

The R Book

The R Book

Michael J. Crawley
Imperial College London at Silwood Park, UK

Copyright © 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone �+44� 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under
the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of
the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons
Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Anniversary Logo Design: Richard J. Pacifico

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-0-470-51024-7

Typeset in 10/12pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire
This book is printed on acid-free paper responsibly manufactured from sustainable forestry in
which at least two trees are planted for each one used for paper production.

www.wiley.com

Contents

Preface vii

1 Getting Started 1
2 Essentials of the R Language 9
3 Data Input 97
4 Dataframes 107
5 Graphics 135
6 Tables 183
7 Mathematics 195
8 Classical Tests 279
9 Statistical Modelling 323

10 Regression 387
11 Analysis of Variance 449
12 Analysis of Covariance 489
13 Generalized Linear Models 511
14 Count Data 527
15 Count Data in Tables 549
16 Proportion Data 569
17 Binary Response Variables 593
18 Generalized Additive Models 611
19 Mixed-Effects Models 627
20 Non-linear Regression 661
21 Tree Models 685
22 Time Series Analysis 701
23 Multivariate Statistics 731
24 Spatial Statistics 749
25 Survival Analysis 787
26 Simulation Models 811
27 Changing the Look of Graphics 827

References and Further Reading 873

Index 877

Preface

R is a high-level language and an environment for data analysis and graphics. The design of
R was heavily influenced by two existing languages: Becker, Chambers and Wilks’ S and
Sussman’s Scheme. The resulting language is very similar in appearance to S, but the under-
lying implementation and semantics are derived from Scheme. This book is intended as an
introduction to the riches of the R environment, aimed at beginners and intermediate users in
disciplines ranging from science to economics and from medicine to engineering. I hope that
the book can be read as a text as well as dipped into as a reference manual. The early chapters
assume absolutely no background in statistics or computing, but the later chapters assume that
the material in the earlier chapters has been studied. The book covers data handling, graphics,
mathematical functions, and a wide range of statistical techniques all the way from elementary
classical tests, through regression and analysis of variance and generalized linear modelling,
up to more specialized topics such as spatial statistics, multivariate methods, tree models,
mixed-effects models and time series analysis. The idea is to introduce users to the assumptions
that lie behind the tests, fostering a critical approach to statistical modelling, but involving
little or no statistical theory and assuming no background in mathematics or statistics.

Why should you switch to using R when you have mastered a perfectly adequate statistical
package already? At one level, there is no point in switching. If you only carry out a very
limited range of statistical tests, and you don’t intend to do more (or different) in the future,
then fine. The main reason for switching to R is to take advantage of its unrivalled coverage
and the availability of new, cutting edge applications in fields such as generalized mixed-
effects modelling and generalized additive models. The next reason for learning R is that
you want to be able to understand the literature. More and more people are reporting their
results in the context of R, and it is important to know what they are talking about. Third,
look around your discipline to see who else is using R: many of the top people will have
switched to R already. A large proportion of the world’s leading statisticians use R, and this
should tell you something (many, indeed, contribute to R, as you can see below). Another
reason for changing to R is the quality of back-up and support available. There is a superb
network of dedicated R wizards out there on the web, eager to answer your questions. If you
intend to invest sufficient effort to become good at statistical computing, then the structure
of R and the ease with which you can write your own functions are major attractions. Last,
and certainly not least, the product is free. This is some of the finest integrated software in
the world, and yet it is yours for absolutely nothing.

Although much of the text will equally apply to S-PLUS, there are some substantial
differences, so in order not to confuse things I concentrate on describing R. I have made
no attempt to show where S-PLUS is different from R, but if you have to work in S-PLUS,
then try it and see if it works.

viii PREFACE

Acknowledgements

S is an elegant, widely accepted, and enduring software system with outstanding conceptual
integrity, thanks to the insight, taste, and effort of John Chambers. In 1998, the Association
for Computing Machinery (ACM) presented him with its Software System Award, for ‘the
S system, which has forever altered the way people analyze, visualize, and manipulate data’.
R was inspired by the S environment that was developed by John Chambers, and which
had substantial input from Douglas Bates, Rick Becker, Bill Cleveland, Trevor Hastie,
Daryl Pregibon and Allan Wilks.

R was initially written by Ross Ihaka and Robert Gentleman at the Department of Statistics
of the University of Auckland in New Zealand. Subsequently, a large group of individuals
contributed to R by sending code and bug reports. John Chambers graciously contributed
advice and encouragement in the early days of R, and later became a member of the core
team. The current R is the result of a collaborative effort with contributions from all over
the world.

Since mid-1997 there has been a core group known as the ‘R Core Team’ who can
modify the R source code archive. The group currently consists of Doug Bates, John
Chambers, Peter Dalgaard, Robert Gentleman, Kurt Hornik, Stefano Iacus, Ross Ihaka,
Friedrich Leisch, Thomas Lumley, Martin Maechler, Duncan Murdoch, Paul Murrell, Martyn
Plummer, Brian Ripley, Duncan Temple Lang, Luke Tierney, and Simon Urbanek.

R would not be what it is today without the invaluable help of the following people,
who contributed by donating code, bug fixes and documentation: Valerio Aimale, Thomas
Baier, Roger Bivand, Ben Bolker, David Brahm, Göran Broström, Patrick Burns, Vince
Carey, Saikat DebRoy, Brian D’Urso, Lyndon Drake, Dirk Eddelbuettel, Claus Ekström,
John Fox, Paul Gilbert, Frank E. Harrell Jr, Torsten Hothorn, Robert King, Kjetil Kjernsmo,
Roger Koenker, Philippe Lambert, Jan de Leeuw, Uwe Ligges, Jim Lindsey, Patrick
Lindsey, Catherine Loader, Gordon Maclean, John Maindonald, David Meyer, Eiji Nakama,
Jens Oehlschaegel, Steve Oncley, Richard O’Keefe, Hubert Palme, Roger D. Peng, Jose
C. Pinheiro, Tony Plate, Anthony Rossini, Jonathan Rougier, Deepayan Sarkar, Guenther
Sawitzki, Marc Schwartz, Detlef Steuer, Bill Simpson, Gordon Smyth, Adrian Trapletti,
Terry Therneau, Rolf Turner, Bill Venables, Gregory R. Warnes, Andreas Weingessel,
Morten Welinder, James Wettenhall, Simon Wood and Achim Zeileis. I have drawn heavily
on the R help pages in writing this book, and I am extremely grateful to all the R contributors
who wrote the help files.

Special thanks are due to the generations of graduate students on the annual GLIM course
at Silwood. It was their feedback that enabled me to understand those aspects of R that
are most difficult for beginners, and highlighted the concepts that require the most detailed
explanation. Please tell me about the errors and omissions you find, and send suggestions
for changes and additions to m.crawley@imperial.ac.uk.

M.J. Crawley
Ascot

September 2006

1
Getting Started

Installing R

I assume that you have a PC or an Apple Mac, and that you want to install R on the hard
disc. If you have access to the internet then this could hardly be simpler. First go to the site
called CRAN (this stands for Comprehensive R Archive Network). You can type its full
address,

http://cran.r-project.org/

or simply type CRAN into Google and be transported effortlessly to the site. Once there,
you need to ‘Download and Install R’ by running the appropriate precompiled binary
distributions. Click to choose between Linux, Mac OS and Windows, then follow the (rather
different) instructions. You want the ‘base’ package and you want to run the setup program
which will have a name like R*.exe (on a PC) or R*.dmg (on a Mac). When asked, say
you want to ‘Run’ the file (rather than ‘Save’ it). Then just sit back and watch. If you do
not have access to the internet, then get a friend to download R and copy it onto a CD or a
memory stick for you.

Running R

To run R, just click on the R icon. If there is no icon, go to Programs, then to R, then
click on the R icon. The first thing you see is the version number of R and the date of your
version. It is a good idea to visit the CRAN site regularly to make sure that you have got
the most up-to-date version of R. If you have an old version, it is best to uninstall your
current version before downloading the new one.

The header explains that there is no warranty for this free software, and allows you to
see the list of current contributors. Perhaps the most important information in the header is
found under

citation()

which shows how to cite the R software in your written work. The R Development Core
Team has done a huge amount of work and we, the R user community, should pay them
due credit whenever we publish work that has used R.

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

2 THE R BOOK

Below the header you will see a blank line with a > symbol in the left hand margin. This
is called the prompt and is R’s way of saying ‘What now?’. This is where you type in your
commands, as introduced on p. 9. When working, you will sometimes see + at the left-hand
side of the screen instead of >. This means that the last command you typed is incomplete.
The commonest cause of this is that you have forgotten one or more brackets. If you can see
what is missing (e.g. a final right-hand bracket) then just type the missing character and press
enter, at which point the command will execute. If you have made a mistake, then press the
Esc key and the command line prompt > will reappear. Then use the Up arrow key to retrieve
your last command, at which point you can correct the mistake, using the Left and Right
arrow keys.

Getting Help in R

The simplest way to get help in R is to click on the Help button on the toolbar of the RGui
window. Alternatively, if you are connected to the internet, you can type CRAN in Google
and search for the help you need at CRAN. However, if you know the name of the function
you want help with, you just type a question mark ? at the command line prompt followed
by the name of the function. So to get help on read.table, just type

?read.table

Sometimes you cannot remember the precise name of the function, but you know the subject
on which you want help (e.g. data input in this case). Use the help.search function (without
a question mark) with your query in double quotes like this:

help.search("data input")

and (with any luck) you will see the names of the R functions associated with this query.
Then you can use ?read.table to get detailed help.

