50

45
40

35

0 10 20
input

co
un

t

30 40 50

You need to experiment with the amount argument to get the degree of scatter you require (this specifies the
limit on the x or y axis of the amount of jitter on either side of the actual value).

An alternative function is called sunflowerplot, so called because it produces one ‘petal’ of a flower
for each value of y (if there is more than one) that is located at that particular point. Here it is in action:

sunflowerplot(xlong,ylong)

65
60

55
50

45
40

35

0 10 20 30 40 50
xlong

yl
on

g

242 THE R BOOK

As you can see, the replication at each point increases as x increases from 1 on the left to 50 on the right. The
petals stop being particularly informative once there are more than about 20 of them (about half way along
the x axis). Single values (as on the extreme left) are shown without any petals, while two points in the same
place have two petals. As an option, you can specify two vectors containing the unique values of x and y with
a third vector containing the frequency of each combination (the number of repeats of each value).

5.10 Saving graphics to file

For publication-quality graphics, you are likely to want to save each of your plots as a PDF or PostScript file.
You do this simply by specifying the ‘device’ before you start plotting, then turning the device off once you
have finished. The default device is your computer screen, and you can obtain a rough and ready copy of the
graph (press Ctrl + C) which you can then paste into a document outside R (press Ctrl + V).

data <- read.table("c:\\temp\\pollute.txt",header=T)
attach(data)

You are most likely to want to save to a PDF file. Here is how you do so:

pdf("c:\\temp\\pollution.pdf",width=7,height=4)
par(mfrow=c(1,2))
plot(Population,Pollution)
plot(Temp,Pollution)
dev.off()

Here is how you save to a PostScript file:

postscript("c:\\temp\\pollution.ps",width=7,height=4)
par(mfrow=c(1,2))
plot(Population,Pollution)
plot(Temp,Pollution)
dev.off()

There are numerous options for the pdf and postscript functions, but width and height are the ones
you are likely to want to change most often. The sizes are in inches. You can specify any non-default
arguments that you want to change (width, height, onefile, family, title, fonts,
paper, encoding, pointsize, bg, fg, pagecentre, useDingbats, colormodel,
fillOddEven and compress) using the functions pdf.options(..., reset = FALSE) and
ps.options(..., reset = FALSE) before you invoke either pdf or postscript. The logical
option reset = TRUE resets all the options to their default, ‘factory-fresh’ values. Don’t forget to set
dev.off() once you have finished.

5.11 Summary

It is worth restating the really important things about plotting.

� Plots: plot(x,y) gives a scatterplot if x is continuous, and a box-and-whisker plot if x is a factor. Some
people prefer the alternative syntax plot(y~x) using ‘tilde’ as in a model formula; one advantage is
that this has a subset option.

GRAPHICS 243

� Type of plot: Options include lines type="l" or null (axes only) type="n".

� Lines: lines(x,y) plots a smooth function of y against x using the x and y values provided. You
might prefer lines(y~x).

� Line types: Useful dotted or dashed lines; lty=2 (an option in plot or lines).

� Points: points(x,y) adds another set of data points to a plot. You might prefer points(y~x).

� Plotting characters for different data sets: pch=16 or pch="*" (an option in points or plot).

� Axes: setting non-default limits to the x or y axis scales uses xlim=c(0,25) and/or ylim=c(0,1) as
an option in plot.

� Labels: use xlab and ylab to label the x and y axes.

� Scales: use ylim and xlim to control the top and bottom values on your axes.

6
Tables

The alternative to using graphics is to summarize your data in tabular form. Broadly speaking, if you want
to convey detail use a table, and if you want to show effects then use graphics. You are more likely to want
to use a table to summarize data when your explanatory variables are categorical (such as people’s names,
or different commodities) than when they are continuous (in which case a scatterplot is likely to be more
informative; see p. 189).

There are two very important functions that you need to distinguish:

� table for counting things;

� tapply for averaging things, and applying other functions across factor levels.

6.1 Tables of counts

The table function is perhaps the most useful of all the simple vector functions, because it does so much
work behind the scenes. We have a vector of objects (they could be numbers or character strings) and we
want to know how many of each is present in the vector. Here are 1000 integers from a Poisson distribution
with mean 0.6:

counts<-rpois(1000,0.6)

We want to count up all of the zeros, ones, twos, and so on. A big task, but here is the table function in
action:

table(counts)

counts
0 1 2 3 4 5

539 325 110 24 1 1

There were 539 zeros, 325 ones, 110 twos, 24 threes, 1 four, 1 five and nothing larger than 5. That is a lot of
work (imagine tallying them for yourself). The function works for characters as well as for numbers, and for

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

TABLES 245

multiple classifying variables:

infections<-read.table("c:\\temp\\disease.txt",header=T)
attach(infections)
head(infections)

status gender
1 clear male
2 clear male
3 clear male
4 clear male
5 clear male
6 clear male

and so on for 1000 rows. You want to know how many males and females were infected and how many were
clear of infection:

table(status,gender)

gender
status females male
clear 284 515
infected 53 68

If you want the genders as the rows rather than the columns, then put gender first in the argument list to
table:

table(gender,status)

status
gender clear infected
females 284 53
male 515 68

The table function is likely to be one of the R functions you use most often in your own work.

6.2 Summary tables

The most important function in R for generating summary tables is the somewhat obscurely named tapply
function. It is called tapply because it applies a named function (such as mean or variance) across specified
margins (factor levels) to create a table. If you have used the PivotTable function in Excel you will be familiar
with the concept.

Here is tapply in action:

data<-read.table("c:\\temp\\Daphnia.txt",header=T)
attach(data)
names(data)

[1] "Growth.rate" "Water" "Detergent" "Daphnia"

The response variable is growth rate of the animals, and there are three categorical explanatory variables:
the river from which the water was sampled, the kind of detergent experimentally added, and the clone of

246 THE R BOOK

daphnia employed in the experiment. In the simplest case we might want to tabulate the mean growth rates
for the four brands of detergent tested,

tapply(Growth.rate,Detergent,mean)

BrandA BrandB BrandC BrandD
3.884832 4.010044 3.954512 3.558231

or for the two rivers,

tapply(Growth.rate,Water,mean)

Tyne Wear
3.685862 4.017948

or for the three daphnia clones,

tapply(Growth.rate,Daphnia,mean)

Clone1 Clone2 Clone3
2.839875 4.577121 4.138719

Two-dimensional summary tables are created by replacing the single explanatory variable (the second
argument in the function call) by a list indicating which variable is to be used for the rows of the summary
table and which variable is to be used for creating the columns of the summary table. To get the daphnia
clones as the rows and detergents as the columns, we write list(Daphnia,Detergent) – rows first
then columns – and use tapply to create the summary table as follows:

tapply(Growth.rate,list(Daphnia,Detergent),mean)

BrandA BrandB BrandC BrandD
Clone1 2.732227 2.929140 3.071335 2.626797
Clone2 3.919002 4.402931 4.772805 5.213745
Clone3 5.003268 4.698062 4.019397 2.834151

If we wanted the median values (rather than the means), then we would just alter the third argument of the
tapply function like this:

tapply(Growth.rate,list(Daphnia,Detergent),median)

BrandA BrandB BrandC BrandD
Clone1 2.705995 3.012495 3.073964 2.503468
Clone2 3.924411 4.282181 4.612801 5.416785
Clone3 5.057594 4.627812 4.040108 2.573003

To obtain a table of the standard errors of the means (where each mean is based on six numbers: two
replicates and three rivers) the function we want to apply is

√
s2/n. There is no built-in function for the

standard error of a mean, so we create what is known as an anonymous function inside the tapply function
with function(x)sqrt(var(x)/length(x)) like this:

tapply(Growth.rate,list(Daphnia,Detergent), function(x) sqrt(var(x)/length(x)))

BrandA BrandB BrandC BrandD
Clone1 0.2163448 0.2319320 0.3055929 0.1905771
Clone2 0.4702855 0.3639819 0.5773096 0.5520220
Clone3 0.2688604 0.2683660 0.5395750 0.4260212

TABLES 247

When tapply is asked to produce a three-dimensional table, it produces a stack of two-dimensional
tables, the number of stacked tables being determined by the number of levels of the categorical variable that
comes third in the list (Water in this case):

tapply(Growth.rate,list(Daphnia,Detergent,Water),mean)

, , Tyne

BrandA BrandB BrandC BrandD
Clone1 2.811265 2.775903 3.287529 2.597192
Clone2 3.307634 4.191188 3.620532 4.105651
Clone3 4.866524 4.766258 4.534902 3.365766

, , Wear

BrandA BrandB BrandC BrandD
Clone1 2.653189 3.082377 2.855142 2.656403
Clone2 4.530371 4.614673 5.925078 6.321838
Clone3 5.140011 4.629867 3.503892 2.302537

In cases like this, the function ftable (which stands for ‘flat table’) often produces more pleasing output:

ftable(tapply(Growth.rate,list(Daphnia,Detergent,Water),mean))

Tyne Wear

Clone1 BrandA 2.811265 2.653189
BrandB 2.775903 3.082377
BrandC 3.287529 2.855142
BrandD 2.597192 2.656403

Clone2 BrandA 3.307634 4.530371
BrandB 4.191188 4.614673
BrandC 3.620532 5.925078
BrandD 4.105651 6.321838

Clone3 BrandA 4.866524 5.140011
BrandB 4.766258 4.629867
BrandC 4.534902 3.503892
BrandD 3.365766 2.302537

Notice that the order of the rows, columns or tables is determined by the alphabetical sequence of the factor
levels (e.g. Tyne comes before Wear in the alphabet). If you want to override this, you must specify that the
factor levels are ordered in a non-standard way:

water<-factor(Water,levels=c("Wear","Tyne"))

Now the summary statistics for the Wear appear in the left-hand column of output:

ftable(tapply(Growth.rate,list(Daphnia,Detergent,water),mean))

Wear Tyne

Clone1 BrandA 2.653189 2.811265
BrandB 3.082377 2.775903
BrandC 2.855142 3.287529
BrandD 2.656403 2.597192

248 THE R BOOK

Clone2 BrandA 4.530371 3.307634
BrandB 4.614673 4.191188
BrandC 5.925078 3.620532
BrandD 6.321838 4.105651

Clone3 BrandA 5.140011 4.866524
BrandB 4.629867 4.766258
BrandC 3.503892 4.534902
BrandD 2.302537 3.365766

The function to be applied in generating the table can be supplied with extra arguments:

tapply(Growth.rate,Detergent,mean,trim=0.1)

BrandA BrandB BrandC BrandD
3.874869 4.019206 3.890448 3.482322

The trim argument is part of the mean function, specifying the fraction (between 0 and 0.5) of the
observations to be trimmed from each end of the sorted vector of values before the mean is computed. Values
of trim outside that range are taken as the nearest endpoint.

An extra argument is essential if you want means when there are missing values:

tapply(Growth.rate,Detergent,mean,na.rm=T)

Without the argument specifying that you want to average over the non-missing values (na.rm=T means ‘it
is true that I want to remove the missing values’) , the mean function will simply fail, producing NA as the
answer.

You can use tapply to create new, abbreviated dataframes comprising summary parameters estimated
from larger dataframe. Here, for instance, we want a dataframe of mean growth rate classified by detergent
and daphina clone (i.e. averaged over river water and replicates). The trick is to convert the factors to numbers
before using tapply, then use these numbers to extract the relevant levels from the original factors:

dets <- as.vector(tapply(as.numeric(Detergent),list(Detergent,Daphnia),mean))
levels(Detergent)[dets]

[1] "BrandA" "BrandB" "BrandC" "BrandD" "BrandA" "BrandB" "BrandC" "BrandD"
[9] "BrandA" "BrandB" "BrandC" "BrandD"

clones<-as.vector(tapply(as.numeric(Daphnia),list(Detergent,Daphnia),mean))
levels(Daphnia)[clones]

[1] "Clone1" "Clone1" "Clone1" "Clone1" "Clone2" "Clone2" "Clone2" "Clone2"
[9] "Clone3" "Clone3" "Clone3" "Clone3"

You will see that these vectors of factor levels are the correct length for the new reduced dataframe (12, rather
than the original length 72). The 12 mean values that will form our response variable in the new, reduced
dataframe are given by:

tapply(Growth.rate,list(Detergent,Daphnia),mean)

Clone1 Clone2 Clone3
BrandA 2.732227 3.919002 5.003268
BrandB 2.929140 4.402931 4.698062
BrandC 3.071335 4.772805 4.019397
BrandD 2.626797 5.213745 2.834151

TABLES 249

These can now be converted into a vector calledmeans, and the three new vectors combined into a dataframe:

means <- as.vector(tapply(Growth.rate,list(Detergent,Daphnia),mean))
detergent <- levels(Detergent)[dets]
daphnia <- levels(Daphnia)[clones]
data.frame(means,detergent,daphnia)

means detergent daphnia
1 2.732227 BrandA Clone1
2 2.929140 BrandB Clone1
3 3.071335 BrandC Clone1
4 2.626797 BrandD Clone1
5 3.919002 BrandA Clone2
6 4.402931 BrandB Clone2
7 4.772805 BrandC Clone2
8 5.213745 BrandD Clone2
9 5.003268 BrandA Clone3
10 4.698062 BrandB Clone3
11 4.019397 BrandC Clone3
12 2.834151 BrandD Clone3

The same result can be obtained using the as.data.frame.table function:

as.data.frame.table(tapply(Growth.rate,list(Detergent,Daphnia),mean))

Var1 Var2 Freq
1 BrandA Clone1 2.732227
2 BrandB Clone1 2.929140
3 BrandC Clone1 3.071335
4 BrandD Clone1 2.626797
5 BrandA Clone2 3.919002
6 BrandB Clone2 4.402931
7 BrandC Clone2 4.772805
8 BrandD Clone2 5.213745
9 BrandA Clone3 5.003268
10 BrandB Clone3 4.698062
11 BrandC Clone3 4.019397
12 BrandD Clone3 2.834151

but you need to edit the variable names like this:

new<-as.data.frame.table(tapply(Growth.rate,list(Detergent,Daphnia),mean))
names(new)<-c("detergents","daphina","means")
head(new)

detergents daphina means
1 BrandA Clone1 2.732227
2 BrandB Clone1 2.929140
3 BrandC Clone1 3.071335
4 BrandD Clone1 2.626797
5 BrandA Clone2 3.919002
6 BrandB Clone2 4.402931

250 THE R BOOK

6.3 Expanding a table into a dataframe

For the purposes of model-fitting, we often want to expand a table of explanatory variables to create a
dataframe with as many repeated rows as specified by a count. Here are the data:

count.table<-read.table("c:\\temp\\tabledata.txt",header=T)
attach(count.table)
head(count.table)

count sex age condition
1 12 male young healthy
2 7 male old healthy
3 9 female young healthy
4 8 female old healthy
5 6 male young parasitized
6 7 male old parasitized

The idea is to create a new dataframe with a separate row for each case. That is to say, we want 12 copies of
the first row (for healthy young males), seven copies of the second row (for healthy old males), and so on.
The trick is to use lapply to apply the repeat function rep to each variable in count.table such that
each row is repeated by the number of times specified in the vector called count:

lapply(count.table,function(x)rep(x, count.table$count))

$count
[1] 12 12 12 12 12 12 12 12 12 12 12 12 7 7 7 7 7 7 7 9
[21] 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 6 6 6 6
[41] 6 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 5 5 5
[61] 5 5

$sex
[1] male male male male male male male male male male
[11] male male male male male male male male male female
[21] female female female female female female female female female female
[31] female female female female female female male male male male
[41] male male male male male male male male male female
[51] female female female female female female female female female female
[61] female female

Levels: female male

$age
[1] young young young young young young young young young young
[11] young young old old old old old old old young
[21] young young young young young young young young old old
[31] old old old old old old young young young young
[41] young young old old old old old old old young
[51] young young young young young young young old old old
[61] old old

Levels: old young

TABLES 251

$condition
[1] healthy healthy healthy healthy healthy healthy healthy
[8] healthy healthy healthy healthy healthy healthy healthy
[15] healthy healthy healthy healthy healthy healthy
[21] healthy healthy healthy healthy healthy healthy healthy
[28] healthy healthy healthy healthy healthy healthy healthy
[35] healthy healthy parasitized parasitized parasitized parasitized
[41] parasitized parasitized parasitized parasitized parasitized parasitized
[47] parasitized parasitized parasitized parasitized parasitized parasitized
[53] parasitized parasitized parasitized parasitized parasitized parasitized
[59] parasitized parasitized parasitized parasitized

Levels: healthy parasitized

Then we convert this object from a list to a data.frame using as.data.frame like this:

dbtable<-as.data.frame(lapply(count.table,
function(x) rep(x, count.table$count)))

head(dbtable)

count sex age condition
1 12 male young healthy
2 12 male young healthy
3 12 male young healthy
4 12 male young healthy
5 12 male young healthy
6 12 male young healthy

To tidy up, we probably want to remove the redundant vector of counts:

dbtable<-dbtable[,-1]
head(dbtable)

sex age condition
1 male young healthy
2 male young healthy
3 male young healthy
4 male young healthy
5 male young healthy
6 male young healthy

tail(dbtable)

sex age condition
57 female young parasitized
58 female old parasitized
59 female old parasitized
60 female old parasitized
61 female old parasitized
62 female old parasitized

Now we can use the contents of dbtable as explanatory variables in modelling other responses of each of
the 62 cases (e.g. the animals’ body weights). The alternative is to produce a long vector of row numbers

252 THE R BOOK

and use this as a subscript on the rows of the short dataframe to turn it into a long dataframe with the same
column structure (this is illustrated on p. 255).

6.4 Converting from a dataframe to a table

The reverse procedure of creating a table from a dataframe is much more straightforward, and involves
nothing more than the table function:

table(dbtable)

, ,condition = healthy
Age

sex old young
female 8 9
male 7 12

, ,condition = parasitized
Age

sex old young
female 5 8
male 7 6

You might want this tabulated object itself to be another dataframe, in which case use:

as.data.frame(table(dbtable))

sex age condition Freq
1 female old healthy 8
2 male old healthy 7
3 female young healthy 9
4 male young healthy 12
5 female old parasitized 5
6 male old parasitized 7
7 female young parasitized 8
8 male young parasitized 6

You will see that R has invented the variable name Freq for the counts of the various contingencies. To
change this to ‘count’ use names with the appropriate subscript [4]:

frame<-as.data.frame(table(dbtable))
names(frame)[4]<-"count"
frame

sex age condition count
1 female old healthy 8
2 male old healthy 7
3 female young healthy 9
4 male young healthy 12
5 female old parasitized 5
6 male old parasitized 7
7 female young parasitized 8
8 male young parasitized 6

TABLES 253

6.5 Calculating tables of proportions with prop.table

The margins of a table (the row totals or the column totals) are often useful for calculating proportions
instead of counts. Here is a data matrix called counts:

counts<-matrix(c(2,2,4,3,1,4,2,0,1,5,3,3),nrow=4)
counts

[,1] [,2] [,3]
[1,] 2 1 1
[2,] 2 4 5
[3,] 4 2 3
[4,] 3 0 3

The proportions will be different when they are expressed as a fraction of the row totals or of the column
totals. To find the proportions we use prop.table(counts,margin). You need to remember that the
row subscripts come first, which is why margin=1 refers to the row totals:

prop.table(counts,1)

[,1] [,2] [,3]
[1,] 0.5000000 0.2500000 0.2500000
[2,] 0.1818182 0.3636364 0.4545455
[3,] 0.4444444 0.2222222 0.3333333
[4,] 0.5000000 0.0000000 0.5000000

Use margin=2 to express the counts as proportions of the relevant column total:

prop.table(counts,2)

[,1] [,2] [,3]
[1,] 0.1818182 0.1428571 0.08333333
[2,] 0.1818182 0.5714286 0.41666667
[3,] 0.3636364 0.2857143 0.25000000
[4,] 0.2727273 0.0000000 0.25000000

To check that the column proportions sum to 1, use colSums like this:

colSums(prop.table(counts,2))

[1] 1 1 1

If you want the proportions expressed as a fraction of the grand total sum(counts), then simply omit the
margin number:

prop.table(counts)

[,1] [,2] [,3]
[1,] 0.06666667 0.03333333 0.03333333
[2,] 0.06666667 0.13333333 0.16666667
[3,] 0.13333333 0.06666667 0.10000000
[4,] 0.10000000 0.00000000 0.10000000

sum(prop.table(counts))

[1] 1

254 THE R BOOK

In any particular case, you need to think carefully whether it makes sense to express your counts as proportions
of the row totals, the column totals or the grand total.

6.6 The scale function

For a numeric matrix, you might want to scale the values within a column so that they have a mean of 0.
You might also want to know the standard deviation of the values within each column. These two actions are
carried out simultaneously with the scale function:

scale(counts)

[,1] [,2] [,3]
[1,] -0.7833495 -0.439155 -1.224745
[2,] -0.7833495 1.317465 1.224745
[3,] 1.3055824 0.146385 0.000000
[4,] 0.2611165 -1.024695 0.000000

attr(,"scaled:center")
[1] 2.75 1.75 3.00
attr(,"scaled:scale")
[1] 0.9574271 1.7078251 1.6329932

The values in the table are the counts minus the column means of the counts. The means of the columns
attr(,"scaled:center") are 2.75, 1.75 and 3.0, while the standard deviations of the columns
attr(,"scaled:scale") are 0.96, 1.71 and 1.63. To check that the scales are the standard devia-
tions (sd) of the counts within a column, you could use apply to the columns (margin = 2) like this:

apply(counts,2,sd)

[1] 0.9574271 1.7078251 1.6329932

6.7 The expand.grid function

This is a useful function for generating tables from factorial combinations of factor levels. Suppose we have
three variables: height with five levels between 60 and 80 in steps of 5, weight with five levels between
100 and 300 in steps of 50, and two sexes. Then:

expand.grid(height = seq(60, 80, 5), weight = seq(100, 300, 50),
sex = c("Male","Female"))

height weight sex
1 60 100 Male
2 65 100 Male
3 70 100 Male
4 75 100 Male
5 80 100 Male

...
48 70 300 Female
49 75 300 Female
50 80 300 Female

TABLES 255

6.8 The model.matrix function

Creating tables of dummy variables for use in statistical modelling is extremely easy with the
model.matrix function. You will see what the function does with a simple example. Suppose that our
dataframe contains a factor called parasite indicating the identity of a gut parasite; this variable has five
levels: vulgaris, kochii, splendens, viridis and knowlesii. Note that there was no header row in the data file,
so the variable name parasite had to be added subsequently, using names:

data<-read.table("c:\\temp\\parasites.txt")
names(data)<-"parasite"
attach(data)
head(data)

parasite
1 vulgaris
2 splendens
3 knowlesii
4 vulgaris
5 knowlesii
6 viridis

levels(parasite)

[1] "knowlesii" "kochii" "splendens" "viridis" "vulgaris"

In our modelling we want to create a two-level dummy variable (present or absent) for each parasite species
(in five extra columns), so that we can ask questions such as whether the mean value of the response
variable is significantly different in cases where each parasite was present and when it was absent. So for
the first row of the dataframe, we want vulgaris = TRUE, knowlesii=FALSE, kochii=FALSE,
splendens=FALSE and viridis=FALSE.

The long-winded way of doing this is to create a new factor for each species separately:

vulgaris<-factor(1*(parasite=="vulgaris"))
kochii<-factor(1*(parasite=="kochii"))
table(vulgaris)

vulgaris
0 1
99 52

table(kochii)

kochii
0 1

134 17

and so on, with 1 for TRUE (meaning present) and 0 for FALSE (meaning absent). This is how easy it is to
do with model.matrix:

model.matrix(~parasite-1)

parasiteknowlesii parasitekochii parasitesplendens parasiteviridis parasitevulgaris
1 0 0 0 0 1
2 0 0 1 0 0

256 THE R BOOK

3 1 0 0 0 0
4 0 0 0 0 1
5 1 0 0 0 0
6 0 0 0 1 0

....
etc. down to

....
147 1 0 0 0 0
148 0 0 0 1 0
149 0 0 0 0 1
150 0 1 0 0 0
151 0 0 1 0 0

attr(,"assign")
[1] 1 1 1 1 1
attr(,"contrasts")
attr(,"contrasts")$parasite
[1] "contr.treatment"

The -1 in the model formula ensures that we create a dummy variable for each of the five parasite species
(technically, it suppresses the creation of an intercept). Now we can join these five columns of dummy
variables to the dataframe containing the response variable and the other explanatory variables. Suppose we
had an original.frame. We just join the new columns to it,

new.frame<-data.frame(original.frame, model.matrix(~parasite-1))
attach(new.frame)

after which we can use variable names like parasiteknowlesii in statistical modelling.

6.9 Comparing table and tabulate

You will often want to count how many times different values are represented in a vector. This simple example
illustrates the difference between the two functions. Here is table in action:

table(c(2,2,2,7,7,11))

2 7 11
3 2 1

It produces names for each element in the vector (2, 7, 11), and counts only those elements that are present
(e.g. there are no zeros or ones in the output vector). The tabulate function counts all of the integers
(turning real numbers into the nearest integer if necessary), starting at 1 and ending at the maximum (11 in
this case), putting a zero in the resulting vector for every missing integer, like this:

tabulate(c(2,2,2,7,7,11))

[1] 0 3 0 0 0 0 2 0 0 0 1

Because there are no 1s in our example, a count of zero is returned for the first element. There are three 2s
but then a long gap to two 7s, then another gap to the maximum 11. It is important that you understand that
tabulate will ignore negative numbers and zeros without warning:

tabulate(c(2,0,-3,2,2,7,-1, 0,0,7,11))

[1] 0 3 0 0 0 0 2 0 0 0 1

TABLES 257

For most applications, table is much more useful than tabulate, but there are occasions when you want
the zero counts to be retained. The commonest case is where you are generating a set of vectors, and you
want all the vectors to be the same length (e.g. so that you can bind them to a dataframe).

Suppose, for instance, that you want to make a dataframe containing three different realizations of a
negative binomial distribution of counts, where the rows contain the frequencies of 0, 1, 2, 3, . . . successes.
Let us take an example where the negative binomial parameters are size = 1 and prob = 0.2 and
generate 100 random numbers from it, repeated three times:

table(rnbinom(100,1,0.2))

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
24 10 12 6 13 4 3 5 2 5 4 3 5 2 2

table(rnbinom(100,1,0.2))

0 1 2 3 4 5 6 7 8 10 11 12 13 15 16
23 17 10 8 8 9 1 4 7 2 7 1 1 1 1

table(rnbinom(100,1,0.2))

0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 19 20 23 24 25
15 15 13 12 6 9 6 3 3 3 4 2 2 1 1 1 1 1 1 1

The three realizations produce vectors of different lengths (15, 15 again (but with a 15 and a 16 but no 9 or
14), and 20 respectively). With tabulate, we can specify the length of the output vector (the number of
bins, nbins), but we need to make sure it is long enough, because overruns will be ignored without warning.
We also need to remember to add 1 to the random integers generated, so that the zeros are counted rather
than ignored. From what we have seen (above), it looks as if 30 bins should work well enough, so here are
six realizations with nbins=30:

tabulate(rnbinom(100,1,0.2)+1,30)

[1] 21 14 10 8 10 6 11 4 3 3 1 4 1 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
[1] 21 14 13 7 6 10 10 4 2 0 4 3 2 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0
[1] 25 13 16 8 5 7 4 2 5 3 4 0 1 2 0 1 0 1 0 0 0 2 0 0 0 0 0 1 0 0
[1] 22 21 12 13 8 5 3 3 2 4 2 2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[1] 18 10 13 11 12 6 5 4 4 5 2 1 0 3 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1
[1] 26 15 9 12 4 7 7 5 3 2 1 3 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0

This looks fine, until you check the fifth row. There are only 98 numbers here, so two unknown values of
counts greater than 29 have been generated but ignored without warning. To see how often this might happen,
we can run the test 1000 times and tally the number of numbers presented by tabulate:

totals<-numeric(1000)
for (i in 1:1000) totals[i] <- sum(tabulate(rnbinom(100,1,0.2)+1,30))
table(totals)

totals
98 99 100
5 114 881

As you see, we lost one or more numbers on 119 occasions out of 1000. So take care with tabulate, and
remember that 1 was added to all the counts to accommodate the zeros.

7
Mathematics

You can do a lot of maths in R. Here we concentrate on the kinds of mathematics that find most frequent
application in scientific work and statistical modelling:

� functions;

� continuous distributions;

� discrete distributions;

� matrix algebra;

� calculus;

� differential equations.

7.1 Mathematical functions

For the kinds of functions you will meet in statistical computing there are only three mathematical rules
that you need to learn: these are concerned with powers, exponents and logarithms. In the expression xb the
explanatory variable is raised to the power b. In ex the explanatory variable appears as a power – in this
special case, of e = 2.718 28, of which x is the exponent. The inverse of ex is the logarithm of x, denoted by
log(x) – note that all our logs are to the base e and that, for us, writing log(x) is the same as ln(x).

It is also useful to remember a handful of mathematical facts that are useful for working out behaviour at
the limits. We would like to know what happens to y when x gets very large (e.g. x → ∞) and what happens
to y when x goes to 0 (i.e. what the intercept is, if there is one). These are the most important rules:

� Anything to the power zero is 1: x0 = 1.

� One raised to any power is still 1: 1x = 1.

� Infinity plus 1 is infinity: ∞ + 1 = ∞.

� One over infinity (the reciprocal of infinity, ∞–1) is zero: 1
∞ = 0.

� A number > 1 raised to the power infinity is infinity: 1.2∞ = ∞.

� A fraction (e.g. 0.99) raised to the power infinity is zero: 0.99∞ = 0.

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

MATHEMATICS 259

� Negative powers are reciprocals: x−b = 1
xb .

� Fractional powers are roots: x1/3 = 3
√

x .

� The base of natural logarithms, e, is 2.718 28, so e∞ = ∞.

� Last, but perhaps most usefully: e−∞ = 1
e∞ = 1

∞ = 0.

There are built-in functions in R for logarithmic, probability and trigonometric functions (p. 17).

7.1.1 Logarithmic functions

The logarithmic function is given by

y = a ln(bx).

Here the logarithm is to base e. The exponential function, in which the response y is the antilogarithm of the
continuous explanatory variable x, is given by

y = aebx .

Both these functions are smooth functions, and to draw smooth functions in R you need to generate a series
of 100 or more regularly spaced x values between min(x) and max(x):

x <- seq(0,10,0.1)

In R the exponential function is exp and the natural log function (ln) is log. Let a = b = 1. To plot the
exponential and logarithmic functions with these values together in a row, write

windows(7,4)
par(mfrow=c(1,2))
y <- exp(x)
plot(y~x,type="l",main="Exponential")
y <- log(x)
plot(y~x,type="l",main="Logarithmic")

Exponential

0

0 –2
–1

0
1

2

50
00

y y

15
00

0

2 4 6
x

8 10 0 2 4 6
x

8 10

Logarithmic

260 THE R BOOK

Note that the plot function can be used in an alternative way, specifying the Cartesian coordinates of the
line using plot(x,y) rather than the formula plot(y~x) (see p. 190).

These functions are most useful in modelling process of exponential growth and decay.

7.1.2 Trigonometric functions

Here are the cosine (base/hypotenuse), sine (perpendicular/hypotenuse) and tangent (perpendicular/base)
functions of x (measured in radians) over the range 0 to 2π . Recall that the full circle is 2π radians, so 1
radian = 360/2π = 57.295 78 degrees.

windows(7,7)
par(mfrow=c(2,2))

x <- seq(0,2*pi,2*pi/100)
y1 <- cos(x)
y2 <- sin(x)
y3 <- tan(x)

plot(y1~x,type="l",main="cosine")
plot(y2~x,type="l",main="sine")
plot(y3~x,type="l",ylim=c(-3,3),main="tangent")

cosine

tangent

x

x

x

sine

–1
.0

–0
.5

0.
0

y1 y2

0.
5

1.
0

–3
–2

–1
y3 0

1
2

3

–1
.0

–0
.5

0.
0

0.
5

1.
0

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

The tangent of x has discontinuities, shooting off to positive infinity at x = π /2 and again at x = 3π /2.
Restricting the range of values plotted on the y axis (here from –3 to + 3) therefore gives a better picture of

MATHEMATICS 261

the shape of the tan function. Note that R joins the plus infinity and minus infinity ‘points’ with a straight line
at x = π /2 and at x = 3π /2 within the frame of the graph defined by ylim.

7.1.3 Power laws

There is an important family of two-parameter mathematical functions of the form

y = axb,

known as power laws. Depending on the value of the power, b, the relationship can take one of five forms.
In the trivial case of b = 0 the function is y = a (a horizontal straight line). The four more interesting shapes
are as follows:

x <- seq(0,1,0.01)
y <- xˆ0.5
plot(x,y,type="l",main="0<b<1")
y <- x
plot(x,y,type="l",main="b=1")
y <- xˆ2
plot(x,y,type="l",main="b>1")
y <- 1/x
plot(x,y,type="l",main="b<0")

y

x

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

y

x

b<0b>1

b=10<b<1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

y

x

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

y

x

0
20

40
60

80
10

0

0.0 0.2 0.4 0.6 0.8 1.0

262 THE R BOOK

These functions are useful in a wide range of disciplines. The parameters a and b are easy to estimate from
data because the function is linearized by a log–log transformation,

log(y) = log(axb) = log(a) + b log(x),

so that on log–log axes the intercept is log(a) and the slope is b. These are often called allometric relationships
because when b �= 1 the proportion of x that becomes y varies with x.

An important empirical relationship from ecological entomology that has applications in a wide range of
statistical analysis is known as Taylor’s power law. It has to do with the relationship between the variance
and the mean of a sample. In elementary statistical models, the variance is assumed to be constant (i.e. the
variance does not depend upon the mean). In field data, however, Taylor found that variance increased with
the mean according to a power law, such that on log–log axes the data from most systems fell above a line
through the origin with slope = 1 (the pattern shown by data that are Poisson distributed, where the variance
is equal to the mean) and below a line through the origin with a slope of 2. Taylor’s power law states that, for
a particular system:

� log(variance) is a linear function of log(mean);

� the scatter about this straight line is small;

� the slope of the regression of log(variance) against log(mean) is greater than 1 and less than 2;

� the parameter values of the log–log regression are fundamental characteristics of the system.

7.1.4 Polynomial functions

Polynomial functions are functions in which x appears several times, each time raised to a different power.
They are useful for describing curves with humps, inflections or local maxima like these:

y

x

5
10

15
20

25
30

0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 10 0 2 4 6 8 10

y

x

local maximuminflection

humpeddecelerating

5
10

15

y

x

5
10

15
20

10
20

30
40

y

x

MATHEMATICS 263

The top left-hand panel shows a decelerating positive function, modelled by the quadratic

x <- seq(0,10,0.1)
y1 <- 2+5*x-0.2*xˆ2

Making the negative coefficient of the x2 term larger produces a curve with a hump as in the top right-hand
panel:

y2 <- 2+5*x-0.4*xˆ2

Cubic polynomials can show points of inflection, as in the lower left-hand panel:

y3 <- 2+4*x-0.6*xˆ2+0.04*xˆ3

Finally, polynomials containing powers of 4 are capable of producing curves with local maxima, as in the
lower right-hand panel:

y4 <- 2+4*x+2*xˆ2-0.6*xˆ3+0.04*xˆ4

par(mfrow=c(2,2))
plot(x,y1,type="l",ylab="y",main="decelerating")
plot(x,y2,type="l",ylab="y",main="humped")
plot(x,y3,type="l",ylab="y",main="inflection")
plot(x,y4,type="l",ylab="y",main="local maximum")

Inverse polynomials are an important class of functions which are suitable for setting up generalized linear
models with gamma errors and inverse link functions:

1

y
= a + bx + cx2 + dx3 + . . . + zxn.

Various shapes of function are produced, depending on the order of the polynomial (the maximum power)
and the signs of the parameters:

par(mfrow=c(2,2))

y1 <- x/(2+5*x)
y2 <- 1/(x-2+4/x)
y3 <- 1/(xˆ2-2+4/x)

plot(x,y1,type="l",ylab="y",main="Michaelis-Menten")
plot(x,y2,type="l",ylab="y",main="shallow hump")
plot(x,y3,type="l",ylab="y",main="steep hump")

264 THE R BOOK

y

x

0.
00

0.
05

0.
10

0.
15

0.
20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 2 4 6 8 10
x

y

0 2 4 6 8 10

steep hump

Michaelis-Menten shallow hump
y

x

0.
0

0.
1

0.
2

0.
3

0 2 4 6 8 10

There are two ways of parameterizing the Michaelis–Menten equation:

y = ax

1 + bx
and y = x

c + dx
.

In the first case, the asymptotic value of y is a/b and in the second it is 1/d.

7.1.5 Gamma function

The gamma function �(t) is an extension of the factorial function, t!, to positive real numbers:

�(t) =
∫ ∞

0
xt−1e−x dx .

It looks like this:

par(mfrow=c(1,1))
t <- seq(0.2,4,0.01)

plot(t,gamma(t),type="l")

abline(h=1,lty=2)

MATHEMATICS 265

ga
m

m
a(

t)

1

1
2

3
4

5
6

2
t

3 4

Note that �(t) is equal to 1 at both t = 1 and t = 2. For integer values of t, �(t + 1) = t!

7.1.6 Asymptotic functions

Much the most commonly used asymptotic function is

y = ax

1 + bx
,

which has a different name in almost every scientific discipline. For example, in biochemistry it is called
Michaelis–Menten, and shows reaction rate as a function of enzyme concentration; in ecology it is called
Holling’s disc equation and shows predator feeding rate as a function of prey density. The graph passes
through the origin and rises with diminishing returns to an asymptotic value at which increasing the value of
x does not lead to any further increase in y.

The other common function is the asymptotic exponential

y = a(1 − e−bx).

This, too, is a two-parameter model, and in many cases the two functions would describe data equally well
(see p. 719 for an example of this comparison).

Let us work out the behaviour at the limits of our two asymptotic functions, starting with the asymptotic
exponential. For x = 0 we have

y = a(1 − e−b×0) = a(1 − e0) = a(1 − 1) = a × 0 = 0,

so the graph goes through the origin. At the other extreme, for x = ∞, we have

y = a(1 − e−b×∞) = a(1 − e−∞) = a(1 − 0) = a(1) = a,

which demonstrates that the relationship is asymptotic, and that the asymptotic value of y is a.

266 THE R BOOK

Turning to the Michaelis–Menten equation, or x = 0 the limit is easy:

y = a × 0

1 + b × 0
= 0

1 + 0
= 0

1
= 0.

However, determining the behaviour at the limit x = ∞ is somewhat more difficult, because we end up with
y = ∞/(1 + ∞) = ∞/∞, which you might imagine is always going to be 1 no matter what the values of a
and b. In fact, there is a special mathematical rule for this case, called l’Hospital’s rule: when you get a ratio of
infinity to infinity, you work out the ratio of the derivatives to obtain the behaviour at the limit. The numerator
is ax so its derivative with respect to x is a. The denominator is 1 + bx so its derivative with respect to x is
0 + b = b. So the ratio of the derivatives is a/b, and this is the asymptotic value of the Michaelis–Menten
equation.

7.1.7 Parameter estimation in asymptotic functions

There is no way of linearizing the asymptotic exponential model, so we must resort to non-linear least squares
(nls) to estimate parameter values for it (p. 715). One of the advantages of the Michaelis–Menten function
is that it is easy to linearize. We use the reciprocal transformation

1

y
= 1 + bx

ax
.

At first glance, this is no great help. But we can separate the terms on the right because they have a common
denominator. Then we can cancel the xs, like this:

1

y
= 1

ax
+ bx

ax
= 1

ax
+ b

a

so if we put Y = 1/y, X = 1/x, A = 1/a, and C = b/a, we see that

Y = AX + C,

which is linear: C is the intercept and A is the slope. So to estimate the values of a and b from data, we
would transform both x and y to reciprocals, plot a graph of 1/y against 1/x, carry out a linear regression, then
back-transform, to get:

a = 1

A
,

b = aC.

Suppose that we knew that the graph passed through the two points (0.2, 44.44) and (0.6, 70.59). How do
we work out the values of the parameters a and b? First, we calculate the four reciprocals. The slope of the
linearized function, A, is the change in 1/y divided by the change in 1/x:

(1/44.44 - 1/70.59)/(1/0.2 - 1/0.6)

[1] 0.002500781

MATHEMATICS 267

so a = 1/A = 1/0.0025 = 400. Now we rearrange the equation and use one of the points (say x = 0.2, y =
44.44) to get the value of b:

b = 1

x

(
ax

y
− 1

)
= 1

0.2

(
400 × 0.2

44.44
− 1

)
= 4.

7.1.8 Sigmoid (S-shaped) functions

The simplest S-shaped function is the two-parameter logistic where, for 0 ≤ y ≤ 1,

y = ea+bx

1 + ea+bx

which is central to the fitting of generalized linear models for proportion data (Chapter 16).
The three-parameter logistic function allows y to vary on any scale:

y = a

1 + be−cx
.

The intercept is a/(1 + b), the asymptotic value is a and the initial slope is measured by c. Here is the curve
with parameters 100, 90 and 1.0:

par(mfrow=c(2,2))

x <- seq(0,10,0.1)
y <- 100/(1+90*exp(-1*x))

plot(x,y,type="l",main="three-parameter logistic")

The four-parameter logistic function has asymptotes at the left- (a) and right-hand (b) ends of the x axis
and scales (c) the response to x about the midpoint (d) where the curve has its inflexion:

y = a + b − a

1 + ec(d−x)
.

Letting a = 20, b = 120, c = 0.8 and d = 3, the function

y = 20 + 100

1 + e0.8×(3−x)

looks like this:

y <- 20+100/(1+exp(0.8*(3-x)))

plot(x,y,ylim=c(0,140),type="l",main="four-parameter logistic")

Negative sigmoid curves have the parameter c < 0, as for the function

y = 20 + 100

1 + e−0.8×(3−x)
.

268 THE R BOOK

An asymmetric S-shaped curve much used in demography and life insurance work is the Gompertz
growth model,

y = aebecx
.

The shape of the function depends on the signs of the parameters b and c. For a negative sigmoid, b is negative
(here –1) and c is positive (here + 0.02):

x <- -200:100

y <- 100*exp(-exp(0.02*x))

plot(x,y,type="l",main="negative Gompertz")

For a positive sigmoid both parameters are negative:

x <- 0:100
y <- 50*exp(-5*exp(-0.08*x))

plot(x,y,type="l",main="positive Gompertz")

y

x

0
20

40
60

80
10

0
0

20
40

60
80

10
0

0 2 4 6 8 10

y

x
positive Gompertznegative Gompertz

four-parameter logisticthree-parameter logistic

0
20

60
10

0
14

0

0 2 4 6 8 10

y

x
–200 –150 –100 –50 0 50 100

y

x

0
10

20
30

40
50

0 20 40 60 80 100

MATHEMATICS 269

7.1.9 Biexponential model

This is a useful four-parameter non-linear function, which is the sum of two exponential functions
of x:

y = aebx + cedx .

Various shapes depend upon the signs of the parameters b, c and d (a is assumed to be positive): the upper
left-hand panel shows c positive, b and d negative (it is the sum of two exponential decay curves, so the fast
decomposing material disappears first, then the slow, to produce two different phases); the upper right-hand
panel shows c and d positive, b negative (this produces an asymmetric U-shaped curve); the lower left-hand
panel shows c negative, b and d positive (this can, but does not always, produce a curve with a hump); and
the lower right panel shows b and c positive, d negative. When b, c and d are all negative (not illustrated),
the function is known as the first-order compartment model in which a drug administered at time 0 passes
through the system with its dynamics affected by three physiological processes: elimination, absorption and
clearance.

y

x

6
8

10
12

14
16

18
20

20
0

30
0

40
0

50
0

60
0

70
0

0 2 4 6 8 10

y

x

+ + + –+ + – +

+ – + ++ – + –
14

16
18

20

0 2 4 6 8 10

y

x
0 2 4 6 8 10

y

x

30
0

35
0

40
0

45
0

50
0

0 2 4 6 8 10

270 THE R BOOK

#1
a <- 10
b <- -0.8
c <- 10
d <- -0.05
y <- a*exp(b*x)+c*exp(d*x)
plot(x,y,main="+ - + -",type="l")
#2
a <- 10
b <- -0.8
c <- 10
d <- 0.05
y <- a*exp(b*x)+c*exp(d*x)
plot(x,y,main="+ - + +",type="l")
#3
a <- 200
b <- 0.2
c <- -1
d <- 0.7
y <- a*exp(b*x)+c*exp(d*x)
plot(x,y,main="+ + - +",type="l")
#4
a <- 200
b <- 0.05
c <- 300
d <- -0.5
y <- a*exp(b*x)+c*exp(d*x)
plot(x,y,main="+ + + -",type="l")

7.1.10 Transformations of the response and explanatory variables

We have seen the use of transformation to linearize the relationship between the response and the explanatory
variables:

� log(y) against x for exponential relationships;

� log(y) against log(x) for power functions;

� exp(y) against x for logarithmic relationships;

� 1/y against 1/x for asymptotic relationships;

� log(p/(1 – p)) against x for proportion data.

Other transformations are useful for variance stabilization:

�
√

y to stabilize the variance for count data;

� arcsin(y) to stabilize the variance of percentage data.

MATHEMATICS 271

7.2 Probability functions

There are many specific probability distributions in R (normal, Poisson, binomial, etc.), and these are discussed
in detail later. Here we look at the base mathematical functions that deal with elementary probability. The
factorial function gives the number of permutations of n items. How many ways can four items be arranged?
The first position could have any one of the 4 items in it, but by the time we get to choosing the second item
we shall already have specified the first item so there are just 4 – 1 = 3 ways of choosing the second item.
There are only 4 – 2 = 2 ways of choosing the third item, and by the time we get to the last item we have no
degrees of freedom at all: the last number must be the one item out of four that we have not used in positions
1, 2 or 3. So with 4 items the answer is 4 × (4 – 1) × (4 – 2) × (4 – 3) which is 4 × 3 × 2 × 1 = 24. In
general, factorial(n) is given by

n! = n(n − 1)(n − 2) . . . × 3 × 2.

The R function is factorial and we can plot it for values of x from 0 to 10 using the step option
type="s", in plot with a logarithmic scale on the y axis log="y",

par(mfrow=c(1,1))
x <- 0:6

plot(x,factorial(x),type="s",main="factorial x",log="y")

factorial x

fa
ct

o
ri

al
 (

x)

50
0

20
0

10
0

50
20

10
5

2
1

0 1 2 3 4 5 6
x

The other important base function for probability calculations in R is thechoose function which calculates
binomial coefficients. These show the number of ways there are of selecting x items out of n items when the
item can be one of just two types (e.g. either male or female, black or white, solvent or insolvent). Suppose
we have 8 individuals and we want to know how many ways there are that 3 of them could be males (and

272 THE R BOOK

hence 5 of them females). The answer is given by

(
n
x

)
= n!

x!(n − x)!
,

so with n = 8 and x = 3 we get

(
n
x

)
= 8!

3!(8 − 3)!
= 8 × 7 × 6

3 × 2
= 56,

and in R

choose(8,3)

[1] 56

Obviously there is only one way that all 8 individuals could be male or female, so there is only one way of
getting 0 or 8 ‘successes’. One male could be the first individual you select, or the second, or the third, and
so on. So there are 8 ways of selecting 1 out of 8. By the same reasoning, there must be 8 ways of selecting 7
males out of 8 individuals (the lone female could be in any one of the 8 positions). The following is a graph
of the number of ways of selecting from 0 to 8 males out of 8 individuals:

plot(0:8,choose(8,0:8),type="s",main="binomial coefficients")

70

binomial coefficients

60
50

40

ch
oo

se
(8

, 0
:8

)

30
20

10
0

0 4
0:8

6 82

7.3 Continuous probability distributions

R has a wide range of built-in probability distributions, for each of which four functions are available: the
probability density function (which has a d prefix); the cumulative probability (p); the quantiles of the
distribution (q); and random numbers generated from the distribution (r). Each letter can be prefixed to the
R function names in Table 7.1 (e.g. dbeta).

MATHEMATICS 273

Table 7.1. The probability distributions supported by R. The meanings of
the parameters are explained in the text.

R function Distribution Parameters

beta beta shape1, shape2
binom binomial sample size, probability
cauchy Cauchy location, scale
exp exponential rate (optional)
chisq chi-squared degrees of freedom
F Fisher’s F df1, df2
gamma gamma shape
geom geometric probability
hyper hypergeometric m, n, k
lnorm lognormal mean, standard deviation
logis logistic location, scale
nbinom negative binomial size, probability
norm normal mean, standard deviation
pois Poisson mean
signrank Wilcoxon signed rank statistic sample size n
t Student’s t degrees of freedom
unif uniform minimum, maximum (opt.)
weibull Weibull shape
wilcox Wilcoxon rank sum m, n

The cumulative probability function is a straightforward notion: it is an S-shaped curve showing, for any
value of x, the probability of obtaining a sample value that is less than or equal to x. Here is what it looks like
for the normal distribution:

curve(pnorm(x),-3,3)

arrows(-1,0,-1,pnorm(-1),col="red")

arrows(-1,pnorm(-1),-3,pnorm(-1),col="green")

1.
0

0.
8

0.
6

0.
4pn

or
m

(x
)

0.
2

0.
0

–3 –2 –1 0
x

1 2 3

274 THE R BOOK

The value of x (–1) leads up to the cumulative probability (red arrow) and the probability associated with
obtaining a value of this size (–1) or smaller is on the y axis (green arrow). The value on the y axis is
0.1586553:

pnorm(-1)

[1] 0.1586553

The probability density is the slope of this curve (its derivative). You can see at once that the slope is
never negative. The slope starts out very shallow up to about x = –2, increases up to a peak (at x = 0 in this
example) then gets shallower, and becomes very small indeed above about x = 2. Here is what the density
function of the normal (dnorm) looks like:

curve(dnorm(x),-3,3)

0.
4

0.
3

0.
2

dn
or

m
(x

)

0.
1

0.
0

–3 –2 –1 0
x

1 2 3

For a discrete random variable, like the Poisson or the binomial, the probability density function is
straightforward: it is simply a histogram with the y axis scaled as probabilities rather than counts, and the
discrete values of x (0, 1, 2, 3, . . .) on the horizontal axis. But for a continuous random variable, the definition
of the probability density function is more subtle: it does not have probabilities on the y axis, but rather the
derivative (the slope) of the cumulative probability function at a given value of x.

7.3.1 Normal distribution

This distribution is central to the theory of parametric statistics. Consider the following simple exponential
function:

y = exp(−|x |m).

As the power (m) in the exponent increases, the function becomes more and more like a step function. The
following panels show the relationship between y and x for m = 1, 2, 3 and 8, respectively:

MATHEMATICS 275

par(mfrow=c(2,2))
x <- seq(-3,3,0.01)
y <- exp(-abs(x))
plot(x,y,type="l",main= "x")
y <- exp(-abs(x)ˆ2)
plot(x,y,type="l",main= "xˆ2")
y <- exp(-abs(x)ˆ3)
plot(x,y,type="l",main= "xˆ3")
y <- exp(-abs(x)ˆ8)
plot(x,y,type="l",main= "xˆ8")

1.
0

0.
8

0.
6

0.
4

y

0.
2

1.
0

0.
8

0.
6

0.
4

y

0.
2

0.
0

1.
0

0.
8

0.
6

0.
4

y

0.
2

0.
0

1.
0

0.
8

0.
6

0.
4

y

0.
2

0.
0

–3 –2 –1 0
x

x^2

x^3 x^8

x

1 2 3

–3 –2 –1 0
x

1 2 3

–3 –2 –1 0
x

1 2 3

–3 –2 –1 0
x

1 2 3

The second of these panels (top right), where y = exp (–x2), is the basis of an extremely important and famous
probability density function. Once it has been scaled, so that the integral (the area under the curve from –∞
to +∞) is unity, this is the normal distribution. Unfortunately, the scaling constants are rather cumbersome.
When the distribution has mean 0 and standard deviation 1 (the standard normal distribution) the equation
becomes:

f (z) = 1√
2π

e−z2/2.

276 THE R BOOK

Suppose we have measured the heights of 100 people. The mean height was 170 cm and the standard
deviation was 8 cm. We can ask three sorts of questions about data like these: what is the probability that a
randomly selected individual will be:

� shorter than a particular height?

� taller than a particular height?

� between one specified height and another?

The area under the whole curve is exactly 1; everybody has a height between minus infinity and plus infinity.
True, but not particularly helpful. Suppose we want to know the probability that one of our people, selected
at random from the group, will be less than 160 cm tall. We need to convert this height into a value of z; that
is to say, we need to convert 160 cm into a number of standard deviations from the mean. What do we know
about the standard normal distribution? It has a mean of 0 and a standard deviation of 1. So we can convert
any value y, from a distribution with mean ȳ and standard deviation s very simply by calculating

z = y − ȳ

s
.

So we convert 160 cm into a number of standard deviations. It is less than the mean height (170 cm) so its
value will be negative:

z = 160 − 170

8
= −1.25.

Now we need to find the probability of a value of the standard normal taking a value of –1.25 or smaller.
This is the area under the left-hand tail (the integral) of the density function. The function we need for this
is pnorm: we provide it with a value of z (or, more generally, with a quantile) and it provides us with the
probability we want:

pnorm(-1.25)

[1] 0.1056498

So the answer to our first question (the shaded area, top left) is just over 10%.
Next, what is the probability of selecting one of our people and finding that they are taller than 185 cm

(top right)? The first two parts of the exercise are exactly the same as before. First we convert our value of
185 cm into a number of standard deviations:

z = 185 − 170

8
= 1.875.

Then we ask what probability is associated with this, using pnorm:

pnorm(1.875)

[1] 0.9696036

But this is the answer to a different question. This is the probability that someone will be less than or equal
to 185 cm tall (that is what the function pnorm has been written to provide). All we need to do is to work
out the complement of this:

MATHEMATICS 277

1-pnorm(1.875)

[1] 0.03039636

So the answer to the second question is about 3%.
Finally, we might want to know the probability of selecting a person between 165 cm and 180 cm. We

have a bit more work to do here, because we need to calculate two z values:

z1 = 165 − 170

8
= −0.625 and z2 = 180 − 170

8
= 1.25.

The important point to grasp is this: we want the probability of selecting a person between these two z values,
so we subtract the smaller probability from the larger probability:

pnorm(1.25)-pnorm(-0.625)

[1] 0.6283647

Thus we have a 63% chance of selecting a medium-sized person (taller than 165 cm and shorter than 180 cm)
from this sample with a mean height of 170 cm and a standard deviation of 8 cm (bottom left).

0.
4

0.
3

0.
2

pr
ob

ab
ili

ty
 d

en
si

ty

0.
1

0.
0

0.
4

0.
3

0.
2

pr
ob

ab
ili

ty
 d

en
si

ty

0.
1

0.
0

0.
4

0.
3

0.
2

pr
ob

ab
ili

ty
 d

en
si

ty

0.
1

0.
0

146 154 162 170

height

178 186 192

146 154 162 170
height

178 186 192

146 154 162 170

height

178 186 192

278 THE R BOOK

The trick with curved polygons like these is to finish off their closure properly. In the bottom left-
hand panel, for instance, we want to return to the x axis at 180 cm then draw straight along the x
axis to 165 cm. We do this by concatenating two extra points on the end of the vectors of z and p
coordinates:

x <- seq(-3,3,0.01)
z <- seq(-3,-1.25,0.01)
p <- dnorm(z)
z <- c(z,-1.25,-3)
p <- c(p,min(p),min(p))
plot(x,dnorm(x),type="l",xaxt="n",ylab="probability density",xlab="height")
axis(1,at=-3:3,labels=c("146","154","162","170","178","186","192"))
polygon(z,p,col="red")

z <- seq(1.875,3,0.01)
p <- dnorm(z)
z <- c(z,3,1.875)
p <- c(p,min(p),min(p))
plot(x,dnorm(x),type="l",xaxt="n",ylab="probability density",xlab="height")
axis(1,at=-3:3,labels=c("146","154","162","170","178","186","192"))
polygon(z,p,col="red")

z <- seq(-0.635,1.25,0.01)
p <- dnorm(z)
z <- c(z,1.25,-0.635)
p <- c(p,0,0)
plot(x,dnorm(x),type="l",xaxt="n",ylab="probability density",xlab="height")
axis(1,at=-3:3,labels=c("146","154","162","170","178","186","192"))
polygon(z,p,col="red")

7.3.2 The central limit theorem

If you take repeated samples from a population with finite variance and calculate their averages, then the
averages will be normally distributed. This is called the central limit theorem. Let us demonstrate it for
ourselves. We can take five uniformly distributed random numbers between 0 and 10 and work out the
average. The average will be low when we get, say, 2,3,1,2,1 and high when we get 9,8,9,6,8. Typically, of
course, the average will be close to 5. Let us do this 10 000 times and look at the distribution of the 10 000
means. The data are rectangularly (uniformly) distributed on the interval 0 to 10, so the distribution of the
raw data should be flat-topped:

par(mfrow=c(1,1))

hist(runif(10000)*10,main="")

MATHEMATICS 279

50
0

40
0

30
0

20
0F
re

qu
en

cy
10

0
0

0 2 4
runif(10000)* 10

6 8 10

What about the distribution of sample means, based on taking just five uniformly distributed random numbers?

means <- numeric(10000)
for (i in 1:10000){
means[i] <- mean(runif(5)*10)
}
hist(means,ylim=c(0,1600),main="")

Nice, but how close is this to a normal distribution? One test is to draw a normal distribution with the same
parameters on top of the histogram. But what are these parameters? The normal is a two-parameter distribution
that is characterized by its mean and its standard deviation. We can estimate these two parameters from our
sample of 10 000 means (your values will be slightly different because of the randomization):

mean(means)

[1] 4.998581

sd(means)

[1] 1.289960

Now we use these two parameters in the probability density function of the normal distribution (dnorm) to
create a normal curve with our particular mean and standard deviation. To draw the smooth line of the normal
curve, we need to generate a series of values for the x axis; inspection of the histograms suggest that sensible
limits would be from 0 to 10 (the limits we chose for our uniformly distributed random numbers). A good
rule of thumb is that for a smooth curve you need at least 100 values, so let us try this:

xv <- seq(0,10,0.1)

There is just one thing left to do. The probability density function has an integral of 1.0 (that is the area
beneath the normal curve), but we had 10 000 samples. To scale the normal probability density function to
our particular case, however, depends on the height of the highest bar (about 1500 in this case). The height,
in turn, depends on the chosen bin widths; if we doubled with width of the bin there would be roughly twice

280 THE R BOOK

as many numbers in the bin and the bar would be twice as high on the y axis. To get the height of the bars
on our frequency scale, therefore, we multiply the total frequency, 10 000 by the bin width, 0.5 to get 5000.
We multiply 5000 by the probability density to get the height of the curve. Finally, we use lines to overlay
the smooth curve on our histogram:

yv <- dnorm(xv,mean=4.998581,sd=1.28996)*5000
lines(xv,yv)

15
00

10
00

50
0F

re
qu

en
cy

0

2 4 6
means

8

The fit is excellent. The central limit theorem really works. Almost any distribution, even a ‘badly behaved’
one like the uniform distribution we worked with here, will produce a normal distribution of sample means
taken from it.

A simple example of the operation of the central limit theorem involves the use of dice. Throw one die
lots of times and each of the six numbers should come up equally often: this is an example of a uniform
distribution:

par(mfrow=c(2,2))

hist(sample(1:6,replace=T,10000),breaks=0.5:6.5,main="",xlab="one die")

Now throw two dice and add the scores together: this is the ancient game of craps. There are 11 possible
scores from a minimum of 2 to a maximum of 12. The most likely score is 7 because there are six ways that
this could come about:

1, 6 6, 1 2, 5 5, 2 3, 4 4, 3

For many throws of craps we get a triangular distribution of scores, centred on 7:

a <- sample(1:6,replace=T,10000)

b <- sample(1:6,replace=T,10000)

hist(a+b,breaks=1.5:12.5,main="", xlab="two dice")

MATHEMATICS 281

There is already a clear indication of central tendency and spread. For three dice we get

c <- sample(1:6,replace=T,10000)

hist(a+b+c,breaks=2.5:18.5,main="", xlab="three dice")

and the bell shape of the normal distribution is starting to emerge. By the time we get to five dice, the binomial
distribution is virtually indistinguishable from the normal:

d <- sample(1:6,replace=T,10000)

e <- sample(1:6,replace=T,10000)

hist(a+b+c+d+e,breaks=4.5:30.5,main="", xlab="five dice")

10
00

60
0

20
0

0

60
0

80
0

20
0

40
0

0

F
re

qu
en

cy
F

re
qu

en
cy

F
re

qu
en

cy

15
00

10
00

50
0

0

F
re

qu
en

cy

15
00

10
00

50
0

0

one die

three dice five dice

two dice

5 510 1015 15 20 25 30

1 2 3 4 5 6 2 4 6 8 10 12

The smooth curve is given by a normal distribution with the same mean and standard deviation:

mean(a+b+c+d+e)

[1] 17.5937

sd(a+b+c+d+e)

[1] 3.837668

lines(seq(1,30,0.1),dnorm(seq(1,30,0.1),17.5937,3.837668)*10000)

282 THE R BOOK

7.3.3 Maximum likelihood with the normal distribution

The probability density of the normal is

f (y|µ, σ) = 1

σ
√

2π
exp

[
− (y − µ)2

2σ 2

]
,

which is read as saying the probability density for a data value y, given (|) a mean of µ and a variance of
σ 2, is calculated from this rather complicated-looking two-parameter exponential function. For any given
combination of µ and σ 2, it gives a value between 0 and 1. Recall that likelihood is the product of the
probability densities, for each of the values of the response variable, y. So if we have n values of y in our
experiment, the likelihood function is

L(µ, σ) =
n∏

i=1

(
1

σ
√

2π
exp

[
− (yi − µ)2

2σ 2

])
,

where the only change is that y has been replaced by yi and we multiply together the probabilities for
each of the n data points. There is a little bit of algebra we can do to simplify this: we can get rid of the
product operator,

∏
, in two steps. First, the constant term, multiplied by itself n times, can just be written as

1/(σ
√

2π)n . Second, remember that the product of a set of antilogs (exp) can be written as the antilog of a
sum of the values of xi like this:

∏
exp(xi) = exp

(∑
xi

)
. This means that the product of the right-hand part

of the expression can be written as

exp

[
−

∑n
i=1 (yi − µ)2

2σ 2

]
,

so we can rewrite the likelihood of the normal distribution as

L(µ, σ) = 1(
σ
√

2π
)n exp

[
− 1

2σ 2

n∑
i=1

(yi − µ)2

]
.

The two parameters µ and σ are unknown, and the purpose of the exercise is to use statistical modelling to
determine their maximum likelihood values from the data (the n different values of y). So how do we find the
values of µ and σ that maximize this likelihood? The answer involves calculus: first we find the derivative of
the function with respect to the parameters, then set it to zero, and solve.

It turns out that because of the exp function in the equation, it is easier to work out the log of the likelihood,

l(µ, σ) = −n

2
log(2π) − n log(σ) −

∑
(yi − µ)2/2σ 2,

and maximize this instead. Obviously, the values of the parameters that maximize the log-likelihood l(µ, σ) =
log(L(µ, σ)) will be the same as those that maximize the likelihood. From now on, we shall assume that
summation is over the index i from 1 to n.

Now for the calculus. We start with the mean, µ. The derivative of the log-likelihood with respect to µ is

dl

dµ
=

∑
(yi − µ)/σ 2.

MATHEMATICS 283

Set the derivative to zero and solve for µ:

∑
(yi − µ)/σ 2 = 0 so

∑
(yi − µ) = 0.

Taking the summation through the bracket, and noting that
∑

µ = nµ,

∑
yi − nµ = 0 so

∑
yi = nµ and µ =

∑
yi

n
.

The maximum likelihood estimate of µ is the arithmetic mean.
Next we find the derivative of the log-likelihood with respect to σ :

dl

dσ
= − n

σ
+

∑
(yi − µ)2

σ 3
,

recalling that the derivative of log(x) is 1/x and the derivative of –1/x2 is 2/x3. Solving, we get

− n

σ
+

∑
(yi − µ)2

σ 3
= 0 so

∑
(yi − µ)2 = σ 3

(n

σ

)
= σ 2n

σ 2 =
∑

(yi − µ)2

n
.

The maximum likelihood estimate of the variance σ 2 is the mean squared deviation of the y values from the
mean. This is a biased estimate of the variance, however, because it does not take account of the fact that
we estimated the value of µ from the data. To unbias the estimate, we need to lose 1 degree of freedom to
reflect this fact, and divide the sum of squares by n – 1 rather than by n (see p. 119 and restricted maximum
likelihood estimators in Chapter 19).

Here, we illustrate R’s built-in probability functions in the context of the normal distribution. The density
function dnorm has a value of z (a quantile) as its argument. Optional arguments specify the mean and
standard deviation (the default is the standard normal with mean 0 and standard deviation 1). Values of z
outside the range –3.5 to + 3.5 are very unlikely.

par(mfrow=c(2,2))

curve(dnorm,-3,3,xlab="z",ylab="Probability density",main="Density")

The probability function pnorm also has a value of z (a quantile) as its argument. Optional arguments
specify the mean and standard deviation (default is the standard normal with mean 0 and standard deviation
1). It shows the cumulative probability of a value of z less than or equal to the value specified, and is an
S-shaped curve:

curve(pnorm,-3,3,xlab="z",ylab="Probability",main="Probability")

Quantiles of the normal distribution qnorm have a cumulative probability as their argument. They perform
the opposite function of pnorm, returning a value of z when provided with a probability.

curve(qnorm,0,1,xlab="p",ylab="Quantile (z)",main="Quantiles")

The normal distribution random number generator rnorm produces random real numbers from a distribu-
tion with specified mean and standard deviation. The first argument is the number of numbers that you want

284 THE R BOOK

to be generated: here are 1000 random numbers with mean 0 and standard deviation 1:

y <- rnorm(1000)

hist(y,xlab="z",ylab="frequency",main="Random numbers")
0.

4
0.

3
0.

2

P
ro

ba
bi

lit
y

de
ns

ity
Q

ua
nt

ile
 (

z)

fr
eq

ue
nc

y

0.
1

0.
0

0

0
50

10
0

15
0

1
2

–3 –2

–2

–1

–1

0

Density

Quantiles Random numbers

Probability

z
1 2 3

1.
0

0.
8

0.
6

0.
4

P
ro

ba
bi

lit
y

0.
2

0.
0

1.00.80.60.40.20.0

–3 –2 –1 0
z

1 2 3

–3 –2 –1 0
zp

1 2 3

The four functions (d, p, q and r) work in similar ways with all the other probability distributions.

7.3.4 Generating random numbers with exact mean and standard deviation

If you use a random number generator like rnorm then, naturally, the sample you generate will not have
exactly the mean and standard deviation that you specify, and two runs will produce vectors with different
means and standard deviations. Suppose we want 100 normal random numbers with a mean of exactly 24
and a standard deviation of precisely 4:

yvals <- rnorm(100,24,4)

mean(yvals)

[1] 24.2958

sd(yvals)

[1] 3.5725

MATHEMATICS 285

Close, but not spot on. If you want to generate random numbers with an exact mean and standard deviation,
then do the following:

ydevs <- rnorm(100,0,1)

Now compensate for the fact that the mean is not exactly 0 and the standard deviation is not exactly 1 by ex-
pressing all the values as departures from the sample mean scaled in units of the sample’s standard deviations:

ydevs <- (ydevs-mean(ydevs))/sd(ydevs)

Check that the mean is 0 and the standard deviation is exactly 1:

mean(ydevs)

[1] -2.449430e-17

sd(ydevs)

[1] 1

The mean is as close to 0 as makes no difference, and the standard deviation is 1. Now multiply this vector by
your desired standard deviation and add to your desired mean value to get a sample with exactly the means
and standard deviation required:

yvals <- 24 + ydevs*4

mean(yvals)

[1] 24

sd(yvals)

[1] 4

7.3.5 Comparing data with a normal distribution

Various tests for normality are described on p. 346. Here we are concerned with the task of comparing a
histogram of real data with a smooth normal distribution with the same mean and standard deviation, in order
to look for evidence of non-normality (e.g. skew or kurtosis).

par(mfrow=c(1,1))
fishes <- read.table("c:\\temp\\fishes.txt",header=T)
attach(fishes)
names(fishes)

[1] "mass"

mean(mass)

[1] 4.194275

max(mass)

[1] 15.53216

Now the histogram of the mass of the fish is produced, specifying integer bins that are 1 gram in width, up to
a maximum of 16.5 g:

hist(mass,breaks=-0.5:16.5,col="green",main="")

286 THE R BOOK

For the purposes of demonstration, we generate everything we need inside the lines function: the sequence
of x values for plotting (0 to 16), and the height of the density function (the number of fish (length(mass))
times the probability density for each member of this sequence, for a normal distribution with mean(mass)
and standard deviation sqrt(var(mass)) as its parameters, like this:

lines(seq(0,16,0.1),length(mass)*dnorm(seq(0,16,0.1),mean(mass),sqrt(var(mass))))

60
50

40
30

20
F

re
qu

en
cy

10
0

0 5 10
mass

15

The distribution of fish sizes is clearly not normal. There are far too many fishes of 3 and 4 grams, too few of
6 or 7 grams, and too many really big fish (more than 8 grams). This kind of skewed distribution is probably
better described by a gamma distribution (see Section 7.3.10) than a normal distribution.

7.3.6 Other distributions used in hypothesis testing

The main distributions used in hypothesis testing are: chi-squared, for testing hypotheses involving count
data; Fisher’s F, in analysis of variance (ANOVA) for comparing two variances; and Student’s t, in small-
sample work for comparing two parameter estimates. These distributions tell us the size of the test statistic
that could be expected by chance alone when nothing was happening (i.e. when the null hypothesis was true).
Given the rule that a big value of the test statistic tells us that something is happening, and hence that the null
hypothesis is false, these distributions define what constitutes a big value of the test statistic (its critical value).

For instance, if we are doing a chi-squared test, and our test statistic is 14.3 on 9 degrees of freedom (d.f.),
we need to know whether this is a large value (meaning the null hypothesis is probably false) or a small value
(meaning that the null hypothesis cannot be rejected). In the old days we would have looked up the value in
chi-squared tables. We would have looked in the row labelled 9 (the degrees of freedom row) and the column
headed by α = 0.05. This is the conventional value for the acceptable probability of committing a Type I
error: that is to say, we allow a 1 in 20 chance of rejecting the null hypothesis when it is actually true (see p.
358). Nowadays, we just type:

1-pchisq(14.3,9)

[1] 0.1120467

MATHEMATICS 287

This indicates that 14.3 is actually a relatively small number when we have 9 d.f. We would conclude that
nothing is happening, because a value of chi-squared as large as 14.3 has a greater than an 11% probability
of arising by chance alone when the null hypothesis is true. We would want the probability to be less than
5% before we rejected the null hypothesis. So how large would the test statistic need to be, before we would
reject the null hypothesis (i.e. what is the critical value of chi-squared)? We use qchisq to answer this. Its
two arguments are 1 – α and the number of degrees of freedom:

qchisq(0.95,9)

[1] 16.91898

So the test statistic would need to be larger than 16.92 in order for us to reject the null hypothesis when there
were 9 d.f.

We could use pf and qf in an exactly analogous manner for Fisher’s F. Thus, the probability of getting
a variance ratio of 2.85 by chance alone when the null hypothesis is true, given that we have 8 d.f. in the
numerator and 12 d.f. in the denominator, is just under 5% (i.e. the value is just large enough to allow us to
reject the null hypothesis):

1-pf(2.85,8,12)

[1] 0.04992133

Note that with pf, degrees of freedom in the numerator (8) come first in the list of arguments, followed by
d.f. in the denominator (12).

Similarly, with Student’s t statistic and pt and qt. For instance, the value of t in tables for a two-tailed
test at α/2 = 0.025 with 10 d.f. is

qt(0.975,10)

[1] 2.228139

7.3.7 The chi-squared distribution

This is perhaps the second-best known of all the statistical distributions, introduced to generations of school
children in their geography lessons and comprehensively misunderstood thereafter. It is a special case of the
gamma distribution (p. 293) characterized by a single parameter, the number of degrees of freedom. The
mean is equal to the degrees of freedom ν (‘nu’, pronounced ‘new’), and the variance is equal to 2ν. The
density function looks like this:

f (x) = 1

2ν/2�(ν/2)
xν/2−1e−x/2,

where � is the gamma function (see p. 17). The chi-squared distribution is important because many quadratic
forms follow it under the assumption that the data follow the normal distribution. In particular, the sample
variance is a scaled chi-squared variable. Likelihood ratio statistics are also approximately distributed as a
chi-squared (see the F distribution, below).

When the cumulative probability is used, an optional third argument can be provided to describe non-
centrality. If the non-central chi-squared is the sum of ν independent normal random variables, then the
non-centrality parameter is equal to the sum of the squared means of the normal variables. Here are the

288 THE R BOOK

cumulative probability plots for a non-centrality parameter (ncp) based on three normal means (of 1, 1.5 and
2) and another with 4 means and ncp = 10:

windows(7,4)
par(mfrow=c(1,2))
x <- seq(0,30,.25)
plot(x,pchisq(x,3,7.25),type="l",ylab="p(x)",xlab="x")
plot(x,pchisq(x,5,10),type="l",ylab="p(x)",xlab="x")

0.
0

0 5 10 15
x

20 25 30 0 5 10 15
x

20 25 30

0.
2

0.
4

0.
6

p(
x)

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

p(
x)

0.
8

1.
0

The cumulative probability on the left has 3 d.f. and non-centrality parameter 12 + 1.52 + 22 = 7.25, while
the distribution on the right has 4 d.f. and non-centrality parameter 10 (note the longer left-hand tail at low
probabilities).

Chi-squared is also used to establish confidence intervals for sample variances. The quantity

(n − 1)s2

σ 2

is the degrees of freedom (n – 1) multiplied by the ratio of the sample variance s2 to the unknown population
variance σ 2. This follows a chi-squared distribution, so we can establish a 95% confidence interval for σ 2 as
follows:

(n − 1)s2

χ2
1−α/2

≤ σ 2 ≤ (n − 1)s2

χ2
α/2

Suppose the sample variance s2 = 10.2 on 8 d.f. Then the interval on σ 2 is given by

8*10.2/qchisq(.975,8)

[1] 4.65367

8*10.2/qchisq(.025,8)

[1] 37.43582

which means that we can be 95% confident that the population variance lies in the range 4.65≤ σ 2 ≤ 37.44.

MATHEMATICS 289

7.3.8 Fisher’s F distribution

This is the famous variance ratio test that occupies the penultimate column of every ANOVA table. The ratio
of treatment variance to error variance follows the F distribution, and you will often want to use the quantile
qf to look up critical values of F. You specify, in order, the probability of your one-tailed test (this will
usually be 0.95), then the two degrees of freedom – numerator first, then denominator. So the 95% value of
F with 2 and 18 d.f. is

qf(.95,2,18)

[1] 3.554557

This is what the density function of F looks like for 2 and 18 d.f. (left) and 6 and 18 d.f. (right):

x <- seq(0.05,4,0.05)
plot(x,df(x,2,18),type="l",ylab="f(x)",xlab="x")
plot(x,df(x,6,18),type="l",ylab="f(x)",xlab="x")

0.
0

0 1 2
x

3 4 0 1 2
x

3 4

0.
2

0.
4

0.
6

f(
x)

0.
8

0.
0

0.
2

0.
4

0.
6

f(
x)

The F distribution is a two-parameter distribution defined by the density function

f (x) = r�(1/2(r + s))

s�(1/2r)�(1/2s)

(r x/s)(r−1)/2

[1 + (r x/s)](r+s)/2
,

where r is the degrees of freedom in the numerator and s is the degrees of freedom in the denominator.
The distribution is named after R.A. Fisher, the father of analysis of variance, and principal developer of
quantitative genetics. It is central to hypothesis testing, because of its use in assessing the significance of
the differences between two variances. The test statistic is calculated by dividing the larger variance by the
smaller variance. The two variances are significantly different when this ratio is larger than the critical value
of Fisher’s F. The degrees of freedom in the numerator and in the denominator allow the calculation of the
critical value of the test statistic. When there is a single degree of freedom in the numerator, the distribution
is equal to the square of Student’s t: F = t2. Thus, while the rule of thumb for the critical value of t is 2, so

290 THE R BOOK

the rule of thumb for F = t2 = 4. To see how well the rule of thumb works, we can plot critical F against d.f.
in the numerator:

windows(7,7)
par(mfrow=c(1,1))
df <- seq(1,30,.1)
plot(df,qf(.95,df,30),type="l",ylab="Critical F")
lines(df,qf(.95,df,10),lty=2)

4.
0

3.
5

3.
0

C
rit

ic
al

 F
2.

5
2.

0

0 5 10 15
df

20 25 30

You see that the rule of thumb (critical F = 4) quickly becomes much too large once the d.f. in the
numerator (on the x axis) is larger than 2. The lower (solid) line shows the critical values of F when
the denominator has 30 d.f. and the upper (dashed) line shows the case in which the denominator
has 10 d.f.

The shape of the density function of the F distribution depends on the degrees of freedom in the
numerator.

x <- seq(0.01,3,0.01)
plot(x,df(x,1,10),type="l",ylim=c(0,1),ylab="f(x)")
lines(x,df(x,2,10),lty=6,col="red")
lines(x,df(x,5,10),lty=2,col="green")
lines(x,df(x,30,10),lty=3,col="blue")
legend(2,0.9,c("1","2","5","30"),col=(1:4),lty=c(1,6,2,3),

title="numerator d.f.")

MATHEMATICS 291

0.
8

1.
0

0.
6

0.
4

f(
x)

0.
2

0.
0

0.0 0.5 1.0 1.5
x

2.0

numerator d.f.

1
2
5
30

2.5 3.0

The probability density f(x) declines monotonically when the numerator has 1 or 2 d.f., but rises to a maximum
for 3 d.f. or more (5 and 30 are shown here): all the graphs have 10 d.f. in the denominator.

7.3.9 Student’s t distribution

This famous distribution was first published by W.S. Gossett in 1908 under the pseudonym of ‘Student’
because his then employer, the Guinness brewing company in Dublin, would not permit employees to publish
under their own names. It is a model with one parameter, r, with density function

f (x) = � (1/2(r + 1))

(πr)1/2� (1/2r)

(
1 + x2

r

)−(r+1)/2

,

where –∞ < x < + ∞. This looks very complicated, but if all the constants are stripped away, you can see
just how simple the underlying structure really is:

f (x) = (
1 + x2

)−1/2
.

We can plot this for values of x from –3 to + 3 as follows:

curve((1+xˆ2)ˆ(-0.5), -3, 3,ylab="t(x)",col="red")

The main thing to notice is how fat the tails of the distribution are, compared with the normal distribution.
The plethora of constants is necessary to scale the density function so that its integral is 1. If we define U as

U = n − 1

σ 2
s2,

292 THE R BOOK

then this is chi-squared distributed on n – 1 d.f. (see above). Now define V as

V = n1/2

σ
(ȳ − µ)

and note that this is normally distributed with mean 0 and standard deviation 1 (the standard normal distribu-
tion), so

V

(U/(n − 1))1/2

is the ratio of a normal distribution and a chi-squared distribution. You might like to compare this with the F
distribution (above), which is the ratio of two chi-squared distributed random variables.

At what point does the rule of thumb for Student’s t = 2 break down so seriously that it is actually
misleading? To find this out, we need to plot the value of Student’s t against sample size (actually against
degrees of freedom) for small samples. We use qt (quantile of t) and fix the probability at the two-tailed
value of 0.975:

plot(1:30,qt(0.975,1:30), ylim=c(0,12),type="l",

ylab="Students t value",xlab="d.f.",col="red")

abline(h=2,lty=2,col="green")

12
8

10
6

S
tu

de
nt

s
t v

al
ue

4
0

2

0 5 10 15
d.f.

20 25 30

As you see, the rule of thumb only becomes really hopeless for degrees of freedom less than about 5 or so.
For most practical purposes t ≈ 2 really is a good working rule of thumb. So what does the t distribution look
like, compared to a normal? Let us redraw the standard normal as a dotted line (lty=2):

xvs <- seq(-4,4,0.01)

plot(xvs,dnorm(xvs),type="l",lty=2,

ylab="Probability density",xlab="Deviates")

MATHEMATICS 293

Now we can overlay Student’s t with d.f. = 5 as a solid line to see the difference:

lines(xvs,dt(xvs,df=5),col="red")

0.
4

0.
3

0.
2

P
ro

ba
bi

lit
y

de
ns

ity
0.

1
0.

0

–4 –2 0
Deviates

2 4

The difference between the normal (blue dashed line) and Student’s t distributions (solid red line) is that
the t distribution has ‘fatter tails’. This means that extreme values are more likely with a t distribution than
with a normal, and the confidence intervals are correspondingly broader. So instead of a 95% interval of ±
1.96 with a normal distribution we should have a 95% interval of ± 2.57 for a Student’s t distribution with
5 degrees of freedom:

qt(0.975,5)

[1] 2.570582

In hypothesis testing we generally use two-tailed tests because typically we do not know the direction of the
response in advance. This means that we put 0.025 in each of two tails, rather than 0.05 in one tail.

7.3.10 The gamma distribution

The gamma distribution is useful for describing a wide range of processes where the data are positively skew
(i.e. non-normal, with a long tail on the right). It is a two-parameter distribution, where the parameters are
traditionally known as shape and rate. Its density function is:

f (x) = 1

βα�(α)
xα−1e−x/β,

where α is the shape parameter and β–1 is the rate parameter (alternatively, β is known as the scale parameter).
Special cases of the gamma distribution are the exponential (α = 1) and chi-squared (α = ν/2, β = 2).

To see the effect of the shape parameter on the probability density, we can plot the gamma distribution for
different values of shape and rate over the range 0.01 to 4:

x <- seq(0.01,4,.01)
par(mfrow=c(2,2))

294 THE R BOOK

y <- dgamma(x,.5,.5)
plot(x,y,type="l",col="red",main="alpha = 0.5")
y <- dgamma(x,.8,.8)
plot(x,y,type="l",col="red", main="alpha = 0.8")
y <- dgamma(x,2,2)
plot(x,y,type="l",col="red", main="alpha = 2")
y <- dgamma(x,10,10)
plot(x,y,type="l",col="red", main="alpha = 10")

0 0.
0

0.
5

1.
0

yy

yy

1.
5

1
2

3
4

0.
0

0.
2

0.
0

0.
4

0.
8

1.
2

0.
4

0.
6

x x

alpha = 10alpha = 2

alpha = 0.8alpha = 0.5

0 1 2 3 4 0 1 2 3 4

x x
0 1 2 3 4 0 1 2 3 4

The graphs from top left to bottom right show different values of α: 0.5, 0.8, 2 and 10. Note how α < 1
produces monotonic declining functions and α > 1 produces humped curves that pass through the origin, with
the degree of skew declining as α increases.

The mean of the distribution is αβ, the variance is αβ2, the skewness is 2/
√

α and the kurtosis is 6/α.
Thus, for the exponential distribution we have a mean of β, a variance of β2, a skewness of 2 and a kurtosis

MATHEMATICS 295

of 6, while for the chi-squared distribution we have a mean of ν, a variance of 2ν a skewness of 2
√

2/ν and
a kurtosis of 12/ν. Observe also that

1

β
= mean

variance
,

shape = 1

β
× mean.

We can now answer questions like this: what is the value of the 95% quantile expected from a gamma
distribution with mean = 2 and variance = 3? This implies that rate is 2/3 and shape is 4/3 so:

qgamma(0.95,2/3,4/3)

[1] 1.732096

An important use of the gamma distribution is in describing continuous measurement data that are not
normally distributed. Here is an example where body mass data for 200 fishes are plotted as a histogram and
a gamma distribution with the same mean and variance is overlaid as a smooth curve:

fishes <- read.table("c:\\temp\\fishes.txt",header=T)
attach(fishes)
names(fishes)

[1] "mass"

First, we calculate the two parameter values for the gamma distribution:

rate <- mean(mass)/var(mass)
shape <- rate*mean(mass)
rate

[1] 0.8775119

shape

[1] 3.680526

We need to know the largest value of mass, in order to make the bins for the histogram:

max(mass)

[1] 15.53216

Now we can plot the histogram, using break points at 0.5 to get integer-centred bars up to a maximum of 16.5
to accommodate our biggest fish:

par(mfrow=c(1,1))

hist(mass,breaks=-0.5:16.5,col="green",main="")

The density function of the gamma distribution is overlaid using lines like this:

lines(seq(0.01,15,0.01),length(mass)*dgamma(seq(0.01,15,0.01),shape,rate))

296 THE R BOOK

0
10

20
30

F
re

qu
en

cy

40
50

60

0 5 10 15
mass

The fit is much better than when we tried to fit a normal distribution to these same data earlier (see p. 286).

7.3.11 The exponential distribution

This is a one-parameter distribution that is a special case of the gamma distribution. Much used in survival
analysis, its density function is given on p. 874 and its use in survival analysis is explained on p. 884. The
random number generator of the exponential is useful for Monte Carlo simulations of time to death when the
hazard (the instantaneous risk of death) is constant with age. You specify the hazard, which is the reciprocal
of the mean age at death:

rexp(15,0.1)

[1] 8.4679954 19.4649828 16.3599100 31.6182943 1.9592625 6.3877954
[7] 26.4725498 18.7831597 34.9983158 18.0820563 2.1303369 0.1319956
[13] 35.3649667 3.5672353 4.8672067

These are 15 random lifetimes with an expected value of 1/0.1=10 years; they give a sample mean of 9.66
years.

7.3.12 The beta distribution

This has two positive constants, a and b, and x is bounded in the range 0 ≤ x ≤ 1:

f (x)= �(a + b)

�(a)�(b)
xa−1(1 − x)b−1.

In R we generate a family of density functions like this:

par(mfrow=c(2,2))

MATHEMATICS 297

x <- seq(0,1,0.01)

fx <- dbeta(x,2,3)
plot(x,fx,type="l",main="a=2 b=3",col="red")

fx <- dbeta(x,0.5,2)
plot(x,fx,type="l",main="a=0.5 b=2",col="red")

fx <- dbeta(x,2,0.5)
plot(x,fx,type="l",main="a=2 b=0.5",col="red")

fx <- dbeta(x,0.5,0.5)
plot(x,fx,type="l",main="a=0.5 b=0.5",col="red")

0.
0

0.
5

1.
0

1.
5

0

x x

x x

a = 2 b = 0.5 a = 0.5 b = 0.5

a = 2 b = 3 a = 0.5 b = 2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

2
4

6

0
2

4
fx

6
1.

0
1.

5
2.

0
2.

5
3.

0
fx

fx
fx

The important point is whether the parameters are greater or less than 1. When both are greater than 1 we get
an n-shaped curve which becomes more skew as b > a (top left). If 0 < a < 1 and b > 1 then the slope of the
density is negative (top right), while for a > 1 and 0 < b < 1 the slope of the density is positive (bottom left).
The function is U-shaped when both a and b are positive fractions. If a = b = 1, then we obtain the uniform
distribution on [0,1].

298 THE R BOOK

Here are 10 random numbers from the beta distribution with shape parameters 2 and 3:

rbeta(10,2,3)

[1] 0.2908066 0.1115131 0.5217944 0.1691430 0.4456099
[6] 0.3917639 0.6534021 0.3633334 0.2342860 0.6927753

7.3.13 The Cauchy distribution

This is a long-tailed two-parameter distribution, characterized by a location parameter a and a scale parameter
b. It is real-valued, symmetric about a (which is also its median), and is a curiosity in that it has long enough
tails that the expectation does not exist – indeed, it has no moments at all (it often appears in counter-examples
in maths books). The harmonic mean of a variable with positive density at 0 is typically distributed as Cauchy,
and the Cauchy distribution also appears in the theory of Brownian motion (e.g. random walks). The general
form of the distribution is

f (x) = 1

πb(1 + ((x − a)/b)2)
,

for –∞ < x < ∞. There is also a one-parameter version, with a = 0 and b = 1, which is known as the
standard Cauchy distribution and is the same as Student’s t distribution with one degree of freedom:

f (x) = 1

π (1 + x2)
,

for –∞ < x < ∞.

windows(7,4)
par(mfrow=c(1,2))
plot(-200:200,dcauchy(-200:200,0,10),type="l",ylab="p(x)",xlab="x",
col="red")
plot(-200:200,dcauchy(-200:200,0,50),type="l",ylab="p(x)",xlab="x",
col="red")

0.
00

0
0.

01
0

0.
02

0

p(
x)

0.
03

0

0.
00

1

–200 –100 0 100 200–200 –100 0
xx

100 200

0.
00

3
0.

00
5

p(
x)

MATHEMATICS 299

Note the very long, fat tail of the Cauchy distribution. The left-hand density function has scale = 10 and the
right hand plot has scale = 50; both have location = 0.

7.3.14 The lognormal distribution

The lognormal distribution takes values on the positive real line. If the logarithm of a lognormal deviate is
taken, the result is a normal deviate, hence the name. Applications for the lognormal include the distribution
of particle sizes in aggregates, flood flows, concentrations of air contaminants, and failure times. The hazard
function of the lognormal is increasing for small values and then decreasing. A mixture of heterogeneous
items that individually have monotone hazards can create such a hazard function.

Density, cumulative probability, quantiles and random generation for the lognormal distribution employ
the functions dlnorm, plnorm, qlnorm and rlnorm. Here, for instance, is the density function:
dlnorm(x, meanlog=0, sdlog=1). The mean and standard deviation are optional, with default
meanlog = 0 and sdlog = 1. Note that these are not the mean and standard deviation; the lognormal
distribution has meaneµ+σ 2/2, variance (eσ 2 − 1)e2 µ+σ 2

, skewness (eσ 2 + 2)
√

eσ 2 − 1 and kurtosis e4σ 2 +
2e3σ 2 + 3e2σ 2 − 6.

windows(7,7)

plot(seq(0,10,0.05),dlnorm(seq(0,10,0.05)),

type="l",xlab="x",ylab="LogNormal f(x)",col="x")

0.
0

0.
1

0.
2

0.
3

Lo
gN

or
m

al
 f(

x) 0.
4

0.
5

0.
6

0 2 4 6
x

8 10

The extremely long tail and exaggerated positive skew are characteristic of the lognormal distribution.
Logarithmic transformation followed by analysis with normal errors is often appropriate for data such as
these.

300 THE R BOOK

7.3.15 The logistic distribution

The logistic is the canonical link function in generalized linear models with binomial errors and is described
in detail in Chapter 16 on the analysis of proportion data. The cumulative probability is a symmetrical S-
shaped distribution that is bounded above by 1 and below by 0. There are two ways of writing the cumulative
probability equation:

p(x) = ea+bx

1 + ea+bx

and

p(x) = 1

1 + βe−αx

The great advantage of the first form is that it linearizes under the log-odds transformation (see p. 630) so
that

ln

(
p

q

)
= a + bx,

where p is the probability of success and q = 1 – p is the probability of failure. The logistic is a unimodal,
symmetric distribution on the real line with tails that are longer than the normal distribution. It is often used to
model growth curves, but has also been used in bioassay studies and other applications. A motivation for using
the logistic with growth curves is that the logistic distribution function f(x) has the property that the derivative
of f(x) with respect to x is proportional to [f(x) – A][B – f(x)] with A < B. The interpretation is that the rate of
growth is proportional to the amount already grown, times the amount of growth that is still expected.

windows(7,4)
par(mfrow=c(1,2))
plot(seq(-5,5,0.02),dlogis(seq(-5,5,.02)),
type="l",main="Logistic",col="red",xlab="x",ylab="p(x)")
plot(seq(-5,5,0.02),dnorm(seq(-5,5,.02)),
type="l",main="Normal",col="red",xlab="x",ylab="p(x)")

0.
00 0.

0
0.

1
0.

2
0.

3
0.

4

0.
10

p(
x)

p(
x)

0.
20

–4 –2 0 2 4 –4 –2 0
x x

2 4

Logistic Normal

MATHEMATICS 301

Here, the logistic density function dlogis (left) is compared with an equivalent normal density function
dnorm (right) using the default mean 0 and standard deviation 1 in both cases. Note the much fatter tails of
the logistic (there is still substantial probability at ± 4 standard deviations). Note also the difference in the
scales of the two y axes (0.25 for the logistic, 0.4 for the normal).

7.3.16 The log-logistic distribution

The log-logistic is a very flexible four-parameter model for describing growth or decay processes:

y = a + b

[
exp(c(log(x) − d)

1 + exp(c(log(x) − d)

]
.

Here are two cases. The first is a negative sigmoid with c = –1.59 and a = –1.4:

windows(7,4)
par(mfrow=c(1,2))
x <- seq(0.1,1,0.01)
y <- -1.4+2.1*(exp(-1.59*log(x)-1.53)/(1+exp(-1.59*log(x)-1.53)))
plot(log(x),y,type="l", main="c = -1.59", col="red")

For the second we have c = 1.59 and a = 0.1:

y <- 0.1+2.1*(exp(1.59*log(x)-1.53)/(1+exp(1.59*log(x)-1.53)))
plot(log(x),y,type="l",main="c = 1.59",col="red")

–1
.0

–0
.5

0.
0

0.
1

0.
2

0.
3

yy

0.
4

0.
5

–2.0 –1.5 –1.0
log(x) log(x)

c = –1.59 c = 1.59

–0.5 0.0 –2.0 –1.5 –1.0 –0.5 0.0

7.3.17 The Weibull distribution

The origin of the Weibull distribution is in weakest link analysis. If there are r links in a chain, and the
strengths of each link Zi are independently distributed on (0, ∞), then the distribution of weakest link V =
min(Zj) approaches the Weibull distribution as the number of links increases.

The Weibull is a two-paramter model that has the exponential distribution as a special case. Its value
in demographic studies and survival analysis is that it allows for the death rate to increase or to decrease
with age, so that all three types of survivorship curve can be analysed (as explained on p. 872). The density,

302 THE R BOOK

survival and hazard functions with λ = µ–α are:

f (t) = αλtα−1e−λtα

,

S(t) = e−λtα

,

h(t) = f (t)
S(t) = αλtα−1.

The mean of the Weibull distribution is �(1 + α−1)µ and the variance is µ2(�(1 + 2/α) − (�(1 + 1/α))2),
and the parameter α describes the shape of the hazard function (the background to determining the likelihood
equations is given by Aitkin et al., 2009). For α = 1 (the exponential distribution) the hazard is constant,
while for α > 1 the hazard increases with age and for α < 1 the hazard decreases with age.

Because the Weibull, lognormal and log-logistic all have positive skewness, it is difficult to discriminate
between them with small samples. This is an important problem, because each distribution has differently
shaped hazard functions, and it will be hard, therefore, to discriminate between different assumptions about
the age-specificity of death rates. In survival studies, parsimony requires that we fit the exponential rather
than the Weibull unless the shape parameter α is significantly different from 1.

Here is a family of three Weibull distributions with α = 1, 2 and 3 (red, green and blue lines, respectively):

windows(7,7)
a <- 3
l <- 1
t <- seq(0,1.8,.05)
ft <- a*l*tˆ(a-1)*exp(-l*tˆa)
plot(t,ft,type="l",col="blue",ylab="f(t) ")
a <- 1
ft <- a*l*tˆ(a-1)*exp(-l*tˆa)
lines(t,ft,type="l",col="red")
a <- 2
ft <- a*l*tˆ(a-1)*exp(-l*tˆa)
lines(t,ft,type="l",col="green")
legend(1.4,1.1,c("1","2","3"),title="alpha",lty=c(1,1,1),col=c(2,3,4))

0.
0

0.
2

0.
4

0.
6

f(
t)

0.
8

1.
0

1.
2

0.0 0.5 1.0
t

1.5

alpha

1
2
3

MATHEMATICS 303

Note that for large values of α the distribution becomes symmetrical, while for α ≤ 1 the distribution has its
mode at t = 0.

7.3.18 Multivariate normal distribution

If you want to generate two (or more) vectors of normally distributed random numbers that are correlated
with one another to a specified degree, then you need the mvrnorm function from the MASS library:

library(MASS)

Suppose we want two vectors of 1000 random numbers each. The first vector has a mean of 50 and the
second has a mean of 60. The difference from rnorm is that we need to specify their covariance as well as
the standard deviations of each separate variable. This is achieved with a positive-definite symmetric matrix
specifying the covariance matrix of the variables.

xy <- mvrnorm(1000,mu=c(50,60),matrix(c(4,3.7,3.7,9),2))

We can check how close the variances are to our specified values:

var(xy)

[,1] [,2]
[1,] 3.849190 3.611124
[2,] 3.611124 8.730798

Not bad: we said the covariance should be 3.70 and the simulated data are 3.611 124. We extract the two
separate vectors x and y and plot them to look at the correlation:

x <- xy[,1]
y <- xy[,2]
plot(x,y,pch=16,ylab="y",xlab="x",col="blue")

55
60

y
65

70

44 46 48 50
x

52 54 56

304 THE R BOOK

It is worth looking at the variances of x and y in more detail:

var(x)

[1] 3.84919

var(y)

[1] 8.730798

If the two samples were independent, then the variance of the sum of the two variables would be equal to the
sum of the two variances. Is this the case here?

var(x+y)

[1] 19.80224

var(x)+var(y)

[1] 12.57999

No it is not. The variance of the sum (19.80) is much greater than the sum of the variances (12.58). This is
because x and y are positively correlated; big values of x tend to be associated with big values of y and vice
versa. This being so, we would expect the variance of the difference between x and y to be less than the sum
of the two variances:

var(x-y)

[1] 5.357741

As predicted, the variance of the difference (5.36) is much less than the sum of the variances (12.58). We
conclude that the variance of a sum of two variables is only equal to the variance of the difference of two
variables when the two variables are independent. What about the covariance of x and y? We found this
already by applying the var function to the matrix xy (above). We specified that the covariance should be 3.70
in calling the multivariate normal distribution, and the difference between 3.70 and 3.611 124 is simply due
to the random selection of points. The covariance is related to the separate variances through the correlation
coefficient ρ as follows (see p. 373):

cov(x, y) = ρ

√
s2

x s2
y .

For our example, this checks out as follows, where the sample value of ρ is cor(x,y):

cor(x,y)*sqrt(var(x)*var(y))

[1] 3.611124

which is our observed covariance between x and y with ρ = 0.622 917 8.

7.3.19 The uniform distribution

This is the distribution that the random number generator in your calculator hopes to emulate. The idea
is to generate numbers between 0 and 1 where every possible real number on this interval has exactly the
same probability of being produced. If you have thought about this, it will have occurred to you that there is
something wrong here. Computers produce numbers by following recipes. If you are following a recipe then
the outcome is predictable. If the outcome is predictable, then how can it be random? As John von Neumann

MATHEMATICS 305

once said: ‘Anyone who uses arithmetic methods to produce random numbers is in a state of sin.’ This
raises the question as to what, exactly, a computer-generated random number is. The answer turns out to be
scientifically very interesting and very important to the study of encryption (for instance, any pseudorandom
number sequence generated by a linear recursion is insecure, since, from a sufficiently long subsequence of
the outputs, one can predict the rest of the outputs). If you are interested, look up the Mersenne twister
online. Here we are only concerned with how well the modern pseudorandom number generator performs.
Here is the outcome of the R function runif simulating the throwing of a six-sided die 10 000 times: the
histogram ought to be flat:

x <- ceiling(runif(10000)*6)
table(x)

x
1 2 3 4 5 6

1680 1668 1654 1622 1644 1732

hist(x,breaks=0.5:6.5,main="")

0
50

0
F

re
qu

en
cy 10

00
15

00

1 2 3
x

4 5 6

This is remarkably close to theoretical expectation, reflecting the very high efficiency of R’s random-number
generator. Try mapping 1 000 000 points to look for gaps:

x <- runif(1000000)
y <- runif(1000000)
plot(x,y,pch=".",col="blue")

306 THE R BOOK

0.
0

0.
2

0.
4

0.
6

y
0.

8
1.

0

0.0 0.2 0.4
x

0.6 0.8 1.0

The scatter of unfilled space (white dots amongst the sea produced by 1 000 000 blue dots pch=".") shows
no evidence of clustering. For a more thorough check we can count the frequency of combinations of numbers:
with 36 cells, the expected frequency is 1 000 000/36 = 27 777.78 numbers per cell. We use the cut function
to produce 36 bins:

table(cut(x,6),cut(y,6))

(-0.001,0.166] (0.166,0.333] (0.333,0.5] (0.5,0.667] (0.667,0.834] (0.834,1]
(-0.000997,0.166] 27667 28224 27814 27601 27592 27659
(0.166,0.333] 27604 27790 27922 27687 27990 27701
(0.333,0.5] 27951 27668 27683 27773 27999 27959
(0.5,0.667] 27550 27767 27951 27912 27619 27577
(0.667,0.834] 27527 28106 27868 28262 27804 27460
(0.834,1] 27617 27662 27863 27867 27727 27577

As you can see the observed frequencies are remarkably close to expectation:

range(table(cut(x,6),cut(y,6)))

[1] 27460 28262

None of the cells contained fewer than 27 460 random points, and none more than 28 262.

7.3.20 Plotting empirical cumulative distribution functions

The function ecdf is used to compute or plot an empirical cumulative distribution function. Here it is in
action for the fishes data (p. 286 and 296):

fishes <- read.table("c:\\temp\\fishes.txt",header=T)
attach(fishes)
names(fishes)

[1] "mass"

plot(ecdf(mass))

MATHEMATICS 307

0.
0

0.
2

0.
4

F
n(

x)
0.

6
0.

8
1.

0

ecdf(mass)

0 5
x

10 15

The pronounced positive skew in the data is evident from the fact that the left-hand side of the cumulative
distribution is much steeper than the right-hand side (and see p. 350).

7.4 Discrete probability distributions

7.4.1 The Bernoulli distribution

This is the distribution underlying tests with a binary response variable. The response takes one of only two
values: it is 1 with probability p (a ‘success’) and is 0 with probability 1 – p (a ‘failure’). The density function
is given by:

p(X) = px (1 − p)1−x

The statistician’s definition of variance is the expectation of x2 minus the square of the expectation of x:
σ 2 = E(X2) − [E(X)]2. We can see how this works with a simple distribution like the Bernoulli. There are
just two outcomes in f(x): a success, where x = 1 with probability p and a failure, where x = 0 with probability
1 – p. Thus, the expectation of x is

E(X) =
∑

x f (x) = 0 × (1 − p) + 1 × p = 0 + p = p

and the expectation of x2 is

E(X2) =
∑

x2 f (x) = 02 × (1 − p) + 12 × p = 0 + p = p,

308 THE R BOOK

so the variance of the Bernoulli distribution is

var(X) = E(X2) − [E(X)]2 = p − p2 = p(1 − p) = pq.

7.4.2 The binomial distribution

This is a one-parameter distribution in which p describes the probability of success in a binary trial. The
probability of x successes out of n attempts is given by multiplying together the probability of obtaining one
specific realization and the number of ways of getting that realization.

We need a way of generalizing the number of ways of getting x items out of n items. The answer is the
combinatorial formula

(
n
x

)
= n!

x!(n − x)!
,

where the ‘exclamation mark’ means ‘factorial’. For instance, 5! = 5 × 4 × 3 × 2 = 120. This formula
has immense practical utility. It shows you at once, for example, how unlikely you are to win the National
Lottery in which you are invited to select six numbers between 1 and 49. We can use the built-in factorial
function for this,

factorial(49)/(factorial(6)*factorial(49-6))

[1] 13983816

which is roughly a 1 in 14 million chance of winning the jackpot. You are more likely to die between buying
your ticket and hearing the outcome of the draw. As we have seen (p. 17), there is a built-in R function for
the combinatorial function,

choose(49,6)

[1] 13983816

and we use the choose function from here on.
The general form of the binomial distribution is given by

p(x) =
(

n
x

)
px (1 − p)n−x ,

using the combinatorial formula above. The mean of the binomial distribution is np and the variance is
np(1 – p).

Since 1 – p is less than 1 it is obvious that the variance is less than the mean for the binomial distribution
(except, of course, in the trivial case when p = 0 and the variance is 0). It is easy to visualize the distribution
for particular values of n and p.

p <- 0.1
n <- 4
x <- 0:n
px <- choose(n,x)*pˆx*(1-p)ˆ(n-x)
barplot(px,names=x,xlab="outcome",ylab="probability",col="green")

MATHEMATICS 309

0.
0

0.
1

0.
2

0.
3

pr
ob

ab
ili

ty 0.
4

0.
5

0.
6

0 1 2

outcome

3 4

The four distribution functions available for the binomial in R (density, cumulative probability, quantiles
and random generation) are used like this. The density function dbinom(x, size, prob) shows the
probability for the specified count x (e.g. the number of parasitized fish) out of a sample of n = size, with
probability of success = prob. So if we catch four fish when 10% are parasitized in the parent population,
we have size = 4 and prob = 0.1, (as illustrated above). Much the most likely number of parasitized
fish in our sample is 0.

The cumulative probability shows the sum of the probability densities up to and including p(x), plotting
cumulative probability against the number of successes, for a sample of n = size and probability = prob.
Our fishy plot looks like this:

barplot(pbinom(0:4,4,0.1),names=0:4,xlab="parasitized fish",

ylab="probability",col="red")

0.
0

0.
2

0.
4

0.
6

pr
ob

ab
ili

ty

0.
8

1.
0

0 1 2
parasitized fish

3 4

310 THE R BOOK

This shows that the probability of getting 2 or fewer parasitized fish out of a sample of 4 is very close to 1.
Note that you can generate the series inside the density function (0:4).

To obtain a confidence interval for the expected number of fish to be caught in a sample of n = size and
a probability = prob, we need qbinom, the quantile function for the binomial. The lower and upper limits
of the 95% confidence interval are

qbinom(.025,4,0.1)

[1] 0

qbinom(.975,4,0.1)

[1] 2

This means that with 95% certainty we shall catch between 0 and 2 parasitized fish out of 4 if we repeat the
sampling exercise. We are very unlikely to get 3 or more parasitized fish out of a sample of 4 if the proportion
parasitized really is 0.1.

This kind of calculation is very important in power calculations in which we are interested in determining
whether or not our chosen sample size (n = 4 in this case) is capable of doing the job we ask of it. Suppose
that the fundamental question of our survey is whether or not the parasite is present in a given lake. If we find
one or more parasitized fish then the answer is clearly ‘yes’. But how likely are we to miss out on catching
any parasitized fish and hence of concluding, wrongly, that the parasites are not present in the lake? With our
sample size of n = 4 and p = 0.1 we have a probability of missing the parasite of 0.9 for each fish caught
and hence a probability of 0.94 = 0.6561 of missing out altogether on finding the parasite. This is obviously
unsatisfactory. We need to think again about the sample size. What is the smallest sample, n, that makes the
probability of missing the parasite altogether less than 0.05?

We need to solve

0.05 = 0.9n .

Taking logs,

log (0.05) = n log (0.9),

so

n = log(0.05)

log(0.9)
= 28.433 16

which means that to make our journey worthwhile we should keep fishing until we have found more than 28
unparasitized fishes, before we reject the hypothesis that parasitism is present at a rate of 10%. Of course, it
would take a much bigger sample to reject a hypothesis of presence at a substantially lower rate.

Random numbers are generated from the binomial distribution like this. The first argument is the number
of random numbers we want. The second argument is the sample size (n = 4) and the third is the probability
of success (p = 0.1).

rbinom(10,4,0.1)

[1] 0 0 0 0 0 1 0 1 0 1

Here we repeated the sampling of 4 fish ten times. We got 1 parasitized fish out of 4 on three occasions, and 0
parasitized fish on the remaining seven occasions. We never caught 2 or more parasitized fish in any of these
samples of 4.

MATHEMATICS 311

7.4.3 The geometric distribution

Suppose that a series of independent Bernoulli trials with probability p are carried out at times 1, 2, 3,
Now let W be the waiting time until the first success occurs. So

P(W > x) = (1 − p)x ,

which means that

P(W = x) = P(W > x − 1) − P(W > x).

The density function, therefore, is

f (x) = p(1 − p)x−1.

fx <- dgeom(0:20,0.2)
barplot(fx,names=0:20,xlab="outcome",ylab="probability",col="cyan")

0.
00

0.
05

0.
10

pr
ob

ab
ili

ty

0.
15

0.
20

0
outcome

1 2 3 4 5 6 7 8 9 1110 1312 1514 1716 19 2018

For the geometric distribution,

� the mean is 1−p
p ,

� the variance is 1−p
p2 .

312 THE R BOOK

The geometric has a very long tail. Here are 100 random numbers from a geometric distribution with p =
0.1: the modes are 0 and 1, but outlying values as large as 33 and 44 have been generated:

table(rgeom(100,0.1))

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 21 22 24 28 29 31 33 44
14 14 8 5 1 13 3 5 3 5 2 5 3 2 3 1 1 2 1 1 2 2 1 1 1 1

7.4.4 The hypergeometric distribution

‘Balls in urns’ are the classic sort of problem solved by this distribution. The density function of the
hypergeometric is

f (x) =

(
b
x

)(
N − b
n − x

)
(

N
n

) .

Suppose that there are N coloured balls in the statistician’s famous urn: b of them are blue and r = N – b of
them are red. Now a sample of n balls is removed from the urn; this is sampling without replacement. Now
f(x) gives the probability that x of these n balls are blue.

The built-in functions for the hypergeometric are used like this: dhyper(q,b,r,n) and rhy-
per(m,b,r,n). Here

� q is a vector of values of a random variable representing the number of blue balls out of a sample of size
n drawn from an urn containing b blue balls and r red ones.

� b is the number of blue balls in the urn. This could be a vector with non-negative integer elements.

� r is the number of red balls in the urn = N – b. This could also be a vector with non-negative integer
elements.

� n number of balls drawn from an urn with b blue and r red balls. This can be a vector like b and r.

� p vector of probabilities with values between 0 and 1.

� m the number of hypergeometrically distributed random numbers to be generated.

Let the urn contain N = 20 balls, of which 6 are blue and 14 are red. We take a sample of n = 5 balls so x
could be 0, 1, 2, 3, 4 or 5 of them blue, but since the proportion blue is only 6/20 the higher frequencies are
most unlikely. Our example is evaluated like this:

ph <- dhyper(0:5,6,14,5)

barplot(ph,names=(0:5),col="red",xlab="outcome",ylab="probability")

MATHEMATICS 313

0.
0

0.
1

0.
2

pr
ob

ab
ili

ty

0.
3

0 1 2
outcome

3 4 5

We are very unlikely to get more than 3 red balls out of 5. The most likely outcome is that we get 1 or 2
red balls out of 5. We can simulate a set of Monte Carlo trials of size 5. Here are the numbers of red balls
obtained in 20 realizations of our example:

rhyper(20,6,14,5)

[1] 1 1 1 2 1 2 0 1 3 2 3 0 2 0 1 1 2 1 1 2

The binomial distribution is a limiting case of the hypergeometric which arises as N, b and r approach
infinity in such a way that b/N approaches p, and r/N approaches 1 – p (see p. 308). This is because as
the numbers get large, the fact that we are sampling without replacement becomes irrelevant. The binomial
distribution assumes sampling with replacement from a finite population, or sampling without replacement
from an infinite population.

7.4.5 The multinomial distribution

Suppose that there are t possible outcomes from an experimental trial, and the outcome i has probability pi.
Now allow n independent trials where n = n1 + n2 + . . . + nt and ask what is the probability of obtaining
the vector of Ni occurrences of the ith outcome:

P(Ni = ni) = n!

n1!n2!n3! . . . nt !
pn1

1 pn2
2 pn3

3 . . . pnt
t ,

where i goes from 1 to t. Take an example with three outcomes, (say black, red and blue, so t = 3), where the
first outcome is twice as likely as the other two (p1 = 0.5, p2 = 0.25, p3 = 0.25), noting that the probabilities
sum to 1. It is sensible to start by writing a function called multi to carry out the calculations for any
numbers of successes a, b and c (black, red and blue, respectively) given our three probabilities (above):

multi <- function(a,b,c) {
factorial(a+b+c)/(factorial(a)*factorial(b)*factorial(c))*0.5ˆa*0.25ˆb*0.25ˆc}

314 THE R BOOK

We illustrate just one case, in which the third outcome (blue) is fixed at four successes out of 24 trials. This
means that the first and second outcomes must add to 24 – 4 = 20. We plot the probability of obtaining
different numbers of blacks from 0 to 20:

barplot(sapply(0:20,function (i) multi(i,20-i,4)),names=0:20,cex.names=0.7,

xlab="outcome",ylab="probability",col="yellow")

The most likely outcome for this example is that we would get 13 or 14 successes of type 1 (black) in a trial of
size = 24 with probabilities 0.5, 0.25 and 0.25 for the three types of outcome, when the number of successes
of the third case was 4 out of 24. Note the use of cex.names=0.7 to make the labels sufficiently small that
all of the bars are given outcome names.

7.4.6 The Poisson distribution

This is one of the most useful and important of the discrete probability distributions for describing count data.
We know how many times something happened (e.g. kicks from cavalry horses, lightening strikes, bomb
hits), but we have no way of knowing how many times it did not happen. The Poisson is a one-parameter
distribution with the interesting property that its variance is equal to its mean. A great many processes show
variance increasing with the mean, often faster than linearly (see the negative binomial distribution below).
The density function of the Poisson shows the probability of obtaining a count of x when the mean count per
unit is λ:

p(x) = e−λλx

x!
.

The zero term of the Poisson (the probability of obtaining a count of zero) is obtained by setting x = 0:

p(0) = e−λ,

which is simply the antilog of minus the mean. Given p(0), it is clear that p(1) is just

p(1) = p(0)λ = λe−λ,

and any subsequent probability is readily obtained by multiplying the previous probability by the mean and
dividing by the count,

p(x) = p(x − 1)
λ

x
.

Functions for the density, cumulative distribution, quantiles and random number generation of the Poisson
distribution are obtained by dpois(x, lambda), ppois(q, lambda), qpois(p, lambda)
and rpois(n, lambda), where lambda is the mean count per sample.

The Poisson distribution holds a central position in three quite separate areas of statistics:

� in the description of random spatial point patterns (see p. 838);

� as the frequency distribution of counts of rare but independent events (see p. 314);

� as the error distribution in GLMs for count data (see p. 579).

MATHEMATICS 315

If we wanted 600 simulated counts from a Poisson distribution with a mean of, say, 0.90 blood cells per
slide, we just type:

count <- rpois(600,0.9)

We can use table to see the frequencies of each count generated:

table(count)

count
0 1 2 3 4 5

244 212 104 33 6 1

or hist to see a histogram of the counts:

hist(count,breaks = - 0.5:6.5,main="")

0
50

10
0

F
re

qu
en

cy

15
0

20
0

0 1 2
count

3 4 5 6

Note the use of the vector of break points on integer increments from –0.5 to create integer bins for the
histogram bars.

7.4.7 The negative binomial distribution

This discrete, two-parameter distribution is useful for describing the distribution of count data, where the
variance is often much greater than the mean. The two parameters are the mean µ and the clumping parameter
k, given by

k = µ2

σ 2 − µ

316 THE R BOOK

The smaller the value of k, the greater the degree of clumping. The density function is

p(x) =
(

1 + µ

k

)−k (k + x − 1)!

x!(k − 1)!

(
µ

µ + k

)x

.

The zero term is found by setting x = 0 and simplifying:

p(0) =
(

1 + µ

k

)−k
.

Successive terms in the distribution can then be computed iteratively from

p(x) = p(x − 1)

(
k + x − 1

x

) (
µ

µ + k

)
.

An initial estimate of the value of k can be obtained from the sample mean and variance,

k ≈ x̄2

s2 − x̄
.

Since k cannot be negative, it is clear that the negative binomial distribution should not be fitted to data where
the variance is less than the mean.

The maximum likelihood estimate of k is found numerically, by iterating progressively more fine-tuned
values of k until the left- and right-hand sides of the following equation are equal:

n ln
(

1 + µ

k

)
=

max∑
x=0

(
A(x)

k + x

)

where the vector A(x) contains the total frequency of values greater than x. You could write a function to
work out the probability densities like this:

negbin <- function(x,u,k)

(1+u/k)ˆ(-k)*(u/(u+k))ˆx*gamma(k+x)/(factorial(x)*gamma(k))

then use the function to produce a barplot of probability densities for a range of x values (say 0 to 10), for a
distribution with specified mean and aggregation parameter (say µ = 0.8, k = 0.2) like this:

xf <- sapply(0:10, function(i) negbin(i,0.8,0.2))

barplot(xf,names=0:10,xlab="count",ylab="probability density",col="green")

MATHEMATICS 317

0.
0

0.
1

0.
2

0.
3

pr
ob

ab
ili

ty
 d

en
si

ty
0.

4
0.

5
0.

6
0.

7

0 1 2 3 4 5 6 7 8 9 10
count

There is another, quite different way of looking at the negative binomial distribution. Here, the response
variable is the waiting time Wr for the rth success:

f (x) =
(

x − 1
r − 1

)
pr (1 − p)x−r .

It is important to realize that x starts at r and increases from there (obviously, the rth success cannot occur
before the rth attempt). The density function dnbinom(x, size, prob) represents the number of
failures x (e.g. tails in coin tossing) before size successes (or heads in coin tossing) are achieved, when the
probability of a success (a head) is prob.

Suppose we are interested in the distribution of waiting times until the fifth success occurs in a negative
binomial process with p = 0.1. We start the sequence of x values at 5:

plot(5:100,dnbinom(5:100,5,0.1),type="s",xlab="x",ylab="f(x)")

0.
00

0
0.

00
5

0.
01

0

f(
x)

0.
01

5
0.

02
0

20 40 60
x

80 100

318 THE R BOOK

This shows that the most likely waiting time for the 5th success, when the probability of a success is 1/10, is
about 31 trials after the fifth trial. Note that the negative binomial distribution is quite strongly skew to the right.

It is easy to generate negative binomial data using the random number generator: rnbinom(n, size,
prob). The number of random numbers required is n. When the second parameter, size, is set to 1 the
distribution becomes the geometric (see above). The final parameter, prob, is the probability of success per
trial, p. Here we generate 100 counts with a mean of 0.6:

count <- rnbinom(100,1,0.6)

We can use table to see the frequency of the different counts:

table(count)

0 1 2 3 5 6
65 18 13 2 1 1

It is sensible to check that the mean really is 0.6 (or very close to it):

mean(count)

[1] 0.61

The variance will be substantially greater than the mean:

var(count)

[1] 1.129192

This gives an estimate of k of

0.612

1.129 − 0.61
= 0.717.

The following data show the number of spores counted on 238 buried glass slides. We are interested in
whether these data are well described by a negative binomial distribution. If they are we would like to find
the maximum likelihood estimate of the aggregation parameter k.

x <- 0:12

freq <- c(131,55,21,14,6,6,2,0,0,0,0,2,1)

barplot(freq,names=x,ylab="frequency",xlab="spores",col="purple")

MATHEMATICS 319

0
20

40
60fr
eq

ue
nc

y 80
10

0
12

0

0 1 2 3 4 5 6 7 8 9 10 11 12
spores

We start by looking at the variance–mean ratio of the counts. We cannot use mean and variance directly,
because our data are frequencies of counts, rather than counts themselves. This is easy to rectify: we use rep
to create a vector of counts y in which each count (x) is repeated the relevant number of times (freq). Now
we can use mean and var directly:

y <- rep(x,freq)
mean(y)

[1] 1.004202

var(y)

[1] 3.075932

This shows that the data are highly aggregated (the variance–mean ratio is roughly 3, recalling that it would
be 1 if the data were Poisson distributed). Our rough estimate of k is therefore

mean(y)ˆ2/(var(y)-mean(y))
[1] 0.4867531

Here is a function that takes a vector of frequencies of counts x (between 0 and length(x) − 1) and
computes the maximum likelihood estimate of k, the aggregation parameter:

kfit <- function(x) {
lhs <- numeric()
rhs <- numeric()
y <- 0:(length(x) - 1)
j <- 0:(length(x)-2)
m <- sum(x * y)/(sum(x))
s2 <- (sum(x * yˆ2) - sum(x * y)ˆ2/sum(x))/(sum(x)- 1)
k1 <- mˆ2/(s2 - m)
a <- numeric(length(x)-1)

320 THE R BOOK

for(i in 1:(length(x) - 1)) a[i] <- sum(x [- c(1:i)])
i <- 0
for (k in seq(k1/1.2,2*k1,0.001)) {
i <- i+1
lhs[i] <- sum(x) * log(1 + m/k)
rhs[i] <- sum(a/(k + j))

}
k <- seq(k1/1.2,2*k1,0.001)
plot(k, abs(lhs-rhs),xlab="k",ylab="Difference",type="l",col="red")
d <- min(abs(lhs-rhs))
sdd <- which(abs(lhs-rhs)==d)
k[sdd]

}
We can try it out with our spore count data.

kfit(freq)

[1] 0.5826276

0
5

10
15

D
iff

er
en

ce
20

25

0.4 0.5 0.6 0.7 0.8 0.9
k

The minimum difference is close to zero and occurs at about k = 0.58. The printout shows that the maximum
likelihood estimate of k is 0.582 (to the 3 decimal places we simulated; the last 4 decimals (6276) are
meaningless and would not be printed in a more polished function).

How would a negative binomial distribution with a mean of 1.0042 and a k value of 0.582 describe our
count data? The expected frequencies are obtained by multiplying the probability density (above) by the total
sample size (238 slides in this case).

nb <- 238*(1+1.0042/0.582)ˆ(-0.582)*factorial(.582+(0:12)-1)/
(factorial(0:12)*factorial(0.582-1))*(1.0042/(1.0042+0.582))ˆ(0:12)

We shall compare the observed and expected frequencies usingbarplot. We intend to alternate the observed
and expected frequencies. There are three steps to the procedure:

� Concatenate the observed and expected frequencies in an alternating sequence.

MATHEMATICS 321

� Create list of labels to name the bars (alternating blanks and counts).

� Produce a legend to describe the different bar colours.

The concatenated list of frequencies (called both) is made like this, putting the 13 observed counts (freq)
in the odd-numbered bars and the 13 expected counts (nb) in the even-numbered bars (note the use of modulo
%% to do this):

both <- numeric(26)

both[1:26 %% 2 != 0] <- freq

both[1:26 %% 2 == 0] <- nb

Because adjacent blue and green bars refer to the same count (the observed and expected frequencies) we do
not want to use barplot’s built-in names argument for labelling the bars (it would want to write a label on
every bar, 26 labels in all). Instead, we want to write the count just once for each pair of bars, located beneath
the observed and (green) bars, using as.character(0:12). The trick is to produce a vector of length
26 containing the repeated bar labels, then replace the even-numbered entries with blanks like this (using
modulo to pick out the even numbers):

labs <- as.character(rep(0:12,each=2))

labs[1:26%%2==0] <- ""

Now we can draw the combined barplot specifying cex.names=0.8 to ensure that all the bar labels
are small enough to be printed:

barplot(both,col=rep(c(3,4),13),ylab="frequency",names=labs,cex.names=0.8)

The legend function creates a legend to show which bars represent the observed frequencies (black in this
case) and which represent the expected, negative binomial frequencies (open bars). Just click when the cursor
is in the position where you want the top left-hand corner of the legend box to be:

legend(locator(1),c("observed","expected"),fill=c(3,4))

0
20

40
60fr
eq

ue
nc

y 80
10

0
12

0

0 1 2 3 4 5 6 7 8 9 10 11 12

observed
expected

322 THE R BOOK

The fit is very close, so we can be reasonably confident in describing the observed counts as negative binomially
distributed. The tail of the observed distribution is rather fatter than the expected negative binomial tail, so
we might want to measure the lack of fit between observed and expected distributions. A simple way to do
this is to use Pearson’s chi-squared, taking care to use only those cases where the expected frequency nb is
greater than 5:

sum(((freq-nb)ˆ2/nb)[nb > 5])

[1] 1.634975

This is based on five legitimate comparisons,

sum(nb>5)

[1] 5

and hence on 5 – p – 1 = 2 d.f. because we have estimated p = 2 parameters from the data in estimating
the expected distribution (the mean and k of the negative binomial) and lost one degree of freedom for
contingency (the total number of counts must add up to 238). Our calculated value of chi-squared = 1.63 is
much less than the value in tables:

qchisq(0.95,2)

[1] 5.991465

so we accept the hypothesis that our data are not significantly different from a negative binomial with mean
= 1.0042 and k = 0.582.

7.4.8 The Wilcoxon rank-sum statistic

This function calculates the distribution of the Wilcoxon rank-sum statistic (also known as Mann–Whitney),
and returns values for the exact probability at discrete values of q: dwilcox(q, m, n). Here q is a vector
of quantiles, m is the number of observations in sample x (a positive integer not greater than 50), and n is
the number of observations in sample y (also a positive integer not greater than 50). The Wilcoxon rank-sum
statistic is the sum of the ranks of x in the combined sample c(x,y). The Wilcoxon rank-sum statistic takes
on values W between the limits

m(m + 1)

2
≤ W ≤ m(m + 2n + 1)

2
.

This statistic can be used for a non-parametric test of location shift between the parent populations x and y.

7.5 Matrix algebra

There is a comprehensive set of functions for handling matrices in R. We begin with a matrix called a that has
three rows and two columns. Data are typically entered into matrices columnwise, so the first three numbers
(1, 0, 4) go in column 1 and the second three numbers (2, –1, 1) go in column 2:

a <- matrix(c(1,0,4,2,-1,1),nrow=3)
a

[,1] [,2]
[1,] 1 2

MATHEMATICS 323

[2,] 0 -1
[3,] 4 1

Our second matrix, called b, has the same number of columns as A has rows (i.e. three in this case). Entered
columnwise, the first two numbers (1, –1) go in column 1, the second two numbers (2, 1) go in column 2, and
the last two numbers (1, 0) go in column 3:

b <- matrix(c(1,-1,2,1,1,0),nrow=2)
b

[,1] [,2] [,3]
[1,] 1 2 1
[2,] -1 1 0

7.5.1 Matrix multiplication

To multiply one matrix by another matrix you take the rows of the first matrix and the columns of the second
matrix. Put the first row of a side by side with the first column of b:

a[1,]

[1] 1 2

b[,1]

[1] 1 -1

and work out the point products:

a[1,]*b[,1]

[1] 1 -2

then add up the point products

sum(a[1,]*b[,1])

[1] -1

The sum of the point products is –1 and this is the first element of the product matrix. Next, put the first row
of a with the second column of b:

a[1,]

[1] 1 2

b[,2]

[1] 2 1

a[1,]*b[,2]

[1] 2 2

sum(a[1,]*b[,2])

[1] 4

324 THE R BOOK

so the point products are 2, 2 and the sum of the point products is 2 + 2 = 4. So 4 goes in row 1 and column
2 of the answer. Then take the last column of b and match it against the first row of a:

a[1,]*b[,3]

[1] 1 0

sum(a[1,]*b[,3])

[1] 1

so the sum of the point products is 1 + 0 = 1. This goes in row 1, column 3 of the answer. And so on.
We repeat these steps for row 2 of matrix a (0, –1) and then again for row 3 of matrix a (4, 1) to obtain the
complete matrix of the answer. In R, the symbol for matrix multiplication is %*%. Here is the full answer:

a %*% b

[,1] [,2] [,3]
[1,] -1 4 1
[2,] 1 -1 0
[3,] 3 9 4

where you see the values we calculated by hand (–1, 4, 1) in the first row.
It is important to understand that with matrices a times b is not the same as b times a. The matrix resulting

from a multiplication has the number of rows of the matrix on the left (a has 3 rows in the case above). But b
has just two rows, so multiplication

b %*% a

[,1] [,2]
[1,] 5 1
[2,] -1 -3

produces a matrix with 2 rows. The value 5 in row 1 column 1 of the answer is the sum of the point products
(1 × 1) + (2 × 0) + (1 × 4) = 1 + 0 + 4 = 5.

7.5.2 Diagonals of matrices

To create a diagonal matrix of 3 rows and 3 columns, with 1s on the diagonal use the diag function like this:

(ym <- diag(1,3,3))

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

You can alter the values of the diagonal elements of a matrix like this:

diag(ym) <- 1:3
ym

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 2 0
[3,] 0 0 3

MATHEMATICS 325

or extract a vector containing the diagonal elements of a matrix like this:

diag(ym)

[1] 1 2 3

You might want to extract the diagonal of a variance–covariance matrix:

M <- cbind(X=1:5, Y=rnorm(5))
var(M)

X Y
X 2.50000000 0.04346324
Y 0.04346324 0.88056034

diag(var(M))

X Y
2.5000000 0.8805603

7.5.3 Determinant

The determinant of the square (2 × 2) array

[
a b
c d

]

is defined for any numbers a, b, c and d as

∣∣∣∣ a b
c d

∣∣∣∣ ≡ ad − bc.

Suppose that A is a square matrix of order (3 × 3):

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a23

 .

Then the third-order determinant of A is defined to be the number

det A = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ − a12

∣∣∣∣ a21 a23

a32 a33

∣∣∣∣ + a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣ .

Applying the rule

∣∣∣∣ a b
c d

∣∣∣∣ ≡ ad − bc to this equation gives

det A = a11a22a33 − a11a23a32 + a12a23a31 − a12a21a33 + a13a21a32 − a13a22a31.

326 THE R BOOK

Take a numerical example:

A =

 1 2 3

2 1 1
4 1 2

 .

This has determinant

det A = (1 × 1 × 2) − (1 × 1 × 1) + (2 × 1 × 4) − (2 × 2 × 2) + (3 × 2 × 1) − (3 × 1 × 4)
= 2 − 1 + 8 − 8 + 6 − 12 = −5.

Here is the example in R using the determinant function det:

A <- matrix(c(1,2,4,2,1,1,3,1,2),nrow=3)
A

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 1 1
[3,] 4 1 2

det(A)

[1] -5

The great thing about determinants is that if any row or column of a determinant is multiplied by a scalar λ,
then the value of the determinant is multiplied by λ (since a factor λ will appear in each of the products). Also,
if all the elements of a row or a column are zero then the determinant |A| = 0. Again, if all the corresponding
elements of two rows or columns of |A| are equal then |A| = 0.

For instance, here is the bottom row of A multiplied by 3:

B <- A
B[3,] <- 3*B[3,]
B

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 1 1
[3,] 12 3 6

and here is the determinant:

det(B)

[1] -15

Here is an example when all the elements of column 2 are zero, so det C = 0:

C <- A
C[,2] <- 0
C

[,1] [,2] [,3]
[1,] 1 0 3

MATHEMATICS 327

[2,] 2 0 1
[3,] 4 0 2

det(C)

[1] 0

If det A �= 0 then the rows and columns of A must be linearly independent. This important concept is
expanded in terms of contrast coefficients on p. 434.

7.5.4 Inverse of a matrix

The operation of division is not defined for matrices. However, for a square matrix that has |A| �= 0 a
multiplicative inverse matrix denoted by A–1 can be defined. This multiplicative inverse A–1 is unique and has
the property that

A−1 A = AA−1 = I,

where I is the unit matrix. So if A is a square matrix for which |A| �= 0 the matrix inverse is defined by the
relationship

A−1 = adj A

|A| ,

where the adjoint matrix of A (adj A) is the matrix of cofactors of A. The cofactors of A are computed as
Aij = (–1)i + j Mij, where Mij are the ‘minors’ of the elements aij (these are the determinants of the matrices
of A from which row i and column j have been deleted). The properties of the inverse matrix can be laid out
for two non-singular square matrices, A and B, of the same order as follows:

AA−1 = A−1 A = I,

(AB)−1 = B−1 A−1,

(A−1)′ = (A′)−1,

(A−1)−1 = A,

|A| = 1∣∣A−1
∣∣ .

Here is R’s version of the inverse of the 3 × 3 matrix A (above) using the ginv function from the MASS
library:

library(MASS)
ginv(A)

[,1] [,2] [,3]
[1,] -2.000000e-01 0.2 0.2
[2,] -2.224918e-16 2.0 -1.0
[3,] 4.000000e-01 -1.4 0.6

where the number in row 2 column 1 is zero (except for rounding error). Here is the penultimate rule, (A–1)–1

= A, evaluated by R:

328 THE R BOOK

ginv(ginv(A))

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 1 1
[3,] 4 1 2

Here is the last rule, |A| = 1/ |A–1|:

1/det(ginv(A))

[1] -5

7.5.5 Eigenvalues and eigenvectors

We have a square matrix A and two column vectors X and K, where

AX = K ,

and we want to discover the scalar multiplier λ such that

AX = λX.

This is equivalent to (A – λI)X = 0, where I is the unit matrix. This can only have one non-trivial solution
when the determinant associated with the coefficient matrix A vanishes, so we must have

|A − λI | = 0.

When expanded, this determinant gives rise to an algebraic equation of degree n in λ called the characteristic
equation. It has n roots λ1, λ2, . . . , λn, each of which is called an eigenvalue. The corresponding solution
vector Xi is called an eigenvector of A corresponding to λi.

Here is an example from population ecology. The matrix A shows the demography of different age classes:
the top row shows fecundity (the number of females born per female of each age) and the sub-diagonals
show survival rates (the fraction of one age class that survives to the next age class). When these numbers
are constants the matrix is known as the Leslie matrix. In the absence of density dependence the constant
parameter values in A will lead either to exponential increase in total population size (if λ1 > 1) or exponential
decline (if λ1 < 1) once the initial transients in age structure have damped away. Once exponential growth
has been achieved, then the age structure, as reflected by the proportion of individuals in each age class, will
be a constant. This is known as the first eigenvector.

Consider the Leslie matrix, L, which is to be multiplied by a column matrix of age-structured population
sizes, n:

L <- c(0,0.7,0,0,6,0,0.5,0,3,0,0,0.3,1,0,0,0)
L <- matrix(L,nrow=4)

Note that the elements of the matrix are entered in columnwise, not row-wise sequence. We make sure that
the Leslie matrix is properly conformed:

L

[,1] [,2] [,3] [,4]
[1,] 0.0 6.0 3.0 1

MATHEMATICS 329

[2,] 0.7 0.0 0.0 0
[3,] 0.0 0.5 0.0 0
[4,] 0.0 0.0 0.3 0

The top row contains the age-specific fecundities (e.g. 2-year-olds produce six female offspring per year),
and the sub-diagonal contains the survivorships (70% of 1-year-olds become 2-year-olds, etc.). Now the
population sizes at each age go in a column vector, n:

n <- c(45,20,17,3)
n <- matrix(n,ncol=1)
n

[,1]
[1,] 45
[2,] 20
[3,] 17
[4,] 3

Population sizes next year in each of the four age classes are obtained by matrix multiplication:

L %*% n

[,1]
[1,] 174.0
[2,] 31.5
[3,] 10.0
[4,] 5.1

We can check this the long way. The number of juveniles next year (the first element of n) is the sum of all
the babies born last year:

45*0+20*6+17*3+3*1

[1] 174

We write a function to carry out the matrix multiplication, giving next year’s population vector as a function
of this year’s:

fun <- function(x) L %*% x

Now we can simulate the population dynamics over a period long enough (say, 40 generations) for the age
structure to approach stability. So long as the population growth rate λ > 1 the population will increase
exponentially, once the age structure has stabilized:

n <- c(45,20,17,3)
n <- matrix(n,ncol=1)
structure <- numeric(160)
dim(structure) <- c(40,4)

for (i in 1:40) {
n <- fun(n)
structure[i,] <- n
}
matplot(1:40,log(structure),type="l")

330 THE R BOOK

0
5

10
15lo
g(

st
ru

ct
ur

e)

20
25

30
35

0 10 20 30 40
1:40

You can see that after some initial transient fluctuations, the age structure has more or less stabilized by year
20 (the lines for log population size of juveniles (top line), 1-, 2- and 3-year-olds are parallel). By year 40 the
population is growing exponentially in size, multiplying by a constant of λ each year.

The population growth rate (the per-year multiplication rate, λ) is approximated by the ratio of total
population sizes in the 40th and 39th years:

sum(structure[40,])/sum(structure[39,])

[1] 2.164035

and the approximate stable age structure is obtained from the 40th value of n:

structure[40,]/sum(structure[40,])

[1] 0.709769309 0.230139847 0.052750539 0.007340305

The exact values of the population growth rate and the stable age distribution are obtained by matrix
algebra: they are the dominant eigenvalue and dominant eigenvector, respectively. Use the function eigen
applied to the Leslie matrix, L, like this:

eigen(L)

$values
[1] 2.1694041+0.0000000i -1.9186627+0.0000000i -0.1253707+0.0975105i
[4] -0.1253707-0.0975105i

$vectors
[,1] [,2] [,3] [,4]

[1,] 0.949264118+0i -0.93561508+0i -0.01336028-0.03054433i -0.01336028+0.03054433i
[2,] 0.306298338+0i 0.34134741+0i -0.03616819+0.14241169i -0.03616819-0.14241169i
[3,] 0.070595039+0i -0.08895451+0i 0.36511901-0.28398118i 0.36511901+0.28398118i
[4,] 0.009762363+0i 0.01390883+0i -0.87369452+0.00000000i -0.87369452+0.00000000i

MATHEMATICS 331

The dominant eigenvalue is 2.1694 (compared with our empirical approximation of 2.1640 after 40 years).
The stable age distribution is given by the first eigenvector (column 1, above), which we need to turn into
proportions:

eigen(L)$vectors[,1]/sum(eigen(L)$vectors[,1])

[1] 0.710569659+0i 0.229278977+0i 0.052843768+0i 0.007307597+0i

This compares with our approximation (above) in which the proportion in the first age class was 0.709 77
after 40 years (rather than 0.710 57).

7.5.6 Matrices in statistical models

Perhaps the main use of matrices in R is in statistical calculations, in generalizing the calculation of sums of
squares and sums of products (see p. 450 for background). Here are the data used in Chapter 10 to introduce
the calculation of sums of squares in linear regression:

numbers <- read.table("c:\\temp\\tannin.txt",header=T)
attach(numbers)
names(numbers)

[1] "growth" "tannin"

The response variable is growth (y) and the explanatory variable is tannin concentration (x) in the diet of a
group of insect larvae. We need the famous five (see p. 453): the sum of the y values,

growth

[1] 12 10 8 11 6 7 2 3 3

sum(growth)

[1] 62

the sum of the squares of the y values,

growthˆ2

[1] 144 100 64 121 36 49 4 9 9

sum(growthˆ2)

[1] 536

the sum of the x values,

tannin

[1] 0 1 2 3 4 5 6 7 8

sum(tannin)

[1] 36

the sum of the squares of the x values,

tanninˆ2

[1] 0 1 4 9 16 25 36 49 64

332 THE R BOOK

sum(tanninˆ2)

[1] 204

and finally, to measure the covariation between x and y, we need the sum of the products,

growth*tannin

[1] 0 10 16 33 24 35 12 21 24

sum(growth*tannin)

[1] 175

You can see at once that for more complicated models (such as multiple regression) it is essential to be able
to generalize and streamline this procedure. This is where matrices come in. Matrix multiplication involves
the calculation of sums of products where a row vector is multiplied by a column vector of the same length to
obtain a single value. Thus, we should be able to obtain the required sum of products, 175, by using matrix
multiplication symbol %*% in place of the regular multiplication symbol:

growth %*% tannin

[,1]
[1,] 175

That works fine. But what about sums of squares? Surely if we use matrix multiplication on the same vector
we will get an object with many rows (nine in this case). Not so.

growth %*% growth

[,1]
[1,] 536

R has coerced the left-hand vector of growth into a row vector in order to obtain the desired result. You can
override this, if for some reason you wanted the answer to have nine rows, by specifying the transpose t()
of the right-hand growth vector,

growth %*% t(growth)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 144 120 96 132 72 84 24 36 36
[2,] 120 100 80 110 60 70 20 30 30
[3,] 96 80 64 88 48 56 16 24 24
[4,] 132 110 88 121 66 77 22 33 33
[5,] 72 60 48 66 36 42 12 18 18
[6,] 84 70 56 77 42 49 14 21 21
[7,] 24 20 16 22 12 14 4 6 6
[8,] 36 30 24 33 18 21 6 9 9
[9,] 36 30 24 33 18 21 6 9 9

but, of course, that is not what we want. R’s default is what we need. So this should also work in obtaining
the sum of squares of the explanatory variable:

tannin %*% tannin

[,1]
[1,] 204

MATHEMATICS 333

So far, so good. But how do we obtain the sums using matrix multiplication? The trick here is to matrix
multiply the vector by a vector of 1s: here are the sum of the y values:

growth %*% rep(1,9)

[,1]
[1,] 62

and the sum of the x values,

tannin %*% rep(1,9)

[,1]
[1,] 36

Finally, can we use matrix multiplication to arrive at the sample size, n? We do this by matrix multiplying a
row vector of 1s by a column vector of 1s. This rather curious operation produces the right result, by adding
up the nine 1s that result from the nine repeats of the calculation 1 × 1:

rep(1,9)%*% rep(1,9)

[,1]
[1,] 9

But how do we get all of the famous five in a single matrix? The thing to understand is the dimen-
sionality of such a matrix. It needs to contain sums as well as sums of products. We have two variables
(growth and tannin) and their matrix multiplication produces a single scalar value (see above). In order
to get to the sums of squares as well as the sums of products we use cbind to create a 9 × 2 matrix
like this:

a <- cbind(growth,tannin)
a

growth tannin
[1,] 12 0
[2,] 10 1
[3,] 8 2
[4,] 11 3
[5,] 6 4
[6,] 7 5
[7,] 2 6
[8,] 3 7
[9,] 3 8

To obtain a results table with 2 rows rather than 9 rows we need to multiply the transpose of matrix a by
matrix a:

t(a) %*% a

growth tannin
growth 536 175
tannin 175 204

334 THE R BOOK

That’s OK as far as it goes, but it has only given us the sums of squares (536 and 204) and the sum of products
(175). How do we get the sums as well? The trick is to bind a column of 1s onto the left of matrix a:

b <- cbind(1,growth,tannin)
b

growth tannin
[1,] 1 12 0
[2,] 1 10 1
[3,] 1 8 2
[4,] 1 11 3
[5,] 1 6 4
[6,] 1 7 5
[7,] 1 2 6
[8,] 1 3 7
[9,] 1 3 8

It would look better if the first column had a variable name: let’s call it sample:

dimnames(b)[[2]] [1] <- "sample"

Now to get a summary table of sums as well as sums of products, we matrix multiply b by itself. We want
the answer to have three rows (rather than nine) so we matrix multiply the transpose of b (which has three
rows) by b (which has nine rows):

t(b) %*% b

sample growth tannin
sample 9 62 36
growth 62 536 175
tannin 36 175 204

So there you have it. All of the famous five, plus the sample size, in a single matrix multiplication.

7.5.7 Statistical models in matrix notation

We continue this example to show how matrix algebra is used to generalize the procedures used in linear
modelling (such as regression or analysis of variance) based on the values of the famous five. We want to
be able to determine the parameter estimates (such as the intercept and slope of a linear regression) and to
apportion the total sum of squares between variation explained by the model (SSR) and unexplained variation
(SSE). Expressed in matrix terms, the linear regression model is

Y = Xb + e,

and we want to determine the least-squares estimate of b, given by

b = (X ′ X)−1 X ′Y,

and then carry out the analysis of variance

b′ X ′Y ′.

MATHEMATICS 335

We look at each of these in turn.
The response variable Y, 1 and the errors e are simple n × 1 column vectors, X is an n × 2 matrix and β

is a 2 × 1 vector of coefficients, as follows:

Y =

12
10
8

11
6
7
2
3
3

, X =

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8

, e =

e1

e2

e3

e4

e5

e6

e7

e8

e9

, 1 =

1
1
1
1
1
1
1
1
1

, β =
[

β0

β1

]
.

The y vector and the 1 vector are created like this:

Y <- growth

one <- rep(1,9)

The sample size is given by 1′1 (transpose of vector 1 times vector 1):

t(one) %*% one

[,1]
[1,] 9

The vector of explanatory variable(s) X is created by binding a column of ones to the left:

X <- cbind(1,tannin)
X

tannin
[1,] 1 0
[2,] 1 1
[3,] 1 2
[4,] 1 3
[5,] 1 4
[6,] 1 5
[7,] 1 6
[8,] 1 7
[9,] 1 8

In this notation ∑
y2 = y2

1 + y2
2 + . . . + y2

n = Y ′Y,

t(Y) %*% Y

[,1]
[1,] 536

336 THE R BOOK

∑
y = n ȳ = y1 + y2 + . . . + yn = 1′Y,

t(one) %*% Y

[,1]
[1,] 62

(∑
y
)2

= Y ′11′Y.

t(Y) %*% one %*% t(one) %*% Y

[,1]
[1,] 3844

For the matrix of explanatory variables, we see that X′X gives a 2 × 2 matrix containing n,
∑

x and
∑

x2.
The numerical values are easy to find using matrix multiplication:

t(X) %*% X

tannin
9 36

tannin 36 204

Note that X′X (a 2 × 2 matrix) is completely different from XX′ (a 9 × 9 matrix). The matrix X ′Y gives a
2 × 1 matrix containing

∑
y and the sum of products

∑
xy:

t(X) %*% Y

[,1]
62

tannin 175

Now, using the beautiful symmetry of the normal equations,

b0n + b1

∑
x =

∑
y,

b0

∑
x + b1

∑
x2 =

∑
xy,

we can write the regression directly in matrix form as

X ′ Xb = X ′Y

because we already have the necessary matrices to form the left- and right-hand sides. To find the least-
squares parameter values b we need to divide both sides by X′X. This involves calculating the inverse of
the X′X matrix. The inverse exists only when the matrix is square and when its determinant is non-singular.
The inverse contains −x̄ and

∑
x2 as its terms, with SSX = ∑

(x − x̄)2, the sum of the squared differences

MATHEMATICS 337

between the x values and mean x, or n.SSX as the denominator:

(X ′ X)−1 =

∑
x2

n
∑

(x − x̄)2

−x̄∑
(x − x̄)2

−x̄∑
(x − x̄)2

1∑
(x − x̄)2

 .

When every element of a matrix has a common factor, it can be taken outside the matrix. Here, the term
1/(n.SSX) can be taken outside to give

(X ′ X)−1 = 1

n
∑

(x − x̄)2

∑
x2 −

∑
x

−
∑

x n

 .

Computing the numerical value of this is easy using the matrix function ginv:

library(MASS)
ginv(t(X) %*% X)

[,1] [,2]
[1,] 0.37777778 -0.06666667
[2,] -0.06666667 0.01666667

Now we can solve the normal equations

(X ′ X)−1(X ′ X)b = (X ′ X)−1 X ′Y,

using the fact that (X ′ X)−1(X ′ X) = I to obtain the important general result:

b = (X ′ X)−1 X ′Y.

ginv(t(X) %*% X) %*% t(X) %*% Y

[,1]
[1,] 11.755556
[2,] -1.216667

which you will recognize from our hand calculations as the intercept and slope respectively (see p. 455). The
ANOVA computations are as follows. The correction factor is

C F = Y ′11′Y/n.

CF <- t(Y) %*% one %*% t(one) %*% Y/9
CF

[,1]
[1,] 427.1111

338 THE R BOOK

The total sum of squares, SSY, is Y′Y – CF:

t(Y) %*% Y - CF

[,1]
[1,] 108.8889

The regression sum of squares, SSR, is b′ X ′Y − C F :

b <- ginv(t(X) %*% X) %*% t(X) %*% Y
t(b) %*% t(X) %*% Y - CF

[,1]
[1,] 88.81667

The error sum of squares, SSE, is Y ′Y − b′ X ′Y :

t(Y) %*% Y - t(b) %*% t(X) %*% Y

[,1]
[1,] 20.07222

You should check these figures against the hand calculations on p. 457. Obviously, this is not a sensible way
to carry out a single linear regression, but it demonstrates how to generalize the calculations for cases that
have two or more continuous explanatory variables.

7.6 Solving systems of linear equations using matrices

Suppose we have two equations containing two unknown variables:

3x + 4y = 12,

x + 2y = 8.

We can use the function solve to find the values of the variables if we provide it with two matrices:

� a square matrix A containing the coefficients (3, 1, 4 and 2, columnwise);

� a column vector kv containing the known values (12 and 8).

We set the two matrices up like this (columnwise, as usual):

A <- matrix(c(3,1,4,2),nrow=2)
A

[,1] [,2]
[1,] 3 4
[2,] 1 2

kv <- matrix(c(12,8),nrow=2)
kv

[,1]
[1,] 12
[2,] 8

MATHEMATICS 339

Now we can solve the simultaneous equations, using the solve function like this:

solve(A,kv)

[,1]
[1,] -4
[2,] 6

to give x = –4 and y = 6 (which you can easily verify by hand). The function is most useful when there are
many simultaneous equations to be solved.

7.7 Calculus

The rules of differentiation and integration are known to R. You will use them in modelling (e.g. in calculating
starting values in non-linear regression) and for numeric minimization using optim. Read the help files ?D
and ?integrate to understand the limitations of these functions.

7.7.1 Derivatives

The R function for symbolic and algorithmic derivatives of simple expressions is D. Here are some simple
examples to give you the idea. See also ?deriv.

D(expression(2*xˆ3),"x")

2 * (3 * xˆ2)

D(expression(log(x)),"x")

1/x

D(expression(a*exp(-b * x)),"x")

-(a * (exp(-b * x) * b))

D(expression(a/(1+b*exp(-c * x))),"x")

a * (b * (exp(-c * x) * c))/(1 + b * exp(-c * x))ˆ2

trig.exp <- expression(sin(cos(x + yˆ2)))
D(trig.exp, "x")

-(cos(cos(x + yˆ2)) * sin(x + yˆ2))

7.7.2 Integrals

The R function is integrate. Here are some simple examples to give you the idea:

integrate(dnorm,0,Inf)

0.5 with absolute error < 4.7e-05

integrate(dnorm,-Inf,Inf)

1 with absolute error < 9.4e-05

integrate(function(x) rep(2, length(x)), 0, 1)

340 THE R BOOK

2 with absolute error < 2.2e-14

integrand <- function(x) {1/((x+1)*sqrt(x))}
integrate(integrand, lower = 0, upper = Inf)

3.141593 with absolute error < 2.7e-05

xv <- seq(0,10,0.1)
plot(xv,integrand(xv),type="l")

0.
0

0.
5

1.
0

1.
5

in
te

gr
an

d(
xv

)

2.
0

2.
5

0 2 4 6 8 10
xv

The area under the curve is π = 3.141 593.

7.7.3 Differential equations

We need to solve a system of ordinary differential equations (ODEs) using classical Runge–Kutta integration
from the deSolve package (Soetaert et al., 2012):

install.packages("deSolve")

library(deSolve)

The example involves a simple resource-limited plant–herbivore interaction where V = vegetation and N =
herbivore population. We need to specify two differential equations: one for the vegetation (dV/dt) and one

MATHEMATICS 341

for the herbivore population (dN/dt):

dV

dt
= r V

(
K − V

K

)
− bV N ,

dN

dt
= cV N − d N .

The steps involved in solving these ODEs in R are as follows:

� Define a function (called phmodel in this case) containing the equations.

� Write the vegetation equation as dv using with.

� Write the herbivore equation as dn using with.

� Combine these vectors into a list called result.

� Generate a time series over which to solve the equations in times.

� Set the parameter values in parameters.

� Set the starting values for V and N in initial.

� Use ode to create a matrix with the time series of V and N in output.

None of this is at all complicated, but there are lots of steps, so it looks a bit daunting.
First we write a function called phmodel (for plant–herbivore model) which tells R the structure of the

two equations, showing how change in each population is related to the functional and numerical responses,
and then puts the results into a list:

phmodel <- function(t,state,parameters){
with(as.list(c(state,parameters)),{

dv <- r*v*(K-v)/K-b*v*n
dn <- c*v*n-d*n
result <- c(dv,dn)
list(result)

})}

The rightmost curly bracket ends the function, the plain right bracket closes the with function and the
leftmost curly bracket ends the definition of the equations.

To run the model we need to create a vector of times over which to calculate the population dynamics,

times <- seq(0,500,length=501)

then define the numeric values of the five parameters (these values will determine the behaviour of the two
populations)

parameters <- c(r=0.4,K=1000,b=0.02,c=0.01,d=0.3)

and set the initial conditions (plant = 50 and herbivores = 10 at the start):

initial <- c(v=50,n=10)

That is the end of the preliminaries.

342 THE R BOOK

Solving the equations could not be easier. The important function is ode (ordinary differential equation
solver). The function takes four arguments: the starting values, the vector of times, the function containing
the equations, and the list containing the parameter values:

output <- ode(y=initial,time=times,func=phmodel,parms=parameters)

The output object is a matrix with three columns: time, plant abundance (v) and herbivore abundance (n):

head(output)

time v n
[1,] 0 50.00000 10.00000
[2,] 1 58.29220 12.75106
[3,] 2 62.99695 17.40172
[4,] 3 60.70065 24.09264
[5,] 4 50.79407 31.32860
[6,] 5 37.68312 36.12636

Plotting the two time series is done like this:

plot(output[,1],output[,2],
ylim=c(0,60),type="n",ylab="abundance",xlab="time")

lines(output[,1],output[,2],col="green")
lines(output[,1],output[,3],col="red")

The graph shows plant abundance as a green line against time and herbivore abundance as a red line:

time

60
50

40
30

ab
un

da
nc

e
20

10
0

0 100 200 300 400 500

The system exhibits damped oscillations to a stable point equilibrium at which dV/dt and dN/dt are both
equal to zero, so equilibrium plant abundance V* = d/c = 0.3/0.01 = 30 and equilibrium herbivore abundance
N* = r(K – V*)/bK = 19.4.

MATHEMATICS 343

An alternative is to plot the output as a phase plane, with herbivore abundance on the x axis and plant
abundance on the y axis:

plot(output[,3],output[,2],
ylim=c(0,70),xlim=c(0,70),type="n",ylab="plant",xlab="herbivore")

lines(output[,2],output[,3],col="red")

herbivore

60
70

50
40

30

pl
an

t

20
10

0

60 7050403020100

8
Classical Tests

There is absolutely no point in carrying out an analysis that is more complicated than it needs to be. Occam’s
razor applies to the choice of statistical model just as strongly as to anything else: simplest is best. The
so-called classical tests deal with some of the most frequently used kinds of analysis for single-sample and
two-sample problems.

8.1 Single samples

Suppose we have a single sample. The questions we might want to answer are these:

� What is the mean value?

� Is the mean value significantly different from current expectation or theory?

� What is the level of uncertainty associated with our estimate of the mean value?

In order to be reasonably confident that our inferences are correct, we need to establish some facts about the
distribution of the data:

� Are the values normally distributed or not?

� Are there outliers in the data?

� If data were collected over a period of time, is there evidence for serial correlation?

Non-normality, outliers and serial correlation can all invalidate inferences made by standard parametric tests
like Student’s t test. It is much better in cases with non-normality and/or outliers to use a non-parametric
technique such as Wilcoxon’s signed-rank test. If there is serial correlation in the data, then you need to use
time series analysis or mixed-effects models.

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

CLASSICAL TESTS 345

8.1.1 Data summary

To see what is involved in summarizing a single sample, read the data called y from the file called
classic.txt:

data <- read.table("c:\\temp\\classic.txt",header=T)
names(data)

[1] "y"

attach(data)

As usual, we begin with a set of single sample plots: an index plot (scatterplot with a single argument, in
which data are plotted in the order in which they appear in the dataframe), a box-and-whisker plot (see p. 212)
and a frequency plot (a histogram with bin widths chosen by R):

par(mfrow=c(2,2))
plot(y)
boxplot(y)
hist(y,main="")
y2 <- y
y2[52] <- 21.75
plot(y2)

0 20 40 60 80 100

0 20 40 60 80 100

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

2.0 2.2 2.4 2.6 2.8 3.0

0
5

10
15

5
10

15
20

y Index

Index

Fr
eq

ue
nc

y

y2

y

346 THE R BOOK

The index plot (bottom right) is particularly valuable for drawing attention to mistakes in the dataframe.
Suppose that the 52nd value had been entered as 21.75 instead of 2.175: the mistake stands out like a sore
thumb in the plot.

Summarizing the data could not be simpler. We use the built-in function called summary like this:

summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.904 2.241 2.414 2.419 2.568 2.984

This gives us six pieces of information about the vector y. The smallest value is 1.904 (labelled Min. for
minimum) and the largest value is 2.984 (labelled Max. for maximum). There are two measures of central
tendency: the median is 2.414 and the arithmetic mean in 2.419. The other two figures (labelled 1st Qu.
and 3rd Qu.) are the first and third quartiles (the 25th and 75th percentiles; see p. 115).

An alternative is Tukey’s ‘five-number summary’ which comprises minimum, lower hinge, median, upper
hinge and maximum for the input data. Hinges are close to the first and third quartiles (compare with
summary, above), but different for small samples (see below):

fivenum(y)

[1] 1.903978 2.240931 2.414137 2.569583 2.984053

Notice that in this case Tukey’s ‘hinges’ are not exactly the same as the 25th and 75th percentiles produced
by summary. In our sample of 100 numbers the hinges are the average of the 25th and 26th sorted numbers
and the average of the 75th and 76th sorted numbers. This is how the fivenum summary is produced: x
takes the sorted values of y, and n is the length of y. Then five numbers, d, are calculated to use as subscripts
to extract five averaged values from x like this:

x <- sort(y)
n <- length(y)
d <- c(1, 0.5 * floor(0.5 * (n + 3)), 0.5 * (n + 1), n + 1 - 0.5 *

floor(0.5 * (n + 3)), n)
0.5 * (x[floor(d)] + x[ceiling(d)])

[1] 1.903978 2.240931 2.414137 2.569583 2.984053

where the d values are

[1] 1.0 25.5 50.5 75.5 100.0

with floor and ceiling providing the lower and upper subscripts for averaging (25 with 26 and 75 with
76 for the lower and upper hinges, respectively).

8.1.2 Plots for testing normality

The simplest test of normality (and in many ways the best) is the ‘quantile–quantile plot’. This plots the ranked
samples from our distribution against a similar number of ranked quantiles taken from a normal distribution.
If our sample is normally distributed then the line will be straight. Departures from normality show up as
various sorts of non-linearity (e.g. S-shapes or banana shapes). The functions you need are qqnorm and
qqline (quantile–quantile plot against a normal distribution):

par(mfrow=c(1,1))
qqnorm(y)
qqline(y,lty=2)

CLASSICAL TESTS 347

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

–2 2–1 0 1
Theoretical Quantiles

Normal Q-Q Plot

S
am

pl
e

Q
ua

nt
ile

s

This shows a slight S-shape, but there is no compelling evidence of non-normality (our distribution is
somewhat skew to the left; see the histogram, above). A novel plot for illustrating non-normality is shown on
p. 232.

8.1.3 Testing for normality

We might use shapiro.test for testing whether the data in a vector come from a normal distribution.
The null hypothesis is that the sample data are normally distributed. Let us generate some data that are
log-normally distributed, in the hope that they will fail the normality test:

x <- exp(rnorm(30))
shapiro.test(x)

Shapiro-Wilk normality test
data: x
W = 0.5701, p-value = 3.215e-08

They certainly do fail: p < 0.000 001. A p value is not the probability that the null hypothesis is true (this is a
common misunderstanding). On the contrary, the p value is based on the assumption that the null hypothesis
is true. A p value is an estimate of the probability that a particular result (W = 0.5701 in this case), or a
result more extreme than the result observed, could have occurred by chance, if the null hypothesis were true.
In short, the p value is a measure of the credibility of the null hypothesis. A large p value (say, p = 0.23)
means that there is no compelling evidence on which to reject the null hypothesis. Of course, saying ‘we do
not reject the null hypothesis’ and ‘the null hypothesis is true’ are two quite different things. For instance,
we may have failed to reject a false null hypothesis because our sample size was too low, or because our
measurement error was too large. Thus, p values are interesting, but they do not tell the whole story: effect
sizes and sample sizes are equally important in drawing conclusions.

348 THE R BOOK

8.1.4 An example of single-sample data

We can investigate the issues involved by examining the data from Michelson’s famous experiment in 1879
to measure the speed of light (see Michelson, 1880). The dataframe called light contains his results
(km s–1), but with 299 000 subtracted.

light <- read.table("t:\\data\\light.txt",header=T)
attach(light)
hist(speed,main="",col="green")

700 800 900 1000 1100

speed

Fr
eq

ue
nc

y

0
2

4
6

8

We get a summary of the non-parametric descriptors of the sample like this:

summary(speed)

Min. 1st Qu. Median Mean 3rd Qu. Max.
650 850 940 909 980 1070

From this, you see at once that the median (940) is substantially bigger than the mean (909), as a consequence
of the strong negative skew in the data seen in the histogram. The interquartile range is the difference
between the first and third quartiles: 980 − 850 = 130. This is useful in the detection of outliers: a good
rule of thumb is that an outlier is a value that is more than 1.5 times the interquartile range above the third
quartile or below the first quartile (130 × 1.5 = 195). In this case, therefore, outliers would be measurements
of speed that were less than 850 − 195 = 655 or greater than 980 + 195 = 1175. You will see that there are
no large outliers in this data set, but one or more small outliers (the minimum is 650).

We want to test the hypothesis that Michelson’s estimate of the speed of light is significantly different
from the value of 299 990 thought to prevail at the time. Since the data have all had 299 000 subtracted from
them, the test value is 990. Because of the non-normality, the use of Student’s t test in this case is ill advised.
The correct test is Wilcoxon’s signed-rank test.

wilcox.test(speed,mu=990)

Wilcoxon signed rank test with continuity correction

CLASSICAL TESTS 349

data: speed
V = 22.5, p-value = 0.00213
alternative hypothesis: true location is not equal to 990

Warning message:
In wilcox.test.default(speed, mu = 990) :
cannot compute exact p-value with ties

We reject the null hypothesis and accept the alternative hypothesis because p = 0.002 13 (i.e. much less than
0.05). The speed of light is significantly less than 299 990.

8.2 Bootstrap in hypothesis testing

You have probably heard the old phrase about ‘pulling yourself up by your own bootlaces’. That is where
the term ‘bootstrap’ comes from. It is used in the sense of getting ‘something for nothing’. The idea is very
simple. You have a single sample of n measurements, but you can sample from this in very many ways, so
long as you allow some values to appear more than once, and other samples to be left out (i.e. sampling
with replacement). All you do is calculate the sample mean lots of times, once for each sampling from your
data, then obtain the confidence interval by looking at the extreme highs and lows of the estimated means
using a quantile function to extract the interval you want (e.g. a 95% interval is specified using c(0.0275,
0.975) to locate the lower and upper bounds).

Our sample mean value of y is 909 (see the previous example). The question we have been asked to address
is this: how likely is it that the population mean that we are trying to estimate with our random sample of
100 values is as big as 990? We take 10 000 random samples with replacement using n = 100 from the 100
values of light and calculate 10 000 values of the mean. Then we ask: what is the probability of obtaining a
mean as large as 990 by inspecting the right-hand tail of the cumulative probability distribution of our 10 000
bootstrapped mean values? This is not as hard as it sounds:

a <- numeric(10000)
for(i in 1:10000) a[i] <- mean(sample(speed,replace=T))
hist(a,main="",col="blue")

850 900 950
a

0
50

0
10

00
15

00

Fr
eq

ue
nc

y

350 THE R BOOK

The test value of 990 is way off the scale to the right, so a mean of 990 is clearly most unlikely, given the
data with max(a) = 979. In our 10 000 samples of the data, we never obtained a mean value greater than
979, so the probability that the mean is 990 is clearly p < 0.0001.

8.3 Skew and kurtosis

So far, and without saying so explicitly, we have encountered the first two moments of a sample distribution.
The quantity

∑
y was used in the context of defining the arithmetic mean of a single sample: this is the first

moment ȳ = ∑
y/n. The quantity

∑
(y − ȳ)2, the sum of squares, was used in calculating sample variance,

and this is the second moment of the distribution s2 = ∑
(y − ȳ)2/(n − 1). Higher-order moments involve

powers of the difference greater than 2 such as
∑

(y − ȳ)3 and
∑

(y − ȳ)4.

8.3.1 Skew

Skew (or skewness) is the dimensionless version of the third moment about the mean,

m3 =
∑

(y − ȳ)3

n
,

which is rendered dimensionless by dividing by the cube of the standard deviation of y (because this is also
measured in units of y3),

s3 = sd(y)3 = (
√

s2)3.

The skew is then given by

skew = γ1 = m3

s3
.

It measures the extent to which a distribution has long, drawn-out tails on one side or the other. A normal
distribution is symmetrical and has γ 1 = 0. Negative values of γ 1 mean skew to the left (negative skew) and
positive values mean skew to the right.

0 1 2 3 4 0 1 2 3 4
x x

0.
0

0.
2

0.
4

0.
6

0.
0

0.
2

0.
4

0.
6

f(
x)

f(
x)

positive skew negative skew

windows(7,4)
par(mfrow=c(1,2))
x <- seq(0,4,0.01)
plot(x,dgamma(x,2,2),type="l",ylab="f(x)",xlab="x",col="red")

CLASSICAL TESTS 351

text(2.7,0.5,"positive skew")
plot(4-x,dgamma(x,2,2),type="l",ylab="f(x)",xlab="x",col="red")
text(1.3,0.5,"negative skew")

To test whether a particular value of skew is significantly different from 0 (and hence the distribution
from which it was calculated is significantly non-normal) we divide the estimate of skew by its approximate
standard error:

seγ1 =
√

6

n
.

It is straightforward to write an R function to calculate the degree of skew for any vector of numbers, x,
like this:

skew <- function(x){
m3 <- sum((x-mean(x))ˆ3)/length(x)
s3 <- sqrt(var(x))ˆ3
m3/s3

}

Note the use of the length(x) function to work out the sample size, n, whatever the size of the vector
x. The last expression inside the function is not assigned a variable name, and is returned as the value of
skew(x) when this is executed from the command line.

Let us test the following data set:

data <- read.table("c:\\temp\\skewdata.txt",header=T)
attach(data)
names(data)

[1] "values"

hist(values)

0 20 40 60 80

0
2

4
6

8
10

values

Fr
eq

ue
nc

y

352 THE R BOOK

The data appear to be positively skew (i.e. to have a longer tail on the right than on the left). We use the new
function skew to quantify the degree of skewness:

skew(values)

[1] 1.318905

Now we need to know whether a skew of 1.319 is significantly different from zero. We do a t test, dividing
the observed value of skew by its standard error

√
6/n :

skew(values)/sqrt(6/length(values))

[1] 2.949161

Finally, we ask what is the probability of getting a t value of 2.949 by chance alone, when the skew value
really is zero:

1-pt(2.949,28)

[1] 0.003185136

We conclude that these data show significant non-normality (p < 0.0032).
The next step might be to look for a transformation that normalizes the data by reducing the skewness.

One way of drawing in the larger values is to take square roots, so let us try this to begin with:

skew(sqrt(values))/sqrt(6/length(values))

[1] 1.474851

This is not significantly skew. Alternatively, we might take the logs of the values:

skew(log(values))/sqrt(6/length(values))

[1] -0.6600605

This is now slightly skew to the left (negative skew), but the value of Student’s t is smaller than with a square
root transformation, so we might prefer a log transformation in this case.

8.3.2 Kurtosis

This is a measure of non-normality that has to do with the peakyness, or flat-toppedness, of a distribution. The
normal distribution is bell-shaped, whereas a kurtotic distribution is other than bell-shaped. In particular, a
more flat-topped distribution is said to be platykurtic, and a more pointy distribution is said to be leptokurtic.

Kurtosis is the dimensionless version of the fourth moment about the mean,

m4 =
∑

(y − ȳ)4

n
,

which is rendered dimensionless by dividing by the square of the variance of y (because this is also measured
in units of y4),

s4 = (var(y))2 = (s2)2.

Kurtosis is then given by

kurtosis = γ2 = m4

s4
− 3.

CLASSICAL TESTS 353

The −3 is included because a normal distribution has m4/s4 = 3. This formulation therefore has the desirable
property of giving zero kurtosis for a normal distribution, while a flat-topped (platykurtic) distribution has
a negative value of kurtosis, and a pointy (leptokurtic) distribution has a positive value of kurtosis. The
approximate standard error of kurtosis is

seγ2 =
√

24

n
.

leptokurtosis platykurtosis

f(
x)

f(
x)

plot(-200:200,dcauchy(-200:200,0,10),type="l",ylab="f(x)",xlab="",yaxt="n",
xaxt="n",main="leptokurtosis",col="red")

xv <- seq(-2,2,0.01)
plot(xv,exp(-abs(xv)ˆ6),type="l",ylab="f(x)",xlab="",yaxt="n",

xaxt="n",main="platykurtosis",col="red")

An R function to calculate kurtosis might look like this:

kurtosis <- function(x) {
m4 <- sum((x-mean(x))ˆ4)/length(x)
s4 <- var(x)ˆ2
m4/s4 - 3 }
For our present data, we find that kurtosis is not significantly different from normal:

kurtosis(values)

[1] 1.297751

kurtosis(values)/sqrt(24/length(values))

[1] 1.45093

8.4 Two samples

The classical tests for two samples include:

� comparing two variances (Fisher’s F test, var.test);
� comparing two sample means with normal errors (Student’s t test, t.test);
� comparing two means with non-normal errors (Wilcoxon’s rank test, wilcox.test);
� comparing two proportions (the binomial test, prop.test);

354 THE R BOOK

� correlating two variables (Pearson’s or Spearman’s rank correlation, cor.test);

� testing for independence of two variables in a contingency table (chi-squared, chisq.test, or Fisher’s
exact test, fisher.test).

8.4.1 Comparing two variances

Before we can carry out a test to compare two sample means (see below), we need to test whether the sample
variances are significantly different (see p. 356). The test could not be simpler. It is called Fisher’s F test
after the famous statistician and geneticist R.A. Fisher, who worked at Rothamsted in south-east England.
To compare two variances, all you do is divide the larger variance by the smaller variance. Obviously, if the
variances are the same, the ratio will be 1. In order to be significantly different, the ratio will need to be
significantly bigger than 1 (because the larger variance goes on top, in the numerator). How will we know a
significant value of the variance ratio from a non-significant one? The answer, as always, is to look up the
critical value of the variance ratio. In this case, we want critical values of Fisher’s F. The R function for this
is qf, which stands for ‘quantiles of the F distribution’.

For our example of ozone levels in market gardens (see p. 354) there were 10 replicates in each garden,
so there were 10 − 1 = 9 degrees of freedom for each garden. In comparing two gardens, therefore, we have
9 d.f. in the numerator and 9 d.f. in the denominator. Although F tests in analysis of variance are typically
one-tailed (the treatment variance is expected to be larger than the error variance if the means are significantly
different; see p. 501), in this case we have no expectation as to which garden was likely to have the higher
variance, so we carry out a two-tailed test (p = 1 − α/2). Suppose we work at the traditional α = 0.05, then
we find the critical value of F like this:

qf(0.975,9,9)

4.025994

This means that a calculated variance ratio will need to be greater than or equal to 4.02 in order for us to
conclude that the two variances are significantly different at α = 0.05.

To see the test in action, we can compare the variances in ozone concentration for market gardens B
and C:

f.test.data <- read.table("c:\\temp\\f.test.data.txt",header = T)
attach(f.test.data)
names(f.test.data)

[1] "gardenB" "gardenC"

First, we compute the two variances:

var(gardenB)

[1] 1.333333

var(gardenC)

[1] 14.22222

The larger variance is clearly in garden C, so we compute the F ratio like this:

F.ratio <- var(gardenC)/var(gardenB)
F.ratio

[1] 10.66667

CLASSICAL TESTS 355

The variance in garden C is more than 10 times as big as the variance in garden B. The critical value of F
for this test (with 9 d.f. in both the numerator and the denominator) is 4.026 (see qf, above), so, since the
calculated value is larger than the critical value we reject the null hypothesis. The null hypothesis was that the
two variances were not significantly different, so we accept the alternative hypothesis that the two variances
are significantly different. In fact, it is better practice to present the p value associated with the calculated F
ratio rather than just to reject the null hypothesis; to do this we use pf rather than qf. We double the resulting
probability to allow for the two-tailed nature of the test:

2*(1-pf(F.ratio,9,9))

[1] 0.001624199

so the probability that the variances are the same is p < 0.002. Because the variances are significantly different,
it would be wrong to compare the two sample means using Student’s t test.

There is a built-in function called var.test for speeding up the procedure. All we provide are the names
of the two variables containing the raw data whose variances are to be compared (we do not need to work out
the variances first):

var.test(gardenB,gardenC)

F test to compare two variances
data: gardenB and gardenC
F = 0.0938, num df = 9, denom df = 9, p-value = 0.001624
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.02328617 0.37743695
sample estimates:
ratio of variances

0.09375

Note that the variance ratio, F, is given as roughly 1/10 rather than roughly 10 because var.test put the
variable name that came first in the alphabet (gardenB) on top (i.e. in the numerator) instead of the bigger of
the two variances. But the p value of 0.0016 is the same as we calculated by hand (above), and we reject the
null hypothesis. These two variances are highly significantly different. This test is highly sensitive to outliers,
so use it with care.