Other useful functions are find and apropos. The find function tells you what package
something is in:

find(lowess)

[1] "package:stats"

while apropos returns a character vector giving the names of all objects in the search list
that match your (potentially partial) enquiry:

apropos(lm)

[1] ". __C__anova.glm" ". __C__anova.glm.null" ". __C__glm"
[4] ". __C__glm.null" ". __C__lm" ". __C__mlm"
[7] "anova.glm" "anova.glmlist" "anova.lm"

[10] "anova.lmlist" "anova.mlm" "anovalist.lm"
[13] "contr.helmert" "glm" "glm.control"
[16] "glm.fit" "glm.fit.null" "hatvalues.lm"
[19] "KalmanForecast" "KalmanLike" "KalmanRun"
[22] "KalmanSmooth" "lm" "lm.fit"
[25] "lm.fit.null" "lm.influence" "lm.wfit"
[28] "lm.wfit.null" "model.frame.glm" "model.frame.lm"
[31] "model.matrix.lm" "nlm" "nlminb"
[34] "plot.lm" "plot.mlm" "predict.glm"

GETTING STARTED 3

[37] "predict.lm" "predict.mlm" "print.glm"
[40] "print.lm" "residuals.glm" "residuals.lm"
[43] "rstandard.glm" "rstandard.lm" "rstudent.glm"
[46] "rstudent.lm" "summary.glm" "summary.lm"
[49] "summary.mlm" "kappa.lm"

Online Help

The is a tremendous amount of information about R on the web, but your first port of call
is likely to be CRAN at

http://cran.r-project.org/

Here you will find a variety of R manuals:

• An Introduction to R gives an introduction to the language and how to use R for doing
statistical analysis and graphics.

• A draft of the R Language Definition documents the language per se – that is, the objects
that it works on, and the details of the expression evaluation process, which are useful
to know when programming R functions.

• Writing R Extensions covers how to create your own packages, write R help files, and
use the foreign language (C, C + +, Fortran, � � �) interfaces.

• R Data Import/Export describes the import and export facilities available either in R
itself or via packages which are available from CRAN.

• R Installation and Administration, which is self-explanatory.

• R: A Language and Environment for Statistical Computing (referred to on the website as
‘The R Reference Index’) contains all the help files of the R standard and recommended
packages in printable form.

(These manuals are also available in R itself by choosing Help/Manuals (in PDF) from the
menu bar.) There are also answers to Frequently Asked Questions (FAQs) and R News,
a newsletter which contains interesting articles, book reviews and news of forthcoming
releases. The most useful part of the site, however, is the Search facility which allows
you to investigate the contents of most of the R documents, functions, and searchable mail
archives.

Worked Examples of Functions

To see a worked example just type the function name (linear models, lm, in this case)

example(lm)

and you will see the printed and graphical output produced by the lm function.

4 THE R BOOK

Demonstrations of R Functions

These can be useful for seeing the range of things that R can do. Here are some for you
to try:

demo(persp)
demo(graphics)
demo(Hershey)
demo(plotmath)

Libraries in R

To use one of the libraries (listed in Table 1.1), simply type the library function with the
name of the library in brackets. Thus, to load the spatial library type

library(spatial)

Table 1.1. Libraries used in this book that come supplied as part of the base package of R.

lattice lattice graphics for panel plots or trellis graphs
MASS package associated with Venables and Ripley’s book entitled Modern Applied

Statistics using S-PLUS
mgcv generalized additive models
nlme mixed-effects models (both linear and non-linear)
nnet feed-forward neural networks and multinomial log-linear models
spatial functions for kriging and point pattern analysis
survival survival analysis, including penalised likelihood

Contents of Libraries

It is easy to use the help function to discover the contents of library packages. Here is how
you find out about the contents of the spatial library:

library(help=spatial)

Information on package "spatial"

Package: spatial
Description: Functions for kriging and point pattern analysis.

followed by a list of all the functions and data sets. You can view the full list of the contents
of a library using objects with search() like this. Here are the contents of the spatial
library:

objects(grep("spatial",search()))

[1] "anova.trls" "anovalist.trls" "correlogram" "expcov"
[5] "gaucov" "Kaver" "Kenvl" "Kfn"
[9] "plot.trls" "ppgetregion" "ppinit" "pplik"

[13] "ppregion" "predict.trls" "prmat" "Psim"

GETTING STARTED 5

[17] "semat" "sphercov" "SSI" "Strauss"
[21] "surf.gls" "surf.ls" "trls.influence" "trmat"
[25] "variogram"

Then, to find out how to use, say, Ripley’s K (Kfn), just type

?Kfn

Installing Packages and Libraries

The base package does not contain some of the libraries referred to in this book, but
downloading these is very simple. Run the R program, then from the command line use
the install.packages function to download the libraries you want. You will be asked to
highlight the mirror nearest to you for fast downloading (e.g. London), then everything else
is automatic. The packages used in this book are

install.packages("akima")
install.packages("chron")
install.packages("Ime4")
install.packages("mcmc")
install.packages("odesolve")
install.packages("spdep")
install.packages("spatstat")
install.packages("tree")

If you want other libraries, then go to CRAN and browse the list called ‘Packages’ to select
the ones you want to investigate.

Command Line versus Scripts

When writing functions and other multi-line sections of input you will find it useful to use a
text editor rather than execute everything directly at the command line. I always use Word
for this, because it is so easy to keep a copy of all the output and graphics produced by R
using Copy and Paste. Other people prefer to use R’s own built-in editor. It is accessible
from the RGui menu bar. Click on File then click on New script. At this point R will open
a window entitled Untitled - R Editor. You can type and edit in this, then when you want to
execute a line or group of lines, just highlight them and press Ctrl + R (the Control key and
R together). The lines are automatically transferred to the command window and executed.

By pressing Ctrl + S you can save the contents of the R Editor window in a file that
you will have to name. It will be given a .R file extension automatically. In a subsequent
session you can click on File/Open script � � � when you will see all your saved .R files and
can select the one you want to open.

Data Editor

There is a data editor within R that can be accessed from the menu bar by selecting Edit/Data
editor� � � . You provide the name of the matrix or dataframe containing the material you

6 THE R BOOK

want to edit (this has to be a dataframe that is active in the current R session, rather than
one which is stored on file), and a Data Editor window appears. Alternatively, you can do
this from the command line using the fix function (e.g. fix(data.frame.name)). Suppose
you want to edit the bacteria dataframe which is part of the MASS library:

library(MASS)
attach(bacteria)
fix(bacteria)

The window has the look of an Excel spreadsheet, and you can change the contents of
the cells, navigating with the cursor or with the arrow keys. My preference is to do all of
my data preparation and data editing in Excel itself (because that is what it is good at).
Once checked and edited, I save the data from Excel to a tab-delimited text file (∗.txt) that
can be imported to R very simply using the function called read.table (p. 98). One of the
most persistent frustrations for beginners is that they cannot get their data imported into R.
Things that typically go wrong at the data input stage and the necessary remedial actions
are described on p. 98.

Changing the Look of the R Screen

The default settings of the command window are inoffensive to most people, but you
can change them if you don’t like them. The Rgui Configuration Editor under Edit/GUI
preferences � � � is used to change the look of the screen. You can change the colour of the
input line (default is red), the output line (default navy) or the background (default white).
The default numbers of rows (25) and columns (80) can be changed, and you have control
over the font (default Courier New) and font size (default 10).

Significance Stars

If these worry you, then turn them off. Significance stars are shown by default next to the
p values in the output of statistical models.

gg<-read.table("c:\\temp\\Gain.txt",header=T)
attach(gg)
names(gg)

[1] "Weight" "Sex" "Age" "Genotype" "Score"

This is what the default output looks like for an analysis of covariance:

model<-lm(Weight~Age+Sex)
summary(model)

Coefficients:

Estimate Std. Error t value Pr(� t �)
(Intercept) 8.17156 0.33118 24.674 < 2e-16 ***
Age 0.29958 0.09185 3.262 0.00187 **
Sexmale -0.83161 0.25980 -3.201 0.00224 **
— — —

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

GETTING STARTED 7

Residual standard error: 1.006 on 57 degrees of freedom
Multiple R-Squared: 0.2681, Adjusted R-squared: 0.2425
F-statistic: 10.44 on 2 and 57 DF, p-value: 0.0001368

Here is the output with the significance stars turned off:

options(show.signif.stars=FALSE)
summary(model)

Coefficients:

Estimate Std. Error t value Pr(> � t �)
(Intercept) 8.17156 0.33118 24.674 < 2e–16
Age 0.29958 0.09185 3.262 0.00187
Sexmale -0.83161 0.25980 -3.201 0.00224

Residual standard error: 1.006 on 57 degrees of freedom
Multiple R-Squared: 0.2681, Adjusted R-squared: 0.2425
F-statistic: 10.44 on 2 and 57 DF, p-value: 0.0001368

You decide.

Disappearing Graphics

To stop multiple graphs whizzing by, use

par(ask=TRUE)

then each graph will stay on the screen until you press the Enter key. You can pause
execution to mimic a slide show effect. You need to specify the number of seconds delay
that you want between each action, using the Sys.sleep function (see p. 102).

Good Housekeeping

To see what variables you have created in the current session, type

objects()

[1] "colour.factor" "colours" "dates" "index"
[5] "last.warning" "nbnumbers" "nbtable" "nums"
[9] "wanted" "x" "xmat" "xv"

To see which libraries and dataframes are attached:

search()

[1] ".GlobalEnv" "nums" "nums"
[4] "package:methods" "package:stats" "package:graphics"
[7] "package:grDevices" "package:utils" "package:data sets"
[10] "Autoloads" "package:base"

Linking to Other Computer Languages

Advanced users can employ the functions .C and .Fortran to provide a standard interface
to compiled code that has been linked into R, either at build time or via dyn.load. They

8 THE R BOOK

are primarily intended for compiled C and Fortran code respectively, but the .C function
can be used with other languages which can generate C interfaces, for example C ++. The
.Internal and .Primitive interfaces are used to call C code compiled into R at build time.
Functions .Call and .External provide interfaces which allow compiled code (primarily
compiled C code) to manipulate R objects.