It is important to know whether variance differs significantly from sample to sample. Constancy of variance
(homoscedasticity) is the most important assumption underlying regression and analysis of variance (p. 490).
For comparing the variances of two samples, Fisher’s F test is appropriate (p. 354). For multiple samples you
can choose between the Bartlett test and the Fligner–Killeen test. Here are both tests in action:

refs <- read.table("c:\\temp\\refuge.txt",header=T)
attach(refs)
names(refs)

[1] "B" "T"

where T is an ordered factor with nine levels. Each level produces 30 estimates of yields except for level
9 which is a single zero. We begin by looking at the variances:

tapply(B,T,var)

1 2 3 4 5 6 7 8 9
1354.024 2025.431 3125.292 1077.030 2542.599 2221.982 1445.490 1459.955 NA

356 THE R BOOK

When it comes to the variance tests we shall have to leave out level 9 of T because the tests require at least
two replicates at each factor level. We need to know which data point refers to treatment T = 9:

which(T==9)

[1] 31

So we shall omit the 31st data point using negative subscripts. First Bartlett:

bartlett.test(B[-31],T[-31])

Bartlett test of homogeneity of variances
data: B[-31] and T[-31]
Bartlett's K-squared = 13.1986, df = 7, p-value = 0.06741

So there is no significant difference between the eight variances (p = 0.067). Now Fligner:

fligner.test(B[-31],T[-31])

Fligner-Killeen test of homogeneity of variances
data: B[-31] and T[-31]
Fligner-Killeen:med chi-squared = 14.3863, df = 7, p-value = 0.04472

Hmm. This test says that there are significant differences between the variances (p < 0.05). What you do
next depends on your outlook. There are obviously some close-to-significant differences between these eight
variances, but if you simply look at a plot of the data, plot(T,B), the variances appear to be very well
behaved. A linear model shows some slight pattern in the residuals and some evidence of non-normality:

model <- lm(B~T)
plot(model)

Residuals vs Fitted Normal Q–Q

Fitted values Theoretical Quantiles

Fitted values Leverage

Scale–Location Residuals vs Leverage

R
es

id
ua

ls

S
ta

nd
ar

di
ze

d
re

si
du

al
s

S
ta

nd
ar

di
ze

d
re

si
du

al
s

S
ta

nd
ar

di
ze

d
re

si
du

al
s

–3 –2 –1 0 1 2 3

–3
–2

–1
0

1
2

3

0 2000 4000 6000 8000

0 2000 4000 6000 8000 0.000 0.005 0.010 0.015 0.020

–1
50

–5
0

0
50

15
0

0.
0

0.
5

1.
0

1.
5

–3
–2

–1
0

1
2

3

Cook’s distance

CLASSICAL TESTS 357

The various tests can give wildly different interpretations. Here are the ozone data from three market
gardens:

ozone <- read.table("c:\\temp\\gardens.txt",header=T)
attach(ozone)
names(ozone)

[1] "gardenA" "gardenB" "gardenC"

y <- c(gardenA,gardenB,gardenC)
garden <- factor(rep(c("A","B","C"),c(10,10,10)))

The question is whether the variance in ozone concentration differs from garden to garden or not. Fisher’s F
test comparing gardens B and C says that variance is significantly greater in garden C:

var.test(gardenB,gardenC)

F test to compare two variances
data: gardenB and gardenC
F = 0.0938, num df = 9, denom df = 9, p-value = 0.001624
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.02328617 0.37743695
sample estimates:
ratio of variances

0.09375

Bartlett’s test, likewise, says there is a highly significant difference in variance across gardens:

bartlett.test(y~garden)
Bartlett test of homogeneity of variances
data: y by garden
Bartlett's K-squared = 16.7581, df = 2, p-value = 0.0002296

In contrast, the Fligner–Killeen test (preferred over Bartlett’s test by many statisticians) says there is no
compelling evidence for non-constancy of variance (heteroscedasticity) in these data:

fligner.test(y~garden)

Fligner-Killeen test of homogeneity of variances
data: y by garden
Fligner-Killeen: med chi-squared = 1.8061, df = 2, p-value = 0.4053

The reason for the difference is that Fisher and Bartlett are sensitive to outliers, whereas Fligner–Killeen is
not (it is a non-parametric test which uses the ranks of the absolute values of the centred samples, and weights
a(i) = qnorm((1 + i/(n+1))/2). Of the many tests for homogeneity of variances, this is the most
robust against departures from normality (Conover et al., 1981). In this particular case, I think the Flinger
test is too forgiving: gardens B and C both had a mean of 5 parts per hundred milllion (pphm; well below
the damage threshold of 8 pphm), but garden B never suffered damaging levels of ozone whereas garden C
experienced damaging ozone levels on 30% of days. That difference is scientifically important, and deserves
to be statistically significant.

358 THE R BOOK

8.4.2 Comparing two means

Given what we know about the variation from replicate to replicate within each sample (the within-sample
variance), how likely is it that our two sample means were drawn from populations with the same average?
If it is highly likely, then we shall say that our two sample means are not significantly different. If it is rather
unlikely, then we shall say that our sample means are significantly different. But perhaps a better way to
proceed is to work out the probability that the two samples were indeed drawn from populations with the
same mean. If this probability is very low (say, less than 5% or less than 1%) then we can be reasonably
certain (95% or 99% in these two examples) than the means really are different from one another. Note,
however, that we can never be 100% certain; the apparent difference might just be due to random sampling –
we just happened to get a lot of low values in one sample, and a lot of high values in the other.

There are two classical tests for comparing two sample means:

� Student’s t test when the samples are independent, the variances constant, and the errors are normally
distributed;

� Wilcoxon’s rank-sum test when the samples are independent but the errors are not normally distributed
(e.g. they are ranks or scores or some sort).

What to do when these assumptions are violated (e.g. when the variances are different) is discussed later on.

8.4.3 Student’s t test

Student was the pseudonym of W.S. Gossett who published his influential paper in Biometrika in 1908. The
archaic employment laws in place at the time allowed his employer, the Guinness Brewing Company, to
prevent him publishing independent work under his own name. Student’s t distribution, later perfected by
R.A. Fisher, revolutionized the study of small-sample statistics where inferences need to be made on the basis
of the sample variance s2 with the population variance σ 2 unknown (indeed, usually unknowable). The test
statistic is the number of standard errors of the difference by which the two sample means are separated:

t = difference between the two means

standard error of the difference
= ȳA − ȳB

sediff
.

We know the standard error of the mean (see p. 43) but we have not yet met the standard error of
the difference between two means. For two independent (i.e. non-correlated) variables, the variance of a
difference is the sum of the separate variances. This important result allows us to write down the formula for
the standard error of the difference between two sample means:

sediff =
√

s2
A

nA
+ s2

B

nB

We now have everything we need to carry out Student’s t test. Our null hypothesis is that the two population
means are the same, and we shall accept this unless the value of Student’s t is so large that it is unlikely that
such a difference could have arisen by chance alone. Everything varies, so in real studies our two sample
means will never be exactly the same, no matter what the parent population means. For the ozone example
introduced on p. 354, each sample has 9 degrees of freedom, so we have 18 d.f. in total. Another way of
thinking of this is to reason that the complete sample size as 20, and we have estimated two parameters from
the data, ȳA and ȳB, so we have 20 − 2 = 18 d.f. We typically use 5% as the chance of rejecting the null
hypothesis when it is true (this is the Type I error rate). Because we did not know in advance which of the two

CLASSICAL TESTS 359

gardens was going to have the higher mean ozone concentration (and we usually do not), this is a two-tailed
test, so the critical value of Student’s t is:

qt(0.975,18)

[1] 2.100922

This means that our test statistic needs to be bigger than 2.1 in order to reject the null hypothesis, and hence
to conclude that the two means are significantly different at α = 0.05.

The dataframe is attached like this:

t.test.data <- read.table("c:\\temp\\t.test.data.txt",header=T)
attach(t.test.data)
par(mfrow=c(1,1))
names(t.test.data)

[1] "gardenA" "gardenB"

A useful graphical test for two samples employs the notch option of boxplot:

ozone <- c(gardenA,gardenB)
label <- factor(c(rep("A",10),rep("B",10)))
boxplot(ozone~label,notch=T,xlab="Garden",ylab="Ozone")

1
2

3
4

5
6

7

O
zo

ne

A B
Garden

Because the notches of two plots do not overlap, we conclude that the medians are significantly different at
the 5% level. Note that the variability is similar in both gardens, both in terms of the range (the whiskers) and
the interquartile range (the boxes).

To carry out a t test long-hand, we begin by calculating the variances of the two samples:

s2A <- var(gardenA)
s2B <- var(gardenB)

360 THE R BOOK

The value of the test statistic for Student’s t is the difference divided by the standard error of the difference.
The numerator is the difference between the two means, and the denominator is the square root of the sum
of the two variances divided by their sample sizes:

(mean(gardenA)-mean(gardenB))/sqrt(s2A/10+s2B/10)

which gives the value of Student’s t as

[1] -3.872983

With t-tests you can ignore the minus sign; it is only the absolute value of the difference between the
two sample means that concerns us. So the calculated value of the test statistic is 3.87 and the critical value
is 2.10 (qt(0.975,18), above). Since the calculated value of the test statistic is larger than the critical
value, we reject the null hypothesis. Notice that the wording is exactly the same as it was for the F test
(above). Indeed, the wording is always the same for all kinds of tests, and you should try to memorize it. The
abbreviated form is easier to remember: ‘larger reject, smaller accept’. The null hypothesis was that the two
population means are not significantly different, so we reject this and accept the alternative hypothesis that
the two means are significantly different. Again, rather than merely rejecting the null hypothesis, it is better
to state the probability that data as extreme as this (or more extreme) would be observed if the population
mean values really were the same. For this we use pt rather than qt, and in this instance 2*pt because we
are doing a two-tailed test:

2*pt(-3.872983,18)

[1] 0.001114540

We conclude that p < 0.005.
You will not be surprised to learn that there is a built-in function to do all the work for us. It is called,

helpfully, t.test and is used simply by providing the names of the two vectors containing the samples on
which the test is to be carried out (gardenA and gardenB in our case).

t.test(gardenA,gardenB)

There is rather a lot of output. You often find this: the simpler the statistical test, the more voluminous the
output.

Welch Two Sample t-test
data: gardenA and gardenB
t = -3.873, df = 18, p-value = 0.001115
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.0849115 -0.9150885
sample estimates:
mean of x mean of y

3 5

The result is exactly the same as we obtained the long way. The value of t is –3.873 and, since the sign is
irrelevant in a t test, we reject the null hypothesis because the test statistic is larger than the critical value
of 2.1. The mean ozone concentration is significantly higher in garden B than in garden A. The computer
output also gives a p value and a confidence interval. Note that, because the means are significantly different,
the confidence interval on the difference does not include zero (in fact, it goes from –3.085 up to –0.915).
You might present the result like this: ‘Ozone concentration was significantly higher in garden B (mean =
5.0 pphm) than in garden A (mean = 3.0 pphm; t = 3.873, p = 0.0011 (2-tailed), d.f. = 18).’

CLASSICAL TESTS 361

There is a formula-based version of t.test that you can use when your explanatory variable consists of
a two-level factor (see ?t.test).

8.4.4 Wilcoxon rank-sum test

This is a non-parametric alternative to Student’s t test, which we could use if the errors were non-normal.
The Wilcoxon rank-sum test statistic, W, is calculated as follows. Both samples are put into a single array
with their sample names clearly attached (A and B in this case, as explained below). Then the aggregate list
is sorted, taking care to keep the sample labels with their respective values. A rank is assigned to each value,
with ties getting the appropriate average rank (two-way ties get (rank i + (rank i + 1))/2, three-way ties get
(rank i + (rank i + 1) + (rank i + 2))/3, and so on). Finally the ranks are added up for each of the two
samples, and significance is assessed on the size of the smaller sum of ranks.

First we make a combined vector of the samples:

ozone <- c(gardenA,gardenB)
ozone

[1] 3 4 4 3 2 3 1 3 5 2 5 5 6 7 4 4 3 5 6 5

Then we make a list of the sample names:

label <- c(rep("A",10),rep("B",10))
label

[1] "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B"

Now use the built-in function rank to get a vector containing the ranks, smallest to largest, within the
combined vector:

combined.ranks <- rank(ozone)
combined.ranks

[1] 6.0 10.5 10.5 6.0 2.5 6.0 1.0 6.0 15.0 2.5 15.0 15.0
[13] 18.5 20.0 10.5 10.5 6.0 15.0 18.5 15.0

Notice that the ties have been dealt with by averaging the appropriate ranks. Now all we need to do is calculate
the sum of the ranks for each garden. We use tapply with sum as the required operation

tapply(combined.ranks,label,sum)

A B
66 144

Finally, we compare the smaller of the two values (66) with values in tables of Wilcoxon rank sums (e.g.
Snedecor and Cochran, 1980, p. 555), and reject the null hypothesis if our value of 66 is smaller than the
value in tables. For samples of size 10 and 10 like ours, the 5% value in tables is 78. Our value of 66 is smaller
than this, so we reject the null hypothesis. The two sample means are significantly different (in agreement
with our earlier t test).

We can carry out the whole procedure automatically, and avoid the need to use tables of critical values of
Wilcoxon rank sums, by using the built-in function wilcox.test:

wilcox.test(gardenA,gardenB)

Wilcoxon rank sum test with continuity correction

data: gardenA and gardenB

362 THE R BOOK

W = 11, p-value = 0.002988
alternative hypothesis: true location shift is not equal to 0

Warning message:
In wilcox.test.default(gardenA, gardenB) :
cannot compute exact p-value with ties

The function uses a normal approximation algorithm to work out a z value, and from this a p value to assess
the hypothesis that the two means are the same. This p value of 0.002 988 is much less than 0.05, so we
reject the null hypothesis, and conclude that the mean ozone concentrations in gardens A and B are significantly
different. The warning message at the end draws attention to the fact that there are ties in the data (repeats of
the same ozone measurement), and this means that the p value cannot be calculated exactly (this is seldom a
real worry).

It is interesting to compare the p values of the t test and the Wilcoxon test with the same data: p = 0.001 115
and 0.002 988, respectively. The non-parametric test is much more appropriate than the t test when the errors
are not normal, and the non-parametric test is about 95% as powerful with normal errors, and can be more
powerful than the t test if the distribution is strongly skewed by the presence of outliers. Typically, as here, the
t test will give the lower p value, so the Wilcoxon test is said to be conservative: if a difference is significant
under a Wilcoxon test it would be even more significant under a t test.

8.5 Tests on paired samples

Sometimes, two-sample data come from paired observations. In this case, we might expect a correlation
between the two measurements, because they were either made on the same individual, or taken from the
same location. You might recall that the variance of a difference is the average of

(yA − µA)2 + (yB − µB)2 − 2(yA − µA)(yB − µB),

which is the variance of sample A, plus the variance of sample B, minus twice the covariance of A and
B. When the covariance of A and B is positive, this is a great help because it reduces the variance of the
difference, which makes it easier to detect significant differences between the means. Pairing is not always
effective, because the correlation between yA and yB may be weak.

The following data are a composite biodiversity score based on a kick sample of aquatic invertebrates:

streams <- read.table("c:\\temp\\streams.txt",header=T)
attach(streams)
names(streams)

[1] "down" "up"

The elements are paired because the two samples were taken on the same river, one upstream and one
downstream from the same sewage outfall.

If we ignore the fact that the samples are paired, it appears that the sewage outfall has no impact on
biodiversity score (p = 0.6856):

t.test(down,up)

Welch Two Sample t-test

data: down and up
t = -0.4088, df = 29.755, p-value = 0.6856

CLASSICAL TESTS 363

alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-5.248256 3.498256
sample estimates:
mean of x mean of y

12.500 13.375

However, if we allow that the samples are paired (simply by specifying the option paired=T), the picture
is completely different:

t.test(down,up,paired=TRUE)

Paired t-test

data: down and up
t = -3.0502, df = 15, p-value = 0.0081
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.4864388 -0.2635612
sample estimates:
mean of the differences

-0.875

This is a good example of the benefit of writing TRUE rather than T. Because we have a variable called T
(p. 22) the test would fail if we typed t.test(down,up,paired=T). Now the difference between the
means is highly significant (p = 0.0081). The moral is clear. If you can do a paired t test, then you should
always do the paired test. It can never do any harm, and sometimes (as here) it can do a huge amount of
good. In general, if you have information on blocking or spatial correlation (in this case, the fact that the two
samples came from the same river), then you should always use it in the analysis.

Here is the same paired test carried out as a one-sample t test based on the differences between the pairs
(upstream diversity minus downstream diversity):

difference <- up - down
t.test(difference)

One Sample t-test

data: difference
t = 3.0502, df = 15, p-value = 0.0081
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.2635612 1.4864388
sample estimates:
mean of x

0.875

As you see, the result is identical to the two-sample t test with paired=TRUE (p = 0.0081). The upstream
values of the biodiversity score were greater by 0.875 on average, and this difference is highly significant.
Working with the differences has halved the number of degrees of freedom (from 30 to 15), but it has more
than compensated for this by reducing the error variance, because there is such a strong positive correlation
between yA and yB.

364 THE R BOOK

8.6 The sign test

This is one of the simplest of all statistical tests. Suppose that you cannot measure a difference, but you can see
it (e.g. in judging a diving contest). For example, nine springboard divers were scored as better or worse, having
trained under a new regime and under the conventional regime (the regimes were allocated in a randomized
sequence to each athlete: new then conventional, or conventional then new). Divers were judged twice: one
diver was worse on the new regime, and 8 were better. What is the evidence that the new regime produces
significantly better scores in competition? The answer comes from a two-tailed binomial test. How likely is a
response of 1/9 (or 8/9 or more extreme than this, i.e. 0/9 or 9/9) if the populations are actually the same (i.e.
p = 0.5)? We use a binomial test for this, specifying the number of ‘failures’ (1) and the total sample size (9):

binom.test(1,9)

Exact binomial test

data: 1 and 9
number of successes = 1, number of trials = 9, p-value = 0.03906
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.002809137 0.482496515
sample estimates:
probability of success

0.1111111

We would conclude that the new training regime is significantly better than the traditional method, because
p < 0.05.

It is easy to write a function to carry out a sign test to compare two samples, x and y:

sign.test <- function(x, y)
{
if(length(x) != length(y)) stop("The two variables must be the same length")

d <- x - y
binom.test(sum(d > 0), length(d))

}

The function starts by checking that the two vectors are the same length, then works out the vector of the
differences, d. The binomial test is then applied to the number of positive differences (sum(d > 0)) and
the total number of numbers (length(d)). If there was no difference between the samples, then on average,
the sum would be about half of length(d). Here is the sign test used to compare the ozone levels in gardens
A and B (see above):

sign.test(gardenA,gardenB)

Exact binomial test

data: sum(d > 0) and length(d)
number of successes = 0, number of trials = 10, p-value = 0.001953
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.0000000 0.3084971
sample estimates:
probability of success

0

CLASSICAL TESTS 365

Note that the p value (0.002) from the sign test is larger than in the equivalent t test (p = 0.0011) that we
carried out earlier. This will generally be the case: other things being equal, the parametric test will be more
powerful than the non-parametric equivalent.

8.7 Binomial test to compare two proportions

Suppose that only four females were promoted, compared to 196 men. Is this an example of blatant sexism,
as it might appear at first glance? Before we can judge, of course, we need to know the number of male
and female candidates. It turns out that 196 men were promoted out of 3270 candidates, compared with 4
promotions out of only 40 candidates for the women. Now, if anything, it looks like the females did better
than males in the promotion round (10% success for women versus 6% success for men).

The question then arises as to whether the apparent positive discrimination in favour of women is statisti-
cally significant, or whether this sort of difference could arise through chance alone. This is easy in R using
the built-in binomial proportions test prop.test in which we specify two vectors, the first containing the
number of successes for females and males c(4,196) and second containing the total number of female
and male candidates c(40,3270):

prop.test(c(4,196),c(40,3270))

2-sample test for equality of proportions with continuity correction

data: c(4, 196) out of c(40, 3270)
X-squared = 0.5229, df = 1, p-value = 0.4696
alternative hypothesis: two.sided
95 percent confidence interval:
-0.06591631 0.14603864
sample estimates:

prop 1 prop 2
0.10000000 0.05993884

Warning message:
In prop.test(c(4, 196), c(40, 3270)) :
Chi-squared approximation may be incorrect

There is no evidence in favour of positive discrimination (p = 0.4696). A result like this will occur more
than 45% of the time by chance alone. Just think what would have happened if one of the successful female
candidates had not applied. Then the same promotion system would have produced a female success rate of
3/39 instead of 4/40 (7.7% instead of 10%). In small samples, small changes have big effects.

8.8 Chi-squared contingency tables

A great deal of statistical information comes in the form of counts (whole numbers or integers): the number
of animals that died, the number of branches on a tree, the number of days of frost, the number of companies
that failed, the number of patients who died. With count data, the number 0 is often the value of a response
variable (consider, for example, what a 0 would mean in the context of the examples just listed). The analysis
of count data is discussed in more detail in Chapters 14 and 15.

The dictionary definition of contingency is: ‘A possible or uncertain event on which other things depend or
are conditional’ (OED, 2012). In statistics, however, the contingencies are all the events that could possibly

366 THE R BOOK

happen. A contingency table shows the counts of how many times each of the contingencies actually happened
in a particular sample. Consider the following example that has to do with the relationship between hair colour
and eye colour in white people. For simplicity, we just chose two contingencies for hair colour: ‘fair’ and
‘dark’. Likewise we just chose two contingencies for eye colour: ‘blue’ and ‘brown’. Each of these two
categorical variables, eye colour and hair colour, has two levels (‘blue’ and ‘brown’, and ‘fair’ and ‘dark’,
respectively). Between them, they define four possible outcomes (the contingencies): fair hair and blue eyes,
fair hair and brown eyes, dark hair and blue eyes, and dark hair and brown eyes. We take a random sample of
white people and count how many of them fall into each of these four categories. Then we fill in the 2 × 2
contingency table like this:

Blue eyes Brown eyes
Fair hair 38 11
Dark hair 14 51

These are our observed frequencies (or counts). The next step is very important. In order to make any progress
in the analysis of these data we need a model which predicts the expected frequencies. What would be a
sensible model in a case like this? There are all sorts of complicated models that you might select, but
the simplest model (Occam’s razor, or the principle of parsimony) is that hair colour and eye colour are
independent. We may not believe that this is actually true, but the hypothesis has the great virtue of being
falsifiable. It is also a very sensible model to choose because it makes it possible to predict the expected
frequencies based on the assumption that the model is true. We need to do some simple probability work.
What is the probability of getting a random individual from this sample whose hair was fair? A total of
49 people (38 + 11) had fair hair out of a total sample of 114 people. So the probability of fair hair is 49/114
and the probability of dark hair is 65/114. Notice that because we have only two levels of hair colour, these
two probabilities add up to 1 ((49 + 65)/114). What about eye colour? What is the probability of selecting
someone at random from this sample with blue eyes? A total of 52 people had blue eyes (38 + 14) out of
the sample of 114, so the probability of blue eyes is 52/114 and the probability of brown eyes is 62/114. As
before, these sum to 1 ((52 + 62)/114). It helps to add the subtotals to the margins of the contingency table
like this:

Blue eyes Brown eyes Row totals
Fair hair 38 11 49
Dark hair 14 51 65
Column totals 52 62 114

Now comes the important bit. We want to know the expected frequency of people with fair hair and blue
eyes, to compare with our observed frequency of 38. Our model says that the two are independent. This is
essential information, because it allows us to calculate the expected probability of fair hair and blue eyes. If,
and only if, the two traits are independent, then the probability of having fair hair and blue eyes is the product
of the two probabilities. So, following our earlier calculations, the probability of fair hair and blue eyes is
49/114 × 52/114. We can do exactly equivalent things for the other three cells of the contingency table:

Blue eyes Brown eyes Total count in each row
Fair hair 49/114 × 52/114 49/114 × 62/114 49
Dark hair 65/114 × 52/114 65/114 × 62/114 65
Total count in each column 52 62 114

Now we need to know how to calculate the expected frequency. It couldn’t be simpler. It is just the prob-
ability multiplied by the total sample (n = 114). So the expected frequency of blue eyes and fair hair is

CLASSICAL TESTS 367

49/114 × 52/114 × 114 = 22.35, which is much less than our observed frequency of 38. It is beginning to
look as if our hypothesis of independence of hair and eye colour is false.

You might have noticed something useful in the last calculation: two of the sample sizes cancel out.
Therefore, the expected frequency in each cell is just the row total (R) times the column total (C) divided by
the grand total (G) like this:

E = R × C

G
.

We can now work out the four expected frequencies:

Blue eyes Brown eyes Row totals
Fair hair 22.35 26.65 49
Dark hair 29.65 35.35 65
Column totals 52 62 114

Notice that the row and column totals (the so-called ‘marginal totals’) are retained under the model. It is clear
that the observed frequencies and the expected frequencies are different. But in sampling, everything always
varies, so this is no surprise. The important question is whether the expected frequencies are significantly
different from the observed frequencies.

We can assess the significance of the differences between observed and expected frequencies in a variety
of ways:

� Pearson’s chi-squared;

� G test;

� Fisher’s exact test.

8.8.1 Pearson’s chi-squared

We begin with Pearson’s chi-squared test. The test statistic χ2 is

χ2 =
∑ (O − E)2

E
,

where O is the observed frequency and E is the expected frequency. It makes the calculations easier if we write
the observed and expected frequencies in parallel columns, so that we can work out the corrected squared
differences more easily.

O E (O − E)2 (O−E)2

E
Fair hair and blue eyes 38 22.35 244.92 10.96
Fair hair and brown eyes 11 26.65 244.92 9.19
Dark hair and blue eyes 14 29.65 244.92 8.26
Dark hair and brown eyes 51 35.35 244.92 6.93

All we need to do now is to add up the four components of chi-squared to get χ2 = 35.33.
The question now arises: is this a big value of chi-squared or not? This is important, because if it is a

bigger value of chi-squared than we would expect by chance, then we should reject the null hypothesis. If, on

368 THE R BOOK

the other hand, it is within the range of values that we would expect by chance alone, then we should accept
the null hypothesis.

We always proceed in the same way at this stage. We have a calculated value of the test statistic: χ2 =
35.33. We compare this value of the test statistic with the relevant critical value. To work out the critical value
of chi-squared we need two things:

� the number of degrees of freedom, and

� the degree of certainty with which to work.

In general, a contingency table has a number of rows (r) and a number of columns (c), and the degrees of
freedom is given by

d.f. = (r − 1) × (c − 1).

So we have (2 − 1) × (2 − 1) = 1 degree of freedom for a 2 × 2 contingency table. You can see why there
is only one degree of freedom by working through our example. Take the ‘fair hair, brown eyes’ box (the top
right in the table) and ask how many values this could possibly take. The first thing to note is that the count
could not be more than 49, otherwise the row total would be wrong. But in principle, the number in this box
is free to take any value between 0 and 49. We have one degree of freedom for this box. But when we have
fixed this box to be, say, 11,

Blue eyes Brown eyes Row totals
Fair hair 11 49
Dark hair 65
Column totals 52 62 114

you will see that we have no freedom at all for any of the other three boxes. The top left box has to be
49 − 11 = 38 because the row total is fixed at 49. Once the top left box is defined as 38 then the bottom left
box has to be 52 − 38 = 14 because the column total is fixed (the total number of people with blue eyes was
52). This means that the bottom right box has to be 65 − 14 = 51. Thus, because the marginal totals are
constrained, a 2 × 2 contingency table has just one degree of freedom.

The next thing we need to do is say how certain we want to be about the falseness of the null hypothesis. The
more certain we want to be, the larger the value of chi-squared we would need to reject the null hypothesis. It
is conventional to work at the 95% level. That is our certainty level, so our uncertainty level is 100 – 95 = 5%.
Expressed as a decimal, this is called alpha (α = 0.05). Technically, alpha is the probability of rejecting the
null hypothesis when it is true. This is called a Type I error. A Type II error is accepting the null hypothesis
when it is false.

Critical values in R are obtained by use of quantiles (q) of the appropriate statistical distribution. For the
chi-squared distribution, this function is called qchisq. The function has two arguments: the certainty level
(p = 0.95), and the degrees of freedom (d.f. = 1):

qchisq(0.95,1)

[1] 3.841459

The critical value of chi-squared is 3.841. Since the calculated value of the test statistic is greater than the
critical value we reject the null hypothesis.

What have we learned so far? We have rejected the null hypothesis that eye colour and hair colour are
independent. But that is not the end of the story, because we have not established the way in which they
are related (e.g. is the correlation between them positive or negative?). To do this we need to look carefully

CLASSICAL TESTS 369

at the data, and compare the observed and expected frequencies. If fair hair and blue eyes were positively
correlated, would the observed frequency be greater or less than the expected frequency? A moment’s thought
should convince you that the observed frequency will be greater than the expected frequency when the traits
are positively correlated (and less when they are negatively correlated). In our case we expected only 22.35
but we observed 38 people (nearly twice as many) to have both fair hair and blue eyes. So it is clear that fair
hair and blue eyes are positively associated.

In R the procedure is very straightforward. We start by defining the counts as a 2 × 2 matrix like this:

count <- matrix(c(38,14,11,51),nrow=2)
count

[,1] [,2]
[1,] 38 11
[2,] 14 51

Notice that you enter the data columnwise (not row-wise) into the matrix. Then the test uses thechisq.test
function, with the matrix of counts as its only argument:

chisq.test(count)

Pearson's Chi-squared test with Yates' continuity correction
data: count
X-squared = 33.112, df = 1, p-value = 8.7e-09

The calculated value of chi-squared is slightly different from ours, because Yates’ correction has been applied
as the default (see Sokal and Rohlf, 1995, p. 736). If you switch the correction off (correct=F), you get
the value we calculated by hand:

chisq.test(count,correct=F)

Pearson's Chi-squared test
data: count
X-squared = 35.3338, df = 1, p-value = 2.778e-09

It makes no difference at all to the interpretation: there is a highly significant positive association between
fair hair and blue eyes for this group of people. If you need to extract the frequencies expected under the null
hypothesis of independence then use:

chisq.test(count,correct=F)$expected

[,1] [,2]
[1,] 22.35088 26.64912
[2,] 29.64912 35.35088

8.8.2 G test of contingency

The idea is exactly the same. We are looking for evidence of non-independence of hair colour and eye colour.
Even the distribution of the critical value is the same: chi-squared. The difference is in the test statistic. Instead
of computing Pearson’s chi-squared

∑
(O − E)2/E , we compute the deviance from a log-linear model (see

p. 562):

G = 2
∑

O ln

(
O

E

)
.

370 THE R BOOK

Here are the calculations:

O E ln
(

O
E

)
O ln

(
O
E

)
Fair hair and blue eyes 38 22.35 0.5307598 20.168874
Fair hair and brown eyes 11 26.65 −0.8848939 −9.733833
Dark hair and blue eyes 14 29.65 −0.7504048 −10.505667
Dark hair and brown eyes 51 35.35 0.3665272 18.692889

The test statistic G is twice the sum of the right-hand column: 2 × 18.622 26 = 37.244 53. This value is
compared with chi-squared in tables with 1 d.f. as before. The calculated value of the test statistic is much
greater than the critical value (3.841) so we reject the null hypothesis of independence. Hair colour and eye
colour are correlated in this group of people. We need to look at the data to see which way the correlation
goes. We see far more people with fair hair and blue eyes (38) than expected under the null hypothesis of
independence (22.35) so the correlation is positive. Pearson’s chi-squared was χ2 = 35.33 (above) so the test
statistic values are slightly different (χ2 = 37.24 in the G test) but the interpretation is identical.

8.8.3 Unequal probabilities in the null hypothesis

So far we have assumed equal probabilities, butchisq.test can deal with cases with unequal probabilities.
This example has 21 individuals distributed over four categories:

chisq.test(c(10,3,2,6))

Chi-squared test for given probabilities

data: c(10, 3, 2, 6)
X-squared = 7.381, df = 3, p-value = 0.0607

The four counts are not significantly different if the probability of appearing in each of the four cells is 0.25
(the calculated p-value is greater than 0.05). However, if the null hypothesis was that the third and fourth
cells had 1.5 times the probability of the first two cells, then these counts are highly significant.

chisq.test(c(10,3,2,6),p=c(0.2,0.2,0.3,0.3))

Chi-squared test for given probabilities

data: c(10, 3, 2, 6)
X-squared = 11.3016, df = 3, p-value = 0.0102

Warning message:
In chisq.test(c(10, 3, 2, 6), p = c(0.2, 0.2, 0.3, 0.3)) :
Chi-squared approximation may be incorrect

Note the warning message associated with the low expected frequencies in cells 1 and 2.

8.8.4 Chi-squared tests on table objects

You can use the chisq.test function with table objects as well as vectors. To test the random number
generator as a simulator of the throws of a six-sided die we could simulate 100 throws like this, then use table
to count the number of times each number appeared:

die <- ceiling(runif(100,0,6))
table(die)

CLASSICAL TESTS 371

die
1 2 3 4 5 6
23 15 20 14 12 16

So we observed only 12 fives in this trail and 23 ones. But is this a significant departure from fairness of the
die? chisq.test will answer this:

chisq.test(table(die))

Chi-squared test for given probabilities

data: table(die)
X-squared = 5, df = 5, p-value = 0.4159

No. This is a fair die (p = 0.4159). Note that the syntax is chisq.test(table(die)) not
chisq.test(die) and that there are 5 degrees of freedom in this case.

8.8.5 Contingency tables with small expected frequencies: Fisher’s exact test

When one or more of the expected frequencies is less than 4 (or 5 depending on the rule of thumb you follow)
then it is wrong to use Pearson’s chi-squared or log-linear models (G tests) for your contingency table. This is
because small expected values inflate the value of the test statistic, and it no longer can be assumed to follow
the chi-squared distribution. The individual counts are a, b, c and d like this:

Column 1 Column 2 Row totals
Row 1 a b a + b
Row 2 c d c + d
Column totals a + c b + d n

The probability of any one particular outcome is given by

p = (a + b)!(c + d)!(a + c)!(b + d)!

a!b!c!d!n!

where n is the grand total.
Our data concern the distribution of eight ants’ nests over 10 trees of each of two species of tree (A and

B). There are two categorical explanatory variables (ants and trees), and four contingencies, ants (present
or absent) and trees (A or B). The response variable is the vector of four counts c(6,4,2,8) entered
columnwise:

Tree A Tree B Row totals
With ants 6 2 8
Without ants 4 8 12
Column totals 10 10 20

We can calculate the probability for this particular outcome:

factorial(8)*factorial(12)*factorial(10)*factorial(10)/
(factorial(6)*factorial(2)*factorial(4)*factorial(8)*factorial(20))

[1] 0.07501786

372 THE R BOOK

But this is only part of the story. We need to compute the probability of outcomes that are more extreme than
this. There are two of them. Suppose only 1 ant colony had been found on tree B. Then the table values would
be 7, 1, 3, 9 but the row and column totals would be exactly the same (the marginal totals are constrained).
The numerator always stays the same, so this case has probability

factorial(8)*factorial(12)*factorial(10)*factorial(10)/
(factorial(7)*factorial(3)*factorial(1)*factorial(9)*factorial(20))

[1] 0.009526078

There is an even more extreme case if no ant colonies at all were found on tree B. Now the table elements
become 8, 0, 2, 10 with probability

factorial(8)*factorial(12)*factorial(10)*factorial(10)/
(factorial(8)*factorial(2)*factorial(0)*factorial(10)*factorial(20))

[1] 0.0003572279

and we need to add these three probabilities together:

0.07501786 + 0.009526078 + 0.000352279

[1] 0.08489622

But there was no a priori reason for expecting that the result would be in this direction. It might have been
tree A that happened to have relatively few ant colonies. We need to allow for extreme counts in the opposite
direction by doubling this probability (all Fisher’s exact tests are two-tailed):

2*(0.07501786 + 0.009526078 + 0.000352279)

[1] 0.1697924

This shows that there is no evidence of any correlation between tree and ant colonies. The observed pattern,
or a more extreme one, could have arisen by chance alone with probability p = 0.17.

There is a built-in function called fisher.test, which saves us all this tedious computation. It takes
as its argument a 2 × 2 matrix containing the counts of the four contingencies. We make the matrix like this
(compare with the alternative method of making a matrix, above):

x <- as.matrix(c(6,4,2,8))
dim(x) <- c(2,2)
x

[,1] [,2]
[1,] 6 2
[2,] 4 8

We then run the test like this:

fisher.test(x)

Fisher's Exact Test for Count Data

data: x
p-value = 0.1698
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.6026805 79.8309210

CLASSICAL TESTS 373

sample estimates:
odds ratio
5.430473

You see the same non-significant p-value that we calculated by hand. Another way of using the function is
to provide it with two vectors containing factor levels, instead of a two-dimensional matrix of counts. This
saves you the trouble of counting up how many combinations of each factor level there are:

table <- read.table("c:\\temp\\fisher.txt",header=TRUE)
head(table)

tree nests
1 A ants
2 B ants
3 A none
4 A ants
5 B none
6 A none

attach(table)
fisher.test(tree,nests)

Fisher's Exact Test for Count Data

data: tree and nests
p-value = 0.1698
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.6026805 79.8309210
sample estimates:
odds ratio
5.430473

The fisher.test procedure can be used with matrices much bigger than 2 × 2.

8.9 Correlation and covariance

With two continuous variables, x and y, the question naturally arises as to whether their values are correlated
with each other. Correlation is defined in terms of the variance of x, the variance of y, and the covariance of
x and y (the way the two vary together, which is to say the way they covary) on the assumption that both
variables are normally distributed. We have symbols already for the two variances: s2

x and s2
y . We denote the

covariance of x and y by cov(x, y), so the correlation coefficient r is defined as

r = cov(x, y)√
s2

x s2
y

.

We know how to calculate variances, so it remains only to work out the value of the covariance of x and y.
Covariance is defined as the expectation of the vector product xy. The covariance of x and y is the expectation
of the product minus the product of the two expectations. Note that when x and y are independent (i.e. they
are not correlated) then the covariance between x and y is 0, so E[xy] = E[x].E[y] (i.e. the product of their
mean values).

374 THE R BOOK

Let us work through a numerical example:

data <- read.table("c:\\temp\\twosample.txt",header=T)
attach(data)
plot(x,y,pch=21,col="red",bg="orange")

20
40

60
80

10
0

12
0

14
0

10 20 30 40 50
x

y

There is clearly a strong positive correlation between the two variables. First, we need the variance of x and
the variance of y:

var(x)

[1] 199.9837

var(y)

[1] 977.0153

The covariance of x and y, cov(x, y), is given by the var function when we supply it with two vectors like
this:

var(x,y)

[1] 414.9603

Thus, the correlation coefficient should be 414.96/
√

199.98 × 977.02:

var(x,y)/sqrt(var(x)*var(y))

[1] 0.9387684

Let us see if this checks out:

cor(x,y)

[1] 0.9387684

CLASSICAL TESTS 375

So now you know the definition of the correlation coefficient: it is the covariance divided by the geometric
mean of the two variances.

8.9.1 Data dredging

The R function cor returns the correlation matrix of a data matrix, or a single value showing the correlation
between one vector and another (as above):

pollute <- read.table("c:\\temp\\Pollute.txt",header=T)
attach(pollute)
cor(pollute)

Pollution Temp Industry Population Wind Rain Wet.days
Pollution 1.00000000 -0.43360020 0.64516550 0.49377958 0.09509921 0.05428389 0.36956363
Temp -0.43360020 1.00000000 -0.18788200 -0.06267813 -0.35112340 0.38628047 -0.43024212
Industry 0.64516550 -0.18788200 1.00000000 0.95545769 0.23650590 -0.03121727 0.13073780
Population 0.49377958 -0.06267813 0.95545769 1.00000000 0.21177156 -0.02606884 0.04208319
Wind 0.09509921 -0.35112340 0.23650590 0.21177156 1.00000000 -0.01246601 0.16694974
Rain 0.05428389 0.38628047 -0.03121727 -0.02606884 -0.01246601 1.00000000 0.49605834
Wet.days 0.36956363 -0.43024212 0.13073780 0.04208319 0.16694974 0.49605834 1.00000000

The phrase ‘data dredging’ is used disparagingly to describe the act of trawling through a table like this,
desperately looking for big values which might suggest relationships that you can publish. This behaviour is
not to be encouraged. The raw correlation suggests that there is a very strong positive relationship between
Industry and Population (r = 0.9555). The correct approach is model simplification (see p. 391),
which indicates that people live in places with less, not more, polluted air. Note that the correlations are
identical in opposite halves of the matrix (in contrast to regression, where regression of y on x would give
different parameter values and standard errors than regression of x on y). The correlation between two vectors
produces a single value:

cor(Pollution,Wet.days)

[1] 0.3695636

Correlations with single explanatory variables can be highly misleading if (as is typical) there is substantial
correlation amongst the explanatory variables (collinearity; see p. 490).

8.9.2 Partial correlation

With more than two variables, you often want to know the correlation between x and y when a third variable,
say, z, is held constant. The partial correlation coefficient measures this. It enables correlation due to a shared
common cause to be distinguished from direct correlation. It is given by

rxy.z = rxy − rxzryz√
(1 − r2

xz)(1 − r2
yz)

.

Suppose we had four variables and we wanted to look at the correlation between x and y holding the other
two, z and w, constant. Then

rxy.zw = rxy.z − rxw.zryw.z√
(1 − r2

xw.z)(1 − r2
yw.z)

.

376 THE R BOOK

You will need partial correlation coefficients if you want to do path analysis. R has a package called sem
for carrying out structural equation modelling (including the production of path.diagram) and another
called corpcor for converting correlations into partial correlations using the cor2pcor function (or vice
versa with pcor2cor).

8.9.3 Correlation and the variance of differences between variables

Samples often exhibit positive correlations that result from pairing, as in the upstream and downstream
invertebrate biodiversity data that we investigated earlier. There is an important general question about the
effect of correlation on the variance of differences between variables. In the extreme, when two variables
are so perfectly correlated that they are identical, then the difference between one variable and the other
is zero. So it is clear that the variance of a difference will decline as the strength of positive correlation
increases.

The following data show the depth of the water table (in centimetres below the surface) in winter and
summer at 10 locations:

data <- read.table("c:\\temp\\wtable.txt",header=T)
attach(data)
names(data)

[1] "summer" "winter"

We begin by asking whether there is a correlation between summer and winter water table depths across
locations:

cor(summer, winter)

[1] 0.6596923

There is a reasonably strong positive correlation (p = 0.037 95, which is marginally significant; see below).
Not surprisingly, places where the water table is high in summer tend to have a high water table in winter as
well. If you want to determine the significance of a correlation (i.e. the p value associated with the calculated
value of r) then use cor.test rather than cor. This test has non-parametric options for Kendall’s tau or
Spearman’s rank, depending on the method you specify (method="k" or method="s"), but the default
method is Pearson’s product-moment correlation (method="p"):

cor.test(summer, winter)

Pearson's product-moment correlation

data: summer and winter
t = 2.4828, df = 8, p-value = 0.03795
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.05142655 0.91094772
sample estimates:

cor
0.6596923

Now, let us investigate the relationship between the correlation coefficient and the three variances: the
summer variance, the winter variance, and the variance of the differences (winter minus summer water

CLASSICAL TESTS 377

table depth):

varS <- var(summer)
varW <- var(winter)
varD <- var(winter-summer)
varS;varW;varD

[1] 15.13203
[1] 7.541641
[1] 8.579066

The correlation coefficient ρ is related to these three variances by:

ρ = σ 2
y + σ 2

z − σ 2
y−z

2σyσz

So, using the values we have just calculated, we get the correlation coefficient to be

(varS+varW-varD)/(2*sqrt(varS)*sqrt(varW))

[1] 0.6596923

which checks out. We can also see whether the variance of the difference is equal to the sum of the component
variances (see p. 362):

varD

[1] 8.579066

varS+varW

[1] 22.67367

No, it is not. They would be equal only if the two samples were independent. In fact, we know that the
two variables are positively correlated, so the variance of the difference should be less than the sum of the
variances by an amount equal to 2 × r × s1 × s2:

varS+varW-varD

[1] 14.09461

2 * cor(summer,winter) * sqrt(varS) * sqrt(varW)

[1] 14.09461

That’s more like it.

8.9.4 Scale-dependent correlations

Another major difficulty with correlations is that scatterplots can give a highly misleading impression of what
is going on. The moral of this exercise is very important: things are not always as they seem. The following
data show the number of species of mammals (y) in forests of differing productivity (x):

productivity <- read.table("c:\\temp\\productivity.txt",header=T)
attach(productivity)
head(productivity)

378 THE R BOOK

x y f
1 1 3 a
2 2 4 a
3 3 2 a
4 4 1 a
5 5 3 a
6 6 1 a

plot(x,y,pch=21,col="blue",bg="green",
xlab="Productivity",ylab="Mammal species")

0
5

10
15

20
25

0 5 10 15 20 25 30

Productivity

M
am

m
al

 s
pe

ci
es

cor.test(x,y)

Pearson's product-moment correlation

data: x and y
t = 7.5229, df = 52, p-value = 7.268e-10
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.5629686 0.8293555
sample estimates:

cor
0.7219081

There is evidently a significant positive correlation (p < 0.000 001) between mammal species and
productivity: increasing productivity is associated with increasing species richness. However, when we
look at the relationship for each region (f) separately using coplot, we see exactly the opposite
relationship:

CLASSICAL TESTS 379

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0
5

10
15

20
25

0
5

10
15

20
25

0
5

10
15

20
25

x

y

Given : f

a
b

c
d

e
f

g

The pattern is obvious. In every single case, increasing productivity is associated with reduced mammal
species richness within each region (regions are labelled a–g from bottom left). The lesson is clear: you
need to be extremely careful when looking at correlations across different scales. Things that are positively
correlated over short time scales may turn out to be negatively correlated in the long term. Things that appear
to be positively correlated at large spatial scales may turn out (as in this example) to be negatively correlated
at small scales.

8.10 Kolmogorov–Smirnov test

People know this test for its wonderful name, rather than for what it actually does. It is an extremely simple
test for asking one of two different questions:

� Are two sample distributions the same, or are they significantly different from one another in one or more
(unspecified) ways?

� Does a particular sample distribution arise from a particular hypothesized distribution?

The two-sample problem is the one most often used. The apparently simple question is actually very broad. It
is obvious that two distributions could be different because their means were different. But two distributions

380 THE R BOOK

with exactly the same mean could be significantly different if they differed in variance, or in skew or kurtosis
(see p. 350).

The Kolmogorov–Smirnov test works on cumulative distribution functions. These give the probability
that a randomly selected value of X is less than or equal to x:

F(x) = P[X ≤ x].

This sounds somewhat abstract. Suppose we had insect wing sizes (y) for two geographically separated
populations (A and B) and we wanted to test whether the distribution of wing lengths was the same in the
two places:

data <- read.table("c:\\temp\\ksdata.txt",header=T)
attach(data)
names(data)

[1] "y" "site"

We start by extracting the data for the two populations, and describing the samples:

table(site)

site
A B
10 12

There are 10 samples from site A and 12 from site B.

tapply(y,site,mean)

A B
4.355266 11.665089

tapply(y,site,var)

A B
27.32573 90.30233

Their means are quite different, but the size of the difference in their variances precludes using a t test. We
start by plotting the cumulative probabilities for the two samples on the same axes, bearing in mind that there
are 10 values if A and 12 values of B:

plot(seq(0,1,length=12),cumsum(sort(B)/sum(B)),type="l",
ylab="Cumulative probability",xlab="Index",col="red")

lines(seq(0,1,length=10),cumsum(sort(A)/sum(A)),col="blue")

CLASSICAL TESTS 381

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

It certainly looks as if population A (the blue line) is different. We test the significance of the difference
between the two distributions with ks.test like this:

ks.test(y[site=="A"],y[site=="B"])

Two-sample Kolmogorov-Smirnov test

data: y[site == "A"] and y[site == "B"]
D = 0.55, p-value = 0.04889
alternative hypothesis: two-sided

The test works despite the difference in length of the two vectors, and shows a marginally significant difference
between the two sites (p = 0.049).

The other test involves comparing one sample with the probability function of a named distribution. Let us
test whether the larger sample from site B is normally distributed, using pnorm as the probability function,
with specified mean and standard deviation:

ks.test(y[site=="B"],"pnorm",mean(y[site=="B"]),sd(y[site=="B"]))

One-sample Kolmogorov-Smirnov test

data: y[site == "B"]
D = 0.1844, p-value = 0.7446
alternative hypothesis: two-sided

There is no evidence that the samples from site B depart significantly from normality. Note, however, that the
Shapiro–Wilk test

shapiro.test(y[site=="B"])

Shapiro-Wilk normality test

382 THE R BOOK

data: y[site == "B"]
W = 0.876, p-value = 0.0779

comes much closer to suggesting significant non-normality (above), while

Normal Q–Q Plot

5
10

15
20

25

S
am

pl
e

Q
ua

nt
ile

s

–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5

Theoretical Quantiles

the standard model-checking quantile–quantile plot looks suspiciously non-normal:

qqnorm(y[site=="B"],pch=16,col="blue")
qqline(y[site=="B"],col="green",lty=2)

8.11 Power analysis

The power of a test is the probability of rejecting the null hypothesis when it is false. It has to do with
Type II errors: β is the probability of accepting the null hypothesis when it is false. In an ideal world, we
would obviously make β as small as possible. But there is a snag. The smaller we make the probability of
committing a Type II error, the greater we make the probability of committing a Type I error, and rejecting
the null hypothesis when, in fact, it is correct. This is a classic trade-off. A compromise is called for. Most
statisticians work with α = 0.05 and β = 0.2. The power of a test is defined as 1 − β = 0.8 under the standard
assumptions.

The issues involved are your choices of alpha and beta (the trade-off between Type I and Type II errors),
the size of the effect you want to detect as being significant, the variance of the samples, and the sample size.
If we are doing a two-sample t test, the value of the test statistic is the difference between the two means, d,
divided by the standard error of the difference between two means (assuming equal variances, s2, and equal
sample sizes, n):

t = d√
2 s2

n

CLASSICAL TESTS 383

Let us rearrange this expression to find the sample size as a function of the other variables:

√
2

s2

n
= d

t
⇒ 2

s2

n
= d2

t2

so

n = 2s2t2

d2
.

The value of t depends on our choice of power (1 − β = 0.8) and significance level (α = 0.025). Roughly
speaking, the quantile associated with the 0.025 tail of a normal distribution is 1.96, and the quantile associated
with 0.8 is 0.84. We add these quantiles to estimate t = 2.8, so t2 is roughly 7.8. To get our rule of thumb, we
round this up to 8. Now the formula for n is 2 × 8 × variance/the square of the difference:

n = 16s2

d2
.

The smaller the effect size that we want to be able to detect as being significant, the larger the sample size
will need to be.

Suppose that the control value of our response variable is known from the literature to have a mean of 20
and a standard deviation of 2 (so the variance is 4). The rule of thumb would give the following relationship:

10
20

30
40

50
60

1.0 1.5 2.0 2.5 3.0 3.5 4.0
difference to be significant

sa
m

pl
e

si
ze

 p
er

 tr
ea

tm
en

t mean = 20
variance = 4.0

So if you want to be able to detect an effect size of 1.0 you will need at least 60 samples per treatment. The
standard idea of a ‘big-enough’ sample (n = 30) would enable you to detect an effect size of about 1.5 in
this example. If you could only afford 10 replicates per treatment, you should not expect to be able to detect
effects smaller than about 2.5.

384 THE R BOOK

There are built-in functions in R for carrying out power analyses for ANOVA, proportion data and t tests:

power.t.test power calculations for one- and two-sample t tests;
power.prop.test power calculations two-sample test for proportions;
power.anova.test power calculations for balanced one-way ANOVA tests.

The arguments to the power.t.test function are n (the number of observations per group), delta
(the difference in means we want to be able to detect; you will need to think hard about this value), sd (the
standard deviation of the sample), sig.level (the significance level, i.e. Type I error probability, where
you will often accept the default value of 5%), power (the power you want the test to have, where you will
often accept the default value of 80%), type (the type of t test you want to carry out: two-sample, one-sample
or paired) and alternative (whether you want to do a one- or a two-tailed test, where you will typically
want to do the default, two-tailed test). One of the parameters n, delta, power, sd and sig.level must
be passed as NULL, and that parameter will be calculated from the others. This sounds like a lot of work, but
you will typically use all of the defaults so you only need to specify the difference, delta, and the standard
deviation, sd, to work out the sample size n that will give you the power you want.

So how many replicates do we need in each of two samples to detect a difference of 10% with power =
80% when the mean is 20 (i.e. delta = 2.0) and the standard deviation is about 3.5?

power.t.test(delta=2,sd=3.5,power=0.8)

Two-sample t test power calculation

n = 49.05349
delta = 2

sd = 3.5
sig.level = 0.05

power = 0.8
alternative = two.sided

NOTE: n is number in *each* group

The (perhaps rather shocking) answer is that you need at least 50 replicates from each sample (100 data points
in all).

If you had been working with a rule of thumb like ‘30 is a big enough sample’ then you would be severely
disappointed in this case. You simply could not have detected a difference of 10% with this experimental
design. You need 50 replicates in each sample (100 replicates in all) to achieve a power of 80%. You can
work out what size of difference your sample of 30 would allow you to detect, by specifying n (15 in each
treatment) and omitting delta:

power.t.test(n=15,sd=3.5,power=0.8)

Two-sample t test power calculation
n = 15

delta = 3.709303
sd = 3.5

sig.level = 0.05
power = 0.8

alternative = two.sided

This shows that you could have detected an 18.5% change (100 × 3.709/20), which is roughly double the
effect size you hoped to be able to detect (10% = 2.0). The work you need to do before carrying out a power
analysis before designing your experiment is to find values for the standard deviation (from the literature or

CLASSICAL TESTS 385

by carrying out a pilot experiment) and the size of the difference your want to detect (from discussions with
your sponsor and your colleagues). Experiments in ecology are often planned to be able to detect 50% effects.
Aspiring to estimate effects as small as 10% would lead to impossibly large sample sizes (see the discussion
in Perry et al., 2003).

8.12 Bootstrap

We want to use bootstrapping to obtain a 95% confidence interval for the mean of a vector of numbers called
values:

data <- read.table("c:\\temp\\skewdata.txt",header=T)
attach(data)
names(data)

[1] "values"

We shall sample with replacement from values using sample(values,replace=T), then work out the
mean, repeating this operation 10 000 times, and storing the 10 000 different mean values in a vector called
ms:

ms <- numeric(10000)
for (i in 1:10000){
ms[i] <- mean(sample(values,replace=T)) }

The answer to our problem is provided by the quantile function applied to ms: we want to know the
values of ms associated with its 0.025 and 0.975 tails:

quantile(ms,c(0.025,0.975))

2.5% 97.5%
24.97918 37.62932

Thus the intervals below and above the mean are

mean(values)-quantile(ms,c(0.025,0.975))

2.5% 97.5%
5.989472 -6.660659

How does this compare with the parametric confidence interval, CI = 1.96 ×
√

s2/n?

1.96*sqrt(var(values)/length(values))

[1] 6.569802

Close, but not identical. Our bootstrapped intervals are skew because the data are skewed, but the parametric
interval, of course, is symmetric.

Now let us see how to do the same thing using the boot function from the library called boot:

install.packages("boot")
library(boot)

The syntax of boot is very simple:

boot(data, statistic, R)

386 THE R BOOK

The trick to using boot lies in understanding how to write the statistic function. R is the number of
resamplings you want to do (R=10000 in this example), and data is the name of the data object to be
resampled (values in this case). The attribute we want to estimate repeatedly is the mean value of values.
Thus, the first argument to our function must be values. The second argument is an index (a vector of
subscripts) that is used within boot to select random assortments of values. Our statistic function
can use the built-in function mean to calculate the mean value of the sample of values.

mymean <- function(values,i) mean(values[i])

The key point is that we write mean(values[i]) not mean(values). Now we can run the bootstrap
for 10 000 iterations:

myboot <- boot(values,mymean,R=10000)
myboot

ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = values, statistic = mymean, R = 10000)
Bootstrap Statistics :

original Bias std. error
t1* 30.96866 -0.08155796 3.266455

The output is interpreted as follows. The original is the mean of the whole sample:

mean(values)

[1] 30.96866

while bias is the difference between the arithmetic mean and the mean of the bootstrapped samples which
are in the variable called myboot$t:

mean(myboot$t)-mean(values)

[1] -0.08155796

and std. error is the standard deviation of the simulated values in myboot$t:

sqrt(var(myboot$t))

[,1]
[1,] 3.266455

The components of myboot can be used to do other things. For instance, we can compare our homemade
vector (ms above) with a histogram of myboot$t:

windows(7,4)
par(mfrow=c(2,1))
hist(ms)
hist(myboot$t)

They differ in detail because they were generated with different series of random numbers. Here are the 95%
intervals for comparison with ours, calculated from the quantiles of myboot$t:

mean(values)-quantile(myboot$t,c(0.025,0.975))

2.5% 97.5%
6.126120 -6.599232

CLASSICAL TESTS 387

There is a function boot.ci for calculating confidence intervals from the boot object:

boot.ci(myboot)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates
CALL :
boot.ci(boot.out = myboot)
Intervals :

Level Normal Basic
95% (24.65, 37.45) (24.37, 37.10)
Level Percentile BCa
95% (24.84, 37.57) (25.63, 38.91)

Calculations and Intervals on Original Scale
Warning message:
bootstrap variances needed for studentized intervals in:
boot.ci(myboot)

Normal is the parametric CI based on the standard error of the mean and the sample size (p. 514). The
Percentile interval is the quantile from the bootstrapped estimates:

quantile(myboot$t,c(0.025,0.975))

2.5% 97.5%
24.84254 37.56789

which, as we saw earlier, was close to our home-made values (above). The BCa interval is the bias-corrected
accelerated percentile. It is not greatly different in this case, but it is the interval preferred by statisticians.
A more complex example of the use of bootstrapping involving a generalized linear model is explained on
p. 570. For other examples see ?boot, and for more depth read the Davison and Hinkley (1997) book from
which the boot package was developed (as programmed by A.J. Canty).

9
Statistical Modelling

The hardest part of any statistical work is getting started. And one of the hardest things about getting started
is choosing the right kind of statistical analysis. The choice depends on the nature of your data and on the
particular question you are trying to answer. The key is to understand what kind of response variable you
have, and to know the nature of your explanatory variables. The response variable is the thing you are working
on: it is the variable whose variation you are attempting to understand. This is the variable that goes on the y
axis of the graph. The explanatory variable goes on the x axis of the graph; you are interested in the extent to
which variation in the response variable is associated with variation in the explanatory variable. You also need
to consider the way that the variables in your analysis measure what they purport to measure. A continuous
measurement is a variable such as height or weight that can take any real numbered value. A categorical
variable is a factor with two or more levels: sex is a factor with two levels (male and female), and colour
might be a factor with seven levels (red, orange, yellow, green, blue, indigo, violet).

It is essential, therefore, that you can answer the following questions:

� Which of your variables is the response variable?

� Which are the explanatory variables?

� Are the explanatory variables continuous or categorical, or a mixture of both?

� What kind of response variable do you have: is it a continuous measurement, a count, a proportion, a time
at death, or a category?

These simple keys will lead you to the appropriate statistical method:

The explanatory variables
(a) All explanatory variables continuous Regression
(b) All explanatory variables categorical Analysis of variance (ANOVA)
(c) Explanatory variables both continuous and categorical Analysis of covariance (ANCOVA)

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

netal
Highlight

STATISTICAL MODELLING 389

The response variable

(a) Continuous Normal regression, ANOVA or ANCOVA
(b) Proportion Logistic regression
(c) Count Log-linear models
(d) Binary Binary logistic analysis
(e) Time at death Survival analysis

The object is to determine the values of the parameters in a specific model that lead to the best fit of the
model to the data. The data are sacrosanct, and they tell us what actually happened under a given set of
circumstances. It is a common mistake to say ‘the data were fitted to the model’ as if the data were something
flexible, and we had a clear picture of the structure of the model. On the contrary, what we are looking for
is the minimal adequate model to describe the data. The model is fitted to data, not the other way around.
The best model is the model that produces the least unexplained variation (the minimal residual deviance),
subject to the constraint that all the parameters in the model should be statistically significant.

You have to specify the model. It embodies your mechanistic understanding of the explanatory variables
involved, and of the way that they are related to the response variable. You want the model to be minimal
because of the principle of parsimony, and adequate because there is no point in retaining an inadequate model
that does not describe a significant fraction of the variation in the data. It is very important to understand
that there is not one model; this is one of the common implicit errors involved in traditional regression and
ANOVA, where the same models are used, often uncritically, over and over again. In most circumstances,
there will be a large number of different, more or less plausible models that might be fitted to any given set
of data. Part of the job of data analysis is to determine which, if any, of the possible models are adequate, and
then, out of the set of adequate models, which is the minimal adequate model. In some cases there may be
no single best model and a set of different models may all describe the data equally well (or equally poorly
if the variability is great).

9.1 First things first

The commonest mistake is to try to do the statistical modelling straight away. The best thing is to spend a
substantial amount of time, right at the outset, getting to know your data and what they show. This will help
guide your thinking as to exactly what kind of statistical modelling is most appropriate.

� In a spreadsheet, make sure the dataframe is correct in structure and content:

◦ Do all of the values of each variable appear in the same column?

◦ Are all the zeros really 0, or should they be NA?

◦ Does every row contain the same number of entries?

◦ Are there any variable names with blank spaces in them?

� Read the dataframe into R using read.table (or read.csv if factor levels (like place names) contain
blank spaces) (p. 139).

� Look at the head and the tail of the dataframe and check for mistakes (p. 161).

� Plot every one of the variables on its own to check for gross errors (plot(x), plot(y) etc.; see
p. 190).

� Look at the relationships between variables (use tapply, plot, tree and gam) (p. 768).

390 THE R BOOK

� Think about model choice (p. 1)

◦ Which explanatory variables should be included?

◦ What transformation of the response is most appropriate?

◦ Which interactions should be included?

◦ Which non-linear terms should be included?

◦ Is there pseudoreplication, and if so, how should it be dealt with?

◦ Should the explanatory variables be transformed?

� Try to use the simplest kind of analysis that is appropriate to your data and the question you are trying to
answer (e.g. do a one-way ANOVA rather than a mixed-effects model) (p. 344).

� Fit a maximal model and simplify it by stepwise deletion (p. 391).

� Check the minimal adequate model for constancy of variance and normality of errors usingplot(model)
(p. 405).

� Emphasize the effect sizes and standard errors (summary.lm), and play down the analysis of deviance
table (summary.aov) (p. 382).

� Document carefully what you have done, and explain all the steps you took. That way, you should be able
to understand what you did and why you did it, when you return to the analysis in 6 months’ time.

9.2 Maximum likelihood

What, exactly, do we mean when we say that the parameter values should afford the ‘best fit of the model
to the data’? The convention we adopt is that our techniques should lead to unbiased, variance-minimizing
estimators. We define ‘best’ in terms of maximum likelihood. This notion may be unfamiliar, so it is worth
investing some time to get a feel for it. This is how it works:

� given the data,

� and given our choice of model,

� what values of the parameters of that model

� make the observed data most likely?

We judge the model on the basis how likely the data would be if the model were correct.

9.3 The principle of parsimony (Occam’s razor)

One of the most important themes running through this book concerns model simplification. The principle
of parsimony is attributed to the early fourteenth-century English nominalist philosopher, William of Occam,
who insisted that, given a set of equally good explanations for a given phenomenon, the correct explanation
is the simplest explanation. It is called Occam’s razor because he ‘shaved’ his explanations down to the
bare minimum: his point was that in explaining something, assumptions must not be needlessly multiplied.

STATISTICAL MODELLING 391

In particular, for the purposes of explanation, things not known to exist should not, unless it is absolutely
necessary, be postulated as existing. For statistical modelling, the principle of parsimony means that:

� models should have as few parameters as possible;

� linear models should be preferred to non-linear models;

� experiments relying on few assumptions should be preferred to those relying on many;

� models should be pared down until they are minimal adequate;

� simple explanations should be preferred to complex explanations.

The process of model simplification is an integral part of hypothesis testing in R. In general, a variable is
retained in the model only if it causes a significant increase in deviance when it is removed from the current
model. Seek simplicity, then distrust it.

In our zeal for model simplification, however, we must be careful not to throw the baby out with the
bathwater. Einstein made a characteristically subtle modification to Occam’s razor. He said: ‘A model should
be as simple as possible. But no simpler.’ Remember, too, what Oscar Wilde said: ‘Truth is rarely pure, and
never simple.’

9.4 Types of statistical model

Fitting models to data is the central function of R. The process is essentially one of exploration; there are no
fixed rules and no absolutes. The object is to determine a minimal adequate model (see Table 9.1) from the
large set of potential models that might be used to describe the given set of data. In this book we discuss five

Table 9.1. Statistical modelling involves the selection of a minimal adequate model from a potentially large set of
more complex models, using stepwise model simplification.

Model Interpretation

Saturated model One parameter for every data point
Fit: perfect
Degrees of freedom: none
Explanatory power of the model: none

Maximal model Contains all (p) factors, interactions and covariates that might be of any interest. Many
of the model’s terms are likely to be insignificant

Degrees of freedom: n − p − 1
Explanatory power of the model: it depends

Minimal adequate model A simplified model with 1≤ p′ ≤ p parameters
Fit: less than the maximal model, but not significantly so
Degrees of freedom: n − p′ − 1
Explanatory power of the model: r2 = SSR/SSY

Null model Just one parameter, the overall mean ȳ
Fit: none; SSE = SSY
Degrees of freedom: n − 1
Explanatory power of the model: none

392 THE R BOOK

types of model:

� the null model;

� the minimal adequate model;

� the current model;

� the maximal model; and

� the saturated model.

The stepwise progression from the saturated model (or the maximal model, whichever is appropriate) through
a series of simplifications to the minimal adequate model is made on the basis of deletion tests. These are
F tests or chi-squared tests that assess the significance of the increase in deviance that results when a given
term is removed from the current model.

Models are representations of reality that should be both accurate and convenient. However, it is impossible
to maximize a model’s realism, generality and holism simultaneously, and the principle of parsimony is a vital
tool in helping to choose one model over another. Thus, we would only include an explanatory variable in a
model if it significantly improved the fit of the model. The fact that we went to the trouble of measuring some-
thing does not mean we have to have it in our model. Parsimony says that, other things being equal, we prefer:

� a model with n − 1 parameters to a model with n parameters;

� a model with k − 1 explanatory variables to a model with k explanatory variables;

� a linear model to a model which is curved;

� a model without a hump to a model with a hump;

� a model without interactions to a model containing interactions between factors.

Other considerations include a preference for models containing explanatory variables that are easy to measure
over variables that are difficult or expensive to measure. Also, we prefer models that are based on a sound
mechanistic understanding of the process over purely empirical functions. Some variables are so important
that we retain them in the model even though their parameters are not significantly different from zero (e.g.
density dependence in population models).

Parsimony requires that the model should be as simple as possible. This means that the model should
not contain any redundant parameters or factor levels. We achieve this by fitting a maximal model and then
simplifying it by following one or more of these steps:

� remove non-significant interaction terms;

� remove non-significant quadratic or other non-linear terms;

� remove non-significant explanatory variables;

� group together factor levels that do not differ from one another;

� in ANCOVA, set non-significant slopes of continuous explanatory variables to zero.

All the above are subject, of course, to the caveats that the simplifications make good scientific sense and do
not lead to significant reductions in explanatory power.

Just as there is no perfect model, so there may be no optimal scale of measurement for a model. Suppose,
for example, we had a process that had Poisson errors with multiplicative effects amongst the explanatory

STATISTICAL MODELLING 393

variables. Then, we must choose between three different scales, each of which optimizes one of three different
properties:

� the scale of
√

y would give constancy of variance;

� the scale of y2/3 would give approximately normal errors;

� the scale of ln(y) would give additivity.

Thus, any measurement scale is always going to be a compromise, and we should choose the scale that gives
the best overall performance of the model.

9.5 Steps involved in model simplification

There are no hard-and-fast rules, but the procedure laid out in Table 9.2 works well in practice. With
large numbers of explanatory variables, and many interactions and non-linear terms, the process of model
simplification can take a very long time. But this is time well spent because it reduces the risk of overlooking
an important aspect of the data. It is important to realize that there is no guaranteed way of finding all the
important structures in a complex dataframe.

9.5.1 Caveats

Model simplification is an important process but it should not be taken to extremes. For example, care
should be taken with the interpretation of deviances and standard errors produced with fixed parameters that
have been estimated from the data. Again, the search for ‘nice numbers’ should not be pursued uncritically.
Sometimes there are good scientific reasons for using a particular number (e.g. a power of 0.66 in an allometric

Table 9.2. Model simplification process.

Step Procedure Explanation

1 Fit the maximal model Fit all the factors, interactions and covariates of interest. Note the residual
deviance. If you are using Poisson or binomial errors, check for
overdispersion and rescale if necessary.

2 Begin model simplification Inspect the parameter estimates using the R function summary. Remove
the least significant terms first, using update -, starting with the
highest-order interactions.

3 If the deletion causes an
insignificant increase in
deviance

Leave that term out of the model.
Inspect the parameter values again.
Remove the least significant term remaining.

4 If the deletion causes a
significant increase in
deviance

Put the term back in the model using update +. These are the
statistically significant terms as assessed by deletion from the maximal
model.

5 Keep removing terms from
the model

Repeat steps 3 or 4 until the model contains nothing but significant terms.
This is the minimal adequate model.
If none of the parameters is significant, then the minimal adequate model is

the null model.

394 THE R BOOK

relationship between respiration and body mass). It is much more straightforward, for example, to say that
yield increases by 2 kg per hectare for every extra unit of fertilizer, than to say that it increases by 1.947 kg.
Similarly, it may be preferable to say that the odds of infection increase 10-fold under a given treatment, than
to say that the logits increase by 2.321; without model simplification this is equivalent to saying that there is
a 10.186-fold increase in the odds. It would be absurd, however, to fix on an estimate of 6 rather than 6.1 just
because 6 is a whole number.

9.5.2 Order of deletion

The data in this book fall into two distinct categories. In the case of planned experiments, all of the treatment
combinations are equally represented and, barring accidents, there are no missing values. Such experiments
are said to be orthogonal. In the case of observational studies, however, we have no control over the number
of individuals for which we have data, or over the combinations of circumstances that are observed. Many of
the explanatory variables are likely to be correlated with one another, as well as with the response variable.
Missing treatment combinations are commonplace, and the data are said to be non-orthogonal. This makes an
important difference to our statistical modelling because, in orthogonal designs, the variation that is attributed
to a given factor is constant, and does not depend upon the order in which factors are removed from the model.
In contrast, with non-orthogonal data, we find that the variation attributable to a given factor does depend
upon the order in which factors are removed from the model. We must be careful, therefore, to judge the
significance of factors in non-orthogonal studies, when they are removed from the maximal model (i.e. from
the model including all the other factors and interactions with which they might be confounded). Remember
that, for non-orthogonal data, order matters.

Also, if your explanatory variables are correlated with each other, then the significance you attach to a
given explanatory variable will depend upon whether you delete it from a maximal model or add it to the null
model. If you always test by model simplification then you will not fall into this trap.

The fact that you have laboured long and hard to include a particular experimental treatment does not
justify the retention of that factor in the model if the analysis shows it to have no explanatory power. ANOVA
tables are often published containing a mixture of significant and non-significant effects. This is not a problem
in orthogonal designs, because sums of squares can be unequivocally attributed to each factor and interaction
term. But as soon as there are missing values or unequal weights, then it is impossible to tell how the parameter
estimates and standard errors of the significant terms would have been altered if the non-significant terms had
been deleted. The best practice is as follows:

� Say whether your data are orthogonal or not.

� Explain any correlations amongst your explanatory variables.

� Present a minimal adequate model.

� Give a list of the non-significant terms that were omitted, and the deviance changes that resulted from their
deletion.

If you do this, then readers can judge for themselves the relative magnitude of the non-significant factors, and
the importance of correlations between the explanatory variables.

The temptation to retain terms in the model that are ‘close to significance’ should be resisted. The best way
to proceed is this. If a result would have been important if it had been statistically significant, then it is worth
repeating the experiment with higher replication and/or more efficient blocking, in order to demonstrate the
importance of the factor in a convincing and statistically acceptable way.

STATISTICAL MODELLING 395

9.6 Model formulae in R

The structure of the model is specified in the model formula like this:

response variable ∼ explanatory variable(s)

where the tilde symbol ∼ reads ‘is modelled as a function of’ (see Table 9.3 for examples).
So a simple linear regression of y on x would be written as

y~x

and a one-way ANOVA where sex is a two-level factor would be written as

y~sex

Table 9.3. Examples of R model formulae. In a model formula, the function I (upper case ‘I’) stands for ‘as is’ and
is used for generating sequences, I(1:10), or calculating quadratic terms, I(xˆ2).

Model Model formula Comments

Null y~1 1 is the intercept in regression models, but here it is
the overall mean y

Regression y~x x is a continuous explanatory variable
Regression through

origin
y~x-1 Do not fit an intercept

One-way ANOVA y~sex sex is a two-level categorical variable
One-way ANOVA y~sex-1 as above, but do not fit an intercept (gives two

means rather than a mean and a difference)
Two-way ANOVA y~sex + genotype genotype is a four-level categorical variable
Factorial ANOVA y~N * P * K N, P and K are two-level factors to be fitted along

with all their interactions
Three-way ANOVA y~N*P*K - N:P:K As above, but do not fit the three-way interaction
Analysis of covariance y~x + sex A common slope for y against x but with two

intercepts, one for each sex
Analysis of covariance y~x * sex Two slopes and two intercepts
Nested ANOVA y~a/b/c Factor c nested within factor b within factor a
Split-plot ANOVA y~a*b*c+Error(a/b/c) A factorial experiment but with three plot sizes and

three different error variances, one for each plot
size

Multiple regression y~x + z Two continuous explanatory variables, flat surface
fit

Multiple regression y~x * z Fit an interaction term as well (x + z + x:z)
Multiple regression y~x + I(xˆ2) + z + I(zˆ2) Fit a quadratic term for both x and z
Multiple regression y <- poly(x,2) + z Fit a quadratic polynomial for x and linear z
Multiple regression y~(x + z + w)ˆ2 Fit three variables plus all their interactions up to

two-way
Non-parametric model y~s(x) + s(z) y is a function of smoothed x and z in a generalized

additive model
Transformed response

and explanatory
variables

log(y)~I(1/x) + sqrt(z) All three variables are transformed in the model

tandu
Highlight

396 THE R BOOK

The right-hand side of the model formula shows:

� the number of explanatory variables and their identities – their attributes (e.g. continuous or categorical)
are usually defined prior to the model fit;

� the interactions between the explanatory variables (if any);

� non-linear terms in the explanatory variables.

On the right of the tilde, one also has the option to specify offsets or error terms in some special cases. As with
the response variable, the explanatory variables can appear as transformations, or as powers or polynomials.

It is very important to note that symbols are used differently in model formulae than in arithmetic
expressions. In particular:

+ indicates inclusion of an explanatory variable in the model (not addition);
- indicates deletion of an explanatory variable from the model (not subtraction);
* indicates inclusion of explanatory variables and interactions (not multiplication);
/ indicates nesting of explanatory variables in the model (not division);
| indicates conditioning (not ‘or’), so that y~x | z is read as ‘y as a function of x given z’.

There are several other symbols that have special meaning in model formulae. A colon denotes an interaction,
so that A:Bmeans the two-way interaction between A and B, and N:P:K:Mgmeans the four-way interaction
between N, P, K and Mg.

Some terms can be written in an expanded form. Thus:

A*B*C is the same as A+B+C+A:B+A:C+B:C+A:B:C;
A/B/C is the same as A+B%in%A+C%in%B%in%A;
(A+B+C)ˆ3 is the same as A*B*C;
(A+B+C)ˆ2 is the same as A*B*C - A:B:C.

9.6.1 Interactions between explanatory variables

Interactions between two two-level categorical variables of the form A*B mean that two main effect means
and one interaction mean are evaluated. On the other hand, if factor A has three levels and factor B has
four levels, then seven parameters are estimated for the main effects (three means for A and four means
for B). The number of interaction terms is (a − 1)(b − 1), where a and b are the numbers of levels of the
factors A and B, respectively. So in this case, R would estimate (3 − 1)(4 − 1) = 6 parameters for the
interaction.

Interactions between two continuous variables are fitted differently. If x and z are two continuous explana-
tory variables, then x*z means fit x+z+x:z and the interaction term x:z behaves as if a new variable had
been computed that was the pointwise product of the two vectors x and z. The same effect could be obtained
by calculating the product explicitly,

product.xz <- x * z

then using the model formula y~x + z + product.xz. Note that the representation of the interaction
by the product of the two continuous variables is an assumption, not a fact. The real interaction might be of
an altogether different functional form (e.g. x * zˆ2).

Interactions between a categorical variable and a continuous variable are interpreted as an analysis of
covariance; a separate slope and intercept are fitted for each level of the categorical variable. So y~A*x

STATISTICAL MODELLING 397

would fit three regression equations if the factor A had three levels; this would estimate six parameters from
the data – three slopes and three intercepts.

The slash operator is used to denote nesting. Thus, with categorical variables A and B,

y ~ A/B

means fit ‘A plus B within A’. This could be written in two other equivalent ways:

y ~ A + A:B
y ~ A + B %in% A

both of which alternatives emphasize that there is no point in attempting to estimate a main effect for B (it is
probably just a factor label like ‘tree number 1’ that is of no scientific interest; see p. 681).

Some functions for specifying non-linear terms and higher-order interactions are useful. To fit a polynomial
regression in x and z, we could write

y ~ poly(x,3) + poly(z,2)

to fit a cubic polynomial in x and a quadratic polynomial in z. To fit interactions, but only up to a certain level,
the ˆ operator is useful. The formula

y ~ (A + B + C)ˆ2

fits all the main effects and two-way interactions (i.e. it excludes the three-way interaction that A*B*C would
have included).

The I function (upper-case letter ‘i’) stands for ‘as is’. It overrides the interpretation of a model symbol
as a formula operator when the intention is to use it as an arithmetic operator. Suppose you wanted to fit 1/x
as an explanatory variable in a regression. You might try

y ~ 1/x

but this actually does something very peculiar. It fits x nested within the intercept (whatever that might
represent). When it appears in a model formula, the slash operator is assumed to imply nesting. To obtain the
effect we want, we use I (‘as is’) to write

y ~ I(1/x)

We also need to use I when we want * to represent multiplication and ˆ to mean ‘to the power’ rather than
an interaction model expansion: thus to fit x and x2 in a quadratic regression we would write

y~x+I(xˆ2)

9.6.2 Creating formula objects

You can speed up the creation of complicated model formulae using paste to create series of variable names
and collapse to join the variable names together by symbols. Here, for instance, is a multiple regression
formula with 25 continuous explanatory variables created using the as.formula function:

xnames <- paste("x", 1:25, sep="")

(model.formula <- as.formula(paste("y~", paste(xnames, collapse= "+"))))

y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 +
x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20 + x21 +
x22 + x23 + x24 + x25

398 THE R BOOK

9.7 Multiple error terms

When there is nesting (e.g. split plots in a designed experiment; see p. 685) or temporal pseudoreplication
(see p. 695) you can include an Error function as part of the model formula. Suppose you had a three-factor
factorial experiment with categorical variables A, B and C. The twist is that each treatment is applied to plots
of different sizes: A is applied to replicated whole fields, B is applied at random to half fields and C is applied
to smaller split–split plots within each half-field. This is shown in a model formula like this:

y ~ A*B*C + Error(A/B/C)

Note that the terms within the model formula are separated by asterisks to show that it is a full factorial with
all interaction terms included, whereas the terms are separated by slashes in the Error statement. There are
as many terms in the Error statement as there are different sizes of plots – three in this case, although the
smallest plot size (C in this example) can be omitted from the list – and the terms are listed left to right from
the largest to the smallest plots; see p. 686 for details and examples.

For the more modern mixed-effects model using lmer (in package lme4), the preferred method is to
create unique factor level names, rather than use slashes to indicate nesting. The colon operator is useful for
this, when both of the arguments are factors. So if our nested factors A, B and C are numbers (say 1:2, 1:4
and 1:3, respectively)

A <- rep(1:2,each=12)
B <- rep(1:4,each=3,length=24)
C <- rep(1:3,length=24)

then we compute new factors a, b, and c

a <- factor(A)
b <- factor(A):factor(B)
c <- factor(A):factor(B):factor(C)

and then fit each as a separate random effect (see p. 692)

lmer(y ~ x + (1|a)+(1|b)+(1|c))

9.8 The intercept as parameter 1

The simple command

y ~ 1

causes the null model to be fitted. This works out the grand mean (the overall average) of all the data, and the
total deviance (or the total sum of squares, SSY, in models with normal errors and the identity link). In some
cases, this may be the minimal adequate model; it is possible that none of the explanatory variables we have
measured contribute anything significant to our understanding of the variation in the response variable. This
is normally what you do not want to happen at the end of your three-year research project.

To remove the intercept (parameter 1) from a regression model (i.e. to force the regression line through
the origin) you fit ‘–1’ like this:

y ~ x - 1

STATISTICAL MODELLING 399

You should not do this unless you know exactly what you are doing, and exactly why you are doing it.
Removing the intercept from an ANOVA model where all the variables are categorical has a different effect:

y ~ sex - 1

This gives the mean for males and the mean for females in the summary table, rather than the mean for
females and the difference in mean for males.

9.9 The update function in model simplification

In the update function used during model simplification, the dot ‘.’ is used to specify ‘what is there already’
on either side of the tilde. So if your original model said

model <- lm(y~A*B)

then the update function to remove the interaction term A:B could be written like this:

model2 <- update(model,~.- A:B)

Note that there is no need to repeat the name of the response variable, and the punctuation ‘tilde dot’ means
take model as it is, and remove from it the interaction term A:B.

9.10 Model formulae for regression

The important point to grasp is that model formulae look very like equations but there are important differences.
Our simplest useful equation looks like this:

y = a + bx .

It is a two-parameter model with one parameter for the intercept, a, and another for the slope, b, of the graph
of the continuous response variable y against a continuous explanatory variable x. The model formula for the
same relationship looks like this:

y ~ x

The equals sign is replaced by a tilde, and all of the parameters are left out. It we had a multiple regression
with two continuous explanatory variables x and z, the equation would be

y = a + bx + cz,

but the model formula is

y~x + z

It is all wonderfully simple. But just a minute. How does R know what parameters we want to estimate from
the data? We have only told it the names of the explanatory variables. We have said nothing about how to
fit them, or what sort of equation we want to fit to the data. The key to this is to understand what kind of
explanatory variable is being fitted to the data. If the explanatory variable x specified on the right of the tilde
is a continuous variable, then R assumes that you want to do a regression, and hence that you want to estimate
two parameters in a linear regression whose equation is y = a + bx.

400 THE R BOOK

A common misconception is that linear models involve a straight-line relationship between the
response variable and the explanatory variables. This is not the case, as you can see from these two linear
models:

windows(7,4)
par(mfrow=c(1,2))
x <- seq(0,10,0.1)
plot(x,1+x-xˆ2/15,type="l",col="red")
plot(x,3+0.1*exp(x),type="l",col="red")

4

15
00

50
0

0

3
+

 0
.1

 *
 e

xp
(x

)

1
+

 x
 –

 x
∧

2/
15

3
2

1

0 24 62 4 68 810 0 10
x x

The definition of a linear model is an equation that contains mathematical variables, parameters and random
variables and that is linear in the parameters and in the random variables. What this means is that if a, b and
c are parameters then obviously

y = a + bx

is a linear model, but so is

y = a + bx − cx2

because x2 can be replaced by z which gives a linear relationship

y = a + bx + cz,

and so is

y = a + bex

because we can create a new variable z = exp(x), so that

y = a + bz.

Some models are non-linear but can be readily linearized by transformation. For example,

y = exp(a + bx)

STATISTICAL MODELLING 401

is non-linear, but on taking logs of both sides, it becomes

ln(y) = a + bx

If the equation you want to fit is more complicated than this, then you need to specify the form of the equation,
and use non-linear methods (nls or nlme) to fit the model to the data (see p. 715).

9.11 Box–Cox transformations

Sometimes it is not clear from theory what the optimal transformation of the response variable should be.
In these circumstances, the Box–Cox transformation offers a simple empirical solution. The idea is to find
the power transformation, λ (lambda), that maximizes the likelihood when a specified set of explanatory
variables is fitted to

yλ − 1

λ

as the response. The value of lambda can be positive or negative, but it cannot be zero (you would get a
zero-divide error when the formula was applied to the response variable, y). For the case λ = 0 the Box–Cox
transformation is defined as log(y). Suppose that λ = –1. The formula now becomes

y−1 − 1

−1
= 1/y − 1

−1
= 1 − 1

y
,

and this quantity is regressed against the explanatory variables and the log-likelihood computed.
In this example, we want to find the optimal transformation of the response variable, which is timber

volume:

data <- read.delim("c:\\temp\\timber.txt")
attach(data)
names(data)

[1] "volume" "girth" "height"

We start by loading the MASS library of Venables and Ripley:

library(MASS)

The boxcox function is very easy to use: just specify the model formula, and the default options take care
of everything else.

windows(7,7)
boxcox(volume~log(girth)+log(height))

402 THE R BOOK

–5
0

–4

0
–3

0
–2

0
–1

0
0

–2 –1 0 1 2

95%

lo
g-

Li
ke

lih
oo

d

λ

It is clear that the optimal value of lambda is close to zero (i.e. the log transformation). We can zoom in to get
a more accurate estimate by specifying our own, non-default, range of lambda values. It looks as if it would
be sensible to plot from –0.5 to + 0.5:

boxcox(volume~log(girth)+log(height),lambda=seq(-0.5,0.5,0.01))

lo
g-

Li
ke

lih
oo

d

λ

–6
–4

–2
6

4
2

0

95%

–0.4 –0.2 0.0 0.2 0.4

STATISTICAL MODELLING 403

The likelihood is maximized at λ ≈ −0.08, but the log-likelihood for λ = 0 is very close to the maximum. This
also gives a much more straightforward interpretation, so we would go with that, and model log(volume)
as a function of log(girth) and log(height) (see p. 262).

What if we had not log-transformed the explanatory variables? What would have been the optimal
transformation of volume in that case? To find out, we rerun the boxcox function, simply changing the
model formula like this:

boxcox(volume~girth+height)

We can zoom in from 0.1 to 0.6 like this:

boxcox(volume~girth+height,lambda=seq(0.1,0.6,0.01))

lo
g-

Li
ke

lih
oo

d

λ

1
2

3
4

5

0.1 0.2 0.3 0.4 0.5 0.6

95%

This suggests that the cube root transformation would be best (λ = 1/3). Again, this accords with dimensional
arguments, since the response and explanatory variables would all have dimensions of length in this case.

9.12 Model criticism

There is a temptation to become personally attached to a particular model. Statisticians call this ‘falling in
love with your model’. It is as well to remember the following truths about models:

� All models are wrong.

� Some models are better than others.

� The correct model can never be known with certainty.

� The simpler the model, the better it is.

404 THE R BOOK

There are several ways that we can improve things if it turns out that our present model is inadequate:

� Transform the response variable.

� Transform one or more of the explanatory variables.

� Try fitting different explanatory variables if you have any.

� Use a different error structure.

� Use non-parametric smoothers instead of parametric functions.

� Use different weights for different y values.

All of these are investigated in the coming chapters. In essence, you need a set of tools to establish whether,
and how, your model is inadequate. For example, the model might:

� predict some of the y values poorly;

� show non-constant variance;

� show non-normal errors;

� be strongly influenced by a small number of influential data points;

� show some sort of systematic pattern in the residuals;

� exhibit overdispersion.

9.13 Model checking

After fitting a model to data we need to investigate how well the model describes the data. In particular, we
should look to see if there are any systematic trends in the goodness of fit. For example, does the goodness of
fit increase with the observation number, or is it a function of one or more of the explanatory variables? We
can work with the raw residuals:

residuals = y − fitted values.

For instance, we should routinely plot the residuals against:

� the fitted values (to look for heteroscedasticity);

� the explanatory variables (to look for evidence of curvature);

� the sequence of data collection (to look for temporal correlation);

� standard normal deviates (to look for non-normality of errors).

9.13.1 Heteroscedasticity

A good model must also account for the variance–mean relationship adequately and produce additive effects
on the appropriate scale (as defined by the link function). A plot of standardized residuals against fitted values

STATISTICAL MODELLING 405

should look like the sky at night (points scattered at random over the whole plotting region), with no trend in
the size or degree of scatter of the residuals. A common problem is that the variance increases with the mean,
so that we obtain an expanding, fan-shaped pattern of residuals (right-hand panel):

10 15 20 25 30 35 10 15 20 25 30 35
Fitted values Fitted values

R
es

id
ua

ls

R
es

id
ua

ls

–1
0

–5
0

5
10

–1
0

–5
0

5
The plot on the left is what we want to see: no trend in the residuals with the fitted values. The plot on the
right is a problem. There is a clear pattern of increasing residuals as the fitted values get larger. This is a
picture of what heteroscedasticity looks like.

9.13.2 Non-normality of errors

Errors may be non-normal for several reasons. They may be skew, with long tails to the left or right. Or they
may be kurtotic, with a flatter or more pointy top to their distribution. In any case, the theory is based on the
assumption of normal errors, and if the errors are not normally distributed, then we shall not know how this
affects our interpretation of the data or the inferences we make from it.

It takes considerable experience to interpret normal error plots. Here we generate a series of data sets where
we introduce different but known kinds of non-normal errors. Then we plot them using a simple home-made
function called mcheck (first developed by John Nelder in the original GLIM language; the name stands
for ‘model checking’). The idea is to see what patterns are generated in normal plots by the different kinds
of non-normality. In real applications we would use the generic plot(model) rather than mcheck (see
below). First, we write the function mcheck. The idea is to produce two plots, side by side: a plot of the
residuals against the fitted values on the left, and a plot of the ordered residuals against the quantiles of the
normal distribution on the right.

mcheck <- function (obj,...){
rs <- obj$resid
fv <- obj$fitted
windows(7,4)
par(mfrow=c(1,2))
plot(fv,rs,xlab="Fitted values",ylab="Residuals",pch=16,col="red")
abline(h=0, lty=2)
qqnorm(rs,xlab="Normal scores",ylab="Ordered residuals",main="",pch=16)
qqline(rs,lty=2,col="green")
par(mfrow=c(1,1))
invisible(NULL) }

406 THE R BOOK

Note the use of $ (component selection) to extract the residuals and fitted values from the model object
which is passed to the function as obj (the expression x$name is the name component of x). The functions
qqnorm and qqline are built-in functions to produce normal probability plots. It is good programming
practice to set the graphics parameters back to their default settings before leaving the function.

The aim is to create a catalogue of some of the commonest problems that arise in model checking. We
need a vector of x values for the following regression models:

x <- 0:30

Now we manufacture the response variables according to the equation

y = 10 + x + ε

where the errors, ε, have zero mean but are taken from different probability distributions in each case.

Normal errors

e <- rnorm(31,mean=0,sd=5)
yn <- 10+x+e

mn <- lm(yn~x)

mcheck(mn)

10 15 20 25 30 35

R
es

id
ua

ls

–1
0

–5
0

5
10

–1
0

–5
0

5
10

Fitted values Normal scores
–2 –1 0 1 2

O
rd

er
ed

 r
es

id
ua

ls

There is no suggestion of non-constant variance (left plot) and the normal plot (right) is reasonably straight.
The judgement as to what constitutes an important departure from normality takes experience, and this is the
reason for looking at some distinctly non-normal, but known, error structures next.

Uniform errors

eu <- 20*(runif(31)-0.5)
yu <- 10+x+eu

mu <- lm(yu~x)

mcheck(mu)

STATISTICAL MODELLING 407

10 20 30 40

R
es

id
ua

ls
0

5
–5

10

0
5

–5
10

Fitted values Normal scores
–2 –1 0 1 2

O
rd

er
ed

 r
es

id
ua

ls

Uniform errors show up as a distinctly S-shaped pattern in the quantile–quantile plot on the right. The fit in
the centre is fine, but the largest and smallest residuals are too small (they are constrained in this example to
be ± 10).

Negative binomial errors

enb <- rnbinom(31,2,.3)
ynb <- 10+x+enb

mnb <- lm(ynb~x)

mcheck(mnb)

5020 30 40

R
es

id
ua

ls

0
5

–5
10

15

0
5

–5
10

15

Fitted values Normal scores
–2 –1 0 1 2

O
rd

er
ed

 r
es

id
ua

ls

The large negative residuals are all above the line, but the most obvious feature of the plot is the single,
very large positive residual (in the top right-hand corner). In general, negative binomial errors will produce a
J-shape on the quantile–quantile plot. The biggest positive residuals are much too large to have come from a
normal distribution. These values may turn out to be highly influential (see below).

Gamma errors and increasing variance

Here the shape parameter is set to 1 and the rate parameter to 1/x, and the variance increases with the square
of the mean:

eg <- rgamma(31,1,1/x)
yg <- 10+x+eg

408 THE R BOOK

mg <- lm(yg~x)

mcheck(mg)

502010 30 40 7060

R
es

id
ua

ls
–3

0
–1

0
10

30

–3
0

–1
0

10
30

Fitted values Normal scores
–2 –1 0 1 2

O
rd

er
ed

 r
es

id
ua

ls

The left-hand plot shows the residuals increasing steeply with the fitted values, and illustrates an asymmetry
between the size of the positive and negative residuals. The right-hand plot shows the highly non-normal
distribution of errors.

9.14 Influence

One of the commonest reasons for a lack of fit is through the existence of outliers in the data. It is important to
understand, however, that a point may appear to be an outlier because of misspecification of the model, and
not because there is anything wrong with the data. It is important to understand that analysis of residuals is a
very poor way of looking for influence. Precisely because a point is highly influential, it forces the regression
line close to it, and hence the influential point may have a very small residual.

Take this circle of data that shows absolutely no relationship between y and x:

x <- c(2,3,3,3,4)
y <- c(2,3,2,1,2)

We want to draw two graphs side by side, and we want them to have the same axis scales:

windows(7,4)
par(mfrow=c(1,2))

plot(x,y,xlim=c(0,8),ylim=c(0,8))

Obviously, there is no relationship between y and x in the original data. But let us add an outlier at the point
(7, 6) using concatenation c and see what happens:

x1 <- c(x,7)
y1 <- c(y,6)
plot(x1,y1,xlim=c(0,8),ylim=c(0,8))
abline(lm(y1~x1),col="blue")

STATISTICAL MODELLING 409

0 2 4 6 8

0
2

4
6

8

0
2

4
6

8

0 2 4 6 8
x x1

y y1

Now, there is a significant regression of y on x. The outlier is said to be highly influential. This makes our
write-up much more complicated. We need to own up and show that the entire edifice depends upon the single
point at (7, 6). This requires an explanation of two models rather than one. We cannot pretend that the point
(7, 6) does not exist (that would be a scientific scandal), but we must describe just how influential it is.

Testing for the presence of influential points is an important part of statistical modelling. You cannot rely
on analysis of the residuals, because by their very influence, these points force the regression line close to
them:

reg <- lm(y1~x1)
summary(reg)

Call:
lm(formula = y1 ~ x1)

Residuals:
1 2 3 4 5 6

0.78261 0.91304 -0.08696 -1.08696 -0.95652 0.43478

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.5217 0.9876 -0.528 0.6253
x1 0.8696 0.2469 3.522 0.0244 *

As you can see, the influential point (no. 6) has the second smallest residual (0.434 78). Instead, we look
at the most extreme values of the explanatory variable, both to the left (extreme low values) and the right
(extreme high values, as with point no. 6), as judged by (x − x̄)2:

influence.measures(reg)

Influence measures of
lm(formula = y1 ~ x1) :

dfb.1 dfb.x1 dffit cov.r cook.d hat inf
1 0.687 -0.5287 0.7326 1.529 0.26791 0.348
2 0.382 -0.2036 0.5290 1.155 0.13485 0.196
3 -0.031 0.0165 -0.0429 2.199 0.00122 0.196

410 THE R BOOK

4 -0.496 0.2645 -0.6871 0.815 0.19111 0.196
5 -0.105 -0.1052 -0.5156 1.066 0.12472 0.174
6 -3.023 4.1703 4.6251 4.679 7.62791 0.891 *

You can see that point no. 6 is highlighted by an asterisk, drawing attention to its high influence. To extract
the subscripts of the influential points, use the is.inf attribute like this:

influence.measures(reg)$is.inf

dfb.1_ dfb.x1 dffit cov.r cook.d hat
1 FALSE FALSE FALSE FALSE FALSE FALSE
2 FALSE FALSE FALSE FALSE FALSE FALSE
3 FALSE FALSE FALSE FALSE FALSE FALSE
4 FALSE FALSE FALSE FALSE FALSE FALSE
5 FALSE FALSE FALSE FALSE FALSE FALSE
6 TRUE TRUE TRUE TRUE TRUE FALSE

As you see, all of the influence measures (with the exception of hat), pick out point no. 6. For more detail,
use lm.influence(reg):

lm.influence(reg)

$hat
1 2 3 4 5 6

0.3478261 0.1956522 0.1956522 0.1956522 0.1739130 0.8913043

$coefficients
(Intercept) x1

1 0.67826087 -0.130434783
2 0.37015276 -0.049353702
3 -0.03525264 0.004700353
4 -0.44065805 0.058754407
5 -0.10068650 -0.025171625
6 -2.52173913 0.869565217

$sigma
1 2 3 4 5 6

0.9660918 0.9491580 1.1150082 0.8699177 0.9365858 0.8164966

$wt.res
1 2 3 4 5 6

0.78260870 0.91304348 -0.08695652 -1.08695652 -0.95652174 0.43478261

The first component, $hat, is a vector containing the diagonal of the hat matrix. This is the orthogonal
projector matrix onto the model space. Large values of elements of this vector mean that changing yi will
have a big impact on the fitted values (i.e. the hat diagonals are measures of the leverage of yi).

Most interesting in the present context are the coefficients affecting the two parameters of the model
(intercept and slope). The rows contain the change in the estimated coefficients which results when the ith
case is dropped from the regression. Data in row 6 have much the biggest effect on both slope and intercept.

The third component, $sigma, is a vector whose ith element contains the estimate of the residual
standard error obtained when the ith case is dropped from the regression; thus 0.816 496 6 is the residual

STATISTICAL MODELLING 411

standard error when point no. 6 is dropped, lm(y1[-6]~x1[-6]), and the error variance in this case is
0.816 496 6 2 = 0.666 666, as you can see below:

summary.aov(lm(y1[-6]~x1[-6]))

Df Sum Sq Mean Sq F value Pr(>F)
x1[-6] 1 0 0.0000 0 1
Residuals 3 2 0.6667

Finally, $wt.res is a vector of weighted residuals (or deviance residuals in a generalized linear model)
or raw residuals if weights are not set (as in this example).

9.15 Summary of statistical models in R

Models are fitted using one of the following model-fitting functions:

lm fits a linear model with normal errors and constant variance; generally this is used for regression
analysis using continuous explanatory variables.

aov fits analysis of variance with normal errors, constant variance and the identity link; generally
used for categorical explanatory variables or ANCOVA with a mix of categorical and
continuous explanatory variables.

glm fits generalized linear models to data using categorical or continuous explanatory variables, by
specifying one of a family of error structures (e.g. Poisson for count data or binomial for
proportion data) and a particular link function.

gam fits generalized additive models to data with one of a family of error structures (e.g. Poisson for
count data or binomial for proportion data) in which the continuous explanatory variables can
(optionally) be fitted as arbitrary smoothed functions using non-parametric smoothers rather
than specific parametric functions.

lme and lmer fit linear mixed-effects models with specified mixtures of fixed effects and random
effects and allow for the specification of correlation structure among the explanatory variables
and autocorrelation of the response variable (e.g. time series effects with repeated measures).
lmer allows for non-normal errors and non-constant variance with the same error families as
a GLM.

nls fits a non-linear regression model via least squares, estimating the parameters of a specified
non-linear function.

nlme fits a specified non-linear function in a mixed-effects model where the parameters of the
non-linear function are assumed to be random effects; it allows for the specification of
correlation structure among the explanatory variables and autocorrelation of the response
variable (e.g. time series effects with repeated measures).

loess fits a local regression model with one or more continuous explanatory variables using
non-parametric techniques to produce a smoothed model surface.

tree and rpart fit a regression tree model using binary recursive partitioning whereby the data are
successively split along coordinate axes of the explanatory variables so that at any node the
split is chosen that maximally distinguishes the response variable in the left and right
branches. With a categorical response variable, the tree is called a classification tree, and the
model used for classification assumes that the response variable follows a multinomial
distribution.

412 THE R BOOK

For most of these models, a range of generic functions can be used to obtain information about the model.
The most important and most frequently used are as follows:

summary produces parameter estimates and standard errors from lm, and ANOVA tables from aov;
this will often determine your choice between lm and aov. For either lm or aov you can
choose summary.aov or summary.lm to get the alternative form of output (an ANOVA
table or a table of parameter estimates and standard errors; see p. 517).

plot produces diagnostic plots for model checking, including residuals against fitted values,
normality checks, influence tests, etc.

anova is a wonderfully useful function for comparing different models and producing ANOVA
tables.

update is used to modify the last model fit; it saves both typing effort and computing time.

Other useful generic functions include the following:

coef gives the coefficients (estimated parameters) from the model.
fitted gives the fitted values, predicted by the model for the values of the explanatory variables

included.
resid gives the residuals (the differences between measured and predicted values of y).
predict uses information from the fitted model to produce smooth functions for plotting a line through

the scatterplot of your data. Make sure you provide a list or a dataframe containing all of
the necessary information on each of the explanatory variables in your model to enable the
prediction to be made.

9.16 Optional arguments in model-fitting functions

Unless you argue to the contrary, all of the rows in the dataframe will be used in the model fitting, there
will be no offsets, and all values of the response variable will be given equal weight. Variables named in the
model formula will come from the defined dataframe (data=mydata), the with function (p. 113) or from
the attached dataframe (if there is one). Here we illustrate the following options:

� subset

� weights

� data

� offset

� na.action

We shall work with an example involving analysis of covariance (see p. 538 for details) where we have a mix
of both continuous and categorical explanatory variables:

data <- read.table("c:\\temp\\ipomopsis.txt",header=T)
attach(data)
names(data)

[1] "Root" "Fruit" "Grazing"

The response is seed production (Fruit) with a continuous explanatory variable (Root, Root diameter) and
a two-level factor (Grazing, with levelss Grazed and Ungrazed).

STATISTICAL MODELLING 413

9.16.1 Subsets

Perhaps the most commonly used modelling option is to fit the model to a subset of the data (e.g. fit the model
to data from just the grazed plants). You could do this using subscripts on the response variable and all the
explanatory variables:

model <- lm(Fruit[Grazing=="Grazed"]~Root[Grazing=="Grazed"])

but it is much more straightforward to use thesubset argument, especially when there are lots of explanatory
variables:

model <- lm(Fruit~Root,subset=(Grazing=="Grazed"))

The answer, of course, is the same in both cases, but the summary.lm and summary.aov tables are neater
with subset. Note the round brackets used with the subset option (not the square brackets used with
subscripts in the first example)

9.16.2 Weights

The default is for all the values of the response to have equal weights (all equal to 1)

weights = rep(1, n.observations)

Where data points are to be weighted unequally, the classical approach is to weight each value by the inverse
of the variance of the distribution from which that point is drawn. This downplays the influence of highly
variable data.

Instead of using initial root size as a covariate (as above) you could use Root as a weight in fitting a
model with Grazing as the sole categorical explanatory variable:

model <- lm(Fruit~Grazing,weights=Root)
summary(model)

Call:
lm(formula = Fruit~Grazing, weights = Root)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 70.725 4.849 14.59 <2e-16 ***
GrazingUngrazed -16.953 7.469 -2.27 0.029 *

Residual standard error: 62.51 on 38 degrees of freedom
Multiple R-Squared: 0.1194, Adjusted R-squared: 0.0962
F-statistic: 5.151 on 1 and 38 DF, p-value: 0.02899

When weights (w) are specified the model is fitted using weighted least squares, in which the quantity to
be minimized is

∑
w × d2 (rather than

∑
d2), where d is the difference between the response variable and

the fitted values predicted by the model. Needless to say, the use of weights alters the parameter estimates
and their standard errors:

model <- lm(Fruit~Grazing)
summary(model)

414 THE R BOOK

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 67.941 5.236 12.976 1.54e-15 ***
GrazingUngrazed -17.060 7.404 -2.304 0.0268 *

Residual standard error: 23.41 on 38 degrees of freedom
Multiple R-Squared: 0.1226, Adjusted R-squared: 0.09949
F-statistic: 5.309 on 1 and 38 DF, p-value: 0.02678

Fitting root size as a statistical weight is scientifically wrong in this case: why should values from larger
plants be given greater influence? Also, this analysis gives entirely the wrong interpretation of the data
(ungrazed plants come out as being less fecund than the grazed plants). Analysis of covariance reverses
this interpretation, showing that for a given root size, the grazed plants produced 36.013 fewer fruits than
the ungrazed plants; the problem was that the big plants were almost all in the grazed treatment (see
p. 538).

9.16.3 Missing values

What to do about missing values in the dataframe is an important issue (p. 172). Ideally, of course, there are
no missing values, so you do not need to worry about what action to take (na.action). If there are missing
values, you have two choices:

� leave out any row of the dataframe in which one or more variables are missing, then na.action =
na.omit; or

� fail the fitting process, so na.action = na.fail.

If in doubt, you should specify na.action = na.fail because you will not get nasty surprises if
unsuspected NAs in the dataframe cause strange (but unwarned) behaviour in the model.

Let us introduce a missing value into the initial root weights:

Root[37] <- NA

model <- lm(Fruit~Grazing*Root)

The model is fitted without comment, and the only thing you might notice is that the residual degrees of
freedom is reduced from 36 to 35. If you want to be warned about missing values, then use the na.action
option:

model <- lm(Fruit~Grazing*Root,na.action=na.fail)

Error in na.fail.default(list(Fruit = c(59.77, 60.98, 14.73, 19.28, 34.25, :
missing values in object

If you are carrying out regression with time series data that include missing values then you should use
na.action = NULL so that residuals and fitted values are time series as well (if the missing values were
omitted, then the resulting vector would not be a time series of the correct length).

STATISTICAL MODELLING 415

9.16.4 Offsets

You would not use offsets with a linear model (you could simply subtract the offset from the value of the
response variable, and work with the transformed values). But with generalized linear models you may want
to specify part of the variation in the response using an offset (see p. 566 for details and examples).

9.16.5 Dataframes containing the same variable names

If you have several different dataframes containing the same variable names (say, x and y) then the simplest
way to ensure that the correct variables are used in the modelling is to name the dataframe in the function
call:

model <- lm(y~x,data=correct.frame)

The alternative is much more cumbersome to type:

model <- lm(correct.frame$y~correct.frame$x)

9.17 Akaike’s information criterion

Akaike’s information criterion (AIC) is known in the statistics trade as a penalized log-likelihood. If you
have a model for which a log-likelihood value can be obtained (see Section 7.3.3), then

AIC = −2 × log -likelihood + 2(p + 1),

where p is the number of parameters in the model, and 1 is added for the estimated variance (you could call
this another parameter if you wanted to). To demystify AIC let us calculate it by hand. These data show the
relationship between growth and dietary tannin for caterpillars in a feeding experiment:

data <- read.table("c:\\temp\\regression.txt",header=T)

attach(data)
names(data)

[1] "growth" "tannin"

The regression model for these data is worked out, one term at a time, by hand in Chapter 10.

model <- lm(growth~tannin)

To calculate the log-likelihood we need three quantities (p. 282): the sample size, n; the error variance s2 =
σ 2; and the sum of the squares of the residuals, sse = ∑

(y − µ)2:

n <- length(growth)
sse <- sum((growth-fitted(model))ˆ2)
s2 <- sse/(n-2)
s <- sqrt(s2)

Now we can compute the log-likelihood:

-(n/2)*log(2*pi)-n*log(s)-sse/(2*s2)

[1] -16.51087

416 THE R BOOK

There is an R function logLik to calculate the log likelihood from any appropriate model object directly:

logLik(model)

'log Lik.' -16.37995 (df=3)

The three degrees of freedom (df) refer to the slope, the intercept and the variance. The difference between
the two estimates is just rounding error. Now we can compute AIC:

-2 * -16.37995 + 6

[1] 38.7599

Again, not surprisingly, there is an R function called AIC to compute the information criterion directly from
the model object:

AIC(model)

[1] 38.7599

9.17.1 AIC as a measure of the fit of a model

The more parameters there are in the model, the better the fit. You could obtain a perfect fit if you had a
separate parameter for every data point, but this model would have absolutely no explanatory power. There
is always going to be a trade-off between the goodness of fit and the number of parameters required by
parsimony. AIC is useful because it explicitly penalizes any superfluous parameters in the model, by adding
2(p + 1) to the deviance.

When comparing two models, the smaller the AIC, the better the fit. This is the basis of automated model
simplification using step.

You can use the function AIC to compare two models, in exactly the same way as you can use anova (as
explained on p. 415). Here we develop an analysis of covariance that is introduced on p. 538.

model.1 <- lm(Fruit~Grazing*Root)
model.2 <- lm(Fruit~Grazing+Root)

AIC(model.1, model.2)

df AIC
model.1 5 263.6269
model.2 4 261.7835

Because model.2 has the lower AIC, we prefer it to model.l. The log-likelihood was penalized by
2 × (4 + 1) = 10 in model.1 because that model contained 4 parameters (2 slopes and 2 intercepts) and
by 2 × (3 + 1)=8 in model.2 because that model had 3 parameters (two intercepts and a common slope).
You can see where the two values of AIC come from by calculation:

-2*logLik(model.1)+2*(4+1)

[1] 263.6269

-2*logLik(model.2)+2*(3+1)

[1] 261.7835

If you want to compare many models, you can combine the models into a list,

models <- list (model1, model2, model3, model4, model5, model6)

STATISTICAL MODELLING 417

then extract the AIC of each of them using lapply like this:

aic <- unlist(lapply(models, AIC))

where aic will be a vector of numbers in which you can search for the minimum.

9.18 Leverage

Points increase in influence to the extent that they lie on their own, a long way from the mean value of x (to
either the left or right). To account for this, measures of leverage for a given data point y are proportional to
(x − x̄)2. Here are the x data from our earlier example:

x <- c(2,3,3,3,4,7)

The commonest measure of leverage is

hi = 1

n
+ (xi − x̄)2

�(xi − x̄)2
,

where the denominator is SSX. A good rule of thumb is that a point is highly influential if its

hi >
2p

n
,

where p is the number of parameters in the model.
We could easily calculate the leverage value of each point in our vector. It is more efficient, perhaps, to

write a general function that could carry out the calculation of the h values for any vector of x values,

leverage <- function(x){1/length(x)+(x-mean(x))ˆ2/sum((x-mean(x))ˆ2)}

and then use this function with our vector of x values to produce a leverage plot:

plot(leverage(x),type="h",ylim=c(0,1),col="blue")
abline(h=4/6,lty=2,col="green")

1.
0

0.
8

0.
6

0.
4

0.
0

0.
2

1 2 3 4
Index

le
ve

ra
ge

(x
)

5 6

418 THE R BOOK

As you can see, only the sixth=point shows more leverage than is reasonable (the horizontal green dashed
line shows 2p/n = 4/6 in this example). For built-in functions for checking influence, see p. 463.

9.19 Misspecified model

The model may have the wrong terms in it, or the terms may be included in the model in the wrong way. We
deal with the selection of terms for inclusion in the minimal adequate model in Chapter 10. Here we simply
note that transformation of the explanatory variables often produces improvements in model performance.
The most frequently used transformations are logs, powers and reciprocals.

When both the error distribution and functional form of the relationship are unknown, there is no single
specific rationale for choosing any given transformation in preference to another. The aim is pragmatic,
namely to find a transformation that gives:

� constant error variance;

� approximately normal errors;

� additivity;

� a linear relationship between the response variables and the explanatory variables;

� straightforward scientific interpretation.

The choice is bound to be a compromise and, as such, is best resolved by quantitative comparison of the
deviance produced under different model forms. Again, in testing for non-linearity in the relationship between
y and x we might add a term in x2 to the model; a significant parameter in the x2 term indicates curvilinearity
in the relationship between y and x.

A further element of misspecification can occur because of structural non-linearity. Suppose, for exam-
ple, that we were fitting a model of the form

y = a + b

x
,

but the underlying process was really of the form

y = a + b

c + x
;

then the fit is going to be poor. Of course if we knew that the model structure was of this form, then we could
fit it as a non-linear model (p. 715) or as a non-linear mixed-effects model (p. 722), but in practice this is
seldom the case.

9.20 Model checking in R

The data we examine in this section are on the decay of a biodegradable plastic in soil: the response, y, is the
mass of plastic remaining and the explanatory variable, x, is duration of burial:

Decay <- read.table("c:\\temp\\Decay.txt",header=T)
attach(Decay)

STATISTICAL MODELLING 419

names(Decay)

[1] "time" "amount"

For the purposes of illustration we shall fit a linear regression to these data and then use model-checking plots
to investigate the adequacy of that model:

model <- lm(amount~time)

The basic model checking could not be simpler:

par(mfrow=c(2,2))
plot(model)

40
30

20
10

0

0 20 40
Fitted values

R
es

id
ua

ls

60 80

–2
0

3
2

1
0

–2 –1 0
Theoretical Quantiles

Scale-Location Residuals vs Leverage

Residuals vs Fitted Normal Q-Q

S
ta

nd
ar

di
ze

d
re

si
du

al
s

1 2

0.5

30

1

5

5

1 1

5
30

30

30

Cook’s distance

5

1

–1

1.
5

1.
0

0.
5

0 20 40
Fitted values

60 80

0.
0

3
2

1
0

0.00 0.04 0.08 0.12
Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

–1√|
S

ta
nd

ar
di

ze
d

re
si

ua
ls

|

This one command produces a series of graphs, spread over four pages (here compressed to a single page by
specifying par(mfrow=c(2,2)). The upper two graphs are the most important. First, you get a plot of the
residuals against the fitted values (top left) which shows very pronounced curvature; most of the residuals for
intermediate fitted values are negative, and the positive residuals are concentrated at the smallest and largest
fitted values. Remember, this plot should look like the sky at night, with no pattern of any sort. This suggests
systematic inadequacy in the structure of the model. Perhaps the relationship between y and x is non-linear
rather than linear as we assumed here? Second (top right), you get a quunatile–quantile plot (p. 463) which
indicates pronounced non-normality in the residuals (the line should be straight, not banana-shaped as here).
The third graph is like a positive-valued version of the first graph; it is good for detecting non-constancy
of variance (heteroscedasticity), which shows up as a triangular scatter (like a wedge of cheese) with an

420 THE R BOOK

increasing red line through it. The fourth graph shows a pronounced pattern in the standardized residuals as
a function of the leverage. The graph also shows Cook’s distance, highlighting the identity of particularly
influential data points.

Cook’s distance is an attempt to combine leverage and residuals in a single measure. The absolute values
of the deletion residuals |r∗

i | are weighted as follows:

Ci = |r∗
i |

(
n − p

p
· hi

1 − hi

)1/2

.

Data points 1, 5 and 30 are singled out as being influential, with point 1 especially so. When we were happier
with other aspects of the model, we would repeat the modelling, leaving out each of these points in turn.
Alternatively, we could jackknife the data, which involves leaving every data point out, one at a time, in turn.
In any event, this is clearly not a good model for these data. The analysis is completed on p. 469, when we
fit an exponential rather than a linear model to the data.

9.21 Extracting information from model objects

We often want to extract material from fitted models (e.g. slopes, residuals or p values) and there are three
different ways of doing this:

� by name, e.g. coef(model);

� with list subscripts, e.g. summary(model)[[3]];

� using $ to name the component, e.g. model$resid.

The model object we use to demonstrate these techniques is the simple linear regression that was analysed in
full by hand on p. 450.

data <- read.table("c:\\temp\\regression.txt",header=T)
attach(data)
names(data)

[1] "growth" "tannin"

model <- lm(growth~tannin)
summary(model)

Call:
lm(formula = growth ~ tannin)

Residuals:
Min 1Q Median 3Q Max

-2.4556 -0.8889 -0.2389 0.9778 2.8944

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.7556 1.0408 11.295 9.54e-06 ***
tannin -1.2167 0.2186 -5.565 0.000846 ***

Residual standard error: 1.693 on 7 degrees of freedom

STATISTICAL MODELLING 421

Multiple R-squared: 0.8157, Adjusted R-squared: 0.7893
F-statistic: 30.97 on 1 and 7 DF, p-value: 0.0008461

9.21.1 Extracting information by name

You can extract the coefficients of the model, the fitted values, the residuals, the effect sizes and the variance–
covariance matrix by name, as follows:

coef(model)

(Intercept) tannin
11.755556 -1.216667

gives the parameter estimates (‘coefficients’) for the intercept (a) and slope (b);

fitted(model)

[1] 1 2 3 4 5 6
11.755556 10.538889 9.322222 8.105556 6.888889 5.672222

[7] 7 8 9
4.455556 3.238889 2.022222

gives the fitted values (ŷ = a + bx) of the model (its predictions) for each value of the explanatory
variable(s);

resid(model)

[1] 1 2 3 4 5 6
0.2444444 -0.5388889 -1.3222222 2.8944444 -0.8888889 1.3277778

[7] 7 8 9
-2.4555556 -0.2388889 0.9777778

gives the residuals (y minus fitted values) for the nine data points.
For a linear model fitted by lm or aov the effects are the uncorrelated single-degree-of-freedom values

obtained by projecting the data onto the successive orthogonal subspaces generated by the QR decomposition
during the fitting process. The first r (=2 in this case; the rank of the model) are associated with coefficients
and the remainder span the space of residuals but are not associated with particular residuals. The name
effects produces a numeric vector of the same length as residuals of class coef. The first two rows are
labelled by the corresponding coefficients (intercept and slope), and the remaining seven rows are unlabelled.

vcov(model)

(Intercept) tannin
(Intercept) 1.083263 -0.19116402
tannin -0.191164 0.04779101

This extracts the variance–covariance matrix of the model’s parameters.

9.21.2 Extracting information by list subscripts

The two model summary objects summary.aov(model) and summary.lm(model) are lists with
many components. Here each of them is investigated in turn.

422 THE R BOOK

Here is summary.aov:

summary.aov(model)

Df Sum Sq Mean Sq F value Pr(>F)
tannin 1 88.82 88.82 30.97 0.000846 ***
Residuals 7 20.07 2.87

The columns of the ANOVA table can be extracted one at a time:

summary.aov(model)[[1]][1]

Df
tannin 1
Residuals 7

summary.aov(model)[[1]][2]

Sum Sq
tannin 88.817
Residuals 20.072

summary.aov(model)[[1]][3]

Mean Sq
tannin 88.817
Residuals 2.867

summary.aov(model)[[1]][4]

F value
tannin 30.974
Residuals

summary.aov(model)[[1]][5]

Pr(>F)
tannin 0.0008461 ***
Residuals

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It can be quite involved to extract the numerical values that you might want to use in subsequent work. For
instance, to get the F ratio (30.974) out of the fourth element of the list, we need to unlist the object, then
use as.numeric, and then add a further subscript:

as.numeric(unlist(summary.aov(model)[[1]][4]))[1]

[1] 30.97398

Here is summary.lm:

summary(model)

Call:
lm(formula = growth ~ tannin)

STATISTICAL MODELLING 423

Residuals:
Min 1Q Median 3Q Max

-2.4556 -0.8889 -0.2389 0.9778 2.8944

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.7556 1.0408 11.295 9.54e-06 ***
tannin -1.2167 0.2186 -5.565 0.000846 ***

Residual standard error: 1.693 on 7 degrees of freedom
Multiple R-squared: 0.8157, Adjusted R-squared: 0.7893
F-statistic: 30.97 on 1 and 7 DF, p-value: 0.0008461

The first element of the list is the model formula (or Call) showing the response variable (growth) and the
explanatory variable(s) (tannin):

summary(model)[[1]]

lm(formula = growth ~ tannin)

The second describes the attributes of the object called summary(model):

summary(model)[[2]]

growth ~ tannin
attr(,"variables")
list(growth, tannin)
attr(,"factors")

tannin
growth 0
tannin 1
attr(,"term.labels")
[1] "tannin"
attr(,"order")
[1] 1
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>
attr(,"predvars")
list(growth, tannin)
attr(,"dataClasses")

growth tannin
"numeric" "numeric"

The third gives the residuals for the nine data points:

summary(model)[[3]]

as shown above. The fourth gives the parameter table, including standard errors of the parameters, t values
and p values. This is the really important information:

424 THE R BOOK

summary(model)[[4]]

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.755556 1.0407991 11.294740 9.537315e-06
tannin -1.216667 0.2186115 -5.565427 8.460738e-04

You will often want to extract information from parts of this table, using extra subscripts

summary(model)[[4]] [1]

[1] 11.75556

summary(model)[[4]] [2]

[1] -1.216667

summary(model)[[4]] [3]

[1] 1.040799

summary(model)[[4]] [4]

[1] 0.2186115

to extract the individual value of the intercept, slope, standard error of the intercept and standard error of the
slope respectively. The p value for the slope is in [[4]] [8], for instance:

summary(model)[[4]] [8]

[1] 0.0008460738

The fifth is concerned with whether the corresponding components of the fit (the model frame, the model
matrix, the response or the QR decomposition) should be returned. The default is FALSE:

summary(model)[[5]]

(Intercept) tannin
FALSE FALSE

The sixth is the residual standard error: the square root of the error variance from the summary.aov table
(s2=2.867; see above):

summary(model)[[6]]

[1] 1.693358

The seventh shows the number of rows in the summary.lm table (showing two parameters to have been
estimated from the data with this model, and the residual degrees of freedom (d.f. = 7):

summary(model)[[7]]

[1] 2 7 2

The eighth is r2=SSR/SST, the fraction of the total variation in the response variable that is explained by the
model (see p. 456 for details):

summary(model)[[8]]

[1] 0.8156633

STATISTICAL MODELLING 425

The ninth is the adjusted R2, explained on p. 461 but seldom used in practice:

summary(model)[[9]]

[1] 0.7893294

The tenth gives F ratio information: the three values given here are the F ratio (30.973 98), the number of
degrees of freedom in the model (i.e. in the numerator, numdf) and the residual degrees of freedom (i.e. in
the denominator, dendf):

summary(model)[[10]]

value numdf dendf
30.97398 1.00000 7.00000

The eleventh component is the correlation matrix of the parameter estimates:

summary(model)[[11]]

(Intercept) tannin

(Intercept) 0.37777778 -0.06666667
tannin -0.06666667 0.01666667

9.21.3 Extracting components of the model using $

Another way to extract model components is to use the $ symbol. To get the intercept (a) and the slope (b)
of the regression, type

model$coef

(Intercept) tannin
11.755556 -1.216667

Finally, the residual degrees of freedom (9 points – 2 estimated parameters = 7 d.f.) are

model$df

[1] 7

9.21.4 Using lists with models

You might want to extract the coefficients from a series of related statistical models, and you want to avoid
the use of a loop. One solution is to create a list and then employ lapply to do the work. Here are the data
with y as a function of x:

x <- 0:100
y <- 17+0.2*x+3*rnorm(101)

Now create three linear models of increasing complexity:

model0 <- lm(y~1)
model1 <- lm(y~x)
model2 <- lm(y~x+I(xˆ2))

426 THE R BOOK

Make a list containing the three model objects:

models <- list(model0,model1,model2)

To obtain the coefficients from the three models, it is simple to use lapply on the list to apply the function
coef to each element of the list:

lapply(models,coef)

[[1]]
(Intercept)

26.90530

[[2]]
(Intercept) x
15.8267899 0.2215701

[[3]]
(Intercept) x I(xˆ2)
1.593695e+01 2.148935e-01 6.676673e-05

To get a vector (rather than a list) as output, and to select only the three intercepts, we use subscripts
[c(1,2,4)] with unlist and as.vector like this:

as.vector(unlist(lapply(models,coef)))[c(1,2,4)]

[1] 26.90530 15.82679 15.93695

This protocol can be useful in model selection. Here we extract the AIC of each model:

lapply(models,AIC)

[[1]]
[1] 672.7502

[[2]]
[1] 510.787

[[3]]
[1] 512.5231

Other things being equal, we would chose the model with the lowest AIC (the linear regression (model1)
has AIC = 510.787).

9.22 The summary tables for continuous and categorical explanatory variables

It is important to understand the difference between summary.lm and summary.aov for the same model.
Here is a one-way analysis of variance of the plant competition experiment (p. 511):

comp <- read.table("c:\\temp\\competition.txt",header=T)
attach(comp)
names(comp)

[1] "biomass" "clipping"

STATISTICAL MODELLING 427

The categorical explanatory variable is clipping and it has five levels as follows:

levels(clipping)

[1] "control" "n25" "n50" "r10" "r5"

The analysis of variance model is fitted like this:

model <- lm(biomass~clipping)

and we can obtain two different summaries of it.
Here is summary.aov:

summary.aov(model)

Df Sum Sq Mean Sq F value Pr(>F)
clipping 4 85356 21339 4.302 0.00875 **
Residuals 25 124020 4961

showing one row for the treatment and one row for the residuals (the row for the total sum of squares is
not printed in R), each row with degrees of freedom, sum of squares, variance (labelled ‘Mean Square’) and
the F ratio, testing the null hypothesis of no significant differences between the treatment means. The only
interesting things in summary.aov are the error variance (s2 = 4961) which we use in calculating measures
of unreliability, and the F ratio (4.302) showing that there are significant differences amongst the means to
be explained.

Here is summary.lm:

summary.lm(model)

Call:
lm(formula = biomass ~ clipping)

Residuals:
Min 1Q Median 3Q Max

-103.333 -49.667 3.417 43.375 177.667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 28.75 16.177 9.4e-15 ***
clippingn25 88.17 40.66 2.168 0.03987 *
clippingn50 104.17 40.66 2.562 0.01683 *
clippingr10 145.50 40.66 3.578 0.00145 **
clippingr5 145.33 40.66 3.574 0.00147 **

Residual standard error: 70.43 on 25 degrees of freedom
Multiple R-squared: 0.4077, Adjusted R-squared: 0.3129
F-statistic: 4.302 on 4 and 25 DF, p-value: 0.008752

The residuals are summarized first by their ‘five numbers’. The coefficients table has as many rows as
there are parameters in the model (five in this case, one for each factor level mean). The top row, labelled
(Intercept), is the only mean value in the table: it is the mean for the factor level that comes first in
the alphabet (control in this example). The other four rows are differences between means (each mean
compared to the control mean in this example). The second column contains the unreliability estimates. The
first row contains the standard error of a mean (28.75). The other four rows contain the standard error
of the difference between two means (40.66). The significance stars are highly misleading in this example,

428 THE R BOOK

suggesting wrongly that there are four significant contrasts for this model. The problem arises because the
default ‘Treatment contrasts’ in R are not orthogonal. The four lower rows are being compared with the first
row. As we shall see later, there is only one significant orthogonal contrast in this experiment (the control
versus the other four treatments).

So where do the effect sizes come from? What is 465.17 and what is 88.17? To understand the answers
to these questions, we need to know how the equation for the explanatory variables is structured in a linear
model when the explanatory variable, as here, is categorical. To recap, the linear regression model is written
as

lm(y~x)

which R interprets as the two-parameter linear equation. R knows this because x is a continuous variable, so
the equation it invokes is

y = a + bx,

in which the values of the parameters a and b are to be estimated from the data. But what about our analysis of
variance? We have one explanatory variable, x = clipping, but it is a categorical variable with five levels,
control, n25, n50, r10 and r5. The aov model is exactly analogous to the regression model

lm(y~x)

but what is the associated equation? Let us look at the equation first, and try to understand it:

y = a + bx1 + cx2 + dx3 + ex4 + f x5.

This looks just like a multiple regression, with five explanatory variables, x1, . . . , x5. The key point to
understand is that x1, . . . , x5 are dummy variables representing the levels of the factor called x. The intercept,
a, is the overall (or grand) mean for the whole experiment. The parameters b, . . . , f are differences between
the grand mean and the mean for a given factor level. You will need to concentrate to understand this.

With a categorical explanatory variable, all the variables are coded as x = 0 except for the factor level that
is associated with the y value in question, when x is coded as x = 1. You will find this hard to understand
without a good deal of practice. Let us look at the first row of data in our dataframe:

comp[1,]

biomass clipping
1 551 n25

So the first biomass value (551) in the dataframe comes from clipping treatment n25 which, out of all the
factor levels (above), comes second in the alphabet. This means that for this row of the dataframe x1 = 0,
x2 = 1, x3 = 0, x4 = 0, x5 = 0. The equation for the first row therefore looks like this:

y = a + b × 0 + c × 1 + d × 0 + e × 0 + f × 0,

so the model for the fitted value at n25 is

ŷ = a + c;

and similarly for the other factor levels. The fitted value ŷ is the sum of two parameters, a and c. The equation
apparently does not contain an explanatory variable (there is no x in the equation as there would be in a

STATISTICAL MODELLING 429

regression equation, above). Note, too, how many parameters the full model contains: they are represented by
the letters a to f and there are six of them. But we can only estimate five parameters in this experiment (one
mean for each of the five factor levels). Our model contains one redundant parameter, and we need to deal
with this. There are several sensible ways of doing this, and people differ in their opinions about what is the
best way. The writers of R agree that treatment contrasts represent the best solution. This method does away
with parameter a, the overall mean (in the jargon, this overall mean is intentionally aliased). The mean of the
factor level that comes first in the alphabet (control, in our example) is promoted to pole position, and the
other effects are shown as differences (contrasts) between this mean and the other four factor level means.

An example might help make this clearer. Here are our five means:

means <- tapply(biomass,clipping,mean)
means

control n25 n50 r10 r5
465.1667 553.3333 569.3333 610.6667 610.5000

In treatment contrasts, the control mean (465.1667) becomes the first parameter of the model (known as
the intercept). The second parameter is the difference between the second mean (n25 = 553.3333) and the
intercept:

means[2]-means[1]

n25
88.16667

The third parameter is the difference between the third mean (n50 = 569.3333) and the intercept:

means[3]-means[1]

n50
104.1667

The fourth parameter is the difference between the fourth mean (r10 = 610.6667) and the intercept:

means[4]-means[1]

r10
145.5

The fifth parameter is the difference between the fifth mean (r5 = 610.5) and the intercept:

means[5]-means[1]

r5
145.3333

So much for the effect sizes. What about their standard errors? The first row is a mean, so we need the
standard error of one factor-level mean. This mean is based on six numbers in this example, so the standard
error of the mean is

√
s2/n where the error variance, s2 = 4961, is obtained from summary.aov(model)

above:

sqrt(4961/6)

[1] 28.75471

All the other rows have the same standard error, but it is bigger than this. That is because the effects on the
second and subsequent rows are not means, but differences between means. That means that the appropriate

430 THE R BOOK

standard error is not the standard error of a mean, but rather the standard error of the difference between two
means. When two samples are independent, the variance of their difference is the sum of their two variances.
Thus, the formula for the standard error of a difference between two means is

sediff =
√

s2
1

n1
+ s2

2

n2
.

When the two variances and the two sample sizes are the same (as here, because our design is balanced
and we are using the pooled error variance (4961) from the summary.aov table) the formula simplifies
to

√
2×s2/n:

sqrt(2*4961/6)

[1] 40.6653

With some practice, that should demystify the origin of the numbers in the summary.lm table. But it does
take lots of practice, and people do find this very difficult at first, so do not feel bad about it.

9.23 Contrasts

Contrasts are the essence of hypothesis testing and model simplification in analysis of variance and analysis
of covariance. They are used to compare means or groups of means with other means or groups of means,
in what are known as single-degree-of-freedom comparisons. There are two sorts of contrasts we might be
interested in:

� contrasts we had planned to examine at the experimental design stage (these are referred to as a priori
contrasts);

� contrasts that look interesting after we have seen the results (these are referred to as a posteriori contrasts).

Some people are very snooty about a posteriori contrasts, on the grounds that they were unplanned. You are
not supposed to decide what comparisons to make after you have seen the analysis, but scientists do this all
the time. The key point is that you should only do contrasts after the ANOVA has established that there really
are significant differences to be investigated. It is not good practice to carry out tests to compare the largest
mean with the smallest mean, if the ANOVA has failed to reject the null hypothesis (tempting though this
may be).

There are two important points to understand about contrasts:

� there is a huge number of possible contrasts, and

� there are only k − 1 orthogonal contrasts,

where k is the number of factor levels. Two contrasts are said to be orthogonal to one another if the
comparisons are statistically independent. Technically, two contrasts are orthogonal if the products of their
contrast coefficients sum to zero (we shall see what this means in a moment).

STATISTICAL MODELLING 431

Let us take a simple example. Suppose we have one factor with five levels and the factor levels are called
a, b, c, d, e. Let us start writing down the possible contrasts. Obviously we could compare each mean singly
with every other:

a vs. b, a vs. c, a vs. d, a vs. e, b vs. c, b vs. d, b vs. e, c vs. d, c vs. e, d vs. e.

But we could also compare pairs of means:

{a, b} vs. {c, d}, {a, b} vs. {c, e}, {a, b} vs. {d, e}, {a, c} vs. {b, d}, {a, c} vs. {b, e}, . . .

or triplets of means:

{a, b, c} vs. d, {a, b, c} vs. e, {a, b, d} vs. c, {a, b, d} vs. e, {a, c, d} vs. b, . . .

or groups of four means:

{a, b, c, d} vs. e, {a, b, c, e} vs. d, {a, b, d, e} vs. c, {a, c, d, e} vs. b, {b, c, d, e} vs. a.

You doubtless get the idea. There are absolutely masses of possible contrasts. In practice, however, we should
only compare things once, either directly or implicitly. So the two contrasts a vs. b and a vs. c implicitly
contrast b vs. c. This means that if we have carried out the two contrasts a vs. b and a vs. c then the third
contrast b vs. c is not an orthogonal contrast because you have already carried it out, implicitly. Which
particular contrasts are orthogonal depends very much on your choice of the first contrast to make. Suppose
there were good reasons for comparing {a, b, c, e} vs. d. For example, d might be the placebo and the other
four might be different kinds of drug treatment, so we make this our first contrast. Because k − 1 = 4 we
only have three possible contrasts that are orthogonal to this. There may be a priori reasons to group {a, b}
and {c, e}, so we make this our second orthogonal contrast. This means that we have no degrees of freedom
in choosing the last two orthogonal contrasts: they have to be a vs. b and c vs. e. Just remember that with
orthogonal contrasts you only compare things once.

9.23.1 Contrast coefficients

Contrast coefficients are a numerical way of embodying the hypothesis we want to test. The rules for
constructing contrast coefficients are straightforward:

� Treatments to be lumped together get the same sign (plus or minus).

� Groups of means to be to be contrasted get opposite sign.

� Factor levels to be excluded get a contrast coefficient of 0.

� The contrast coefficients, c, must add up to 0.

Suppose that with our five-level factor {a, b, c, d, e} we want to begin by comparing the our levels
{a, b, c, e} with the single level d. All levels enter the contrast, so none of the coefficients is 0. The four
terms {a, b, c, e} are grouped together so they all get the same sign (minus, for example, although it makes
no difference which sign is chosen). They are to be compared to d, so it gets the opposite sign (plus, in this
case). The choice of what numeric values to give the contrast coefficients is entirely up to you. Most people
use whole numbers rather than fractions, but it really does not matter. All that matters is that the coefficients
sum to 0. The positive and negative coefficients have to add up to the same value. In our example, comparing

432 THE R BOOK

four means with one mean, a natural choice of coefficients would be –1 for each of {a, b, c, e} and + 4 for
d. Alternatively, with could select + 0.25 for each of {a, b, c, e} and −1 for d.

Factor level: a b c d e
contrast 1 coefficients: −1 −1 −1 4 −1

Suppose the second contrast is to compare {a, b} with {c, e}. Because this contrast excludes d, we set its
contrast coefficient to 0. {a, b} get the same sign (say, plus) and {c, e} get the opposite sign. Because the
number of levels on each side of the contrast is equal (2 in both cases) we can use the name numeric value
for all the coefficients. The value 1 is the most obvious choice (but you could use 13.7 if you wanted to be
perverse):

Factor level: a b c d e
Contrast 2 coefficients: 1 1 −1 0 −1

There are only two possibilities for the remaining orthogonal contrasts, a vs. b and c vs. e:

Factor level: a b c d e
Contrast 3 coefficients: 1 −1 0 0 0
Contrast 4 coefficients: 0 0 1 0 −1

The variation in y attributable to a particular contrast is called the contrast sum of squares, SSC. The
sums of squares of the k − 1 orthogonal contrasts add up to the total treatment sum of squares, SSA
(
∑k−1

i=1 SSCi = SS A). The contrast sum of squares is computed like this:

SSCi =
(∑

(ci Ti/ni)
)2∑

(c2
i /ni)

,

where the ci are the contrast coefficients (above), ni are the sample sizes within each factor level and Ti are
the totals of the y values within each factor level (often called the treatment totals). The significance of a
contrast is judged by an F test, dividing the contrast sum of squares by the error variance. The F test has 1
degree of freedom in the numerator (because a contrast is a comparison of two means, and 2 − 1 = 1) and
k(n − 1) degrees of freedom in the denominator (the error variance degrees of freedom).

9.23.2 An example of contrasts in R

The following example comes from the competition experiment we analysed on p. 511, in which the biomass
of control plants is compared to the biomass of plants grown in conditions where competition was reduced in
one of four different ways. There are two treatments in which the roots of neighbouring plants were cut (to
5 cm or 10 cm depth) and two treatments in which the shoots of neighbouring plants were clipped (25% or
50% of the neighbours were cut back to ground level).

comp <- read.table("c:\\temp\\competition.txt",header=T)
attach(comp)
names(comp)}
[1] "biomass" "clipping"

STATISTICAL MODELLING 433

We start with the one-way analysis of variance:

model1 <- aov(biomass~clipping)
summary(model1)

Df Sum Sq Mean Sq F value Pr(>F)
clipping 4 85356 21339 4.302 0.00875 **
Residuals 25 124020 4961

Clipping treatment has a highly significant effect on biomass. But have we fully understood the result of this
experiment? Probably not. For example, which factor levels had the biggest effect on biomass, and were all
of the competition treatments significantly different from the controls? To answer these questions, we need
to use summary.lm:

summary.lm(model1)

Call:
aov(formula = biomass ~ clipping)

Residuals:
Min 1Q Median 3Q Max

-103.333 -49.667 3.417 43.375 177.667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 28.75 16.177 9.4e-15 ***
clippingn25 88.17 40.66 2.168 0.03987 *
clippingn50 104.17 40.66 2.562 0.01683 *
clippingr10 145.50 40.66 3.578 0.00145 **
clippingr5 145.33 40.66 3.574 0.00147 **

Residual standard error: 70.43 on 25 degrees of freedom
Multiple R-squared: 0.4077, Adjusted R-squared: 0.3129
F-statistic: 4.302 on 4 and 25 DF, p-value: 0.008752

This looks as if we need to keep all five parameters, because all five rows of the summary table have one
or more significance stars. If fact, this is not the case. This example highlights the major shortcoming of
treatment contrasts: they do not show how many significant factor levels we need to retain in the minimal
adequate model because all of the rows are being compared with the intercept (with the controls in this case,
simply because the factor level name for ‘controls’ comes first in the alphabet):

levels(clipping)

[1] "control" "n25" "n50" "r10" "r5"

9.23.3 A priori contrasts

In this experiment, there are several planned comparisons we should like to make. The obvious place to start
is by comparing the control plants, exposed to the full rigours of competition, with all of the other treatments.
That is to say, we want to contrast the first level of clipping with the other four levels. The contrast coefficients,
therefore, would be 4, –1, –1, –1, –1. The next planned comparison might contrast the shoot-pruned treatments
(n25 and n50) with the root-pruned treatments (r10 and r5). Suitable contrast coefficients for this would
be 0, 1, 1, –1, –1 (because we are ignoring the control in this contrast). A third contrast might compare the

434 THE R BOOK

two depths of root pruning; 0, 0, 0, 1, –1. The last orthogonal contrast would therefore have to compare the
two intensities of shoot pruning: 0, 1, –1, 0, 0. Because the factor called clipping has five levels there are
only 5 – 1 = 4 orthogonal contrasts.

R is outstandingly good at dealing with contrasts, and we can associate these five user-specified a priori
contrasts with the categorical variable called clipping like this:

contrasts(clipping) <-
cbind(c(4,-1,-1,-1,-1),c(0,1,1,-1,-1),c(0,0,0,1,-1),c(0,1,-1,0,0))

We can check that this has done what we wanted by typing:

clipping

attr(,"contrasts")
[,1] [,2] [,3] [,4]

control 4 0 0 0
n25 -1 1 0 1
n50 -1 1 0 -1
r10 -1 -1 1 0
r5 -1 -1 -1 0

Levels: control n25 n50 r10 r5

which produces the matrix of contrast coefficients that we specified. One contrast is contained in each column.
Note that all the columns add to zero (i.e. each set of contrast coefficients is correctly specified). Note also
that the products of any two of the columns sum to zero (this shows that all the contrasts are orthogonal, as
intended): for example, comparing contrasts 1 and 2 gives products 0 + (–1) + (–1) + 1 + 1 = 0.

Now we can refit the model and inspect the results of our specified contrasts, rather than the default
treatment contrasts:

model2 <- aov(biomass~clipping)
summary.lm(model2)

Call:
aov(formula = biomass ~ clipping)

Residuals:
Min 1Q Median 3Q Max

-103.333 -49.667 3.417 43.375 177.667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 561.80000 12.85926 43.688 < 2e-16 ***
clipping1 -24.15833 6.42963 -3.757 0.000921 ***
clipping2 -24.62500 14.37708 -1.713 0.099128 .
clipping3 0.08333 20.33227 0.004 0.996762
clipping4 -8.00000 20.33227 -0.393 0.697313

Residual standard error: 70.43 on 25 degrees of freedom
Multiple R-squared: 0.4077, Adjusted R-squared: 0.3129
F-statistic: 4.302 on 4 and 25 DF, p-value: 0.008752

STATISTICAL MODELLING 435

Instead of requiring five parameters (as suggested by our initial treatment contrasts), this analysis shows that
we need only two parameters: the overall mean (561.8) and the contrast between the controls and the four
competition treatments (p = 0.000 921). All the other contrasts are non-significant.

When we specify the contrasts, the intercept is the overall (grand) mean:

mean(biomass)

[1] 561.8

The second row, labelled clipping1, estimates, like all contrasts, the difference between two means. But
which two means, exactly? The means for the different factor levels are:

tapply(biomass,clipping,mean)

control n25 n50 r10 r5
465.1667 553.3333 569.3333 610.6667 610.5000

Thus this first contrast compares the controls (with mean 465.1667) with the mean of the other four treatments.
The simplest way to get this other mean is to create a new factor, c1 that has value 1 for the controls and 2 for
the rest:

c1 <- factor(1+(clipping!="control"))
tapply(biomass,c1,mean)

1 2
465.1667 585.9583

The estimate reflecting the first contrast is the difference between the overall mean (561.8) and the mean of
the four non-control treatments (585.9583):

mean(biomass) - tapply(biomass,c1,mean)[2]

2
-24.15833

and you see the estimate in row 2 is –24.15833. What about the second contrast? This compares the root- and
shoot-pruned treatments, and c2 is a factor that lumps together the two root and two shoot treatments:

c2 <- factor(2*(clipping=="n25")+2*(clipping=="n50")+
(clipping=="r10")+(clipping=="r5"))

We can compute the mean biomass for the two treatments using tapply, then subtract the means from one
another, then halve the differences:

(tapply(biomass,c2,mean)[3]- tapply(biomass,c2,mean)[2])/2

2
-24.625

So the second contrast (–24.625) is half the difference between the root- and shoot-pruned treatments. What
about the third contrast? This is between the two root-pruned treatments. We know their values already from
tapply, above:

r10 r5
610.6667 610.5000

436 THE R BOOK

The two means differ by 0.166666 so the third contrast is half the difference between the two means:

(610.666666-610.5)/2

[1] 0.083333

The final contrast compares the two shoot-pruning treatments, and the contrast is half the difference between
these two means:

(553.3333-569.3333)/2

[1] -8

To recap: the first contrast compares the overall mean with the mean of the four non-control treatments, the
second contrast is half the difference between the root and shoot-pruned treatment means, the third contrast
is half the difference between the two root-pruned treatments, and the fourth contrast is half the difference
between the two shoot-pruned treatments.

It is important to note that the first four standard errors in the summary.lm table are all different from
one another. As we have just seen, the estimate in the first row of the table is a mean, while all the other
rows contain estimates that are differences between means. The overall mean on the top row is based on 30
numbers so the standard error of the mean is se =

√
s2/30, where s2 comes from the ANOVA table:

sqrt(4961/30)

[1] 12.85950

The small difference in the fourth decimal place is due to rounding errors in calling the variance 4961.0.
The next row compares two means so we need the standard error of the difference between two means. The
complexity comes from the fact that the two means are each based on different numbers of numbers. The
overall mean is based on all five factor levels (30 numbers) while the non-control mean with which it is
compared is based on four means (24 numbers). Each factor level has n = 6 replicates, so the denominator in
the standard error formula is 5 × 4 × 6 = 120. Thus, the standard error of the difference between the these
two means is se =

√
s2/(5×4×6) :

sqrt(4961/(5*4*6))

[1] 6.429749

For the second contrast, each of the means is based on 12 numbers so the standard error is se =
√

2×(s2/12)
so the standard error of half the difference is:

sqrt(2*(4961/12))/2

[1] 14.37735

The last two contrasts are both between means based on six numbers, so the standard error of the difference
is se =

√
2×(s2/6) and the standard error of half the difference is:

sqrt(2*(4961/6))/2

[1] 20.33265

The complexity of these calculations is another reason for preferring treatment contrasts rather than user-
specified contrasts as the default. The advantage of orthogonal contrasts, however, is that the summary.lm
table gives us a much better idea of the number of parameters required in the minimal adequate model (two in
this case). Treatment contrasts had significance stars on all five rows (see below) because all the non-control
treatments were compared to the controls (the intercept).

STATISTICAL MODELLING 437

9.24 Model simplification by stepwise deletion

An alternative to specifying the contrasts ourselves (as above) is to aggregate non-significant factor levels in
a stepwise a posteriori procedure. To demonstrate this, we revert to treatment contrasts. First, we switch off
our user-defined contrasts:

contrasts(clipping) <- NULL
options(contrasts=c("contr.treatment","contr.poly"))

Now we fit the model with all five factor levels as a starting point:

model3 <- aov(biomass~clipping)
summary.lm(model3)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 28.75 16.177 9.4e-15 ***
clippingn25 88.17 40.66 2.168 0.03987 *
clippingn50 104.17 40.66 2.562 0.01683 *
clippingr10 145.50 40.66 3.578 0.00145 **
clippingr5 145.33 40.66 3.574 0.00147 **

Looking down the list of parameter estimates, we see that the most similar are the effects of root pruning to
10 and 5 cm (145.5 vs. 145.33). We shall begin by simplifying these to a single root-pruning treatment called
root. The trick is to use the gets arrow <- to change the names of the appropriate factor levels. Start by
copying the original factor name:

clip2 <- clipping

Now inspect the level numbers of the various factor level names:

levels(clip2)

[1] "control" "n25" "n50" "r10" "r5"

The plan is to lump together r10 and r5 under the same name, root. These are the fourth and fifth levels
of clip2, so we write:

levels(clip2)[4:5] <- "root"

Now if we type

levels(clip2)

[1] "control" "n25" "n50" "root"

we see that r10 and r5 have indeed been replaced by root.
The next step is to fit a new model with clip2 in place of clipping, and to test whether the new

simpler model is significantly worse as a description of the data using anova:

model4 <- aov(biomass~clip2)
anova(model3,model4)

438 THE R BOOK

Analysis of Variance Table

Model 1: biomass ~ clipping
Model 2: biomass ~ clip2
Res.Df RSS Df Sum of Sq F Pr(>F)

1 25 124020
2 26 124020 -1 -0.083333 0 0.9968

As we expected, this model simplification was completely justified.
The next step is to investigate the effects using summary.lm:

summary.lm(model4)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 28.20 16.498 2.72e-15 ***
clip2n25 88.17 39.87 2.211 0.036029 *
clip2n50 104.17 39.87 2.612 0.014744 *
clip2root 145.42 34.53 4.211 0.000269 ***

It looks as if the two shoot-clipping treatments (n25 and n50) are not significantly different from one another
(they differ by just 104.17 − 88.17 =16.0 with a standard error of 39.87). We can lump these together into a
single shoot-pruning treatment as follows:

clip3 <- clip2
levels(clip3)[2:3] <- "shoot"
levels(clip3)

[1] "control" "shoot" "root"

Then we fit a new model with clip3 in place of clip2:

model5 <- aov(biomass~clip3)
anova(model4,model5)

Analysis of Variance Table

Model 1: biomass ~ clip2
Model 2: biomass ~ clip3
Res.Df RSS Df Sum of Sq F Pr(>F)

1 26 124020
2 27 124788 -1 -768 0.161 0.6915

Again, this simplification was fully justified. Do the root and shoot competition treatments differ?

clip4 <- clip3
levels(clip4)[2:3] <- "pruned"
levels(clip4)

[1] "control" "pruned"

Now fit a new model with clip4 in place of clip3:

model6 <- aov(biomass~clip4)
anova(model5,model6)

STATISTICAL MODELLING 439

Analysis of Variance Table

Model 1: biomass ~ clip3
Model 2: biomass ~ clip4
Res.Df RSS Df Sum of Sq F Pr(>F)

1 27 124788
2 28 139342 -1 -14553 3.1489 0.08726 .

This simplification was close to significant, but we are ruthless (p > 0.05), so we accept the simplification.
Now we have the minimal adequate model:

summary.lm(model6)

Call:
aov(formula = biomass ~ clip4)

Residuals:
Min 1Q Median 3Q Max

-135.958 -49.667 -4.458 50.635 145.042

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.2 28.8 16.152 1.01e-15 ***
clip4pruned 120.8 32.2 3.751 0.000815 ***

Residual standard error: 70.54 on 28 degrees of freedom
Multiple R-squared: 0.3345, Adjusted R-squared: 0.3107
F-statistic: 14.07 on 1 and 28 DF, p-value: 0.0008149

It has just two parameters: the mean for the controls (465.2) and the difference between the control mean and
the four treatment means (465.2 + 120.8 = 586.0):

tapply(biomass,clip4,mean)

control pruned
465.1667 585.9583

We know that these two means are significantly different because of the p value of 0.000 815, but just to
show how it is done, we can make a final model7 that has no explanatory variable at all (it fits only the
overall mean). This is achieved by writing y ∼ 1 in the model formula:

model7 <- aov(biomass~1)
anova(model6,model7)

Analysis of Variance Table

Model 1: biomass ~ clip4
Model 2: biomass ~ 1
Res.Df RSS Df Sum of Sq F Pr(>F)

1 28 139342
2 29 209377 -1 -70035 14.073 0.0008149 ***

Note that the p value is exactly the same as in model6. The p values in R are calculated such that they avoid
the need for this final step in model simplification: they are ‘deletion p values’.

440 THE R BOOK

9.25 Comparison of the three kinds of contrasts

In order to show the differences between treatment, Helmert and sum contrasts, we shall reanalyse the
competition experiment using each in turn. Contrasts are explained on p. 430. For present purposes, you
need only know that R provides three types of contrasts that summarize the differences between parameter
estimates in different ways. Treatment contrasts (Section 9.25.1) are more intuitive than Hermert (Section
9.25.2) or sum (Section 9.25.3) contrasts.

9.25.1 Treatment contrasts

This is the default in R. These are the contrasts you get, unless you explicitly choose otherwise.

options(contrasts=c("contr.treatment","contr.poly"))

Here are the contrast coefficients as set under treatment contrasts:

contrasts(clipping)

n25 n50 r10 r5
control 0 0 0 0
n25 1 0 0 0
n50 0 1 0 0
r10 0 0 1 0
r5 0 0 0 1

Notice that the contrasts are not orthogonal (the products of the coefficients do not sum to zero).

output.treatment <- lm(biomass~clipping)
summary(output.treatment)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 28.75 16.177 9.4e-15 ***
clippingn25 88.17 40.66 2.168 0.03987 *
clippingn50 104.17 40.66 2.562 0.01683 *
clippingr10 145.50 40.66 3.578 0.00145 **
clippingr5 145.33 40.66 3.574 0.00147 **

With treatment contrasts, the factor levels are arranged in alphabetical sequence, and the level that comes
first in the alphabet is made into the intercept. In our example this is control, so we can read off the
control mean as 465.17, and the standard error of the mean as 28.75. The remaining four rows are differences
between means, and the standard errors are standard errors of differences. Thus, clipping neighbours back to
25 cm increases biomass by 88.17 over the controls and this difference is significant at p = 0.039 87. And so
on. The downside of treatment contrasts is that all the rows appear to be significant despite the fact that rows
2–5 are actually not significantly different from one another, as we saw earlier.

9.25.2 Helmert contrasts

This is the default in S-PLUS, so beware if you are switching back and forth between the two languages.

options(contrasts=c("contr.helmert","contr.poly"))
contrasts(clipping)

STATISTICAL MODELLING 441

[,1] [,2] [,3] [,4]
control -1 -1 -1 -1
n25 1 -1 -1 -1
n50 0 2 -1 -1
r10 0 0 3 -1
r5 0 0 0 4

Notice that the contrasts are orthogonal (the products sum to zero) and their coefficients sum to zero, unlike
treatment contrasts, above:

output.helmert <- lm(biomass~clipping)
summary(output.helmert)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 561.800 12.859 43.688 <2e-16 ***
clipping1 44.083 20.332 2.168 0.0399 *
clipping2 20.028 11.739 1.706 0.1004
clipping3 20.347 8.301 2.451 0.0216 *
clipping4 12.175 6.430 1.894 0.0699 .

With Helmert contrasts, the intercept is the overall mean (561.8). The first contrast (labelled clipping1)
compares the first mean in alphabetical sequence with the average of the first and second factor levels in
alphabetical sequence (control plus n25; see above): its parameter value is the mean of the first two factor
levels, minus the mean of the first factor level:

(465.16667+553.33333)/2-465.166667

[1] 44.08332

The second contrast (clipping2) compares the third factor level (n50) and the two levels already compared
(control and n25): its value is the difference between the average of the first three factor levels and the
average of the first two factor levels:

(465.16667+553.33333+569.333333)/3-(465.166667+553.3333)/2

[1] 20.02779

The third contrast (clipping3) compares the fourth factor level (r10) and the three levels already compared
(control, n25 and n50): its value is the difference between the average of the first four factor levels and
the average of the first three factor levels

(465.16667+553.33333+569.333333+610.66667)/4
-(553.3333+465.166667+569.3333)/3

[1] 20.34725

The fourth contrast (clipping3) compares the fifth factor level (r5) and the four levels already compared
(control, n25, n50 and r10): its value is the difference between the average of the first five factor
levels (the grand mean), and the average of the first four factor levels:

mean(biomass)-(465.16667+553.33333+569.333333+610.66667)/4

[1] 12.175

442 THE R BOOK

So much for the parameter estimates. Now look at the standard errors. We have seen rather few of these
values in any of the analyses we have done to date. The standard error in row 1 is the standard error of the
overall mean, with s2 taken from the overall ANOVA table:

√
s2/kn.

sqrt(4961/30)

[1] 12.85950

The standard error in row 2 is a comparison of a group of two means with a single mean (2 × 1 = 2). Thus
2 is multiplied by the sample size n in the denominator:

√
s2/2n.

sqrt(4961/(2*6))

[1] 20.33265

The standard error in row 3 is a comparison of a group of three means with a group of two means (so
3 × 2 = 6 in the denominator):

√
s2/6n.

sqrt(4961/(3*2*6))

[1] 11.73906

The standard error in row 4 is a comparison of a group of four means with a group of three means (so
4 × 3 = 12 in the denominator):

√
s2/12n.

sqrt(4961/(4*3*6))

[1] 8.30077

The standard error in row 5 is a comparison of a group of five means with a group of four means (so 5 ×
4 = 20 in the denominator):

√
s2/20n.

sqrt(4961/(5*4*6))

[1] 6.429749

It is true that the parameter estimates and their standard errors are much more difficult to understand in
Helmert than in treatment contrasts. But the advantage of Helmert contrasts is that they give you proper
orthogonal contrasts, and hence give a much clearer picture of which factor levels need to be retained in the
minimal adequate model. They do not eliminate the need for careful model simplification, however. As we
saw earlier, this example requires only two parameters in the minimal adequate model, but Helmert contrasts
suggest the need for three (albeit only marginally significant) parameters.

9.25.3 Sum contrasts

Sum contrasts are the third option:

options(contrasts=c("contr.sum","contr.poly"))
output.sum <- lm(biomass~clipping)
summary(output.sum)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 561.800 12.859 43.688 < 2e-16 ***
clipping1 -96.633 25.719 -3.757 0.000921 ***
clipping2 -8.467 25.719 -0.329 0.744743

STATISTICAL MODELLING 443

clipping3 7.533 25.719 0.293 0.772005
clipping4 48.867 25.719 1.900 0.069019 .

As with Helmert contrasts, the first row contains the overall mean and the standard error of the overall mean.
The remaining four rows are different: they are the differences between the grand mean and the first four
factor means (control, n25, n50 and r10):

tapply(biomass,clipping,mean) - 561.8

control n25 n50 r10 r5
-96.633333 -8.466667 7.533333 48.866667 48.700000

The standard errors are all the same (25.719) for all four contrasts. The contrasts compare the grand mean
(based on 30 numbers) with a single treatment mean:

sqrt(4961/30+4961/10)

[1] 25.71899

9.26 Aliasing

Aliasing occurs when there is no information available on which to base an estimate of a parameter value.
Parameters can be aliased for one of two reasons:

� there are no data in the dataframe from which to estimate the parameter (e.g. missing values, partial designs
or correlation among the explanatory variables), or

� the model is structured in such a way that the parameter value cannot be estimated (e.g. over-specified
models with more parameters than necessary).

Intrinsic aliasing occurs when it is due to the structure of the model. Extrinsic aliasing occurs when it is
due to the nature of the data.

Suppose that in a factorial experiment all of the animals receiving level 2 of diet (factor A) and level 3
of temperature (factor B) have died accidentally as a result of attack by a fungal pathogen. This particular
combination of diet and temperature contributes no data to the response variable, so the interaction term
A(2) : B(3) cannot be estimated. It is extrinsically aliased, and its parameter estimate is set to zero.

If one continuous variable is perfectly correlated with another variable that has already been fitted to the
data (perhaps because it is a constant multiple of the first variable), then the second term is aliased and adds
nothing to the model. Suppose that x2 = 0.5x1; then fitting a model with x1 + x2 will lead to x2 being
intrinsically aliased and given a zero parameter estimate.

If all the values of a particular explanatory variable are set to zero for a given level of a particular factor,
then that level is intentionally aliased. This sort of aliasing is a useful programming trick in ANCOVA when
we wish a covariate to be fitted to some levels of a factor but not to others.

9.27 Orthogonal polynomial contrasts: contr.poly

Here are the data from a randomized experiment with four levels of dietary supplement:

data <- read.table("c:\\temp\\poly.txt",header=T)
attach(data)

444 THE R BOOK

names(data)

[1] "treatment" "response"

We begin by noting that the factor levels are in alphabetical order (not in ranked sequence – none, low,
medium, high – as we might prefer):

tapply(response,treatment,mean)

high low medium none
4.50 5.25 7.00 2.50

The summary.lm table from the one-way analysis of variance looks like this:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.8125 0.1875 25.667 7.45e-12 ***
treatment1 -0.3125 0.3248 -0.962 0.355
treatment2 0.4375 0.3248 1.347 0.203
treatment3 2.1875 0.3248 6.736 2.09e-05 ***

and the summary.aov table looks like this:

summary.aov(model)

Df Sum Sq Mean Sq F value Pr(>F)
treatment 3 41.69 13.896 24.7 2.02e-05 ***
Residuals 12 6.75 0.563

We can see that treatment is a factor but it is not ordered:

is.factor(treatment)

[1] TRUE

is.ordered(treatment)

[1] FALSE

To convert it into an ordered factor, we use the ordered function like this:

treatment <- ordered(treatment,levels=c("none","low","medium","high"))
levels(treatment)

[1] "none" "low" "medium" "high"

Now the factor levels appear in their ordered sequence, rather than in alphabetical order.
Fitting the ordered factor makes no difference to the summary.aov table:

model2 <- lm(response~treatment)
summary.aov(model2)

Df Sum Sq Mean Sq F value Pr(>F)
treatment 3 41.69 13.896 24.7 2.02e-05 ***
Residuals 12 6.75 0.562

but the summary.lm table is fundamentally different when the factors are ordered. Now the contrasts are
not contr.treatment but contr.poly (which stands for ‘orthogonal polynomial contrasts’):

STATISTICAL MODELLING 445

summary.lm(model2)

Call:
lm(formula = response ~ treatment)

Residuals:
Min 1Q Median 3Q Max

-1.25 -0.50 0.00 0.50 1.00

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.8125 0.1875 25.667 7.45e-12 ***
treatment.L 1.7330 0.3750 4.621 0.000589 ***
treatment.Q -2.6250 0.3750 -7.000 1.43e-05 ***
treatment.C -0.7267 0.3750 -1.938 0.076520 .

Residual standard error: 0.75 on 12 degrees of freedom
Multiple R-squared: 0.8606, Adjusted R-squared: 0.8258
F-statistic: 24.7 on 3 and 12 DF, p-value: 2.015e-05

The levels of the factor called treatment are no longer labelled low, medium, none as with treatment
contrasts (above). Instead they are labelled L, Q and C, which stand for ‘linear’, ‘quadratic’ and ‘cubic’
polynomial terms, respectively. But what are the coefficients, and why are they so difficult to interpret? The
first thing you notice is that the intercept 4.8125 is no longer one of the treatment means:

tapply(response,treatment,mean)

none low medium high
2.50 5.25 7.00 4.50

You could fit a polynomial regression model to the mean values of the response with the four ordered levels
of treatment represented by a continuous (dummy) explanatory variable (say, x <- c(1,2,3,4)),
then fit terms for x, x2 and x3 independently (using the ‘as is’ function I in the model formula). This is what
it would look like:

yv <- as.vector(tapply(response,treatment,mean))
x <- 1:4
model <- lm(yv~x+I(xˆ2)+I(xˆ3))
summary(model)

Call:
lm(formula = yv ~ x + I(xˆ2) + I(xˆ3))

Residuals:
ALL 4 residuals are 0: no residual degrees of freedom!

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.0000 NA NA NA
x -1.7083 NA NA NA
I(xˆ2) 2.7500 NA NA NA
I(xˆ3) -0.5417 NA NA NA

446 THE R BOOK

There are four data points and four estimated parameters, so there are no residual degrees of freedom. Thus
the equation for y as a function of treatment (x) could be written

y = 2 − 1.7083x + 2.75x2 − 0.5417x3.

Notice that the intercept is not one of the factor-level means. To find the mean for factor level 1 (none),
the equation is evaluated for x = 1 (namely 2 − 1.7083 + 2.75 − 0.5417 = 2.5; exactly the correct answer,
as we can see above). So why does R not do it this way? There are two main reasons: orthogonality and
computational accuracy. If the linear, quadratic and cubic contrasts are orthogonal and fitted stepwise, then we
can see whether adding an extra term produces significantly improved explanatory power in the model. In this
case, for instance, there is no justification for retaining the cubic term (p = 0.076 52). Computational accuracy
can become a major problem when fitting many polynomial terms, because these terms are necessarily so
highly correlated:

x <- 1:4
x2 <- xˆ2
x3 <- xˆ3
cor(cbind(x,x2,x3))

x x2 x3
x 1.0000000 0.9843740 0.9513699
x2 0.9843740 1.0000000 0.9905329
x3 0.9513699 0.9905329 1.0000000

Orthogonal polynomial contrasts fix both these problems simultaneously. Here is one way to obtain
orthogonal polynomial contrasts for a factor with four levels. The contrasts (in the rows) will go up to
polynomials of degree = k − 1 = 4 – 1 = 3.

term x1 x2 x3 x4

linear −3 −1 1 3
quadratic 1 −1 −1 1
cubic −1 3 −3 1

Note that the linear x terms are equally spaced, and have a mean of zero (i.e. each point on the x axis is
separated by 2). Also, note that all the rows sum to zero. The key point is that the pointwise products of the
terms in any two rows also sum to zero: thus for the linear and quadratic terms we have products of (−3, 1,
−1, 3), for the linear and cubic terms (3, −3, −3, 3) and for the quadratic and cubic terms (−1, −3, 3, 1). In
R, the orthogonal polynomial contrasts have different numerical values, but the same properties:

t(contrasts(treatment))

[,1] [,2] [,3] [,4]
.L -0.6708204 -0.2236068 0.2236068 0.6708204
.Q 0.5000000 -0.5000000 -0.5000000 0.5000000
.C -0.2236068 0.6708204 -0.6708204 0.2236068

If you wanted to be especially perverse, you could reconstruct the four estimated mean values from these
polynomial contrasts and the treatment effects shown in summary.lm (above). The means for none,
low, medium and high are respectively

4.8125 - 0.6708204*1.733 - 0.5*2.6250 + 0.2236068*0.7267

STATISTICAL MODELLING 447

[1] 2.499963

4.8125 - 0.2236068*1.733+0.5*2.6250 - 0.6708204*0.7267

[1] 5.250004

4.8125 + 0.2236068*1.733 + 0.5*2.6250 + 0.6708204*0.7267

[1] 6.999996

4.8125 + 0.6708204*1.733 - 0.5*2.6250 - 0.2236068*0.7267

[1] 4.500037

in agreement (to 3 decimal places) with the four mean values (above). Thus, the parameters can be interpreted
as the coefficients in a polynomial model of degree 3 (= k − 1 because there are k = 4 levels of the factor
called treatment), but only so long as the factor levels are equally spaced (and we do not know whether
that is true from the information in the current dataframe, because we know only the ranking) and the class
sizes are equal (that is true in the present case where n = 4).

Because we have four data points (the treatment means) and four parameters, the fit of the model to the
means is perfect (there are no residual degrees of freedom and no unexplained variation). We can see what
the polynomial function looks like by drawing the smooth curve on top of a barplot for the means:

y <- as.vector(tapply(response,treatment,mean))
model <- lm(y~poly(x,3))
summary(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.8125 NA NA NA
poly(x, 3)1 1.7330 NA NA NA
poly(x, 3)2 -2.6250 NA NA NA
poly(x, 3)3 -0.7267 NA NA NA

Now we can generate a smooth series of x values between 1 and 4 from which to predict the smooth polynomial
function:

xv <- seq(1,4,0.1)

yv <- predict(model,list(x=xv))

The only slight difficulty is that the x axis values on the barplot do not scale exactly one-to-one with
our x values, so we need to adjust the x-location of our smooth line from xv to xs = −0.5 + 1.2xv. The
parameters −0.5 and 1.2 come from noting that the centres of the four bars are at 0.7, 1.9, 3.1 and 4.3:

(bar.x <- barplot(y))

[,1]
[1,] 0.7
[2,] 1.9
[3,] 3.1
[4,] 4.3

barplot(y,names=levels(treatment))
xs <- -0.5 + 1.2 * xv
lines(xs,yv,col="red")

448 THE R BOOK

7
6

5
4

3
2

1
0

none low medium high

9.28 Summary of statistical modelling

The steps in the statistical analysis of data are always the same, and should always be done in the following
order:

(1) data inspection (plots and tabular summaries, identifying errors and outliers);

(2) model specification (picking an appropriate model from many possibilities);

(3) ensure that there is no pseudoreplication, or specify appropriate random effects;

(4) fit a maximal model with an appropriate error structure;

(5) model simplification (by deletion from a complex initial model);

(6) model criticism (using diagnostic plots, influence tests, etc.);

(7) repeat steps 2 to 6 as often as necessary.

10
Regression

Regression analysis is the statistical method you use when both the response variable and the explanatory
variable are continuous variables (i.e. real numbers with decimal places – things like heights, weights,
volumes, or temperatures). Perhaps the easiest way of knowing when regression is the appropriate analysis
is to see that a scatterplot is the appropriate graphic (in contrast to analysis of variance, say, where it would
have been a box-and-whisker plot or a bar chart). We cover seven important kinds of regression analysis in
this book:

� linear regression (the simplest, and much the most frequently used);

� polynomial regression (often used to test for non-linearity in a relationship);

� piecewise regression (two or more adjacent straight lines);

� robust regression (models that are less sensitive to outliers);

� multiple regression (where there are numerous explanatory variables);

� non-linear regression (to fit a specified non-linear model to data);

� non-parametric regression (used when there is no obvious functional form).

The first five cases are covered here, non-linear regression in Chapter 20 and non-parametric regression in
Chapter 18 (where we deal with generalized additive models and non-parametric smoothing).

The essence of regression analysis is using sample data to estimate parameter values and their standard
errors. First, however, we need to select a model which describes the relationship between the response
variable and the explanatory variable(s). The simplest of all is the linear model

y = a + bx.

There are two variables and two parameters. The response variable is y, and x is a single continuous explanatory
variable. The parameters are a and b: the intercept is a (the value of y when x = 0); and the slope is b (the
change in y divided by the change in x which brought it about).

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

450 THE R BOOK

10.1 Linear regression

Let us start with an example which shows the growth of caterpillars fed on experimental diets differing in
their tannin content:

reg.data <- read.table("c:\\temp\\regression.txt",header=T)
attach(reg.data)
names(reg.data)

[1] "growth" "tannin"

plot(tannin,growth,pch=21,col="blue",bg="red")

12
10

8
6

4
2

0 2 4
tannin

gr
ow

th

6 8

The higher the percentage of tannin in the diet, the more slowly the caterpillars grew. You can get a crude
estimate of the parameter values by eye. Tannin content increased by 8 units, in response to which growth
declined from about 12 units to about 2 units, a change of –10 units of growth. The slope, b, is the change in
y divided by the change in x, so

b ≈ −10

8
= −1.25.

The intercept, a, is the value of y when x = 0, and we see by inspection of the scatterplot that growth was
close to 12 units when tannin was zero. Thus, our rough parameter estimates allow us to write the regression
equation as

y ≈ 12.0 − 1.25x .

Of course, different people would get different parameter estimates by eye. What we want is an objective
method of computing parameter estimates from the data that are in some sense the ‘best’ estimates of the
parameters for these data and this particular model. The convention in modern statistics is to use the maximum

REGRESSION 451

likelihood estimates of the parameters as providing the ‘best’ estimates. That is to say that, given the data,
and having selected a linear model, we want to find the values of the slope and intercept that make the data
most likely. Keep re-reading this sentence until you understand what it is saying.

For the simple kinds of regression models with which we begin, we make several important assumptions:

� The variance in y is constant (i.e. the variance does not change as y gets bigger).

� The explanatory variable, x, is measured without error.

� The difference between a measured value of y and the value predicted by the model for the same value of
x is called a residual.

� Residuals are measured on the scale of y (i.e. parallel to the y axis).

� The residuals are normally distributed.

12
10

8
6

4
2

0 2 4
tannin

gr
ow

th

6 8

model <- lm(growth~tannin)
abline(model,col="red")
yhat <- predict(model,tannin=tannin)
join <- function(i)
lines(c(tannin[i],tannin[i]),c(growth[i],yhat[i]),col="green")
sapply(1:9,join)

Under these assumptions, the maximum likelihood is given by the method of least squares. The phrase ‘least
squares’ refers to the residuals, as shown in the figure. The residuals are the vertical differences between the
data (solid circles) and the fitted model (the straight line). Each of the residuals is a distance, d, between a data
point, y, and the value predicted by the fitted model, ŷ, evaluated at the appropriate value of the explanatory
variable, x:

d = y − ŷ.

452 THE R BOOK

Now we replace the predicted value ŷ by its formula ŷ = a + bx, noting the change in sign:

d = y − a − bx.

Finally, our measure of lack of fit is the sum of the squares of these distances:

∑
d2 =

∑
(y − a − bx)2.

The sum of the residuals will always be zero, because the positive and negative residuals cancel out, so
∑

d is no good as a measure of lack of fit (although
∑ |d| is useful in computationally intensive statistics; see

p. 65). The best fit line is defined as passing through the point defined by the mean value of x (x̄) and the
mean value of y (ȳ). The large open circle marks the point(x̄, ȳ). You can think of maximum likelihood as
working as follows. Imagine that the straight line is pivoted, so that it can rotate around the point(x̄, ȳ). When
the line is too steep, some of the residuals are going to be very large. Likewise, if the line is too shallow,
some of the residuals will again be very large. Now ask yourself what happens to the sum of the squares of
the residuals as the slope is rotated from too shallow, through just right, to too steep. The sum of squares will
be big at first, then decline to a minimum value, then increase again. A graph of the sum of squares against
the value of the slope used in estimating it would look like this:

14
0

12
0

10
0

80
60

40
20

0

–2.0 –1.5
slope b

su
m

 o
f s

qu
ar

ed
 r

es
id

ua
ls

–1.0 –0.5

bs <- seq(-2,-0.5,0.01)
SSE <- function(i) sum((growth - 12 - bs[i]*tannin)ˆ2)
plot(bs,sapply(1:length(bs),SSE),type="l",ylim=c(0,140),

xlab="slope b",ylab="sum of squared residuals",col="blue")

The maximum likelihood estimate of the slope is the value of b associated with the minimum value of the
sum of the squares of the residuals (i.e. close to –1.25). Ideally we want an analytic solution that gives the
maximum likelihood of the slope directly (this is done using calculus in Box 10.1). It turns out, however, that
the least-squares estimate of b can be calculated very simply from the covariance of x and y (which we met
on p. 304).

REGRESSION 453

10.1.1 The famous five in R

We want to find the minimum value of
∑

d2. To work this out we need the ‘famous five’: these are
∑

y2 and∑
y,

∑
x2 and

∑
x , and the sum of products,

∑
xy (introduced on p. 331). The sum of products is worked

out pointwise. You can calculate the numbers from the data the long way:

sum(tannin);sum(tanninˆ2);sum(growth);sum(growthˆ2);sum(tannin*growth)

[1] 36
[1] 204
[1] 62
[1] 536
[1] 175

Alternatively, as we saw on p. 332, you can create a matrix and use matrix multiplication:

XY <- cbind(1,growth,tannin)
t(XY) %*% XY

growth tannin
9 62 36

growth 62 536 175
tannin 36 175 204

10.1.2 Corrected sums of squares and sums of products

The next thing is to use the famous five to work out three essential ‘corrected sums’. We are already familiar
with corrected sums of squares, because these are used in calculating variance: s2 is calculated as the corrected
sum of squares divided by the degrees of freedom (p. 333). We shall need the corrected sums of squares of
both the explanatory variable, SSX, and the response variable, SSY:

SSX =
∑

x2−
(∑

x
)2

n
,

SSY =
∑

y2−
(∑

y
)2

n
.

The third term is the corrected sum of products, SSXY. The covariance of x and y is the expectation of the
vector product E [(x − x̄) (y − ȳ)], and this depends on the value of the corrected sum of products (p. 334),
which is given by

SSXY =
∑

xy−
(∑

x
) (∑

y
)

n
.

If you look carefully you will see that the corrected sum of products has exactly the same kind of structure as
SSY and SSX. For SSY, the first term is the sum of y times y and the second term contains the sum of y times
the sum of y (and similarly for SSX). For SSXY, the first term contains the sum of x times y and the second
term contains the sum of x times the sum of y.

Note that for accuracy within a computer program it is best not to use these shortcut formulae, be-
cause they involve differences (minus) between potentially very large numbers (sums of squares) and

454 THE R BOOK

hence are potentially subject to rounding errors. Instead, when programming, use the following equivalent
formulae:

SSY = ∑
(y − ȳ)2,

SSX = ∑
(x − x̄)2,

SSXY = ∑
(y − ȳ) (x − x̄) .

The three key quantities SSY, SSX and SSXY can be computed the long way, substituting the values of the
famous five:

SSY = 536 − 622

9
= 108.8889,

SSX = 204 − 362

9
= 60,

SSXY = 175 − 36 × 62

9
= −73.

Alternatively, the matrix can be used (see p. 334).
The next question is how we use SSX, SSY and SSXY to find the maximum likelihood estimates of the

parameters and their associated standard errors. It turns out that this step is much simpler than what has gone
before. The maximum likelihood estimate of the slope, b, is just

b = SSXY

SSX

(the detailed derivation of this is in Box 10.1). So, for our example,

b = −73

60
= −1.216667.

Compare this with our by-eye estimate of –1.25. Now that we know the value of the slope, we can use any point
that we know to lie on the fitted straight line to work out the maximum likelihood estimate of the intercept,
a. One part of the definition of the best-fit straight line is that it passes through the point (x̄, ȳ) determined by
the mean values of x and y. Since we know that y = a + bx, it must be the case that ȳ = a + bx̄, and so

a = ȳ − bx̄ =
∑

y

n
− b

∑
x

n

and, using R as a calculator, we get the value of the intercept as

mean(growth)+1.216667*mean(tannin)

[1] 11.75556

noting the change of sign. This is reasonably close to our original estimate by eye (a ≈ 12).
The function for carrying out linear regression in R is lm (which stands for ‘linear model’). The response

variable comes first (growth in our example), then the tilde ∼, then the name of the continuous explanatory

REGRESSION 455

variable (tannin). R prints the values of the intercept and slope like this:

lm(growth~tannin)

Coefficients:
(Intercept) tannin

11.756 -1.217

We can now write the maximum likelihood equation like this:

growth = 11.755 56 – 1.216 667 × tannin.