Tidying Up

At the end of a session in R, it is good practice to remove (rm) any variables names you
have created (using, say, x <-5.6) and to detach any dataframes you have attached earlier
in the session (see p. 18). That way, variables with the same names but different properties
will not get in each other’s way in subsequent work:

rm(x,y,z)
detach(worms)

This command does not make the dataframe called worms disappear; it just means that the
variables within worms, such as Slope and Area, are no longer accessible directly by name.
To get rid of everything, including all the dataframes, type

rm(list=ls())

but be absolutely sure that you really want to be as draconian as this before you execute
the command.

2
Essentials of the R Language

There is an enormous range of things that R can do, and one of the hardest parts of
learning R is finding your way around. I suggest that you start by looking down all
the chapter names at the front of this book (p. v) to get an overall idea of where the
material you want might be found. The Index for this book has the names of R func-
tions in bold. The dataframes used in the book are listed by name, and also under
‘dataframes’.

Alternatively, if you know the name of the function you are interested in, then you can
go directly to R’s help by typing the exact name of the function after a question mark on
the command line (p. 2).

Screen prompt

The screen prompt > is an invitation to put R to work. You can either use one of the many
facilities which are the subject of this book, including the built-in functions discussed on
p. 11, or do ordinary calculations:

> log(42/7.3)

[1] 1.749795

Each line can have at most 128 characters, so if you want to give a lengthy instruction or
evaluate a complicated expression, you can continue it on one or more further lines simply
by ending the line at a place where the line is obviously incomplete (e.g. with a trailing
comma, operator, or with more left parentheses than right parentheses, implying that more
right parentheses will follow). When continuation is expected, the prompt changes from >
to +

> 5+6+3+6+4+2+4+8+
+ 3+2+7

[1] 50

Note that the + continuation prompt does not carry out arithmetic plus. If you have made
a mistake, and you want to get rid of the + prompt and return to the > prompt, then either
press the Esc key or use the Up arrow to edit the last (incomplete) line.

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

10 THE R BOOK

Two or more expressions can be placed on a single line so long as they are separated by
semi-colons:

2+3; 5*7; 3-7

[1] 5
[1] 35
[1] -4

From here onwards and throughout the book, the prompt character > will be omitted. The
material that you should type on the command line is shown in Arial font. Just press the
Return key to see the answer. The output from R is shown in Courier New font, which
uses absolute rather than proportional spacing, so that columns of numbers remain neatly
aligned on the page or on the screen.

Built-in Functions

All the mathematical functions you could ever want are here (see Table 2.1). The log
function gives logs to the base e �e = 2�718282�, for which the antilog function is exp

log(10)

[1] 2.302585

exp(1)

[1] 2.718282

If you are old fashioned, and want logs to the base 10, then there is a separate function

log10(6)

[1] 0.7781513

Logs to other bases are possible by providing the log function with a second argument
which is the base of the logs you want to take. Suppose you want log to base 3 of 9:

log(9,3)

[1] 2

The trigonometric functions in R measure angles in radians. A circle is 2� radians, and
this is 360�, so a right angle �90�� is �/2 radians. R knows the value of � as pi:

pi

[1] 3.141593

sin(pi/2)

[1] 1

cos(pi/2)

[1] 6.123032e-017

Notice that the cosine of a right angle does not come out as exactly zero, even though the
sine came out as exactly 1. The e-017 means ‘times 10−17’. While this is a very small

ESSENTIALS OF THE R LANGUAGE 11

Table 2.1. Mathematical functions used in R.

Function Meaning

log(x) log to base e of x
exp(x) antilog of x �ex�
log(x,n) log to base n of x
log10(x) log to base 10 of x
sqrt(x) square root of x
factorial(x) x!
choose(n,x) binomial coefficients n!/(x! �n − x�!)
gamma(x) ��x�, for real x �x − 1�!, for integer x
lgamma(x) natural log of ��x�
floor(x) greatest integer < x
ceiling(x) smallest integer > x
trunc(x) closest integer to x between x and 0 trunc(1.5) = 1, trunc(-1.5)

= −1 trunc is like floor for positive values and like ceiling for
negative values

round(x, digits=0) round the value of x to an integer
signif(x, digits=6) give x to 6 digits in scientific notation
runif(n) generates n random numbers between 0 and 1 from a uniform

distribution
cos(x) cosine of x in radians
sin(x) sine of x in radians
tan(x) tangent of x in radians
acos(x), asin(x), atan(x) inverse trigonometric transformations of real or complex numbers
acosh(x), asinh(x), atanh(x) inverse hyperbolic trigonometric transformations of real or

complex numbers
abs(x) the absolute value of x, ignoring the minus sign if there is one

number it is clearly not exactly zero (so you need to be careful when testing for exact
equality of real numbers; see p. 77).

Numbers with Exponents

For very big numbers or very small numbers R uses the following scheme:

1.2e3 means 1200 because the e3 means ‘move the decimal point 3 places to the right’

1.2e-2 means 0.012 because the e-2 means ‘move the decimal point 2 places to the left’

3.9+4.5i is a complex number with real (3.9) and imaginary (4.5) parts, and i is the square
root of −1.

Modulo and Integer Quotients

Integer quotients and remainders are obtained using the notation %/% (percent, divide,
percent) and %% (percent, percent) respectively. Suppose we want to know the integer part
of a division: say, how many 13s are there in 119:

12 THE R BOOK

119 %/% 13

[1] 9

Now suppose we wanted to know the remainder (what is left over when 119 is divided by
13): in maths this is known as modulo:

119 %% 13

[1] 2

Modulo is very useful for testing whether numbers are odd or even: odd numbers have
modulo 2 value 1 and even numbers have modulo 2 value 0:

9 %% 2

[1] 1

8 %% 2

[1] 0

Likewise, you use modulo to test if one number is an exact multiple of some other number.
For instance to find out whether 15 421 is a multiple of 7, ask:

15421 %% 7 == 0

[1] TRUE

Rounding

Various sorts of rounding (rounding up, rounding down, rounding to the nearest integer)
can be done easily. Take 5.7 as an example. The ‘greatest integer less than’ function is floor

floor(5.7)

[1] 5

and the ‘next integer’ function is ceiling

ceiling(5.7)

[1] 6

You can round to the nearest integer by adding 0.5 to the number then using floor. There is
a built-in function for this, but we can easily write one of our own to introduce the notion
of function writing. Call it rounded, then define it as a function like this:

rounded<-function(x) floor(x+0.5)

Now we can use the new function:

rounded(5.7)

[1] 6

rounded(5.4)

[1] 5

ESSENTIALS OF THE R LANGUAGE 13

Infinity and Things that Are Not a Number (NaN)

Calculations can lead to answers that are plus infinity, represented in R by Inf, or minus
infinity, which is represented as -Inf:

3/0

[1] Inf

-12/0

[1] -Inf

Calculations involving infinity can be evaluated: for instance,

exp(-Inf)

[1] 0

0/Inf

[1] 0

(0:3)^Inf

[1] 0 1 Inf Inf

Other calculations, however, lead to quantities that are not numbers. These are represented
in R by NaN (‘not a number’). Here are some of the classic cases:

0/0

[1] NaN

Inf-Inf

[1] NaN

Inf/Inf

[1] NaN

You need to understand clearly the distinction between NaN and NA (this stands for
‘not available’ and is the missing-value symbol in R; see below). The function is.nan is
provided to check specifically for NaN, and is.na also returns TRUE for NaN. Coercing
NaN to logical or integer type gives an NA of the appropriate type. There are built-in tests
to check whether a number is finite or infinite:

is.finite(10)

[1] TRUE

is.infinite(10)

[1] FALSE

is.infinite(Inf)

[1] TRUE

14 THE R BOOK

Missing values NA

Missing values in dataframes are a real source of irritation because they affect the way that
model-fitting functions operate and they can greatly reduce the power of the modelling that
we would like to do.

Some functions do not work with their default settings when there are missing values in
the data, and mean is a classic example of this:

x<-c(1:8,NA)

mean(x)

[1] NA

In order to calculate the mean of the non-missing values, you need to specify that the
NA are to be removed, using the na.rm=TRUE argument:

mean(x,na.rm=T)

[1] 4.5

To check for the location of missing values within a vector, use the function is.na(x)
rather than x !="NA". Here is an example where we want to find the locations (7 and 8) of
missing values within a vector called vmv:

vmv<-c(1:6,NA,NA,9:12)

vmv

[1] 1 2 3 4 5 6 NA NA 9 10 11 12

Making an index of the missing values in an array could use the seq function,

seq(along=vmv)[is.na(vmv)]

[1] 7 8

but the result is achieved more simply using which like this:

which(is.na(vmv))

[1] 7 8

If the missing values are genuine counts of zero, you might want to edit the NA to 0.
Use the is.na function to generate subscripts for this

vmv[is.na(vmv)]<- 0

vmv

[1] 1 2 3 4 5 6 0 0 9 10 11 12

or use the ifelse function like this

vmv<-c(1:6,NA,NA,9:12)

ifelse(is.na(vmv),0,vmv)

[1] 1 2 3 4 5 6 0 0 9 10 11 12

ESSENTIALS OF THE R LANGUAGE 15

Assignment

Objects obtain values in R by assignment (‘x gets a value’). This is achieved by the gets
arrow <- which is a composite symbol made up from ‘less than’ and ‘minus’ with no space
between them. Thus, to create a scalar constant x with value 5 we type

x<-5

and not x = 5. Notice that there is a potential ambiguity if you get the spacing wrong.
Compare our x<-5, ‘x gets 5’, with x < -5 which is a logical question, asking ‘is x less than
minus 5?’ and producing the answer TRUE or FALSE.

Operators

R uses the following operator tokens:

+ - */%% ^ arithmetic
> >= < <= == != relational
! & � logical
~ model formulae
<- -> assignment
$ list indexing (the ‘element name’ operator)
: create a sequence

Several of the operators have different meaning inside model formulae. Thus * indicates the
main effects plus interaction, : indicates the interaction between two variables and ∧ means
all interactions up to the indicated power (see p. 332).

Creating a Vector

Vectors are variables with one or more values of the same type: logical, integer, real,
complex, string (or character) or raw. A variable with a single value (say 4.3) is often known
as a scalar, but in R a scalar is a vector of length 1. Vectors could have length 0 and this
can be useful in writing functions:

y<-4.3

z<-y[-1]

length(z)

[1] 0

Values can be assigned to vectors in many different ways. They can be generated by R:
here the vector called y gets the sequence of integer values 10 to 16 using : (colon), the
sequence-generating operator,

y <- 10:16

You can type the values into the command line, using the concatenation function c,

y <- c(10, 11, 12, 13, 14, 15, 16)

16 THE R BOOK

or you can enter the numbers from the keyboard one at a time using scan:

y <- scan()

1: 10

2: 11

3: 12

4: 13

5: 14

6: 15

7: 16

8:

Read 7 items

pressing the Enter key instead of entering a number to indicate that data input is complete.
However, the commonest way to allocate values to a vector is to read the data from an
external file, using read.table (p. 98). Note that read.table will convert character variables
into factors, so if you do not want this to happen, you will need to say so (p. 100). In order
to refer to a vector by name with an R session, you need to attach the dataframe containing
the vector (p. 18). Alternatively, you can refer to the dataframe name and the vector name
within it, using the element name operator $ like this: dataframe$y

One of the most important attributes of a vector is its length: the number of numbers it
contains. When vectors are created by calculation from other vectors, the new vector will
be as long as the longest vector used in the calculation (with the shorter variable(s) recycled
as necessary): here A is of length 10 and B is of length 3:

A<-1:10
B<-c(2,4,8)
A*B

[1] 2 8 24 8 20 48 14 32 72 20

Warning message: longer object length is not a multiple of shorter object
length in: A * B

The vector B is recycled three times in full and a warning message in printed to indicate
that the length of A is not a multiple of the length of B (11 × 4 and 12 × 8 have not been
evaluated).

Named Elements within Vectors

It is often useful to have the values in a vector labelled in some way. For instance, if our
data are counts of 0, 1, 2, � � � occurrences in a vector called counts

(counts<-c(25,12,7,4,6,2,1,0,2))

[1] 25 12 7 4 6 2 1 0 2

ESSENTIALS OF THE R LANGUAGE 17

so that there were 25 zeros, 12 ones and so on, it would be useful to name each of the
counts with the relevant number 0 to 8:

names(counts)<-0:8

Now when we inspect the vector called counts we see both the names and the frequencies:

counts

0 1 2 3 4 5 6 7 8
25 12 7 4 6 2 1 0 2

If you have computed a table of counts, and you want to remove the names, then use the
as.vector function like this:

(st<-table(rpois(2000,2.3)))

0 1 2 3 4 5 6 7 8 9
205 455 510 431 233 102 43 13 7 1

as.vector(st)

[1] 205 455 510 431 233 102 43 13 7 1

Vector Functions

One of R’s great strengths is its ability to evaluate functions over entire vectors, thereby
avoiding the need for loops and subscripts. Important vector functions are listed in Table 2.2.

Table 2.2. Vector functions used in R.

Operation Meaning

max(x) maximum value in x
min(x) minimum value in x
sum(x) total of all the values in x
mean(x) arithmetic average of the values in x
median(x) median value in x
range(x) vector of min�x� and max�x�
var(x) sample variance of x
cor(x,y) correlation between vectors x and y
sort(x) a sorted version of x
rank(x) vector of the ranks of the values in x
order(x) an integer vector containing the permutation to sort x into ascending order
quantile(x) vector containing the minimum, lower quartile, median, upper quartile, and

maximum of x
cumsum(x) vector containing the sum of all of the elements up to that point
cumprod(x) vector containing the product of all of the elements up to that point
cummax(x) vector of non-decreasing numbers which are the cumulative maxima of the

values in x up to that point
cummin(x) vector of non-increasing numbers which are the cumulative minima of the

values in x up to that point
pmax(x,y,z) vector, of length equal to the longest of x� y or z, containing the maximum

of x� y or z for the ith position in each

18 THE R BOOK

Table 2.2. (Continued)

Operation Meaning

pmin(x,y,z) vector, of length equal to the longest of x� y or z, containing the minimum
of x� y or z for the ith position in each

colMeans(x) column means of dataframe or matrix x
colSums(x) column totals of dataframe or matrix x
rowMeans(x) row means of dataframe or matrix x
rowSums(x) row totals of dataframe or matrix x

Summary Information from Vectors by Groups

One of the most important and useful vector functions to master is tapply. The ‘t’ stands
for ‘table’ and the idea is to apply a function to produce a table from the values in the
vector, based on one or more grouping variables (often the grouping is by factor levels).
This sounds much more complicated than it really is:

data<-read.table("c:\\temp\\daphnia.txt",header=T)
attach(data)
names(data)

[1] "Growth.rate" "Water" "Detergent" "Daphnia"

The response variable is Growth.rate and the other three variables are factors (the analysis
is on p. 479). Suppose we want the mean growth rate for each detergent:

tapply(Growth.rate,Detergent,mean)

BrandA BrandB BrandC BrandD
3.88 4.01 3.95 3.56

This produces a table with four entries, one for each level of the factor called Detergent.
To produce a two-dimensional table we put the two grouping variables in a list. Here we
calculate the median growth rate for water type and daphnia clone:

tapply(Growth.rate,list(Water,Daphnia),median)

Clone1 Clone2 Clone3
Tyne 2.87 3.91 4.62
Wear 2.59 5.53 4.30

The first variable in the list creates the rows of the table and the second the columns. More
detail on the tapply function is given in Chapter 6 (p. 183).

Using with rather than attach

Advanced R users do not routinely employ attach in their work, because it can lead to
unexpected problems in resolving names (e.g. you can end up with multiple copies of the
same variable name, each of a different length and each meaning something completely
different). Most modelling functions like lm or glm have a data= argument so attach is
unnecessary in those cases. Even when there is no data= argument it is preferable to wrap
the call using with like this

ESSENTIALS OF THE R LANGUAGE 19

with(data, function(� � �))

The with function evaluates an R expression in an environment constructed from data.
You will often use the with function other functions like tapply or plot which have no
built-in data argument. If your dataframe is part of the built-in package called datasets
(like OrchardSprays) you can refer to the dataframe directly by name:

with(OrchardSprays,boxplot(decrease~treatment))

Here we calculate the number of ‘no’ (not infected) cases in the bacteria dataframe which
is part of the MASS library:

library(MASS)
with(bacteria,tapply((y=="n"),trt,sum))

placebo drug drug+
12 18 13

and here we plot brain weight against body weight for mammals on log-log axes:

with(mammals,plot(body,brain,log="xy"))

without attaching either dataframe. Here is an unattached dataframe called reg.data:

reg.data<-read.table("c:\\temp\\regression.txt",header=T)

with which we carry out a linear regression and print a summary

with (reg.data, {
model<-lm(growth~tannin)
summary(model) })

The linear model fitting function lm knows to look in reg.data to find the variables
called growth and tannin because the with function has used reg.data for constructing the
environment from which lm is called. Groups of statements (different lines of code) to
which the with function applies are contained within curly brackets. An alternative is to
define the data environment as an argument in the call to lm like this:

summary(lm(growth~tannin,data=reg.data))

You should compare these outputs with the same example using attach on p. 388. Note that
whatever form you choose, you still need to get the dataframe into your current environment
by using read.table (if, as here, it is to be read from an external file), or from a library
(like MASS to get bacteria and mammals, as above). To see the names of the dataframes
in the built-in package called datasets, type

data()

but to see all available data sets (including those in the installed packages), type

data(package = .packages(all.available = TRUE))

20 THE R BOOK

Using attach in This Book

I use attach throughout this book because experience has shown that it makes the code easier
to understand for beginners. In particular, using attach provides simplicity and brevity, so
that we can

• refer to variables by name, so x rather than dataframe$x

• write shorter models, so lm(y~x) rather than lm(y~x,data=dataframe)

• go straight to the intended action, so plot(y~x) not with(dataframe,plot(y~x))

Nevertheless, readers are encouraged to use with or data= for their own work, and to avoid
using attach wherever possible.

Parallel Minima and Maxima: pmin and pmax

Here are three vectors of the same length, x� y and z. The parallel minimum function, pmin,
finds the minimum from any one of the three variables for each subscript, and produces a
vector as its result (of length equal to the longest of x� y, or z):

x

[1] 0.99822644 0.98204599 0.20206455 0.65995552 0.93456667 0.18836278

y

[1] 0.51827913 0.30125005 0.41676059 0.53641449 0.07878714 0.49959328

z

[1] 0.26591817 0.13271847 0.44062782 0.65120395 0.03183403 0.36938092

pmin(x,y,z)

[1] 0.26591817 0.13271847 0.20206455 0.53641449 0.03183403 0.18836278

so the first and second minima came from z, the third from x, the fourth from y, the fifth
from z, and the sixth from x. The functions min and max produce scalar results.

Subscripts and Indices

While we typically aim to apply functions to vectors as a whole, there are circumstances
where we want to select only some of the elements of a vector. This selection is done using
subscripts (also known as indices). Subscripts have square brackets [2] while functions
have round brackets (2). Subscripts on vectors, matrices, arrays and dataframes have one
set of square brackets [6], [3,4] or [2,3,2,1] while subscripts on lists have double square
brackets [[2]] or [[i,j]] (see p. 65). When there are two subscripts to an object like a matrix
or a dataframe, the first subscript refers to the row number (the rows are defined as margin
no. 1) and the second subscript refers to the column number (the columns are margin no.
2). There is an important and powerful convention in R such that when a subscript appears
as a blank it is understood to mean ‘all of’. Thus

ESSENTIALS OF THE R LANGUAGE 21

• [,4] means all rows in column 4 of an object

• [2,] means all columns in row 2 of an object.