Box 10.1 The least-squares estimate of the regression slope, b

The best fit slope is found by rotating the line until the error sum of squares, SSE, is minimized, so we
want to find the minimum of

∑
(y − a − bx)2. We start by finding the derivative of SSE with respect to b:

dSSE

db
= −2

∑
x (y − a − bx) .

Now, multiplying through the bracketed term by x gives

dSSE

db
= −2

∑
xy − ax − bx2.

Apply summation to each term separately, set the derivative to zero, and divide both sides by – 2 to
remove the unnecessary constant:

∑
xy −

∑
ax −

∑
bx2 = 0.

We cannot solve the equation as it stands because there are two unknowns, a and b. However, we know
that the value of a is ȳ − bx̄ . Also, note that

∑
ax can be written as a

∑
x , so replacing a and taking

both a and b outside their summations gives:

∑
xy −

[∑
y

n
− b

∑
x

n

] ∑
x − b

∑
x2 = 0.

Now multiply out the bracketed term by
∑

x to get:

∑
xy −

∑
x

∑
y

n
+ b

(∑
x
)2

n
− b

∑
x2 = 0.

Next, take the two terms containing b to the right-hand side, and note their change of sign:

∑
xy −

∑
x

∑
y

n
= b

∑
x2 − b

(∑
x
)2

n
.

456 THE R BOOK

Finally, divide both sides by
∑

x2 − (∑
x
)2

/n to obtain the required estimate b:

b =
∑

xy − ∑
x

∑
y/n∑

x2− (∑
x
)2

/n
.

Thus, the value of b that minimizes the sum of squares of the departures is given simply by:

b = SSXY

SSX
.

This is the maximum likelihood estimate of the slope of the linear regression.

10.1.3 Degree of scatter

There is another very important issue that needs to be considered, because two data sets with exactly the same
slope and intercept could look quite different:

15
10

5
0

y

0 5 10
x x

15 20

15
10

5
0

y

0 5 10 15 20

We need a way to quantify the degree of fit, so that the graph on the left has a high value and the graph on the
right has a low value. It turns out that we already have the appropriate quantity: it is the sum of squares of the
residuals (p. 338). This is referred to as the error sum of squares, SSE. Here, error does not mean ‘mistake’,
but refers to residual variation or unexplained variation:

SSE =
∑

(y − a − bx)2.

Graphically, you can think of SSE as the sum of the squares of the lengths of the vertical residuals (the
green lines) in the plot on p. 452. By tradition, however, when talking about the degree of scatter we actually
quantify the lack of scatter, so the graph on the left, with a perfect fit (zero scatter) gets a value of 1, and
the graph on the right, which shows no relationship at all between y and x (100% scatter), gets a value of
0. This quantity used to measure the lack of scatter is officially called the ‘coefficient of determination’, but
everybody refers to it as ‘r squared’. This is an important definition that you should try to memorize: r2 is the
fraction of the total variation in y that is explained by variation in x. We have already defined the total variation

REGRESSION 457

in the response variable as SSY (p. 454). The unexplained variation in the response variable is defined above
as SSE (the error sum of squares) so the explained variation is simply SSY – SSE. Thus,

r2 = SSY − SSE

SSE
.

A value of r2 = 1 means that all of the variation in the response variable is explained by variation in the
explanatory variable (the left-hand graph below) while a value of r2 = 0 means none of the variation in the
response variable is explained by variation in the explanatory variable (the right-hand graph).

15
10

5
0

y

0 5 10
x

r squared =1 r squared =0

x
15 20

15
10

5
0

y

0 5 10 15 20

y <- 5+0.5*x
plot(x,y,pch=16,xlim=c(0,20),ylim=c(0,15),col="red",main="r squared = 1")
abline(5,0.5,col="blue")
y <- 5+runif(30)*10
plot(x,y,pch=16,xlim=c(0,20),ylim=c(0,15),col="red",main="r squared = 0")
abline(h=10,col="blue")

You can get the value of SSY the long way as on p. 454 (SSY = 108.8889), or using R to fit the null model
in which growth is described by a single parameter, the intercept a. In R, the intercept is called parameter
1, so the null model is expressed as lm(growth~1). There is a function called deviance that can be
applied to a linear model which returns the sum of the squares of the residuals (in this null case, it returns∑

(y − ȳ)2, which is SSY as we require):

deviance(lm(growth~1)

[1] 108.8889

The value of SSE is worked out longhand from
∑

(y − a − bx)2 but this is a pain, and the value can be
extracted very simply from the regression model using deviance like this:

deviance(lm(growth~tannin))

[1] 20.07222

Now we can calculate the value of r2:

r2 = SSY = SSE

SSY
= 108.8889 − 20.072 22

108.8889
= 0.815 663 3.

458 THE R BOOK

You will not be surprised that the value of r2 can be extracted from the model:

summary(lm(growth~tannin))[[8]]

[1] 0.8156633

The correlation coefficient, r, introduced on p. 373, is given by

r = SSXY√
SSX × SSY

.

Of course r is the square root of r2, but we use the formula above so that we retain the sign of the correlation:
SSXY is positive for positive correlations between y and x and negative for negative correlations between y
and x. For our example, the correlation coefficient is

r = −73√
60 × 108.8889

= −0.903 140 7.

10.1.4 Analysis of variance in regression: SSY = SSR + SSE

The idea is simple: we take the total variation in y, SSY, and partition it into components that tell us about the
explanatory power of our model. The variation that is explained by the model is called the regression sum of
squares (denoted by SSR), and the unexplained variation is called the error sum of squares (denoted by SSE).
Then SSY = SSR + SSE. Now, in principle, we could compute SSE because we know that it is the sum of
the squares of the deviations of the data points from the fitted model,

∑
d2 = ∑

(y − a − bx)2. Since we
know the values of a and b, we are in a position to work this out. The formula is fiddly, however, because
of all those subtractions, squarings and addings-up. Fortunately, there is a very simple shortcut that involves
computing SSR, the explained variation, rather than SSE. This is because

SSR = b × SSXY = SSXY2

SSX
,

so we can immediately work out SSR = – 1.21667 × – 73 = 88.816 67. And since SSY = SSR + SSE, we
can get SSE by subtraction:

SSE = SSY − SSR = 108.8889 − 88.81667 = 20.07222.

Using R to do the calculations, we get:

(sse <- deviance(lm(growth~tannin)))

[1] 20.07222

(ssy <- deviance(lm(growth~1)))

[1] 108.8889

(ssr <- ssy-sse)

[1] 88.81667

We now have all of the sums of squares, and all that remains is to think about the degrees of freedom. We
had to estimate one parameter, the overall mean, ȳ, before we could calculate SSY = ∑

(y − ȳ)2, so the

REGRESSION 459

total degrees of freedom are n – 1. The error sum of squares was calculated only after two parameters had
been estimated from the data (the intercept and the slope) since SSE = ∑

(y − bx)2, so the error degrees of
freedom are n – 2. Finally, the regression model added just one parameter, the slope b, compared with the
null model, so there is one regression degree of freedom. Thus, the ANOVA table looks like this:

Source Sum of squares Degrees of freedom Mean squares F ratio

Regression 88.817 1 88.817 30.974
Error 20.072 7 s2 = 2.867 46
Total 108.889 8

Notice that the component degrees of freedom add up to the total degrees of freedom (this is always true,
in any ANOVA table, and is a good check on your understanding of the design of the experiment). The
third column, headed ‘Mean squares’, contains the variances obtained by dividing the sums of squares by
the degrees of freedom in the same row. In the row labelled ‘Error’ we obtain the very important quantity
called the error variance, denoted by s2, by dividing the error sum of squares by the error degrees of freedom.
Obtaining the value of the error variance is the main reason for drawing up the ANOVA table. Traditionally,
one does not fill in the bottom box (it would be the overall variance in y, SSY/(n – 1), although this is the
basis of the adjusted r2 value; see p. 461). Finally, the ANOVA table is completed by working out the F ratio,
which is a ratio between two variances. In most simple ANOVA tables, you divide the treatment variance
in the numerator (the regression variance in this case) by the error variance s2 in the denominator. The null
hypothesis under test in a linear regression is that the slope of the regression line is zero (i.e. that there is
no dependence of y on x). The two-tailed alternative hypothesis is that the slope is significantly different
from zero (either positive or negative). In many applications it is not particularly interesting to reject the null
hypothesis, because we are interested in the estimates of the slope and its standard error (we often know from
the outset that the null hypothesis is false). To test whether the F ratio is sufficiently large to reject the null
hypothesis, we compare the calculated value of F in the final column of the ANOVA table with the critical
value of F, expected by chance alone (this is found from quantiles of the F distribution qf, with 1 d.f. in the
numerator and n – 2 d.f. in the denominator, as described below). The table can be produced directly from
the fitted model in R by using the anova function:

anova(lm(growth~tannin))

Analysis of Variance Table

Response: growth
Df Sum Sq Mean Sq F value Pr(>F)

tannin 1 88.817 88.817 30.974 0.0008461 ***
Residuals 7 20.072 2.867

The same output can be obtained using summary.aov(lm(growth~tannin)). The extra column given
by R is the p value associated with the computed value of F.

There are two ways to assess our F ratio of 30.974. One way is to compare it with the critical value of F,
with 1 d.f. in the numerator and 7 d.f. in the denominator. We have to decide on the level of uncertainty that
we are willing to put up with; the traditional value for work like this is 5%, so our certainty is 0.95. Now we
can use quantiles of the F distribution, qf, to find the critical value of F:

qf(0.95,1,7)

[1] 5.591448

460 THE R BOOK

Because our calculated value of F is much larger than this critical value, we can be confident in rejecting the
null hypothesis. The other way, which is perhaps better than working rigidly at the 5% uncertainty level, is
to ask what is the probability of getting a value for F as big as 30.974 or larger if the null hypothesis is true.
For this we use 1-pf rather than qf:

1-pf(30.974,1,7)

[1] 0.0008460725

It is very unlikely indeed (p < 0.001). This value is in the last column of the R output. Note that the p value
is not the probability that the null hypothesis is true. On the contrary, it is the probability, given that the null
hypothesis is true, of obtaining a value of F this large or larger by chance alone.

10.1.5 Unreliability estimates for the parameters

Finding the least-squares values of slope and intercept is only half of the story, however. In addition to the
parameter estimates, a = 11.756 and b = –1.2167, we need to measure the unreliability associated with each
of the estimated parameters. In other words, we need to calculate the standard error of the intercept and the
standard error of the slope. We have already met the standard error of the mean, and we used it in calculating
confidence intervals (p. 122) and in doing Student’s t test (p. 358). Standard errors of regression parameters
are similar in so far as they are enclosed inside a big square root term (so that the units of the standard error
are the same as the units of the parameter), and they have the error variance, s2, from the ANOVA table
(above) in the numerator. There are extra components, however, which are specific to the unreliability of a
slope or an intercept (see Boxes 10.2 and 10.3 for details).

Box 10.2 Standard error of the slope

The uncertainty of the estimated slope increases with increasing variance and declines with increasing
number of points on the graph. In addition, however, the uncertainty is greater when the range of x values
(as measured by SSX) is small:

seb =
√

s2

SSX
.

Box 10.3 Standard error of the intercept

The uncertainty of the estimated intercept increases with increasing variance and declines with increasing
number of points on the graph. As with the slope, uncertainty is greater when the range of x values (as
measured by SSX) is small. Uncertainty in the estimate of the intercept also increases with the square of
the distance between the origin and the mean value of x (as measured by

∑
x2):

sea =
√

s2
∑

x2

n × SSX

REGRESSION 461

Longhand calculation shows that the standard error of the slope is

seb =
√

s2

SSX
=

√
2.867

60
= 0.2186,

and the standard error of the intercept is

sea =
√

s2�x2

n × SSX
=

√
2.867 × 204

9 × 60
= 1.0408.

However, in practice you would always use the summary.lm function applied to the fitted linear model like
this:

summary(lm(growth~tannin))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.7556 1.0408 11.295 9.54e-06 ***
tannin -1.2167 0.2186 -5.565 0.000846 ***

I have stripped out the details about the residuals and the explanation of the significance stars in order to
highlight the parameter estimates and their standard errors (as calculated above). The residual standard error
is the square root of the error variance from the ANOVA table (1.693 = √

2.867). Multiple R-squared is the
fraction of the total variance explained by the model (SSR/SSY = 0.8157). The adjusted R-squared is close
to, but different from, the value of r2 we have just calculated. Instead of being based on the explained sum
of squares, SSR, and the total sum of squares, SSY, it is based on the overall variance (a quantity we do not
typically calculate), s2

T = SSY/ (n − 1) = 13.611, and the error variance s2 (from the ANOVA table, s2 =
2.867) and is worked out like this:

adjustedR-squared = s2
T − s2

s2
T

.

So in this example, adjusted R-squared = (13.611 – 2.867)/13.611 = 0.7893. We discussed the F statistic
and p value in the previous section.

The summary.lm table shows everything you need to know about the parameters and their standard
errors, but there is a built-in function, confint, which produces 95% confidence intervals for the estimated
parameters from the model directly like this:

confint(model)

2.5 % 97.5 %
(Intercept) 9.294457 14.2166544
tannin -1.733601 -0.6997325

These values are obtained by subtracting from, and adding to, each parameter estimate an interval which
is the standard error times Student’s t with 7 degrees of freedom (the appropriate value of t is given by
qt(.975,7) = 2.364 624). The fact that neither interval includes 0 indicates that both parameter values
are significantly different from zero, as established by the earlier F tests.

Of the two sorts of summary table, summary.lm is by far the more informative, because it shows the
effect sizes (in this case the slope of the graph) and their unreliability estimates (the standard error of the

462 THE R BOOK

slope). Generally, you should resist the temptation to put ANOVA tables in your written work. The important
information such as the p value and the error variance can be put in the text, or in figure legends, much more
efficiently. ANOVA tables put far too much emphasis on hypothesis testing, and show nothing directly about
effect sizes.

Box 10.4 Standard error for a predicted value

The standard error of a predicted value ŷ is given by:

seŷ =
√

s2

[
1

n
+ (x − x̄)2

SSX

]
.

It increases with the square of the difference between mean x and the value of x at which the prediction
is made. As with the standard error of the slope, the wider the range of x values, SSX, the lower the
uncertainty. The bigger the sample size, n, the lower the uncertainty. Note that the formula for the standard
error of the intercept is just the special case of this for x = 0 (you should check the algebra of this result
as an exercise).

For predictions made on the basis of the regression equation we need to know the standard error for a
predicted single sample of y,

sey

√
s2

[
1 + 1

n
+ (x − x̄)2

SSX

]
,

while the standard error for a predicted mean for k items at a given level of xi is

seȳi =
√

s2

[
1

k
+ 1

n
+ (x − x̄)2

SSX

]
.

10.1.6 Prediction using the fitted model

It is good practice to save the results of fitting the model in a named object. Naming models is very much a
matter of personal taste: some people like the name of the model to describe its structure, other people like
the name of the model to be simple and to rely on the formula (which is part of the structure of the model) to
describe what the model does. I like the second approach, so I might write

model <- lm(growth~tannin)

The object called model can now be used for all sorts of things. For instance, we can use the predict
function to work out values for the response at values of the explanatory variable that we did not measure.
Thus, we can ask for the predicted growth if tannin concentration was 5.5%. The value or values of the
explanatory variable to be used for prediction are specified in a list like this:

predict(model,list(tannin=5.5))

[1] 5.063889

REGRESSION 463

indicating a predicted growth rate of 5.06 if a tannin concentration of 5.5% had been applied. To predict
growth at more than one level of tannin, the list of values for the explanatory variable is specified as a vector.
Here are the predicted growth rates at 3.3, 4.4, 5.5 and 6.6% tannin:

predict(model,list(tannin=c(3.3,4.4,5.5,6.6)))

1 2 3 4
7.740556 6.402222 5.063889 3.725556

For drawing smooth curves through a scatterplot we use predict with a vector of 100 or so closely-spaced
x values, as illustrated on p. 207.

10.1.7 Model checking

The final thing you will want to do is to expose the model to critical appraisal. The assumptions we really
want to be sure about are constancy of variance and normality of errors. The simplest way to do this is with
model-checking plots. Six plots (selectable by which) are currently available: a plot of residuals against
fitted values; a scale–location plot of

√|residuals| against fitted values; a normal qunatile–quantile plot; a plot
of Cook’s distances versus row labels; a plot of residuals against leverages; and a plot of Cook’s distances
against leverage/(1 – leverage). By default four plots are provided (the first three plus the fifth):

windows(7,7)
par(mfrow=c(2,2))
plot(model)

3 2
1

0
–1

2
1

0
–1

–2

2
1

0
–1

–2
–3

1.
2

0.
8

0.
0

0.
4

2 4

4 4

3

4
4

3

7

9

Cook’s distance

1

5

5

1

7

6

7

6 8 10 12 –1.5 –1.0

0.02 4 6 8 10 12 0.1 0.2 0.3

–0.5 0.0
Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

S
ta

nd
ar

di
ze

d
re

si
du

al
s

R
es

id
ua

ls

Normal Q-QResiduals vs Fitted

Fitted values

Residuals vs LeverageScale-Location

LeverageFitted values

0.5 1.0 1.5

√|
S

ta
nd

ar
di

ze
d

re
si

ua
ls
|

464 THE R BOOK

The first graph (top left) shows residuals on the y axis against fitted values on the x axis. It takes experience
to interpret these plots, but what you do not want to see is lots of structure or pattern in the plot. Ideally, as
here, the points should look like the sky at night. It is a major problem if the scatter increases as the fitted
values get bigger; this would look like a wedge of cheese on its side (see p. 405). But in our present case,
everything is OK on the constancy of variance front.

The next plot (top right) shows the normal qqnorm plot (p. 406) which should be a straight line if
the errors are normally distributed. Again, the present example looks fine. If the pattern were S-shaped or
banana-shaped, we would need to fit a different model to the data.

The third plot (bottom left) is a repeat of the first, but on a different scale; it shows the square root of the
standardized residuals (where all the values are positive) against the fitted values. If there was a problem, such
as the variance increasing with the mean, then the points would be distributed inside a triangular shape, with
the scatter of the residuals increasing as the fitted values increase. The red line would then show a pronounced
upward trend. But there is no such pattern here, which is good.

The fourth and final plot (bottom right) shows standardized residuals as a function of leverage, along with
Cook’s distance (p. 419) for each of the observed values of the response variable. The point of this plot is
to highlight those y values that have the biggest effect on the parameter estimates (high influence; p. 409).
You can see that point 9 has the highest leverage, but point 7 is quite influential (it is closest to the Cook’s
distance contour). You might like to investigate how much this influential point (6, 2) affected the parameter
estimates and their standard errors. To do this, we repeat the statistical modelling but leave out the point in
question, using subset like this (recall that != means ‘not equal to’):

model2 <- update(model,subset=(tannin != 6))
summary(model2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.6892 0.8963 13.042 1.25e-05 ***
tannin -1.1171 0.1956 -5.712 0.00125 **

First of all, notice that we have lost one degree of freedom, because there are now eight values of y rather
than nine. The estimate of the slope has changed from –1.2167 to –1.1171 (a difference of about 9%) and
the standard error of the slope has changed from 0.2186 to 0.1956 (a difference of about 12%). What you do
in response to this information depends on the circumstances. Here, we would simply note that point (6, 2)
was influential and stick with our first model, using all the data. In other circumstances, a data point might be
so influential that the structure of the model is changed completely by leaving it out. In that case, we might
gather more data or, if the study was already finished, we might publish both results (with and without the
influential point) so that the reader could make up their own mind about the interpretation. The important
point is that we always do model checking; the summary.lm(model) table is not the end of the process
of regression analysis.

You might also want to check for lack of serial correlation in the residuals (e.g. time series effects) using
the durbin.watson function from the car package (see p. 484), but there are too few data to use it with
this example.

REGRESSION 465

10.2 Polynomial approximations to elementary functions

Elementary functions such sin(x), log(x) and exp(x) can be expressed as Maclaurin series:

sin (x) = x − x3

3!
+ x5

5!
− x7

7!
+ . . . ,

cos (x) = 1 − x2

2!
+ x4

4!
− x6

6!
+ . . . ,

exp (x) = x0

0!
+ x1

1!
+ x2

2!
+ x3

3!
+ . . . ,

log (x + 1) = x − x2

2
+ x3

3
− x4

4
+ x5

5
−

In fact, we can approximate any smooth continuous single-valued function by a polynomial of sufficiently
high degree. To see this in action, consider the graph of sin(x) against x in the range 0 < x < π (where x is
an angle measured in radians):

x <- seq(0,pi,0.01)
y <- sin(x)
plot(x,y,type="l",ylab="sin(x)")

Up to about x = 0.3 the very crude approximation sin(x) = x works reasonably well. The first approximation,
including a single extra term for –x3/3!, extends the reasonable fit up to about x = 0.8:

a1 <- x-xˆ3/factorial(3)
lines(x,a1,col="green")

Adding the term in x5/5! captures the first peak in sin(x) quite well. And so on.

a2 <- x-xˆ3/factorial(3)+xˆ5/factorial(5)
lines(x,a2,col="red")

1.
0

0.
8

0.
6

0.
2

0.
0

0.
4

x

si
n

(x
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

466 THE R BOOK

10.3 Polynomial regression

The relationship between y and x often turns out not to be a straight line. However, Occam’s razor requires
that we fit a straight-line model unless a non-linear relationship is significantly better at describing the data.
So this begs the question: how do we assess the significance of departures from linearity? One of the simplest
ways is to use polynomial regression.

The idea of polynomial regression is straightforward. As before, we have just one continuous explanatory
variable, x, but we can fit higher powers of x, such as x2 and x3, to the model in addition to x to explain
curvature in the relationship between y and x. It is useful to experiment with the kinds of curves that can be
generated with very simple models. Even if we restrict ourselves to the inclusion of a quadratic term, x2, there
are many curves we can describe, depending upon the signs of the linear and quadratic terms:

par(mfrow=c(2,2))
x <- seq(0,10,0.1)
y1 <- 4 + 2 * x - 0.1 * xˆ2
y2 <- 4 + 2 * x - 0.2 * xˆ2
y3 <- 12 - 4 * x + 0.35 * xˆ2
y4 <- 4 + 0.5 * x + 0.1 * xˆ2
plot(x,y1,type="l",ylim=c(0,15),ylab="y",col="red")
plot(x,y2,type="l",ylim=c(0,15),ylab="y",col="red")
plot(x,y3,type="l",ylim=c(0,15),ylab="y",col="red")
plot(x,y4,type="l",ylim=c(0,15),ylab="y",col="red")

15
10

5

y

0

0 2 4 6 8 10
x

15
10

5

y

0

0 2 4 6 8 10
x

15
10

5

y

0

0 2 4 6 8 10
x

15
10

5

y

0

0 2 4 6 8 10
x

In the top left-hand panel, there is a curve with positive but declining slope, with no hint of a hump
(y = 4 + 2x – 0.1x2). The top right-hand graph shows a curve with a clear maximum (y = 4 + 2x – 0.2x2),
and at bottom left we have a curve with a clear minimum (y = 12 – 4x + 0.35x2). The bottom right-hand
curve shows a positive association between y and x with the slope increasing as x increases (y = 4 + 0.5x
+ 0.1x2). So you can see that a simple quadratic model with three parameters (an intercept, a slope for x,

REGRESSION 467

and a slope for x2) is capable of describing a wide range of functional relationships between y and x. It is
very important to understand that the quadratic model describes the relationship between y and x; it does not
pretend to explain the mechanistic (or causal) relationship between y and x.

We can see how polynomial regression works by analysing an example where diminishing returns in
output (yv) are suspected as inputs (xv) are increased:

poly <- read.table("c:\\temp\\diminish.txt",header=T)
attach(poly)
names(poly)

[1] "xv" "yv"

We begin by fitting a straight-line model to the data:

windows(7,4)
par(mfrow=c(1,2))
model1 <- lm(yv~xv)
plot(xv,yv,pch=21,col="brown",bg="yellow")
abline(model1,col="navy")

This is not a bad fit to the data (r2 = 0.8725), but there is a distinct hint of curvature (diminishing returns
in this case). Next, we fit a second explanatory variable which is the square of the x value (the so-called
‘quadratic term’). Note the use of I (for ‘as is’) in the model formula; see p. 210.

model2 <- lm(yv~xv+I(xvˆ2))

Now we use model2 to predict the fitted values for a smooth range of x values between 0 and 90:

plot(xv,yv,pch=21,col="brown",bg="yellow")
x <- 0:90
y <- predict(model2,list(xv=x))
lines(x,y,col="navy")

45
40

35
30

20 40 60 80
xv

yv

45
40

35
30

20 40 60 80
xv

yv

This looks like a slightly better fit than the straight line (r2 = 0.9046), but we shall choose between the two
models on the basis of an F test using anova:

anova(model1,model2)

Analysis of Variance Table

Model 1: yv ~ xv
Model 2: yv ~ xv + I(xvˆ2)

468 THE R BOOK

Res.Df RSS Df Sum of Sq F Pr(>F)
1 16 91.057
2 15 68.143 1 22.915 5.0441 0.0402 *

The more complicated curved model is a significant improvement over the linear model (p = 0.04) so we
accept that there is evidence of curvature in these data.

10.4 Fitting a mechanistic model to data

Rather than fitting some arbitrary model for curvature (as above, with a quadratic term for inputs), we
sometimes have a mechanistic model relating the value of the response variable to the explanatory variable
(e.g. a mathematical model of a physical process). In the following example we are interested in the decay of
organic material in soil, and our mechanistic model is based on the assumption that the fraction of dry matter
lost per year is a constant. This leads to a two-parameter model of exponential decay in which the amount of
material remaining (y) is a function of time (t):

y = y0e−bt .

Here y0 is the initial dry mass (at time t = 0) and b is the decay rate (the parameter we want to estimate by
linear regression). Taking logs of both sides, we get

log (y) = log (y0) − bt.

Now you can see that we can estimate the parameter of interest, b, as the slope of a linear regression of log(y)
on t (i.e. we log-transform the y axis but not the x axis) and the value of y0 as the antilog of the intercept.

We begin by plotting our data:

data <- read.table("c:\\temp\\Decay.txt",header=T)
names(data)

[1] "time" "amount"

attach(data)
plot(time,amount,pch=21,col="blue",bg="brown")
abline(lm(amount~time),col="green")

The curvature in the relationship is clearly evident from the poor fit of the straight-line (green) model through
the scatterplot (there are groups of positive residuals for low and high values of time, and a large group of
negative residuals at intermediate times). Now we fit the linear model of log(amount) as a function of
time:

model <- lm(log(amount)~time)
summary(model)

Call:
lm(formula = log(amount) ~ time)

Residuals:
Min 1Q Median 3Q Max

-0.5935 -0.2043 0.0067 0.2198 0.6297

REGRESSION 469

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.547386 0.100295 45.34 < 2e-16 ***
time -0.068528 0.005743 -11.93 1.04e-12 ***

Residual standard error: 0.286 on 29 degrees of freedom
Multiple R-squared: 0.8308, Adjusted R-squared: 0.825
F-statistic: 142.4 on 1 and 29 DF, p-value: 1.038e-12

Thus, the slope is – 0.068 528 and y0 is the antilog of the intercept: y0 = exp(4.547 386) = 94.385 36. The
equation can now be parameterized (with standard errors in brackets) as

y = e4.5474(±0.1003)−0.0685(±0.00574)t ,

or written in its original form, without the uncertainty estimates, as

y = 94.385−0.0685t ,

and we can draw the fitted line through the data, remembering to take the antilogs of the predicted values (the
model predicts log(amount) and we want amount), like this:

ts <- seq(0,30,0.02)
left <- exp(predict(model,list(time=ts)))
plot(time,amount,pch=21,col="blue",bg="brown")
lines(ts,left,col="blue")

12
0

80
60

40
20

time
0 5 10 15 20 25 30

am
ou

nt

12
0

80
60

40
20

time
0 5 10 15 20 25 30

am
ou

nt

10.5 Linear regression after transformation

Many mathematical functions that are non-linear in their parameters can be linearized by transformation
(see p. 258). The most frequent transformations (in order of frequency of use), are logarithms, antilogs and
reciprocals. Here is an example of linear regression associated with a power law (p. 261):

y = axb.

This is a two-parameter function, where the parameter a describes the slope of the function for low values of
x and b is the shape parameter. For b = 0 we have a horizontal relationship y = a, for b = 1 we have a straight
line through the origin y = ax with slope a, for b > 1 the slope is positive but increases with increasing x, for

470 THE R BOOK

0 < b < 1 the slope is positive but decreases with increasing x, while for b < 0 (negative powers) the curve is
a negative hyperbola that is asymptotic to infinity as x approaches 0 and asymptotic to zero as x approaches
infinity.

Let us load a new dataframe and plot the data:

power <- read.table("c:\\temp\\power.txt",header=T)
attach(power)
names(power)

[1] "area" "response"

plot(area,response,pch=21,col="green",bg="orange")
abline(lm(response~area),col="blue")
plot(log(area),log(response),pch=21,col="green",bg="orange")
abline(lm(log(response)~log(area)),col="blue")

2.
8

2.
6

2.
4

2.
2

re
sp

on
se

lo
g(

re
sp

on
se

)

1.
05

0.
95

0.
85

0.
75

1.0 1.5 2.0 2.5 0.2 0.4 0.6 0.8 1.0
log(area)area

The two plots look very similar (this is not always the case), but we need to compare the two models:

model1 <- lm(response~area)

model2 <- lm(log(response)~log(area))

summary(model2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.75378 0.02613 28.843 < 2e-16 ***
log(area) 0.24818 0.04083 6.079 1.48e-06 ***

We need to do a t test to see whether the estimated shape parameter, b = 0.248 18, is significantly less
than b = 1 (a straight line):

t = |0.24818 − 1.0|
0.04083

= 18.41342.

This is highly significant (p < 0.0001), so we conclude that there is a non-linear relationship between
response and area.

Let us get a visual comparison of the two models:

windows(7,7)
plot(area,response,pch=21,col="green",bg="orange")

REGRESSION 471

abline(lm(response~area),col="blue")
xv <- seq(1,2.7,0.01)
yv <- exp(0.75378)*xvˆ0.24818
lines(xv,yv,col="red")

This is a nice example of the distinction between statistical significance and scientific importance. The power
law transformation shows that the curvature is highly significant (b < 1 with p<0.0001) but over the range
of the data, and given the high variance in y, the effect of the curvature is very small; the straight line
and the power function are very close to one another. However, the choice of model makes an enormous
difference if the function is to be used for prediction. Here are the two functions over an extended range of
values for x:

plot(area,response,xlim=c(0,5),ylim=c(0,4),pch=21,col="green",bg="orange")
abline(lm(response~area),col="blue")
xv <- seq(0,5,0.01)
yv <- exp(0.75378)*xvˆ0.24818
lines(xv,yv,col="red")

4
3

2
1

0

re
sp

on
se

0 1 2 3 4 5
area

The moral is clear: you need to extremely careful when using regression models for prediction. If you
know that response must be zero when area is zero (the graph has to pass through the origin) then
obviously the power function is likely to be better for extrapolation to the left of the data. But if we have no
information on non-linearity other than that contained within the data, then parsimony suggests that errors
will be smaller using the simpler, linear model for prediction. Both models are equally good at describing the
data (the linear model has r2 = 0.574 and the power law model has r2 = 0.569), but extrapolation beyond the
range of the data is always fraught with difficulties. Targeted collection of new data for response at values
of area close to 0 and close to 5 might resolve the issue.

472 THE R BOOK

10.6 Prediction following regression

The popular notion is that predicting the future is impossible, and that attempts at prediction are nothing
more that crystal-gazing. However, all branches of applied science rely upon prediction. These predictions
may be based on extensive experimentation (as in engineering or agriculture) or they may be based on
detailed, long-term observations (as in astronomy or meteorology). In all cases, however, the main issue to be
confronted in prediction is how to deal with uncertainty: uncertainty about the suitability of the fitted model,
uncertainty about the representativeness of the data used to parameterize the model, and uncertainty about
future conditions (in particular, uncertainty about the future values of the explanatory variables).

There are two kinds of prediction, and these are subject to very different levels of uncertainty. Interpolation,
which is prediction within the measured range of the data, can often be very accurate and is not greatly affected
by model choice. Extrapolation, which is prediction beyond the measured range of the data, is far more
problematical, and model choice is a major issue. Choice of the wrong model can lead to wildly different
predictions (see p. 471).

Here are two kinds of plots involved in prediction following regression: the first illustrates uncertainty in
the parameter estimates; the second indicates uncertainty about predicted values of the response. We continue
with the tannin example:

reg.data <- read.table("c:\\temp\\regression.txt",header=T)
attach(reg.data)
names(reg.data)

[1] "growth" "tannin"

plot(tannin,growth,pch=21,col="blue",bg="red")

12
10

8
6

4
2

go
w

th

0 2 4 6 8
tannin

model <- lm(growth~tannin)
abline(model,col="blue")

REGRESSION 473

The first plot is intended to show the uncertainty associated with the estimate of the slope. It is easy to extract
the slope from the vector of coefficients:

coef(model)[2]

tannin
-1.216667

The standard error of the slope is a little trickier to find. After some experimentation, you will discover that
it is in the fourth element of the list that is summary(model):

summary(model)[[4]][4]

[1] 0.2186115

Here is a function that will add dotted lines showing two extra regression lines to our existing plot – the
estimated slope plus and minus one standard error of the slope:

se.lines <- function(model){
b1 <- coef(model)[2]+ summary(model)[[4]][4]
b2 <- coef(model)[2]- summary(model)[[4]][4]
xm <- sapply(model[[12]][2],mean)
ym <- sapply(model[[12]][1],mean)
a1 <- ym-b1*xm
a2 <- ym-b2*xm

abline(a1,b1,lty=2,col="blue")
abline(a2,b2,lty=2,col="blue")

}
se.lines(model)

12
10

8
6

4
2

gr
ow

th

0 2 4 6 8
tannin

474 THE R BOOK

More often, however, we are interested in the uncertainty about predicted values (rather than uncertainty
of parameter estimates, as above). We might want to draw the 95% confidence intervals associated with
predictions of y at different values of x. As we saw on p. 460, uncertainty increases with the square of the
difference between the mean value of x and the value of x at which the value of y is to be predicted. Before we
can draw these lines we need to calculate a vector of x values; you need 100 or so values to make an attractively
smooth curve. Then we need the value of Student’s t (p. 122). Finally, we multiply Student’s t by the standard
error of the predicted value of y (p. 462) to get the confidence interval. This is added to the fitted values of y
to get the upper limit and subtracted from the fitted values of y to get the lower limit. Here is the function:

ci.lines <- function(model){
xm <- sapply(model[[12]][2],mean)
n <- sapply(model[[12]][2],length)
ssx <- sum(model[[12]][2]ˆ2)-sum(model[[12]][2])ˆ2/n
s.t <- qt(0.975,(n-2))

xv <- seq(min(model[[12]][2]),max(model[[12]][2]),length=100)
yv <- coef(model)[1]+coef(model)[2]*xv
se <- sqrt(summary(model)[[6]]ˆ2*(1/n+(xv-xm)ˆ2/ssx))
ci <- s.t*se

uyv <- yv+ci
lyv <- yv-ci
lines(xv,uyv,lty=2,col="blue")
lines(xv,lyv,lty=2,col="blue")

}

We replot the linear regression, then overlay the confidence intervals (Box 10.4):

plot(tannin,growth,pch=21,col="blue",bg="red")
abline(model, col="blue")

ci.lines(model)

12
10

8
6

4
2

gr
ow

th

0 2 4 6 8
tannin

REGRESSION 475

This draws attention to the points at tannin = 3 and tannin = 6 that fall outside the 95% confidence
limits of our fitted values.

You can speed up this procedure by using the built-in ability to generate confidence intervals coupled with
matlines. The familiar 95% confidence intervals are int="c", while prediction intervals (fitted values
plus or minus 2 standard deviations) are int="p".

plot(tannin,growth,pch=16,ylim=c(0,15))
model <-lm(growth~tannin)

As usual, start by generating a series of x values for generating the curves, then create the scatterplot. The y
values are predicted from the model, specifying int="c", then matlines is used to draw the regression
line (solid) and the two confidence intervals (dotted), producing exactly the same graph as our last plot (above)
without writing a special function:

xv <- seq(0,8,0.1)
yv <- predict(model,list(tannin=xv),int="c")
matlines(xv,yv,lty=c(1,2,2),col="black")

A similar plot can be obtained using the effects library (see p. 968).

10.7 Testing for lack of fit in a regression

The unreliability estimates of the parameters explained in Boxes 10.2 and 10.3 draw attention to the important
issues in optimizing the efficiency of regression designs. We want to make the error variance as small as
possible (as always), but in addition, we want to make SSX as large as possible, by placing as many points as
possible at the extreme ends of the x axis. Efficient regression designs allow for:

� replication of least some of the levels of x;

� a preponderance of replicates at the extremes (to maximize SSX);

� sufficient levels of x to allow testing for non-linearity;

� sufficient different values of x to allow accurate location of thresholds.

Here is an example where replication allows estimation of pure sampling error, and this in turn allows a
test of the significance of the data’s departure from linearity. As the concentration of an inhibitor is increased,
the reaction rate declines:

data <- read.delim("c:\\temp\\lackoffit.txt")
attach(data)
names(data)

[1] "conc" "rate"

plot(conc,jitter(rate),pch=16,col="red",ylim=c(0,8),ylab="rate")
abline(lm(rate~conc),col="blue")

476 THE R BOOK

8
6

4
2

0

ra
te

0 1 2 3 4 5 6
conc

The linear regression does not look too bad, and the slope is highly significantly different from zero:

model.reg <- lm(rate~conc)
summary(model.reg)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.7262 0.4559 14.755 7.35e-12 ***
conc -0.9405 0.1264 -7.439 4.85e-07 ***
Residual standard error: 1.159 on 19 degrees of freedom
Multiple R-squared: 0.7444, Adjusted R-squared: 0.7309
F-statistic: 55.33 on 1 and 19 DF, p-value: 4.853e-07

Because there is replication at each level of x we can do something extra, compared with a typical regres-
sion analysis. We can estimate what is called the pure error variance. This is the sum of the squares of the
differences between the y values and the mean values of y for the relevant level of x. This should sound some-
what familiar. In fact, it is the definition of SSE from a one-way analysis of variance (see p. 501). By creating
a factor to represent the seven levels of x, we can estimate this SSE simply by fitting a one-way ANOVA:

fac.conc <- factor(conc)
model.aov <- aov(rate~fac.conc)
summary(model.aov)

Df Sum Sq Mean Sq F value Pr(>F)
fac.conc 6 87.81 14.635 17.07 1.05e-05 ***
Residuals 14 12.00 0.857

This shows that the pure error sum of squares is 12.0 on 14 degrees of freedom (three replicates, and hence
2 d.f., at each of seven levels of x). See if you can figure out why this sum of squares is less than the observed
in the model.reg regression (25.512). If the means from the seven different concentrations all fell exactly
on the same straight line then the two sums of squares would be identical. It is the fact that the means do
not fall on the regression line that causes the difference. The difference between these two sums of squares

REGRESSION 477

(25.512 – 12.9 = 13.512) is a measure of lack of fit of the rate data to the straight-line model. We can
compare the two models to see if they differ in their explanatory powers:

anova(model.reg,model.aov)

Analysis of Variance Table
Model 1: rate ~ conc
Model 2: rate ~ fac.conc

Res.Df RSS Df Sum of Sq F Pr(>F)
1 19 25.512
2 14 12.000 5 13.512 3.1528 0.04106 *

A single ANOVA table showing the lack-of-fit sum of squares on a separate line is obtained by fitting both
the regression line (1 d.f.) and the lack of fit (5 d.f.) in the same model:

anova(lm(rate~conc+fac.conc))

Analysis of Variance Table

Response: rate
Df Sum Sq Mean Sq F value Pr(>F)

conc 1 74.298 74.298 86.6806 2.247e-07 ***
fac.conc 5 13.512 2.702 3.1528 0.04106 *
Residuals 14 12.000 0.857

To get a visual impression of this lack of fit we can draw vertical lines from the mean values to the fitted
values of the linear regression for each level of x:

my <- as.vector(tapply(rate,fac.conc,mean))
for (i in 0:6)
lines(c(i,i),c(my[i+1],predict(model.reg,list(conc=0:6))[i+1]),col="green")
points(0:6,my,pch=16,col="green")

8
6

4
2

0

ra
te

0 1 2 3 4 5
conc

6

478 THE R BOOK

This significant lack of fit indicates that the straight-line model is not an adequate description of these data
(p < 0.05). A negative S-shaped function is likely to fit the data better (see p. 301).

There is an R package called lmtest on CRAN, which is full of tests for linear models.

10.8 Bootstrap with regression

An alternative to estimating confidence intervals on the regression parameters from the pooled error variance
in the ANOVA table (p. 459) is to use bootstrapping. There are two ways of doing this:

� sample cases with replacement, so that some points are left off the graph while others appear more than
once in the dataframe;

� calculate the residuals from the fitted regression model, and randomize which fitted y values get which
residuals.

In both cases, the randomization is carried out many times, the model fitted and the parameters estimated.
The confidence interval is obtained from the quantiles of the distribution of parameter values (see p. 41).

The following dataframe contains a response variable (profit from the cultivation of a crop of carrots for
a supermarket) and a single explanatory variable (the cost of inputs, including fertilizers, pesticides, energy
and labour):

regdat <- read.table("c:\\temp\\regdat.txt",header=T)
attach(regdat)
names(regdat)

[1] "explanatory" "response"

plot(explanatory,response,pch=21,col="green",bg="red")
model <- lm(response~explanatory)
abline(model,col="blue")

25
20

15

re
sp

on
se

6 8 10 12 14 16
explanatory

REGRESSION 479

The response is a reasonably linear function of the explanatory variable, but the variance in the response is
quite large. For instance, when the explanatory variable is about 12, the response variable ranges between
less than 20 and more than 24.

model

Coefficients:
(Intercept) explanatory

9.630 1.051

Theory suggests that the slope should be 1.0, and our estimated slope is very close to this (1.051). We want
to establish a 95% confidence interval on the estimate. Here is a home-made bootstrap which resamples the
data points 10 000 times and gives a bootstrapped estimate of the slope:

b.boot <- numeric(10000)

for (i in 1:10000){
indices <- sample(1:35,replace=T)
xv <- explanatory[indices]
yv <- response[indices]
model <- lm(yv~xv)
b.boot[i] <- coef(model)[2]

}
hist(b.boot,main="",col="green")

20
00

15
00

10
00

50
0

0

F
re

qu
en

cy

0.6 0.8 1.0 1.2
b.boot

Here is the 95% interval for the bootstrapped estimate of the slope:

quantile(b.boot,c(0.025,0.975))

2.5% 97.5%
0.8137637 1.1964226

480 THE R BOOK

Evidently, the bootstrapped data provide no support for the hypothesis that the slope is significantly greater
than 1.0.

We now repeat the exercise, using the boot function from the boot package:

library(boot)

The first step is to write what is known as the ‘statistic’ function. This shows boot how to calculate the
statistic we want from the resampled data (the slope in this case). The resampling of the data is achieved by
a subscript provided by boot (here called index). The point is that every time the model is fitted within
the bootstrap it uses a different data set (yv and xv): we need to describe how these data are constructed and
how they are to be used in the model fitting:

reg.boot <- function(regdat, index){
xv <- explanatory[index]
yv <- response[index]
model <- lm(yv~xv)
coef(model)

}
Now we can run the boot function, then extract the intervals with the boot.ci function:

reg.model <- boot(regdat,reg.boot,R=10000)
boot.ci(reg.model,index=2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

CALL :
boot.ci(boot.out = reg.model, index = 2)

Intervals :
Level Normal Basic
95% (0.870, 1.254) (0.903, 1.287)

Level Percentile BCa
95% (0.815, 1.198) (0.821, 1.202)

Calculations and Intervals on Original Scale
Warning message:
In boot.ci(reg.model, index = 2) :
bootstrap variances needed for studentized intervals

All the intervals are reasonably similar: statisticians typically prefer the bias-corrected, accelerated (BCa)
intervals. These indicate that if we were to repeat the data-collection exercise we can be 95% confident that
the regression slope for those new data would be between 0.821 and 1.202.

The other way of bootstrapping with a model is to randomize the allocation of the residuals to fitted y values
estimated from the original regression model. We start by calculating the residuals and the fitted values:

model <- lm(response~explanatory)
fit <- fitted(model)
res <- resid(model)

What we intend to do is to randomize which of theres values is added to thefit values to get a reconstructed
response variable, y, which we regress as a function of the original explanatory variable. Here is the statistic

REGRESSION 481

function to do this:

residual.boot <- function(res, index){
y <- fit+res[index]
model <- lm(y~explanatory)
coef(model) }

Note that the data passed to the statistic function are res in this case (rather than the original dataframe
regdat as in the first example, above). Now use the boot function and the boot.ci function to obtain
the 95% confidence intervals on the slope (this is index=2; the intercept is index=1):

res.model <- boot(res,residual.boot,R=10000)
boot.ci(res.model,index=2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

CALL :
boot.ci(boot.out = res.model, index = 2)

Intervals :
Level Normal Basic
95% (0.878, 1.224) (0.884, 1.225)

Level Percentile BCa
95% (0.876, 1.218) (0.872, 1.215)

Calculations and Intervals on Original Scale
Warning message:
In boot.ci(res.model, index = 2) :
bootstrap variances needed for studentized intervals

The BCa from randomizing the residuals is from 0.872 to 1.215, while from selecting random x and y points
with replacement it was from 0.821 to 1.202 (above). The two rather different approaches to bootstrapping
produce reassuringly similar estimates of the same parameter.

10.9 Jackknife with regression

A second alternative to estimating confidence intervals on regression parameters is to jackknife the data.
Each point in the data set is left out, one at a time, and the parameter of interest is re-estimated. The regdat
dataframe (above) has length(response) data points:

names(regdat)

[1] "explanatory" "response"

length(response)

[1] 35

We create a vector to contain the 35 different estimates of the slope:

jack.reg <- numeric(35)

482 THE R BOOK

Now carry out the regression 35 times, leaving out a different x, y pair each time:

for (i in 1:35) {
model <- lm(response[-i]~explanatory[-i])
jack.reg[i] <- coef(model)[2] }
Here is a histogram of the different estimates of the slope of the regression:

hist(jack.reg,main="",col="pink")
12

10
8

6
4

2
0

F
re

qu
en

cy

0.98 1.00 1.02 1.04 1.06 1.08
jack.reg

As you can see, the distribution is strongly skew to the left. The quantiles of jack.reg are not particularly
informative because the sample is so small (just 35). However, the jackknife does draw attention to one
particularly influential point (the extreme left-hand bar) which, when omitted from the dataframe, causes the
estimated slope to fall below 1.0. We say the point is influential because it is the only one of the 35 points whose
omission causes the estimated slope to fall below 1.0. But which data point is this? We extract Cook’s distance
$infmat[,5] from the influence matrix from the model (influence.measures(model)$infmat)
and ask which data point has the maximum value of this influence measure:

model <- lm(response~explanatory)
which(influence.measures(model)$infmat[,5]

== max(influence.measures(model)$infmat[,5]))

22

Now we can draw regression lines for the full data set (blue line) and for the model with the influential point
number 22 omitted (red line) to see just how influential (or not) this point really is for the location of the line:

plot(explanatory,response,pch=21,col="green",bg="red")
abline(model,col="blue")
abline(lm(response[-22]~explanatory[-22]),col="red")

REGRESSION 483

25
20re

sp
on

se
15

6 8 10 12 14 16
explanatory

Neither model describes at all well the location of the response for the two lowest values of the explanatory
variable (and the fit is worse with the most influential point removed).

10.10 Jackknife after bootstrap

The jack.after.boot function calculates the jackknife influence values from a bootstrap output object,
and plots the corresponding jackknife-after-bootstrap plot. We illustrate its use with theboot object calculated
earlier called reg.model. We are interested in the slope, which is index=2:

jack.after.boot(reg.model,index=2)

0.
2

0.
1

0.
0

–0
.1

–0
.2

–0
.3

5,
 1

0,
 1

6,
 5

0,
 8

4,
 9

0,
 9

5%
-il

es
 o

f (
T

*-
t)

–2 –1 0 1 2 3
standardized jackknife value

34
30

33

3

27

21

15

24

10

2 14 26 4

11

19

31

61620

25

23

12

8

17

1

9

32

29

18
35

7

28

5

22

484 THE R BOOK

The centred jackknife quantiles for each observation are estimated from those bootstrap samples in which
the particular observation did not appear. These are then plotted against the influence values. From the
top downwards, the horizontal dotted lines show the 95th, 90th, 84th, 50th, 16th, 10th and 5th per-
centiles. The numbers at the bottom identify the 35 points by their index values within regdat. Again,
the influence of point no. 22 shows up clearly (this time on the right-hand side), indicating that it
has a strong positive influence on the slope, and the two left-hand outliers are identified as points nos
34 and 30.

10.11 Serial correlation in the residuals

The Durbin–Watson function is used for testing whether there is autocorrelation in the residuals from
a linear model or a generalized linear model, and is implemented as part of the car package (see
Fox, 2002):

library("car")
durbinWatsonTest(model)

lag Autocorrelation D-W Statistic p-value
1 -0.07946739 2.049899 0.874

Alternative hypothesis: rho != 0

There is no evidence of serial correlation in these residuals (p = 0.874).
The car package also contains functions for drawing ellipses, including data ellipses, and confidence

ellipses for linear and generalized linear models. Here is the dataEllipse function for the present
example: by default, the ellipses are drawn at 50% and 90%:

dataEllipse(explanatory,response)

25
20

15

re
sp

on
se

6 8 10 12 14 16
explanatory

REGRESSION 485

10.12 Piecewise regression

This kind of regression fits different functions over different ranges of the explanatory variable. For example,
it might fit different linear regressions to the left- and right-hand halves of a scatterplot. Two important
questions arise in piecewise regression:

� how many segments to divide the line into;

� where to position the break points on the x axis.

Suppose we want to do the simplest piecewise regression, using just two linear segments. Where do we
break up the x values? A simple, pragmatic view is to divide the x values at the point where the piecewise
regression best fits the response variable. Let us take an example using a linear model where the response is
the log of a count (the number of species recorded) and the explanatory variable is the log of the size of the
area searched for the species:

data <- read.table("c:\\temp\\sasilwood.txt",header=T)
attach(data)
names(data)

[1] "Species" "Area"

A quick scatterplot suggests that the relationship between log(Species) and log(Area) is not linear:

plot(log(Species)~log(Area),pch=21,col="red",bg="yellow")

6
5

4
3

2
1

0

–5 0 5 10

log(Area)

lo
g(

S
pe

ci
es

)

The slope appears to be shallower at small scales than at large. The overall regression highlights this at the
model-checking stage:

model1 <- lm(log(Species)~log(Area))
par(mfrow=c(2,2))
plot(model1)

486 THE R BOOK

5

√|
S

ta
nd

ar
di

ze
d

re
si

ua
ls
|

2
1

–2
–3

1.
5

1.
0

0.
5

0.
0

1 2 3 4 5 0.000 0.002 0.004 0.006
LeverageFitted values

2.
0

–1
0

2
1

0
–1

–2
–3

–4
2

0
–2

–4
S

ta
nd

ar
di

ze
d

re
si

du
al

s
S

ta
nd

ar
di

ze
d

re
si

du
al

s

R
es

id
ua

ls

1 2 3 4 –3 –2 –1 0 1 2 3
Fitted values

Residuals vs Fitted Normal Q-Q

Theoretical Quantiles

Residuals vs LeverageScale-Location

952
1266

952

12594206

1253
952

1457 1455

The residuals are very strongly U-shaped (this plot should look like the sky at night) and the errors are
profoundly non-normal (the top right-hand line should be straight).

If we are to use piecewise regression, then we need to work out how many straight-line segments to use
and where to put the breaks. Visual inspection of the scatterplot suggests that two segments would be an
improvement over a single straight line and that the break point should be about log(Area) = 5. The
choice of break point is made more objective by choosing a range of values for the break point and selecting
the break that produces the minimum deviance. We should have a minimum of two x values for each of the
pieces of the regression, so the areas associated with the first and last breaks can be obtained by examination
of the table of x values:

table(Area)

Area
0.01 0.1 1 10 100 1000 10000 40000 90000 160000 250000 1e+06
346 345 259 239 88 67 110 18 7 4 3 1

The leftmost break could be between areas 0.1 and 1, and the rightmost between 160 000 and 250 000 (i.e.
between indices 2 and 3 and 10 and 11)

Piecewise regression is extremely simple in R: we just include a logical statement as part of the model
formula, with as many logical statements as we want straight-line segments in the fit. In the present example
with two linear segments, the two logical statements are Area<Break to define the left-hand regression
and Area>=Break to define the right-hand regression. We want to fit the model for all values of Break
between 1 and 250 000, so we create a vector of breaks like this:

Break <- sort(unique(Area))[3:11]

Now we use a loop to fit the two-segment piecewise model nine times and to store the value of the residual
standard error in a vector called d. This quantity is the sixth element of the list that is the model summary
object, d[i] <- summary(model)[[6]]:

REGRESSION 487

d <- numeric(9)
for (i in 1:9) {
model <-
lm(log(Species)~(Area<Break[i])*log(Area)+(Area>=Break[i])*log(Area))

d[i] <- summary(model)[[6]] }
A plot shows where the minimum value of d occurs:

windows(7,4)
par(mfrow=c(1,2))
plot(log(Break),d,typ="l",col="red")

Where exactly does the minimum of d occur? We use the which function for this:

Break[which(d==min(d))]

[1] 100

The best piecewise regression will fit one line up to Area = 100 and a different line for Area > 100. The
model formula looks like this:

model2 <- lm(log(Species)~log(Area)*(Area<100)+log(Area)*(Area>=100))

The piecewise regression is a massive improvement over the linear model:

anova(model1,model2)

Analysis of Variance Table

Model 1: log(Species) ~ log(Area)
Model 2: log(Species) ~ log(Area) * (Area < 100) + log(Area) * (Area >=
100)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 1485 731.98
2 1483 631.36 2 100.62 118.17 < 2.2e-16 ***

The summary of the piecewise regression takes some getting used to. We have fitted two linear regressions,
so there are four parameters. Like an analysis of covariance, the table of coefficients contains one slope and
one intercept, along with one difference between slopes and one difference between intercepts. The table
has six rows because of the intentional aliasing, which we contrived by providing zeros for the explanatory
variables where the two logical expressions evaluate to FALSE:

summary(model2)

Coefficients: (2 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.61682 0.13059 4.723 2.54e-06 ***
log(Area) 0.41019 0.01655 24.787 < 2e-16 ***
Area < 100TRUE 1.07854 0.13246 8.143 8.12e-16 ***
Area >= 100TRUE NA NA NA NA
log(Area):Area < 100TRUE -0.25611 0.01816 -14.100 < 2e-16 ***
log(Area):Area >= 100TRUE NA NA NA NA

Residual standard error: 0.6525 on 1483 degrees of freedom

488 THE R BOOK

Multiple R-squared: 0.724, Adjusted R-squared: 0.7235
F-statistic: 1297 on 3 and 1483 DF, p-value: < 2.2e-16

The intercept is for the factor level that comes first in the alphabet: this is the right-hand part of the graph
log(Area):Area < 100FALSE and the slope (log(Area)) is for this factor level too. The difference
between the two intercepts is labelled Area < 100TRUE. The next row is labelled Area >= 100TRUE
and contains NAs because there were no x values (they were all zeros because logical FALSE was coerced
to numeric zero by the multiplication). The difference between two slopes is labelled log(Area):Area
< 100TRUE while the last row labelled log(Area):Area >= 100TRUE contains NAs because there
were no x values. We cannot use abline, because we want two separate lines through different parts of the
scatterplot (not two lines across the whole plotting area; try it and see). To make plotting the two lines easier
it is a good idea to calculate the two slopes and two intercepts in advance. The parameters are in the fourth
element of the list that makes up summary(model2). It is worth looking at this separately:

summary(model2)[[4]]

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.6168168 0.13058554 4.723469 2.537983e-06
log(Area) 0.4101943 0.01654883 24.786903 9.081618e-114
Area < 100TRUE 1.0785395 0.13245572 8.142642 8.117406e-16
log(Area):Area < 100TRUE -0.2561147 0.01816373 -14.100333 1.834740e-42

Note that the two rows with NAs have been excluded. Using subscripts, we extract the parameter estimates
and calculate two intercepts (a1 and a2) and two slopes (b1 and b2) for the left and right hand pieces of the
regression:

a1 <- summary(model2)[[4]][1]+summary(model2)[[4]][3]
a2 <- summary(model2)[[4]][1]
b1 <- summary(model2)[[4]][2]+summary(model2)[[4]][4]
b2 <- summary(model2)[[4]][2]

Finally, we need to decide on the x values between which to draw the two lines. Inspection of the scatterplot
indicates that –5 would be a good minimum value and 15 would be a good maximum. The break point
(4.6 = log(100)) is the obvious point at which to stop the first line and start the second line.

plot(log(Area),log(Species),col="blue")
lines(c(-5,4.6),c(a1+b1*-5,a1+b1*4.6),col="red")
lines(c(4.6,15),c(a2+b2*4.6,a2+b2*15),col="red")

0.
70

6
5

4
2

1
0

3

0.
68

0.
66

d

0 42 6 8 10 12 –5 0 10
log(Area)log(Break)

lo
g(

S
pe

ci
es

)

5

REGRESSION 489

Of course, for spatial scales even smaller than studied here, the slope of the plot must go asymptotically to
zero, because once the plot is so small that it can contain only one individual, making the plot even smaller
is bound to contain that same individual (thus, species richness will be one for all subsequent smaller spatial
scales).

10.13 Multiple regression

A multiple regression is a statistical model with two or more continuous explanatory variables. We contrast
multiple regression with analysis of variance, where all the explanatory variables are categorical (Chapter 11)
and analysis of covariance, where the explanatory variables are a mixture of continuous and categorical
(Chapter 12). Multiple regressions models provide some of the most profound challenges faced by the analyst
because of some crucial issues:

� over-fitting (we often have more explanatory variables than data points);

� parameter proliferation (we might want to fit parameters for curvature and interaction);

� correlation between explanatory variables (called collinearity);

� choice between contrasting models of roughly equal explanatory power.

The principle of parsimony (Occam’s razor), discussed in Section 9.2, is again relevant here. It requires
that the model should be as simple as possible. This means that the model should not contain any redundant
parameters. Ideally, we achieve this by fitting a maximal model and then simplifying it by following one or
more of these steps:

� Remove non-significant interaction terms.

� Remove non-significant quadratic or other non-linear terms.

� Remove non-significant explanatory variables.

� Amalgamate explanatory variables that have similar parameter values.

Of course, such simplifications must make good scientific sense, and must not lead to significant reductions
in explanatory power. It is likely that many of the explanatory variables are correlated with each other, and
so the order in which variables are deleted from the model will influence the explanatory power attributed
to them. The thing to remember about multiple regression is that, in principle, there is no end to it. The
number of combinations of interaction terms and curvature terms is endless. There are some simple rules (like
parsimony) and some automated functions (like step) to help. But, in principle, you could spend a very great
deal of time in modelling a single dataframe. There are no hard-and-fast rules about the best way to proceed,
but we shall typically carry out simplification of a complex model by stepwise deletion: non-significant terms
are left out, and significant terms are added back (see Chapter 9).

At the data inspection stage, there are many more kinds of plots we could do:

� Plot the response against each of the explanatory variables separately.

� Plot the explanatory variables against one another (e.g. pairs; see Section 10.13.1).

� Plot the response against pairs of explanatory variables in three-dimensional plots.

490 THE R BOOK

� Plot the response against explanatory variables for different combinations of other explanatory variables
(e.g. conditioning plots, coplot; see p. 236).

� Fit non-parametric smoothing functions (e.g. using generalized additive models, to look for evidence of
curvature).

� Fit tree models to investigate whether interaction effects are simple or complex.

10.13.1 The multiple regression model

There are several important issues involved in carrying out a multiple regression:

� which explanatory variables to include;

� curvature in the response to the explanatory variables;

� interactions between explanatory variables;

� correlation between explanatory variables;

� the risk of overparameterization.

The assumptions about the response variable are the same as with simple linear regression: the errors are
normally distributed, the errors are confined to the response variable, and the variance is constant. The
explanatory variables are assumed to be measured without error. The model for a multiple regression with
two explanatory variables (x1 and x2) looks like this:

yi = β0 + β1x1i + β2x2i + εi .

The ith data point, yi, is determined by the levels of the two continuous explanatory variables x1i and x2i,
by the model’s three parameters (the intercept β0 and the two slopes β1 and β2), and by the residual εi of
point i from the fitted surface. For each of the i rows of the dataframe, there are k + 1 parameters, β j,
so that

yi =
k∑

j=0

β j x ji + εi ,

where x0i = 1.
Let us begin with an example from air pollution studies. How is ozone concentration related to wind speed,

air temperature and the intensity of solar radiation?

ozone.pollution <- read.table("c:\\temp\\ozone.data.txt",header=T)
attach(ozone.pollution)
names(ozone.pollution)

[1] "rad" "temp" "wind" "ozone"

REGRESSION 491

In multiple regression, it is always a good idea to use pairs to look at all the correlations:

pairs(ozone.pollution,panel=panel.smooth)

60 70 80 90 0 50 100 150

25
0

15
0

0
5

10
15

20

15
0

60
70

80
90

10
0

50
0

0 50 150 200 2015105

OZONE

wind

temp

rad

50

The response variable, ozone concentration, is shown on the y axis of the bottom row of panels: there is a
strong negative relationship with wind speed, a positive correlation with temperature and a rather unclear,
humped relationship with radiation.

A good way to tackle a multiple regression problem is using non-parametric smoothers in a generalized
additive model like this:

library(mgcv)
par(mfrow=c(2,2))
model <- gam(ozone~s(rad)+s(temp)+s(wind))
plot(model)

492 THE R BOOK

60
40

20
0

–2
0

60
40

20
0

–2
0

60
40

0
20

–2
0

0 50 100 150 200 250 300 60 70 80 90
temprad

wind
5 10 15 20

The confidence intervals are sufficiently narrow to suggest that the curvature in the relationships between
ozone and temperature and ozone and wind are real, but the curvature of the relationship with solar radiation
is marginal. The plots lead us to anticipate that quadratic terms for temperature and wind should be included
in our initial model. What about interactions? This is where tree models can help:

library(tree)
model <- tree(ozone~.,data=ozone.pollution)
par(mfrow=c(1,1))
plot(model)
text(model)

temp<82.5

wind < 7.15 wind < 10.6

61.00
12.22

rad < 79.5
temp<77.5

74.54

temp < 88.5
48.71

102.4083.43

rad < 205

20.97 34.56

REGRESSION 493

This shows that temperature is by far the most important factor affecting ozone concentration (the longer
the branches in the tree, the greater the deviance explained). Wind speed is important at both high and low
temperatures, with still air being associated with higher mean ozone levels (the figures at the ends of the
branches). The interaction structure is relatively simple (compare with the other air pollution example on
p. 768), but there is a hint of an interaction between wind and radiation and between wind and temperature.
We could include these in an initial complex model, degrees of freedom permitting.

w2 <- windˆ2
t2 <- tempˆ2
r2 <- radˆ2
tw <- temp*wind
wr <- wind*rad
tr <- temp*rad
wtr <- wind*temp*rad

Armed with this background information we can begin the linear modelling. We start with the most
complicated model: this includes curvature terms for each variable, all three two-way interactions and a
three-way interaction:

model1 <- lm(ozone~rad+temp+wind+t2+w2+r2+wr+tr+tw+wtr)
summary(model1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.683e+02 2.073e+02 2.741 0.00725 **
rad -3.117e-01 5.585e-01 -0.558 0.57799
temp -1.076e+01 4.303e+00 -2.501 0.01401 *
wind -3.237e+01 1.173e+01 -2.760 0.00687 **
t2 5.833e-02 2.396e-02 2.435 0.01668 *
w2 6.106e-01 1.469e-01 4.157 6.81e-05 ***
r2 -3.619e-04 2.573e-04 -1.407 0.16265
wr 2.054e-02 4.892e-02 0.420 0.67552
tr 8.403e-03 7.512e-03 1.119 0.26602
tw 2.377e-01 1.367e-01 1.739 0.08519 .
wtr -4.324e-04 6.595e-04 -0.656 0.51358

Residual standard error: 17.82 on 100 degrees of freedom
Multiple R-squared: 0.7394, Adjusted R-squared: 0.7133
F-statistic: 28.37 on 10 and 100 DF, p-value: < 2.2e-16

There looks to be rather little scope for model simplification, so we shall do it all by hand (rather than using
step, for instance, not least because this is prone to remove main effects that are still present in interactions,
or the linear parts of quadratic terms that would best be retained).

We start by removing the highest-order interaction. An excellent feature of R is that the p values are ‘p
values on deletion’ so we do not have to use anova to compare the models produced by stepwise deletions:

model2 <- update(model1,~.-wtr)
summary(model2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.245e+02 1.957e+02 2.680 0.0086 **

494 THE R BOOK

rad 2.628e-02 2.142e-01 0.123 0.9026
temp -1.021e+01 4.209e+00 -2.427 0.0170 *
wind -2.802e+01 9.645e+00 -2.906 0.0045 **
t2 5.953e-02 2.382e-02 2.499 0.0141 *
w2 6.173e-01 1.461e-01 4.225 5.25e-05 ***
r2 -3.388e-04 2.541e-04 -1.333 0.1855
wr -1.127e-02 6.277e-03 -1.795 0.0756 .
tr 3.750e-03 2.459e-03 1.525 0.1303
tw 1.734e-01 9.497e-02 1.825 0.0709 .

The least significant term is the quadratic term for radiation, so we remove that:

model3 <- update(model2,~.-r2)
summary(model3)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 486.346603 194.333075 2.503 0.01392 *
rad -0.043163 0.208535 -0.207 0.83644
temp -9.446780 4.185240 -2.257 0.02613 *
wind -26.471461 9.610816 -2.754 0.00697 **
t2 0.056966 0.023835 2.390 0.01868 *
w2 0.599709 0.146069 4.106 8.14e-05 ***
wr -0.011359 0.006300 -1.803 0.07435 .
tr 0.003160 0.002428 1.302 0.19600
tw 0.157637 0.094595 1.666 0.09869 .

The temperature by radiation interaction is not significant, so it goes next:

model4 <- update(model3,~.-tr)
summary(model4)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 514.401470 193.783580 2.655 0.00920 **
rad 0.212945 0.069283 3.074 0.00271 **
temp -10.654041 4.094889 -2.602 0.01064 *
wind -27.391965 9.616998 -2.848 0.00531 **
t2 0.067805 0.022408 3.026 0.00313 **
w2 0.619396 0.145773 4.249 4.72e-05 ***
wr -0.013561 0.006089 -2.227 0.02813 *
tw 0.169674 0.094458 1.796 0.07538 .

The temperature by wind interaction is the next to go (it is marginally significant but we are ruthless):

model5 <- update(model4,~.-tw)
summary(model5)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 223.573855 107.618223 2.077 0.040221 *
rad 0.173431 0.066398 2.612 0.010333 *

REGRESSION 495

temp -5.197139 2.775039 -1.873 0.063902 .
wind -10.816032 2.736757 -3.952 0.000141 ***
t2 0.043640 0.018112 2.410 0.017731 *
w2 0.430059 0.101767 4.226 5.12e-05 ***
wr -0.009819 0.005783 -1.698 0.092507 .

There is no place for the wind by rain interaction:

model6 <- update(model5,~.-wr)
summary(model6)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 291.16758 100.87723 2.886 0.00473 **
rad 0.06586 0.02005 3.285 0.00139 **
temp -6.33955 2.71627 -2.334 0.02150 *
wind -13.39674 2.29623 -5.834 6.05e-08 ***
t2 0.05102 0.01774 2.876 0.00488 **
w2 0.46464 0.10060 4.619 1.10e-05 ***

The next job is to subject model6 to criticism:

par(mfrow=c(2,2))
plot(model6)

50
0

–5
0

2.
0

1.
5

1.
0

0.
5

0.
0

–2
4

2
0

–2

–21201008060
Fitted values

R
es

id
ua

ls

S
ta

nd
ar

di
ze

d
re

si
du

al
s

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Theoretical Quantiles

Residuals vs Fitted Normal Q-Q

Residuals vs LeverageScale-Location

Fitted values Leverage

40200 –1 0 1 2

0.30

1

1

0.5

0.534

77
77

77 77

85

85

0.250.200.150.100.050.001201008040 60200

0
2

4

√|
S

ta
nd

ar
di

ze
d

re
si

ua
ls
|

This is quite seriously badly behaved. The residuals increase with the fitted values (non-constant variance)
and the errors are not normal. Let us try transforming the response variable. Having done this we need to

496 THE R BOOK

start the modelling from scratch with all of the original explanatory variables included. Having transformed
the response variable, we should expect that the curvature has been altered:

model7 <- lm(log(ozone) ~ rad+temp+wind+t2+w2+r2+wr+tr+tw+wtr)
summary(model7)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.803e+00 5.676e+00 0.494 0.6225
rad 2.771e-02 1.529e-02 1.812 0.0729 .
temp -3.018e-02 1.178e-01 -0.256 0.7983
wind -9.812e-02 3.211e-01 -0.306 0.7605
t2 6.034e-04 6.559e-04 0.920 0.3598
w2 8.732e-03 4.021e-03 2.172 0.0322 *
r2 -1.489e-05 7.043e-06 -2.114 0.0370 *
wr -2.001e-03 1.339e-03 -1.494 0.1382
tr -2.507e-04 2.056e-04 -1.219 0.2256
tw -1.985e-03 3.742e-03 -0.530 0.5971
wtr 2.535e-05 1.805e-05 1.404 0.1634

model8 <- update(model7,~.-wtr)
summary(model8)

model9 <- update(model8,~.-tr)
summary(model9)

model10 <- update(model9,~.-tw)
summary(model10)

model11 <- update(model10,~.-t2)
summary(model11)

model12 <- update(model11,~.-wr)
summary(model12)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.724e-01 6.350e-01 1.216 0.226543
rad 7.466e-03 2.323e-03 3.215 0.001736 **
temp 4.193e-02 6.237e-03 6.723 9.52e-10 ***
wind -2.211e-01 5.874e-02 -3.765 0.000275 ***
w2 7.390e-03 2.585e-03 2.859 0.005126 **
r2 -1.470e-05 6.734e-06 -2.183 0.031246 *

Residual standard error: 0.4851 on 105 degrees of freedom
Multiple R-squared: 0.7004, Adjusted R-squared: 0.6861
F-statistic: 49.1 on 5 and 105 DF, p-value: < 2.2e-16

plot(model12)

This is the minimum adequate model. It has five consequential parameters (the intercept of a multiple
regression model is usually meaningless; it is the value of the response when every one of the explanatory
variables is zero). As predicted by our initial plots, none of the interactions survived the model simplification.

REGRESSION 497

The curvature on the scale of log(ozone) is different, of course (we plotted ozone against the explanatory
variables, not log(ozone)). Log transformation of the response improved both the non-constancy of
variance and the non-normality of errors. The model explains just over of 70% of the variation in log(ozone
concentration).

10.13.2 Common problems arising in multiple regression

The following are some of the problems and difficulties that crop up when we do multiple regression:

� differences in the measurement scales of the explanatory variables, leading to large variation in the sums
of squares and hence to an ill-conditioned matrix;

� multicollinearity, in which there is a near-linear relation between two of the explanatory variables, leading
to unstable parameter estimates;

� parameter proliferation where quadratic and interaction terms soak up more degrees of freedom than our
data can afford;

� rounding errors during the fitting procedure;

� non-independence of groups of measurements;

� temporal or spatial correlation amongst the explanatory variables;

� pseudoreplication.

Wetherill et al. (1986) give a detailed discussion of these problems. We shall encounter other examples of
multiple regressions in the context of generalized linear models (Chapter 13), generalized additive models
(Chapter 18), survival models (Chapter 27) and mixed-effects models (Chapter 19).

11
Analysis of Variance

Instead of fitting continuous, measured variables to data (as in regression), many experiments involve exposing
experimental material to a range of discrete levels of one or more categorical variables known as factors.
Thus, a factor might be drug treatment for a particular cancer, with five levels corresponding to a placebo plus
four new pharmaceuticals. Alternatively, a factor might be mineral fertilizer, where the four levels represent
four different mixtures of nitrogen, phosphorus and potassium. Factors are often used in experimental designs
to represent statistical blocks; these are internally homogeneous units in which each of the experimental
treatments is repeated. Blocks may be different fields in an agricultural trial, different genotypes in a plant
physiology experiment, or different growth chambers in a study of insect photoperiodism.

It is important to understand that regression and analysis of variance (ANOVA) are identical approaches
except for the nature of the explanatory variables. For example, it is a small step from having three levels of a
shade factor (say light, medium and heavy shade cloths) then carrying out a one-way ANOVA, to measuring
the light intensity in the three treatments and carrying out a regression with light intensity as the explanatory
variable. As we shall see later on, some experiments combine regression and ANOVA by fitting a series
of regression lines, one in each of several levels of a given factor (this is called analysis of covariance; see
Chapter 12).

The emphasis in ANOVA was traditionally on hypothesis testing. Nowadays, the aim of an analysis of
variance in R is to estimate means and standard errors of differences between means. Comparing two means
by a t test involved calculating the difference between the two means, dividing by the standard error of the
difference, and then comparing the resulting statistic with the value of Student’s t from tables (or better still,
using qt to calculate the critical value; see p. 287). The means are said to be significantly different when the
calculated value of t is larger than the critical value. For large samples (n > 30) a useful rule of thumb is that
a t value greater than 2 is significant. In ANOVA, we are concerned with cases where we want to compare
three or more means. For the two-sample case, the t test and the ANOVA are identical, and the t test is to be
preferred because it is simpler.

11.1 One-way ANOVA

There is a real paradox about analysis of variance, which often stands in the way of a clear understanding of
exactly what is going on. The idea of ANOVA is to compare several means, but it does this by comparing
variances. How can that work?

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

ANALYSIS OF VARIANCE 499

A visual example should make this clear. To keep things simple, suppose we have just two levels of a
single factor. We plot the data in the order in which they were measured: first for the first level of the factor
and then for the second level. Draw the overall mean as a horizontal line through the data, and indicate the
departures of each data point from the overall mean with a set of vertical lines:

SST

0 2 4 6 8 10

0
2

4
6

8
10

Index

re
sp

on
se

The green lines illustrate the total variation in the response. We shall call this quantity SST (the ‘total sum
of squares’). It is the sum of the squares of the differences between the data, y, and the overall mean.
In symbols,

SST =
∑

(y − ¯̄y)2
,

where ¯̄y (‘y double bar’) is the overall mean. Next we can fit each of the separate means, ȳA (through the red
points) and ȳB (through the blue points), and consider the sum of squares of the differences between each y
value and its own treatment mean (either the red line or the blue line). We call this SSE (the ‘error sum of
squares’), and calculate it like this:

SSE =
∑

(yA − ȳA)2 +
∑

(yB − ȳB)2

500 THE R BOOK

On the graph, the differences from which SSE is calculated look like this:

SSE

0 2 4 6 8 10

0
2

4
6

8
10

Index

re
sp

on
se

SSE is the sum of the squares of the green lines (the ‘residuals’, as they are known).
Now ask yourself this question. If the treatment means are different from the overall mean, what will be

the relationship between SST and SSE? After a moment’s thought you should have been able to convince
yourself that if the means are the same, then SSE is the same as SST, because the two horizontal lines in the
last plot would be in the same position as the single line in the earlier plot.

Now what if the means were significantly different from one another? What would be the relationship
between SSE and SST in this case? Which would be the larger? Again, it should not take long for you to see
that if the means are different, then SSE will be less than SST. Indeed, in the limit, SSE could be zero if the
replicates from each treatment fell exactly on their respective means, like this:

SSE = 0SST = big

SST= SSE

20 4 6 8 10

20 4 6 8 10

20 4 6 8 10

0
2

4
6

8
10

0
2

4
6

8
10

0
2

4
6

8
10

IndexIndex

Index

re
sp

on
se

re
sp

on
se

re
sp

on
se

ANALYSIS OF VARIANCE 501

In the top row, there is a highly significant difference between the two means: SST is big but SSE is zero (all
the replicates are identical). In the bottom row, the means are identical. SST is still big, but now SSE = SST.
Once you have understood these three plots, you will see why you can investigate differences between means
by looking at variances. This is how analysis of variance works.

We can calculate the difference between SST and SSE, and use this as a measure of the difference between
the treatment means; this is traditionally called the treatment sum of squares, and is denoted by SSA:

SSA = SST − SSE.

When differences between means are significant, then SSA will be large relative to SSE. When differences
between means are not significant, then SSA will be small relative to SSE. In the limit, SSE could be zero
(top right in the last figure), so all of the variation in y is explained by differences between the means (SSA =
SST). At the other extreme, when there is no difference between the means (bottom left), SSA = 0 and so
SSE = SST.

The technique we are interested in, however, is analysis of variance, not analysis of sums of squares. We
convert the sums of squares into variances by dividing by their degrees of freedom. In our example, there are
two levels of the factor and so there is 2 − 1 = 1 degree of freedom for SSA. In general, we might have k
levels of any factor and hence k − 1 d.f. for treatments. If each factor level were replicated n times, then there
would be n − 1 d.f. for error within each level (we lose one degree of freedom for each individual treatment
mean estimated from the data). Since there are k levels, there would be k(n − 1) d.f. for error in the whole
experiment. The total number of numbers in the whole experiment is kn, so total d.f. is kn − 1 (the single
degree is lost for our estimating the overall mean, ¯̄y). As a check in more complicated designs, it is useful to
make sure that the individual component degrees of freedom add up to the correct total:

kn − 1 = k − 1 + k(n − 1) = k − 1 + kn − k.

The divisions for turning the sums of squares into variances are conveniently carried out in an ANOVA
table:

Source SS d.f. MS F Critical F

Treatment SSA k − 1 MSA = SSA

k − 1
F = MSA

s2
qf(0.95, k-1,k(n-1))

Error SSE k(n − 1) s2 = SSE

k(n − 1)
Total SST kn − 1

Each element in the sums of squares column is divided by the number in the adjacent degrees of freedom
column to give the variances in the mean square column (headed MS). The significance of the difference
between the means is then assessed using an F test (a variance ratio test). The treatment variance MSA is
divided by the error variance, s2, and the value of this test statistic is compared with the critical value of F
using qf (the quantiles of the F distribution, with p = 0.95, k − 1 degrees of freedom in the numerator, and
k(n − 1) degrees of freedom in the denominator). If you need to look up the critical value of F in tables,
remember that you look up the numerator degrees of freedom (on top of the division) across the top of the
table, and the denominator degrees of freedom down the rows. The null hypothesis, traditionally denoted as
H0, is stated as

H0 : nothing’s happening.

502 THE R BOOK

This does not imply that the sample means are exactly the same (the means will always differ from one another,
simply because everything varies). In fact, the null hypothesis assumes that the means are not significantly
different from one another. What this implies is that the differences between the sample means could have
arisen by chance alone, through random sampling effects, despite the fact that the different factor levels have
identical means.

If the test statistic is larger than the critical value we reject the null hypothesis and accept the alternative:

H1 : at least one of the means is significantly different from the others.

If the test statistic is less than the critical value, then it could have arisen due to chance alone, and so we
accept the null hypothesis.

Another way of visualizing the process of ANOVA is to think of the relative amounts of sampling variation
between replicates receiving the same treatment (i.e. between individual samples in the same level), and
between different treatments (i.e. between-level variation). When the variation between replicates within a
treatment is large compared to the variation between treatments, we are likely to conclude that the difference
between the treatment means is not significant. Only if the variation between replicates within treatments is
relatively small compared to the differences between treatments will we be justified in concluding that the
treatment means are significantly different.

11.1.1 Calculations in one-way ANOVA

The definitions of the various sums of squares can now be formalized, and ways found of calculating their
values from samples. The total sum of squares, SST, is defined as:

SST =
∑

y2 −
(∑

y
)2

kn
,

just as in regression (see Chapter 10). Note that we divide by the total number of numbers we added together
to get

∑
y (the grand total of all the ys) which is kn. It turns out that the formula that we used to define SSE

is rather difficult to calculate (see above), so we calculate the treatment sums of squares, SSA, and obtain SSE
by difference. The treatment sum of squares, SSA, is calculated as:

SSA =
∑

C2

n
−

(∑
y
)2

kn
,

where the new term is C, the treatment total. This is the sum of all the n replicates within a given level. Each
of the k different treatment totals is squared, added up, and then divided by n (the number of numbers added
together to get the treatment total). The formula is slightly different if there is unequal replication in different
treatments, as we shall see below. The meaning of C will become clear when we work through the example
later on. Notice the symmetry of the equation. The second term on the right-hand side is also divided by the
number of numbers that were added together (kn) to get the total (

∑
y) which is squared in the numerator.

Finally,

SSE = SST − SSA,

to give all the elements required for completion of the ANOVA table.

ANALYSIS OF VARIANCE 503

11.1.2 Assumptions of ANOVA

You should be aware of the assumptions underlying the analysis of variance. They are all important, but some
are more important than others:

� random sampling;

� equal variances;

� independence of errors;

� normal distribution of errors;

� additivity of treatment effects.

11.1.3 A worked example of one-way ANOVA

To draw this background material together, we shall work through an example by hand. In so doing, it will
become clear what R is doing during its analysis of the data. We have an experiment in which crop yields per
unit area were measured from 10 randomly selected fields on each of three soil types. All fields were sown
with the same variety of seed and provided with the same fertilizer and pest control inputs. The question is
whether soil type significantly affects crop yield, and if so, to what extent.

results <- read.table("c:\\temp\\yields.txt",header=T)
attach(results)
names(results)

[1] "sand" "clay" "loam"

Here are the data:

results

sand clay loam
1 6 17 13
2 10 15 16
3 8 3 9
4 6 11 12
5 14 14 15
6 17 12 16
7 9 12 17
8 11 8 13
9 7 10 18
10 11 13 14

The function sapply is used to calculate the mean yields for the three soils (contrast this with tapply,
below, where the response and explanatory variables are in adjacent columns in a dataframe):

sapply(list(sand,clay,loam),mean)

[1] 9.9 11.5 14.3

Mean yield was highest on loam (14.3) and lowest on sand (9.9).

504 THE R BOOK

It will be useful to have all of the yield data in a single vector called y. To create a dataframe from a
spreadsheet like results where the values of the response are in multiple columns, we use the function
called stack like this:

(frame <- stack(results))

values ind
1 6 sand
2 10 sand
3 8 sand
4 6 sand

...

...
27 17 loam
28 13 loam
29 18 loam
30 14 loam

You can see that the stack function has invented names for the response variable (values) and the
explanatory variable (ind). We will always want to change these:

names(frame) <- c("yield","soil")
attach(frame)
head(frame)

yield soil
1 6 sand
2 10 sand
3 8 sand
4 6 sand
5 14 sand
6 17 sand

That’s more like it.
Before carrying out analysis of variance, we should check for constancy of variance (see p. 354) across

the three soil types:

tapply(yield,soil,var)

clay loam sand
15.388889 7.122222 12.544444

The variances differ by more than a factor of 2. But is this significant? We test for heteroscedasticity using
the Fligner–Killeen test of homogeneity of variances:

fligner.test(y~soil)

Fligner-Killeen test of homogeneity of variances
data: y by soil
Fligner-Killeen:med chi-squared = 0.3651, df = 2, p-value = 0.8332

We could have used bartlett.test(y~soil), which gives p = 0.5283 (but this is more a test of
non-normality than of equality of variances). Either way, there is no evidence of any significant difference in
variance across the three samples, so it is legitimate to continue with our one-way analysis of variance.

ANALYSIS OF VARIANCE 505

Because the explanatory variable is categorical (three levels of soil type), initial data inspection involves
a box-and-whisker plot of y against soil like this:

plot(yield~soil,col="green")

15
10

5

clay loam sand

soil

yi
el

d

Median yield is lowest on sand and highest on loam, but there is considerable variation from replicate to
replicate within each soil type (there is even a low outlier on clay). It looks as if yield on loam will turn out
to be significantly higher than on sand (their boxes do not overlap) but it is not clear whether yield on clay is
significantly greater than on sand or significantly lower than on loam. The analysis of variance will answer
these questions.

The analysis of variance involves calculating the total variation in the response variable (yield in this
case) and partitioning it (‘analysing it’) into informative components. In the simplest case, we partition the
total variation into just two components, explained variation and unexplained variation:

SSA

SSY

SSE

Explained variation is called the treatment sum of squares (SSA) and unexplained variation is called the error
sum of squares (SSE, also known as the residual sum of squares), as defined earlier. Let us work through the
numbers in R. From the formula for SSY, we can obtain the total sum of squares by finding the differences
between the data and the overall mean:

sum((yield-mean(yield))ˆ2)

[1] 414.7

506 THE R BOOK

The unexplained variation, SSE, is calculated from the differences between the yields and the mean yields for
that soil type:

sand-mean(sand)

[1] -3.9 0.1 -1.9 -3.9 4.1 7.1 -0.9 1.1 -2.9 1.1

clay-mean(clay)

[1] 5.5 3.5 -8.5 -0.5 2.5 0.5 0.5 -3.5 -1.5 1.5

loam-mean(loam)

[1] -1.3 1.7 -5.3 -2.3 0.7 1.7 2.7 -1.3 3.7 -0.3

We need the sums of the squares of these differences:

sum((sand-mean(sand))ˆ2)

[1] 112.9

sum((clay-mean(clay))ˆ2)

[1] 138.5

sum((loam-mean(loam))ˆ2)

[1] 64.1

To get the sum of these totals across all soil types, we can use sapply like this:

sum(sapply(list(sand,clay,loam),function (x) sum((x-mean(x))ˆ2)))

[1] 315.5

So SSE, the unexplained (or residual, or error) sum of squares, is 315.5.
The extent to which SSE is less than SSY is a reflection of the magnitude of the differences between the

means. The greater the difference between the mean yields on the different soil types, the greater will be the
difference between SSE and SSY.

The treatment sum of squares, SSA, is the amount of the variation in yield that is explained by differences
between the treatment means. In our example,

SSA = SSY − SSE = 414.7 − 315.5 = 99.2.

Now we can draw up the ANOVA table. There are six columns indicating, from left to right, the source of
variation, the sum of squares attributable to that source, the degrees of freedom for that source, the variance
for that source (traditionally called the mean square rather than the variance), the F ratio (testing the null
hypothesis that this source of variation is not significantly different from zero) and the p value associated with
that F value (if p < 0.05 then we reject the null hypothesis). We can fill in the sums of squares just calculated,
then think about the degrees of freedom:

Source Sum of squares Degrees of freedom Mean square F ratio p value

Soil type 99.2 2 49.6 4.24 0.025
Error 315.5 27 s2 = 11.685
Total 414.7 29

ANALYSIS OF VARIANCE 507

There are 30 data points in all, so the total degrees of freedom are 30 – 1 = 29. We lose 1 d.f. because
in calculating SSY we had to estimate one parameter from the data in advance, namely the overall mean, ¯̄y,
before we could calculate SST =

∑
(y − ¯̄y)2. Each soil type has n = 10 replications, so each soil type has

10 – 1 = 9 d.f. for error, because we estimated one parameter from the data for each soil type, namely the
treatment means ȳi in calculating SSE. Overall, therefore, the error has 3 × 9 = 27 d.f. There were three soil
types, so there are 3 – 1 = 2 d.f. for soil type.

The mean squares are obtained simply by dividing each sum of squares by its respective degrees of
freedom (in the same row). The error variance, s2, is the residual mean square (the mean square for the
unexplained variation); this is sometimes called the ‘pooled error variance’ because it is calculated across all
the treatments. The alternative would be to have three separate variances, one for each treatment:

tapply(yield,soil,var)

clay loam sand
15.388889 7.122222 12.544444

mean(tapply(yield,soil,var))

[1] 11.68519

You will see that the pooled error variance s2 = 11.685 is simply the mean of the three separate variances,
because (in this case) there is equal replication in each soil type (n = 10).

By tradition, we do not calculate the total mean square, so the bottom cell of the fourth column of the
ANOVA table is empty. The F ratio is the treatment variance divided by the error variance, testing the null
hypothesis that the treatment means are not significantly different. If we reject this null hypothesis, we accept
the alternative hypothesis that at least one of the means is significantly different from the others. The question
naturally arises at this point as to whether 4.24 is a big number or not. If it is a big number then we reject the
null hypothesis. If it is not a big number, then we accept the null hypothesis. As ever, we decide whether the
test statistic F = 4.24 is big or small by comparing it with the critical value of F, given that there are 2 d.f.
in the numerator and 27 d.f. in the denominator. Critical values in R are found from the function qf which
gives us quantiles of the F distribution:

qf(.95,2,27)

[1] 3.354131

Our calculated test statistic of 4.24 is larger than the critical value of 3.35, so we reject the null hypothesis.
At least one of the soils has a mean yield that is significantly different from the others. The modern approach
is not to work slavishly at the 5% level but rather to calculate the p value associated with our test statistic of
4.24. Instead of using the function for quantiles of the F distribution, we use the function pf for cumulative
probabilities of the F distribution like this:

1-pf(4.24,2,27)

[1] 0.02503987

The p value is 0.025, which means that a value of F = 4.24 or bigger would arise by chance alone when the
null hypothesis was true about 25 times in 1000. This is a sufficiently small probability (i.e. it is less than
5%) for us to conclude that there is a significant difference between the mean yields (i.e. we reject the null
hypothesis).

508 THE R BOOK

That was a lot of work. R can do the whole thing in a single line:

summary(aov(yield~soil))

Df Sum Sq Mean Sq F value Pr(>F)
soil 2 99.2 49.60 4.245 0.025 *
Residuals 27 315.5 11.69

Here you see all the values that we calculated longhand. The error row is labelled Residuals. In the second
and subsequent columns you see the degrees of freedom for treatment and error (2 and 27), the treatment and
error sums of squares (99.2 and 315.5), the treatment mean square of 49.6, the error variance s2 = 11.685, the
F ratio and the p value (labelled Pr(>F)). The single asterisk next to the p value indicates that the difference
between the soil means is significant at 5% (but not at 1%, which would have merited two asterisks). Notice
that R does not print the bottom row of the ANOVA table showing the total sum of squares and total degrees
of freedom.

The next thing we would do is to check the assumptions of the aov model. This is done using plot like
this (see p. 419):

par(mfrow=c(2,2))
plot(aov(yield~soil))

10 11 12 13 14

10 11 12 13 14

Fitted values Factor Level Combinations

Fitted values

Scale–Location

5
0

–5
–1

0
1.

5
1.

0
0.

5
0.

0

2
1

0
–1

–2
–3

2
1

0
–1

–2

210–1–2

Residuals vs Fitted Normal Q–Q

R
es

id
ua

ls

S
ta

nd
ar

di
ze

d
re

si
du

al
s

⎪S
ta

nd
ar

di
ze

d
re

si
du

al
s⎪

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Theoretical Quantiles

Constant Leverage:
Residuals vs Factor Levels

soil : sand clay loam

6

11

13

6

11

13

6

11

13

6

11

13

The first plot (top left) checks the most important assumption (constancy of variance); there should be no
pattern in the residuals against the fitted values (the three treatment means) – and, indeed, there is none. The
second plot (top right) tests the assumption of normality of errors: there should be a straight-line relationship
between our standardized residuals and theoretical quantiles derived from a normal distribution. Points 6,

ANALYSIS OF VARIANCE 509

11 and 13 lie a little off the straight line, but this is nothing to worry about (see p. 405). The residuals are
well behaved (bottom left) and there are no highly influential values that might be distorting the parameter
estimates (bottom right).

11.1.4 Effect sizes

The best way to view the effect sizes graphically is to use plot.design (which takes a formula rather
than a model object), but our current model with just one factor is perhaps too simple to get full value from
this (plot.design(yield~soil)). To see the effect sizes in tabular form use model.tables (which
takes a model object as its argument) like this:

model <- aov(yield~soil)
model.tables(model,se=T)

Tables of effects

soil
soil
clay loam sand
-0.4 2.4 -2.0

Standard errors of effects
soil
1.081

replic. 10

The effects are shown as departures from the overall mean: soil 1 (sand) has a mean yield that is 2.0 below the
overall mean, and soil 3 (loam) has a mean that is 2.4 above the overall mean. The standard error of effects
is 1.081 on a replication of n = 10 (this is the standard error of a mean). You should note that this is not the
appropriate standard error for comparing two means (see below). If you specify "means" you get:

model.tables(model,"means",se=T)

Tables of means
Grand mean

11.9

soil
soil
clay loam sand
11.5 14.3 9.9

Standard errors for differences of means
soil
1.529

replic. 10

Now the three means are printed (rather than the effects) and the standard error of the difference of means is
given (this is what you need for doing a t test to compare any two means).

510 THE R BOOK

Another way of looking at effect sizes is to use the summary.lm option for viewing the model, rather
than summary.aov (as we used above):

summary.lm(model)

Call:
aov(formula = yield ~ soil)

Residuals:
Min 1Q Median 3Q Max

-8.5 -1.8 0.3 1.7 7.1

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.500 1.081 10.638 3.7e-11 ***
soilloam 2.800 1.529 1.832 0.0781 .
soilsand -1.600 1.529 -1.047 0.3046

Residual standard error: 3.418 on 27 degrees of freedom
Multiple R-squared: 0.2392, Adjusted R-squared: 0.1829
F-statistic: 4.245 on 2 and 27 DF, p-value: 0.02495

In regression analysis (p. 461) the summary.lm output was easy to understand because it gave us the
intercept and the slope (the two parameters estimated by the model) and their standard errors. But this table
has three rows. Why is that? What is an intercept in the context of analysis of variance? And why are the
standard errors different for the intercept and for soilsand?

It will take a while before you feel at ease with summary.lm tables for analysis of variance. The details
are explained on p. 424, but the central point is that all summary.lm tables have as many rows as there
are parameters estimated from the data. There are three rows in this case because our aov model estimates
three parameters: a mean yield for each of the three soil types. In the context of aov, an intercept is a
mean value; in this case it is the mean yield for clay because this factor-level name comes first in the
alphabet. So if Intercept is the mean yield for clay, what are the other two rows labelled soilloam
and soilsand? This is the hardest thing to understand. All other rows in the summary.lm table for
aov are differences between means. Thus row 2, labelled soilloam, is the difference between the mean
yields on loam and clay, and row 3, labelled soilsand, is the difference between the mean yields of sand
and clay.

The first row (Intercept) is a mean, so the standard error column in row 1 contains the standard error
of a mean. Rows 2 and 3 are differences between means, so their standard error columns contain the standard
error of the difference between two means (and this is a bigger number; see p. 358). The standard error of a
mean is

semean =
√

s2

n
=

√
11.685

10
= 1.081,

whereas the standard error of the difference between two means is

sediff =
√

2
s2

n
=

√
2 × 11.685

10
= 1.529.

The summary.lm table shows that neither loam nor sand produces a significantly higher yield than clay
(none of the p-values is less than 0.05, despite the fact that the ANOVA table showed p = 0.025). But what

ANALYSIS OF VARIANCE 511

about the contrast in the yields from loam and sand? To assess this we need to do some arithmetic of our own.
The two parameters differ by 2.8 + 1.6 = 4.4 (take care with the signs). The standard error of the difference
is 1.529, so the t value is 2.88. This is much greater than 2 (our rule of thumb for t) so the mean yields of
loam and sand are significantly different. To find the precise value of Student’s t with 10 replicates in each
treatment, the critical value of t is given by the function qt with 18 d.f. (we have lost two degrees of freedom
for the two treatment means we have estimated from the data):

qt(0.975,18)

[1] 2.100922

Alternatively we can work out the p value associated with our calculated t = 2.88:

2*(1 - pt(2.88, df = 18))

[1] 0.009966426

We multiply by 2 because this is a two-tailed test (see p. 293); we did not know in advance that loam would
outyield sand under the particular circumstances of this experiment.

The residual standard error in the summary.lm output is the square root of the error variance from the
ANOVA table:

√
11.685 = 3.418. R-squared is the fraction of the total variation in yield that is explained by

the model (adjusted R-squared are explained on p. 461). The F statistic and the p value come from the last
two columns of the ANOVA table.

So there it is. That is how analysis of variance works. When the means are significantly different, then the
sum of squares computed from the individual treatment means will be significantly smaller than the sum of
squares computed from the overall mean. We judge the significance of the difference between the two sums
of squares using analysis of variance.

11.1.5 Plots for interpreting one-way ANOVA

There are two traditional ways of plotting the results of ANOVA:

� box-and-whisker plots;

� barplots with error bars.

Here is an example to compare the two approaches. We have an experiment on plant competition with one
factor and five levels. The factor is called clipping and the five levels consist of control (i.e. unclipped),
two intensities of shoot pruning and two intensities of root pruning:

comp <- read.table("c:\\temp\\competition.txt",header=T)
attach(comp)
names(comp)

[1] "biomass" "clipping"

plot(clipping,biomass,xlab="Competition treatment",
ylab="Biomass",col="yellow")

512 THE R BOOK

70
0

65
0

60
0

55
0

50
0

45
0

control n25 n50 r10 r5
Competition treatment

B
io

m
as

s

The box-and-whisker plot is good at showing the nature of the variation within each treatment, and also
whether there is skew within each treatment (e.g. for the control plots, there is a wider range of values between
the median and third quartile than between the median and first quartile). No outliers are shown above the
whiskers, so the tops and bottoms of the bars are the maxima and minima within each treatment. The medians
for the competition treatments are all higher than the third quartile of the controls, suggesting that they may
be significantly different from the controls, but there is little to suggest that any of the competition treatments
are significantly different from one another (see below for the analysis).

Barplots with error bars are preferred by many journal editors, and some people think that they make hy-
pothesis testing easier. We shall see. Unlike S-PLUS, R does not have a built-in function called error.bar,
so we shall have to write our own. Here is a very simple version without any bells or whistles. We shall call
it error.bars to distinguish it from the much more general S-PLUS function:

error.bars <- function(yv,z,nn)
{xv <- barplot(yv,ylim=c(0,(max(yv)+max(z))),

col="green",names=nn,ylab=deparse(substitute(yv)))
for (i in 1:length(xv)) {
arrows(xv[i],yv[i]+z[i],xv[i],yv[i]-z[i],angle=90,code=3,length=0.15)
}}

To use this function we need to decide what kind of values (z) to use for the lengths of the bars. Let us use
the standard error of a mean based on the pooled error variance from the ANOVA, then return to a discussion
of the pros and cons of different kinds of error bars later. Here is the one-way analysis of variance:

model <- aov(biomass~clipping)
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
clipping 4 85356 21339 4.302 0.00875 **
Residuals 25 124020 4961

ANALYSIS OF VARIANCE 513

From the ANOVA table we can see that the pooled error variance s2 = 4961. Now we need to know how
many numbers were used in the calculation of each of the five means:

table(clipping)

clipping
control n25 n50 r10 r5

6 6 6 6 6

There was equal replication (which makes life easier), and each mean was based on six replicates, so the
standard error of a mean is

√
s2/n = √

4961/6 = 28.75. We shall draw an error bar up 28.75 from each mean
and down by the same distance, so we need five values for z, one for each bar, each of 28.75:

se <- rep(28.75,5)

We need to provide labels for the five different bars – the factor levels should be good for this:

labels <- levels(clipping)

Now we work out the five mean values which will be the heights of the bars, and save them as a vector called
ybar:

ybar <- tapply(biomass,clipping,mean)

Finally, we can create the barplot with error bars (the function is defined above):

error.bars(ybar,se,labels)

60
0

50
0

40
0

30
0

20
0

10
0

0

control n25 n50 r10 r5

yb
ar

We do not get the same feel for the distribution of the values within each treatment as was obtained by the
box-and-whisker plot, but we can certainly see clearly which means are not significantly different. If, as here,
we use ± 1 standard error of the mean as the length of the error bars, then when the bars overlap this implies
that the two means are not significantly different. Remember the rule of thumb for t: significance requires 2

514 THE R BOOK

or more standard errors, and if the bars overlap it means that the difference between the means is less than
2 standard errors. There is another issue, too. For comparing means, we should use the standard error of the
difference between two means (not the standard error of one mean) in our tests (see p. 358); these bars would
be about 1.4 times as long as the bars we have drawn here. So while we can be sure that the two root-pruning
treatments are not significantly different from one another, and that the two shoot-pruning treatments are
not significantly different from one another (because their bars overlap), we cannot conclude from this plot
(although we do know it from the ANOVA table above; p = 0.008 75) that the controls have significantly
lower biomass than the rest (because the error bars are not the correct length for testing differences between
means).

An alternative graphical method is to use 95% confidence intervals for the lengths of the bars, rather than
standard errors of means. This is easy to do: we multiply our standard errors by Student’s t, qt(.975,5)=
2.570 582, to get the lengths of the confidence intervals:

error.bars(ybar,2.570582*se,labels)

60
0

50
0

40
0

30
0

20
0

10
0

0

control n25 n50 r10 r5

yb
ar

Now, all of the error bars overlap, implying visually that there are no significant differences between the means.
But we know that this is not true from our analysis of variance, in which we rejected the null hypothesis that
all the means were the same at p = 0.008 75. If it were the case that the bars did not overlap when we are using
confidence intervals (as here), then that would imply that the means differed by more than 4 standard errors,
and this is a much greater difference than is required to conclude that the means are significantly different. So
this is not perfect either. With standard errors we could be sure that the means were not significantly different
when the bars did overlap. And with confidence intervals we can be sure that the means are significantly
different when the bars do not overlap. But the alternative cases are not clear-cut for either type of bar. Can
we somehow get the best of both worlds, so that the means are significantly different when the bars do not
overlap, and the means are not significantly different when the bars do overlap?

The answer is yes, we can, if we use least significant difference (LSD) bars. Let us revisit the formula for
Student’s t test:

t = a difference

standard error of the diffference
.

ANALYSIS OF VARIANCE 515

We say that the difference is significant when t > 2 (by the rule of thumb, or t > qt(0.975,df) if we want
to be more precise). We can rearrange this formula to find the smallest difference that we would regard as
being significant. We can call this the least significant difference:

LSD = qt(0.975,df) × standard error of a difference ≈ 2 × sediff.

In our present example this is

qt(0.975,10)*sqrt(2*4961/6)

[1] 90.60794

because a difference is based on 12 – 2 = 10 degrees of freedom. What we are saying is the two means would
be significantly different if they differed by 90.61 or more. How can we show this graphically? We want
overlapping bars to indicate a difference less than 90.61, and non-overlapping bars to represent a difference
greater than 90.61. With a bit of thought you will realize that we need to draw bars that are LSD/2 in length,
up and down from each mean. Let us try it with our current example:

lsd <- qt(0.975,10)*sqrt(2*4961/6)
lsdbars <- rep(lsd,5)/2
error.bars(ybar,lsdbars,labels)

60
0

50
0

40
0

30
0

20
0

10
0

0

control n25 n50 r10 r5

yb
ar

Now we can interpret the significant differences visually. The control biomass is significantly lower than any
of the four treatments, but none of the four treatments is significantly different from any other. The statistical
analysis of this contrast is explained in detail in Section 9.23 (p. 430). Sadly, most journal editors insist on
error bars of 1 standard error of the mean. It is true that there are complicating issues to do with LSD bars
(not least the vexed question of multiple comparisons; see p. 531), but at least they do what was intended by
the error plot (i.e. overlapping bars means non-significance and non-overlapping bars means significance);
neither standard errors nor confidence intervals can say that. A better option might be to use box-and-whisker
plots with the notch=T option to indicate significance (see p. 213).

516 THE R BOOK

11.2 Factorial experiments

A factorial experiment has two or more factors, each with two or more levels, plus replication for each
combination of factors levels. This means that we can investigate statistical interactions, in which the response
to one factor depends on the level of another factor. Our example comes from a farm-scale trial of animal
diets. There are two factors: diet and supplement. Diet is a factor with three levels: barley, oats and wheat.
Supplement is a factor with four levels: agrimore, control, supergain and supersupp. The response variable is
weight gain after 6 weeks.

weights <- read.table("c:\\temp\\growth.txt",header=T)
attach(weights)

Data inspection is carried out using barplot (note the use of beside=T to get the bars in adjacent clusters
rather than vertical stacks):

barplot(tapply(gain,list(diet,supplement),mean),
beside=T,ylim=c(0,30),col=c("orange","yellow","cornsilk"))

Note that the second factor in the list (supplement) appears as groups of bars from left to right in
alphabetical order by factor level, from agrimore to supersupp. The first factor (diet) appears as three levels
within each group of bars: orange = barley, yellow = oats, cornsilk = wheat, again in alphabetical
order by factor level. We should really add a key to explain the levels of diet. Use locator(1) to find
the coordinates for the top left corner of the box around the legend. You need to increase the default scale on
the y axis to make enough room for the legend box.

labs <- c("Barley","Oats","Wheat")
legend(locator(1),labs,fill= c("orange","yellow","cornsilk"))

30
25

20
15

10
5

0

agrimore control supergain supersupp

Barley
Oats
Wheat

ANALYSIS OF VARIANCE 517

We inspect the mean values using tapply as usual:

tapply(gain,list(diet,supplement),mean)

agrimore control supergain supersupp
barley 26.34848 23.29665 22.46612 25.57530
oats 23.29838 20.49366 19.66300 21.86023
wheat 19.63907 17.40552 17.01243 19.66834

Now we use aov or lm to fit a factorial analysis of variance (the choice affects only whether we
get an ANOVA table or a list of parameters estimates as the default output from summary). We es-
timate parameters for the main effects of each level of diet and each level of supplement, plus
terms for the interaction between diet and supplement. Interaction degrees of freedom are the prod-
uct of the degrees of freedom of the component terms (i.e. (3 – 1) × (4 – 1) = 6). The model is
gain~diet+supplement+diet:supplement, but this can be simplified using the asterisk notation
like this:

model <- aov(gain~diet*supplement)
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
diet 2 287.17 143.59 83.52 3.00e-14 ***
supplement 3 91.88 30.63 17.82 2.95e-07 ***
diet:supplement 6 3.41 0.57 0.33 0.917
Residuals 36 61.89 1.72

The ANOVA table shows that there is no hint of any interaction between the two explanatory variables (p =
0.917); evidently the effects of diet and supplement are additive. The disadvantage of the ANOVA table is
that it does not show us the effect sizes, and does not allow us to work out how many levels of each of the
two factors are significantly different.

As a preliminary to model simplification, summary.lm is often more useful than summary.aov:

summary.lm(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.3485 0.6556 40.191 < 2e-16 ***
dietoats -3.0501 0.9271 -3.290 0.002248 **
dietwheat -6.7094 0.9271 -7.237 1.61e-08 ***
supplementcontrol -3.0518 0.9271 -3.292 0.002237 **
supplementsupergain -3.8824 0.9271 -4.187 0.000174 ***
supplementsupersupp -0.7732 0.9271 -0.834 0.409816
dietoats:supplementcontrol 0.2471 1.3112 0.188 0.851571
dietwheat:supplementcontrol 0.8183 1.3112 0.624 0.536512
dietoats:supplementsupergain 0.2470 1.3112 0.188 0.851652
dietwheat:supplementsupergain 1.2557 1.3112 0.958 0.344601
dietoats:supplementsupersupp -0.6650 1.3112 -0.507 0.615135
dietwheat:supplementsupersupp 0.8024 1.3112 0.612 0.544381

Residual standard error: 1.311 on 36 degrees of freedom
Multiple R-squared: 0.8607, Adjusted R-squared: 0.8182
F-statistic: 20.22 on 11 and 36 DF, p-value: 3.295e-12

518 THE R BOOK

This is a rather complex model, because there are 12 estimated parameters (the number of rows in the table):
six main effects and six interactions. Remember that the parameter labelled Intercept is the mean with
both factor levels set to their first in the alphabet (diet=barley and supplement=agrimore). All
other rows are differences between means. The output re-emphasizes that none of the interaction terms is even
close to significant, but it suggests that the minimal adequate model will require five parameters: an intercept,
a difference due to oats, a difference due to wheat, a difference due to control and difference due to
supergain (these are the five rows with significance stars). This draws attention to the main shortcoming
of using treatment contrasts as the default. If you look carefully at the table, you will see that the effect sizes
of two of the supplements, control and supergain, are not significantly different from one another.
You need lots of practice at doing t tests in your head, to be able to do this quickly. Ignoring the signs
(because the signs are negative for both of them), we have 3.05 vs. 3.88, a difference of 0.83. But look at the
associated standard errors (both 0.927); the difference is less than 1 standard error of a difference between
two means. For significance, we would need roughly 2 standard errors (remember the rule of thumb, in which
t ≥ 2 is significant; see p. 292). The rows get starred in the significance column because treatments contrasts
compare all the main effects in the rows with the intercept (where each factor is set to its first level in the
alphabet, namely agrimore and barley in this case). When, as here, several factor levels are different
from the intercept, but not different from one another, they all get significance stars. This means that you
cannot count up the number of rows with stars in order to determine the number of significantly different
factor levels.

We first simplify the model by leaving out the interaction terms:

model <- aov(gain~diet+supplement)
summary.lm(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.1230 0.4408 59.258 < 2e-16 ***
dietoats -3.0928 0.4408 -7.016 1.38e-08 ***
dietwheat -5.9903 0.4408 -13.589 < 2e-16 ***
supplementcontrol -2.6967 0.5090 -5.298 4.03e-06 ***
supplementsupergain -3.3815 0.5090 -6.643 4.72e-08 ***
supplementsupersupp -0.7274 0.5090 -1.429 0.16

It is clear that we need to retain all three levels of diet (oats differs from wheat by 5.99 – 3.09 = 2.90
with a standard error of 0.44). But it is not clear that we need four levels of supplement: supersupp is
not obviously different from agrimore (0.727 with standard error 0.509). Nor is supergain obviously
different from the unsupplemented control animals (3.38 – 2.70 = 0.68). We shall try a new two-level
factor to replace the four-level supplement, and see if this significantly reduces the model’s explanatory
power: agrimore and supersupp are recoded as ‘best’ and control and supergain as ‘worst’:

supp2 <- factor(supplement)
levels(supp2)

[1] "agrimore" "control" "supergain" "supersupp"

levels(supp2)[c(1,4)] <- "best"
levels(supp2)[c(2,3)] <- "worst"
levels(supp2)

[1] "best" "worst"

ANALYSIS OF VARIANCE 519

Now we can compare the two models:

model2 <- aov(gain~diet+supp2)
anova(model,model2)

Analysis of Variance Table

Model 1: gain ~ diet + supplement
Model 2: gain ~ diet + supp2
Res.Df RSS Df Sum of Sq F Pr(>F)

1 42 65.296
2 44 71.284 -2 -5.9876 1.9257 0.1584

The simpler model2 has saved two degrees of freedom and is not significantly worse than the more complex
model (p = 0.1584). This is the minimal adequate model: all of the parameters are significantly different
from zero and from one another:

summary.lm(model2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.7593 0.3674 70.106 < 2e-16 ***
dietoats -3.0928 0.4500 -6.873 1.76e-08 ***
dietwheat -5.9903 0.4500 -13.311 < 2e-16 ***
supp2worst -2.6754 0.3674 -7.281 4.43e-09 ***

Model simplification has reduced our initial 12-parameter model to a four-parameter model.

11.3 Pseudoreplication: Nested designs and split plots

The model-fitting functionsaov,lme andlmer have the facility to deal with complicated error structures, and
it is important that you can recognize such error structures, and hence avoid the pitfalls of pseudoreplication.
There are two general cases:

� nested sampling, as when repeated measurements are taken from the same individual, or observational
studies are conducted at several different spatial scales (mostly random effects);

� split-plot analysis, as when designed experiments have different treatments applied to plots of different
sizes (mostly fixed effects).

11.3.1 Split-plot experiments

In a split-plot experiment, different treatments are applied to plots of different sizes. Each different plot size
is associated with its own error variance, so instead of having one error variance (as in all the ANOVA tables
up to this point), we have as many error terms as there are different plot sizes. The analysis is presented as a
series of component ANOVA tables, one for each plot size, in a hierarchy from the largest plot size with the
lowest replication at the top, down to the smallest plot size with the greatest replication at the bottom.

The following example refers to a designed field experiment on crop yield with three treatments: irrigation
(with two levels, irrigated or not), sowing density (with three levels, low, medium and high), and fertilizer
application (with three levels, low, medium and high).

520 THE R BOOK

yields <- read.table("c:\\temp\\splityield.txt",header=T)
attach(yields)
names(yields)

[1] "yield" "block" "irrigation" "density" "fertilizer"

The largest plots were the four whole fields (block), each of which was split in half, and irrigation was
allocated at random to one half of the field. Each irrigation plot was split into three, and one of three
different seed-sowing densities (low, medium or high) was allocated at random (independently for each level
of irrigation and each block). Finally, each density plot was divided into three, and one of three fertilizer
nutrient treatments (N, P, or N and P together) was allocated at random.

The issue with split-plot experiments is pseudoreplication. Think about the irrigation experiment. There
were four blocks, each split in half, with one half irrigated and the other as a control. The dataframe for an
analysis of this experiment should therefore contain just 8 rows (not 72 rows as in the present case). There
would be seven degrees of freedom in total, three for blocks, one for irrigation and just 7 − 3 − 1 = 3 d.f.
for error. If you did not spot this, the model could be run with 51 d.f. representing massive pseudoreplication
(the correct p value for the irrigation treatment is 0.0247, but for the pseudoreplicated mistaken analysis p =
6.16 × 10–10).

The model formula is specified as a factorial, using the asterisk notation. The error structure is defined
in the Error term, with the plot sizes listed from left to right, from largest to smallest, with each variable
separated by the slash operator /. Note that the smallest plot size, fertilizer, does not need to appear in
the Error term:

model <-
aov(yield~irrigation*density*fertilizer+Error(block/irrigation/density))

summary(model)

Error: block
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 3 194.4 64.81

Error: block:irrigation
Df Sum Sq Mean Sq F value Pr(>F)

irrigation 1 8278 8278 17.59 0.0247 *
Residuals 3 1412 471

Error: block:irrigation:density
Df Sum Sq Mean Sq F value Pr(>F)

density 2 1758 879.2 3.784 0.0532 .
irrigation:density 2 2747 1373.5 5.912 0.0163 *
Residuals 12 2788 232.3

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

fertilizer 2 1977.4 988.7 11.449 0.000142 ***
irrigation:fertilizer 2 953.4 476.7 5.520 0.008108 **
density:fertilizer 4 304.9 76.2 0.883 0.484053
irrigation:density:fertilizer 4 234.7 58.7 0.680 0.610667
Residuals 36 3108.8 86.4

ANALYSIS OF VARIANCE 521

Here you see the four ANOVA tables, one for each plot size: blocks are the biggest plots, half blocks
get the irrigation treatment, one third of each half block gets a sowing density treatment, and one third of a
sowing density treatment gets each fertilizer treatment. Note that the non-significant main effect for density
(p = 0.053) does not mean that density is unimportant, because density appears in a significant interaction
with irrigation (the density terms cancel out, when averaged over the two irrigation treatments; see below).
The best way to understand the two significant interaction terms is to plot them using interaction.plot
like this:

interaction.plot(fertilizer,irrigation,yield)
12

0
11

5
11

0
10

5
10

0
95

90

N NP

irrigation

control

irrigated

P
fertilizer

m
ea

n
of

 y
ie

ld

Irrigation increases yield proportionately more on the N-fertilized plots than on the P-fertilized plots. The
irrigation–density interaction is more complicated:

interaction.plot(density,irrigation,yield)

12
0

11
0

10
0

90

high low

irrigation

control

irrigated

medium
density

m
ea

n
of

 y
ie

ld

522 THE R BOOK

On the irrigated plots, yield is lowest on the low-density plots, but on control plots yield is lowest on the high-
density plots. Alternatively, you could use the effects package which takes a model object (a linear model
or a generalized linear model) and provides attractive trellis plots of specified interaction effects (p. 968).

When there are one or more missing values (NA), then factors have effects in more than one stratum and
the same main effect turns up in more than one ANOVA table. In such a case, use lme or lmer rather than
aov. The output of aov is not to be trusted under these circumstances.

11.3.2 Mixed-effects models

Mixed-effects models are so called because the explanatory variables are a mixture of fixed effects and
random effects:

� fixed effects influence only the mean of y;

� random effects influence only the variance of y.

A random effect should be thought of as coming from a population of effects: the existence of this population
is an extra assumption. We speak of prediction of random effects, rather than estimation: we estimate fixed
effects from data, but we intend to make predictions about the population from which our random effects
were sampled. Fixed effects are unknown constants to be estimated from the data. Random effects govern the
variance–covariance structure of the response variable. The fixed effects are often experimental treatments
that were applied under our direction, and the random effects are either categorical or continuous variables
that are distinguished by the fact that we are typically not interested in the parameter values, but only in the
variance they explain.

One of more of the explanatory variables might represent grouping in time or in space. Random effects
that come from the same group will be correlated, and this contravenes one of the fundamental assumptions of
standard statistical models: independence of errors. Mixed-effects models take care of this non-independence
of errors by modelling the covariance structure introduced by the grouping of the data.

A major benefit of random-effects models is that they economize on the number of degrees of freedom
used up by the factor levels. Instead of estimating a mean for every single factor level, the random-effects
model estimates the distribution of the means (usually as the standard deviation of the differences of the
factor-level means around an overall mean). Mixed-effects models are particularly useful in cases where there
is temporal pseudoreplication (repeated measurements) and/or spatial pseudoreplication (e.g. nested designs
or split-plot experiments). These models can allow for:

� spatial autocorrelation between neighbours;

� temporal autocorrelation across repeated measures on the same individuals;

� differences in the mean response between blocks in a field experiment;

� differences between subjects in a medical trial involving repeated measures.

The point is that we really do not want to waste precious degrees of freedom in estimating parameters for
each of the separate levels of the categorical random variables. On the other hand, we do want to make use of
the all measurements we have taken, but because of the pseudoreplication we want to take account of both the

� correlation structure, used to model within-group correlation associated with temporal and spatial depen-
dencies, using correlation, and

� variance function, used to model non-constant variance in the within-group errors using weights.

ANALYSIS OF VARIANCE 523

11.3.3 Fixed effect or random effect?

It is difficult without lots of experience to know when to use a categorical explanatory variable as a fixed
effect or as a random effect. Some guidelines are given below.

� Am I interested in the effect sizes? Yes means fixed effects.

� Is it reasonable to suppose that the factor levels come from a population of levels? Yes means random
effects.

� Are there enough levels of the factor in the dataframe on which to base an estimate of the variance of the
population of effects? No means fixed effects.

� Are the factor levels informative? Yes means fixed effects.

� Are the factor levels just numeric labels? Yes means random effects.

� Am I mostly interested in making inferences about the distribution of effects, based on the random sample
of effects represented in the dataframe? Yes means random effects.

� Is there hierarchical structure? Yes means we need to ask whether the data are experimental or observations.

� Is it a hierarchical experiment, where the factor levels are experimental manipulations? Yes means fixed
effects in a split-plot design (see p. 519)

� Is it a hierarchical observational study? Yes means random effects, perhaps in a variance components
analysis (see p. 524).

� When the model contains both fixed and random effects, use mixed-effects models.

� If the model structure is linear, use linear mixed effects, lme or lmer.

� Otherwise, specify the model equation and use non-linear mixed effects, nlme.

11.3.4 Removing the pseudoreplication

If you are principally interested in the fixed effects, then the best response to pseudoreplication in a data set
is simply to eliminate it. Spatial pseudoreplication can be averaged away. You will always get the correct
effect size and p value from the reduced, non-pseudoreplicated dataframe. Note also that you should not use
anova to compare different models for the fixed effects when using lme or lmer with REML (see p. 688).
Temporal pseudoreplication can be dealt with by carrying out carrying out separate ANOVAs, one at each
time (or just one at the end of the experiment). This approach, however, has two weaknesses:

� It cannot address questions about treatment effects that relate to the longitudinal development of the mean
response profiles (e.g. differences in growth rates between successive times).

� Inferences made with each of the separate analyses are not independent, and it is not always clear how
they should be combined.

The key feature of longitudinal data is that the same individuals are measured repeatedly through time.
This would represent temporal pseudoreplication if the data were used uncritically in regression or ANOVA.
The set of observations on one individual subject will tend to be positively correlated, and this correlation
needs to be taken into account in carrying out the analysis. The alternative is a cross-sectional study, with
all the data gathered at a single point in time, in which each individual contributes a single data point. The

524 THE R BOOK

advantage of longitudinal studies is that they are capable of separating age effects from cohort effects; these are
inextricably confounded in cross-sectional studies. This is particularly important when differences between
years mean that cohorts originating at different times experience different conditions, so that individuals of
the same age in different cohorts would be expected to differ.

There are two extreme cases in longitudinal studies:

� a few measurements on a large number of individuals;

� a large number of measurements on a few individuals.

In the first case it is difficult to fit an accurate model for change within individuals, but treatment effects
are likely to be tested effectively. In the second case, it is possible to get an accurate model of the way
that individuals change though time, but there is less power for testing the significance of treatment effects,
especially if variation from individual to individual is large. In the first case, less attention will be paid to
estimating the correlation structure, while in the second case the covariance model will be the principal focus
of attention. The aims are:

� to estimate the average time course of a process;

� to characterize the degree of heterogeneity from individual to individual in the rate of the process;

� to identify the factors associated with both of these, including possible cohort effects.

The response is not the individual measurement, but the sequence of measurements on an individual subject.
This enables us to distinguish between age effects and year effects; see Diggle et al. (1994) for details.

11.3.5 Derived variable analysis

The idea here is to get rid of the pseudoreplication by reducing the repeated measures into a set of summary
statistics (slopes, intercepts or means), then analyse these summary statistics using standard parametric
techniques such as ANOVA or regression. The technique is weak when the values of the explanatory
variables change through time. Derived variable analysis makes most sense when it is based on the parameters
of scientifically interpretable non-linear models from each time sequence. However, the best model from a
theoretical perspective may not be the best model from the statistical point of view.

There are three qualitatively different sources of random variation:

� random effects, where experimental units differ (e.g. genotype, history, size, physiological condition) so
that there are intrinsically high responders and other low responders;

� serial correlation, where there may be time-varying stochastic variation within a unit (e.g. market forces,
physiology, ecological succession, immunity) so that correlation depends on the time separation of pairs
of measurements on the same individual, with correlation weakening with the passage of time;

� measurement error, where the assay technique may introduce an element of correlation (e.g. shared
bioassay of closely spaced samples; different assay of later specimens).

11.4 Variance components analysis

For random effects we are often more interested in the question of how much of the variation in the response
variable can be attributed to a given factor, than we are in estimating means or assessing the significance of
differences between means. This procedure is called variance components analysis.

ANALYSIS OF VARIANCE 525

The following classic example of spatial pseudoreplication comes from Snedecor and Cochran (1980):

rats <- read.table("c:\\temp\\rats.txt",header=T)
attach(rats)
names(rats)

[1] "Glycogen" "Treatment" "Rat" "Liver"

Three experimental treatments were administered to rats, and the glycogen content of the rats’ livers was
analysed as the response variable. There were two rats per treatment, so the total sample was n = 3 × 2 =
6. The tricky bit was that after each rat was killed, its liver was cut up into three pieces: a left-hand bit, a
central bit and a right-hand bit. So now there are six rats each producing three bits of liver, for a total of 6 ×
3 = 18 numbers. Finally, two separate preparations were made from each macerated bit of liver, to assess the
measurement error associated with the analytical machinery. At this point there are 2 × 18 = 36 numbers in
the dataframe as a whole. The factor levels are numbers, so we need to declare the explanatory variables to
be categorical before we begin:

Treatment <- factor(Treatment)
Rat <- factor(Rat)
Liver <- factor(Liver)

Here is the analysis done the wrong way:

model <- aov(Glycogen~Treatment)
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
Treatment 2 1558 778.8 14.5 3.03e-05 ***
Residuals 33 1773 53.7

A massively significant effect or treatment, right? Wrong. This result is due entirely to pseudoreplication.
With just six rats in the whole experiment, there should be just three degrees of freedom for error, not 33.

The simplest way to do the analysis properly is to average away the pseudoreplication. Here are the mean
glycogen values for the six rats:

(means <- tapply(Glycogen,list(Treatment,Rat),mean))

1 2
1 132.5000 148.5000
2 149.6667 152.3333
3 134.3333 136.0000

We need a new variable to represent the treatments associated with each of these rats. The ‘generate levels’
function gl is useful here:

treat <- gl(3,1,length=6)

Now we can fit the non-pseudoreplicated model with the correct error degrees of freedom (3 d.f., not 33):

model <- aov(as.vector(means)~treat)
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
treat 2 259.6 129.80 2.929 0.197
Residuals 3 132.9 44.31

526 THE R BOOK

As you can see, the treatment effect falls well short of significance (p = 0.197).
There are two different ways of doing the analysis properly in R: ANOVA with multiple error terms (aov)

or linear mixed-effects models (lmer). The problem is that the bits of the same liver are pseudoreplicates
because they are spatially correlated (they come from the same rat); they are not independent, as required if
they are to be true replicates. Likewise, the two preparations from each liver bit are very highly correlated (the
livers were macerated before the preparations were taken, so they are essentially the same sample (certainly
not independent replicates of the experimental treatments).

Here is the correct analysis using aov with multiple error terms. In the Error term we start with the
largest scale (treatment), then rats within treatments, then liver bits within rats within treatments. Finally,
there were replicated measurements (two preparations) made for each bit of liver.

model2 <- aov(Glycogen~Treatment+Error(Treatment/Rat/Liver))
summary(model2)

Error: Treatment
Df Sum Sq Mean Sq

Treatment 2 1558 778.8

Error: Treatment:Rat
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 3 797.7 265.9

Error: Treatment:Rat:Liver
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 12 594 49.5

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 18 381 21.17

You can do the correct, non-pseudoreplicated analysis of variance from this output (Box 11.1).

Box 11.1 Sums of squares in hierarchical designs

The trick to understanding these sums of squares is to appreciate that with nested categorical explanatory
variables (random effects) the correction factor, which is subtracted from the sum of squared subtotals,
is not the conventional (

∑
y)2/kn. Instead, the correction factor is the uncorrected sum of squared

subtotals from the level in the hierarchy immediately above the level in question. This is very hard to
see without lots of practice. The total sum of squares, SSY, and the treatment sum of squares, SSA, are
computed in the usual way (see p. 499):

SSY =
∑

y2 −
(∑

y
)2

n
,

SSA =
∑k

i=1
C2

i

n
−

(∑
y
)2

kn
.

The analysis is easiest to understand in the context of an example. For the rats data, the treatment totals
were based on 12 numbers (two rats, three liver bits per rat and two preparations per liver bit). In this

ANALYSIS OF VARIANCE 527

case, in the formula for SSA, above, n = 12 and kn = 36. We need to calculate sums of squares for rats
within treatments, SSRats, liver bits within rats within treatments, SSLiverbits, and preparations within liver
bits within rats within treatments, SSPreparations:

SSRats =
∑

R2

6
−

∑
C2

12
,

SSLiverbits =
∑

L2

2
−

∑
R2

6
,

SSPreparations =
∑

y2

1
−

∑
L2

2
.

The correction factor at any level is the uncorrected sum of squares from the level above. The last sum of
squares could have been computed by difference:

SSPreparations = SSY − SSA − SSRats − SSLiverbits.

The F test for equality of the treatment means is the treatment variance divided by the ‘rats within treatment
variance’ from the row immediately beneath: F = 778.78/265.89 = 2.928 956, with 2 d.f. in the numerator
and 3 d.f. in the denominator (as we obtained in the correct ANOVA, above).

To turn this into a variance components analysis we need to do a little work. The mean squares are
converted into variance components like this:

� residuals = preparations within liver bits: unchanged = 21.17,

� liver bits within rats within treatments: (49.5 – 21.17)/2 = 14.165,

� rats within treatments: (265.89 – 49.5)/6 = 36.065.

You divide the difference in variance in going from one spatial scale to the next, by the number of numbers
in the level below (i.e. two preparations per liver bit, and six preparations per rat, in this case). Variance
components analysis typically expresses these variances as percentages of the total:

varcomps <- c(21.17,14.165,36.065)
100*varcomps/sum(varcomps)

[1] 29.64986 19.83894 50.51120

illustrating that more than 50% of the random variation is accounted for by differences between the rats.
Repeating the experiment using more than six rats would make much more sense than repeating it by cutting
up the livers into more pieces. Analysis of the rats data using lmer is explained on p. 703.

11.5 Effect sizes in ANOVA: aov or lm?

The difference between lm and aov is mainly in the form of the output: the summary table with aov is in
the traditional form for analysis of variance, with one row for each categorical variable and each interaction
term. On the other hand, the summary table for lm produces one row per estimated parameter (i.e. one

528 THE R BOOK

row for each factor level and one row for each interaction level). If you have multiple error terms (spatial
pseudoreplication) then you must use aov because lm does not support the Error term.

Here is a three-way analysis of variance fitted first using aov then using lm:

daphnia <- read.table("c:\\temp\\Daphnia.txt",header=T)
attach(daphnia)
names(daphnia)

[1] "Growth.rate" "Water" "Detergent" "Daphnia"

model1 <- aov(Growth.rate~Water*Detergent*Daphnia)
summary(model1)

Df Sum Sq Mean Sq F value Pr(>F)
Water 1 1.99 1.985 2.850 0.097838 .
Detergent 3 2.21 0.737 1.059 0.375478
Daphnia 2 39.18 19.589 28.128 8.23e-09 ***
Water:Detergent 3 0.17 0.058 0.084 0.968608
Water:Daphnia 2 13.73 6.866 9.859 0.000259 ***
Detergent:Daphnia 6 20.60 3.433 4.930 0.000532 ***
Water:Detergent:Daphnia 6 5.85 0.975 1.399 0.234324
Residuals 48 33.43 0.696

All three factors are likely to stay in the model because each is involved in at least one significant interaction.
We must not be misled by the apparently non-significant main effect for detergent. The three-way interaction
is clearly non-significant and can be deleted (p = 0.234). Here is the output from the same analysed using the
linear model function:

model2 <- lm(Growth.rate~Water*Detergent*Daphnia)
summary(model2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.81126 0.48181 5.835 4.48e-07 ***
WaterWear -0.15808 0.68138 -0.232 0.81753
DetergentBrandB -0.03536 0.68138 -0.052 0.95883
DetergentBrandC 0.47626 0.68138 0.699 0.48794
DetergentBrandD -0.21407 0.68138 -0.314 0.75475
DaphniaClone2 0.49637 0.68138 0.728 0.46986
DaphniaClone3 2.05526 0.68138 3.016 0.00408 **
WaterWear:DetergentBrandB 0.46455 0.96361 0.482 0.63193
WaterWear:DetergentBrandC -0.27431 0.96361 -0.285 0.77712
WaterWear:DetergentBrandD 0.21729 0.96361 0.225 0.82255
WaterWear:DaphniaClone2 1.38081 0.96361 1.433 0.15835
WaterWear:DaphniaClone3 0.43156 0.96361 0.448 0.65627
DetergentBrandB:DaphniaClone2 0.91892 0.96361 0.954 0.34506
DetergentBrandC:DaphniaClone2 -0.16337 0.96361 -0.170 0.86609
DetergentBrandD:DaphniaClone2 1.01209 0.96361 1.050 0.29884
DetergentBrandB:DaphniaClone3 -0.06490 0.96361 -0.067 0.94658
DetergentBrandC:DaphniaClone3 -0.80789 0.96361 -0.838 0.40597
DetergentBrandD:DaphniaClone3 -1.28669 0.96361 -1.335 0.18809
WaterWear:DetergentBrandB:DaphniaClone2 -1.26380 1.36275 -0.927 0.35837
WaterWear:DetergentBrandC:DaphniaClone2 1.35612 1.36275 0.995 0.32466

ANALYSIS OF VARIANCE 529

WaterWear:DetergentBrandD:DaphniaClone2 0.77616 1.36275 0.570 0.57164
WaterWear:DetergentBrandB:DaphniaClone3 -0.87443 1.36275 -0.642 0.52414
WaterWear:DetergentBrandC:DaphniaClone3 -1.03019 1.36275 -0.756 0.45337
WaterWear:DetergentBrandD:DaphniaClone3 -1.55400 1.36275 -1.140 0.25980

Residual standard error: 0.8345 on 48 degrees of freedom
Multiple R-squared: 0.7147, Adjusted R-squared: 0.578
F-statistic: 5.227 on 23 and 48 DF, p-value: 7.019e-07

Note that the two significant interactions from theaov table do not show up in thesummary.lm table (Water–
Daphnia and Detergent–Daphnia). This is because summary.lm shows treatment contrasts, comparing
everything to the Intercept, rather than orthogonal contrasts (see p. 430). This draws attention to the
importance of model simplification rather than per-row t tests in assessing statistical significance (i.e. removing
the non-significant three-way interaction term in this case). In the aov table, the p values are ‘on deletion’ p
values, which is a big advantage.

The main difference is that there are eight rows in the summary.aov table (three main effects, three
two-way interactions, one three-way interaction and an error term) but there are 24 rows in the summary.lm
table (four levels of detergent by three levels of daphnia clone by two levels of water). You can easily view
the output of model1 in linear model layout, or model2 as an ANOVA table using the opposite summary
options:

summary.lm(model1)
summary.aov(model2)

In complicated designed experiments, it is easiest to summarize the effect sizes with plot.design and
model.tables functions. For main effects, use

plot.design(Growth.rate~Water*Detergent*Daphnia)

4.
5

4.
0

3.
5

3.
0

m
ea

n
of

 G
ro

w
th

.r
at

e

Clone1

Clone2

Clone3

Wear

Tyne

BrandD

BrandC
BrandB

BrandA

Water
Factors

Detergent Daphnia

530 THE R BOOK

This simple graphical device provides a very clear summary of the three sets of main effects. It is no good,
however, at illustrating the interactions. The model.tables function takes the name of the fitted model
object as its first argument, and you can specify whether you want the standard errors (as you typically
would):

model.tables(model1, "means", se = TRUE)

Tables of means
Grand mean
3.851905

Water
Water
Tyne Wear
3.686 4.018

Detergent
Detergent
BrandA BrandB BrandC BrandD
3.885 4.010 3.955 3.558

Daphnia
Daphnia
Clone1 Clone2 Clone3
2.840 4.577 4.139

Water:Detergent
Detergent

Water BrandA BrandB BrandC BrandD
Tyne 3.662 3.911 3.814 3.356
Wear 4.108 4.109 4.095 3.760

Water:Daphnia
Daphnia

Water Clone1 Clone2 Clone3
Tyne 2.868 3.806 4.383
Wear 2.812 5.348 3.894

Detergent:Daphnia
Daphnia

Detergent Clone1 Clone2 Clone3
BrandA 2.732 3.919 5.003
BrandB 2.929 4.403 4.698
BrandC 3.071 4.773 4.019
BrandD 2.627 5.214 2.834

Water:Detergent:Daphnia
, , Daphnia = Clone1

Detergent
Water BrandA BrandB BrandC BrandD
Tyne 2.811 2.776 3.288 2.597
Wear 2.653 3.082 2.855 2.656

ANALYSIS OF VARIANCE 531

, , Daphnia = Clone2

Detergent
Water BrandA BrandB BrandC BrandD
Tyne 3.308 4.191 3.621 4.106
Wear 4.530 4.615 5.925 6.322

, , Daphnia = Clone3

Detergent
Water BrandA BrandB BrandC BrandD
Tyne 4.867 4.766 4.535 3.366
Wear 5.140 4.630 3.504 2.303

Standard errors for differences of means
Water Detergent Daphnia Water:Detergent Water:Daphnia Detergent:Daphnia Water:Detergent:Daphnia
0.1967 0.2782 0.2409 0.3934 0.3407 0.4818 0.6814

replic. 36 18 24 9 12 6 3

Note how the standard errors of the differences between two means increase as the replication declines. All
the standard errors use the same pooled error variance s2 = 0.696 (see above). For instance, the three-way
interactions have se = √

2 × 0.696/3 = 0.681.and the daphnia main effects have se = √
2 × 0.696/24 =

0.2409.

Attractive plots of effect sizes can be obtained using the effects library (p. 968).

11.6 Multiple comparisons

One of the cardinal sins is to take a set of samples, search for the sample with the largest mean and the
sample with the smallest mean, and then do a t test to compare them. You should not carry out contrasts
until the analysis of variance, calculated over the whole set of samples, has indicated that there are significant
differences present (i.e. until after the null hypothesis has been rejected). Also, bear in mind that there are just
k − 1 orthogonal contrasts when you have a categorical explanatory variable with k levels, so do not carry
out more than k − 1 comparisons of means (see p. 430 for discussion of these ideas).

When comparing the multiple means across the levels of a factor, a simple comparison using multiple
t tests will inflate the probability of declaring a significant difference when there is none. This is because
the intervals are calculated with a given coverage probability for each interval but the interpretation of the
coverage is usually with respect to the entire family of intervals (i.e. for the factor as a whole).

If you follow the protocol of model simplification recommended in this book, then issues of multiple
comparisons will not arise very often. An occasional significant t test amongst a bunch of non-significant
interaction terms is not likely to survive a deletion test (see p. 437). Again, if you have factors with large
numbers of levels you might consider using mixed-effects models rather than ANOVA (i.e. treating the factors
as random effects rather than fixed effects; see p. 681).

John Tukey introduced intervals based on the range of the sample means rather than the individual
differences; nowadays, these are called Tukey’s honest significant differences. The intervals returned by the
TukeyHSD function are based on Studentized range statistics. Technically the intervals constructed in this
way would only apply to balanced designs where the same number of observations is made at each level
of the factor. This function incorporates an adjustment for sample size that produces sensible intervals for
mildly unbalanced designs.

532 THE R BOOK

The following example concerns the yield of fungi gathered from 16 different habitats:

data <- read.table("c:\\temp\\Fungi.txt",header=T)
attach(data)
names(data)

[1] "Habitat" "Fungus.yield"

First we establish whether there is any variation in fungus yield to explain:

model <- aov(Fungus.yield~Habitat)
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
Habitat 15 7527 501.8 72.14 <2e-16 ***
Residuals 144 1002 7.0

Yes, there is (p < 0.000 001). But this is not of much real interest, because it just shows that some habitats
produce more fungi than others. We are likely to be interested in which habitats produce significantly more
fungi than others. Multiple comparisons are an issue because there are 16 habitats and so there are (16 ×
15)/2 = 120 possible pairwise comparisons. There are two options:

� apply the function TukeyHSD to the model to get Tukey’s honest significant differences;

� use the function pairwise.t.test to get adjusted p values for all comparisons.

Here is Tukey’s test in action: it produces a table of p values by default:

TukeyHSD(model)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Fungus.yield ~ Habitat)

$Habitat
diff lwr upr p adj

Ash-Alder 3.53292777 -0.5808096 7.6466651 0.1844088
Aspen-Alder 12.78574402 8.6720067 16.8994814 0.0000000
Beech-Alder 12.32365349 8.2099161 16.4373908 0.0000000
Birch-Alder 14.11348150 9.9997441 18.2272189 0.0000000

...

...
Willow-Rowan -3.51860059 -7.6323379 0.5951368 0.1896363
Sycamore-Spruce 4.96019563 0.8464583 9.0739330 0.0044944
Willow-Spruce 4.92754623 0.8138089 9.0412836 0.0049788
Willow-Sycamore -0.03264941 -4.1463868 4.0810879 1.0000000

You can plot the confidence intervals if you prefer (or do both, of course):

plot(TukeyHSD(model))

ANALYSIS OF VARIANCE 533

95% family-wise confidence level

Differences in mean levels of Habitat
–20 –10 0 10 20

P
in

e-
A

ld
er

s
O

ak
-A

sp
en

P
in

e-
B

irc
h

P
in

e-
H

ol
m

oa
k

W
ill

ow
-S

yc
am

or
e

Habitats on opposite sides of the dotted line and not overlapping it are significantly different from one
another.

Alternatively, you can use the pairwise.t.test function in which you specify the response variable,
and then the categorical explanatory variable containing the factor levels you want to be compared, separated
by a comma (not a tilde):

pairwise.t.test(Fungus.yield,Habitat)

Pairwise comparisons using t tests with pooled SD
data: Fungus.yield and Habitat

Alder Ash Aspen Beech Birch Cherry Chestnut Holmoak Hornbeam Lime Oak Pine
Ash 0.10011 - - - - - - - - - - -
Aspen < 2e-16 6.3e-11 - - - - - - - - - -
Beech < 2e-16 5.4e-10 1.00000 - - - - - - - - -
Birch < 2e-16 1.2e-13 1.00000 1.00000 - - - - - - - -
Cherry 4.7e-13 2.9e-06 0.87474 1.00000 0.04943 - - - - - - -
Chestnut < 2e-16 7.8e-10 1.00000 1.00000 1.00000 1.00000 - - - - - -
Holmoak 1.00000 0.00181 < 2e-16 < 2e-16 < 2e-16 3.9e-16 < 2e-16 - - - - -
Hornbeam 1.1e-13 8.6e-07 1.00000 1.00000 0.10057 1.00000 1.00000 < 2e-16 - - - -
Lime < 2e-16 < 2e-16 1.1e-05 1.9e-06 0.00131 3.3e-10 1.4e-06 < 2e-16 1.3e-09 - - -
Oak < 2e-16 < 2e-16 1.4e-07 2.0e-08 2.7e-05 1.9e-12 1.5e-08 < 2e-16 8.4e-12 1.00000 - -

534 THE R BOOK

Pine < 2e-16 3.9e-14 1.00000 1.00000 1.00000 0.02757 1.00000 < 2e-16 0.05975 0.00253 6.1e-05 -
Rowan 1.8e-05 0.51826 8.5e-06 4.7e-05 3.9e-08 0.03053 6.2e-05 5.3e-08 0.01380 < 2e-16 < 2e-16 1.5e-08
P value adjustment method: holm

As you see, the default method of adjustment of the p values is holm, but other adjustment methods include
hochberg, hommel, bonferroni, BH, BY, fdr and none. Without adjustment of the p values,
the rowan–willow comparison looks highly significant (p = 0.003 35), as you can see if you try

pairwise.t.test(Fungus.yield,Habitat,p.adjust.method="none")

I like TukeyHSD because it is conservative without being ridiculously so (in contrast to Bonferroni).
For instance, Tukey gives the birch–cherry comparison as non-significant (p = 0.101 102 7), while Holm
makes this difference significant (p = 0.049 43). Tukey has the comparison between willow and Holm oak
as significant (p = 0.038 091 0), whereas Bonferroni throws this baby out with the bathwater (p = 0.056 72).
You need to decide how circumspect you want to be in the context of your particular question.

There is a useful package for multiple comparisons called multcomp:

install.packages("multcomp")

You can see at once how contentious the issue of multiple comparisons is, just by looking at the length of the
list of different multiple comparisons methods supported in this package:

� the many-to-one comparisons of Dunnett

� the all-pairwise comparisons of Tukey

� Sequen

� AVE

� changepoint

� Williams

� Marcus

� McDermott

� Tetrade

� Bonferroni correction

� Holm

� Hochberg

� Hommel

� Benjamini–Hochberg

� Benjamini–Yekutieli

The old-fashioned Bonferroni correction is highly conservative, because the p values are multiplied by the
number of comparisons. Instead of using the usual Bonferroni and Holm procedures, the adjustment methods
include less conservative corrections that take the exact correlations between the test statistics into account by
use of the multivariate t distribution. The resulting procedures are therefore substantially more powerful (the
Bonferroni and Holm adjusted p values are reported for reference). There seems to be no reason to use the

ANALYSIS OF VARIANCE 535

unmodified Bonferroni correction because it is dominated by Holm’s method, which is valid under arbitrary
assumptions.

The tests are designed to suit multiple comparisons within the general linear model, so they allow for
covariates, nested effects, correlated means and missing values. The first four methods are designed to give
strong control of the familywise error rate. The methods of Benjamini, Hochberg, and Yekutieli control the
false discovery rate, which is the expected proportion of false discoveries amongst the rejected hypotheses.
The false discovery rate is a less stringent condition than the familywise error rate, so these methods are more
powerful than the others.

11.7 Multivariate analysis of variance

Two or more response variables are sometimes measured in the same experiment. Of course you can analyse
each response variable separately, and that is the typical way to proceed. But there are occasions where you
want to treat the group of response variables as one multivariate response. The function for this is manova,
the multivariate analysis of variance. Note that manova does not support multi-stratum analysis of variance,
so the formula must not include an Error term.

data <- read.table("c:\\temp\\manova.txt",header=T)
attach(data)
names(data)

[1] "tear" "gloss" "opacity" "rate" "additive"

First, create a multivariate response variable, Y, by binding together the three separate response variables
(tear, gloss and opacity), like this:

Y <- cbind(tear, gloss, opacity)

Then fit the multivariate analysis of variance using the manova function:

model <- manova(Y~rate*additive)

There are two ways to inspect the output. First, as a multivariate analysis of variance:

summary(model)

Df Pillai approx F num Df den Df Pr(>F)
rate 1 0.61814 7.5543 3 14 0.003034 **
additive 1 0.47697 4.2556 3 14 0.024745 *
rate:additive 1 0.22289 1.3385 3 14 0.301782
Residuals 16

This shows significant main effects for both rate and additive, but no interaction. Note that the F tests
are based on 3 and 14 degrees of freedom (not 1 and 16). The default method in summary.manova is the
Pillai–Bartlett statistic. Other options include Wilks, Hotelling–Lawley and Roy. Second, you will want to
look at each of the three response variables separately:

summary.aov(model)

Response tear :
Df Sum Sq Mean Sq F value Pr(>F)

rate 1 1.7405 1.74050 15.7868 0.001092 **
additive 1 0.7605 0.76050 6.8980 0.018330 *

536 THE R BOOK

rate:additive 1 0.0005 0.00050 0.0045 0.947143
Residuals 16 1.7640 0.11025

Response gloss :
Df Sum Sq Mean Sq F value Pr(>F)

rate 1 1.3005 1.30050 7.9178 0.01248 *
additive 1 0.6125 0.61250 3.7291 0.07139 .
rate:additive 1 0.5445 0.54450 3.3151 0.08740 .
Residuals 16 2.6280 0.16425

Response opacity :
Df Sum Sq Mean Sq F value Pr(>F)

rate 1 0.421 0.4205 0.1036 0.7517
additive 1 4.901 4.9005 1.2077 0.2881
rate:additive 1 3.961 3.9605 0.9760 0.3379
Residuals 16 64.924 4.0578

Notice that one of the three response variables, opacity, is not significantly associated with either of the
explanatory variables.

12
Analysis of Covariance

Analysis of covariance (ANCOVA) combines elements from regression and analysis of variance. The response
variable is continuous, and there is at least one continuous explanatory variable and at least one categorical
explanatory variable. The procedure works like this:

� Fit two or more linear regressions of y against x (one for each level of the factor).

� Estimate different slopes and intercepts for each level.

� Use model simplification (deletion tests) to eliminate unnecessary parameters.

For example, we could use ANCOVA in a medical experiment where the response variable was ‘days to
recovery’ and the explanatory variables were ‘smoker or not’ (categorical) and ‘blood cell count’ (continuous).
In economics, local unemployment rate might be modelled as a function of country (categorical) and local
population size (continuous). Suppose we are modelling weight (the response variable) as a function of sex
and age. Sex is a factor with two levels (male and female) and age is a continuous variable. The maximal
model therefore has four parameters: two slopes (a slope for males and a slope for females) and two intercepts
(one for males and one for females) like this:

weightmale = amale + bmale × age,

weightfemale = afemale + bfemale × age.

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

538 THE R BOOK

0.
8

0.
4

0.
0

0.
8

0.
4

0.
0

0.
8

0.
4

0.
0

0.
8

0.
4

0.
0

0.
8

0.
4

0.
0

0.
8

0.
4

0.
0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Age

Age

Age

Age

Age

Age

W
ei

gh
t

W
ei

gh
t

W
ei

gh
t

W
ei

gh
t

W
ei

gh
t

W
ei

gh
t

This maximal model is shown in the top left-hand panel. Model simplification is an essential part of analysis
of covariance, because the principle of parsimony requires that we keep as few parameters in the model as
possible.

There are six possible models in this case, and the process of model simplification begins by asking
whether we need all four parameters (top left). Perhaps we could make do with two intercepts and a common
slope (top right), or a common intercept and two different slopes (centre left). There again, age may have
no significant effect on the response, so we only need two parameters to describe the main effects of sex on
weight; this would show up as two separated, horizontal lines in the plot (one mean weight for each sex;
centre right). Alternatively, there may be no effect of sex at all, in which case we only need two parameters
(one slope and one intercept) to describe the effect of age on weight (bottom left). In the limit, neither the
continuous nor the categorical explanatory variables might have any significant effect on the response, in
which case model simplification will lead to the one-parameter null model ŷ = ȳ (a single horizontal line;
bottom right).

12.1 Analysis of covariance in R

We could use either lm or aov; the choice affects only the format of the summary table. We shall use both
and compare their output. Our worked example concerns an experiment on the impact of grazing on the seed
production of a biennial plant. Forty plants were allocated to two treatments, grazed and ungrazed, and the
grazed plants were exposed to rabbits during the first two weeks of stem elongation. They were then protected
from subsequent grazing by the erection of a fence and allowed to regrow. Because initial plant size was
thought likely to influence fruit production, the diameter of the top of the rootstock was measured before each
plant was potted up. At the end of the growing season, the fruit production (dry weight in milligrams) was
recorded on each of the 40 plants, and this forms the response variable in the following analysis.

ANALYSIS OF COVARIANCE 539

regrowth <- read.table("c:\\temp\\ipomopsis.txt",header=T)
attach(regrowth)
names(regrowth)

[1] "Root" "Fruit" "Grazing"

The object of the exercise is to estimate the parameters of the minimal adequate model for these data. We
begin by inspecting the data with a plot of fruit production against root size for each of the two treatments
separately:

plot(Root,Fruit,pch=16,col=c("blue","red")[as.numeric(Grazing)])

where red dots represent the ungrazed plants and blue dots represent the grazed plants. Note the use of
as.numeric to select the plotting colours. How are the grazing treatments reflected in the factor levels?

levels(Grazing)

[1] "Grazed" "Ungrazed"

Now we can use logical subscripts (p. 39) to draw linear regression lines for the two grazing treatments
separately, using abline (we could have used subset instead):

abline(lm(Fruit[Grazing=="Grazed"]~Root[Grazing=="Grazed"]),col="blue")
abline(lm(Fruit[Grazing=="Ungrazed"]~Root[Grazing=="Ungrazed"]),col="red")

12
0

10
0

80
60

40
20

5 6 9 107 8

Root

Fr
ui

t

The odd thing about these data is that grazing seems to increase fruit production, which is a highly counter-
intuitive result:

tapply(Fruit,Grazing, mean)

Grazed Ungrazed
67.9405 50.8805

540 THE R BOOK

This difference is statistically significant (p = 0.027) if you do a t test (although this is the wrong thing to do
in this case, as explained below):

t.test(Fruit~Grazing)

Welch Two Sample t-test
data: Fruit by Grazing
t = 2.304, df = 37.306, p-value = 0.02689
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
2.061464 32.058536
sample estimates:
mean in group Grazed mean in group Ungrazed

67.9405 50.8805

Several important points are immediately apparent from this initial analysis:

� Different sized plants were allocated to the two treatments.

� The grazed plants were bigger at the outset.

� The regression line for the ungrazed plants is above the line for the grazed plants.

� The regression lines are roughly parallel.

� The intercepts (not shown to the left) are likely to be significantly different.

Each of these points will be addressed in detail.
To understand the output from analysis of covariance it is useful to work through the calculations by hand.

We start by working out the sums, sums of squares and sums of products for the whole data set combined
(40 pairs of numbers), and then for each treatment separately (20 pairs of numbers). We shall fill in a table of
totals, because it helps to be really well organized for these calculations. Check to see where (and why) the
sums and the sums of squares of the root diameters (the x values) and the fruit yields (the y values) have gone
in the table. First, we shall work out the overall totals based on all 40 data points.

sum(Root);sum(Rootˆ2)

[1] 287.246
[1] 2148.172

sum(Fruit);sum(Fruitˆ2)

[1] 2376.42
[1] 164928.1

sum(Root*Fruit)

[1] 18263.16

These are the famous five, which we shall make use of shortly, and complete the overall data summary. Now
we select the root diameters for the grazed and ungrazed plants and then the fruit yields for the grazed and
ungrazed plants:

sum(Root[Grazing=="Grazed"]);sum(Root[Grazing=="Grazed"]ˆ2)

[1] 166.188

ANALYSIS OF COVARIANCE 541

[1] 1400.834

sum(Root[Grazing=="Ungrazed"]);sum(Root[Grazing=="Ungrazed"]ˆ2)

[1] 121.058
[1] 747.3387

sum(Fruit[Grazing=="Grazed"]);sum(Fruit[Grazing=="Grazed"]ˆ2)

[1] 1358.81
[1] 104156.0

sum(Fruit[Grazing=="Ungrazed"]);sum(Fruit[Grazing=="Ungrazed"]ˆ2)

[1] 1017.61
[1] 60772.11

Finally, we want the sums of products: first for the grazed plants and then for the ungrazed plants:

sum(Root[Grazing=="Grazed"]*Fruit[Grazing=="Grazed"])

[1] 11753.64

sum(Root[Grazing=="Ungrazed"]*Fruit[Grazing=="Ungrazed"])

[1] 6509.522

Here is our table:

Sums Squares and products

x ungrazed 121.058 747.3387
y ungrazed 1017.61 60772.11
xy ungrazed 6509.522
x grazed 166.188 1400.834
y grazed 1358.81 104156.0
xy grazed 11753.64
x overall 287.246 2148.172
y overall 2376.42 164928.1
xy overall 18263.16

Now we have all of the information necessary to carry out the calculations of the corrected sums of squares
and products, SSY, SSX and SSXY, for the whole data set (n = 40) and for the two separate treatments (with
20 replicates in each). To get the right answer you will need to be extremely methodical, but there is nothing
mysterious or difficult about the process. First, calculate the regression statistics for the whole experiment,
ignoring the grazing treatment, using the famous five which we have just calculated:

SSY = 164 928.1 − 2376.422

40
= 23 743.84,

SSX = 2148.172 − 287.2462

40
= 85.4158,

SSXY = 18 263.16 − 287.246 × 2376.42

40
= 1197.731,

542 THE R BOOK

SSR = 1197.7312

85.4158
= 16 795,

SSE = 23 743.84 − 16 795 = 6948.835.

The effect of differences between the two grazing treatments, SSA, is

SSA = 1358.812 + 1017.612

20
− 2376.422

40
= 2910.436.

Next calculate the regression statistics for each of the grazing treatments separately. First, for the grazed
plants:

SSYg = 104 156 − 1358.812

20
= 11 837.79,

SSXg = 1400.834 − 166.1882

20
= 19.9111,

SSXYg = 11 753.64 − 1358.81 × 166.188

20
= 462.7415,

SSRg = 462.74152

19.9111
= 10 754.29,

SSEg = 11 837.79 − 10 754.29 = 1083.509,

so the slope of the graph of Fruit against Root for the grazed plants is given by

bg = SSXYg

SSXg
= 462.7415

19.9111
= 23.240.

Now for the ungrazed plants:

SSYu = 60 772.11 − 1017.612

20
= 8995.606,

SSXu = 747.3387 − 121.0582

20
= 14.586 77,

SSXYu = 6509.522 − 121.058 × 1017.61

20
= 350.0302,

SSRu = 350.03022

14.586 77
= 8399.466,

SSEu = 8995.606 − 8399.466 = 596.1403,

so the slope of the graph of Fruit against Root for the ungrazed plants is given by

bu = SSXYu

SSXu
= 350.0302

14.586 77
= 23.996.

ANALYSIS OF COVARIANCE 543

Now add up the regression statistics across the factor levels (grazed and ungrazed):

SSYg+u = 11 837.79 + 8995.606 = 20 833.4,

SSXg+u = 19.9111 + 14.586 77 = 34.497 88,

SSXYg+u = 462.7415 + 350.0302 = 812.7717,

SSRg+u = 10 754.29 + 8399.436 = 19 153.75,

SSEg+u = 1083.509 + 596.1403 = 1684.461

The SSR for a model with a single common slope is given by

SSRc = (SSXYg+u)2

SSXg+u
= 812.77172

34.497 88
= 19 148.94,

and the value of the single common slope is

b = SSXYg+u

SSXg+u
= 812.7717

34.497 88
= 23.560.

The difference between the two estimates of SSR (SSRdiff = SSRg + u – SSRc = 19 153.75 – 19 148.94 = 4.81)
is a measure of the significance of the difference between the two slopes estimated separately for each factor
level. Finally, SSE is calculated by difference:

SSE = SSY − SSA − SSRc − SSRdiff

= 23 743.84 − 2910.44 − 19 148.94 − 4.81 = 1679.65.

Now we can complete the ANOVA table for the full model:

Source SS d.f. MS F

Grazing 2910.44 1
Root 19148.94 1
Different slopes 4.81 1 4.81 n.s.
Error 1679.65 36 46.66
Total 23743.84 39

Degrees of freedom for error are 40 – 4 = 36 because we have estimated four parameters from the data: two
slopes and two intercepts. So the error variance is 46.66 (= SSE/36). The difference between the slopes is
clearly not significant (F = 4.81/46.66 = 0.10) so we can fit a simpler model with a common slope of 23.56.
The sum of squares for differences between the slopes (4.81) now becomes part of the error sum of squares:

Source SS d.f. MS F

Grazing 2910.44 1 2910.44 63.9291
Root 19148.94 1 19148.94 420.6156
Error 1684.46 37 45.526
Total 23743.84 39

544 THE R BOOK

This is the minimal adequate model. Both of the terms are highly significant and there are no redundant factor
levels.

The next step is to calculate the intercepts for the two parallel regression lines. This is done exactly as
before, by rearranging the equation of the straight line to obtain a = y – bx. For each line we can use the
mean values of x and y, with the common slope in each case. Thus:

a1 = Ȳ1 − bX̄1 = 50.88 − 23.56 × 6.0529 = −91.7261,

a2 = Ȳ2 − bX̄2 = 67.94 − 23.56 × 8.309 = −127.8294.

This demonstrates that the grazed plants produce, on average, 127.83 – 91.73 = 36.1 mg of fruit less than the
ungrazed plants.

Finally, we need to calculate the standard errors for the common regression slope and for the difference in
mean fecundity between the treatments, based on the error variance in the minimal adequate model, given in
the table above:

s2 = 1684.46

37
= 45.526.

The standard errors are obtained as follows. The standard error of the common slope is found in the usual
way:

seb =
√

s2

SSXg+u
=

√
45.526

19.9111 + 14.456 67
= 1.149.

The standard error of the intercept of the regression for the grazed treatment is also found in the usual way:

sea =
√

s2

[
1

n
+ (0 − x̄)2

SSXg+u

]
=

√
45.526

[
1

20
+ 8.30942

34.498

]
= 9.664.

It is clear that the intercept of –127.829 is very significantly less than zero (t = 127.829/9.664 = 13.2),
suggesting that there is a threshold rootstock size before reproduction can begin. The standard error of the
difference between the elevations of the two lines (the grazing effect) is given by

seŷu−ŷg =
√

s2

[
2

n
+ (x̄1 − x̄2)2

SSXg+u

]

which, substituting the values for the error variance and the mean rootstock sizes of the plants in the two
treatments, becomes:

seŷu−ŷg =
√

45.526

[
2

20
+ (6.0529 − 8.3094)2

34.498

]
= 3.357.

This suggests that any lines differing in elevation by more than about 2 × 3.357 = 6.71 mg dry weight
would be regarded as significantly different. Thus, the present difference of 36.09 clearly represents a highly
significant reduction in fecundity caused by grazing (t = 10.83).

ANALYSIS OF COVARIANCE 545

The hand calculations were convoluted, but ANCOVA is exceptionally straightforward in R, using lm.
The response variable is fecundity (Fruit), and there is one experimental factor (Grazing) with two levels
(Ungrazed and Grazed) and one covariate (initial rootstock diameter, Root). There are 40 values for
each of these variables. As we saw earlier, the largest plants were allocated to the grazed treatments, but for a
given rootstock diameter (say, 7 mm) the scatterplot shows that the grazed plants produced fewer fruits than
the ungrazed plants (not more, as a simple comparison of the means suggested). This is an excellent example
of the value of analysis of covariance. Here, the correct analysis using ANCOVA completely reverses our
interpretation of the data.

The analysis proceeds in the following way. We fit the most complicated model first, then simplify it by
removing non-significant terms until we are left with a minimal adequate model, in which all the parameters
are significantly different from zero. For ANCOVA, the most complicated model has different slopes and
intercepts for each level of the factor. Here we have a two-level factor (Grazed and Ungrazed) and we are
fitting a linear model with two parameters (y = a + bx) so the most complicated mode has four parameters
(two slopes and two intercepts). To fit different slopes and intercepts we use the asterisk * notation:

ancova <- lm(Fruit~Grazing*Root)

You should realize that order matters: we would get a different output if the model had been written Fruit
~ Root * Grazing (more of this on p. 555).

summary(ancova)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) -125.173 12.811 -9.771 1.15e-11 ***
GrazingUngrazed 30.806 16.842 1.829 0.0757 .
Root 23.240 1.531 15.182 < 2e-16 ***
GrazingUngrazed:Root 0.756 2.354 0.321 0.7500

This shows that initial root size has a massive effect on fruit production (t = 15.182), but there is no
indication of any difference in the slope of this relationship between the two grazing treatments (this is the
Grazing by Root interaction with t = 0.321, p � 0.05). The ANOVA table for the maximal model looks
like this:

anova(ancova)

Analysis of Variance Table
Response: Fruit

Df Sum Sq Mean Sq F value Pr(>F)
Grazing 1 2910.4 2910.4 62.3795 2.262e-09 ***
Root 1 19148.9 19148.9 410.4201 < 2.2e-16 ***
Grazing:Root 1 4.8 4.8 0.1031 0.75
Residuals 36 1679.6 46.7

The next step is to delete the non-significant interaction term from the model. We can do this manually
or automatically: here we shall do both for the purposes of demonstration. The function for manual model
simplification is update. We update the current model (here called ancova) by deleting terms from it. The
syntax is important: the punctuation reads ‘comma tilde dot minus’. We define a new name for the simplified
model:

ancova2 <- update(ancova, ~ . - Grazing:Root)

546 THE R BOOK

Now we compare the simplified model with just three parameters (one slope and two intercepts) with the
maximal model using anova like this:

anova(ancova,ancova2)

Analysis of Variance Table
Model 1: Fruit ~ Grazing * Root
Model 2: Fruit ~ Grazing + Root

Res.Df RSS Df Sum of Sq F Pr (>F)
1 36 1679.65
2 37 1684.46 -1 -4.81 0.1031 0.75

This says that model simplification was justified because it caused a negligible reduction in the explanatory
power of the model (p = 0.75; to retain the interaction term in the model we would need p < 0.05).

The next step in model simplification involves testing whether or not grazing had a significant effect on
fruit production once we control for initial root size. The procedure is similar: we define a new model and
use update to remove Grazing from ancova2 like this:

ancova3 <- update(ancova2, ~ . - Grazing)

Now we compare the two models using anova:

anova(ancova2,ancova3)

Analysis of Variance Table
Model 1: Fruit ~ Grazing + Root
Model 2: Fruit ~ Root

Res.Df RSS Df Sum of Sq F Pr(>F)
1 37 1684.5
2 38 6948.8 -1 -5264.4 115.63 6.107e-13 ***

This model simplification is a step too far. Removing the Grazing term causes a massive reduction in
the explanatory power of the model, with an F value of 115.63 and a vanishingly small p value. The effect
of grazing in reducing fruit production is highly significant and needs to be retained in the model. Thus
ancova2 is our minimal adequate model, and we should look at its summary table to compare with our
earlier calculations carried out by hand:

summary(ancova2)

Coefficients:
Estimate Std. Error t value Pr (>| t |)

(Intercept) -127.829 9.664 -13.23 1.35e-15 ***
GrazingUngrazed 36.103 3.357 10.75 6.11e-13 ***
Root 23.560 1.149 20.51 < 2e-16 ***

Residual standard error: 6.747 on 37 degrees of freedom
Multiple R-Squared: 0.9291, Adjusted R-squared: 0.9252
F-statistic: 242.3 on 2 and 37 DF, p-value: < 2.2e-16

You know when you have got the minimal adequate model, because every row of the coefficients table has
one or more significance stars (three in this case, because the effects are all so strong). In contrast to our

ANALYSIS OF COVARIANCE 547

initial interpretation based on mean fruit production, grazing is associated with a 36.103 mg reduction in fruit
production.

anova(ancova2)

Analysis of Variance Table
Response: Fruit

Df Sum Sq Mean Sq F value Pr(>F)
Grazing 1 2910.4 2910.4 63.929 1.397e-09 ***
Root 1 19148.9 19148.9 420.616 < 2.2e-16 ***
Residuals 37 1684.5 45.5

These are the values we obtained the long way on p. 540.
Now we repeat the model simplification using the automatic model-simplification function called step.

It could not be easier to use. The full model is called ancova:

step(ancova)

This function causes all the terms to be tested to see whether they are needed in the minimal adequate
model. The criterion used is Akaike’s information criterion (AIC, p. 415). In the jargon, this is a ‘penalized
log-likelihood’. What this means in simple terms is that it weighs up the inevitable trade-off between degrees
of freedom and fit of the model. You can have a perfect fit if you have a parameter for every data point, but
this model has zero explanatory power. Thus deviance goes down as degrees of freedom in the model go up.
The AIC adds 2 times the number of parameters in the model to the deviance (to penalize it). Deviance, you
will recall, is twice the log-likelihood of the current model. Anyway, AIC is a measure of lack of fit; big AIC
is bad, small AIC is good. The full model (four parameters: two slopes and two intercepts) is fitted first, and
AIC calculated as 157.5:

step(ancova)

Start: AIC=157.5
Fruit ~ Grazing * Root

Df Sum of Sq RSS AIC
- Grazing:Root 1 4.8122 1684.5 155.61
<none> 1679.7 157.50

Step: AIC=155.61
Fruit ~ Grazing + Root

Df Sum of Sq RSS AIC
<none> 1684.5 155.61
- Grazing 1 5264.4 6948.8 210.30
- Root 1 19148.9 20833.4 254.22

Call:
lm(formula = Fruit ~ Grazing + Root)

Coefficients:
(Intercept) GrazingUngrazed Root

-127.83 36.10 23.56

Then step tries removing the most complicated term (the Grazing by Root interaction). This reduces
AIC to 155.61 (an improvement, so the simplification is justified). No further simplification is possible (as
we saw when we used update to remove the Grazing term from the model) because AIC goes up to

548 THE R BOOK

210.3 when Grazing is removed and up to 254.2 if Root is removed. Thus, step has found the minimal
adequate model (it does not always do so, as we shall see later; it is good, but not perfect).

12.2 ANCOVA and experimental design

There is an extremely important general message in this example for experimental design. No matter how
carefully we randomize at the outset, our experimental groups are likely to be heterogeneous. Sometimes, as
in this case, we may have made initial measurements that we can use as covariates later on, but this will not
always be the case. There are bound to be important factors that we did not measure. If we had not measured
initial root size in this example, we would have come to entirely the wrong conclusion about the impact of
grazing on plant performance.

A far better design for this experiment would have been to measure the rootstock diameters of all the
plants at the beginning of the experiment (as was done here), but then to place the plants in matched pairs
with rootstocks of similar size. Then, one of the plants would be picked at random and allocated to one of
the two grazing treatments (e.g. by tossing a coin); the other plant of the pair then receives the unallocated
gazing treatment. Under this scheme, the size ranges of the two treatments would overlap, and the analysis
of covariance would be unnecessary.

12.3 ANCOVA with two factors and one continuous covariate

The following experiment, with weight as the response variable, involved genotype and sex as two categorical
explanatory variables and age as a continuous covariate. There are six levels of genotype and two levels of
sex.

Gain <- read.table("c:\\temp\\Gain.txt",header=T)
attach(Gain)
names(Gain)

[1] "Weight" "Sex" "Age" "Genotype" "Score"

We begin by fitting the maximal model with its 24 parameters: there are different slopes and intercepts for
every combination of sex and genotype (2 × 6 × 2 = 24).

m1 <- lm(Weight~Sex*Age*Genotype)
summary(m1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.80053 0.24941 31.276 < 2e-16 ***
Sexmale -0.51966 0.35272 -1.473 0.14936
Age 0.34950 0.07520 4.648 4.39e-05 ***
GenotypeCloneB 1.19870 0.35272 3.398 0.00167 **
GenotypeCloneC -0.41751 0.35272 -1.184 0.24429
GenotypeCloneD 0.95600 0.35272 2.710 0.01023 *
GenotypeCloneE -0.81604 0.35272 -2.314 0.02651 *
GenotypeCloneF 1.66851 0.35272 4.730 3.41e-05 ***
Sexmale:Age -0.11283 0.10635 -1.061 0.29579
Sexmale:GenotypeCloneB -0.31716 0.49882 -0.636 0.52891

ANALYSIS OF COVARIANCE 549

Sexmale:GenotypeCloneC -1.06234 0.49882 -2.130 0.04010 *
Sexmale:GenotypeCloneD -0.73547 0.49882 -1.474 0.14906
Sexmale:GenotypeCloneE -0.28533 0.49882 -0.572 0.57087
Sexmale:GenotypeCloneF -0.19839 0.49882 -0.398 0.69319
Age:GenotypeCloneB -0.10146 0.10635 -0.954 0.34643
Age:GenotypeCloneC -0.20825 0.10635 -1.958 0.05799 .
Age:GenotypeCloneD -0.01757 0.10635 -0.165 0.86970
Age:GenotypeCloneE -0.03825 0.10635 -0.360 0.72123
Age:GenotypeCloneF -0.05512 0.10635 -0.518 0.60743
Sexmale:Age:GenotypeCloneB 0.15469 0.15040 1.029 0.31055
Sexmale:Age:GenotypeCloneC 0.35322 0.15040 2.349 0.02446 *
Sexmale:Age:GenotypeCloneD 0.19227 0.15040 1.278 0.20929
Sexmale:Age:GenotypeCloneE 0.13203 0.15040 0.878 0.38585
Sexmale:Age:GenotypeCloneF 0.08709 0.15040 0.579 0.56616

Residual standard error: 0.2378 on 36 degrees of freedom
Multiple R-squared: 0.9742, Adjusted R-squared: 0.9577
F-statistic: 59.06 on 23 and 36 DF, p-value: < 2.2e-16

You should work through this output slowly and make sure that you can see what each term means. Remember
that the intercept is for all the factor levels that come first in the alphabet (females of CloneA) and the slope
(Age) likewise. There is only one intercept and one slope in this entire output. Everything else is either a
difference between intercepts, or a difference between slopes. Names involving Age are differences between
slopes; names not involving Age are differences between intercepts.

There are one or two significant parameters, but it is not at all clear that the three-way or two-way
interactions need to be retained in the model. As a first pass, let us use step to see how far it gets with model
simplification:

m2 <- step(m1)
summary(m2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.93701 0.10066 78.851 < 2e-16 ***
Sexmale -0.83161 0.05937 -14.008 < 2e-16 ***
Age 0.29958 0.02099 14.273 < 2e-16 ***
GenotypeCloneB 0.96778 0.10282 9.412 8.07e-13 ***
GenotypeCloneC -1.04361 0.10282 -10.149 6.21e-14 ***
GenotypeCloneD 0.82396 0.10282 8.013 1.21e-10 ***
GenotypeCloneE -0.87540 0.10282 -8.514 1.98e-11 ***
GenotypeCloneF 1.53460 0.10282 14.925 < 2e-16 ***

We definitely do not need the three-way interaction, despite the effect of Sexmale:Age: Genotype-
CloneC which gave a significant t test on its own. How about the three two-way interactions? The step
function leaves out Sex by Genotype and then assesses the other two. No need for Age by Genotype.
Try removing Sex by Age. Nothing. What about the main effects? They are all highly significant. This is
R’s idea of the minimal adequate model: three main effects but no interactions. That is to say, the slope of the
graph of weight gain against age does not vary with sex or genotype, but the intercepts do vary.

This is where Helmert contrasts would actually come in handy (see p. 553). Everything is three-star
significantly different from Genotype[1] Sex[1], but it is not obvious that the intercepts for genotypes

550 THE R BOOK

B and D need different values (+ 0.96 and + 0.82 above genotype A with sediff = 0.1028), nor is it obvious
that C and E have different intercepts (–1.043 and –0.875). Perhaps we could reduce the number of factor
levels of Genotype from the present six to four without any loss of explanatory power ?

We create a new categorical variable called newGenotype with separate levels for clones A and F, and
for B and D combined and C and E combined:

newGenotype <- Genotype
levels(newGenotype)

[1] "CloneA" "CloneB" "CloneC" "CloneD" "CloneE" "CloneF"

levels(newGenotype)[c(3,5)] <- "ClonesCandE"
levels(newGenotype)[c(2,4)] <- "ClonesBandD"
levels(newGenotype)

[1] "CloneA" "ClonesBandD" "ClonesCandE" "CloneF"

Then we redo the modelling with newGenotype (four levels) instead of Genotype (six levels),

m3 <- lm(Weight~Sex+Age+newGenotype)

and check that the simplification was justified:

anova(m2,m3)

Analysis of Variance Table
Model 1: Weight ~ Sex + Age + Genotype
Model 2: Weight ~ Sex + Age + newGenotype

Res.Df RSS Df Sum of Sq F Pr(>F)
1 52 2.74890
2 54 2.99379 -2 -0.24489 2.3163 0.1087

Yes, the simplification was justified (p value = 0.1087) so we accept the simpler model m3:

summary(m3)

Coefficients:
Estimate Std. Error t value Pr(> | t |)

(Intercept) 7.93701 0.10308 76.996 < 2e-16 ***
Sexmale -0.83161 0.06080 -13.679 < 2e-16 ***
Age 0.29958 0.02149 13.938 < 2e-16 ***
newGenotypeClonesBandD 0.89587 0.09119 9.824 1.28e-13 ***
newGenotypeClonesCandE -0.95950 0.09119 -10.522 1.10e-14 ***
newGenotypeCloneF 1.53460 0.10530 14.574 < 2e-16 ***

Residual standard error: 0.2355 on 54 degrees of freedom
Multiple R-Squared: 0.962, Adjusted R-squared: 0.9585
F-statistic: 273.7 on 5 and 54 DF, p-value: < 2.2e-16

After an analysis of covariance, it is useful to draw the fitted lines through a scatterplot, with each factor
level represented by different plotting symbols and line types (see p. 198):

plot(Age,Weight,type="n")

colours <- c("green","red","black","blue")
lines <- c(1,2)

ANALYSIS OF COVARIANCE 551

symbols <- c(16,17)

points(Age,Weight,pch=symbols[as.numeric(Sex)],
col=colours[as.numeric(newGenotype)])

xv <- c(1,5)
for (i in 1:2) {
for (j in 1:4) {

a <- coef(m3)[1]+(i>1)* coef(m3)[2]+(j>1)*coef(m3)[j+2]
b <- coef(m3)[3]
yv <- a+b*xv

lines(xv,yv,lty=lines[i],col=colours[j]) } }

1 2 3 4 5

Age

6
7

8
9

10
11

W
ei

gh
t

Note the use of colour to represent the four genotypes and plotting symbols and line types to represent the
two sexes. You can see that the males (circles and solid lines) are heavier than the females (triangles and
dashed lines) in all of the genotypes. Other functions to be considered in plotting the results of ANCOVA are
split and augPred in lattice graphics.