There is another indexing convention in R which is used to extract named components from
objects using the $ operator like this: model$coef or model$resid (p. 363). This is known
as ‘indexing tagged lists’ using the element names operator $.

Working with Vectors and Logical Subscripts

Take the example of a vector containing the 11 numbers 0 to 10:

x<-0:10

There are two quite different kinds of things we might want to do with this. We might want
to add up the values of the elements:

sum(x)

[1] 55

Alternatively, we might want to count the elements that passed some logical criterion.
Suppose we wanted to know how many of the values were less than 5:

sum(x<5)

[1] 5

You see the distinction. We use the vector function sum in both cases. But sum(x) adds
up the values of the xs and sum(x<5) counts up the number of cases that pass the logical
condition ‘x is less than 5’. This works because of coercion (p. 25). Logical TRUE has
been coerced to numeric 1 and logical FALSE has been coerced to numeric 0.

That is all well and good, but how do you add up the values of just some of the elements
of x? We specify a logical condition, but we don’t want to count the number of cases that
pass the condition, we want to add up all the values of the cases that pass. This is the final
piece of the jigsaw, and involves the use of logical subscripts. Note that when we counted
the number of cases, the counting was applied to the entire vector, using sum(x<5). To
find the sum of the values of x that are less than 5, we write:

sum(x[x<5])

[1] 10

Let’s look at this in more detail. The logical condition x<5 is either true or false:

x<5

[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[10] FALSE FALSE

You can imagine false as being numeric 0 and true as being numeric 1. Then the vector of
subscripts [x<5] is five 1s followed by six 0s:

1*(x<5)

[1] 1 1 1 1 1 0 0 0 0 0 0

22 THE R BOOK

Now imagine multiplying the values of x by the values of the logical vector

x*(x<5)

[1] 0 1 2 3 4 0 0 0 0 0 0

When the function sum is applied, it gives us the answer we want: the sum of the values
of the numbers 0 + 1 + 2 + 3 + 4 = 10.

sum(x*(x<5))

[1] 10

This produces the same answer as sum(x[x<5]), but is rather less elegant.
Suppose we want to work out the sum of the three largest values in a vector. There are

two steps: first sort the vector into descending order. Then add up the values of the first
three elements of the sorted array. Let’s do this in stages. First, the values of y:

y<-c(8,3,5,7,6,6,8,9,2,3,9,4,10,4,11)

Now if you apply sort to this, the numbers will be in ascending sequence, and this makes
life slightly harder for the present problem:

sort(y)

[1] 2 3 3 4 4 5 6 6 7 8 8 9 9 10 11

We can use the reverse function, rev like this (use the Up arrow key to save typing):

rev(sort(y))

[1] 11 10 9 9 8 8 7 6 6 5 4 4 3 3 2

So the answer to our problem is 11 + 10 + 9 = 30. But how to compute this? We can use
specific subscripts to discover the contents of any element of a vector. We can see that 10
is the second element of the sorted array. To compute this we just specify the subscript [2]:

rev(sort(y))[2]

[1] 10

A range of subscripts is simply a series generated using the colon operator. We want the
subscripts 1 to 3, so this is:

rev(sort(y))[1:3]

[1] 11 10 9

So the answer to the exercise is just

sum(rev(sort(y))[1:3])

[1] 30

Note that we have not changed the vector y in any way, nor have we created any new
space-consuming vectors during intermediate computational steps.

ESSENTIALS OF THE R LANGUAGE 23

Addresses within Vectors

There are two important functions for finding addresses within arrays. The function which
is very easy to understand. The vector y (see above) looks like this:

y

[1] 8 3 5 7 6 6 8 9 2 3 9 4 10 4 11

Suppose we wanted to know which elements of y contained values bigger than 5. We type

which(y>5)

[1] 1 4 5 6 7 8 11 13 15

Notice that the answer to this enquiry is a set of subscripts. We don’t use subscripts inside
the which function itself. The function is applied to the whole array. To see the values of
y that are larger than 5, we just type

y[y>5]

[1] 8 7 6 6 8 9 9 10 11

Note that this is a shorter vector than y itself, because values of 5 or less have been left out:

length(y)

[1] 15

length(y[y>5])

[1] 9

To extract every nth element from a long vector we can use seq as an index. In this case
I want every 25th value in a 1000-long vector of normal random numbers with mean value
100 and standard deviation 10:

xv<-rnorm(1000,100,10)
xv[seq(25,length(xv),25)]

[1] 100.98176 91.69614 116.69185 97.89538 108.48568 100.32891 94.46233
[8] 118.05943 92.41213 100.01887 112.41775 106.14260 93.79951 105.74173
[15] 102.84938 88.56408 114.52787 87.64789 112.71475 106.89868 109.80862
[22] 93.20438 96.31240 85.96460 105.77331 97.54514 92.01761 97.78516
[29] 87.90883 96.72253 94.86647 90.87149 80.01337 97.98327 92.77398
[36] 121.47810 92.40182 87.65205 115.80945 87.60231

Finding Closest Values

Finding the value in a vector that is closest to a specified value is straightforward using
which. Here, we want to find the value of xv that is closest to 108.0:

which(abs(xv-108)==min(abs(xv-108)))

[1] 332

The closest value to 108.0 is in location 332. But just how close to 108.0 is this 332nd
value? We use 332 as a subscript on xv to find this out

24 THE R BOOK

xv[332]

[1] 108.0076

Thus, we can write a function to return the closest value to a specified value �sv�

closest<-function(xv,sv){
xv[which(abs(xv-sv)==min(abs(xv-sv)))] }

and run it like this:

closest(xv,108)

[1] 108.0076

Trimming Vectors Using Negative Subscripts

Individual subscripts are referred to in square brackets. So if x is like this:

x<- c(5,8,6,7,1,5,3)

we can find the 4th element of the vector just by typing

x[4]

[1] 7

An extremely useful facility is to use negative subscripts to drop terms from a vector.
Suppose we wanted a new vector, z, to contain everything but the first element of x

z <- x[-1]

z

[1] 8 6 7 1 5 3

Suppose our task is to calculate a trimmed mean of x which ignores both the smallest
and largest values (i.e. we want to leave out the 1 and the 8 in this example). There are two
steps to this. First, we sort the vector x. Then we remove the first element using x[-1] and
the last using x[-length(x)]. We can do both drops at the same time by concatenating both
instructions like this: -c(1,length(x)). Then we use the built-in function mean:

trim.mean <- function (x) mean(sort(x)[-c(1,length(x))])

Now try it out. The answer should be mean(c(5,6,7,5,3)) = 26/5 = 5.2:

trim.mean(x)

[1] 5.2

Suppose now that we need to produce a vector containing the numbers 1 to 50 but
omitting all the multiples of seven (7, 14, 21, etc.). First make a vector of all the numbers
1 to 50 including the multiples of 7:

vec<-1:50

Now work out how many numbers there are between 1 and 50 that are multiples of 7

ESSENTIALS OF THE R LANGUAGE 25

(multiples<-floor(50/7))

[1] 7

Now create a vector of the first seven multiples of 7 called subscripts:

(subscripts<-7*(1:multiples))

[1] 7 14 21 28 35 42 49

Finally, use negative subscripts to drop these multiples of 7 from the original vector

vec[-subscripts]

[1] 1 2 3 4 5 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25
[23] 26 27 29 30 31 32 33 34 36 37 38 39 40 41 43 44 45 46 47 48 50

Alternatively, you could use modulo seven %%7 to get the result in a single line:

vec[-(1:50*(1:50%%7==0))]

[1] 1 2 3 4 5 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25
[23] 26 27 29 30 31 32 33 34 36 37 38 39 40 41 43 44 45 46 47 48 50

Logical Arithmetic

Arithmetic involving logical expressions is very useful in programming and in selection of
variables. If logical arithmetic is unfamiliar to you, then persevere with it, because it will
become clear how useful it is, once the penny has dropped. The key thing to understand
is that logical expressions evaluate to either true or false (represented in R by TRUE or
FALSE), and that R can coerce TRUE or FALSE into numerical values: 1 for TRUE and
0 for FALSE. Suppose that x is a sequence from 0 to 6 like this:

x<-0:6

Now we can ask questions about the contents of the vector called x. Is x less than 4?

x<4

[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE

The answer is yes for the first four values (0, 1, 2 and 3) and no for the last three (4, 5 and
6). Two important logical functions are all and any. They check an entire vector but return
a single logical value: TRUE or FALSE. Are all the x values bigger than 0?

all(x>0)

[1] FALSE

No. The first x value is a zero. Are any of the x values negative?

any(x<0)

[1] FALSE

No. The smallest x value is a zero. We can use the answers of logical functions in arithmetic.
We can count the true values of (x<4), using sum

26 THE R BOOK

sum(x<4)

[1] 4

or we can multiply (x<4) by other vectors

(x<4)*runif(7)

[1] 0.9433433 0.9382651 0.6248691 0.9786844 0.0000000 0.0000000
0.0000000

Logical arithmetic is particularly useful in generating simplified factor levels during
statistical modelling. Suppose we want to reduce a five-level factor called treatment to a
three-level factor called t2 by lumping together the levels a and e (new factor level 1) and
c and d (new factor level 3) while leaving b distinct (with new factor level 2):

(treatment<-letters[1:5])

[1] "a" "b" "c" "d" "e"

(t2<-factor(1+(treatment=="b")+2*(treatment=="c")+2*(treatment=="d")))

[1] 1 2 3 3 1

Levels: 1 2 3

The new factor t2 gets a value 1 as default for all the factors levels, and we want to
leave this as it is for levels a and e. Thus, we do not add anything to the 1 if the old
factor level is a or e. For old factor level b, however, we want the result that t2 = 2 so
we add 1 (treatment=="b") to the original 1 to get the answer we require. This works
because the logical expression evaluates to 1 (TRUE) for every case in which the old
factor level is b and to 0 (FALSE) in all other cases. For old factor levels c and d we
want the result that t2 = 3 so we add 2 to the baseline value of 1 if the original factor
level is either c (2*(treatment=="c")) or d (2*(treatment=="d")). You may need to read
this several times before the penny drops. Note that ‘logical equals’ is a double = sign
without a space between the two equals signs. You need to understand the distinction
between:

x <- y x is assigned the value of y (x gets the values of y);

x = y in a function or a list x is set to y unless you specify otherwise;

x == y produces TRUE if x is exactly equal to y and FALSE otherwise.