12.4 Contrasts and the parameters of ANCOVA models

In analysis of covariance, we estimate a slope and an intercept for each level of one or more factors. Suppose
we are modelling weight (the response variable) as a function of sex and age, as illustrated on p. 538. The
difficulty arises because there are several different ways of expressing the values of the four parameters in
the summary.lm table:

� two slopes, and two intercepts (as in the equations on p. 537);

� one slope and one difference between slopes, and one intercept and one difference between intercepts;

� the overall mean slope and the overall mean intercept, and one difference between slopes and one difference
between intercepts.

552 THE R BOOK

In the second case (two estimates and two differences) a decision needs to be made about which factor level
to associate with the estimate, and which level with the difference (e.g. whether males should be expressed
as the intercept and females as the difference between intercepts, or vice versa) .

When the factor levels are unordered (the typical case), then R takes the factor level that comes first in the
alphabet as the estimate and the others are expressed as differences. In our example, the parameter estimates
would be female, and male parameters would be expressed as differences from the female values, because
‘f’ comes before ‘m’ in the alphabet. This should become clear from an example:

Ancovacontrasts <- read.table("c:\\temp\\Ancovacontrasts.txt",header=T)
attach(Ancovacontrasts)
names(Ancovacontrasts)

[1] "weight" "sex" "age"

First we work out the two regressions separately so that we know the values of the two slopes and the two
intercepts (note the use of subscripts or subsets to select the sexes):

lm(weight[sex=="male"]~age[sex=="male"])

Coefficients:
(Intercept) age[sex == "male"]

3.115 1.561

lm(weight~age,subset=(sex=="female"))

Coefficients:
(Intercept) age

1.9663 0.9962

So the intercept for males is 3.115 and the intercept for females is 1.9663. The difference between the first
(female) and second (male) intercepts is therefore

3.115 − 1.9663 = +1.1487

and the difference between the two slopes is

1.561 − 0.9962 = +0.5648

Now we can do an overall regression, ignoring gender:

lm(weight~age)

Call:
lm(formula = weight ~ age)

Coefficients:
(Intercept) age

2.541 1.279

This tells us that the average intercept is 2.541 and the average slope is 1.279.

ANALYSIS OF COVARIANCE 553

Next we can carry out an analysis of covariance and compare the output produced by each of the three
different contrast options allowed by R: treatment (the default in R and Glim), Helmert (the default in
S-PLUS), and sum. First, the analysis using treatment contrasts as used by R and Glim:

options(contrasts=c("contr.treatment", "contr.poly"))
model1 <- lm(weight~age*sex)
summary(model1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.9663 0.6268 3.137 0.00636 **
age 0.9962 0.1010 9.862 3.33e-08 ***
sexmale 1.1489 0.8864 1.296 0.21331
age:sexmale 0.5646 0.1429 3.952 0.00114 **

The intercept (1.9663) is the intercept for females (because ‘f’ comes before ‘m’ in the alphabet). The
age parameter (0.9962) is the slope of the graph of weight against age for females. The sex parameter
(1.1489) is the difference between the (female) intercept and the male intercept (1.9663 + 1.1489 = 3.1152).
The age–sex interaction term is the difference between slopes of the female and male graphs (0.9962 +
0.5646 = 1.5608). So with treatment contrasts, the parameters (in order 1 to 4) are an intercept, a slope, a
difference between two intercepts, and a difference between two slopes. In the standard error column we
see, from row 1 downwards, the standard error of an intercept for a regression with females only (0.6268
with n = 10, � x2 = 385 and SSX = 82.5), the standard error of a slope for females only (0.1010, with
SSX = 82.5), the standard error of the difference between two intercepts each based on n = 10 data points
(
√

2 × 0.62682 = 0.8864) and the standard error of the difference between two slopes each based on n = 10
data points (

√
2 × 0.10102 = 0.1429). The formulas for these standard errors are on p. 554. Many people are

more comfortable with this method of presentation than they are with Helmert or sum contrasts.
We now turn to the analysis using Helmert contrasts:

options(contrasts=c("contr.helmert", "contr.poly"))
model2 <- lm(weight~age*sex)
summary(model2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.54073 0.44319 5.733 3.08e-05 ***
age 1.27851 0.07143 17.899 5.26e-12 ***
sex1 0.57445 0.44319 1.296 0.21331
age:sex1 0.28230 0.07143 3.952 0.00114 **

Let us see if we can work out what the four parameter values represent. The first parameter, 2.540 73 (labelled
Intercept), is the intercept of the overall regression, ignoring sex (see above). The parameter labelled
age (1.278 51) is a slope because age is our continuous explanatory variable. Again, you will see that it is the
slope for the regression of weight against age, ignoring sex. The third parameter, labelled sex1 (0.574 45),
must have something to do with intercepts because sex is our categorical variable. If we want to reconstruct
the second intercept (for males) we need to add 0.574 45 to the overall intercept: 2.540 73 + 0.574 45 =
3.115 18. To get the intercept for females we need to subtract it: 2.540 73 – 0.574 45 = 1.966 28. The fourth
parameter (0.282 30), labelled age:sex1, is the difference between the overall mean slope (1.278 51) and
the male slope: 1.278 51 + 0.282 30 = 1.560 81. To get the slope of weight against age for females we need
to subtract the interaction term from the age term: 1.278 51 – 0.282 30 = 0.996 21.

554 THE R BOOK

In the standard errors column, from the top row downwards, you see the standard error of an intercept
based on a regression with all 20 points (the overall regression, ignoring sex, 0.443 19) and the standard
error of a slope based on a regression with all 20 points (0.071 43). The standard errors of differences (both
intercept and slope) involve half the difference between the male and female values, because with Helmert
contrasts the difference is between the male value and the overall value, rather than between the male and
female values. Thus the third row has the standard error of a difference between the overall intercept and the
intercept for males based on a regression with 10 points (0.443 19 = 0.8864/2), and the bottom row has the
standard error of a difference between the overall slope and the slope for males, based on a regression with
10 points (0.1429/2 = 0.071 43). Thus the values in the bottom two rows of the Helmert table are simply half
the values in the same rows of the treatment table.

The advantage of Helmert contrasts is in hypothesis testing in more complicated models than this, because
it is easy to see which terms we need to retain in a simplified model by inspecting their significance levels in
the summary.lm table. The disadvantage is that it is much harder to reconstruct the slopes and the intercepts
from the estimated parameters values (see also p. 440).

Finally, we look at the third option, which is sum contrasts:

options(contrasts=c("contr.sum", "contr.poly"))
model3 <- lm(weight~age*sex)
summary(model3)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.54073 0.44319 5.733 3.08e-05 ***
age 1.27851 0.07143 17.899 5.26e-12 ***
sex1 -0.57445 0.44319 -1.296 0.21331
age:sex1 -0.28230 0.07143 -3.952 0.00114 **

The first two estimates are the same as those produced by Helmert contrasts: the overall intercept and slope
of the graph relating weight to age, ignoring sex. The sex parameter (–0.574 45) is sign reversed compared
with the Helmert option: it shows how to calculate the female (the first) intercept from the overall intercept
2.540 73– 0.574 45 = 1.966 28. The interaction term also has reversed sign: to get the slope for females, add
the interaction term to the slope for age: 1.278 51– 0.282 30 = 0.996 21.

The four standard errors for the sum contrasts are exactly the same as those for Helmert contrasts (explained
above).

12.5 Order matters in summary.aov

People are often disconcerted by the ANOVA table produced by summary.aov in analysis of covariance.
Compare the tables produced for these two models:

summary.aov(lm(weight~sex*age))

Df Sum Sq Mean Sq F value Pr(>F)
sex 1 90.49 90.49 107.50 1.66e-08 ***
age 1 269.71 269.71 320.39 5.26e-12 ***
sex:age 1 13.15 13.15 15.62 0.00114 **
Residuals 16 13.47 0.84

ANALYSIS OF COVARIANCE 555

summary.aov(lm(weight~age*sex))

Df Sum Sq Mean Sq F value Pr(>F)
age 1 269.71 269.71 320.39 5.26e-12 ***
sex 1 90.49 90.49 107.50 1.66e-08 ***
age:sex 1 13.15 13.15 15.62 0.00114 **
Residuals 16 13.47 0.84

Exactly the same sums of squares and p values. No problem. But look at these two models from the plant
compensation example analysed in detail earlier (p. 545):

summary.aov(lm(Fruit~Grazing*Root))

Df Sum Sq Mean Sq F value Pr(>F)
Grazing 1 2910 2910 62.380 2.26e-09 ***
Root 1 19149 19149 410.420 < 2e-16 ***
Grazing:Root 1 5 5 0.103 0.75
Residuals 36 1680 47

summary.aov(lm(Fruit~Root*Grazing))

Df Sum Sq Mean Sq F value Pr(>F)
Root 1 16795 16795 359.968 < 2e-16 ***
Grazing 1 5264 5264 112.832 1.21e-12 ***
Root:Grazing 1 5 5 0.103 0.75
Residuals 36 1680 47

In this case the order of variables within the model formula has a huge effect: it changes the sum of squares
associated with the two main effects (root size is continuous and grazing is categorical, grazed or ungrazed)
and alters their p values. The interaction term, the residual sum of squares and the error variance are unchanged.
So what is the difference between the two cases?

In the first example, where order was irrelevant, the x values for the continuous variable (age) were identical
for both sexes (there is one male and one female value at each of the 10 experimentally controlled ages). In
the second example, the x values (root size) were different in the two treatments, and mean root size was
greater for the grazed plants than for the ungrazed ones:

tapply(Root,Grazing, mean)

Grazed Ungrazed
8.3094 6.0529

Whenever the x values are different in different factor levels, and/or there is different replication in different
factor levels, then SSX and SSXY will vary from level to level and this will affect the way the sum of squares
is distributed across the main effects. It is of no consequence in terms of your interpretation of the model,
however, because the effect sizes and standard errors in the summary.lm table are completely unaffected:

summary(lm(Fruit~Root*Grazing))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -109.770 8.421 -13.035 3.36e-15 ***
Root 23.618 1.177 20.066 < 2e-16 ***
Grazing1 -15.403 8.421 -1.829 0.0757 .
Root:Grazing1 -0.378 1.177 -0.321 0.7500

556 THE R BOOK

summary(lm(Fruit~Grazing*Root))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -109.770 8.421 -13.035 3.36e-15 ***
Grazing1 -15.403 8.421 -1.829 0.0757 .
Root 23.618 1.177 20.066 < 2e-16 ***
Grazing1:Root -0.378 1.177 -0.321 0.7500

The p values that are shown insummary.lm are the deletion p values that we are accustomed to. The p values
in the full ANOVA table, however, are not. Once the interaction term is deleted, the problem disappears, and
the p values, once again, are the familiar deletion p values.

13
Generalized Linear Models

We can use generalized linear models (GLMs) – pronounced ‘glims’ – when the variance is not constant,
and/or when the errors are not normally distributed. Certain kinds of response variables invariably suffer from
these two important contraventions of the standard assumptions, and GLMs are excellent at dealing with
them. Specifically, we might consider using GLMs when the response variable is:

� count data expressed as proportions (e.g. logistic regressions);

� count data that are not proportions (e.g. log-linear models of counts);

� binary response variables (e.g. dead or alive);

� data on time to death where the variance increases faster than linearly with the mean (e.g. time data with
gamma errors).

0 2 4 6 8 10 0 2 4 6 8 10

0
2

4
6

8
10

0
20

40
60

80
10

0

0.
5

0.
0

1.
0

1.
5

2.
0

2.
5

3.
0

0
2

1
3

4

0 2 4 6 8 10 0 2 4 6 8 10

Mean Mean

Mean Mean

V
ar

ia
nc

e

V
ar

ia
nc

e

V
ar

ia
nc

e

V
ar

ia
nc

e

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

558 THE R BOOK

The central assumption that we have made up to this point is that variance was constant (top left-hand
graph). In count data, however, where the response variable is an integer and there are often lots of zeros
in the dataframe, the variance may increase linearly with the mean (top tight). With proportion data, where
we have a count of the number of failures of an event as well as the number of successes, the variance will
be an inverted U-shaped function of the mean (bottom left). Where the response variable follows a gamma
distribution (as in time-to-death data) the variance increases faster than linearly with the mean (bottom right).
Many of the basic statistical methods such as regression and Student’s t test assume that variance is constant,
but in many applications this assumption is untenable. Hence the great utility of GLMs.

A GLM has three important properties:

� the error structure;

� the linear predictor;

� the link function.

These are all likely to be unfamiliar concepts. The ideas behind them are straightforward, however, and it is
worth learning what each of the concepts involves.

13.1 Error structure

Up to this point, we have dealt with the statistical analysis of data with normal errors. In practice, however,
many kinds of data have non-normal errors: for example:

� errors that are strongly skewed;

� errors that are kurtotic;

� errors that are strictly bounded (as in proportions);

� errors that cannot lead to negative fitted values (as in counts).

In the past, the only tools available to deal with these problems were transformation of the response variable
or the adoption of non-parametric methods. A GLM allows the specification of a variety of different error
distributions:

� Poisson errors, useful with count data;

� binomial errors, useful with data on proportions;

� gamma errors, useful with data showing a constant coefficient of variation;

� exponential errors, useful with data on time to death (survival analysis).

The error structure is defined by means of the family directive, used as part of the model formula.
Examples are

glm(y ~ z, family = poisson)

which means that the response variable y has Poisson errors, and

glm(y ~ z, family = binomial)

GENERALIZED LINEAR MODELS 559

which means that the response is binary, and the model has binomial errors. As with previous models, the
explanatory variable z can be continuous (leading to a regression analysis) or categorical (leading to an
ANOVA-like procedure called analysis of deviance, as described below).

13.2 Linear predictor

The structure of the model relates each observed y value to a predicted value. The predicted value is obtained
by transformation of the value emerging from the linear predictor. The linear predictor, η (eta), is a linear
sum of the effects of one or more explanatory variables, xj,

ηi =
p∑

j=1

xijβ j ,

where the xs are the values of the p different explanatory variables, and the βs are the (usually) unknown
parameters to be estimated from the data. The right-hand side of the equation is called the linear structure.

There are as many terms in the linear predictor as there are parameters, p, to be estimated from the data.
Thus, with a simple regression, the linear predictor is the sum of two terms whose parameters are the intercept
and the slope. With a one-way ANOVA with four treatments, the linear predictor is the sum of four terms
leading to the estimation of the mean for each level of the factor. If there are covariates in the model, they add
one term each to the linear predictor (the slope of each relationship). Interaction terms in a factorial ANOVA
add one or more parameters to the linear predictor, depending upon the degrees of freedom of each factor
(e.g. there would be three extra parameters for the interaction between a two-level factor and a four-level
factor, because (2 – 1) × (4 – 1) = 3).

To determine the fit of a given model, a GLM evaluates the linear predictor for each value of the response
variable, then compares the predicted value with a transformed value of y. The transformation to be employed
is specified in the link function, as explained below. The fitted value is computed by applying the reciprocal
of the link function, in order to get back to the original scale of measurement of the response variable.

13.3 Link function

One of the difficult things to grasp about GLMs is the relationship between the values of the response variable
(as measured in the data and predicted by the model in fitted values) and the linear predictor. The thing to
remember is that the link function relates the mean value of y to its linear predictor. In symbols, this means
that

η = g(µ),

which is simple, but needs thinking about. The linear predictor, η, emerges from the linear model as a sum of
the terms for each of the p parameters. This is not a value of y (except in the special case of the identity link
that we have been using (implicitly) up to now). The value of η is obtained by transforming the value of y by
the link function, and the predicted value of y is obtained by applying the inverse link function to η.

The most frequently used link functions are shown below. An important criterion in the choice of link
function is to ensure that the fitted values stay within reasonable bounds. We would want to ensure, for
example, that counts were all greater than or equal to 0 (negative count data would be nonsense). Similarly,
if the response variable was the proportion of individuals that died, then the fitted values would have to lie

560 THE R BOOK

between 0 and 1 (fitted values greater than 1 or less than 0 would be meaningless). In the first case, a log link
is appropriate because the fitted values are antilogs of the linear predictor, and all antilogs are greater than
or equal to 0. In the second case, the logit link is appropriate because the fitted values are calculated as the
antilogs of the log odds, log(p/q).

By using different link functions, the performance of a variety of models can be compared directly. The
total deviance is the same in each case, and we can investigate the consequences of altering our assumptions
about precisely how a given change in the linear predictor brings about a response in the fitted value of y. The
most appropriate link function is the one which produces the minimum residual deviance.

13.3.1 Canonical link functions

The canonical link functions are the default options employed when a particular error structure is specified in
the family directive in the model formula. Omission of a link directive means that the following settings
are used:

Error Canonical link

normal identity
poisson log
binomial logit
Gamma reciprocal

You should try to memorize these canonical links and to understand why each is appropriate to its associated
error distribution. Note that only gamma errors have a capital initial letter in R.

Choosing between using a link function (e.g. log link) and transforming the response variable (i.e. having
log(y) as the response variable rather than y) takes a certain amount of experience. The decision is usually based
on whether the variance is constant on the original scale of measurement. If the variance was constant, you
would use a link function. If the variance increased with the mean, you would be more likely to log-transform
the response.

13.4 Proportion data and binomial errors

Proportion data have three important properties that affect the way the data should be analysed:

� the data are strictly bounded;

� the variance is non-constant;

� errors are non-normal.

You cannot have a proportion greater than 1 or less than 0. This has obvious implications for the kinds of
functions fitted and for the distributions of residuals around these fitted functions. For example, it makes no
sense to have a linear model with a negative slope for proportion data because there would come a point, with
high levels of the x variable, where negative proportions would be predicted. Likewise, it makes no sense to
have a linear model with a positive slope for proportion data because there would come a point, with high
levels of the x variable, where proportions greater than 1 would be predicted.

With proportion data, if the probability of success is 0, then there will be no successes in repeated trials,
all the data will be zeros and hence the variance will be zero. Likewise, if the probability of success is 1,

GENERALIZED LINEAR MODELS 561

then there will be as many successes as there are trials, and again the variance will be 0. For proportion data,
therefore, the variance increases with the mean up to a maximum (when the probability of success is 0.5) then
declines again towards zero as the mean approaches 1. The variance–mean relationship is humped, rather
than constant as assumed in the classical tests.

The final assumption is that the errors (the differences between the data and the fitted values estimated by
the model) are normally distributed. This cannot be so in proportional data because the data are bounded above
and below: no matter how big a negative residual might be at high predicted values, ŷ, a positive residual
cannot be bigger than 1 − ŷ. Similarly, no matter how big a positive residual might be for low predicted
values ŷ, a negative residual cannot be greater than ŷ (because you cannot have negative proportions). This
means that confidence intervals must be asymmetric whenever ŷ takes large values (close to 1) or small values
(close to 0).

All these issues (boundedness, non-constant variance, non-normal errors) are dealt with by using a gener-
alized linear model with a binomial error structure. It could not be simpler to deal with this. Instead of using
a linear model and writing

lm(y~x)

we use a generalized linear model and specify that the error family is binomial like this:

glm(y~x,family=binomial)

That’s all there is to it. In fact, it is even easier than that, because we do not even need to write family=:

glm(y~x,binomial)

13.5 Count data and Poisson errors

Count data have a number of properties that need to be considered during modelling:

� Count data are bounded below (you cannot have counts less than zero).

� Variance is not constant (variance increases with the mean).

� Errors are not normally distributed.

� The fact that the data are whole numbers (integers) affects the error distribution.

It is very simple to deal with all these issues by using a GLM. All we need to write is

glm(y~x,poisson)

and the model is fitted with a log link (to ensure that the fitted values are bounded below) and Poisson errors
(to account for the non-normality). If, having fitted the minimal adequate model, we discover that the residual
deviance is greater than the residual degrees of freedom, then we have contravened an important assumption
of the model. This is called overdispersion, and we can correct for it by specifying quasipoisson errors
like this:

glm(y~x,quasipoisson)

It is important to understand that Poisson errors are an assumption, not a fact. Many of the count data you
encounter in practice will have variance–mean ratios greater than 1, and in these cases you will need to correct
for overdispersion.

562 THE R BOOK

13.6 Deviance: Measuring the goodness of fit of a GLM

The fitted values produced by the model are most unlikely to match the values of the data perfectly. The size
of the discrepancy between the model and the data is a measure of the inadequacy of the model; a small
discrepancy may be tolerable, but a large one will not be. The measure of discrepancy in a GLM to assess the
goodness of fit of the model to the data is called the deviance. Deviance is defined as –2 times the difference
in log-likelihood between the current model and a saturated model (i.e. a model that fits the data perfectly).
Because the latter does not depend on the parameters of the model, minimizing the deviance is the same as
maximizing the likelihood.

Deviance is estimated in different ways for different families withinglm (Table 13.1). Numerical examples
of the calculation of deviance for differentglm families are given in Chapters 14 (Poisson errors), 16 (binomial
errors), and 27 (gamma errors). Where there is grouping structure in the data, leading to spatial or temporal
pseudoreplication, you will want to use generalized mixed models (lmer) with one of these error families
(p. 710).

13.7 Quasi-likelihood

The precise relationship between the variance and the mean is well established for all the GLM error families
(Table 13.1). In some cases, however, we may be uneasy about specifying the precise form of the error
distribution. We may know, for example, that it is not normal (e.g. because the variance increases with the
mean), but we do not know with any confidence that the underlying distribution is, say, negative binomial.

There is a very simple and robust alternative known as quasi-likelihood, introduced by Wedderburn (1974),
which uses only the most elementary information about the response variable, namely the variance–mean
relationship (see Taylor’s power law, p. 262). It is extraordinary that this information alone is often sufficient
to retain close to the full efficiency of maximum likelihood estimators.

Suppose that we know that the response is always positive, the data are invariably skew to the right, and
the variance increases with the mean. This does not enable us to specify a particular distribution (e.g. it
does not discriminate between Poisson or negative binomial errors), and hence we cannot use techniques like
maximum likelihood or likelihood ratio tests. Quasi-likelihood frees us from the need to specify a particular

Table 13.1. Deviance formulae for different GLM families, where y is observed data, ȳ the mean value of y, µ are the
fitted values of y from the maximum likelihood model, and n is the binomial denominator in a binomial GLM.

Family (error structure) Deviance Variance function

gaussian
∑

(y − ȳ)2 1

poisson 2
∑

y ln(y/µ) − (y − µ) µ

binomial 2
∑

y ln(y/µ) + (n − y) ln(n − y)/(n − µ)
µ(n − µ)

n

Gamma 2
∑

(y − µ)/y − ln(y/µ) µ2

inverse.gaussian
∑

(y − µ)2/(µ2 y) µ3

GENERALIZED LINEAR MODELS 563

distribution, and requires us only to specify the mean–variance relationship up to a proportionality constant,
which can be estimated from the data:

var(yi) ∝ ν(µi).

An example of the principle at work compares quasi-likelihood with maximum likelihood in the case of
Poisson errors (full details are in McCulloch and Searle, 2001). This means that the maximum quasi-likelihood
(MQL) equations for β are

∂

∂β

∑
(yi log µi − µi) = 0,

exactly the same as the maximum likelihood equation for the Poisson (see p. 314). In this case, MQL and
maximum likelihood give precisely the same estimates, and MQL would therefore be fully efficient. Other
cases do not work out quite as elegantly as this, but MQL estimates are generally robust and efficient. Their
great virtue is the simplicity of the central premise that var(yi) ∝ ν(µi), and the lack of the need to assume a
specific distributional form.

If we take the original GLM density function and find the derivative of the log-likelihood with respect to
the mean,

∂li

∂µi
= ∂li

∂θi

∂θi

∂µi
= yi b′(θi)

ai (φ)

1

b′′(θi)
= yi − µi

var(yi)

(where the primes denote differentiation), the quasi-likelihood Q is defined as

Q(y, µ) =
µ∫

y

y − µ

φV (µ)
dµ.

Here, the denominator is the variance of y, var(y) = φV (µ), where φ is called the scale parameter (or the
dispersion parameter) and V (µ) is the variance function. We need only specify the two moments (mean µ

and variance φV (µ)) and maximize Q to find the MQL estimates of the parameters.
The scale parameter is estimated from the generalized Pearson statistic rather than from the residual

deviance (as when correcting for overdispersion with Poisson or binomial errors):

φ̂ =
∑

i {(yi − µ̂i)/Vi (µ̂i)}
n − p

= χ2

n − p
.

For normally distributed data, the residual sum of squares SSE is chi-squared distributed.

13.8 The quasi family of models

Instead of transforming the response variable in different ways, we can analyse the untransformed response
variable but specify different link functions. This has the considerable advantage that the models are compa-
rable by anova because they all have the same response variable. Recall that if we transform the response

564 THE R BOOK

variable in different ways (e.g. log in one case, cube root in another case) then we cannot compare the resulting
models using anova. Here are the timber data that we analysed on p. 401:

data<-read.table("c:\\temp\\timber.txt",header=T)
attach(data)
head(data)

volume girth height
1 0.7458 66.23 21.0
2 0.7458 68.62 19.5
3 0.7386 70.22 18.9
4 1.1875 83.79 21.6
5 1.3613 85.38 24.3
6 1.4265 86.18 24.9

Models 1 and 2 fit the same explanatory variables,

volume~girth+height

but use a different link function in each case: model1 uses the cube root link (this is specified as
power(0.333)), model2 uses the log link. These different link functions are fitted in glm using
the quasi family (this stands for ‘quasi-likelihood’):

model1 <- glm(volume~girth+height,family=quasi(link=power(0.3333)))
model2 <- glm(volume~girth+height,family=quasi(link=log))

The beauty of this approach is that we can now compare the models using anova because they both have
the same response variable (i.e. untransformed volume):

anova(model1,model2)

Analysis of Deviance Table

Model 1: volume ~ girth + height
Model 2: volume ~ girth + height
Resid. Df Resid. Dev Df Deviance

1 28 0.96554
2 28 1.42912 0 -0.46357

Both models have the same number of degrees of freedom, so there is no F test to do, but the anova function
shows us the difference in deviance between the two models. The cube root link is better than the log link
(residual deviance of 0.966 compared with 1.429). Note that the anova table gives us no indication of
how the two models differ from one another in their link functions, so we need to be very careful in our
book-keeping. We should assess the constancy-of-variance and normality-of-errors assumptions of the two
models:

plot(model1)

GENERALIZED LINEAR MODELS 565

0.
4

0.
2

0.
0

–0
.2

–0
.4

1.81.61.41.21.0 –2 –1 0 1 2

–2
–1

0
1

2

Residuals vs Fitted Normal Q-Q

Theoretical QuantilesPredicted values

R
es

id
ua

ls

S
td

. d
ev

ia
nc

e
re

si
d.

26

18

28

18

28 26

plot(model2)

0.
4

0.
2

0.
0

–0
.2

–0
.4

1.51.00.50.0 –2 –1 0 1 2

–2
–1

0
1

2

Residuals vs Fitted Normal Q-Q

Theoretical QuantilesPredicted values

R
es

id
ua

ls

S
td

. d
ev

ia
nc

e
re

si
d.

26

31

28

31

17
26

It is clear that model1much better behaved in terms of its assumptions as well as having the lower deviance.

13.9 Generalized additive models

Generalized additive models (GAMs) are like GLMs in that they can have different error structures and
different link functions to deal with count data or proportion data. What makes them different is that the
shape of the relationship between y and a continuous variable x is not specified by some explicit functional
form. Instead, non-parametric smoothers are used to describe the relationship. This is especially useful for
relationships that exhibit complicated shapes, such as hump-shaped curves (see p. 675). The model looks
just like a GLM, except that the relationships we want to be smoothed are prefixed by s: thus, if we had a
three-variable multiple regression (with three continuous explanatory variables w, x and z) on count data and
we wanted to smooth all three explanatory variables, we would write:

model <- gam(y~s(w)+s(x)+s(z),poisson)

These are hierarchical models, so the inclusion of a high-order interaction (such as A:B:C) necessarily implies
the inclusion of all the lower-order terms marginal to it (i.e. A:B, A:C and B:C, along with main effects for A,
B and C).

566 THE R BOOK

Because the models are nested, the more complicated model will necessarily explain at least as much of
the variation as the simpler model (and usually more). What we want to know is whether the extra parameters
in the more complex model are justified in the sense that they add significantly to the models explanatory
power. If they do not, then parsimony requires that we accept the simpler model.

13.10 Offsets

An offset is a component of the linear predictor that is known in advance (typically from theory, or from a
mechanistic model of the process) and, because it is known, requires no parameter to be estimated from the
data. For linear models with normal errors an offset is redundant, since you can simply subtract the offset from
the values of the response variable, and work with the residuals instead of the y values. For GLMs, however,
it is necessary to specify the offset; this is held constant while other explanatory variables are evaluated. Here
is an example from the famous timber data.

The background theory is simple. We assume the logs are roughly cylindrical (i.e. that taper is negligible
between the bottom and the top of the log). Then volume, v, in relation to girth, g, and height, h, is given by

v = g2

4π
h.

Taking logarithms gives

log(v) = log

(
1

4π

)
+ 2 log(g) + log(h).

We would expect, therefore, that if we did a multiple linear regression of log(v) on log(h) and log(g) we
would get estimated slopes of 1.0 for log(h) and 2.0 for log(g). Let us see what happens:

data <- read.delim("c:\\temp\\timber.txt")
attach(data)
names(data)

[1] "volume" "girth" "height"

The girths are in centimetres but all the other data are in metres, so we convert the girths to metres at the
outset:

girth <- girth/100

Now fit the model:

model1 <- glm(log(volume)~log(girth)+log(height))
summary(model1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.89938 0.63767 -4.547 9.56e-05 ***
log(girth) 1.98267 0.07503 26.426 < 2e-16 ***
log(height) 1.11714 0.20448 5.463 7.83e-06 ***

The estimates are reasonably close to expectation (1.117 14 rather than 1.0 for log(h) and 1.982 67 rather
than 2.0 for log(g)).

GENERALIZED LINEAR MODELS 567

Now we shall use offset to specify the theoretical response of log(v) to log(h), i.e. a slope of 1.0 rather
than the estimated 1.117 14:

model2 <- glm(log(volume)~log(girth)+offset(log(height)))
summary(model2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.53419 0.01457 -174.0 <2e-16 ***
log(girth) 2.00545 0.06287 31.9 <2e-16 ***

Naturally the residual deviance is greater, but only by a very small amount. The AIC has gone down from
–62.697 to –64.336, so the model simplification was justified.

Let us try including the theoretical slope (2.0) for log(g) in the offset as well:

model3 <- glm(log(volume)~1+offset(log(height)+2*log(girth)))
summary(model3)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.53403 0.01421 -178.3 <2e-16 ***

(Dispersion parameter for gaussian family taken to be 0.006259057)

Null deviance: 0.18777 on 30 degrees of freedom
Residual deviance: 0.18777 on 30 degrees of freedom
AIC: -66.328

Again, the residual deviance is only marginally greater, and AIC is smaller, so the simplification is justified.
What about the intercept? If our theoretical model of cylindrical logs is correct then the intercept should be

log(1/(4*pi))

[1] -2.531024

This is almost exactly the same as the intercept estimated by GLM in model3, so we are justified in putting
the entire model in the offset and informing GLM not to estimate an intercept from the data (y ~ -1):

model4 <- glm(log(volume) ~ offset(log(1/(4*pi))+log(height)+2*log(girth))-1)
summary(model4)

Call:
glm(formula = log(volume) ~ offset(log(1/(4 * pi)) + log(height) +

2 * log(girth)) - 1)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.171513 -0.050378 -0.006514 0.063356 0.133482

No Coefficients

(Dispersion parameter for gaussian family taken to be 0.006066198)

Null deviance: 0.18805 on 31 degrees of freedom
Residual deviance: 0.18805 on 31 degrees of freedom
AIC: -68.282

568 THE R BOOK

This is a rather curious model with no estimated parameters, but it has a residual deviance of just 0.188 05
(compared with model1, where all three parameters were estimated from the data, which had a deviance
of 0.185 55). Because we were saving one degree of freedom with each step in the procedure, AIC became
smaller with each step, justifying all of the model simplifications. These logs are cylindrical, not tapered as
alleged in some analyses of these data.

13.11 Residuals

After fitting a model to data, we should investigate how well the model describes the data. In particular, we
should look to see if there are any systematic trends in the goodness of fit. For example, does the goodness of
fit increase with the observation number, or is it a function of one or more of the explanatory variables? We
can work with the raw residuals:

residuals = response variable − fitted values.

With normal errors, the identity link, equal weights and the default scale factor, the raw and standardized
residuals are identical. The standardized residuals are required to correct for the fact that with non-normal
errors (like count or proportion data) we violate the fundamental assumption that the variance is constant (p.
490) because the residuals tend to change in size as the mean value the response variable changes.

For Poisson errors, the standardized residuals are

y − fitted values√
fitted values

.

For binomial errors they are

y − fitted values√
fitted values×

[
1 − fitted values

binomial denominator

]

where the binomial denominator is the size of the sample from which the y successes were drawn. For gamma
errors they are

y − fitted values

fitted values
.

In general, we can use several kinds of standardized residuals

standardized residuals = (y − fitted values)

√
prior weight

scale parameter × variance funcion
.

where the prior weights are optionally specified by you to give individual data points more or less influence
(see p. 463), the scale parameter measures the degree of overdispersion (see p. 592), and the variance

GENERALIZED LINEAR MODELS 569

function describes the relationship between the variance and the mean (e.g. equality for a Poisson process;
see Table 13.1).

13.11.1 Misspecified error structure

A common problem with real data is that the variance increases with the mean. The assumption in previous
chapters has been of normal errors with constant variance at all values of the response variable. For continuous
measurement data with non-constant errors we can specify a generalized linear model with gamma errors.
These are discussed in Chapter 27 along with worked examples, and we need only note at this stage that they
assume a constant coefficient of variation (see Taylor’s power law, p. 262).

With count data, we often assume Poisson errors, but the data may exhibit overdispersion (see below
and p. 592), so that the variance is actually greater than the mean (rather than equal to it, as assumed by
the Poisson distribution). An important distribution for describing aggregated data is the negative binomial.
While R has no direct facility for specifying negative binomial errors, we can use quasi-likelihood to specify
the variance function in a GLM with family = quasi (see p. 564).

13.11.2 Misspecified link function

Although each error structure has a canonical link function associated with it (see p. 560), it is quite possible
that a different link function would give a better fit for a particular model specification. For example, in a
GLM with normal errors we might try a log link or a reciprocal link using quasi to improve the fit (for
examples, see p. 563). Similarly, with binomial errors we might try a complementary log-log link instead of
the default logit link function (see p. 651).

An alternative to changing the link function is to transform the values of the response variable. The
important point to remember here is that changing the scale of y will alter the error structure and this will
make it difficult to compare one model with another. Thus, if you take logs of y and carry out regression with
normal errors, then you will be assuming that the errors in y were lognormally distributed. This may well be a
sound assumption, but a bias will have been introduced if the errors really were additive on the original scale
of measurement. If, for example, theory suggests that there is an exponential relationship between y and x,

y = aebx ,

then it would be reasonable to suppose that the log of y would be linearly related to x:

ln y = ln a + bx .

Now suppose that the errors ε in y are multiplicative with a mean of 0 and constant variance, like this:

y = aebx (1 + ε)

Then they will also have a mean of 0 in the transformed model. But if the errors are additive,

y = aebx + ε,

then the error variance in the transformed model will depend upon the expected value of y. In a case like this,
it is much better to analyse the untransformed response variable and to employ the log link function, because
this retains the assumption of additive errors.

570 THE R BOOK

When both the error distribution and functional form of the relationship are unknown, there is no single
specific rationale for choosing any given transformation in preference to another. The aim is pragmatic,
namely to find a transformation that gives:

� constant error variance;

� approximately normal errors;

� additivity;

� a linear relationship between the response variables and the explanatory variables;

� straightforward scientific interpretation.

The choice is bound to be a compromise and, as such, is best resolved by quantitative comparison of the
deviance produced under different model forms (see p. 270).

13.12 Overdispersion

Overdispersion is the polite statistician’s version of Murphy’s law: if something can go wrong, it will.
Overdispersion can be a problem when working with Poisson or binomial errors, and tends to occur because
you have not measured one or more of the factors that turn out to be important. It may also result from
the underlying distribution being non-Poisson or non-binomial. This means that the probability you are
attempting to model is not constant within each cell, but behaves like a random variable. This, in turn, means
that the residual deviance is inflated. In the worst case, all the predictor variables you have measured may turn
out to be unimportant so that you have no information at all on any of the genuinely important predictors. In
this case, the minimal adequate model is just the overall mean, and all your ‘explanatory’ variables provide
no extra information.

The techniques of dealing with overdispersion are discussed in detail when we consider Poisson errors
(p. 592) and binomial errors (p. 664). Here it is sufficient to point out that there are two general techniques
available to us:

� use F tests with an empirical scale parameter instead of chi-squared;

� use quasi-likelihood to specify a more appropriate variance function.

It is important, however, to stress that these techniques introduce another level of uncertainty into the analysis.
Overdispersion happens for real, scientifically important reasons, and these reasons may throw doubt upon
our ability to interpret the experiment in an unbiased way. It means that something we did not measure turned
out to have an important impact on the results. If we did not measure this factor, then we have no confidence
that our randomization process took care of it properly and we may have introduced an important bias into
the results.

13.13 Bootstrapping a GLM

There are two contrasting ways of using bootstrapping with statistical models:

� Fit the model lots of times by selecting cases for inclusion at random with replacement, so that some data
points are excluded and others appear more than once in any particular model fit.

GENERALIZED LINEAR MODELS 571

� Fit the model once and calculate the residuals and the fitted values, then shuffle the residuals lots of times
and add them to the fitted values in different permutations, fitting the model to the many different data
sets.

In both cases, you will obtain a distribution of parameter values for the model from which you can derive
confidence intervals. Here we use the timber data (a multiple regression with two continuous explanatory
variables, introduced on p. 566) to illustrate the two approaches (see p. 349 for an introduction to the
bootstrap).

library(boot)

The GLM model with its parameter estimates and standard errors is on p. 566. The hard part of using boot
is writing the sampling function correctly. It has at least two arguments: the first must be the data on which
the resampling is to be carried out (in this case, the whole dataframe called trees), and the second must
be the index (the randomized subscripts showing which data values are to be used in a given realization;
some cases will be repeated, others will be omitted). Inside the function we create a new dataframe based on
the randomly selected indices, then fit the model to this new data set. Finally, the function should return the
coefficients of the model. Here is the ‘statistic’ function in full:

model.boot <- function(data,indices){
sub.data <- data[indices,]
model <- glm(log(volume)~log(girth)+log(height),data=sub.data)
coef(model) }

Now run the bootstrap for 2000 resamplings using the boot function:

glim.boot <- boot(trees,model.boot,R=2000)
glim.boot

ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = trees, statistic = model.boot, R = 2000)
Bootstrap Statistics:

original bias std. error
t1* -2.899379 -0.046089511 0.6452832
t2* 1.982665 -0.001071986 0.0603073
t3* 1.117138 0.014858487 0.2082793

There is very little bias in any of the three parameters, and the bootstrapped standard errors are close to their
parametric estimates.

The other way of bootstrapping with a model, mentioned above, is to include all the original cases (rather
than a subset of them with repeats, as we did above) but to randomize the residuals that are associated with
each case. The raw residuals are y - fitted(model) and it is these values that are shuffled and allocated
to cases at random. The model is then refitted and the coefficients extracted. The new y values, therefore, are

fitted(model)+ sample(y - fitted(model))

Here is a home-made version:

model <- glm(log(volume)~log(girth)+log(height))
yhat <- fitted(model)
residuals <- log(volume) - yhat

572 THE R BOOK

coefs <- numeric(6000)
coefs <- matrix(coefs,nrow=2000)

We shuffle the residuals 2000 times to get different vectors of y values:

for (i in 1:2000){
y <- yhat+sample(residuals)
boot.model <- glm(y~log(girth)+log(height))
coefs[i,] <- coef(boot.model) }
Extracting the means and standard deviations of the coefficients using apply gives:

apply(coefs,2,mean)

[1] -2.898088 1.982693 1.116724

apply(coefs,2,sd)

[1] 0.60223281 0.07231379 0.19317107

These values are close to the estimates obtained by other means earlier. Next, we use the packaged boot
function to carry out the same method. The preliminaries involve fitting the GLM and extracting the fitted
values (yhat), which will be the same each time, and the residuals (resids), which will be independently
shuffled each time:

model <- glm(log(volume)~log(girth)+log(height))
yhat <- fitted(model)
resids <- resid(model)

Now make a dataframe that will be fed into the bootstrap, containing the residuals to be shuffled, along
with the two explanatory variables:

res.data <- data.frame(resids,girth,height)

Now for the only hard part: writing the ‘statistic’ function to do the work within boot. The first argument
is always the dataframe and the second is always the index i, which controls the shuffling:

bf <- function(res.data,i) {
y <- yhat+res.data[i,1]
nd <- data.frame(y,girth,height)
model <- glm(y~log(girth)+log(height),data=nd)
coef(model) }

Inside the function we create a particular vector of y values by adding the shuffled residuals
res.data[i,1] to the fitted values, then put this vector, y, along with the explanatory variables into
a new dataframe nd that will be different each time GLM the is fitted. The function returns the three coeffi-
cients from the particular fitted model, coef(model); the coefficients are the ‘statistics’ of the bootstrap,
hence the name of the function.

Finally, because we want to shuffle the residuals rather than sample them with replacement, we specify
sim="permutation" in the call to the boot function:

boot(res.data, bf, R=2000, sim="permutation")

DATA PERMUTATION
Call:

GENERALIZED LINEAR MODELS 573

boot(data = res.data, statistic = bf, R = 2000, sim = "permutation")
Bootstrap Statistics :

original bias std. error
t1* -2.899379 0.014278399 0.62166875
t2* 1.982665 0.001601178 0.07064475
t3* 1.117138 -0.004586529 0.19938992

Again, the parameter values and their standard errors are very close to those obtained by our other boot-
strapping methods. Here are the confidence intervals for the three parameters, specified by index=1 for the
intercept, index=2 for the slope of the regression on log(g) and index=3 for the slope of the regression
on log(h):

perms <- boot(res.data, bf, R=2000, sim="permutation")
boot.ci(perms,index=1)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates
CALL :
boot.ci(boot.out = perms, index = 1)
Intervals :
Level Normal Basic
95% (-4.117, -1.692) (-4.118, -1.680)
Level Percentile BCa
95% (-4.119, -1.681) (-4.302, -1.784)
Calculations and Intervals on Original Scale
There were 32 warnings (use warnings() to see them)

boot.ci(perms,index=2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates
CALL :
boot.ci(boot.out = perms, index = 2)
Intervals :
Level Normal Basic
95% (1.837, 2.125) (1.836, 2.124)
Level Percentile BCa
95% (1.841, 2.129) (1.827, 2.115)
Calculations and Intervals on Original Scale
There were 32 warnings (use warnings() to see them)
boot.ci(perms,index=3)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates
CALL :
boot.ci(boot.out = perms, index = 3)
Intervals :
Level Normal Basic
95% (0.730, 1.508) (0.726, 1.509)
Level Percentile BCa
95% (0.725, 1.508) (0.758, 1.566)

574 THE R BOOK

Calculations and Intervals on Original Scale
There were 32 warnings (use warnings() to see them)

You can see that all the intervals for the slope on log(g) include the value 2.0 and all the intervals for the
slope on log(h) include 1.0, consistent with the theoretical expectation that the logs are cylindrical, and that
the volume of usable timber can be estimated from the length of the log and the square of its girth.

13.14 Binomial GLM with ordered categorical variables

Ordered factors are introduced on p. 443. Here is a worked example using the built-in oesophageal can-
cer dataframe called esoph. The response is the number of cancer cases and the matching number of
non-cancer patients (controls), with three categorical explanatory variables: age group (agegp, with six
ordered levels each spanning 10 years), alcohol consumption (alcgp, with four ordered levels) and to-
bacco consumption (tobgp, with four ordered levels). There are too few cases to fit a full factorial of
agegp*tobgpacco*alcgp, so we start with a maximal model that has a main effect for age and an
interaction between tobacco and alcohol:

model1 <- glm(cbind(ncases,ncontrols)~agegp+alcgp*tobgp,binomial,data=esoph)
summary(model1)

Call:
glm(formula = cbind(ncases, ncontrols) ~ agegp + alcgp * tobgp,

family = binomial, data = esoph)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.8895 -0.5317 -0.2304 0.2704 2.0724

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.75985 0.19822 -8.878 < 2e-16 ***
agegp.L 2.99646 0.65386 4.583 4.59e-06 ***
agegp.Q -1.35008 0.59197 -2.281 0.02257 *
agegp.C 0.13436 0.45056 0.298 0.76554
agegpˆ4 0.07098 0.30974 0.229 0.81875
agegpˆ5 -0.21347 0.19627 -1.088 0.27676
alcgp.L 1.37077 0.21136 6.485 8.85e-11 ***
alcgp.Q -0.14913 0.19645 -0.759 0.44778
alcgp.C 0.22823 0.18203 1.254 0.20990
tobgp.L 0.63846 0.19710 3.239 0.00120 **
tobgp.Q 0.02922 0.19617 0.149 0.88159
tobgp.C 0.15607 0.19796 0.788 0.43044
alcgp.L:tobgp.L -0.70426 0.41128 -1.712 0.08683 .
alcgp.Q:tobgp.L 0.12948 0.38889 0.333 0.73917
alcgp.C:tobgp.L -0.16118 0.36697 -0.439 0.66051
alcgp.L:tobgp.Q 0.12225 0.42044 0.291 0.77122
alcgp.Q:tobgp.Q -0.44527 0.39224 -1.135 0.25629
alcgp.C:tobgp.Q 0.04843 0.36211 0.134 0.89361
alcgp.L:tobgp.C -0.29187 0.42939 -0.680 0.49668

GENERALIZED LINEAR MODELS 575

alcgp.Q:tobgp.C -0.05205 0.39538 -0.132 0.89527
alcgp.C:tobgp.C -0.13905 0.35754 -0.389 0.69734

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 227.241 on 87 degrees of freedom
Residual deviance: 47.484 on 67 degrees of freedom
AIC: 236.96

Number of Fisher Scoring iterations: 6

The good news is that there is no overdispersion (residual deviance 47.484 on 67 d.f.) so we can begin
model simplification. You may not be familiar with the way that ordered factor levels are displayed in the
summary.glm table: L means ‘linear’ testing whether there is evidence for a straight-line relationship with
the response variable (look at the sign to see if it is increasing or decreasing); Q means ‘quadratic’ testing
whether there is evidence for curvature in the response (look at the sign to see if the curvature is U-shaped
or upside-down U-shaped); C means ‘cubic’ testing whether there is evidence for a point of inflection in
the relationship; and numbers like ˆ4, ˆ5 (etc) test for higher-order polynomial effects, like local maxima
and local minima in the relationship. We shall not interpret the output until we have finished with model
simplification. There is no indication of an interaction between smoking and drinking, so we remove this:

model2<-glm(cbind(ncases,ncontrols)~agegp+alcgp+tobgp,binomial,data=esoph)
anova(model1,model2)

Analysis of Deviance Table

Model 1: cbind(ncases, ncontrols) ~ agegp + alcgp * tobgp
Model 2: cbind(ncases, ncontrols) ~ agegp + alcgp + tobgp
Resid. Df Resid. Dev Df Deviance

1 67 47.484
2 76 53.973 -9 -6.4895

The critical value of chi-squared with 9 d.f. is 16.92:

qchisq(.95,9)

[1] 16.91898

Our relatively low value of 6.4895 therefore indicates that this model simplification was justified. What
next?

summary(model2)

Call:
glm(formula = cbind(ncases, ncontrols) ~ agegp + alcgp + tobgp,

family = binomial, data = esoph)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6891 -0.5618 -0.2168 0.2314 2.0642

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.77997 0.19796 -8.992 < 2e-16 ***
agegp.L 3.00534 0.65215 4.608 4.06e-06 ***

576 THE R BOOK

agegp.Q -1.33787 0.59111 -2.263 0.02362 *
agegp.C 0.15307 0.44854 0.341 0.73291
agegpˆ4 0.06410 0.30881 0.208 0.83556
agegpˆ5 -0.19363 0.19537 -0.991 0.32164
alcgp.L 1.49185 0.19935 7.484 7.23e-14 ***
alcgp.Q -0.22663 0.17952 -1.262 0.20680
alcgp.C 0.25463 0.15906 1.601 0.10942
tobgp.L 0.59448 0.19422 3.061 0.00221 **
tobgp.Q 0.06537 0.18811 0.347 0.72823
tobgp.C 0.15679 0.18658 0.840 0.40071

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 227.241 on 87 degrees of freedom
Residual deviance: 53.973 on 76 degrees of freedom
AIC: 225.45

Number of Fisher Scoring iterations: 6

There is strong evidence for linear effects of alcohol and tobacco consumption, with a quadratic (decelerating
positive) effect of age on cancer risk. The quadratic and higher-order polynomials are not significant for either
tobacco or alcohol, so this is a good stage at which to consider factor-level reduction.

Let us look at the data as proportions:

p<-ncases/(ncases+ncontrols)

Now plot this against the three explanatory variables

par(mfrow=c(2,2))
plot(p~alcgp,col="red")
plot(p~tobgp,col="blue")
plot(p~agegp,col="green")

0.
5

0.
4

0.
3

0.
2

0.
1

0.
0

0.
5

0.
4

0.
3

0.
2

0.
1

0.
0

0.
5

0.
4

0.
3

0.
2

0.
1

0.
0

0–39g/day 0–9g/day80–119 120+

0–39g/day 40–119 120+

10–19 20–29 30+

25–34 45–54 65–74

alcgp

agegp

tobgp

0
–1

–2
–3

–4

p p

p

GENERALIZED LINEAR MODELS 577

The plot suggests some sensible model simplifications (ignore the grey barplot for the moment). The alcohol
response (red) looks to be linear, so we leave that as it is. The tobacco response (blue) could probably be
simplified by combining the two intermediate smoking rates:

tob2<-tobgp
levels(tob2)[2:3]<-"10-30"
levels(tob2)

[1] "0-9g/day" "10-30" "30+"

The age effect is most complicated, but a three-level factor might work just as well with a young group (under
age 45), an intermediate group (age between 45 and 54) and an older group (55+):

age2<-agegp
levels(age2)[4:6]<-"55+"
levels(age2)[1:2]<-"under45"
levels(age2)

[1] "under45" "45-54" "55+"

We can start the modelling again with these new ordered factors:

model3 <- glm(cbind(ncases,ncontrols)~age2*alcgp*tob2,binomial,data=esoph)
model4<-step(model3)
model5<-update(model4,~.-age2:alcgp)
anova(model4,model5,test="Chi")

Analysis of Deviance Table

Model 1: cbind(ncases, ncontrols) ~ age2 + alcgp + tob2 + age2:alcgp
Model 2: cbind(ncases, ncontrols) ~ age2 + alcgp + tob2
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 74 44.677
2 80 60.388 -6 -15.711 0.01539 *

At this stage, the ordering of the factors is more of a hindrance than a help, because it is so hard to interpret
the significant age by alcohol interaction. Let us also get rid of the apparently problematical alcohol group
(look at the size of its standard error in summary(model4)),

levels(alc3)[2:3]<-"40-119"
alc3<-factor(alc3,ordered=FALSE)
levels(alc3)

1] "0-39g/day" "40-119" "120+"

and unorder the other two factors for good measure:

age3<-factor(age2,ordered=FALSE)
tob3<-factor(tob2,ordered=FALSE)

We start the modelling again with a full factorial of the three unordered factors, then use step to simplify it:

model6 <- glm(cbind(ncases,ncontrols)~age3*alc3*tob3,binomial,data=esoph)
model7<-step(model6)
summary(model7)

578 THE R BOOK

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.1929 1.0066 -5.159 2.49e-07 ***
age345-54 0.6559 1.4217 0.461 0.644562
age355+ 3.0628 1.0248 2.989 0.002801 **
alc340-119 1.3133 1.1248 1.168 0.242985
alc3120+ 3.8060 1.1313 3.364 0.000767 ***
tob310-30 0.3293 0.1798 1.832 0.066980 .
tob330+ 0.7837 0.2715 2.887 0.003893 **
age345-54:alc340-119 1.6374 1.5225 1.075 0.282189
age355+:alc340-119 -0.2974 1.1504 -0.259 0.795984
age345-54:alc3120+ 0.2203 1.5625 0.141 0.887895
age355+:alc3120+ -2.2843 1.1780 -1.939 0.052494 .

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 227.241 on 87 degrees of freedom
Residual deviance: 48.559 on 77 degrees of freedom
AIC: 218.04

Number of Fisher Scoring iterations: 6

The interaction between age and alcohol is not obviously significant, so we test it by deletion:

model8<-update(model7,~.-age3:alc3)
anova(model7,model8,test="Chi")

Analysis of Deviance Table

Model 1: cbind(ncases, ncontrols) ~ age3 + alc3 + tob3 + age3:alc3
Model 2: cbind(ncases, ncontrols) ~ age3 + alc3 + tob3
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 77 48.559
2 81 62.468 -4 -13.909 0.00759 **

It turns out that the interaction is highly significant (p < 0.008). To visualize the interaction, we plot the
predicted means of the logits by age and alcohol consumption:

barplot(tapply(predict(model7),list(age3,alc3),mean),beside=T)

This is the grey-scale barplot in the lower right-hand panel, above. The young and middle-aged subjects both
have low rates of cancer at low alcohol consumption rates, but the middle-aged subjects have proportionally
higher rates at intermediate alcohol consumption and, by the highest rates of alcohol consumption, the two
older age classes have equally high rates of cancer. Again, the interaction has become clear only after model
simplification.

14
Count Data

Up to this point, the response variables have all been continuous measurements such as weights, heights,
lengths, temperatures and growth rates. A great deal of the data collected by scientists, medical statisticians
and economists, however, is in the form of counts (whole numbers or integers). The number of individuals
who died, the number of firms going bankrupt, the number of days of frost, the number of red blood cells
on a microscope slide, and the number of craters in a sector of lunar landscape are all potentially interesting
variables for study. With count data, the number 0 often appears as a value of the response variable (consider,
for example, what a 0 would mean in the context of the examples just listed). In this chapter we deal with
data on frequencies, where we count how many times something happened, but we have no way of knowing
how often it did not happen (e.g. lightning strikes, bankruptcies, deaths, births). This is in contrast to count
data on proportions, where we know the number doing a particular thing, but also the number not doing
that thing (e.g. the proportion dying, sex ratios at birth, proportions of different groups responding to a
questionnaire).

Straightforward linear regression methods (assuming constant variance, normal errors) are not appropriate
for count data for four main reasons:

� The linear model might lead to the prediction of negative counts.

� The variance of the response variable is likely to increase with the mean.

� The errors will not be normally distributed.

� Zeros are difficult to handle in transformations.

In R, count data are handled very elegantly in a generalized linear model by specifyingfamily=poisson
which sets errors = Poisson and link = log (see p. 558). The log link ensures that all the fitted
values are positive, while the Poisson errors take account of the fact that the data are integer and have variances
that are equal to their means.

14.1 A regression with Poisson errors

The following example has a count (the number of reported cancer cases per year per clinic) as the response
variable, and a single continuous explanatory variable (the distance from a nuclear plant to the clinic in
kilometres). The question is whether or not proximity to the reactor affects the number of cancer cases.

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

580 THE R BOOK

clusters<-read.table("c:\\temp\\clusters.txt",header=T)
attach(clusters)
names(clusters)

[1] "Cancers" "Distance"

There seems to be a downward trend in cancer cases with distance (see the plot below). But is the trend
significant? We do a regression of cases against distance, using a GLM with Poisson errors:

model1<-glm(Cancers~Distance,poisson)
summary(model1)

Call:
glm(formula = Cancers ~ Distance, family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5504 -1.3491 -1.1553 0.3877 3.1304

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.186865 0.188728 0.990 0.3221
Distance -0.006138 0.003667 -1.674 0.0941 .

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 149.48 on 93 degrees of freedom
Residual deviance: 146.64 on 92 degrees of freedom
AIC: 262.41

The trend does not look to be significant, but look at the residual deviance. Under Poisson errors, it is assumed
that residual deviance is equal to the residual degrees of freedom (because the variance and the mean should
be the same). The fact that residual deviance is larger than residual degrees of freedom indicates that we
have overdispersion (extra, unexplained variation in the response). We compensate for the overdispersion by
refitting the model using quasi-Poisson rather than Poisson errors:

model2<-glm(Cancers~Distance,quasipoisson)
summary(model2)

Call:
glm(formula = Cancers ~ Distance, family = quasipoisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5504 -1.3491 -1.1553 0.3877 3.1304

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.186865 0.235364 0.794 0.429
Distance -0.006138 0.004573 -1.342 0.183

(Dispersion parameter for quasipoisson family taken to be 1.555271)

Null deviance: 149.48 on 93 degrees of freedom
Residual deviance: 146.64 on 92 degrees of freedom

COUNT DATA 581

Compensating for the overdispersion has increased the p value to 0.183, so there is no compelling evidence
to support the existence of a trend in cancer incidence with distance from the nuclear plant. To draw the fitted
model through the data, you need to understand that the GLM with Poisson errors uses the log link, so the
parameter estimates and the predictions from the model (the ‘linear predictor’) are in logs, and need to be
antilogged exp(yv) before the (non-significant) fitted line is drawn.

xv <- seq(0,100)
yv <- predict(model2,list(Distance=xv))

plot(Cancers~Distance,pch=21,col="red",bg="orange")
lines(xv,exp(yv),col="blue")

6
5

4
3

2
1

0

0 20 40 60 80 100

Distance

C
an

ce
rs

Note how odd the scatterplot looks when we have count data as the response. The values of the response
variable are in rows (because they are all whole numbers), and there are data points all over the place (not
clustered around the regression line, as they were in previous regressions).

14.2 Analysis of deviance with count data

In our next example the response variable is a count of infected blood cells per square millimetre on microscope
slides prepared from randomly selected individuals. The explanatory variables are smoker (logical: yes or
no), age (three levels: under 20, 21 to 59, 60 and over), sex (male or female) and body mass score (three
levels: normal, overweight, obese).

count<-read.table("c:\\temp\\cellcounts.txt",header=T)
attach(count)
names(count)

[1] "cells" "smoker" "age" "sex" "weight"

582 THE R BOOK

It is always a good idea with count data to get a feel for the overall frequency distribution of counts using
table:

table(cells)

cells
0 1 2 3 4 5 6 7

314 75 50 32 18 13 7 2

Most subjects (314 of them) showed no damaged cells, and the maximum of 7 was observed in just two
patients.

We begin data inspection by tabulating the main effect means:

tapply(cells,smoker,mean)

FALSE TRUE
0.5478723 1.9111111

tapply(cells,weight,mean)

normal obese over
0.5833333 1.2814371 0.9357143

tapply(cells,sex,mean)

female male
0.6584507 1.2202643

tapply(cells,age,mean)

mid old young
0.8676471 0.7835821 1.2710280

It looks as if smokers had a substantially higher mean count than non-smokers, overweight and obese subjects
had higher counts than those of normal weight, males had a higher count than females, and young subjects
had a higher mean count than middle-aged or older people. We need to test whether any of these differences
are significant and to assess whether there are interactions between the explanatory variables.

model1<-glm(cells~smoker*sex*age*weight,poisson)
summary(model1)

Null deviance: 1052.95 on 510 degrees of freedom
Residual deviance: 736.33 on 477 degrees of freedom
AIC: 1318
Number of Fisher Scoring iterations: 6

The residual deviance (736.33) is much greater than the residual degrees of freedom (477), indicating
overdispersion, so before interpreting any of the effects, we should refit the model using quasi-Poisson errors:

model2<-glm(cells~smoker*sex*age*weight,quasipoisson)
summary(model2)

Coefficients: (2 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.8329 0.4307 -1.934 0.0537 .
smokerTRUE -0.1787 0.8057 -0.222 0.8246

COUNT DATA 583

sexmale 0.1823 0.5831 0.313 0.7547
ageold -0.1830 0.5233 -0.350 0.7267
ageyoung 0.1398 0.6712 0.208 0.8351
weightobese 1.2384 0.8965 1.381 0.1678
weightover -0.5534 1.4284 -0.387 0.6986
smokerTRUE:sexmale 0.8293 0.9630 0.861 0.3896
smokerTRUE:ageold -1.7227 2.4243 -0.711 0.4777
smokerTRUE:ageyoung 1.1232 1.0584 1.061 0.2892
sexmale:ageold -0.2650 0.9445 -0.281 0.7791
sexmale:ageyoung -0.2776 0.9879 -0.281 0.7788
smokerTRUE:weightobese 3.5689 1.9053 1.873 0.0617 .
smokerTRUE:weightover 2.2581 1.8524 1.219 0.2234
sexmale:weightobese -1.1583 1.0493 -1.104 0.2702
sexmale:weightover 0.7985 1.5256 0.523 0.6009
ageold:weightobese -0.9280 0.9687 -0.958 0.3386
ageyoung:weightobese -1.2384 1.7098 -0.724 0.4693
ageold:weightover 1.0013 1.4776 0.678 0.4983
ageyoung:weightover 0.5534 1.7980 0.308 0.7584
smokerTRUE:sexmale:ageold 1.8342 2.1827 0.840 0.4011
smokerTRUE:sexmale:ageyoung -0.8249 1.3558 -0.608 0.5432
smokerTRUE:sexmale:weightobese -2.2379 1.7788 -1.258 0.2090
smokerTRUE:sexmale:weightover -2.5033 2.1120 -1.185 0.2365
smokerTRUE:ageold:weightobese 0.8298 3.3269 0.249 0.8031
smokerTRUE:ageyoung:weightobese -2.2108 1.0865 -2.035 0.0424 *
smokerTRUE:ageold:weightover 1.1275 1.6897 0.667 0.5049
smokerTRUE:ageyoung:weightover -1.6156 2.2168 -0.729 0.4665
sexmale:ageold:weightobese 2.2210 1.3318 1.668 0.0960 .
sexmale:ageyoung:weightobese 2.5346 1.9488 1.301 0.1940
sexmale:ageold:weightover -1.0641 1.9650 -0.542 0.5884
sexmale:ageyoung:weightover -1.1087 2.1234 -0.522 0.6018
smokerTRUE:sexmale:ageold:weightobese -1.6169 3.0561 -0.529 0.5970
smokerTRUE:sexmale:ageyoung:weightobese NA NA NA NA
smokerTRUE:sexmale:ageold:weightover NA NA NA NA
smokerTRUE:sexmale:ageyoung:weightover 2.4160 2.6846 0.900 0.3686

(Dispersion parameter for quasipoisson family taken to be 1.854815)

Null deviance: 1052.95 on 510 degrees of freedom
Residual deviance: 736.33 on 477 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

The first thing to understand is what the NAs in the coefficients table mean. This is a sign of aliasing:
there is no information in the dataframe from which to estimate this particular interaction term. There is an
apparently significant three-way interaction between smoking, age and obesity (p = 0.0424). There were too
few subjects to assess the four-way interaction (see the NAs in the table), so we begin model simplification
by removing the highest-order interaction:

model3<-update(model2, ~. -smoker:sex:age:weight)
summary(model3)

584 THE R BOOK

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.897195 0.436988 -2.053 0.04060 *
smokerTRUE 0.030263 0.735386 0.041 0.96719
sexmale 0.297192 0.570009 0.521 0.60234
ageold -0.118726 0.528165 -0.225 0.82224
ageyoung 0.289259 0.639618 0.452 0.65130
weightobese 1.302660 0.898307 1.450 0.14768
weightover -0.005052 1.027198 -0.005 0.99608
smokerTRUE:sexmale 0.527345 0.867294 0.608 0.54345
smokerTRUE:ageold -0.566584 1.700590 -0.333 0.73915
smokerTRUE:ageyoung 0.757297 0.939746 0.806 0.42073
sexmale:ageold -0.379884 0.935365 -0.406 0.68483
sexmale:ageyoung -0.610703 0.920969 -0.663 0.50758
smokerTRUE:weightobese 3.924591 1.475476 2.660 0.00808 **
smokerTRUE:weightover 1.192159 1.259888 0.946 0.34450
sexmale:weightobese -1.273202 1.040701 -1.223 0.22178
sexmale:weightover 0.154097 1.098781 0.140 0.88853
ageold:weightobese -0.993355 0.970484 -1.024 0.30656
ageyoung:weightobese -1.346913 1.459454 -0.923 0.35653
ageold:weightover 0.454217 1.090260 0.417 0.67715
ageyoung:weightover -0.483955 1.300866 -0.372 0.71004
smokerTRUE:sexmale:ageold 0.771116 1.451512 0.531 0.59549
smokerTRUE:sexmale:ageyoung -0.210317 1.140384 -0.184 0.85376
smokerTRUE:sexmale:weightobese -2.500668 1.369941 -1.825 0.06857 .
smokerTRUE:sexmale:weightover -1.110222 1.217531 -0.912 0.36230
smokerTRUE:ageold:weightobese -0.882951 1.187871 -0.743 0.45766
smokerTRUE:ageyoung:weightobese -2.453315 1.047067 -2.343 0.01954 *
smokerTRUE:ageold:weightover 0.823018 1.528233 0.539 0.59045
smokerTRUE:ageyoung:weightover 0.040795 1.223664 0.033 0.97342
sexmale:ageold:weightobese 2.338617 1.324805 1.765 0.07816 .
sexmale:ageyoung:weightobese 2.822032 1.623849 1.738 0.08288 .
sexmale:ageold:weightover -0.442066 1.545451 -0.286 0.77497
sexmale:ageyoung:weightover 0.357807 1.291194 0.277 0.78181

(Dispersion parameter for quasipoisson family taken to be 1.847991)

Null deviance: 1052.95 on 510 degrees of freedom
Residual deviance: 737.87 on 479 degrees of freedom

The remaining model simplification is left to you as an exercise. Your minimal adequate model might look
something like this:

newWt<-weight
levels(newWt)[c(1,3)]<-"not"
summary(model15)

Call:
glm(formula = cells ~ smoker + newWt + smoker:newWt, family = quasipoisson)

COUNT DATA 585

Deviance Residuals:
Min 1Q Median 3Q Max

-2.6511 -1.1742 -0.9709 0.5217 3.8157

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.7522 0.1279 -5.883 7.31e-09 ***
smokerTRUE 1.0523 0.1740 6.048 2.84e-09 ***
newWtobese 0.3803 0.1924 1.977 0.0486 *
smokerTRUE:newWtobese 0.5764 0.2573 2.240 0.0255 *

This model shows a highly significant interaction between smoking and weight in determining the number
of damaged cells, but there are no convincing effects of age or sex. In a case like this, it is useful to produce
a summary table to highlight the effects:

tapply(cells,list(smoker,weight),mean)

normal obese over
FALSE 0.4184397 0.6893939 0.5436893
TRUE 0.9523810 3.5142857 2.0270270

The interaction arises because the response to smoking depends on body weight: smoking adds a mean of
about 0.5 damaged cells for individuals with normal body weight, but adds 2.8 damaged cells for obese
people.

It is straightforward to turn the summary table into a barplot:

barplot(tapply(cells,list(smoker,weight),mean),col=c("wheat2","wheat4"),
beside=T,ylab="damaged cells",xlab="body mass")

legend(1.2,3.4,c("non-smoker","smoker"),fill=c("wheat2","wheat4"))

normal

body mass

obese over

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

da
m

ag
ed

 c
el

ls

non-smoker
smoker

586 THE R BOOK

14.3 Analysis of covariance with count data

In this next example the response is a count of the number of plant species on plots that have different biomass
(a continuous explanatory variable) and different soil pH (a categorical variable with three levels: high, mid
and low).

species<-read.table("c:\\temp\\species.txt",header=T)
attach(species)
names(species)
[1] "pH" "Biomass" "Species"
plot(Biomass,Species,type="n")
spp<-split(Species,pH)
bio<-split(Biomass,pH)
points(bio[[1]],spp[[1]],pch=16,col="red")
points(bio[[2]],spp[[2]],pch=16,col="green")
points(bio[[3]],spp[[3]],pch=16,col="blue")
legend(locator(1),legend=c("high","low","medium"),

pch=c(16,16,16),col=c("red","green","blue"),title="pH")

0 2 4 6 8 10
Biomass

S
pe

ci
es

10
20

30
40

pH
high
low
medium

Note the use of split to create separate lists of plotting coordinates for the three levels of pH. It is clear that
species declines with biomass, and that soil pH has a big effect on species, but does the slope of the relationship
between species and biomass depend on pH? The lines look reasonably parallel from the scatterplot. This is
a question about interaction effects, and in analysis of covariance, interaction effects are about differences
between slopes:

model1<-glm(Species~ Biomass*pH,poisson)
summary(model1)

COUNT DATA 587

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.76812 0.06153 61.240 < 2e-16 ***
Biomass -0.10713 0.01249 -8.577 < 2e-16 ***
pHlow -0.81557 0.10284 -7.931 2.18e-15 ***
pHmid -0.33146 0.09217 -3.596 0.000323 ***
Biomass:pHlow -0.15503 0.04003 -3.873 0.000108 ***
Biomass:pHmid -0.03189 0.02308 -1.382 0.166954

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 452.346 on 89 degrees of freedom
Residual deviance: 83.201 on 84 degrees of freedom
AIC: 514.39

There is no evidence of overdispersion (residual deviance = 83.2 on 89 d.f.). We can test for the need for
different slopes by comparing this maximal model (with six parameters) with a simpler model with different
intercepts but the same slope (four parameters):

model2<-glm(Species~Biomass+pH,poisson)
anova(model1,model2,test="Chi")

Analysis of Deviance Table

Model 1: Species ~ Biomass * pH
Model 2: Species ~ Biomass + pH
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 84 83.201
2 86 99.242 -2 -16.04 0.0003288 ***

The slopes are very significantly different (p = 0.000 33), so we are justified in retaining the more complicated
model1.

Finally, we draw the fitted lines through the scatterplot, using predict We need to specify values for all
of the explanatory variables in the model, namely biomass (a continuous variable) and soil pH (a three-level
categorical variable). First, the continuous variable for the x axis:

xv<-seq(0,10,0.1)

Next we need to provide a vector of factor levels for soil pH and this vector must be exactly the same length
as the vector of x values (length(xv) = 101 in this case). It is simplest to use the factor levels for pH in
the order in which they appear:

levels(pH)

[1] "high" "low" "mid"

We shall draw the line for the high pH first, remembering to antilog the predictions:

pHs<-factor(rep("high",101))
xv<-seq(0,10,0.1)

yv<-predict(model1,list(Biomass=xv,pH=pHs))

588 THE R BOOK

lines(xv,exp(yv),col="red")
pHs<-factor(rep("low",101))

yv<-predict(model1,list(Biomass=xv,pH=pHs))

lines(xv,exp(yv),col="green")
pHs<-factor(rep("mid",101))

yv<-predict(model1,list(Biomass=xv,pH=pHs))
lines(xv,exp(yv),col="blue")

You could make the R code more elegant by writing a function to plot any number of lines, depending on the
number of levels of the factor (three levels of pH in this case).

0 2 4 6 8 10
Biomass

S
pe

ci
es

10
20

30
40 pH

high
low
medium

14.4 Frequency distributions

Here are data on the numbers of bankruptcies in 80 districts. The question is whether there is any evidence
that some districts show greater than expected numbers of cases. What would we expect? Of course we should
expect some variation, but how much, exactly? Well that depends on our model of the process. Perhaps the
simplest model is that absolutely nothing is going on, and that every singly bankruptcy case is absolutely
independent of every other. That leads to the prediction that the numbers of cases per district will follow a
Poisson process, a distribution in which the variance is equal to the mean (see p. 314). Let us see what the
data show.

case.book<-read.table("c:\\temp\\cases.txt",header=T)
attach(case.book)
names(case.book)

[1] "cases"

COUNT DATA 589

First we need to count the numbers of districts with no cases, one case, two cases, and so on. The R
function that does this is called table:

frequencies<-table(cases)
frequencies

cases
0 1 2 3 4 5 6 7 8 9 10
34 14 10 7 4 5 2 1 1 1 1

There were no cases at all in 34 districts, but one district had 10 cases. A good way to proceed is to compare
our distribution (called frequencies) with the distribution that would be observed if the data really did
come from a Poisson distribution as postulated by our model. We can use the R function dpois to compute
the probability density of each of the 11 frequencies from 0 to 10 (we multiply the probability produced by
dpois by the total sample of 80 to obtain the predicted frequencies). We need to calculate the mean number
of cases per district – this is the Poisson distribution’s only parameter:

mean(cases)

[1] 1.775

The plan is to draw two distributions side by side, so we set up the plotting region:

windows(7,4)
par(mfrow=c(1,2))

Now we plot the observed frequencies in the left-hand panel and the predicted, Poisson frequencies in the
right-hand panel:

barplot(frequencies,ylab="Frequency",xlab="Cases",col="green4", main="Cases")
barplot(dpois(0:10,1.775)*80,names=as.character(0:10),

ylab="Frequency",xlab="Cases",col="green3",main="Poisson")

30
20

10
5

0

Fr
eq

ue
nc

y

20
15

10
5

0

Fr
eq

ue
nc

y

0 2 4 6 8 10 0 2 4 6 8 10

Cases Cases

Cases Poisson

The distributions are very different: the mode of the observed data is 0, but the mode of the Poisson distribution
with the same mean is 1; the observed data contained examples of 8, 9 and 10 cases, but these would be
highly unlikely under a Poisson process. We would say that the observed data are highly aggregated – they

590 THE R BOOK

have a variance–mean ratio much greater than 1 (the Poisson distribution, of course, has a variance–mean
ratio of 1):

var(cases)/mean(cases)

[1] 2.99483

So, if the data are not Poisson distributed, how are they distributed? A good candidate distribution where
the variance–mean ratio is this big (around 3.0) is the negative binomial distribution (see p. 315). This is a
two-parameter distribution: the first parameter is the mean number of cases (1.775), and the second is called
the clumping parameter, k (measuring the degree of aggregation in the data: small values of k (k < 1) show
high aggregation, while large values of k (k > 5) show randomness). We can get an approximate estimate of
the magnitude of k from

k̂ = x̄2

s2 − x̄
.

We can work this out:

mean(cases)ˆ2/(var(cases)-mean(cases))

[1] 0.8898003

so we shall work with k = 0.89. How do we compute the expected frequencies? The density function for
the negative binomial distribution is dnbinom and it has three arguments: the frequency for which we want
the probability (in our case 0 to 10), the number of successes (in our case 1), and the mean number of cases
(1.775); we multiply by the total number of cases (80) to obtain the expected frequencies

exp<-dnbinom(0:10,1,mu=1.775)*80

We will draw a single figure in which the observed and expected frequencies are drawn side by side. The
trick is to produce a new vector (called both) which is twice as long as the observed and expected frequency
vectors (2 × 11 = 22). Then, we put the observed frequencies in the odd-numbered elements (using modulo
2 to calculate the values of the subscripts), and the expected frequencies in the even-numbered elements:

both<-numeric(22)
both[1:22 %% 2 != 0]<-frequencies
both[1:22 %% 2 == 0]<-exp

On the x axis, we intend to label only every other bar:

labels<-character(22)
labels[1:22 %% 2 == 0]<-as.character(0:10)

Now we can produce the barplot, using dark red for the observed frequencies and dark blue for the negative
binomial frequencies (‘expected’):

windows(7,7)
barplot(both,col=rep(c("red4","blue4"),11),names=labels,ylab="Frequency",

xlab="Cases")

COUNT DATA 591

30
25

20
15

10
5

0

0 1 2 3 4 5 6 7 8 9 10
Cases

Fr
eq

ue
nc

y

observed
expected

Now we need to add a legend to show what the two colours of the bars mean. You can locate the legend by trial
and error, or by left-clicking the mouse when the cursor is in the correct position, using the locator(1)
function to fix the lop left corner of the legend box (see p. 194):

legend(locator(1),c("observed","expected") ,fill=c("red4","blue4"))

The fit to the negative binomial distribution is much better than it was with the Poisson distribution, especially
in the right-hand tail. But the observed data have too many 0s and too few 1s to be represented perfectly by
a negative binomial distribution. If you want to quantify the lack of fit between the observed and expected
frequency distributions, you can calculate Pearson’s chi-squared

∑
(O − E)2/E based on the number of

comparisons that have expected frequency greater than 4:

exp

[1] 28.8288288 18.4400617 11.7949944 7.5445460 4.8257907 3.0867670

[7] 1.9744185 1.2629164 0.8078114 0.5167082 0.3305070

If we accumulate the rightmost six frequencies, then all the values of exp will be bigger than 4. The degrees
of freedom are then given by the number of legitimate comparisons (6) minus the number of parameters
estimated from the data (2 in our case) minus 1 (for contingency, because the total frequency must add up to
80), i.e. 3 d.f. We reduce the lengths of the observed and expected vectors, creating an upper interval called
5+ for ‘5 or more’:

cs<-factor(0:10)
levels(cs)[6:11]<-"5+"
levels(cs)

[1] "0" "1" "2" "3" "4" "5+"

Now make the two shorter vectors of and ef (for ‘observed’ and ‘expected frequencies’):

ef<-as.vector(tapply(exp,cs,sum))

of<-as.vector(tapply(frequencies,cs,sum))

592 THE R BOOK

Finally, we can compute the chi-squared value measuring the difference between the observed and expected
frequency distributions, and use 1-pchisq to work out the p value:

sum((of-ef)ˆ2/ef)

[1] 3.594145

1-pchisq(3.594145,3)

[1] 0.3087555

We conclude that a negative binomial description of these data is reasonable (the observed and expected
distributions are not significantly different, p = 0.31).

14.5 Overdispersion in log-linear models

The data analysed in this section refer to children from Walgett, New South Wales, Australia, who were
classified by sex (with two levels: male (M) and female (F)), culture (also with two levels: Aboriginal (A)
and not (N)), age group (with four levels: F0 (primary), F1, F2 and F3) and learner status (with two levels:
average (AL) and slow (SL)). The response variable is a count of the number of days absent from school in a
particular school year (Days).

library(MASS)
data(quine)
attach(quine)
names(quine)

[1] "Eth" "Sex" "Age" "Lrn" "Days"

We begin with a log-linear model for the counts, and fit a maximal model containing all the factors and all
their interactions:

model1<-glm(Days~Eth*Sex*Age*Lrn,poisson)
summary(model1)

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2073.5 on 145 degrees of freedom
Residual deviance: 1173.9 on 118 degrees of freedom
AIC: 1818.4

Next, we check the residual deviance to see if there is overdispersion. Recall that the residual deviance should
be equal to the residual degrees of freedom if the Poisson errors assumption is appropriate. Here it is 1173.9
on 118 d.f., indicating overdispersion by a factor of roughly 10. This is much too big to ignore, so before
embarking on model simplification we try a different approach, using quasi-Poisson errors to account for the
overdispersion:

model2<-glm(Days~Eth*Sex*Age*Lrn,quasipoisson)
summary(model2)

Call:
glm(formula = Days ~ Eth * Sex * Age * Lrn, family = quasipoisson)

COUNT DATA 593

Deviance Residuals:
Min 1Q Median 3Q Max

-7.3872 -2.5129 -0.4205 1.7424 6.6783

Coefficients: (4 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0564 0.3346 9.135 2.22e-15 ***
EthN -0.1386 0.4904 -0.283 0.7780
SexM -0.4914 0.5082 -0.967 0.3356
AgeF1 -0.6227 0.5281 -1.179 0.2407
AgeF2 -2.3632 2.2066 -1.071 0.2864
AgeF3 -0.3784 0.4296 -0.881 0.3802
LrnSL -1.9577 1.8120 -1.080 0.2822
EthN:SexM -0.7524 0.8272 -0.910 0.3649
EthN:AgeF1 0.1029 0.7427 0.139 0.8901
EthN:AgeF2 -0.5546 3.8094 -0.146 0.8845
EthN:AgeF3 0.0633 0.6194 0.102 0.9188
SexM:AgeF1 0.4092 0.9372 0.437 0.6632
SexM:AgeF2 3.1098 2.2506 1.382 0.1696
SexM:AgeF3 1.1145 0.6173 1.806 0.0735 .
EthN:LrnSL 2.2588 1.9474 1.160 0.2484
SexM:LrnSL 1.5900 1.9448 0.818 0.4152
AgeF1:LrnSL 2.6421 1.8688 1.414 0.1601
AgeF2:LrnSL 4.8585 2.8413 1.710 0.0899 .
AgeF3:LrnSL NA NA NA NA
EthN:SexM:AgeF1 -0.3105 1.6756 -0.185 0.8533
EthN:SexM:AgeF2 0.3469 3.8928 0.089 0.9291
EthN:SexM:AgeF3 0.8329 0.9629 0.865 0.3888
EthN:SexM:LrnSL -0.1639 2.1666 -0.076 0.9398
EthN:AgeF1:LrnSL -3.5493 2.0712 -1.714 0.0892 .
EthN:AgeF2:LrnSL -3.3315 4.2739 -0.779 0.4373
EthN:AgeF3:LrnSL NA NA NA NA
SexM:AgeF1:LrnSL -2.4285 2.1901 -1.109 0.2697
SexM:AgeF2:LrnSL -4.1914 2.9472 -1.422 0.1576
SexM:AgeF3:LrnSL NA NA NA NA
EthN:SexM:AgeF1:LrnSL 2.1711 2.7527 0.789 0.4319
EthN:SexM:AgeF2:LrnSL 2.1029 4.4203 0.476 0.6351
EthN:SexM:AgeF3:LrnSL NA NA NA NA

(Dispersion parameter for quasipoisson family taken to be 9.514226)

Null deviance: 2073.5 on 145 degrees of freedom
Residual deviance: 1173.9 on 118 degrees of freedom

Notice that certain interactions are aliased (shown by rows with NA). These have not been estimated because
of missing factor-level combinations, as indicated by the zeros in the following table:

ftable(table(Eth,Sex,Age,Lrn))

594 THE R BOOK

Eth Sex Age AL SL
A F F0 4 1

F1 5 10
F2 1 8
F3 9 0

M F0 5 3
F1 2 3
F2 7 4
F3 7 0

N F F0 4 1
F1 6 11
F2 1 9
F3 10 0

M F0 6 3
F1 2 7
F2 7 3
F3 7 0

Most of this occurs because slow learners never get into Form 3.
Unfortunately, Akaike’s information citerion is not defined for this model, so we cannot automate the

simplification using step or stepAIC. We need to do the model simplification longhand, therefore,
remembering to do F tests (not chi-squared) because of the overdispersion. Here is the last step of the
simplification before obtaining the minimal adequate model. Do we need the age by learning interaction?

model4<-update(model3,~. - Age:Lrn)
anova(model3,model4,test="F")

Analysis of Deviance Table
Resid. Df Res.Dev Df Deviance F Pr(> -F)

1 127 1280.52
2 129 1301.08 -2 -20.56 1.0306 0.3598

No, we do not. So here is the minimal adequate model with quasi-Poisson errors:

summary(model4)
Coefficients:

Estimate Std. Error t value Pr(> | t |)
(Intercept) 2.83161 0.30489 9.287 4.98e-16 ***
EthN 0.09821 0.38631 0.254 0.79973
SexM -0.56268 0.38877 -1.447 0.15023
AgeF1 -0.20878 0.35933 -0.581 0.56223
AgeF2 0.16223 0.37481 0.433 0.66586
AgeF3 -0.25584 0.37855 -0.676 0.50036
LrnSL 0.50311 0.30798 1.634 0.10479
EthN:SexM -0.24554 0.37347 -0.657 0.51206
EthN:AgeF1 -0.68742 0.46823 -1.468 0.14450
EthN:AgeF2 -1.07361 0.42449 -2.529 0.01264 *
EthN:AgeF3 0.01879 0.42914 0.044 0.96513
EthN:LrnSL -0.65154 0.45857 -1.421 0.15778
SexM:AgeF1 -0.26358 0.50673 -0.520 0.60385

COUNT DATA 595

SexM:AgeF2 0.94531 0.43530 2.172 0.03171 *
SexM:AgeF3 1.35285 0.42933 3.151 0.00202 **
SexM:LrnSL -0.29570 0.41144 -0.719 0.47363
EthN:SexM:LrnSL 1.60463 0.57112 2.810 0.00573 **

(Dispersion parameter for quasipoisson family taken to be 9.833426)
Null deviance: 2073.5 on 145 degrees of freedom

Residual deviance: 1301.1 on 129 degrees of freedom

There is a very significant three-way interaction between ethnic origin, sex and learning difficulty; non-
Aboriginal slow-learning boys were more likely to be absent than non-Aboriginal boys without learning
difficulties.

ftable(tapply(Days,list(Eth,Sex,Lrn),mean))

AL SL

A F 14.47368 27.36842
M 22.28571 20.20000

N F 13.14286 7.00000
M 13.36364 17.00000

Note, however, that among the pupils without learning difficulties it is the Aboriginal boys who miss the most
days, and it is Aboriginal girls with learning difficulties who have the highest rate of absenteeism overall.

14.6 Negative binomial errors

Instead of using quasi-Poisson errors (as above) we could use a negative binomial model. This is in the MASS
library and involves the function glm.nb. The modelling proceeds in exactly the same way as with a typical
GLM:

model.nb1<-glm.nb(Days~Eth*Sex*Age*Lrn)
summary(model.nb1,cor=F)

Call:
glm.nb(formula = Days ~ Eth * Sex * Age * Lrn,

init.theta = 1.92836014510701, link = log)

(Dispersion parameter for Negative Binomial(1.9284) family taken to be 1)

Null deviance: 272.29 on 145 degrees of freedom
Residual deviance: 167.45 on 118 degrees of freedom
AIC: 1097.3

Theta: 1.928
Std. Err.: 0.269

2 x log-likelihood: -1039.324

The output is slightly different than for a conventional GLM: you see the estimated negative binomial
parameter (here called Theta, but known to us as k, and equal to 1.928) and its approximate standard error
(0.269) and 2 times the log-likelihood (contrast this with the residual deviance from our quasi-Poisson model,
which was 1301.1; see above). Note that the residual deviance in the negative binomial model (167.45) is not
2 times the log-likelihood.

596 THE R BOOK

An advantage of the negative binomial model over the quasi-Poisson is that we can automate the model
simplification with stepAIC:

model.nb2<-stepAIC(model.nb1)
summary(model.nb2,cor=F)

Coefficients: (3 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.1693 0.3411 9.292 < 2e-16 ***
EthN -0.3560 0.4210 -0.845 0.397848
SexM -0.6920 0.4138 -1.672 0.094459 .
AgeF1 -0.6405 0.4638 -1.381 0.167329
AgeF2 -2.4576 0.8675 -2.833 0.004612 **
AgeF3 -0.5880 0.3973 -1.480 0.138885
LrnSL -1.0264 0.7378 -1.391 0.164179
EthN:SexM -0.3562 0.3854 -0.924 0.355364
EthN:AgeF1 0.1500 0.5644 0.266 0.790400
EthN:AgeF2 -0.3833 0.5640 -0.680 0.496746
EthN:AgeF3 0.4719 0.4542 1.039 0.298824
SexM:AgeF1 0.2985 0.6047 0.494 0.621597
SexM:AgeF2 3.2904 0.8941 3.680 0.000233 ***
SexM:AgeF3 1.5412 0.4548 3.389 0.000702 ***
EthN:LrnSL 0.9651 0.7753 1.245 0.213255
SexM:LrnSL 0.5457 0.8013 0.681 0.495873
AgeF1:LrnSL 1.6231 0.8222 1.974 0.048373 *
AgeF2:LrnSL 3.8321 1.1054 3.467 0.000527 ***
AgeF3:LrnSL NA NA NA NA
EthN:SexM:LrnSL 1.3578 0.5914 2.296 0.021684 *
EthN:AgeF1:LrnSL -2.1013 0.8728 -2.408 0.016058 *
EthN:AgeF2:LrnSL -1.8260 0.8774 -2.081 0.037426 *
EthN:AgeF3:LrnSL NA NA NA NA
SexM:AgeF1:LrnSL -1.1086 0.9409 -1.178 0.238671
SexM:AgeF2:LrnSL -2.8800 1.1550 -2.493 0.012651 *
SexM:AgeF3:LrnSL NA NA NA NA

(Dispersion parameter for Negative Binomial(1.8653) family taken to be 1)

Null deviance: 265.27 on 145 degrees of freedom
Residual deviance: 167.44 on 123 degrees of freedom
AIC: 1091.4

Number of Fisher Scoring iterations: 1

Theta: 1.865
Std. Err.: 0.258

2 x log-likelihood: -1043.409

We take up the model simplification where AIC leaves off:

model.nb3<-update(model.nb2,~. - Sex:Age:Lrn)
anova(model.nb3,model.nb2)

COUNT DATA 597

Likelihood ratio tests of Negative Binomial Models

theta Resid. df 2 x log-lik. Test df LR stat. Pr(Chi)
1 1.789507 125 -1049.111
2 1.865343 123 -1043.409 1 vs 2 2 5.701942 0.05778817

Because we are so ruthless, the marginally significant sex by age by learning interaction does not survive a
deletion test (p = 0.058), nor do ethnic origin by age by learning (p = 0.115) nor age by learning (p = 0.150):

model.nb4<-update(model.nb3,~. - Eth:Age:Lrn)
anova(model.nb3,model.nb4)

Likelihood ratio tests of Negative Binomial Models

Resid. df 2 x log-lik. Test df LR stat. Pr(Chi)
1 127 -1053.431
2 125 -1049.111 1 vs 2 2 4.320086 0.1153202

model.nb5<-update(model.nb4,~. - Age:Lrn)
anova(model.nb4,model.nb5)

Likelihood ratio tests of Negative Binomial Models

2 x log-lik. Test df LR stat. Pr(Chi)
1 -1057.219
2 -1053.431 1 vs 2 2 3.787823 0.150482

summary(model.nb5,cor=F)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.91755 0.32626 8.942 < 2e-16 ***
EthN 0.05666 0.39515 0.143 0.88598
SexM -0.55047 0.39014 -1.411 0.15825
AgeF1 -0.32379 0.38373 -0.844 0.39878
AgeF2 -0.06383 0.42046 -0.152 0.87933
AgeF3 -0.34854 0.39128 -0.891 0.37305
LrnSL 0.57697 0.33382 1.728 0.08392 .
EthN:SexM -0.41608 0.37491 -1.110 0.26708
EthN:AgeF1 -0.56613 0.43162 -1.312 0.18965
EthN:AgeF2 -0.89577 0.42950 -2.086 0.03702 *
EthN:AgeF3 0.08467 0.44010 0.192 0.84744
SexM:AgeF1 -0.08459 0.45324 -0.187 0.85195
SexM:AgeF2 1.13752 0.45192 2.517 0.01183 *
SexM:AgeF3 1.43124 0.44365 3.226 0.00126 **
EthN:LrnSL -0.78724 0.43058 -1.828 0.06750 .
SexM:LrnSL -0.47437 0.45908 -1.033 0.30147
EthN:SexM:LrnSL 1.75289 0.58341 3.005 0.00266 **

(Dispersion parameter for Negative Binomial(1.6786) family taken to be 1)

Null deviance: 243.98 on 145 degrees of freedom
Residual deviance: 168.03 on 129 degrees of freedom
AIC: 1093.2

598 THE R BOOK

Number of Fisher Scoring iterations: 1

Theta: 1.679
Std. Err.: 0.227

2 x log-likelihood: -1057.219

The minimal adequate model, therefore, contains exactly the same terms as we obtained with quasi-Poisson,
but the significance levels are higher (e.g. the three-way interaction has p = 0.002 66 compared with p =
0.005 73). We need to plot the model to check assumptions:

plot(model.nb5)

The variance is well behaved and the residuals are close to normally distributed. The combination of low p
values and the ability to use stepAIC makes glm.nb a very useful modelling function for count data such
as these.

15
Count Data in Tables

The analysis of count data with categorical explanatory variables comes under the heading of contingency
tables. The general method of analysis for contingency tables involves log-linear modelling, but the simplest
contingency tables are often analysed by Pearson’s chi-squared, Fisher’s exact test or tests of binomial
proportions (see p. 365).

15.1 A two-class table of counts

You count 47 animals and find that 29 of them are males and 18 are females. Are these data sufficiently
male-biased to reject the null hypothesis of an even sex ratio? With an even sex ratio the expected number of
males and females is 47/2 = 23.5. The simplest test is Pearson’s chi-squared in which we calculate

χ2 =
∑ (observed − expected)2

expected
.

Substituting our observed and expected values, we get

χ2 = (29 − 23.5)2 + (18 − 23.5)2

23.5
= 2.574 468.

This is less than the critical value for chi-squared with 1 degree of freedom (3.841), so we conclude that the
sex ratio is not significantly different from 50:50. There is a built-in function for this:

observed <- c(29,18)
chisq.test(observed)

Chi-squared test for given probabilities
data: observed
X-squared = 2.5745, df = 1, p-value = 0.1086

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

600 THE R BOOK

which indicates that a sex ratio of this size or more extreme than this would arise by chance alone about 10%
of the time (p = 0.1086). Alternatively, you could carry out a binomial test:

binom.test(observed)

Exact binomial test
data: observed
number of successes = 29, number of trials = 47, p-value = 0.1439
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.4637994 0.7549318
sample estimates:
probability of success

0.6170213

You can see that the 95% confidence interval for the proportion of males (0.46, 0.75) contains 0.5, so there
is no evidence against a 50:50 sex ratio in these data. The p value is slightly different than it was in the
chi-squared test, but the interpretation is exactly the same.

15.2 Sample size for count data

How many samples do you need before you have any chance of detecting a significant departure from
equality? Suppose you are studying sex ratios in families. How many female children would you need to
discover in a family with no males before you could conclude that a father’s sex-determining chromosomes
were behaving oddly? What about five females and no males? This is not significant because it can occur by
chance when p = 0.5 with probability 2 × 0.55 = 0.0625 (note that this is a two-tailed test). The smallest
sample that gives significance is a family of six children, all of one sex: 2 × 0.56 = 0.031 25. How big would
the sample need to be to reject the null hypothesis if one of the children was of the opposite sex? One out
of seven is no good, as is one out of eight. You need a sample of at least nine children before you can reject
the hypothesis that p = 0.5 when one of the children is of the opposite sex. Here is that calculation using the
binom.test function:

binom.test(1,9)

Exact binomial test
data: 1 and 9
number of successes = 1, number of trials = 9, p-value = 0.03906
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.002809137 0.482496515
sample estimates:
probability of success

0.1111111

15.3 A four-class table of counts

Mendel’s famous peas produced 315 yellow round phenotypes, 101 yellow wrinkled, 108 green round and
32 green wrinkled offspring (a total of 556):

observed <- c(315,101,108,32)

COUNT DATA IN TABLES 601

The question is whether these data depart significantly from the 9:3:3:1 expectation that would arise if there
were two independent 3:1 segregations (with round seeds dominating wrinkled, and yellow seeds dominating
green).

Because the null hypothesis is not a 25:25:25:25 distribution across the four categories, we need to calculate
the expected frequencies explicitly:

(expected <- 556*c(9,3,3,1)/16)

312.75 104.25 104.25 34.75

The expected frequencies are very close to the observed frequencies in Mendel’s experiment, but we
need to quantify the difference between them and ask how likely such a difference is to arise by chance
alone:

chisq.test(observed,p=c(9,3,3,1),rescale.p=TRUE)

Chi-squared test for given probabilities
data: observed
X-squared = 0.47, df = 3, p-value = 0.9254

Note the use of different probabilities for the four phenotypes: p=c(9,3,3,1). Because these values do
not sum to 1.0, we require the extra argument rescale.p=TRUE. A difference as big as or bigger than the
one observed will arise by chance alone in more than 92% of cases and is clearly not statistically significant.
The Pearson’s chi-squared value is

sum((observed-expected)ˆ2/expected)

[1] 0.470024

and the p-value comes from the right-hand tail of the cumulative probability function of the chi-squared
distribution 1-pchisq with 3 degrees of freedom (4 comparisons minus 1 for contingency; the total count
must be 556)

1-pchisq(0.470024,3)

[1] 0.9254259

exactly as we obtained using the built-in chisq.test function, above.

15.4 Two-by-two contingency tables

Count data are often classified by more than one categorical explanatory variable. When there are two
explanatory variables and both have just two levels, we have the famous 2 × 2 contingency table (see p.
365). We can return to the example of Mendel’s peas. We need to convert the vector of observed counts into
a matrix with two rows:

observed <- matrix(observed,nrow=2)
observed

[,1] [,2]
[1,] 315 108
[2,] 101 32

602 THE R BOOK

Fisher’s exact test (p. 371) can take such a matrix as its sole argument:

fisher.test(observed)

Fisher's Exact Test for Count Data
data: observed
p-value = 0.819
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.5667874 1.4806148
sample estimates:
odds ratio
0.9242126

Alternatively we can use Pearson’s chi-squared test with Yates’ continuity correction:

chisq.test(observed)

Pearson's Chi-squared test with Yates' continuity correction
data: observed
X-squared = 0.0513, df = 1, p-value = 0.8208

Again, the p-values are different with different tests, but the interpretation is the same: these pea plants
behave in accordance with Mendel’s predictions of two independent traits, coat colour and seed shape, each
segregating 3:1.

15.5 Using log-linear models for simple contingency tables

It is worth repeating these simple examples with a log-linear model so that when we analyse more complex
cases you have a feel for what the GLM is doing. Recall that the deviance for a log-linear model of count
data (p. 562) is

deviance = 2
∑

O ln

(
O

E

)
,

where O is a vector of observed counts and E is a vector of expected counts. Our first example had 29 males
and 18 females and we wanted to know if the sex ratio was significantly male-biased:

observed <- c(29,18)
summary(glm(observed~1,poisson))

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.1570 0.1459 21.64 <2e-16 ***
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2.5985 on 1 degrees of freedom
Residual deviance: 2.5985 on 1 degrees of freedom
AIC: 14.547

COUNT DATA IN TABLES 603

Only the bottom part of the summary table is informative in this case. The residual deviance is compared to
the critical value of chi-squared in tables with 1 d.f.:

1-pchisq(2.5985,1)

[1] 0.1069649

We accept the null hypothesis that the sex ratio is 50:50 (p = 0.106 96).
In the case of Mendel’s peas we had a four-level categorical variable (i.e. four phenotypes) and the null

hypothesis was a 9:3:3:1 distribution of traits:

observed <- c(315,101,108,32)

We need vectors of length 4 for the two seed traits, shape and colour:

shape <- factor(c("round","round","wrinkled","wrinkled"))
colour <- factor(c("yellow","green","yellow","green"))

Now we fit a saturated model (model1) and a model without the interaction term (model2) and compare
the two models using anova with a chi-squared test:

model1 <- glm(observed~shape*colour,poisson)
model2 <- glm(observed~shape+colour,poisson)
anova(model1,model2,test="Chi")

Analysis of Deviance Table
Model 1: observed ~ shape * colour
Model 2: observed ~ shape + colour

Resid. Df Resid. Dev Df Deviance P(> | Chi |)
1 0 1.021e-14
2 1 0.11715 -1 -0.11715 0.73215

There is no interaction between seed colour and seed shape (p = 0.732 15) so we conclude that the two
traits are independent and the phenotypes are distributed 9:3:3:1 as predicted. The p value is slightly different
because the ratios of the two dominant traits are not exactly 3:1 in the data: round to wrinkled is exp(1.089
04) = 2.971 42 and yellow to green is exp(1.157 02) = 3.180 441:

summary(model2)

Coefficients:
Estimate Std. Error z value Pr(> | z |)

(Intercept) 4.60027 0.09013 51.04 <2e-16 ***
shapewrinkled -1.08904 0.09771 -11.15 <2e-16 ***
colouryellow 1.15702 0.09941 11.64 <2e-16 ***

To summarize, the log-linear model involves fitting a saturated model with zero residual deviance (a
parameter is estimated for every row of the dataframe) and then simplifying the model by removing the
highest-order interaction term. The increase in deviance gives the chi-squared value for testing the hypothesis
of independence. The minimal model must contain all the nuisance variables necessary to constrain the
marginal totals (i.e. main effects for shape and colour in this example), as explained on p. 604.

604 THE R BOOK

15.6 The danger of contingency tables

We have already dealt with simple contingency tables and their analysis using Fisher’s exact test or Pearson’s
chi-squared (see p. 365). But there is an important further issue to be dealt with. In observational studies
we quantify only a limited number of explanatory variables. It is inevitable that we shall fail to measure a
number of factors that have an important influence on the behaviour of the system in question. That’s life, and
given that we make every effort to note the important factors, there is little we can do about it. The problem
comes when we ignore factors that have an important influence on the response variable. This difficulty can
be particularly acute if we aggregate data over important explanatory variables. An example should make
this clear.

Suppose we are carrying out a study of induced defences in trees. A preliminary trial has suggested that
early feeding on a leaf by aphids may cause chemical changes in the leaf which reduce the probability of that
leaf being attacked later in the season by hole-making insects. To this end we mark a large cohort of leaves,
then score whether they were infested by aphids early in the season and whether they were holed by insects
later in the year. The work was carried out on two different trees and the results were as follows:

Tree Aphids Holed Intact Total leaves Proportion holed

Tree 1 Absent 35 1750 1785 0.0196
Present 23 1146 1169 0.0197

Tree 2 Absent 146 1642 1788 0.0817
Present 30 333 363 0.0826

There are four variables: the response variable, count, with eight values (in columns 3 and 4, with row totals
in column 5), a two-level factor for late season feeding by caterpillars (holed or intact), a two-level factor for
early season aphid feeding (aphids present or absent) and a two-level factor for tree (the observations come
from two separate trees, imaginatively named tree 1 and tree 2).

induced <- read.table("C:\\temp\\induced.txt",header=T)
attach(induced)
names(induced)

[1]"Tree" "Aphid" "Caterpillar" "Count"

We begin by fitting what is known as a saturated model. This is a curious thing, which has as many
parameters as there are values of the response variable. The fit of the model is perfect, so there are no residual
degrees of freedom and no residual deviance. The reason why we fit a saturated model is that it is always the
best place to start modelling complex contingency tables. If we fit the saturated model, then there is no risk
that we inadvertently leave out important interactions between the so-called ‘nuisance variables’. These are
the parameters that need to be in the model to ensure that the marginal totals (the row and column totals, for
instance) are properly constrained.

model <- glm(Count~Tree*Aphid*Caterpillar,family=poisson)

The asterisk notation ensures that the saturated model is fitted, because all of the main effects and two-way
interactions are fitted, along with the three-way Tree by Aphid by Caterpillar interaction. The model
fit involves the estimation of 2 × 2 × 2 = 8 parameters, and exactly matches the eight values of the response
variable, Count. Looking at the saturated model in any detail serves no purpose, because the reams of
information it contains are all superfluous.

COUNT DATA IN TABLES 605

The first real step in the modelling is to use update to remove the three-way interaction from the saturated
model, and then to use anova to test whether the three-way interaction is significant or not:

model2 <- update(model, ~ . - Tree:Aphid:Caterpillar)

The punctuation here is very important (it is ‘comma, tilde, dot, minus’), and note the use of colons rather
than asterisks to denote interaction terms rather than main effects plus interaction terms. Now we can see
whether the three-way interaction was significant by specifying test="Chi" like this:

anova(model,model2,test="Chi")

Analysis of Deviance Table

Model 1: Count ~ Tree * Aphid * Caterpillar
Model 2: Count ~ Tree + Aphid + Caterpillar + Tree:Aphid +

Tree:Caterpillar + Aphid:Caterpillar
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 0 0.00000000
2 1 0.00079137 -1 -0.00079137 0.9776

This shows very clearly that the interaction between caterpillar attack and leaf holing does not differ from
tree to tree (p = 0.977 56). Note that if this interaction had been significant, then we would have stopped the
modelling at this stage. But it was not, so we leave it out and continue.

What about the main question? Is there an interaction between aphid attack and leaf holing? To test this
we delete the Caterpillar by Aphid interaction from the model, and assess the results using anova:

model3 <- update(model2, ~ . - Aphid:Caterpillar)
anova(model3,model2,test="Chi")

Analysis of Deviance Table

Model 1: Count ~ Tree + Aphid + Caterpillar + Tree:Aphid + Tree:Caterpillar
Model 2: Count ~ Tree + Aphid + Caterpillar + Tree:Aphid + Tree:Caterpillar +

Aphid:Caterpillar
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2 0.0040853
2 1 0.0007914 1 0.003294 0.9542

There is absolutely no hint of an interaction (p = 0.954). The interpretation is clear: this work provides no
evidence at all for induced defences caused by early season caterpillar feeding.

But look what happens when we do the modelling the wrong way. Suppose we went straight for the
interaction of interest, Aphid by Caterpillar. We might proceed like this:

wrong <- glm(Count~Aphid*Caterpillar,family=poisson)
wrong1 <- update (wrong,~. - Aphid:Caterpillar)
anova(wrong,wrong1,test="Chi")

Analysis of Deviance Table

Model 1: Count ~ Aphid * Caterpillar
Model 2: Count ~ Aphid + Caterpillar
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 4 550.19
2 5 556.85 -1 -6.6594 0.009864 **

606 THE R BOOK

The Aphid by Caterpillar interaction is highly significant (p = 0.01), providing strong evidence for
induced defences. This is wrong! By failing to include Tree in the model we have omitted an important
explanatory variable. As it turns out, and as we should really have determined by more thorough preliminary
analysis, the trees differ enormously in their average levels of leaf holing:

as.vector(tapply(Count,list(Caterpillar,Tree),sum))[1]/tapply(Count,Tree,sum) [1]

Tree1
0.01963439

as.vector(tapply(Count,list(Caterpillar,Tree),sum))[3]/tapply(Count,Tree,sum) [2]

Tree2
0.08182241

Tree2 has more than four times the proportion of its leaves holed by caterpillars. If we had been paying
more attention when we did the modelling the wrong way, we should have noticed that the model containing
only Aphid and Caterpillar had massive overdispersion, and this should have alerted us that all was
not well.

The moral is simple and clear. Always fit a saturated model first, containing all the variables of interest and
all the interactions involving the nuisance variables (Tree in this case). Only delete from the model those
interactions that involve the variables of interest (Aphid and Caterpillar in this case). Main effects are
meaningless in contingency tables (they do nothing more than constrain the marginal totals), as are the model
summaries. Always test for overdispersion. It will never be a problem if you follow the advice of simplifying
down from a saturated model, because you only ever leave out non-significant terms, and you never delete
terms involving any of the nuisance variables.

15.7 Quasi-Poisson and negative binomial models compared

The data on red blood cell counts are read from a file:

data <- read.table("c:\\temp\\bloodcells.txt",header=T)
attach(data)
names(data)

[1]"count"

Now we need to create a vector for gender containing 5000 repeats of ‘female’ and then 5000 repeats of
‘male’:

gender <- factor(rep(c("female","male"),c(5000,5000)))

The idea is to test the significance of the difference in mean cell counts for the two genders, which is slightly
higher in males than in females:

tapply(count,gender,mean)

female male
1.1986 1.2408

We begin with the simplest log-linear model – a GLM with Poisson errors:

model <- glm (count~gender,poisson)
summary(model)

COUNT DATA IN TABLES 607

You should check for overdispersion before drawing any conclusions about the significance of the gender
effect. It turns out that there is substantial overdispersion (scale parameter = 23 154/9998 = 2.315 863), so
we repeat the modelling using quasi-Poisson errors instead:

model <- glm(count~gender,quasipoisson)
summary(model)

Coefficients:
Estimate Std. Error t value Pr(>| t |)

(Intercept) 0.18115 0.02167 8.360 <2e-16 ***
gendermale 0.03460 0.03038 1.139 0.255

(Dispersion parameter for quasipoisson family taken to be 2.813817)

Null deviance: 23158 on 9999 degrees of freedom
Residual deviance: 23154 on 9998 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 6

As you see, the gender effect falls well short of significance (p = 0.255).
Alternatively, you could use a GLM with negative binomial errors. The function is in the MASS library:

library(MASS)
model <- glm.nb(count~gender)
summary(model)

Call:
glm.nb(formula = count ~ gender, init.theta = 0.6676246007, link = log)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.1842 -1.1716 -1.1716 0.3503 3.1522

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.18115 0.02160 8.388 <2e-16 ***
gendermale 0.03460 0.03045 1.136 0.256

(Dispersion parameter for Negative Binomial(0.6676) family taken to be 1)

Null deviance: 9610.8 on 9999 degrees of freedom
Residual deviance: 9609.5 on 9998 degrees of freedom
AIC: 30362

Number of Fisher Scoring iterations: 1

Theta: 0.6676
Std. Err.: 0.0185

2 x log-likelihood: -30355.6010

You would come to the same conclusion, although the p value is slightly different (p = 0.256).

608 THE R BOOK

15.8 A contingency table of intermediate complexity

We start with a three-dimensional table of count data from college records. It is a contingency table with two
levels of year (freshman and sophomore), two levels of discipline (arts and science), and two levels of gender
(male and female):

numbers <- c(24,30,29,41,14,31,36,35)

The statistical question is whether the relationship between gender and discipline varies between freshmen
and sophomores (i.e. we want to know the significance of the three-way interaction between year, discipline
and gender).

The first task is to define the dimensions of numbers using the dim function:

dim(numbers) <- c(2,2,2)
numbers

, , 1
[,1] [,2]

[1,] 24 29
[2,] 30 41
, , 2

[,1] [,2]
[1,] 14 36
[2,] 31 35

The top table refers to the males [,,1] and the bottom table to the females [,,2]. Within each table,
the rows are the year groups and the columns are the disciplines. It would make the table much easier to
understand if we provided these dimensions with names using the dimnames function:

dimnames(numbers)[[3]] <- list("male", "female")
dimnames(numbers)[[2]] <- list("arts", "science")
dimnames(numbers)[[1]] <- list("freshman", "sophomore")

To see this as a flat table, use the ftable function like this:

ftable(numbers)

male female
freshman arts 24 14

science 29 36
sophomore arts 30 31

science 41 35

The thing to understand is that the dimnames are the factor levels (e.g. male or female), not the names of
the factors (e.g. gender).

We convert this table into a dataframe using the as.data.frame.table function. This saves us from
having to create separate vectors to describe the levels of gender, year and discipline associated with each
count:

as.data.frame.table(numbers)

Var1 Var2 Var3 Freq
1 freshman arts male 24

COUNT DATA IN TABLES 609

2 sophomore arts male 30
3 freshman science male 29
4 sophomore science male 41
5 freshman arts female 14
6 sophomore arts female 31
7 freshman science female 36
8 sophomore science female 35

You can see that R has generated reasonably sensible variable names for the four columns, but we want to
use our own names:

frame <- as.data.frame.table(numbers)
names(frame) <- c("year","discipline","gender","count")
frame

year discipline gender count
1 freshman arts male 24
2 sophomore arts male 30
3 freshman science male 29
4 sophomore science male 41
5 freshman arts female 14
6 sophomore arts female 31
7 freshman science female 36
8 sophomore science female 35

Now we can do the statistical modelling. The response variable is count, and we begin by fitting a
saturated model with eight estimated parameters (i.e. the model generates the observed counts exactly, so the
deviance is zero and there are no degrees of freedom):

attach(frame)
model1 <- glm(count~year*discipline*gender,poisson)

We test for the significance of the year by discipline by gender interaction by deleting the year by discipline
by gender interaction from model1 to make model2 using update:

model2 <- update(model1,~. - year:discipline:gender)

then comparing model1 and model2 using anova with a chi-squared test:

anova(model1,model2,test="Chi")

Analysis of Deviance Table
Model 1: count ~ year * discipline * gender
Model 2: count ~ year + discipline + gender + year:discipline +
year:gender +discipline:gender

Resid. Df Resid. Dev Df Deviance P(> | Chi |)
1 0 -5.329e-15
2 1 3.08230 -1 -3.08230 0.07915

The interaction is not significant (p = 0.079), indicating similar gender by discipline relationships in the two
year groups. We finish the analysis at this point because we have answered the question that we were asked
to address.

610 THE R BOOK

15.9 Schoener’s lizards: A complex contingency table

In this section we are interested in whether lizards show any niche separation across various ecological
factors and, in particular, whether there are any interactions – for example, whether they show different
habitat separation at different times of day:

lizards <- read.table("c:\\temp\\lizards.txt",header=T)
attach(lizards)
names(lizards)

[1]"n" "sun" "height" "perch" "time" "species"

The response variable is n, the count for each contingency. The explanatory variables are all categorical:
sun is a two-level factor (Sun and Shade within the bush), height is a two-level factor (High and
Low within the bush), perch is a two-level factor (Broad and Narrow twigs), time is a three-level factor
(Afternoon, Mid.day and Morning), and there are two lizard species both belonging to the genus Anolis
(A. grahamii and A. opalinus). As usual, we begin by fitting a saturated model, fitting all the interactions and
main effects:

model1 <- glm(n~sun*height*perch*time*species,poisson)

Model simplification begins with removal of the highest-order interaction effect: the sun by height by
perch by time by species interaction:

model2 <- update(model1, ~.- sun:height:perch:time:species)
anova(model1,model2,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 0 3.3472e-10
2 2 2.1807e-10 -2 1.1665e-10

When the change in deviance is so close to zero, R does not print a p value. Also, you need to ignore
the warning messages in the early stages of model simplification with complex contingency tables. It is a
considerable relief that this interaction is not significant (imagine trying to explain what it meant in the
Discussion section of your paper). The key point to understand in this kind of analysis is that the only
interesting terms are interactions involving species. All of the other interactions and main effects are nuisance
variables that have to be retained in the model to constrain the marginal totals (see p. 368 for an explanation
of what this means).

There are four four-way interactions of interest – species by sun by height by perch, species by sun by
height by time, species by sun by perch by time, and species by height by perch by time – and we should test
their significance by deleting them from model2 which contains all of the four-way interactions. Here goes:

model3 <- update(model2, ~.-sun:height:perch:species)
anova(model2,model3,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 2 0.0000
2 3 2.7088 -1 -2.7088 0.0998 .

COUNT DATA IN TABLES 611

Close, but not significant (p = 0.0998). As ever, we are ruthless, so we shall leave it out.

model4 <- update(model2, ~.-sun:height:time:species)
anova(model2,model4,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 2 0.00000
2 4 0.44164 -2 -0.44164 0.8019

Nothing at all (p = 0.802).

model5 <- update(model2, ~.-sun:perch:time:species)
anova(model2,model5,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 2 0.00000
2 4 0.81008 -2 -0.81008 0.667

Again, nothing there (p = 0.667). Finally:

model6 <- update(model2, ~.-height:perch:time:species)
anova(model2,model6,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 2 0.0000
2 4 3.2217 -2 -3.2217 0.1997

This means that none of the four-way interactions involving species need be retained.
Now we have to assess all six of the three-way interactions involving species: species by height by perch,

species by height by time, species by perch by time, species by sun by height, species by sun by time, and
species by sun by perch. Can we speed this up by using automatic deletion? Yes and no. Yes, we can use
step, to remove terms assessed by AIC to be non-significant (p. 547). No, unless we are very careful. We
must not allow step to remove any interactions that do not involve species (because these are the essential
nuisance variables). We do this with the lower argument:

model7 <- step(model1,lower=~sun*height*perch*time)

Start: AIC=259.25
n ~ sun * height * perch * time * species

Df Deviance AIC
- sun:height:perch:time:species 2 2.1807e-10 255.25
<none> 3.3472e-10 259.25

Step: AIC=255.25

Df Deviance AIC
- sun:height:time:species 2 0.4416 251.69
- sun:perch:time:species 2 0.8101 252.06
- height:perch:time:species 2 3.2217 254.47

612 THE R BOOK

<none> 0.0000 255.25
- sun:height:perch:species 1 2.7088 255.96
- sun:height:perch:time 2 4.7901 256.04

Step: AIC=251.69

Df Deviance AIC
- sun:perch:time:species 2 1.0713 248.32
<none> 0.4416 251.69
- height:perch:time:species 2 4.6476 251.90
- sun:height:perch:time 2 4.9482 252.20
- sun:height:perch:species 1 3.1113 252.36

Step: AIC=248.32

Df Deviance AIC
- sun:time:species 2 3.3403 246.59
<none> 1.0713 248.32
- sun:height:perch:time 2 5.1261 248.38
- sun:height:perch:species 1 3.3016 248.55
- height:perch:time:species 2 5.7906 249.04

Step: AIC=246.59

Df Deviance AIC
<none> 3.3403 246.59
- sun:height:perch:time 2 7.5288 246.78
- sun:height:perch:species 1 5.8273 247.08
- height:perch:time:species 2 8.5418 247.79

You can see that step has been very forgiving, and has left two of the four-way interactions involving species
in the model. What we can do next is to take out all of the four-way interactions and start step off again with
this simpler starting point. We want to start at the lower model plus all the three-way interactions involving
species with sun, height, perch and time:

model8 <-
glm(n ~sun*height*perch*time+(species+sun+height+perch+time)ˆ3,poisson)

model9 <- step(model8,lower= ~sun*height*perch*time)

Start: AIC=249.82

Df Deviance AIC
- perch:time:species 2 8.5912 245.84
- height:time:species 2 9.9709 247.22
- sun:perch:species 1 8.5874 247.84
- height:perch:species 1 8.8752 248.12
- sun:time:species 2 10.9032 248.15
<none> 8.5730 249.82
- sun:height:perch:time 2 13.2313 250.48
- sun:height:species 1 11.8672 251.12

COUNT DATA IN TABLES 613

Step: AIC=245.84

Df Deviance AIC
- height:time:species 2 9.9867 243.24
- sun:perch:species 1 8.6053 243.85
- height:perch:species 1 8.8891 244.14
- sun:time:species 2 10.9090 244.16
<none> 8.5912 245.84
- sun:height:perch:time 2 13.2426 246.49
- sun:height:species 1 11.8675 247.12

Step: AIC=243.24

Df Deviance AIC
- sun:time:species 2 11.7667 241.01
- sun:perch:species 1 9.9930 241.24
- height:perch:species 1 10.2429 241.49
<none> 9.9867 243.24
- sun:height:species 1 12.4873 243.74
- sun:height:perch:time 2 14.8884 244.14

Step: AIC=241.02

Df Deviance AIC
- sun:perch:species 1 11.783 239.03
- height:perch:species 1 11.979 239.23
<none> 11.767 241.01
- sun:height:species 1 13.848 241.10
- sun:height:perch:time 2 16.911 242.16
- time:species 2 23.245 248.49

Step: AIC=239.03

Df Deviance AIC
- height:perch:species 1 11.984 237.23
<none> 11.783 239.03
- sun:height:species 1 13.923 239.17
- sun:height:perch:time 2 16.949 240.20
- time:species 2 23.385 246.63

Step: AIC=237.23

Df Deviance AIC
<none> 11.984 237.23
- sun:height:species 1 14.205 237.45
- sun:height:perch:time 2 17.188 238.44
- time:species 2 23.713 244.96
- perch:species 1 24.921 248.17

Again, we need to be harsh and to test whether these terms really to deserve to stay in model9. The most
complex term is the interaction sun by height by perch by time, but we do not want to remove this because it

614 THE R BOOK

is a nuisance variable (the interaction does not involve species). We should start by removing sun by height
by species:

model10 <- update(model9, ~.-sun:height:species)
anova(model9,model10,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 17 11.984
2 18 14.205 -1 -2.2203 0.1362

This interaction is not significant, so we leave it out. Ourmodel10 contains no three- or four-way interactions
involving species.

Let us try deleting the two-way interactions in turn from model10:

model11 <- update(model10, ~.-sun:species)
model12 <- update(model10, ~.-height:species)
model13 <- update(model10, ~.-perch:species)
model14 <- update(model10, ~.-time:species)
anova(model10,model11,test="Chi")

Analysis of Deviance Table
Resid. Df Resid. Dev Df Deviance P(> | Chi |)

1 18 14.2046
2 19 21.8917 -1 -7.6871 0.0056

We need to retain a main effect for sun (p = 0.0056).

anova(model10,model12,test="Chi")

Analysis of Deviance Table
Resid. Df Resid. Dev Df Deviance P(> | Chi |)

1 18 14.205
2 19 36.271 -1 -22.066 2.634e-06

We need to retain a main effect for height (p < 0.0001).

anova(model10,model13,test="Chi")

Analysis of Deviance Table
Resid. Df Resid. Dev Df Deviance P(> | Chi |)

1 18 14.2046
2 19 27.3346 -1 -13.1300 0.0003

We need to retain a main effect for perch (p = 0.0003).

anova(model10,model14,test="Chi")

Analysis of Deviance Table
Resid. Df Resid. Dev Df Deviance P(> | Chi |)

1 18 14.205
2 20 25.802 -2 -11.597 0.003

We need to retain a main effect for time of day (p = 0.003).

COUNT DATA IN TABLES 615

To see where we are, we should produce a summary table of the counts:

ftable(tapply(n,list(species,sun,height,perch,time),sum))

Afternoon Mid.day Morning
grahamii Shade High Broad 4 1 2

Narrow 3 1 3
Low Broad 0 0 0

Narrow 1 0 0
Sun High Broad 10 20 11

Narrow 8 32 15
Low Broad 3 4 5

Narrow 4 5 1
opalinus Shade High Broad 4 8 20

Narrow 5 4 8
Low Broad 12 8 13

Narrow 1 0 6
Sun High Broad 18 69 34

Narrow 8 60 17
Low Broad 13 55 31

Narrow 4 21 12

The modelling has indicated that species differ in their responses to all four explanatory variables, but that
there are no interactions between the factors. The only remaining question for model simplification is whether
we need to keep all three levels for time of day, or whether two levels would do just as well (we lump together
Mid.day and Morning):

tod <- factor(1+(time=="Afternoon"))
model15 <- update(model10, ~.-species:time+species:tod)
anova(model10,model15,test="Chi")

Analysis of Deviance Table
Resid. Df Resid. Dev Df Deviance P(> | Chi |)

1 18 14.2046
2 19 15.0232 -1 -0.8186 0.3656

That simplification was justified, so we keep time in the model but as a two-level factor.
That was hard, I think you will agree. You need to be extremely well organized to do this sort of analysis

without making any mistakes. A high degree of serenity is required throughout. What makes it difficult
is keeping track of the interactions that are in the model and those that have been excluded, and making
absolutely sure that no nuisance variables have been omitted unintentionally. It turns out that life can be
made much more straightforward if the analysis can be reformulated as an exercise in proportions rather than
counts, because if it can, then all of the problems with nuisance variables disappear. On p. 643 the example
is reanalysed with the response variable as a proportion in a GLM with binomial errors. This is possible
because we have just two species, so we can reformulate the response as the proportion of all lizards that
are A. opalinus. This is a big advantage because it does away with the need to retain any of the nuisance
variables.

616 THE R BOOK

15.10 Plot methods for contingency tables

The departures from expectations of the observed frequencies in a contingency table can be regarded as
(O − E)/

√
E . The R function called assocplot produces a Cohen–Friendly association plot indicating

deviations from independence of rows and columns in a two-dimensional contingency table.
Here are data on hair colour and eye colour:

data(HairEyeColor)
(x <- margin.table(HairEyeColor, c(1, 2)))

Eye
Hair Brown Blue Hazel Green
Black 68 20 15 5
Brown 119 84 54 29
Red 26 17 14 14
Blond 7 94 10 16

assocplot(x, main = "Relation between hair and eye color")

Relation between hair and eye color

B
ro

w
n

B
lu

eE
ye

H
az

el
G

re
en

Black Brown Red Blond
Hair

The plot shows the excess (black bars) of people with black hair who have brown eyes, the excess of people
with blond hair who have blue eyes, and the excess of redheads who have green eyes. The red bars show
categories where fewer people were observed than expected under the null hypothesis of independence of
hair colour and eye colour.

Here are the same data plotted as a mosaic plot:

mosaicplot(HairEyeColor, shade = TRUE)

COUNT DATA IN TABLES 617

HairEyeColor

Black Brown
Male MaleFemale Female

Red Blond
Male Male FemaleFemale

Hair

E
ye

B
ro

w
n

B
lu

e
H

az
el

G
re

en

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

:
<

-4
-4

:-
2

-2
:0

0:
2

2:
4

>
4

The plot indicates that there are significantly more blue-eyed blond females than expected in the case of
independence, and too few brown-eyed blond females. Extended mosaic displays show the standardized
residuals of a log-linear model of the counts by the colour and outline of the mosaic’s tiles. Negative residuals
are drawn in shades of red and with broken outlines, while positive residuals are drawn in shades of blue with
solid outlines.

Where there are multiple 2 × 2 tables (dataframes with three or more categorical explanatory vari-
ables), then fourfoldplot might be useful. It allows a visual inspection of the association between two
dichotomous variables in one or several populations (known as strata).

A classic example of contingency table data comes built in with R: UCBAdmissions describes
the admissions policy of different departments at the University of California at Berkeley in relation
to gender:

data(UCBAdmissions)
head(UCBAdmissions)

[1] 512 313 89 19 353 207

str(UCBAdmissions)

table [1:2, 1:2, 1:6] 512 313 89 19 353 207 17 8 120 205 . . .
- attr(*, "dimnames")=List of 3
..$ Admit : chr [1:2] "Admitted" "Rejected"
..$ Gender: chr [1:2] "Male" "Female"
..$ Dept : chr [1:6] "A" "B" "C" "D" . . .

618 THE R BOOK

Department: A Department: D

Department: B Department: E

Department: C Department: F

Sex: Male Sex: Male

Sex: Female Sex: Female

Sex: Female Sex: Female

Sex: Female Sex: Female

Sex: Male Sex: Male

Sex: Male Sex: Male

A
dm

it?
: A

dm
itt

ed

A
dm

it?
: A

dm
itt

ed

A
dm

it?
: R

ej
ec

te
d

A
dm

it?
: R

ej
ec

te
d

A
dm

it?
: A

dm
itt

ed

A
dm

it?
: A

dm
itt

ed

A
dm

it?
: R

ej
ec

te
d

A
dm

it?
: R

ej
ec

te
d

A
dm

it?
: A

dm
itt

ed

A
dm

it?
: A

dm
itt

ed

A
dm

it?
: R

ej
ec

te
d

A
dm

it?
: R

ej
ec

te
d

512 313 138 279

89 19 131 244

353 207 53 138

17 8

120 205

202 391

94 299

22 351

24 317

You see that the object is a table with three dimensions: two levels of status, two levels of gender and six
departments. Here are the college admissions data plotted for each department separately:

x <- aperm(UCBAdmissions, c(2, 1, 3))
names(dimnames(x)) <- c("Sex", "Admit?", "Department")
ftable(x)

Department A B C D E F
Sex Admit?
Male Admitted 512 353 120 138 53 22

Rejected 313 207 205 279 138 351
Female Admitted 89 17 202 131 94 24

Rejected 19 8 391 244 299 317

fourfoldplot(x, margin = 2)

COUNT DATA IN TABLES 619

You will need to compare the graphs with the frequency table (above) to see what is going on. The central
questions are whether the rejection rate for females is different from the rejection rate for males, and whether
any such difference varies from department to department. The log-linear model suggests that the difference
does vary with department (p = 0.0011; see below). That Department B attracted a smaller number of female
applicants is very obvious. What is less clear (but in many ways more interesting) is that they rejected
proportionally fewer of the female applicants (32%) than the male applicants (37%). You may find these plots
helpful, but I must admit that I do not.

Here we use gl to generate factor levels for department, sex and admission, then fit a saturated contingency
table model for the counts, x. We then use anova with test="Chi" to assess the significance of the three-
way interaction:

dept <- gl(6,4)
sex <- gl(2,1,24)
admit <- gl(2,2,24)
model1 <- glm(as.vector(x) ~dept*sex*admit,poisson)
model2 <- update(model1, ~. -dept:sex:admit)
anova(model1,model2,test="Chi")

Analysis of Deviance Table

Model 1: as.vector(x) ~ dept * sex * admit
Model 2: as.vector(x) ~ dept + sex + admit + dept:sex + dept:admit +
sex:admit
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 0 0.000
2 5 20.204 -5 -20.204 0.001144 **

The interaction is highly significant, indicating that the admission rates of the two sexes differ substan-
tially from department to department. There are five degrees of freedom for the interaction: (departments –
1) × (genders – 1). The remaining parameters are nuisance variables of no interest in this analysis.

Another way to do the same test is to turn the three-dimensional contingency table into a dataframe:

admissions <- as.data.frame(UCBAdmissions)
admissions

Admit Gender Dept Freq
1 Admitted Male A 512
2 Rejected Male A 313
3 Admitted Female A 89
4 Rejected Female A 19
5 Admitted Male B 353
6 Rejected Male B 207
7 Admitted Female B 17
8 Rejected Female B 8
9 Admitted Male C 120
10 Rejected Male C 205
11 Admitted Female C 202
12 Rejected Female C 391
13 Admitted Male D 138
14 Rejected Male D 279
15 Admitted Female D 131

620 THE R BOOK

16 Rejected Female D 244
17 Admitted Male E 53
18 Rejected Male E 138
19 Admitted Female E 94
20 Rejected Female E 299
21 Admitted Male F 22
22 Rejected Male F 351
23 Admitted Female F 24
24 Rejected Female F 317

There is a useful function called xtabs (‘cross tabulations’) which creates a contingency table from cross-
classifying factors using a formula interface (it has the added advantage of allowing you to specify the name
of the dataframe with which to work). Here are the total numbers of applicants by gender and department:

xtabs(Freq~Gender+Dept,admissions)

Dept
Gender A B C D E F
Male 825 560 325 417 191 373
Female 108 25 593 375 393 341

Notice that the proportion of female applicants was very low in some departments (e.g. A and B) but high in
others (e.g. Department E had a female-biased application rate).

The formula interface allows the dot ‘.’ convention, which means ‘fit all the explanatory variables’; i.e.
everything else in the dataframe except the response. The summary option with xtabs calculates the total
number of applications, and tests for independence:

summary(xtabs(Freq ~ ., admissions))

Call: xtabs(formula = Freq ~ ., data = admissions)
Number of cases in table: 4526
Number of factors: 3
Test for independence of all factors:

Chisq = 2000.3, df = 16, p-value = 0

Clearly there is a highly significant difference in the proportion of female applicants admitted across the
different departments.

To turn the counts into proportions we can extract parts of the summary tables produced by xtabs, using
subscripts. We start by calculating the total numbers of female applicants to each department:

xtabs(Freq~Admit+Dept+Gender,admissions)

, , Gender = Male

Dept
Admit A B C D E F
Admitted 512 353 120 138 53 22
Rejected 313 207 205 279 138 351

, , Gender = Female

Dept
Admit A B C D E F
Admitted 89 17 202 131 94 24
Rejected 19 8 391 244 299 317

COUNT DATA IN TABLES 621

Because this table is three-dimensional, we need to specify three subscripts separated by two commas. We
want the column totals (colSums) from the lower half of the table (i.e. only for the females), for which the
appropriate index is [,,2]:

females <- colSums(xtabs(Freq~Admit+Dept+Gender,admissions)[,,2])
females

A B C D E F
108 25 593 375 393 341

Now we want to extract the numbers of females admitted to each department, which is the top row [1,] of
the lower half-table [,,2]:

admitted.females <- xtabs(Freq~Admit+Dept+Gender,admissions)[,,2][1,]

The proportion of female applicants admitted by departments is then simply:

(female.success <- admitted.females/females)

A B C D E F
0.82407407 0.68000000 0.34064081 0.34933333 0.23918575 0.07038123

It is no wonder that the interaction term was so significant (p = 0.001 144): the success rate varies from a
low of 7% in Department F to a high of 82% in Department A.

15.11 Graphics for count data: Spine plots and spinograms

Here is an illustration of what a spine plot does. Suppose you have three treatments (placebo, drug A and drug
B) and the response variable is a five-level categorical variable (much worse, worse, no change, better, much
better). The data, one row per patient, consist of their current condition and the treatment they were given:

data <- read.table("c:\\temp\\spino.txt",header=T)
attach(data)
head(data)

condition treatment
1 no.change drug.A
2 better drug.B
3 better drug.B
4 no.change placebo
5 no.change drug.B
6 no.change drug.B

The plot will be easier to interpret if we specify the order of the factor levels (they would be in alphabetic
order by default):

condition<-factor(condition,c("much.worse","worse","no.change","better","much.better"))
treatment<-factor(treatment,c("placebo","drug.A","drug.B"))

Now we can use spineplot (either in (x, y) format or in (y ∼ x) format) like this:

spineplot(condition~treatment)

622 THE R BOOK

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

placebo drug.A drug.B

treatment

m
uc

h.
w

or
se

w
or

se
no

.c
ha

ng
e

be
tte

r
m

uc
h.

be
tte

r

co
nd

iti
on

There are two things to notice about the spine plot. The grey-scale partitions within the bars are the
proportions of a given treatment in each of the five conditions, i.e. the conditional relative frequencies of y in
every x group (these are labelled on the left axis and quantified on the right axis). Where a category is empty
(as in the ‘much worse’ level with drug A) the labels on the left can be confusing. The widths of the bars
reflect the total sample sizes (there were more patients getting drug B than the placebo). It looks like drug B
is better than the placebo, but the efficacy of drug A is less clear. Here are the counts:

table(condition,treatment)

treatment
condition placebo drug.A drug.B
much.worse 3 0 1
worse 5 7 2
no.change 12 17 25
better 6 10 9
much.better 1 3 8

With so few patients showing changes in condition, we are going to struggle to find significant effects in this
data set. To do the stats, we need to create a dataframe of these counts with matching columns, one to show
the level of treatment and one to show the level of condition. The tool for this is as.data.frame.table:

as.data.frame.table(table(condition,treatment))

condition treatment Freq
1 much.worse placebo 3
2 worse placebo 5
3 no.change placebo 12
4 better placebo 6
5 much.better placebo 1
6 much.worse drug.A 0

COUNT DATA IN TABLES 623

7 worse drug.A 7
8 no.change drug.A 17
9 better drug.A 10
10 much.better drug.A 3
11 much.worse drug.B 1
12 worse drug.B 2
13 no.change drug.B 25
14 better drug.B 9
15 much.better drug.B 8

You might have thought about using aggregate to do this, where the function we want to apply would be
length (for instance, to count how many patients receiving the placebo got much worse; we can see from
the table above that the answer is length=3 in this case)

aggregate(data,data,length)

condition treatment condition treatment
1 better drug.A 10 10
2 much.better drug.A 3 3
3 no.change drug.A 17 17
4 worse drug.A 7 7
5 better drug.B 9 9
6 much.better drug.B 8 8
7 much.worse drug.B 1 1
8 no.change drug.B 25 25
9 worse drug.B 2 2
10 better placebo 6 6
11 much.better placebo 1 1
12 much.worse placebo 3 3
13 no.change placebo 12 12
14 worse placebo 5 5

As you can see, the problem is that aggregate leaves out rows from the dataframe when there were zero
cases (i.e. no patients receiving drug A got much worse), so there are only 14 rows in the dataframe, not the
15 we want for doing the statistics.

As usual, we start by fitting a saturated model, then remove the highest-order interaction:

new <- as.data.frame.table(table(condition,treatment))

model1 <- glm(Freq~condition*treatment,poisson,data=new)
model2 <- glm(Freq~condition+treatment,poisson,data=new)

Then we compare the two models using anova with a chi-squared test:

anova(model1,model2,test="Chi")

Analysis of Deviance Table

Model 1: Freq ~ condition * treatment
Model 2: Freq ~ condition + treatment
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 0 0.000
2 8 15.133 -8 -15.133 0.05661 .

624 THE R BOOK

As we suspected, given the low replication, there is no significant interaction between treatment and condition
(p > 0.05; close, but not significant).

In a spinogram, the response is categorical but the explanatory variable is continuous. The following data
show parasitism (a binary response, parasitized or not) as a function of host population density:

wasps<-read.table("c:\\temp\\para.txt",header=T)
attach(wasps)
head(wasps)

density fate
1 1 not
2 2 not
3 2 not
4 4 not
5 4 not
6 4 not

table(density,fate)

fate
density not parasitized

1 1 0
2 2 0
4 3 1
8 6 2
16 11 5
32 12 20
64 12 52

Apparently, the proportion of hosts parasitized increases as host density is increased. To visualize this, we
use spineplot like this:

spineplot(fate~density)

0.
0

0 10 20 40 70

0.
2

0.
4

0.
6

0.
8

1.
0

no
t

fa
te

pa
ra

si
tiz

ed

density

COUNT DATA IN TABLES 625

The trend of increasing parasitism with density is very clear. In these plots, the width of the sector indicates
how many of the data fell in this range of population densities; there were equal numbers of hosts in the first
two bins, but twice as many in the highest density category than in the category below, with a peak of just
over 80% parasitized.

Alternatively, if you want a smooth curve you can use the conditional density plot cdplot like this:

cdplot(fate~density)

0.
0

10 20 30 40 50 60

0.
2

0.
4

0.
6

0.
8

1.
0

no
t

fa
te

pa
ra

si
tiz

ed

density

The trend is quantified using logistic regression like this:

model1<-glm(fate~density,binomial)
model2<-glm(fate~log(density),binomial)
AIC(model1,model2)

df AIC
model1 2 144.3978
model2 2 143.0790

We choose the log-transformed explanatory variable because this gives a lower AIC:

summary(model2)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.0230 1.0585 -3.801 0.000144 ***
log(density) 1.3062 0.2942 4.440 9e-06 ***

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 167.39 on 126 degrees of freedom
Residual deviance: 139.08 on 125 degrees of freedom
AIC: 143.08

626 THE R BOOK

The data and the fitted regression line are plotted like this:

plot(as.numeric(fate)-1~log(density),pch=16,ylab="parasitized")
xv<-seq(0,4.5,0.01)
yv<-1/(1+1/exp(-4.023+1.3062*xv))
lines(xv,yv)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pa
ra

si
tiz

ed

log(density)
0 1 2 3 4

The spinogram is much better at illustrating the pattern in the data than are the non-jittered 0s and 1s of the
binary response plot. The logistic plot is improved by overlaying the empirical frequencies, rather than by
showing the raw data as 0s and 1s. We might choose four bins in an example like this, averaging the four
lowest density classes, and using the counts data from the three highest classes (16, 32 and 64):

den <- c(3.75,16,32,64)
pd <- c(3/15,5/16,20/32,52/64)

Now redraw the axes leaving out the 0s and 1s (type="n") then add the logistic trend line and overlay the
empirical frequencies as larger solid circles (cex=2):

plot(as.numeric(fate)-1~log(density),pch=16,ylab="parasitized",type="n")
lines(xv,yv)
points(log(den),pd,pch=16,cex=2)

To add error bars (eb) to show plus and minus one standard error of the estimated proportion, SE p =√
p (1 − p)

/
n, we put the code to draw lines up and down from each point in a loop:

eb<-sqrt(pd*(1-pd)/den)
for (i in 1:4) lines(c(log(den)[i],log(den)[i]),c(pd[i]+eb[i],pd[i]-eb[i]))

COUNT DATA IN TABLES 627

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pa
ra

si
tiz

ed

log(density)
0 1 2 3 4

This has the virtue of illustrating the excellent fit of the model at high densities, but the rather poor fit at lower
densities.

16
Proportion Data

An important class of problems involves count data on proportions such as:

� studies on death rates,

� infection rates of diseases,

� answers to questionnaires,

� proportion responding to clinical treatment,

� proportion admitting to particular voting intentions,

� sex ratios, or

� data on proportional response to an experimental treatment.

What all these have in common is that we know how many of the experimental objects are in one category
(dead, insolvent, male or infected) and we also know how many are in another (alive, solvent, female or
uninfected). This contrasts with Poisson count data, where we knew how many times an event occurred, but
not how many times it did not occur (p. 579).

We model processes involving proportional response variables in R by specifying a generalized linear
model with family=binomial. The only complication is that whereas with Poisson errors we could
simply specify family=poisson, with binomial errors we must give the number of failures as well as
the numbers of successes in a two-vector response variable. To do this we bind together two vectors using
cbind into a single object, y, comprising the numbers of successes and the number of failures. The binomial
denominator, n, is the total sample, and

number.of.failures <- binomial.denominator - number.of.successes
y <- cbind(number.of.successes, number.of.failures)

The old fashioned way of modelling this sort of data was to use the percentage mortality as the response
variable. There are four problems with this:

� The errors are not normally distributed.

� The variance is not constant.

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

PROPORTION DATA 629

� The response is bounded (by 1 above and by 0 below).

� By calculating the percentage, we lose information on the size of the sample, n, from which the proportion
was estimated.

R carries out weighted regression, using the individual sample sizes as weights, and the logit link function to
ensure linearity. There are some kinds of proportion data, such as percentage cover, which are best analysed
using conventional linear models (assuming normal errors and constant variance) following arcsine trans-
formation. The response variable, y, measured in radians, is sin−1 √

0.01 × p, where p is percentage cover.
If, however, the response variable takes the form of a percentage change in some continuous measurement
(such as the percentage change in weight on receiving a particular diet), then rather than arcsine-transforming
the data, it is usually better treated by either

� analysis of covariance (see p. 537), using final weight as the response variable and initial weight as a
covariate, or

� by specifying the response variable as a relative growth rate, measured as log(final weight/initial weight),

both of which can be analysed as linear models with normal errors without further transformation.

16.1 Analyses of data on one and two proportions

For comparisons of one binomial proportion with a constant, use binom.test (see p. 600). For comparison
of two samples of proportion data, use prop.test (see p. 365). The methods of this chapter are required
only for more complex models of proportion data, including regression and contingency tables, where GLMs
are used.

16.2 Count data on proportions

The traditional transformations of proportion data were arcsine and probit. The arcsine transformation took
care of the error distribution, while the probit transformation was used to linearize the relationship between
percentage mortality and log dose in a bioassay. There is nothing wrong with these transformations, and they
are available within R, but a simpler approach is often preferable, and is likely to produce a model that is
easier to interpret.

The major difficulty with modelling proportion data is that the responses are strictly bounded. There is no
way that the percentage dying can be greater than 100% or less than 0%. But if we use simple techniques
such as regression or analysis of covariance, then the fitted model could quite easily predict negative values
or values greater than 100%, especially if the variance was high and many of the data were close to 0 or close
to 100%.

The logistic curve is commonly used to describe data on proportions, because, unlike the straight-line
model, it asymptotes at 0 and 1 so that negative proportions and responses of more than 100% cannot be
predicted. Throughout this discussion we shall use p to describe the proportion of individuals observed to
respond in a given way. Because much of their jargon was derived from the theory of gambling, statisticians
call these successes, although to a demographer measuring death rates this may seem somewhat macabre.
The proportion of individuals that respond in other ways (the statistician’s failures) is therefore 1 – p, and we
shall call this proportion q. The third variable is the size of the sample, n, from which p was estimated (this
is the binomial denominator, and the statistician’s number of attempts).

630 THE R BOOK

An important point about the binomial distribution is that the variance is not constant. In fact, the variance
of a binomial distribution with mean np is

s2 = npq,

so that the variance changes with the mean like this:

0.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.2 0.4 0.6 0.8 1.0

va
ria

nc
e

mean

The variance is low when p is very high or very low, and the variance is greatest when p = q = 0.5. As p gets
smaller, so the binomial distribution gets closer and closer to the Poisson distribution. You can see why this
is so by considering the formula for the variance of the binomial (above). Remember that for the Poisson, the
variance is equal to the mean: s2 = np. Now, as p gets smaller, so q gets closer and closer to 1, so the variance
of the binomial converges to the mean:

s2 = npq ≈ np (q ≈ 1).

16.3 Odds

The logistic model for p as a function of x is given by

p = ea+bx

1 + ea+bx
,

and there are no prizes for realizing that the model is not linear. But if x = –∞ then p = 0, and if x = +∞
then p = 1, so the model is strictly bounded. If x = 0, then p = exp(a)/[1 + exp(a)]. The trick of linearizing
the logistic model actually involves a very simple transformation. You may have come across the way in
which bookmakers specify probabilities by quoting the odds against a particular horse winning a race (they
might give odds of 2 to 1 on a reasonably good horse or 25 to 1 on an outsider). This is a rather different way

PROPORTION DATA 631

of presenting information on probabilities than scientists are used to dealing with. Thus, where the scientist
might state a proportion as 0.333 (one chance of winning in three), the bookmaker would give odds of 2
to 1 (based on the counts of outcomes: one success against two failures). In symbols, this is the difference
between the scientist stating the probability p, and the bookmaker stating the odds p/q. Now if we take the
odds p/q and substitute this into the formula for the logistic, we get

p

q
= ea+bx

1 + ea+bx

[
1 − ea+bx

1 + ea+bx

]−1

which looks awful. But a little algebra shows that

p

q
= ea+bx

1 + ea+bx

[
1

1 + ea+bx

]−1

= ea+bx.

Taking natural logs and recalling that ln(ex) = x will simplify matters even further, so that

ln

(
p

q

)
= a + bx.

This gives a linear predictor, a + bx, not for p but for the logit transformation of p, namely ln(p/q). In the
jargon of R, the logit is the link function relating the linear predictor to the value of p.

Here are p as a function of x (left panel) and logit(p) as a function of x (right panel) for the logistic model
with a = 1 and b = 0.1:

-60 -20 0
x x

20 40 60

-6
-4

-2
0

2
4

6

-60 -20 0 20 40 60

0.
0

0.
2

0.
4p

lo
gi

t =
 lo

g(
p/

q)

0.
6

0.
8

1.
0

You might ask at this stage: ‘why not simply do a linear regression of ln(p/q) against the explanatory
x-variable?’ GLM with binomial errors has three great advantages here:

� It allows for the non-constant binomial variance.

� It deals with the fact that logits for ps near 0 or 1 are infinite.

� It allows for differences between the sample sizes by weighted regression.

16.4 Overdispersion and hypothesis testing

That the errors are binomially distributed is an assumption, not a fact. When we have overdispersion, this
assumption is wrong and we need to deal with it.

632 THE R BOOK

All the different statistical procedures that we have met in earlier chapters can also be used with data on
proportions. Factorial analysis of variance, multiple regression, and a variety of models in which different
regression lines are fitted in each of several levels of one or more factors, can be carried out. The only
difference is that we assess the significance of terms on the basis of chi-squared – the increase in scaled
deviance that results from removal of the term from the current model.

The important point to bear in mind is that hypothesis testing with binomial errors is less clear-cut than
with normal errors. While the chi-squared approximation for changes in scaled deviance is reasonable for
large samples (i.e. larger than about 30), it is poorer with small samples. Most worrying is the fact that the
degree to which the approximation is satisfactory is itself unknown. This means that considerable care must
be exercised in the interpretation of tests of hypotheses on parameters, especially when the parameters are
marginally significant or when they explain a very small fraction of the total deviance. With binomial or
Poisson errors we cannot hope to provide exact p values for our tests of hypotheses.

When we have obtained the minimal adequate model, the residual scaled deviance should be roughly
equal to the residual degrees of freedom. Overdispersion occurs when the residual deviance is larger than the
residual degrees of freedom. There are two possibilities: either the model is misspecified, or the probability
of success, p, is not constant within a given treatment level. The effect of randomly varying p is to increase
the binomial variance from npq to

s2 = npq + n(n − 1)σ 2,

leading to a large residual deviance. This occurs even for models that would fit well if the random variation
were correctly specified.

One simple solution is to assume that the variance is not npq but npqφ, where φ is an unknown scale
parameter (φ >1). We obtain an estimate of the scale parameter by dividing the Pearson chi-squared by the
degrees of freedom, and use this estimate of φ to compare the resulting scaled deviances. To accomplish this,
we use family=quasibinomial rather than family=binomial when there is overdispersion.

The most important points to emphasize in modelling with binomial errors are as follows:

� Create a two-column object for the response, using cbind to join together the two vectors containing the
counts of success and failure.

� Check for overdispersion (residual deviance greater than the residual degrees of freedom), and correct for
it by using family=quasibinomial rather than family=binomial if necessary.

� Remember that you do not obtain exact p values with binomial errors; the chi-squared approximations are
sound for large samples, but small samples may present a problem.

� The fitted values are two sets of counts, like the response variable.

� The linear predictor is in logits (the log of the odds = ln(p/q)).

� You can back-transform from logits (z) to proportions (p) by p = 1/[1 + 1/exp(z)].

16.5 Applications

You can do as many kinds of modelling in a GLM as in a linear model. Here we show examples of:

� regression with binomial errors (continuous explanatory variables);

� analysis of deviance with binomial errors (categorical explanatory variables);

� analysis of covariance with binomial errors (both kinds of explanatory variables).

PROPORTION DATA 633

16.5.1 Logistic regression with binomial errors

This example concerns sex ratios in insects (the proportion of all individuals that are males). In the species
in question, it has been observed that the sex ratio is highly variable, and an experiment was set up to see
whether population density was involved in determining the fraction of males.

numbers <- read.table("c:\\temp\\sexratio.txt",header=T)
attach(numbers)
head(numbers)

density females males
1 1 1 0
2 4 3 1
3 10 7 3
4 22 18 4
5 55 22 33
6 121 41 80

It certainly looks as if there are proportionally more males at high density, but we should plot the data as
proportions to see this more clearly:

windows(7,4)
par(mfrow=c(1,2))

p <- males/(males+females)

plot(density,p,ylab="Proportion male",pch=16,col="blue")
plot(log(density),p,ylab="Proportion male",pch=16,col="blue")

0.
0

0 0 1 2 3 4 5 6

0.
2

0.
4

P
ro

po
rt

io
n

m
al

e

P
ro

po
rt

io
n

m
al

e

0.
6

0.
8

0.
0

0.
2

0.
4

0.
6

0.
8

100 200 300 400

density log(density)

Evidently, a logarithmic transformation of the explanatory variable is likely to improve the model fit. We
shall see in a moment.

The question is whether increasing population density leads to a significant increase in the proportion of
males in the population – or, more briefly, whether the sex ratio is density-dependent. It certainly looks from
the plot as if it is.

The response variable is a matched pair of counts that we wish to analyse as proportion data using a GLM
with binomial errors. First, we use cbind to bind together the vectors of male and female counts into a single
object that will be the response in our analysis:

y <- cbind(males,females)

634 THE R BOOK

This means that y will be interpreted in the model as the proportion of all individuals that were male. The
model is specified like this:

model <- glm(y~density,binomial)

This says that the object called model gets a generalized linear model in which y (the sex ratio) is modelled
as a function of a single continuous explanatory variable (called density), using an error distribution from
the binomial family. The output looks like this:

summary(model)

Call:
glm(formula = y ~ density, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.4619 -1.2760 -0.9911 0.5742 1.8795

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.0807368 0.1550376 0.521 0.603
density 0.0035101 0.0005116 6.862 6.81e-12 ***

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 71.159 on 7 degrees of freedom
Residual deviance: 22.091 on 6 degrees of freedom
AIC: 54.618

Number of Fisher Scoring iterations: 4

The model table looks just as it would for a straightforward regression. The first parameter in the Coeffi-
cients table is the intercept and the second is the slope of the graph of sex ratio against population density.
The slope is highly significantly steeper than zero (proportionately more males at higher population density;
p = 6.81 × 10–12), but there is substantial overdispersion (residual deviance = 22.091 is much greater than
residual d.f. = 6) . We can see if log transformation of the explanatory variable improves this:

model2 <- glm(y~log(density),binomial)
summary(model2)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.65927 0.48758 -5.454 4.92e-08 ***
log(density) 0.69410 0.09056 7.665 1.80e-14 ***

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 71.1593 on 7 degrees of freedom
Residual deviance: 5.6739 on 6 degrees of freedom
AIC: 38.201

This is a big improvement, so we shall adopt it. In the model with log(density) there is no evidence of
overdispersion (residual deviance = 5.67 on 6 d.f.), whereas the lack of fit introduced by the curvature in our
first model caused substantial overdispersion (residual deviance = 22.09 on 6 d.f.).

PROPORTION DATA 635

Model checking involves the use of plot(model2). As you will see, there is no pattern in the residuals
against the fitted values, and the normal plot is reasonably linear. Point no. 4 is highly influential (it has a
large Cook’s distance), but the model is still significant with this point omitted.

We conclude that the proportion of animals that are males increases significantly with increasing density,
and that the logistic model is linearized by logarithmic transformation of the explanatory variable (population
density). We finish by drawing the fitted line though the scatterplot:

windows(7,7)
xv <- seq(0,6,0.01)

yv <- predict(model2,list(density=exp(xv)),type="response")

plot(log(density),p,ylab="Proportion male",pch=16,col="blue")
lines(xv,yv,col="red")

0.
0

0 1 2 3 4 5 6

0.
2

0.
4

P
ro

po
rt

io
n

m
al

e

0.
6

0.
8

log(density)

Note the use of type="response" to back-transform from the logit scale to the S-shaped proportion
scale.

16.5.2 Estimating LD50 and LD90 from bioassay data

The data consist of numbers dead and initial batch size for five doses of pesticide application, and we wish
to know what dose kills 50% of the individuals (or 90% or 95%, as required). The tricky statistical issue is
that one is using a value of y (50% dead) to predict a value of x (the relevant dose) and to work out a standard
error on the x axis.

data <- read.table("c:\\temp\\bioassay.txt",header=T)
attach(data)
names(data)

[1] "dose" "dead" "batch"

636 THE R BOOK

The logistic regression is carried out in the usual way:

y <- cbind(dead,batch-dead)

model <- glm(y~log(dose),binomial)

Then the function dose.p from the MASS library is run with the model object, specifying the proportions
killed for which we want the predicted log(doses) (p = 0.5 is the default for LD50):

library(MASS)
dose.p(model,p=c(0.5,0.9,0.95))

Dose SE
p = 0.50: 2.306981 0.07772065
p = 0.90: 3.425506 0.12362080
p = 0.95: 3.805885 0.15150043

Despite the label ‘Dose’, the output shows the logs of the doses associated with kills of LD50, LD90 and
LD95, along with their standard errors.

16.5.3 Proportion data with categorical explanatory variables

This next example concerns the germination of seeds of two genotypes of the parasitic plant Orobanche and
two extracts from host plants (bean and cucumber) that were used to stimulate germination. It is a two-way
factorial analysis of deviance.

germination <- read.table("c:\\temp\\germination.txt",header=T)
attach(germination)
names(germination)

[1] "count" "sample" "Orobanche" "extract"

The count is the number of seeds that germinated out of a batch of size = sample. So the number that
did not germinate is sample - count, and we construct the response vector like this:

y <- cbind(count, sample-count)

Each of the categorical explanatory variables has two levels:

levels(Orobanche)

[1] "a73" "a75"

levels(extract)

[1] "bean" "cucumber"

We want to test the hypothesis that there is no interaction between Orobanche genotype (a73 or a75) and
plant extract (bean or cucumber) on the germination rate of the seeds. This requires a factorial analysis
using the asterisk * operator like this:

model <- glm(y ~ Orobanche * extract, binomial)
summary(model)

Call:
glm(formula = y ~ Orobanche * extract, family = binomial)

PROPORTION DATA 637

Deviance Residuals:
Min 1Q Median 3Q Max

-2.01617 -1.24398 0.05995 0.84695 2.12123

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4122 0.1842 -2.238 0.0252 *
Orobanchea75 -0.1459 0.2232 -0.654 0.5132
extractcucumber 0.5401 0.2498 2.162 0.0306 *
Orobanchea75:extractcucumber 0.7781 0.3064 2.539 0.0111 *

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 98.719 on 20 degrees of freedom
Residual deviance: 33.278 on 17 degrees of freedom
AIC: 117.87

At first glance, it looks as if there is a highly significant interaction (p = 0.0111). But we need to check
that the model is sound. The first thing is to check for is overdispersion. The residual deviance is 33.278 on
17 d.f., so the model is quite badly overdispersed:

33.279 / 17

[1] 1.957588

The overdispersion factor is almost 2. The simplest way to take this into account is to use what is called an
‘empirical scale parameter’ to reflect the fact that the errors are not binomial as we assumed, but were larger
than this (i.e. overdispersed) by a factor of 1.9576. We refit the model using quasi-binomial errors to account
for the overdispersion:

model <- glm(y ~ Orobanche * extract, quasibinomial)

Then we use update to remove the interaction term in the normal way:

model2 <- update(model, ~ . - Orobanche:extract)

The only difference is that we use an F test instead of a chi-squared test to compare the original and simplified
models because now we have estimated two parameters from the model (the mean plus the empirical scale
parameter):

anova(model,model2,test="F")

Analysis of Deviance Table

Model 1: y ~ Orobanche * extract
Model 2: y ~ Orobanche + extract
Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 17 33.278
2 18 39.686 -1 -6.4081 3.4418 0.08099 .

Now you see that the interaction is not significant (p = 0.081). There is no compelling evidence that different
genotypes of Orobanche respond differently to the two plant extracts.

638 THE R BOOK

The next step is to see if any further model simplification is possible:

anova(model2,test="F")

Analysis of Deviance Table

Model: quasibinomial, link: logit

Df Deviance Resid. Df Resid. Dev F Pr(>F)
NULL 20 98.719
Orobanche 1 2.544 19 96.175 1.1954 0.2887
extract 1 56.489 18 39.686 26.5412 6.692e-05 ***

There is a highly significant difference between the two plant extracts on germination rate, but it is not obvious
that we need to keep Orobanche genotype in the model. We try removing it:

model3 <- update(model2, ~ . - Orobanche)
anova(model2,model3,test="F")

Analysis of Deviance Table

Model 1: y ~ Orobanche + extract
Model 2: y ~ extract
Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 18 39.686
2 19 42.751 -1 -3.065 1.4401 0.2457

There is no justification for retaining Orobanche in the model. So the minimal adequate model contains just
two parameters:

coef(model3)

(Intercept) extractcucumber
-0.5121761 1.0574031

What, exactly, do these two numbers mean? Remember that the coefficients are from the linear predictor.
They are on the transformed scale, so because we are using quasi-binomial errors, they are in logits (ln(p/
(1 – p)). To turn them into the germination rates for the two plant extracts requires a little calculation.

To go from a logit x to a proportion p, you need to calculate

p = 1

1 + 1/ex
.

So our first x value is –0.5122 and we calculate

1/(1+1/(exp(-0.5122)))

[1] 0.3746779

This says that the mean germination rate of the seeds with the first plant extract (bean) was 37%. What about
the parameter for extract (1.0574)? Remember that with categorical explanatory variables the parameter
values are differences between means. So to get the second germination rate we add 1.057 to the intercept
before back-transforming:

1/(1+1/(exp(-0.5122+1.0574)))

[1] 0.6330212

PROPORTION DATA 639

This says that the germination rate was nearly twice as great (63%) with the second plant extract (cucumber).
Obviously we want to generalize this process, and also to speed up the calculations of the estimated mean
proportions. We can use predict to help here, because type="response" makes predictions on the
back-transformed scale automatically:

tapply(predict(model3,type="response"),extract,mean)

bean cucumber
0.3746835 0.6330275

It is interesting to compare these figures with the averages of the raw proportions. First we need to calculate
the proportion germinating, p, in each sample:

p <- count/sample

Then we can find the average germination rates for each extract:

tapply(p,extract,mean)

bean cucumber
0.3487189 0.6031824

You see that this gives different answers. Not too different in this case, but different none the less. The correct
way to average proportion data is to add up the total counts for the different levels of abstract, and only then
to turn them into proportions:

tapply(count,extract,sum)

bean cucumber
148 276

This means that 148 seeds germinated with bean extract and 276 with cucumber. But how many seeds were
involved in each case?

tapply(sample,extract,sum)

bean cucumber
395 436

This means that 395 seeds were treated with bean extract and 436 seeds were treated with cucumber. So
the answers we want are 148/395 and 276/436 (i.e. the correct mean proportions). We can automate the
calculation like this:

as.vector(tapply(count,extract,sum))/as.vector(tapply(sample,extract,sum))

[1] 0.3746835 0.6330275

These are the correct mean proportions that were produced by the GLM. The moral here is that you calculate
the average of proportions by using total counts and total samples and not by averaging the raw proportions.

16.6 Averaging proportions

Here is an example of what not to do. We have four proportions:

0.2, 0.17, 0.2, 0.53.

640 THE R BOOK

So surely we just add them up and divide by 4. This gives 1.1/4 = 0.275. Wrong! And not by just a little bit.
We need to look at the counts on which the proportions were based. These turn out to be:

1/5, 1/6, 2/10, 53/100.

The correct way to average proportions is to add up the total count of successes (1 + 1 + 2 + 53 = 57)
and divide this by the total number of samples (5 + 6 + 10 + 100 = 121). The correct mean proportion is
57/121 = 0.4711. This is nearly double our incorrect answer (above).

16.7 Summary of modelling with proportion count data

� Make a two-column response vector containing the successes and failures.

� Use glm with family=binomial (you can omit family=).

� Fit the maximal model.

� Test for overdispersion.

� If you find overdispersion then use quasibinomial rather than binomial errors.

� Begin model simplification by removing interaction terms.

� Remove non-significant main effects

� Use plot to obtain your model-checking diagnostics.

� Back-transform using predict with the option type="response" to obtain means.

16.8 Analysis of covariance with binomial data

We now turn to an example concerning flowering in five varieties of perennial plant. Replicated individuals
in a fully randomized design were sprayed with one of six doses of a controlled mixture of growth promoters.
After 6 weeks, plants were scored as flowering or not flowering. The count of flowering individuals forms
the response variable. This is an ANCOVA because we have both continuous (dose) and categorical (variety)
explanatory variables. We use logistic regression because the response variable is a count (flowered) that can
be expressed as a proportion (flowered/number).

props <- read.table("c:\\temp\\flowering.txt",header=T)
attach(props)
names(props)

[1] "flowered" "number" "dose" "variety"

y <- cbind(flowered,number-flowered)
pf <- flowered/number
pfc <- split(pf,variety)
dc <- split(dose,variety)

plot(dose,pf,type="n",ylab="Proportion flowered")
points(jitter(dc[[1]]),jitter(pfc[[1]]),pch=21,col="blue",bg="red")
points(jitter(dc[[2]]),jitter(pfc[[2]]),pch=21,col="blue",bg="green")

PROPORTION DATA 641

points(jitter(dc[[3]]),jitter(pfc[[3]]),pch=21,col="blue",bg="yellow")
points(jitter(dc[[4]]),jitter(pfc[[4]]),pch=21,col="blue",bg="green3")
points(jitter(dc[[5]]),jitter(pfc[[5]]),pch=21,col="blue",bg="brown")

Note the use of split to separate the different varieties, so that we can plot them with different symbols,
and of jitter to stop repeated values hiding one another.

There is clearly a substantial difference between the plant varieties in their response to the flowering
stimulant. The modelling proceeds in the normal way. We begin by fitting the maximal model with different
slopes and intercepts for each variety (estimating ten parameters in all):

model1 <- glm(y~dose*variety,binomial)
summary(model1)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.59165 1.03215 -4.449 8.64e-06 ***
dose 0.41262 0.10033 4.113 3.91e-05 ***
varietyB 3.06197 1.09317 2.801 0.005094 **
varietyC 1.23248 1.18812 1.037 0.299576
varietyD 3.17506 1.07516 2.953 0.003146 **
varietyE -0.71466 1.54849 -0.462 0.644426
dose:varietyB -0.34282 0.10239 -3.348 0.000813 ***
dose:varietyC -0.23039 0.10698 -2.154 0.031274 *
dose:varietyD -0.30481 0.10257 -2.972 0.002961 **
dose:varietyE -0.00649 0.13292 -0.049 0.961057

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 303.350 on 29 degrees of freedom
Residual deviance: 51.083 on 20 degrees of freedom
AIC: 123.55

The model exhibits substantial overdispersion, but this is probably due to poor model selection rather
than extra, unmeasured variability. Let us investigate this by plotting the fitted curves through the
scatterplot.

xv <- seq(0,35,0.1)
vn <- rep("A",length(xv))
yv <- predict(model1,list(variety=factor(vn),dose=xv),type="response")
lines(xv,yv,col="red")

vn <- rep("B",length(xv))
yv <- predict(model1,list(variety=factor(vn),dose=xv),type="response")
lines(xv,yv,col="green")

vn <- rep("C",length(xv))
yv <- predict(model1,list(variety=factor(vn),dose=xv),type="response")
lines(xv,yv,col="yellow")

vn <- rep("D",length(xv))
yv <- predict(model1,list(variety=factor(vn),dose=xv),type="response")
lines(xv,yv,col="green3")

642 THE R BOOK

vn <- rep("E",length(xv))
yv <- predict(model1,list(variety=factor(vn),dose=xv),type="response")
lines(xv,yv,col="brown")

legend(locator(1),legend=c("A","B","C","D","E"),title="variety",
lty=rep(1,5),col=c("red","green","yellow","green3","brown"))

0.
0

0 5 10 15
dose

20 25 30

0.
2

0.
4

P
ro

po
rt

io
n

flo
w

er
ed

variety
A
B
C
D
E

0.
6

0.
8

1.
0

As you can see, the model is reasonable for two of the genotypes (A and E, represented by red and brown lines,
respectively), moderate for one genotype (C, yellow) but very poor for two of them, B (lower, light green
line) and D (upper, dark green line). For both of the latter, the model greatly overestimates the proportion
flowering at zero dose, and for genotype B there seems to be some inhibition of flowering at the highest
dose because the graph falls from 90% flowering at dose 16 to just 50% at dose 32. Variety D appears to be
asymptoting at less than 100% flowering.

tapply(pf,list(dose,variety),mean)

A B C D E
0 0.0000000 0.08333333 0.00000000 0.06666667 0.0000000
1 0.0000000 0.00000000 0.14285714 0.11111111 0.0000000
4 0.0000000 0.20000000 0.06666667 0.15789474 0.0000000
8 0.4000000 0.50000000 0.17647059 0.53571429 0.1578947
16 0.8181818 0.90000000 0.25000000 0.73076923 0.7500000
32 1.0000000 0.50000000 1.00000000 0.77777778 1.0000000

These failures of the model should focus attention for future work.
The moral is that the fact that we have proportion data does not mean that the data will necessarily be

well described by the logistic model. For instance, in order to describe the response of genotype B, the model
would need to have a hump, rather than to asymptote at p = 1 for large doses. It is essential to look closely

PROPORTION DATA 643

at the data, both with plots and with tables, before accepting the model output. Model choice is very big deal
indeed. The logistic was a poor choice for two of the five varieties in this case.

16.9 Converting complex contingency tables to proportions

In this section we show how to remove the need for all of the nuisance variables that are involved in complex
contingency table modelling (the row and column totals that have to be included in all of the models). We can
do this when the response can be restated as a binary proportion (a choice of one out of two contingencies).
For instance, in the case of Schoener’s lizards which proved so tricky to analyse as a complex contingency
table (see p. 610), we can work with the proportion of all lizards that are Anolis grahamii as the response
variable, instead of analysing the counts of the numbers of A. grahamii and A. opalinus separately. This has
the huge advantage of requiring none of the nuisance variables to be included in the model. The technique
would not work if we had three lizard species, however. Then we would have to stick with the complex
contingency table modelling.

lizards <- read.table("c:\\temp\\lizards.txt",header=T)
attach(lizards)
names(lizards)

[1] "n" "sun" "height" "perch" "time" "species"

head(lizards)

n sun height perch time species
1 20 Shade High Broad Morning opalinus
2 13 Shade Low Broad Morning opalinus
3 8 Shade High Narrow Morning opalinus
4 6 Shade Low Narrow Morning opalinus
5 34 Sun High Broad Morning opalinus
6 31 Sun Low Broad Morning opalinus

First, we need to make absolutely sure that all the explanatory variables are in exactly the same order
for both species of lizards. The reason for this is that we are going to cbind the counts for one of the
lizard species onto the half dataframe containing the other species counts and all of the explanatory variables.
Any mistakes here would be disastrous because the count would be lined up with the wrong combination of
explanatory variables, and the analysis would be wrong and utterly meaningless.

sorted <- lizards[order(species,sun,height,perch,time),]
head(sorted)

n sun height perch time species
41 4 Shade High Broad Afternoon grahamii
33 1 Shade High Broad Mid.day grahamii
25 2 Shade High Broad Morning grahamii
43 3 Shade High Narrow Afternoon grahamii
35 1 Shade High Narrow Mid.day grahamii
27 3 Shade High Narrow Morning grahamii

Next we need to extract the top half of this dataframe (i.e. rows 1–24):

short <- sorted[1:24,]

644 THE R BOOK

Note that this operation has lost all of the data for A. opalinus. Also, the name for the left-hand variable, n, is
no longer appropriate. It is the count for A. grahamii, so we should rename it Ag, say (with the intention of
adding another column called Ao in due course to contain the counts of A. opalinus):

names(short)[1] <- "Ag"

names(short)

[1] "Ag" "sun" "height" "perch" "time" "species"

The right-hand variable, species, is redundant now (all the entries are A. grahamii), so we should drop it:

short <- short[,-6]
head(short)

Ag sun height perch time
41 4 Shade High Broad Afternoon
33 1 Shade High Broad Mid.day
25 2 Shade High Broad Morning
43 3 Shade High Narrow Afternoon
35 1 Shade High Narrow Mid.day
27 3 Shade High Narrow Morning

The counts for each row of A. opalinus are in the variable called n in the bottom half of the dataframe called
sorted. We extract them like this:

sorted$n[25:48]

[1] 4 8 20 5 4 8 12 8 13 1 0 6 18 69 34 8 60 17 13 55 31 4 21 12

The idea is to create a new dataframe with these counts for A. opalinus lined up alongside the matching counts
for A. grahamii:

new.lizards <- data.frame(sorted$n[25:48], short)

The first variable needs an informative name, like Ao:

names(new.lizards)[1] <- "Ao"
head(new.lizards)

Ao Ag sun height perch time
41 4 4 Shade High Broad Afternoon
33 8 1 Shade High Broad Mid.day
25 20 2 Shade High Broad Morning
43 5 3 Shade High Narrow Afternoon
35 4 1 Shade High Narrow Mid.day
27 8 3 Shade High Narrow Morning

That completes the editing of the dataframe. Notice, however, that we have got three dataframes, all of different
configurations, but each containing the same variable names (sun, height, perch and time) – look
at objects() and search(). We need to do some housekeeping:

detach(lizards)
rm(short,sorted)
attach(new.lizards)

PROPORTION DATA 645

16.9.1 Analysing Schoener’s lizards as proportion data

With the foregoing preliminaries, here are the variable names:

names(new.lizards)

[1] "Ao" "Ag" "sun" "height" "perch" "time"

The response variable is a two-column object containing the counts of the two species:

y <- cbind(Ao,Ag)

We begin by fitting the saturated model containing all possible interactions:

model1 <- glm(y~sun*height*perch*time,binomial)

Since there are no nuisance variables, we can use step directly to begin the model simplification (compare
this with p. 611 with a log-linear model of the same data):

model2 <- step(model1)

Start: AIC=102.82
y ~ sun * height * perch * time

Df Deviance AIC
- sun:height:perch:time 1 2.1797e-10 100.82
<none> 3.5825e-10 102.82

Out goes the four-way interaction (with a sigh of relief):

Step: AIC=100.82

Df Deviance AIC
- sun:height:time 2 0.4416 97.266
- sun:perch:time 2 0.8101 97.634
- height:perch:time 2 3.2217 100.046
<none> 0.0000 100.824
- sun:height:perch 1 2.7088 101.533

Next, we wave goodbye to three of the three-way interactions:

Step: AIC=97.27

Df Deviance AIC
- sun:perch:time 2 1.0713 93.896
<none> 0.4416 97.266
- height:perch:time 2 4.6476 97.472
- sun:height:perch 1 3.1113 97.936

Step: AIC=93.9
Df Deviance AIC

- sun:time 2 3.3403 92.165
<none> 1.0713 93.896
- sun:height:perch 1 3.3016 94.126
- height:perch:time 2 5.7906 94.615

646 THE R BOOK

Then we discard the two-way interaction of sun by time:

Step: AIC=92.16

Df Deviance AIC
<none> 3.3403 92.165
- sun:height:perch 1 5.8273 92.651
- height:perch:time 2 8.5418 93.366

We have seen that AIC is very generous in leaving terms in the model that we would ruthlessly eliminate.
To begin with, we need to test whether we would have kept the two three-way interactions and the five
two-way interactions:

model3 <- update(model2,~. - height:perch:time)
model4 <- update(model2,~. - sun:height:perch)
anova(model2,model3,test="Chi")

Analysis of Deviance Table

Model 1: y ~ sun + height + perch + time + sun:height + sun:perch +
height:perch +

height:time + perch:time + sun:height:perch + height:perch:time
Model 2: y ~ sun + height + perch + time + sun:height + sun:perch +
height:perch +

height:time + perch:time + sun:height:perch
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 7 3.3403
2 9 8.5418 -2 -5.2014 0.07422 .

That was close, but not significant. So out it goes.

anova(model2,model4,test="Chi")
Analysis of Deviance Table

Model 1: y ~ sun + height + perch + time + sun:height + sun:perch +
height:perch +

height:time + perch:time + sun:height:perch + height:perch:time
Model 2: y ~ sun + height + perch + time + sun:height + sun:perch +
height:perch +

height:time + perch:time + height:perch:time
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 7 3.3403
2 8 5.8273 -1 -2.487 0.1148

No. We would not keep either of those three-way interactions. What about the two-way interactions? We need
to start with a simpler base model than model2:

model5 <- glm(y~(sun+height+perch+time)ˆ2-sun:time,binomial)

We shall remove each of the two-way interactions separately, comparing each to model5 which contains all
of the two-way interactions:

model6 <- update(model5,~. - sun:height)
anova(model5,model6,test="Chi")

PROPORTION DATA 647

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 10 10.903
2 11 13.254 -1 -2.3511 0.1252

model7 <- update(model5,~. - sun:perch)
anova(model5,model7,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 10 10.903
2 11 10.927 -1 -0.023597 0.8779

model8 <- update(model5,~. - height:perch)
anova(model5,model8,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 10 10.903
2 11 11.143 -1 -0.24006 0.6242

model9 <- update(model5,~. - time:perch)
anova(model5,model9,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 10 10.903
2 12 10.909 -2 -0.0058263 0.9971

model10 <- update(model5,~. - time:height)
anova(model5,model10,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 10 10.903
2 12 11.760 -2 -0.85679 0.6516

So we do not need any of the two-way interactions. What about the main effects?

model11 <- glm(y~sun+height+perch+time,binomial)
summary(model11)

Call:
glm(formula = y ~ sun + height + perch + time, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.66015 -0.37800 0.04488 0.62644 1.48717

Coefficients:
Estimate Std. Error z value Pr(>|z|)

648 THE R BOOK

(Intercept) 1.2079 0.3536 3.416 0.000634 ***
sunSun -0.8473 0.3224 -2.628 0.008585 **
heightLow 1.1300 0.2571 4.395 1.11e-05 ***
perchNarrow -0.7626 0.2113 -3.610 0.000306 ***
timeMid.day 0.9639 0.2816 3.423 0.000619 ***
timeMorning 0.7368 0.2990 2.464 0.013730 *

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 70.102 on 22 degrees of freedom
Residual deviance: 14.205 on 17 degrees of freedom
AIC: 83.029

All the main effects are significant and so must be retained.
Just one last point. We might not need all three levels for time, since the summary suggests that Mid.day

and Morning are not significantly different (parameter difference of 0.9639 – 0.7368 = 0.2271, with a
standard error of the difference of 0.29). We lump them together in a new factor called t2:

t2 <- time
levels(t2)[c(2,3)] <- "other"
levels(t2)

[1] "Afternoon" "other"

model12 <- glm(y~sun+height+perch+t2,binomial)
anova(model11,model12,test="Chi")

Analysis of Deviance Table

Model 1: y ~ sun + height + perch + time
Model 2: y ~ sun + height + perch + t2
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 17 14.205
2 18 15.023 -1 -0.81863 0.3656

A model with just two times of day is not significantly worse than a model with three.

summary(model12)

Call:
glm(formula = y ~ sun + height + perch + t2, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.59707 -0.37407 0.06965 0.64616 1.53004

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.1595 0.3484 3.328 0.000874 ***
sunSun -0.7872 0.3159 -2.491 0.012722 *
heightLow 1.1188 0.2566 4.360 1.3e-05 ***
perchNarrow -0.7485 0.2104 -3.557 0.000375 ***
t2other 0.8717 0.2611 3.338 0.000844 ***

PROPORTION DATA 649

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 70.102 on 22 degrees of freedom
Residual deviance: 15.023 on 18 degrees of freedom
AIC: 81.847

All the parameters are significant, so this is the minimal adequate model. There is no evidence of overdis-
persion. There are just five parameters, and the model contains no nuisance variables (compare this with
the massive contingency table model summary.lm(model1)). The ecological interpretation is straight-
forward: the two lizard species differ significantly in their niches on all the niche axes that were measured.
However, there were no significant interactions (nothing subtle was happening such as swapping perch sizes
at different times of day).

17
Binary Response Variables

Many statistical problems involve binary response variables. For example, we often classify individuals as

� dead or alive,

� occupied or empty,

� healthy or diseased,

� wilted or turgid,

� male or female,

� literate or illiterate,

� mature or immature,

� solvent or insolvent, or

� employed or unemployed.

It is interesting to understand the factors that are associated with an individual being in one class or the
other. Binary analysis will be a useful option when at least one of your explanatory variables is continuous
(rather than categorical). In a study of company insolvency, for instance, the data would consist of a list of
measurements made on the insolvent companies (their age, size, turnover, location, management experience,
workforce training, and so on) and a similar list for the solvent companies. The question then becomes which,
if any, of the explanatory variables increase the probability of an individual company being insolvent.

The response variable contains only 0s and 1s; for example, 0 to represent dead individuals and 1 to
represent live ones. Thus, there is only a single column of numbers for the response, in contrast to proportion
data where two vectors (successes and failures) were bound together to form the response (see Chapter 16).
The way that R treats binary data is to assume that the 0s and 1s come from a binomial trial with sample
size 1. If the probability that an individual is dead is p, then the probability of obtaining y (where y is either
dead or alive, 0 or 1) is given by an abbreviated form of the binomial distribution with n = 1, known as the
Bernoulli distribution:

P(y) = py(1 − p)(1−y).

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

BINARY RESPONSE VARIABLES 651

The random variable y has a mean of p and a variance of p(1 – p), and the objective is to determine how
the explanatory variables influence the value of p. The trick to using binary response variables effectively is
to know when it is worth using them, and when it is better to lump the successes and failures together and
analyse the total counts of dead individuals, occupied patches, insolvent firms or whatever. The question you
need to ask yourself is: do I have unique values of one or more explanatory variables for each and every
individual case?

If the answer is ‘yes’, then analysis with a binary response variable is likely to be fruitful. If the answer
is ‘no’, then there is nothing to be gained, and you should reduce your data by aggregating the counts to the
resolution at which each count does have a unique set of explanatory variables. For example, suppose that all
your explanatory variables were categorical – sex (male or female), employment (employed or unemployed)
and region (urban or rural). In this case there is nothing to be gained from analysis using a binary response
variable because none of the individuals in the study have unique values of any of the explanatory variables.
It might be worthwhile if you had each individual’s body weight, for example; then you could ask whether,
when you control for sex and region, heavy people are more likely to be unemployed than light people. In the
absence of unique values for any explanatory variables, there are two useful options:

� Analyse the data as a contingency table using Poisson errors, with the count of the total number of
individuals in each of the eight contingencies (2 × 2 × 2) as the response variable (see Chapter 15) in a
dataframe with just eight rows.

� Decide which of your explanatory variables is the key (perhaps you are interested in gender differences),
then express the data as proportions (the number of males and the number of females) and recode the
binary response as a count of a two-level factor. The analysis is now of proportion data (the proportion of
all individuals that are female, for instance) using binomial errors (see Chapter 16).

If you do have unique measurements of one or more explanatory variables for each individual, these are likely
to be continuous variables such as body weight, income, medical history, distance to the nuclear reprocessing
plant, geographic isolation, and so on. This being the case, successful analyses of binary response data tend
to be multiple regression analyses or complex analyses of covariance, and you should consult Chapters 10
and 12 for details on model simplification and model criticism.

In order to carry out modelling on a binary response variable we take the following steps:

� Create a single vector containing 0s and 1s as the response variable.

� Use glm with family=binomial.

� Consider changing the link function from the default logit to complementary log-log.

� Fit the model in the usual way.

� Test significance by deletion of terms from the maximal model, and compare the change in deviance with
chi-squared.

Note that there is no such thing as overdispersion with a binary response variable, and hence no need to change
to using quasibinomial when the residual deviance is large. The choice of link function is generally
made by trying both links and selecting the link that gives the lowest deviance. The logit link that we used
earlier is symmetric in p and q, but the complementary log-log link is asymmetric. You may also improve the
fit by transforming one or more of the explanatory variables. Bear in mind that you can fit non-parametric
smoothers to binary response variables using generalized additive models (as described in Chapter 18) instead
of carrying out parametric logistic regression.

652 THE R BOOK

17.1 Incidence functions

In this example, the response variable is called incidence; a value of 1 means that an island was occupied
by a particular species of bird, and 0 means that the bird did not breed there. The explanatory variables are
the area of the island (km2) and the isolation of the island (distance from the mainland, km).

island <- read.table("c:\\temp\\isolation.txt",header=T)
attach(island)
names(island)

[1] "incidence" "area" "isolation"

There are two continuous explanatory variables, so the appropriate analysis is multiple regression. The
response is binary, so we shall do logistic regression with binomial errors.

We begin by fitting a complex model involving an interaction between isolation and area:

model1 <- glm(incidence~area*isolation,binomial)

Then we fit a simpler model with only main effects for isolation and area:

model2 <- glm(incidence~area+isolation,binomial)

We now compare the two models using ANOVA:

anova(model1,model2,test="Chi")

Analysis of Deviance Table

Model 1: incidence ~ area * isolation
Model 2: incidence ~ area + isolation
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 46 28.252
2 47 28.402 -1 -0.15043 0.6981

The simpler model is not significantly worse, so we accept this for the time being, and inspect the parameter
estimates and standard errors:

summary(model2)

Call:
glm(formula = incidence ~ area + isolation, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.8189 -0.3089 0.0490 0.3635 2.1192

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.6417 2.9218 2.273 0.02302 *
area 0.5807 0.2478 2.344 0.01909 *
isolation -1.3719 0.4769 -2.877 0.00401 **

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 68.029 on 49 degrees of freedom
Residual deviance: 28.402 on 47 degrees of freedom
AIC: 34.402

BINARY RESPONSE VARIABLES 653

The estimates and their standard errors are in logits. We see that area has a significant positive effect (larger
islands are more likely to be occupied), but isolation has a very strong negative effect (isolated islands
are much less likely to be occupied). This is the minimal adequate model. We should plot the fitted model
through the scatterplot of the data. It is much easier to do this for each variable separately, like this:

modela <- glm(incidence~area,binomial)
modeli <- glm(incidence~isolation,binomial)

windows(7,4)
par(mfrow=c(1,2))

xv <- seq(0,9,0.01)
yv <- predict(modela,list(area=xv),type="response")
plot(area,incidence)
lines(xv,yv, col="red")

xv2 <- seq(0,10,0.01)
yv2 <- predict(modeli,list(isolation=xv2),type="response")
plot(isolation,incidence)
lines(xv2,yv2, col="red")

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

in
ci

de
nc

e

in
ci

de
nc

e

0 2 4 6 8 2 4 6 8
area isolation

17.2 Graphical tests of the fit of the logistic to data

The logistic plots above are all well and good, but it is very difficult to know how good the fit of the model is
when the data are shown only as 0s or 1s. Some people have argued for putting histograms instead of rugs on
the top and bottom axes, but there are issues here about the arbitrary location of the bins (see p. 279). Rugs
are a one-dimensional addition to the bottom (or top) of the plot showing the locations of the data points
along the x axis. The idea is to indicate the extent to which the values are clustered at certain values of the
explanatory variable, rather than evenly spaced out along it. If there are many values at the same value of x, it
will be useful to use the jitter function to spread them out (by randomly selected small distances from x).

A different tack is to cut the data into a number of sectors and plot empirical probabilities (ideally with their
standard errors) as a guide to the fit of the logistic curve, but this, too, can be criticized on the arbitrariness
of the boundaries to do the cutting, coupled with the fact that there are often too few data points to give
acceptable precision to the empirical probabilities and standard errors in any given group.

For what it is worth, here is an example of this approach. The response is occupation of territories and the
explanatory variable is resource availability in each territory:

occupy <- read.table("c:\\temp\\occupation.txt",header=T)
attach(occupy)
names(occupy)

654 THE R BOOK

[1] "resources" "occupied"

plot(resources,occupied,type="n")
rug(jitter(resources[occupied==0]))
rug(jitter(resources[occupied==1]),side=3)

Now fit the logistic regression and draw the line:

model <- glm(occupied~resources,binomial)
xv <- 0:1000
yv <- predict(model,list(resources=xv),type="response")
lines(xv,yv,col="red")

The idea is to cut up the ranked values on the x axis (resources) into five categories and then work out the
mean and the standard error of the proportions in each group:

cutr <- cut(resources,5)
tapply(occupied,cutr,sum)

(13.2,209] (209,405] (405,600] (600,796] (796,992]
0 10 25 26 31

If you have not met the cut function before, you will be impressed. It has taken the continuous variable
called resources, and cut it up into five bins in creating a factor called cutr. The margins of the bins
are defined within curved and square brackets which are read as follows: (13.2, 209] means ‘from, but not
including, 13.2 to, and including, 209’. So the figure next to the round bracket is excluded from this bin and
is included in the adjacent bin (to the left in this case). This option is called right=TRUE and is the default
for cut. We use the table function to count the number of cases in each bin:

table(cutr)

cutr
(13.2,209] (209,405] (405,600] (600,796] (796,992]

31 29 30 29 31

So the empirical probabilities are given by:

probs <- tapply(occupied,cutr,sum)/table(cutr)
probs

(13.2,209] (209,405] (405,600] (600,796] (796,992]
0.0000000 0.3448276 0.8333333 0.8965517 1.0000000

probs <- as.vector(probs)
resmeans <- tapply(resources,cutr,mean)
resmeans <- as.vector(resmeans)

We can plot these as big points on the graph – the closer they fall to the line, the better the fit of the logistic
model to the data:

points(resmeans,probs,pch=16,cex=2,col="blue")

We need to add a measure of unreliability to the points. The standard error of a binomial proportion will do:
se = √

p(1 − p)/n.

se <- sqrt(probs*(1-probs)/table(cutr))

BINARY RESPONSE VARIABLES 655

Finally, draw lines up and down from each point indicating one standard error:

up <- probs+as.vector(se)
down <- probs-as.vector(se)

for (i in 1:5) {
lines(c(resmeans[i],resmeans[i]),c(up[i],down[i]), col="blue") }

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

oc
cu

pi
ed

0 200 400 600 800 1000

resources

Evidently, the logistic is a good fit to the data above resources of 800 (not surprising, though, given that there
were no unoccupied patches in this region), but it is rather a poor fit for resources between 400 and 800, as
well as below 200, despite the fact that there were no occupied patches in the latter region (empirical p = 0).

17.3 ANCOVA with a binary response variable

In our next example the binary response variable is parasite infection (infected or not) and the explanatory
variables are weight and age (continuous) and sex (categorical). We begin with data inspection:

infection <- read.table("c:\\temp\\infection.txt",header=T)
attach(infection)
names(infection)

[1] "infected" "age" "weight" "sex"

windows(7,4)
par(mfrow=c(1,2))
plot(infected,weight,xlab="Infection",ylab="Weight",col="green")
plot(infected,age,xlab="Infection",ylab="Age",col="green4")

656 THE R BOOK

W
ei

gh
t

A
ge

5
10

15

0
50

15
0

10
0

20
0

absent present

Infection

absent present

Infection

Infected individuals are substantially lighter than uninfected individuals, and occur in a much narrower range
of ages. To see the relationship between infection and gender (both categorical variables) we can use table:

table(infected,sex)

sex
infected female male
absent 17 47
present 11 6

This indicates that the infection is much more prevalent in females (11/28) than in males (6/53).
We now proceed, as usual, to fit a maximal model with different slopes for each level of the categorical

variable:

model <- glm(infected~age*weight*sex,family=binomial)
summary(model)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.109124 1.375388 -0.079 0.937
age 0.024128 0.020874 1.156 0.248
weight -0.074156 0.147678 -0.502 0.616
sexmale -5.969109 4.278066 -1.395 0.163
age:weight -0.001977 0.002006 -0.985 0.325
age:sexmale 0.038086 0.041325 0.922 0.357
weight:sexmale 0.213830 0.343265 0.623 0.533
age:weight:sexmale -0.001651 0.003419 -0.483 0.629

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 55.706 on 73 degrees of freedom
AIC: 71.706

It certainly does not look as if any of the high-order interactions are significant. Instead of using update
and anova for model simplification, we can use step to compute the AIC for each term in turn:

model2 <- step(model)

Start: AIC=71.71

BINARY RESPONSE VARIABLES 657

First, it tests whether the three-way interaction is required:

infected ~ age * weight * sex

Df Deviance AIC
- age:weight:sex 1 55.943 69.943
<none> 55.706 71.706

This causes a reduction in AIC of just 71.7 – 69.9 = 1.8 and hence is not significant. Next, it looks at the
three two-way interactions and decides which to delete first:

Step: AIC=69.94

Df Deviance AIC
- weight:sex 1 56.122 68.122
- age:sex 1 57.828 69.828
<none> 55.943 69.943
- age:weight 1 58.674 70.674

Only the removal of the weight–sex interaction causes a reduction in AIC, so this interaction is deleted and
the other two interactions are retained. Let us see if we would have been this lenient:

Step: AIC=68.12

Df Deviance AIC
<none> 56.122 68.122
- age:sex 1 58.142 68.142
- age:weight 1 58.899 68.899

summary(model2)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.391566 1.265230 -0.309 0.7570
age 0.025764 0.014921 1.727 0.0842 .
weight -0.036494 0.128993 -0.283 0.7772
sexmale -3.743771 1.791962 -2.089 0.0367 *
age:weight -0.002221 0.001365 -1.627 0.1038
age:sexmale 0.020464 0.015232 1.343 0.1791

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 56.122 on 75 degrees of freedom
AIC: 68.122

Neither of the two interactions retained by step would figure in our model (p > 0.10). We shall use update
to simplify model2:

model3 <- update(model2,~.-age:weight)
anova(model2,model3,test="Chi")

Analysis of Deviance Table

Model 1: infected ~ age + weight + sex + age:weight + age:sex
Model 2: infected ~ age + weight + sex + age:sex

658 THE R BOOK

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 75 56.122
2 76 58.899 -1 -2.777 0.09562 .

So there is no really persuasive evidence of an age–weight term (p = 0.096).

model4 <- update(model2,~.-age:sex)
anova(model2,model4,test="Chi")

Analysis of Deviance Table

Model 1: infected ~ age + weight + sex + age:weight + age:sex
Model 2: infected ~ age + weight + sex + age:weight
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 75 56.122
2 76 58.142 -1 -2.0203 0.1552

Note that we are testing all the two-way interactions by deletion from the model that contains all two-way
interactions (model2): p = 0.1552, so nothing there, then.

What about the three main effects?

model5 <- glm(infected~age+weight+sex,family=binomial)
summary(model5)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.609369 0.803288 0.759 0.448096
age 0.012653 0.006772 1.868 0.061701 .
weight -0.227912 0.068599 -3.322 0.000893 ***
sexmale -1.543444 0.685681 -2.251 0.024388 *

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 59.859 on 77 degrees of freedom
AIC: 67.859

Weight is highly significant, as we expected from the initial boxplot, sex is quite significant, and age is
marginally significant. It is worth establishing whether there is any evidence of non-linearity in the response
of infection to weight or age. We might begin by fitting quadratic terms for the two continuous explanatory
variables:

model6 <- glm(infected~age+weight+sex+I(weightˆ2)+I(ageˆ2),family=binomial)
summary(model6)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.4475839 1.7978359 -1.918 0.0552 .
age 0.0829364 0.0360205 2.302 0.0213 *
weight 0.4466284 0.3372352 1.324 0.1854
sexmale -1.2203683 0.7683288 -1.588 0.1122
I(weightˆ2) -0.0415128 0.0209677 -1.980 0.0477 *
I(ageˆ2) -0.0004009 0.0002004 -2.000 0.0455 *

BINARY RESPONSE VARIABLES 659

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 48.620 on 75 degrees of freedom
AIC: 60.62

Evidently, both relationships are significantly curvilinear. It is worth looking at these non-linearities in more
detail, to see if we can do better with other kinds of models (e.g. non-parametric smoothers, piecewise linear
models or step functions). A generalized additive model is often a good way to start when we have continuous
covariates:

library(mgcv)
model7 <- gam(infected~sex+s(age)+s(weight),family=binomial)
windows(7,4)
par(mfrow=c(1,2))
plot.gam(model7)

weightage
5 10 150

–4
–3

–2
–1

0
1

2
3

–4
–3

–2
–1

0
1

2
3

50 150100 200

These non-parametric smoothers are excellent at showing the humped relationship between infection and
age, and at highlighting the possibility of a threshold at weight ≈ 8 in the relationship between weight and
infection. We can now return to a GLM to incorporate these ideas. We shall fit age and age2 as before, but try
a piecewise linear fit for weight, estimating the threshold weight at a range of values (say 8–14) and selecting
the threshold that gives the lowest residual deviance; this turns out to be a threshold of 12 (rather higher than
suggested by the gam plot above). The piecewise regression is specified by the term:

I((weight - 12) * (weight > 12))

The I (‘as is’) is necessary to stop the * being evaluated as an interaction term in the model formula. What
this expression says is ‘regress infection on the value of weight - 12, but only do this when weight >
12 is true’ (see p. 25). Otherwise, assume that infection is independent of weight.

model8 <- glm(infected~sex+age+I(ageˆ2)
+I((weight-12)*(weight>12)),family=binomial)

summary(model8)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.7511382 1.3678824 -2.011 0.0443 *
sexmale -1.2864683 0.7349201 -1.750 0.0800 .

660 THE R BOOK

age 0.0798629 0.0348184 2.294 0.0218 *
I(ageˆ2) -0.0003892 0.0001955 -1.991 0.0465 *
I((weight - 12) * (weight > 12)) -1.3547520 0.5350853 -2.532 0.0113 *

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 48.687 on 76 degrees of freedom
AIC: 58.687

The effect of sex on infection is not quite significant (p = 0.071 for a chi-squared test on deletion), so we
leave it out. The quadratic term for age does not look highly significant here, but a deletion test gives p =
0.011, so we retain it. The minimal adequate model is therefore

model9 <- glm(infected~age+I(ageˆ2)+I((weight-12)*(weight>12)),family=binomial)
summary(model9)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.1207552 1.2665593 -2.464 0.0137 *
age 0.0765784 0.0323376 2.368 0.0179 *
I(ageˆ2) -0.0003843 0.0001846 -2.081 0.0374 *
I((weight - 12) * (weight > 12)) -1.3511706 0.5134681 -2.631 0.0085 **

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 51.953 on 77 degrees of freedom
AIC: 59.953

We conclude that there is a humped relationship between infection and age, and a threshold effect of weight
on infection. The effect of sex is marginal, but might repay further investigation (p = 0.071).

17.4 Binary response with pseudoreplication

In the bacteria dataframe, which is part of the MASS library, we have repeated assessment of bacterial
infection (yes or no, coded as y or n) in a series of patients allocated at random to one of three treatments:
placebo, drug and drug plus supplement (drug+). The trial lasted for 11 weeks and different patients
were assessed on different numbers of occasions. The question is whether the two treatments significantly
reduced bacterial infection.

library(MASS)
attach(bacteria)
names(bacteria)

[1] "y" "ap" "hilo" "week" "ID" "trt"

table(y)

y
n y
43 177

The data are binary, so we need to use family=binomial. There is temporal pseudoreplication (repeated
measures on the same patients) so we cannot use glm. The ideal solution is the generalized mixed models

BINARY RESPONSE VARIABLES 661

function lmer. Like glm, the lmer function can take text (e.g. a two-level factor like y) as the response
variable. We start by looking at the data:

table(y,trt)

trt
y placebo drug drug+
n 12 18 13
y 84 44 49

Preliminary data inspection suggests that the drug might be effective because only 12 out of 96 patient
visits were bacteria-free in the placebos, compared with 31 out of 124 for the treated individuals. We shall
see. The modelling goes like this: the lmer function is in the lme4 package. The random effects appear in
the same formula as the fixed effects, but defined by the round brackets and the ‘given’ operator | to separate
the continuous random effect (week) from the categorical random effect (patient ID):

library(lme4)

model1 <- lmer(y~trt+(week|ID),family=binomial)
summary(model1)

Generalized linear mixed model fit by the Laplace approximation
Formula: y ~ trt + (week|ID)

AIC BIC logLik deviance
209.2 229.6 -98.6 197.2
Random effects:
Groups Name Variance Std.Dev. Corr
ID (Intercept) 0.147815 0.38447

week 0.062371 0.24974 1.000
Number of obs: 220, groups: ID, 50

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.6195 0.4894 5.352 8.7e-08 ***
trtdrug -1.2185 0.6588 -1.850 0.0644 .
trtdrug+ -0.5290 0.6991 -0.757 0.4492

Variation in intercepts across the patients (0.148) explained roughly twice as much variation in infection as
did random variation in slopes (0.062). The fixed effects are not significant.

We can simplify the model by removing the dependence of infection on week, retaining only the intercept
as a random effect +(1|ID):

model2 <- lmer(y~trt+(1|ID),family=binomial)
anova(model1,model2)

Data:
Models:
model2: y ~ trt + (1|ID)
model1: y ~ trt + (week|ID)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
model2 4 214.32 227.90 -103.162
model1 6 209.21 229.57 -98.603 9.1184 2 0.01047 *

662 THE R BOOK

The simpler model2 is significantly worse (p = 0.010 47) so we accept model1 (it has a lower AIC than
model2), retaining the random effect for week.

There is a question about the factor levels: perhaps the drug effect would be more significant if we combine
the drug and drug+ treatments?

drugs <- factor(1+(trt!="placebo"))
table(y,drugs)

drugs
y 1 2
n 12 31
y 84 93

model3 <- lmer(y~drugs+(week|ID),family=binomial)
summary(model3)

Generalized linear mixed model fit by the Laplace approximation
Formula: y ~ drugs + (week|ID)

AIC BIC logLik deviance
208.2 225.2 -99.12 198.2
Random effects:
Groups Name Variance Std.Dev. Corr
ID (Intercept) 0.196499 0.44328

week 0.059128 0.24316 1.000
Number of obs: 220, groups: ID, 50

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.6419 0.4958 5.329 9.89e-08 ***
drugs2 -0.8990 0.5977 -1.504 0.133

The interpretation is straightforward: there is no evidence in this experiment that either treatment significantly
reduces bacterial infection. Note that this is not the same as saying that the drug does not work. It is simply
that this trial is too small to demonstrate the significance of its efficacy.

It is also important to appreciate the importance of the pseudoreplication. If we had ignored the fact
that there were multiple measures per patient we should have concluded wrongly that the drug effect was
significant. Here are the raw data on the counts:

table(y,trt)

trt
y placebo drug drug+
n 12 18 13
y 84 44 49

Here is the wrong way of testing for the significance of the treatment effect:

prop.test(c(12,18,13),c(96,62,62))

3-sample test for equality of proportions without continuity
correction

data: c(12, 18, 13) out of c(96, 62, 62)
X-squared = 6.6585, df = 2, p-value = 0.03582

BINARY RESPONSE VARIABLES 663

alternative hypothesis: two.sided
sample estimates:

prop 1 prop 2 prop 3
0.1250000 0.2903226 0.2096774

It appears that the drug has increased the rate of non-infection from 0.125 in the placebos to 0.29 in the treated
patients, and that this effect is significant (p = 0.035 82). As we have seen, however, when we remove the
pseudoreplication by using the appropriate mixed model with lmer the response is non-significant.

Another way to get rid of the pseudoreplication is to restrict the analysis to the patients that were there at
the end of the experiment. We just use subset=(week==11) and this removes all the pseudoreplication
because no subjects were measured twice within any week – we can check this with the any function:

any(table(ID,week) >1)

[1] FALSE

The model is a straightforward GLM with a binary response variable and a single explanatory variable (the
three-level factor called trt):

model <- glm(y~trt,binomial,subset=(week==11))
summary(model)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.3863 0.5590 2.480 0.0131 *
trtdrug -0.6931 0.8292 -0.836 0.4032
trtdrug+ -0.6931 0.8292 -0.836 0.4032

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 51.564 on 43 degrees of freedom
Residual deviance: 50.569 on 41 degrees of freedom
AIC: 56.569

Neither drug treatment has anything approaching a significant effect in lowering bacterial infection rates
compared with the placebos (p = 0.4032). The supplement was expected to increase bacterial control over
the drug treatment, so perhaps the interpretation will be modified lumping together the two drug treatments:

drugs <- factor(1+(trt=="placebo"))

Here are placebos plus patients getting one drug treatment or the other:

table(drugs[week==11])

1 2
24 20

Thus there were 24 patients receiving one drug or the other, and 20 placebos (at 11 weeks).

model <- glm(y~drugs,binomial,subset=(week==11))
summary(model)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.6931 0.4330 1.601 0.109
drugs2 0.6931 0.7071 0.980 0.327

664 THE R BOOK

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 51.564 on 43 degrees of freedom
Residual deviance: 50.569 on 42 degrees of freedom
AIC: 54.569

Clearly, there is no convincing effect for the drug treatments on bacterial infection when we use this subset
of the data (p = 0.327).

An alternative way of analysing all the data (including the pseudoreplication) is to ask what proportion
of tests on each patient scored positive for the bacteria. The response variable now becomes a proportion,
and the pseudoreplication disappears because we only have one number for each patient (i.e. a count of the
number of occasions on which each patient scored positive for the bacteria, with the binomial denominator
as the total number of tests on that patient).

There are some preliminary data-shortening tasks. We need to create a vector of length 50 containing the
drug treatments of each patient (tss) and a table (ys, with elements of length 50) scoring how many times
each patient was infected and uninfected by bacteria. Finally, we use cbind to create a two-column response
variable, yv:

dss <- data.frame(table(trt,ID))
head(dss)

trt ID Freq
1 placebo X01 4
2 drug X01 0
3 drug+ X01 0
4 placebo X02 0
5 drug X02 0
6 drug+ X02 4

We need to find out the treatments of the patients that scored Freq > 0:

tss <- dss[dss[,3]>0,]$trt

ys <- table(y,ID)

yv <- cbind(ys[2,],ys[1,])

Now we can fit a very simple model for the binomial response (glm with binomial errors):

model <- glm(yv~tss,binomial)
summary(model)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.9459 0.3086 6.306 2.87e-10 ***
tssdrug -1.0521 0.4165 -2.526 0.0115 *
tssdrug+ -0.6190 0.4388 -1.411 0.1583

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 86.100 on 49 degrees of freedom
Residual deviance: 79.444 on 47 degrees of freedom
AIC: 130.9

BINARY RESPONSE VARIABLES 665

Drug looks to be significant here, but note that the residual deviance is much bigger than the residual degrees
of freedom, so we should correct for overdispersion by using quasi-binomial instead of binomial errors (recall
that the response is now binomial rather than binary; see p. 651):

model <- glm(yv~tss,quasibinomial)
summary(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.9459 0.3837 5.071 6.62e-06 ***
tssdrug -1.0521 0.5180 -2.031 0.0479 *
tssdrug+ -0.6190 0.5457 -1.134 0.2624

(Dispersion parameter for quasibinomial family taken to be 1.546375)

Null deviance: 86.100 on 49 degrees of freedom
Residual deviance: 79.444 on 47 degrees of freedom
AIC: NA

There is a marginally significant effect of drug, but no significant difference between the two drug
treatments, so we aggregate them into a single drug treatment:

tss2 <- factor(1+(tss=="placebo"))
model <- glm(yv~tss2,quasibinomial)
summary(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.0986 0.2582 4.255 9.64e-05 ***
tss22 0.8473 0.4629 1.830 0.0734 .

(Dispersion parameter for quasibinomial family taken to be 1.55006)

Null deviance: 86.100 on 49 degrees of freedom
Residual deviance: 80.523 on 48 degrees of freedom
AIC: NA

Again, the treatment effect is not significant, in agreement with the generalized mixed-effects model (p. 662).
This example re-emphasizes the importance of correcting for pseudoreplication and overdispersion. Had we
not made allowance for these we would have concluded (wrongly) that the drug brought about significant a
reduction in infection.

18
Generalized Additive Models

Up to this point, continuous explanatory variables have been added to models as linear functions, linearized
parametric transformations, or through various link functions. In all cases, an explicit or implicit assumption
was made about the parametric form of the function to be fitted to the data (whether quadratic, logarithmic,
exponential, logistic, reciprocal or whatever). In many cases, however, you have one or more continuous
explanatory variables, but you have no a priori reason to choose one particular parametric form over another
for describing the shape of the relationship between the response variable and the explanatory variable(s).
Generalized additive models (GAMs) are useful in such cases because they allow you to capture the shape of
a relationship between y and x without prejudging the issue by choosing a particular parametric form.

Generalized additive models (implemented in R by the gam function) extend the range of application of
generalized linear models (glm) by allowing non-parametric smoothers in addition to parametric forms, and
these can be associated with a range of link functions. All of the error families allowed with glm are available
with gam (binomial, poisson, Gamma, etc.). Indeed, gam has many of the attributes of both glm and
lm, and the output can be modified using update. You can use all of the familiar methods such as print,
plot, summary, anova, predict and fitted after a GAM has been fitted to data. The gam function
used in this book is in the mgcv package contributed by Simon Wood:

library(mgcv)

There are many ways of specifying the model in a GAM: all of the continuous explanatory variables x, w
and z can enter the model as non-parametrically smoothed functions like this:

y~s(x) + s(w) + s(z)

Alternatively, the model can contain a mix of parametrically estimated parameters (x and z) and smoothed
variables s(w):

y~x + s(w) + z

Formulae can involve nested (two-dimensional) terms in which the smoothing s() terms have more than one
argument, implying an isotropic smooth:

y~s(x) + s(z) + s(x,z)

Alternatively the smoothers can have overlapping terms such as

y~s(x,z) + s(z,w)

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

GENERALIZED ADDITIVE MODELS 667

The user has a high degree of control over the way that interactions terms can be fitted, and te() smooths
are provided as an effective means for modelling smooth interactions of any number of variables via scale-
invariant tensor product smooths. Here is an example of a model formula with a fully nested tensor product
te(x,z,k=6):

y ~ s(x,bs="cr",k=6) + s(z,bs="cr",k=6) + te(x,z,k=6)

The optional arguments to the smoothers are bs="cr",k=6, where bs indicates the basis to use for the
smooth ("cr" is a cubic regression spline; the default is thin plate bs="tp"), and k is the dimension of the
basis used to represent the smooth term (it defaults to k = 10*3(d-1)where d is the number of covariates
for this term).

18.1 Non-parametric smoothers

You can see non-parametric smoothers in action for fitting a curve through a scatterplot in Chapter 10
(p. 491). Here we are concerned with using non-parametric smoothers in statistical modelling where the object
is to assess the relative merits of a range of different models in explaining variation in the response variable.
One of the simplest model-fitting functions is loess (which replaces its predecessor called lowess).

The following example shows population change, Delta = log(N(t + 1)/N(t)), as a function of popu-
lation density (N(t)) in an investigation of density dependence in a sheep population. This is what the data
look like:

soay <- read.table("c:\\temp\\soaysheep.txt",header=T)
attach(soay)
names(soay)

[1] "Year" "Population" "Delta"

plot(Population,Delta,pch=21,col="green",bg="red")

Broadly speaking, population change is positive at low densities (Delta > 0) and negative at high densities
(Delta < 0) but there is a great deal of scatter, and it is not at all obvious what shape of smooth function
would best describe the data. Here is the default loess:

model <- loess(Delta~Population)
summary(model)

Call:
loess(formula = Delta~Population)
Number of Observations: 44
Equivalent Number of Parameters: 4.66
Residual Standard Error: 0.2616
Trace of smoother matrix: 5.11
Control settings:

normalize: TRUE
span : 0.75
degree : 2
family : gaussian
surface :interpolate cell = 0.2

668 THE R BOOK

Now draw the smoothed line using predict to extract the predicted values from model:

xv <- seq(600,2000,1)
yv <- predict(model,data.frame(Population=xv))
lines(xv,yv col="red")

600 800 1000 1200 1400 1600 1800 2000
Population

–0
.8

–0
.6

–0
.4

–0
.2D
el

ta
0.

0
0.

2
0.

4

The smooth curve looks rather like a step function. We can compare this smooth function with a step function,
using a tree model (p. 768) as an objective way of determining the threshold for splitting the data into low-
and high-density parts:

library(tree)
thresh <- tree(Delta~Population)
print(thresh)

The threshold for the first split of the tree model is at Population = 1289.5, so we define this as the
threshold density:

th <- 1289.5

Then we can use this threshold to create a two-level factor for fitting two constant rates of population change
using aov:

model2 <- aov(Delta~(Population>th))
summary(model2)

Df Sum Sq Mean Sq F value Pr(>F)
Population > th 1 2.810 2.810 47.63 2.01e-08 ***
Residuals 42 2.477 0.059

GENERALIZED ADDITIVE MODELS 669

showing a residual error variance of 0.059. This compares with the residual of 0.26162 = 0.068 from the
loess (above). To draw the step function we need the average low-density population increase and the
average high-density population decline:

tapply(Delta[-45],(Population[-45]>th),mean)

FALSE TRUE
0.2265084 -0.2836616

Note the use of negative subscripts to drop the NA from the last value of Delta. Then use these figures
to draw the step function:

lines(c(600,th),c(0.2265,0.2265),lty=2, col="blue")
lines(c(th,2000),c(-0.2837,-0.2837),lty=2, col="blue")
lines(c(th,th),c(-0.2837,0.2265),lty=2, col="blue")

600 800 1000 1200 1400 1600 1800 2000

Population

–0
.8

–0
.6

–0
.4

–0
.2D
el

ta

0.
0

0.
2

0.
4

It is a moot point which of these two models is the most realistic scientifically, but the step function involved
three estimated parameters (two averages and a threshold), while the loess is based on 4.66 degrees of
freedom, so parsimony favours the step function (it also has a slightly lower residual sum of squares).

18.2 Generalized additive models

This dataframe contains measurements of radiation, temperature, wind speed and ozone concentration. We
want to model ozone concentration as a function of the three continuous explanatory variables using non-
parametric smoothers rather than specified nonlinear functions (the parametric multiple regression analysis
of these data is on p. 490):

ozone.data <- read.table("c:\\temp\\ozone.data.txt",header=T)
attach(ozone.data)
names(ozone.data)

[1] "rad" "temp" "wind" "ozone"

670 THE R BOOK

For data inspection we use pairs with a non-parametric smoother, lowess:

pairs(ozone.data, panel=function(x,y) { points(x,y); lines(lowess(x,y))})

60 70 80 90 0 50 100 150

0
50

15
0

25
0

0 50 150 250

0
50

10
0

15
0

60
70

80
90

5 10 15 20

5
10

15
20

rad

temp

wind

ozone

Now fit all three explanatory variables using the non-parametric smoother s():

model <- gam(ozone~s(rad)+s(temp)+s(wind))
summary(model)

Family: gaussian
Link function: identity

Formula:
ozone ~ s(rad) + s(temp) + s(wind)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.10 1.66 25.36 <2e-16 ***
Approximate significance of smooth terms:

edf Ref.df F p-value
s(rad) 2.763 3.451 3.964 0.00736 **
s(temp) 3.841 4.762 11.612 1.28e-08 ***
s(wind) 2.918 3.666 13.770 1.53e-08 ***

R-sq.(adj) = 0.724 Deviance explained = 74.8%
GCV score = 338 Scale est. = 305.96 n = 111

GENERALIZED ADDITIVE MODELS 671

Note that the intercept is estimated as a parametric coefficient (42.10; upper table) and the three
explanatory variables are fitted as smooth terms. All three are significant, but radiation is the least sig-
nificant at p = 0.007 36. We can compare a GAM with and without a term for radiation using ANOVA in the
normal way:

model2 <- gam(ozone~s(temp)+s(wind))
anova(model,model2,test="F")

Analysis of Deviance Table

Model 1: ozone ~ s(rad) + s(temp) + s(wind)
Model 2: ozone ~ s(temp) + s(wind)
Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 100.48 30742
2 102.85 34885 -2.3672 -4142.2 5.7192 0.002696 **

Clearly, radiation should remain in the model, since deletion of radiation caused a highly significant increase
in deviance (p = 0.0027), emphasizing the fact that deletion is a better test than inspection of parameters (the
p values in the full model table were not deletion p values).

We should investigate the possibility that there is an interaction between wind and temperature:

model3 <- gam(ozone~s(temp)+s(wind)+s(rad)+s(wind,temp))
summary(model3)

Family: gaussian
Link function: identity

Formula:
ozone ~ s(temp) + s(wind) + s(rad) + s(wind, temp)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.099 1.361 30.92 <2e-16 ***

Approximate significance of smooth terms:
edf Ref.df F p-value

s(temp) 1.000 1.000 0.000 0.9892
s(wind) 5.613 6.482 2.492 0.0255 *
s(rad) 1.389 1.667 4.694 0.0164 *
s(wind,temp) 18.246 22.061 3.202 6.52e-05 ***

R-sq.(adj) = 0.814 Deviance explained = 85.9%
GCV score = 272.66 Scale est. = 205.72 n = 111

The interaction appears to be highly significant, but the main effect of temperature is cancelled out. We can
inspect the fit of model3 like this:

par(mfrow=c(2,2))
plot(model3,residuals=T,pch=16)

672 THE R BOOK

–2
0

0
20

40
60

80
–2

0
0

20
40

60
80

–2
0

0
20

40
60

80

5 10 15 20

5 10 15 20

60 70 80 90

60
70

80
90

0 50 100 150 200 250 300

temp

te
m

p

wind

windrad

–1se +1se

The etchings on the x axis are called rugs (see Section 17.2) and indicate the locations of measurements of x
values on each axis. The default option is rug=T. The bottom right-hand plot shows the complexity of the
interaction between temperature and wind speed.

18.2.1 Technical aspects

The degree of smoothness of model terms is estimated as part of fitting; isotropic or scale-invariant smooths
of any number of variables are available as model terms. Confidence or credible intervals are readily available
for any quantity predicted using a fitted model. In mgcv, gam solves the smoothing parameter estimation
problem by using the generalized cross validation (GCV) criterion

GCV = nD

(n − d.f.)2

or an unbiased risk estimator (UBRE) criterion

UBRE = D

n
+ 2φ

d.f.

n
− φ,

where D is the deviance, n the number of data, φ the scale parameter and d.f. the effective degrees of
freedom of the model. Notice that UBRE is effectively just AIC rescaled, but is only used when φ is
known. It is also possible to replace D by the Pearson statistic (see ?gam.method), but this can lead
to oversmoothing. Smoothing parameters are chosen to minimize the GCV or UBRE score for the model,
and the main computational challenge solved by the mgcv package is to do this efficiently and reliably.
Various alternative numerical methods are provided: see ?gam.method. Smooth terms are represented

GENERALIZED ADDITIVE MODELS 673

using penalized regression splines (or similar smoothers) with smoothing parameters selected by GCV or
UBRE or by regression splines with fixed degrees of freedom (mixtures of the two are permitted). Multi-
dimensional smooths are available using penalized thin plate regression splines (isotropic) or tensor product
splines (when an isotropic smooth is inappropriate).

This gam function is not a clone of what S-PLUS provides – there are three major differences. First, by
default, estimation of the degree of smoothness of model terms is part of model fitting. Second, a Bayesian
approach to variance estimation is employed that makes for easier confidence interval calculation (with good
coverage probabilities). Third, the facilities for incorporating smooths of more than one variable are different.

If absolutely any smooth functions were allowed in model fitting then maximum likelihood estimation
of such models would invariably result in complex overfitting estimates of the smoothed functions s(x)
and s(z). For this reason the models are usually fitted by penalized likelihood maximization, in which the
model deviance (negative log-likelihood) is modified by the addition of a penalty for each smooth function,
penalizing what the author of gam, Simon Wood, calls its ‘wiggliness’. To control the trade-off between
penalizing wiggliness and penalizing badness of fit, each penalty is multiplied by an associated smoothing
parameter: how to estimate these parameters and how to practically represent the smooth functions are the
main statistical questions introduced by moving from GLMs to GAMs.

The built-in alternatives for univariate smooths terms are: a conventional penalized cubic regression
spline basis, parameterized in terms of the function values at the knots; a cyclic cubic spline with a similar
parameterization; and thin plate regression splines. The cubic spline bases are computationally very efficient,
but require knot locations to be chosen (automatically by default). The thin plate regression splines are
optimal low-rank smooths which do not have knots, but are computationally more costly to set up. Smooths
of several variables can be represented using thin plate regression splines, or tensor products of any available
basis, including user-defined bases (tensor product penalties are obtained automatically form the marginal
basis penalties).

Thin plate regression splines are constructed by starting with the basis for a full thin plate spline and then
truncating this basis in an optimal manner, to obtain a low-rank smoother. Details are given in Wood (2003).
One key advantage of the approach is that it avoids the knot placement problems of conventional regression
spline modelling, but it also has the advantage that smooths of lower rank are nested within smooths of higher
rank, so that it is legitimate to use conventional hypothesis testing methods to compare models based on pure
regression splines. The thin plate regression spline basis can become expensive to calculate for large data
sets. In this case the user can supply a reduced set of knots to use in basis construction (see knots in the
argument list), or use tensor products of cheaper bases. In the case of the cubic regression spline basis, knots
of the spline are placed evenly throughout the covariate values to which the term refers. For example, if fitting
101 data points with an 11-knot spline of x then there would be a knot at every 10th (ordered) x value. The
parameterization used represents the spline in terms of its values at the knots. The values at neighbouring
knots are connected by sections of cubic polynomial constrained to be continuous up to and including second
derivatives at the knots. The resulting curve is a natural cubic spline through the values at the knots (given
two extra conditions specifying that the second derivative of the curve should be zero at the two end knots).
This parameterization gives the parameters a nice interpretability. Details of the underlying fitting methods
are given in Wood (2000, 2004).

You must have more unique combinations of covariates than the model has total parameters (total param-
eters being the sum of basis dimensions plus the sum of non-spline terms less the number of spline terms.).
Automatic smoothing parameter selection is not likely to work well when fitting models to very few response
data. With large data sets (more than a few thousand data) the tp basis gets very slow to use: use the knots
argument as discussed above and shown in the examples. Alternatively, for low-density smooths you can use
the cr basis and for multi-dimensional smooths use te smooths.

For data with many zeros clustered together in the covariate space it is quite easy to set up GAMs which
suffer from identifiability problems, particularly when using Poisson or binomial families. The problem is

674 THE R BOOK

that with log or logit links, for example, mean value zero corresponds to an infinite range on the linear
predictor scale.

Another situation that occurs quite often is the one in which we would like to find out if the model

E(y) = f (x, z)

is really necessary, or whether

E(y) = f1(x) + f2(z)

would not do just as well. One way to do this is to look at the results of fitting

y~s(x)+s(z)+s(x,z)

gam automatically generates side conditions to make this model identifiable. You can also estimate overlap-
ping models such as

y~s(x,z)+s(z,v)

Sometimes models of the form

E(y) = b0 + f (x)z

need to be estimated (where f is a smooth function, as usual). The appropriate formula is

y~z+s(x,by=z)

where the by argument ensures that the smooth function gets multiplied by covariate z, but GAM smooths
are centred (average value zero), so the parametric term for z is needed as well (f is being represented by a
constant plus a centred smooth). If we wanted

E(y) = f (x)z

then the appropriate formula would be

y~z+s(x,by=z)-1

The by mechanism also allows models to be estimated in which the form of a smooth depends on the level
of a factor, but to do this the user must generate the dummy variables for each level of the factor. Suppose,
for example, that fac is a factor with three levels 1, 2, 3, and at each level of this factor the response
depends smoothly on a variable x in a manner that is level-dependent. Three dummy variables, fac.1,
fac.2, fac.3, can be generated for the factor (e.g. fac.1 <- as.numeric(fac==1)). Then the
model formula would be:

y~fac+s(x,by=fac.1)+s(x,by=fac.2)+s(x,by=fac.3)

In the above examples the smooths of more than one covariate have all employed single-penalty thin
plate regression splines. These isotropic smooths are not always appropriate: if variables are not naturally
well scaled relative to each other then it is often preferable to use tensor product smooths, with a wiggliness
penalty for each covariate of the term. See ?te for examples.

The most logically consistent method to use for deciding which terms to include in the model is to compare
GCV/UBRE scores for models with and without the term. More generally, the score for the model with a
smooth term can be compared to the score for the model with the smooth term replaced by appropriate

GENERALIZED ADDITIVE MODELS 675

parametric terms. Candidates for removal can be identified by reference to the approximate p values provided
bysummary.gam. Candidates for replacement by parametric terms are smooth terms with estimated degrees
of freedom close to their minimum possible.

18.3 An example with strongly humped data

The ethanol dataframe contains 88 sets of measurements for variables from an experiment in which ethanol
was burned in a single cylinder automobile test engine. The response variable, NOx, is the concentration of
nitric oxide (NO) and nitrogen dioxide (NO2) in engine exhaust, normalized by the work done by the
engine, and the two continuous explanatory variables are C (the compression ratio of the engine), and E (the
equivalence ratio at which the engine was run, which is a measure of the richness of the air–ethanol mix).

install.packages("SemiPar")
library(SemiPar)
data(ethanol)
attach(ethanol)
head(ethanol)

NOx C E
1 3.741 12 0.907
2 2.295 12 0.761
3 1.498 12 1.108
4 2.881 12 1.016
5 0.760 12 1.189
6 3.120 9 1.001

Because NOx is such a strongly humped function of the equivalence ratio, E, we start with a model,
NOx~s(E)+C, that fits this as a smoothed term and estimates a parametric term for the compression
ratio:

model <- gam(NOx~s(E)+C)
windows(7,4)
par(mfrow=c(1,2))
plot.gam(model,residuals=T,pch=16,all.terms=T)

0.6 0.8 1.0 1.2

0.
6

0.
8

P
ar

tia
l f

or
 C

0.
4

0.
2

1.
0

1.
2

8 10 12 14 16 18

–2
–1

0
1

2

E C

The coplot function is helpful in showing where the effect of C on NOx was most marked:

coplot(NOx~C|E,panel=panel.smooth)

676 THE R BOOK

0.6 0.7 0.8 0.9 1.0 1.1 1.2

8 10 12 14 16 18

8 10 12 14 16 18

8 10 12 14 16 18

1
2

3
4N

O
x

1
2

3
4

C

Given : E

There is a pronounced positive effect of C on NOx only in panel 2 (ethanol 0.7 < E < 0.9 from the shingles
in the upper panel), but only slight effects elsewhere (most of the red lines are roughly horizontal). You can
estimate the interaction between E and C from the product of the two variables:

CE <- E*C
model2 <- gam(NOx~s(E)+s(CE))
windows(7,4)
par(mfrow=c(1,2))

plot.gam(model2,residuals=T,pch=16,all.terms=T)

0.6 0.8
E CE

1.0 1.2 5 10 15 20

–1
0

1
2

–1
0

1
2

GENERALIZED ADDITIVE MODELS 677

summary(model2)

Family: gaussian
Link function: identity

Formula:
NOx ~ s(E) + s(CE)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.95737 0.02126 92.07 <2e-16 ***

Approximate significance of smooth terms:
edf Ref.df F p-value

s(E) 7.636 8.509 270.13 < 2e-16 ***
s(CE) 4.261 5.224 25.25 3.65e-15 ***

R-sq.(adj) = 0.969 Deviance explained = 97.3%
GCV score = 0.0466 Scale est. = 0.039771 n = 88

The summary of this GAM shows highly significant terms for both smoothed terms: the effect of ethanol,
s(E), on 7.6 estimated degrees of freedom, and the interaction between E and C, s(CE), on 4.3 estimated
degrees of freedom. The model explains a highly impressive 97.3% of the deviance in NOx concentration.

18.4 Generalized additive models with binary data

GAMs are particularly valuable with binary response variables (for background, see p. 650). To illustrate the
use of gam for modelling binary response data, we return to the example analysed by logistic regression on
p. 652. We want to understand how the isolation of an island and its area influence the probability that the
island is occupied by our study species.

island <- read.table("c:\\temp\\isolation.txt",header=T)
attach(island)
names(island)

[1] "incidence" "area" "isolation"

In the logistic regression, isolation had a highly significant negative effect on the probability that an
island will be occupied by our species (p = 0.004), and area (island size) had a significant positive effect
on the likelihood of occupancy (p = 0.019). But we have no a priori reason to believe that the logit of the
probability should be linearly related to either of the explanatory variables. We can try using a GAM to fit
smoothed functions to the incidence data:

model3 <- gam(incidence~s(area)+s(isolation),binomial)
summary(model3)

Family: binomial
Link function: logit

Formula:
incidence ~ s(area) + s(isolation)

678 THE R BOOK

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.6371 0.9898 1.654 0.0981 .

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(area) 2.429 3.066 3.623 0.31522
s(isolation) 1.000 1.000 7.480 0.00624 **

R-sq.(adj) = 0.63 Deviance explained = 63.1%
UBRE score = -0.32096 Scale est. = 1 n = 50

This indicates a highly significant effect of isolation on occupancy (p = 0.006 24) but no effect of area
(p = 0.315 22). We plot the model to look at the residuals:

windows(7,4)
par(mfrow=c(1,2))
plot.gam(model3,residuals=T,pch=16)

–5

0 2 4
area isolation

6 8 2 44 6 8

0
5

10

–5
0

5
10

This suggests a strong effect of area, with very little scatter, but only above a threshold of about area= 5. We
assess the significance of area by deletion and compare a model containing s(area) + s(isolation)
with a model containing s(isolation) alone:

model4 <- gam(incidence~s(isolation),binomial)
anova(model3,model4,test="Chi")

Analysis of Deviance Table

Model 1: incidence ~ s(area) + s(isolation)
Model 2: incidence ~ s(isolation)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 45.571 25.094
2 45.799 29.127 -0.22824 -4.033 0.006461 **

GENERALIZED ADDITIVE MODELS 679

This shows the effect of area to be highly significant (p = 0.006 461), despite the non-significant p value
in the summary table of model3. An alternative is to fit area as a parametric term and isolation as a
smoothed term:

model5 <- gam(incidence~area+s(isolation),binomial)
summary(model5)

Family: binomial
Link function: logit

Formula:
incidence ~ area + s(isolation)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.3928 0.9002 -1.547 0.1218
area 0.5807 0.2478 2.344 0.0191 *

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(isolation) 1 1 8.275 0.00402 **

R-sq.(adj) = 0.597 Deviance explained = 58.3%
UBRE score = -0.31196 Scale est. = 1 n = 50

Again, this shows a significant effect of area on occupancy. The lesson here is that a term can appear to
be significant when entered into the model as a parametric term (area has p = 0.019 in model5) but not
come close to significance when entered as a smoothed term (s(area) has p = 0.275 in model3). Also,
the comparison of model3 and model4 draws attention to the benefits of using deletion with anova in
assessing the significance of model terms.

18.5 Three-dimensional graphic output from gam

Here is an example by Simon Wood which shows the kind of three-dimensional graphics that can be obtained
from gam using vis.gam when there are two continuous explanatory variables. Note that in this example
the smoother works on both variables together, y~s(x,z):

windows(7,7)
test1 <- function(x,z,sx=0.3,sz=0.4)

{(pi**sx*sz)*(1.2*exp(-(x-0.2)ˆ2/sxˆ2-(z-0.3)ˆ2/szˆ2)+
0.8*exp(-(x-0.7)ˆ2/sxˆ2-(z-0.8)ˆ2/szˆ2))
}

n <- 500
x <- runif(n);z <- runif(n);
y <- test1(x,z)+rnorm(n)*0.1
b4 <- gam(y~s(x,z))

vis.gam(b4)

680 THE R BOOK

lin
ea

r
pr

ed
ic

to
r

x

Note also that the vertical scale of the graph is the linear predictor, not the response.

19
Mixed-Effects Models

Up to this point, we have treated all categorical explanatory variables as if they were the same. This is
certainly what R.A. Fisher had in mind when he invented the analysis of variance in the 1920s and 1930s. It
was Eisenhart (1947) who realized that there were actually two fundamentally different sorts of categorical
explanatory variables: he called these fixed effects and random effects. It will take a good deal of practice
before you are confident in deciding whether a particular categorical explanatory variable should be treated
as a fixed effect or a random effect, but in essence:

� fixed effects influence only the mean of y;

� random effects influence only the variance of y.

Fixed effects are unknown constants to be estimated from the data. Random effects govern the variance–
covariance structure of the response variable (see p. 519). Nesting (or hierarchical structure) of random effects
is a classic source of pseudoreplication, so it important that you are able to recognize it and hence not fall
into its trap. Random effects that come from the same group will be correlated, and this contravenes one of
the fundamental assumptions of standard statistical models: independence of errors. Random effects occur
in two contrasting kinds of circumstances:

� observational studies with hierarchical structure;

� designed experiments with different spatial or temporal scales.

Fixed effects have informative factor levels, while random effects often have uninformative factor levels.
The distinction is best seen by an example. In most mammal species the categorical variable sex has two
levels: male and female. For any individual that you find, the knowledge that it is, say, female conveys a great
deal of information about the individual, and this information draws on experience gleaned from many other
individuals that were female. A female will have a whole set of attributes (associated with her being female)
no matter what population that individual was drawn from. Take a different categorical variable like genotype.
If we have two genotypes in a population we might label them A and B. If we take two more genotypes from
a different population we might label them A and B as well. In a case like this, the label A does not convey
any information at all about the genotype, other than that it is probably different from genotype B. In the case
of sex, the factor level (male or female) is informative: sex is a fixed effect. In the case of genotype, the factor
level (A or B) is uninformative: genotype is a random effect.

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

682 THE R BOOK

Random effects have factor levels that are drawn from a large (potentially very large) population in which
the individuals differ in many ways, but we do not know exactly how or why they differ. To get a feel for the
difference between fixed effects and random effects here are some more examples:

Fixed effects Random effects

Drug administered or not Genotype
Insecticide sprayed or not Brood
Nutrient added or not Block within a field
One country versus another Split plot within a plot
Male or female History of development
Upland or lowland Household
Wet versus dry Individuals with repeated measures
Light versus shade Family
One age versus another Parent

The important point is that because the random effects come from a large population, there is not much
point in concentrating on estimating means of our small subset of factor levels, and no point at all in comparing
individual pairs of means for different factor levels. Much better to recognize them for what they are, random
samples from a much larger population, and to concentrate on their variance. This is the added variation
caused by differences between the levels of the random effects.

Variance components analysis is all about estimating the size of this variance, and working out its percentage
contribution to the overall variation. There are five fundamental assumptions of linear mixed-effects models:

� Within-group errors are independent with mean zero and variance σ 2.

� Within-group errors are independent of the random effects.

� The random effects are normally distributed with mean zero and covariance matrix �.

� The random effects are independent in different groups.

� The covariance matrix does not depend on the group.

The validity of these assumptions needs to be tested by employing a series of plotting methods involving the
residuals, the fitted values and the predicted random effects. The tricks with mixed-effects models are:

� learning which variables are random effects;

� specifying the fixed and random effects in the model formula;

� getting the nesting structure of the random effects right;

� remembering to get library(lme4) or library(nlme) at the outset.

The issues fall into two broad categories: questions about experimental design and the management of
experimental error (e.g. where does most of the variation occur, and where would increased replication
be most profitable?); and questions about hierarchical structure, and the relative magnitude of variation at
different levels within the hierarchy (e.g. studies on the genetics of individuals within families, families
within parishes, and parishes with counties, to discover the relative importance of genetic and phenotypic
variation).

MIXED-EFFECTS MODELS 683

Most ANOVA models are based on the assumption that there is a single error term. But in hierarchical
studies and nested experiments, where the data are gathered at two or more different spatial scales, there
is a different error variance for each different spatial scale. There are two reasonably clear-cut sets of
circumstances where your first choice would be to use a linear mixed-effects model: you want to do variance
components analysis because all your explanatory variables are categorical random effects and you do not
have any fixed effects; or you do have fixed effects, but you also have pseudoreplication of one sort or another
(e.g. temporal pseudoreplication resulting from repeated measurements on the same individuals; see p. 699).
To test whether one should use a model with mixed effects or just a plain old linear model, Douglas Bates
wrote in the R help archive: ‘I would recommend the likelihood ratio test against a linear model fit by lm.
The p-value returned from this test will be conservative because you are testing on the boundary of the
parameter space.’

19.1 Replication and pseudoreplication

To qualify as replicates, measurements must have the following properties:

� They must be independent.

� They must not form part of a time series (data collected from the same place on successive occasions are
not independent).

� They must not be grouped together in one place (aggregating the replicates means that they are not spatially
independent).

� They must be of an appropriate spatial scale;

� Ideally, one replicate from each treatment ought to be grouped together into a block, and the whole
experiment repeated in many different blocks.

� Repeated measures (e.g. from the same individual or the same spatial location) are not replicates (this is
probably the commonest cause of pseudoreplication in statistical work).

Pseudoreplication occurs when you analyse the data as if you had more degrees of freedom than you really
have. There are two kinds of pseudoreplication:

� temporal pseudoreplication, involving repeated measurements from the same individual;

� spatial pseudoreplication, involving several measurements taken from the same vicinity.

Pseudoreplication is a problem because one of the most important assumptions of standard statistical analysis
is independence of errors. Repeated measures through time on the same individual will have non-independent
errors because peculiarities of the individual will be reflected in all of the measurements made on it (the
repeated measures will be temporally correlated with one another). Samples taken from the same vicinity
will have non-independent errors because peculiarities of the location will be common to all the samples (e.g.
yields will all be high in a good patch and all be low in a bad patch).

Pseudoreplication is generally quite easy to spot. The question to ask is this. How many degrees of freedom
for error does the experiment really have? If a field experiment appears to have lots of degrees of freedom,
it is probably pseudoreplicated. Take an example from pest control of insects on plants. There are 20 plots,
10 sprayed and 10 unsprayed. Within each plot there are 50 plants. Each plant is measured five times during

684 THE R BOOK

the growing season. Now this experiment generates 20 × 50 × 5 = 5000 numbers. There are two spraying
treatments, so there must be 1 degree of freedom for spraying and 4998 degrees of freedom for error. Or
must there? Count up the replicates in this experiment. Repeated measurements on the same plants (the
five sampling occasions) are certainly not replicates. The 50 individual plants within each quadrat are not
replicates either. The reason for this is that conditions within each quadrat are quite likely to be unique, and
so all 50 plants will experience more or less the same unique set of conditions, irrespective of the spraying
treatment they receive. In fact, there are 10 replicates in this experiment. There are 10 sprayed plots and 10
unsprayed plots, and each plot will yield only one independent datum for the response variable (the mean
proportion of leaf area consumed by insects, for example). Thus, there are 9 degrees of freedom within each
treatment, and 2 × 9 = 18 degrees of freedom for error in the experiment as a whole. It is not difficult to find
examples of pseudoreplication on this scale in the literature (Hurlbert 1984). The problem is that it leads to
the reporting of masses of spuriously significant results (with 4998 degrees of freedom for error, it is almost
impossible not to have significant differences). The first skill to be acquired by the budding experimenter is
the ability to plan an experiment that is properly replicated. There are various things that you can do when
your data are pseudoreplicated:

� Average away the pseudoreplication and carry out your statistical analysis on the means.

� Carry out separate analyses for each time period.

� Use proper time series analysis or mixed-effects models.

19.2 The lme and lmer functions

Most of the examples in this chapter use the linear mixed model formula lme. This is to provide compatibility
with the excellent book by Pinheiro and Bates (2000) on Mixed-Effects Models in S and S-PLUS. More
recently, however, Douglas Bates has released the generalized mixed model function lmer as part of the
lme4 package, and you may prefer to use this in your own work, especially for nested count data or proportion
data. To begin with, I provide a simple comparison of the basic syntax of the two functions.

19.2.1 lme

Specifying the fixed and random effects in the model formula is done with two formulae. Suppose that there
are no fixed effects, so that all of the categorical variables are random effects. Then the fixed effect simply
estimates the intercept (parameter 1):

fixed = y ~ 1

The fixed effect (a compulsory part of the lme structure) is just the overall mean value of the response
variable y ~ 1. The fixed = part of the formula is optional if you put this object first. The random effects
show the identities of the random variables and their relative locations in the hierarchy. The three random
effects (a, b, and c) are specified like this:

random = ~ 1 | a/b/c

and in this case the phrase random = is not optional. An important detail to notice is that the name of the
response variable (y) is not repeated in the random-effects formula: there is a blank space to the left of the
tilde ~. In most mixed-effects models we assume that the random effects have a mean of zero and that we
are interested in quantifying variation in the intercept caused by differences between the factor levels of the

MIXED-EFFECTS MODELS 685

random effects. After the intercept comes the vertical bar | which is read as ‘given the following spatial
arrangement of the random variables’. In this example there are three random effects with ‘c nested within
b which in turn is nested within a’. The factors are separated by forward slash characters, and the variables
are listed from left to right in declining order of spatial (or temporal) scale. This will only become clear with
practice, but it is a simple idea. The formulae are put together like this:

lme(fixed = y ~ 1, random = ~ 1 | a/b/c)

19.2.2 lmer

There is just one formula in lmer, not separate formulae for the fixed and random effects. The fixed effects
are specified first, to the right of the tilde, in the normal way. Next comes a plus sign, then one or more random
terms enclosed in parentheses (in this example there is just one random term, but we might want separate
random terms for the intercept and for the slopes, for instance). R can identify the random terms because they
must contain a ‘given’ symbol |, to the right of which are listed the random effects in the usual way, from
largest to smallest scale, left to right. So the lmer formula for this example is:

lmer(y ~ 1+(1 | a/b/c))

19.3 Best linear unbiased predictors

In aov, the effect size for treatment i is defined as ȳi − µ, where µ is the overall mean. In mixed-effects
models, however, correlation between the pseudoreplicates within a group causes what is called shrinkage.
The best linear unbiased predictors (BLUPs, denoted by ai) are smaller than the effect sizes (ȳi − µ), and are
given by

ai = (ȳi − µ)

(
σ 2

a

σ 2
a + σ 2/n

)
,

where σ 2 is the residual variance and σ 2
a is the between-group variance which introduces the correlation

between the pseudoreplicates within each group. Thus, the parameter estimate ai is ‘shrunk’ compared to the
fixed effect size (ȳi − µ). When σ 2

a is estimated to be large compared with the estimate of σ 2/n (i.e. when
most of the variation is between classes and there is little variation within classes), the fixed effects and the
BLUP are similar. On the other hand, when σ 2

a is estimated to be small compared with the estimate of σ 2/n,

then the fixed effects and the BLUP can be very different.

19.4 Designed experiments with different spatial scales: Split plots

The important distinction in models with categorical explanatory variables is between cases where the data
come from a designed experiment, in which treatments were allocated to locations or subjects at random,
and cases where the data come from an observational study in which the categorical variables are associated
with an observation before the study. Here, we call the first case split-plot experiments and the second
case hierarchical designs. The point is that their dataframes look identical, so it is easy to analyse one case
wrongly as if it were the other. You need to be able to distinguish between fixed effects and random effects in
both cases.

686 THE R BOOK

Here is the linear model for a split-plot experiment analysed in Chapter 11 by aov (see p. 519):

yields <- read.table("c:\\temp\\splityield.txt",header=T)
attach(yields)
names(yields)

[1] "yield" "block" "irrigation" "density" "fertilizer"

library(nlme)

The fixed-effects part of the model is specified in just the same way as in a straightforward factorial experiment:
yield ~ irrigation*density*fertilizer. The random-effects part of the model says that we
want the random variation to enter via effects on the intercept as random=~1. Finally, we define the spatial
structure of the random effects after the ‘given’ symbol | as: block/irrigation/density reflecting
the progressively smaller plot sizes. There is no need to specify the smallest spatial scale (fertilizer plots in
this example).

model <- lme(yield ~ irrigation*density*fertilizer,random= ~
1|block/irrigation/density)
summary(model)

Linear mixed-effects model fit by REML
Data: NULL

AIC BIC logLik
481.6212 525.3789 -218.8106

Random effects:
Formula: ~1 | block

(Intercept)
StdDev: 0.000660972

Formula: ~1 | irrigation %in% block
(Intercept)

StdDev: 1.982463

Formula: ~1 | density %in% irrigation %in% block
(Intercept) Residual

StdDev: 6.975553 9.292805

Fixed effects: yield ~ irrigation * density * fertilizer

Value Std.Error DF t-value p-value
(Intercept) 80.50 5.893741 36 13.658558 0.0000
irrigationirrigated 31.75 8.335008 3 3.809234 0.0318
densitylow 5.50 8.216281 12 0.669403 0.5159
densitymedium 14.75 8.216281 12 1.795216 0.0978
fertilizerNP 5.50 6.571005 36 0.837010 0.4081
fertilizerP 4.50 6.571005 36 0.684827 0.4978
irrigationirrigated:densitylow -39.00 11.619577 12 -3.356405 0.0057
irrigationirrigated:densitymedium -22.25 11.619577 12 -1.914872 0.0796
irrigationirrigated:fertilizerNP 13.00 9.292805 36 1.398932 0.1704
irrigationirrigated:fertilizerP 5.50 9.292805 36 0.591856 0.5576
densitylow:fertilizerNP 3.25 9.292805 36 0.349733 0.7286
densitymedium:fertilizerNP -6.75 9.292805 36 -0.726368 0.4723
densitylow:fertilizerP -5.25 9.292805 36 -0.564953 0.5756
densitymedium:fertilizerP -5.50 9.292805 36 -0.591856 0.5576
irrigationirrigated:densitylow:fertilizerNP 7.75 13.142011 36 0.589712 0.5591
irrigationirrigated:densitymedium:fertilizerNP 3.75 13.142011 36 0.285344 0.7770
irrigationirrigated:densitylow:fertilizerP 20.00 13.142011 36 1.521837 0.1368
irrigationirrigated:densitymedium:fertilizerP 4.00 13.142011 36 0.304367 0.7626

MIXED-EFFECTS MODELS 687

This output suggests that the only significant effects are the main effect of irrigation (p = 0.0318)
and the irrigation by density interaction (p = 0.0057). The three-way interaction is not significant
so we remove it, fitting all terms up to two-way interactions:

model <- lme(yield~(irrigation+density+fertilizer)ˆ2,
random=~1|block/irrigation/density)

summary(model)

Linear mixed-effects model fit by REML
Data: NULL

AIC BIC logLik
503.1256 540.2136 -233.5628

Random effects:
Formula: ~1 | block

(Intercept)
StdDev: 0.0005634512

Formula: ~1 | irrigation %in% block
(Intercept)

StdDev: 1.982562

Formula: ~1 | density %in% irrigation %in% block
(Intercept) Residual

StdDev: 7.041303 9.142696

Fixed effects: yield ~ (irrigation + density + fertilizer)ˆ2

Value Std.Error DF t-value p-value
(Intercept) 82.47222 5.443438 40 15.150760 0.0000
irrigationirrigated 27.80556 7.069256 3 3.933307 0.0293
densitylow 0.87500 7.256234 12 0.120586 0.9060
densitymedium 13.45833 7.256234 12 1.854727 0.0884
fertilizerNP 3.58333 5.278538 40 0.678850 0.5011
fertilizerP 0.50000 5.278538 40 0.094723 0.9250
irrigationirrigated:densitylow -29.75000 8.800165 12 -3.380618 0.0055
irrigationirrigated:densitymedium -19.66667 8.800165 12 -2.234807 0.0452
irrigationirrigated:fertilizerNP 16.83333 5.278538 40 3.189014 0.0028
irrigationirrigated:fertilizerP 13.50000 5.278538 40 2.557526 0.0144
densitylow:fertilizerNP 7.12500 6.464862 40 1.102112 0.2770
densitymedium:fertilizerNP -4.87500 6.464862 40 -0.754076 0.4552
densitylow:fertilizerP 4.75000 6.464862 40 0.734741 0.4668
densitymedium:fertilizerP -3.50000 6.464862 40 -0.541388 0.5912

The fertilizer by density interaction is not significant, so we remove it:

model <- lme(yield~irrigation*density+irrigation*fertilizer,
random=~1|block/irrigation/density)

summary(model)

Linear mixed-effects model fit by REML
Data: NULL

AIC BIC logLik
519.9035 549.6834 -245.9517

Random effects:
Formula: ~1 | block

688 THE R BOOK

(Intercept)
StdDev: 0.0005566885

Formula: ~1 | irrigation %in% block
(Intercept)

StdDev: 1.982614

Formula: ~1 | density %in% irrigation %in% block
(Intercept) Residual

StdDev: 7.057132 9.105995

Fixed effects: yield ~ irrigation * density + irrigation * fertilizer

Value Std.Error DF t-value p-value
(Intercept) 82.08333 4.994999 44 16.433103 0.0000
irrigationirrigated 27.80556 7.063995 3 3.936236 0.0292
densitylow 4.83333 6.222653 12 0.776732 0.4524
densitymedium 10.66667 6.222653 12 1.714167 0.1122
fertilizerNP 4.33333 3.717507 44 1.165656 0.2500
fertilizerP 0.91667 3.717507 44 0.246581 0.8064
irrigationirrigated:densitylow -29.75000 8.800161 12 -3.380620 0.0055
irrigationirrigated:densitymedium -19.66667 8.800161 12 -2.234808 0.0452
irrigationirrigated:fertilizerNP 16.83333 5.257349 44 3.201867 0.0025
irrigationirrigated:fertilizerP 13.50000 5.257349 44 2.567834 0.0137

Both the irrigation by fertilizer and irrigation by density interactions are now highly
significant. The apparently non-significant main effect of density is spurious because density appears
in a significant interaction with irrigation. The moral is that you must do the model simplification to get
the appropriate p values.

Remember, too, that if you want to use anova to compare mixed models with different fixed-effects
structures, then you must use maximum likelihood (method = "ML" in lme but REML = FALSE in
lmer) rather than the default restricted maximum likelihood (REML). Here is the analysis again, but this
time using anova to compare models with progressively simplified fixed effects:

model.lme <- lme(yield~irrigation*density*fertilizer,
random=~ 1| block/irrigation/density,method="ML")

model.lme.2 <- update(model.lme,~. - irrigation:density:fertilizer)
anova(model.lme,model.lme.2)

Model df AIC BIC logLik Test L.Ratio p-value
model.lme 1 22 573.5108 623.5974 -264.7554
model.lme.2 2 18 569.0046 609.9845 -266.5023 1 vs 2 3.493788 0.4788

model.lme.3 <- update(model.lme.2,~. - density:fertilizer)
anova(model.lme.3,model.lme.2)

Model df AIC BIC logLik Test L.Ratio p-value
model.lme.3 1 14 565.1933 597.0667 -268.5967
model.lme.2 2 18 569.0046 609.9845 -266.5023 1 vs 2 4.188774 0.3811

model.lme.4 <- update(model.lme.3,~. - irrigation:fertilizer)
anova(model.lme.3,model.lme.4)

MIXED-EFFECTS MODELS 689

Model df AIC BIC logLik Test L.Ratio p-value
model.lme.3 1 14 565.1933 597.0667 -268.5967
model.lme.4 2 12 572.3373 599.6573 -274.1687 1 vs 2 11.14397 0.0038

model.lme.5 <- update(model.lme.2,~. - irrigation:density)
anova(model.lme.5,model.lme.2)

Model df AIC BIC logLik Test L.Ratio p-value
model.lme.5 1 16 576.7134 613.1400 -272.3567
model.lme.2 2 18 569.0046 609.9845 -266.5023 1 vs 2 11.70883 0.0029

The irrigation by fertilizer interaction is more significant (p = 0.0038 compared to p = 0.0081)
under this mixed-effects model than it was in the linear model earlier, as is the irrigation by density
interaction (p = 0.0029 compared to p = 0.01633). You need to do the model simplification in lme to uncover
the significance of the main effect and interaction terms, but it is worth it, because the lme analysis can be
more powerful. The minimal adequate model under the lme is:

summary(model.lme.3)

Linear mixed-effects model fit by maximum likelihood
Data: NULL

AIC BIC logLik
565.1933 597.0667 -268.5967

Random effects:
Formula: ~1 | block

(Intercept)
StdDev: 0.0005260885

Formula: ~1 | irrigation %in% block
(Intercept)

StdDev: 1.716888

Formula: ~1 | density %in% irrigation %in% block
(Intercept) Residual

StdDev: 5.722413 8.718327

Fixed effects: yield ~ irrigation + density + fertilizer
+ irrigation:density + irrigation:fertilizer

Value Std.Error DF t-value p-value
(Intercept) 82.08333 4.756285 44 17.257867 0.0000
irrigationirrigated 27.80556 6.726403 3 4.133793 0.0257
densitylow 4.83333 5.807347 12 0.832279 0.4215
densitymedium 10.66667 5.807347 12 1.836754 0.0911
fertilizerNP 4.33333 3.835552 44 1.129781 0.2647
fertilizerP 0.91667 3.835552 44 0.238992 0.8122
irrigationirrigated:densitylow -29.75000 8.212829 12 -3.622382 0.0035
irrigationirrigated:densitymedium -19.66667 8.212829 12 -2.394628 0.0338
irrigationirrigated:fertilizerNP 16.83333 5.424290 44 3.103325 0.0033
irrigationirrigated:fertilizerP 13.50000 5.424290 44 2.488805 0.0167

690 THE R BOOK

You should pay special attention to the degrees of freedom column. Note that the degrees of freedom are
not pseudoreplicated: there are only 3 d.f. for testing the irrigation main effect; 12 d.f. for testing the
irrigation by density interaction and 44 d.f. for irrigation by fertilizer (this is 36 + 4 + 4
= 44 after model simplification). Also, remember that you must do your model simplification using maximum
likelihood (method = "ML") because you cannot useanova to compare models with different fixed-effect
structures using REML.

Model-checking plots show that the residuals are well behaved:

plot(model.lme.3)

the response variable is a reasonably linear function of the fitted values:

plot(model.lme.3,yield~fitted(.))

and the errors are reasonably close to normally distributed in all four blocks:

qqnorm(model.lme.3,~ resid(.)| block)

–20 –10 0 10 20

–20 –10 0 10 20

2

1

0

–1

–2

2

1

0

–1

–2

Residuals

Q
ua

nt
ile

s
of

 s
ta

nd
ar

d
no

rm
al

C D

A B

When, as here, the experiment is balanced and there are no missing values, then it is much simpler to
interpret the aov using an Error term to describe the structure of the spatial pseudoreplication (p. 526), not
least because it produces separate ANOVA tables for each of the spatial scales, which makes it very easy to
check that these is no pseudoreplication. Without balance, however, you will need to use lme or lmer and
to use model simplification to estimate the p values of the significant interaction terms.

If you do this example using lmer, you will want to switch off the matrix of correlations for the fixed
effects. You do this with the print(model,cor=F) option (rather than summary):

library(lme4)

b <- block
bi <- block:irrigation

MIXED-EFFECTS MODELS 691

bid <- block:irrigation:density

model1 <-
lmer(yield~irrigation*density*fertilizer+(1|b)+(1|bi)+(1|bid),REML=FALSE)

print(model1,cor=F)

Linear mixed model fit by maximum likelihood
Formula: yield ~ irrigation * density * fertilizer + (1|b) + (1|bi) + (1|bid)

AIC BIC logLik deviance REMLdev
573.5 623.6 -264.8 529.5 437.6

Random effects:
Groups Name Variance Std.Dev.
bid (Intercept) 3.6493e+01 6.0410e+00
bi (Intercept) 2.9479e+00 1.7169e+00
b (Intercept) 8.9145e-13 9.4417e-07
Residual 6.4767e+01 8.0478e+00
Number of obs: 72, groups: bid, 24; bi, 8; b, 4
Fixed effects:

Estimate Std. Error t value
(Intercept) 80.500 5.104 15.772
irrigationirrigated 31.750 7.218 4.399
densitylow 5.500 7.115 0.773
densitymedium 14.750 7.115 2.073
fertilizerNP 5.500 5.691 0.966
fertilizerP 4.500 5.691 0.791
irrigationirrigated:densitylow -39.000 10.063 -3.876
irrigationirrigated:densitymedium -22.250 10.063 -2.211
irrigationirrigated:fertilizerNP 13.000 8.048 1.615
irrigationirrigated:fertilizerP 5.500 8.048 0.683
densitylow:fertilizerNP 3.250 8.048 0.404
densitymedium:fertilizerNP -6.750 8.048 -0.839
densitylow:fertilizerP -5.250 8.048 -0.652
densitymedium:fertilizerP -5.500 8.048 -0.683
irrigationirrigated:densitylow:fertilizerNP 7.750 11.381 0.681
irrigationirrigated:densitymedium:fertilizerNP 3.750 11.381 0.329
irrigationirrigated:densitylow:fertilizerP 20.000 11.381 1.757
irrigationirrigated:densitymedium:fertilizerP 4.000 11.381 0.351

As before, it requires model simplification before the significant interactions become evident.

19.5 Hierarchical sampling and variance components analysis

Hierarchical data are often encountered in observational studies where information is collected at a range of
different spatial scales. The principal aim is to discover the scale at which most of the variation is generated.
This information would then allow a closer focus on mechanisms operating at this scale in subsequent more
detailed studies. The following study involves a test with a mean score of 100 administered to children
in four British towns. Each town was divided into districts by postcodes, and six districts were selected
at random. Within districts, 10 streets were selected at random, and within streets, four households were

692 THE R BOOK

selected at random. Naturally, different households had different numbers of children (childless households
were excluded from the study) and there was no control over sex ratio of children within household.

library(lme4)

data <- read.table("c:\\temp\\childfull.txt",header=T)
attach(data)
head(data)

childID child house street district town response gender
1 1 1 door1 1 A Leeds 83.88773 male
2 1 1 door2 1 A Leeds 99.96294 male
3 1 3 door3 1 A Leeds 87.20253 female
4 2 3 door3 1 A Leeds 89.37665 male
5 3 3 door3 1 A Leeds 92.01751 female
6 1 5 door4 1 A Leeds 87.12672 female

You can see that the factor levels are not unique: for instance, there is a street 1 in each district of Leeds (and
of every other town). We use the colon operator to create unique factor levels for each random effect: district
within town (d), street within district within town (s) and household within street within district within town
(h). Each household has one or more children (maximum = 8, mostly in Leeds) but the sex ratio varies from
house to house.

d <- town:district
s <- town:district:factor(street)
h <- town:district:factor(street):house

The mixed effects model has one fixed effect (gender) and four nested random effects:

model <- lmer(response~gender+(1|town)+(1|d)+(1|s)+(1|h))
summary(model)

Linear mixed model fit by REML
Formula: response ~ gender + (1 | town) + (1 | d) + (1 | s) + (1 | h)

AIC BIC logLik deviance REMLdev
19878 19920 -9932 19868 19864
Random effects:
Groups Name Variance Std.Dev.
h (Intercept) 4.0817 2.0203
s (Intercept) 15.6747 3.9591
d (Intercept) 168.3451 12.9748
town (Intercept) 36.9802 6.0811
Residual 36.2405 6.0200

Number of obs: 2972, groups: h, 960; s, 240; d, 24; town, 4

Fixed effects:
Estimate Std. Error t value

(Intercept) 97.8965 4.0424 24.218
gendermale 0.5368 0.2363 2.272

Correlation of Fixed Effects:
(Intr)

gendermale -0.030

MIXED-EFFECTS MODELS 693

The fixed effect is significant (t = 2.272) but small (0.537) compared to the means for towns, which varied
by as much as 20 (e.g. Coventry vs. Derby). Of the random effects, most of the variation in the response
is between districts within towns (64%) and least is between households within streets (4%). You get the
percentage variance components like this:

vc <- c(36.2405,4.0817,15.6747,168.3451,36.9802)
vc <- 100*c(36.2405,4.0817,15.6747,168.3451,36.9802)/sum(vc)
vc

[1] 13.868129 1.561942 5.998227 64.420512 14.151190

The key feature of these data, however, is the substantial variation between children within the same family
(i.e. even after you have controlled for family and environment (town and district within town)).

There are issues about the appropriate graphics in studies like this, simply because there are so many
combinations of factor levels, and the nested factor levels typically make sense only in the context of their
higher-level associations. Here is one way of showing the variation:

par(mfrow=c(2,2))
hist(response[town=="Coventry"],main="Coventry",breaks=seq(40,150,5),

xlab="response")
hist(response[town=="Derby"],main="Derby",breaks=seq(40,150,5),

xlab="response")
hist(response[town=="Leeds"],main="Leeds",breaks=seq(40,150,5),

xlab="response")
hist(response[town=="Norwich"],main="Norwich",breaks=seq(40,150,5),

xlab="response")

15
0

10
0

50
0

10
0

60
20

0
10

0
60

20
0

15
0

10
0

50
0

40 60 80 100 120 140 40 60 80 100 120 140

40 60 80 100 120 140 40 60 80 100 120 140

Coventry Derby

Leeds Norwich

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

response response

response response

694 THE R BOOK

This is good at highlighting non-normality (e.g. the bimodal distribution of the response in Norwich, and the
opposite skew in Coventry and Derby). Here is an alternative using box-and-whisker plots, with subset to
chose the towns rather than subscripts:

plot(response~district,subset=(town=="Coventry"),main="Coventry")
plot(response~district,subset=(town=="Derby"),main="Derby")
plot(response~district,subset=(town=="Leeds"),main="Leeds")
plot(response~district,subset=(town=="Norwich"),main="Norwich")

13
0

11
0

re
sp

on
se

re
sp

on
se

re
sp

on
se

re
sp

on
se

90
70

12
0

10
0

80
60

14
0

10
0

80
60

11
0

90
80

70

A B C D E F A B C D E F

A B C D E F A B C D E F

Coventry Derby

Leeds Norwich

district

district

district

district

This is particularly good for drawing attention to districts with strikingly different mean scores (e.g. high
ones like district A in Norwich and low ones like district E in Coventry). For looking at interactions, coplot
is often useful:

coplot(response~district|town)

MIXED-EFFECTS MODELS 695

re
sp

on
se

14
0

10
0

12
0

80
60

14
0

10
0

12
0

80
60

A B C D E F

A B C D E F

district

Given : town

Coventry

Derby

Leeds

Norwich

In practice, you will want to try many different kinds of plots across all of the spatial scales.

19.6 Mixed-effects models with temporal pseudoreplication

A common cause of temporal pseudoreplication in growth experiments with fixed effects is when each
individual is measured several times as it grows during the course of an experiment. The next example is
as simple as possible: we have a single fixed effect (a two-level categorical variable, with fertilizer added
or not) and six replicate plants in each treatment, with each plant measured on five occasions (after 2, 4, 6,
8 or 10 weeks of growth). The response variable is root length, measured non-destructively through a glass
panel, which is opened to the light only when the root length measurements are being taken. The fixed-effect
formula looks like this:

fixed = root~fertilizer

The random-effects formula needs to indicate that the week of measurement (a continuous random effect)
represents pseudoreplication within each individual plant:

random = ~week|plant

Because we have a continuous random effect (weeks) we write ~week in the random-effects formula rather
than the ~1 that we used with categorical random effects (above). Here are the data:

results <- read.table("c:\\temp\\fertilizer.txt",header=T)
attach(results)

696 THE R BOOK

names(results)

[1] "root" "week" "plant" "fertilizer"

We begin with data inspection. For the kind of data involved in mixed-effects models there are some
excellent built-in plotting functions (variously called panel plots, trellis plots, or lattice plots).

library(nlme)

library(lattice)

To use trellis plotting, we begin by turning our dataframe called results into a groupedData object
(p. 957). To do this we specify the nesting structure of the random effects, and indicate the fixed effect by
defining fertilizer as outer to this nesting (a fixed effect):

results <- groupedData(root~week|plant,outer = ~ fertilizer,results)

Because results is now a groupedData object, the plotting is fantastically simple:

plot(results)

2 4 6 8 10

2

4
6

8

10

2

4
6

8

10

2

4

6

8

10

2 4 6 8 10

2 4 6 8 10 2 4 6 8 10

ID9 ID11 ID10 ID7

ID1 ID4 ID12 ID8

ID5 ID2 ID6 ID3

week

ro
ot

Here you get separate time series plots for each of the individual plants (created, in this case, by joining the
dots, which is the default option), with plant identities ranked from bottom left (ID5) to top right (ID7) on the
basis of mean root length. In terms of understanding the fixed effects, it is often more informative to group
together the six replicates within each treatment, and to have one panel for each of the treatment levels (i.e.

MIXED-EFFECTS MODELS 697

one for the fertilized plants and one for the controls in this case). This is very straightforward, using outer
to indicate the grouping:

plot(results,outer=T)

2

4

6

8

10

2
5

2 4 6 8 10

2 4 6 8 10

ID9
ID11

ID1
ID4

ID12
ID8

ID6
ID3

added control

week

ro
ot

You can see that by week 10 there is virtually no overlap between the two treatment groups. The largest
control plant has about the same root length as the smallest fertilized plant (about 9 cm).

Now for the statistical modelling. Ignoring the pseudoreplication, we should have 1 d.f. for fertilizer
and 2 × (6 – 1) = 10 d.f. for error.

model <- lme(root~fertilizer,random=~week|plant)
summary(model)

Linear mixed-effects model fit by REML
Data: NULL

AIC BIC logLik
171.0236 183.3863 -79.51181

Random effects:
Formula: ~week | plant
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
(Intercept) 2.8639832 (Intr)
week 0.9369412 -0.999
Residual 0.4966308

Fixed effects: root ~ fertilizer
Value Std.Error DF t-value p-value

(Intercept) 2.799710 0.1438367 48 19.464499 0e+00
fertilizercontrol -1.039383 0.2034158 10 -5.109645 5e-04
Correlation:

(Intr)
fertilizercontrol -0.707

698 THE R BOOK

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.9928118 -0.6586834 -0.1004301 0.6949714 2.0225381

Number of Observations: 60
Number of Groups: 12

The output looks dauntingly complex, but once you learn your way around it, the essential information
is relatively easy to extract. The mean reduction in root size associated with the unfertilized controls is
–1.039 383 and this has a standard error of 0.203 415 8 based on the correct 10 residual d.f. (six replicates
per factor level). Can you see why the intercept has 48 d.f.? (Hint: ask yourself how many graphs have been
fitted to the data.)

Here is a simple one-way ANOVA for the non-pseudoreplicated data taken from the end of the experiment
in week 10:

model2 <- aov(root~fertilizer,subset=(week==10))
summary(model2)

Df Sum Sq Mean Sq F value Pr(>F)
fertilizer 1 4.941 4.941 11.49 0.0069 **
Residuals 10 4.302 0.430

summary.lm(model2)

Call:
aov(formula = root ~ fertilizer, subset = (week == 10))

Residuals:
Min 1Q Median 3Q Max

-0.8167 -0.3667 -0.1333 0.4042 1.4833

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.6167 0.2678 35.915 6.65e-12 ***
fertilizercontrol -1.2833 0.3787 -3.389 0.0069 **

Residual standard error: 0.6559 on 10 degrees of freedom
Multiple R-squared: 0.5346, Adjusted R-squared: 0.488
F-statistic: 11.49 on 1 and 10 DF, p-value: 0.006897

We can compare this with the output from the lme. The effect size in the lme is slightly smaller (–1.039 393
compared to –1.2833) but the standard error is appreciably lower (0.203 415 8 compared to 0.3787), so the
significance of the result is higher in the lme than in the aov. You get increased statistical power as a result
of going to the trouble of fitting the mixed-effects model. And, crucially, you do not need to make potentially
arbitrary judgements about which time period to select for the non-pseudoreplicated analysis. You use all of
the data in the model, and you specify its structure appropriately so that the hypotheses are tested with the
correct degrees of freedom (10 in this case, not 48).

The reason why the effect sizes are different in the lm and lmemodels is that linear models use maximum
likelihood estimates of the parameters based on arithmetic means. The linear mixed models, however, use the
wonderfully named BLUPs (see p. 685).

MIXED-EFFECTS MODELS 699

19.7 Time series analysis in mixed-effects models

It is common to have repeated measures on subjects in observational studies, where we would expect that the
observation on an individual at time t + 1 would be quite strongly correlated with the observation on the same
individual at time t. This contravenes one of the central assumptions of linear models (p. 503), that the within-
group errors are independent. However, we often observe significant serial correlation in data such as these.

The following example comes from Pinheiro and Bates (2000) and forms part of the nlme library. The
data refer to the numbers of ovaries observed in repeated measures on 11 mares (their oestrus cycles have been
scaled such that ovulation occurred at time 0 and at time 1). The issue is how best to model the correlation
structure of the data. We know from previous work that the fixed effect can be modelled as a three-parameter
sine–cosine function of time x:

y = a + b sin (2πx) + d cos (2πx) + εi j ,

and we want to assess different structures for modelling the within-class correlation.
The dataframe is of class groupedData which makes the plotting and error checking much simpler.

data(Ovary)
attach(Ovary)
names(Ovary)

[1] "Mare" "Time" "follicles"

plot(Ovary)

0.0 0.5 1.0

0.0 0.5 1.0

Time in estrus cycle

0.0 0.5 1.0

25
20
15
10
5
0

25
20
15
10
5
0

25
20
15
10

5
0

N
um

be
r

of
 o

va
ria

n
fo

lli
cl

es
 >

 1
0

m
m

. d
ia

m
et

er

25
20
15
10
5
0

3 8

1 6

7 5

4 2

10

9

11

700 THE R BOOK

The panel plot has ranked the horses from bottom left to top right on the basis of their mean number of ovules
(mare 4 with the lowest number, mare 8 with the highest). Some animals show stronger cyclic behaviour
than others.

We begin by fitting a mixed-effects model making no allowance for the correlation structure, and investigate
the degree of autocorrelation that is exhibited by the residuals (recall that the assumption of the model is that
there is no correlation):

model <- lme(follicles~sin(2*pi*Time)+cos(2*pi*Time),
data=Ovary,random=~ 1| Mare)

summary(model)

Linear mixed-effects model fit by REML
Data: Ovary

AIC BIC logLik
1669.36 1687.962 -829.6802

Random effects:
Formula: ~1 | Mare

(Intercept) Residual
StdDev: 3.041344 3.400466

Fixed effects: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)
Value Std.Error DF t-value p-value

(Intercept) 12.182244 0.9390009 295 12.973623 0.0000
sin(2 * pi * Time) -3.339612 0.2894013 295 -11.539727 0.0000
cos(2 * pi * Time) -0.862422 0.2715987 295 -3.175353 0.0017

Correlation:
(Intr) s(*p*T

sin(2 * pi * Time) 0.00
cos(2 * pi * Time) -0.06 0.00

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-2.4500138 -0.6721813 -0.1349236 0.5922957 3.5506618

Number of Observations: 308
Number of Groups: 11

The function ACF allows us to calculate the empirical autocorrelation structure of the residuals from this
model:

plot(ACF(model),alpha=0.05)

MIXED-EFFECTS MODELS 701

0.8

0.6

0.4

0.2

A
ut

oc
or

re
la

tio
n

0.0

-0.2

0 5

Lag

10

You can see that there is highly significant autocorrelation at lags 1 and 2 and marginally significant
autocorrelation at lags 3 and 4. We model the autocorrelation structure using one of the standard corStruct
classes (p. 863). For time series data like this, we typically choose between ‘moving average’, ‘autoregressive’
or ‘autoregressive moving average’ classes. Again, experience with horse biology suggests that a simple
moving average model might be appropriate, so we start with this. The class is called corARMA and we need
to specify the order of the model (the lag of the moving average part). The simplest assumption is that only
the first two lags exhibit non-zero correlations (q=2):

model2 <- update(model,correlation=corARMA(q=2))
anova(model,model2)

Model df AIC BIC logLik Test L.Ratio p-value
model 1 5 1669.360 1687.962 -829.6802
model2 2 7 1574.895 1600.937 -780.4476 1 vs 2 98.4652 <.0001

This is a great improvement over the original model, which assumed no correlation in the residuals. But
what about a different time series assumption? Let us compare the moving average assumption with a simple
first-order autoregressive model corAR1():

model3 <- update(model2,correlation=corAR1())
anova(model2,model3)

Model df AIC BIC logLik Test L.Ratio p-value
model2 1 7 1574.895 1600.937 -780.4476
model3 2 6 1562.447 1584.769 -775.2233 1 vs 2 10.4484 0.0012

702 THE R BOOK

This is a very significant improvement, p = 0.0012, so we choose the corAR1() because it has the lowest
AIC (it also uses fewer degrees of freedom, d.f. = 6). Error checking on model3 might proceed like this:

plot(model3,resid(.,type="p")~fitted(.)|Mare)

5 10 15

5 10 15 5
Fitted values

10 15

2

3

1

0

–1

–2

S
ta

nd
ar

di
ze

d
re

si
du

al
s

2

3

1

0

–1

–2

2

3

1

0

–1

–2

10 3 8

5 9 1

4 2 11

6

7

which shows that residuals are reasonably well behaved. And the normality assumption?

qqnorm(model3,~resid(.)|Mare)

MIXED-EFFECTS MODELS 703

–5 0 105

–5 0 105 –5
Residuals

0 105

2

3

1

0

–1

–2

–3

2

3

Q
ua

nt
ile

s
of

 s
ta

nd
ar

d
no

rm
al

1

0

–1

–2

–3

2

3

1

0

–1

–2

–3

10 3 8

5 9 1

4 2 11

6

7

The errors are close to normally distributed for all of the mares. The model is well behaved, so we accept a
first-order autocorrelation structure corAR1().

19.8 Random effects in designed experiments

The rats example, studied by aov with an Error term on p. 526, can be repeated as a linear mixed-effects
model, but only if we recode the factor levels. This example works much better with lmer than with lme.

dd <- read.table("c:\\temp\\rats.txt",h=T)
attach(dd)
names(dd)

[1] "Glycogen" "Treatment" "Rat" "Liver"

Treatment <- factor(Treatment)
Liver <- factor(Liver)
Rat <- factor(Rat)

704 THE R BOOK

There is a single fixed effect (Treatment), and pseudoreplication enters the dataframe because each
rat’s liver is cut into three pieces and each liver bit is macerated and divided into separate aliquots to produce
two readings. First, compute unique factor levels for each rat and each liver bit:

rat <- Treatment:Rat
liver <- Treatment:Rat:Liver

Then use these as random effects in the lmer model:

model <- lmer(Glycogen~Treatment+(1|rat)+(1|liver))
summary(model)

Linear mixed model fit by REML
Formula: Glycogen ~ Treatment + (1 | rat) + (1 | liver)

AIC BIC logLik deviance REMLdev
231.6 241.1 -109.8 234.3 219.6

Random effects:
Groups Name Variance Std.Dev.
liver (Intercept) 14.167 3.7639
rat (Intercept) 36.065 6.0054
Residual 21.167 4.6007

Number of obs: 36, groups: liver, 18; rat, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 140.500 4.707 29.850
Treatment2 10.500 6.656 1.577
Treatment3 -5.333 6.656 -0.801

You can see that the treatment effect is correctly interpreted as being non-significant (both t values are less
than 2 in absolute value). The variance components (p. 527) can be extracted by expressing the variances as
percentages:

vars <- c(14.167,36.065,21.167)

100*vars/sum(vars)

[1] 19.84201 50.51191 29.64607

Thus 50% of the variation is between rats within treatments, 19.8% is between liver bits within rats and
29.6% is between readings within liver bits within rats. If you are interested principally in the fixed effects,
then much the best way to proceed is to average away the pseudoreplication and do a one-way ANOVA with
3 d.f. for error (see p. 525).

19.9 Regression in mixed-effects models

The next example involves a regression of plant size against local point measurements of soil nitrogen (N) at
five places within each of 24 farms. It is expected that plant size and soil nitrogen will be positively correlated.
There is only one measurement of plant size and soil nitrogen at any given point (i.e. there is no temporal
pseudoreplication; cf. p. 695):

yields <- read.table("c:\\temp\\farms.txt",header=T)
attach(yields)

MIXED-EFFECTS MODELS 705

names(yields)

[1] "N" "size" "farm"

Here are the data in aggregate, with different plotting colours and symbols for each farm:

plot(N,size,pch=rep(16:19,each=40),col=farm)

11
0

10
0

si
ze

90
80

15 2520

N

The most obvious pattern is that there is substantial variation in mean values of both soil nitrogen and plant
size across the farms: the minimum-yielding fields (yellow) have a mean y value of less than 80, while the
maximum (red) fields have a mean y value above 110. Note that because there are more farms (24) than
colours (8), we need to use different plotting symbols as well as different colours to distinguish the five points
from each farm.

The key distinction to understand is between fitting lots of linear regression models (one for each farm) and
fitting one mixed-effects model, taking account of the differences between farms in terms of their contribution
to the variance in response as measured by a standard deviation in intercept and a standard deviation in slope.
We investigate these differences by contrasting the two fitting functions, lmList and lme. We begin by
fitting 24 separate linear models, one for each farm:

linear.models <- lmList(size~N|farm,yields)
coef(linear.models)

(Intercept) N
1 67.46260 1.5153805
2 118.52443 -0.5550273
3 91.58055 0.5551292
4 87.92259 0.9212662
5 92.12023 0.5380276
6 97.01996 0.3845431
7 68.52117 0.9339957
8 91.54383 0.8220482

706 THE R BOOK

9 92.04667 0.8842662
10 85.08964 1.4676459
11 114.93449 -0.2689370
12 82.56263 1.0138488
13 78.60940 0.1324811
14 80.97221 0.6551149
15 84.85382 0.9809902
16 87.12280 0.3699154
17 52.31711 1.7555136
18 83.40400 0.8715070
19 88.91675 0.2043755
20 93.08216 0.8567066
21 90.24868 0.7830692
22 78.30970 1.1441291
23 59.88093 0.9536750
24 89.07963 0.1091016

You can see very substantial variations in the value of the intercept from 118.52 on farm 2 to 52.32 on farm
17. Slopes are also dramatically different, from negative –0.555 on farm 2 to steep and positive 1.7555 on
farm 17. This is a classic problem in regression analysis when (as here) the intercept is a long way from the
average value of x (see p. 460); large values of the intercept are almost bound to be correlated with low values
of the slope.

Here are the slopes and intercepts from the model specified entirely in terms of random effects: a population
of regression slopes predicted within each farm with nitrogen as the continuous explanatory variable, and a
population of intercepts for each farm:

random.model <- lme(size~1,random=~N|farm)
coef(random.model)

(Intercept) N
1 85.98139 0.574205332
2 104.67366 -0.045401474
3 95.03442 0.331080929
4 98.62679 0.463579847
5 95.00270 0.407906220
6 99.82294 0.207203700
7 85.57345 0.285520355
8 96.09461 0.520896479
9 95.22186 0.672262931
10 93.14157 1.017995748
11 108.27200 0.015213748
12 87.36387 0.689406424
13 80.83933 0.003617022
14 89.84309 0.306402254
15 93.37050 0.636778731
16 92.10914 0.145772156
17 94.93395 0.084935464
18 85.90160 0.709943272
19 92.00628 0.052485987

MIXED-EFFECTS MODELS 707

20 95.26296 0.738029408
21 93.35069 0.591151964
22 87.66161 0.673119289
23 70.57827 0.432993929
24 90.29151 0.036747129

Differences between the intercepts explain 97.26% of the variance, differences in slope a mere 0.245%,
with a residual variance of 2.49% (see the summary table). The thing you notice is that the random effects
are less extreme (i.e. closer to the mean) than the fixed effects. This is an example of shrinkage (p. 685), and
is clearest from a graphical comparison of the coefficients of the linear and mixed models:

mm <- coef(random.model)
ll <- coef(linear.models)
windows(7,4)
par(mfrow=c(1,2))
plot(ll[,1],mm[,1],pch=16,xlab="linear",ylab="random effects")
abline(0,1)
plot(ll[,2],mm[,2],pch=16,xlab="linear",ylab="random effects")
abline(0,1)

10
0

90
80ra

nd
om

 e
ffe

ct
s

ra
nd

om
 e

ffe
ct

s

70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50 70
linearlinear

90 110 –0.5 0.0 0.5 1.0 1.5

Most of the random-effects intercepts (left) are greater than their linear model equivalents (they are above
the 45 degree line) while most of the random-effects slopes (right) are shallower than their linear model
equivalents (i.e. below the line). For farm 17 the linear model had an intercept of 52.317 11 while the random-
effects model had an intercept of 94.933 95. Likewise, the linear model for farm 17 had a slope of 1.755 513 6
while the random-effects model had a slope of 0.084 935 465.

We can fit a mixed model with both fixed and random effects. Here is a model in which size is modelled
as a function of nitrogen and farm as fixed effects, with farm as a random effect. Because we intend to
compare models with different fixed effect structures we need to specify method="ML" in place of the
default REML.

farm <- factor(farm)
mixed.model1 <- lme(size~N*farm,random=~1|farm,method="ML")
mixed.model2 <- lme(size~N+farm,random=~1|farm,method="ML")
mixed.model3 <- lme(size~N,random=~1|farm,method="ML")
mixed.model4 <- lme(size~1,random=~1|farm,method="ML")
anova(mixed.model1,mixed.model2,mixed.model3,mixed.model4)

708 THE R BOOK

Model df AIC BIC logLik Test L.Ratio p-value
mixed.model1 1 50 542.9035 682.2781 -221.4518
mixed.model2 2 27 524.2971 599.5594 -235.1486 1 vs 2 27.39359 0.2396
mixed.model3 3 4 614.3769 625.5269 -303.1885 2 vs 3 136.07981 <.0001
mixed.model4 4 3 658.0058 666.3683 -326.0029 3 vs 4 45.62892 <.0001

The first model contains a full factorial, with different slopes and intercepts for each of the 25 farms (using
up 50 degrees of freedom). The second model has a common slope but different intercepts for the 25 farms
(using 27 degrees of freedom); model2 does not have significantly lower explanatory power than model1
(p = 0.2396). The main effects of farm and of nitrogen application (model3 and model4) are both highly
significant (p < 0.0001), so we select model2 because it has the lowest AIC.

Finally, we could do an old-fashioned analysis of covariance, fitting a different two-parameter model to
each and every farm without any random effects:

model <- lm(size~N*factor(farm))
summary(model)

Call:
lm(formula = size ~ N * factor(farm))

Residuals:
Min 1Q Median 3Q Max

-3.6077 -1.2947 0.0479 1.0732 4.1297

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 67.46260 14.43749 4.673 1.35e-05 ***
N 1.51538 0.73395 2.065 0.0426 *
factor(farm)2 51.06183 22.86930 2.233 0.0287 *
factor(farm)3 24.11794 16.54029 1.458 0.1492
factor(farm)4 20.45999 34.59610 0.591 0.5561
factor(farm)5 24.65762 17.29578 1.426 0.1583
factor(farm)6 29.55736 17.74007 1.666 0.1000
factor(farm)7 1.05856 20.53771 0.052 0.9590
factor(farm)8 24.08122 16.23722 1.483 0.1424
factor(farm)9 24.58407 15.45967 1.590 0.1162
factor(farm)10 17.62703 16.68467 1.056 0.2943
factor(farm)11 47.47189 18.24214 2.602 0.0112 *
factor(farm)12 15.10002 15.77085 0.957 0.3415
factor(farm)13 11.14680 17.82896 0.625 0.5338
factor(farm)14 13.50961 19.36739 0.698 0.4877
factor(farm)15 17.39122 20.74850 0.838 0.4047
factor(farm)16 19.66019 18.72739 1.050 0.2973
factor(farm)17 -15.14550 49.01250 -0.309 0.7582
factor(farm)18 15.94140 15.15371 1.052 0.2963
factor(farm)19 21.45414 17.99214 1.192 0.2370
factor(farm)20 25.61956 15.50019 1.653 0.1027
factor(farm)21 22.78608 15.65699 1.455 0.1499
factor(farm)22 10.84710 17.69820 0.613 0.5419
factor(farm)23 -7.58167 16.89435 -0.449 0.6549

MIXED-EFFECTS MODELS 709

factor(farm)24 21.61703 17.28697 1.250 0.2152
N:factor(farm)2 -2.07041 0.98369 -2.105 0.0388 *
N:factor(farm)3 -0.96025 0.89786 -1.069 0.2884
N:factor(farm)4 -0.59411 1.52204 -0.390 0.6974
N:factor(farm)5 -0.97735 0.84718 -1.154 0.2525
N:factor(farm)6 -1.13084 0.97207 -1.163 0.2485
N:factor(farm)7 -0.58138 0.92164 -0.631 0.5302
N:factor(farm)8 -0.69333 0.87773 -0.790 0.4322
N:factor(farm)9 -0.63111 0.81550 -0.774 0.4415
N:factor(farm)10 -0.04773 0.86512 -0.055 0.9562
N:factor(farm)11 -1.78432 0.87838 -2.031 0.0459 *
N:factor(farm)12 -0.50153 0.84820 -0.591 0.5562
N:factor(farm)13 -1.38290 0.98604 -1.402 0.1651
N:factor(farm)14 -0.86027 0.89294 -0.963 0.3386
N:factor(farm)15 -0.53439 0.94640 -0.565 0.5741
N:factor(farm)16 -1.14547 0.91070 -1.258 0.2125
N:factor(farm)17 0.24013 1.97779 0.121 0.9037
N:factor(farm)18 -0.64387 0.79080 -0.814 0.4182
N:factor(farm)19 -1.31100 0.90886 -1.442 0.1535
N:factor(farm)20 -0.65867 0.78956 -0.834 0.4069
N:factor(farm)21 -0.73231 0.81990 -0.893 0.3747
N:factor(farm)22 -0.37125 0.89597 -0.414 0.6798
N:factor(farm)23 -0.56171 0.85286 -0.659 0.5122
N:factor(farm)24 -1.40628 0.95103 -1.479 0.1436

Residual standard error: 1.978 on 72 degrees of freedom
Multiple R-squared: 0.9678, Adjusted R-squared: 0.9468
F-statistic: 46.07 on 47 and 72 DF, p-value: < 2.2e-16

There is a marginally significant overall effect of soil nitrogen on plant size (N has p = 0.0426) and (compared
to farm 1) farms 2 and 11 have significantly higher intercepts and shallower slopes. The problem, of course, is
that this model, with its 24 slopes and 24 intercepts, is vastly overparameterized. Let us fit a greatly simplified
model with a common slope but different intercepts for the different farms:

model2 <- lm(size~N+factor(farm))
anova(model,model2)

Analysis of Variance Table

Model 1: size ~ N * factor(farm)
Model 2: size ~ N + factor(farm)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 72 281.60
2 95 353.81 -23 -72.212 0.8028 0.717

This analysis provides no support for any significant differences between slopes. What about differences
between farms in their intercepts?

model3 <- lm(size~N)
anova(model2,model3)

Analysis of Variance Table

710 THE R BOOK

Model 1: size ~ N + factor(farm)
Model 2: size ~ N
Res.Df RSS Df Sum of Sq F Pr(>F)

1 95 353.8
2 118 8454.9 -23 -8101.1 94.574 < 2.2e-16 ***

This shows that there are highly significant differences in intercepts between farms. The interpretation of the
analysis of covariance is exactly the same as the interpretation of the mixed model in this case where there is
balanced structure and equal replication, but lme is vastly superior to the linear model when there is unequal
replication.

19.10 Generalized linear mixed models

Pseudoreplicated data with non-normal errors lead to a choice of generalized linear mixed-effects models
using lmer with a specified error family. These were previously handled by the glmmPQL function which
is part of the MASS library (see Venables and Ripley, 2002). That function fitted a generalized linear mixed
model with multivariate normal random effects, using penalized quasi-likelihood (hence the ‘PQL’). The
default method for a generalized linear model fit with lmer has been switched from PQL to the more reliable
Laplace method. The lmer function can deal with the same error structures as a generalized linear model,
namely Poisson (for count data), binomial (for binary data or proportion data) or gamma (for continuous data
where the variance increase with the square of the mean). The model call is just like a mixed-effects model
but with the addition of the name of the error family, like this:

lmer(y~fixed+(time | random), family=binomial)

For a worked example with binary data, involving patients who were tested for the presence of a bacterial
infection on a number of occasions (the number varying somewhat from patient to patient), see pp. 660–665.
The response variable is binary: yes for infected patients or no for patients not scoring as infected, so
the family is binomial. There is a single categorical explanatory variable (a fixed effect) called treatment,
which has three levels: drug, drug plus supplement, and placebo. The week numbers in which the repeated
assessments on each patient were made is also recorded.

19.10.1 Hierarchically structured count data

This is an example of lmerwith Poisson errors. Beetles were collected in pitfall traps laid out in a grid of two
columns and five rows (10 pitfalls per quadrat) in each of two quadrats, randomly located within each of 3
randomly-located blocks within a field. On each of 4 farms there were 5 protocols of hedgerow management
allocated at random to each of fields within the farm (1 = uncut control, 2 = grass cut, 3 = grass cut twice,
4 = hedge cut, 5 = grass and hedge cut). Here are the 1200 counts:

data<-read.table("c:\\temp\\nested2.txt",header=T)
attach(data)
head(data)

count farm field block quadrat
1 1 1 1 1 1
2 0 1 1 1 1
3 0 1 1 1 1
4 1 1 1 1 1

MIXED-EFFECTS MODELS 711

5 1 1 1 1 1
6 0 1 1 1 1

farm<-factor(farm)
field <- factor(field)
block <- factor(block)
quadrat <- factor(quadrat)
library(lme4)

This is what the data look like, classified by farms:

par(mfrow=c(2,2))
hist(count[farm==1],breaks=-0.5:16.5,

main="Branton",col="wheat1",xlab="")
hist(count[farm==2],breaks=-0.5:16.5,

main="Fawdon",col="wheat2",xlab="")
hist(count[farm==3],breaks=-0.5:16.5,

main="Ingram",col="wheat3",xlab="")
hist(count[farm==4],breaks=-0.5:16.5,

main="Powburn",col="wheat4",xlab="")

0 5 10 15 0 5 10 15

0 5 10 15 0 5 10 15

0
50

10
0

15
0

0
50

10
0

15
0

0
20

60
10

0

0
40

80
12

0
20

0

Branton Fawdon

Ingram Powburn

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Most of the pitfall traps contained no beetles at all sites, and the maximum number caught was 16 on one
occasion at Powburn. There are large differences between the farms in mean beetle counts, but despite this,
the five hedgerow management treatments showed substantial differences:

tapply(count,list(farm,field),mean)

1 2 3 4 5
1 0.4000000 0.4666667 0.4500000 0.5833333 0.5833333
2 0.6833333 0.7666667 0.7833333 1.2000000 1.1333333
3 0.8500000 0.9166667 1.6666667 1.2500000 1.3833333
4 1.5000000 2.2166667 1.8000000 1.4500000 2.2000000

712 THE R BOOK

We need to establish whether the treatment differences (as shown here between the column means) are
significant. Because of the massive pseudoreplication, we need to analyse the counts very carefully. We shall
use a generalized mixed effects model with Poisson errors, treating field as a fixed effect (the field codes
refer to the five hedgerow management treatments) with the other factors as nested random effects (quadrats
within blocks, within fields, within farms):

model <- lmer(count~field+(1|farm/field/block/quadrat),family=poisson)
summary(model)

Generalized linear mixed model fit by the Laplace approximation
Formula: count ~ field + (1 | farm/field/block/quadrat)
AIC BIC logLik deviance
2216 2262 -1099 2198

Random effects:
Groups Name Variance Std.Dev.
quadrat:(block:(field:farm)) (Intercept) 0.133785 0.36577
block:(field:farm) (Intercept) 0.017054 0.13059
field:farm (Intercept) 0.000000 0.00000
farm (Intercept) 0.216319 0.46510

Number of obs: 1200, groups: quadrat:(block:(field:farm)), 120;
block:(field:farm), 60; field:farm, 20; farm, 4

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3322 0.2586 -1.285 0.19889
field2 0.2202 0.1561 1.411 0.15830
field3 0.2851 0.1552 1.836 0.06632 .
field4 0.3205 0.1546 2.074 0.03811 *
field5 0.4402 0.1533 2.872 0.00407 **

As you can see, management treatments 4 and 5 produced significantly higher beetle counts than the controls.
Among the random effects you will see that field:farm (the fixed effect) registers as zero. Much the
biggest cause of variation in beetle numbers was differences between the four farms (variance = 0.216) ,
then differences between the quadrats within a block (0.134), with only very modest differences from block
to block within each field (0.017).

If, instead of fitting the management treatment as a fixed effect, we were to fit is as a random effect, then
the model changes as follows:

model2 <- lmer(count~1+(1|farm/field/block/quadrat),family=poisson)
summary(model2)

Generalized linear mixed model fit by the Laplace approximation
Formula: count ~ 1 + (1 | farm/field/block/quadrat)
AIC BIC logLik deviance
2216 2242 -1103 2206

Random effects:
Groups Name Variance Std.Dev.
quadrat:(block:(field:farm)) (Intercept) 0.133591 0.365501
block:(field:farm) (Intercept) 0.035101 0.187354

MIXED-EFFECTS MODELS 713

field:farm (Intercept) 0.001888 0.043451
farm (Intercept) 0.213685 0.462260

Number of obs: 1200, groups: quadrat:(block:(field:farm)), 120;
block:(field:farm), 60; field:farm, 20; farm, 4

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.07779 0.23703 -0.328 0.743

The variance component attributable to differences between blocks has almost doubled (this is the spatial
scale immediately below fields, which was the scale at which the fixed effects treatments were applied), but
the farm-scale variation (larger scale) and quadrat-scale variation (smaller scale) are almost unaffected. So
the difference between fields which looks so small as a random effect (0.001 888) is clearly significant when
the term is fitted as a fixed effect (as was appropriate in this example).

Here is the much simpler analysis with the pseudoreplication averaged away. Now, there are only 20
numbers in the dataframe (5 numbers (the five treatment mean counts) from each of 4 farms), and we use
these to create a new response variable:

y <- as.vector(tapply(count,list(farm,field),mean))
y

[1] 0.4000000 0.6833333 0.8500000 1.5000000 0.4666667 0.7666667 0.9166667
[8] 2.2166667 0.4500000 0.7833333 1.6666667 1.8000000 0.5833333 1.2000000
[15] 1.2500000 1.4500000 0.5833333 1.1333333 1.3833333 2.2000000

We also need new shorter vectors of categorical explanatory variables for the farm (which now serves as a
four-level block in this two-way, non-replicated analysis) and the five-level hedgerow management treatment.
The ‘generate factor levels’ function, gl, is useful here. For farm blocks (fblock) we read the instruction
to gl like this: ‘generate levels up to 4, each with a repeat of 1, to a total length of 20’. For hedge it says
‘generate levels up to 5, each with a repeat of 4’.

fblock <- gl(4,1,20)
hedge <- gl(5,4)

We cannot fit an exactly analogous model because we no longer have count data (the average beetle
numbers are all real numbers) so we cannot use glm with Poisson errors. We can get close enough, however,
by using a linear model with the logarithms of the mean counts as the response variable like this:

model3 <- lm(log(y)~fblock+hedge)
summary(model3)

Call:
lm(formula = log(y) ~ fblock + hedge)
Residuals:

Min 1Q Median 3Q Max
-0.29679 -0.08192 -0.01837 0.05106 0.31607

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.9555 0.1179 -8.102 3.30e-06 ***
fblock2 0.5943 0.1179 5.039 0.00029 ***
fblock3 0.8728 0.1179 7.400 8.27e-06 ***

714 THE R BOOK

fblock4 1.3008 0.1179 11.030 1.23e-07 ***
hedge2 0.1838 0.1319 1.394 0.18859
hedge3 0.2775 0.1319 2.105 0.05708 .
hedge4 0.3230 0.1319 2.450 0.03060 *
hedge5 0.4383 0.1319 3.324 0.00606 **

Residual standard error: 0.1865 on 12 degrees of freedom
Multiple R-squared: 0.9214, Adjusted R-squared: 0.8756
F-statistic: 20.1 on 7 and 12 DF, p-value: 9.875e-06

The p values are slightly different, but the interpretation is exactly the same. After model simplification, it
turns out that there is one highly significant contrast, between the last two hedge management treatments (4
and 5) and the rest (p = 0.0102). It is hedge cutting, not grass cutting, that makes the difference in beetle
counts in this case.

An alternative method of producing the reduced dataframe (i.e. eliminating the pseudoreplication) is to
use aggregate like this:

d2<-aggregate(data,list(farm,field),mean)
model<-lm(log(count)~factor(farm)+factor(field),data=d2)
summary(model)

This produces the same output with less than half the R code.

20
Non-Linear Regression

Sometimes we have a mechanistic model for the relationship between y and x, and we want to estimate the
parameters and standard errors of the parameters of a specific non-linear equation from data. Some frequently
used non-linear models are shown in Table 20.1. What we mean in this case by ‘non-linear’ is not that the
relationship is curved (it was curved in the case of polynomial regressions, but these were linear models),
but that the relationship cannot be linearized by transformation of the response variable or the explanatory
variable (or both). Here is an example: it shows jaw bone length as a function of age in deer. Theory indicates
that the relationship is an asymptotic exponential with three parameters:

y = a − be−cx .

In R, the main difference between linear models and non-linear models is that we have to tell R the exact
nature of the equation as part of the model formula when we use non-linear modelling. In place of lm we
write nls (this stands for ‘non-linear least squares’). Then, instead of y~x, we write y~a-b*exp(-c*x)
to spell out the precise non-linear model we want R to fit to the data.

The slightly tedious thing is that R requires us to specify initial guesses for the values of the parameters a,
b and c (note, however, that some common non-linear models have ‘self-starting’ versions in R which bypass
this step; see p. 728). Let us plot the data to work out sensible starting values. It always helps in cases like
this to work out the equation’s ‘behaviour at the limits’ – that is to say, to find the values of y when x = 0 and
when x = ∞ (p. 258). For x = 0, we have exp(–0) which is 1, and 1 × b = b, so y = a – b. For x = ∞, we
have exp(–∞) which is 0, and 0 × b = 0, so y = a. That is to say, the asymptotic value of y is a, and the
intercept is a – b.

deer <- read.table("c:\\temp\\jaws.txt",header=T)
attach(deer)
names(deer)

[1] "age" "bone"

plot(age,bone,pch=21,col="purple",bg="green")

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

716 THE R BOOK

Table 20.1. Useful non-linear functions.

Name Equation

Asymptotic functions

Michaelis–Menten y = ax

1 + bx

2-parameter asymptotic exponential y = a(1 − e−bx)

3-parameter asymptotic exponential y = a − be−cx

S-shaped functions

2-parameter logistic y = ea+bx

1 + ea+bx

3-parameter logistic y = a

1 + be−cx

4-parameter logistic y = a + b − a

1 + e(c−x)/d

Weibull y = a − be−(cxd)

Gompertz y = ae−be−cx

Humped curves
Ricker curve y = axe−bx

First-order compartment y = k exp(− exp(a)x) − exp(− exp(b)x)

Bell-shaped y = a exp(−|bx |2)

Biexponential y = aebx − ce−dx

14
0

12
0

10
0

80
60

40
20

0

bo
ne

0 10 20 30 40 50

age

NON-LINEAR REGRESSION 717

Inspection suggests that a reasonable estimate of the asymptote is a ≈ 120 and intercept ≈ 10, so b = 120 –
10 = 110. Our guess at the value of c is slightly harder. Where the curve is rising most steeply, jaw length is
about 40 where age is 5. Rearranging the equation gives

c = − log((a − y)/b)

x
= − log(120 − 40)/110)

5
= 0.063 690 75

Now that we have the three parameter estimates, we can provide them to R as the starting conditions as part
of the nls call like this:

model <- nls(bone~a-b*exp(-c*age),start=list(a=120,b=110,c=0.064))
summary(model)

Formula: bone ~ a - b * exp(-c * age)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 115.2528 2.9139 39.55 < 2e-16 ***
b 118.6875 7.8925 15.04 < 2e-16 ***
c 0.1235 0.0171 7.22 2.44e-09 ***

Residual standard error: 13.21 on 51 degrees of freedom

Number of iterations to convergence: 5
Achieved convergence tolerance: 2.381e-06

All the parameters appear to be significantly different from zero at p < 0.001. Beware, however. This does
not necessarily mean that all the parameters need to be retained in the model. In this case, a = 115.2528 with
standard error 2.9139 is clearly not significantly different from b = 118.6875 with standard error 7.8925 (they
would need to differ by more than 2 standard errors to be significant). So we should try fitting the simpler
two-parameter model

y = a(1 − e−cx).

model2 <- nls(bone~a*(1-exp(-c*age)),start=list(a=120,c=0.064))
anova(model,model2)

Analysis of Variance Table

Model 1: bone ~ a - b * exp(-c * age)
Model 2: bone ~ a * (1 - exp(-c * age))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)
1 51 8897.3
2 52 8929.1 -1 -31.843 0.1825 0.671

Model simplification was clearly justified (p = 0.671), so we accept the two-parameter version, model2, as
our minimal adequate model. We finish by plotting the curve through the scatterplot. The age variable needs
to go from 0 to 50 in smooth steps:

av <- seq(0,50,0.1)

718 THE R BOOK

and we use predict with model2 to generate the predicted bone lengths:

bv <- predict(model2,list(age=av))
lines(av,bv,col="red")

14
0

12
0

10
0

80
60

40
20

0

bo
ne

0 10 20 30 40 50
age

The parameters of this curve are obtained from model2:

summary(model2)

Formula: bone ~ a * (1 - exp(-c * age))

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 115.58056 2.84365 40.645 < 2e-16 ***
c 0.11882 0.01233 9.635 3.69e-13 ***

Residual standard error: 13.1 on 52 degrees of freedom

Number of iterations to convergence: 5
Achieved convergence tolerance: 1.356e-06

which we could write as y = 115.58(1 − e–0.1188x) or as y = 115.58(1 – exp(–0.1188x)) according to taste or
journal style. If you want to present the standard errors as well as the parameter estimates, you could write:
‘The model y = a (1 – exp(–bx)) had a = 115.58 ± 2.84 (1 standard error) and b = 0.1188 ± 0.0123
(1 standard error, n = 54) and explained 84.87% of the total variation in bone length.’ Note that because there
are only two parameters in the minimal adequate model, we have called them a and b (rather than a and c as
in the original formulation).

The variation explained needs to be calculated by comparing the residual variation (13.1, above) with the
total variation. There are two steps to this. First, work out sse, the variation not explained by the regression.

NON-LINEAR REGRESSION 719

We extract the residual standard error from the model summary (13.1), square it, then multiply by the degrees
of freedom (52) to obtain the sum of squares:

sse <- as.vector((summary(model2)[[3]])ˆ2*52)
sse

[1] 8929.143

Second, we work out the total variation in jaw bone length by fitting a null model, estimating only the overall
mean, then extract the total sums of squares, sst, from the model summary:

null <- lm(bone~1)
sst <- as.vector(unlist(summary.aov(null)[[1]][2]))
sst

[1] 59007.99

Now, the percentage variation explained is simply:

100*(sst-sse)/sst

[1] 84.86791

20.1 Comparing Michaelis–Menten and asymptotic exponential

Model choice is always an important issue in curve fitting. We shall compare the fit of the asymptotic
exponential (above) with a Michaelis–Menten with parameter values estimated from the same deer jaws data.
As to starting values for the parameters, it is clear that a reasonable estimate for the asymptote would be 100
(this is a/b; see p. 264). The curve passes close to the point (5, 40) so we can guess a value of a of 40/5 = 8
and hence b = 8/100 = 0.08. Now use nls to estimate the parameters:

(model3 <- nls(bone~a*age/(1+b*age),start=list(a=8,b=0.08)))

Nonlinear regression model
model: bone ~ a * age/(1 + b * age)
data: parent.frame()

a b
18.725 0.136
residual sum-of-squares: 9854

Number of iterations to convergence: 7
Achieved convergence tolerance: 1.522e-06

Finally, we can add the line for Michaelis–Menten to the original plot, using predictwith the model name,
with a list to allocate av values to age:

yv <- predict(model3, list(age=av))
lines(av,yv,col="blue")

720 THE R BOOK

14
0

12
0

10
0

80
60

40
20

0

bo
ne

0 10 20 30 40 50

age

You can see that the asymptotic exponential (red line) tends to get to its asymptote first, and that the Michaelis–
Menten (blue line) continues to increase. Model choice, therefore would be enormously important if you
intended to use the model for prediction to ages much greater than 50 months.

20.2 Generalized additive models

Sometimes we can see that the relationship between y and x is non-linear but we do not have any theory
or any mechanistic model to suggest a particular functional form (mathematical equation) to describe the
relationship. In such circumstances, generalized additive models (GAMs) are particularly useful because they
fit non-parametric smoothers to the data without requiring us to specify any particular mathematical model
to describe the non-linearity (background and more examples are given in Chapter 18).

humped <- read.table("c:\\temp\\hump.txt",header=T)
attach(humped)
names(humped)
[1] "y" "x"
plot(x,y,pch=21,col="brown",bg="orange")
library(mgcv)

The model is specified very simply by showing which explanatory variables (in this case just x) are to be
fitted as smoothed functions using the notation y~s(x):

model <- gam(y~s(x))

Now we can use predict in the normal way to fit the curve estimated by gam:

xv <- seq(0.5,1.3,0.01)
yv <- predict(model,list(x=xv))
lines(xv,yv)

NON-LINEAR REGRESSION 721

4
3

2

y

1

0.6 0.7 0.8 0.9
x

1.0 1.1 1.2

summary(model)

Family: gaussian
Link function: identity

Formula:
y ~ s(x)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.95737 0.03446 56.8 <2e-16 ***

Approximate significance of smooth terms:
edf Ref.df F p-value

s(x) 7.452 8.403 116.7 <2e-16 ***
R-sq.(adj) = 0.919 Deviance explained = 92.6%
GCV score = 0.1156 Scale est. = 0.1045 n = 88

Fitting the curve uses up 7.452 degrees of freedom (i.e. it is quite expensive) but the resulting fit is excellent
and the model explains more than 92.6% of the deviance in y.

20.3 Grouped data for non-linear estimation

Here is a dataframe containing experimental results on reaction rates as a function of enzyme concentration
for five different bacterial strains, with reaction rate measured just once for each strain at each of ten enzyme
concentrations. The idea is to fit a family of five Michaelis–Menten functions with parameter values depending
on the strain.

722 THE R BOOK

reaction <- read.table("c:\\temp\\reaction.txt",header=T)
attach(reaction)
names(reaction)

[1] "strain" "enzyme" "rate"

plot(enzyme,rate,pch=20+as.numeric(strain),bg=1+as.numeric(strain))

12
0

10
0

80
60

40
20

ra
te

0 1 2 3 4 5
enzyme

Clearly the different strains will require different parameter values, but there is a reasonable hope that the
same functional form will describe the response of the reaction rate of each strain to enzyme concentration.

library(nlme)

The function we need is nlsList, which fits the same functional form to a group of subjects (as indicated
by the ‘given’ operator |):

model <- nlsList(rate~c+a*enzyme/(1+b*enzyme)|strain,
data=reaction,start=c(a=20,b=0.25,c=10))

Note the use of the groupedData style formula rate~enzyme|strain.

summary(model)

Call:
Model: rate ~ c + a * enzyme/(1 + b * enzyme)|strain
Data: reaction

Coefficients:
a

Estimate Std. Error t value Pr(>|t|)
A 51.79746 4.093791 12.652687 1.943004e-06
B 26.05893 3.063474 8.506335 2.800344e-05
C 51.86774 5.086678 10.196781 7.842356e-05
D 94.46245 5.813975 16.247481 2.973298e-06
E 37.50984 4.840749 7.748767 6.462817e-06

NON-LINEAR REGRESSION 723

b
Estimate Std. Error t value Pr(>|t|)

A 0.4238572 0.04971637 8.525506 2.728564e-05
B 0.2802433 0.05761532 4.864041 9.173722e-04
C 0.5584897 0.07412454 7.534479 5.150212e-04
D 0.6560539 0.05207362 12.598586 1.634553e-05
E 0.5253479 0.09354863 5.615774 5.412405e-05

c
Estimate Std. Error t value Pr(>|t|)

A 11.46498 1.194155 9.600916 1.244488e-05
B 11.73312 1.120452 10.471780 7.049414e-06
C 10.53219 1.254928 8.392663 2.671651e-04
D 10.40964 1.294447 8.041767 2.909373e-04
E 10.30139 1.240664 8.303123 4.059887e-06

Residual standard error: 1.81625 on 35 degrees of freedom

There is substantial variation from strain to strain in the values of a and b, but we should test whether a model
with a common intercept of, say, 11.0 might not fit equally well.

The plotting is made much easier if we convert the dataframe to a groupedData object:

reaction <- groupedData(rate~enzyme|strain,data=reaction)
plot(reaction)

0 1 2 3 4 5

120

100

80

60

40

20

120

100

80

60

40

20

0 1 2 3 4 5 543210

ra
te

A D

B

enzyme

E C

This default plot has just joined the dots, but we want to fit the separate non-linear regressions. To do this we
fit a non-linear mixed-effects model with nlme, rather than use nlsList:

model2 <- nlme(rate~c+a*enzyme/(1+b*enzyme),fixed=a+b+c~1,
random=a+b+c~1|strain,data=reaction,start=c(a=20,b=0.25,c=10))

724 THE R BOOK

Now we can employ the very powerful augPred function to fit the curves to each panel:

plot(augPred(model2))

120

100

80

60

40

20

120

100

80

60

40

20

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5
ra
te

enzyme

E B

A D

C

Here is the summary of the non-linear mixed model:

summary(model2)

Nonlinear mixed-effects model fit by maximum likelihood
Model: rate ~ c + a * enzyme/(1 + b * enzyme)
Data: reaction

AIC BIC logLik
253.4794 272.5997 -116.7397

Random effects:
Formula: list(a ~ 1, b ~ 1, c ~ 1)
Level: strain
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
a 22.9144053 a b
b 0.1132369 0.876
c 0.4231029 -0.536 -0.875

NON-LINEAR REGRESSION 725

Residual 1.7105816

Fixed effects: a + b + c ~ 1
Value Std.Error DF t-value p-value

a 51.59873 10.741019 43 4.803895 0
b 0.47665 0.058786 43 8.108321 0
c 10.98537 0.556462 43 19.741461 0
Correlation:
a b

b 0.843
c -0.313 -0.543

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.79191571 -0.65655493 0.05675519 0.74272994 2.02715761

Number of Observations: 50
Number of Groups: 5

The fixed effects in this model are the means of the parameter values. To see the separate parameter estimates
for each strain, use coef:

coef(model2)

a b c
E 34.09244 0.4533741 10.81642
B 28.01211 0.3238606 11.54848
C 49.64062 0.5193966 10.67127
A 53.20342 0.4426117 11.23660
D 93.04507 0.6440231 10.65410

Note that the rows of this table are no longer in alphabetical order but sequenced in the way they appeared
in the panel plot (i.e. ranked by their maximum values). The parameter estimates are close to, but not
equal to, the values estimated by nlsList (above) as a result of ‘shrinkage’ in the restricted maximum
likelihood estimates (see p. 685). The efficiency of the random effects model in terms of degrees of freedom
is illustrated by contrasting the numbers of parameters estimated by nlsList (15 = 5 values for each of 3
parameters) and bynlme (7 = 3 parameters plus 4 variances), giving residual degrees of freedom of 35 and 43,
respectively.

If you want to draw the fitted lines yourself, then repeat the scatterplot we did earlier:

plot(enzyme,rate,pch=20+as.numeric(strain),bg=1+as.numeric(strain))

and use a loop to extract the three parameters from the coefficients table coef(model) and to copy the
colours for the fitted lines:

for(i in 1:5){
yv <- coef(model)[i,3]+coef(model)[i,1]*xv/(1+coef(model)[i,2]*xv)
lines(xv,yv,col=(i+1)) }

726 THE R BOOK

12
0

10
0

80
60

40
20

ra
te

enzyme
0 1 2 3 4 5

20.4 Non-linear time series models (temporal pseudoreplication)

The previous example was a designed experiment in which there was no pseudoreplication. However, we
often want to fit non-linear models to growth curves where there is temporal pseudoreplication across a set of
subjects, each providing repeated measures on the response variable. In such a case we shall want to model
the temporal autocorrelation.

nl.ts <- read.table("c:\\temp\\nonlinear.txt",header=T)
attach(nl.ts)
names(nl.ts)

[1] "time" "dish" "isolate" "diam"

growth <- groupedData(diam~time|dish,data=nl.ts)

Here, we model the temporal autocorrelation as first-order autoregessive, corAR1():

model <- nlme(diam~a+b*time/(1+c*time),
fixed=a+b+c~1,
random=a+b+c~1,
data=growth,
correlation=corAR1(),
start=c(a=0.5,b=5,c=0.5))

summary(model)

Nonlinear mixed-effects model fit by maximum likelihood
Model: diam ~ a + b * time/(1 + c * time)
Data: growth

AIC BIC logLik
129.7693 158.3157 -53.88467

NON-LINEAR REGRESSION 727

Random effects:
Formula: list(a ~ 1, b ~ 1, c ~ 1)
Level: dish
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
a 0.1014481 a b
b 1.2060389 -0.557
c 0.1095792 -0.958 0.772
Residual 0.3150068

Correlation Structure: AR(1)
Formula: ~1 | dish
Parameter estimate(s):

Phi
-0.0334494
Fixed effects: a + b + c ~ 1

Value Std.Error DF t-value p-value
a 1.288262 0.1086391 88 11.85817 0
b 5.215252 0.4741958 88 10.99810 0
c 0.498222 0.0450644 88 11.05577 0
Correlation:
a b

b -0.506
c -0.542 0.823

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.74222876 -0.64713734 -0.03349903 0.70298704 2.24686642

Number of Observations: 99
Number of Groups: 9

coef(model)

a b c
5 1.288831 3.348753 0.4393774
4 1.235631 5.075223 0.5373954
1 1.252722 5.009540 0.5212435
3 1.285846 4.843222 0.4885947
9 1.111130 7.171316 0.7061061
7 1.272569 5.361570 0.5158167
6 1.435789 4.055236 0.3397506
2 1.348524 5.440492 0.4553721
8 1.363314 6.631915 0.4803382

It could not be simpler to plot the family of non-linear models in a panel of scatterplots. We just use augPred
like this:

plot(augPred(model))

728 THE R BOOK

0 2 4 6 8 10

6 2 8

793

5 4 1

0 2 4 6 1010

time

di
am

12
10
8
6
4
2

8620

12
10
8
6
4
2

2
4

6
8
10
12

4 8

20.5 Self-starting functions

One of the most likely things to go wrong in non-linear least squares is that the model fails because your
initial guesses for the starting parameter values were too far off. The simplest solution is to use one of R’s
‘self-starting’ models, which work out the starting values for you automatically. These are the most frequently
used self-starting functions:

SSasymp asymptotic regression model;
SSasympOff asymptotic regression model with an offset;
SSasympOrig asymptotic regression model through the origin;
SSbiexp biexponential model;
SSfol first-order compartment model;
SSfpl four-parameter logistic model;
SSgompertz Gompertz growth model;
SSlogis logistic model;
SSmicmen Michaelis–Menten model;
SSweibull Weibull growth curve model.

NON-LINEAR REGRESSION 729

20.5.1 Self-starting Michaelis–Menten model

In our next example, reaction rate is a function of enzyme concentration; reaction rate increases quickly with
concentration at first but asymptotes once the reaction rate is no longer enzyme-limited. R has a self-starting
version called SSmicmen, parameterized as

y = ax

b + x
,

where the two parameters are a (the asymptotic value of y) and b (which is the x value at which half of the
maximum response, a/2, is attained). In the field of enzyme kinetics b is called the Michaelis parameter (see
p. 264; in R help the two parameters are called Vm and K, respectively).

Here is SSmicmen in action:

data <- read.table("c:\\temp\\mm.txt",header=T)
attach(data)
names(data)

[1] "conc" "rate"

plot(rate~conc,pch=16)

To fit the non-linear model, just put the name of the response variable (rate) on the left of the tilde ∼ then
put SSmicmen(conc,a,b)) on the right of the tilde, with the name of your explanatory variable first in
the list of arguments (conc in this case), then your names for the two parameters (a and b, as defined above):

model <- nls(rate~SSmicmen(conc,a,b))
summary(model)

Formula: rate ~ SSmicmen(conc, a, b)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 2.127e+02 6.947e+00 30.615 3.24e-11 ***
b 6.412e-02 8.281e-03 7.743 1.57e-05 ***

Residual standard error: 10.93 on 10 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 1.93e-06

So the equation is

y = 212.7x

0.064 12 + x
,

and we can plot it like this:

xv <- seq(0,1.2,.01)
yv <- predict(model,list(conc=xv))
lines(xv,yv,col="blue")

730 THE R BOOK

20.5.2 Self-starting asymptotic exponential model

The three-parameter asymptotic exponential is usually written like this:

y = a − be−cx .

In R’s self-starting version, SSasymp, the parameters are as follows:

� a is the horizontal asymptote on the right-hand side (called Asym in R help);

� b = a – R0 where R0 is the intercept (the response when x is zero);

� c is the rate constant (the log of lrc in R help).

Here is SSasymp applied to the jaws data (p. 209):

deer <- read.table("c:\\temp\\jaws.txt",header=T)
attach(deer)
names(deer)

[1] "age" "bone"

model <- nls(bone~SSasymp(age,a,b,c))
plot(age,bone,pch=16)
xv <- seq(0,50,0.2)
yv <- predict(model,list(age=xv))
lines(xv,yv)

summary(model)

Formula: bone ~ SSasymp(age, a, b, c)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 115.2527 2.9139 39.553 <2e-16 ***
b -3.4348 8.1961 -0.419 0.677
c -2.0915 0.1385 -15.101 <2e-16 ***

Residual standard error: 13.21 on 51 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 2.472e-07

The plot of this fit is on p. 720 along with the simplified model without the non-significant parameter b.
Alternatively, one can use the two-parameter form that passes through the origin, SSasympOrig, which

fits the function y = a(1–exp (–bx)). The final form of the asymptotic exponential allows one to specify
the function with an offset, d, on the x values, using SSasympOff, which fits the function y = a – b exp
(–c(x – d)).

20.5.3 Self-starting logistic

This is one of the most commonly used three-parameter growth models, producing a classic S-shaped curve:

sslogistic <- read.table("c:\\temp\\sslogistic.txt",header=T)
attach(sslogistic)

NON-LINEAR REGRESSION 731

names(sslogistic)

[1] "density" "concentration"

plot(density~log(concentration),pch=16,col="green3")

We estimate the three parameters (a, b, c) using the self-starting function SSlogis:

model <- nls(density ~ SSlogis(log(concentration), a, b, c))

Now draw the fitted line using predict (note the antilog of xv in list):

xv <- seq(-3,3,0.1)
yv <- predict(model,list(concentration=exp(xv)))
lines(xv,yv,col="red")

The fit is excellent, and the parameter values and their standard errors are given by:

summary(model)

Formula: density ~ SSlogis(log(concentration), a, b, c)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 2.34518 0.07815 30.01 2.17e-13 ***
b 1.48309 0.08135 18.23 1.22e-10 ***
c 1.04146 0.03227 32.27 8.51e-14 ***

Residual standard error: 0.01919 on 13 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 3.284e-06

Here a is the asymptotic value, b is the mid-value of x when y is a/2, and c is the scale.

20.5.4 Self-starting four-parameter logistic

This model allows a lower asymptote (the fourth parameter) as well as an upper:

data <- read.table("c:\\temp\\chicks.txt",header=T)
attach(data)
names(data)

[1] "weight" "Time"

model <- nls(weight~SSfpl(Time, a, b, c, d))
xv <- seq(0,22,.2)
yv <- predict(model,list(Time=xv))
plot(weight~Time,pch=21,col="red",bg="green4")
lines(xv,yv,col="navy")

732 THE R BOOK

20
0

15
0

10
0

w
ei
gh
t

50

0 5 10
time

15 20

summary(model)

Formula: weight ~ SSfpl(Time, a, b, c, d)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 27.453 6.601 4.159 0.003169 **
b 348.971 57.899 6.027 0.000314 ***
c 19.391 2.194 8.836 2.12e-05 ***
d 6.673 1.002 6.662 0.000159 ***

Residual standard error: 2.351 on 8 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 3.324e-07

The four-parameter logistic is given by

y = A + B − A

1 + e(D−x)/C
.

This is the same formula as we used in Chapter 7, but note that C above is 1/c on p. 267. A is the horizontal
asymptote on the left (for low values of x), B is the horizontal asymptote on the right (for large values of x), D
is the value of x at the point of inflection of the curve (represented by xmid in our model for the chicks data),
and C is a numeric scale parameter on the x axis (represented by scal). The parameterized model would be
written like this:

y = 27.453 + 348.971 − 27.453

1 + exp((19.391 − x)/6.673)
.

NON-LINEAR REGRESSION 733

20.5.5 Self-starting Weibull growth function

R’s parameterization of the Weibull growth function is

Asym-Drop*exp(-exp(lrc)*xˆpwr)

where Asym is the horizontal asymptote on the right, Drop is the difference between the asymptote and the
intercept (the value of y at x = 0), lrc is the natural logarithm of the rate constant, and pwr is the power to
which x is raised.

weights <- read.table("c:\\temp\\weibull.growth.txt",header=T)
attach(weights)
names(weights)

[1] "weight" "time"

model <- nls(weight ~ SSweibull(time, Asym, Drop, lrc, pwr))
summary(model)

Formula: weight ~ SSweibull(time, Asym, Drop, lrc, pwr)

Parameters:
Estimate Std. Error t value Pr(>|t|)

Asym 158.5012 1.1769 134.67 3.28e-13 ***
Drop 110.9971 2.6330 42.16 1.10e-09 ***
lrc -5.9934 0.3733 -16.05 8.83e-07 ***
pwr 2.6461 0.1613 16.41 7.62e-07 ***

Residual standard error: 2.061 on 7 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 5.702e-06

xt <- seq(2,22,0.1)
yw <- predict(model,list(time=xt))
plot(time,weight,pch=21,col="blue",bg="orange")
lines(xt,yw,col="blue2")

16
0

14
0

80
10
0

12
0

w
ei
gh
t

60

5 10
time

15 20

734 THE R BOOK

The fit is good, but the model cannot accommodate a drop in y values once the asymptote has been reached
(you would need to fit some kind of humped function).

20.5.6 Self-starting first-order compartment function

In the following model, the response is drug concentration in the blood, which is to be plotted as a function
of time after the dose was administered. There are three parameters (a, b, c) to be estimated:

foldat <- read.table("c:\\temp\\fol.txt",header=T)
attach(foldat)
names(foldat)

[1] "Wt" "Dose" "Time" "conc"

The model looks like this: the response (y) is conc and the explanatory (x) is Time,

y = k exp(− exp(a)x) − exp(− exp(b)x),

where k = Dose × exp(a + b – c)/(exp(b) – exp(a)) and Dose is a vector of identical values provided in
the dataframe (4.02 in this example):

model <- nls(conc~SSfol(Dose, Time, a, b, c))
summary(model)

Formula: conc ~ SSfol(Dose, Time, a, b, c)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a -2.9196 0.1709 -17.085 1.40e-07 ***
b 0.5752 0.1728 3.328 0.0104 *
c -3.9159 0.1273 -30.768 1.35e-09 ***

Residual standard error: 0.732 on 8 degrees of freedom

Number of iterations to convergence: 8
Achieved convergence tolerance: 4.907e-06

xv <- seq(0,25,0.1)
yv <- predict(model,list(Time=xv))
plot(conc~Time,pch=21,col="blue",bg="red")
lines(xv,yv,col="green4")

NON-LINEAR REGRESSION 735

10
8

4
6

co
nc

2

0 5 10
time

15 20 25

As you can see, this is a rather poor model for predicting the value of the peak concentration, but a reasonable
description of the ascending and declining sections.

20.6 Bootstrapping a family of non-linear regressions

There are two broad applications of bootstrapping to the estimation of parameters in non-linear models:

� Select certain of the data points at random with replacement, so that, for any given model fit, some data
points are duplicated and others are left out.

� Fit the model and estimate the residuals, then allocate the residuals at random, adding them to different
fitted values in different simulations.

Our next example involves the viscosity data from the MASS library, where sinking time (y = Time) is
measured for three different weights (w = Wt) in fluids of nine different viscosities (x = Viscosity):

y = bx

W − c
.

We need to estimate the two parameters b and c and their standard errors.

library(MASS)
data(stormer)
attach(stormer)

Here are the results of the straightforward non-linear regression:

model <- nls(Time~b*Viscosity/(Wt-c),start=list(b=29,c=2))
summary(model)

736 THE R BOOK

Formula: Time ~ b * Viscosity/(Wt - c)

Parameters:
Estimate Std. Error t value Pr(>|t|)

b 29.4013 0.9155 32.114 < 2e-16 ***
c 2.2182 0.6655 3.333 0.00316 **

Residual standard error: 6.268 on 21 degrees of freedom

Number of iterations to convergence: 2
Achieved convergence tolerance: 8.959e-06

plot(Viscosity,Time,pch=16,col=1+as.numeric(factor(Wt)))
xv <- 0:300
yv <- predict(model,list(Wt=20,Viscosity=xv))
lines(xv,yv,col=2)
yv <- predict(model,list(Wt=50,Viscosity=xv))
lines(xv,yv,col=3)
yv <- predict(model,list(Wt=100,Viscosity=xv))
lines(xv,yv,col=4)

25
0

20
0

15
0

Ti
m
e

50
10
0

30050 100
Viscosity
150 250200

Here is a home-made bootstrap which leaves out cases at random. The idea is to sample the indices
(subscripts) of the 23 cases at random with replacement:

sample(1:23,replace=T)

[1] 4 4 10 10 12 3 23 22 21 13 9 14 8 5 15 14 21 14 12 3 20 14 19

NON-LINEAR REGRESSION 737

In this realization cases 1 and 2 were left out, cases 4 and 10 appeared twice, and so on. We call the subscripts
ss as follows, and use the subscripts to select values for the response (y) and the two explanatory variables
(x1 and x2) like this:

ss <- sample(1:23,replace=T)
y <- Time[ss]
x1 <- Viscosity[ss]
x2 <- Wt[ss]

Now we put this in a loop and fit the model:

model <- nls(y~b*x1/(x2-c),start=list(b=29,c=2))

one thousand times, storing the coefficients in vectors called bv and cv:

bv <- numeric(1000)
cv <- numeric(1000)
for(i in 1:1000){
ss <- sample(1:23,replace=T)
y <- Time[ss]
x1 <- Viscosity[ss]
x2 <- Wt[ss]
model <- nls(y~b*x1/(x2-c),start=list(b=29,c=2))
bv[i] <- coef(model)[1]
cv[i] <- coef(model)[2] }

This took 2 seconds for 1000 iterations. The 95% confidence intervals for the two parameters are obtained
using the quantile function:

quantile(bv,c(0.025,0.975))

2.5% 97.5%
27.80559 30.70029

quantile(cv,c(0.025,0.975))

2.5% 97.5%
0.7798505 3.7625656

Alternatively, you can randomize the locations of the residuals while keeping all the cases in the model
for every simulation. We use the built-in functions in the boot package to illustrate this procedure.

library(boot)

The boot package (Canty and Ripley, 2012) allows both parametric and non-parametric resampling. For the
non-parametric bootstrap, possible resampling methods are the ordinary bootstrap, the balanced bootstrap,
antithetic resampling, and permutation. For non-parametric multi-sample problems stratified resampling is
used: this is specified by including a vector of strata in the call to boot. Importance resampling weights may

738 THE R BOOK

be specified. The function generates a specified number bootstrap replicates (R) of a statistic applied
to data. The tricky part is in understanding how to write the statistic function. This is a function which
when applied to data returns a vector containing the statistic(s) of interest.

First, we need to calculate the residuals and the fitted values from the nls model we fitted on p. 735:

rs <- resid(model)
fit <- fitted(model)

We make the fit along with the two explanatory variables Viscosity and Wt into a new dataframe called
storm that will be used inside the statistic function:

storm <- data.frame(fit,Viscosity,Wt)

Next, we need to write the statistic function to describe the model fitting. We add the randomized
residuals to the fitted values, then extract the coefficients from the non-linear model fitted to these new data:

statistic <- function(rs,i){
storm$y <- storm$fit+rs[i]
coef(nls(y~b*Viscosity/(Wt-c),data=storm,start=coef(model)))}
The two arguments to statistic are the vector of residuals, rs, and the randomized indices, i. Now we
can run the boot function over 1000 iterations:

boot.model <- boot(rs,statistic,R=1000)
boot.model

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = rs, statistic = statistic, R = 1000)
Bootstrap Statistics :

original bias std. error
t1* 29.401294 0.6714883 0.8565776
t2* 2.218247 -0.2528173 0.6177332

The parametric estimates for b (t1) and c (t2) in boot.model are reasonably unbiased, and the bootstrap
standard errors are slightly smaller than when we used nls. We get the bootstrapped confidence intervals
with the boot.ci function: b is index=1 and c is index=2:

boot.ci(boot.model,index=1)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = boot.model, index = 1)

Intervals :
Level Normal Basic
95% (27.05, 30.41) (27.10, 30.42)

Level Percentile BCa
95% (28.39, 31.70) (27.63, 30.39)
Calculations and Intervals on Original Scale

boot.ci(boot.model,index=2)

NON-LINEAR REGRESSION 739

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = boot.model, index = 2)

Intervals :
Level Normal Basic
95% (1.260, 3.682) (1.311, 3.735)

Level Percentile BCa
95% (0.701, 3.126) (1.250, 3.479)
Calculations and Intervals on Original Scale

For comparison, here are the parametric confidence intervals from our home-made bootstrap: for b, from
27.80 to 30.70; and for c, from 0.7798 to 3.7625.

21
Meta-Analysis

There is a compelling case to be made that analysts should look at the whole body of evidence, rather than
trying to understand individual studies in isolation. The systematic review of a body of evidence is known
as meta-analysis. The idea is to draw together all of the appropriate studies that have addressed the same
question, and calculate an overall effect and an overall measure of uncertainly for that effect. Of course, there
are plenty of issues with this, among them the following:

� What do we mean by ‘the same question’?

� What is an appropriate study?

� What makes a study inappropriate ?

� How different can a study be, and still be worth including in the meta-analysis?

� What are the publication biases in the various studies?

� Are the effects fixed or random?

The central idea is to remove as much as possible of the subjectivity that was such a feature of old-fashioned
narrative reviews. In an ideal world, we should be able to extract from every published study the exact question
addressed, the effect size, the variance of that effect, the replication, and enough detail on the methods used
to be confident that the study was comparable with the others that we have already included. Then we simply
calculate a weighted average effect size and an appropriate weighted average measure of the unreliability of
that overall effect. And that would be it.

If the effect is consistent across experiments, this gives considerable confidence in its generality, and
the size of the effect is a useful measure of its importance. On the other hand, if the effect is found to be
inconsistent across experiments, then its generality is called into question, and further studies are required to
understand why the effect was so variable.

Meta-analysis requires:

� clear rules for the selection of studies;

� clear rules for the omission of studies;

� simple protocols for assigning a statistical weight to each study;

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

META-ANALYSIS 741

� agreed methods for calculating an appropriate measure of uncertainly for the effect;

� sufficient detail in the Methods section that another analyst would get exactly the same result, and come
to exactly the same conclusion, if they were to repeat the analysis using the same group of studies.

A meta-analysis of existing studies would be a useful component of the Introduction of any scientific paper,
because it would show what the question was, and why it was interesting. Likewise, the Discussion section
would benefit from a meta-analysis of existing studies, by showing what the current study means and where
it fits into existing knowledge.

It is very important that biases are investigated and reported. We can never know how many experiments
were carried out but never published. We can make an educated guess, but we can never know for certain. It
is highly likely that proportionately more studies go unpublished if they failed to find a significant effect. It is
possible (but regrettable) that more manuscripts were rejected during the refereeing process if they reported
non-significant effects. All of the effect sizes from all of the relevant studies must be included in the analysis
(not just the most pleasing ones). The variation in the effect sizes might be due to sampling effects alone, or
there may be genuine differences in the effects reported by different studies.

The idea is to calculate an effect size and a variance for each study. The summary of the meta-analysis
is then just a weighted average of these effect sizes. More precise studies are given more weight than less
precise ones in calculating the summary effect.

21.1 Effect size

Meta-analysis can work with a variety of kinds of effects. The simplest effects would be arithmetic means. Or
we might choose to work with the differences between control and treatment means. Alternatively, we could
use the scaled difference (the raw difference between the treatment and control means, divided by the pooled
standard deviation). In other circumstances, we might look at the ratio between the two means. This is called
a response ratio, R, and it is often used in cases where the response variable is a continuous measurement
(like yield in an agricultural trial). R is the mean value for the treatment divided by the mean value of the
control. Often in such cases, the effect size we analyse is the logarithm of this ratio, because this is symmetric
above and below zero, and is hence more likely to have normal errors.

For count data, proportion data and binary data (dead or alive, recovered or ill) we cannot use linear
models, because we shall have non-constant variance and non-normal errors (see Chapter 13). In such cases,
we might use the risk ratio, the odds ratio or the risk difference. For studies reporting correlation coefficients
we might do a meta-analysis of the correlation coefficients. In any event, the sampling distribution of the
effect size should be known, so that variances and confidence intervals can be computed.

21.2 Weights

More precise studies should be given higher weights. Typically this means that studies with higher replication
get higher weights, but the details depend on our assumptions about the distribution of the true effects. Many
meta-analyses use the inverse of the variances as weights (the less variable a study, the more weight is given
to that effect).

21.3 Fixed versus random effects

If you can convince yourself that there is a single true effect size (for instance, if many studies are trying
to estimate the same physical constant) then the fixed-effect model is appropriate. It is much more likely

742 THE R BOOK

in practice, however, that the effect being estimated varies with the context (e.g. with location, genetics or
environmental conditions). In such cases, it is appropriate to do a random-effects meta-analysis. In this case,
the measured effects are assumed to represent a random sample from a distribution of effect sizes.

21.3.1 Fixed-effect meta-analysis of scaled differences

This example comes from Borenstein et al. (2009) and concerns six studies each with a treatment and a
control group, with replication varying from 40 to 200 across studies:

data <- read.table("c:\\temp\\metadata.txt",header=T)
attach(data)
head(data)

study meanT sdT nT meanC sdC nC
1 A 94 22 60 92 20 60
2 B 98 21 65 92 22 65
3 C 98 28 40 88 26 40
4 D 94 19 200 82 17 200
5 E 98 21 50 88 22 45
6 F 96 21 85 92 22 85

The effect size for each study in this case is going to be the scaled difference between the treatment and
control means:

d <- meanT-meanC
d

[1] 0.0951303 0.2789943 0.3701166 0.6656402 0.4655727 0.1859962

Table 21.1. Calculations for a fixed-effects meta-analysis. The
individual effects (Y) have variances (V) reflecting sampling error alone.
Study weights (W) are the inverse of the study variances. The assumption
is that there is a common overall fixed effect, of which M is our best
estimate. Nomenclature follows Borenstein et al. (2009).

Term Formula

Weight W = 1

V

Weighted mean summary effect M =
∑

WY
∑

W

Variance of the summary effect VM = 2∑
W

Standard error of the summary effect SEM = √
VM

Lower limit on the summary effect M − 1.96 SEM

Upper limit on the summary effect M + 1.96 SEM

Test statistic z = M

SEM

META-ANALYSIS 743

Work out the pooled within-study standard deviation, using the formulae in Table 21.1. Note the use of round
brackets to print the answer, avoiding typing swithin again:

(swithin <- sqrt(((nT-1)*sdTˆ2+(nC-1)*sdCˆ2)/(nT+nC-2)))

[1] 21.02380 21.50581 27.01851 18.02776 21.47892 21.50581

Scale the difference between the means by the pooled within-study standard deviation – this will be the effect
size in our meta-analysis:

(d <- d/swithin)

[1] 0.0951303 0.2789943 0.3701166 0.6656402 0.4655727 0.1859962

Calculate the variance of the scaled difference:

(Vd <- (nC+nT)/(nC*nT) + dˆ2/(2*(nC+nT)))

[1] 0.03337104 0.03106861 0.05085616 0.01055385 0.04336305 0.02363116

Compute Hedges’ g (g) and its variance (Vg) of the bias-corrected mean difference:

(J <- 1-3/(4*(nC+nT-2)-1))

[1] 0.9936306 0.9941292 0.9903537 0.9981144 0.9919137 0.9955291

(g <- J*d)

[1] 0.09452437 0.27735640 0.36654635 0.66438510 0.46180798 0.18516464

(Vg <- Jˆ2*Vd)

[1] 0.03294729 0.03070488 0.04987975 0.01051408 0.04266460 0.02342033

Confidence intervals (int) for the scaled differences (lower limit ll, and upper limit, ul) are computed
next:

(int <- 1.96*sqrt(Vg))

[1] 0.3557672 0.3434470 0.4377420 0.2009749 0.4048461 0.2999525

(ll <- d-int)

[1] -0.26063689 -0.06445270 -0.06762538 0.46466536 0.06072666 -0.11395631

(ul <- d+int)

[1] 0.4508975 0.6224414 0.8078586 0.8666151 0.8704188 0.4859488

As a flourish, we compute the total samples for each experiment (ns) to use in making the square symbols
in the forest plot:

(ns <- nT+nC)

[1] 120 130 80 400 95 170

Now for the summary effect. First, work out the weights (the reciprocals of the variances)

(W <- 1/Vg)

[1] 30.35151 32.56811 20.04822 95.11053 23.43864 42.69795

744 THE R BOOK

Now calculate the sum of the products of the weight and the effects:

(WY <- W*g)

[1] 2.868958 9.032975 7.348601 63.190019 10.824149 7.906151

Here are the calculations so far – effect size, variance within, weight, and weight by effect:

data.frame(d,Vd,W,WY)

d Vd W WY
1 0.0951303 0.03337104 30.35151 2.868958
2 0.2789943 0.03106861 32.56811 9.032975
3 0.3701166 0.05085616 20.04822 7.348601
4 0.6656402 0.01055385 95.11053 63.190019
5 0.4655727 0.04336305 23.43864 10.824149
6 0.1859962 0.02363116 42.69795 7.906151

The summary effect is the sum of the products WY divided by the sum of the weights W:

(M <- sum(WY)/sum(W))

[1] 0.4142697

The variance of the summary effect is just the reciprocal of the sum of the weights:

(VM <- 1/sum(W))

[1] 0.004094753

Finally, we want the standard error of the mean effect which is the square root of VM, and the value of the test
statistic, z:

(SEM <- sqrt(VM))

[1] 0.06399026

(z <- M/SEM)

[1] 6.473949

(ci <- 1.96*SEM)

[1] 0.1254209

The forest plot needs to show the six studies (labelled A–F) and their unreliability estimates, with the summary
effect and its unreliability estimate shown as a diamond at the bottom (in a different colour for emphasis):

plot(c(-1,1),c(0,8),type="n",xlab="",yaxt="n",ylab="")
points(d,8-(1:6),pch=15,cex=10*ns/sum(ns))
for (i in 1:7) lines(c(ll[i],ul[i]),c(8-i,8-i))
polygon(c(M-ci,M,M+ci,M),c(1,1.1,1,0.9),col="red")
abline(v=0,lty=2)
text(rep(-0.7,7),1:7,c("summary effect","F","E","D","C","B","A"))

META-ANALYSIS 745

A

B

C

D

E

F

–1.0 –0.5 0.0 0.5 1.0

summary effect

It is important to note that so-called ‘vote counting’ gets the wrong answer: only two significant results (D
and E) out of six suggests non-significance overall. Not so. The summary effect is highly significant, and the
lower bound of the red diamond comes nowhere near the vertical dashed line showing no effect. The sizes of
the squares show the fraction of all replicates (across the six studies) that come from each study (the relative
weights = ns/sum(ns)).

As an exercise, you might like to convert the above code into a simple general function that will work with
any number of studies. It should take six vectors as its arguments (mean, standard deviation and sample size
for treatment, then the same for control, for each of the studies in a meta-analysis).

If you are doing a meta-analysis in earnest, you are likely to use the meta package (Schwarzer,
2012). Here is the last example, repeated using metacont (this stands for ‘meta-analysis for continuous
variables’):

install.packages("meta")
library(meta)
metacont(nT,meanT,sdT,nC,meanC,sdC)

MD 95%-CI %W(fixed) %W(random)
1 2 [-5.5231; 9.5231] 11.01 15.46
2 6 [-1.3937; 13.3937] 11.40 15.78
3 10 [-1.8412; 21.8412] 4.45 8.14
4 12 [8.4666; 15.5334] 49.93 29.36
5 10 [1.3283; 18.6717] 8.29 12.88
6 4 [-2.4656; 10.4656] 14.91 18.37

Number of studies combined: k=6

MD 95%-CI z p.value
Fixed effect model 8.7666 [6.2698; 11.2634] 6.8817 < 0.0001
Random effects model 7.6172 [3.8233; 11.4110] 3.9351 < 0.0001

Quantifying heterogeneity:
tauˆ2 = 9.5103; H = 1.35 [1; 2.14]; Iˆ2 = 44.9% [0%; 78.2%]

746 THE R BOOK

Test of heterogeneity:
Q d.f. p.value

9.07 5 0.1063

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2

There was no significant heterogeneity across the treatments (p = 0.1063). Here is its forest plot:

forest(metacont(nT,meanT,sdT,nC,meanC,sdC))

Experimental
TotalStudy TotalMean MeanSD

Control Mean difference
MD 95%-CI

495 8.77 [6.27; 11.26] 100% --500Fixed effect model
[3.82; 11.41] 100%--7.62Random effects model

1 60 94 22 60 92 2.00 11.0% 15.5%[–5.52; 9.52]20
92 15.8%11.4%[–1.39; 13.39]6.00652198652 22
88 8.1%4.4%[–1.84; 21.84]10.00402898403 26
82 29.4%49.9%[–8.47; 15.53]12.0020019942004 17
88 12.9%8.3%[1.33; 18.67]10.00452198505 22
92 18.4%14.9%[–2.47; 10.47]4.00852196856 22

–20 –10 0 10 20

Heterogeneity: I-squared=44.9%, tau-squared=9.51, p=0.1063

SD W(random)W(fixed)

This output shows both the fixed-effect and the random-effect analysis of these data: in this case, the
interpretation is the same under both models, but this need not be so. Note that the mean effect size is smaller
and the significance lower under the random-effects model.

21.3.2 Random effects with a scaled mean difference

We repeat the analysis using a random effects model, using the formulae in Table 21.2. We start by computing
the components Q, d.f. and C, from which we shall calculate the between study variance, tau-squared.

WY2 <- W*gˆ2
W2 <- Wˆ2
Q <- sum(WY2)-(sum(WY)ˆ2/sum(W))
Q

[1] 12.00325

df <- 6-1
df

[1] 5

C <- sum(W)-(sum(W2)/sum(W))
C

[1] 187.6978

T2 <- (Q-df)/C
T2

[1] 0.03731131

META-ANALYSIS 747

Table 21.2. Calculations for a random effects meta-analysis. The individual effects (Y) have
variances (V) reflecting sampling error alone as in Table 21.1. The total variance V* now has two
components: the within study variance (V) and the between study variance T 2 (tau squared). The
method of moments (DerSimonian and Laird method) calculates T 2 from three quantities: Q (a
corrected weighted sum of squares of the individual effects), C (a corrected sum of weights) and d.f.
(degrees of freedom, one less than the number of studies k), where W and Y are as defined in
Table 21.1. If all the studies had the same sample variance σ 2 and were based on the same sample

size n, then the standard error of the summary effect would be SEM∗ =
√

σ 2

kn + τ2

k . Nomenclature
follows Borenstein et al. (2009).

Term Formula

Q Q =
∑

WY2−
(∑

WY
)2

∑
W

C C =
∑

W−
∑

W 2

∑
W

Degrees of freedom d.f. = k – 1

Between-study variance (tau squared) T 2 = Q − d.f.

C

Total variance V ∗ = V + T 2

Weight W ∗ = 1

V ∗

Weighted mean summary effect M∗ =
∑

W ∗Y
∑

W ∗

Variance of the summary effect VM∗ = 1∑
W ∗

Standard error of the summary effect SEM∗ = √
VM∗

So the DerSimonian and Laird estimate of between-study variance, tau-squared, is 0.0373. For the random-
effects estimate of the summary effect, we need to allow for shrinkage (see p. 685). The weights are the
reciprocals of the total variance (within Vg plus between T2):

Wstar <- 1/(Vg+T2)
Wstar

[1] 14.23313 14.70238 11.46907 20.90940 12.50377 16.46588

Mstar <- sum(Wstar*g)/sum(Wstar)
Mstar

[1] 0.3582294

Vstar <- 1/sum(Wstar)
Vstar

[1] 0.01107621

748 THE R BOOK

SEMstar <- sqrt(Vstar)
SEMstar

[1] 0.1052436

LLstar <- Mstar-1.96*SEMstar
ULstar <- Mstar+1.96*SEMstar
LLstar

[1] 0.1519521

ULstar

[1] 0.5645068

Zstar <- Mstar/SEMstar
Zstar

[1] 3.403813

Because of shrinkage, the random effects estimate of the mean effect (Mstar = 0.358) is smaller than the
fixed effects estimate (M = 0.414), as illustrated in the forest plot from metacont (above).

21.4 Random-effects meta-analysis of binary data

Next we demonstrate a random effects meta-analysis on count data. Instead of a difference between means,
the effect in this analysis is the log-odds ratio, based on proportion data from six different studies (A–F)
each with two treatments (control, C, and treated, T). The count data are the number of deaths (success) and
number of survivors (failure; the data come from Borenstein et al., 2009):

data <- read.table("c:\\temp\\metadata2.txt",header=T)
attach(data)
data

study successT failureT nT successC failureC nC
1 A 12 53 65 16 49 65
2 B 8 32 40 10 30 40
3 C 14 66 80 19 61 80
4 D 25 375 400 80 320 400
5 E 8 32 40 11 29 40
6 F 16 49 65 18 47 65

We should get a quick overview of the effects before starting the calculations. In the treatment group, the
total number of successes was 83 and the total number of failures was 607, so the odds of success were

sum(successT)/sum(failureT)

[1] 0.1367381

In the control group, the total number of successes was 154 and the total number of failures was 536, so the
odds of success were

sum(successC)/sum(failureC)

[1] 0.2873134

META-ANALYSIS 749

Now a rough and ready estimate of the overall effect size is given by the odds ratio, which is the treatment
odds divided by control odds:

(sum(successT)/sum(failureT))/(sum(successC)/sum(failureC))

[1] 0.4759195

indicating that treatment has reduced the effect by roughly 50% (47.6%) taking the six studies together. The
meta-analysis proceeds as follows, using the formulae in Table 21.2.

First, use the raw count data to compute a vector of odds ratios (or), one for each study (the number of
successes divided by number of failures for the treated group, divided by the same quantity for the control
group):

(or <- successT*failureC/(failureT*successC))

[1] 0.6933962 0.7500000 0.6810207 0.2666667 0.6590909 0.8526077

The response variable in this kind of meta-analysis is the logarithm of the odds ratio (lor)

(lor <- log(or))

[1] -0.3661537 -0.2876821 -0.3841625 -1.3217558 -0.4168938 -0.1594557

The variance of the log-odds ratio for each of the six studies is the sum of the reciprocals of the four counts
of success and failure:

(vlor <- 1/successT + 1/failureT + 1/successC + 1/failureC)

[1] 0.18510942 0.28958333 0.15560511 0.05829167 0.28164185 0.15974031

As usual in meta-analysis, the weight given to each study is the reciprocal of its variance:

(W <- 1/vlor)

[1] 5.402210 3.453237 6.426524 17.155111 3.550609 6.260160

Note the very high weight given to study 4 (17.16) because of its large sample size.
In order to carry out the meta-analysis using the random-effects model, we need to calculate a set of

products and sums of products (Borenstein et al., 2009): WY is the vector of products of the weights times the
effect sizes, and WY2 is the vector of products of the weights times the squares of the effect sizes:

WY <- W*lor
WY2 <- W*lorˆ2

The fundamental difference with the random-effects model is that we compute a variance in the true effect
(traditionally denoted by tau squared, τ 2) as well as the separate, per-study variances. For this we use the
DerSimonian and Laird (1986) method τ 2 = (Q − d.f.)/C , where the quantities Q, d.f. and C are computed
as follows:

Q <- sum(WY2)-(sum(WY)ˆ2/sum(W))
df <- length(nC)-1
C <- sum(W)-(sum(Wˆ2)/sum(W))
T2 <- (Q-df)/C

750 THE R BOOK

Here is a summary of the results so far:

(res <- data.frame(sum(WY),sum(WY2),Q,df,C,T2))

sum.WY. sum.WY2. Q df C T2
1 -30.59362 32.7054 10.55115 5 32.10525 0.1729048

The subsequent random-effects analysis is based on the assumption that the variance for each study is the
sum of the within-study variance (vlor) and the between-study variance (T2). The new weights to be given
to each study (Wstar) are therefore calculated like this:

(Wstar <- 1/(T2+vlor))

[1] 2.793185 2.162218 3.044048 4.325325 2.199994 3.006207

Note that although D is still the most highly weighted of the studies, the relative size of its weight is
substantially reduced in the random effects model (down from 17.16 to 4.33). To calculate the summary
effect size we need the sum of the weights and the sum of the products of the weights times the effect sizes:

(Mstar <- sum(Wstar*lor)/sum(Wstar))

[1] -0.5662959

This is the summary of the log-odds ratio across the six studies. We back-transform to the odds ratio by taking
the antilog of Mstar:

exp(Mstar)

[1] 0.5676241

Note that the summary effect is considerably larger than the rough preliminary calculation we made earlier
(0.4759, above). The unreliability estimates associated with the summary effect are calculated like this (V =
variance, SE = standard error, ll = lower limit, ul = upper limit):

VMstar <- 1/sum(Wstar)
SEMstar <- sqrt(VMstar)
llMstar <- Mstar-1.96*SEMstar
ulMstar <- Mstar+1.96*SEMstar
Z <- Mstar/SEMstar
p <- 2*(1-pnorm(-Z))

Here is a summary of the random-effects model output:

(res2 <- data.frame(Mstar,SEMstar,llMstar,ulMstar,Z,p))

Mstar SEMstar llMstar ulMstar Z p
1 -0.5662959 0.2388344 -1.034411 -0.09818041 -2.371081 0.01773612

The forest plot looks like this:

ll<-lor-1.96*vlor
ul<-lor+1.96*vlor

plot(c(-2,0.3),c(0,8),type="n",xlab="",yaxt="n",ylab="")
points(lor,8-(1:6),pch=15,cex=10*Wstar/sum(Wstar))
for (i in 1:7) lines(c(ll[i],ul[i]),c(8-i,8-i))
polygon(c(llMstar,Mstar,ulMstar,Mstar),c(1,1.2,1,0.8),col="red")

META-ANALYSIS 751

abline(v=0,lty=2)
text(rep(-1.8,7),1:7,c("summary effect","F","E","D","C","B","A"))

A

B

C

D

E

F

–2.0 –1.5 –1.0 –0.5 0.0

summary effect

The summary effect is highly significant (note the log-odds scale), with zero effect marked as the vertical
dashed line at 0. As before, note that vote counting would have led to the wrong conclusion (only two
significant studies out of six).

22
Bayesian Statistics

Instead of asking ‘what do my data show?’, the Bayesian analyst asks ‘how do my data alter our view of the
world?’. It may not sound like much, but it is a fundamental change of outlook. The idea is that the results of
the new study are assessed in the light of the existing data, to establish an updated assessment of parameter
values and their uncertainties. There are now two models rather than one. There is a model for what we know
already: this is called the prior. Then there is a model that we fit to our data: this is the likelihood. The two
models combine to give us an estimate of the posterior. We use the posterior distribution to make statistical
inferences. Under its Bayesian interpretation, probability measures our confidence that something is true.

When the new study is small, and existing knowledge is extensive, then we should not expect our work to
make much difference to overall understanding. For instance, if we studied 150 subjects and found that age
at death was not affected by their smoking habits, we would be ill advised to conclude that this result had
great generality. This is because we know from studies of many thousands of subjects over many decades
that smoking leads to a reduction of about 14 years in mean age at death. Small studies can be highly
informative, of course, especially when they are original and address important questions. But the larger and
better designed the new study, the more that study should be capable of altering our prior knowledge, and if
the study is big enough and sufficiently well conducted, then it could turn prior expectation on its head. A
Bayesian analysis works in three steps:

� using all the currently available information to create a full probability model;

� forming a posterior inference by conditioning the full probability model on the new data;

� criticizing the fit of the model to the data and evaluating the predictions it makes.

You should read Bayesian Data Analysis by Gelman et al. (2004) for background, examples and computational
methods on each of these steps.

One of the strengths of the Bayesian approach is that it does not rely on two of the most peculiar aspects
of the frequentist approach. Beginners often think that:

� if I reject the null hypothesis at the 5% level, then there is a 5% chance that the null hypothesis is true;

� if I establish a 95% confidence interval for the value of a parameter, then the value of the parameter lies
within these bounds with probability 0.95.

Of course, both these assertions are wrong, but they are wrong in ways that are genuinely hard for beginners
to understand. In the first case, the p value (say 0.05) means that a test statistic as large, or larger, than the

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

BAYESIAN STATISTICS 753

one we observed, is expected to occur by chance alone with probability 0.05 when the null hypothesis is
true. True, it is a measure of the plausibility of the null hypothesis, but it is not the probability that it is true,
because we calculated the test statistic on the basis that the null hypothesis really was true. In the second case,
we are asked to do an imaginary experiment in which we repeat our data collection exercise many times.
The confidence interval indicates the distribution of these hypothetical repeated estimates of the parameter.
It does not mean that the probability that our estimated parameter value lies outside these bounds is 0.05. But
this is precisely what a Bayesian credible interval means.

Bayesians talk naturally about the probability of hypotheses:

� the unconditional probability of an hypothesis (its prior probability);

� the conditional probability, given some new evidence (its posterior probability).

The advantages of Bayesian analysis include the following:

� All sources of variation can be modelled (fixed effects, random effects, measurement error, etc.).