Evaluation of combinations of TRUE and FALSE

It is important to understand how combinations of logical variables evaluate, and to appreci-
ate how logical operations (such as those in Table 2.3) work when there are missing values,
NA. Here are all the possible outcomes expressed as a logical vector called x:

x <- c(NA, FALSE, TRUE)

names(x) <- as.character(x)

ESSENTIALS OF THE R LANGUAGE 27

Table 2.3. Logical operations.

Symbol Meaning

! logical NOT
& logical AND
| logical OR
< less than
<= less than or equal to
> greater than
>= greater than or equal to
== logical equals (double =)
!= not equal
&& AND with IF
|| OR with IF
xor(x,y) exclusive OR
isTRUE(x) an abbreviation of identical(TRUE,x)

To see the logical combinations of & (logical AND) we can use the outer function with x
to evaluate all nine combinations of NA, FALSE and TRUE like this:

outer(x, x, "&")

<NA> FALSE TRUE
<NA> NA FALSE NA

FALSE FALSE FALSE FALSE
TRUE NA FALSE TRUE

Only TRUE & TRUE evaluates to TRUE. Note the behaviour of NA & NA and NA &
TRUE. Where one of the two components is NA, the result will be NA if the outcome is
ambiguous. Thus, NA & TRUE evaluates to NA, but NA & FALSE evaluates to FALSE.
To see the logical combinations of � (logical OR) write

outer(x, x, "|")

<NA> FALSE TRUE
<NA> NA NA TRUE

FALSE NA FALSE TRUE
TRUE TRUE TRUE TRUE

Only FALSE | FALSE evaluates to FALSE. Note the behaviour of NA | NA and NA
| FALSE.

Repeats

You will often want to generate repeats of numbers or characters, for which the function
is rep. The object that is named in the first argument is repeated a number of times as
specified in the second argument. At its simplest, we would generate five 9s like this:

rep(9,5)

[1] 9 9 9 9 9

28 THE R BOOK

You can see the issues involved by a comparison of these three increasingly complicated
uses of the rep function:

rep(1:4, 2)

[1] 1 2 3 4 1 2 3 4

rep(1:4, each = 2)

[1] 1 1 2 2 3 3 4 4

rep(1:4, each = 2, times = 3)

[1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

In the simplest case, the entire first argument is repeated (i.e. the sequence 1 to 4 is repeated
twice). You often want each element of the sequence to be repeated, and this is accomplished
with the each argument. Finally, you might want each number repeated and the whole
series repeated a certain number of times (here 3 times).

When each element of the series is to be repeated a different number of times, then the
second argument must be a vector of the same length as the vector comprising the first
argument (length 4 in this example). So if we want one 1, two 2s, three 3s and four 4s we
would write:

rep(1:4,1:4)

[1] 1 2 2 3 3 3 4 4 4 4

In the most complex case, there is a different but irregular repeat of each of the elements
of the first argument. Suppose that we need four 1s, one 2, four 3s and two 4s. Then we
use the concatenation function c to create a vector of length 4 c(4,1,4,2)) which will act as
the second argument to the rep function:

rep(1:4,c(4,1,4,2))

[1] 1 1 1 1 2 3 3 3 3 4 4

Generate Factor Levels

The function gl (‘generate levels’) is useful when you want to encode long vectors of factor
levels: the syntax for the three arguments is this:

gl(‘up to’, ‘with repeats of’, ‘to total length’)

Here is the simplest case where we want factor levels up to 4 with repeats of 3 repeated
only once (i.e. to total length = 12):

gl(4,3)

[1] 1 1 1 2 2 2 3 3 3 4 4 4
Levels: 1 2 3 4

Here is the function when we want that whole pattern repeated twice:

gl(4,3,24)

[1] 1 1 1 2 2 2 3 3 3 4 4 4 1 1 1 2 2 2 3 3 3 4 4 4

Levels: 1 2 3 4

ESSENTIALS OF THE R LANGUAGE 29

If the total length is not a multiple of the length of the pattern, the vector is truncated:

gl(4,3,20)

[1] 1 1 1 2 2 2 3 3 3 4 4 4 1 1 1 2 2 2 3 3
Levels: 1 2 3 4

If you want text for the factor levels, rather than numbers, use labels like this:

gl(3,2,24,labels=c("A","B","C"))

[1] A A B B C C A A B B C C A A B B C C A A B B C C
Levels: A B C

Generating Regular Sequences of Numbers

For regularly spaced sequences, often involving integers, it is simplest to use the colon
operator. This can produce ascending or descending sequences:

10:18

[1] 10 11 12 13 14 15 16 17 18

18:10

[1] 18 17 16 15 14 13 12 11 10

-0.5:8.5

[1] -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5

When the interval is not 1.0 you need to use the seq function. In general, the three arguments
to seq are: initial value, final value, and increment (or decrement for a declining sequence).
Here we want to go from 0 up to 1.5 in steps of 0.2:

seq(0,1.5,0.2)

[1] 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Note that seq stops before it gets to the second argument (1.5) if the increment does not
match exactly (our sequence stops at 1.4). If you want to seq downwards, the third argument
needs to be negative

seq(1.5,0,-0.2)

[1] 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1

Again, zero did not match the decrement, so was excluded and the sequence stopped at 0.1.
Non-integer increments are particularly useful for generating x values for plotting smooth
curves. A curve will look reasonably smooth if it is drawn with 100 straight line segments,
so to generate 100 values of x between min(x) and max(x) you could write

x.values<-seq(min(x),max(x),(max(x)-min(x))/100)

If you want to create a sequence of the same length as an existing vector, then use along
like this. Suppose that our existing vector, x, contains 18 random numbers from a normal
distribution with a mean of 10.0 and a standard deviation of 2.0:

30 THE R BOOK

x<-rnorm(18,10,2)

and we want to generate a sequence of the same length as this (18) starting at 88 and
stepping down to exactly 50 for x[18]

seq(88,50,along=x)

[1] 88.00000 85.76471 83.52941 81.29412 79.05882 76.82353
74.58824 72.35294

[9] 70.11765 67.88235 65.64706 63.41176 61.17647 58.94118
56.70588 54.47059

[17] 52.23529 50.00000

This is useful when you do not want to go to the trouble of working out the size of the
increment but you do know the starting value (88 in this case) and the final value (50). If
the vector is of length 18 then the sequence will involve 17 decrements of size:

(50-88)/17

[1] -2.235294

The function sequence (spelled out in full) is slightly different, because it can produce
a vector consisting of sequences

sequence(5)

[1] 1 2 3 4 5

sequence(5:1)

[1] 1 2 3 4 5 1 2 3 4 1 2 3 1 2 1

sequence(c(5,2,4))

[1] 1 2 3 4 5 1 2 1 2 3 4

If the argument to sequence is itself a sequence (like 5:1) then several sequences are
concatenated (in this case a sequence of 1 to 5 is followed by a sequence of 1 to 4 followed
by a sequence of 1 to 3, another of 1 to 2 and a final sequence of 1 to 1 (= 1). The
successive sequences need not be regular; the last example shows sequences to 5, then to
2, then to 4.

Variable Names

• Variable names in R are case-sensitive so x is not the same as X.

• Variable names should not begin with numbers (e.g. 1x) or symbols (e.g. %x).

• Variable names should not contain blank spaces: use back.pay (not back pay).

Sorting, Ranking and Ordering

These three related concepts are important, and one of them (order) is difficult to understand
on first acquaintance. Let’s take a simple example:

ESSENTIALS OF THE R LANGUAGE 31

houses<-read.table("c:\\temp \\houses.txt",header=T)
attach(houses)
names(houses)

[1] "Location" "Price"

Now we apply the three different functions to the vector called Price,

ranks<-rank(Price)
sorted<-sort(Price)
ordered<-order(Price)

and make a dataframe out of the four vectors like this:

view<-data.frame(Price,ranks,sorted,ordered)
view

Price ranks sorted ordered
1 325 12.0 95 9
2 201 10.0 101 6
3 157 5.0 117 10
4 162 6.0 121 12
5 164 7.0 157 3
6 101 2.0 162 4
7 211 11.0 164 5
8 188 8.5 188 8
9 95 1.0 188 11

10 117 3.0 201 2
11 188 8.5 211 7
12 121 4.0 325 1

Rank

The prices themselves are in no particular sequence. The ranks column contains the value
that is the rank of the particular data point (value of Price), where 1 is assigned to the
lowest data point and length(Price) – here 12 – is assigned to the highest data point. So the
first element, Price = 325, is the highest value in Price. You should check that there are 11
values smaller than 325 in the vector called Price. Fractional ranks indicate ties. There are
two 188s in Price and their ranks are 8 and 9. Because they are tied, each gets the average
of their two ranks �8 + 9�/2 = 8�5.