� All unknowns are treated as random variables.

� Confidence intervals are intuitive. The highest posterior density (HPD, also known as the credible interval)
refers to the observed data on which the distribution of the parameter is conditioned – this is a much more
intuitive concept than the conventional 95% confidence interval, which is based on some hypothetical
replications of the sample.

� Explanatory variables known to be of substantive importance are included in the model even if they appear
not to be statistically significant (e.g. density dependence in population models).

� Models can be as complex as necessary to describe the question in hand.

� Interpretation of complex models is much more straightforward.

� The uncertainly associated with missing values (so-called multiple imputation) is dealt with more satis-
factorily.

� Multiple comparisons are dealt with intuitively, including comparisons of structurally different models.

� The very term ‘hypothesis testing’ dictates that it should be the hypothesis that is tested, given the data,
not the other way around.

However, Bayesian analysis has a number of disadvantages:

� You need to know much more maths and statistics to do it competently.

� The solution to realistically complicated models can only be achieved through iterative simulation, drawing
random samples from the posterior distribution.

� There are many ways of carrying out these simulations and it is not obvious in advance which method will
be most effective.

� The choice of priors can be both controversial and consequential, especially with small sample sizes.

� Simulation is not exact, and it may not be obvious that you have the best possible model for the posterior.

To illustrate what I mean by needing to be better at statistics, consider these simple questions. What,
precisely does ‘knowing nothing’ mean in terms of choosing between different priors? Should we assume
that different parameters in the prior are independent of one another? What number of new observations do

754 THE R BOOK

you reckon your prior information is worth ? How do I ensure that priors are conjugate? I think you will see
what I mean.

Analytical solutions to simple Bayesian problems are relatively straightforward, so long as we stick to well-
known distributions like the normal or the Poisson and use conjugate priors. But for realistically complicated
models, it is essential to resort to numerical simulation to work out the parameter values involved in quantifying
the posterior distribution.

It is not so much the priors that represent the principal motivation for using Bayesian models these days,
but rather the potential to include all of the important sources of variation in a straightforward way. This has
revolutionized statistical modelling in many fields. Estimating parameter values and their credible intervals
by numerical simulation from the posterior distribution represents a quantum step in dealing with the most
complicated models, including models with a high ratio of parameters to data points, and hierarchical models
with complex spatial or temporal structure.

22.1 Background

We need to revise some simple probability theory. Let us define E as an event, and H as an hypothesis (a
model) about the likelihood of E. The probability of an event E, given the hypothesis H, is written as P(E |H),
which is read ‘the probability of E given H’. Some straightforward rules apply:

� P(E |H) ≥ 0 for all E and all H;

� P(H |H) = 1 for all H;

� P(E |F H) × P(F |H) = P(E F |H).

The first just says that you cannot have negative probabilities. The second just says that the hypothesis needs
to encompass all possible outcomes. The third is the subtle one. It says that given independent events E
and F, then the probability of getting E and F given the hypothesis (the right-hand side), is the product
of the probability of F given the hypothesis, times the probability of E given both F and H. Take the
example of twins. They can derive from splitting of a single fertilized egg (monozygotic twins), or from
two separate fertilizations of different eggs (dizygotic twins). Not all monozygotic twins look ‘identical’,
and some dizygotic individuals can look very alike. This means that you cannot reliably tell monozygotic
from dizygotic twins just by looking at them. But there is a reliable way of estimating the proportions of
monozygotic and dizygotic twins in the population. The key fact is that while dizygotic twins can be 2 boys
or 2 girls or 1 boy and 1 girl, monozygotic twins are always of the same sex. So if B is the event of a twin
being a boy, and G is the event of a twin being a girl, then there are three outcomes for any batch of twins:
BB, GG or BG. Let us define the second event as either monozygotic (M) or dizygotic (D). The probabilities
for the dizygotic twins are easy:

P(GG|D) = 1
4 , P(BB|D) = 1

4 , P(BG|D) = 1
2 .

The probabilities for monozygotic twins include the fact that P(BG|M) is impossible:

P(BB|M) = 1
2 , P(GG|M) = 1

2 , P(BG|M) = 0.

We want to know P(M). Using what we have learned about conditional probability, we can write down the
probability of getting two girls if we know P(M) and P(D).

P(GG) = P(GG|M) × P(M) + P(GG|D) × P(D).

BAYESIAN STATISTICS 755

Half of all monozygotic twins will be GG but only one quarter of dizygotic twins will be GG:

P(GG) = 1
2 P(M) + 1

4 (1 − P(M)),

from which we can extract P(M) by multiplying through the bracket by 1
4 , subtracting 1

4 P(M) from 1
2 P(M),

then subtracting 1
4 from both sides to leave

P(GG) − 1
4 = 1

4 P(M),

so the answer is P(M) = 4P(GG) − 1. In a town where 45% of twins are girl–girl, the proportion of twins
that are monozygotic is 100 × ((4 × 0.45) – 1) = 80%.

22.2 A continuous response variable

Suppose that our data are X and our model contains the parameters θ . We might ask what is the probability
of observing our data given that the model is true? This is called the frequentist approach to maximum
likelihood (see p. 390):

p(X |θ).

Alternatively, because we are usually a lot more certain about our data than we are about the truth of our
model, we might ask what is the likelihood of our model, given the data:

l(θ |X).

These two quantities are different ways of expressing the same idea, but they embody a fundamentally
different approach. You need to think about this last paragraph until the penny drops.

The fundamental part of Bayesian statistics is that the posterior distribution p(θ |X) is proportional to the
product of the prior and the likelihood:

p(θ |X) ∝ p(θ) × l(θ |X).

This tells us how to modify our existing beliefs in the light of the newly available data. Note the proportionality:
we can multiply the likelihood by any constant without affecting the posterior, but we need our posterior
probability distribution to integrate to 1.

22.3 Normal prior and normal likelihood

The simplest Bayesian calculations are in cases where both the prior and the likelihood are normal. Assume
that we have a single unknown parameter θ for which our prior is expressed in terms of a normal distribution
for which we know both the mean (θ0) and the variance (ϕ0). We have collected new data X with sample mean
µ and known variance ϕ1.

The traditional way to measure precision is by the inverse of the variance (i.e. posterior precision =
prior precision + data precision). We start by getting the overall estimate of the posterior variance: this is the
reciprocal of the sum of the reciprocals of the prior variance and the sample variance:

vposterior = 1

v−1
prior + v−1

data

.

756 THE R BOOK

The posterior mean is the weighted mean of the prior and the data, using the inverse variances as the weights:

mposterior = vposterior

(
mprior

vprior
+ mdata

vdata

)
.

Now, of course, there are many assumptions here. The most important is that the two variances and the prior
mean are known without error, and that the unknown parameter is normally distributed. These assumptions
are all relaxed in more advanced Bayesian models.

Let us take a simple example, just to illustrate the concept of shrinkage. Suppose that Smith was the first
to estimate the productivity of this particular kind of grassland, and she found a mean of 500 units per unit
area with a standard deviation of 25. Our new data give a mean of 420 with a standard deviation of 10. If we
use Smith’s findings as our prior, we get a posterior variance, v, of roughly 86 like this:

(v <- 1/(1/25ˆ2+1/10ˆ2))

[1] 86.2069

The posterior mean is given by

(v*(500/25ˆ2 + 420/10ˆ2))

[1] 431.0345

So the prior was N(500, 252), the likelihood from the new data was N(420, 102) and the posterior was
N(431, 92). The new mean is closer to the likelihood than to the prior, and the standard deviation is substantially
lower.

Jones, working a decade later than Smith, found a mean of 400 with a standard deviation of 20. How much
difference would it have made if we had taken Jones rather than Smith for our estimate of the prior? Now the
posterior variance would be

(v2 <- 1/(1/20ˆ2+1/10ˆ2))

[1] 80

and the new posterior mean would be

(v2*(400/20ˆ2 + 420/10ˆ2))

[1] 416

The posterior variance is roughly the same as before, but the posterior mean is slightly lower: N(416, 92)
compared to N(431, 92). So our choice of priors does matter, and the smaller our new sample, the more that
choice matters. With three studies, we might have done a meta-analysis (see Chapter 21).

22.4 Priors

Your prior beliefs can be specified as a point estimate (a single value) or as a distribution (many values, each
with a different probability density). My prior for tossing this fair coin is a point estimate: the probability of
heads is θ = 1

2 . My prior for the yield of a new crop is 10% higher than the yield of the conventional crop
(µ = 1.1), but with a similar variance (σ 2 = k): this could be expressed as a normal prior θ ∼ N (µ, σ 2).

BAYESIAN STATISTICS 757

22.4.1 Conjugate priors

The likelihood function is l(θ |x) and the prior is p (θ). If the posterior density

p(θ |x) ∝ p(θ) × l(θ |x).

is in the same family of distributions as the prior, then the class of prior distributions is said to form a
conjugate family. The prior is called a conjugate prior for the likelihood. In most cases, this makes the maths
much more straightforward, since the posterior has the same algebraic form as the prior. A classic example
comes from the case where the response variable follows a binomial distribution with a single parameter, π ,
the probability of success in a single trial. The choice of a prior for π is best if π ∼ B(α, β), where B is
a beta distribution, because the family of beta distributions is conjugate to a binomial likelihood. Roughly
speaking, you can choose α and β so that α + β represents the number of observations that you reckon your
prior information is worth, while the mean of the beta distribution is equal to α

/
(α + β) (Lee, 2012). The

conjugate prior distribution for a response variable that has a Poisson likelihood (e.g. count data) is the gamma
distribution. And so on. All the likelihood functions belonging to the exponential family have conjugate priors
that are also in the exponential family (see Chapter 27).

Conjugate priors are useful if you are aiming for an analytical solution, but not essential if you intend to
investigate your posterior distribution numerically. It is impossibly slow to calculate the probability associated
with every combination of circumstances and every value of every parameter of the current model. We need
a cleverer way of homing in on the right answer. It is in these cases that Markov chain Monte Carlo (MCMC)
methods come into their own.

22.5 Bayesian statistics for realistically complicated models

Model choice is a very important part of Bayesian data analysis. Not only do we have to select a deterministic
structure for the likelihood (which explanatory variables to include, and how to relate them to the response
variable and to one another), but also specify a joint probability distribution for all the observable and
unobservable quantities involved in the problem. This is known as the full probability model. Then, given the
data, we need to compute the appropriate posterior distribution: this is the conditional probability distribution
of all the unobserved quantities, given the observed data. Finally, we must subject the model to criticism:
how good is the fit to the data, are the conclusions reasonable, and how sensitive is the interpretation to
the assumptions that are embodied in the model choice? We cannot expect to be able to do these things
analytically. The most popular methods for solving these issues numerically involve simulations known
collectively as Markov chain Monte Carlo methods.

The Monte Carlo part of the name refers to random draws (the gambling part). The Markov chain part of
the name refers to a series of events where what happens next depends only on current status (and not on any
memory of historical status). The idea is step-by-step to better approximate the target posterior distribution
(hill climbing is a useful analogy). Samples are drawn sequentially, with the distribution of the sample draws
depending only on the last sample drawn, such that the approximate distributions are improved at every step.
With time, the simulation converges on the target posterior distribution (Gelman et al., 2004).

The Metropolis algorithm is a kind of random walk that uses an acceptance/rejection rule to converge on
a specified target distribution. It uses what is called a jumping distribution that either stays where it is or
moves to a new place, with the probability of movement to a new place depending on the ratio of probability
densities between the new place and the existing place. It always accepts steps that increase the density,
but occasionally accepts downward steps. This ensures that the solution does not get stuck on small, local
maxima that are some way distant from the global maximum. The Metropolis–Hastings algorithm differs in

758 THE R BOOK

two ways: the jumping rules no longer need to be symmetric, and ratio of densities is modified to account for
this asymmetry. The Gibbs sampling algorithm generates an instance from the distribution of each variable
in turn, conditional on the current values of the other variables.

22.6 Practical considerations

MCMC modelling involves two important practical considerations: the burn-in period and thinning. By
throwing away the early values from the simulation, the effects of the initial conditions will have died away,
leaving a better estimate of the posterior distribution. The burn-in period (from which the results are discarded)
is often set to half of the chain.

Because the hill-climbing process is based on a Markov chain, successive values of the parameters show
strong serial correlations, so successive values typically give little extra information about the shape of
the posterior distribution. You might choose to take one point in every hundred or so, to reduce the serial
correlation. This is the thinning rate.

22.7 Writing BUGS models

BUGS stands for ‘Bayesian inference Using Gibbs Sampling’ (Lunn et al., 2009). You can read about the
history of BUGS at the OpenBUGS website http://www.openbugs.info/w/.

The trick is to learn how to express your particular model in BUGS code. The code looks superficially
like R, but it is fundamentally different. You do not type the code into R, but you write it in an editor, and
save it as an ASCII file outside of R. The name of the file containing your BUGS model is provided as an
argument to the MCMC function inside R. You can find lots of clear examples of the way that different
kinds of models are expressed in BUGS code on the website for WinBUGS (Spiegelhalter et al., 2003) at
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs under the headings ‘Volume 1’, ‘Volume 2’ and ‘Volume 3’
at the bottom of ‘Introduction to WinBUGS’ on the home page. You should spend time browsing through
these examples to find the one closest to the problem you are trying to solve, then edit the code to tailor it to
your specific requirements. Three examples are described in detail below (a simple regression, a study with
temporal pseudoreplication, and an experiment involving proportion data with overdispersion).

22.8 Packages in R for carrying out Bayesian analysis

There is a huge amount of information, and a great many computing resources for Bayesian analysis available
on the CRAN website. This is summarized in the Bayesian Inference Task View written by Jong Hee Park
(University of Chicago, USA), Andrew D. Martin (Washington University, St. Louis, MO, USA), and Kevin
M. Quinn (University of California, Berkeley, USA); see http://cran.r-project.org/web/views/Bayesian.html.
The Task View subdivides the packages under five headings:

� Bayesian packages for general model fitting;

� Bayesian packages for specific models or methods;

� post-estimation tools (like coda);

� packages for learning Bayesian statistics;

� packages that link R to other sampling engines (like R2jags, R2WinBUGS, R2OpenBUGS).

BAYESIAN STATISTICS 759

Applied researchers interested in Bayesian statistics are increasingly attracted to R because of the ease
of which one can code algorithms to sample from posterior distributions as well as the significant number
of packages contributed to CRAN. In particular, there are several choices for MCMC sampling. For many
years the most popular of these was WinBUGS (Spiegelhalter et al., 2003), and this can still be run from R
using the function R2WinBUGS. This is not used here because WinBUGS does not run on a Mac, and the
software is no longer being developed. The final manifestation of WinBUGS, frozen at version 1.4.3, is still
perfectly functional, but it has been replaced as an evolving framework by OpenBUGS. This means that the
main choice is between OpenBUGS and JAGS. I have chosen to illustrate this chapter using JAGS because
people who use it a lot speak very highly of it, and because, unlike WinBUGS, it runs on Macs as well as PC
and Linux. It may well be that OpenBUGS will become the standard in future, and if it does, it will be simple
to switch from JAGS.

22.9 Installing JAGS on your computer

JAGS stands for ‘Just Another Gibbs Sampler’ (Plummer, 2012). It is a program for analysis of Bayesian
hierarchical models using MCMC simulation. It is very like BUGS in spirit and language, and was written
with three aims in mind:

� to have a cross-platform engine for the BUGS language;

� to be extensible, allowing users to write their own functions, distributions and samplers;

� to be a platform for experimentation with ideas in Bayesian modelling.

JAGS is licensed under the GNU General Public License. First, you need to install JAGS on your machine.
You do this by visiting http://mcmc-jags.sourceforge.net/. Click on ‘files page’ under Downloads, then after
“Looking for the latest version?” click on Download JAGS. Then run the program and chose all the default
options that are offered.

22.10 Running JAGS in R

The next thing you have to do is install the R2jags package that allows R to communicate with JAGS and
vice versa. Inside R, while running R as administrator, install the package in the usual way:

install.packages("R2jags")

Now you are ready to start Bayesian modelling. The first thing to appreciate is that you do most of the hard
work outside R. You have to use the BUGS language to write down your model of the likelihood and the
priors, incorporating all of the important details about hierarchical structure, pseudoreplication, and so forth.
Having sketched out the model, you write it in a text editor and save it as an ASCII file (*.txt file). Only now
do you go into R to start the modelling. This is the sequence of events:

� Use read.table to enter your data into a dataframe in the familiar way.

� attach the dataframe and make a list of the variable names that need to be passed into the BUGS code.

� Work out the initial conditions (if any) that you want to specify.

� Load the jags package using library(jags).

760 THE R BOOK

� Run the JAGS model by specifying the name of the list of variables, the initial conditions (optional), the
path and name of the file where the BUGS code is to be found, and the number of Markov chains that you
want to run (a popular choice is three).

With any luck the JAGS model will run, and its progress is indicated by a slowly moving horizontal bar. Once
the model has finished, you can inspect the parameter estimates and their uncertainty measures, and create
various plots.

22.11 MCMC for a simple linear regression

In our example (analysed in detail as a linear model on p. 450) the response variable is growth and the
continuous explanatory variable is the concentration of tannin in the diet. We start by reading the data into R:

data2 <- read.table("d:\\temp\\regression.txt",header=T)
attach(data2)
head(data2)

growth tannin
1 12 0
2 10 1
3 8 2
4 11 3
5 6 4
6 7 5

Here is a reminder of the output of the simple linear regression for comparison with the JAGS output in due
course:

summary(lm(growth~tannin))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.7556 1.0408 11.295 9.54e-06 ***
tannin -1.2167 0.2186 -5.565 0.000846 ***

The intercept is 11.7556 (± 1.0408) and the slope is –1.2167 (± 0.2186).
Outside R, write the BUGS model and save it in a text file. This is the part that you will find difficult at

first. The model contains the information on the structure of the model relating the response variable to the
explanatory variables (growth = a + b * tannin), the nature of the priors (normal), and the assumed
distributions (again, normal). You need to specify the number of rows in the dataframe (N = 9), the formula
for the likelihood, and the probability density functions from which the priors and the likelihood are to be
selected. This is what the contents of the ASCII file look like:

model {
for (i in 1:N) {
growth[i] ~ dnorm(mu[i], tau)
mu[i] <- a + b * tannin[i]
}
a ~ dnorm(0.0, 1.0E-4)
b ~ dnorm(0.0, 1.0E-4)
sigma <- 1.0/sqrt(tau)
tau ~ dgamma(1.0E-3, 1.0E-3)
}

BAYESIAN STATISTICS 761

The model contains a mixture of deterministic and stochastic elements. The deterministic components are
indicated by ‘gets’ <- symbols: mu[i] <- a + b * tannin[i] and sigma <-
1.0/sqrt(tau). The stochastic components are indicated by a tilde (∼): the likelihood growth[i]
~ dnorm(mu[i], tau), the prior for the intercept a ~ dnorm(0.0, 1.0E-4), the uninformative
prior for the slope b ~ dnorm(0.0, 1.0E-4), while tau is sampled from a gamma distribution tau ~
dgamma(1.0E-3, 1.0E-3). The code is saved to a file calledc:\\temp\\regression.bugs.txt
in this example. Now go back into R.

We need to open the library to connect our R session with the JAGS program:

library(R2jags)

You need to tell the jags function several important things:

� the names of the variables containing the data to which the model will be fitted;

� initial values for the parameters (you can omit this, and let JAGS figure them out);

� the names of the parameters to save for interpretation and inference;

� the name of the path and the ASCII file where the code for the model is to be found;

� the number of chains you want to simulate;

� the number of iterations per chain (by default, the burn-in is half this number).

Tell jags the names of the variables containing the data:

data.jags <- list("growth", "tannin", "N")

Finally, run the jags function to produce the model:

model <- jags(data=data.jags, parameters.to.save=c("a", "b", "tau"),
n.iter=100000, model.file="C:/temp/regression.bugs.txt", n.chains=3)

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 46

We inspect the model output like this:

model

Inference for Bugs model at "C:/temp/regression.bugs.txt", fit using jags,
3 chains, each with 1e+05 iterations (first 50000 discarded), n.thin = 50
n.sims = 3000 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
a 11.799 1.268 9.305 11.051 11.808 12.518 14.377 1.002 2000
b -1.230 0.263 -1.781 -1.384 -1.226 -1.067 -0.712 1.002 2000
tau 0.351 0.195 0.080 0.211 0.313 0.451 0.826 1.001 3000
deviance 36.508 3.152 33.054 34.217 35.682 37.923 44.825 1.002 2100

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)

762 THE R BOOK

pD = 5.0 and DIC = 41.5
DIC is an estimate of expected predictive error (lower deviance is better).

As you can see, the parameter estimates are very close to those obtained by the linear model (intercept =
11.799 ± 1.268 rather than 11.7556 ± 1.0408; slope = –1.230 ± 0.263 rather than –1.2167 ± 0.2186). The
unreliability estimates are slightly greater than in the linear model, and the deviance is substantially greater
(36.51 rather than 20.07), but the interpretation is unaffected. A plot of the jags model object produces
strip diagrams with credible interval bars for the parameters, the deviance and tau, with the results from the
different chains in different colours:

plot(model)

80% interval for each chain

Bugs model at “C:/temp/regression.bugs.txt”, fit using jags, 3 chains, each with 1e+05 iterations (first 50000 discarded)

medians and 80% intervals
–20

–20

0

0

20

20

40

40

60

60 1

1 1.5

1.5

2+

2+

R-hat

a

b
deviance

+
+

+

14

12

10

–0.5

–1

–1.5

–2

45

40

35

30

0.8

0.6

0.4

0.2

0

tau

deviance

a

b

You can obtain some attractive graphical output using functions from the coda package:

model.mcmc <- as.mcmc(model)
densityplot(model.mcmc)

BAYESIAN STATISTICS 763

tau

deviance

b

a

0.0

30 40 50 60

10–1–2

5 10 15

0.
0

0.
10

0.
00

0.
0

0.
0

0.
1

0.
2

0.
3

D
en

si
ty

0.
5

1.
0

1.
5

0.
51

.0
1.

52
.0

2.
5

0.5 1.0 1.5

This shows each of the three chains in a different colour, and gives a clear visual impression of the unreliability
of the estimates of the two model parameters (intercept a and slope b) and tau (the reciprocal of the error
variance). Note the strong positive skew in the distribution of deviance.

22.12 MCMC for a model with temporal pseudoreplication

The root growth of N individuals was measured over T time periods. The temporal pseudoreplication is built
into the BUGS model in the form of nested loops (time j within individual i). Mean size (mu) is assumed to
be a linear function of time (x) with intercept alpha and slope beta. The data are plotted on p. 695, where
they are analysed with a linear mixed effects model:

data <- read.table("d:\\temp\\fertilizer.txt",header=T)
attach(data)
head(data)

764 THE R BOOK

root week plant fertilizer
1 1.3 2 ID1 added
2 3.5 4 ID1 added
3 7.0 6 ID1 added
4 8.1 8 ID1 added
5 10.0 10 ID1 added
6 2.0 2 ID2 added

Write the BUGS model and save it to an ASCII file called c:\\temp\\bayes.lme.txt:

model
{
for(i in 1 : N) {
for(j in 1 : T) {
Y[i , j] ~ dnorm(mu[i , j],tau.c)
mu[i , j] <- alpha[i] + beta[i] * (x[j])
}
alpha[i] ~ dnorm(alpha.c,alpha.tau)
beta[i] ~ dnorm(beta.c,beta.tau)
}
tau.c ~ dgamma(0.001,0.001)
sigma <- 1 / sqrt(tau.c)
alpha.c ~ dnorm(0.0,1.0E-6)
alpha.tau ~ dgamma(0.001,0.001)
beta.c ~ dnorm(0.0,1.0E-6)
beta.tau ~ dgamma(0.001,0.001)
alpha0 <- 0
}

The issues in this example concern the shape of the data. The response (root length) needs to be a matrix Y
with the individuals as the rows (not a single vector as root is at present):

Y <- root
dim(Y) <- c(5,12)
Y <- t(Y)

The explanatory variable (week) needs to be a vector x of length T = 5 (not length 60 as at present):

x <- week[1:5]

We need to provide jags with the names of the variables containing the data:

data.jags <- list("Y", "x", "N","T")

Finally, we can run the jags model like this:

model <- jags(data=data.jags,
parameters.to.save=c("alpha", "beta", "tau.c","alpha.c",
"alpha.tau","beta.c","beta.tau"), n.iter=100000,
model.file="C:/temp/bayes.lme.txt", n.chains=3)

BAYESIAN STATISTICS 765

This may take a few seconds to execute, but then we can investigate the posterior estimates of the parameters
and their associated uncertainty measures:

model

Inference for Bugs model at "C:/temp/bayes.lme.txt", fit using jags,
3 chains, each with 1e+05 iterations (first 50000 discarded), n.thin = 50
n.sims = 3000 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha[1] -0.302 0.365 -0.942 -0.564 -0.329 -0.053 0.421 1.003 780
alpha[2] -0.308 0.332 -0.907 -0.540 -0.321 -0.095 0.405 1.001 3000
alpha[3] -0.396 0.326 -0.982 -0.626 -0.416 -0.186 0.271 1.001 2200
alpha[4] 0.038 0.452 -0.772 -0.309 0.052 0.377 0.873 1.003 780
alpha[5] -0.392 0.316 -0.965 -0.611 -0.408 -0.188 0.283 1.001 3000
alpha[6] -0.480 0.311 -1.075 -0.693 -0.495 -0.275 0.166 1.002 1100
alpha[7] -0.651 0.311 -1.270 -0.850 -0.647 -0.455 -0.039 1.001 3000
alpha[8] -0.723 0.317 -1.371 -0.927 -0.708 -0.513 -0.120 1.003 780
alpha[9] -0.926 0.348 -1.626 -1.159 -0.911 -0.674 -0.318 1.001 3000
alpha[10] -0.926 0.337 -1.593 -1.155 -0.911 -0.683 -0.307 1.001 3000
alpha[11] -0.879 0.346 -1.578 -1.106 -0.868 -0.636 -0.242 1.001 3000
alpha[12] -1.233 0.454 -2.103 -1.554 -1.238 -0.881 -0.417 1.001 3000
alpha.c -0.598 0.212 -1.019 -0.734 -0.595 -0.461 -0.188 1.002 1100
alpha.tau 43.945 189.030 1.050 2.501 4.427 10.190 415.840 1.001 3000
beta[1] 1.038 0.058 0.928 0.997 1.039 1.080 1.151 1.001 2400
beta[2] 0.948 0.049 0.853 0.915 0.948 0.981 1.046 1.002 1800
beta[3] 0.978 0.049 0.884 0.944 0.978 1.011 1.075 1.002 1400
beta[4] 1.029 0.067 0.909 0.980 1.025 1.080 1.160 1.003 970
beta[5] 0.943 0.048 0.843 0.912 0.944 0.976 1.036 1.001 3000
beta[6] 0.980 0.048 0.884 0.947 0.980 1.013 1.073 1.003 850
beta[7] 0.913 0.048 0.818 0.882 0.913 0.945 1.008 1.001 3000
beta[8] 0.888 0.049 0.793 0.856 0.888 0.922 0.982 1.002 1800
beta[9] 0.884 0.054 0.781 0.847 0.885 0.921 0.986 1.001 2800
beta[10] 0.918 0.050 0.822 0.884 0.919 0.953 1.017 1.001 2900
beta[11] 0.878 0.053 0.776 0.841 0.878 0.915 0.982 1.001 3000
beta[12] 0.848 0.066 0.723 0.800 0.849 0.895 0.970 1.001 3000
beta.c 0.937 0.034 0.869 0.915 0.937 0.959 1.004 1.001 2300
beta.tau 270.178 345.016 40.808 98.051 165.446 307.572 1128.382 1.002 1200
tau.c 4.416 0.979 2.757 3.737 4.332 5.016 6.589 1.001 3000
deviance 82.675 7.429 69.787 77.350 82.132 87.391 97.923 1.000 3000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 27.6 and DIC = 110.3
DIC is an estimate of expected predictive error (lower deviance is better).

As you can see, there is convincing evidence of non-linearity here, because several of the individuals
(7–12) have intercepts significantly less than zero. There is also significant variation in the slopes (from 1.038
down to 0.848, with standard deviation less than 0.067).

766 THE R BOOK

22.13 MCMC for a model with binomial errors

We analysed this model for the percentage germination of seeds from a factorial experiment involving two
genotypes of Orobanche and two extracts, as a GLM with quasi-binomial errors on p. 636. Here are the data:
the response, count, is the number germinating out of an initial sample of seeds (i.e. 10 germinated out
of 39 seeds in the first case):

data <- read.table("c:\\temp\\germination.txt",header=T)
attach(data)
head(data)

count sample Orobanche extract
1 10 39 a75 bean
2 23 62 a75 bean
3 23 81 a75 bean
4 26 51 a75 bean
5 17 39 a75 bean
6 5 6 a75 cucumber

Write the BUGS model and save it in as ASCII file called c:\\temp\\bayes.glm.txt:

model
{
for(i in 1 : N) {
r[i] ~ dbin(p[i],n[i])
b[i] ~ dnorm(0.0,tau)
logit(p[i]) <- alpha0 + alpha1 * x1[i] + alpha2 * x2[i] +
alpha12 * x1[i] * x2[i] + b[i]
}
alpha0 ~ dnorm(0.0,1.0E-6)
alpha1 ~ dnorm(0.0,1.0E-6)
alpha2 ~ dnorm(0.0,1.0E-6)
alpha12 ~ dnorm(0.0,1.0E-6)
tau ~ dgamma(0.001,0.001)
sigma <- 1 / sqrt(tau)
}

The deterministic part of the model shows the prediction of logit(p) as a function of the factorial
combination of extract and genotype with two main effects (x1 and x2) and one interaction term (the
product x1 by x2). The stochastic terms involve the number of germinating seedlings drawn from a binomial
distribution (dbin) with parameters p and n, r[i] ~ dbin(p[i],n[i]), the residuals on the logit
scale with normal errors b[i] ~ dnorm(0.0,tau), with independent, non-informative priors for the
intercept, the two main effects and the interaction term (alpha0, alpha1, alpha2 and alpha12), with
tau selected from a gamma distribution.

The data we need to provide to the model are:

N <- 21
n <- sample
r <- count
x1 <- Orobanche

BAYESIAN STATISTICS 767

x2 <- extract
data.jags <- list("r", "n", "x1", "x2", "N")

Now run the model:

model <- jags(data=data.jags,
parameters.to.save=c("alpha0", "alpha1","alpha2","alpha12","tau"),
n.iter=100000, model.file="C:/temp/bayes.glm.txt", n.chains=3)

To inspect the output, write:

model

Inference for Bugs model at "C:/temp/bayes.glm.txt", fit using jags,
3 chains, each with 1e+05 iterations (first 50000 discarded), n.thin = 50
n.sims = 3000 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha0 -0.077 1.174 -2.447 -0.820 -0.079 0.666 2.201 1.001 2700
alpha1 -0.913 0.700 -2.285 -1.345 -0.915 -0.475 0.465 1.001 3000
alpha12 0.831 0.443 -0.018 0.549 0.815 1.104 1.763 1.001 3000
alpha2 -0.309 0.739 -1.823 -0.780 -0.293 0.172 1.114 1.001 2200
tau 76.086 439.882 2.808 7.077 13.364 31.802 630.682 1.001 2300
deviance 102.119 7.249 89.962 96.770 101.592 107.349 116.046 1.001 3000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 26.3 and DIC = 128.4
DIC is an estimate of expected predictive error (lower deviance is better).

As we saw with the GLM with overdispersion, the interaction term (alpha12) falls short of significance
and should be removed. Rewriting the simpler model is left as an exercise.

23
Tree Models

Tree models are computationally intensive methods that are used in situations where there are many explana-
tory variables and we would like guidance about which of them to include in the model. Often there are so
many explanatory variables that we simply could not test them all, even if we wanted to invest the huge amount
of time that would be necessary to complete such a complicated multiple regression exercise. Tree models
are particularly good at tasks that might in the past have been regarded as the realm of multivariate statistics
(e.g. classification problems). The great virtues of tree models are as follows:

� They are very simple.

� They are excellent for initial data inspection.

� They give a very clear picture of the structure of the data.

� They provide a highly intuitive insight into the kinds of interactions between variables.

It is best to begin by looking at a tree model in action, before thinking about how it works. Here is an air
pollution example that we might want to analyze as a multiple regression. We begin by using tree, then
illustrate the more modern function rpart (which stands for ‘recursive partitioning’)

install.packages("tree")
library(tree)
Pollute <- read.table("c:\\temp\\Pollute.txt",header=T)
attach(Pollute)
names(Pollute)

[1] "Pollution" "Temp" "Industry" "Population" "Wind"
[6] "Rain" "Wet.days"

model <- tree(Pollute)
plot(model)
text(model)

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

TREE MODELS 769

Industry < 748

Population < 190

43.43
Wet.days < 108

12.00

33.88 23.00
15.00

Temp < 59.35

Wind < 9.65

67.00

You follow a path from the top of the tree (called, in defiance of gravity, the root) and proceed to one of the
terminal nodes (called a leaf) by following a succession of rules (called splits). The numbers at the tips of
the leaves are the mean values in that subset of the data (mean SO2 concentration in this case). The details
are explained below.

23.1 Background

The model is fitted using binary recursive partitioning, whereby the data are successively split along
coordinate axes of the explanatory variables so that, at any node, the split which maximally distinguishes the
response variable in the left and the right branches is selected. Splitting continues until nodes are pure or the
data are too sparse (fewer than six cases, by default; see Breiman et al., 1984).

Each explanatory variable is assessed in turn, and the variable explaining the greatest amount of the
deviance in y is selected. Deviance is calculated on the basis of a threshold in the explanatory variable; this
threshold produces two mean values for the response (one mean above the threshold, the other below the
threshold).

low <- (Industry<748)
tapply(Pollution,low,mean)

FALSE TRUE
67.00000 24.91667

plot(Industry,Pollution,pch=16)
abline(v=748,lty=2)
lines(c(0,748),c(24.92,24.92))
lines(c(748,max(Industry)),c(67,67))

770 THE R BOOK

10
0

80
60

40
20

P
ol

lu
tio

n

0 500 1000 1500 2000 2500 3000

Industry

The procedure works like this. For a given explanatory variable (say, Industry above):

� Select a threshold value of the explanatory variable (the vertical dotted line at Industry = 748).

� Calculate the mean value of the response variable above and below this threshold (the two horizontal solid
lines).

� Use the two means to calculate the deviance (as with SSE, see p. 500).

� Go through all possible values of the threshold (values on the x axis).

� Look to see which value of the threshold gives the lowest deviance.

� Split the data into high and low subsets on the basis of the threshold for this variable.

� Repeat the whole procedure on each subset of the data on either side of the threshold.

� Keep going until no further reduction in deviance is obtained, or there are too few data points to merit
further subdivision (e.g. the right-hand side of the Industry split, above, is too sparse to allow further
subdivision).

The deviance is defined as

D =
∑

j

(y j − µ[j])
2,

where µ[j] is the mean of all the values of the response variable assigned to node j and this sum of squares is
add up over all the nodes. The value of any split is defined as the reduction in this residual sum of squares. The
probability model used in R is that the values of the response variable are normally distributed within each
leaf of the tree with mean µi and variance σ 2. Note that because this assumption applies to the terminal nodes,
the interior nodes represent a mixture of different normal distributions, so the deviance is only appropriate at
the terminal nodes (i.e. for the leaves).

TREE MODELS 771

If the twigs of the tree are categorical (i.e. levels of a factor like names of particular species) then we have
a classification tree. On the other hand, if the terminal nodes of the tree are predicted values of a continuous
variable, then we have a regression tree.

The key questions are these:

� Which variables to use for the division.

� How best to achieve the splits for each selected variable.

It is important to understand that tree models have a tendency to over-interpret the data: for instance, the
occasional ‘ups’ in a generally negative correlation probably do not mean anything substantial.

23.2 Regression trees

In this case the response variable is a continuous measurement, but the explanatory variables can be any mix
of continuous and categorical variables. You can think of regression trees as analogous to multiple regression
models. The difference is that a regression tree works by forward selection of variables, whereas we have
been used to carrying out regression analysis by deletion (backward selection).

For our air pollution example, the regression tree is fitted by stating that the continuous response variable
Pollution is to be estimated as a function of all of the explanatory variables in the dataframe called
Pollute by use of the ‘tilde dot’ notation like this:

model <- tree(Pollution ~ . , Pollute)

For a regression tree, the print method produces the following kind of output:

print(model)

node), split, n, deviance, yval
* denotes terminal node

1) root 41 22040 30.05
2) Industry < 748 36 11260 24.92
4) Population < 190 7 4096 43.43 *
5) Population > 190 29 4187 20.45
10) Wet.days < 108 11 96 12.00 *
11) Wet.days > 108 18 2826 25.61
22) Temp < 59.35 13 1895 29.69
44) Wind < 9.65 8 1213 33.88 *
45) Wind > 9.65 5 318 23.00 *

23) Temp > 59.35 5 152 15.00 *
3) Industry > 748 5 3002 67.00 *

The terminal nodes (the leaves) are denoted by * (there are six of them). The node number is on the left,
labelled by the variable on which the split at that node was made. Next comes the ‘split criterion’ which
shows the threshold value of the variable that was used to create the split. The number of cases going into
the split (or into the terminal node) comes next. The penultimate figure is the deviance at that node. Notice
how the deviance goes down as non-terminal nodes are split. In the root, based on all n = 41 data points, the
deviance is SSY (see p. 499) and the y value is the overall mean for Pollution. The last figure on the right

772 THE R BOOK

is the mean value of the response variable within that node or at that that leaf. The highest mean pollution
(67.00) was in node 3 and the lowest (12.00) was in node 10.

Note how the nodes are nested: within node 2, for example, node 4 is terminal but node 5 is not; within
node 5 node 10 is terminal but node 11 is not; within node 11, node 23 is terminal but node 22 is not, and
so on.

Tree models lend themselves to circumspect and critical analysis of complex dataframes. In the present
example, the aim is to understand the causes of variation in air pollution levels from case to case. The
interpretation of the regression tree would proceed something like this:

� The five most extreme cases of Industry stand out (mean = 67.00) and need to be considered separately.

� For the rest, Population is the most important variable but, interestingly, it is low populations that are
associated with the highest levels of pollution (mean = 43.43). Ask yourself which might be cause, and
which might be effect.

� For high levels of population (greater than 190), the number of wet days is a key determinant of pollution;
the places with the fewest wet days (less than 108 per year) have the lowest pollution levels of anywhere
in the dataframe (mean = 12.00).

� For those places with more than 108 wet days, it is temperature that is most important in explaining
variation in pollution levels; the warmest places have the lowest air pollution levels (mean = 15.00).

� For the cooler places with lots of wet days, it is wind speed that matters: the windier places are less polluted
than the still places.

This kind of complex and contingent explanation is much easier to see, and to understand, in tree models
than in the output of a multiple regression.

23.3 Using rpart to fit tree models

The newer function rpart differs from tree in the way it handles surrogate variables, but for the most part,
it follows Breiman et al. (1984) quite closely. The name of the function stands for ‘recursive partitioning’.
We can compare the outputs of rpart (left) and tree (right) for the pollution data:

Pollute<-read.table("c:\\temp\\Pollute.txt",header=T)
attach(Pollute)
names(Pollute)
par(mfrow=c(1,2))

library(rpart)
model<-rpart(Pollution~.,data=Pollute)
plot(model)
text(model)

library(tree)
model<-tree(Pollute)
plot(model)
text(model)

TREE MODELS 773

5.25
Industry < 597

Population < 190

32.06 58.7

43.43
Wet.days < 108

Temp < 59.35
12.00Wind < 9.65

15.00

67.00

33.88 23.00

Temp>=56.25 Industry > 748

The new function rpart is much better at anticipating the results of model simplification, because it carries
out analysis of variance with the two-level factors associated with each split. Thus, for temperature and
industry

t2<-factor(Temp>=56.25)
i2<-factor(Industry<597)
model<-lm(Pollution~t2*i2)
summary(model)

Call:
lm(formula = Pollution ~ t2 * i2)

Residuals:
Min 1Q Median 3Q Max

-29.714 -8.071 -3.071 6.286 61.944

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 58.714 6.984 8.407 4.15e-10 ***
t2TRUE -49.214 14.816 -3.322 0.00202 **
i2TRUE -26.659 8.231 -3.239 0.00254 **
t2TRUE:i2TRUE 33.230 16.213 2.050 0.04754 *

Residual standard error: 18.48 on 37 degrees of freedom
Multiple R-squared: 0.4267, Adjusted R-squared: 0.3802
F-statistic: 9.18 on 3 and 37 DF, p-value: 0.0001132

774 THE R BOOK

it produces a significant interaction (shown by the split on right branch the tree diagram) and this model does
not allow the inclusion of any other significant terms. If population is added, it is marginally significant, but
the original interaction between temperature and industry disappears.

Call:
lm(formula = Pollution ~ t2 * i2 + Population)

Residuals:
Min 1Q Median 3Q Max

-25.169 -8.664 -3.351 8.142 64.778

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.263869 11.402820 3.443 0.00147 **
t2TRUE -44.112844 14.378926 -3.068 0.00408 **
i2TRUE -12.514816 10.351335 -1.209 0.23454
Population 0.013817 0.006564 2.105 0.04234 *
t2TRUE:i2TRUE 27.406065 15.754854 1.740 0.09049 .

Residual standard error: 17.68 on 36 degrees of freedom
Multiple R-squared: 0.4895, Adjusted R-squared: 0.4328
F-statistic: 8.631 on 4 and 36 DF, p-value: 5.432e-05

Call:
lm(formula = Pollution ~ t2 + Population)

Residuals:
Min 1Q Median 3Q Max

-24.880 -12.076 -2.849 9.006 63.098

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.763869 4.888500 5.679 1.57e-06 ***
t2TRUE -21.481977 5.800790 -3.703 0.000674 ***
Population 0.017529 0.004947 3.543 0.001066 **

Residual standard error: 17.95 on 38 degrees of freedom
Multiple R-squared: 0.4444, Adjusted R-squared: 0.4151
F-statistic: 15.19 on 2 and 38 DF, p-value: 1.416e-05

Note that the regression model with t2 and Population has a lower residual standard error (17.95 on
38 d.f.) than the ANOVA from the model suggested by rpart (18.48 on 37 d.f.).

In summary, I prefer thetree function for data inspection, because it shows more detail about the potential
interaction structure in the dataframe. On the other hand, rpart is much better at anticipating the results of
model simplification. I recommend you use them both, and get the benefit of two perspectives on your data
set before embarking on the time-consuming business of carrying out a comprehensive multiple regression
exercise.

TREE MODELS 775

23.4 Tree models as regressions

To see how a tree model works when there is a single, continuous response variable, it is useful to com-
pare the output with a simple linear regression. Take the relationship between mileage and weight in the
car.test.frame data:

car.test.frame <- read.table("c:\\temp\\car.test.frame.txt",header=T)
attach(car.test.frame)
names(car.test.frame)

[1] "Price" "Country" "Reliability" "Mileage"
[5] "Type" "Weight" "Disp." "HP"

plot(Weight,Mileage,pch=21,col="brown",bg="green")

The heavier cars do fewer miles per gallon, but there is a lot of scatter. The tree model starts by finding the
weight that splits the mileage data in a way that explains the maximum deviance. This weight turns out to be
2567.5.

a <- mean(Mileage[Weight<2567.5])
b <- mean(Mileage[Weight>=2567.5])
lines(c(1500,2567.5,2567.5,4000),c(a,a,b,b))

35
30

25
20

2000 2500 3000 3500
Weight

M
ile

ag
e

The next thing the tree model does is to work out the threshold weight that would best split the mileage data
for the lighter cars: this turns out to be 2280. It then works out the threshold split for the heavier cars: this turns
out to be 3087.5. And so the process goes on, until there are too few cars in each split to justify continuation

776 THE R BOOK

(five or fewer by default). To see the full regression tree as a function plot we can use the predict function
with the regression tree object car.model like this:

car.model <- tree(Mileage~Weight)
wt <- seq(1500,4000)
y <- predict(car.model,list(Weight=wt))
plot(Weight,Mileage,pch=21,col="brown",bg="green")
lines(wt,y)

35
30

25
20

M
ile

ag
e

2000 2500 3000 3500

Weight

You would not normally do this, of course (and you could not do it with more than two explanatory variables)
but it is a good way of showing how tree models work with a continuous response variable.

23.5 Model simplification

Model simplification in regression trees is based on a cost–complexity measure. This reflects the trade-off
between fit and explanatory power (a model with a perfect fit would have as many parameters as there were
data points, and would consequently have no explanatory power at all). We return to the air pollution example
analysed earlier, where we fitted the tree model object called model.

Regression trees can be over-elaborate and can respond to random features of the data (the so-called train-
ing set). To deal with this, R contains a set of procedures to prune trees on the basis of the cost–complexity
measure. The function prune.tree determines a nested sequence of sub-trees of the supplied tree by recur-
sively ‘snipping’ off the least important splits, based upon the cost–complexity measure. The prune.tree
function returns an object of class tree.sequence, which contains the following components:

prune.tree(model)

$size
[1] 6 5 4 3 2 1

TREE MODELS 777

This shows the number of terminal nodes in each tree in the cost–complexity pruning sequence: the most
complex model had six terminal nodes (see above)

$dev:
[1] 8876.589 9240.484 10019.992 11284.887 14262.750 22037.902

This is the total deviance of each tree in the cost–complexity pruning sequence.

$k:
[1] -Inf 363.8942 779.5085 1264.8946 2977.8633 7775.1524

It is the value of the cost–complexity pruning parameter of each tree in the sequence. If determined al-
gorithmically (as here, k is not specified as an input), its first value defaults to –∞, its lowest possible
bound.

plot(prune.tree(model))

22
00

0
20

00
0

18
00

0
16

00
0

14
00

0
12

00
0

10
00

0

de
vi

an
ce

1 2 3 4 5 6
size

7800 3000 1300 780 360 -Inf

This shows the way that deviance declines as complexity is increased. The total deviance is 22 037.902
(size = 1), and this is reduced as the complexity of the tree increases up to six nodes. An alternative is to
specify the number of nodes to which you want the tree to be pruned; this uses the "best=" option. Suppose
we want the best tree with four nodes:

model2 <- prune.tree(model,best=4)
plot(model2)
text(model2)

778 THE R BOOK

Industry < 748

Population < 190

43.43
Wet.days < 108

12.00 25.61

67.00

In printed form, this is:

print(model2)

node), split, n, deviance, yval
* denotes terminal node

1) root 41 22040 30.05
2) Industry < 748 36 11260 24.92
4) Population < 190 7 4096 43.43 *
5) Population > 190 29 4187 20.45
10) Wet.days < 108 11 96 12.00 *
11) Wet.days > 108 18 2826 25.61 *

3) Industry > 748 5 3002 67.00 *

It is straightforward to remove parts of trees, or to select parts of trees, using subscripts. For example, a
negative subscript [–3] leaves off everything above node 3, while a positive subscript [3] selects only that part
of the tree above node 3.

23.6 Classification trees with categorical explanatory variables

Tree models are a superb tool for helping to write efficient and effective taxonomic keys.
Suppose that all of our explanatory variables are categorical, and that we want to use tree models to write a

dichotomous key. There is only one entry for each species, so we want the twigs of the tree to be the individual
rows of the dataframe (i.e. we want to fit a tree perfectly to the data). To do this we need to specify two extra
arguments: minsize = 2 and mindev = 0. In practice, it is better to specify a very small value for the
minimum deviance (say, 10–6) rather than zero (see below).

TREE MODELS 779

The following example relates to the nine lowland British species in the genus Epilobium (Onagraceae).
We have eight categorical explanatory variables and we want to find the optimal dichotomous key. The
dataframe looks like this:

epilobium <- read.table("c:\\temp\\epilobium.txt",header=T)
attach(epilobium)
epilobium

species stigma stem.hairs glandular.hairs seeds pappilose stolons petals base
1 hirsutum lobed spreading absent none uniform absent >9mm rounded
2 parviflorum lobed spreading absent none uniform absent <10mm rounded
3 montanum lobed spreading present none uniform absent <10mm rounded
4 lanceolatum lobed spreading present none uniform absent <10mm cuneate
5 tetragonum clavate appressed present none uniform absent <10mm rounded
6 obscurum clavate appressed present none uniform stolons <10mm rounded
7 roseum clavate spreading present none uniform absent <10mm cuneate
8 palustre clavate spreading present appendage uniform absent <10mm rounded
9 ciliatum clavate spreading present appendage ridged absent <10mm rounded

Producing the key could not be easier:

model <- tree(species ~ .,epilobium,mindev=1e-6,minsize=2)
plot(model)
text(model,cex=0.7)

stigma:a

stem.hairs:a

stolons:a seeds:a

pappilose:aobscurumtetragonum

ciliatum palustre

roseum

parviflorum hirsutum montanum

base:apetals:a

glandular.hairs:a

lanceolatum

780 THE R BOOK

Here is the tree written as a dichotomous key:

1. Stigma entire and club-shaped 2
1. Stigma four lobed 6

2. Stem hairs all appressed 3
2. At least some stem hairs spreading 4

3. Glandular hairs present on hypanthium E. obscurum
3. No glandular hairs on hypanthium E. tetragonum

4. Seeds with a terminal appendage 5
4. Seeds without terminal appendage E. roseum

5. Surface of seed with longitudinal papillose ridges E. ciliatum
5. Surface of seed uniformly papillose E. palustre

6. At least some spreading hairs non-glandular 7
6. Spreading hairs all glandular 8

7. Petals large (>9 mm) E. hirsutum
7. Petals small (<10 mm) E. parviflorum

8. Leaf base cuneate E. lanceolatum
8. Leaf base rounded E. montanum

The computer has produced a working key to a difficult group of plants. The result stands as testimony
to the power and usefulness of tree models. The same principle underlies good key-writing as is used in tree
models: find the characters that explain most of the variation, and use these to split the cases into roughly
equal-sized groups at each dichotomy.

23.7 Classification trees for replicated data

In this next example from plant taxonomy, the response variable is a four-level categorical variable called
Taxon (it is a label expressed as Roman numerals I to IV). The aim is to use the measurements from
the seven morphological explanatory variables to construct the best key to separate these four taxa (the
‘best’ key is the one with the lowest error rate – the key that misclassifies the smallest possible number
of cases).

taxonomy <- read.table("c:\\temp\\taxonomy.txt",header=T)
attach(taxonomy)
names(taxonomy)

[1] "Taxon" "Petals" "Internode" "Sepal" "Bract" "Petiole"
[7] "Leaf" "Fruit"

Using the tree model for classification could not be simpler:

model1 <- tree(Taxon~., taxonomy)

TREE MODELS 781

We begin by looking at the plot of the tree:

plot(model1)
text(model1)

Sepal < 3.53232

Leaf < 2.00426

III

II I

IV

Petiole < 9.91246

With only a small degree of rounding on the suggested break points, the tree model suggests a simple (and
for these 120 plants, completely error-free) key for distinguishing the four taxa:

1. Sepal length >4.0 Taxon IV
1. Sepal length ≤4.0 2.

2. Leaf width >2.0 Taxon III
2. Leaf width ≤2.0 3.

3. Petiole length <10 Taxon II
3. Petiole length ≥10 Taxon I

The summary option for classification trees produces the following:

summary(model1)

Classification tree:
tree (formula = Taxon ~ ., data = taxonomy)
Variables actually used in tree construction:
[1] "Sepal" "Leaf" Petiole"
Number of terminal nodes: 4
Residual mean deviance: 0 = 0 / 116
Misclassification error rate: 0 = 0 / 120

782 THE R BOOK

Three of the seven variables were chosen for use (Sepal, Leaf and Petiole); four variables were
assessed and rejected (Petals, Internode, Bract and Fruit). The key has four nodes and hence
three dichotomies. As you see, the misclassification error rate was an impressive 0 out of 120. It is note-
worthy that this classification tree does much better than the multivariate classification methods described in
Chapter 25.

For classification trees, the print method produces a great deal of information

print(model1)

node), split, n, deviance, yval, (yprob)
* denotes terminal node

1) root 120 332.70 I (0.2500 0.2500 0.2500 0.25)
2) Sepal<3.53232 90 197.80 I (0.3333 0.3333 0.3333 0.00)

4) Leaf<2.00426 60 83.18 I (0.5000 0.5000 0.0000 0.00)
8) Petiole<9.91246 30 0.00 II (0.0000 1.0000 0.0000 0.00) *
9) Petiole>9.91246 30 0.00 I (1.0000 0.0000 0.0000 0.00) *

5) Leaf>2.00426 30 0.00 III (0.0000 0.0000 1.0000 0.00) *
3) Sepal>3.53232 30 0.00 IV (0.0000 0.0000 0.0000 1.00) *

The node number is followed by the split criterion (e.g. Sepal < 3.53 at node 2). Then comes the number
of cases passed through that node (90 in this case, versus 30 going into node 3, which is the terminal node
for taxon IV). The remaining deviance within this node is 197.8 (compared with zero in node 3 where all the
individuals are alike; they are all taxon IV). Next is the name of the factor level(s) left in the split (I, II and III
in this case, with the convention that the first in the alphabet is listed), then a list of the empirical probabilities
(the fractions of all the cases at that node that are associated with each of the levels of the response variable –
in this case the 90 cases are equally split between taxa I, II and III and there are no individuals of taxon IV at
this node, giving 0.33, 0.33, 0.33 and 0 as the four probabilities).

There is quite a useful plotting function for classification trees called partition.tree, but it is only
sensible to use it when the model has two explanatory variables. Its use is illustrated here by taking the two
most important explanatory variables, Sepal and Leaf:

model2 <- tree(Taxon~Sepal+Leaf,taxonomy);
partition.tree(model2)

This shows how the phase space defined by sepal length and leaf width has been divided up between the four
taxa, but it does not show where the data fall. We could use points(Sepal,Leaf) to overlay the points,
but for illustration we shall use text. We create a vector called label that has a for taxon I, b for II, and
so on:

label <- ifelse(Taxon=="I", "a",
ifelse(Taxon=="II","b",ifelse(Taxon=="III","c","d")))

Then we use these letters as a text overlay on the partition.tree like this:

text(Sepal,Leaf,label,col=1+as.numeric(factor(label)))

TREE MODELS 783

a

3.
0

2.
5

2.
0

Le
af

c
c

c

cc
c

c
c

c
c

cc
cc cc

d
d

d
d

d

d
d

d
d

d
d d d

d dd
d

d ddd

d
d d

dd
d d

d
d

c c

c

c c

c
c

c
c

c

c cc

b
b

b
b

b

b b

b

b

bb

b b b

b
b b

bb

b
b

b

b
b

b

b
b

b
ba

a

a a

a

aa aa
a

a
a aa

a

a

aa
a

a
a aa aa

1.
5

1.
0

2.0 2.5

II

I IV

III

3.0 3.5 4.0 4.5 5.0

Sepal

b

You see that taxa III and IV are beautifully separated on the basis of sepal length and leaf width, but taxa I
and II are all jumbled up (recall that they are separated from one another on the basis of petiole length).

23.8 Testing for the existence of humps

Tree models can be useful in assessing whether or not there is a hump in the relationship between y and
x. This is difficult to do using other kinds of regression, because linear models seldom distinguish between
humps and asymptotes. If a tree model puts a lower section at the right of the graph than in the centre, then
this hints at the presence of a hump in the data. Likewise, if it puts an elevated section at the left-hand end of
the x axis then that is indicative of a U-shaped function.

Here is a function called hump which extracts information from a tree model to draw the stepped function
through a scatterplot:

hump <- function(x,y){
library(tree)
model <- tree(y~x)
xs <- grep("[0-9]",model[[1]][[5]])
xv <- as.numeric(substring(model[[1]][[5]][xs],2,10))
xv <- xv[1:(length(xv)/2)]
xv <- c(min(x),sort(xv),max(x))
yv <- model[[1]][[4]][model[[1]][[1]]=="<leaf>"]
plot(x,y,col="red",pch=16,
xlab=deparse(substitute(x)),ylab=deparse(substitute(y)))
i <- 1
j <- 2
k <- 1
b <- 2*length(yv)+1

784 THE R BOOK

for (a in 1:b){
lines(c(xv[i],xv[j]),c(yv[k],yv[i]))
if (a %% 2 == 0){
j <- j+1
k <- k+1}
else{
i <- i+1
}}}
We shall test it on the ethanol data which are definitely humped (p. 675):

library(lattice)
attach(ethanol)
names(ethanol)

[1] "NOx" "C" "E"

hump(E,NOx)

4
3

2
1

N
O

x

0.6 0.7 0.8 0.9 1.0 1.1 1.2

E

There is a minimum number of points necessary for creating a new step (n = 5), and a minimum difference
in the mean of one group and the next. To see this, you should contrast these two fits:

hump(E[E<1.007],NOx[E<1.007])

hump(E[E<1.006],NOx[E<1.006])

The first data set has evidence of a hump, but the second does not.

24
Time Series Analysis

Time series data are vectors of numbers, typically regularly spaced in time. Yearly counts of animals, daily
prices of shares, monthly means of temperature, and minute-by-minute details of blood pressure are all
examples of time series, but they are measured on different time scales. Sometimes the interest is in the
time series itself (e.g. whether or not it is cyclic, or how well the data fit a particular theoretical model), and
sometimes the time series is incidental to a designed experiment (e.g. repeated measures). We cover each of
these cases in turn.

The three key concepts in time series analysis are

� trend,

� serial dependence, and

� stationarity.

Most time series analyses assume that the data are untrended. If they do show a consistent upward or downward
trend, then they can be detrended before analysis (e.g. by differencing). Serial dependence arises because
the values of adjacent members of a time series may well be correlated. Stationarity is a technical concept,
but it can be thought of simply as meaning that the time series has the same properties wherever you start
looking at it (e.g. white noise is a sequence of mutually independent random variables each with mean zero
and variance σ 2 > 0).

24.1 Nicholson’s blowflies

The Australian ecologist, A.J. Nicholson, reared blowfly larvae on pieces of liver in laboratory cultures that
his technicians kept running continuously for almost 7 years (361 weeks, to be exact). The time series for
numbers of adult flies looks like this:

blowfly <- read.table("c:\\temp\\blowfly.txt",header=T)
attach(blowfly)
names(blowfly)

[1] "flies"

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

786 THE R BOOK

First, make the flies variable into a time series object and plot it:

flies <- ts(flies)
plot(flies)

0

0
50

00

fli
es

10
00

0
15

00
0

50 100 150 200

Time

250 300 350

This classic time series has two clear features:

� For the first 200 weeks the system exhibits beautifully regular cycles.

� After week 200 things change (perhaps a genetic mutation had arisen); the cycles become much less
clear-cut, and the population begins a pronounced upward trend.

There are two important ideas to understand in time series analysis: autocorrelation and partial
autocorrelation. The first describes how this week’s population is related to last week’s population. This
is the autocorrelation at lag 1. The second describes the relationship between this week’s population and
the population at lag t once we have controlled for the correlations between all of the successive weeks
between this week and week t. This should become clear if we draw the scatterplots from which the first four
autocorrelation terms are calculated (lag 1 to lag 4).

There is a snag, however. The vector of flies at lag 1 is shorter (by one) than the original vector because
the first element of the lagged vector is the second element of flies. The coordinates of the first data point
to be drawn on the scatterplot are (flies[1],flies[2]) and the coordinates of the last plot that can be
drawn are (flies[360], flies[361]) because the original vector is 361 element long:

length(flies)

[1] 361

TIME SERIES ANALYSIS 787

Thus, the lengths of the vectors that can be plotted go down by one for every increase in the lag of one. We
can produce the four plots for lags 1 to 4 in a function like this:

par(mfrow=c(2,2))
sapply(1:4, function(x) plot(flies[-c(361: (361-x+1))], flies[-c(1:x)]))

0
50

00
10

00
0

15
00

0

0 5000 10000 15000 0 5000 10000 15000

0 5000
flies[-c(361:(361 –x + 1))] flies[-c(361:(361 –x + 1))]

flies[-c(361:(361 –x + 1))]

fli
es

[-
c(

1:
x)

]
fli

es
[-

c(
1:

x)
]

fli
es

[-
c(

1:
x)

]
fli

es
[-

c(
1:

x)
]

flies[-c(361:(361 –x+1))]

10000 15000 0 5000 10000 15000

0
50

00
10

00
0

15
00

0

0
50

00
10

00
0

15
00

0

0
50

00
10

00
0

15
00

0

The correlation is very strong at lag 1, but notice how the variance increases with population size: small
populations this week are invariably correlated with small populations next week, but large populations this
week may be associated with large or small populations next week. The striking pattern here is the way that
the correlation fades away as the size of the lag increases. Because the population is cyclic, the correlation
goes to zero, then becomes weakly negative and then becomes strongly negative. This occurs at lags that are
half the cycle length. Looking back at the time series, the cycles look to be about 20 weeks in length. So let
us repeat the exercise by producing scatterplots at lags of 7, 8, 9 and 10 weeks:

sapply(7:10, function(x) plot(flies[-c((361-x+1):361)], flies[-c(1:x)]))
par(mfrow=c(1,1))

788 THE R BOOK

0
50

00
10

00
0

15
00

0

0
50

00
10

00
0

15
00

0

0
50

00
10

00
0

15
00

0

0
50

00
10

00
0

15
00

0

0 5000 10000 15000 0 5000 10000 15000

0 5000

flies[-c((361 –x + 1):361)] flies[-c((361 –x + 1):361)]

flies[-c((361 –x + 1):361)] flies[-c((361 –x + 1):361)]

fli
es

[-
c(

1:
x)

]

fli
es

[-
c(

1:
x)

]

fli
es

[-
c(

1:
x)

]

fli
es

[-
c(

1:
x)

]

10000 15000 0 5000 10000 15000

The negative correlation at lag 10 gradually emerges from the fog of no correlation at lag 7.
More formally, the autocorrelation function ρ(k) at lag k is

ρ(k) = γ (k)

γ (0)
,

where γ (k) is the autocovariance function at lag k of a stationary random function {Y(t)} given by

γ (k) = cov{Y (t), Y (t − k)}.

The most important properties of the autocorrelation coefficient are as follows:

� They are symmetric backwards and forwards, so ρ(k) = ρ(−k).

� The limits are −1 ≤ ρ(k) ≤ 1.

� When Y(t) and Y(t – k) are independent, then ρ(k) = 0.

� The converse of this is not true, so that ρ(k) = 0 does not imply that Y(t) and Y(t – k) are independent
(look at the scatterplot for k = 7 in the scatterplots above).

A first-order autoregressive process is written as

Yt = αYt−1 + Zt .

TIME SERIES ANALYSIS 789

This says that this week’s population is α times last week’s population plus a random term Zt. The randomness
is white noise; the values of Z are serially independent, they have a mean of zero, and they have finite
variance σ 2.

In a stationary times series –1 < α < 1. In general, then, the autocorrelation function of {Y(t)} is

ρk = αk, k = 0, 1, 2,

Partial autocorrelation is the relationship between this week’s population and the population at lag t when
we have controlled for the correlations between all of the successive weeks between this week and week t.
That is to say, the partial autocorrelation is the correlation between Y(t) and Y(t + k) after regression of Y(t)
on Y(t + 1), Y(t + 2), Y(t + 3), . . . , Y(t + k – 1). It is obtained by solving the Yule–Walker equation

ρk =
p∑
1

αiρk−i , k > 0,

with the ρ replaced by r (correlation coefficients estimated from the data). Suppose we want the partial
autocorrelation between time 1 and time 3. To calculate this, we need the three ordinary correlation coefficients
r12, r13 and r23. The partial r13,2 is then

r13,2 = r13 − r12r23√(
1 − r2

12

)(
1 − r2

23

) .

For more on partial correlation coefficients, see p. 375.
Let us look at the correlation structure of the blowfly data. The R function for calculating autocorrelations

and partial autocorrelations is acf (the ‘autocorrelation function’). First, we produce the autocorrelation plot
to look for evidence of cyclic behaviour:

acf(flies,main="",col="red")

0

–0
.2

0.
0

0.
2

0.
4

A
C

F

0.
6

0.
8

1.
0

5 10

Lag

15 20 25

790 THE R BOOK

You will not see more convincing evidence of cycles than this. The blowflies exhibit highly significant, regular
cycles with a period of 19 weeks. The blue dashed lines indicate the threshold values for significant correlation.
What kind of time lags are involved in the generation of these cycles? We use partial autocorrelation
(type="p") to find this out:

acf(flies,type="p",main="",col="red")

–0
.2

0.
0

0.
2

0.
4

P
ar

tia
l A

C
F

0.
6

0.
8

5 10

Lag

15 20 25

The significant density-dependent effects are manifest at lags of 2 and 3 weeks, with other, marginally
significant negative effects at lags of 4 and 5 weeks. These lags reflect the duration of the larval and pupal
period (1 and 2 periods, respectively). The cycles are clearly caused by overcompensating density dependence,
resulting from intraspecific competition between the larvae for food (what Nicholson christened ‘scramble
competition’). There is a curious positive feedback at a lag of 12 weeks (12–16 weeks, in fact). Perhaps you
can think of a possible cause for this?

We should investigate the behaviour of the second half of the time series separately. Let us say it is from
week 201 onwards:

second <- flies[201:361]

Now test for a linear trend in mean fly numbers against day number, from 1 to length(second):

summary(lm(second~I(1:length(second))))

Note the use of I in the model formula (for ‘as is’) to tell R that the colon we have used is to generate a
sequence of x values for the regression (and not an interaction term as it would otherwise have assumed).

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2827.531 336.661 8.399 2.37e-14 ***
I(1:length(second)) 21.945 3.605 6.087 8.29e-09 ***

TIME SERIES ANALYSIS 791

Residual standard error: 2126 on 159 degrees of freedom

Multiple R-squared: 0.189, Adjusted R-squared: 0.1839
F-statistic: 37.05 on 1 and 159 DF, p-value: 8.289e-09

This shows that there is a highly significant upward trend of about 22 extra flies on average each week in the
second half of time series. We can detrend the data by subtracting the fitted values from the linear regression
of second on day number:

detrended <- second - predict(lm(second~I(1:length(second))))
par(mfrow=c(2,2))
ts.plot(detrended)

There are still cycles there, but they are weaker and less regular. We repeat the correlation analysis on the
detrended data:

acf(detrended,main="")

These look more like damped oscillations than repeated cycles. What about the partials?

acf(detrended,type="p",main="")
par(mfrow=c(1,1))

0 50 100 150 0 5 10 15 20

5 10 15 20

–4
00

0
40

00
80

00
0

0.
0

0.
0

–0
.2

0.
2

P
ar

tia
l A

C
F

de
tr

en
de

d

A
C

F

0.
4

0.
6

0.
8

–0
.4

0.
4

0.
8

Lag

LagTime

There are still significant negative partial autocorrelations at lags 3 and 5, but now there is a curious extra
negative partial at lag 18. It looks, therefore, as if the main features of the ecology are the same (scramble

792 THE R BOOK

competition for food between the larvae, leading to negative partials at 3 and 5 weeks after 1 and 2 generation
lags), but population size is drifting upwards and the cycles are showing a tendency to dampen out.

24.2 Moving average

The simplest way of seeing pattern in time series data is to plot the moving average. A useful summary
statistic is the three-point moving average:

y′
i = yi−1 + yi + yi+1

3
.

The function ma3 will compute the three-point moving average for any input vector x:

ma3 <- function (x) {
y <- numeric(length(x)-2)

for (i in 2:(length(x)-1)) {
y[i] <- (x[i-1]+x[i]+x[i+1])/3

}
y }

A time series of mean monthly temperatures will illustrate the use of the moving average:

temperature <- read.table("c:\\temp\\temp.txt",header=T)
attach(temperature)
tm <- ma3(temps)
plot(temps)
lines(tm[2:158],col="blue")

25
20

15te
m

ps
10

5

0 50 100 150
Index

TIME SERIES ANALYSIS 793

The seasonal pattern of temperature change over the 13 years of the data is clear. Note that a moving average
can never capture the maxima or minima of a series (because they are averaged away). Note also that the
three-point moving average is undefined for the first and last points in the series.

24.3 Seasonal data

Many time series applications involve data that exhibit seasonal cycles. The commonest applications involve
weather data. Here are daily maximum and minimum temperatures from Silwood Park in south-east England
over a 19-year period:

weather <- read.table("c:\\temp\\SilwoodWeather.txt",header=T)
attach(weather)
names(weather)

[1] "upper" "lower" "rain" "month" "yr"

plot(upper,type="l")

The seasonal pattern of temperature change is clear, but there is no clear trend (e.g. warming, see p. 791).
Note that the x axis is labelled by the day number of the time series (‘Index’).

We start by modelling the seasonal component. The simplest models for cycles are scaled so that a complete
annual cycle is of length 1.0 (rather than 365 days). Our series consists of 6940 days over a 19-year span, so
we write:

length(upper)

[1] 6940

index <- 1:6940
6940/19

[1] 365.2632

time <- index/365.2632

The equation for the seasonal cycle is:

y = α + β sin(2π t) + γ cos(2π t) + ε.

This is a linear model, so we can estimate its three parameters very simply:

model <- lm(upper~sin(time*2*pi)+cos(time*2*pi))

To investigate the fit of this model we need to plot the scattergraph using very small symbols (otherwise the
fitted line will be completely obscured). The smallest useful plotting symbol is the dot “.”

plot(time, upper, pch=".")
lines(time, predict(model),col="red",lwd=2)

794 THE R BOOK

30
20

up
pe

r
10

0

0 5 10 15
time

The three parameters of the model are all highly significant:

summary(model)

Call:
lm(formula = upper ~ sin(time * 2 * pi) + cos(time * 2 * pi))

Residuals:
Min 1Q Median 3Q Max

-14.1336 -2.4220 -0.1233 2.2162 14.6456

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.95647 0.04088 365.86 <2e-16 ***
sin(time * 2 * pi) -2.53883 0.05781 -43.91 <2e-16 ***
cos(time * 2 * pi) -7.24017 0.05781 -125.23 <2e-16 ***

Residual standard error: 3.406 on 6937 degrees of freedom
Multiple R-squared: 0.7174, Adjusted R-squared: 0.7173
F-statistic: 8806 on 2 and 6937 DF, p-value: < 2.2e-16

We can investigate the residuals to look for patterns (e.g. trends in the mean, or autocorrelation structure).
Remember that the residuals are stored as part of the model object:

plot(model$resid,pch=".")

TIME SERIES ANALYSIS 795

10
0

m
od

el
$r

es
id

–1
5

–5
5

–1
0

10000 2000 3000

Index

4000 5000 6000 7000

15

There looks to be some periodicity in the residuals, but no obvious trends. To look for serial correlation in
the residuals, we use the acf function like this:

windows(7,4)
par(mfrow=c(1,2))
acf(model$resid,main="")
acf(model$resid,type="p",main="")

0.
0

0.
2

0.
4A

C
F

P
ar

tia
l A

C
F

0.
6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 10 20

Lag Lag

30 0 10 20 30

There is very strong serial correlation in the residuals, and this drops off roughly exponentially with increasing
lag (left-hand graph). The partial autocorrelation at lag 1 is very large (0.7317), but the correlations at higher
lags are much smaller. This suggests that an AR(1) model (autoregressive model with order 1) might be
appropriate. This is the statistical justification behind the old joke about the weather forecaster who was asked
what tomorrow’s weather would be. ‘Like today’s’, he said.

796 THE R BOOK

24.3.1 Pattern in the monthly means

The monthly average upper temperatures show a beautiful seasonal pattern when analysed by acf:

temp <- ts(as.vector(tapply(upper,list(month,yr),mean)))
windows(7,7)
acf(temp,main="")

0.
0A
C

F

1.
0

0.
5

–0
.5

0 105 15 20

Lag

There is a perfect cycle with period 12 (as expected). What about patterns across years?

ytemp <- ts(as.vector(tapply(upper,yr,mean)))
acf(ytemp,main="")

0.
0

A
C

F
1.

0
0.

5
–0

.5

0 10 122 4 6 8

Lag

TIME SERIES ANALYSIS 797

Nothing! The pattern you may (or may not) see depends upon the scale at which you look for it. As for spatial
patterns (Chapter 26), so it is with temporal patterns. There is strong pattern between days within months
(tomorrow will be like today). There is very strong pattern from month to month within years (January is cold,
July is warm). But there is no pattern at all from year to year (there may be progressive global warming, but
it is not apparent within this recent time series (see below), and there is absolutely no evidence for untrended
serial correlation).

24.4 Built-in time series functions

The analysis is simpler, and the graphics are better labelled, if we convert the temperature data into a regular
time series object using ts. We need to specify the first date (January 1993) as start=c(1993,1), and
the number of data points per year as frequency=365.

high <- ts(upper,start=c(1993,1),frequency=365)

Now use plot to see a plot of the time series, correctly labelled by years:

plot(high)

1995 2000

Time

2005 2010

0
10

20
hi

gh
30

24.5 Decompositions

It is useful to be able to turn a time series into components. The function stl (with a lower-case letter L, not
numeral one) performs seasonal decomposition of a time series into seasonal, trend and irregular components
using loess. First, we make a time series object, specifying the start date and the frequency (as in Section
24.4), then use stl to decompose the series:

up <- stl(high,"periodic")

798 THE R BOOK

The plot function produces the data series, the seasonal component, the trend and the residuals in a single
frame:

plot(up)

10da
ta

tr
en

d
re

m
ai

nd
er

se
as

on
al

0
20

30
14

13
15

16

–5
0

5
10

–1
0

–5
0

5
10

1995 2000
time

2005 2010

The remainder component is the residuals from the seasonal plus trend fit. The bars at the right-hand side are
of equal heights (in user coordinates).

24.6 Testing for a trend in the time series

It is important to know whether these data provide any evidence for global warming. The trend part of the
figure indicates a fluctuating increase, but is it significant? The mean temperature in the last 9 years was
0.71◦C higher than in the first 10 years:

ys <- factor(1+(yr>2002))
tapply(upper,ys,mean)

1 2
14.62056 15.32978

We cannot test for a trend with linear regression because of the massive temporal pseudoreplication. Suppose
we tried this:

model1 <- lm(upper~index+sin(time*2*pi)+cos(time*2*pi))
summary(model1)

TIME SERIES ANALYSIS 799

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.433e+01 8.136e-02 176.113 <2e-16 ***
index 1.807e-04 2.031e-05 8.896 <2e-16 ***
sin(time * 2 * pi) -2.518e+00 5.754e-02 -43.758 <2e-16 ***
cos(time * 2 * pi) -7.240e+00 5.749e-02 -125.939 <2e-16 ***

Residual standard error: 3.387 on 6936 degrees of freedom
Multiple R-squared: 0.7206, Adjusted R-squared: 0.7205
F-statistic: 5963 on 3 and 6936 DF, p-value: < 2.2e-16

It would suggest (wrongly, as we shall see) that the warming was highly significant (index p value less than
2 × 10–16 for a slope of 0.000 180 7 degrees of warming per day, leading to a predicted increase in mean
temperature of 1.254◦C over the 6940 days of the time series).

Since there is so much temporal pseudoreplication we should use a mixed model (lmer, p. 695), and
because we intend to compare two models with different fixed effects we use the method of maximum
likelihood (REML=FALSE). The explanatory variable for any trend is index, and we fit the model with and
without this variable, allowing for different intercepts for the different years as a random effect:

model2 <-
lmer(upper~index+sin(time*2*pi)+cos(time*2*pi)+(1 | factor(yr)),REML=FALSE)
model3 <-
lmer(upper~sin(time*2*pi)+cos(time*2*pi)+(1 | factor(yr)),REML=FALSE)
anova(model2,model3)

Data:
Models:
model3: upper ~ sin(time * 2 * pi) + cos(time * 2 * pi) + (1 | factor(yr))
model2: upper ~ index + sin(time * 2 * pi) + cos(time * 2 * pi) + (1 |
model2: factor(yr))

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
model3 5 36452 36486 -18221
model2 6 36458 36499 -18223 0 1 1

Clearly, the trend is non-significant (chi-squared = 0, p = 1). If you are prepared to ignore all the variation
(from day to day and from month to month), then you can get rid of the pseudoreplication by averaging and
test for trend in the yearly mean values: these show a significant trend if the first year (1993) is included, but
not if it is omitted:

means <- as.vector(tapply(upper,yr,mean))
model <- lm(means~I(1:19))
summary(model)

Coefficients:
Estimate Std. Error t value Pr(> | t |)

(Intercept) 14.27105 0.32220 44.293 <2e-16 ***
I(1:19) 0.06858 0.02826 2.427 0.0266 *

model <- lm(means[-1]~I(1:18))
summary(model)

800 THE R BOOK

Coefficients:
Estimate Std. Error t value Pr(> | t |)

(Intercept) 14.59826 0.30901 47.243 <2e-16 ***
I(1:18) 0.04761 0.02855 1.668 0.115

Obviously, you need to be circumspect when interpreting trends in time series.

24.7 Spectral analysis

There is an alternative approach to time series analysis, which is based on the analysis of frequencies rather
than fluctuations of numbers. Frequency is the reciprocal of cycle period. Ten-year cycles would have a
frequency 0.1 per year. Here are the famous Canadian lynx data:

numbers <- read.table("c:\\temp\\lynx.txt",header=T)
attach(numbers)
names(numbers)

[1] "Lynx"

plot.ts(Lynx)

200

0

40 60
Time

80 100

10
00

20
00

30
00

Ly
nx 40

00
50

00
60

00
70

00

The fundamental tool of spectral analysis is the periodogram. This is based on the squared correlation
between the time series and sine/cosine waves of frequency ω, and conveys exactly the same information as
the autocovariance function. It may (or may not) make the information easier to interpret. Using the function
is straightforward; we employ the spectrum function like this:

spectrum(Lynx,main="",col="red")

TIME SERIES ANALYSIS 801

0.0 0.1 0.2 0.3
frequency

bandwidth = 0.00241

0.4 0.5

5e
+

03
5e

+
04

5e
+

05

sp
ec

tr
um

5e
+

06
5e

+
07

The plot is on a log scale, in units of decibels, and the subtitle on the x axis shows the bandwidth, while the
95% confidence interval in decibels is shown by the vertical blue bar in the top right-hand corner. The figure
is interpreted as showing strong cycles with a frequency of about 0.1, where the maximum value of spectrum
occurs. That is to say, it indicates cycles with a period of 1/0.1 = 10 years. There is a hint of longer period
cycles (the local peak at frequency 0.033 would produce cycles of length 1/0.033 = 30 years) but no real
suggestion of any shorter-term cycles.

24.8 Multiple time series

When we have two or more time series measured over the same period, the question naturally arises as to
whether or not the ups and downs of the different series are correlated. It may be that we suspect that change
in one of the variables causes changes in the other (e.g. changes in the number of predators may cause changes
in the number of prey, because more predators means more prey eaten). We need to be careful, of course,
because it will not always be obvious which way round the causal relationship might work (e.g. predator
numbers may go up because prey numbers are higher; ecologists call this a numerical response). Suppose we
have the following sets of counts:

twoseries <- read.table("c:\\temp\\twoseries.txt",header=T)
attach(twoseries)
names(twoseries)

[1] "x" "y"

We start by inspecting the two time series one above the other:

plot.ts(cbind(x,y),main="")

802 THE R BOOK

5 10

Time

15 20

50
0

0
10

0
20

0
30

0
40

0
10

0
20

0
30

0

x
y

40
0

There is some evidence of periodicity (at least in x) and it looks as if y lags behind x by roughly 2 periods
(sometimes 1). Now let us carry out straightforward analyses on each time series separately and the cross-
correlation between the two series:

par(mfrow=c(2,2))
acf(cbind(x,y),type="p",col="red")

0.
0

0.
2

–0
.4

0.
4

0.
6

0.
0

0.
2

–0
.4

0.
4

0.
6

0.
0

P
ar

tia
l A

C
F

P
ar

tia
l A

C
F

0.
2

–0
.4

0.
4

0.
6

0.
0

0.
2

–0
.4

0.
4

0.
6

2 4 6 8 10 2 4 6 8 10

–2–4–6–8–10 2 4 6 8 10

x

y

x & y

y & x

Lag Lag

Lag Lag

TIME SERIES ANALYSIS 803

As we suspected, the evidence for periodicity is stronger in x than in y: the partial autocorrelation is significant
and negative at lag 2 for x, but not for y. The interesting point is the cross-correlation between x and y which
is significant at lags 1 and 2 (top right). Positive changes in x are associated with negative changes in y and
vice versa.

24.9 Simulated time series

To see how the correlation structure of an AR(1) depends on the value of α, we can simulate the process over,
say, 250 time periods using different values of α. We generate the white noise Zt using the random number
generator rnorm(n,0,s) which gives n random numbers with a mean of 0 and a standard deviation of s.
To simulate the time series we evaluate

Yt = αYt−1 + Zt ,

multiplying last year’s population by α then adding the relevant random number from Zt.
We begin with the special case of α = 0 so that Yt = Zt and the process is pure white noise:

Y <- rnorm(250,0,2)
windows(7,4)
par(mfrow=c(1,2))
plot.ts(Y)
acf(Y,main="")

100
Time

500

0
2

Y

4
6

–6
–4

–2
8

150 200 250 10
Lag

50 15 20

0.
0

0.
4

A
C

F

0.
8

The time series is bound to be stationary because each value of Z is independent of the value before it. The
correlation at lag 0 is 1 (of course), but there is absolutely no hint of any correlations at higher lags.

To generate the time series for non-zero values of α we need to use recursion: this year’s population is last
year’s population times α plus the white noise. We begin with a negative value of α = –0.5. First we generate
all the noise values (by definition, these do not depend on population size):

Z <- rnorm(250,0,2)

Now the initial population at time 0 is set to 0 (remember that the population is stationary, so we can think of
the Y values as departures from the long-term mean population size). This means that Y1 = Z1. Thus, Y2 will
be whatever Y1 was, times –0.5, plus Z2. And so on.

Y <- numeric(250)
Y[1] <- Z[1]

804 THE R BOOK

for (i in 2:250) Y[i] <- -0.5*Y[i-1]+Z[i]
plot.ts(Y)
acf(Y,main="")

100
Time

500

0
2

Y
4

6
–6

–4
–2

150 200 250 10
Lag

50 15 20

0.
0

0.
5

1.
0

–0
.5

A
C

F
The time series shows rapid return to equilibrium following random departures from it. There is a highly
significant negative autocorrelation at lag 1, significant positive autocorrelation at lag 2 and so on, with the
size of the correlation gradually damping away.

Let us simulate a time series with a positive value of, say, α = 0.5:

Z <- rnorm(250,0,2)
Y[1] <- Z[1]
for (i in 2:250) Y[i] <- 0.5*Y[i-1]+Z[i]
plot.ts(Y)
acf(Y, main="")

100
Time

500

0
2

Y
4

6
–6

–4
–2

150 200 250 10
Lag

50 15 20

0.
0

0.
4

0.
8

A
C

F

Now the time series plot looks very different, with protracted periods spent drifting away from the long-term
average. The autocorrelation plot shows significant positive correlations for the first three lags.

Finally, we look at the special case of α = 1. This means that the time series is a classic random walk,
given by

Yt = Yt−1 + Zt .

TIME SERIES ANALYSIS 805

Z <- rnorm(250,0,2)
Y[1] <- Z[1]
for (i in 2:250) Y[i] <- Y[i-1]+Z[i]
plot.ts(Y)
acf(Y, main="")

100
Time

500

Y
5

0
10

20
–1

5
–5

150 200 250 10
Lag

50 15 20
0.

0
0.

4
0.

8
A

C
F

The time series wanders about and strays far away from the long-term average. The acf plot shows positive
correlations dying away very slowly, and still highly significant at lags of more than 20. Of course, if you
do another realization of the process, the time series will look very different, but the autocorrelations will
be similar.

24.10 Time series models

Time series models come in three kinds (Box and Jenkins, 1976):

� moving average (MA) models where

Xt =
q∑

j=0

β jεt− j ;

� autoregressive (AR) models where

Xt =
p∑

i=1

αi Xt−i + εt ;

� autoregressive moving average (ARMA) models where

Xt =
p∑

i=1

αi Xt−i +
q∑

j=0

β jεt− j .

806 THE R BOOK

A moving average of order q averages the random variation over the last q time periods. An autoregressive
model of order p computes Xt as a function of the last p values of X, so, for a second-order process, we
would use

Xt = α1 Xt−1 + α2 Xt−2 + εt .

Typically, we would use the partial autocorrelation plot (above) to determine the order. So, for the lynx data
(p. 800) we would use order 2 or 4, depending on taste. Other things being equal, parsimony suggests the use
of order 2. The fundamental difference is that a set of random components (εt− j) influences the current value
of a MA process, whereas only the current random effect (εt) affects an AR process. Both kinds of effects
are at work in an ARMA processes. Ecological models of population dynamics are typically AR models.
For instance,

Nt = λNt−1

(the discrete-time version of exponential growth (λ > 1) or decay (λ < 1)) looks just like an first order
AR process with the random effects missing. This is somewhat misleading, however, since time series are
supposed to be stationary, which would imply a long-term average value of λ = 1. But, in the absence of
density dependence (as here), this is impossible. The α of the AR model is not the λ of the population model.

Models are fitted using the arima function, and their performances are compared using the AIC
(see p. 415). The most important component of the model is order. This is a vector of length 3 specifying the
order of the autoregressive operators, the number of differences, and the order of moving average operators.
Thus order=c(1,3,2) is based on a first-order autoregressive process, three differences, and a second-
order moving average. The Canadian lynx data are used as an example of arima in time series modelling.

Records of the number of skins of predators (lynx) and prey (snowshoe hares) returned by trappers were
collected over many years by the Hudson’s Bay Company. The lynx numbers are shown on p. 800 and exhibit
a clear 10-year cycle. We begin by plotting the autocorrelation and partial autocorrelation functions:

windows(7,4)
par(mfrow=c(1,2))
acf(Lynx,main="")
acf(Lynx,type="p",main="")

1.
0

0.
5

–0
.5

–0
.6

–0
.2P

ar
tia

l A
C

F
0.

2
0.

6

0.
0

A
C

F

10
LagLag

50 15 20105 15 20

The population is very clearly cyclic, with a period of 10 years. The dynamics appear to be driven by strong,
negative density dependence (a partial autocorrelation of –0.588) at lag 2. There are other significant partials
at lag 1 and lag 8 (positive) and lag 4 (negative). Of course you cannot infer the mechanism by observing the

TIME SERIES ANALYSIS 807

dynamics, but the lags associated with significant negative and positive feedbacks are extremely interesting
and highly suggestive. The main prey species of the lynx is the snowshoe hare and the negative feedback at
lag 2 may reflect the timescale of this predator–prey interaction. The hares are known to cause medium-term
induced reductions in the quality of their food plants as a result of heavy browsing pressure when the hares
are at high density, and this could map through to lynx populations with lag 4.

The order vector specifies the non-seasonal part of the ARIMA model: the three components (p, d, q)
are the AR order, the degree of differencing, and the MA order. We start by investigating the effects of AR
order with no differencing and no moving average terms, comparing models on the basis of the AIC:

model10 <- arima(Lynx,order=c(1,0,0))
model20 <- arima(Lynx,order=c(2,0,0))
model30 <- arima(Lynx,order=c(3,0,0))
model40 <- arima(Lynx,order=c(4,0,0))
model50 <- arima(Lynx,order=c(5,0,0))
model60 <- arima(Lynx,order=c(6,0,0))
AIC(model10,model20,model30,model40,model50,model60)

df AIC
model10 3 1926.991
model20 4 1878.032
model30 5 1879.957
model40 6 1874.222
model50 7 1875.276
model60 8 1876.858

On the basis of AR alone, it appears that order 4 is best (AIC = 1874.222). What about MA?

model01 <- arima(Lynx,order=c(0,0,1))
model02 <- arima(Lynx,order=c(0,0,2))
model03 <- arima(Lynx,order=c(0,0,3))
model04 <- arima(Lynx,order=c(0,0,4))
model05 <- arima(Lynx,order=c(0,0,5))
model06 <- arima(Lynx,order=c(0,0,6))
AIC(model01,model02,model03,model04,model05,model06)

df AIC
model01 3 1917.947
model02 4 1890.061
model03 5 1887.770
model04 6 1888.279
model05 7 1885.698
model06 8 1885.230

The AIC values are generally higher than given by the AR models. Perhaps there is a combination of AR and
MA terms that is better than either on their own?

model40 <- arima(Lynx,order=c(4,0,0))
model41 <- arima(Lynx,order=c(4,0,1))
model42 <- arima(Lynx,order=c(4,0,2))
model43 <- arima(Lynx,order=c(4,0,3))
AIC(model40,model41,model42,model43)

808 THE R BOOK

df AIC
model40 6 1874.222
model41 7 1875.351
model42 8 1862.435
model43 9 1880.432

Evidently there is no need for a moving average term (model40 is best). What about the degree of differ-
encing?

model400 <- arima(Lynx,order=c(4,0,0))
model401 <- arima(Lynx,order=c(4,1,0))
model402 <- arima(Lynx,order=c(4,2,0))
model403 <- arima(Lynx,order=c(4,3,0))
AIC(model400,model401,model402,model403)

df AIC
model400 6 1874.222
model401 5 1890.961
model402 5 1917.882
model403 5 1946.143

The model with no differencing performs best. The lowest AIC is 1874.222, which suggests that a model
with an AR lag of 4, no differencing and no moving average terms is best. This implies that a rather complex
ecological model is required which takes account of both the significant partial correlations at lags of 2 and
4 years, and not just the 2-year lag (i.e. plant–herbivore effects may be necessary to explain the dynamics, in
addition to predator–prey effects).

25
Multivariate Statistics

This class of statistical methods is fundamentally different from the others in this book because there is no
response variable. Instead of trying to understand variation in a response variable in terms of explanatory
variables, in multivariate statistics we look for structure in the data. The problem is that structure is rather
easy to find, and all too often it is a feature of that particular data set alone. The real challenge is to find
general structure that will apply to other data sets as well. Unfortunately, there is no guaranteed means of
detecting pattern, and a great deal of ingenuity has been shown by statisticians in devising means of pattern
recognition in multivariate data sets. The main division is between methods that assume a given structure
and seek to divide the cases into groups, and methods that seek to discover structure from inspection of
the dataframe. The really important point is that you need to know exactly what the question is that you are
trying to answer. Do not mistake the opaque for the profound.

The multivariate techniques implemented in R include:

� principal components analysis (prcomp);

� factor analysis (factanal);

� cluster analysis (hclust, kmeans);

� discriminant analysis (lda, qda);

� neural networks (nnet).

These techniques are not recommended unless you know exactly what you are doing, and exactly why you
are doing it. Beginners are sometimes attracted to multivariate techniques because of the complexity of the
outputs they produce.

25.1 Principal components analysis

The idea of principal components analysis (PCA) is to find a small number of linear combinations of the
variables so as to capture most of the variation in the dataframe as a whole. With a large number of variables it
may be easier to consider a small number of combinations of the original data rather than the entire dataframe.

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

810 THE R BOOK

Suppose, for example, that you had three variables measured on each subject, and you wanted to distil the
essence of each individual’s performance into a single number. An obvious solution is the arithmetic mean
of the three numbers 1

3 v1 + 1
3 v2 + 1

3 v3, where v1, v2 and v3 are the three variables (e.g. pupils’ exam scores
in maths, physics and chemistry). The vector of coefficients l = (1/3, 1/3, 1/3) is called a linear combination.
Linear combinations where

∑
l2 = 1 are called standardized linear combinations. Principal components

analysis finds a set of orthogonal standardized linear combinations which together explain all of the variation
in the original data. There are as many principal components as there are variables, but typically it is only the
first few of them that explain important amounts of the total variation.

Calculating principal components is easy. Interpreting what the components mean in scientific terms is
hard, and potentially equivocal. You need to be more than usually circumspect when evaluating multivariate
statistical analyses.

The following dataframe contains mean dry weights (in grams) for 54 plant species on 89 plots, averaged
over 10 years; see Crawley et al. (2005) for species names and more background. What are the principal
components and what environmental factors are associated with them?

pgdata <- read.table("c:\\temp\\pgfull.txt",header=T)
names(pgdata)

[1] "AC" "AE" "AM" "AO" "AP" "AR" "AS"
[8] "AU" "BH" "BM" "CC" "CF" "CM" "CN"
[15] "CX" "CY" "DC" "DG" "ER" "FM" "FP"
[22] "FR" "GV" "HI" "HL" "HP" "HS" "HR"
[29] "KA" "LA" "LC" "LH" "LM" "LO" "LP"
[36] "OR" "PL" "PP" "PS" "PT" "QR" "RA"
[43] "RB" "RC" "SG" "SM" "SO" "TF" "TG"
[50] "TO" "TP" "TR" "VC" "VK" "plot" "lime"
[57] "species "hay" "pH"

We need to extract the 54 variables that refer to the species’ abundances and leave behind the variables
containing the experimental treatments (plot and lime) and the covariates (species richness, hay biomass
and soil pH). This creates a smaller dataframe containing all 89 plots (i.e. all the rows) but only columns
1 to 54:

pgd <- pgdata[,1:54]

There are two functions for carrying out PCA in R. The generally preferred method for numerical accuracy
is prcomp (where the calculation is done by a singular value decomposition of the centred and scaled data
matrix, not by using eigen on the covariance matrix, as in the alternative function princomp).

The aim is to find linear combinations of a set of variables that maximize the variation contained within
them, thereby displaying most of the original variation in fewer dimensions. These principal components
have a value for every one of the 89 rows of the dataframe. By contrast, in factor analysis (see p. 813), each
factor contains a contribution (which may in some cases be zero) from each variable, so the length of each
factor is the total number of variables (54 in the current example). This has practical implications, because
you can plot the principal components against other explanatory variables from the dataframe, but you cannot
do this for factors because the factors are of length 54 while the covariates are of length 89. You need to think
about this until the penny drops.

MULTIVARIATE STATISTICS 811

We shall use the option scale=TRUE because the variances are significantly different for the 54 plant
species:

model <- prcomp(pgd,scale=TRUE)
summary(model)

Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Standard deviation 3.005 2.336 1.9317 1.786 1.7330 1.5119 1.5088 1.3759
Proportion of Variance 0.167 0.101 0.0691 0.059 0.0556 0.0423 0.0422 0.0351
Cumulative Proportion 0.167 0.268 0.3373 0.396 0.4520 0.4943 0.5365 0.5716
...
...

PC53 PC54
Standard deviation 0.11255 0.01721
Proportion of Variance 0.00023 0.00001
Cumulative Proportion 0.99999 1.00000

You can see that the first principal component (PC1) explains 16.7% of the total variation, and only the next
four (PC2–PC5) explain more than 5% of the total variation. Here is the plot of this model, showing the
relative importance of PC1.

plot(model,main="",col="green")

8
6

4
2

0

V
ar

ia
nc

es

This is called a scree plot in PCA because it is supposed to look like a cliff face on a mountainside (on
the left), with a scree slope below it (the tail on the right). The standard practice is to assume that you need
sufficient principal components to account for 90 % of the total variation (but that would take 24 components
in the present case). Principal component loadings show how the original variables (the 54 different species
in our example) influence the principal components.

In a biplot, the original variables are shown by arrows (54 of them in this case):

biplot(model)

812 THE R BOOK

0.
2

0.
1

0.
0

–0
.1

–0
.2

–0
.3

P
C

2

–0.3 –0.2 –0.1 0.0 0.1 0.2
PC1

–5

5
0

–5

50

The numbers represent the rows in the original dataframe, and the directions of the arrows show the relative
loadings of the species on the first and second principal components. Thus, the species AP, AE and HS have
strong positive loadings on PC1 and LC, PS BM and LO have strong negative loadings. PC2 has strong
positive loadings from species AO and AC and negative loadings from TF, PL and RA.

If there are explanatory variables available, you can plot these against the principal components to look
for patterns. In this example, it looks as if the first principal component is associated with increasing biomass
(and hence increasing competition for light) and as if the second principal component is associated with
declining soil pH (increasing acidity):

yv <- predict(model)[,1]
yv2 <- predict(model)[,2]
windows(7,4)
par(mfrow=c(1,2))
plot(pgdata$hay,yv,pch=16,xlab="biomass",ylab="PC 1",col="red")
plot(pgdata$pH,yv2,pch=16,xlab="soil pH",ylab="PC 2",col="blue")

6 4
2

0
–2

–4
–6

4
2

0
–4

–8
P

C
1

P
C

2

2 3 4 5 6 7 8 9 3.5 4.5 5.5 6.5
soil pHbiomass

MULTIVARIATE STATISTICS 813

There are, indeed, very strong correlations between biomass and PC1 and between soil pH and PC2. Now the
real work would start, because we are interested in the mechanisms that underlie these patterns.

25.2 Factor analysis

With principal components analysis we were fundamentally interested in the variables and their contributions.
Factor analysis aims to provide usable numerical values for quantities such as intelligence or social status
that are not directly measurable. The idea is to use correlations between observable variables in terms of
underlying ‘factors’. Note that ‘factors’ in factor analysis are not the same as the categorical explanatory
variables we have been calling factors throughout the rest of this book.

Compared with PCA, the variables themselves are of relatively little interest in factor analysis; it is gaining
an understanding of the hypothesized underlying factors that is the main aim. The idea is that the correlations
amongst the variables are explained by the common factors. The function factanal performs maximum
likelihood factor analysis on a covariance matrix or data matrix. The pgd dataframe is introduced on p. 810.
You need to specify the number of factors you want to estimate – we begin with 8:

factanal(pgd,8)

Call:
factanal(x = pgd, factors = 8)
Uniquenesses:

AC AE AM AO AP AR AS AU BH BM
0.638 0.086 0.641 0.796 0.197 0.938 0.374 0.005 0.852 0.266

CC CF CM CN CX CY DC DG ER FM
0.056 0.574 0.786 0.579 0.549 0.733 0.837 0.408 0.072 0.956

FP FR GV HI HL HP HS HR KA LA
0.371 0.815 0.971 0.827 0.921 0.218 0.332 0.915 0.319 0.305

LC LH LM LO LP OR PL PP PS PT
0.349 0.333 0.927 0.121 0.403 0.005 0.286 0.606 0.336 0.401

QR RA RB RC SG SM SO TF TG TO
0.913 0.491 0.005 0.754 0.341 0.212 0.825 0.428 0.476 0.469

TP TR VC VK
0.309 0.611 0.651 0.170
Loadings:

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8
AC -0.512 -0.268 0.121
AE 0.925 -0.107 -0.146 -0.118
AM -0.206 0.413 0.213 0.163 0.115 0.153 0.186
AO -0.312 -0.196 -0.151 -0.105 -0.148 -0.102
AP 0.827 -0.173 -0.195 -0.167 -0.123
AR 0.150 0.111 0.127
AS 0.778
AU 0.996
BH 0.380
BM -0.116 0.292 0.695 0.380
CC -0.152 0.159 0.943
CF 0.539 0.342
CM 0.434 -0.110
CN -0.276 0.143 0.541 0.147
CX 0.628 0.169 0.146
CY -0.211 -0.162 0.340 0.270

814 THE R BOOK

DC -0.125 0.372
DG 0.738 -0.127 0.145
ER 0.960
FM -0.108 0.133
FP 0.245 0.226 0.478 0.493 -0.176
FR -0.386 -0.144
GV -0.134
HI -0.202 -0.129 -0.163 0.182 0.216
HL -0.157 -0.127 -0.139
HP -0.155 0.832 0.240
HS 0.746 -0.102 0.257 -0.152
HR -0.155 -0.107 -0.122 0.101 0.150
KA -0.167 0.774 -0.169 0.139
LA 0.829
LC -0.306 0.378 -0.125 0.529 0.328
LH -0.256 0.556 -0.132 0.421 0.223 0.195
LM 0.112 0.221
LO -0.129 0.432 0.781 0.251
LP 0.115 0.745
OR 0.996
PL 0.369 0.675 0.337
PP 0.527 0.226 -0.167 -0.175
PS -0.212 0.301 -0.130 0.681 0.150 0.158
PT 0.741 -0.100 0.150 -0.105
QR -0.194 -0.135
RA 0.195 0.227 0.578 0.205 -0.166 -0.107
RB -0.122 0.158 0.272 0.934
RC 0.361 -0.198 -0.176 -0.152
SG 0.806
SM 0.388 0.787
SO -0.100 0.386
TF 0.702 0.260
TG 0.141 0.583 -0.110 0.367 0.107
TO 0.418 0.567 -0.158
TP 0.818
TR 0.141 0.306 0.238 0.458
VC 0.403 0.246 0.309 -0.169
VK 0.909

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8
SS loadings 5.840 3.991 3.577 3.540 3.028 2.644 2.427 2.198
Proportion Var 0.108 0.074 0.066 0.066 0.056 0.049 0.045 0.041
Cumulative Var 0.108 0.182 0.248 0.314 0.370 0.419 0.464 0.505
Test of the hypothesis that 8 factors are sufficient.
The chi-squared statistic is 1675.57 on 1027 degrees of freedom.
The p-value is 5.92e-34

On factor 1 you see strong positive correlations with AE, AP and AS and negative correlations with AC,
AO and FR: this has a natural interpretation as a gradient from tall neutral grassland (positive correlations) to
short, acidic grasslands (negative correlations). On factor 2, low-growing species associated with moderate
to high soil pH (AM, CF, HP, KA) have large positive values and low-growing acid-loving species (AC and
AO) have negative values. Factor 3 picks out the key nitrogen-fixing (legume) species LP and TP with high
positive values. And so on.

MULTIVARIATE STATISTICS 815

Note that the loadings are of length 54 (the number of variables) not 89 (the number of rows in the
dataframe representing the different plots in the experiment), so we cannot plot the loadings against the
covariates as we did with PCA (p. 812). However, we can plot the factor loadings against one another:

model <- factanal(pgd,8)
windows(7,7)
par(mfrow=c(2,2))
plot(loadings(model)[,1],loadings(model)[,2],pch=16,xlab="Factor 1",

ylab="Factor 2",col="blue")
plot(loadings(model)[,1],loadings(model)[,3],pch=16,xlab="Factor 1",

ylab="Factor 3",col="red")
plot(loadings(model)[,1],loadings(model)[,4],pch=16,xlab="Factor 1",

ylab="Factor 4",col="green")
plot(loadings(model)[,1],loadings(model)[,5],pch=16,xlab="Factor 1",

ylab="Factor 5",col="brown")

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

Fa
ct

or
 2

–0.4 0.0 0.2 0.4 0.6 0.8

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

Fa
ct

or
 3

Factor 1

Factor 1 Factor 1

Factor 1

–0.4 0.0 0.2 0.4 0.6 0.8

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

Fa
ct

or
5

–0.4 0.0 0.2 0.4 0.6 0.8

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

Fa
ct

or
 4

–0.4 0.0 0.2 0.4 0.6 0.8

Whatfactanal does would conventionally be described as exploratory, not confirmatory, factor analysis.
For the latter, try the sem package:

install.packages("sem")
library(sem)
?sem

816 THE R BOOK

25.3 Cluster analysis

Cluster analysis is a set of techniques that look for groups (clusters) in the data. Objects belonging to
the same group resemble each other. Objects belonging to different groups are dissimilar. Sounds simple,
doesn’t it? The problem is that there is usually a huge amount of redundancy in the explanatory vari-
ables. It is not at all obvious which measurements (or combinations of measurements) will turn out to
be the ones that are best for allocating individuals to groups. There are three ways of carrying out such
allocation:

� partitioning into a number of clusters specified by the user, with functions such as kmeans;

� hierarchical, starting with each individual as a separate entity and ending up with a single aggregation,
using functions such as hclust;

� divisive, starting with a single aggregate of all the individuals and splitting up clusters until all the
individuals are in different groups.

25.3.1 Partitioning

The kmeans function operates on a dataframe in which the columns are variables and the rows are the
individuals. Group membership is determined by calculating the centroid for each group. This is the mul-
tidimensional equivalent of the mean. Each individual is assigned to the group with the nearest centroid.
The kmeans function fits a user-specified number of cluster centres, such that the within-cluster sum of
squares from these centres is minimized, based on Euclidian distance. Here are data from six groups with
two continuous explanatory variables (x and y):

kmd <- read.table("c:\\temp\\kmeansdata.txt",header=T)
attach(kmd)
names(kmd)

[1] "x" "y" "group"

par(mfrow=c(2,2))
plot(x,y,pch=16)

The raw data show hints of clustering (top left panel) but the clustering becomes clear only after the groups
have been coloured differently using col=group (top right). kmeans does an excellent job when it is told
that there are six clusters (open symbols, bottom left) but, of course, there can be no overlap in assignation (as
there was in the original data). When just four clusters are estimated, it is the centre cluster and the south-east
cluster that disappear (open symbols, bottom right).

plot(x,y,col=group,pch=16)
model <- kmeans(data.frame(x,y),6)
plot(x,y,col=model[[1]])
model <- kmeans(data.frame(x,y),4)
plot(x,y,col=model[[1]])
par(mfrow=c(1,1))

MULTIVARIATE STATISTICS 817

15
10

5

y

5 10 15

15
10

5

y

5 10 15

15
10

5

y

5 10 15
15

10
5

y

5 10 15

x

x x

x

You should compare the bottom two plots carefully to see which points have changed groups.
To see the rate of misclassification we can tabulate the real groups against the groups determined by

kmeans:

model <- kmeans(data.frame(x,y),6)
table(model[[1]],group)

group
1 2 3 4 5 6

1 0 0 25 1 0 0
2 0 0 0 0 0 25
3 0 0 0 2 10 0
4 0 23 0 0 0 0
5 0 2 0 0 20 0
6 20 0 0 17 0 0

The first thing to note is that R has numbered its groups differently (as it would, because it does not know
our names for the groups). Group 1 (in the first column) were associated perfectly (20 out of 20 in R’s group
6). Group 2 had 23 of its members in R’s group 4 but 2 out of 25 were allocated to R’s group 5. Group 3 was
classified perfectly. Group 4 was less good, with one misapplication to R’s group 1 and two to R’s group 3.
Group 6 was perfectly classified. The only really poor performance was with Group 5, which was split 20 to
10. This is impressive, given that there were several obvious overlaps in the original data.

25.3.2 Taxonomic use of kmeans

In the next example we have measurements of seven variables on 120 individual plants. The question is which
of the variables (fruit size, bract length, internode length, petal width, sepal length, petiole length or leaf
width) are the most useful taxonomic characters.

taxa <- read.table("c:\\temp\\taxon.txt",header=T)

818 THE R BOOK

attach(taxa)
names(taxa)

[1] "Petals" "Internode" "Sepal" "Bract" "Petiole" "Leaf"
[7] "Fruit"

A simple and sensible way to start is by looking at the dataframe as a whole, using pairs to plot every
variable against every other:

pairs(taxa)

25 27 29 31 17.0 18.5 20.0 1.0 2.0 3.0

8
7

6
5

4
5.

0
3.

5
2.

0
11

9
7

7.
8

7.
4

7.
0

1.
0

2.
0

3.
0

17
.0

18
.5

20
.0

25
27

29
31

Petals

Internode

Sepal

Bract

Petiole

Leaf

Fruit

4 5 6 7 8 2.0 3.5 5.0 7 9 11 7.0 7.4 7.8

MULTIVARIATE STATISTICS 819

There appears to be excellent data separation on sepal length, and reasonable separation on petiole length and
leaf width, but nothing obvious for the other variables.

These data actually come from four taxa (labelled I–IV), so in this contrived case we know that there are
four groups. In reality, of course, we would not know this, and finding out the number of groups would be
one of the central aims of the study. We begin, therefore, by seeing how well kmeans allocates individuals
to four groups:

kmeans(taxa,4)

K-means clustering with 4 clusters of sizes 22, 19, 36, 43
Cluster means:

Petals Internode Sepal Bract Petiole Leaf Fruit
1 7.167446 29.02460 2.445634 18.41452 8.684403 1.727075 7.475693
2 6.996461 26.56658 4.614698 18.32699 10.059406 1.653439 7.425915
3 6.732706 26.20788 2.486903 18.50806 9.641293 1.992337 7.437037
4 5.834561 29.18766 3.004510 18.45372 10.529315 1.736012 7.558543

Clustering vector:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 4 4 3 3 3 4 4 4 3 4 3 4 4 4 4 4 3 4 4 4 4 3 4 4 4 4 4 4 4 3

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

3 1 1 1 3 1 3 1 1 4 1 3 1 3 1 1 3 1 3 1 3 3 3 1 3 1 1 1 3 4 3

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

3 3 1 4 3 3 3 1 4 3 4 3 1 3 3 4 1 4 3 3 3 3 4 1 1 3 3 4 2 4 2

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

4 2 2 4 4 2 2 4 2 2 2 4 2 2 2 2 2 2 4 4 2 2 2 4 2 4 4

Within cluster sum of squares by cluster:
[1] 75.15813 64.09288 142.36779 186.00036
(between_SS / total_SS = 45.6 %)

Not very impressive at all. Of course, the computer was doing its classification blind. But we know the four
islands from which the plants were collected. Can we write a key that ascribes taxa to islands better than the
blind scheme adopted by kmeans? The answer is definitely yes. When we used a classification tree model
on the same data, it discovered a faultless key on its own (see Section 23.6).

25.4 Hierarchical cluster analysis

The idea behind hierarchical cluster analysis is to show which of a (potentially large) set of samples are most
similar to one another, and to group these similar samples in the same limb of a tree. Groups of samples that
are distinctly different are placed in other limbs. The trick is in defining what we mean by ‘most similar’. Each
of the samples can be thought of a sitting in an m-dimensional space, defined by the m variables (columns) in
the dataframe. We define similarity on the basis of the distance between two samples in this m-dimensional
space. Several different distance measures could be used, but the default is Euclidean distance (for the other
options, see ?dist), and this is used to work out the distance from every sample to every other sample.
This quantitative dissimilarity structure of the data is stored in a matrix produced by the dist function.
Initially, each sample is assigned to its own cluster, and then the hclust algorithm proceeds iteratively, at
each stage joining the two most similar clusters, continuing until there is just a single cluster (see ?hclust
for details).

820 THE R BOOK

The following data (introduced on p. 810) show the distribution of 54 plant species over 89 plots receiving
different experimental treatments. The aim is to see which plots are most similar in their botanical com-
position, and whether there are reasonably homogeneous groups of plots that might represent distinct plant
communities.

pgdata <- read.table("c:\\temp\\pgfull.txt",header=T)
attach(pgdata)
labels <- paste(plot,letters[lime],sep="")

The first step is to turn the matrix of measurements on individuals into a dissimilarity matrix. In the
dataframe, the columns are variables and the rows are the individuals, and we need to calculate the ‘distances’
between each row in the dataframe and every other using dist(pgdata[,1:54]). These distances are
then used to carry out hierarchical cluster analysis using the hclust function:

hpg <- hclust(dist(pgdata[,1:54]))

We can plot the object called hpg, and we specify that the leaves of the hierarchy are labelled by their plot
numbers (pasted together from the plot number and lime treatment):

plot(hpg,labels=labels,main= "")

11
.1

d
11

.2
d

11
.1

a
11

.2
a

14
.2

a
14

.2
b

11
.2

b
11

.2
c

11
.1

b
14

.2
c

14
.2

d 10
d

4.
2d

9.
1d

9.
2d

9.
2a

10
a

4.
2c

10
c

4.
2b

10
b 11

.1
c

9.
2b

9.
2a

20
.2

a 20
.1

c
19

.3
b

16
c

16
d

13
.2

c
20

.3
b 7a 15
a

9.
1a

9.
1b

14
.1

b
14

.1
a

15
b

19
.2

a
14

.1
c

14
.1

d
13

.2
a

13
.2

b
16

a
16

b
6b 6a 7b

17
a

17
b

17
c

12
a

12
b

3a 3b
2.

1a
2.

1b 1a 8a
4.

1b
4.

1a 8b
18

.1
a

1b 14
d

12
c

3c
12

d 8c 8d 4.
1c

4.
1d

18
.1

b
18

.2
a 7c

15
c

18
.1

c
1c

3d
2.

1c
2.

1d 7d 15
d

13
.2

d
19

.1
c

1d
18

.1
d

9.
1c

9.
2c

dist(pgdata[,1:54])
hclust (*,“complete”)

60
40

20
0

H
ei

gh
t

If you view this object in full-screen mode within R you will be able to read all the plot labels, and to work
out the groupings. It turns out that the groupings have very natural scientific interpretations. The highest
break, for instance, separates the two plots dominated by Holcus lanatus (11.1d and 11.2d) from the other
87 plots. The second break distinguishes the high nitrogen plots also receiving phosphorus (plots 11 and 14).
The third break takes out the acidified plots (numbers 9, 10 and 4.2). The plots on the right-hand side all
have soils that exhibit phosphorus deficiency. The leftmost groups are all from plots receiving high rates of
nitrogen and phosphorus input. More subtly, plots 12a and 3a are supposed to be the same (they are replicates
of the no-fertilizer, high-lime treatment), yet they are separated at a break at height approximately 15. And
so on. The hclust function has done an excellent job of recognizing real plant communities over the top
seven splits.

MULTIVARIATE STATISTICS 821

Let us try hierarchical clustering on the taxonomic data (p. 817).

plot(hclust(dist(taxa)),main="")

Because in this artificial example we know that the first 30 rows in the dataframe come from group 1, rows
31–60 from group 2, rows 61–90 from group 3 and rows 91–120 from group 4, we can see than the grouping
produced by hclust is pretty woeful. Most of the rows in the leftmost major split are from group 2, but the
rightmost split contains members from groups 1, 4 and 3. Neither kmeans nor hclust is up to the job in
this case. When we know the group identities, then it is easy to use tree models to devise the optimal means
of distinguishing and classifying individual cases (see p. 781).

48 52
31 50

60

44
36 43

58
32 37

54
35 75 40 47

33
51

42 46
34

55 57
59 21 65 79 87

73 90
78

80
11

4
93 10

6 11
2

11
3

92
97 11

9
94 11

7 12
0

10
1

10
5 86

70 85
26

61
66 71

29 41
11

16 30
25

1 24
14 20

2 13
7 27
22 28 3 8 10

312 19
95 99

72
38 64

4
10 23

45 63
5

98
10

8
11

6
10

0
10

4
10

7 10
2

11
1 10

9
11

8 11
0

11
5

91 96
88

62 67
81

56
83 84

18 69 77
53 74

9
49

15 17
82 89

68

7
6

5
4

3
2

1
0

H
ei

gh
t

dist(taxa)
hclust(*, “complete”)

76

6
So there we have it. When we know the identity of the species, then tree models are wonderfully efficient

at constructing keys to distinguish between the individuals, and at allocating them to the relevant categories.
When we do not know the identities of the individuals, then the statistical task is much more severe, and
inevitably ends up being much more error-prone. The best that cluster analysis could achieve throughkmeans
was with five groups (one too many, as we know, having constructed the data) and in realistic cases we have
no way of knowing whether five groups was too many, too few or just right. Multivariate clustering without
a response variable is fundamentally difficult and equivocal.

25.5 Discriminant analysis

In this case, you know the identity of each individual (unlike cluster analysis) and you want to know how the
explanatory variables contribute to the correct classification of individuals. The method works by uncovering
relationships among the groups’ covariance matrices to discriminate between groups. With k groups you
will need k – 1 discriminators. The functions you will need for discriminant analysis are available in the
MASS library. Returning to the taxon dataframe (see p. 817), we will illustrate the use of lda to carry
out a linear discriminant analysis. For further relevant information, see ?predict.lda and ?qda in the
MASS library.

library(MASS)
model <- lda(Taxon~.,taxa)
plot(model,col=rep(1:4,each=30))

822 THE R BOOK

LD1

LD2

LD3

4
2

0
–2

–4 –2 0 2 4 6 –4 –2 0 2

–4
–2

0
2

–4
–2

0
2

4
6

0–2 2 4

The linear discriminators LD1 and LD2 clearly separate taxon IV without error, but this is easy because
there is no overlap in sepal length between this taxon and the others. LD2 and LD3 are quite good at finding
taxon II (upper right), and LD1 and LD3 are quite good at getting taxon I (bottom left). Taxon III would be
what was left over. Here is the printed model:

model

Call:
lda(Taxon ~ ., data = taxa)

Prior probabilities of groups:
I II III IV

0.25 0.25 0.25 0.25

Group means:
Petals Internode Sepal Bract Petiole Leaf Fruit

I 5.476128 27.91886 2.537955 18.60268 10.864184 1.508029 7.574642
II 7.035078 27.69834 2.490336 18.47557 8.541085 1.450260 7.418702
III 6.849666 27.99308 2.446003 18.26330 9.866983 2.588555 7.482349
IV 6.768464 27.78503 4.532560 18.42953 10.128838 1.645945 7.467917

Coefficients of linear discriminants:
LD1 LD2 LD3

Petals -0.01891137 0.034749952 0.559080267

MULTIVARIATE STATISTICS 823

Internode 0.03374178 0.009670875 0.008808043
Sepal 3.45605170 -0.500418135 0.401274694
Bract 0.07557480 0.068774714 -0.024930728
Petiole 0.25041949 -0.343892260 -1.249519047
Leaf -1.13036429 -3.008335468 0.647932763
Fruit 0.18285691 -0.208370808 -0.269924935

Proportion of trace:
LD1 LD2 LD3

0.7268 0.1419 0.1313

So you would base your key on sepal first (3.45) then leaf (–3.008) then petiole (–1.249). Compare this with
the key uncovered by the tree model on p. 778. Here are the predictions from the linear discriminant analysis:

predict(model)
$class

[1] III I I I I I I I I I

[31] II

[61] III

[91] IV

Levels: I II III IV

One of the members of taxon I is misallocated to taxon III (case 21), but otherwise the discrimination is
perfect. You can train the model with a random subset of the data (say, half of it; 60 random cases):

train <- sort(sample(1:120,60))
table(Taxon[train])

I II III IV
13 18 16 13

This set has only 13 members of taxon I and IV but reasonable representation of the other two taxa (there
would be 15 of each in an even split). Now use this for training:

model2 <- lda(Taxon~.,taxa,subset=train)
predict(model2)
$class

[1] I I I I I I I I I I I I I I I I I II II II II II II II II II II II II II

[31] II III III III III III III III III III III III III III III IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV

Levels: I II III IV

This is still very good: the first 13 should be I, the next 18 II, and so on. The discrimination is perfect in this
randomization. You can use the model based on the training data to predict the unused data:

unused <- taxa[-train,]
predict(model,unused)
$class

[1] I I I I I I I I I I III I I II II II II II II II II II II II II II II II II III

[31] III III III III III III III III III III III III III III III IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV

Levels: I II III IV

table(unused$Taxon)

I II III IV
17 12 14 17

As you can see, one of the first 17 that should have been taxon I was misclassified as taxon III, but all the
other predictions were spot on.

824 THE R BOOK

25.6 Neural networks

These are computationally intensive methods for finding pattern in data sets that are so large, and contain so
many explanatory variables, that standard methods such as multiple regression are impractical (they would
simply take too long to plough through). The key feature of neural network models is that they contain a
hidden layer: each node in the hidden layer receives information from each of many inputs, sums the inputs,
adds a constant (the bias) then transforms the result using a fixed function. Neural networks can operate like
multiple regressions when the outputs are continuous variables, or like classifications when the outputs are
categorical. They are described in detail by Ripley (1996). Facilities for analysing neural networks are in the
MASS library.

26
Spatial Statistics

There are three kinds of problems that you might tackle with spatial statistics:

� point processes (locations and spatial patterns of individuals);

� maps of a continuous response variable (kriging);

� spatially explicit responses affected by the identity, size and proximity of neighbours.

26.1 Point processes

There are three broad classes of spatial pattern on a continuum from complete regularity (evenly spaced
hexagons where every individual is the same distance from its nearest neighbour) to complete aggregation
(all the individuals clustered into a single clump): we call these regular, random and aggregated patterns and
they look like this:

regular random aggregated

In their simplest form, the data consist of sets of x and y coordinates within some sampling frame such as
a square or a circle in which the individuals have been mapped. The first question is often whether there
is any evidence to allow rejection of the null hypothesis of complete spatial randomness (CSR). In a
random pattern the distribution of each individual is completely independent of the distribution of every

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

826 THE R BOOK

other. Individuals neither inhibit nor promote one another. In a regular pattern individuals are more spaced
out than in a random one, presumably because of some mechanism (such as competition) that eliminates
individuals that are too close together. In an aggregated pattern, individual are more clumped than in a
random one, presumably because of some process such as reproduction with limited dispersal, or because of
underlying spatial heterogeneity (e.g. good patches and bad patches).

Counts of individuals within sample areas (quadrats) can be analysed by comparing the frequency
distribution of counts with a Poisson distribution with the same mean. Aggregated spatial patterns (in
which the variance is greater than the mean) are often well described by a negative binomial distribu-
tion with aggregation parameter k (see p. 315). The main problem with quadrat-based counts is that they
are highly scale-dependent. The same spatial pattern could appear to be regular when analysed with
small quadrats, aggregated when analysed with medium-sized quadrats, yet random when analysed with
large quadrats.

Distance measures are of two broad types: measures from individuals to their nearest neighbours, and
measures from random points to the nearest individual. Recall that the nearest individual to a random point
is not a randomly selected individual: this protocol favours selection of isolated individuals and individuals
on the edges of clumps.

In other circumstances, you might be willing to take the existence of patchiness for granted, and to carry
out a more sophisticated analysis of the spatial attributes of the patches themselves, their mean size and the
variance in size, spatial variation in the spacing of patches of different sizes, and so on.

26.1.1 Random points in a circle

The circle is specified by the x and y coordinates of its centre and by the radius. We can compute the
coordinates of the circumference of a circle of radius r, with its centre located at x = y = 0 like this

x <- r*sin(angle)
y <- r*cos(angle)

where angle varies between 0 and 2π radians. There are two ways to generate random points within this
circle: one is to assume that the circle is a target, and that I am aiming at the centre; and the other is to assume
that I am cutting a circular patch out of a sea of spatially independent points. In the first case we might
generate a uniformly random angle, then generate a uniformly distributed random distance along this radius.
Overall, these points will cluster around the centre of the circle because the random radii are most densely
clustered here.

point <- function(r) {
angle <- runif(1)*2*pi
length <- runif(1)*r
x <- length*sin(angle)
y <- length*cos(angle)
return (data.frame(x,y))
}

The easting and northing of the centre of the circle are e0 and n0 respectively, the radius is r and we want
to plot 1000 random points within the circle:

e0 <- 10
n0 <- 10
plot(e0,n0,ylab="",xlab="",ylim=c(0,2*n0),xlim=c(0,2*e0),type="n")

SPATIAL STATISTICS 827

n <- 1000
r <- 10

for (i in 1:n) {
a <- point(r)
e <- e0+a[1]
n <- n0+a[2]
points(e,n,pch=16,col="blue")
}

0

0
5

10
15

20

5 10 15 20

If, instead of plotting the random points, you draw lines from the centre of the circle to the random points,
you can see exactly why this algorithm gives random points that are clustered around the centre.

e0 <- 10
n0 <- 10
plot(e0,n0,ylab="",xlab="",ylim=c(0,2*n0),xlim=c(0,2*e0),type="n")

n <- 1000
r <- 10

for (i in 1:n) {
a <- point(r)
e <- e0+a[1]
n <- n0+a[2]
lines(c(e0,e),c(n0,n),col= "red")
}

828 THE R BOOK

0

0
5

10
15

20

5 10 15 20

A different question is the ‘cookie cutter’ case. If I throw a circular quadrat onto a spatially uniform map of
random points, what does the distribution of my randomly selected points look like? Here is the pseudo-code:

� Make a square map of n random points (uniform eastings and uniform northings).

� Make a polygon to describe the circumference of your circular sampling quadrat.

� Put the quadrat on the square map, and use the function from maptools to ask whether or not every
point on the map is, or is not, inside your circle (the function is called point.in.polygon and returns
a 1 for TRUE and a zero for FALSE).

� Use the output vector called wanted to select the points that are in your circle

Here is the R code for 10 000 random points in a square region whose side is of length 10:

n <- 10000
side <- 10

library(maptools)

space <- cbind((runif(n)*side),(runif(n)*side))
plot(space)

circle <- function(e,n,r) {
angle <- seq(0,2*pi,2*pi/360)
x - r*sin(angle)
y - r*cos(angle)
return (cbind((x+e),(y+n)))
}
Select the random points in a circle of radius 1 centred at (8, 8):

xc - 8
yc <- 8
rc <- 1

SPATIAL STATISTICS 829

outline <- circle(xc,yc,rc)

wanted <- point.in.polygon(space[,1],space[,2],outline[,1],outline[,2])

points(space[,1][wanted==1],space[,2][wanted==1], col="blue",pch=16)

Now add a bigger red circle of points centred at (5, 5):

xc <- 5
yc <- 5
rc <- 2

outline<-circle(xc,yc,rc)

wanted<-point.in.polygon(space[,1],space[,2],outline[,1],outline[,2])

points(space[,1][wanted==1],space[,2][wanted==1], col="red",pch=16)

0

0
2

4sp
ac

e[
,2

] 6
8

10

2 4 6
space[,1]

8 10

As intended, there is no clustering of these points around the centres of the circles. If the circle represents a
small fraction of the total area of the square, then this method is very inefficient.

26.2 Nearest neighbours

Suppose that we have been set the problem of drawing lines to join the nearest neighbour pairs of any given
set of points (x, y) that are mapped in two dimensions. There are three steps to the computing: we need to

� compute the distance to every neighbour;

� identify the smallest neighbour distance for each individual;

� use these minimal distances to identify all the nearest neighbours.

830 THE R BOOK

We start by generating a random spatial distribution of 100 individuals by simulating their x and y
coordinates from a uniform probability distribution:

x <- runif(100)
y <- runif(100)

The graphics parameter pty="s" makes the plotting area square, as we would want for a map like this:

par(pty="s")
plot(x,y,pch=21,bg="red")

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

x

Computing the distances is straightforward: for each individual we use Pythagoras to calculate the distance
to every other plant. The distance between two points with coordinates (x1, y1) and (x2, y2) is d:

(x1, y1)

(x2, y2)

(x2, y1)

d

The square on the hypotenuse (d2) is the sum of the squares on the two adjacent sides: (x2 − x1)2 + (y2 − y1)2

so the distance d is given by

d =
√

(y2 − y1)2 + (x2 − x1)2.

We write a function for this as follows:

distance <- function(x1,y1,x2,y2) sqrt((x2 - x1)ˆ2 + (y2 - y1)ˆ2)

SPATIAL STATISTICS 831

Now we loop through each individual i and calculate a vector of distances, d, from every other individual.
The nearest neighbour distance is the minimum value of d, and the identity of the nearest neighbour, nn, is
found using the which function, which(d==min(d[-i])), which gives the subscript of the minimum
value of d (the [-i] is necessary to exclude the distance 0 which results from the ith individual’s distance
from itself). Here is the complete code to compute nearest neighbour distances, r, and identities, nn, for all
100 individuals on the map:

r <- numeric(100)
nn <- numeric(100)
d <- numeric(100)
for (i in 1:100) {
for (k in 1:100) d[k] <- distance(x[i],y[i],x[k],y[k])
r[i] <- min(d[-i])
nn[i] <- which(d==min(d[-i]))
}
Now we can fulfil the brief, and draw lines to join each individual to its nearest neighbour, like this:

for (i in 1:100) lines(c(x[i],x[nn[i]]),c(y[i],y[nn[i]]),col="green")

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

x

Note that when two points are very close together, and each is the nearest neighbour of the other, it can look
as if a single point is not joined to any neighbours.

The next task is to work out how many of the individuals are closer to the edge of the area than they are
to their nearest neighbour. Because the bottom and left margins are at y = 0 and x = 0 respectively, the y
coordinate of any point gives the distance from the bottom edge of the area and the x coordinate gives the
distance from the left-hand margin. We need only work out the distance of each individual from the top and
right-hand margins of the area:

topd <- 1-y
rightd <- 1-x

832 THE R BOOK

Now we use the parallel minimum function pmin to work out the distance to the nearest margin for each of
the 100 individuals:

edge <- pmin(x,y,topd,rightd)

Finally, we count the number of cases where the distance to the edge is less than the distance to the nearest
neighbour:

sum(edge<r)

[1] 25

We identify these points on the map by circling them in red:

plot(x,y,pch=16)
id <- which(edge<r)
points(x[id],y[id],col="red",cex=1.5,lwd=2)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

x

It is the vertical or horizontal distance to the edge that has been used to identify these points, so some of them
look suspiciously close to their neighbours (e.g. in the bottom left-hand corner).

Edge effects are potentially very important in spatial point processes, especially when there are few
individuals or the mapped area is long and thin (rather than square or circular). Excluding the individuals that
are closer to the edge than to their nearest neighbour reduces the mean nearest neighbour distance:

mean(r)

[1] 0.05294168

mean(r[-id])

[1] 0.04802602

SPATIAL STATISTICS 833

26.2.1 Tessellation

The procedure of splitting a two-dimensional surface into a mosaic by halving the distance between neigh-
bouring pairs of points is called tessellation. There is a function to do this in the tripack package by
Albrecht Gebhardt:

install.packages("tripack")
library(tripack)
x<-runif(100)
y<-runif(100)

Create a Voronoi object (here called map) by applying the function called voronoi.mosaic to the vectors
of x and y coordinates.

map<-voronoi.mosaic(x,y)

Start by producing a scatterplot of the random points (in green):

plot(x,y,pch=16,col="green")

Now add the Voronoi tesselation on top of the scatterplot:

plot.voronoi(map,pch=16,add=TRUE)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

x

As you can see, it is relatively unusual for the points to be in the ‘centre of gravity’ of their tessellated patch.
Each node (black circle) is a circumcircle centre of some triangle from the Delaunay triangulation.

834 THE R BOOK

26.3 Tests for spatial randomness

Clark and Evans (1954) give a very simple test of spatial randomness. Making the strong assumption that
you know the population density of the individuals, ρ (generally you do not know this, and would need to
estimate it independently), then the expected mean distance to the nearest neighbour is

E(r) =
√

ρ

2
.

In our example we have 100 individuals in a unit square, so ρ = 0.01 and E(r) = 0.05. The actual mean
nearest neighbour distance was

mean(r)

[1] 0.05294168

which is very close to expectation: this clearly is a random distribution of individuals (as we constructed it
to be). An index of randomness is given by the ratio r̄/E(r) = 2r̄/

√
ρ. This takes the value 1 for random

patterns, more than 1 for regular (spaced-out) patterns, and less than 1 for aggregated patterns.
One problem with such first-order estimates of spatial pattern (including measures such as the variance–

mean ratio) is that they can give no feel for the way that spatial distribution changes within an area.

26.3.1 Ripley’s K

The second-order properties of a spatial point process describe the way that spatial interactions change
through space. These are computationally intensive measures that take a range of distances within the area,
calculate a pattern measure, then plot a graph of the function against distance, to show how the pattern measure
changes with scale. The most widely used second-order measure is the K function, which is defined as

K (d) = 1

λ
E[number of points ≤ distance d of an arbitrary point],

where λ is the mean number of points per unit area (the intensity of the pattern). If there is no spatial
dependence, then the expected number of points that are within a distance d of an arbitrary point is πd2 times
the mean density. So, if the mean density is 2 points per square metre (λ = 2), then the expected number of
points within a 5 m radius is λπd2 = 2 × π × 52 = 50π = 157.1. If there is clustering, then we expect an
excess of points at short distances (i.e. K (d) > πd2 for small d). Likewise, for a regularly spaced pattern, we
expect an excess of long distances, and hence few individuals at short distances (i.e. K (d) < πd2). Ripley’s
K (published in 1976) is calculated as follows:

K̂ (d) = 1

n2
|A|

∑ ∑

i �= j

Id (dij)

wij
.

Here n is the number of points in region A with area |A|, and dij are the distances between points (the distance
between the ith and jth points, to be precise). To account for edge effects, the model includes the term wij

which is the fraction of the area, centred on i and passing through j, that lies within the area A (all the wij are 1
for points that lie well away from the edges of the area). Id (dij) is an indicator function to show which points
are to be counted as neighbours at this value of d: it takes the value 1 if dij ≤ d and zero otherwise (i.e. points
with dij > d are omitted from the summation). The pattern measure is obtained by plotting K̂ (d) against d .
This is then compared with the curve that would be observed under complete spatial randomness (namely, a

SPATIAL STATISTICS 835

plot of πd2 against d). When clustering occurs, K (d) > πd2 and the curve lies above the CSR curve, while
regular patterns produce a curve below the CSR curve.

You can see why you need the edge correction from this simple simulation experiment. For individual
number 1, with coordinates (x1, y1), calculate the distances to all the other individuals, using the function
distance that we wrote earlier (p. 830):

distances <- numeric(100)
for(i in 1:100) distances[i] <- distance(x[1],y[1],x[i],y[i])

Now find out how many other individuals are within a distance d of this individual. Take as an example
d = 0.1.

sum(distances<0.1)-1

[1] 4

There were four other individuals within a distance d = 0.1 of the first individual (the distance 0 from itself
is included in the sum, so we have to correct for this by subtracting 1). The next step is to generalize the
procedure from this one individual to all the individuals. We make a two-dimensional matrix called dd to
contain all the distances from every individual (rows) to every other individual (columns):

dd <- numeric(10000)
dd <- matrix(dd,nrow=100)

The matrix of distances is computed within loops for both individual (j) and neighbour (i) like this:

for (j in 1:100) {for(i in 1:100) dd[j,i] <- distance(x[j],y[j],x[i],y[i])}

Alternatively, you could use sapply with an anonymous function like this, which has the advantage that we
do not need to prepare the matrix dd in advance:

dd <- sapply(1:100,function (i,j=1:100) distance(x[j],y[j],x[i],y[i]))

We should check that the number of individuals within 0.1 of individual 1 is still 4 under this new notation.
Note the use of blank subscripts [1,] to mean ‘all the individuals in row number 1’:

sum(dd[1,]<0.1)-1

[1] 4

So that’s OK. We want to calculate the sum of this quantity over all individuals, not just individual number
1:

sum(dd<0.1)-100

[1] 270

This means that there are 270 cases in which other individuals are counted within d = 0.1 of focal individuals.
Next, create a vector containing a range of different distances, d, over which we want to calculate K(d) by
counting the number of individuals within distance d, summed over all individuals:

d <- seq(0.01,1,0.01)

For each of these distances we need to work out the total number of neighbours of all individuals. So, in place
of 0.1 (in the sum, above), we need to put each of the d values in turn. The count of individuals is going to
be a vector of length 100 (one for each d):

count <- numeric(100)

836 THE R BOOK

Calculate the count for each distance d:

for (i in 1:100) count[i] <- sum(dd<d[i])-100

The expected count increases with d as πd2 so we scale our count by dividing by the square of the total
number of individuals n2 = 1002 = 10 000:

K <- count/10000

Finally, plot a graph of K against d:

plot(d,K,type="l",col="red")

Not surprisingly, when we sample the whole area (d = 1), we count all of the individuals in every neighbour-
hood (K = 1). For CSR the graph should follow πd2 so we add a line to show this:

lines(d,pi*dˆ2,col="blue")

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

K

d

Up to about d = 0.2 the agreement between the two lines is reasonably good, but for longer distances our
algorithm is counting far too few neighbours. This is because much of the area scanned around marginal
individuals is invisible, since it lies outside the study area (there may well be individuals out there, but we shall
never know). This simple model demonstrates that the edge correction is a fundamental part of Ripley’s K.

Fortunately, we do not have to write a function to work out a corrected value for K; it is available as Kfn
in the built-in spatial library. Here we use it to analyse the pattern of trees in the dataframe called pines.
The library function ppinit reads the data from a library file called pines.dat which is stored in the
spatial/ppdata directory. It then converts this into a list with names $x, $y and $area. The first row of the
file contains the number of trees (71) the second row has the name of the data set (pines), the third row has
the four boundaries of the region plus the scaling factor (0, 96, 0, 100, 10 so that the coordinates of lower and
upper x are computed as 0 and 9.6, and the coordinates of lower and upper y are 0 and 10). The remaining

SPATIAL STATISTICS 837

rows of the data file contain x and y coordinates for each individual tree, and these are converted into a list of
x values and a separate list of y values. You need to know these details about the structure of the data files in
order to use these library functions with your own data (see p. 845).

library(spatial)
pines <- ppinit("pines.dat")

First, set up the plotting area with two square frames:

windows(7,4)
par(mfrow=c(1,2),pty="s")

On the left, make a map using the x and y locations of the trees, and on the right make a plot of L(t) (the
pattern measure) against distance:

plot(pines,pch=16, col="blue")
plot(Kfn(pines,5),type="s",xlab="distance",ylab="L(t)")

Recall that if there was CSR, then the expected value of K would be πd2; to linearize this, we could divide by π

and then take the square root. This is the measure used in the functionKfn, where it is called L(t) = √
K (t)/π .

Now for the simulated upper and lower bounds: the first argument in Kenvl (calculating envelopes for K) is
the maximum distance (half the length of one side), the second is the number of simulations (100 is usually
sufficient), and the third is the number of individuals within the mapped area (71 pine trees in this case).

lims <- Kenvl(5,100,Psim(71))
lines(lims$x,lims$lower,lty=2,col="red")
lines(lims$x,lims$upper,lty=2,col="red")

0

0 2 4
pines$x

6 8 0 1 2 3
distance

4 5

2
4pi
ne

s$
y 6

8
10

0
1

2L(
t)

3
4

5

There is a suggestion that at relatively small distances (around 1 or so), the trees are rather regularly distributed
(more spaced out than random), because the plot of L(t) against distance falls below the lower envelope of
the CSR line (it should lie between the two limits for its whole length if there was CSR). The mechanism
underlying this spatial regularity (e.g. non-random recruitment or mortality, competition between growing
trees, or underlying non-randomness in the substrate) would need to be investigated in detail. With an
aggregated pattern, the line would fall above the upper envelope (see p. 847).

838 THE R BOOK

26.3.2 Quadrat-based methods

Another approach to testing for spatial randomness is to count the number of individuals in quadrats of
different sizes. Here, the quadrats have an area of 0.01, so the expected number per quadrat is 1. Earlier, we
generated 100 random coordinates for x and y:

plot(x,y,pch=16,col="red")
grid(10,10,lty=1)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

Note that the grid function has not done exactly what we intended (the grids are not exactly on the tick
marks). To count the numbers of individuals in each of the cells of the map, the trick is to use cut to convert
the x and y coordinates of the map into bin numbers (between 1 and 10 for the quadrat size we have drawn
here). To achieve this, the break points are generated by the sequence (0,1,0.1):

xt <- cut(x,seq(0,1,0.1))
yt <- cut(y,seq(0,1,0.1))

This creates vectors of integer subscripts between 1 and 10 for xt and yt. Now all we need to do is use
table to count up the number of individuals in every cell (i.e. in every combination of xt and yt):

count <- as.vector (table(xt,yt))
table(count)

count
0 1 2 3 4 5
37 38 16 7 1 1

This shows that 37 cells are empty, 1 cell had five individuals, but no cells contained six or more individuals.
Now we need to see what this distribution would look like under a particular null hypothesis. For a Poisson
process (see p. 314), for example,

P(x) = e−λλx

x!
.

SPATIAL STATISTICS 839

Note that the mean depends upon the quadrat size we have chosen. With 100 individuals in the whole area,
the expected number in any one of our 100 cells, λ, is 1.0. The expected frequencies of counts between 0 and
5 are therefore given by

(expected <- 100*exp(-1)/sapply(0:5,factorial))

[1] 36.7879441 36.7879441 18.3939721 6.1313240 1.5328310 0.3065662

The fit between observed and expected is almost perfect (as we should expect, of course, having generated
the random pattern ourselves). A test of the significance of the difference between an observed and expected
frequency distribution is shown on p. 841.

26.3.3 Aggregated pattern and quadrat count data

Here is an example of a quadrat-based analysis of an aggregated spatial pattern. We begin by producing a
map of the trees, then use abline rather than grid (see above) to make sure that the lines are exactly where
we want them to be:

trees <- read.table("c:\\temp\\trees.txt",header=T)
attach(trees)
names(trees)

[1] "x" "y"

plot(x,y,pch=16,col="blue")
abline(v=seq(0,100,10),col="lightgray",lty=1)
abline(h=seq(0,100,10),col="lightgray",lty=1)

0
20

40
60

80
10

0

y

0 20 40 60 80 100
x

We cut up the data and tabulate the counts:

xt <- cut(x,10)
yt <- cut(y,10)

840 THE R BOOK

count <- as.vector(table(xt,yt))
table(count)

count
0 1 2 3 4 5 6 7 8 9 11 12 24
27 11 18 7 9 6 10 6 1 1 2 1 1

There are quadrats with as many as 24 individuals, and despite the fact that the mean number is greater than 3
individuals per square, there are still 27 completely empty squares. The expected frequencies under the null
hypothesis of a random pattern depend only on the mean number per cell,

mean(count)

[1] 3.11

and as a preliminary estimate of the departure from randomness we calculate the variance–mean ratio (recall
that with the Poisson distribution the variance is equal to the mean):

var(count)/mean(count)

[1] 4.007243

These data are distinctly aggregated (the variance–mean ratio is much greater than 1), so we might
compare the counts with a negative binomial distribution (p. 315). The expected frequencies are estimated
by multiplying our total number of squares (100) by the probability densities from a negative binomial
distribution generated by the function dnbinom. This has three arguments: the counts for which we want
the probabilities (0:10), the mean (mu=3.11) and the aggregation parameter k = muˆ2/(var-mu) =
size=1.03417:

mean(count)ˆ2/(var(count)- mean(count))

[1] 1.03417

Here are the expected frequencies:

(expected <- dnbinom(0:10, size=1.03417, mu=3.11)*100)

[1] 23.798804 18.470128 14.097756 10.700189 8.098573 6.119123
[7] 4.618259 3.482699 2.624761 1.977235 1.488890

These are reasonably close to the observed frequencies (above) but we need to quantify the lack of fit. The
plan is to display the observed and expected frequencies as pairs of bars, side by side. We need to make space,
therefore, to accommodate, say, 22 bars (11 for each histogram):

ht <- numeric(22)
observed <- table(count)
ht[seq(1,21,2)] <- observed
ht[seq(2,22,2)] <- expected
names <- rep("",22)
names[seq(1,21,2)] <- as.character(0:10)
barplot(ht,col=c("darkgray","lightgray"),names=names,

ylab="frequency",xlab="trees per quadrat")
legend(locator(1),legend=c("observed","expected"),

fill=c("darkgray","lightgray"))

SPATIAL STATISTICS 841

0

0
5

10
fr

eq
ue

nc
y

15
20

25

1 2 3 4
trees per quadrat

5 6 7

observed
expected

8 9 10

The fit is reasonably good, but we need a quantitative estimate of the lack of agreement between the
observed and expected distributions. Pearson’s chi-squared is perhaps the simplest (p. 367). We need to trim
the observed and expected vectors so that none of the expected frequencies is less than 4. Inspection shows
that the lowest expected frequency greater than 4 is in location 7, so we shall accumulate all frequencies in
locations 8 and above

expected[8] <- sum(expected[8:length(expected)])
expected <- expected[-c(9:length(expected))]
observed[8] <- sum(observed[8:length(observed)])
observed <- observed[-c(9:length(observed))]

Now calculate Pearson’s chi-squared as
∑

[(O − E)2/E]:

sum((observed-expected)ˆ2/expected)

[1] 12.80059

The number of degrees of freedom is the number of legitimate comparisons (8) minus the number of
parameters estimated from the data (2) minus 1 for contingency (i.e. 8 – 2 – 1 = 5 d.f.). So the probability of
obtaining a chi-squared value of this size (12.8) or greater is

1-pchisq(12.8,5)

[1] 0.02532684

We conclude that the negative binomial is an imperfect description of these quadrat data (because p < 0.05).
The reason for the significant lack of fit is the serious underestimation of quadrats containing just one tree,
and the excess of quadrats containing six or seven trees.

842 THE R BOOK

26.3.4 Counting things on maps

The convention is that if a point falls exactly on the x axis or exactly on the y axis, then it is counted as being
inside the area (green points on the map below), but if it falls on the top axis or on the right hand axis, then it
is outside the area (red points).

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

plot(c(0,2),c(0,2),type="n",xlab="",ylab="")
lines(c(0,1,1,0,0),c(0,0,1,1,0))
points(c(0.5,0),c(0,0.5),pch=16,col="green",cex=1.5)
points(c(0.5,1),c(1,0.5),pch=16,col="red",cex=1.5)

That way, all points on the map have an equal probability of being counted, and there is no double-counting
of points. Red points on the top axis will be counted in the next quadrat to the north, and red points on the
right hand axis will be counted in the next quadrat to the east.

This counting convention is embodied in the R function called cut, using round brackets and square
brackets like this: "(b1, b2]", "(b2, b3]" . . . for the default right = TRUE; here, the round
bracket means ‘greater than’ and the square bracket means ‘less than or equal to’. For our convention, we need
to specify right=FALSE. Now we have "[b1, b2)", "[b2, b3)" . . . where the square bracket
means ‘greater than or equal to’ and the round bracket means ‘less than’. Here are some test data:

data <- read.table("c:\\temp\\countpoints.txt",header=T)
attach(data)
plot(x,y,pch=16,col="green")
points(x[y==1 | x==1],y[y==1 | x==1],pch=16,col="red")
lines(c(0,1,1,0,0),c(0,0,1,1,0),lty=2)
lines(c(0.2,0.2),c(0,1),lty=2)
lines(c(0.4,0.4),c(0,1),lty=2)
lines(c(0.6,0.6),c(0,1),lty=2)
lines(c(0.8,0.8),c(0,1),lty=2)

SPATIAL STATISTICS 843

lines(c(0,1),c(0.2,0.2),lty=2)
lines(c(0,1),c(0.4,0.4),lty=2)
lines(c(0,1),c(0.6,0.6),lty=2)
lines(c(0,1),c(0.8,0.8),lty=2)
points(0,0.5,cex=2)
points(0.5,0,cex=2)

0.0 0.2 0.4 0.6
x

0.8 1.0

0.
0

0.
2

0.
4

0.
6

y

0.
8

1.
0

We want to count the number of points in each of 25 quadrats measuring 0.2 × 0.2. The function to achieve
this is cut. We need to specify six values at which to cut the x axis and six values at which to cut the y axis.
The function converts the vector of continuous values of x into a factor xc with five levels (and converts the
coordinates y into factor levels within yc in the same way):

xc <- cut(x,seq(0,1,0.2),right = FALSE)
yc <- cut(y,seq(0,1,0.2),right = FALSE)

We count the number of points in each quadrat using table, like this:

table(yc,xc)

xc
yc [0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1)
[0,0.2) 1 4 2 1 3
[0.2,0.4) 2 2 3 2 1
[0.4,0.6) 2 2 2 2 3
[0.6,0.8) 4 0 2 5 0
[0.8,1) 0 4 2 1 2

which gives the correct counts, but in a pattern that does not match the map (the y values are upside down).
We can fix this by reordering the factor levels of yc using rev to reverse the order of the rows:

yc <- factor(yc,rev(levels(yc)))

844 THE R BOOK

Now, table produces a map-like summary of the counts:

table(yc,xc)

xc
yc [0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1)
[0.8,1) 0 4 2 1 2
[0.6,0.8) 4 0 2 5 0
[0.4,0.6) 2 2 2 2 3
[0.2,0.4) 2 2 3 2 1
[0,0.2) 1 4 2 1 3

There are four points on the edge of the map: the red points are not counted (totals 2 and 3 respectively), but
the circled green points are counted (totals 2 and 2, above).

26.4 Packages for spatial statistics

In addition to the built-in library spatial there are two substantial contributed packages for analysing
spatial data. The spatstat library is what you need for the statistical analysis of spatial point patterns,
while the spdep library is good for the spatial analysis of data from mapped regions.

With point patterns the things you will want to do include

� creation, manipulation and plotting of point patterns,

� exploratory data analysis,

� simulation of point process models,

� parametric model fitting,

� hypothesis tests and diagnostics;

whereas with maps you might

� compute basic spatial statistics such as Moran’s I and Geary’s C,

� create neighbour objects of class nb,

� create weights list objects of class lw,

� work out neighbour relations from polygons (outlines of regions),

� colour mapped regions on the basis of derived statistics.

You need to take time to master the different formats of the data objects used by the two packages. You will
waste a lot of time if you try to use the functions in these libraries with your own, unreconstructed data files.

Here is the code for installing and reading about spatstat and spdep:

install.packages("spatstat")
library(help=spatstat)
library(spatstat)
demo(spatstat)

SPATIAL STATISTICS 845

install.packages("spdep")
library(help=spdep)
library(spdep)

26.4.1 The spatstat package

You need to use the function ppp to convert your coordinate data into an object of class ppp representing a
point pattern data set in the two-dimensional plane. Our next dataframe contains information on the locations
and sizes of 3359 ragwort plants in a 30 m × 15 m map:

data <- read.table("c:\\temp\\ragwortmap.txt",header=T)
attach(data)
names(data)

[1] "xcoord" "ycoord" "type"

The plants are classified as belonging to one of four types: skeletons are dead stems of plants that flowered
the year before, regrowth are skeletons that have live shoots at the base, seedlings are small plants (a few
weeks old) and rosettes are larger plants (one or more years old) destined to flower this year. The function
ppp requires separate vectors for the x and y coordinates: these are in our file under the names xcoord and
ycoord. The third and fourth arguments to ppp are the boundary coordinates for x and y respectively (in
this example c(0,3000) for x and c(0,1500) for y). The final argument to ppp contains a vector of
what are known as ‘marks’: these are the factor levels associated with each of the points (in this case, type
is either skeleton, regrowth, seedling or rosette). You give a name to the ppp object (ragwort) and define
it like this:

ragwort <- ppp(xcoord,ycoord,c(0,3000),c(0,1500),marks=type)

You can now use the object called ragwort in a host of different functions for plotting and statistical
modelling within the spatstat library. For instance, here are maps of the point patterns for the four plant
types separately:

plot(split(ragwort),main="")

regrowth rosette

seedling skeleton

846 THE R BOOK

Point patterns are summarized like this:

summary(ragwort)

Marked planar point pattern: 3359 points
Average intensity 0.000746 points per square unit
Multitype:

frequency proportion intensity
regrowth 135 0.0402 3.00e-05
rosette 146 0.0435 3.24e-05
seedling 1100 0.3270 2.44e-04
skeleton 1980 0.5890 4.40e-04

Window: rectangle = [0, 3000]x[0, 1500]units
Window area = 4500000 square units

which computes the frequency and intensity for each mark (‘intensity’ is the mean density of points per unit
area). In this case, where distances are in centimetres, the intensity is the mean number of plants per square
centimetre (the highest intensity is skeletons, with 0.000 44 cm–2). The function quadratcount produces
a useful summary of counts:

plot(quadratcount(ragwort),main="")

60 147 261 292 76

105 101 188 155 141

64 95 151 228 147

98 129 115 117 154

62 77 88 145 103

This is the default, but you can specify either the numbers of quadrats in the x and y directions (default 5 and
5), or provide numeric vectors giving the x and y coordinates of the boundaries of the quadrats. If we want
counts in 0.5 m squares:

plot(quadratcount(ragwort,
xbreaks=c(0,500,1000,1500,2000,2500,3000),
ybreaks=c(0,500,1000,1500)),main="")

100 145 261 388 267 149

100 169 157 261 259 171

83 169 96 190 216 178

There are functions for producing density plots of the point pattern:

Z <- density.ppp(ragwort)
plot(Z,main="")

SPATIAL STATISTICS 847

4e
-0

4
8e

-0
4

0.
00

12

The classic graphical description of spatial point patterns is Ripley’s K (see p. 834).

K <- Kest(ragwort)
plot(K, main = "K function")

0

Kpois(r)

K
∧

bord(r)

100 200
r

300

0e
+

00
1e

+
05

2e
+

05

K
(r

)

K function

3e
+

05
4e

+
05

5e
+

05

The red dotted line shows the expected number of plants within a radius r of a plant under the assumption
of complete spatial randomness. The observed curve (black) lies above this line, indicating strong spatial
aggregation at all spatial scales up to more than 300 cm.

The pair correlation function pcf for the ragwort data looks like this:

pc <- pcf(ragwort)
plot(pc, main = "Pair correlation function")

848 THE R BOOK

0

g
∧

Ripley(r)

g
∧

Trans(r)

100 200

gPois(r)

r
300

2
4

6
8

10
12

g(
r)

Pair correlation function

There is strong correlation between pairs of plants at small scales, but much less above r = 20 cm. The
function distmap shows the distance map around individual plants:

Z <- distmap(ragwort)
plot(Z,main="")

0
50

10
0

15
0

You can use spatstat to generate a wide range of patterns of random points, including independent
uniform random points, inhomogeneous Poisson point processes, inhibition processes, and Gibbs point
processes using Metropolis–Hastings (see ?spatstat for details). Some useful functions on point-to-point
distances in spatstat include:

nndist nearest neighbour distances;
nnwhich find nearest neighbours;
pairdist distances between all pairs of points;
crossdist distances between points in two patterns;
exactdt distance from any location to nearest data point;
distmap distance map image;
density.ppp kernel smoothed density.

SPATIAL STATISTICS 849

There are several summary statistics for a multi-type point pattern with a component $marks which is a
factor:

Gcross, Gdot, Gmulti multitype nearest neighbour distributions;
Kcross, Kdot, Kmulti multitype K-functions;
Jcross, Jdot, Jmulti multitype J-functions;
Alltypes estimates of the above for all i,j pairs;
Lest multitype I-function;
Kcross.inhom inhomogeneous counterpart of Kcross;
Kdot.inhom inhomogeneous counterpart of Kdot.

Point process models are fitted using the ppm function like this:

model <- ppm(ragwort, ~marks + polynom(x, y, 2), Poisson())
plot(model)

1e
-0

5

Fitted trend mark = regrowth

3e
-0

5

There are eight such maps produced, showing means (four maps) and standard errors (four maps). Typing

summary(model)

produces a massive table of output, including what the authors refer to as the ‘gory details’.

26.4.2 The spdep package

The key to using this package is to understand the differences between the various formats in which the spatial
data can be held:

� x and y coordinates (in a two-column matrix, with x in column 1 and y in 2);

� lists of regions that are neighbours to each region, with (potentially) unequal numbers of neighbours in
different cases (this is called a neighbour file and belongs to class nb);

� dataframes containing a region, its neighbour and the statistical weight of the association between the two
regions on each row (class data.frame);

� lists containing the identities of the k nearest neighbours (class knn);

� a weights list object suitable for computing Moran’s I or Geary’s C (class lw);

� lists of polygons, defining the outlines of regions on a map (class polylist).

850 THE R BOOK

Unlike spatstat (Section 26.4.1) where the x and y coordinates were in separate vectors, spdep wants
the x and y coordinates in a single two-column matrix. For the ragwort data (p. 845) we need to write:

library(spdep)
myco <- cbind(xcoord,ycoord)
myco <- matrix(myco,ncol=2)

A raw list of coordinates contains no information about neighbours, but we can use the knearneigh
function to convert a matrix of coordinates into an object of class knn. Here we ask for the four nearest
neighbours of each plant:

myco.knn <- knearneigh(myco, k=4)

This list object has the following structure:

str(myco.knn)

List of 5
$ nn : int [1:3359, 1:4] 2 1 4 3 7 4 8 7 10 9 ...
$ np : int 3359
$ k : num 4
$ dimension: int 2
$ x : num [1:3359, 1:2] 27 29 20 20 78 25 89 97 253 259 ...
- attr(*, "class")= chr "knn"
- attr(*, "call")= language knearneigh(x = myco, k = 4)

� $nn contains 3359 lists, each a vector of length 4, containing the identities of the four points that are the
nearest neighbours of each of the points from 1 to 3359.

� $np (an integer) is the number of points in the pattern.

� $k is the number of neighbours of each point.

� $dimension is 2.

� $x is the matrix of coordinates of each point (x in the first column, y in the second).

Before you can do much with a knn object you will typically want to convert it to a neighbour object (nb)
using the knn2nb function like this:

myco.nb <- knn2nb(myco.knn)

The essential concept for using the spdep package is the neighbour object (with class nb). For a given
location, typically identified by the (x, y) coordinates of its centroid, the neighbour object is a list, with the
elements of the list numbered from 1 to the number of locations, and each element of the list contains a
vector of integers representing the identities of the locations that share a boundary with that location. The
important point is that different vectors are likely to be of different lengths. You can do interesting things with
nb objects. Here is a plot with each point joined to its four nearest neighbours – you specify the nb object
and the matrix of coordinates:

plot(myco.nb,myco)

SPATIAL STATISTICS 851

The simplest way to create an nb object is to read a text file containing one row for each neighbour
relationship, using the special input function read.gwt2nb. The header row can take one of two forms.
The simplest (called ‘old-style GWT’) is a single integer giving the number of locations in the file. There
will always be many more rows in the data file than this number, because each location will typically have
several neighbours. The second form of the header row has four elements: the first is set arbitrarily to zero,
the second is the integer number of locations, the third is the name of the shape object and the fourth is the
vector of names identifying the locations. An example should make this clear. These are the contents of a text
file called naydf.txt:

5
1 2 1
1 3 1
2 1 1
2 3 1
2 4 1
3 1 1
3 2 1
3 5 1
4 2 1
4 3 1
4 5 1
5 3 1
5 4 1

The 5 in the first row indicates that this file contains information on five locations. On subsequent lines the
first number identifies the location, the second number identifies one of its neighbours, and the third number
is the weight of that relationship. Thus, location 5 has just two neighbours, and they are locations 3 and 4
(the last two rows of the file). We create a neighbour object for these data with the read.gwt2nb function
like this:

dd <- read.gwt2nb("c:\\temp\\naydf.txt")
Here is a summary of the newly-created neighbour object called dd:

summary(dd)

Neighbour list object:

852 THE R BOOK

Number of regions: 5
Number of nonzero links: 13
Percentage nonzero weights: 52
Average number of links: 2.6
Non-symmetric neighbours list
Link number distribution:

2 3
2 3
2 least connected regions:
1 5 with 2 links
3 most connected regions:
2 3 4 with 3 links

Here are the five vectors of neighbours:

dd[[1]]

[1] 2 3

dd[[2]]

[1] 1 3 4

dd[[3]]

[1] 1 2 5

dd[[4]]

[1] 2 3 5

dd[[5]]

[1] 3 4

The coordinates of the five locations need to be specified:

coox <- c(1,2,3,4,5)
cooy <- c(3,1,2,0,3)

and the vectors of coordinates need to be combined into a two-column matrix. Now we can use plot with
dd and the coordinate matrix to indicate the neighbour relations of all five locations like this:

plot(dd,matrix(cbind(coox,cooy),ncol=2))
text(coox,cooy,as.character(1:5),pos=rep(3,5))

SPATIAL STATISTICS 853

1

2

3

4

5

Note the use of pos = 3 to position the location numbers 1 to 5 above their points. You can see that locations
1 and 5 are the least connected (two neighbours) and location 3 is the most connected (four neighbours). Note
that the specification in the data file was not fully reciprocal, because location 4 was defined as a neighbour of
location 3 but not vice versa. There is a comment, Non-symmetric neighbours list, in the output
to summary(dd) to draw attention to this. A function make.sym.nb(dd) is available to convert the
object dd into a symmetric neighbours list.

For calculating indices much as Moran’s I and Geary’s C you need a ‘weights list’ object. This is created
most simply from a neighbour object using the function nb2listw. For the ragwort data, we have already
created a neighbour object called myco.nb (p. 850) and we create the weights list object myco.lw like
this:

myco.lw <- nb2listw(myco.nb, style="W")
myco.lw

Characteristics of weights list object:
Neighbour list object:
Number of regions: 3359
Number of nonzero links: 13436
Percentage nonzero weights: 0.1190831
Average number of links: 4
Non-symmetric neighbours list

Weights style: W
Weights constants summary:

n nn S0 S1 S2
W 3359 11282881 3359 1458.25 14077.88

There are three classic tests based on spatial cross products C(i, j), where z(i) = (x(i) –mean (x))/sd(x):

� Moran (C(i, j) = z(i)z(j));

� Geary (C(i, j) = (z(i) − z(j))2);

� Sokal (C(i, j) = |z(i) − z(j)|).

854 THE R BOOK

Here is the Moran I test for the ragwort data, using the weights list object myco.lw:

moran(1:3359,myco.lw,length(myco.nb),Szero(myco.lw))

$I
[1] 0.9931224

$K
[1] 1.8

Here is Geary’s C for the same data:

geary(1:3359,myco.lw,length(myco.nb),length(myco.nb)-1,Szero(myco.lw))

$C
[1] 0.004549794

$K
[1] 1.8

Here is Mantel’s permutation test:

sp.mantel.mc(1:3359,myco.lw,nsim=99)

Mantel permutation test for moran measure
data: 1:3359
weights: myco.lw
number of simulations + 1: 100

statistic = 3334.905, observed rank = 100, p-value = 0.01
alternative hypothesis: greater
sample estimates:
mean of permutations sd of permutations

-5.434839 34.012539

In all cases, the first argument is a vector of location numbers (1 to 3359 in the ragwort example), the second
argument is the weight list object myco.lw. For moran, the third argument is the length of the neighbours
object, length(myco.nb) and the fourth is Szero(myco.lw), the global sum of weights, both of
which evaluate to 3359 in this case. The function geary has an extra argument, length(myco.nb)-1,
and sp.mantel.mc specifies the number of simulations.

26.4.3 Polygon lists

Perhaps the most complex spatial data handled by spdep comprise digitized outlines (sets of x and y
coordinates) defining multiple regions, each of which can be interpreted by R as a polygon. Here is such a
list from the built-in columbus data set:

data(columbus)
polys

The polys object is of class polylist and comprises a list of 49 polygons. Here is the first of them:

SPATIAL STATISTICS 855

[[1]]
[,1] [,2]

[1,] 8.624129 14.23698
[2,] 8.559700 14.74245
[3,] 8.809452 14.73443
[4,] 8.808413 14.63652
[5,] 8.919305 14.63850
[6,] 9.087138 14.63049
[7,] 9.099965 14.24483
[8,] 9.015047 14.24184
[9,] 9.008951 13.99506
[10,] 8.818140 14.00205
[11,] 8.653305 14.00809
[12,] 8.642902 14.08971
[13,] 8.632592 14.17059
[14,] 8.625826 14.22367
[15,] 8.624129 14.23698
attr(,"bbox")
[1] 8.559700 13.995060 9.099965 14.742450
attr(,"ringDir")
[1] 1
attr(,"after")
[1] NA
attr(,"plotOrder")
[1] 1
attr(,"nParts")
[1] 1
attr(,"pstart")
attr(,"pstart")$from
[1] 1
attr(,"pstart")$to
[1] 15

Each element of the list contains a two-column matrix with x coordinates in column 1 and y coordinates in
column 2, with as many rows as there are digitized points on the outline of the polygon in question. After the
matrix of coordinates come the boundary box and various plotting options.

There is an extremely useful function poly2nb that takes the list of polygons and works out which
regions are neighbours of one another by looking for shared boundaries. The result is an nb object (here
called colnbs), and we can get a visual check of how well poly2nb has worked by overlaying the
neighbour relations on a map of the polygon outlines:

colnbs <- poly2nb(polys)
plot(c(5.5,11.5),c(10.5,15),type="n",xlab="",ylab="")
for (i in 1:49) polygon(polys[[i]][,1],polys[[i]][,2],col="lightgrey")
plot(colnbs,coords,add=T,col="red")

856 THE R BOOK

11

6 7 8 9 10 11

12
13

14
15

The agreement is perfect. Obviously, creating a polygon list is likely to be a huge amount of work, especially
if there are many regions, each with complicated outlines. Before you start making one, you should check
that it has not been done already by someone else who might be willing to share it with you. To create
polygon lists and bounding boxes from imported shape files you should use one of read.shapefile or
Map2poly (for details, see ?read.shapefile and ?Map2poly). Subtleties include the facts that lakes
are digitized anti-clockwise and islands are digitized clockwise.

26.5 Geostatistical data

Mapped data commonly show the value of a continuous response variable (e.g. the concentration of a mineral
ore) at different spatial locations. The fundamental problem with this kind of data is spatial pseudoreplication.
Hot spots tend to generate lots of data, and these data tend to be rather similar because they come from
essentially the same place. Cold spots are poorly represented and typically widely separated. Large areas
between the cold spots have no data at all.

Spatial statistics takes account of this spatial autocorrelation in various ways. The fundament tool of spatial
statistics is the variogram (or semivariogram). This measures how quickly spatial autocorrelation, γ (h),
falls off with increasing distance:

γ (h) = 1

2 |N (h)|
∑

N (h)

(zi − z j)
2.

Here N(h) is the set of all pairwise Euclidean distances i – j = h, | N(h) | is the number of distinct pairs within
N(h), and zi and zj are values of the response variable at spatial locations i and j. There are two important
rules of thumb: (1) the distance of reliability of the variogram is less than half the maximum distance over

SPATIAL STATISTICS 857

the entire field of data; and (2) you should only consider producing an empirical variogram when you have
more than 30 data points on the map.

Plots of the empirical variogram against distance are characterized by some quaintly named features which
give away its origin in geological prospecting:

� nugget, small-scale variation plus measurement error;

� sill, the asymptotic value of γ (h) as h → ∞, representing the variance of the random field;

� range, the threshold distance (if such exists) beyond which the data are no longer autocorrelated.

Variogram plots that do not asymptote may be symptomatic of trended data or a non-stationary stochastic
process. The covariogram C(h) is the covariance of z values at separation h, for all i and i + h within the
maximum distance over the whole field of data:

cov(Z (i + h), Z (i)) = C(h).

The correlogram is a ratio of covariances:

ρ(h) = C(h)

C(0)
= 1 − γ (h)

C(0)
.

Here C(0) is the variance of the random field and γ (h) is the variogram. Where the variogram increases with
distance, the correlogram and covariogram decline with distance.

The variogram assumes that the data are untrended. If there are trends, then one option is median polishing.
This involves modelling row and column effects from the map like this:

y ~ overall mean + row effect + column effect + residual

This two-way model assumes additive effects and would not work if there was an interaction between the
rows and columns of the map. An alternative would be to use a generalized additive model (p. 670) with
non-parametric smoothers for latitude and longitude.

Anisotropy occurs when spatial autocorrelation changes with direction. If the sill changes with direction,
this is called zonal anisotropy. When it is the range that changes with direction, the process is called geometric
anisotropy.

Geographers have a wonderful knack of making the simplest ideas sound complicated. Kriging is nothing
more than linear interpolation through space. Ordinary kriging uses a random function model of spatial
correlation to calculate a weighted linear combination of the available samples to predict the response for an
unmeasured location. Universal kriging is a modification of ordinary kriging that allows for spatial trends.
We say no more about models for spatial prediction here; details can be found in Kaluzny et al. (1998). Our
concern is with using spatial information in the interpretation of experimental or observational studies that
have a single response variable. The emphasis is on using location-specific measurements to model the spatial
autocorrelation structure of the data.

The idea of a variogram is to illustrate the way in which spatial variance increases with spatial scale (or
alternatively, how correlation between neighbours falls off with distance). Confusingly, R has two functions
with the same name: variogram (lower-case ‘v’) is in the spatial library and Variogram (upper-case
‘V’) is in nlme. Their usage is contrasted here for the ragwort data (p. 845).

858 THE R BOOK

To use variogram from the spatial library, you need to create a trend surface or a kriging object with
columns x, y and z. The first two columns are the spatial coordinates, while the third contains the response
variable (basal stem diameter in the case of the ragwort data):

library(spatial)
data <- read.table("c:\\temp\\ragwortmap2006.txt",header=T)
attach(data)
names(data)

[1] "stems" "diameter" "xcoord" "ycoord"

dts <- data.frame(x=xcoord,y=ycoord,z=diameter)

Next, you need to create a trend surface using a function such as surf.ls:

surface <- surf.ls(2,dts)

This trend surface object is then the first argument to variogram, followed by the number of bins (here
300). The function computes the average squared difference for pairs with separation in each bin, returning
results for bins that contain six or more pairs:

variogram(surface,300)

4
6

yp 8
10

12

0 500 1000 1500 2000
xp

2500 3000

The sister function is correlogram, which takes identical arguments:

correlogram(surface,300)

SPATIAL STATISTICS 859

–1
.0

–0
.5

0.
0

0.
5

1.
0

yp

0 500 1000 1500 2000
xp

2500 3000

The positive correlations have disappeared by about 100 cm. The correlations at xp = 3000 are spurious
edge effects.

For the Variogram function in the nlme library, you need to fit a model (typically using gls or lme),
then provide the model object along with a form function in the call:

library(nlme)
model <- gls(diameter~xcoord+ycoord)
plot(Variogram(model,form= ~xcoord+ycoord))

0.
2

0.
4

0.
6

S
em

iv
ar

io
gr

am

0.
8

1.
0

500 1000 1500
Distance

2000 2500

860 THE R BOOK

26.6 Regression models with spatially correlated errors: Generalized least squares

In Chapter 19 we looked at the use of linear mixed-effects models for dealing with random effects and
temporal pseudoreplication. Here we illustrate the use of generalized least squares (GLS) for regression
modelling where we would expect neighbouring values of the response variable to be correlated. The great
advantage of the gls function is that the errors are allowed to be correlated and/or to have unequal variances.
The gls function is part of the nlme package:

library(nlme)

The following example is a geographic-scale trial to compare the yields of 56 different varieties of wheat.
What makes the analysis more challenging is that the farms carrying out the trial were spread out over a wide
range of latitudes and longitudes.

spatialdata <- read.table("c:\\temp\\spatialdata.txt",header=T)
attach(spatialdata)
names(spatialdata)

[1] "Block" "variety" "yield" "latitude" "longitude"

We begin with graphical data inspection to see the effect of location on yield:

windows(7,4)
par(mfrow=c(1,2))
plot(latitude,yield,pch=21,col="blue",bg="red")
plot(longitude,yield,pch=21,col="blue",bg="red")

0
10

20yi
el

d

30
40

0
10

20yi
el

d

30
40

latitude
10 20 30 40

longitude
5 10 15 20 25

There are clearly big effects of latitude and longitude on both the mean yield and the variance in yield.
The latitude effect looks like a threshold effect, with little impact for latitudes less than 30. The longitude
effect looks more continuous but there is a hint of non-linearity (perhaps even a hump). The varieties differ
substantially in their mean yields:

windows(7,7)
barplot(sort(tapply(yield,variety,mean)),col="green")

SPATIAL STATISTICS 861

0
5

10
15

20
25

30

NE83432 NE87612 NORKAN NE85556 TMA107 NE86501

The lowest-yielding varieties are producing about 20 and the highest about 30 kg of grain per unit area. There
are also substantial block effects on yield:

tapply(yield,Block,mean)

1 2 3 4
27.57500 28.81091 24.42589 21.42807

Here is the simplest possible analysis – a one-way analysis of variance using variety as the only explanatory
variable:

model1 <- aov(yield~variety)
summary(model1)

Df Sum Sq Mean Sq F value Pr(>F)
variety 55 2387 43.41 0.73 0.912
Residuals 168 9990 59.47

This says that there are no significant differences between the yields of the 56 varieties. We can try a split-plot
analysis (see p. 519) using varieties nested within blocks:

Block <- factor(Block)
model2 <- aov(yield~Block+variety+Error(Block))
summary(model2)

Error: Block
Df Sum Sq Mean Sq

Block 3 1854 617.9

Error: Within

862 THE R BOOK

Df Sum Sq Mean Sq F value Pr(>F)
variety 55 2389 43.43 0.881 0.702
Residuals 165 8135 49.30

This has made no difference to our interpretation. We could fit latitude and longitude as covariates:

model3 <- aov(yield~Block+variety+latitude+longitude)
summary(model3)

Df Sum Sq Mean Sq F value Pr(>F)
Block 3 1854 617.9 19.858 5.07e-11 ***
variety 55 2389 43.4 1.396 0.0565 .
latitude 1 686 686.1 22.051 5.60e-06 ***
longitude 1 2378 2377.6 76.414 2.69e-15 ***
Residuals 163 5072 31.1

This makes an enormous difference. Now the differences between varieties are close to significance (p =
0.0565).

Finally, we could use a GLS model to introduce spatial covariance between yields from locations that are
close together. We begin by making a grouped data object:

space <- groupedData(yield~variety|Block)

We use this to fit a model using gls which allows the errors to be correlated and to have unequal variances.
We shall add these sophistications later:

model4 <- gls(yield~variety-1,space)
summary(model4)

Generalized least squares fit by REML
Model: yield ~ variety - 1
Data: space

AIC BIC logLik
1354.742 1532.808 -620.3709

Coefficients:
Value Std.Error t-value p-value

varietyARAPAHOE 29.4375 3.855687 7.634827 0
varietyBRULE 26.0750 3.855687 6.762738 0
varietyBUCKSKIN 25.5625 3.855687 6.629818 0
varietyCENTURA 21.6500 3.855687 5.615083 0

and so on, for all 56 varieties. The variety means are given, rather than differences between means, because
we removed the intercept from the model by using yield~variety-1 rather than yield~variety in
the model formula (see p. 398).

Now we want to include the spatial covariance. The Variogram function is applied to model4
like this:

plot(Variogram(model4,form=~latitude+longitude))

SPATIAL STATISTICS 863

0.
2

0.
4

0.
6

S
em

iv
ar

io
gr

am 0.
8

1.
0

1.
2

10
Distance

403020

Table 26.1. Spatial correlation structures. Options for specifying the form and
distance dependence of spatial correlation in generalized least squares models.
For more detail, see the help on ?corClasses and on the individual
correlation structures (e.g. ?corExp).

corExp exponential spatial correlation
corGaus Gaussian spatial correlation
corLin linear spatial correlation
corRatio rational quadratic spatial correlation
corSpher spherical spatial correlation
corSymm general correlation matrix, with no additional structure

The sample variogram increases with distance, illustrating the expected spatial correlation. Extrapolating
back to zero distance, there appears to be a nugget of about 0.2. There are several assumptions we could make
about the spatial correlation in these data. For instance, we could try a spherical correlation structure, using
the corSpher class (the range of options for spatial correlation structure is shown in Table 26.1). We need
to specify the distance at which the semivariogram first reaches 1. Inspection shows this distance to be about
28. We can update model4 to include this information:

model5 <- update(model4,
corr=corSpher(c(28,0.2),form=~latitude+longitude,nugget=T))

summary(model5)

Generalized least squares fit by REML
Model: yield ~ variety - 1
Data: space

AIC BIC logLik
1185.863 1370.177 -533.9315

864 THE R BOOK

Correlation Structure: Spherical spatial correlation
Formula: ~latitude + longitude
Parameter estimate(s):

range nugget
27.4574777 0.2093144

Coefficients:
Value Std.Error t-value p-value

varietyARAPAHOE 26.65898 3.437352 7.755672 0
varietyBRULE 25.84956 3.441792 7.510496 0
varietyBUCKSKIN 34.84837 3.478290 10.018822 0
varietyCENTURA 25.09472 3.458867 7.255186 0
varietyCENTURK78 26.33425 3.477919 7.571840 0
varietyCHEYENNE 24.67327 3.438914 7.174727 0

This is a big improvement, and AIC has dropped from 1354.742 to 1185.863. The range (27.46) and nugget
(0.209) are very close to our visual estimates.

There are other kinds of spatial model, of course. We might try a rational quadratic model (corRatio);
this needs an estimate of the distance at which the semivariogram is (1 + nugget)/2 = 1.2/2 = 0.6, as well
as an estimate of the nugget. Inspection gives a distance of about 12.5, so we write:

model6 <- update(model4,
corr=corRatio(c(12.5,0.2),form=~latitude+longitude,nugget=T))

We can use anova to compare the two spatial models:

anova(model5,model6)

Model df AIC BIC logLik
model5 1 59 1185.863 1370.177 -533.9315
model6 2 59 1183.278 1367.592 -532.6389

The rational quadratic model (model6) has the lower AIC and is therefore preferred to the spherical model.
To test for the significance of the spatial correlation parameters we need to compare the preferred spatial
model6 with the non-spatial model4 (which assumed spatially independent errors):

anova(model4,model6)

Model df AIC BIC logLik Test L.Ratio p-value
model4 1 57 1354.742 1532.808 -620.3709
model6 2 59 1183.278 1367.592 -532.6389 1 vs 2 175.464 <.0001

The two extra degrees of freedom used up in accounting for the spatial structure are clearly justified. We need
to check the adequacy of the corRatio model. This is done by inspection of the sample variogram for the
normalized residuals of model6:

plot(Variogram(model6,resType="n"))

SPATIAL STATISTICS 865

0.
2

0.
4

0.
6

S
em

iv
ar

io
gr

am

10
Distance

403020

There is no pattern in the plot of the sample variogram, so we conclude that the rational quadratic is adequate.
To check for constancy of variance, we can plot the normalized residuals against the fitted values like this:

plot(model6,resid(., type="n")~fitted(.),abline=0)

2
1

0
–1

–2
–3

N
or

m
al

iz
ed

 r
es

id
ua

ls

20
Fitted values

353025

and the normal plot is obtained in the usual way:

qqnorm(model6,~resid(.,type="n"))

866 THE R BOOK

2
3

1
0

–1
–2

–3

Q
ua

nt
ile

s
of

 s
ta

nd
ar

d
no

rm
al

–3 –2 –1 0 1 2
Normalized residuals

The model looks fine.
The next step is to investigate the significance of any differences between the varieties. Use update to

change the structure of the model from yield~variety-1 to yield~variety:

model7 <- update(model6,model=yield~variety)
anova(model7)

Denom. DF: 168
numDF F-value p-value

(Intercept) 1 30.399419 <.0001
variety 55 1.850939 0.0015

The differences between the varieties now appear to be highly significant (recall that they were only marginally
significant with our linear model3 using analysis of covariance to take account of the latitude and longitude
effects). Specific contrasts between varieties can be carried out using the L argument to anova. Suppose that
we want to compare the mean yields of the first and third varieties. To do this, we set up a vector of contrast
coefficients c(-1,0,1) and apply the contrast like this:

anova(model6,L=c(-1,0,1))

Denom. DF: 168
F-test for linear combination(s)
varietyARAPAHOE varietyBUCKSKIN

-1 1
numDF F-value p-value

1 1 7.696728 0.0062

Note that we use model6 (with all the variety means), not model7 (with an intercept and Helmert contrasts).
The specified varieties, Arapahoe and Buckskin, exhibit highly significant differences in mean yield.

SPATIAL STATISTICS 867

26.7 Creating a dot-distribution map from a relational database

Here is an example of extracting a relatively small subset of data from a large relational database, and using
the information to produce a dot distribution map. The Access database contains two related tables:

� sites contains information on 2628 locations;

� records contains lists of species found at each site (43 001 in total).

The two tables are related by a variable called site number. The task is to extract eastings and northings
for each record of a named species, and use these to produce a dot-distribution map, with one dot for each
site at which that particular species was recorded.

Instructions on how to make an open database connection are on p. 154. I assume that you have downloaded
the Access database calledberks.accdb from this book’s website (see p. iii) and created an ODBC channel
called berks on your computer. Open the channel to connect R to the Access database, using the function
odbcConnect:

library(RODBC)
channel <- odbcConnect("berks")

To complete the map you need to:

� read a file of x and y coordinates for the outline of the region being mapped (the county of Berkshire in
this example);

� draw the outline on a plot without any labelling on the axes;

� use axis to label using single digits (the grid references have 5 digits);

� add a grid using abline with grey lines;

� specify a species to map;

� read the coordinates for this species into R from the Access database;

� use points to add the distribution dots to the map.

Here is the outline of the county of Berkshire:

data<-read.table("c:\\temp\\vc22outline.txt",header=T)
attach(data)

Now plot the outline of the county on blank axes:

plot(e,n,type="l",xaxt="n",yaxt="n",xlab="",ylab="")

The next task is to label the 100 km squares with a single digit on each of the axes:

axis(1,seq(20000,100000,10000),seq(2,10,1))
axis(2,seq(60000,110000,10000),seq(6,11,1))

Produce a grid for the 100 km squares in grey:

abline(v=10000*(2:10),col="gray")
abline(h=10000*(6:11),col="gray")

Use the mouse to stretch or contract the left and bottom margins of the graphics window until the grids make
perfect squares.

868 THE R BOOK

Next, write a function called mapit to specify the name of the species whose data you want to extract
from the database, and use this name to construct a query that will extract information for all of the sites at
which the named species is found. Finally, execute the query using sqlQuery to create a dataframe in R
containing the necessary eastings and northings (the x and y coordinates for the dots to be added to the map):

mapit <- function(x) {
mapname <- x
query <- paste(
"SELECT sites.easting, sites.northing
FROM records
INNER JOIN sites ON records.site=sites.[site number]
WHERE records.trimmed ='", mapname, "'", sep='')

mysites <- sqlQuery(channel, query)

with(mysites,points(easting,northing,pch=16,col="red"))
}
The two tables in the database are related by shared variables called site and site number, respectively.
The square brackets deal with the gap in the variable name. Run the function by specifying the name of the
species you want to map (Viscum album):

mapit("Viscum album")

This will extract the coordinates and add the distribution dots to the map in red:

6
7

8
9

10
11

2 3 4 5 6 7 8 9 10

Note how the variable name (mapname,which is"Viscum album" in this example) has been incorporated
into the WHERE part of the query using the paste function. The way the two tables, sites and records,
are related is specified in the INNER JOIN part of the query. The longer of the two tables (records) is
specified in the FROM part of the query. The key here is in dealing correctly with the single quotes that need
to appear around the species name inside the WHERE part of the query character string.

27
Survival Analysis

A great many studies in statistics deal with deaths or with failures of components: they involve the numbers
of deaths, the timing of death, or the risks of death to which different classes of individuals are exposed. The
analysis of survival data is a major focus of the statistics business (see Kalbfleisch and Prentice, 1980; Miller,
1981; Fleming and Harrington 1991), for which R supports a wide range of tools. The main theme of this
chapter is the analysis of data that take the form of measurements of the time to death, or the time to failure
of a component. Up to now, we have dealt with mortality data by considering the proportion of individuals
that were dead at a given time. In this chapter each individual is followed until it dies, then the time of death
is recorded (this will be the response variable). Individuals that survive to the end of the experiment will die
at an unknown time in the future; they are said to be censored (as explained below).

27.1 A Monte Carlo experiment

With data on time to death, the most important decision to be made concerns the error distribution. The
key point to understand is that the variance in age at death is almost certain to increase with the mean, and
hence standard models (assuming constant variance and normal errors) will be inappropriate. You can see
this at once with a simple Monte Carlo experiment. Suppose that the per-week probability of failure of a
component is 0.1 from one factory but 0.2 from another. We can simulate the fate of an individual component
in a given week by generating a uniformly distributed random number between 0 and 1. If the value of the
random number is less than or equal to 0.1 (or 0.2 for the second factory), then the component fails during
that week and its lifetime can be calculated. If the random number is larger than 0.1 (or 0.2, respectively),
then the component survives to the next week. The lifetime of the component is simply the number of the
week in which it finally failed. Thus, a component that failed in the first week has an age at failure of 1 (this
convention means that there are no zeros in the dataframe).

The simulation is very simple. We create a vector of random numbers, rnos, that is long enough to be
certain to contain a value that is less than our failure probabilities of 0.1 and 0.2. Remember that the mean
life expectancy is the reciprocal of the failure rate, so our mean lifetimes will be 1/0.1 = 10 and 1/0.2 = 5
weeks, respectively. A length of 100 should be more than sufficient:

rnos <- runif(100)

The trick is to find the week number in which the component failed; this is the lowest subscript for
which rnos <=0.1 for factory 1. We can do this very efficiently using the which function: which

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

870 THE R BOOK

returns a vector of subscripts for which the specified logical condition is true. So for factory 1 we would
write:

which(rnos<= 0.1)

[1] 5 8 9 19 29 33 48 51 54 63 68 74 80 83 94 95

This means that 16 of my first set of 100 random numbers were less than or equal to 0.1. The important
point is that the first such number occurred in week 5. So the simulated value of the age of death of this first
component is 5 and is obtained from the vector of failure ages using the subscript [1]:

which(rnos<= 0.1)[1]

[1] 5

All we need to do to simulate the life spans of a sample of 30 components, death1, is to repeat the above
procedure 30 times:

death1 <- numeric(30)
for (i in 1:30){
rnos <- runif(100)
death1[i] <- which(rnos<= 0.1)[1]
}
death1

[1] 5 8 7 23 5 4 18 2 6 4 10 12 7 3 5 17 1 3 2 1 12
[22] 8 2 12 6 3 13 16 3 4

The fourth component survived for a massive 23 weeks but the 17th component failed during its first week.
The simulation has roughly the right average weekly failure rate:

1/mean(death1)

[1] 0.1351351

which is as close to 0.1 as we could reasonably expect from a sample of only 30 components.
Now we do the same for the second factory with its failure rate of 0.2:

death2 <- numeric(30)
for (i in 1:30) {
rnos <- runif(100)
death2[i] <- which(rnos<= 0.2)[1] }

The sample mean is again quite reasonable (the real hazard was 0.20):

1/mean(death2)

[1] 0.2205882

We now have the simulated raw data to carry out a comparison in age at death between factories 1 and 2.
We combine the two vectors into one, and generate a vector to represent the factory identities:

death <- c(death1,death2)
factory <- factor(c(rep(1,30),rep(2,30)))

SURVIVAL ANALYSIS 871

We get a visual assessment of the data as follows:

plot(factory,death,xlab="factory",ylab="age at failure",col="wheat3")

25
20

15
10

5
0

1 2factory

ag
e

at
 fa

ilu
re

The median age at death for factory 1 is somewhat greater, but the variance in age at death is much higher
than from factory 2. For data like this we expect the variance to be proportional to the square of the mean,
so an appropriate error structure is the gamma (as explained below). We model the data very simply as a
one-way analysis of deviance using glm with family=Gamma (note the upper-case ‘G’):

model1 <- glm(death~factory,Gamma)
summary(model1)

Call:
glm(formula = death ~ factory, family = Gamma)

Coefficients:
Estimate Std. Error t value Pr(>| t |)

(Intercept) 0.13514 0.02218 6.092 9.6e-08 ***
factory2 0.08545 0.04246 2.013 0.0488 *

(Dispersion parameter for Gamma family taken to be 0.8082631)
Null deviance: 44.067 on 59 degrees of freedom

Residual deviance: 40.501 on 58 degrees of freedom
AIC: 329.62
Number of Fisher Scoring iterations: 6

We conclude that the factories are marginally significantly different in mean age at failure of these components
(p = 0.0488). So, even with a twofold difference in the true failure rate, it is hard to detect a significant

872 THE R BOOK

difference in mean age at death with samples of size n = 30. The moral is that for data like this on age at
death you are going to need really large sample sizes in order to find significant differences.

It is good practice to remove variable names (like death) that you intend to use later in the same session
(see p. 10):

rm(death)

27.2 Background

Since everything dies eventually, it is often not possible to analyse the results of survival experiments in terms
of the proportion that were killed (as we did in Chapter 16); in due course, they all die. Look at the following
figure:

600 20 40
time

80 100 120

su
rv

iv
or

s
1.

0
0.

8
0.

6
0.

4
0.

2
0.

0

It is clear that the two treatments (red and blue) caused different patterns of mortality, but both start out with
100% survival and both end up with zero. We could pick some arbitrary point in the middle of the distribution
at which to compare the percentage survival (say at time 54, shown by the vertical green dashed line, where
the red curve shows 38% survival but the blue curve shows 60% survival), but this may be difficult in practice,
because one or both of the treatments might have few observations at the same location. Also, the choice of
when to measure the difference is entirely subjective and hence open to bias. It is much better to use R’s
powerful facilities for the analysis of survival data than it is to pick an arbitrary time at which to compare two
proportions.

Demographers, actuaries and ecologists use three interchangeable concepts when dealing with data on the
timing of death: survivorship, age at death and instantaneous risk of death. There are three broad patterns
of survivorship (named by the eminent American animal ecologist Edward Deevey in 1947): Type I, where
most of the mortality occurs late in life (e.g. humans); Type II, where mortality occurs at a roughly constant

SURVIVAL ANALYSIS 873

rate throughout life; and Type III, where most of the mortality occurs early in life (e.g. salmonid fishes). On
a log scale, the numbers surviving over time would look like this:

600 20 40

time

80 100 120

lo
g(

su
rv

io
rs

)

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

27.3 The survivor function

The survivorship curve plots the natural log of the proportion of a cohort of individuals starting out at time
0 that is still alive at time t. For the so-called Type II survivorship curve (the red line above), there is a
linear decline in log numbers with time. This means that a constant proportion of the individuals alive at the
beginning of a time interval will die during that time interval (i.e. the proportion dying is independent of
density and constant for all ages). When the death rate is highest for the younger age classes we get Type III
survivorship curve, which descends steeply at first, with the rate of descent easing later on. When it is the
oldest animals that have the highest risk of death (as in the case of human populations in affluent societies
where there is low infant mortality) we obtain the Type I curve, which has a shallow descent to start, becoming
steeper later.

27.4 The density function

The density function describes the fraction of all deaths from our initial cohort that are likely to occur in
a given brief instant of time. For the Type II curve this is a negative exponential. Because the fraction of
individuals dying is constant with age, the number dying declines exponentially as the number of survivors
(the number of individuals at risk of death) declines exponentially with the passage of time. The density
function declines more steeply than exponentially for Type III survivorship curves. In the case of Type I
curves, however, the density function has a maximum at the time when the product of the risk of death and
the number of survivors is greatest (see below).

874 THE R BOOK

27.5 The hazard function

The hazard is the instantaneous risk of death. It is the instantaneous rate of change in the log of the number
of survivors per unit time. Thus, for the Type II survivorship the hazard function is a horizontal line, because
the risk of death is constant with age. Although this sounds highly unrealistic, it is a remarkably robust
assumption in many applications. It also has the substantial advantage of parsimony. In some cases, however,
it is clear that the risk of death changes substantially with the age of the individuals, and we need to be
able to take this into account in carrying out our statistical analysis. In the case of Type III survivorship,
the risk of death declines with age, while for Type I survivorship (as in humans) the risk of death increases
with age.

27.6 The exponential distribution

This is a one-parameter distribution in which the hazard function is independent of age (i.e. it describes a
Type II survivorship curve). The exponential is a special case of the gamma distribution in which the shape
parameter α is equal to 1.

27.6.1 Density function

The density function is the probability of a death occurring in the small interval of time between t and
t + dt, and a plot of the number dying in the interval around time t as a function of t (i.e. the proportion of
the original cohort dying at a given age) declines exponentially:

f (t) = e−t/µ

µ
,

where both µ and t are greater than 0. Note that the density function has an intercept of 1/µ (remember that e0

is 1). The number from the initial cohort dying per unit time declines exponentially with time, and a fraction
1/µ dies during the first time interval (and, indeed, during every subsequent time interval).

27.6.2 Survivor function

This shows the proportion of individuals from the initial cohort born at time 0 still alive at time t:

S(t) = e−t/µ.

The survivor function has an intercept of 1 (i.e. all the cohort is alive at time 0), and shows the probability
of surviving at least as long as t.

27.6.3 Hazard function

This is the statistician’s equivalent of the ecologist’s instantaneous death rate. It is defined as the ratio between
the density function and the survivor function, and is the conditional density function at time t, given survival
up to time t. In the case of Type II curves this has an extremely simple form:

h(t) = f (t)

S(t)
= e−t/µ

µe−1/µ
= 1

µ
,

SURVIVAL ANALYSIS 875

because the exponential terms cancel out. Thus, with the exponential distribution the hazard is the reciprocal
of the mean time to death, and vice versa. For example, if the mean time to death is 25 weeks, then
the hazard is 0.04; if the hazard were to increase to 0.05, then the mean time of death would decline to
20 weeks.

The survivor, density and hazard functions of the exponential distribution are as follows (note the changes
of scale on the y axes):

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100
time

hazard

survivor density

time

time

S
(t

)
h(

t)

f(
t)

1.
0

0.
04

0.
02

0.
00

0.
8

0.
6

0.
4

0.
2

0.
0

0.
06

0.
04

0.
02

0.
00

Of course, the death rate may not be constant with age. For example, the death rate may be high for very
young as well as for very old animals, in which case the survivorship curve is like an S shape on its side.

27.7 Kaplan–Meier survival distributions

The response in a survival analysis an initially perplexing object called a Kaplan–Meier object. There are
two parts to it: the survival part and the status part. The Kaplan–Meier survival distribution is a discrete
stepped survivorship curve that accrues information as each death occurs. Suppose we had n = 5 indi-
viduals and that the times at death were 12, 17, 29, 35 and 42 weeks after the beginning of a trial. The
survival curve is horizontal at 1.0 until the first death occurs at time 12. The curve then steps down to
0.8 because 80% of the initial cohort is now alive. It continues at 0.8 until time 17 when the curve steps
down to 0.6 (40% of the individuals are now dead). And so on until all of the individuals are dead at
time 42.

876 THE R BOOK

0 10 20
time

Kaplan–Meier

30 40 50

S
(t

)
1.

0
0.

8
0.

6
0.

4
0.

2
0.

0

In general, therefore, we have two variables at any one time: the number of deaths, d(ti), and the number
at risk, r(ti) (i.e. those that have not yet died: the survivors). The Kaplan–Meier survivor function is

ŜKM =
∏

ti <t

r (ti) − d(ti)

r (ti)

which, as we have seen, produces a step at every time at which one or more deaths occurs.
Sometimes we know when an individual was last seen alive, but not the age at which it died. Patients may

leave a study for all sorts of reasons (recovery, emigration, etc.) and it is important that we make the maximum
use of the information that we have about them (even though we do not have a value for age at death, which
is the response variable). The status of individuals makes up the second component of the response object. It
is a vector showing for each individual whether its time value is an age at death or age when last seen alive.
Deaths are indicated by 1 and non-deaths by 0. The non-dead individuals are said to be censored. These
individuals have their ages shown by a + (‘plus’) on the plot, or after their age in a dataframe (thus 65 means
died at time 65, but 65+ means still alive when last seen at age 65). Censored individuals contribute to our
understanding of the shape of the survivorship curve but they do not contribute directly to our understanding
of the mean age at death.

27.8 Age-specific hazard models

In many circumstances, the risk of death increases with age. There are many models to chose from:

SURVIVAL ANALYSIS 877

Distribution Hazard

Exponential constant = 1

µ

Weibull αλ(λt)α−1

Gompertz bect

Makeham a + bect

Extreme value
1

σ
e(t−η)/σ

Rayleigh a + bt

The Rayleigh is obviously the simplest model in which hazard increases with time, but the Makeham is widely
regarded as the best description of hazard for human subjects. After infancy, there is a constant hazard (a)
which is due to age-independent accidents, murder, suicides, etc., with an exponentially increasing hazard in
later life. The Gompertz assumption was that ‘the average exhaustion of a man’s power to avoid death is such
that at the end of equal infinitely small intervals of time he has lost equal portions of his remaining power
to oppose destruction which he had at the commencement of these intervals’. Note that the Gompertz differs
from the Makeham only by the omission of the extra background hazard (a), and this becomes negligible in
old age. The Weibull distribution is very flexible because it can deal with hazards that increase with age in an
accelerating (α > 1) or decelerating (α < 1) manner with age.

These plots show how hazard changes with age for four of the hazard functions:

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100
time

Gompertz Weibull

Exponential Rayleigh

time

0 20 40 60 80 100
timetime

h(
t)

h(
t)

h(
t)

h(
t)

0.
00

30
0.

00
20

0.
00

10
0.

00
00

0.
00

30
0.

00
20

0.
00

10
0.

00
00

0.
00

30
0.

00
20

0.
00

10
0.

00
00

0.
00

30
0.

00
20

0.
00

10
0.

00
00

878 THE R BOOK

27.9 Survival analysis in R

There are three cases that concern us here:

� constant hazard and no censoring;

� constant hazard with censoring;

� age-specific hazard, with or without censoring.

The first case is dealt with very simply in R by specifying a generalized linear model with gamma errors.
The second case involves the use of exponential survival models with a censoring indicator (1 indicates that
the response is a time at death, 0 indicates that the individual was alive when last seen; see below and p.
883). The third case involves a choice between parametric models, based on the Weibull distribution, and
non-parametric techniques, based on the Cox proportional hazards model.

27.9.1 Parametric models

We are unlikely to know much about the error distribution in advance of the study, except that it will certainly
not be normal. In R we are offered several choices for the analysis of survival data:

� gamma;

� exponential;

� piecewise exponential;

� extreme value;

� log-logistic;

� lognormal;

� Weibull.

In practice, it is often difficult to choose between them. In general, the best solution is to try several distributions
and to pick the error structure that produces the minimum error deviance.

27.9.2 Cox proportional hazards model

This is the most widely used regression model for survival data. It assumes that the hazard is of the form

λ(t ; Zi) = λ0(t) ri (t),

where Zi(t) is the set of explanatory variables for individual i at time t. The risk score for subject i is

ri (t) = eβZi (t),

in which β is a vector of parameters from the linear predictor; λ0(t) is an unspecified baseline hazard function
that will cancel out in due course. The antilog guarantees that λ is positive for any regression model βZi(t).

SURVIVAL ANALYSIS 879

If a death occurs at time t*, then, conditional on this death occurring, the likelihood that it is individual i that
dies, rather than any other individual at risk, is

Li (β) = λ0(t∗)ri (t∗)∑
j Y j (t∗)λo(t∗)r j (t∗)

= ri (t∗)∑
j Y j (t∗)r j (t∗)

.

The product of these terms over all times of death, L(β) = ∏
Li (β), was christened a partial likelihood by

Cox (1972). This is clever, because maximizing log(L(β)) allows an estimate of β without knowing anything
about the baseline hazard function (λ0(t) is a nuisance variable in this context). The proportional hazards
model is nonparametric in the sense that it depends only on the ranks of the survival times.

27.9.3 Cox’s proportional hazard or a parametric model?

In cases where you have censoring, or where you want to use a more complex error structure, you will need
to choose between a parametric model, fitted using survreg, and a non-parametric model, fitted using
coxph. If you want to use the model for prediction, then you have no choice: you must use the parametric
survreg because coxph does not extrapolate beyond the last observation. Traditionally, medical studies
use coxph while engineering studies use survreg (so-called accelerated failure-time models), but both
disciples could fruitfully use either technique, depending on the nature of the data and the precise question
being asked. Here is a typical question addressed with coxph: ‘How much does the risk of dying decrease if
a new drug treatment is given to a patient?’ In contrast, parametric techniques are typically used for questions
like this: ‘What proportion of patients will die in 2 years based on data from an experiment that ran for just
4 months?’

27.10 Parametric analysis

The following example concerns survivorship of two cohorts of seedlings. All the seedlings died eventually,
so there is no censoring in this case. There are two questions:

� Was survivorship different in the two cohorts?

� Was survivorship affected by the size of the canopy gap in which germination occurred?

Here are the data:

seedlings <- read.table("c:\\temp\\seedlings.txt",header=T)
attach(seedlings)
names(seedlings)
[1] "cohort" "death" "gapsize"

We need to load the survival library:

library(survival)

We begin by creating a variable called status to indicate which of the data are censored:

status <- 1*(death>0)

There are no cases of censoring in this example, so all of the values of status are equal to 1.

880 THE R BOOK

The fundamental object in survival analysis is Surv(death,status), the Kaplan–Meier survivorship
object (see p. 875 for an introduction to this). We can plot it out using survfit like this:

plot(survfit(Surv(death,status)~1),ylab="Survivorship",xlab="Weeks",col=4)

0 5 10
week

15 20

S
ur

vi
vo

rs
hi

p

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

This shows the overall survivorship curve with the confidence intervals. All the seedlings were dead by week
21. Were there any differences in survival between the two cohorts?

model <- survfit(Surv(death,status)~cohort)
summary(model)

Call: survfit(formula = Surv(death, status) ~ cohort)

cohort=October
time n.risk n.event survival std.err lower 95% CI upper 95% CI

1 30 7 0.7667 0.0772 0.62932 0.934
2 23 3 0.6667 0.0861 0.51763 0.859
3 20 3 0.5667 0.0905 0.41441 0.775
4 17 2 0.5000 0.0913 0.34959 0.715
5 15 3 0.4000 0.0894 0.25806 0.620
6 12 1 0.3667 0.0880 0.22910 0.587
8 11 2 0.3000 0.0837 0.17367 0.518
9 9 4 0.1667 0.0680 0.07488 0.371

10 5 1 0.1333 0.0621 0.05355 0.332
11 4 1 0.1000 0.0548 0.03418 0.293
14 3 1 0.0667 0.0455 0.01748 0.254
16 2 1 0.0333 0.0328 0.00485 0.229
21 1 1 0.0000 NaN NA NA

SURVIVAL ANALYSIS 881

cohort=September
time n.risk n.event survival std.err lower 95% CI upper 95% CI

1 30 6 0.8000 0.0730 0.6689 0.957
2 24 6 0.6000 0.0894 0.4480 0.804
3 18 3 0.5000 0.0913 0.3496 0.715
4 15 3 0.4000 0.0894 0.2581 0.620
5 12 1 0.3667 0.0880 0.2291 0.587
6 11 2 0.3000 0.0837 0.1737 0.518
7 9 2 0.2333 0.0772 0.1220 0.446
8 7 2 0.1667 0.0680 0.0749 0.371
10 5 1 0.1333 0.0621 0.0535 0.332
11 4 1 0.1000 0.0548 0.0342 0.293
12 3 1 0.0667 0.0455 0.0175 0.254
14 2 2 0.0000 NaN NA NA

To plot these figures use plot(model) like this:

plot(model,col=c("red","blue"),ylab="Survivorship",xlab="week")

0 5 10
week

15 20

S
ur

vi
vo

rs
hi

p

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

The red line is for the October cohort and the blue line is for September. To see the median times at death for
the two cohorts, just type:

model

Call: survfit(formula = Surv(death, status) ~ cohort)
records n.max n.start events median 0.95LCL 0.95UCL

cohort=October 30 30 30 30 4.5 3 9
cohort=September 30 30 30 30 3.5 2 7

882 THE R BOOK

27.11 Cox’s proportional hazards

The median age at death was one week later in the October cohort, but look at the width of the confidence
intervals: 3 to 9 versus 2 to 7. Clearly there is no significant effect of cohort on time of death. What about gap
size? We start with a full analysis of covariance using coxph rather than survfit.

model1 <- coxph(Surv(death,status)~strata(cohort)*gapsize)
summary(model1)

Call:
coxph(formula = Surv(death, status) ~ strata(cohort) * gapsize)

n= 60, number of events= 60

coef exp(coef) se(coef) z Pr(>|z|)
gapsize -1.1863 0.3054 0.6210 -1.910 0.0561 .
gapsize:strata(cohort)cohort=September 0.5795 1.7852 0.8264 0.701 0.4831

exp(coef) exp(-coef) lower .95 upper .95
gapsize 0.3054 3.2749 0.09042 1.031
gapsize:strata(cohort)cohort=September 1.7852 0.5602 0.35341 9.018

Concordance= 0.659 (se = 0.077)
Rsquare= 0.076 (max possible= 0.993)
Likelihood ratio test= 4.73 on 2 df, p=0.09372
Wald test = 4.89 on 2 df, p=0.08682
Score (logrank) test = 5.04 on 2 df, p=0.08046

There is no evidence of any interaction (p = 0.483) and the main effect of gap size is not quite significant in
this model (p = 0.056). We fit the simpler model with no interaction:

model2 <- coxph(Surv(death,status)~strata(cohort)+gapsize)
anova(model1,model2)

Analysis of Deviance Table
Cox model: response is Surv(death, status)
Model 1: ~ strata(cohort) * gapsize
Model 2: ~ strata(cohort) + gapsize

loglik Chisq Df P(>|Chi|)
1 -146.95
2 -147.20 0.4945 1 0.4819

There is no significant difference in explanatory power, so we accept the simpler model without an interaction
term. Note that removing the interaction makes the main effect of gap size significant (p = 0.035):

summary(model2)

Call:
coxph(formula = Surv(death, status) ~ strata(cohort) + gapsize)

n= 60, number of events= 60

coef exp(coef) se(coef) z Pr(>|z|)
gapsize -0.8545 0.4255 0.4054 -2.108 0.035 *

exp(coef) exp(-coef) lower .95 upper .95
gapsize 0.4255 2.35 0.1922 0.9418

Concordance= 0.659 (se = 0.077)

SURVIVAL ANALYSIS 883

Rsquare= 0.068 (max possible= 0.993)
Likelihood ratio test= 4.24 on 1 df, p=0.03947
Wald test = 4.44 on 1 df, p=0.03504
Score (logrank) test = 4.54 on 1 df, p=0.03313

We conclude that the risk of seedling death is lower in bigger gaps (coef = -0.855), but this effect is
similar in the September and October germinating cohorts.

You see that the modelling methodology is exactly the same as usual: fit a complicated model and simplify
it to find a minimal adequate model. The only difference is the use of Surv(death,status) when the
response is a Kaplan–Meier object.

27.12 Models with censoring

Censoring occurs when we do not know the time of death for all of the individuals. This comes about
principally because some individuals outlive the experiment, while others leave the experiment before they
die. We know when we last saw them alive, but we have no way of knowing their age at death. These
individuals contribute something to our knowledge of the survivor function, but nothing to our knowledge of
the age at death. Another reason for censoring occurs when individuals are lost from the study: they may be
killed in accidents, they may emigrate, or they may lose their identity tags.

In general, then, our survival data may be a mixture of times at death and times after which we have no
more information on the individual. We deal with this by setting up an extra vector called the censoring
indicator to distinguish between the two kinds of numbers. If a time really is a time to death, then the
censoring indicator takes the value 1. If a time is just the last time we saw an individual alive, then the
censoring indicator is set to 0. Thus, if we had the following time data T and censoring indicator W on seven
individuals, this would mean that five of the times were times at death while in two cases, one at time 8 and
another at time 15, individuals were seen alive but never seen again:

T 4 7 8 8 12 15 22
W 1 1 0 1 1 0 1

With repeated sampling in survivorship studies, it is usual for the degree of censoring to decline as the
study progresses. Early on, many of the individuals are alive at the end of each sampling interval, whereas
few if any survive to the end of the last study period. We need to tidy up from the last example:

rm(status)
detach(seedlings)

The following example comes from a study of cancer patients undergoing one of four drug treatment
programmes (drugs A, B and C and a placebo):

cancer <- read.table("c:\\temp\\cancer.txt",header=T)
attach(cancer)
names(cancer)

[1] "death" "treatment" "status"

plot(survfit(Surv(death,status)~treatment),
col=c(1:4),ylab="Surivorship",xlab="Time")

884 THE R BOOK

0 10 20
Time

30 40

S
ur

vi
vo

rs
hi

p

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

The censored individuals are shown by crosses on the Kaplan–Meier plot, above. Of the non-censored
individuals, the mean ages at death were as follows:

tapply(death[status==1],treatment[status==1],mean)

DrugA DrugB DrugC placebo
9.480000 8.360000 6.800000 5.238095

The long tail is for drug A (black line). The latest deaths in the other treatments were at times 14 and 19. The
variances in age at death are dramatically different under the various treatments:

tapply(death[status==1],treatment[status==1],var)

DrugA DrugB DrugC placebo
117.51000 32.65667 27.83333 11.39048

27.12.1 Parametric models

The simplest model assumes a constant hazard: dist="exponential".

model1 <- survreg(Surv(death,status)~treatment,dist="exponential")
summary(model1)

Call:
survreg(formula = Surv(death, status) ~ treatment, dist = "exponential")

Value Std. Error z p
(Intercept) 2.448 0.200 12.238 1.95e-34
treatmentDrugB -0.125 0.283 -0.443 6.58e-01
treatmentDrugC -0.430 0.283 -1.520 1.28e-01
treatmentplacebo -0.333 0.296 -1.125 2.61e-01

Scale fixed at 1

SURVIVAL ANALYSIS 885

Exponential distribution
Loglik(model)= -310.1 Loglik(intercept only)= -311.5

Chisq= 2.8 on 3 degrees of freedom, p= 0.42
Number of Newton-Raphson Iterations: 4
n= 120

Under the assumption of exponential errors there are no significant effects of drug treatment on survivorship
(all p > 0.1). How about modelling non-constant hazard using Weibull errors instead (these are the default
for survreg)?

model2 <- survreg(Surv(death,status)~treatment)
summary(model2)

Call:
survreg(formula = Surv(death, status) ~ treatment)

Value Std. Error z p
(Intercept) 2.531 0.1572 16.102 2.47e-58
treatmentDrugB -0.191 0.2193 -0.872 3.83e-01
treatmentDrugC -0.475 0.2186 -2.174 2.97e-02
treatmentplacebo -0.454 0.2313 -1.963 4.96e-02
Log(scale) -0.260 0.0797 -3.264 1.10e-03

Scale= 0.771

Weibull distribution
Loglik(model)= -305.4 Loglik(intercept only)= -308.3

Chisq= 5.8 on 3 degrees of freedom, p= 0.12
Number of Newton-Raphson Iterations: 5
n= 120

The scale parameter 0.771, being less than 1, indicates that slope of the hazard decreases with age in this
study. Drug B is not significantly different from drug A (p = 0.38), but drug C and the placebo are significantly
poorer (p < 0.05). We can use anova to compare model1 and model2:

anova(model1,model2)

Terms Resid. Df -2*LL Test Df Deviance Pr(>Chi)
1 treatment 116 620.1856 NA NA NA
2 treatment 115 610.7742 = 1 9.4114 0.002156405

You can see that model2 with Weibull errors is significant improvement over model1 with exponential
errors (p = 0.002).

We can try amalgamating the factor levels – the analysis suggests that we begin by grouping A and B
together:

treat2 <- treatment
levels(treat2)

[1] "DrugA" "DrugB" "DrugC" "placebo"

levels(treat2)[1:2] <- "DrugsAB"
levels(treat2)

[1] "DrugsAB" "DrugC" "placebo"

886 THE R BOOK

model3 <- survreg(Surv(death,status)~treat2)
anova(model2,model3)

Terms Resid. Df -2*LL Test Df Deviance Pr(>Chi)
1 treatment 115 610.7742 NA NA NA
2 treat2 116 611.5190 1 vs. 2 -1 -0.744833 0.3881171

That model simplification was justified. What about drug C? Can we lump it together with the placebo?

levels(treat2)[2:3] <- "placeboC"
model4 <- survreg(Surv(death,status)~treat2)
anova(model3,model4)

Terms Resid. Df -2*LL Test Df Deviance Pr(>Chi)
1 treat2 116 611.5190 NA NA NA
2 treat2 117 611.5301 = -1 -0.01101309 0.9164208

Yes, we can. That simplification was clearly justified (p = 0.916):

summary(model4)

Call:
survreg(formula = Surv(death, status) ~ treat2)

Value Std. Error z p
(Intercept) 2.439 0.112 21.76 5.37e-105
treat2placeboC -0.374 0.160 -2.33 1.96e-02
Log(scale) -0.249 0.078 -3.20 1.39e-03

Scale= 0.779

Weibull distribution
Loglik(model)= -305.8 Loglik(intercept only)= -308.3

Chisq= 5.05 on 1 degrees of freedom, p= 0.025
Number of Newton-Raphson Iterations: 5
n= 120

We can summarize the results in terms of the mean age at death, taking account of the censoring:

tapply(predict(model4,type="response"),treat2,mean)

DrugsAB placeboC
11.459885 7.887685

Here are the uncorrected mean ages at death for those cases where we know the age of death:

tapply(death[status==1],treat2[status==1],mean)

DrugsAB placeboC
8.920000 6.086957

The greater the censoring, the bigger the difference will be.

detach(cancer)
rm(death, status)

SURVIVAL ANALYSIS 887

27.12.2 Comparing coxph and survreg survival analysis

Finally, we shall compare the methods, parametric and non-parametric, by analysing the same data set both
ways. It is an analysis of covariance with one continuous explanatory variable (initial weight) and one
categorical explanatory variable (group):

insects <- read.table("c:\\temp\\roaches.txt",header=T)
attach(insects)
names(insects)

[1] "death" "status" "weight" "group"

First, we plot the survivorship curves of the three groups:

plot(survfit(Surv(death,status)~group),col=c(2,3,4),ylab="Survivorship",
xlab="Time")

0 10 20
Time

30 40 50

S
ur

vi
vo

rs
hi

p

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

There are clearly big differences between the death rates in the three groups. The crosses + at the end of
the survivorship curves for groups A and B indicate that there was censoring in these groups (not all of the
individuals were dead at the end of the experiment).

We begin the modelling with parametric methods (survreg). We shall compare the default error dis-
tribution (Weibull, which allows for non-constant hazard with age) with the simpler exponential (assuming
constant hazard):

model1 <- survreg(Surv(death,status)~weight*group,dist="exponential")
summary(model1)

Call:
survreg(formula = Surv(death, status) ~ weight * group, dist = "exponential")

888 THE R BOOK

Value Std. Error z p
(Intercept) 3.8702 0.3854 10.041 1.00e-23
weight -0.0803 0.0659 -1.219 2.23e-01
groupB -0.8853 0.4508 -1.964 4.95e-02
groupC -1.7804 0.4386 -4.059 4.92e-05
weight:groupB 0.0643 0.0674 0.954 3.40e-01
weight:groupC 0.0796 0.0674 1.180 2.38e-01

Scale fixed at 1

Exponential distribution
Loglik(model)= -480.6 Loglik(intercept only)= -502.1

Chisq= 43.11 on 5 degrees of freedom, p= 3.5e-08
Number of Newton-Raphson Iterations: 5
n= 150

For model2 we employ the default Weibull distribution allowing non-constant hazard:

model2 <- survreg(Surv(death,status)~weight*group)
summary(model2)

Call:
survreg(formula = Surv(death, status) ~ weight * group)

Value Std. Error z p
(Intercept) 3.9506 0.5308 7.443 9.84e-14
weight -0.0973 0.0909 -1.071 2.84e-01
groupB -1.1337 0.6207 -1.826 6.78e-02
groupC -1.9841 0.6040 -3.285 1.02e-03
weight:groupB 0.0826 0.0929 0.889 3.74e-01
weight:groupC 0.0931 0.0930 1.002 3.16e-01
Log(scale) 0.3083 0.0705 4.371 1.24e-05

Scale= 1.36

Weibull distribution
Loglik(model)= -469.6 Loglik(intercept only)= -483.3

Chisq= 27.42 on 5 degrees of freedom, p= 4.7e-05
Number of Newton-Raphson Iterations: 5
n= 150

The fact that the scale parameter is greater than 1 indicates that the risk of death increases with age in this
case. We compare the two models in the usual way, using anova:

anova(model1,model2)

Terms Resid. Df -2*LL Test Df Deviance Pr(>Chi)
1 weight * group 144 961.1800 NA NA NA
2 weight * group 143 939.2261 = 1 21.95388 2.792823e-06

The Weibull model2 is vastly superior to the exponential (p < 0.000 01) so we continue with model2.
There is no evidence in model2 (summary above) of any interaction between weight and group (p =
0.374) so we simplify using step:

SURVIVAL ANALYSIS 889

model3 <- step(model2)

Start: AIC=953.23
Surv(death, status) ~ weight * group

Df AIC
- weight:group 2 950.30
<none> 953.23

Step: AIC=950.3
Surv(death, status) ~ weight + group

Df AIC
- weight 1 949.01
<none> 950.30
- group 2 967.75

Step: AIC=949.01
Surv(death, status) ~ group

Df AIC
<none> 949.01
- group 2 970.64

After eliminating the non-significant interaction (AIC = 950.30), R has removed the main effect of weight
(AIC = 949.01), but has kept the main effect of group (AIC of <none> is less than AIC of -group).

The minimal model with survreg is this:

summary(model3)

Call:
survreg(formula = Surv(death, status) ~ group)

Value Std. Error z p
(Intercept) 3.459 0.2283 15.15 7.20e-52
groupB -0.822 0.3097 -2.65 7.94e-03
groupC -1.540 0.3016 -5.11 3.28e-07
Log(scale) 0.314 0.0705 4.46 8.15e-06

Scale= 1.37

Weibull distribution
Loglik(model)= -470.5 Loglik(intercept only)= -483.3

Chisq= 25.63 on 2 degrees of freedom, p= 2.7e-06
Number of Newton-Raphson Iterations: 5
n= 150

It is clear that all three groups are required (B and C differ by 0.72, with standard error 0.31), so this is the
minimal adequate model. Here are the predicted mean ages at death:

tapply(predict(model3),group,mean)

A B C
31.796137 13.972647 6.814384

890 THE R BOOK

You can compare these with the mean ages of those insects that died

tapply(death[status==1],group[status==1],mean)

A B C
12.611111 9.568182 8.020000

and the ages when insects were last seen (dead or alive):

tapply(death,group,mean)

A B C
23.08 14.42 8.02

The predicted ages at death are substantially greater than the observed ages at last sighting when there is lots
of censoring (e.g. 31.8 vs. 23.08 for group A).

Here are the same data analysed with the Cox proportional hazards model:

model10 <- coxph(Surv(death,status)~weight*group)
summary(model10)

Call:
coxph(formula = Surv(death, status) ~ weight * group)

n= 150, number of events= 130
coef exp(coef) se(coef) z Pr(>|z|)

weight 0.06330 1.06535 0.06738 0.940 0.34747
groupB 0.79098 2.20555 0.45641 1.733 0.08309 .
groupC 1.28634 3.61953 0.45243 2.843 0.00447 **
weight:groupB -0.05568 0.94585 0.06878 -0.809 0.41824
weight:groupC -0.05869 0.94300 0.06897 -0.851 0.39481

exp(coef) exp(-coef) lower .95 upper .95
weight 1.0654 0.9387 0.9336 1.216
groupB 2.2056 0.4534 0.9016 5.395
groupC 3.6195 0.2763 1.4912 8.785
weight:groupB 0.9458 1.0573 0.8266 1.082
weight:groupC 0.9430 1.0604 0.8238 1.079

Concordance= 0.608 (se = 0.034)
Rsquare= 0.135 (max possible= 0.999)
Likelihood ratio test= 21.83 on 5 df, p=0.0005645
Wald test = 20.75 on 5 df, p=0.000903
Score (logrank) test = 22.05 on 5 df, p=0.0005132

As you see, the interaction terms are not significant (p > 0.39), so we simplify using step as before:

model11 <- step(model10)

Start: AIC=1113.54
Surv(death, status) ~ weight * group

Df AIC
- weight:group 2 1110.3
<none> 1113.5

SURVIVAL ANALYSIS 891

Step: AIC=1110.27
Surv(death, status) ~ weight + group

Df AIC
- weight 1 1108.8
<none> 1110.3
- group 2 1123.7

Step: AIC=1108.82
Surv(death, status) ~ group

Df AIC
<none> 1108.8
- group 2 1125.4

Note that the AIC values are different than they were with the parametric model. The interaction term is
dropped because this simplification reduces AIC to 1110.3. Then the covariate (weight) is dropped because
this simplification also reduces AIC (to 1108.8). But removing group would increase AIC to 1125.4, so this
is not done. The minimal model contains a main effect for group but no effect of weight:

summary(model11)

Call:
coxph(formula = Surv(death, status) ~ group)

n= 150, number of events= 130

coef exp(coef) se(coef) z Pr(>|z|)
groupB 0.5607 1.7520 0.2257 2.485 0.013 *
groupC 1.0084 2.7412 0.2263 4.456 8.33e-06 ***

exp(coef) exp(-coef) lower .95 upper .95
groupB 1.752 0.5708 1.126 2.727
groupC 2.741 0.3648 1.759 4.271

Concordance= 0.607 (se = 0.032)
Rsquare= 0.128 (max possible= 0.999)
Likelihood ratio test= 20.55 on 2 df, p=3.452e-05
Wald test = 19.86 on 2 df, p=4.865e-05
Score (logrank) test = 20.98 on 2 df, p=2.775e-05

To see what these numbers mean, it is a good idea to go back to the raw data on times of death (or last sighting
for the censored individuals). Here are the mean values of those that died:

tapply(death[status==1],group[status==1],mean)

A B C
12.611111 9.568182 8.020000

Evidently, individuals in group A lived a lot longer than those in group C. Compared with group C (the
minimum value), the mean age at death for group A expressed as a ratio is

12.61/8.02

[1] 1.572319

892 THE R BOOK

and for group B we have

12.61/9.57

[1] 1.317659

These figures are the approximate hazards for an individual in group C or B relative to an individual in group
A. In the coxph output of model11 they are labelled exp(coef). The model values are slightly different
from the raw means because of the way the model has dealt with censoring (14 censored individuals in group
A, six in group B and none in group C).

You should compare the outputs from the two functions coxph and survreg to make sure you un-
derstand their similarities and differences. One fundamental difference is that the parametric Kaplan–Meier
survivorship curves refer to the population, whereas Cox proportional hazards refer to an individual in a
particular group.

28
Simulation Models

Simulation modelling is an enormous topic, and all I intend here is to demonstrate a few very simple temporal
and spatial simulation techniques that give the flavour of what is possible in R.

Simulation models are used for investigating dynamics in time, in space, or in both space and time together.
For temporal dynamics we might be interested in:

� the transient dynamics (the behaviour after the start but before equilibrium is attained – if indeed equilibrium
is ever attained);

� equilibrium behaviour (after the transients have damped away);

� chaos (random-looking, but actually deterministic temporal dynamics that are extremely sensitive to initial
conditions).

For spatial dynamics, we might use simulation models to study:

� metapopulation dynamics (where local extinction and recolonization of patches characterize the long-term
behaviour, with constant turnover of occupied patches);

� neighbour relations (in spatially explicit systems where the performance of individuals is determined by
the identity and attributes of their immediate neighbours);

� pattern generation (dynamical processes that lead to the generation of emergent, but more or less coherent
patterns).

28.1 Temporal dynamics: Chaotic dynamics in population size

Biological populations typically increase exponentially when they are small, but individuals perform less
well as population density rises, because of competition, predation or disease. In aggregate, these effects on
birth and death rates are called density-dependent processes, and it is the nature of the density-dependent
processes that determines the temporal pattern of population dynamics. The simplest density-dependent

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

894 THE R BOOK

model of population dynamics is known as the quadratic map. It is a first-order non-linear difference
equation,

N (t + 1) = λN (t)[1 − N (t)],

where N(t) is the population size at time t, N(t + 1) is the population size at time t + 1, and the single parameter,
λ, is known as the per-capita multiplication rate. The population can only increase when the population is
small if λ > 1, the so-called invasion criterion. But how does the system behave as λ increases above 1?

We begin by simulating time series of populations for different values of λ and plotting them to see what
happens. First, here are the dynamics with λ = 2:

par(mfrow=c(2,2))
lambda <- 2
x <- numeric(40)
x[1] <- 0.6
for (t in 2 : 40) x[t] <- lambda * x[t-1] * (1 - x[t-1])
plot(1:40,x,type="l",ylim=c(0,1),ylab="population",

xlab="time",main="lambda = 2.0")

The population falls very quickly from its initial value (0.6) to equilibrium (N* = 0.5) and stays there; this
system has a stable point equilibrium. What if λ were to increase to 3.3?

lambda <- 3.3
x <- numeric(40)
x[1] <- 0.6
for (t in 2 : 40) x[t] <- lambda * x[t-1] * (1 - x[t-1])
plot(1:40,x,type="l",ylim=c(0,1),ylab="population",

xlab="time",main="lambda = 3.3")

Now the dynamics show persistent two-point cycles. What about λ = 3.5?

lambda <- 3.5
x <- numeric(40)
x[1] <- 0.6
for (t in 2 : 40) x[t] <- lambda * x[t-1] * (1 - x[t-1])
plot(1:40,x,type="l",ylim=c(0,1),ylab="population",

xlab="time",main="lambda = 3.5")

The outcome is qualitatively different. Now we have persistent four-point cycles. Suppose that λ were to
increase to 4:

lambda <- 4
x <- numeric(40)
x[1] <- 0.6
for (t in 2 : 40) x[t] <- lambda * x[t-1] * (1 - x[t-1])
plot(1:40,x,type="l",ylim=c(0,1),ylab="population",

xlab="time",main="lambda = 4.0")

SIMULATION MODELS 895

0 10 20
time

lambda = 2.0

30 40

po
pu

la
tio

n

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

0 10 20
time

lambda = 3.3

30 40

po
pu

la
tio

n

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

0 10 20
time

lambda = 3.5

30 40

po
pu

la
tio

n

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

0 10 20
time

lambda = 4.0

30 40

po
pu

la
tio

n

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

Now this is really interesting. The dynamics do not repeat in any easily described pattern. They are said to be
chaotic because the pattern shows extreme sensitivity to initial conditions: tiny changes in initial conditions
can have huge consequences on numbers at a given time in the future.

28.1.1 Investigating the route to chaos

We have seen four snapshots of the relationship between λ and population dynamics. To investigate this more
fully, we should write a function to describe the dynamics as a function of λ, and extract a set of (say, 20)
sequential population densities, after any transients have died away (after, say, 380 iterations):

numbers <- function (lambda) {
x <- numeric(400)
x[1] <- 0.6
for (t in 2 : 400) x[t] <- lambda * x[t-1] * (1 - x[t-1])
x[381:400] }

The idea is to plot these 20 values on the y axis of a new graph, against the value of λ that produced them.
A stable point equilibrium will be represented by a single point, because all 20 values of y will be identical.
Two-point cycles will show up as two points, four-point cycles as four points, but chaotic systems will appear
as many points. Start with a blank graph:

par(mfrow=c(1,1))
plot(c(2,4),c(0,1),type="n",xlab="lambda",ylab="population")

896 THE R BOOK

Now, simulate using a for loop a wide range of values for λ between 2 and 4 (the range we investigated
earlier), use the function sapply to apply our function to the current value of λ, and then use points to
add these results to the graph:

for(lam in seq(2,4,0.01))
points(rep(lam,20),sapply(lam,numbers),pch=16,cex=0.5,col="blue")

2.0 2.5 3.0
lambda

3.5 4.0

po
pu

la
tio

n

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

This graph shows what is called ‘the period-doubling route to chaos’; see May (1976) for details.

28.2 Temporal and spatial dynamics: A simulated random walk in two dimensions

The idea is to follow an individual as it staggers its way around a two-dimensional random walk, starting at
the point (50, 50) and leaving a trail of lines on a square surface which scales from 0 to 100. First, we need to
define what we mean by our random walk. Suppose that in the x direction the individual could move one step
to the left in a given time period, stay exactly where it is for the whole time period, or move one step to the
right. We need to specify the probabilities of these three outcomes. Likewise, in the y direction the individual
could move one step up in a given time period, stay exactly where it is for the whole time period, or move
one step down. Again, we need to specify probabilities. In R, the three movement options are c(1,0,-1)
for each of the types of motion (left, stay or right, and up, stay or down) and we might as well say that each
of the three motions is equally likely. We need to select one of the three motions at random independently for
the x and y directions at each time period. In R we use the sample function for this:

sample(c(1,0,-1),1)

which selects one value (the last argument is 1) with equal probability from the three listed options (+1, 0 or
–1). Out of 99 repeats of this procedure, we should expect an average of 33 ups and 33 downs, 33 lefts and
33 rights.

SIMULATION MODELS 897

We begin by defining the axes and drawing the start position in red:

plot(0:100,0:100,type="n",xlab="",ylab="")
x <- y <- 50
points(50,50,pch=16,col="red",cex=1.5)

Now simulate the spatial dynamics of the random walk with up to 10 000 time steps:

for (i in 1:10000) {
xi <- sample(c(1,0,-1),1)
yi <- sample(c(1,0,-1),1)
lines(c(x,x+xi),c(y,y+yi),col="blue")
x <- x+xi
y <- y+yi
if (x>100 | x<0 | y>100 | y<0) break
}

0 20 40 60 80 100

10
0

80
60

40
20

0

You could make the walk more sophisticated by providing wrap-around margins (see below). On average, of
course, the random walk should stay in the middle, where it started, but as you will see by running this model
repeatedly, most random walks do nothing of the sort. Instead, they wander off and fall over one of the edges
in more or less short order.

28.3 Spatial simulation models

There are two broad types of spatial simulation models:

� spatial models that are divided but not spatially explicit;

� spatially explicit models where neighbours can be important.

898 THE R BOOK

Metapopulation dynamics is a classic example of a spatial model that is not spatially explicit. Patches are
occupied or not, but the fate of a patch is not related to the fate of its immediate neighbours but rather by the
global supply of propagules generated by all the occupied patches in the entire metapopulation.

28.3.1 Metapopulation dynamics

The theory is very simple. The world is divided up into many patches, all of which are potentially habitable.
Populations on inhabited patches go extinct with a density-independent probability, e. Occupied patches all
contain the same population density, and produce migrants (propagules) at a rate m per patch. Empty patches
are colonized at a rate proportional to the total density of propagules and the availability of empty patches
that are suitable for colonization. The response variable is the proportion of patches that are occupied, p. The
dynamics of p, therefore, are just gains minus losses, so

dp

dt
= p(1 − p)m − ep.

At equilibrium dp/dt = 0, and so

p(1 − p)m = ep,

giving the equilibrium proportion of occupied patches p* as

p* = 1 − e

m
.

This draws attention to a critical result: there is a threshold migration rate (m = e) below which the metapop-
ulation cannot persist, and the proportion of occupied patches will drift inexorably to zero. Above this
threshold, the metapopulation persists in dynamic equilibrium with patches continually going extinct (the
mean lifetime of a patch is 1/e) and other patches becoming colonized by immigrant propagules. This model
is due to Levins (1969).

The simulation produces a moving cartoon of the occupied (yellow) and empty patches (red). We begin
by setting the parameter values

m <- 0.15
e <- 0.1

We create a square universe of 10 000 patches in a 100 × 100 array, but this is not a spatially explicit model,
and so the map-like aspects of the image should be ignored. The response variable is just the proportion of
all patches that are occupied. Here are the initial conditions, placing occupied 100 patches at random in a sea
of unoccupied patches:

s <- (1-e)
N <- matrix(rep(0,10000),nrow=100)
xs <- sample(1:100)
ys <- sample(1:100)
for (i in 1:100){
N[xs[i],ys[i]] <- 1 }
image(1:100,1:100,N)

SIMULATION MODELS 899

We want the simulation to run over 1000 generations:

for (t in 1:1000){
First we model the survival (or not) of occupied patches. Each cell of the universe gets an independent random
number from a uniform distribution (a real number between 0 and 1). If the random number is bigger than
or equal to the survival rate s (= 1 – e, above) then the patch survives for another generation. If the random
number is less than s, then the patch goes extinct and N is set to zero:

S <- matrix(runif(10000),nrow=100)
N <- N*(S<s)

Note that this one statement updates the whole matrix of 10 000 patches. Next, we work out the production
of propagules, im, by the surviving patches (the rate per patch is m):

im <- floor(sum(N*m))

We assume that the settlement of the propagules is random, some falling in empty patches but others being
‘wasted’ by falling in already occupied patches:

placed <- matrix(sample(c(rep(1,im) ,rep (0,10000-im))),nrow=100)
N <- N+placed
N <- apply(N,2,function(x) ifelse(x>1,1,x))

The last line is necessary to keep the values of N just 0 (empty) or 1 (occupied) because our algorithm gives
N = 2 when a propagule falls in an occupied patch. Now we can draw the map of the occupied patches:

image(1:100,1:100,N,add=TRUE)
box(col="red")
}
Because the migration rate (m = 0.15) exceeds the extinction rate (e = 0.1) the metapopulation is predicted
to persist. The analytical solution for the long-term proportion of patches occupied is one-third of patches
(1 – 0.1/0.15 = 0.333). At any particular time of stopping the simulation, you can work out the actual
proportion occupancy as

sum(N)/length(N)

[1] 0.268

because there were 2680 occupied patches in this map at the time we stopped. Here is the code in one block:

m <- 0.15
e <- 0.1
s <- (1-e)
N <- matrix(rep(0,10000),nrow=100)
xs <- sample(1:100)
ys <- sample(1:100)
for (i in 1:100){
N[xs[i],ys[i]] <- 1 }
image(1:100,1:100,N)

for (t in 1:1000){
S <- matrix(runif(10000),nrow=100)
N <- N*(S<s)

900 THE R BOOK

im <- floor(sum(N*m))
placed <- matrix(sample(c(rep(1,im) ,rep (0,10000-im))),nrow=100)
N <- N+placed
N <- apply(N,2,function(x) ifelse(x>1,1,x))
image(1:100,1:100,N,add=TRUE)
box(col="red")
}

20 40 60
1:100

1:
10

0

80 100

10
0

80
60

40
20

0

Remember that a metapopulation model is not spatially explicit, so you should not read anything into any
the apparent neighbour relations in this graph (the occupied patches should be distributed at random over
the surface).

28.3.2 Coexistence resulting from spatially explicit (local) density dependence

We have two species which would not coexist in a well-mixed environment because the fecundity of species
A is greater than the fecundity of species B, and this would lead, sooner or later, to the competitive exclusion
of species B and the persistence of a monoculture of species A. The idea is to see whether the introduction of
local neighbourhood density dependence is sufficient to prevent competitive exclusion and allow long-term
coexistence of the two species.

The kind of mechanism that might allow such an outcome is the build-up of specialist natural enemies such
as insect herbivores or fungal pathogens in the vicinity of groups of adults of species A, that might prevent
recruitment by species A when there were more than a threshold number, say T, of individuals of species A
in a neighbourhood.

The problem with spatially explicit models is that we have to model what happens at the edges of the
universe. All locations need to have the same numbers of neighbours in the model, but patches on the edge
have fewer neighbours than those in the middle. The simplest solution is to model the universe as having
‘wrap-around margins’ in which the left-hand edge is assumed to have the right-hand edge as its left-hand
neighbour (and vice versa), while the top edge is assumed to have the bottom edge as its neighbour above
(and vice versa). The four corners of the universe are assumed to be reciprocal diagonal neighbours.

SIMULATION MODELS 901

We need to define who is a neighbour of whom. The simplest method, adopted here, is to assume a square
grid in which a central cell has eight neighbours – three above, three below and one to either side:

plot(c(0,1),c(0,1),xaxt="n",yaxt="n",type="n",xlab="",ylab="")
abline("v"=c(1/3,2/3))
abline("h"=c(1/3,2/3))
xs <- c(.15,.5,.85,.15,.85,.15,.5,.85)
ys <- c(.85,.85,.85,.5,.5,.15,.15,.15)
for (i in 1:8) text(xs[i],ys[i],as.character(i))
text(.5,.5,"target cell")

This code produces a plot showing a target cell in the centre of a matrix, and the numbers in the other cells
indicate its ‘first-order neighbours’:

6

4

7 8

5

321

target cell

We need to write a function to define the margins for cells on the top, bottom and edge of our universe, N,
and which determines all the neighbours of the four corner cells. Our universe is 100 × 100 cells and so the
matrix containing all the neighbours will need to be 102 × 102. Note the use of subscripts (see p. 36 for revision
of this):

margins <- function(N){
edges <- matrix(rep(0,10404),nrow=102)
edges[2:101,2:101] <- N
edges[1,2:101] <- N[100,]
edges[102,2:101] <- N[1,]
edges[2:101,1] <- N[,100]
edges[2:101,102] <- N[,1]
edges[1,1] <- N[100,100]
edges[102,102] <- N[1,1]
edges[1,102] <- N[100,1]
edges[102,1] <- N[1,100]
edges}
Next, we need to write a function to count the number of species A in the eight neighbouring cells, for any
cell i, j:

nhood <- function(X,j,i) sum(X[(j-1):(j+1),(i-1):(i+1)]==1)

902 THE R BOOK

Now we can set the parameter values: the reproductive rates of species A and B, the death rate of adults
(which determines the space freed up for recruitment) and the threshold number, T, of species A (out of the
eight neighbours) above which recruitment cannot occur:

Ra <- 3
Rb <- 2.0
D <- 0.25
s <- (1-D)
T <- 6

The initial conditions fill one half of the universe with species A and the other half with species B, so that we
can watch any spatial pattern as it emerges:

N <- matrix(c(rep(1,5000),rep(2,5000)),nrow=100)
image(1:100,1:100,N)

We run the simulation for 1000 time steps:

for (t in 1:1000) {

First, we need to see if the occupant of a cell survives or dies. For this, we compare a uniformly distributed
random number between 0 and 1 with the specified survival rate s = 1 - D. If the random number is less
than s the occupant survives, if it is greater than s it dies:

S <- 1*(matrix(runif(10000),nrow=100)<s)

We kill the necessary number of cells to open up space for recruitment:

N <- N*S
space <- 10000-sum(S)

Next, we need to compute the neighbourhood density of A for every cell (using the wrap-around margins):

nt <- margins(N)
tots <- matrix(rep(0,10000),nrow=100)
for (a in 2:101) {
for (b in 2:101) {
tots[a-1,b-1] <- nhood(nt,a,b)
}}

The survivors produce seeds as follows:

seedsA <- sum(N==1)*Ra
seedsB <- sum(N==2)*Rb
all.seeds <- seedsA+seedsB
fA <- seedsA/all.seeds
fB <- 1-fA

Seeds settle over the universe at random:

setA <- ceiling(10000*fA)
placed <- matrix(sample(c(rep(1,setA) ,rep (2,10000-setA))),nrow=100)

Seeds only produce recruits in empty cells N[i,j]==0. If the winner of an empty cell (placed) is species
B, then species B gets that cell: if(placed[i,j]= = 2) N[i,j] <- 2. If species A is supposed to

SIMULATION MODELS 903

win a cell, then we need to check that it has fewer than T neighbours of species A. If so, species A gets the
cell. If not, the cell is forfeited to species B: if (tots[i,j]>=T) N[i,j] <- 2.

for (i in 1:100){
for(j in 1:100){
if (N[i,j] == 0)
if(placed[i,j]== 2) N[i,j] <- 2
else
if (tots[i,j]>=T) N[i,j] <- 2
else N[i,j] <- 1
}}
Finally, we can draw the map, showing species A in red and species B in white:

image(1:100,1:100,N,add=TRUE)
box(col="red")}

You can watch as the initial half-and-half pattern breaks down, and species A increases in frequency at the
expense of species B. Eventually, however, species A gets to the point where most of the cells have six or
more neighbouring cells containing species A, and its recruitment begins to fail. At equilibrium, species B
persists in isolated cells or in small (white) patches, where the cells have six or more occupants that belong
to species A. The full code for the model is in the file called janzen.txt on the book’s web site.

If you set the threshold T = 9, you can watch as species A drives species B to extinction. If you want to
turn the tables, and see species B take over the universe, set T = 0.

28.4 Pattern generation resulting from dynamic interactions

In this section we look at an example of an ecological interaction between a species and its parasite. The
interaction is unstable in a non-spatial model, with increasing oscillations in numbers leading quickly to
extinction of the host species and then, in the next generation, its parasite. The non-spatial dynamics look
like this:

0 2 4
generation

po
pu

la
tio

n

6

host
parasite

8 10

20
0

15
0

10
0

50
0

904 THE R BOOK

The parasite increases in generation number 1 and drives the host to extinction in generation 2, subsequently
going extinct itself in generation 3. The challenge is to see if making the interaction spatially explicit can
promote coexistence, and if so, through what pattern of spatial and temporal dynamics.

In a spatial model, we allow that hosts and parasites can move from the location in which they were born
to any one of the eight first-order neighbouring cells (p. 901). For the purposes of dispersal, the universe is
assumed to have wrap-around margins for both species. The interaction is interesting because it is capable
of producing beautiful spatial patterns that fluctuate with host and parasite abundance. We begin by setting
the parameter values for the dynamics of the host (r) and the parasite (a) and the migration rates of the host
(Hmr=0.1) and parasite (Pmr=0.9). In this case the hosts are relatively sedentary and the parasites are
highly mobile:

r <- 0.4
a <- 0.1
Hmr <- 0.1
Pmr <- 0.9

Next, we set up the matrices of host (N) and parasite (P) abundance. These will form what is termed a coupled
map lattice:

N <- matrix(rep(0,10000),nrow=100)
P <- matrix(rep(0,10000),nrow=100)

The simulation is seeded by introducing 200 hosts and 100 parasites into a single cell at location [33,33]:

N[33,33] <- 200
P[33,33] <- 100
image(1:100,1:100,N)

We need to define a function called host to calculate the next host population as a function of current
numbers of hosts and parasites (N and P), and another function called parasite to calculate the next
parasite population as a function of N and P – this is called a Nicholson–Bailey model:

host <- function(N,P) N*exp(r-a*P)
parasite <- function(N,P) N*(1-exp(-a*P))

Both species need a definition of their wrap-around margins for defining the destinations of migrants from
each cell:

host.edges <- function(N){
Hedges <- matrix(rep(0,10404),nrow=102)
Hedges[2:101,2:101] <- N
Hedges[1,2:101] <- N[100,]
Hedges[102,2:101] <- N[1,]
Hedges[2:101,1] <- N[,100]
Hedges[2:101,102] <- N[,1]
Hedges[1,1] <- N[100,100]
Hedges[102,102] <- N[1,1]
Hedges[1,102] <- N[100,1]
Hedges[102,1] <- N[1,100]
Hedges}
parasite.edges <- function(P){

SIMULATION MODELS 905

Pedges <- matrix(rep(0,10404),nrow=102)
Pedges[2:101,2:101] <- P
Pedges[1,2:101] <- P[100,]
Pedges[102,2:101] <- P[1,]
Pedges[2:101,1] <- P[,100]
Pedges[2:101,102] <- P[,1]
Pedges[1,1] <- P[100,100]
Pedges[102,102] <- P[1,1]
Pedges[1,102] <- P[100,1]
Pedges[102,1] <- P[1,100]
Pedges}

A function is needed to define the eight cells that comprise the neighbourhood of any cell and add up the total
number of neighbouring individuals:

nhood <- function(X,j,i) sum(X[(j-1):(j+1),(i-1):(i+1)])

The number of host migrants arriving in every cell is calculated as follows:

h.migration <- function(Hedges){
Hmigs <- matrix(rep(0,10000),nrow=100)
for (a in 2:101) {
for (b in 2:101) {
Hmigs[a-1,b-1] <- nhood(Hedges,a,b)
}}
Hmigs}

The number of parasite migrants is given by:

p.migration <- function(Pedges){
Pmigs <- matrix(rep(0,10000),nrow=100)
for (a in 2:101) {
for (b in 2:101) {
Pmigs[a-1,b-1] <- nhood(Pedges,a,b)
}}
Pmigs}

The simulation begins here, and runs for 600 generations:

for (t in 1:600){
he <- host.edges(N)
pe <- parasite.edges(P)
Hmigs <- h.migration(he)
Pmigs <- p.migration(pe)
N <- N-Hmr*N+Hmr*Hmigs/9
P <- P-Pmr*P+Pmr*Pmigs/9
Ni <- host(N,P)
P <- parasite(N,P)
N <- Ni
image(1:100,1:100,N,add=TRUE)
}

906 THE R BOOK

The full text of the R code is in a file called comins.txt on the book’s web site. You can watch as the initial
introduction at (33, 33) spreads out and both host and parasite populations pulse in abundance. Eventually,
the wave of migration reaches the margin and appears on the right-hand edge. The fun starts when the two
waves meet one another. The pattern below is typical of the structure that emerges towards the middle of a
simulation run:

29
Changing the Look of Graphics

Many of the changes that you will want to make to the look of your graphics involve the use of the graphics
parameters function, par. Other changes, however, can be made through alterations to the arguments to
high-level functions such as plot, points, lines, axis, title and text (these options are shown
with an asterisk in Table 29.2).

29.1 Graphs for publication

The most likely changes you will be asked to make are to the orientation of the numbers on the tick marks,
and to the sizes of the plotting symbols and text labels on the axes. There are four functions involved here:

las determines the orientation of the numbers on the tick marks;

cex determines the size of plotting characters (pch);

cex.lab determines the size of the text labels on the axes;

cex.axis determines the size of the numbers on the tick marks.

Here we show four different combinations of options. You should pick the settings that look best for your
particular graph.

par(mfrow=c(2,2))
x <- seq(0,150,10)
y <- 16+x*0.4+rnorm(length(x),0,6)

plot(x,y,pch=16,col="blue",xlab="label for x axis",
ylab="label for y axis")

plot(x,y,pch=16,col="blue",xlab="label for x axis",
ylab="label for y axis",
las=1,cex.lab=1.2, cex.axis=1.1)

plot(x,y,pch=16,col="blue",xlab="label for x axis",
ylab="label for y axis",las=2,cex=1.5)

plot(x,y,pch=16,col="blue",xlab="label for x axis",
ylab="label for y axis",las=3,
cex=0.7,cex.lab=1.3, cex.axis=1.3)

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

908 THE R BOOK

The top left-hand graph uses all the default settings:

las = 0, cex = 1, cex.lab = 1

In the top right-hand graph the numbers have been rotated so that they are all vertical (las = 1), the label
size has been increased by 20% and the numbers by 10%:

las = 1, cex = 1, cex.lab = 1.2, cex.axis=1.1

In the bottom left-hand graph the plotting symbol (pch = 16) has been increased in size by 50% and the
numbers on both axes are parallel with their axes (las = 2):

las = 2, cex = 1.5, cex.lab = 1

Finally, in the bottom right-hand graph the label size has been increased by 30%, the plotting symbols reduced
by 30% and the axes numbers are all at 90 degrees (las = 3):

las = 3, cex = 0.7, cex.lab = 1.3, cex.axis = 1.3

My favourite is the top right-hand graph with slightly larger text and numbers and with vertical numbering
on the y axis.

29.2 Colour

Colours are specified in R in one of four ways:

� by colour number (1 to 7; colour 8 is light grey);

� by colour name (e.g. "red" as an element of colors());

CHANGING THE LOOK OF GRAPHICS 909

� by a hexadecimal string of the form #rrggbb;

� by an integer subscript i, on the current palette()[i].

To see all 657 colours available in R (note the American spelling of ‘colors’ in R), type:

colors()

[1] "white" "aliceblue" "antiquewhite" "antiquewhite1" "antiquewhite2"
[6] "antiquewhite3" "antiquewhite4" "aquamarine" "aquamarine1" "aquamarine2"
[11] "aquamarine3" "aquamarine4" "azure" "azure1" "azure2"
[16] "azure3" "azure4" "beige" "bisque" "bisque1"
[21] "bisque2" "bisque3" "bisque4" "black" "blanchedalmond"
[26] "blue" "blue1" "blue2" "blue3" "blue4"
[31] "blueviolet" "brown" "brown1" "brown2" "brown3"

...

[641] "violetred" "violetred1" "violetred2" "violetred3" "violetred4"
[646] "wheat" "wheat1" "wheat2" "wheat3" "wheat4"
[651] "whitesmoke" "yellow" "yellow1" "yellow2" "yellow3"
[656] "yellow4" "yellowgreen"

As you can see, there are some pretty odd colour names ("blanchedalmond" for instance).
The simplest way to specify a colour is with a character string giving the colour name (e.g. col =

"red"). Another simple way is to learn the default colour numbers (col=i):

plot(0:8,0:8,type="n",xlab="",ylab="colour number")
axis(2,at=1:7)
for (i in 1:7) lines(c(0,8),c(i,i),col=i)

0 2 4 6 8

0
1

co
lo

ur
 n

um
be

r

2
3

4
5

6
7

8

As you can see, 1 = black, 2 = red, 3 = green, 4 = blue, 5 = light blue, 6 = purple and 7 = yellow. Number
8 is light grey, then the pattern repeats itself, so 9 = black, 10 = red and so on.

Alternatively, colours can be specified directly in terms of their red–green–blue (RGB) components with a
string of the form "#RRGGBB" where each of the pairs RR, GG, BB consists of two hexadecimal digits giving

910 THE R BOOK

a value in the range 00 to FF. The simplest way to get a colour of your choice is to work out the decimal
weighting of red, green and blue (each on a scale of 0 to 1) then use the function rgb like this:

par(mfrow=c(2,3))

plot(0:1,0:1,typ="n",xlab="red",ylab="blue",main="green = 0")
for (red in seq(0,1,0.1)) {
green<-0
for (blue in seq(0,1,0.1)) {
points(red,blue,pch=16,col=rgb(red,green,blue)) }}

0.0 0.4
red

green = 0

0.8

0.
0

0.
4bl

ue

0.
8

0.0 0.4
red

green = 0.2

0.8

0.
0

0.
4bl

ue

0.
8

0.0 0.4
red

green = 0.4

0.8

0.
0

0.
4bl

ue

0.
8

0.0 0.4
red

green = 0.6

0.8

0.
0

0.
4bl

ue

0.
8

0.0 0.4
red

green = 0.8

0.8

0.
0

0.
4bl

ue

0.
8

0.0 0.4
red

green = 1

0.8

0.
0

0.
4bl

ue

0.
8

Suppose you wanted some subtle shades of orange. Then you would be working in the high values of red
(say, 0.9 or 1), low values of blue (less than 0.4) and intermediate values of green (0.4 to 0.6). Notice that
black is (0, 0, 0) and white is (1, 1, 1).

29.2.1 Palettes for groups of colours

Colours can also be specified by giving an index into a small table of colours, known as the palette. The
functions rgb (red–green–blue) and hsv (hue–saturation–value) provide additional ways of generating
colours (see the relevant help ?rgb and ?hsv).

There are several built-in palettes. For instance, the built-in function called rainbow takes the seven
colours of the rainbow (red, orange, yellow, green, blue, indigo, violet) and splits them into a specified
number of colours on the basis of hue, saturation and value. Here are four examples, with the spectrum split
into 7, 14, 28 or 56 segments:

par(mfrow=c(2,2))
par(mar=c(1.5,1.5,1.5,1.5))
pie(rep(1, 7), col = rainbow(7), radius = 1)
pie(rep(1, 14), col = rainbow(14), radius = 1)

CHANGING THE LOOK OF GRAPHICS 911

pie(rep(1, 28), col = rainbow(28), radius = 1)
pie(rep(1, 56), col = rainbow(56), radius = 1)

3

20

20

19

19

18

18

17

17

16

16

15

15

14

14

14

13

13

13

12

12

12

11

11

11

10

10

10 9

9

9

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

2

2

2

2

1

1

1

1

56
55
54

53
52

51
50

49
484746454443424140393837

36
35

34
33

32
31
30
29
28

28

27

27

26

26

25

25

24

24

23

23

22

22

21

21

Notice that between them, greens and blues take up more than half of the space, with red, orange, yellow,
indigo and violet making up the remainder. Also, note the use of the margin parameter to optimize the size
of the pie diagrams, while keeping their labels distinct from each other.

There are four other built-in colour functions that you can use to produce graded hues:

pie(rep(1, 14), col = heat.colors(14),
radius = 0.9,main="heat.colors")

pie(rep(1, 14), col = terrain.colors(14),
radius = 0.9,main="terrain.colors")

pie(rep(1, 14), col = topo.colors(14),
radius = 0.9,main="topo.colors")

pie(rep(1, 14), col = cm.colors(14),
radius = 0.9,main="cm.colors")

par(mfrow=c(1,1))

912 THE R BOOK

14

13

12
11

10

9

8

7

6

5
4

3

2

1

14

13

12
11

10

9

8

7

6

5
4

3

2

1

14

13

12
11

10

9

8

7

6

5
4

3

2

1

14

13

12
11

10

9

8

7

6

5
4

3

2

1

topo.colors cm.colors

heat.colors terrain.colors

It is simple to create your own customized palettes. He we use the function rgb to do it:

custom<-c(rgb(0.6,0.8,1),rgb(1,0.8,0.2),rgb(1,0.8,0.4),
rgb(1,0.8,0.6),rgb(1,0.8,0.8),rgb(1,0.8,1),
rgb(0.8,0.8,1),rgb(0.7,0.8,1))

pie(rep(1/8,8),col=custom)

8

76

5

4

3 2

1

CHANGING THE LOOK OF GRAPHICS 913

29.2.2 The RColorBrewer package

This is a very useful package of tried and tested colour schemes, in which carefully selected colours have
been grouped together into a set of palettes (more information on ColorBrewer is available at its website,
http://www.colorbrewer.org).

install.packages("RColorBrewer")

These palettes have a minimum of three colours and a maximum of 8–12 depending on the palette. There are
three types of palettes – sequential, diverging and qualitative:

� Sequential palettes are suited to ordered data that progress from low to high. Lightness steps dominate the
look of these schemes, from light colours for low data values to dark colours for high data values.

� Diverging palettes put equal emphasis on mid-range critical values and extremes at both ends of the data
range. The critical class or break in the middle of the legend is emphasized with light colours, and low and
high extremes are emphasized with dark colours that have contrasting hues.

� Qualitative palettes do not imply magnitude differences between legend classes, and hues are used to
create the primary visual differences between classes. Qualitative schemes are best suited to representing
nominal or categorical data.

Here is a demonstration of three palettes from each of the three palette types. You specify how many colours
to use in the palette (eight in these examples).

library(RColorBrewer)
par(mfrow=c(3,3))
par(mar=c(1,1,1,1))
mypalette <- brewer.pal(8,"Reds")
pie(rep(1,8), col = mypalette, radius = 0.9,main="Reds")
mypalette <- brewer.pal(8,"Blues")
pie(rep(1,8), col = mypalette, radius = 0.9,main="Blues")
mypalette <- brewer.pal(8,"Greens")
pie(rep(1,8), col = mypalette, radius = 0.9,main="Greens")
mypalette <- brewer.pal(8,"BrBG")
pie(rep(1,8), col = mypalette, radius = 0.9,main="BrBG")
mypalette <- brewer.pal(8,"PiYG")
pie(rep(1,8), col = mypalette, radius = 0.9,main="PiYG")
mypalette <- brewer.pal(8,"Spectral")
pie(rep(1,8), col = mypalette, radius = 0.9,main="Spectral")
mypalette <- brewer.pal(8,"Accent")
pie(rep(1,8), col = mypalette, radius = 0.9,main="Accent")
mypalette <- brewer.pal(8,"Pastel1")
pie(rep(1,8), col = mypalette, radius = 0.9,main="Pastel1")
mypalette <- brewer.pal(8,"Set2")
pie(rep(1,8), col = mypalette, radius = 0.9,main="Set2")
par(mfrow=c(1,1))

914 THE R BOOK

1

23

4

5

6 7

8

1

23

4

5

6 7

8

1

23

4

5

6 7

8

1

23

4

5

6 7

8

1

23

4

5

6 7

8

1

23

4

5

6 7

8

1

23

4

5

6 7

8

1

23

4

5

6 7

8

1

23

4

5

6 7

8

Reds Blues Greens

Accent Pastel1 Set2

BrBG PiYG Spectral

The top row contains three classic sequential palettes, the centre row three different diverging palettes, and
the bottom row three quite effective qualitative palettes. Once you have defined a palette, you can refer
to colours within it using subscripts in any plotting function that accepts a col= argument, for example
col = mypalette[3].

To reset the palette back to the default use:

palette("default")

29.2.3 Coloured plotting symbols with contrasting margins

The five shapes of plotting symbols that allow contrasting margins are circle (pch=21), square (22),
diamond (23), triangle up (24) and triangle down (25). Effective colour combinations are red with a black

CHANGING THE LOOK OF GRAPHICS 915

border, orange with a blue border, yellow with a red border, cyan with a blue border, green with a red
border and violet with a blue border. Darker colours like blue and brown are rather less effective with
borders.

21

22

23

24pl
ot

tin
g

sy
m

bo
l

colour combination

25

29.2.4 Colour in legends

The issue here is that the background in the plotting symbols 21–25 is called bg, but in figure legends bg
controls the background colour of the whole legend box. So when you are creating figure legends for plotting
symbols pch=21 to 25 you need to remember to use the argument pt.bg in the legend function in place
of the usual bg for the interior colour of the symbol.

data<-read.table("c:\\temp\\plotcol.txt",header=T)
attach(data)
names(data)

[1] "x1" "y1" "x2" "y2" "x3" "y3"

plot(c(0,10),c(0,50),type="n",xlab="x",ylab="y",las=1)
points(x1,y1,pch=21,bg="yellow",col="red")
lines(lowess(x1,y1,f=0.8),col="red")
points(x2,y2,pch=21,bg="cyan",col="blue")
lines(lowess(x2,y2,f=0.8),col="blue")
points(x3,y3,pch=21,bg="red",col="black")
lines(lowess(x3,y3,f=0.8),col="black")

To emphasize the point, we add a different colour for the background of the legend bg="wheat1", with the
pch backgrounds set by pt.bg=c("red","cyan","yellow"):

legend(0,50,legend=c("control","heat","dose"),pch=c(21,21,21),
bg="wheat1",pt.bg=c("red","cyan","yellow"),col=c("black","blue","red"))

916 THE R BOOK

50
40

30
20

y

10
0

0 2 4
x

6 8 10

control
heat
dose

29.2.5 Background colours

It is important to distinguish two contrasting uses of the work ‘background’ in R graphics. The first and
most obvious (using par(bg=colour)) refers to the colour of ‘paper’ on which the graph is produced.
The second, somewhat more obscure usage refers to the fill colour of two-tone plotting symbols (pch=21
to 25).

data<-read.table("c:\\temp\\silwoodweather.txt",header=T)
attach(data)
par(bg="wheat2")
plot(factor(month),lower,col="green4")

CHANGING THE LOOK OF GRAPHICS 917

29.2.6 Foreground colours

Changing the colour of such things as axes and boxes around plots uses the ‘foreground’ parameter, fg:

par(mar=c(4,4,1,1))
par(mfrow=c(2,2))
plot(1:10,1:10,xlab="x label",ylab="y label")
plot(1:10,1:10,xlab="x label",ylab="y label",fg="blue")
plot(1:10,1:10,xlab="x label",ylab="y label",fg="red")
plot(1:10,1:10,xlab="x label",ylab="y label",fg="green")

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

x label

y
la

be
l

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

x label

y
la

be
l

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

x label

y
la

be
l

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

x label

y
la

be
l

29.2.7 Different colours and font styles for different parts of the graph

The colours for different parts of the graph are specified as follows:

col.axis is the colour to be used for axis annotation;

col.lab is the colour to be used for x and y labels;

col.main is the colour to be used for plot main titles;

col.sub is the colour to be used for plot subtitles.

918 THE R BOOK

The fonts of the various titles are specified in a similar way:

font.axis is the font to be used for axis annotation;

font.lab is the font to be used for x and y labels;

font.main is the font to be used for plot main titles;

font.sub is the font to be used for plot subtitles.

This example illustrates the use of expression to allow more complicated formatting of axis labels:
for instance, square brackets produce subscripts log[10], caret produces superscripts mdayˆ{-1}, and
successive tildes ~~ produce wider spacing between words:

plot (1:10,1:10, xlab="x axis label", ylab="y axis label",
pch=16, col="orange", col.lab="green4",col.axis="blue",col.main="red",
col.sub="navy",sub="Subtitle",las=1,font.axis=3,font.lab=2,font.main=4,
font.sub=3,main=expression ("Critical elasticity log"[~10]~~~

"mday" ˆ~~-1))

29.2.8 Full control of colours in plots

If you really feel the need, then you can control the colours and line types of all of the components of a plot
separately. Here is a box-and-whisker plot in which the following components are specified explicitly:

� the box and its outline (box*);
� the median, its line type, line width and colour (med*);
� the whiskers, their line type, width and colour (whisk*);
� the staples (this is the jargon for the flat ends of the whiskers; staple*);
� the outliers, their plotting symbol, edge and fill (out*).

CHANGING THE LOOK OF GRAPHICS 919

Box
boxlty line type
boxlwd line width
boxcol line colour
boxfill fill colour

Median
medlty line type (medlty="blank" if you want no line, just a point)
medlwd line width
medpch plotting symbol (added with the line unless specified otherwise)
medcex plotting symbol size
medcol plotting symbol colour
medbg plotting symbol fill for pch=21 to 25

Whisker
whisklty line type
whisklwd line width
whiskcol colour

Staple
staplelty line type
staplelwd line width
staplewex width expansion
staplecol colour

Outlier
outlty line type
outlwd line width
outwex width expansion
outpch plotting symbol
outcex symbol size
outcol colour of the outline of the plotting symbol
outbg colour of the fill of the plotting symbol

1 2 3 4 5 6 7 8 9 10 11 12
month

20
10

0

m
in

im
um

 te
m

pe
ra

tu
re

–1
0

920 THE R BOOK

This has most of the options in their non-default settings (but whether you would ever really want to do this
is debatable):

plot(factor(month),lower,ylab="minimum temperature",xlab="month",
medlty="blank",medpch=21,medbg="red",medcol="yellow",
boxcol="red",boxfill="green",outpch=21,outbg="yellow",
outcol="red",staplecol="blue",whisklty=1,whiskcol="blue")

29.3 Cross-hatching

You can control five aspects of shading: the density of the lines, the angle of the shading, the border of the
shaded region, the colour of the lines and the line type. Here are their default values:

density = NULL
angle = 45
border = NULL
col = NA
lty = par("lty"), ...)

Other graphical parameters dealing with lines such as xpd, lend, ljoin and lmitre (Table 29.2 and see
p. 947) can be given as arguments. We shall shade each of the bars differently:

data <- read.table("c:\\temp\\box.txt",header=T)
attach(data)
names(data)

[1] "fact" "response"

barplot(tapply(response,fact,mean),density=3:10,angle=seq(30,60,length=8))

1 2 3 4 5 6 7 8

12
10

8
6

2
4

0

CHANGING THE LOOK OF GRAPHICS 921

The density and the angle of the shading both increase from left to right (the density from 3 lines per inch to
10 lines per inch, and the angle from 30 to 60 degrees).

29.4 Grey scale

Here is the same example with grey scale instead of shading. Remember that the grey scale goes from 0 to 1,
which (counter-intuitively) is from dark to light:

barplot(tapply(response,fact,mean),col=grey(seq(0.8,0.2,length=8)))

1 2 3 4 5 6 7 8

12
10

8
6

2
4

0

29.5 Coloured convex hulls and other polygons

The following data, which you may recall from Chapter 5, come from a long-term study of the botanical
composition of a pasture, where the response variable is the dry mass of a grass species called Festuca rubra,
and the two explanatory variables are total hay biomass and soil pH:

data <- read.table("c:\\temp\\pgr.txt",header=T)
attach(data)
names(data)

[1] "FR" "hay" "pH"

The idea is to draw polygons to represent the convex hulls for the abundance of Festuca in the space defined by
hay biomass and soil pH. The polygon is to be red for Festuca > 5, green for Festuca > 10 and cross-hatched
in blue for Festuca > 20. After all of the solid objects have been drawn, the data are to be overlaid as a
scatterplot with pch = 16:

plot(hay,pH)
x <- hay[FR>5]
y <- pH[FR>5]

922 THE R BOOK

polygon(x[chull(x,y)],y[chull(x,y)],col="red")
x <- hay[FR>10]
y <- pH[FR>10]
polygon(x[chull(x,y)],y[chull(x,y)],col="green")
x <- hay[FR>20]
y <- pH[FR>20]
polygon(x[chull(x,y)],y[chull(x,y)],density=10,angle=90,col="blue")
polygon(x[chull(x,y)],y[chull(x,y)],density=10,angle=0,col="blue")
points(hay,pH,pch=16)

2 3 4
hay

5 6 7 98

7.
0

6.
5

6.
0

5.
5

pH

4.
5

4.
0

5.
0

3.
5

The issue of transparency (i.e. what you can see ‘through’ what) is described in the help files for?polygon
and ?rgb. If in doubt, use points, lines and polygons in sequence, so that objects (‘on top’) that you want to
be visible in the final image are drawn last. Note that for square cross-hatching you draw the object twice;
once with angle=90 then again with angle=0.

29.6 Logarithmic axes

You can transform the variables inside the plot function (e.g. plot(log(y) ~ x)) or you can plot the
untransformed variables on logarithmically scaled axes (e.g. log="x").

data <- read.table("c:\\temp\\logplots.txt",header=T)
attach(data)
names(data)

[1] "x" "y"

par(mfrow=c(2,2))
plot(x,y,pch=16, main="untransformed",col="red")
plot(log(x),log(y),pch=16, main="log-log", col="blue")
plot(x,y,pch=16,log="xy", main="both transformed", col="blue")
plot(x,y,pch=16,log="y", main="only y transformed", col="green")

CHANGING THE LOOK OF GRAPHICS 923

2.
0

1.
5

1.
0

0.
5

0.
0

0 50

untransformed log-log

both transformed only y transformed

100
x log(x)

150

0.
8

0.
6

0.
2

0.
4

0.
0

–0
.2

2.
0

1.
5

y
lo

g(
y)

y

2.
0

1.
5

1.
0

10 20 50
x x

100 0 50 100 150

y

1.
0

2.5 3.0 3.5 4.0 4.5 5.0

The untransformed data (red) are in the top left-hand graph, and both x and y are transformed to logs
before plotting in the upper right (blue). The bottom left-hand plot shows both axes log-transformed (also
blue, same pattern, but different axis labelling), while the bottom right shows the data (green) with only the
y axis log-transformed. Note that all logs in R are to the base e by default (not base 10). It is important to
understand that when R is asked to plot the log of zero it simply omits any such points and issues a warning
on the command line (compare the top left-hand graph with a point at (0, 0) with the other three graphs).

29.7 Different font families for text

To change the typeface used for plotted text, change the name of a font family. Standard values are
family="serif", "sans" (the default font), "mono", and "symbol", and the Hershey font fami-
lies are also available. Some devices will ignore this setting completely. Text drawn onto the plotting region
is controlled using par like this:

par(mfrow=c(1,1))
plot(1:10,1:10,type="n",xlab="x",ylab="y")
par(family="sans")
text(5,8,"This is the default font")
par(family="serif")
text(5,6,"This is the serif font")
par(family="mono")
text(5,4,"This is the mono font")
par(family="HersheySymbol")
text(5,2,"This is the symbol font")
par(family="sans")

924 THE R BOOK

2 4 6 8 10
x

This is the default font

This is the serif font

This is the mono font

Τηισ ισ τηε σψµβoλ φoντ

10
8

6
4

2

y

Don’t forget to turn the family back to "sans", otherwise you may get some very unexpected symbols in
your next text.

29.8 Mathematical and other symbols on plots

To write on plots using more intricate symbols such as mathematical symbols or Greek letters we use
expression or substitute (see Table 29.1 for a list of the available symbols). Here are some examples
of their use. First, we produce a plot of sin φ against the phase angle φ over the range −π to + π radians:

x <- seq(-4, 4, len = 101)
plot(x,sin(x),type="l",xaxt="n", col="red",

xlab=expression(paste("Phase Angle ",phi)),
ylab=expression("sin "*phi))

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),
lab = expression(-pi, -pi/2, 0, pi/2, pi))

Note the use of xaxt="n" to suppress the default labelling of the x axis, and the use of expression in
the labels for the x and y axes to obtain mathematical symbols such as phi (φ) and pi (π). The more intricate
values for the tick marks on the x axis are obtained by the axis function, specifying 1 (the x (‘bottom’) axis
is axis no. 1), then using the at function to say where the labels and tick marks are to appear, and lab with
expression to say what the labels are to be.

Suppose you wanted to add χ2 = 24.5 to this graph at location (−π/2, 0.5). You use text with
substitute, like this:

text(-pi/2,0.5,substitute(chiˆ2=="24.5"))

Note the use of ‘double equals’ to print a single equals sign, and the use of caret ˆ to obtain superscripts.
You can write quite complicated formulae on plots using paste to join together the elements of an equation.
Here is the density function of the normal written on the plot at location (π/2,−0.5):

text(pi/2, -0.5, expression(paste(frac(1, sigma*sqrt(2*pi)), " ",
eˆ{frac(-(x-mu)ˆ2, 2*sigmaˆ2)})))

CHANGING THE LOOK OF GRAPHICS 925

Table 29.1. Drawing mathematical expressions in text. If the text argument to one of the
text-drawing functions (text, mtext, axis, legend) is an expression, the argument is
interpreted as a mathematical expression and the output will be formatted according to TEX-like
rules (see Knuth, 1998). Expressions can also be used for titles, subtitles and x and y axis labels
(but not for axis labels on persp plots). It is possible to produce many different mathematical
symbols, Greek letters, generate subscripts or superscripts, produce fractions, etc. The available
features are listed below.

Syntax Meaning

x + y x plus y
x - y x minus y
x*y juxtapose x and y
x/y x forwardslash y
x %+-% y x plus or minus y
x %/% y x divided by y
x %*% y x times y
x %.% y x cdot y
x[i] x subscript i
xˆ2 x superscript 2
paste(x, y, z) juxtapose x, y, and z
sqrt(x) square root of x
sqrt(x, y) yth root of x
x == y x is equal to y
x != y x is not equal to y
x < y x is less than y
x <= y x is less than or equal to y
x > y x is greater than y
x >= y x is greater than or equal to y
x %~~% y x is approximately equal to y
x %=~% y x and y are congruent
x %==% y x is defined as y
x %prop% y x is proportional to y
plain(x) draw x in normal font
bold(x) draw x in bold font
italic(x) draw x in italic font
bolditalic(x) draw x in bold italic font
symbol(x) draw x in symbol font
list(x, y, z) comma-separated list
... ellipsis (height varies)
cdots ellipsis (vertically centred)
ldots ellipsis (at baseline)
x %subset% y x is a proper subset of y
x %subseteq% y x is a subset of y
x %notsubset% y x is not a subset of y
x %supset% y x is a proper superset of y
x %supseteq% y x is a superset of y
x %in% y x is an element of y
x %notin% y x is not an element of y
hat(x) x with a circumflex
tilde(x) x with a tilde
dot(x) x with a dot

(continued)

926 THE R BOOK

Table 29.1. (Continued)

Syntax Meaning

ring(x) x with a ring
bar(x) x with bar
widehat(xy) xy with a wide circumflex
widetilde(xy) xy with a wide tilde
x %<->% y x double-arrow y
x %->% y x right-arrow y
x %<-% y x left-arrow y
x %up% y x up-arrow y
x %down% y x down-arrow y
x %<=>% y x is equivalent to y
x %=>% y x implies y
x %<=% y y implies x
x %dblup% y x double-up-arrow y
x %dbldown% y x double-down-arrow y
alpha
beta
...
omega

Greek alphabet (lower case)

Alpha
Beta
...
Omega

uppercase Greek alphabet

theta1, phi1, sigma1, omega1 cursive Greek symbols
Upsilon1 capital upsilon with hook
aleph first letter of Hebrew alphabet
infinity infinity symbol
partialdiff partial differential symbol
nabla nabla, gradient symbol
32*degree 32 degrees
60*minute 60 minutes of angle
30*second 30 seconds of angle
displaystyle(x) draw x in normal size (extra spacing)
textstyle(x) draw x in normal size
scriptstyle(x) draw x in small size
scriptscriptstyle(x) draw x in very small size
underline(x) draw x underlined
x ~~ y put extra space between x and y
x + phantom(0) + y leave gap for "0", but do not draw it
x + over(1, phantom(0)) leave vertical gap for "0" (do not draw)
frac(x, y) x over y
over(x, y) x over y
atop(x, y) x over y (no horizontal bar)
sum(x[i], i==1, n) sum x[i] for i equals 1 to n
prod(plain(P)(X==x), x) product of P(X = x) for all values of x
integral(f(x)*dx, a, b) definite integral of f(x) with respect to x
union(A[i], i==1, n) union of A[i] for i equals 1 to n
intersect(A[i], i==1, n) intersection of A[i]
lim(f(x), x %->% 0) limit of f(x) as x tends to 0

CHANGING THE LOOK OF GRAPHICS 927

Table 29.1. (Continued)

Syntax Meaning

min(g(x), x > 0) minimum of g(x) for x greater than 0
inf(S) infimum of S
sup(S) supremum of S
xˆy + z normal operator precedence
xˆ(y + z) visible grouping of operands
xˆ{y + z} invisible grouping of operands
group("(",list(a, b),"]") specify left and right delimiters
bgroup("(",atop(x,y),")") use scalable delimiters
group(lceil, x, rceil) special delimiters

Note the use of frac to obtain individual fractions: the first argument is the text for the numerator, the second
the text for the denominator. Most of the arithmetic operators have obvious formats (+, -, /, *, ˆ, etc.); the
only non-intuitive symbol that is commonly used is ‘plus or minus’ ± ; this is written as %+-% like this:

text(pi/2,0,expression(hat(y) %+-% se))

To write the results of calculations using text, it is necessary to use substitute with as.expression.
Here, the coefficient of determination (cd) was calculated earlier and we want to write its value on the plot,
labelled with ‘r2 =’ :

cd <- 0.63
text(locator(1),as.expression(substitute(rˆ2 == cd,list(cd=cd))))

Just click when the cursor is where you want the text to appear. Note the use of ‘double equals’ and the
requirement for a list containing the value calculated earlier.

1.
0

0.
5

0.
0

–0
.5

–1
.0

χ2 = 24.5

r2 = 0.63

–π π–π/2 π/20

Phase Angle φ

S
in
φ

1
σ 2π

e
–(χ−μ)2

2σ2

ŷ±se

928 THE R BOOK

There are several other useful plotting symbols (see ?plotmath) that you refer to in text functions as
symbol (e.g. the ‘universal’ character is obtained with expression(symbol("\042"))): the full set
is universal ("\\042"), existential ("\\044"), suchthat ("\\047"), therefore ("\\134"), perpendicular
("\\136"), circlemultiply ("\\304"), circleplus ("\\305"), emptyset ("\\306"), angle ("\\320"),
leftangle ("\\341") and rightangle ("\\361").

29.9 Phase planes

Suppose that we have two competing species (named 1 and 2) and we are interested in modelling the dynamics
of the numbers of each species (N1 and N2). We want to draw a phase plane showing the behaviour of the
system close to equilibrium. Setting the derivatives to zero and dividing both sides by ri Ni, we get

0 = 1 − α11 N1 − α12 N2,

which is called the isocline for species 1. It is linear in N1 and N2 and we want to draw it on a phase plane with
N2 on the y axis and N1 on the x axis. The intercept on the y axis shows the abundance of N2 when N1 = 0:
this is 1/α12. Likewise, when N2 = 0 we can see that N1 = 1/α11 (the value of its single-species equilibrium).
Similarly,

0 = 1 − α21 N1 − α22 N2

describes the isocline for species 2. The intercept on the y axis is 1/α22 and the value of N1 when N2 = 0
is 1/α21. Now we draw a phase plane with both isoclines, and label the ends of the lines appropriately. We
might as well scale the axes from 0 to 1, but we want to suppress the default tick marks:

plot(c(0,1),c(0,1),ylab="",xlab="",xaxt="n",yaxt="n",type="n")
abline(0.8,-1.5,col="blue")
abline(0.6,-0.8, col="red")

The solid line shows the isocline for species 1 and the dotted line shows species 2.
Now for the labels. We use at to locate the tick marks – first the x axis (axis = 1),

axis(1, at = 0.805, lab = expression(1/alpha[21]))
axis(1, at = 0.56, lab = expression(1/alpha[11]))

and now the y axis (axis = 2),

axis(2, at = 0.86, lab = expression(1/alpha[12]),las=1)
axis(2, at = 0.63, lab = expression(1/alpha[22]),las=1)

Note the use of las=1 to turn the labels through 90 degrees to the horizontal. Now label the lines to show
which species isocline is which. Note the use of the function frac to print fractions and square brackets
(outside the quotes) for subscripts:

text(0.05,0.85, expression(paste(frac("d N"[1],"dt"), " = 0")))
text(0.78,0.07, expression(paste(frac("d N"[2],"dt"), " = 0")))

We need to draw phase plane trajectories to show the dynamics. Species will increase when they are at
low densities (i.e. ‘below’ their isoclines) and decrease at high densities (i.e. ‘above’ their isoclines). Species
1 increasing is a horizontal arrow pointing to the right. Species 2 declining is a vertical arrow pointing

CHANGING THE LOOK OF GRAPHICS 929

downwards. The resultant motion shows how both species’ abundances change through time from a given
point on the phase plane.

arrows(-0.02,0.72,0.05,0.72,length=0.1)
arrows(-0.02,0.72,-0.02,0.65,length=0.1)
arrows(-0.02,0.72,0.05,0.65,length=0.1)
arrows(0.65,-0.02,0.65,0.05,length=0.1)
arrows(0.65,-0.02,0.58,-0.02,length=0.1)
arrows(0.65,-0.02,0.58,0.05,length=0.1)
arrows(0.15,0.25,0.15,0.32,length=0.1)
arrows(0.15,0.25,0.22,0.25,length=0.1)
arrows(0.15,0.25,0.22,0.32,length=0.1)
arrows(.42,.53,.42,.46,length=0.1)
arrows(.42,.53,.35,.53,length=0.1)
arrows(.42,.53,.35,.46,length=0.1)

All the motions converge, so the point is a stable equilibrium and the two species would coexist. All other
configurations of the isoclines lead to competitive exclusion of one of the two species. Finally, label the axes
with the species’ identities:

axis(1, at = 1, lab = expression(N[1]))
axis(2, at = 1, lab = expression(N[2]),las=1)

N2

N1

d N2

1/α12

1/α11 1/α21

1/α22

dt
= 0

d N1
dt = 0

29.10 Fat arrows

You often want to add arrows to plots in order to draw attention to particular features. Here is a function
called fat.arrows that uses locator(1) to identify the bottom of the point of a vertical fat arrow. You

930 THE R BOOK

can modify the function to draw the arrow at any specified angle to the clicked point of its arrowhead. The
default widths and heights of the arrow are 0.5 scaled x or y units and the default colour is red:

fat.arrow <- function(size.x=0.5,size.y=0.5,ar.col="red"){
size.x <- size.x*(par("usr")[2]-par("usr")[1])*0.1
size.y <- size.y*(par("usr")[4]-par("usr")[3])*0.1
pos <- locator(1)
xc <- c(0,1,0.5,0.5,-0.5,-0.5,-1,0)
yc <- c(0,1,1,6,6,1,1,0)
polygon(pos$x+size.x*xc,pos$y+size.y*yc,col=ar.col) }

Here is the function in use with the defaults (the long, slim, red arrow) and three non-default options:

plot(0:10,0:10,type="n",xlab="",ylab="")
fat.arrow()
fat.arrow(ar.col="green")
fat.arrow(ar.col="blue",size.x=0.8)
fat.arrow(ar.col="orange",size.x=0.8,size.y=0.3)

0 2 4 6 8 10

0
2

4
6

8
10

29.11 Three-dimensional plots

When there are two continuous explanatory variables, it is often useful to plot the response as a contour map.
In this example, the biomass of one plant species (the response variable) is plotted against soil pH and total
community biomass. The species is a grass called Festuca rubra that peaks in abundance in communities of
intermediate total biomass:

data <- read.table("c:\\temp\\pgr.txt",header=T)
attach(data)

CHANGING THE LOOK OF GRAPHICS 931

names(data)

[1] "FR" "hay" "pH"

You need the package called akima in order to implement bivariate interpolation onto a grid for irregularly
spaced input data like these, using the function interp:

install.packages("akima")
library(akima)

The two explanatory variables are presented first (hay and pH in this case), with the response variable
(the ‘height’ of the topography), which is FR in this case, third:

zz <- interp(hay,pH,FR)

The list called zz can now be used in any of the four functions contour, filled.contour, image
or persp.

We start by using contour and image together. Rather than the red and yellows of heat.colors we
choose the cooler blues and greens of topo.colors:

image(zz,col = topo.colors(12),xlab="biomass",ylab="pH")
contour(zz,add=T)

3 4 5 6
biomass

7 8 9

4.
0

4.
5

5.
0

5.
5

pH

6.
0

6.
5

7.
0

12

18

16

14

10

12

6

14

16

14

10

1210

10

4
6

616

14
12

4 6

8
86

4
4

6

Alternatively, you can use the filled.contour function,

filled.contour(zz,col = topo.colors(24),xlab="biomass",ylab="pH")

932 THE R BOOK

3 4 5 6
biomass

7 8 9

5

0

10

15

20

4.0

4.5

5.0

5.5
pH

6.0

6.5

7.0

which provides a useful colour key to the abundance of Festuca. Evidently the grass peaks in abundance at
intermediate biomass, but it also occurs at lower biomasses on soils of intermediate pH (5.0–6.0). It is found
in only trace amounts in communities where the biomass is above 7.5 tonnes per hectare, except where soil
pH is around 6.6.

The functionpersp allows an angled view of a 3D-like object, rather than the map-like views ofcontour
and image. The angles theta and phi define the viewing direction: theta gives the azimuthal direction
and phi gives the colatitude.

persp(zz,xlab="biomass",ylab="pH",zlab="Festuca rubra",
theta = 30, phi = 30,col="lightblue")

pH

biomass

F
estuca rubra

CHANGING THE LOOK OF GRAPHICS 933

It is straightforward to create 3D images of mathematical functions from regularly spaced grids produced
by the outer function without using interp. First create a series of values for the x and y axis (the base
of the plot):

x <- seq(0,10,0.1)
y <- seq(0,10,0.1)

Now write a function to predict the height of the graph (the response variable, z) as a function of the two
explanatory variables x and y:

func <- function(x,y) 3 * x * exp(0.1*x) * sin(y*exp(-0.5*x))

Now use the outer function to evaluate the function over the complete grid of points defined by x and y:

image(x,y,outer(x,y,func))
contour(x,y,outer(x,y,func),add=T)

0 2

2

4

6

8

10

12

14

16

18

4 6
x

8 10

0
2

4 0

-2

-4

6

y

8
10

29.12 Complex 3D plots with wireframe

If you want to create really fancy 3D graphics you will want to master the wireframe function, which
allows you to specify the location of the notional light source that illuminates your object (and hence creates
the shadows). Here are two examples from demo(trellis) that produce pleasing 3D objects. In the first
case, the surface is based on data (in the dataframe called volcano), whereas in the second case (strips on
a globe) the graphic is based on an equation (z ~ x * y). It is in library(lattice). This is how
wireframe is invoked:

wireframe(volcano, shade = TRUE, aspect = c(61/87,
0.4), screen = list(z = -120, x = -45), light.source = c(0,
0, 10), distance = 0.2, shade.colors = function(irr, ref,
height, w = 0.5) grey(w * irr + (1 - w) * (1 - (1 - ref)ˆ0.4)))

934 THE R BOOK

column

row

volcano

Next, we see a shaded globe with the surface turned into strips by leaving out every other pair of coloured
orbits by setting their values to NA.

n <- 50
tx <- matrix(seq(-pi, pi, len = 2 * n), 2 * n, n)
ty <- matrix(seq(-pi, pi, len = n)/2, 2 * n, n, byrow = T)
xx <- cos(tx) * cos(ty)
yy <- sin(tx) * cos(ty)
zz <- sin(ty)
zzz <- zz
zzz[, 1:12 * 4] <- NA

Now draw the globe and shade the front and back surfaces appropriately:

wireframe(zzz ~ xx * yy, shade = TRUE, light.source = c(3,3,3))

xx
yy

zzz

CHANGING THE LOOK OF GRAPHICS 935

29.13 An alphabetical tour of the graphics parameters

Beginners cannot be expected to know which graphics attributes are changed with the par function, which
can be changed inside the plot function, and which stand alone. This section therefore unites all the various
kinds of graphics control into a single list (see Table 29.2): properties that are altered by a call to the par
function are shown as par(name), while properties that can be altered inside a plot function are shown
in that context; other graphics functions that stand alone (such as axis) are not shown in the table.

When writing functions, you need to know things about the current plotting region. For instance, to find
out the limits of the current axes, use

par("usr")

[1] -0.05 10.05 -0.05 10.05

which shows the minimum x value par("usr")[1], the maximum x value par("usr")[2], the
minimum y value par("usr")[3] and the maximum y value par("usr")[4] of the current plotting
region.

If you need to use par, then the graphics parameters should be altered before you use the first plot
function. It is a good idea to save a copy of the default parameter settings so that they can be changed back
at the end of the session to their default values:

default.parameters <- par(no.readonly = TRUE)

...
par(...)

...
par(default.parameters)

To inspect the current values of any of the graphics parameters, type the name of the option in double
quotes: thus, to see the sizes of the margins (for the gales data on p. 942),

par("mar")

[1] 5.1 4.1 4.1 2.1

29.13.1 Text justification, adj

To alter the justification of text strings, run the par function like this:

par(adj=0)

The parameter adj=0 produces left-justified text, adj=0.5 centred text (the default) and adj=1 right-
justified text. For the text function you can vary justification in the x and y directions independently like
this adj=c(1,0).

29.13.2 Annotation of graphs, ann

If you want to switch off the annotation from a plot (i.e. leave the numbers on the tick marks but not write
the x and y axis labels or print any titles on the graph), then set ann = FALSE.

29.13.3 Delay moving on to the next in a series of plots, ask

Setting ask = TRUE means that the user is asked for input before the next figure is drawn.

936 THE R BOOK

Table 29.2. Graphical parameters and their default values. Each of the functions is illustrated in detail in the text. The
column headed ‘In plot?’ indicates with an asterisk whether this parameter can be changed as an argument to the plot,
points or lines functions.

Parameter In plot? Default value Meaning

adj * 0.5 (centred) Justification of text
ann * TRUE Annotate plots with axis and overall titles?
ask FALSE Pause before new graph?
bg * "transparent" Background style or colour
bty full box Type of box drawn around the graph
cex * 1 Character expansion: enlarge if > 1, reduce if < 1
cex.axis * 1 Magnification for axis notation
cex.lab * 1 Magnification for label notation
cex.main * 1.2 Main title character size
cex.sub * 1 Subtitle character size
cin 0.1354167,

0.1875000
Character size (width, height) in inches

col * "black" colors() to see range of colours
col.axis "black" Colour for graph axes
col.lab * "black" Colour for graph labels
col.main * "black" Colour for main heading
col.sub * "black" Colour for subheading
cra 13, 18 Character size (width, height) in rasters (pixels)
crt 0 Rotation of single characters in degrees (see srt)
csi 0.1875 Character height in inches
cxy 0.02255379,

0.03452245
Character size (width, height) in user-defined units

din 7.166666, 7.156249 Size of the graphic device (width, height) in inches (the
window is bigger than this)

family * "sans" Font style: from "serif", "sans", "mono" and
"symbol" (and see font, below)

fg "black" Colour for objects such as axes and boxes in the foreground
fig 0, 1, 0, 1 Coordinates of the figure region within the display region:

c(x1, x2, y1, y2)
fin 7.166666, 7.156249 Dimensions of the figure region (width, height) in inches
font * 1 Font (regular = 1, bold = 2 or italics = 3) in which text is

written (and see family, above)
font.axis * 1 Font in which axis is numbered
font.lab * 1 Font in which labels are written
font.main * 1 Font for main heading
font.sub * 1 Font for subheading
gamma 1 Correction for hsv colours
hsv 1, 1, 1 Values (range [0, 1]) for hue, saturation and value of colour
lab 5, 5, 7 Number of tick marks on the x axis, y axis and size of labels
las 0 Orientation of axis numbers: use las=1 for publication
lend "round" Style for the ends of lines; could be "square" or

"butt"
lheight 1 Height of a line of text used to vertically space multi-line text
ljoin "round" Style for joining two lines; could be "mitre" or

"bevel"

CHANGING THE LOOK OF GRAPHICS 937

Table 29.2. (Continued)

Parameter In plot? Default value Meaning

lmitre 10 Controls when mitred line joins are automatically converted
into bevelled line joins

log * Neither Which axes to log: "log=x", "log=y" or
"log=xy"

lty * "solid" Line type (e.g. dashed: lty=2)
lwd * 1 Width of lines on a graph
mai 0.95625, 0.76875,

0.76875, 0.39375
Margin sizes in inches for c(bottom, left, top,
right)

mar 5.1, 4.1, 4.1, 2.1 Margin sizes in numbers of lines for c(bottom,
left, top, right)

mex 1 Margin expansion specifies the size of font used to convert
between "mar" and "mai", and between "oma" and
"omi"

mfcol 1, 1 Multiple frames per page (same layout as mfrow (see
below), but graphs produced columnwise)

mfg 1, 1, 1, 1 Which figure in an array of figures is to be drawn next (if
setting) or is being drawn (if enquiring); the array must
already have been set by mfcol or mfrow

mfrow 1, 1 Multiple frames per page (first number = rows, second
number = columns): mfrow = c(2,3) gives graphs
in two rows each with three columns, drawn row-wise

mgp 3, 1, 0 Margin line (in mex units) for the axis title, axis labels and
axis line

new FALSE To draw another plot on top of the existing plot, set
new=TRUE so that plot does not wipe the slate clean

oma 0, 0, 0, 0 Size of the outer margins in lines of text
c(bottom, left, top, right)

omd 0, 1, 0, 1 Size of the outer margins in normalized device coordinate
(NDC) units, expressed as a fraction (in [0,1]) of the
device region

c(bottom, left, top, right)
omi 0, 0, 0, 0 Size of the outer margins in inches

c(bottom, left, top, right)
pch * 1 Plotting symbol; e.g. pch=16
pin 6.004166, 5.431249 Current plot dimensions (width, height), in inches
plt 0.1072675,

0.9450581,
0.1336245,
0.8925764

Coordinates of the plot region as fractions of the current
figure region c(x1, x2, y1, y2)

ps 12 Point size of text and symbols
pty "m" Type of plot region to be used: pty="s" generates a

square plotting region, "m" stands for maximal
srt * 0 String rotation in degrees
tck tck = -0.5 Big tick marks (grid-lines); to use this set tcl=NA
tcl –0.5 Tick marks outside the frame
tmag 1.2 Enlargement of text of the main title relative to the other

annotating text of the plot

(continued)

938 THE R BOOK

Table 29.2. (Continued)

Parameter In plot? Default value Meaning

type * "p" Plot type: e.g. type="n" to produce blank axes
usr set by the most recent

plot function
Extremes of the user-defined coordinates of the plotting

region c(xmin, xmax, ymin, ymax)
xaxp 0, 1, 5 Tick marks for log axes: xmin, xmax and number of

intervals
xaxs "r" Pretty x axis intervals
xaxt "s" x axis type: use xaxt="n" to set up the axis but not plot it
xlab * label for the x axis xlab="label for x axis"
xlim * pretty User control of x axis scaling: xlim=c(0,1)
xlog FALSE Is the x axis on a log scale? If TRUE, a logarithmic scale is

in use; e.g. following
plot(y~x, log ="x")

xpd FALSE The way plotting is clipped: if FALSE, all plotting is
clipped to the plot region; if TRUE, all plotting is clipped
to the figure region; and if NA, all plotting is clipped to the
device region

yaxp 0, 1, 5 Tick marks for log axes: ymin, ymax and number of
intervals

yaxs "r" Pretty y axis intervals
yaxt "s" y axis type: use yaxt="n" to set up the axis but not plot it
ylab * label for the y axis ylab="label for y axis"
ylim * pretty User control of y axis scaling: ylim=c(0,100)
ylog FALSE Is the y axis on a log scale? If TRUE, a logarithmic scale is

in use; e.g. following plot(y ~ x, log ="xy")

29.13.4 Control over the axes, axis

The attributes of four sides of the graph (1 = bottom (the x axis); 2 = left (the y axis); 3 = above and 4 =
right) are controlled by the axis function.

When you want to put two graphs with different y scales on the same plot, you are likely to want to scale
the right axis (axis=4) differently from the usual y axis on the left (see below).

Again, you may want to label the tick marks on the axis with letters (rather than the usual numbers) and
this, too, is controlled by the axis function.

First, draw the graph with no axes at all using plot with the axes=FALSE option:

plot(1:10, 10:1, type="n", axes=FALSE,xlab="",ylab="")

For the purposes of illustration only, we use different styles on each of the four axes.

axis(1, 1:10, LETTERS[1:10], col.axis = "blue")
axis(2, 1:10, letters[10:1], col.axis = "red")
axis(3, lwd=3, col.axis = "green")
axis(4, at=c(2,5,8), labels=c("one","two","three"))

CHANGING THE LOOK OF GRAPHICS 939

A B C D E F G H I J

a
b

c
d

e
f

g
h

i
j

2 4 6 8 10

on
e

tw
o

th
re

e

On axis 1 there are upper-case letters in place of the default numbers 1 to 10 with blue rather than black
lettering. On axis 2 there are lower-case letters in reverse sequence in red on each of the 10 tick marks
(note the order of the y values 10:1 in the original plot function). On axis 3 (the top of the graph) there is
green lettering for the default numbers (2 to 10 in steps of 2) and an extra thick black line for the axis itself
(lwd = 3). On axis 4 we have overwritten the default number and location of the tick marks using at, and
provided our own labels for each tick mark (note that the vectors of at locations and labels must be the
same length).

Because we did not use box() there are gaps between the ends of each of the four axes.

29.13.5 Background colour for plots, bg

The colour to be used for the background of plots is set by the bg function like this:

par(bg="cornsilk")

There is an example on p. 916. The default setting is par(bg="transparent").

29.13.6 Boxes around plots, bty

Boxes are altered with the bty parameter, and bty="n" suppresses the box. If the character is one of
"o", "l", (lower-case L, not numeral 1), "7", "c", "u", or "]" the resulting box resembles the
corresponding upper-case letter. Here are six options:

par(mfrow=c(3,2))
plot(1:10,10:1,type="n",main="default complete box")

940 THE R BOOK

plot(1:10,10:1,type="n",bty="n",main="no box")
plot(1:10,10:1,type="n",bty="]",main="open on the left")
plot(1:10,10:1,type="n",bty="c",main="open on the right")
plot(1:10,10:1,type="n",bty="u",main="open on the top")
plot(1:10,10:1,type="n",bty="7",main="top and right only")

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10 2 4 6 8 10

2
410

:1

10
:1

10
:1

10
:1

10
:1

10
:1

6
8

10

2
4

6
8

10

2
4

6
8

10

2
4

6
8

10

2
4

6
8

10

2
4

6

1:10 1:10

1:10 1:10

1:10 1:10

8
10

default complete box no box

open on the rightopen on the left

open on the top top and right only

29.13.7 Size of plotting symbols using the character expansion function, cex

You can use points with cex to create ‘bubbles’ of different sizes. You need to specify the x, y coordinates of
the centre of the bubble, then use cex = value to alter the diameter of the bubble (in multiples of the default
character size: cex stands for character expansion).

plot(0:10,0:10,type="n",xlab="",ylab="")
for (i in 1:10) points(2,i,cex=i)
for (i in 1:10) points(6,i,cex=(10+(2*i)))

CHANGING THE LOOK OF GRAPHICS 941

0 2 4 6 8 10

0
2

4
6

8
10

The left column shows points of size 1, 2, 3, 4, etc. (cex = i) and the big circles on the right are in sequence
cex = 12, 14, 16, etc. (cex=(10+(2*i))).

29.13.8 Changing the shape of the plotting region, plt

Suppose that you wanted to draw a map that was 30 m along the x axis and 15 m along the y axis. The standard
plot would have roughly twice the scale on the y axis as the x. What you want to do is reduce the height of
the plotting region by half while retaining the full width of the x axis so that the scales on the two axes are the
same. You achieve this with the plt option, which allows you to specify the coordinates of the plot region
as fractions of the current figure region. Here we are using the full screen for one figure so we want to use
only the central 40% of the region (from y = 0.3 to 0.7):

par(plt=c(0.15,0.94,0.3,0.7))
plot(c(0,3000),c(0,1500),type="n",ylab="y",xlab="x")

10005000 1500

10
00

50
0

y
0

15
00

2000 2500 3000

x

942 THE R BOOK

29.13.9 Locating multiple graphs in non-standard layouts using fig

Generally, you would use mfrow to get multiple plots on the same graphic screen (see p. 209); for instance,
mfrow=c(3,2) would give six plots in three rows of two columns each. Sometimes, however, you want a
non-standard layout, and fig is the function to use in this case. Suppose we want to have two graphs, one in
the bottom left-hand corner of the screen and one in the top right-hand corner. What you need to know is that
fig considers that the whole plotting region is scaled from (0,0) in the bottom left-hand corner to (1,1) in
the top right-hand corner. So we want our bottom left-hand plot to lie within the space x = c(0,0.5) and y =
(0,0.5), while our top right-hand plot is to lie within the space x = c(0.5,1) and y = (0.5,1). Here is how to
plot the two graphs: fig is like a new plot function and the second use of fig would normally wipe the
slate clean, so we need to specify that new=TRUE in the second par function to stop this from happening:

par(fig=c(0.5,1,0.5,1))
plot(0:10,25*exp(-0.1*(0:10)),col="blue",type="l",ylab="remaining",xlab="time")
par(fig=c(0,0.5,0,0.5),new=T)
plot(0:100,0.5*(0:100)ˆ0.5, col="red",type="l",xlab="amount",ylab="rate")

29.13.10 Two graphs with a common x scale but different y scales using fig

The idea here is to draw to graphs with the same x axis, one directly above the other, but with different scales
on the two y axes (see also plot.ts on p. 800). Here are the data:

data <- read.table("c:\\temp\\gales.txt",header=T)
attach(data)
names(data)

[1] "year" "number" "February"

We use fig to split the plotting area into an upper figure (where number will be drawn first) and a lower
figure (for February gales, to be drawn second but on the same page, so new=T). The whole plotting area
scales from (0,0) in the bottom left-hand corner to (1,1) in the top right-hand corner, so

CHANGING THE LOOK OF GRAPHICS 943

par(fig=c(0,1,0.5,1))

Now think about the margins for the top graph. We want to label the y axis, and we want a normal border
above the graph and to the right, but we want the plot to sit right on top of the lower graph, so we set the
bottom margin to zero (the first argument):

par(mar=c(0,5,2,2))

Now we plot the top graph, leaving off the x axis label and the x axis tick marks:

plot(year,number,xlab="",xaxt="n",type="b",pch=16,col="blue",
ylim=c(0,2000),ylab="Population")

Next, we define the lower plotting region and declare that new=T:

par(fig=c(0,1,0,0.5),new=T)

For this graph we do want a bottom margin, because we want to label the common x axes (Year), but we want
the top of the second graph to be flush with the bottom of the first graph, so we set the upper margin to zero
(argument 3):

par(mar=c(5,5,0,2))
plot(year,February,xlab="Year",type="h",col="red",ylab="February gales")

1950 1960 1970 1980 1990 2000
Year

5
0

50
0

10
00

P
op

ul
at

io
n 15

00
20

00
10

15

F
eb

fr
ua

ry
 g

al
es

20

Contrast this with the overlaid plots on p. 952.

29.13.11 The layout function

If you do not want to use mfrow (p. 209) or fig (p. 942) to configure your multiple plots, then layout
might be the function you need. This function allows you to alter both the location and shape of multiple
plotting regions independently. The layout function is used like this:

layout(matrix, widths = ws, heights = hs, respect = FALSE)

944 THE R BOOK

where matrix is a matrix object specifying the location of the next n figures on the output device (see
below), ws is a vector of column widths (with length=ncol(matrix)) and hs is a vector of row heights
(with length=nrow(matrix)). Each value in the matrix must be 0 or a positive integer. If n is the largest
positive integer in the matrix, then the integers {1, . . . , n – 1} must also appear at least once in the matrix.
Use 0 to indicate locations where you do not want to put a graph. The respect argument controls whether a
unit column width is the same physical measurement on the device as a unit row height and is either a logical
value or a matrix object. If it is a matrix, then it must have the same dimensions as matrix and each value
in the matrix must be either 0 or 1. Each figure is allocated a region composed from a subset of these rows
and columns, based on the rows and columns in which the figure number occurs in matrix. The function
layout.show(n) plots the outlines of the next n figures.

Here is an example of the kind of task for which layout might be used. We want to produce a scatterplot
with histograms on the upper and right-hand axes indicating the frequency of points within vertical and
horizontal strips of the scatterplot (see the result below). This is example was written by Paul R. Murrell.
Here are the data:

x <- pmin(3, pmax(-3, rnorm(50)))
y <- pmin(3, pmax(-3, rnorm(50)))
xhist <- hist(x, breaks=seq(-3,3,0.5), plot=FALSE)
yhist <- hist(y, breaks=seq(-3,3,0.5), plot=FALSE)

We need to find the ranges of values within x and y where the two histograms will lie:

top <- max(c(xhist$counts, yhist$counts))
xrange <- c(-3,3)
yrange <- c(-3,3)

Now the layout function defines the location of the three figures: Fig. 1 is the scatterplot which we want
to locate in the lower left of four boxes, Fig. 2 is the top histogram which is to be in the upper left box, and
Fig. 3 is the side histogram which is to be drawn in the lower right location (the top right location is empty),
Thus, the matrix is specified as

matrix(c(2,0,1,3),2,2,byrow=TRUE)

like this:

nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
layout.show(nf)

1

2

3

The figures in the first (left) column of the matrix (Figs 1 and 2) are of width 3 while the figure in the second
column (Fig. 3) is of width 1, hence c(3,1) is the second argument. The heights of the figures in the first

CHANGING THE LOOK OF GRAPHICS 945

column of the matrix (Figs 2 and 1) are 1 and 3 respectively, hence c(1,3) is the third argument. The
missing figure is 1 by 1 (top right).

par(mar=c(3,3,1,1))
plot(x, y, xlim=xrange, ylim=yrange, pch=21,col="blue",bg="red",

xlab="", ylab="")

par(mar=c(0,3,1,1))
barplot(xhist$counts, axes=FALSE, col="green",ylim=c(0, top), space=0)

par(mar=c(3,0,1,1))
barplot(yhist$counts, axes=FALSE, col="green",

xlim=c(0, top), space=0, horiz=TRUE)

–3 –2 –1 0 1 2 3

–3
–2

–1
0

1
2

3

Note the way that the margins for the three figures are controlled, and how the horiz=TRUE option is
specified for the histogram on the right-hand margin of the plot.

29.13.12 Creating and controlling multiple screens on a single device

The function split.screen defines a number of regions within the current device which can be treated
as if they were separate graphics devices. It is useful for generating multiple plots on a single device (see
also mfrow and layout). Screens can themselves be split, allowing for quite complex arrangements of
plots. The function screen is used to select which screen to draw in, and erase.screen is used to clear
a single screen, which it does by filling with the background colour, while close.screen removes the
specified screen definition(s) and split-screen mode is exited by close.screen(all = TRUE). You
should complete each graph before moving on to the graph in the next screen, because returning to a screen
can create problems.

You can create a matrix in which each row describes a screen with values for the left, right, bottom, and
top of the screen (in that order) in normalized device coordinate (NDC) units, that is, 0 at the lower left-hand
corner of the device surface, and 1 at the upper right-hand corner (see fig, above).

946 THE R BOOK

First, set up the matrix to define the corners of each of the plots. We want a long, narrow plot on the top
of the screen as Fig. 1, a tall rectangular plot on the bottom left as Fig. 2, then two small square plots on the
bottom right as Figs 3 and 4. The dataframe called gales is read on p. 942. Here is the matrix:

fig.mat <- c(0,0,.5,.5,1,.5,1,1,.7,0,.35,0,1,.7,.7,.35)
fig.mat <- matrix(fig.mat,nrow=4)
fig.mat

[,1] [,2] [,3] [,4]
[1,] 0.0 1.0 0.70 1.00
[2,] 0.0 0.5 0.00 0.70
[3,] 0.5 1.0 0.35 0.70
[4,] 0.5 1.0 0.00 0.35

Now we can draw the four graphs:

split.screen(fig.mat)

[1] 1 2 3 4

screen(1)
plot(year,number,type="l",col="blue")

screen(2)
plot(year,February,type="h", col="red")

screen(3)
plot(1:10,0.5*(1:10)ˆ0.5,xlab="concentration",

ylab="rate",type="l", col="green4")

screen(4)
plot(1:10,600*exp(-0.5*(1:10)),xlab="time",

ylab="residue",type="l", col="green4")

1950 1960 1970 1980 1990

1950 1970 1990

2000

2 4 6 8 10

2 4 6 8 10

5
10

15
20

60
0

nu
m

be
r

F
eb

ru
ar

y

year

year time

ra
te

re
si

du
e

concentration

25
0

0
1.

4
0.

6

CHANGING THE LOOK OF GRAPHICS 947

29.13.13 Orientation of numbers on the tick marks, las

Many journals require that the numbers used to label the y axis must be horizontal. To change from the
default, use las:

las=0 always parallel to the axis (the default);

las=1 always horizontal (preferred by many journals);

las=2 always perpendicular to the axis;

las=3 always vertical.

Note that you cannot use character or string rotation for this. Examples are shown on p. 907.

29.13.14 Shapes for the ends and joins of lines, lend and ljoin

The default is that the bare ends of lines should be rounded (see also arrows if you want pointed ends).
You can change this to "butt" or "square". This example shows the use of overwriting with successive
colours to achieve special effects:

plot(0:10,0:10,type="n",xlab="",ylab="")
lines(c(2,5,8),c(8,2,8),lwd=50,lend="square",ljoin="mitre")
lines(c(2,5,8),c(8,2,8),col="green",lwd=50,lend="round",ljoin="round")
lines(c(2,5,8),c(8,2,8),col="red",lwd=50,lend="butt",ljoin="bevel")

0 2 4 6 8 10

0
2

4
6

8
10

A black V was drawn first with ‘square’ ends and ‘mitre’ joins, then the green V with ‘round’ ends and
‘round’ joins, then finally the red V with ‘butt’ ends and ‘bevel’ joins.

To get the effect of bordered lines (e.g. to produce roads on a map) first draw wide lines in black (or
whatever colour you want the border to be), then draw the colour for the body of the line using a slightly
smaller value for the line width. Here is a two-dimensional random walk drawn as a smoothly snaking road
in red with black margins. Here is the random walk:

x<-numeric(100)
y<-numeric(100)

948 THE R BOOK

x[1]<-1
y[1]<-1
for (i in 2:100) {
a<-runif(1)*2*pi
d<-runif(1)*1
x[i]<-x[i-1]+d*sin(a)
y[i]<-y[i-1]+d*cos(a)
}

Now we plot blank axes with an intact box around the outside of the map:

plot(0:10,0:10,type="n",xaxt="n",yaxt="n",xlab="",ylab="")

The red road with black margins and smooth curves is added like this:

lines(x,y,lwd=13,lend="round",ljoin="round")
lines(x,y,lwd=10,col="red",lend="round",ljoin="round")

29.13.15 Line types, lty

Line types (like solid, dotted or dashed) are changed with the line-type parameter lty:

lty = 1 solid (the default);

lty = 2 dashed;

lty = 3 dotted;

lty = 4 dot-dash;

lty = 5 long-dash;

lty = 6 two-dash.

Invisible lines are drawn if lty=0 (i.e. the line is not drawn). Alternatively, you can use text to specify the line
types with one of the following character strings: blank, solid, dashed, dotted, dotdash,
longdash or twodash (see below).

CHANGING THE LOOK OF GRAPHICS 949

29.13.16 Line widths, lwd

To increase the widths of the plotted lines use lwd = 2 (or greater; the default is lwd=1). The interpretation
is device-specific, and some devices do not implement line widths less than 1. The function abline is so
called because it has two arguments – the first is the intercept (a) and the second is the slope (b) of a linear
relationship y = a + bx (see p. 191 for background):

plot(1:10,1:10,xlim=c(0,10),ylim=c(0,10),xlab="",ylab="",type="n")

for(i in 1:7) {
abline((-6+2*i),1,lty=i,col=i)
}
for(i in 2:7) {
y <- (-6+2*i)+2
x <- 2
text(x,y,i)
}
abline(-6,1,lty=1,lwd=4)
abline(-8,1,lty=1,lwd=8)

points(5,1,pch=16,cex=3,col="white")
points(7,1,pch=16,cex=3,col="white")
points(9,1,pch=16,cex=3,col="white")
text(5,1,1,col="red")
text(7,1,4,col="red")
text(9,1,8,col="red")

0 2

2

3

4

5

6

7

4

41

6 8

8

10

0
2

4
6

8
10

The numerals in a vertical line above x = 2 indicate the line types 2 to 7 in colours 2 to 7. In the bottom
right-hand corner are three solid lines lty=1 of widths lwd=1, 4 and 8. Note the use of the large white

950 THE R BOOK

pch=16 across the lines to make a gap in which the red labels indicating the line widths can be printed
clearly.

29.13.17 Several graphs on the same page, mfrow and mfcol

The way to remember the names of these functions is to think of them as standing for ‘multiple frames in rows’
(mfrow) or ‘multiple frames in columns’ (mfcol). You can obtain multiple graph panels on the same graphics
device by par(mfrow), par(mfcol), par(fig), par(split.screen) and par(layout), but
par(mfrow) is much the most frequently used. You specify the number of rows of graphs (first argument)
and number of columns of graphs per row (second argument) like this:

par(mfrow=c(1,1)) the default of one plot per screen;

par(mfrow=c(1,2)) one row of two columns of plots;

par(mfrow=c(2,1)) two rows of one column of plots;

par(mfrow=c(2,2)) four plots in two rows of two columns each;

par(mfrow=c(3,2)) six plots in three rows of two columns each;

par(mfrow=c(3,3)) nine plots in three rows of three columns each.

The graphs will be produced row-wise, starting in the top left-hand corner. You need to complete each graph
(add all points, lines and text) before going on to the next by issuing a new plot command.

In a layout with exactly two rows and columns the base value of cex is reduced by a factor of 0.83; if
there are three or more of either rows or columns, the reduction factor is 0.66. Remember to set par back to
par(mfrow=c(1,1)) when you have finished with multiple plots.

29.13.18 Margins around the plotting area, mar

You need to control the size of the margins when you intend to use large symbols or long labels for your
axes, or when you want to position multiple plots closer together. The four margins of the plot are defined by
integers 1 to 4 as follows:

1 = bottom (the x axis);
2 = left (the y axis);
3 = top;
4 = right.

The sizes of the margins of the plot are measured in lines of text. The four arguments to the mar function are
given in the sequence bottom, left, top, right. The default is

par(mar=(c(5, 4, 4, 2) + 0.1))

with more spaces on the bottom (5.1) than on the top (4.1) to make room for a subtitle (if you should want
one), and more space on the left (4.1) than on the right (2) on the assumption that you will not want to label
the right-hand axis. Suppose that you do want to put a label on the right-hand axis, then you would need to
increase the size of the fourth number, for instance like this: par(mar=(c(5, 4, 4, 4) + 0.1)).

CHANGING THE LOOK OF GRAPHICS 951

To get rid of margins altogether, use par(mar=(c(0, 0, 0, 0)), but bear in mind that there will be
no space for any labels under this format.

29.13.19 Plotting more than one graph on the same axes, new

The new parameter is a logical variable, defaulting to new=FALSE. If it is set to new=TRUE, the next
high-level plotting command (like plot(y~x)) does not wipe the slate clean in the default way. This allows
one plot to be placed on top of another.

29.13.20 Two graphs on the same plot with different scales for their y axes

gales <- read.table("c:\\temp\\gales.txt",header=T)
attach(gales)
names(gales)

[1] "year" "number" "February"

In this example we want to plot the number of animals in a wild population as a time series over the years
1950–2000 with the scale of animal numbers on the left-hand axis (numbers fluctuate between about 600
and 1600). Then, on top of this, we want to overlay the number of gales in February each year. This number
varies between 1 and 22, and we want to put a scale for this on the right-hand axis (axis=4).

First we need to make room in the right-hand margin for labelling the axis with the information on February
gales:

par(mar=c(5,4,4,4)+0.1)

Now draw the time series using a thicker line than usual (lwd=2) for emphasis:

plot(year,number,type="l",lwd=2,las=1,col="blue")

Next, indicate that the next graph will be overlaid on the present one:

par(new=T)

Now plot the graph of gales against years. This is to be displayed as vertical (type="h") dashed lines
(lty=2) in red:

plot(year,February,type="h",axes=F,ylab="",lty=2,col="red")

and it is drawn with its own scale (with ticks from 5 to 20, as we shall see). The right-hand axis is ticked and
labelled as follows. First use axis(4) to create the tick marks and scaling information, then use the mtext
function to produce the axis label (the name stands for ‘margin text’).

axis(4,las=1)
mtext(side=4,line=2.5,"February gales")

952 THE R BOOK

1950 1960 1970 1980 1990 2000
year

600

800

1000

1200

1400

1600

nu
m

be
r

5

10

15

20

F
eb

ru
ar

y
ga

le
s

It looks as if unusually severe February gales are associated with the steepest population crashes (contrast
this with the separate plots on p. 943).

29.13.21 Outer margins, oma

There is an area outside the margins of the plotting area called the outer margin. Its default size is zero,
oma=c(0,0,0,0), but if you want to create an outer margin you use the function oma.

Here is the function to produce an outer margin big enough to accommodate five lines of text on the bottom
and left-hand sides of the plotting region (see p. 956):

par(oma=c(5,5,0,0))

You will want to combine large outer margins with reduced inner margins when you want to produce your
own multiple-panel plots.

When using par(mfrow=c(2,2)) to get a panel of plots, you will probably use main to get a unique
title for each of the plots, but you may want an overall title (the equivalent of main but for the entire set
of panel plots. You use mtext (‘margin text’) for this with along with outer=T. Here are Anscombe’s
infamous four plots; he contrived the data so that they all have exactly the same regression models and p
values, but they are obviously very different once you plot them. Moral: always plot the data first, then do the
modelling, once you know what the data look like. The data are built into R:

attach(anscombe)
par(mfrow=c(2,2))

You can see the contrasting patterns in the four data sets

plot(x1,y1,main="set 1",col="red", pch=21, bg =
"orange",xlim=c(0,20),ylim=c(0,16))
abline(lm(y1~x1),col="navy")

plot(x2,y2,main="set 2",col="red", pch=21, bg =
"orange",xlim=c(0,20),ylim=c(0,16))

CHANGING THE LOOK OF GRAPHICS 953

abline(lm(y2~x2),col="navy")

plot(x3,y3,main="set 3",col="red", pch=21, bg =
"orange",xlim=c(0,20),ylim=c(0,16))
abline(lm(y3~x3),col="navy")

plot(x4,y4,main="set 4",col="red", pch=21, bg =
"orange",xlim=c(0,20),ylim=c(0,16))
abline(lm(y4~x4),col="navy")

but there is no room for an overall title.
You need to plan ahead, and to make space for at least one line of (potentially large) text at the top of the

page. This is the third margin, and the space you want to create is outside the space of the existing plot. Using
oma, you specify the width of the margin (in units of text lines) for each of the four margins in a vector (in
our case, c(0,0,2,0), to leave two lines at the top (third) margin):

par(mfrow=c(2,2), oma= c(0,0,2,0))

Now redraw the four plots (as above) then add the graph title using mtext like this:

mtext("Anscombe's 4 regression data sets", outer = TRUE, cex=1.5)

0 5 10 15 20 0 5 10 15 20

0 5 10 15 20 0 5 10 15 20

0
5

10

y1

15

0
5

10
y2

15

0
5

10

y3

15

0
5

10
y4

15

set 1 set 2

set 3

x1 x2

x3 x4

set 4

Anscombe’s 4 regression data sets

954 THE R BOOK

29.13.22 Packing graphs closer together

In this example we want to create nine closely spaced plots in a 3 × 3 pattern without any tick marks, and
to label only the outer central plot on the x and y axes. We need to take care of four things:

� mfrow=c(3,3) to get the nine plots in a 3 × 3 pattern;

� mar=c(0.2,0.2,0.2,0.2) to leave a narrow strip (0.2 lines looks best for tightly packed plots)
between each graph;

� oma=c(5,5,0,0) to create an outer margin on the bottom and left for labels;

� outer = T in title to write the titles in the outer margin.

The plots consist of 100 pairs of ranked uniform random numbers sort(runif(100)), and we shall plot
the nine graphs (see p. 209) with a for loop:

par(mfrow=c(3,3))
par(mar=c(0.2,0.2,0.2,0.2))
par(oma=c(5,5,0,0))
for (i in 1:9) plot(sort(runif(100)),sort(runif(100)),

xaxt="n",yaxt="n",pch=21, bg="green")
title(xlab="time",ylab="distance",outer=T,cex.lab=2)

time

d
is

ta
n

ce

CHANGING THE LOOK OF GRAPHICS 955

29.13.23 Square plotting region, pty

If you want to have a square plotting region (e.g. when producing a map or a grid with true squares on it),
then use the pty="s" option. The option pty="m" generates the maximal plotting region which is not
square on most devices. See the example on p. 829.

29.13.24 Character rotation, srt

To rotate characters in the plotting plane, use srt (which stands for ‘string rotation’). The argument to the
function is in degrees of counter-clockwise rotation:

plot(1:10,1:10,type="n",xlab="",ylab="")
for (i in 1:10) text (i,i,LETTERS[i],srt=(20*i),col="red")
for (i in 1:10) text (10-i+1,i,letters[i],srt=(20*i),col="blue")

2 4 6 8 10

2
4

6
8

10

A

B

C

D

E

F

G

H

I

J
a

b

c

d

e

f

g

h

i

j

Observe how the letters i and I have been turned upside down (srt=180).

29.13.25 Rotating the axis labels

When you have long text labels (e.g. for bars on a barplot) it is a good idea to rotate them through 45
degrees so that all the labels are printed, and all are easy to read.

spending <- read.csv("c:\\temp\\spending.csv")
attach(spending)
names(spending)

[1] "spend" "country"

There are three steps involved:

� Make the bottom margin big enough to take the long labels (mar).

956 THE R BOOK

� Find the x coordinates of the centres of the bars (xvals) with usr.

� Use text with srt = 45 to rotate the labels.

par(mar = c(7, 4, 4, 2) + 0.1)
xvals <- barplot(spend,ylab="spending",col="wheat2")

text(xvals, par("usr")[3]-0.25, srt = 45,
adj = 1,labels = country, xpd = TRUE)

Arg
en

tin
a

Aus
tra

lia

Aus
tri

a

Bah
ra

in

Bale
ar

ic
Isl

an
ds

Ban
gla

de
sh

Bel
gi

um

Bel
ize

0
5

10
15

sp
en

di
ng

20
25

30

Note the use of xpd=TRUE to allow for text outside the plotting region, and adj=1 to place the right-hand
end of text at the centre of the bars. The vertical location of the labels is set by par("usr")[3]-0.25
and you can adjust the value of the offset (here 0.25) as required to move the axis labels up or down relative
to the x axis.

29.13.26 Tick marks on the axes

The functions tck and tcl control the length and location of the tick marks. Negative values put the tick
marks outside the box (tcl=-0.5 is the default setting in R); tcl gives the length of tick marks as a fraction
of the height of a line of text.

The default setting for tck is tck=NA but you can use this for drawing grid lines: tck=0 means no
tick marks, while tck=1 means fill the whole frame (i.e. the tick marks make a grid). The tick is given as
a fraction of the frame width (they are + 0.03 in the bottom right-hand graph, so are internal to the plotting
region).

par(mfrow=c(2,2))
plot(1:10,1:10,xlab="",ylab="",type="n",main="default ticks")

CHANGING THE LOOK OF GRAPHICS 957

plot(1:10,1:10,xlab="",ylab="",type="n",main="maximum ticks",tck=1)
plot(1:10,1:10,xlab="",ylab="",type="n",main="no ticks",tck=0)
plot(1:10,1:10,xlab="",ylab="",type="n",main="interior ticks",tck=0.03)

2
4

6
8

10
2

4
6

8
10

2
4

6
8

10
2

4
6

8
10

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10 2 4 6 8 10

default ticks maximum ticks

no ticks interior ticks

29.13.27 Axis styles

There are three functions that you need to distinguish:

axis select one of the four sides of the plot to work with;

xaxs, yaxs intervals for the tick marks;

xaxt, yaxt suppress production of the axis with xaxt="n".

The axis function is described on pp. 909 and 924.
The xaxs function is used infrequently: style "r" (regular) first extends the data range by 4% and then

finds an axis with pretty labels that fits within the range; style "i" (internal) just finds an axis with pretty
labels that fits within the original data range.

Finally, xaxt and yaxt are often used when you want to specify your own kind of axes with different
locations for the tick marks and/or different labelling. If you do not want any tick marks or numbers on the
axes, then suppress the tick marks and value labels using xaxt="n" and/or yaxt="n" (see pp. 924 and
928 for examples).

29.14 Trellis graphics

The main purpose of trellis graphics is to produce multiple plots per page and multi-page plots, particularly
in the context of mixed-effects modelling (see p. 696). The plots are produced in adjacent panels, typically

958 THE R BOOK

with one plot for each level of a categorical variable (called the conditioning variable). For instance, you
might plot weight against age for each of two genders (males and females). The response variable is weight,
the continuous explanatory variable is age (also called the primary covariate in documentation on trellis
graphics) and the categorical explanatory variable is gender (a factor with two levels). In a case like this,
the default would produce two panels side by side in one row, with the panel for females on the left (simply
because ‘f’ comes before ‘m’ in the alphabet). In the jargon of trellis graphics, gender is a grouping factor
that divides the observations into distinct groups. Here are the data:

data <- read.table("c:\\temp\\panels.txt",header=T)
attach(data)
names(data)

[1] "age" "weight" "gender"

The package for producing trellis graphics in R is called lattice (not trellis as you might have guessed,
because that name was pre-empted by a commercial package):

library(lattice)

The panel plots are created by the xyplot function, using a formula to indicate the grouping structure:
weight ~ age | gender. This is read as ‘weight is plotted as a function of age, given gender’ (the
vertical bar | is the ‘given’ symbol).

xyplot(weight ~ age | gender)

0 1 2 3 4 5 6

0 1 2 3 4 5 6
age

2

4w
ei

gh
t

6

8

female male

Trellis graphics is a framework for data visualization developed at Bell Laboratories by Rick Becker, Bill
Cleveland and others, extending the ideas about what makes for an effective graph (layout, colour, style,
symbol sizes and so forth) presented in Cleveland (1993). The interface is based on the implementation in
S-PLUS, but there are several differences, and code produced for S-PLUS might not work in R. The R version
was written by Deepayan Sarkar, and the plots created by lattice are rendered by the Grid Graphics engine

CHANGING THE LOOK OF GRAPHICS 959

for R (developed by Paul Murrell). Most of the high-level trellis functions in S-PLUS are implemented in R,
with the exception of the pie chart:

� barchart for barplots;

� bwplot for box-and-whisker plots;

� densityplot for kernel density plots;

� dotplot for dot plots;

� histogram for panels of histograms;

� qqmath for quantile plots against mathematical distributions;

� stripplot for a one-dimensional scatterplot;

� qq for a quantile–quantile plot for comparing two distributions;

� xyplot for a scatterplot;

� levelplot for creating level plots (similar to image plots);

� contourplot for contour plots;

� cloud for three-dimensional scatterplots;

� wireframe for 3D surfaces (similar to persp plots);

� splom for a scatterplot matrix;

� parallel for creating parallel coordinate plots;

� rfs to produce a residual and fitted value plot (see also oneway);

� tmd for a Tukey mean–difference plot.

Lattice plots are highly customizable via user-modifiable settings, but these are completely unrelated to
base graphics settings. In particular, changing par() settings usually has no effect on lattice plots. To read
more about the background and capabilities of the lattice package, type

help(package = lattice)

29.14.1 Panel box-and-whisker plots

Here is an example trellis plot for the interpretation of a designed experiment where all the explanatory
variables are categorical. It uses bwplot to illustrate the results of a three-way analysis of variance (p. 528).

data <- read.table("c:\\temp\\daphnia.txt",header=T)
attach(data)
names(data)

[1] "Growth.rate" "Water" "Detergent" "Daphnia"

bwplot(Growth.rate~Water+Daphnia|Detergent)

960 THE R BOOK

Clone1 Clone2 Clone3 Tyne Wear Clone1 Clone2 Clone3 Tyne Wear

7

6

5

4

3

2

7

6

5

4

3

2

G
ro

w
th

.r
at

e

BrandC BrandD

BrandA BrandB

29.14.2 Panel scatterplots

Panels are by default drawn starting from the bottom left-hand corner, going right and then up, unless
as.table = TRUE, in which case panels are drawn from the top left-hand corner, going right and then
down. Both of these orders can be modified using the index.cond and perm.cond arguments.

There are some grid-compatible replacements for commonly used base R graphics functions: for example,
lines can be replaced by llines (or equivalently, panel.lines). Note that base R graphics functions
like lines simply will not work in a lattice panel function. The following example is concerned with root
growth measured over time, as repeated measures on 12 individual plants:

results <- read.table("c:\\temp\\fertilizer.txt",header=T)
attach(results)
names(results)

[1] "root" "week" "plant" "fertilizer"

CHANGING THE LOOK OF GRAPHICS 961

Here is a set of 12 scatterplots, showing root ~ week with one panel for each plant. The syntax uses the
“given” bar | like this:

xyplot(root ~ week | plant)

2 4 6 8 10

2 4 6 8 10
week

2 4 6 8 10

2 4 6 8 10

10

8

6
4

2

10

8

6
4

2

10

ro
ot

8

6
4

2

ID6

ID2

ID7

ID3 ID4 ID5

ID1 ID10 ID11 ID12

ID8 ID9

By default, the panels are shown in alphabetical order by plant name from bottom left (ID1) to top right (ID9).
If you want to change things like the plotting symbol you can do this within the xyplot function,

xyplot(root ~ week | plant,pch=16)

962 THE R BOOK

2 4 6 8 10

2 4 6 8 10
week

2 4 6 8 10

2 4 6 8 10

10

8

6
4

2

10

8

6
4

2

10

ro
ot

8

6
4

2

ID6

ID2

ID7

ID3 ID4 ID5

ID1 ID10 ID11 ID12

ID8 ID9

but if you want to make more involved changes, you should use a panel function.
Suppose we want to fit a separate linear regression for each individual plant. We write

xyplot(root ~ week | plant ,
panel = function(x, y) {
panel.xyplot(x, y, pch=16)
panel.abline(lm(y ~ x))

})

CHANGING THE LOOK OF GRAPHICS 963

2 4 6 8 10

2 4 6 8 10
week

2 4 6 8 10

2 4 6 8 10

10

8

6
4

2

10

8

6
4

2

10

ro
ot

8

6
4

2

ID6

ID2

ID7

ID3 ID4 ID5

ID1 ID10 ID11 ID12

ID8 ID9

You might want to do different things in different panels. Here, we draw a horizontal red dashed line,
highlighting the location of the fourth data point in each panel using subscripts [4]:

xyplot(root ~ week | plant ,
panel = function(x, y) {
panel.xyplot(x, y, pch=16)
panel.abline(lm(y ~ x))
panel.abline(h=y[4],col="red",lty=3)
})

964 THE R BOOK

2 4 6 8 10

2 4 6 8 10
week

2 4 6 8 10

2 4 6 8 10

10

8

6
4

2

10

8

6
4

2

10

ro
ot

8

6
4

2

ID6

ID2

ID7

ID3 ID4 ID5

ID1 ID10 ID11 ID12

ID8 ID9

The panels are numbered by default from lower left to upper right. Here we use panel.number() to
illustrate this, by adding a text label to each panel showing the panel number in green:

xyplot(root ~ week | plant ,
panel = function(x, y) {
panel.xyplot(x, y, pch=16)
panel.abline(lm(y ~ x))
panel.abline(h=y[4],col="red",lty=3)
panel.text(8,2,panel.number(),col="green",cex=0.7)
})

CHANGING THE LOOK OF GRAPHICS 965

2 4 6 8 10

2 4 6 8 10
week

2 4 6 8 10

2 4 6 8 10

10

8

6
4

2

10

8

6
4

9 10 11 12

8765

1 2 3 4

2

10

ro
ot

8

6
4

2

ID6

ID2

ID7

ID3 ID4 ID5

ID1 ID10 ID11 ID12

ID8 ID9

You can add extra points and extra lines to each panel using panel.lines and panel.points with
panel.number() as a subscript like this:

panel.points(xnew[panel.number()],ynew[panel.number()])

29.14.3 Panel barplots

The following example shows the use of the trellis version of the barchart with the built-in barley data. The data
are shown separately for each year (groups=year) and the bars are stacked for each year (stack=TRUE)
in different shades of blue (col=c("cornflowerblue","blue")):

The barcharts are produced in three rows of two plots each (layout = c(2,3)). Note the use of
scales to rotate the long labels on the x axis through 45 degrees:

barchart(yield ~ variety | site, data = barley,
groups = year, layout = c(2,3), stack = TRUE,
col=c("cornflowerblue","blue"),
ylab = "Barley Yield (bushels/acre)",
scales = list(x = list(rot = 45)))

966 THE R BOOK

Crookston Waseca

MorrisUniversity Farm

Grand Rapids Duluth

Tr
eb

i

W
iso

on
sin

 N
o.

38

W
iso

on
sin

 N
o.

38

No.
45

7

No.
45

7

Glab
ro

n

Glab
ro

n

Pea
tla

nd

Pea
tla

nd

Velv
et

Velv
et

No.
47

5

No.
47

5

M
an

ch
ur

ia

M
an

ch
ur

ia

No.
46

2

No.
46

2

Sva
n

so
ta

Sva
n

so
ta

120

B
ar

le
y

Y
ie

ld
 (

bu
sh

el
s/

ac
re

)

120

100
80

60
40

20
0

120

100

100

80

80

60

60

40

40

20

20

0

0

Tre
bi

29.14.4 Panels for conditioning plots

In this example we put each of the panels side by side (layout=c(9,1)) on the basis of an equal-count
split of the variable called E within the built-in ethanol dataframe:

EE <- equal.count(ethanol$E, number=9, overlap=1/4)

Within each panel defined by EEwe draw a grid (panel.grid(h=-1, v=2)), create a scatterplot of NOx
against C (panel.xyplot(x, y)) and draw an individual linear regression (panel.abline(lm(y
~ x))):

xyplot(NOx ~ C | EE, data = ethanol,layout=c(9,1),
panel = function(x, y) {

panel.grid(h=-1, v= 2)
panel.xyplot(x, y)
panel.abline(lm(y ~ x))

})

CHANGING THE LOOK OF GRAPHICS 967

810 810

810 810 810 810 810

810 810

4

3

2

1

N
O

x

14

14 14 14 14 14

1414 1418

18

C

18 18 18 18

18 18 18

EE EE EE EE EE EE EE EE EE

This is an excellent way of illustrating that the correlation between NOx and C is positive for all levels of EE
except the highest one, and that the relationship is steepest for values of EE just below the median (i.e. in the
third panel from the left).

29.14.5 Panel histograms

The task is to use the Silwood weather data to draw a panel of histograms, one for each month of the year,
showing the number of days per month during the period 1987–2005 with particular minimum temperatures.

data <- read.table("c:\\temp\\SilwoodWeather.txt",header=T)
attach(data)
names(data)

[1] "upper" "lower" "rain" "month" "yr"

histogram(~ lower| month,type="count",
xlab="mimimum temerature",ylab="frequency",
breaks=seq(-12,28,2),strip=strip.custom(factor.levels=month))

968 THE R BOOK

month month month month

monthmonthmonthmonth

month month month month

–10

150

150

150

100

50

0

100

100

50

50

0

0

0 10 20 –10 0 10 20

–10 0 10 20 –10 0 10 20
minimum temperature

fr
eq

ue
nc

y

The panel histogram is drawn using the histogram function which takes a model formula without a
response variable ~ lower|month as its first argument.

29.14.6 Effect sizes

An alternative is to use the effects package which takes a model object (a linear model or a generalized
linear model) and provides trellis plots of specified effects.

install.packages("effects")
library(effects)
model <- lm(Growth.rate~Water*Detergent*Daphnia)

First calculate all the effects using the allEffects function, then plot this object, specifying the interaction
you want to see, using double quotes:

daph.effects <- allEffects(model)
plot(daph.effects,"Water:Detergent:Daphnia")

CHANGING THE LOOK OF GRAPHICS 969

7

6

5

3

2

4

Water*Detergent*Daphnia effect plot

Daphina : Clone2
Water : Wear

BrandA BrandABrandD BrandD
Detergent

BrandC BrandCBrandB BrandB

BrandDBrandC

7

6

5

4

3

2

G
ro

w
th

.r
at

e

BrandA BrandB

Daphina : Clone2
Water : Tyne

Daphina : Clone3
Water : Wear

Daphina : Clone2
Water : Tyne

Daphina : Clone1
Water : Wear

Daphina : Clone1
Water : Tyne

29.14.7 More panel functions

Plots can be transformed by specifying the grouping (groups=rowpos), indicating that each group should
be drawn in a different colour (panel="panel.superpose"), or by specifying that the dots should
be joined by lines for each member of the group (panel.groups="panel.linejoin"). Here are the
orchard spray data with each row shown in a different colour and the treatment means joined together by
lines. This example also shows how to use auto.key to locate a key to the groups on the right of the plot,
showing lines rather than points:

xyplot(decrease ~ treatment, OrchardSprays, groups = rowpos,
type="a",
auto.key =
list(space = "right", points = FALSE, lines = TRUE))

970 THE R BOOK

100

50

0

A B C D E F G H
treatment

de
cr

ea
se

1
2
3
4
5
6
7
8

You can find more examples of lattice graphics in Chapter 19 on mixed-effects models.

References and Further Reading

Agresti, A. (1990) Categorical Data Analysis. New York: John Wiley & Sons, Inc.
Aitkin, M., Francis, B., Hinde, J. and Darnell, R. (2009) Statistical Modelling in R. Oxford: Clarendon Press.
Atkinson, A.C. (1985) Plots, Transformations, and Regression. Oxford: Clarendon Press.
Baddeley, A. and Turner, R. (2012) spatstat: Spatial Point Pattern analysis, model-fitting, simulation, tests. Maintainer:

Adrian Baddeley, Adrian.Baddeley@csiro.au.
Bates, D., Maechler, M. and Bolker, B. (2012) lme4: Linear mixed-effects models using S4 classes. Maintainer: lme4-

author@R-forge.wu-wien.ac.at.
Bishop, Y.M.M., Fienberg, S.J. and Holland, P.W. (1980) Discrete Multivariate Analysis: Theory and Practice. New

York: John Wiley & Sons, Inc.
Bivand, R. et al. (2012) spdep: Spatial dependence: weighting schemes, statistics and models. Maintainer: Roger Bivand,

Roger.Bivand@nhh.no.
Borenstein, M., Hedges, L.V., Higgins, J.P.T. and Rothstein, H.R. (2009) Introduction to Meta-analysis. Chichester: John

Wiley & Sons, Ltd.
Box, G.E.P. and Cox, D.R. (1964) An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26,

211–246.
Box, G.E.P. and Jenkins, G.M. (1976) Time Series Analysis: Forecasting and Control. Oakland, CA: Holden-Day.
Box, G.E.P., Hunter, W.G. and Hunter, J.S. (1978) Statistics for Experimenters: An Introduction to Design, Data Analysis

and Model Building. New York: John Wiley & Sons, Inc.
Breiman, L., Friedman, L.H., Olshen, R.A. and Stone, C.J. (1984) Classification and Regression Trees. Belmont, CA:

Wadsworth International Group.
Canty, A. and Ripley, B. (2012). boot: Bootstrap R (S-Plus) Functions. R package version 1.3-4.
Caroll, R.J. and Ruppert, D. (1988) Transformation and Weighting in Regression. New York: Chapman & Hall.
Casella, G. and Berger, R.L. (1990) Statistical Inference. Pacific Grove, CA: Wadsworth and Brooks/Cole.
Chambers, J.M. and Hastie, T.J. (1992) Statistical Models in S. Pacific Grove, CA: Wadsworth and Brooks Cole.
Chambers, J.M., Cleveland, W.S., Kleiner, B. and Tukey, P.A. (1983) Graphical Methods for Data Analysis. Belmont,

CA: Wadsworth.
Chatfield, C. (1989) The Analysis of Time Series: An Introduction. London: Chapman & Hall.
Clark, P.J. and Evans, F.C. (1954) Distance to nearest neighbour as a measure of spatial relationships in populations.

Ecology, 35, 445–453.
Cleveland, W.S. (1993) Visualizing Data. Summit, NJ: Hobart Press.
Cochran, W.G. and Cox, G.M. (1957) Experimental Designs. New York: John Wiley & Sons, Inc.
Collett, D. (1991) Modelling Binary Data. London: Chapman & Hall.
Conover, W.J. (1980) Practical Nonparametric Statistics. New York: John Wiley & Sons, Inc.
Conover, W.J., Johnson, M.E. and Johnson, M.M. (1981) A comparative study of tests for homogeneity of variances,

with applications to the outer continental shelf bidding data. Technometrics, 23, 351–361.

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

972 REFERENCES AND FURTHER READING

Cook, R.D. and Weisberg, S. (1982) Residuals and Influence in Regression. New York: Chapman & Hall.
Cox, D.R. (1972) Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Series B,

34, 187–220.
Cox, D.R. and Hinkley, D.V. (1974) Theoretical Statistics. London: Chapman & Hall.
Cox, D.R. and Oakes, D. (1984) Analysis of Survival Data. London: Chapman & Hall.
Cox, D.R. and Snell, E.J. (1989) Analysis of Binary Data. London: Chapman & Hall.
Crawley, M.J. (2002) Statistical Computing: An Introduction to Data Analysis using S-PLUS. Chichester: John Wiley &

Sons, Inc.
Crawley, M.J., Johnston, A.E., Silvertown, J., Dodd, M., de Mazancourt, C., Heard, M.S., Henman, D.F. and

Edwards, G.R. (2005) Determinants of species richness in the Park Grass Experiment. American Naturalist, 165,
348–362.

Cressie, N.A.C. (1991) Statistics for Spatial Data. New York: John Wiley & Sons, Inc.
Crowder, M.J. and Hand, D.J. (1990) Analysis of Repeated Measures. London: Chapman & Hall.
Dalgaard, P. (2002) Introductory Statistics with R. New York: Springer-Verlag.
Davidian, M. and Giltinan, D.M. (1995) Nonlinear Models for Repeated Measurement Data. London: Chapman & Hall.
Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their Application. Cambridge: Cambridge University

Press.
Deevey, E.S. Jr (1947) Life tables for natural populations of animals. Quarterly Review of Biology, 22, 283–314. Reprinted

in W.E. Hazen (ed.) (1964) Readings in Population and Community Ecology. Philadelphia: Saunders.
DerSimonian, R. and Laird, N. (1986) Meta-analysis in clinical trials. Controlled Clinical Trials, 7, 177–188.
Diggle, P.J. (1983) Statistical Analysis of Spatial Point Patterns. London: Academic Press.
Diggle, P.J., Liang, K.-Y. and Zeger, S.L. (1994) Analysis of Longitudinal Data. Oxford: Clarendon Press.
Dobson, A.J. (1990) An Introduction to Generalized Linear Models. London: Chapman & Hall.
Draper, N.R. and Smith, H. (1981) Applied Regression Analysis. New York: John Wiley & Sons, Inc.
Edwards, A.W.F. (1972) Likelihood. Cambridge: Cambridge University Press.
Efron, B. and Tibshirani, R.J. (1993) An Introduction to the Bootstrap. New York: Chapman & Hall.
Eisenhart, C. (1947) The assumptions underlying the analysis of variance. Biometrics, 3, 1–21.
Everitt, B.S. (1994) Handbook of Statistical Analyses Using S-PLUS. Boca Raton, FL: Chapman & Hall/CRC.
Ferguson, T.S. (1996) A Course in Large Sample Theory. London: Chapman & Hall.
Fisher, L.D. and Van Belle, G. (1993) Biostatistics. New York, John Wiley & Sons, Inc.
Fisher, R.A. (1954) Design of Experiments. Edinburgh: Oliver and Boyd.
Fleming, T. and Harrington, D. (1991) Counting Processes and Survival Analysis. New York: John Wiley & Sons, Inc.
Fox, J. (2002) An R and S-Plus Companion to Applied Regression. Thousand Oaks, CA: Sage.
Fox, J. and Weisberg, S. (2011) An R Companion to Applied Regression, 2nd edn. Thousand Oaks CA: Sage.

http://socserv.socsci.mcmaster.ca/jfox/Books/Companion.
Fox, J. and Weisberg, S. (2012) car: Companion to Applied Regression, with contributions by Douglas Bates, David

Firth, Michael Friendly, Gregor Gorjanc, Spencer Graves, Richard Heiberger, Rafael Laboissiere, Georges Monette,
Henric Nilsson, Derek Ogle, Brian Ripley and Achim Zeileis. Maintainer: John Fox, jfox@mcmaster.ca.

Gebhardt, A. (2012) akima: Interpolation of irregularly spaced data. Fortran code by H. Akima. R port by Albrecht
Gebhardt. aspline function by Thomas Petzoldt. Eenhancements and corrections by Martin Maechler. Maintainer:
Albrecht Gebhardt, albrecht.gebhardt@uni-klu.ac.at.

Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (2004) Bayesian Data Analysis, 2nd edn. Boca Raton, FL: Chapman
& Hall/CRC.

Gordon, A.E. (1981) Classification: Methods for the Exploratory Analysis of Multivariate Data. New York: Chapman &
Hall.

Gosset, W.S. (‘Student’) (1908) The probable error of a mean. Biometrika, 6, 1–25.
Grimmett, G.R. and Stirzaker, D.R. (1992) Probability and Random Processes. Oxford: Clarendon Press.
Hairston, N.G. (1989) Ecological Experiments: Purpose, Design and Execution. Cambridge: Cambridge University

Press.
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. (1986) Robust Statistics: The Approach Based on

Influence Functions. New York: John Wiley & Sons, Inc.

REFERENCES AND FURTHER READING 973

Harman, H.H. (1976) Modern Factor Analysis. Chicago: University of Chicago Press.
Hastie, T. and Tibshirani, R. (1990) Generalized Additive Models. London: Chapman & Hall.
Hicks, C.R. (1973) Fundamental Concepts in the Design of Experiments. New York: Holt, Rinehart and Winston.
Hoaglin, D.C., Mosteller, F. and Tukey, J.W. (1983) Understanding Robust and Exploratory Data Analysis. New York:

John Wiley & Sons, Inc.
Hochberg, Y. and Tamhane, A.C. (1987) Multiple Comparison Procedures. New York: John Wiley & Sons, Inc.
Hosmer, D.W. and Lemeshow, S. (2000) Applied Logistic Regression, 2nd edn. New York: John Wiley & Sons, Inc.
Hsu, J.C. (1996) Multiple Comparisons: Theory and Methods. London: Chapman & Hall.
Huber, P.J. (1981) Robust Statistics. New York: John Wiley & Sons, Inc.
Huitema, B.E. (1980) The Analysis of Covariance and Alternatives. New York: John Wiley & Sons, Inc.
Hurlbert, S.H. (1984) Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54,

187–211.
Johnson, N.L. and Kotz, S. (1970) Continuous Univariate Distributions, Volume 2. New York: John Wiley & Sons,

Inc.
Kalbfleisch, J. and Prentice, R.L. (1980) The Statistical Analysis of Failure Time Data. New York: John Wiley & Sons,

Inc.
Kaluzny, S.P., Vega, S.C., Cardoso, T.P. and Shelly, A.A. (1998) S + Spatial Stats. New York: Springer-Verlag.
Kauffman, J., Matsik, B. and Spencer, K. (2001) Beginning SQL Programming. Birmingham: Wrox Press.
Kendall, M.G. and Stewart, A. (1979) The Advanced Theory of Statistics. Oxford: Oxford University Press.
Keppel, G. (1991) Design and Analysis: A Researcher’s Handbook. Upper Saddle River, NJ: Prentice Hall.
Khuri, A.I., Mathew, T. and Sinha, B.K. (1998) Statistical Tests for Mixed Linear Models. New York: John Wiley & Sons,

Inc.
Knuth, D.E. (1998) The TEXbook. Reading, MA: Addison Wesley.
Krause, A. and Olson, M. (2000) The Basics of S and S-PLUS. New York: Springer-Verlag.
Lee, P.M. (2012) Bayesian Statistics: An Introduction, 4th edn. Chichester: John Wiley & Sons, Ltd.
Lehmann, E.L. (1986) Testing Statistical Hypotheses. New York: John Wiley & Sons, Inc.
Levins, R. (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control.

Bulletin of the Entomological Society of America, 15, 237–240
Lunn, D., Spiegelhalter, D., Thomas, A. and Best, N. (2009) The BUGS project: Evolution, critique and future directions.

Statistics in Medicine, 28, 3049–3082.
Mandelbrot, B.B. (1977) Fractals, Form, Chance and Dimension. San Francisco: Freeman.
Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979) Multivariate Statistics. London: Academic Press.
May, R.M. (1976) Simple mathematical models with very complicated dynamics. Nature, 261, 459–467.
McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd edn. London: Chapman & Hall.
McCulloch, C.E. and Searle, S.R. (2001) Generalized, Linear and Mixed Models. New York: John Wiley & Sons,

Inc.
Michelson, A.A. (1880) Experimental determination of the velocity of light made at the U.S. Naval Academy, Annapolis.

Astronomical Papers, 1, 109–145
Millard, S.P. and Krause, A. (2001) Using S-PLUS in the Pharmaceutical Industry. New York: Springer-Verlag.
Miller, R.G. (1981) Survival Analysis. New York: John Wiley & Sons, Inc.
Miller, R.G. (1997) Beyond ANOVA: Basics of Applied Statistics. London: Chapman & Hall.
Mosteller, F. and Tukey, J.W. (1977) Data Analysis and Regression. Reading, MA: Addison-Wesley.
Murrell, P. (2006) R Graphics. Boca Raton, FL: Chapman & Hall.
Nelder, J.A. and Wedderburn, R.W.M. (1972) Generalized linear models. Journal of the Royal Statistical Society, Series

A, 135, 370–384.
Neter, J., Wasserman, W. and Kutner, M.H. (1985) Applied Linear Regression Models. Homewood, IL: Irwin.
Neter, J., Kutner, M., Nachstheim, C. and Wasserman, W. (1996) Applied Linear Statistical Models. New York: McGraw-

Hill.
Neuwirth, E. (2012) RColorBrewer: ColorBrewer palettes. Maintainer: Erich Neuwirth, erich.neuwirth@univie.ac.at.
OED (2004) Oxford English Dictionary. Oxford: Oxford University Press.
O’Hagen, A. (1988) Probability: Methods and Measurement. London: Chapman & Hall.

974 REFERENCES AND FURTHER READING

Perry, J.N., Rothery, P., Clark, S.J., Heard, M.S. and Hawes, C. (2003) Design, analysis and statistical power of the
farm-scale evaluations of genetically modified herbicide-tolerant crops. Journal of Applied Ecology, 40, 17–31.

Pinheiro, J. and Bates, D. (2012) nlme: Linear and nonlinear mixed effects models, with Saikat DebRoy, Deepayan Sarkar
and the R Core team. Maintainer: R-core, R-core@R-project.org.

Pinheiro, J.C. and Bates, D.M. (2000) Mixed-Effects Models in S and S-PLUS. New York: Springer-Verlag.
Platt, J.R. (1964) Strong inference. Science, 146, 347–353.
Plummer, M. (2012) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. http://mcmc-

jags.sourceforge.net/.
Priestley, M.B. (1981) Spectral Analysis and Time Series. London: Academic Press.
Rao, P.S.R.S. (1997) Variance Components Estimation: Mixed Models, Methodologies and Applications. London: Chap-

man & Hall.
Riordan, J. (1978) An Introduction to Combinatorial Analysis. Princeton, NJ: Princeton University Press.
Ripley, B. (2012) tree: Classification and regression trees. Maintainer: Brian Ripley, ripley@stats.ox.ac.uk.
Ripley, B. and Lapsley, M. (2012) RODBC: ODBC database access. Maintainer: Brian Ripley, ripley@stats.ox.ac.uk.
Ripley, B.D. (1996) Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press.
Robert, C.P. and Casella, G. (1999) Monte Carlo Statistical Methods. New York: Springer-Verlag.
Rosner, B. (1990) Fundamentals of Biostatistics. Boston: PWS-Kent.
Ross, G.J.S. (1990) Nonlinear Estimation. New York: Springer-Verlag.
Santer, T.J. and Duffy, D.E. (1990) The Statistical Analysis of Discrete Data. New York: Springer-Verlag.
Schwarzer, G. (2012) meta: Meta-analysis with R. Maintainer: Guido Schwarzer, sc@imbi.uni-freiburg.de.
Scott, D.W. (1992) Multivariate Density Estimation. Theory, Practice and Visualization. New York: John Wiley & Sons,

Inc.
Searle, S.R., Casella, G. and McCulloch, C.E. (1992) Variance Components. New York: John Wiley & Sons, Inc.
Shao, J. and Tu, D. (1995) The Jackknife and Bootstrap. New York: Springer-Verlag.
Shumway, R.H. (1988) Applied Statistical Time Series Analysis. Englewood Cliffs, NJ: Prentice Hall.
Silverman, B.W. (1986) Density Estimation. London: Chapman & Hall.
Silvey, S.D. (1970) Statistical Inference. London, Chapman & Hall.
Snedecor, G.W. and Cochran, W.G. (1980) Statistical Methods. Ames: Iowa State University Press.
Soetaert, K., Petzoldt, T. and Setzer, R.W. (20102) deSolve: General solvers for initial value problems of ordinary

differential equations (ODE), partial differential equations (PDE), differential algebraic equations (DAE), and delay
differential equations (DDE). Maintainer: Thomas Petzoldt, thomas.petzoldt@tu-dresden.de.

Sokal, R.R. and Rohlf, F.J. (1995) Biometry: The Principles and Practice of Statistics in Biological Research. San
Francisco, W.H. Freeman.

Spiegelhalter, D. Thomas, A., Best, N. and Lunn, D. (2003) WinBUGS User Manual. Version 1.4. http://www.mrc-
bsu.cam.ac.uk/bugs/winbugs/manual14.pdf.

Sprent, P. (1989) Applied Nonparametric Statistical Methods. London: Chapman & Hall.
Taylor, L.R. (1961) Aggregation, variance and the mean. Nature, 189, 732–735.
Therneau, T.M. and Atkinson, B. (2012) rpart: Recursive partitioning. Maintainer: Brian Ripley, ripley@stats.ox.ac.uk.
Upton, G. and Fingleton, B. (1985) Spatial Data Analysis by Example. Chichester: John Wiley & Sons, Ltd.
Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S-PLUS, 4th edn. New York: Springer-Verlag.
Venables, W.N., Smith, D.M. and the R Development Core Team (2012) An Introduction to R. Notes on R: A Programming

Environment for Data Analysis and Graphics. Version 2.15.0. ISBN 3-900051-12-7. http://cran.r-project.org/.
Wedderburn, R.W.M. (1974) Quasi-likelihood functions, generalized linear models and the Gauss-Newton method.

Biometrika, 61, 439–447.
Weisberg, S. (1985) Applied Linear Regression. New York: John Wiley & Sons, Inc.
Wetherill, G.B., Duncombe, P., Kenward, M., Kollerstrom, J., Paul, S.R. and Vowden, B.J. (1986) Regression Analysis

with Applications. London: Chapman & Hall.
Winer, B.J., Brown, D.R. and Michels, K.M. (1991) Statistical Principles in Experimental Design. New York: McGraw-

Hill.
Wood, S.N. (2000) Modelling and smoothing parameter estimation with multiple quadratic penalties. Journal of the Royal

Statistical Society, Series B, 62, 413–428.
Wood, S.N. (2003) Thin plate regression splines. Journal of the Royal Statistical Society, Series B, 65, 95–114.