Sort

The sorted vector is very straightforward. It contains the values of Price sorted into ascending
order. If you want to sort into descending order, use the reverse order function rev like
this: y<-rev(sort(x)). Note that sort is potentially very dangerous, because it uncouples
values that might need to be in the same row of the dataframe (e.g. because they are the
explanatory variables associated with a particular value of the response variable). It is bad
practice, therefore, to write x<-sort(x), not least because there is no ‘unsort’ function.

Order

This is the most important of the three functions, and much the hardest to understand on
first acquaintance. The order function returns an integer vector containing the permutation

32 THE R BOOK

that will sort the input into ascending order. You will need to think about this one. The
lowest value of Price is 95. Look at the dataframe and ask yourself what is the subscript in
the original vector called Price where 95 occurred. Scanning down the column, you find it
in row number 9. This is the first value in ordered, ordered[1]. Where is the next smallest
value (101) to be found within Price? It is in position 6, so this is ordered[2]. The third
smallest Price (117) is in position 10, so this is ordered[3]. And so on.

This function is particularly useful in sorting dataframes, as explained on p. 113. Using
order with subscripts is a much safer option than using sort, because with sort the values
of the response variable and the explanatory variables could be uncoupled with potentially
disastrous results if this is not realized at the time that modelling was carried out. The
beauty of order is that we can use order(Price) as a subscript for Location to obtain the
price-ranked list of locations:

Location[order(Price)]

[1] Reading Staines Winkfield Newbury
[5] Bracknell Camberley Bagshot Maidenhead
[9] Warfield Sunninghill Windsor Ascot

When you see it used like this, you can see exactly why the function is called order. If you
want to reverse the order, just use the rev function like this:

Location[rev(order(Price))]

[1] Ascot Windsor Sunninghill Warfield
[5] Maidenhead Bagshot Camberley Bracknell
[9] Newbury Winkfield Staines Reading

The sample Function

This function shuffles the contents of a vector into a random sequence while maintaining all
the numerical values intact. It is extremely useful for randomization in experimental design,
in simulation and in computationally intensive hypothesis testing. Here is the original y
vector again:

y

[1] 8 3 5 7 6 6 8 9 2 3 9 4 10 4 11

and here are two samples of y:

sample(y)

[1] 8 8 9 9 2 10 6 7 3 11 5 4 6 3 4

sample(y)

[1] 9 3 9 8 8 6 5 11 4 6 4 7 3 2 10

The order of the values is different each time that sample is invoked, but the same numbers
are shuffled in every case. This is called sampling without replacement. You can specify
the size of the sample you want as an optional second argument:

ESSENTIALS OF THE R LANGUAGE 33

sample(y,5)

[1] 9 4 10 8 11

sample(y,5)

[1] 9 3 4 2 8

The option replace=T allows for sampling with replacement, which is the basis of boot-
strapping (see p. 320). The vector produced by the sample function with replace=T is the
same length as the vector sampled, but some values are left out at random and other values,
again at random, appear two or more times. In this sample, 10 has been left out, and there
are now three 9s:

sample(y,replace=T)

[1] 9 6 11 2 9 4 6 8 8 4 4 4 3 9 3

In this next case, the are two 10s and only one 9:

sample(y,replace=T)

[1] 3 7 10 6 8 2 5 11 4 6 3 9 10 7 4

More advanced options in sample include specifying different probabilities with which
each element is to be sampled (prob=). For example, if we want to take four numbers at
random from the sequence 1:10 without replacement where the probability of selection (p)
is 5 times greater for the middle numbers (5 and 6) than for the first or last numbers, and
we want to do this five times, we could write

p <- c(1, 2, 3, 4, 5, 5, 4, 3, 2, 1)

x<-1:10

sapply(1:5,function(i) sample(x,4,prob=p))

[,1] [,2] [,3] [,4] [,5]
[1,] 8 7 4 10 8
[2,] 7 5 7 8 7
[3,] 4 4 3 4 5
[4,] 9 10 8 7 6

so the four random numbers in the first trial were 8, 7, 4 and 9 (i.e. column 1).

Matrices

There are several ways of making a matrix. You can create one directly like this:

X<-matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)

X

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

34 THE R BOOK

where, by default, the numbers are entered columnwise. The class and attributes of X
indicate that it is a matrix of three rows and three columns (these are its dim attributes)

class(X)

[1] "matrix"

attributes(X)

$dim

[1] 3 3

In the next example, the data in the vector appear row-wise, so we indicate this with
byrow=T:

vector<-c(1,2,3,4,4,3,2,1)
V<-matrix(vector,byrow=T,nrow=2)
V

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 4 3 2 1

Another way to convert a vector into a matrix is by providing the vector object with two
dimensions (rows and columns) using the dim function like this:

dim(vector)<-c(4,2)

We can check that vector has now become a matrix:

is.matrix(vector)

[1] TRUE

We need to be careful, however, because we have made no allowance at this stage for the
fact that the data were entered row-wise into vector:

vector

[,1] [,2]
[1,] 1 4
[2,] 2 3
[3,] 3 2
[4,] 4 1

The matrix we want is the transpose, t, of this matrix:

(vector<-t(vector))

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 4 3 2 1

Naming the rows and columns of matrices

At first, matrices have numbers naming their rows and columns (see above). Here is a 4 × 5
matrix of random integers from a Poisson distribution with mean = 1.5:

ESSENTIALS OF THE R LANGUAGE 35

X<-matrix(rpois(20,1.5),nrow=4)
X

[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 2 5 3
[2,] 1 1 3 1 3
[3,] 3 1 0 2 2
[4,] 1 0 2 1 0

Suppose that the rows refer to four different trials and we want to label the rows ‘Trial.1’
etc. We employ the function rownames to do this. We could use the paste function (see
p. 44) but here we take advantage of the prefix option:

rownames(X)<-rownames(X,do.NULL=FALSE,prefix="Trial.")
X

[,1] [,2] [,3] [,4] [,5]
Trial.1 1 0 2 5 3
Trial.2 1 1 3 1 3
Trial.3 3 1 0 2 2
Trial.4 1 0 2 1 0

For the columns we want to supply a vector of different names for the five drugs involved
in the trial, and use this to specify the colnames(X):

drug.names<-c("aspirin", "paracetamol", "nurofen", "hedex", "placebo")
colnames(X)<-drug.names
X

aspirin paracetamol nurofen hedex placebo
Trial.1 1 0 2 5 3
Trial.2 1 1 3 1 3
Trial.3 3 1 0 2 2
Trial.4 1 0 2 1 0

Alternatively, you can use the dimnames function to give names to the rows and/or
columns of a matrix. In this example we want the rows to be unlabelled (NULL) and the
column names to be of the form ‘drug.1’, ‘drug.2’, etc. The argument to dimnames has to
be a list (rows first, columns second, as usual) with the elements of the list of exactly the
correct lengths (4 and 5 in this particular case):

dimnames(X)<-list(NULL,paste("drug.",1:5,sep=""))
X

drug.1 drug.2 drug.3 drug.4 drug.5
[1,] 1 0 2 5 3
[2,] 1 1 3 1 3
[3,] 3 1 0 2 2
[4,] 1 0 2 1 0

Calculations on rows or columns of the matrix

We could use subscripts to select parts of the matrix, with a blank meaning ‘all of the rows’
or ‘all of the columns’. Here is the mean of the rightmost column (number 5),

36 THE R BOOK

mean(X[,5])

[1] 2

calculated over all the rows (blank then comma), and the variance of the bottom row,

var(X[4,])

[1] 0.7

calculated over all of the columns (a blank in the second position). There are some special
functions for calculating summary statistics on matrices:

rowSums(X)

[1] 11 9 8 4

colSums(X)

[1] 6 2 7 9 8

rowMeans(X)

[1] 2.2 1.8 1.6 0.8

colMeans(X)

[1] 1.50 0.50 1.75 2.25 2.00

These functions are built for speed, and blur some of the subtleties of dealing with NA or
NaN. If such subtlety is an issue, then use apply instead (p. 68). Remember that columns
are margin no. 2 (rows are margin no. 1):

apply(X,2,mean)

[1] 1.50 0.50 1.75 2.25 2.00

You might want to sum groups of rows within columns, and rowsum (singular and all
lower case, in contrast to rowSums, above) is a very efficient function for this. In this case
we want to group together row 1 and row 4 (as group A) and row 2 and row 3 (group B).
Note that the grouping vector has to have length equal to the number of rows:

group=c("A","B","B","A")

rowsum(X, group)

[,1] [,2] [,3] [,4] [,5]
A 2 0 4 6 3
B 4 2 3 3 5

You could achieve the same ends (but more slowly) with tapply or aggregate:

tapply(X, list(group[row(X)], col(X)), sum)

1 2 3 4 5
A 2 0 4 6 3
B 4 2 3 3 5

Note the use of row(X) and col(X), with row(X) used as a subscript on group.

aggregate(X,list(group),sum)

ESSENTIALS OF THE R LANGUAGE 37

Group.1 V1 V2 V3 V4 V5
1 A 2 0 4 6 3
2 B 4 2 3 3 5

Suppose that we want to shuffle the elements of each column of a matrix independently.
We apply the function sample to each column (margin no. 2) like this:

apply(X,2,sample)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 2 1 3
[2,] 3 1 0 1 3
[3,] 1 0 3 2 0
[4,] 1 0 2 5 2

apply(X,2,sample)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 0 5 2
[2,] 1 1 2 1 3
[3,] 3 0 2 2 3
[4,] 1 0 3 1 0

and so on, for as many shuffled samples as you need.

Adding rows and columns to the matrix

In this particular case we have been asked to add a row at the bottom showing the column
means, and a column at the right showing the row variances:

X<-rbind(X,apply(X,2,mean))
X<-cbind(X,apply(X,1,var))
X

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.0 0.0 2.00 5.00 3 3.70000
[2,] 1.0 1.0 3.00 1.00 3 1.20000
[3,] 3.0 1.0 0.00 2.00 2 1.30000
[4,] 1.0 0.0 2.00 1.00 0 0.70000
[5,] 1.5 0.5 1.75 2.25 2 0.45625

Note that the number of decimal places varies across columns, with one in columns 1 and
2, two in columns 3 and 4, none in column 5 (integers) and five in column 6. The default
in R is to print the minimum number of decimal places consistent with the contents of the
column as a whole.