REFERENCES AND FURTHER READING 975

Wood, S.N. (2004) Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal
of the American Statistical Association, 99, 673–686.

Wood, S.N. (2006) Generalized Additive Models: An Introduction with R. Boca Raton, FL: CRC Press.
Wood, S. (2012) mgcv: Mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation. Maintainer:

Simon Wood, simon.wood@r-project.org.
Yu-Sung Su and Masanao Yajima (2012) R2jags: A package for running jags from R. Maintainer: Yu-Sung Su,

suyusung@tsinghua.edu.cn.
Zar, J.H. (1999) Biostatistical Analysis. Englewood Cliffs, NJ: Prentice Hall.

Index

Text in bold represents R functions or arguments to R functions. Greek letters appear at the end of the index.

−1
estimate terms for each mean, 256
remove the intercept, 398, 862

0
censoring indicator, 883
count data, 579
logical FALSE, 25
replace missing values, 35
status = censored, 876
testing for zeros, 32

1
logical TRUE, 25
the intercept is parameter one, 398

−
deletion of an explanatory variable from the model

(not subtraction), 396
subtraction, 16

!
logical NOT, 19, 22
selecting rows of a dataframe, 171

! factorial
binomial distribution, 308
Fisher’s exact test, 371
introduction, 271
x! = x × (x – 1) × (x – 2) × · · · × 3 × 2, 17

!=
not equal, 22

!duplicated
not duplicated for dates and times, 109
produce a set of subscripts that would select the

non-duplicated values from an object, 49
removing duplicate rows from a dataframe, 180
removing pseudoreplication, 174

!is.na
not missing values, 34

!is.numeric
not numeric, 32

""
issues with quote marks in SQL queries, 158

"\a"
bell, 150

"\b"
backspace, 150

"\f"
form feed, 150

"\n"
new line, 141, 150
removing using strsplit, 148
separators with scan, 144

"\r"
carriage return, 150

"\t"
multiple tabs, 151
removing using strsplit, 145, 147
separators with scan, 144
tab character, 150

"\v"
vertical tab, 150

#
add comments to your R code, 136

$
component selection, 405
extracting information from summary(model),

425
indexing tagged lists, 79
last character with grep, 93
list indexing, 19
variable names from dataframes, 149

$fitted
function for model-checking, 405

$infmat
jackknife, 482

$resid
function for model-checking, 405

The R Book, Second Edition. Michael J. Crawley.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

978 INDEX

%%
modulo, 18
modulo with barplot to combine two distributions, 590
remainder, 18

%∗%
matrix multiplication, 323
sum of products, 332

%/%
integer quotients, 18

%in%
as a subscript, 98
character strings, 97
sapply, 98
set theory, 53

&
combinations of T and F, 25
logical AND, 19, 22, 170

&&
logical AND with if, 22

∗
inclusion of explanatory variables and interactions (not

multiplication), 396
main effects and interactions in model formula, 19
multiplication, 16
wildcards in SQL queries using LIKE, 158

. (dot)
anything character with grep, 95

. . .
variable numbers of arguments (triple dot),

127
.Call

interface to compiled code, 11
. convention

fit all the explanatory variables, 620
.External, 11
.GlobalEnv

environments in R, 113
.Internal

interface to compiled code, 11
.Primitive, 11
.Random.seed

recall same random numbers, 69
/

division, 16
nesting of explanatory variables in the model (not division),

396
:

create a sequence, 19
create factor levels, 398, 692
interaction term in model formula, 19
sequence generation, 27, 76

;
multiple statements per line, 13

?
help in R, 6

??
help in R, 6

[]
square brackets are subscripts, 37
subscripts for subsetting, 413

[,]
twin subscripts on dataframes, 164

[,c]
column subscripts, 54

[[]]
subscripts on lists have double brackets, 79
with triple dot, 128

[[1]]
list subscripts, 51

[–1]
drop the first element from a vector, 37

[1]
select the first element from a vector, 37

[a,b)
greater than or equal to a but less than b, 222

[A–E]
select a range of characters with grep, 93

[r,]
row subscripts, 54

\
backslash for quoting metacharacters, 98

∧
caret symbol, 16
first character with grep, 93
highest interactions in model formula, 19
powers and roots, 16

{}
curly brackets with for loops, 71

{n}
character counting in words, 100

|
combinations of TRUE and FALSE (OR), 25
conditioning so y∼x | z is read y as a function of x given z,

396
given with coplot, 236
logical OR, 19, 22

‖
logical OR with if, 22

∼
tilde, meaning ‘as a function of’, 19

∼
statistical models, 395

∼ . -
update, 399

∼∼
extra spaces in expressions, 918

∼1
estimate the intercept, 457
fitting the null model, 439

+
addition, 16
continuation character, 13
inclusion of an explanatory variable in the model (not

addition), 396

INDEX 979

<

less than, 22
<

(read as “gets”)
assignment in R, 18
destroys existing variables of the same name, 150

<- a <- b <- c
multiple allocation, 71

<=
less than or equal to, 22

==
logical equals (double equals), 22

>

greater than, 22
>

prompt (new command line), 4
>=

greater than or equal to, 22
–1

estimate terms for each mean, 256
remove the intercept, 398, 862

0
censoring indicator, 883
count data, 579
logical FALSE, 25
replace missing values, 35
status = censored, 876
testing for zeros, 32

0 and 1
binary response variable, 650

0 in tables
tabulate rather than table, 256

1
logical TRUE, 25
the intercept is parameter one, 398

1-β
Type II error rate (= 0.2), 383

2 by 2 contingency tables
log-linear model of count data, 602
Mendel’s peas, 601

2/3 power of the response
normal errors, 393

25th percentile
box-and-whisker plot, 213
summary, 162

2-parameter asymptotic exponential
non-linear models, 716

2-parameter logistic, 716
3D graphics

vis.gam output from gam, 679
3-dimensional array, 53
3-dimensional plots

introduction, 930
3D-like object

persp or wireframe, 932
3D surfaces

wireframe, 959

3-parameter asymptotic exponential
non-linear models, 716

3-parameter logistic
non-linear models, 716

45 degree line
abline(0,1), 707

4-parameter logistic
non-linear models, 716

75th percentile
box-and-whisker plot, 213
summary, 162

9:3:3:1 ratio
Mendel’s peas, 601
rescale.p=TRUE, 601

95% confidence interval
introduction, 122

a
intercept, 449

abline
instead of grid, 839, 867
regression line through a scatterplot, 191

abline(0,1), 45 degree line, 707
abline(h=y)

horizontal line at height y, 292
abline(model)

drawing your own piecewise lines, 488
fit a line through a scatterplot, 478

abline(v=x)
vertical line at location x, 839

abline using subscripts
in ANCOVA, 539

abs
absolute value (ignore the minus sign if present), 17
closest values, 47

absolute value (ignore the minus sign if present)
abs, 17

absolute values, 452
rather than sum of squares, 65

acf
autocorrelation function, 789
for two time series, 801
plot(ACF), 700

acf(type="p")
partial autocorrelation, 790

acos
inverse cosine, 17

add a legend to a plot
legend, 194

add columns to a matrix or dataframe
cbind, 58

add extra lines to a graph
lines, 191

add extra points to a graph
points, 191

adding a column to a dataframe
cbind, 185

980 INDEX

adding rows and columns to a dataframe, 185
addition

+ , 16
additive or multiplicative errors, 569
additivity

log response, 393
address within vectors

which, 46
add rows to a matrix or dataframe

rbind, 58
add some not all of the numbers

logical subscripts, 40
add=TRUE

with image to ensure smooth transition between frames,
899

adequate models
introduction, 389

adj
text justification, 935

adjoint of a matrix, 327
adjusted r2 value

extracting from summary(model),
425

summary.lm, 461
age at death

censoring, 883
exponential errors, 558
introduction, 869
variance, 884

age effects and cohort effects
longitudinal data, 524

aggregate
alternative to tapply, 58
dataframe summary, 186
eliminating pseudoreplication, 714
for summarizing dataframes, 163
summary statistics, 44
with length, 623

aggregated
spatial point processes, 825

aggregated pattern and quadrat count data,
839

aggregation
comparing data with a Poisson distribution,

590
Taylor’s power law, 262

AIC
Akaike’s information criterion, 415
binary response variable, 656
comparing time series models, 807
introductory example, 417
from lists of models using lapply, 426
function for model-checking, 416
hand calculation, 415
with offsets, 567

Akaike’s information criterion
introduction, 415

akima
installed package, 9

aliasing
correlation of explanatory variables, 443
intentional aliasing, 443
introduction, 443
NA in summary(model), 583
piecewise regression, 487

alive
last seen alive, 876

all
logical function, 52
logical operations, 26

all.equal
comparing factors and characters, 24
equality of floating point numbers, 23

all=T
merge, 184

along
in sequences, 108
is.na, 35
sequence generation, 27

alpha
Type I error rate (= 0.05), 368

alphabetic order of factor levels
over-riding the default, 247

alternative hypothesis
in one-way ANOVA, 502
Student’s t test, 360

always look at your data
Anscombe’s famous data, 953

am/pm indicator
%p AM/PM indicator in the locale, 103

analysis of covariance
illustration, 538
introduction to ANCOVA, 537
maximal model, 537
model simplification, 538

analysis of deviance
log-linear model of count data, 581

Analysis of Ecological and Environmental Data
task views, 7

Analysis of Pharmacokinetic Data
task views, 7

Analysis of Spatial Data
task views, 7

analysis of variance
introduction, 498
with regression, 458

ANCOVA
ANCOVA or mixed effects models, 705
binary response variable, 655
compared with mixed effects model, 709
equivalent in gam, 674
factorial experiment, 548
famous five, 540
illustration, 412

INDEX 981

introduction, 537
model formulae, 395
plots of fitted values, 551
plots using subscripts, 539
standard error of the intercept, 544
survival analysis, 880
with proportion data, 640

AND
&, 19
combinations of T and F, 25

angle = 45
cross-hatching, 919–20

anisotropy
spatial autocorrelation, 857

anonymous functions
apply, 62
example, 129
plot.design, 238
sapply, 83
tapply, 43, 246

anova
as summary.aov, 459
compare two non-linear models, 717
compare two survivorship models, 888
comparing two regression models, 477
contingency table analysis, 605, 609–10, 619
for model objects, 412
model formulae, 395
piecewise regression, 487
power.anova.test, 384

ANOVA table
format using cat, 151
in ANCOVA, 543
in one-way ANOVA, 501
soil data, 506
with regression, 459

ANOVA to compare models
gam, 671
mixed effects models, 688, 708

Anscombe’s famous data
always look at your data, 953

antilog
geometric mean, 117
transformations, 270

antilog base e
exp, 17

antolog
introduction, 258

any
logical test, 26, 663

anything character with grep
. (dot), 95

aov
fit a one-way ANOVA, 411, 508
with Error, 520

aov with Error
rats example, 526

aperm
re-order a multidimensional table, 618
transpose an array, 67

aphids
dangers involved in contingency tables,

604
a posteriori contrasts, 430
apply

anonymous functions, 62
column means, 59
counting missing values, 174
function to one margin of a matrix, 57
introduction, 61
standard deviations, 254

a priori contrasts, 430
apropos

vector of matching names, 6
AR

autoregressive models, 805
arbitrary number of arguments to a function

triple dot . . . , 127
arcsine

transformation, 270
arcsine transformation

background, 629
area

incidence functions, 652
Arg

argument of complex number, 14
argument lists

introduction, 127
argument matching, 126
argument of complex number

Arg, 14
arguments

exact matching on tags, 126
arguments to a function

triple dot, 127
arima

fits time series models, 806
lynx example, 807

arithmetic mean
function, 115
maximum likelihood, 283

arithmetic operations
introduction, 16

ARMA
autoregressive moving average models, 805

array
create an array with specified dimensions, 68

arrays
changing the dimensions, 53
introduction, 53

arrows
adding shapes to a graph, 203
fat arrows function, 929
for error bars, 123, 204, 216, 512

982 INDEX

arrows (Continued)
phase planes, 928
shape of head, 203

as.character
coercion, 25
names on maps, 197

as.complex
coercion, 14

as.data.frame
admissions data, 619
coercion, 31
dataframe from a table, 252
expanding a table into a dataframe, 251
table to dataframe, 178
with readLines, 147
with scan, 142

as.data.frame.table, 3-dimensional contingency table,
608

producing a shorter summary dataframe, 249, 622
as.Date

coercion, 108
as.difftime

coercion, 105
as.expression(substitute)

calculated values in expressions, 927
as.factor

coercion, 30
as.formula

for complex model formulae, 397
as.integer

coercion, 20
as.is

with read.table, 149
as.list

using scan, 142
as.numeric

coercion, 30, 86
factors in a dataframe, 198
lapply, 148
Sys.time, 101
with unlist, 422

as.POSIXct
coercion, 112

as.POSIXlt
introduction, 102

as.vector
coercion, 31
to remove names from objects, 38

ask = TRUE
input requested before the next graphic, 935

assign
str of linear model, 131

assignment
destroys existing variables of the same name, 150
gets arrow <-, 18

asin
inverse sine, 17

as is I
background, 397
introduction, 210
model formulae, 395
piecewise regression, 659
polynomials, 446

assocplot
Cohen–Friendly association plot, 616

assumptions
additive effects, 344
constant variance, 344
in one-way ANOVA, 503
independent errors, 344
linear regression, 451
mixed effects models, 682
normal errors, 344
simple is best, 390

asymptote
Michaelis–Menten, 263
polynomials, 210

asymptotic exponential
behaviour at the limits, 715
introduction, 265
non-linear models, 716
parameter estimation, 715

asymptotic exponential vs. Michaelis–Menten
nonlinear regression, 719

asymptotic regression model
SSasymp, 730

asymptotic regression model through the origin
SSasympOrig, 728

asymptotic regression model with an offset
SSasympOff, 728

atan
inverse tangent, 17

attach
dataframe from a package, 9
dataframe operations, 161
masking, 149
use with instead to avoid masking, 150
used in this book, 114

attach or with
best practice, 113

attributes
find levels and class of an object, 24
of a matrix, 55
using all.equal, 24

attributes of a factor
contrasts, 432

augPred
predict families of curves, 724

auto.key
panel plots, 969

autocorrelation
model criticism, 405
residuals, 700
time series, 786

INDEX 983

autocorrelation function
acf, 789

autoregressive (AR) models
time series models, 805

autoregressive moving average (ARMA) models, 805
averaging away the pseudoreplication

example, 713
rats example, 525

axes
counting things on maps, 842

axes and boxes
colour, 917

axes=FALSE
plot with no axes, 938

axis
graphics parameters explained, 907
non-default labelling, 867
non-standard labels for tick marks, 924, 938
phase planes, 928

axis 1
bottom (x axis), 938

axis 2
left (yaxis), 938

axis 3
top, 938

axis 4
right, 938

axis colour
col.axis, 917

azimuthal direction
persp, 932

b
derivation of slope, 455
parameter of the power function, 261
slope of straight line, 449
SSXY/SSX, 454

background colour for plots
bg, 939

background colour in plotting symbols
introduction, 196
multiple time series, 199

background colours
colour of the paper, 916
par(bg="wheat2"), 916

backspace
"\b", 150

back-transform to proportions
logits, 638

back-transformation
logits to proportions, 632
predict with model, 469

bacteria data
MASS library, 114
pseudoreplication, 660

balls in urns
hypergeometric distribution, 312

bandwidth
density estimation, 227

bar chart
introduction, 220

barchart
panels of barplots, 959

barplot
beside=T, 516
binomial distribution, 309
comparing data with a Poisson distribution, 589
count data from quadrats, 840
cross-hatching, 919
Daphnia data, 221
density function of the geometric distribution, 311
for side by side distributions 0s, 1s, etc., 321
from tapply, 585
hypergeometric distribution, 312
in one-way ANOVA, 511
introduction, 215
legend, 321
negative binomial distribution, 316, 318
overlay a smooth line, 448
rotating long bar labels to eliminate overlap, 955
two distributions combined 0s, 1s, etc., 590

barplots
barchart, 959

Bartlett’s test
comparing several variances, 355

bartlett.test
comparing several variances, 356
comparing two variances, 357

base e logarithms
introduction, 259

base of natural logarithms
e = 2.71828, 258

baseline hazard function
Cox proportional hazards model, 878

basename
file paths, 152

Bayesian Inference
task views, 7

Bayesian inference Using Gibbs Sampling
BUGS, 758

Bayesian statistics
credible interval, 753
introduction, 752
likelihood of our model, given the data, 755
model choice, 757
probability background, 754
shrinkage, 756

BCa
bias-corrected accelerated percentile, 387

BCa interval
in regression, 480

behaviour at the limits
asymptotic exponential, 715
asymptotic function, 265

984 INDEX

behaviour at the limits (Continued)
introduction, 259
logistic, 630

bell
"\a", 150

bell-shaped
non-linear models, 716

Bernoulli distribution
binary response variable, 650
introduction, 307

beside=T
barplots, 516

best linear unbiased predictors
BLUP, 685

beta
beta distribution, 273
power of the test, 383

beta distribution
beta, 273
introduction, 296

bg
background colour for plots, 939
background colour in plotting symbols, 199

bg="wheat2"
background colours, 916

BH
multiple comparisons, 533

bias
meta-analysis, 740

bias-corrected accelerated percentile
Bca, 387

biexponential
non-linear models, 716

biexponential model
humped curves, 269
SSbiexp, 728

binary
function to create binary representation of a number, 73

binary data
random-effects meta-analysis, 748

binary data expressed as proportion data, 664
binary representation of a number, 73
binary response variable

ANCOVA, 655
Bernoulli distribution, 650
box-and-whisker plot, 656
continuous explanatory variable, 651
gam, 677
introduction, 650
no such thing as overdispersion, 651
predict(type="response"), 653
smooth line from a logistic model, 653
subset, 663
with non-parametric smoothers, 651

binary response with pseudoreplication, 660
binom

binomial sample size, 273

binom.test
introduction, 364
two-category table, 600

binomial
deviance formula, 562

binomial coefficients n!/(x! (n – x)!)
choose(n,x), 17, 271

binomial data
quasibinomial, 665

binomial denominator
number of attempts, 629

binomial distribution
introduction, 308

binomial errors
logit link, 560
overdispersion, 631
useful with data on proportions, 558

binomial glm
model simplification, 577

binomial link function
logit(p), 631

binomial priors
Bayesian statistics, 757

binomial sample size
binom, 273

binomial standard errors
for plots, 654

binomial test
proportion data, 365

binomial variance
illustration, 630

bins
for count data, 314
in histograms, 221

bin widths
drawing a smooth curve, 280
hist, 286
using cut, 222

biomass
error.bars, 124

biplot
principal components analysis, 811

black is rgb(0, 0, 0)
rgb, 910

blank axes labels
xlab="", 197
ylab="", 197

blank spaces
in variable names, 160

blank spaces in names
read.csv, 18

blank subscripts
all rows or all columns, 54

blocking
analysis of variance, 498
example split plot, 520
paired t test, 363

INDEX 985

BLUP
best linear unbiased predictors, 685

Bonferroni
multiple comparisons, 533

bookmakers’ odds
p/(1-p), 630

boot
package for bootstrap, 385

boot.ci
bootstrap with glm, 573
confidence intervals from the boot object, 387
in regression, 480
non-linear regression, 738

boot package
in regression, 480

bootstrap
a family of non-linear regressions, 735
introduction, 349
jackknife after bootstrap, 483
sample(replace=T), 479
with glm, 571
with regression, 478
with single samples, 385

border = NULL
cross-hatching, 919

bordered lines
different colours, 947

both axes log scale
log="xy", 922

both points and lines
type="b", 198

bottom (the x axis)
axis = 1, 938
margin = 1, 950

bound symbols
introduction, 126

bounded response
proportion data, 628

box
boxcol, 919
boxfill, 919
boxlty, 919
boxlwd, 919

box-and-whisker plots
binary response variable, 656
bwplot, 959
competition experiment, 216
full colour control, 918
in one-way ANOVA, 511
introduction, 212
notches, 213
single samples, 345
variance components analysis, 694

boxcol
line colour, 919

Box–Cox
transformations, 401

boxes around plots
bty, 939

boxfill
fill colour, 919

boxlty
line type, 919

boxlwd
line width, 919

boxplot
notch=T, 359
one-way ANOVA, 218
OrchardSprays, 113
ordered names, 218

break(s)
bin widths, 295
edge effects in spatial simulations, 897
for count data, 314
to leave a repeat loop, 72
to specify the bins of a histogram, 224–5

bty
boxes around plots, 939

bubble plot
introduction, 239

bubbles
using cex, 941

BUGS
Bayesian inference Using Gibbs Sampling,

758
overdispersed binomial example, 766
regression example, 760
temporal pseudoreplication example, 764

butt
ends of lines, 947

bwplot
box-and-whisker plots, 959
illustration, 960
panel plots, 959

by
dataframe summary, 186
equivalent of ANCOVA in gam, 674
for summarizing dataframes, 163
model fitting within categories, 163
multiple comparisons, 533
sequence generation, 27

by.x
merging dataframes, 184

by.y
merging dataframes, 184

byrow=F
argument to the matrix function, 54

bzfile
connections, 153

c
concatenate character strings, 87
concatenation, 35, 46, 137
creating vector of numbers, 35

986 INDEX

C
cubic contrasts, 445
cubic terms, 574

C +
interface to compiled code, 11

calculated values in expressions
as.expression(substitute), 927

calculations
introduction, 13

calculations with dates and times, 105
calculus

introduction, 339
call

str of linear model, 131
canonical link functions

glm, 560
captial letters

toupper, 91
car

installed package, 9
car package

data ellipse, 484
carriage return

"\r", 150
case sampling

bootstrap, 478
case sensitive

variable names in R, 18
cat

formatted output, 122, 151
categorical explanatory variables

analysis of variance, 498
classification trees, 778
with count data, 599

categorical variables
background, 388
factor, 20
plotting, 212

cauchy
Cauchy distribution, 273

Cauchy distribution
cauchy, 273
introduction, 298

cbind
add columns to a matrix or dataframe, 58
adding a column to a dataframe, 185
famous five, 334
multiple response variables, 535
response object for glm with binomial errors,

628
cdplot

parasite data, 625
ceiling

next integer, 14
censoring

background, 875
examples, 883

introduction, 869
predicted mean age at death, 886, 890

censoring indicator
introduction, 883

central
different measures of central tendency, 125

central limit theorem
dice game, 280
introduction, 278

centred text (the default)
par(adj=0.5), 935

cex
character expansion (text size), 196
determines the size of plotting characters pch, 907
names on maps, 197
size of plotting symbol, 940
stands for character expansion (relative to 1), 907

cex.axis
determines the size of the axis numbers, 907

cex.lab
determines the size of the text labels on the axes, 907

changing the look of panel plots
panel function, 962

channel
Data Source Name, 155
odbcConnect, 156

chaos
period doubling route, 895
population dynamics, 894
simulation models, 893

character
class, 38
what with scan, 141
worms, 159

character counting in words
{n}, 100

character expansion
cex, 907

characteristic equation, 328
character matching

charmatch, 97
character rotation

srt, 955
character strings

%in%, 98
collapse, 90
in dataframes, 149
introduction, 86
regexpr, 97
remove quotes from character strings, 87
reverse a character string, 90
which, 98
with read.table, 149

character to numeric
coercion, 86

characters in a string
nchar, 89

INDEX 987

charmatch
character matching, 97

charplot
function, 127

checking the dataframe, 389
checking the model

background, 463
Chemometrics and Computational Physics

task views, 7
chisq

chi-squared distribution, 273
chisq.test

contingency tables, 369
matrix of Mendel’s peas, 602
table objects, 370
two-category table, 599
unequal probabilities, 370

chisq.test(rescale.p=TRUE)
Mendel’s peas, 601

chi-squared
chisq, 273
hypothesis testing, 286
special case of the Gamma distribution, 293

chi squared contingency tables
introduction, 365

chi squared distribution, 287
choice of test

simplest is best, 344
choose(n,x)

binomial coefficients n!/(x! (n – x)!), 17, 271, 308
choosing the right test

introduction, 388
CI

see confidence interval, 122
ci95

function for 95% confidence intervals, 122
circle, 2 pi radians, 17

function to create a circular polygon, 828
points on random radii, 827

circled points
highlighting, 832

circles
drawing bubble plots, 239

citation
of R in written work, 3

Clark and Evans
Test for complete spatial randomness, 834

class
character, 38, 86
complex, 38
dates and times, 111
factor, 20, 24
integer, 38
list, 80
logical, 38
numeric, 38
of a matrix, 55

raw, 38
Sys.time, 102
vector, 35

classification trees
categorical explanatory variables, 778
partition.tree, 782

class knn
identities of the k nearest neighbours, 849

class lw
weights list object, 849

class nb
neighbour file, 849

class of time series objects, 229
class polylist

polygon lists, 854
polygons defining the outlines of regions on a map, 849

Clinical Trial Design, Monitoring, and Analysis
task views, 7

clipboard
connections, 153
writeClipboard, 135

closely packed
multipe graphs, 954

closest
function to find the closest value in a vector, 47

closest values
with which and abs, 47

cloud
panel plots, 959
three-dimensional scatterplots, 959

clumping parameter of the negative binomial
k, 315

cluster analysis
introduction, 816

Cluster Analysis & Finite Mixture Models
task views, 7

clustering
spatial point processes, 826

cm.colors
illustration, 911

coda
package for MCMC output, 762

Codd, E.F.
relational database design, 91

coef
extracting information from model objects, 420
for model objects, 412
with lapply, 426

coefficient of determination
introduction to r2, 456

coefficients
solving linear equations, 338
str of linear model, 131

coercion
as.character, 25
as.complex, 14
as.data.frame, 31

988 INDEX

coercion (Continued)
as.difftime, 105
as.integer, 19
as.numeric, 30
background, 30
computing new factor levels, 435
failure gives NA, 31
logical arithmetic, 25
piecewise regression, 488
with logical subscripts, 39

Cohen–Friendly association plot
assocplot, 616

cohort effects and age effects
longitudinal data, 524

col
colour for plotting symbols, 199
subscripts to groups in matrices, 57

col.axis
colour to be used for axis annotation, 917

col.lab
colour to be used for x and y labels, 917

col.main
colour to be used for plot main titles, 917

col.names=F
with write.table, 135

col.sub
colour to be used for plot subtitles, 917

col=grey
grey scale as an alternative to colour in barplots, 921

colatitude
persp, 932

collapse
create a single character string, 90
with paste, 397

collapsing a contingency table
dangers involved, 604

collinearity
multiple regression, 489

colMeans
colMeans(x) column means of dataframe or matrix x, 41, 57

colnames
names for the columns in a matrix, 58
naming columns of a matrix, 56

colors()
see all the colours used by R, 908

colour
changing screen default settings, 10
contrasting points on graphs, 200
factor levels for plotting, 219
fitted values with ANCOVA, 551
in legends, 290
introduction, 908
plots with many variables, 705
plotting symbol, 127
RColorBrewer package, 913
staplecol, 919
whiskcol, 919

colour control
box-and-whisker, 918

coloured plotting symbols with contrasting margins
illustration, 915
pch=21 to pch=26, 914

coloured points, 832
coloured symbols, 196
colouring under a curve

polygon, 278
colour in legends

barplot, 516
fill, 321, 915

colour numbers
illustration, 909

colour of the fill of the plotting symbol
outbg, 919

colour of the outline of the plotting symbol
outcol, 919

colours in R
hexadecimal string of the form #rrggbb, 909
palette()[i], 909

colours showing around edges
illustration, 947

colour with curved shapes
polygon, 205

colSums
tables of proportions, 253

colSums(x)
column totals of dataframe or matrix x, 41, 57

column
removing a column using subscripts, 251
second subscript, 54

column added to a dataframe
cbind, 185

columns and rows
tapply, 43

column and row totals
dangers involved in contingency tables, 604
margins of contingency tables, 366

columns
select from dataframe, 65
comparisons across columns using max.col, 65

columns of a dataframe
selecting by name, 169
using subscripts, 164

column sums using apply, 62
column-wise

default data entry for matrix, 55, 322
combinatorial formula

binomial coefficients, 272, 308
comma

as decimal point, 140
comma delimited files

read.csv, 140
using scan, 141

command line
versus scripts, 9

INDEX 989

comment lines in R code
#, 136

comparing data with a Poisson distribution
example, 589

comparing Michaelis–Menten and asymptotic exponential
nonlinear regression, 719

comparing two distributions
Kolmogorov–Smirnov, 379

comparing two variances
Fisher’s F, 354
var.test, 355

competition
error.bars, 124

competition experiment, 215
competitive exclusion, 900
compiled code

.Call, 11

.External, 11

.Internal, 11

.Primitive, 11
complementary log-log link

binary response variable, 651
complete.cases

check for rows with NA, 173
complete spatial randomness

Clark and Evans test, 834
CSR, 825

complex
class, 38
what with scan, 141

complex contingency table
Schoener’s lizards, 610

complex files
using scan, 143

complex mathematical expressions
plotmath, 928

complex numbers
Arg, 14
Conj, 14
Im, 14
introduction, 13
Mod, 14
Re, 14

complicated error structures
mixed effects models, 519

complicated formatting of axis labels
expression, 918

component selection
$, 405

Comprehensive R Archive Network
CRAN, 3

Computational Econometrics
task views, 7

computing new factor levels
factors, 435

concatenate
use c to create a vector, 137

concatenation
create a vector of numbers, 27, 35
slowness of, 76

conditional probability, 754
conditioning plots

coplot, 236
multiple plotting panels, 957
panel plots, 966

confidence interval
as error bars, 514
boot.ci, 387
introduction, 122
predicted values in linear regression, 474
probability of parameter value, 752
sample variance, 288
Student’s t test, 360
what CI is, and is not, 752

confidence interval by bootstrap
quantile, 385

confidence intervals from the boot object
boot.ci, 387

confint
for the parameters of a model object, 461

Conj
conjugate of complex number, 14

conjugate priors
Bayesian statistics, 757

connections
introduction, 153

connections: error messages
stderr, 153

connections: input
stdin, 153

connections: output
stdout, 153

conservative tests
comparing t test and Wilcoxon test, 362

constancy of variance
square root of the response, 393

constant coefficient of variation data
Gamma errors, 558

constant variance
in one-way ANOVA, 508
linear regression assumptions, 451
test before ANOVA, 504

constrained margins
contingency tables, 368

constant risk of death
Type II survivorship, 873

contingency data
conversion to proportion data, 643

contingency table analysis
main effects are meaningless nuisance variables, 606
update and anova, 605

contingency tables
background, 599
dangers involved, 604

990 INDEX

contingency tables (Continued)
d.f., 368
introduction, 365
observed and expected, 367
plot methods, 616
Schoener’s lizards as an example of a complex contingency

table, 610
contingency tables of intermediate complexity, 608
continuation character

+ , 13
continuous explanatory variable

binary response variable, 651
linear regression, 449

continuous to categorical variable
cut, 75, 223
ifelse, 74

continuous variables
background, 388

contour
three-dimensional plots, 930

contour plots
contourplot, 959

contour(add=T)
illustration, 931, 933

contourplot
contour plots, 959
panel plots, 959

contr.helmert
in ANCOVA, 553

contr.sum, 554
contr.treatment, 437, 553
contrast coefficients

introduction, 431
contrast sum of squares, 431
contrasts

in ANCOVA, 552
in one-way ANOVA, 428
introduction, 430
multiple comparisons, 531
orthogonal polynomial contrasts, 444
planned comparisons, 432
standard error of the difference between two means,

436
three kinds compared, 440

contrasts=c("contr.helmert","contr.poly")
Helmert contrasts, 440

contrasts=c("contr.sum","contr.poly")
sum contrasts, 442

contrasts=c("contr.treatment","contr.poly")
treatment contrasts, 437, 440

convex hull
colour fill, 921

Cook’s distance
model checking, 420

coplot
ethanol data, 676
graphics for mixed effects models, 694

introduction, 236
species with productivity, 379

cor(x,y)
correlation between vectors x and y, 41, 374

cor.test
non-parametric tests of correlation, 376
species with productivity, 379

corAR1
non-linear time series models, 727

corExp
exponential spatial correlation, 862

corGaus
Gaussian spatial correlation, 862

corLin
linear spatial correlation, 862

corRatio
rational quadratic spatial correlation, 862

corrected sums of products, 453
corrected sums of squares, 453
correction factor

matrix notation, 337
correlated explanatory variables

non-orthogonal data, 394
correlation

and variance, 303
and covariance, 304
at different lags, 788
background, 373
between polynomial terms, 446
dredging for significance, 375
partial, 375
scale-dependent correlations, 377
shared common cause, 375
variance of a difference, 376

correlation between explanatory variables
multiple regression, 489

correlation coefficient
cor(x,y), 374
from SSXY, 458
in terms of variances, 377

correlation is not causation
scatterplots, 377

correlation of explanatory variable(s)
intrinsic aliasing, 443
multiple regression, 490

correlations
multiple time series, 801
switch off in lmer output, 690

correlations in lmer output
suppressing correlations using print(cor=F), 690

correlation structure
time series analysis, 701

correlogram
illustration, 859
introduction, 857

corSpher
spherical spatial correlation, 862

INDEX 991

corSymm
general correlation matrix, 862

cos
cosine in radians, 17
drawing bubble plots, 239
introduction, 260
polynomial approximation, 465

cosine in radians
cos, 17

cost–complexity measure
model simplification in tree models, 776

count characters
table, 89

count data
ANCOVA, 586
background, 579
contingency tables, 365
generalized linear mixed models, 710
introduction, 561
Poisson distribution, 314
Poisson errors, 558
regression, 579
strictly bounded, 560

count data in tables
introduction, 599

count data on proportions
successes and failures, 628

counting missing values
table, 174

counting specific characters
gregexpr, 97

counting things on maps
cut(right=FALSE), 842

counts
tables of counts, 244

counts to proportions
admissions data, 621

count the occurrences of each value
table, 38, 42

coupled map lattice
spatial dynamics of host–parasite interaction,

904
cov(x,y)

covariance, 373
covariance

and correlation, 304
autocorrelation, 788
background, 373
multivariate normal distribution, 303
variance of a difference, 362

covariance of x and y
var(x,y), 374

Cox proportional hazards model
ANCOVA example, 880
survival analysis, 878

coxph
roaches data, 890

coxph and survreg
comparison on same data, 887

coxph or survreg
model choice, 879

CRAN
Comprehensive R Archive Network, 3
contents, 4

craps
dice game, 280

create a time series object
ts, 786

create character string
paste, 87

create file paths
paste, 139

creating a vector
concatenation, 46

creating labels from factor levels
ifelse, 782

creating level plots (similar to image plots)
levelplot, 959

creating new factors
logical arithmetic, 255
model.matrix, 255

credible interval
Bayesian statistics, 753
highest posterior density, 753

critical value
comparing two variances, 355
contingency tables, 368

critical value of Student’s t
qt, 359

critical values for contingency tables
qchisq, 368

criticism
model criticism, 448, 463

crossdist
distances between points in two patterns,

848
cross-hatching

angle = 45, 919
border = NULL, 919
density = NULL, 919
in polygons, 922
instead of colour in barplots, 919

cross tabulations
xtabs for the admissions data, 620

CSR
complete spatial randomness, 825

cube root transformation
Box–Cox, 403

cubic regression spline
generalized additive models, 667

cummax
vector of non-decreasing numbers which are the

cumulative maxima of the values in x up to that point,
41

992 INDEX

cummin
vector of non-increasing numbers which are the cumulative

minima of the values in x up to that point, 41
cumprod

for factorials, 72
vector containing the product of all of the elements up to that

point, 41
cumsum

cumulative distribution functions, 380
vector containing the sum of all of the elements up to that

point, 41
cumulative distribution function(s)

cumsum, 380
ecdf, 306
Kolmogorov–Smirnov, 380

cumulative probability
p, 272

cumulative probability of chi-squared distribution
pchisq, 286

cumulative probability of Gaussian distribution
pnorm, 273

cumulative probability of Student’s t distribution
pt, 352

cumulative probability of the F distribution
pf, 121

current model
definition, 392

current working directory
getwd, 138

curvature
changed by transformation, 496
model checking, 419
multiple regression, 490
test for, 467

curvature in response
generalized additive models, 666

curve
compared with plot, 206
density of the standard normal distribution,

284
draw mathematical functions, 206

curved lines
linear models, 400
nonlinear regression, 719
non-parametric smoothers, 209
predict with model, 469
quadratic terms, 466

curved shapes
polygon, 205

customized palettes
using rgb, 912

cut
continuous to categorical variable, 75
for creating quadrats on a map, 838
function to create bins of specified width, 222
right=FALSE, 223, 842
testing the random number generator, 306

to compute empirical probabilities for plots, 654
to created histogram bins, 223

cycle length
pi ∗2, 793
seasonal data, 793

cycles
Nicholson’s blowflies, 786
population dynamics, 894

cyclic time series
sin-cos models, 699

cylindrical or tapered timber
Offsets, 567

D
function for differentiation, 339
probability density, 272

d.f. (degrees of freedom)
ANOVA table for regression, 459
contingency tables, 368
count data from quadrats, 841
efficient regression designs, 476
example split plot, 520
extracting information from summary(model), 425
in ANCOVA, 543
in factorial experiments, 517
in one-way ANOVA, 501, 506
introduction, 119
mixed effects models, 690, 697
multiple regression, 497
observed vs. expected frequencies, 841
spotting pseudoreplication, 683
Student’s t test, 358

d.f. = 0
saturated model, 604

dangers involved in contingency tables
example, 604

dangers of extrapolation
illustration, 471

Daphnia
data file, 20

dashed lines
lty = 2, 208, 948

data
Ancovacontrasts, 552
berks.accdb, 867
bioassay, 635
bloodcells, 606
blowfly, 786
bowens.csv, 197
box, 217, 919
cancer, 883
car.test.frame, 775
cases, 589
catdata, 151
cellcounts, 582
chicks, 731
childfull, 691

INDEX 993

classic, 345
clusters, 580
competition, 124, 426, 432, 511
compexp, 215
Daphnia, 20, 46, 221, 245, 528
das, 228
dates, 102
decay, 419, 468
diminish, 467
disease, 245
dups, 180
epilobium, 779
f.test.data, 355
farms, 704
fertilizer, 696, 764, 961
fisher, 373
fishes, 285, 295, 306
fltimes, 183
fol, 734
fungi, 532
gain, 548
gales, 942, 951
gardens, 357
germination, 636, 766
growth, 516
herbicides, 182
houses, 47
induced, 604
infection, 655
ipomopsis, 412, 539
isolation, 652, 677
jaws, 209, 715, 730
kmeansdata, 816
ksdata, 380
lackoffit, 475
lifeforms, 183
light, 348
lizards, 610, 644
logplots, 922
longdata, 240
lynx, 800
manova, 535
map.places.csv, 197
metadata, 742
metadata2, 748
mm, 729
murders, 149
naydf, 851
nested2, 710
nonlinear, 726
occupation, 653
ozone, 669
ozone.data, 235, 490
pa.csv, 83
panels, 958
para, 624
parasites, 255

pgfull, 65, 811, 820
pgr, 200, 239, 921, 930
pHDaphnia, 44
piedata.csv, 231
plotcol, 915
plotfit, 208
pollute, 211, 242, 375, 768
productivity, 377
quine, 594
ragwortmap, 845
ragwortmap2006, 858
rats, 525, 703
reaction, 722
refuge, 355
regdat, 478
regression, 415, 420, 450, 472
roaches, 887
rt, 141, 143, 147
sales, 185
sapdecay, 63
sasilwood, 485
scatter1, 190
seedlings, 879
seedwts, 184
sexratio, 633
SilwoodWeather, 212, 220, 793, 916, 967
skewdata, 351, 385
sleep, 198
smoothing, 201
soaysheep, 667
spatialdata, 862
species, 586
spending.csv, 955
spino, 130, 621
splityield, 237, 520, 686
sslogistic, 730
streams, 362
sweepdata, 59
t.test.data, 359
tabledata, 251
tannin, 131, 331
taxon, 817
taxonomy, 780
temp, 792
temperatures, 42
timber, 401, 564, 566
timereg, 111
trees, 839
trial, 21
twosample, 374
twoseries, 801
vc22outline, 867
weibull.growth, 733
worldfloras, 93
worms, 74, 142, 159
worms.missing, 173
wtable, 376

994 INDEX

data (Continued)
yield, 139
yields, 503

data()
built-in data sets, 152
view available packages, 114

data.frame
creating a dataframe, 177
for displaying several vectors as columns, 29
producing a shorter summary dataframe, 249
to create column-wise table of vectors, 48

database management systems
DBMS, 154

data dredging
introduction, 375

data editor, 9
data ellipse

illustration, 484
data entry from file

read.table, 139
data entry from keyboard

scan, 137
data exploration

first things first, 389
tree models, 768

dataframe(s)
certain columns, 169
changing the names of the columns, 504
character variables as factors, 20, 86
compared to matrix, 54
comparison of read.table and readLines, 145
complete.cases, 173
converting to a table, 252
dates and times, 181
drop rows using negative subscripts, 171
from column data using stack, 504
head, 20
initial checks, 389
introduction, 159
logical subscripts, 164
match, 182
merging, 183
missing values, 33
NA, 33
producing a shorter summary frame, 248
removing a column using subscripts, 251
removing rows using subscripts, 34
select certain columns, 65
selecting columns in a dataframe, 176
selecting only certain rows, 552
sort, 166
stack, 85
str, 130
strptime, 181
summary, 162
sweep, 186
time differences between rows, 109

unlist, 186
using logical subscripts, 39
using subscripts, 164
write.table, 85

dataframe operations
attach, 161
head, 161
names, 161
tail, 161
view the entire contents, 162

dataframes attached
search, 8

dataframe summary
aggregate, 186
by, 186
summary, 186

data input
using scan, 141

data input from a file
readLines, 145

data input from the web
URL, 140

data inspection
Anscombe’s famous data, 953
statistical models, 448

datasets
built-in, 113

data sets in packages, 152
data series

stl, 797
Data Source Name

DSN, 154
dates and times

%c Date and time, locale-specific, 103
%x Date, locale-specific, 104
class, 111
dataframe rows, 109
differences between two dates, 104
from component hours, minutes and seconds,

106
in dataframes, 181
introduction, 101
mode, 111
reading data from file, 151
reading from file, 102
regression, 111
sequence generation, 107
sorting, 181
strptime, 103
summary, 113

day of the month
%d Day of the month as decimal number (01–31),

103
day of the year

%j Day of year as decimal number (0–366), 103
DBMS

database management systems, 154

INDEX 995

dead or alive
proportion data, 628

death rate
hazard, 296
introduction, 869

death risk with age
exponential, 876
extreme value, 876
Gompertz, 876
Makeham, 876
model choice, 876
Rayleigh, 876
Weibull, 876

decay
exponential model, 112
mechanistic model, 468

decimal places
in columns of a matrix, 58
round, 15

decimal point options, 140
declining sequences

using : or seq, 27
decomposition of time series by loess

stl, 797
Deevey survivorship curves

illustration, 873
default parameter

graphics, 935
degree symbol

TEX-like rules, 925
degrees of freedom

see d.f. (see p. 992, above)
degrees to radians

conversion, 17
Delaunay triangulation

Voronoi tesselation, 833
deletion p values

summary.lm tables, 439
deletion tests

model simplification, 392, 493
delimitors in files, 140
demo

demonstration of R function, 7
demonstration of R function

demo, 7
denominator

proportion data, 121
density

density estimation, 226
example split plot, 520
of shading, 920

density = NULL
cross-hatching, 919

density dependent processes
population dynamics, 893

density estimation
introduction, 226

density function
for Fisher’s F, 290
Gamma distribution, 295
over a histogram, 225
Weibull distribution, 302

density function of the geometric distribution
dgeom, 311

density function overlay
hist, 296

density of cross hatching
illustration, 920

density.ppp
kernel smoothed density, 848

densityplot
kernel density plots, 959
panel plots, 959
posterior distribution, 762

deparse
drawing bubble plots, 239
introduction, 123

departures from the mean
scale, 254

derivatives
examples, 339

derived variable analysis
dealing with pseudoreplication, 524

DerSimonian and Laird estimate
between-study variance tau-squared, 747, 749

designed experiments
random effects, 703

Design of Experiments (DoE) & Analysis of Experimental Data
task views, 7

design plots
plot.design, 238

deSolve
package for solving differential equations, 9, 340

det
determinant of a matrix, 326

detach
avoid masking, 150
example, 883, 886
remove a dataframe from the search path, 10

detection of thresholds
efficient regression designs, 475

determinant
of a matrix, 325

de-trending
differencing, 785
Nicholson’s blowflies, 791

dev.off()
end pdf or postcript session, 242
switch off a pdf or post script file, 134

deviance
Akaike’s information criterion, 415
binary response variable, 651
introduction, 562
of a linear regression object, 457

996 INDEX

deviance > residual d.f.
overdispersion, 632

deviance formula
binomial, 562
Gamma, 562
Gaussian, 562
inverse Gaussian, 562
Poisson, 562

deviance test
contingency tables, 369

df (for degrees of freedom, see d.f.)
Fisher’s F, 290

dgamma
skew, 350

dgeom
density function of the geometric distribution, 311

diag
matrix diagonals, 324

dice
the game of craps, 280

dichotomous key
classification trees, 779

diff
length of vectors, 110
the difference function, 223

difference
power analysis, 382

difference between two variances, 304
difference equation

quadratic map, 894
differences between intercepts

factorial ANCOVA, 549
differences between means

summary.lm, 427
understanding summary.lm, 510

differences between slopes
factorial ANCOVA, 549

differences between successive values of a vector
diff, 223

differences rather than paired t test, 363
difference to be detected

sample size, 383
differencing

de-trending, 785
effects on length, 786

differential equations
introduction, 340
task views, 7

differentiation
introduction, 339

different y axes on the same x axis, 951
difftime

differences between two times or dates, 104
dim, 3-dimensional contingency table, 608

after unlist with readLines, 146
defining a matrix from a vector, 55
dimensions of an array, 53

dimensional arguments
cube root transformation, 403

dimensions of an array
array, 68
dim, 53

dimnames
allocated by list, 68
allocating names to factor levels, 608
argument to the matrix function, 54
removal using as.vector, 31
using paste, 56

dir
view file names, 139

dirname
file paths, 152

discrete probability distributions
introduction, 307

discriminant analysis, 821
dissimilarity matrix

hierarchical cluster analysis, 820
dist

hierarchical cluster analysis, 819
distance

incidence functions, 652
Pythagoras, 830

distance from any location to nearest data
point

exactdt, 848
distance in the complex plane

Mod, 14
distance map image

distmap, 848
distance measures

hierarchical cluster analysis, 819
to nearest neighbour, 826
to nearest random point, 826

distance to edge of plotting region
pmin, 831

distances between all pairs of points
pairdist, 848

distances between points in two patterns
crossdist, 848

distmap
distance map image, 848

distribution
comparing two distributions, 379

diverging colours
RColorBrewer package, 913

division
/, 16

dizygotic twins
probabilities, 754

DLL
dyn.load, 11
dynamically loadable libraries, 11

dlnorm
density function of the log normal, 299

INDEX 997

dlogis
logistic compared to normal, 300

dnbinom
density function of a negative binomial, 226
negative binomial distribution, 317

dnorm
curve, 284
density of the standard normal distribution, 206
drawing a smooth curve, 279
graph, 274

dominant eigenvector, 330
dominant species

max.col, 65
dose.p

bioassay, 636
dot "."

anything character with grep, 95
smallest plotting symbol, 793

dot . convention
fit all the explanatory variables, 620

dot-dash line
lty = 4, 948

dot distribution maps
introduction, 867

dot plots
dotplot, 959

dotplot
panel plots, 959

dotted line
lty = 3, 208, 948

draw families of curves
plot(augPred), 724

drawing a smooth curve through a scatterplot
nonlinear regression, 718

drawing boxes
graphical test of normality, 232

drawing circles
bubble plot, 239

drawing fitted curves, 469
drawing multiple lines

for loops, 551
drawing smooth probability density curve, 279
dredging for significance, 375
drop elements from a vector

negative subscripts, 37
drop=F

keep all the dimensions of a matrix, 59
drop rows

using negative subscripts, 171
drop the header row, 146
DSN

Data Source Name, 154
dummy variables

in one-way ANOVA, 428
duplicated

produce a set of subscripts that would select the duplicated
values from an object, 49

duplicate rows in a dataframe
eliminating, 180

duplicates
plots with multiple copies of data points, 240

Durbin Watson
serial correlation in the residuals, 484

durbinWatsonTest
library("car"), 484

dyn.load
dynamically loadable libraries, 11

dynamically loadable libraries
DLL in C or Fortran, 11

dynamics
simulation models, 893

e
exponents for scientific notation, 13

e = 2.71828
base of natural logarithms, 258

each
option for rep, 28

ecdf
empirical cumulative distribution function,

306
edge correction

Ripley’s K, 836
edge effects in spatial simulations

break, 897
wrap-around margins, 900

edge of plotting area, 831
edges

counting things on maps, 842
editor, 9
effects

str of linear model, 131
effect size(s)

analysis of variance, 498
background, 741
illustration, 969
in one-way ANOVA, 428, 509
introduction, 347
log(response ratio), 741
meta-analysis, 740
model.tables, 509
odds ratio, 741
panel plots, 968
plot.design, 509
power analysis, 382, 385
response ratio, 741
risk difference, 741
risk ratio, 741
summary.lm, 461

efficient regression designs
detection of thresholds, 475
replication, 475
spread of x values, 475
tests for non-linearity, 475

998 INDEX

eigen
Leslie matrix, 331

eigenvalue, 328
eigenvector, 330
Einstein

quote, 391
eliminating duplicate rows from a dataframe, 180
eliminating pseudoreplication

aggregate, 714
ellipse

illustration, 484
empirical cumulative distribution function

ecdf, 306
Empirical Finance

task views, 7
empirical probabilities

in plots of logistic regression, 627
empirical scale parameter

overdispersion, 570, 632
end of line shape

lend, 947
ending a function

return, 72
ends of lines

butt, 947
round, 947

environment current names
objects, 8

environments
evaluation environment, 126
in R, 113

Epilobium
classification trees, 779

equality of floating point numbers
all.equal, 23
identical, 23
isTRUE, 23

equilibrium behaviour
simulation models, 893

Error
with aov, 520

error.bars
function, 124
function with one-way ANOVA, 512

error bars
arrows angle = 90, 203
arrows code = 3, 203
competition data, 124
introduction, 214
x and y directions, 124

error bars on empirical probabilities
logistic regression, 655

error bars on graphs, 123
error-checking plot

single samples, 345
error checks

plot(y), 228

error d.f.
spotting pseudoreplication, 683

error rate
multiple comparisons, 535

error recovery
try function, 152

errors
additive or multiplicative, 569
linear regression assumptions, 451

errors correlated
gls, 862

error structures
generalized linear models, 558
pseudoreplication in nested designs and split plots,

519
statistical models, 448

error sum of squares
illustration, 500

errors with read.table, 139
error terms

multiple error terms, 398
pseudoreplication in nested designs and split plots,

519
error variance

efficient regression designs, 476
illustration, 406
in one-way ANOVA, 501, 507
multiple error terms, 683
summary.aov, 427

Error with aov
rats example, 526

esoph
built-in dataframe, 574

estimation
parameter values from data, 389

estimators
maximum likelihood, 390

ethanol data
humped data, 675
illustration, 784
panel plots, 966

evaluation environment, 126
evaluation frame, 126
even numbers

modulo %%, 18
subscripts from a vector, 38

exact binomial test
binom.test, 364

exactdt
distance from any location to nearest data point, 848

exact mean
generating random numbers, 284

example
worked examples of function, 6

examples of function
example, 6

Excel readable file from R, 135

INDEX 999

exp
antilog base e, 16
exponential, 273
for geometric mean, 32
polynomial approximation, 465
Ricker curves, 208
smooth line from a log-linear model, 581

expand.grid
introduction, 254

expanding a dataframe
subscripts, 179

expanding a table into a dataframe
lapply, 251

expectation
Bernoulli distribution, 307

expectation of the vector product
covariance, 373

expected values from chisq.test, 369
experimental design

randomization is better than ANCOVA,
548

randomization using sample, 70
experiments

factorials, 516
explained variation in ANOVA

SSA, 501
explained variation in regression

SSR, 456
explanatory variables and principal components

illustration, 812
explanatory variable(s)

choosing the right test, 388
error bars in x and y directions, 124
interaction, 396
log transformation, 633
optimal transformation, 402

exponential
asymptotic function, 265
death risk with age, 876
exp, 273
special case of the gamma distribution, 293

exponential decay
example, 112
mechanistic model, 468

exponential distribution
illustration, 875
introduction, 296
pdf for mortality data, 874

exponential errors
survreg, 884
useful with data on time to death, 558

exponential function
introduction, 259

exponential growth
Leslie matrix, 330

exponential spatial correlation
corExp, 862

exponents
introduction, 258
large and small numbers, 13

expression
complicated formatting of axis labels, 918
introduction, 123
mathematical and other symbols on plots,

924
produce more complex titles, 918

extinction rate in metapopulation models,
898

extracting information
model objects, 420

extracting information using list subscripts [[]]
summary.aov, 421
summary.lm, 421

extract part of a character string
gsub, 100
regexpr, 100
substr, 88
substring, 100

extrapolation
dangers of, 471
issues with polynomials, 465

extreme cases
Fisher’s exact test, 372

extreme value
death risk with age, 876

extrinsic aliasing
introduction, 443

eye colour
contingency tables, 366

F
Fisher’s F, 273
hypothesis testing, 286
variance ratio test, 120

factanal
factor analysis, 813

factor
as.numeric, 198
categorical variables, 20
class factor, 20
contrast attributes, 434
declaring numbers as factors, 212
display the levels of a factor, 427
generating factor levels, 29
mode numeric, 20
nlevels, 21
non-alphabetic ordering the levels, 21
numerical factor levels, 525
plotting, 212
text in dataframes, 20

factor analysis
factanal, 813
introduction, 813
plots, 815

1000 INDEX

factorial
binomial distribution, 308
Fisher’s exact test, 371
gamma(x + 1), 73
introduction, 271
relation to gamma function, 265
writing a function, 71
x! = x × (x − 1) × (x − 2) × · · · × 3 × 2, 17

factorial ANCOVA
summary.lm, 549

factorial experiments
ANCOVA, 548
expand.grid, 254
interaction plots, 237
introduction, 516
main effects, 518
plot.design, 238

factor level generation
gl, 713

factor level names
dimnames, 608

factor level reduction
binary response variable, 662
logical arithmetic, 615
model simplification, 518
model simplification in ANCOVA, 550

factor levels
calculation using logical arithmetic, 26
computing new factor levels, 435
create using :, 692
creation using rep, 606
expand.grid, 254
interactions, 516
levels gets, 438
non-alphabetic order, 247
producing a shorter summary dataframe, 248

factor levels for plotting
heat.colors, 220
order, 217
using colour palettes, 219

factor levels to labels
ifelse, 782

factor(ordered=FALSE)
un-order an ordered factor, 577

factors
analysis of variance, 498
background, 388
creating factor names using :, 398
creating new factors with logical arithmetic,

255
from continuous variables, 654
levels to numbers with unclass, 21
ordered factor levels, 444
plotting, 217
reverse sorting, 175

factors and character strings
using all.equal, 24

factors in a dataframe
levels, 131
worms, 159

failure
Bernoulli distribution, 307
binary response variable, 651
try function, 152

fair dice
chisq.test, 371

FALSE
coerces to zero, 25

FALSE and TRUE
combinations of values, 22, 25

falsifiable null hypothesis
independence in contingency tables, 366

families of curves
nlsList, 722
plot(augPred), 724

family
specify the error structure in a glm, 558

familywise error rate
multiple comparisons, 535

famous five
background, 453
in ANCOVA, 540
matrix multiplication, 331, 453

FAQ
about R, 4

fat arrows function
introduction, 929

fat tails
Cauchy distribution, 298
t compared with normal, 293

fdr
multiple comparisons, 533

fertilizer
example split plot, 520

Fibonacci series
function using while, 74

fig
split the plotting region, 942

file
connections, 153
reading dates and times, 102
saving a list, 83
saving graphics, 242

file.exists
check existence, 151

file.path
file paths, 153

file delimitors, 140
file name

file.exists, 151
paste, 88

file paths
dirname, 152
file.path, 153

INDEX 1001

introduction, 152
paste, 153
setwd, 152

fill
colour in barplot legend, 585
colour in legends, 321
legend in a double barplot, 591

fill colour
boxfill, 919

filled.contour
illustration, 932
three-dimensional plots, 930

find
locate a package, 6

find nearest neighbours
nnwhich, 848

first character with grep
∧, 93

first-order autoregressive process
time series, 788

first-order compartment
non-linear models, 716

first-order compartment model
SSfol, 734

first-order neighbours
definition, 901

first-order non-linear difference equation
quadratic map, 894

first subscript
row, 54

first things first
data exploration, 389

fisher.test
Fisher’s exact test, 372
matrix of Mendel’s peas, 602

Fisher’s exact test
contingency tables, 371
fisher.test, 372

Fisher’s F distribution
distribution, 289
F, 273
shape of the density function, 290

Fisher’s F test
comparing two variances, 354
var.test, 120–21

fit
measuring the degree of scatter using r2, 456

fit all the explanatory variables
dot . convention, 620

fit perfect
saturated model, 604

fitted
extracting information from model objects, 420
for model objects, 412

fitted values
patterns in residuals, 404
str of linear model, 131

fitted values and residuals
model-checking plot, 464

fivenum
for residuals, 427
summary for single samples, 346
Tukey’s five number summary, 42

fix
data editing function, 9

fixed
lme, 684

fixed effects
background, 681
introduction, 522

fixed-effect meta-analysis of scaled differences
example, 742

fixed or random
deciding on categorical variables, 523

fixed versus random effects
meta-analysis, 741

flat tables for output
ftable, 247

fligner.test
comparing several variances, 356
comparing two variances, 357
test before ANOVA, 504

Fligner–Killeen test
comparing several variances, 355

floor
greatest integer less than, 14

fluctuations
advantages of logarithms, 117

font
changing screen default settings, 10

font.axis
font to be used for axis annotation,

918
font.lab

font to be used for x and y labels, 918
font.main

font to be used for plot main titles, 918
font.sub

font to be used for plot subtitles, 918
font families for text

HersheySymbol, 923
mono, 923
sans, 923
serif, 923

font to be used for axis annotation
font.axis, 918

font to be used for plot main titles
font.main, 918

font to be used for plot subtitles
font.sub, 918

font to be used for x and y labels
font.lab, 918

foreground colours
axes and boxes, 917

1002 INDEX

forest
forest plot, 746

forest plot
forest, 746
output from meta-analysis, 744
random-effects meta-analysis of binary data, 751

F or FALSE, 22
for loop

drawing multiple lines, 551
introduction, 71
population dynamics, 894
with sapply for simulating dynamics, 896

form feed
"\f", 150

form=∼latitude + longitude
spatial errors in gls, 862

format
complex mathematical expressions, 925
for input and output, 150

formatted output
cat, 122, 151

formatting of axis labels with complex characters
expression, 918

formulae
model specification, 399

Fortran
interface to compiled code, 11

fourfoldplot
UCBAadmissions, 617

four parameter
logistic, 268

four-parameter logistic model
SSfpl, 731

fractional powers
introduction, 259

fractions
TEX-like rules, 926

frame
environments in R, 113
evaluation frame, 126

F ratio
ANOVA table for regression, 459
extracting from summary(model), 425

freedom
see d.f., 119

frequencies
comparing data with a Poisson distribution, 589
contingency tables, 366
count data, 579

frequency domain
spectral analysis, 800

frequentist approach
likelihood of the data given our model, 390
maximum likelihood, 755

from
sequence generation, 27
the name of the table containing related variables in SQL, 156

ftable, 3-dimensional contingency table, 608
flat tables for output, 247
Schoener’s lizards, 615
with the quine data, 594

F test
in one-way ANOVA, 501
introduction, 290

function
anonymous functions, 129
central, 125
charplot, 127
ci95, 122
draw using curve, 206
error.bars, 124
exit using stop, 32
factorial, 71
harmonic mean, 118
introduction, 115
lists for arbitrary arguments, 128
many.means, 127
returning values from, 128
standard error of a mean, 122
switch, 125
variance, 119
vector functions, 41
xy.error.bars, 125

functions worked examples
example, 6

gam, 3-D graphics, 679
ANOVA to compare models, 671
binary response variable, 658, 677
by for including factors, 674
equivalent of ANCOVA, 674
example plot, 210
generalized additive models, 209, 565
generalized cross validation, 672
introduction, 666
knots, 673
library(mgcv), 666
model choice, 674
model plots, 671
models, 411
multiple regression, 670
nonlinear regression, 720
ozone data, 669
unbiased risk estimator, 672
wiggliness, 673

gamma
deviance formula, 562
for calculating factorials, 73
gamma distribution, 273
gamma(x) for real x, (x–1)! for integer x, 17

gamma distribution
gamma, 273
introduction, 293
shape of the density function, 294

INDEX 1003

gamma errors
illustration, 407
reciprocal link, 560
useful with data showing a constant coefficient of variation,

558
gamma errors for age-at-death data, 871
gamma function

introduction, 264
gam to check for curvature

multiple regression, 490
ozone.data, 491

Gaussian
deviance formula, 562

Gaussian spatial correlation
corGaus, 862

Geary’s C
spatial correlation, 853

general correlation matrix
corSymm, 862

generalized additive models
background, 666
introduction, 565
library(mgcv), 666

generalized cross validation
gam, 672

generalized least squares
regression models with spatially correlated errors, 860

generalized linear mixed models
introduction, 710

generalized linear models
canonical link functions, 560
error structures, 558
introduction, 557
linear predictor, 559
link function, 559

generates random numbers between 0 and 1 from a uniform
distribution

runif, 17
generating factor levels

gl, 29
generating repeats of specified values

rep, 28
generating sequences, 27
geom

geometric, 273
geometric

function to calculate geometric mean, 32
geom, 273

geometric distribution
introduction, 311

geometric mean
function, 116

geostatistical data
introduction, 856

gets
destroys existing variables of the same name, 150
multiple allocation, 71

gets arrow <-
assignment in R, 18

getwd
working directory, 138

ginv
inverse of a matrix, 327

girls in a family
sample size, 600

given (conditional)
| (note that this is also the OR function), 684

gl
generate factor levels, 29, 713
generate factor levels for tables, 619

glm, 2 by 2 contingency tables, 602
cancers as a function of distance, 580
factorial model, 582
generalized linear models, 557
models, 411
quasipoisson, 581
with Gamma errors for age-at-death data,

871
glm.nb

compared to quasipoisson, 607
negative binomial errors, 595

globalenv
environments in R, 113

globe
wireframe, 934

gls
generalized least squares, 860
groupedData, 862
model criticism, 865

Gompertz
death risk with age, 876
non-linear models, 716
plot, 268

Gompertz growth model
SSgompertz, 728

Gossett, W.S.
Student’s t, 292

gradient
linear regression, 449

granular data
in a relational database, 92

Graphic Displays & Dynamic Graphics & Graphic Devices &
Visualization

task views, 7
Graphical Models in R

task views, 7
graphics

default parameters, 935
demonstration of R function, 7
introduction, 189
saving to file, 134

graphics for mixed effects models
groupedData, 696

graphics parameters explained, 907

1004 INDEX

graphics window
introduction, 197, 211

graphic user interface
GUI, 9

graphs
logarithmic axes, 922
multiple graphs per page, 209
two graphs side by side, 111

graph titles
main, 209

gray
line colour, 198

gray fill for barplots, 840
greater than or equal to a but less than b

[a,b), 222
greatest integer less than

floor, 14
Greek letters

complicated formatting of axis labels,
918

on plots, 924
gregexpr

counting specific characters, 97
grep

anything character . (dot), 95
as a subscript, 97
examples, 99
for pattern matching, 93
pattern matching, 8
selecting columns in a dataframe, 176

grep first character
∧, 95

grep last character
$, 95

grey scale as an alternative to colour in barplots,
921

grid
on a plot, 838
use abline instead, 867

GROUP BY
columns with factors to act as grouping levels in SQL,

156
groupedData

families of curves, 723
gls, 862
graphics for mixed effects models, 696
non-linear time series models, 726

grouped data
multiple plotting panels, 957
survivorship curves, 887

grouped data for nonlinear estimation
introduction, 721

groups
summary statistics by groups, 46

groups within a dataframe
hclust, 816
kmeans, 816

growing vectors by concatenation
don’t do it, 76

gsub
extract part of a character string, 100
text substitution, 96
upper case, 96

G test
contingency tables, 369
log-linear model of count data, 602

GUI
graphic user interface, 9

gzfile
connections, 153

h
leverage, 417

hair colour
contingency tables, 366

harmonic mean
function, 118

HAVING
conditions applied after grouping in SQL, 156

hazard
change with age, 884
introduction, 869
reciprocal of mean age at death, 869
simulation using exponential distribution, 296

hazard function
Weibull distribution, 302

hazards model
Cox proportional hazards model, 878

hclust
hierarchical cluster analysis, 816
illustration, 820

head
dataframe operations, 20, 161
producing a shorter summary dataframe, 251
view top rows of dataframe, 139, 147

header
a dataframe with no variable names, 255
creating a header row in scan, 142
drop this row using negative subscripts, 146
top row of a dataframe, 139

headings for plots
main, 297

heat.colors
factor levels for plotting, 220
illustration, 911, 933

Hedge’s g
fixed-effect meta-analysis of scaled differences, 743

height
postscript or pdf window, 242

height of histogram bars
calculation, 223

Helmert contrasts
in ANCOVA, 553
worked example, 440

INDEX 1005

help
in R, 6
library contents, 8

helpdesk
for newcomers, 5

help.search
query in R, 6

Hershey
demonstration of R function, 7

HersheySymbol
font families for text, 923

heteroscedasticity
illustration, 405, 407
inconstancy of variance, 355
model checking, 419
model criticism, 404
test before ANOVA, 504

hexadecimal string of the form #rrggbb
colours in R, 909

hierarchical analysis
variance components analysis, 691

hierarchical cluster analysis
hclust, 819

hierarchical count data
generalized linear mixed models, 713

hierarchical designs
sums of squares, 526

hierarchical structure
mixed effects models, 682
random effects, 523

highest posterior density
credible interval, 753

highlighted points
graphics, 832

High-Performance and Parallel Computing with R
task views, 7

hinges
instead of percentiles, 346

hist
bin widths, 286, 295
bootstrap, 349
breaks, 224
central limit theorem, 279
Daphnia data, 221
frequencies of integers, 224
jackknife, 482
random numbers from a Poisson distribution, 314
variance components analysis, 693

histogram
panel plots, 959
panels of histograms, 959

histograms
introduction, 220
issues with bin widths, 221
overlay a smooth density function, 225
single samples, 345
smooth density function overlay, 296

histograms on the axes of a scatterplot
illustration, 945

history(Inf)
your R session, 133

hochberg
multiple comparisons, 533

holes
dangers involved in contingency tables,

604
holm

multiple comparisons, 533
hommel, 533
homoscedasticity

constancy of variance, 355
honest significant differences

multiple comparisons, 531
horizontal line

abline(h=y), 292
hour

hour (24 hour clock), 102
hour 12

%I Hours as decimal number (01–12) on the 12-hour clock,
103

hour 24
%H Hours as decimal number (00–23) on the 24-hour clock,

103
hsv

hue–saturation–value, 910
hue–saturation–value

hsv, 910
humped curves

biexponential model, 269
binary response variable, 659
gam, 675, 720
generalized additive models, 666
non-linear models, 716
polynomials, 262
tree models, 783

hyper
hypergeometric, 273

hypergeometric
hyper, 273

hypergeometric distribution
introduction, 312

hypothesis testing
analysis of variance, 498
Bayesian statistics, 753
probability distributions, 286
Type I error, 286

i
complex numbers, 13

I as is
background, 210, 397
model formulae, 395

identical
equality of floating point numbers, 23

1006 INDEX

identical twins
probabilities, 754

identifying individuals
points on graphs, 198

identities of the k nearest neighbours
class knn, 849

identity link
normal errors, 560

if
isTRUE, 23

if.else
as a subscript, 92
avoiding loops, 74
continuous to categorical variable, 74
creating labels from factor levels, 782
dealing with NA, 75
in mapping, 197
median function, 116
replace missing values, 35

ill-conditioned matrix
multiple regression, 497

Im
imaginary part of complex number, 14

image
produce a map of the metapopulation, 898
three-dimensional plots, 930

image(add=TRUE)
density dependent recruitment, 903
metapopulation dynamics, 899

imaginary part
complex numbers, 13

in
for loops, 71

incidence functions
example, 652

increments
date and time sequences, 107
sequence generation, 27

independence
complete spatial randomness, 825
contingency tables, 366
determinant of a matrix, 327
sum of the component variances, 377
variance of a difference, 358

index
see subscript, 37

index of packages
task views, 7

index plot
plot(y), 227
single samples, 345

indexing tagged lists, 79
indices

on dataframes, 164
individual points on graphs

identifying individuals, 198
introduction, 200

induced defences
dangers involved in contingency tables,

604
Inf

plus infinity, 32
-Inf

log (0), 75
minus infinity, 32

infected or not
proportion data, 628

infinity
in arithmetic, 33
Inf and -Inf, 32
introduction, 258

infinity symbol
TEX-like rules, 926

inflexion
polynomials, 263

influence
background, 408
influence.measures, 409
is.inf, 410
lm.influence, 410
model criticism, 404
model-checking plot, 464

influence.measures
illustration, 409
jackknife, 482

influence testing
jackknife after bootstrap, 483

infmat, 482
informative factor levels

fixed effects, 523
input

using scan, 141
input format

introduction, 150
install

R, 3
install.packages

from a mirror near you, 9
instantaneous death rate

hazard, 296
instantaneous risk of death

Monte Carlo experiment, 869
int="c"

confidence interval, 475
int="p"

prediction interval, 475
integer

ceiling, 14
class, 38
floor, 14
numeric range, 19
rounded, 15
trunc, 15
what with scan, 141

INDEX 1007

integer quotients
%/%, 18

integers
count data, 579
random numbers from a negative binomial distribution,

225
integral symbol

TEX-like rules, 926
integrate

function for integration, 339
integration

introduction, 339
intentional aliasing, 443

piecewise regression, 487
interaction(s)

between explanatory variables, 396
d.f., 517
factorial experiments, 516
highest terms ∧, 19
only visible after model simplification, 578
overdispersion, 637
smoking and weight, 585

interaction.plot
illustration, 521

interaction plots
illustration, 237

interactions in count data with overdispersion, 595
interactions to be included

model choice, 390
interaction term in model formula

:, 19
interaction terms

apparent non-significance of main effects, 528
maximal model, 493
multiple regression, 489

intercept(s)
estimate terms for each mean, 256
extracting from summary(model), 424
in ANCOVA, 544
in factorial experiments, 518
linear regression, 449
meaningless in multiple regressions, 496
model specification, 399
parameter 1, 398
summary.lm, 427, 461
understanding summary.lm, 510
using contrasts, 435

interpreting summary.lm in ANOVA
rule of thumb for t, 518

intersect
set theory, 52

intrinsic aliasing
introduction, 443

Introduction to R
manual, 5

invasion criterion
per-capita multiplication rate > 1, 894

inverse cosine
acos, 17

inverse Gaussian
deviance formula, 562

inverse of a matrix, 327
inverse polynomials

introduction, 263
inverse sine

asin, 17
inverse tangent

atan, 17
inverse variances

weights, 756
irrigation

example split plot, 520
is.complex

membership, 14, 31
is.factor, 21, 30, 86

sapply, 171
is.finite

membership, 33
is.inf

illustration, 410
is.infinite

membership, 33
is.integer, 19
is.list, 80
is.logical, 30
is.matrix, 55
is.na

along, 35
as a subscript, 92
membership, 34
testing for missing values, 34
which, 35
with sequences, 35

is.numeric
membership, 19
sapply, 170

is.ts
membership, 230

isdst
is daylight savings in operation, 102

isolation
incidence functions, 652

isotropic smooth
generalized additive models, 666

isTRUE
equality of floating point numbers, 23

isTRUE(x) an abbreviation of identical(TRUE,x)
equality of real numbers, 22

jack.after.boot
bootstrap, 483

jackknife
illustration, 481
introduction, 410

1008 INDEX

jackknife after bootstrap, 483
JAGS

installation instructions, 759
Just Another Gibbs Sampler, 759
library, 759
run the model, 761, 764, 767

jitter
binary response variable, 653
illustration, 475
on different axes, 654
plots with multiple copies of data points,

240
with proportion data, 640

JOIN
the tables to be joined and the variables on which to join them

in SQL, 156
joining tables in queries

tables from a relational database, 868
joining the dots on a graph, 201
joints of lines

ljoin, 947
mitre, 947
round, 947
square, 947

k
clumping parameter of the negative binomial,

315
count data from quadrats, 840

Kaplan–Meier object
introduction, 875

Kendall’s tau
non-parametric correlation, 376

kernel density plots
densityplot, 959

kernel smoothed density
density.ppp, 848

key
add a legend to a plot, 194
classification trees, 779

keyboard
data entry, 137

keyboard data entry
scan, 36

kfit
function for estimating k, 319

Kfn
Ripley’s K, 837

kmeans
cluster analysis, 816
colour plots, 817

knots
gam, 673

known values
solving linear equations, 338

k of the negative binomial distribution
comparing data with a Poisson distribution, 590

Kolmogorov–Smirnov
cumulative distribution functions, 380
ks.test, 379
pnorm, 380

kriging
linear interpolation through space, 857

ks.test
Kolmogorov–Smirnov, 379
wing data, 380

kurtosis
comparing two distributions, 379
introduction, 352
normality plot, 285

L
linear contrasts, 445, 574

label colour
col.lab, 917

labelling groups of graphs
illustration, 953
outer margins, 952

labelling the right hand axis
margin = 4, 951

lack of fit
illustration, 477

lambda
Box–Cox, 402

lapply
as.numeric, 148
background, 80
expanding a table into a dataframe, 251
introduction, 61
lists of model objects, 426
nchar, 90
rev, 90
with AIC, 417
with class, 81
with length, 80
with mean, 81
with rep for expanding a dataframe, 179

las
determines the orientation of the axis numbers, 907

las=1
orientation of tick mark numbers, 947
phase planes, 928

last character with grep
$, 93

last seen alive
censoring, 876

latitude
and yield, 862

lattice
coupled map lattice, 904
library, 696, 958

lattice graphics for panel plots (trellis graphics), 8
layout

multiple graphs of different shapes, 943

INDEX 1009

lazy evaluation
example, 129
introduction, 128

LD50
lethal doses, 635

lda
illustration, 822

least significant difference
as error bars, 515
introduction, 514

least squares
estimate of b, 455
maximum likelihood, 451

leaving a loop, 72
left (the y axis)

axis = 2, 938
margin = 2, 950

left-justified text
par(adj=0), 935

legend
add a legend to a plot, 194
background colour, 915
barplot, 516
coloured symbols, 915
colour in barplot, 585
contrasting points on graphs, 200
count data from quadrats, 840
Fisher’s F, 290
in a double barplot, 591
in barplot, 321
lines, 290
multi-coloured scatterplot, 586
multiple lines in colour, 642
title, 290, 302, 586
with lines, 302
with pch=21-25, 196

lend
end of line shape, 947

length
counting dominant species, 66
differences, 110
in calculating variance, 120
list, 80
logical subscripts, 47
of a vector, 36
problem of differencing, 786
sequence generation, 27
shorter vector is recycled, 32
tabulate rather than table, 256
to drop the last element of a vector, 37
using scan, 144
vector with zero length, 38
with aggregate, 623
with boxplots, 218
with run length encoding, 51

lengths of vectors
using all.equal, 24

leptokurtic
illustration, 353

Leslie matrix, 328
letters

vector of 26 lower case letters, 26, 87
LETTERS

vector of 26 upper case letters, 26
levelplot

creating level plots (similar to image plots), 959
panel plots, 959

levels
analysis of variance, 498
background, 388
display the levels of a factor, 427
factors in a dataframe, 131
generating factor levels, 29
in non-alphabetic order, 21
of categorical variables, 20, 21
ordered factor levels, 444
producing a shorter summary dataframe, 249

levels gets <-
binomial glm, 577
factor level reduction, 438, 518, 884
factor level reduction in ANCOVA, 550
log-linear model of count data, 584
observed vs. expected frequencies, 591
Schoener’s lizards as proportion data, 648

leverage
example, 417
illustration, 417
model-checking plot, 464

Levins
metapopulation dynamics, 898

lgamma
lgamma(x) natural log of gamma(x), 17

library
function to access an R package, 8
help with contents, 8
lattice graphics for panel plots or trellis graphs, 8
MASS, 401
MASS package associated with Venables and Ripley’s

book entitled Modern Applied Statistics using
S-PLUS, 8

mgcv, 210
mgcv generalized additive models, 8
nlme mixed-effects models (both linear and non-linear), 8
nnet feed-forward neural networks and multinomial log-linear

models, 8
spatial functions for kriging and point pattern analysis, 8
survival survival analysis, including penalised

likelihood, 8
library(mgcv)

generalized additive models, 666
light

speed of light data, 348
LIKE

wildcards in SQL queries, 158

1010 INDEX

likelihood
Bayesian statistics, 752
normal distribution, 282

likelihood of the data given our model
frequentist approach, 390

likelihood of our model, given the data
Bayesian statistics, 755

LIMIT
offsets or counts in SQL, 156

line colour
boxcol, 919

line type (medlty="blank" if you want no line, just a point)
medlty, 919

line type in box-and-whisker plot
boxlty, 919
outlty, 919
staplelty, 919
whisklty, 919

line types
lty, 208
time series plot, 229

line types and widths
illustration, 949

line width in box-and-whisker plot
boxlwd, 919
medlwd, 919
outlwd, 919
staplelwd, 919
whisklwd, 919

line widths
fatter lines, 793
lwd, 949

linear combinations
principal components analysis, 809

linear discrimination
lda, 822

linearizing the logistic
log(odds), 631

linear models
curved lines, 400
lmtest, 478

linear predictor
introduction, 559
logit(p), 631

linear regression
after transformation, 469
introduction, 449
power law, 470

linear regression assumptions, 451
linear spatial correlation

corLin, 862
lines

add a legend to a plot, 194
add extra lines to a graph, 191
curve through decay data, 64
drawing your own piecewise lines, 488
graphics parameters explained, 907

in different colours, 909
legend, 290
lowess, 915
multiple non-linear functions in colour, 725
overlay a smooth density function, 226
Ricker curves, 208
smooth line from a log-linear model, 581
standard error of a mean, 123

lines and points
type="b", 198

lines in a panel function, 670
lines of text

margin measures, 950
lines through scatterplots

binary response variable, 653
link

different functions using quasi, 564
link function(s)

binary response variable, 651
canonical link functions, 560
introduction, 559

Linux
installation, 3

list
class, 80
for dimnames, 68
mode, 80
of sequences with sapply, 63
polygon object, 204
returning multiple values from a function, 129
what with scan, 141
with by for summary, 186
with predict, 462
with triple dot, 128

list indexing
$, 19

lists
introduction, 78
of model objects, 426
saving to file, 83
str, 82
subscripts from a list, 51
subscripts from strsplit, 90
summary, 81

literature
power analysis, 385

lizards
Schoener’s lizards as an example of a complex contingency

table, 610
ljoin

joints of lines, 947
lm

decay function, 63
deviance, 457
for polynomial regression, 209
linear regression, 455
models, 411

INDEX 1011

structure of an R object, 131
with by, 163
worked example, 6

lm.influence
influence, 410

lme
basic syntax, 684
introduction, 681
models, 411
split plot experiment, 686

lme4
binary response variable, 661
installed package, 9
introduction, 681

lmer
basic syntax, 685
binary response variable, 661
creating factor names using :, 398
introduction, 681
models, 411
print(model,cor=F) instead of summary, 690
rats data, 703
suppressing correlations using print(cor=F),

690
temporal pseudoreplication, 661

lmList
fit many linear models, 706

lm structure
assign, 131
call, 131
coefficients, 131
effects, 131
fitted values, 131
model, 131
qr, 131
rank, 131
residual degrees of freedom, 131
residuals, 131
terms, 131
xlevels, 131

lmtest
tests of linear models, 478

lnorm
lognormal, 273

load
introduction, 133

loadhistory
loading the history file, 134

local maximum
polynomials, 263

local minimum, 263
local variables

introduction, 126
locate a package

find, 6
locating characters within a string

regexpr, 97

locator
drawing polygons, 204
for text, 927
in a double barplot, 591
introduction, 203
legend, 642
legend in barplot, 321
legends on plots, 200
multi-coloured scatterplot, 586
with legend, 194

loess
example, 667
example plot, 209
models, 411
non-parametric modelling tool, 209

log
base e logarithm, 16
polynomial approximation, 465
transformations, 270

log (0)
-Inf, 75

log(odds)
linearizing the logistic, 631

log(p/q)
log(odds), 630

log(response ratio)
effect size, 741

log(x,n)
log to base n of x, 17

log="x"
transform x axis, 922

log="xy"
transform both axes, 922

log="y"
transform y axis, 922
with stripchart, 232

log10
log to base 10, 17

logarithmic axes
graphs, 922

logarithmic function
introduction, 259

logarithms, 258
measuring variability, 117

logical
class, 38
what with scan, 141
worms, 159

logical AND
&, 170

logical arithmetic
coercion, 25
computing new factor levels, 435
creating new factors, 255
factor level reduction, 615, 662, 663
for creating factor levels, 26
simulating survival, 899

1012 INDEX

logical arithmetic (Continued)
status <- 1∗(death>0), 879
sum, 26

logical function
%in%, 53
all, 52
setequal, 52

logical operations
! logical NOT, 22
!= not equal, 22
& logical AND, 22
&& AND with if, 22
| logical OR, 22
‖ OR with if, 22
< less than, 22
<= less than or equal to, 22
== logical equals (double equals), 22
> greater than, 22
>= greater than or equal to, 22
all, 26
any, 26
combinations of TRUE and FALSE, 25
effects of NA, 25
isTRUE(x) an abbreviation of identical(TRUE,x), 22
NA, 22
xor(x,y) exclusive OR, 22
FALSE, 22
TRUE, 22

logical statements
in model formulae, 486

logical subscripts
%in%, 53
avoiding loops, 74
in dataframe, 86
introduction, 39
length, 47
on dataframes, 164
selecting rows of a dataframe, 169
with dates and times, 108
with which, 46

logical test
any, 663

logical variables, 30
logis

logistic, 273
logistic

background, 630
behaviour at the limits, 630
failures for certain proportion data, 642
four parameter, 268
illustration, 631
logis, 273
non-linear models, 716
three parameter, 268

logistic compared to normal, 300
logistic distribution

introduction, 300

logistic model
SSlogis, 730

logistic regression
binomial errors, 633
error bars on empirical probabilities, 655
graphics for, 627
plot, 634
predict(type="response"), 634, 639, 641

logit
illustration, 631
transformations, 270

logit link
binary response variable, 651
binomial errors, 560

logit(p)
linear predictor, 631

logits
back-transform to proportions, 638

logLik
log likelihood, 416

log likelihood
hand calculation, 415
normal distribution, 282

log-likelihood
deviance, 562

log linear model
contingency tables, 369

log-linear model of count data
analysis of deviance, 581

log link
Poisson errors, 560

log-log
transformations, 270

log-logistic
introduction, 301

lognormal
lnorm, 273

lognormal distribution
introduction, 299

log odds
logistic distribution, 300

log response
additivity, 393

logs
transformation, 468

log to base 10
log10, 17

log to base n of x
log(x,n), 17

log transformation
Box–Cox, 401
decay function, 63
explanatory variable, 633

long labels
mar, 955

long-dash line
lty = 5, 948

INDEX 1013

longitude
and yield in gls, 862

longitudinal data
temporal pseudoreplication, 523

loops
avoiding using, 74
for, 71
introduction, 71
jackknife, 482
leaving a loop, 72
population dynamics, 894
repeat, 72
runs test, 51
slowness of, 75
time series models, 77
while, 72
with preallocation, 76

Lotka-Volterra competition equations
phase plane, 928

lottery
binomial distribution, 308

lower
nuisance variables with step,

611
lower case

tolower, 91
lower limit on the summary effect

fixed-effect meta-analysis, 742
lowess

coloured lines, 915
example plot, 209
lines in a panel function, 670
non-parametric curve fitter, 209

ls
returns a vector of names of objects in the specified

environment, 10
lty

in legends, 290
line types, 208
time series plot, 229

lty = 1
solid (the default), 948

lty = 2
dashed, 948

lty = 3
dotted, 948

lty = 4
dot-dash, 948

lty = 5
long-dash, 948

lty = 6
two-dash, 948

lwd
bordered lines, 948
line width, 793
line widths, 949
thicker lines for axes, 938

MA
moving average models, 805

Machine Learning & Statistical Learning
task views, 7

Mac OS
frequently asked questions, 5
installation, 3

main
graph titles, 209
headings for plots, 297

main effects
apparent non-significance, 528
in factorial experiments, 518
meaningless in contingency table analysis, 606
tapply on counts, 582

main effects and interactions in model formula
∗, 19

main effects in ANOVA
apparent non-significance, 521

main title colour
col.main, 917

Makeham
death risk with age, 876

male or female
proportion data, 628

MAM
see minimal adequate model, 389

Mann-Whitney, 322
manova

multivariate analysis of variance, 535
Mantel’s permutation test, 854
manuals

for R users, 5
many.means

function, 127
map

plotting place names, 197
map coordinates

using ifelse, 197
map data

spatial statistics, 825
maps

axes and grids, 867
counting things, 842
coupled map lattice, 904
from relational database, 867

maps from spatstat
illustration, 845

map shape
windows(9,7), 197

mar
margins around the plotting area, 950
to accommodate long bar labels, 955

mar=c(1.5,1.5,1.5,1.5)
to illustrate rainbow palette, 910

margin = 1
bottom (the x axis), 950

1014 INDEX

margin = 2
left (the y axis), 950

margin = 3
top, 950

margin = 4
right, 950

marginal totals
contingency tables, 367
Fisher’s exact test, 372
nuisance variables in contingency table analysis, 366

margin measures
lines of text, 950

margins
adding rows and columns to a dataframe, 185
apply function to matrices, 57
contingency tables, 366
dangers involved in contingency tables, 604

margins around the plotting area
mar, 950

margins for multiple plots
fig, 943

margins of a table
tables of proportions, 253

Markov Chain Monte Carlo methods
Bayesian statistics, 758

mar with oma
closely packed multiple graphs, 954

masking
introduction, 150
with attach, 149

MASS package associated with Venables and Ripley’s book
entitled Modern Applied Statistics using S-PLUS

library, 8, 401
match

as a subscript, 92, 98
binary representation of a number, 73
example, 92
in dataframes, 182
introduction, 91

matching
exact matching on tags, 126

matching names
apropos, 6

matching patterns
grep, 8

mathematical and other symbols on plots, 924
mathematical symbols

complicated formatting of axis labels, 918
matlines

confidence interval, 475
matplot

age structured matrix model, 330
matrices

introduction, 53
matrix

adjoint, 327
compared to dataframe, 54

contingency tables, 369
data entered columnwise, 322
data entered column-wise by default, 55
decimal places in different columns, 58
determinant, 325
drop = F, keep all the dimensions, 59
function to define a matrix, 54
ginv, 327
inverse, 327
layout of graphs on a page, 944
Mendel’s peas, 602

matrix algebra
introduction, 322

matrix diagonals
diag, 324

matrix functions
colMeans(x) column means of dataframe or matrix x,

57
colSums(x) column totals of dataframe or matrix x, 57
rowMeans(x) row means of dataframe or matrix x, 57
rowSums(x) row totals of dataframe or matrix x, 57

matrix multiplication
%∗%, 323
famous five, 453

matrix notation
statistical models, 334

max
maximum value in a vector, 36, 41

max.col
dominant species, 65
subscripts to obtain species names, 66

maximal model
analysis of covariance, 537
definition, 392
statistical models, 448
with interactions and curvature, 493

maximum
box-and-whisker plot, 213
summary, 162
which.max, 41

maximum likelihood
background, 390
clumping parameter of the negative binomial, 316
frequentist approach, 755
introduction, 282
linear regression, 451
lme, 688

mcheck
function for model-checking, 405

MCMC
Markov Chain Monte Carlo methods, 758

MCMC using JAGS
overdispersed binomial example, 766
regression example, 760
temporal pseudoreplication example, 764

mday
day of the month, 102

INDEX 1015

mean
mean(x) arithmetic average of the values in x,

41
na.rm=T, 35
of a vector, 36
of proportion data, 639
summary, 162
tapply, 21
with frequency data, 318
with tapply, 246

mean age at death
reciprocal of hazard, 869

means
central limit theorem, 279
comparing means by looking at variances, 499
comparing two means, 358
exact with random numbers, 284
tapply for factorial experiments, 517

mean squares
ANOVA table for regression, 459

means rather than differences between means
remove the intercept, 862

measurement error
dealing with pseudoreplication, 524

measurement scales
multiple regression, 497

measuring the degree of scatter using r2, 456
mechanistic models

fitting to data, 468
parameter estimation, 715

medbg
plotting symbol fill for pch=21 to 25, 919

medcex
plotting symbol size, 919

medcol
plotting symbol colour, 919

median
box-and-whisker plot, 213
continuous to categorical variable, 74
function, 115
median value in a vector, 41
summary, 162
with tapply, 46, 246

median polishing
introduction, 857

median representation in box-and-whisker plot
medbg, 919
medcex, 919
medcol, 919
medlty, 919
medlwd, 919
medpch, 919

Medical Image Analysis
task views, 7

medlty
line type (medlty="blank" if you want no line, just a point),

919

medlwd
line width, 919

medpch
plotting symbol (added with the line unless specified

otherwise), 919
membership

background, 30
is.complex, 14
is.factor, 21
is.finite, 33
is.infinite, 33
is.integer, 19
is.list, 80
is.logical, 30
is.matrix, 55
is.numeric, 19
is.ts, 230

Mendel’s peas, 9:3:3:1 ratio, 601
merge

all=T, 184
merging dataframes, 184

merging dataframes
by.x and by.y, 184
introduction, 183

Mersenne twister
random number generation, 305

meta
installed package, 9
meta-analysis package, 745

meta-analysis
fixed versus random effects, 741
forest plot, 744
introduction, 740
random effects with a scaled mean difference, 746
vote-counting, 745, 751
weights, 741

metacharacters
pattern matching, 98

metacont
meta-analysis package, 745

metapopulation dynamics
illustration, 900
image(add=TRUE), 899
spatial model that is not spatially explicit, 898

metapopulation models
simulation models, 893

method of least squares
maximum likelihood, 451

mfcol
multiple frames plotted column-wise, 950

mfrow
multiple frames plotted row-wise, 950
multiple graphs per page, 209

mfrow(1,2)
re-shaping the graphs using windows, 211

mgcv
installed package, 9

1016 INDEX

mgcv generalized additive models
library, 8

Michaelis–Menten
asymptotic function, 265
familes of curves, 722
introduction, 263
non-linear models, 716
SSmicmen, 729

Michaelis–Menten vs. asymptotic exponential
nonlinear regression, 719

Michelson
speed of light data, 348

migration rate in metapopulation models, 898
min

min(x) minimum value in x, 36, 41
minutes, 102

min.col
using max.col on negative values, 66

minimal adequate model
definition, 392
in factorial experiments, 519
introduction, 389
treatment contrasts, 433

minimum
box-and-whisker plot, 213
summary, 162
using subscripts, 64
which.min, 41

mining data
dredging for significance, 375

minute
%M minute as decimal number (00–59), 103

mirror
for downloads, 4

misclassification
kmeans, 817

missing values
in dataframe, 33
NA, 32, 443
testing with is.na, 34

mis-specification of the model, 418
mistakes with read.table, 139
mitre

joints of lines, 947
mixed effects models

ANOVA to compare models, 688
assumptions, 682
binary response variable, 661
d.f., 690
hierarchical structure, 682
introduction, 522, 681
model criticism, 690
or ANCOVA, 705
shrinkage, 685
split plot experiment, 685
str to see the structure of these objects, 133
time series analysis, 699

mixed-effects models with temporal pseudoreplication, 695
Mod

distance in the complex plane, 14
mode

dates and times, 111
list, 80
numeric, 20, 24
using all.equal, 24

model(s)
current model, 392
falling in love with your model (don’t do it), 403
fit to the data not vice versa, 389
independence in contingency tables, 366
lists of model objects, 426
maximal model, 392
minimal adequate model, 392
mis-specification, 418
null model, 392
saturated model, 392
str of linear model, 131
subset to omit certain values from a model, 111

model.matrix
introduction, 255

model.tables
Daphnia, 529
effect size, 509

model checking
background, 463
Cook’s distance, 420
curvature, 419
heteroscedasticity, 419
plot(model), 419

model checking plot
residual vs. fitted values, 419, 464
normality plots qqnorm, 405, 464

model choice
absolute values rather than sum of squares, 65
Bayesian statistics, 757
comparing Michaelis–Menten and asymptotic exponential,

719
dangers involved in contingency tables, 604
dangers of extrapolation, 471
death risk with age, 876
generalized additive model (gam), 674
introduction, 389
linear regression, 449
multiple regression, 489
proportion data, 642
steps involved, 390

model comparison
quasi to maintain scale of measurement, 564

model criticism
background, 403
gls, 865
in one-way ANOVA, 508
overdispersion, 580
plot(model), 495

INDEX 1017

plots for mixed effects models, 690
statistical models, 448
time series analysis, 702

model fitting within categories
by, 163

model formulae
summary, 395

modelling
background, 388

model objects
anova, 412
coef, 412
extracting information, 420
fitted, 412
plot, 412
predict, 412
resid, 412
summary, 412
update, 412

model selection
see model choice, 389

model simplification
Akaike’s information criterion, 415
analysis of covariance, 538
binary response variable, 652
binomial glm, 577
computing new factor levels, 435
Cox proportional hazards model, 880
deletion tests, 392, 493
factorial ANCOVA using step, 549
factor-level reduction, 518
introduction, 391
levels gets, 438
lme, 687
recommended steps, 393
statistical models, 448
update, 494
wih overdispersion, 594

model simplification after stepAIC, 597
model simplification exposes interactions, 578
model simplification in ANCOVA

factor level reduction, 550
step, 546
update, 545

model simplification in tree models
cost–complexity measure, 776
prune.tree, 776

models in R
aov, 508
gam, 666
glm, 580
gls, 860
lm, 449
lme, 681
lmer, 681
loess, 667
nlme, 723

nls, 716
rpart, 768
tree, 768

model specification
statistical models, 448

model summaries
NA shows aliasing, 443

modulo
%%, 18
subscripts from a vector, 38
with barplot to combine two distributions, 590

mon
month number, 102

mono
font families for text, 923

monoculture
competitive exclusion, 900

monozygotic twins
probabilities, 754

Monte Carlo experiment
example, 869

month abbreviated name
%b abbreviated month name, 103

month full name
%B full month name, 103

month number
%m month as decimal number (0–11), 103

months and years
tapply, 43

Moran’s I
spatial correlation, 853

mortality data
introduction, 869

mosaicplot
hair eye colour, 616

moving average
illustration, 792

moving average (MA) models
time series analysis, 792, 805

mtext
text in the outer margin, 953

multi.line=T
using scan, 141

multicollinearity
multiple regression, 497

multidimensional summary tables
with tapply, 43, 246

multimodality
bin widths, 221

multinomial distribution
introduction, 313

multiple allocation
a <- b <-0, 71

multiple comparisons
introduction, 531
pairwise.t.test, 533
Tukey’s HSD, 219, 532

1018 INDEX

multiple curves through scatterplot
predict, 586

multiple data points
plots, 240

multiple error terms
example split plot, 520
mixed effects models, 683

multiple graphs
closely packed, 954
one plot on top of another, 951

multiple graphs of different shapes
layout, 943

multiple graphs per page
mfrow, 209

multiple lines
for loops, 551

multiple plotting panels
introduction, 957

multiple regression
common problems, 497
gam on the ozone data, 670
gam to check for curvature, 490
generalized additive models, 666
introduction, 489
model formulae, 395
tree models to check for interaction, 490

multiples
modulo %%, 18

multiple screens on a single device
split.screen, 945

multiple statements per line
;, 13

multiple time series
correlations, 801

multiple variables
plots, 234

multiple variables with the same name
masking, 150

multiplication
∗, 16

multiplicative or additive errors
model choice, 569

multivariate analysis of variance
introduction, 535

multivariate normal distribution, 303
multivariate statistics, 809

task views, 7
mvrnorm

multivariate normal distribution, 303

n
see sample size, 123

NA
failed coercion, 31
in dataframe, 33
is.na, 34
logic outcomes with NA, 25

logical maybe, 22
missing values, 32
replacing by zero, 174
removing NA after scan, 144
removing rows from a dataframe, 173
replace using ifelse, 75
with no match, 91

na.exclude
compared with na.omit, 173

na.fail
missing values, 413

na.omit
introduction, 413
removing NA after scan, 144
removing rows from a dataframe, 173
sapply, 148

na.rm=T
mean, 35
tapply, 35, 44
var, 35
with mean in tapply, 248

NA in model summaries, 443
NA in summary(model)

aliasing, 583
names

creating a header row, 147
creating a header row in scan, 142
dataframe operations, 161
for as.data.frame, 252
for as.data.frame.table, 249
for columns in a dataframe, 504
naming elements of vectors, 38
ordered names with boxplot, 218
variable names in R, 18
with subscripts from max.col, 66

names for colours, 908
names in the specified environment

objects, 8
names matching

apropos, 6
names of objects

ls, 10
objects, 10

names on maps
read.csv, 197

naming elements of lists, 79
naming elements of vectors, 38
naming rows and columns of a matrix, 55
NaN

examples, 33
not a number, 32

Naperian logarithms
introduction, 259

narrative reviews
subjectivity, 740

Natural Language Processing
task views, 7

INDEX 1019

natural logarithms
introduction, 259

nbinom
negative binomial, 273

nchar
number of characters in a string, 86, 89, 91

ncol
argument to the matrix function, 54

nearest neighbour
distance measures, 826
introduction, 829
which, 831

nearest neighbour distances
nndist, 848

nearest random point
distance measures, 826

negative binomial distribution
comparing data with a Poisson distribution, 590
count data from quadrats, 840
density function, 316
introduction, 315
nbinom, 273
Taylor’s power law, 262

negative binomial errors
illustration, 407
overdispersion, 595

negative Gompertz
plot, 268

negative powers
introduction, 259

negative skew
illustration, 350

negative subscripts
drop elements from a vector, 37
jackknife, 481

neighbour file
class nb, 849
read.gwt2nb, 851
using scan, 143
with readLines, 147

neighbour identities, 901
neighbour relations

spatial statistics, 825, 893
nested analysis

model formulae, 395
nested designs

introduction, 519
nested random effects

split plot experiment, 686
nesting

hierarchical structure, 682
neural networks

introduction, 824
new line

"\n", 141
new=TRUE

one plot on top of another, 951

newline
"\n", 150

next integer
ceiling, 14

Nicholson’s blowflies
de-trending, 791
time series analysis, 785

nlevels
how many levels of a factor, 21

nlines
using scan, 142

nlme
families of curves, 723
installed package, 9
library, 686
models, 411

nlme mixed-effects models (both linear and non-linear)
library, 8

nls
anova, 717
asymptotic exponential, 716
models, 411

nlsList
families of curves, 722

nndist
nearest neighbour distances, 848

nnet feed-forward neural networks and multinomial log-linear
models

library, 8
nnwhich

find nearest neighbours, 848
non-alphabetic order

factor levels, 247
non-centrality

chi squared distribution, 288
non-constant variance

illustration, 405, 407
model criticism, 404
proportion data, 561, 628

non-independence of errors
multiple regression, 497

non-linear difference equation
quadratic map, 894

non-linearity detection
efficient regression designs, 475

non-linearity in response
binary response variable, 658

non-linear models, 2-parameter asymptotic exponential, 730
2-parameter logistic, 716
3-parameter asymptotic exponential, 728
3-parameter logistic, 716
4-parameter logistic, 731
bell-shaped, 716
biexponential, 728
first-order compartment, 734
Gompertz, 728
humped curves, 716

1020 INDEX

non-linear models, 2-parameter asymptotic exponential
(Continued)

logistic, 716
Michaelis–Menten, 729
Ricker curve, 716
S-shaped functions, 716
Weibull, 733

non-linear regression(s)
bootstrap, 738
comparing Michaelis–Menten and asymptotic exponential,

719
drawing a smooth curve through a scatterplot, 718
nlme, 723
nlsList, 722
nls, 715
predict, 718
r2, 719
self-starting functions, 728

non-linear terms
mis-specification of the model, 418
model choice, 390

non-linear time series models
plot(augPred(model)), 727
temporal pseudoreplication, 726

non-normal errors
assumptions, 344
illustration, 405
light data, 348
model criticism, 404
proportion data, 628

non-orthogonal contrasts
multiple comparisons, 531

non-orthogonal data
order matters, 394

non-parametric models of survivorship
Cox proportional hazards model, 879

non-parametric smoothers
binary response variable, 659
introduction, 666
with coplot, 236
with pairs, 235

non-parametric tests
correlation, 376
introduction, 344
Wilcoxon rank sum test, 361

non-standard labels for tick marks
axis, 938

noquote
remove quotes from character strings, 87

norm
normal, 273

normal
central limit theorem, 278
density of the standard normal distribution, 206
introduction, 275
norm, 273
plot of the pdf, 280

normal.plot
graphical test of normality, 233

normal compared with Student’s t
slim tails, 293

normal distribution
likelihood, 282

normal equations, 336
normal errors, 2/3 power of the response, 393

identity link, 560
illustration, 406
in one-way ANOVA, 508
linear regression assumptions, 451
model-checking plot, 464

normality
graphical check, 232

normality test
compared, 381
illustration, 405
introduction, 285
qqnorm, 346
shapiro.test, 347

normalization rules
for relational databases, 92

Northwind
relational database, 154
sqlQuery examples, 156

NOT
!, 19, 31
selecting rows of a dataframe, 171

not a number
NaN, 32

notch=T
boxplot, 217, 359

notches
box-and-whisker plot, 213
problems with low sample size, 217

not duplicated
!duplicated, 50

no tick marks
xaxt="n", 197

not missing values
!is.na, 34

nrow
argument to the matrix function, 54

n-shaped curves
beta distribution, 297
biexponential model, 269
quadratic terms, 466

nugget
variogram, 857

nuisance variables
admissions data, 619
dangers involved in contingency tables, 604
margins of contingency tables, 366
step(lower=∼sun∗height∗perch∗time), 611

nuisance variables in contingency table analysis
marginal totals, 366

INDEX 1021

null hypothesis
in one-way ANOVA, 501
independence in contingency tables, 366
introduction, 286
rejection (at α = 0.05), 752
Student’s t test, 360

null model
definition, 392
model formulae, 395

number of attempts
binomial denominator, 629

number of characters in a string
nchar, 86

numbers as factors, 212
numbers for colours, 908
numbers on the axes

orientation using las, 907
numerator, 121
numerical factor levels

factor, 525
numeric

class, 38
preallocation, 76

numeric to character
coercion, 86

object
structure of an R object, 130

objects
names of objects in the specified environment, 8,

10
observed and expected

compared with Pearson’s chi-squared, 322
contingency tables, 366, 367

observed frequencies
count data, 579

observed vs. expected frequencies
count data from quadrats, 840
Pearson’s chi-squared, 591, 599

Occam’s razor
introduction, 390
minimal adequate model, 389
multiple regression, 489

occupancy
incidence functions, 652

occupied or not
proportion data, 628

ODBC
Open Data Base Connectivity, 154

odbcConnect
define the channel, 156

odbcConnect("berks")
from relational database, 867

odd numbers
modulo %%, 18

odds
definition, 630

odds ratio
effect size, 741
example, 749
fisher.test, 373

ode
function to solve ODE, 341
ordinary differential equations, 341

Official Statistics & Survey Methodology
task views, 7

offset
examples using the timber data, 566
introduction, 566
not in a linear model, 415
text location, 200

Old Faithful data
truehist, 227

oma
outer margins, 952

oma with mar
closely packed multiple graphs, 954

one-dimensional scatterplot
stripplot, 959

one plot above another
fig, 942

one plot on top of another
new=TRUE, 951

one-way ANOVA
analysis of variance, 498
assumptions, 503
understanding summary.lm, 510
with boxplots, 218

OpenBUGS
Bayesian inference Using Gibbs Sampling, 759

Open Data Base Connectivity
ODBC, 154

operator tokens, 19
Optimization and Mathematical Programming

task views, 7
optimize

parameter of a non-linear function, 65
optional arguments

introduction, 126
options

contrasts=c("contr.helmert","contr.poly"), 440
contrasts=c("contr.sum","contr.poly"), 442
contrasts=c("contr.treatment","contr.poly"), 437, 440

OR
| (note that this is also the "given" symbol), 19
combinations of TRUE and FALSE, 25

OrchardSprays
boxplot, 113

order
factor levels for plotting, 217
function to produce a vector of subscripts by which another

vector will be ordered low to high, 48
joining the dots, 201
of a moving average model, 806

1022 INDEX

order (Continued)
of factor levels, 21
on multiple variables, 167
order(x) an integer vector containing the permutation to sort

x into ascending order, 41
some up some down, 174
to sort a dataframe, 166

ORDER BY
sorted on which variables in SQL, 156

ordered factor levels
binomial glm, 574
example, 444
factor(ordered=FALSE), 577

ordering
introduction, 47

order matters
dangers involved in contingency tables,

604
in ANCOVA, 555
non-orthogonal data, 394
setdiff, 52
sums of squares in ANCOVA, 545

order of arguments
introduction, 127

ordinary nonparametric bootstrap
example, 386

orientation of number
las, 907

orientation of tick mark numbers
las=1, 947

origin
force the regression line through 0,0,

398
Orobanche germination

example, 636
orthogonal contrasts

introduction, 430
multiple comparisons, 531
testing for orthogonality, 440

orthogonal polynomial contrasts
contr.poly, 444

orthogonal standardized linear combinations
principal components analysis, 811

Oscar Wilde
quote, 391

outbg
colour of the fill of the plotting symbol,

919
outcex

symbol size, 919
outcol

colour of the outline of the plotting symbol,
919

outer
combinations of T and F, 25
create a regular grid of points, 933
grouping panel plots, 697

outer margins
oma, 952

outlier
assumptions, 344
background, 408
box-and-whisker plot, 213
graphical test of normality, 233
model criticism, 404

outlier in box-and-whisker plots
outbg, 919
outcex, 919
outcol, 919
outlty, 919
outlwd, 919
outpch, 919
outwex, 919

outlty
line type, 919

outlwd
line width, 919

outpch
plotting symbol, 919

output format
introduction, 150

outwex
width expansion, 919

overdispersion
binomial errors, 631
cancers as a function of distance, 580
contingency table analysis, 606
deviance > residual d.f., 632
how to deal with it, 570
introduction, 561
model criticism, 404
negative binomial errors, 595
not with binary response data, 651
proportion data, 665
quasibinomial, 632
quasipoisson, 582

over-fitting
multiple regression, 489

overlap
shingles with coplot, 237

overlapping bar labels
barplot, 955

over-parameterization
multiple regression, 490

ozone data
gam, 669

p
binomial success rate, 630
cumulative probability, 272

p/q
odds, 630

package location
find, 6

INDEX 1023

packages
included data sets, 152
install.packages, 8
of R code, 4
task views, 7
view available titles, 114

packages attached
search, 8

packages for spatial statistics
introduction, 844

packages in R, 7
packages installed

akima, 9
car, 9
deSolve, 9
lme4, 9
meta, 9
mgcv, 9
nlme, 9
R2jags, 9
RColorBrewer, 9
RODBC, 9
rpart, 9
spatstat, 9
spdep, 9
tree, 9

pairdist
distances between all pairs of points,

848
paired samples

variance of a difference, 362
paired=T

t.test, 363
pairs

introduction, 235
ozone data, 491, 670
taxa, 817

pairwise.t.test
multiple comparisons, 533

palette()[i]
colours in R, 909

palettes for groups of colours
cm.colors, 911
customized palettes, 912
heat.colors, 220, 911
introduction, 910
rainbow, 911
terrain.colors, 911
topo.colors, 911

panel.abline
illustration, 963

panel.grid, 967
panel.points

code, 965
panel.smooth

non-parametric smoothers, 235
with pairs, 491

panel.text
illustration, 964

panel.xyplot, 963
panel=panel.smooth

ozone.data, 491
panel barchart

illustration, 966
introduction, 965

panel function
changing the look of panel plots, 962
lowess, 670

panel histograms
illustration, 968

panel plots
barchart, 959
bwplot, 959
cloud, 959
contourplot, 959
densityplot, 959
dotplot, 959
graphics for mixed effects models, 697
histogram, 959
introduction, 957
levelplot, 959
parallel, 959
qq, 959
qqmath, 959
rfs, 959
splom, 959
stripplot, 959
tmd, 959
wireframe, 959
xyplot, 959

panels of histograms
histogram, 959

par
graphics parameters explained, 907

par(adj=0)
left-justified text, 935

par(adj=0.5)
centred text (the default), 935

par(adj=1)
right-justified text, 935

par(bg="wheat2")
background colours, 916

par(mfrow)
multiple graphs per page, 209

par(mfrow=c(1,2)
two graphs side by side, 111

par(mfrow=c(1,2))
function for model-checking, 405

par(no.readonly = TRUE)
default graphic parameters, 935

parallel
panel plots, 959

parallel coordinate plots
parallel, 959

1024 INDEX

parallel maxima
example, 129
pmax, 45

parallel minima
pmin, 45

parameter estimation
mechanistic models, 715
optimize, 65
start values in nls, 717

parameter of the power function
b, 261

parameter proliferation
multiple regression, 489, 497

parameters
Akaike’s information criterion, 415
default graphic parameters, 935
estimation from data, 389
model specification, 399

parameters of the linear regression
matrix notation, 337

parameter values
extracting from summary(model), 424
mechanistic model, 468
prediction using a regression model,

463
parsimony

introduction, 390
minimal adequate model, 389
multiple regression, 489

partial autocorrelation
acf(type="p"), 790
time series, 786

partial correlation
introduction, 375

partial likelihood
Cox proportional hazards model, 879

partial matching
introduction, 126

partial names matching
apropos, 6

partition.tree
graphic for classification trees, 782

partitioning
kmeans, 816

paste
complex mathematical expressions, 924
create file paths, 139
creating dates and times, 106
creating dimnames for a matrix, 56
creating queries for SQL, 868
file name, 88
file paths, 153
for complex model formulae, 397
introduction, 87
sapply, 90

paste data from the keyboard
scan, 138

path
in file name, 88

path analysis
introduction, 376

path.diagram
path analysis, 376

pattern
runs test, 52

pattern generation
spatial dynamics of host-parasite interaction, 903
spatially explicit processes, 893

pattern in the data
multivariate statistics, 809

pattern matching
background, 93
grep, 8
introduction, 86
metacharacters, 98

pause before the next plot
ask = TRUE, 935

pbinom
plot, 309

PCA
principal components analysis, 809

pch
multiple time series, 199
plotting symbols, 195

pch="."
smallest plotting symbol, 793
testing the random number generator, 306

pch=21
black and red, 830, 915
blue and brown, 469
blue and cyan, 915
blue and green, 378, 641
blue and orange, 733
blue and red, 450, 472, 641, 734, 862
blue and violet, 915
brown and green, 775
brown and orange, 720
green and orange, 470
green and red, 478, 667
purple and green, 715
red and green4, 731, 915
red and orange, 581, 953
red and yellow, 485, 915

pch=21 to 25
background, 914
contrasting colours of background and border, 196
illustration, 915
multiple non-linear functions in colour, 725

pch=22
blue and yellow, 641

pch=23
blue and brown, 641

pch=24
blue and green3, 641

INDEX 1025

pchisq
cumulative probability of chi-squared distribution, 286
introduction, 287
Pearson’s chi-squared, 841

pdf
saving graphics to file, 134, 242

pdf.options, 242
Pearson’s chi-squared

comparing observed and expected, 322
contingency tables, 368
count data from quadrats, 841
observed vs. expected frequencies, 591
two-category table, 599

Pearson’s rho
correlation, 376

penalized log-likelihood
Akaike’s information criterion, 415

penalty in gams
wiggliness, 673

per-capita multiplication rate
λ, 894

percent cover data
arcsine transformation, 629

percentage data
probit transformation, 629

percentiles
box-and-whisker plot, 213
graphical test of normality, 232
summary, 162

perfect fit
saturated model, 604

period doubling route to chaos, 895
periodic time series

sin-cos models, 699
periodogram

spectral analysis, 800
persp

angled view of a 3D-like object, 932
demonstration of R function, 7

pf
ANOVA table for regression, 459
comparing two variances, 355
cumulative probability of the F distribution, 121
introduction, 287
soil data, 507

pgfull
dominant on each plot, 65

phase plane
introduction, 928
output of a plant–herbivore model, 343

Phylogenetics, Especially Comparative Methods
task views, 7

pi
built-in constant (3.14159), 465
by integration, 340

pi ∗2
cycle length, 793

pie
function to draw pie chart, 231
to illustrate rainbow palette, 910

pie chart
introduction, 230

piecewise regression
binary response variable, 659
introduction, 485
summary.lm, 487

pilot experiments
power analysis, 385

pipe
connections, 153

pitfall traps
pseudoreplication, 710

place names
maps, 197

placebo
bacteria data, 661

planned comparisons
contrasts, 430, 432

plant-herbivore model
ODE, 341

platykurtic
illustration, 353

plot
add a legend to a plot, 194
adding shapes to a graph, 203
adding text, 197
ask = TRUE to pause before next plot, 935
box-and-whisker, 213
bubble plot, 239
curve through decay data, 64
empirical cumulative distribution function, 306
factors, 217
fitted values with ANCOVA, 551
for model objects, 412
for single samples, 220, 345
full colour control, 918
function for model-checking, 405
graphics parameters explained, 907
in one-way ANOVA, 505, 511
initial checks of each variable, 389
interaction plots, 237
jackknife, 483
logarithmic axes, 922
logistic regression, 634
multiple regression, 489
multiple time series, 199
multiple variables, 234
proportion data, 576
saving to file, 134
style of box bty, 939
summary, 242
test of normality, 346
time series, 228
time series object, 786

1026 INDEX

plot (Continued)
type="l", 63, 78
type="s", 271–2

plot a Kaplan–Meier survivorship object
survfit, 880

plot families of curves
plot(augPred), 724

plot methods for contingency tables, 616
plot size

split plots, 519
plot the output of a plant–herbivore model,

342
plot with no axes

axes=FALSE, 938
plot(augPred(model))

non-linear time series models, 727
plot(augPred)

draw families of curves, 724
plot(gam)

illustration, 671
plot(model)

error checking, 356
in one-way ANOVA, 508
model checking, 419
model criticism, 495
species-area data, 486
with different link functions using quasi,

565
plot(survfit)

illustration, 883
plot(type="n")

multi-coloured scatterplot, 586
plot(x,y)

introduction, 190
plot(y)

index plot, 227
plot(y∼x)

introduction, 190
plot.design

Daphnia, 529
design plots, 238
effect size, 509

plot.gam, 676
plot.ts

lynx, 800
time series plot, 229

plot.voronoi
Voronoi tesselation, 833

plotmath
complex mathematical expressions, 928
demonstration of R function, 7

plots for mixed effects models
introduction, 957

plots using subscripts
in ANCOVA, 539

plots with many variables
use of colour and symbols, 705

plots with multiple copies of data points
jitter, 240
sunflowerplot, 241

plotting region
usr, 935

plotting symbol
background colour, 196
introduction, 127
multiple time series, 199
outpch, 919
pch, 195

plotting symbol (added with the line unless specified otherwise)
medpch, 919

plotting symbol colour
medcol, 919

plotting symbol fill for pch=21 to 25
medbg, 919

plotting symbol size
cex, 907
medcex, 919

plotting symbol smallest
pch=".", 793

plotting symbols with contrasting margins
illustration, 915
pch=21 to pch=27, 914

plt
shape of the plotting region, 941

plus or minus % + -%
TEX-like rules, 927

pmax
example, 129
parallel maxima, 45
pmax(x,y,z) vector, of length equal to the longest of x, y or z,

containing the maximum of x, y or z, 41
trimming data, 944

pmin
distance to edge of plotting region, 831
example, 129
parallel minima, 45
pmin(x,y,z) vector, of length equal to the longest of x, y or z,

containing the minimum of x, y or z, 41
trimming data, 944

pnorm
cumulative probability of Gaussian distribution, 273
curve, 284
graph, 274
Kolmogorov–Smirnov, 380
tails of a distribution, 276

point processes
spatial statistics, 825

point.in.polygon
random points in a circle, 828

pointer
environments in R, 113

points
add extra points to a graph, 191
adding points to a graph, 208

INDEX 1027

colour contrasts, 200
graphics parameters explained, 907

points and lines
type="b", 198

points on graphs
identifying individuals, 198
joining the dots, 201

pois
Poisson, 273

Poisson
pois, 273
Taylor’s power law, 262

Poisson counts
quadrat-based methods, 838

Poisson distribution
introduction, 314

poisson errors
deviance formula, 562
log link, 560
useful with count data, 558

Poisson priors
Bayesian statistics, 757

polygon
adding shapes to a graph, 203
as a list, 205
colour fill, 921
create a circle, 828
drawing polygons using locator, 204
fat arrows function, 929
for shading under a curve, 277

polygon lists
illustration, 856
introduction, 854

polygons defining the outlines of regions on a
map

class polylist, 849
polynomial approximations to elementary functions,

465
polynomial contrasts

contr.poly, 444
polynomial regression

introduction, 466
polynomials

correlation of explanatory variable, 446
introduction, 262
using "as is" I, 210

population dynamics
density dependent processes, 893
quadratic map, 77

population growth rate
Leslie matrix, 329

pos
text centring, 200

positional matching
introduction, 126

positive skew
illustration, 350

POSIXct
introduction, 102
summary, 113

POSIXlt
hour, 102
introduction, 102
isdst, 102
mday, 102
min, 102
mon, 102
sec, 102
summary, 113
wday, 102
yday, 102
year, 102

posterior
Bayesian statistics, 752

posterior distribution
product of the prior and the likelihood, 755

PostScript
saving graphics to file, 242

power.anova.test
calculations for balanced one-way ANOVA tests, 384

power.prop.test
calculations two-sample test for proportions, 384

power.t.test
calculations for one- and two-sample t tests, 384
worked example, 385

power analysis
background, 382
power.anova.test, 384
power.prop.test, 384
power.t.test, 384

power calculations
binomial distribution, 310

power law
Taylor’s Power Law, 261, 262
linear regression, 470

power of the test
(β = 0.8), 383

power transformations
Box–Cox, 401

powers
∧ (the caret symbol), 16
introduction, 258

ppinit
pines data, 837

ppp
spatstat object, 845

prcomp(scale=TRUE)
principal components analysis, 811

preallocation
numeric, 76
population dynamics, 77

predict
drawing fitted curves, 469
from loess, 667

1028 INDEX

predict (Continued)
from model objects, 412
int="c", 475
int="p", 475
model with polynomial contrasts, 447
multiple curves through scatterplot, 586
nonlinear regression, 718
prediction using a regression model, 462
smooth line from a log-linear model, 581
with gam, 721
with loess, 209

predict(type="response")
back-tansform a logistic regression, 634
back-transform a binary response variable,

653
back-transform an S-shaped surved, 654

predicted mean age at death
censoring, 890

predicted values in linear regression
standard error, 462

prediction
dangers of extrapolation, 471
dealing with uncertainty, 472
model criticism, 404

prediction in survival analysis
survreg because coxph, 879

prediction using a regression model
predict, 462

prefix
option in rownames, 56

presentation of results
Student’s t test, 360

principal components analysis
biplot, 811
introduction, 809
prcomp(scale=TRUE), 811

principle of parsimony
introduction, 390

print
cat for formatted output, 122
in a loop, 71
output from a tree model, 771

print(cor=F)
suppressing correlations in lmer output, 690

prior
Bayesian statistics, 752

prior times likelihood
posterior distribution, 755

prior weight
standardized residulas, 568

priors
Bayesian statistics, 756

prob=p
with sample, 71

probabilities
on logistic plots, 654
unequal probabilities in sample, 70

probability
background to Bayesian statistics, 754

probability density
d prefix for distributions, 272
drawing a smooth curve, 279
introduction, 274

Probability Distributions
task views, 7

probability function
introduction, 271

probability of parameter value
confidence interval, 752

probit transformation
percentage data, 629

problems of pseudoreplication
example, 662

problems with regression
Anscombe’s famous data, 953

proc.time
timing operations, 75

products
sums of products, 453

programming tips, 135
proliferation of parameters

multiple regression, 489
promises

lazy evaluation, 130
prompt

as a calculator, 13
prop.table

tables of proportions, 253
prop.test

power.prop.test, 384
problems of pseudoreplication, 662
proportion data, 365

propagule settlement
metapopulation dynamics, 899

proportion data
ANCOVA, 640
binomial test, 365
bounded response, 628
calculating means, 639
conversion from contingency data, 643
from binary data, 664
generalized linear mixed models, 710
graphics for, 627
introduction, 628
model choice, 642
non-constant variance, 628
non-normal errors, 628
plots, 576
stricly bounded, 560
weighted by sample size, 628
with categorical explanatory variables,

636
proportion data based on counts

binomial errors, 558

INDEX 1029

proportional hazards model
Cox proportional hazards model, 878

proportions
tables using prop.table, 253

prune.tree
model simplification in tree models, 776

ps.options
PostScript options, 242

pseudoreplication
assumptions, 683
averaging away the pseudoreplication, 525, 713
binary response variable, 660
elimination using aggregate, 714
example split plot, 520
generalized linear mixed models, 710
mixed effects models, 681
model choice, 390
multiple error terms, 398
multiple regression, 497
nested designs and split plots, 519
proportion data, 665
rats example, 525
removal using !duplicated, 174
removing it, 523
statistical models, 448

Psychometric Models and Methods
task views, 7

pt
cumulative probability of Student’s t distribution,

352
Student’s t test, 287

pt.bg
colour in legends, 915
specifying coloured symbols in legends, 196

pty="s"
square plotting region, 830, 955

publication bias
meta-analysis, 740

pure error variance
efficient regression designs, 476

p value
ANOVA table for regression, 460
comparing t-test and Wilcoxon test, 362
deletion p values, 439
extracting from summary(model), 424
Fisher’s F test, 120
introduction, 347
summary.lm, 461
what it is, and is not, 752

Pythagoras
distance, 830

Q
quadratic contrasts, 445
quadratic terms, 574

q
quantile prefix for distributions, 272

q = (1-p)
binomial failure rate, 630

qbinom
quantile of the binomial distribution, 310

qchisq
critical values for contingency tables, 368
introduction, 287

qf
ANOVA table for regression, 459
comparing two variances, 355
example, 290
F test, 287
in one-way ANOVA, 501
soil data, 507

qnorm
curve, 284

qq
panel plots, 959
quantile–quantile plot for comparing two distributions, 959

qqline
test of normality, 346

qqmath
panel plots, 959
quantile plots against mathematical distribution, 959

qqnorm
function for model-checking, 405
model-checking plot, 464
normality tests compared, 381
quantile-quantile plots, 419
test of normality, 346

qr
str of linear model, 131

qt
critical value of Student’s t, 359
introduction, 287

quadrat-based methods
cut on x and y, 838
spatial pattern, 838

quadrat counts
spatial point processes, 826
spatstat object, 846

quadratic map
first-order non-linear difference equation, 894
population dynamics, 77

quadratic terms
binary response variable, 658
illustration, 466
maximal model, 493
model choice, 390
multiple regression, 489

qualitative palette
RColorBrewer package, 913

quantile
bootstrap confidence interval, 385
graphical test of normality, 232
of a vector; see ?quantile for details, 36
on bootstrapped samples, 479

1030 INDEX

quantile (Continued)
q prefix for distributions, 272
quantile(x) vector containing the minimum, lower quartile,

median, upper quartile, and maximum of x, 41
runs test, 51

quantile of the binomial distribution
qbinom, 310

quantile of the normal distribution
z, 283

quantile plots against mathematical distribution
qqmath, 959

quantile–quantile plot for comparing two distributions
qq, 959

quantiles
bootstrap, 478

quasi
different link functions, 564
family of models, 563

quasibinomial
binomial data, 665
Orobanche germination, 637
overdispersion, 632

quasi-likelihood
variance mean relationship, 562

quasipoisson
compared to glm.nb, 607
introduction, 561
overdispersion, 581

query
writing an SQL query in R, 868

query in R
help.search, 6

quotation marks
problems in writing SQL queries, 158, 868

quotes on character strings
noquote, 87

R
citation in publications, xxiv
installation, 3
packages, 7
update, 3

r2 coefficient of determination
background, 456
extracting from summary(model), 424
from a nonlinear regression, 719
introduction, 373
summary.lm, 461

R2jags
installed package, 9
package to run JAGS from R, 759

radians
for measuring angles, 17
the sin function, 465

rainbow
built-in palette, 910
illustration, 910

random
lme, 684
rows from a dataframe, 165
spatial point processes, 825

random effects
background, 681
in designed experiments, 703
introduction, 519

random effects meta-analysis
between-study variance tau squared, 746
shrinkage, 747

random-effects meta-analysis of binary data
forest plot, 748, 751

random effects with a scaled mean difference
meta-analysis, 746

random integers
negative binomial distribution, 225

randomization
better than ANCOVA, 548
sample, 69
shuffling, 69

randomization using sample
experimental design, 70

random number generation
Mersenne twister, 305
r prefix, 272

random numbers
.Random.seed, 69
setting the seed, 69
with exact mean, 284

random numbers from a beta distribution
rbeta, 297

random numbers from a binomial distribution
rbinom, 310

random numbers from a negative binomial distribution
rnbinom, 42

random numbers from a normal distribution
rnorm, 47

random numbers from a Poisson distribution
rpois, 244

random numbers from an exponential distribution
rexp, 296

random or fixed
deciding on categorical variables, 523

random pattern
runs test, 52

random points in a circle
illustration, 827
point.in.polygon, 828

random radii
illustration, 828

random walk
introduction, 897
sample(c(1,0,-1),1), 896
simulated time series, 804
simulation in two dimensions, 896
spatial dynamics, 897

INDEX 1031

range
for scaling the y axis, 193
range(x) vector of min(x) and max(x), 41
testing the random number generator, 306
variogram, 857

rank
function to produce ranks, 48
rank(x) vector of the ranks of the values in x, 41
str of linear model, 131

rank correlation
Spearman, 376

rank sum test, 322
rank survival times

Cox proportional hazards model, 879
ranking

introduction, 47
rate

gamma distribution, 295
rational quadratic spatial correlation

corRatio, 862
rats example

in lmer, 703
problems of pseudoreplication, 525
variance components analysis, 527

raw
class, 38

Rayleigh
death risk with age, 876

rbeta
random numbers from a beta distribution,

297
rbind

add rows to a matrix or dataframe, 58
matching the number of columns, 186

rbinom
random numbers from a binomial distribution,

310
RColorBrewer package

colour, 913
illustration, 914
installed package, 9

r correlation coefficient
background, 373
examples, 458

R Data Import/Export
manual, 5

Re
real part of complex number, 14

read data
using scan, 141

read.csv
coma delimited fields, 140

read.delim
example, 475
timber, 566

read.gwt2nb
neighbour file, 851

read.table
as.is for character strings, 149
character variables as factors, 20
common errors, 139
compared with readLines, 145
compared with scan, 141
data entry from file, 139
header=T, 139
to specify row names, 176

reading dates and times from file, 102
readLines

compared with read.table, 145
data input from a file, 145
neighbour file, 147
worms, 146

real number
testing for equality, 23

real part
complex numbers, 13

rearrange rows columns and sub-tables
aperm, 68

reciprocal link
Gamma errors, 560

reciprocal transformation
Box–Cox, 401
introduction, 266

reciprocals
harmonic mean, 118
introduction, 259
survival analysis, 869
transformations, 270

rect
adding shapes to a graph, 203

recursion
simulated time series, 803

recursive partitioning
rpart, 768

recycling
shorter vector is recycled, 32

red–green–blue (RGB) components
#RRGGBB, 909
illustration, 910

re-dimensioning
don’t do it, 76

reducing factor levels
see factor level reduction, 438

regexpr
locating characters within a string, 97, 100

regression
bootstrap, 478
dates and times, 111
introduction to lm, 449
lmList, 706
mixed effects models, 706
model formulae, 395
optimal designs, 475
piecewise regression, 485

1032 INDEX

regression (Continued)
polynomial regression, 466
random effects, 706
standard error of a slope, 460
standard error of an intercept, 460
unreliability estimates for the parameters, 460

regression line
through a scatterplot, 191

regression models with spatially correlated errors
generalized least squares, 860

regression parameters
Anscombe’s famous data, 953

regression trees
as a series of thresholds, 775
introduction, 771

regression with dates and times
as.POSIXct, 112

regular
spatial point processes, 825

regular pattern
Ripley’s K, 837

rejection at 5%
null hypothesis, 752

relational database
data for mapping, 867
introduction, 91
match in dataframes, 182
normalization rules, 92
Northwind, 154
rules for construction, 91

relative growth rate
percentage change data, 629

remainder
%%, 18

REML
lme, 688

remove a dataframe from the search path
detach, 10

remove objects from a specified environment
rm, 10

removing duplicate rows from a dataframe,
180

removing rows from a dataframe
na.exclude, 173
na.omit, 173

removing tab markers
strsplit, 145

re-order a multidimensional table
aperm, 618

rep
creating factor levels, 606
function for generating repeats, 28
generate factor levels, 357
row names with stack, 85
with frequency data, 319
with lapply for expanding a dataframe,

179

repeat
break, 72
creating a loop, 72

repeated measures
introduction, 519
mixed effects models, 695
random effects, 523

repeating rows in a dataframe
use replicated subscripts, 179

repeats
generating repeats of specified values, 28

replace=T
sampling with replacement, 70
the game of craps, 280

replace missing values
with zeros, 35

replacement
sampling with, 69

replacing NA
is.na, 174

replicates
are independent, 526
assumptions, 683

replication
efficient regression designs, 475
power analysis, 382

Reproducible Research
task views, 7

rescale.p=TRUE
Mendel’s peas, 601

resid
extracting information from model objects, 412,

420
residual and fitted value plot (see also oneway)

rfs, 959
residual degrees of freedom

str of linear model, 131
residual deviance = 0

saturated model, 603
residual shuffling

bootstrap, 478
example, 480

residual vs fitted values
model-checking plot, 464

residuals
absolute values, 452
autocorrelation, 700
background, 568
bootstrap with glm, 571
checking for non-linearity, 468
deviance, 562
drawing lines to illustrate, 451
fivenum, 427
linear regression assumptions, 451
model criticism, 404
outliers and influence, 408
serial dependence, 795

INDEX 1033

stl, 797
str of linear model, 131

residuals against fitted values
model checking, 419

response ratio
effect size, 741

response variable
choosing the right test, 388
error bars in x and y directions, 124
Kaplan-Meier object, 875
missing in multivariate statistics, 809
multivariate analysis of variance, 535
strictly bounded, 560

return
ending a function, 72
returning multiple values from a function, 128

returning values from a function, 128
rev

reverse the order of sorting, largest to smallest, 40, 48,
167

reverse a character string, 90
reverse sorting of factor levels, 175
rexp

random numbers from an exponential distribution, 296
rfs

residual and fitted value plot, 959
rgb

red–green–blue (RGB) components of colour, 910
Rgui

changing default settings of R’s graphic user interface, 10
rho

Pearson’s rho, 376
Ricker curve

comparison, 208
non-linear models, 716

right
axis = 4, 938
margin = 4, 950

right=F
with the cut function, 223

right-justified text
par(adj=1), 935

R Installation and Administration, 5
Ripley’s K

spatstat object, 847
test for complete spatial randomness, 834

risk difference
effect size, 741

risk of death
introduction, 869

risk ratio
effect size, 741

risk score
Cox proportional hazards model, 878

R Journal, 4
R Language Definition

manual, 5

rle
run length encoding, 50

rm
remove objects from a specified environment, 10, 883, 886

rnbinom
parameter values for negative binomial, 134
random numbers from a negative binomial distribution, 42,

225
rnorm

hist, 284
random numbers from a normal distribution, 47

Robust Statistical Methods
task views, 7

RODBC
from relational database, 867
installed package, 9
package, 155

roots
∧ (caret) with fractional powers, 16
introduction, 259

round
ends of lines, 947
specify number of decimal places, 15, 200

rounding errors
multiple regression, 497

rounding numbers up or down
ceiling, 14
floor, 14

rounding time differences, 105
route to chaos, 895
row

first subscript, 54
subscripts to groups in matrices, 57

row.names
introduction, 159, 177

row.names=F
with write.table, 135

row and column totals
dangers involved in contingency tables, 604
margins of contingency tables, 366

row names
stack, 85

row numbers
after sorting, 167

row sums using apply, 62
rowMeans

adding rows and columns to a dataframe, 185
rowMeans(x) row means of dataframe or matrix x, 41,

57
rownames

names for the rows in a matrix, 58
naming rows of a matrix, 56

rownames in a dataframe
in place of row numbers, 176

rows and columns
adding margins to a dataframe, 185
aperm, 68

1034 INDEX

rows and columns (Continued)
in tables, 245
tapply, 43

rows of a dataframe
select using subscripts, 164

rowsum
alternative to tapply, 57

rowSums
rowSums(x) row totals of dataframe or matrix x, 41, 57

rpart
installed package, 9
models, 411
recursive partitioning, 768

rpois
log (0), 75
random numbers from a Poisson distribution, 38, 50,

244
r prefix

random number generation, 272
R Reference Index

manual, 5
R Studio

text editor, 9
rug

illustrate location of samples with a binary response variable,
653

rule of thumb
Fisher’s F = 4, 290
in one-way ANOVA, 511
interpreting summary.lm in ANOVA, 518
sample size = 30, 383
t = 2, 292

rules
for relational databases, 91

run length encoding
rle, 50

run.and.value
function for run length encoding, 51

runif
generates random numbers between 0 and 1 from a uniform

distribution, 17
random numbers from the uniform distribution, 26
testing the random number generator, 305

runs test, 51

s(x)
generalized additive models, 666
nonparametric smoothers in gam, 565

sample
for shuffling and randomization, 69
prob=p, 71
rows from a dataframe, 165
runs test, 51
sample size, 70
shuffling rows of a matrix, 58
the game of craps, 280
unequal probabilities, 70

sample(c(1,0,-1),1)
random walk, 896

sample(replace=T)
bootstrap, 349, 385, 479
bootstrap with glm, 571

sample cases
bootstrap, 478

samples
plots for single samples, 220

sample size
and standard error of mean, 123
by matrix multiplication, 333
difference to be detected, 383
for count data, 600
in sample, 70
introduction, 347
power analysis, 382
power calculations, 310
problems with notches, 217

sample size = 30
rule of thumb, 383

sample variance
calculating variance, 119
confidence interval, 288
scaled chi squared distribution, 287

sampling with replacement
bootstrap, 349
replace=T, 70

sampling without replacement
hypergeometric distribution, 312

sans
font families for text, 923

sapply
%in%, 98
is.factor, 171
is.numeric, 170
anonymous functions, 83
in a for loop for simulating dynamics, 896
introduction, 61
lags for partial correlation plots, 787
na.omit, 148
paste, 90
with sample, 71
with seq, 63

sapply with mean
yields, 503

saturated model, 3-dimensional contingency table, 609
admissions data, 619
definition, 392
for contingency tables, 604
residual deviance = 0, 603
Schoener’s lizards, 610

save
default graphic parameters, 935
introduction, 133

savehistory
saving the history file, 134

INDEX 1035

saving a list
to file, 83

saving data from R
write.table, 135

saving graphics to file
pdf or ps, 242

saving the history file
savehistory, 134

scale
different models on comparable scales,

564
introduction, 254
scale-dependent correlations, 377

scale dependence
quadrat counts, 826

scale of measurement
model choice, 392

scale on the y axis
ylim, 118

scale parameter
overdispersion, 632
standardized residuals, 568

scale the axes for multiple variables
type="n", 192

scale the y axis
ylim, 193

scan
"\n", 141
as.data.frame, 142
compared with read.table, 141
creating a header row, 142
data entry from keyboard, 137
input a data file, 141
keyboard data entry, 36
multi.line=T, 141
na.omit, 144
nlines, 142
paste data from the keyboard, 138
removing NA, 144
sep, 141
skip, 141

scatter
measure using r2, 456

scatterplot
and causation, 377
introduction, 190
legend with multiple colours, 586
linear regression, 449
logarithmic axes, 922
xyplot, 959

scatterplot matrix
splom, 959

Schoener’s lizards
a complex contingency table, 610
conversion to proportion data, 643

scientific importance
vs. statistical significance, 471

scientific notation
exponents e, 13

scoping rules
introduction, 126

scree plot
principal components analysis, 811

screen
changing default settings, 10

screen prompt
>, 4

sd
standard deviation, 279

se
function to compute standard error of a mean, 122

search
lists attached packages and dataframes, 8, 10

seasonal component of a time series
stl, 797

seasonal data
cycle length, 793
sin and cos, 793
time series analysis, 793

seasonal decomposition of time series by loess
illustration, 798
stl, 797

seBars
function, 216

sec
seconds, 102

second(s)
%S second as decimal number (00–61, allowing for two ‘leap

seconds’), 103
units of slopes of regressions with dates and times, 112

second subscript
column, 54

seed
for random number generator, 69

SELECT
a list of the variables required (or ∗ for all variables) in SQL,

156
selecting columns in a dataframe

grep, 176
selecting only certain rows from the dataframe

subset or subscripts, 552
selecting rows of a dataframe

logical subscripts, 169
which, 172

selection
using logical subscripts, 39

self-starting functions
nonlinear regression, 728

sem
path analysis, 376

semicolon
delimited files, 140

SemiPar
package, 675

1036 INDEX

semivariogram
introduction, 856

sep
separator in paste, 87
using scan, 141

sep="\n"
new line separators with scan, 144

sep="\t"
tab separation, 144

separators
in data files, 140

separators with scan
sep="\n", 144
sep="\t", 144

seq
as subscripts, 37, 40
dates and times, 107
drawing a smooth curve, 279
sequence generation, 27
smoothing, 206
with sapply, 63
x values for a smooth plot, 717

sequence
successive sequences of differing lengths,

28
sequence creation

:, 19
sequence generation

seq, 27
sequences of dates and times, 107
sequential palettes

RColorBrewer package, 913
serial correlation

assumptions, 344
serial correlation in the residuals

dealing with pseudoreplication, 524
Durbin Watson, 484

serial dependence
residuals, 795
time series analysis, 785

serif
font families for text, 923

set the working directory
setwd, 138

set theory
%in%, 53
intersect, 52
setdiff, 52
setequal, 52
union, 52

set.seed
for random number generator, 69

setdiff
order matters, 52
set theory, 52

setequal
logical function, 52

sets
TEX-like rules, 926

settlement of propagules
metapopulation dynamics, 899

setwd
file paths, 152
set the working directory, 138

sex discrimination
prop.test, 365

sex ratio
binom.test, 600

sex ratio of twins
probabilities, 754

shading
density and angle, 920

shading under a curve
polygon, 278

shape
gamma distribution, 295
of plotting region, 211

shape file
creating polygon lists, 856

shape of the plotting region
plt, 941

shapes
adding shapes to a graph, 203

shapes of graphs on the same page
layout, 943

shapes of the beta distribution
illustration, 297

shapiro.test
normality tests compared, 381
test of normality, 347

shingles
with coplot, 237

shrinkage
Bayesian statistics, 756
in mixed effects models, 685
in nonlinear mixed models, 725
in regression parameters, 707
random effects meta-analysis,

747
shuffle residuals

bootstrap, 478
shuffling

randomization, 69
shuffling rows of a matrix

sample, 58
side

with jitter, 654
sigma

TEX-like rules, 925
sigmoid curves, 267
sign.test

exact binomial test, 364
sign test

introduction, 364

INDEX 1037

signif
specify number of significant digits, 16

significance
data dredging (at α = 0.05), 375
main effects in ANOVA, 521

significance in graphics
notches, 213

significance level
power of the test (β = 0.8), 383

significant digits
signif, 16

signrank
Wilcoxon signed rank, 273

sill
variogram, 857

simple is best
Occam’s razor, 390

simplification
model simplification, 448
step-wise deletion, 436

simulated time series, 803
simulation in two dimensions

random walk, 896
simulation models

introduction, 893
recall same random numbers, 69

sin
drawing bubble plots, 239
introduction, 260
polynomial approximation, 465
sine in radians, 17

sin and cos
seasonal data, 793

sine in radians
sin, 17

single samples
introduction, 344
plots, 220, 345

size distribution
non-normal, 286

size of axis numbers
cex.axis, 907

size of plotting symbol
cex, 940

size of text, 196
size of text labels

cex.lab, 907
skew

box-and-whisker plot, 213, 512
comparing two distributions, 379
confidence interval by bootstrap, 385
empirical cumulative distribution function, 307
graphical test of normality, 232
in histograms, 224
introduction, 350
light data, 348
lognormal distribution, 299

negative binomial distribution, 318
normality plot, 285
t-test of significance, 351
Weibull distribution, 302

skip
using scan, 141

slope
extracting from summary(model), 424
linear regression, 449
model specification, 399
plots of se of slope, 473
significant differences, 586
summary.lm, 461
units with dates and times, 112

small samples
Fisher’s exact test, 371

smallest plotting symbol
pch=".", 793

smoking and weight
interaction, 585

smooth curves
generating x values, 279

smooth density function overlay
hist, 296

smoothers
non-parametric curves, 209

smoothing
panel.smooth, 235

smooth line from a logistic model
binary response variable, 653

smooth line from a log-linear model
predict with exp, 581

smooth lines
draw using curve, 206

smooth lines for drawing curves
deviance, 63
generating x values, 27

snd
standard normal distribution, 206

socketConnection
connections, 153

solid line (the default)
lty = 1, 948

solve
solving linear equations, 339

solving linear equations
matrix notation, 338

sort
a dataframe by rows, 166
function to sort a vector into ascending order, 48
sort a vector into ascending order, 37
sort(x) a sorted version of x, 41
with unique, 486

sort
on multiple variables, 167

sorting
introduction, 47

1038 INDEX

sorting by date, 181
sources of variation

ANOVA table for regression, 459
spaced-out

regular patterns, 826
spaces

∼∼ for extra spaces in graph titles,
918

in variable names, 140, 160
spatial correlation

anisotropy, 857
Geary’s C, 853
generalized least squares, 860
Moran’s I, 853
multiple regression, 497
paired t test, 363

spatial correlation structures
introduction, 862

spatial covariates
in linear models, 862

spatial dynamics
simulation models, 893

spatial dynamics of host-parasite interaction
coupled map lattice, 904
pattern generation, 903

spatial dynamics of the random walk, 897
spatial errors

form=∼latitude + longitude, 862
spatial functions for kriging and point pattern analysis

library, 8
spatial model that is not spatially explicit

metapopulation dynamics, 898
spatial point processes

aggregated, 825
random, 825
regular, 825

spatial pseudoreplication
mixed effects models, 683

spatial statistics
introduction, 825

spatially explicit density dependence
coexistence of species, 900

spatially explicit processes, 893
spatstat

installed package, 9
packages for spatial statistics, 844

spdep
installed package, 9
packages for spatial statistics, 844

spdep package
introduction, 849

Spearman
rank correlation, 376

species
counting species names, 66

species area relationship SAR
piecewise regression, 485

species coexistence
spatially explicit density dependence, 900

spectral analysis
periodogram, 800
spectrum, 800
time series analysis, 800

spectrum
spectral analysis, 800

spherical spatial correlation
corSpher, 862

spine plots and spinograms, 621
split

for coloured ANCOVA plots, 586
for plotting in different colours, 640

split a character string
strplit, 89

split plot experiment
example, 520
introduction, 519
mixed effects models, 685
model formulae, 395

split the plotting region
fig, 942

split.screen
multiple screens on a single device, 945

splom
panel plots, 959
scatterplot matrix, 959

spread of x values
efficient regression designs, 475

spreadsheet
for data entry, 159

SQL
problems involved with quotation marks, 868
Structured Query Language, 154

sqlQuery
examples from Northwind, 156
introduction, 156
writing a query in R, 868

sqrt
square root, 17

square
joints of lines, 947

square plotting region
pty="s", 830, 955

square root
sqrt, 17
transformations, 270

square root of the response
constancy of variance, 393

square root symbol
TEX-like rules, 925

srt
character string rotation, 955

srt=45
rotating long bar labels to eliminate overlap,

956

INDEX 1039

SSA
calculations, 502, 506
treatment sum of squares, 431, 500

SSasymp
asymptotic regression model, 730

SSasympOff
asymptotic regression model with an offset, 728

SSasympOrig
asymptotic regression model through the origin,

728
SSbiexp

biexponential model, 728
SSC

contrast sum of squares, 431
SSE

error sum of squares, 506
in one-way ANOVA, 499
matrix notation, 338
unexplained variation, 456

SSfol
first-order compartment model, 734

SSfpl
four-parameter logistic model, 731

SSgompertz
Gompertz growth model, 728

S-shaped curve
binary response variable, 654

S-shaped functions
non-linear models, 716

SSlogis
logistic model, 730

SSmicmen
Michaelis–Menten model, 729

SSR
explained variation in regression, 456
in ANCOVA, 543
matrix notation, 338

SST
calculations, 502
total sum of squares, 499

SST=SSE
means identical, 500

SST>SSE
means different, 500

SSweibull
Weibull growth curve model, 733

SSX
in ANCOVA, 541
introduction, 453
standard errors in regression, 475

SSXY
corrected sum of products, 453
in ANCOVA, 541

SSY
matrix notation, 335, 338
total sum of squares (also as SST), 453
y∼1 residual deviance, 457

stable point equilibrium
population dynamics, 894

stack
create a dataframe from columns of vectors, 85, 504

standard deviation
maximum likelihood, 283
sd, 279

standard error
of skew, 351
predicted values in linear regression, 462

standard error of a mean
anonymous function in tapply, 43
effect of sample size, 123
for error bars, 216
introduction, 122
with tapply, 246

standard error of a slope
regression, 460

standard error of an intercept
regression, 460

standard error of mean
as error bars, 513

standard error of the difference between two means
calculations, 510
Helmert contrasts, 442
summary.lm, 427
with contrasts, 358, 360, 436

standard error of the intercept
in ANCOVA, 544

standard error of the summary effect
fixed-effect meta-analysis of scaled differences, 742

standard errors
model.tables, 531

standard errors in ANOVA
understanding summary.lm, 510

standard errors in regression
optimal designs, 475

standard normal distribution
mean = 0 sd = 1, 275
z plus and minus three quantiles, 276

standardized residuals
background, 568

staple (end of the whisker)
staplecol, 919
staplelty, 919
staplelwd, 919
staplewex, 919

staplecol
colour, 919

staplelty
line type, 919

staplelwd
line width, 919

staplewex
width expansion, 919

start
initial parameter estimates, 717

1040 INDEX

stationarity
time series analysis, 785

statistic function for boot
introduction, 386
non-linear regression, 738

Statistical Genetics
task views, 7

statistical models
background, 388
matrix notation, 334
summary of steps taken, 448

statistical significance
vs. scientific importance, 471

statistics
choosing the right test, 388

Statistics for the Social Sciences
task views, 7

status, 1∗(death>0), 879
dead or last seen alive, 875

stderr
connections, 153

stdin
connections, 153

stdout
connections, 153

step for model simplification
binary response variable, 656
binomial glm, 577
contingency table analysis, 611
factorial ANCOVA, 549
model simplification in ANCOVA, 546
Schoener’s lizards as proportion data, 645
simplification in coxph models, 890
simplification in survivorship models, 888

step function
compared with a smoother, 668
illustration, 669

stepAIC
negative binomial errors, 596

stepped lines
on plots, 202

stepped survivorship curve
Kaplan–Meier object, 876

step-wise deletion
example from competition experiment, 436
model simplification, 392

stl
data series, 797
residuals, 797
seasonal component, 797
seasonal decomposition of time series by loess, 797
trend, 797

stop
message when a function would fail, 32

str
mixed effects model, 133
of a linear model, 131

structure of an R object, 130
table of UCBA admissions, 617
time series object, 230
with lists, 82

straight lines
linear models, 400
linear regression assumptions, 451

string rotation
srt, 955

strings
%in%, 98
charmatch, 97
grep, 95
gsub, 96
length, 91
nchar, 91
regexpr, 97
sub, 96
which, 98

stripchart
introduction, 232

stripplot
one-dimensional scatterplot, 959
panel plots, 959

strplit
split a character string, 89
using words, 90

strptime
%a abbreviated weekday name, 103
%A full weekday name, 103
%b abbreviated month name, 103
%B full month name, 103
%c date and time, locale-specific, 103
%d day of the month as decimal number (01–31), 103
%H hours as decimal number (00–23) on the 24-hour clock,

103
%I hours as decimal number (01–12) on the 12-hour clock,

103
%j day of year as decimal number (0–366), 103
%M minute as decimal number (00–59), 103
%m month as decimal number (0–11), 103
%p AM/PM indicator in the locale, 103
%S second as decimal number (00–61, allowing for two ‘leap

seconds’), 103
%U week of the year (00–53) using the first Sunday as day 1

of week 1, 103
%W week of the year (00–53) using the first Monday as day 1

of week 1, 104
%w weekday as decimal number (0–6, Sunday is 0),

104
%x date, locale-specific, 104
%X time, locale-specific, 104
%Y year with century, 104
%y year without century, 104
%Z time zone as a character string (output only), 104
examples, 111
extract dates and times from a character string, 103

INDEX 1041

in dataframes, 181
non-standard examples, 104

strsplit
with readLines, 145, 147

structural equation modelling
introduction, 376

structural non-linearity
mis-specification of the model, 418

structure in the data
multivariate statistics, 809

structure of an R object
str, 130

Structured Query Language
SQL, 154

Student’s t
critical value qt, 359
introduction, 291
t, 273

Student’s t compared with normal
fat tails, 293

Student’s t test
background, 358
null hypothesis, 360
t.test, 360
test statistic, 360

sub
text substitution, 96

subjectivity
narrative reviews, 740

subscript 1
row, 54

subscript 2
column, 54

subscripts (aka indices)
!duplicated, 49
%in%, 98
complicated formatting of axis labels,

918
duplicated, 49
extract a minimum value, 64
for defining neighbours, 901
for ordering points on a graph, 201
grep, 97
in plotting for ANCOVA, 539
introduction, 36
jackknife, 481
match, 98
on dataframes, 65, 164
on lists, 79
produced by match, 92
repeating rows in a dataframe, 179
shortening dataframes, 34
TEX-like rules, 925
understanding the order function, 49
using logical subscripts, 39
using sequences, 37
using which, 46

subscripts from a list
[[1]], 51

subset
graphics for mixed effects models, 694
in plots, 242
model options, 413
model-checking plot, 464
omit certain values from a model, 111
removing pseudoreplication, 663, 698

subset or subscripts
selecting only certain rows from the dataframe,

552
substitute

deparsing variable names, 124
drawing bubble plots, 239
mathematical and other symbols on plots, 924

substr
extract part of a character string, 88

substring, 100
subtitle colour

col.sub, 917
subtraction

-, 16
success

Bernoulli distribution, 307
success or failure

binary response variable, 651
proportion data, 628

sum
add the values within a vector, 39
logical arithmetic, 26
sum(x) total of all the values in x, 41

sum contrasts
in ANCOVA, 554
worked example, 442

sum of products
%∗%, 332

sum of squares
calculating variance, 119
function to calculate, 63

sum of two variances, 304
summarizing dataframes

aggregate, 163
by, 163

summary
dataframe, 162
dataframe summary, 186
for model objects, 412
light data, 348
single samples, 346
statistical models, 448
with lists, 81

summary.aov
ANOVA table for regression, 459
effect of dropping one point, 411
extracting information using list subscripts [[]], 421
model summaries compared, 426

1042 INDEX

summary.aov (Continued)
vs. summary.lm, 528
with lm, 151

summary.lm
differences between intercepts, 549
differences between means, 427
differences between slopes, 549
extracting information using list subscripts [[]], 421
factorial ANCOVA, 549
in factorial experiments, 517
in one-way ANOVA, 510
intercept, 427
linear predictor, 559
model summaries compared, 426
orthogonal polynomial contrasts, 445
standard error of a slope, 461
standard error of an intercept, 461
standard error of the difference between two means, 427
vs. summary.aov, 528

summary statistics
aggregate, 44
by, 44
tapply, 44

summary statistics by groups, 46
summary(model)

attributes, 423
sums of ranks

tapply, 361
sums of square

or absolute values, 65
sums of squares

ANOVA table for regression, 459
famous five, 453
in hierarchical designs, 526

sums of squares in ANCOVA
order matters, 545

sunflowerplot
plots with multiple copies of data points, 241

sunspots
time series plot, 230

superscripts
complicated formatting of axis labels, 918
TEX-like rules, 925

suppressing correlations in lmer output
print(cor=F), 690

surf.ls
trend surface, 858

Surv(death,status)
Kaplan–Meier survivorship object, 880

survfit
plot a Kaplan–Meier survivorship object, 880

survival
logical arithmetic, 899

survival analysis
Cox proportional hazards model, 878
introduction, 869
task views, 7

survival analysis, including penalised likelihood
survival library, 8

survival times
ranks of survival time, 879

survivor function
Weibull distribution, 302

survivorship curves
for grouped data, 887
Kaplan-Meier object, 875
Types I, II and III, 873

survreg
with exponential errors, 884

survreg and coxph
comparison on same data, 887
model choice, 879

sweep
apply a function to a specified margin of a matrix, 59
with dataframes, 186

switch
execute different parts of a function, 125

symbol size for outliers
outcex, 919

symbols
add a legend to a plot, 194
choice, 924
colour schemes, 196
complicated formatting of axis labels, 918
for plotting, 195
multiple time series, 199
plots with many variables, 705

Sys.time
introduction, 101

system.time
timing operations, 75

systematic review
meta-analysis, 740

t
hypothesis testing, 286
Student’s t, 273
transpose a matrix or a dataframe, 146

t = 2
rule of thumb, 292

t.test
paired samples, 362
Student’s t test, 360

tab
multiple tabs, 151

tab character
"\t", 150

tab delimited files
using scan, 141

table
binary response variable, 656
compared with tabulate, 256
count characters, 89
count the occurrences of each value, 38, 42

INDEX 1043

counting species names, 66
from a dataframe, 252
in a relational database, 91
introduction, 244
in Northwind, 154
murders by region, 149
random numbers from a Poisson distribution, 244, 314
random numbers from the geometric distribution, 312
re-order a multidimensional table with aperm, 618
str, 617
testing the random number generator, 306
two-dimensional, 245
with write.table, 135

table objects
chisq.test, 370

table to dataframe
as.data.frame, 178
introduction, 250

tables from a relational database
joining tables in queries, 868

tabulate
compared with table, 256

tags
exact matching on tags, 126

tail
dataframe operations, 161
producing a shorter summary dataframe, 251

tails
two-tailed test, 372

tails of a distribution
colour using polygon, 206
introduction, 276
polygon, 278

tan
introduction, 260
tangent in radians, 17

tangent in radians
tan, 17

tapered or cylindrical timber
offsets, 567

tapply
anonymous function for standard error, 43
calculating variances, 355
create table of means, 21
for sums of ranks, 361
introduction, 245
list of classifying variables, 43
mean temperatures, 42
na.rm=T, 35, 44
producing a shorter summary dataframe, 248
to barplot, 585
trim option, 44
variance in temperatures, 43
with dates and times, 106

tapply for factorial experiments, 517
target

using all.equal, 24

target cell
first-order neighbours, 901

task views
Analysis of Ecological and Environmental Data, 7
Analysis of Pharmacokinetic Data, 7
Analysis of Spatial Data, 7
Bayesian Inference, 7
Chemometrics and Computational Physics, 7
Clinical Trial Design, Monitoring, and Analysis, 7
Cluster Analysis & Finite Mixture Models, 7
Computational Econometrics, 7
Design of Experiments (DoE) & Analysis of Experimental

Data, 7
Differential Equations, 7
Empirical Finance, 7
Graphic Displays & Dynamic Graphics & Graphic Devices &

Visualization, 7
Graphical Models in R, 7
High-Performance and Parallel Computing with R, 7
Machine Learning & Statistical Learning, 7
Medical Image Analysis, 7
Multivariate Statistics, 7
Natural Language Processing, 7
Official Statistics & Survey Methodology, 7
on CRAN, 4
Optimization and Mathematical Programming, 7
packages, 7
Phylogenetics, Especially Comparative Methods, 7
Probability Distributions, 7
Psychometric Models and Methods, 7
Reproducible Research, 7
Robust Statistical Methods, 7
Statistical Genetics, 7
Statistics for the Social Sciences, 7
Survival Analysis, 7
Time Series Analysis, 7

tau
Kendall’s tau, 376

tau squared
between-study variance in random effects meta-analysis, 746

taxonomic keys
tree models, 779

Taylor’s power law
quasi-likelihood, 562
variance mean relationships, 262

t compared with normal
fat tails, 293

te(x)
tensor product smooths, 667

temporal correlation
model criticism, 405
multiple regression, 497

temporal dynamics
simulation models, 893

temporal pseudoreplication
binary response variable, 660
introduction, 519

1044 INDEX

temporal pseudoreplication (Continued)
longitudinal data, 523
mixed effects models, 683, 695
non-linear time series models, 726

tensor product smooths
te(x), 667

terms
str of linear model, 131

terrain.colors
illustration, 911

tessellation
introduction, 833

testing for a trend in a time series, 798
testing for equality

real numbers, 23
testing for missing values

is.na, 34
testing the random number generator

runif, 305
test of normality

qqnorm, 346
tests for non-linearity

efficient regression designs, 475
tests of linear models

lmtest, 478
test statistic

contingency tables, 368
fixed-effect meta-analysis of scaled differences, 742
standard error of the difference between two means, 360
Student’s t test, 360

TEX-like rules
complex mathematical expressions, 925

text
centering, 200
complex mathematical expressions, 928
font families, 923
for factor levels, 29
graphics parameters explained, 907
identifying individual points on graphs, 198
in plots, 86, 350
names on maps, 197
on plots, 197
overlaying labels on partition.tree, 782
substitution, 96
vertical offset, 200
with locator, 927

text editor, 9
text in the outer margin

mtext, 953
text justification

adj, 935
text outside the plottting region

xpd = TRUE, 956
text size

cex, 196
The R Book

URL, 141

The R Journal, 5
thicker lines for axes

lwd, 938
thin plate regression spline

generalized additive models, 667
three-dimensional array

aperm, 53, 68
three-dimensional plots

contour, 930
filled.contour, 930
image, 930
introduction, 930
wireframe, 933

three-dimensional scatterplots
cloud, 959

three-dimensional summary tables
with tapply, 247

three parameter
logistic, 268

threshold
binary response variable, 659
defining the threshold for step function using tree models,

668
generalized additive models, 666
illustration, 770
in regression, 775
migration rate in metapopulation models, 898
recursive partitioning, 770

threshold detection
efficient regression designs, 475

tic mark labels
axis, 924

tick marks on the axes
background, 956
illustration, 957

tilde ∼
statistical models, 395

tilde dot minus
update, 399

time(s)
%X Time, locale-specific, 104
differences between two times, 104
option for rep, 28
reading from file, 102

time differences
rounding, 105

times and dates
introduction, 101
reading data from file, 151

time series
autocorrelation, 786
first-order autoregressive process, 788
groupedData, 726
Nicholson’s blowflies, 785
non-linear regression, 726
output of a plant-herbivore model, 342
partial autocorrelation, 786

INDEX 1045

simulations, 803
Yule–Walker equation, 789

time series analysis
correlation structure, 701
introduction, 785
mixed effects models, 699
moving average, 792
panel plots, 699
seasonal data, 793
serial dependence, 785
spectral analysis, 800
stationarity, 785
task views, 7
trend, 785

time series models
arima, 806
autoregressive (AR) models, 805
autoregressive moving average (ARMA) models,

805
loops, 77
moving average (MA) models, 805
population dynamics, 78

time series object
ts, 786

time series plot
plot, 228
plot.ts, 229
ts.plot, 229

time series seasonal decomposition by loess
stl, 797

time-to-failure data
introduction, 869

time zone
%Z time zone as a character string (output only), 104

timing operations
proc.time, 75
system.time, 75

Tinn-R
text editor, 9

tips
good programming, 135

title
graphics parameters explained, 907
in a legend, 586
in legends, 290, 302

titles for graphs
main, 209

tmd
panel plots, 959
Tukey mean–difference plot, 959

to
sequence generation, 27

tolower
lower case, 91

top
axis = 3, 938
margin = 3, 950

topo.colors palette
illustration, 911, 931

T or TRUE
problems, 22, 363

total sum of squares
SSY or SST, 499

toupper
upper case, 91

trade-off
Type I and Type II error rates, 382

transformation
changes curvature, 496
log for decay function, 63
reciprocals, 118

transformation of the explanatory
variables

binary response variable, 651
transformations

antilog, 270
arcsine, 270
cube root, 403
introduction, 270
linear models, 400
linear regression, 469
log, 270
logit, 270
log-log, 270
model choice, 390
objectives, 418
reciprocal, 266
square root, 270
standard normal distribution, 276

transform both axes
log="xy", 922

transform x axis
log="x", 922

transform y axis
log="y", 922

transient dynamics
simulation models, 893

transients
population dynamics, 895

transpose a dataframe
t, 146

transpose an array
aperm, 68

treatment contrasts
in ANCOVA, 553
in one-way ANOVA, 429
minimal adequate model, 433
summary.lm, 528
worked example, 440

treatment sum of squares
ANOVA, 431
SSA=SST-SSE, 501

treatment totals
in one-way ANOVA, 502

1046 INDEX

tree
classification trees, 779
installed package, 9
models, 411

tree models
defining the threshold for step function,

668
humped curves, 783
introduction, 768
print, 771
to produce taxonomic keys, 779

tree models to check for interaction
multiple regression, 490
ozone.data, 492

trellis graphics
introduction, 957

trend
Nicholson’s blowflies, 786
stl, 797
time series analysis, 785

trend in a time series
statistical tests, 798

trend surface
surf.ls, 858

trigonometric functions
introduction, 260

trim
function to drop high and low values, 37
with mean in tapply, 248
with tapply, 44

trimming data
pmin and pmax, 944

tripack package, 833
triple dot

variable numbers of arguments, 127
TRUE and FALSE

combinations of values, 22, 25
truehist

Old Faithful data, 227
trunc

truncate towards zero, 15
try

function allows failure, 152
ts

class of time series objects, 229
create a time series object, 786

ts.plot
time series plot, 229

t test
power.t.test, 384

Tukey mean–difference plot
tmd, 959

Tukey’s honest significant differences
multiple comparisons using TukeyHSD,

531
TukeyHSD

multiple comparisons, 219

Tukey’s five number summary
fivenum, 42

t value
summary.lm, 461

two-by-two contingency tables
log-linear model of count data, 602
Mendel’s peas, 601

two-category table
binom.test, 600

two-dash line
lty = 6, 948

two graphs with different y axes on the same x axis, 951
two-sample tests

introduction, 353
two tailed test

in one-way ANOVA, 511
two-tailed test

Fisher’s exact test, 372
Type I error

contingency tables, 368
hypothesis testing, 286
power analysis with (α = 0.05), 382
Student’s t test, 358

Type I error rate
(α = 0.05), 286

Type II error
contingency tables, 368
power analysis (with β = 0.8), 382

Type II error rate (1-β = 0.2), 383
Type II survivorship

constant risk of death, 873
type="b"

both points and lines, 198
joining the dots, 202

type="l"
line (lower case L not number 1), 63
smoothing, 207

type="n"
multi-coloured scatterplot, 586
names on maps, 197
scale the axes for multiple variables, 192

type="response"
back-transform the logistic, 634, 639, 641

type="s"
negative binomial distribution, 317
plot of binomial coefficients, 272
plot of x factorial, 271
plotting stepped lines across first, 202

type="S"
plotting stepped lines up first, 202

unbiased risk estimator
gam, 672

unbiased variance-minimizing estimators
maximum likelihood, 390

unbound symbols
introduction, 126

INDEX 1047

uncertainty
in prediction, 472
plots of standard error of slope, 473
predicted values in linear regression, 473

unclass
convert factor levels to numbers, 21
with write.table, 135

unequal probabilities
chisq.test, 370
sample, 70

unexplained variation
deviance, 562
SSE, 456

unif
uniform distribution, 273

uniform distribution
introduction, 304
unif, 273, 278

uniform errors
illustration, 406

uninformative factor levels
random effects, 523

uninstall
R, 3

union
set theory, 52

unique
removing duplicate rows from a dataframe, 180
select the unique values from an object, 49
with sort, 486

unlist
extract values from summary.aov, 151
readLines, 146
with AIC, 417
with as.numeric, 422
with dataframes, 186
with gregexpr, 97

unplanned comparisons
contrasts, 430

unreliability estimates for the parameters
analysis of variance, 498
regression, 460

unreliability measures
introduction, 121
meta-analysis, 740
slope and intercept by MCMC, 763
standard error of a mean, 122

unstable parameter estimates
multiple regression, 497

update
binary response variable, 657
contingency table analysis, 605, 609–10, 619
for model objects, 412
introduction, 399
log-linear model of count data, 583
model simplification, 494
model simplification in ANCOVA, 545

upper case
of initial letters, 96
toupper, 91

upper limit on the summary effect
fixed-effect meta-analysis of scaled differences, 742

url
connections, 153
data input from the web, 140
The R Book, 141

urns with balls
hypergeometric distribution, 312

U-shaped curves
beta distribution, 297
biexponential model, 269
quadratic terms, 466

usr
current x and y maxima and minima of the plotting region, 935

var
comparing two variances, 355
covariance, 303
function for variance, 120
na.rm=T, 35
var(x) sample variance of x, 41

var(x,y)
covariance of x and y, 374

var.test
comparing two variances, 355, 357
variance ratio test, 121

variable names
case sensitive, 18
choice, 149
no spaces in, 140, 160

variable selection
model choice, 390
multiple regression, 489

variability
advantages of logarithms, 117

variance
age at death, 884
Bernoulli distribution, 307
binomial distribution, 630
calculated with tapply, 355
comparing two distributions, 379
comparing two variances, 354
function, 119
in comparing means, 499
inverse variances as weights, 756
power analysis, 382
uses of, 121
with frequency data, 318

variance components analysis
dealing with pseudoreplication, 524
introduction, 691
rats example, 527

variance covariance matrix for model parameters
vcov, 420

1048 INDEX

variance function
standardized residuals, 568

variance mean ratio
comparing data with a Poisson distribution, 590
count data from quadrats, 840
negative binomial distribution, 315, 318
Poisson distribution, 314

variance mean relationship
binomial, 630
illustration, 557
model-checking plot, 464
overdispersion, 561
proportion data, 561
quasi-likelihood, 562
Taylor’s power law, 262

variance of a difference
correlation, 376
correlation coefficient, 377
paired samples, 362
sum of the component variances, 304, 358

variance of a sum
sum of the component variances, 304

variance of the summary effect
fixed-effect meta-analysis of scaled differences, 742

variance ratio test
var.test, 120–21

variance-minimizing estimators
maximum likelihood, 390

variances
correlation coefficient, 377

variances unequal
gls, 862

Variogram
form=∼latitude + longitude, 862
gls, 862
illustration, 858
introduction, 856
nugget, 857
range, 857
sill, 857

vcov
variance covariance matrix for model parameters, 420

vector
in paste function, 88
into matrix using dim, 55
length, 36

vector functions
colMeans(x) column means of dataframe or matrix x, 41
colSums(x) column totals of dataframe or matrix x, 41
cor(x,y) correlation between vectors x and y, 41
cummax(x) vector of non-decreasing numbers which are

the cumulative maxima of the values in x up to this point,
41

cummin(x) vector of non-increasing numbers which are the
cumulative minima of the values in x up to this point, 41

cumprod(x) vector containing the product of all of the
elements up to that point, 41

cumsum(x) vector containing the sum of all of the elements
up to that point, 41

ifelse, 74
introduction, 41
length, 36
max(x) maximum value in x, 36
mean(x) arithmetic average of the values in x, 36
median(x) median value in x, 41
min(x) minimum value in x, 36
order(x) an integer vector containing the permutation to sort

x into ascending order, 41
pmax(x,y,z) vector, of length equal to the longest of x, y or z,

containing the maximum of x, y or z for the, 41
pmin(x,y,z) vector, of length equal to the longest of x, y or z,

containing the minimum of x, y or z for the, 41
quantile(x) vector containing the minimum, lower quartile,

median, upper quartile, and maximum of x, 36
range(x) vector of min(x) and max(x), 41
rank(x) vector of the ranks of the values in x, 41
rowMeans(x) row means of dataframe or matrix x, 41
rowSums(x) row totals of dataframe or matrix x, 41
sort(x) a sorted version of x, 41
sum(x) total of all the values in x, 41
var(x) sample variance of x, 41

vector operations
c(x,y,z) concatenation of objects x, y, z, 35
shorter vector is recycled, 32

version
updating R, 3

vertical line
abline(v=x), 839

vertical tab
"\v", 150

view file names
dir, 139

vis.gam, 3-D graphics, 679
volcano

wireframe, 934
Voronoi object

voronoi.mosaic, 833
vote-counting

meta-analysis, 745, 751

waiting time
negative binomial distribution, 317

wallpaper
background colours, 916

wday
day of the week, 102

weakest link analysis
Weibull distribution, 301

weekday abbreviated name
%a abbreviated weekday name, 103

weekday full name
%A full weekday name, 103

weekday number
%w weekday as decimal number (0–6, Sunday is 0), 104

INDEX 1049

weekdays
date to name, 104
from sequences of dates, 108

week number
%W week of the year (00–53) using the first Monday as day 1

of week 1, 104
week of the year

%U week of the year (00–53) using the first Sunday as day 1
of week 1, 103

weibull
Weibull distribution, 273

Weibull distribution
death risk with age, 876
introduction, 301
non-linear models, 716
survreg, 884
weibull, 273

Weibull growth curve model
SSweibull, 733

weight
fixed-effect meta-analysis of scaled differences, 742

weighted by sample size
proportion data, 628

weighted mean summary effect
fixed-effect meta-analysis of scaled differences, 742

weights
inverse variances, 756
meta-analysis, 741
model options, 413

weights list object
class lw, 849

what with scan
character, 141
complex, 141
integer, 141
list, 141
logical, 141

WHERE
specification of which rows of the table(s) are required in

SQL, 156
which

address within vectors, 46
character strings, 98
closest values, 47
error checks, 228
finding maxima and minima, 40
is.na, 35
names on maps, 197
piecewise regression, 487
produces a vector of subscripts, 46
to find nearest neighbours, 831
to select rows from a dataframe, 172
with lists, 51

which.max
finding maxima, 41

which.min
finding minima, 41

while
binary representation of a number, 73
creating a loop, 72
Fibonacci series, 74

whisker(s)
box-and-whisker plot, 213
whiskcol, 919
whisklty, 919
whisklwd, 919

whiskcol
colour, 919

whisklty
line type, 919

whisklwd
line width, 919

white is rgb(1, 1, 1)
rgb, 910

white noise
simulated time series, 803

width
of bins for histograms, 221
postscript or pdf window, 242

width expansion
outwex, 919
staplewex, 919

widths of lines
lwd, 949

wiggliness
penalty in gam, 673

wilcox
Wilcoxon rank, 273

wilcox.test
light data, 348
Wilcoxon rank sum test, 361

Wilcoxon
distribution of ranks, 322

Wilcoxon rank
wilcox, 273

Wilcoxon rank sum test
background, 361

Wilcoxon signed rank
signrank, 273

wildcards in SQL queries
LIKE, 158

Wilde, Oscar
quote, 391

WinBUGS
Bayesian inference Using Gibbs Sampling, 759

Windows Version 7
creating a DSN channel, 155
frequently asked questions, 5
installation, 3

windows(7,4) for par(mfrow = c(1,2))
chi squared distribution, 288
exponential function, 259
function for model-checking, 405
logistic distribution, 300

1050 INDEX

windows(7,4) (Continued)
predict(type="response"), 653
principal components analysis, 812
sexratio, 633
two graphs side by side, 111, 130
with histograms, 227

windows(7,7)
default frame, 211

windows(9,7)
for a rectangular map, 197

wireframe, 3D surfaces (similar to persp plots), 959
illustration, 934
panel plots, 959
three-dimensional plots, 933

with
instead of attach, 150

with or attach, 113
without replacement

sampling, 69
word count

table, 89
worked examples of function

example, 6
working directory

setwd, 138
worms

introduction, 159
sorted using order, 166

wrap-around margins
edge effects in spatial simulations, 900

write
data to file, 134

write.table
introduction, 134
for components of lists, 83
saving a dataframe to file, 85

writeClipboard
clipboard, 135

writing a function
factorial, 71

writing data from R to file
introduction, 133

Writing R Extensions
manual, 5

writing R function
introduction, 115

wrong model
misspecification, 418

x! = x × (x - 1) × (x - 2) × · · · × 3 × 2
factorial, 17

x axis
axis = 1, 938
error bars in x and y directions, 124
explanatory variable, 124

x axis log scale
log="x", 922

xaxt="n"
for maps, 867
names on maps, 197
no tick marks, 197
phase planes, 928

xlab
deparsing variable names, 123
introduction, 191

xlab=""
blank axes labels, 197

xlevels
str of linear model, 131

xlim
scale the x axis, 118

x measured without error
linear regression assumptions, 451

xor(x,y)
exclusive OR, 22

xpd = TRUE
text outside the plotting region, 956

xtabs
cross tabulations, 620

x values
efficient regression designs, 475

xy.error.bars
function, 125

xyplot
panel plots, 959
scatterplot, 959

xzfile
connections, 153

y
response variable, 124

y axis
axis = 2, 938
two graphs with different y axes on the same x axis, 951

y axis log scale
log="y", 922

y∼1
estimate the intercept, 457
fitting the null model, 439

yaxt="n"
for maps, 867
names on maps, 197
no tick marks, 197
phase planes, 928

yday
day of the year, 102

year
year number, 102

year with century
%Y year with century, 104

year without century
%y year without century, 104

years and months
tapply, 43

INDEX 1051

yes or no (binary response)
introduction, 651
proportion data, 628

ylab
deparsing variable names, 123
introduction, 191

ylab=""
blank axes labels, 197

ylim
scale on the y axis, 118, 193

Yule–Walker equation
time series, 789

z
quantile of the normal distribution,

283
standard normal distribution, 276

zero
count data, 579
testing for zeros, 32

zero term
negative binomial distribution, 316
Poisson distribution, 314

zeros in tables
tabulate rather than table, 256

α

Type I error rate (0.05), 368
β

power of the test (0.8), 383
λ

per-capita multiplication rate, 894
π

built-in constant (pi = 3.14159), 465
ρ

Pearson’s rho, 376
τ

Kendall’s tau, 376
τ 2

between-study variance in random effects meta-analysis, 746

	two graphs