Next, we need to label the sixth column as ‘variance’ and the fifth row as ‘mean’:

colnames(X)<-c(1:5,"variance")
rownames(X)<-c(1:4,"mean")
X

1 2 3 4 5 variance
1 1.0 0.0 2.00 5.00 3 3.70000
2 1.0 1.0 3.00 1.00 3 1.20000
3 3.0 1.0 0.00 2.00 2 1.30000
4 1.0 0.0 2.00 1.00 0 0.70000

38 THE R BOOK

mean 1.5 0.5 1.75 2.25 2 0.45625

When a matrix with a single row or column is created by a subscripting operation, for
example row <- mat[2,], it is by default turned into a vector. In a similar way, if an array
with dimension, say, 2 × 3 × 1 × 4 is created by subscripting it will be coerced into a
2 × 3 × 4 array, losing the unnecessary dimension. After much discussion this has been
determined to be a feature of R. To prevent this happening, add the option drop = FALSE
to the subscripting. For example,

rowmatrix <- mat[2, , drop = FALSE]
colmatrix <- mat[, 2, drop = FALSE]
a <- b[1, 1, 1, drop = FALSE]

The drop = FALSE option should be used defensively when programming. For example,
the statement

somerows <- mat[index,]

will return a vector rather than a matrix if index happens to have length 1, and this might
cause errors later in the code. It should be written as

somerows <- mat[index , , drop = FALSE]

The sweep function

The sweep function is used to ‘sweep out’ array summaries from vectors, matrices, arrays
or dataframes. In this example we want to express a matrix in terms of the departures of
each value from its column mean.

matdata<-read.table("c: \\temp \\sweepdata.txt")

First, you need to create a vector containing the parameters that you intend to sweep out of
the matrix. In this case we want to compute the four column means:

(cols<-apply(matdata,2,mean))

V1 V2 V3 V4
4.60 13.30 0.44 151.60

Now it is straightforward to express all of the data in matdata as departures from the relevant
column means:

sweep(matdata,2,cols)

V1 V2 V3 V4
1 -1.6 -1.3 -0.04 -26.6
2 0.4 -1.3 0.26 14.4
3 2.4 1.7 0.36 22.4
4 2.4 0.7 0.26 -23.6
5 0.4 4.7 -0.14 -15.6
6 4.4 -0.3 -0.24 3.4
7 2.4 1.7 0.06 -36.6
8 -2.6 -0.3 0.06 17.4
9 -3.6 -3.3 -0.34 30.4
10 -4.6 -2.3 -0.24 14.4

ESSENTIALS OF THE R LANGUAGE 39

Note the use of margin = 2 as the second argument to indicate that we want the sweep to
be carried out on the columns (rather than on the rows). A related function, scale, is used
for centring and scaling data in terms of standard deviations (p. 191).

You can see what sweep has done by doing the calculation long-hand. The operation
of this particular sweep is simply one of subtraction. The only issue is that the subtracted
object has to have the same dimensions as the matrix to be swept (in this example, 10
rows of 4 columns). Thus, to sweep out the column means, the object to be subtracted from
matdata must have the each column mean repeated in each of the 10 rows of 4 columns:

(col.means<-matrix(rep(cols,rep(10,4)),nrow=10))

[,1] [,2] [,3] [,4]
[1,] 4.6 13.3 0.44 151.6
[2,] 4.6 13.3 0.44 151.6
[3,] 4.6 13.3 0.44 151.6
[4,] 4.6 13.3 0.44 151.6
[5,] 4.6 13.3 0.44 151.6
[6,] 4.6 13.3 0.44 151.6
[7,] 4.6 13.3 0.44 151.6
[8,] 4.6 13.3 0.44 151.6
[9,] 4.6 13.3 0.44 151.6

[10,] 4.6 13.3 0.44 151.6

Then the same result as we got from sweep is obtained simply by

matdata-col.means

Suppose that you want to obtain the subscripts for a columnwise or a row-wise sweep of
the data. Here are the row subscripts repeated in each column:

apply(matdata,2,function (x) 1:10)

V1 V2 V3 V4
[1,] 1 1 1 1
[2,] 2 2 2 2
[3,] 3 3 3 3
[4,] 4 4 4 4
[5,] 5 5 5 5
[6,] 6 6 6 6
[7,] 7 7 7 7
[8,] 8 8 8 8
[9,] 9 9 9 9

[10,] 10 10 10 10

Here are the column subscripts repeated in each row:

t(apply(matdata,1,function (x) 1:4))

40 THE R BOOK

[,1] [,2] [,3] [,4]
1 1 2 3 4
2 1 2 3 4
3 1 2 3 4
4 1 2 3 4
5 1 2 3 4
6 1 2 3 4
7 1 2 3 4
8 1 2 3 4
9 1 2 3 4
10 1 2 3 4

Here is the same procedure using sweep:

sweep(matdata,1,1:10,function(a,b) b)

[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 2 2 2 2
[3,] 3 3 3 3
[4,] 4 4 4 4
[5,] 5 5 5 5
[6,] 6 6 6 6
[7,] 7 7 7 7
[8,] 8 8 8 8
[9,] 9 9 9 9

[10,] 10 10 10 10

sweep(matdata,2,1:4,function(a,b) b)

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 1 2 3 4
[3,] 1 2 3 4
[4,] 1 2 3 4
[5,] 1 2 3 4
[6,] 1 2 3 4
[7,] 1 2 3 4
[8,] 1 2 3 4
[9,] 1 2 3 4

[10,] 1 2 3 4

Arrays

Arrays are numeric objects with dimension attributes. We start with the numbers 1 to 25 in
a vector called array:

array<-1:25
is.matrix(array)

[1] FALSE

dim(array)

NULL

ESSENTIALS OF THE R LANGUAGE 41

The vector is not a matrix and it has no (NULL) dimensional attributes. We give the object
dimensions like this (say, with five rows and five columns):

dim(array)<-c(5,5)

Now it does have dimensions and it is a matrix:

dim(array)

[1] 5 5

is.matrix(array)

[1] TRUE

When we look at array it is presented as a two-dimensional table (but note that it is not
a table object; see p. 187):

array

[,1] [,2] [,3] [,4] [,5]
[1,] 1 6 11 16 21
[2,] 2 7 12 17 22
[3,] 3 8 13 18 23
[4,] 4 9 14 19 24
[5,] 5 10 15 20 25

is.table(array)

[1] FALSE

Note that the values have been entered into array in columnwise sequence: this is the default
in R. Thus a vector is a one-dimensional array that lacks any dim attributes. A matrix is a
two-dimensional array. Arrays of three or more dimensions do not have any special names in
R; they are simply referred to as three-dimensional or five-dimensional arrays. You should
practise with subscript operations on arrays until you are thoroughly familiar with them.
Mastering the use of subscripts will open up many of R’s most powerful features for working
with dataframes, vectors, matrices, arrays and lists. Here is a three-dimensional array of the
first 24 lower-case letters with three matrices each of four rows and two columns:

A<-letters[1:24]
dim(A)<-c(4,2,3)
A
, , 1

[,1] [,2]
[1,] "a" "e"
[2,] "b" "f"
[3,] "c" "g"
[4,] "d" "h"

, , 2
[,1] [,2]

[1,] "i" "m"
[2,] "j" "n"

42 THE R BOOK

[3,] "k" "o"
[4,] "l" "p"

, , 3
[,1] [,2]

[1,] "q" "u"
[2,] "r" "v"
[3,] "s" "w"
[4,] "t" "x"

We want to select all the letters a to p. These are all the rows and all the columns of tables
1 and 2, so the appropriate subscripts are [„1:2]

A[„1:2]

, , 1

[,1] [,2]
[1,] "a" "e"
[2,] "b" "f"
[3,] "c" "g"
[4,] "d" "h"

, , 2
[,1] [,2]

[1,] "i" "m"
[2,] "j" "n"
[3,] "k" "o"
[4,] "l" "p"

Next, we want only the letters q to x. These are all the rows and all the columns from the
third table, so the appropriate subscripts are [„3]:

A[„3]

[,1] [,2]
[1,] "q" "u"
[2,] "r" "v"
[3,] "s" "w"
[4,] "t" "x"

Here, we want only c, g, k, o, s and w. These are the third rows of all three tables, so the
appropriate subscripts are [3„]:

A[3„]

[,1] [,2] [,3]
[1,] "c" "k" "s"
[2,] "g" "o" "w"

Note that when we drop the whole first dimension (there is just one row in A[3„]) the shape
of the resulting matrix is altered (two rows and three columns in this example). This is a
feature of R, but you can override it by saying drop = F to retain all three dimensions:

A[3„,drop=F]

ESSENTIALS OF THE R LANGUAGE 43

, , 1

[,1] [,2]
[1,] "c" "g"

, , 2
[,1] [,2]

[1,] "k" "o"

, , 3
[,1] [,2]

[1,] "s" "w"

Finally, suppose we want all the rows of the second column from table 1, A[,2,1], the first
column from table 2, A[,1,2], and the second column from table 3, A[,2,3]. Because we
want all the rows in each case, so the first subscript is blank, but we want different column
numbers (cs) in different tables (ts) as follows:

cs<-c(2,1,2)
ts<-c(1,2,3)

To get the answer, use sapply to concatenate the columns from each table like this:

sapply (1:3, function(i) A[,cs[i],ts[i]])

[,1] [,2] [,3]
[1,] "e" "i" "u"
[2,] "f" "j" "v"
[3,] "g" "k" "w"
[4,] "h" "l" "x"

Character Strings

In R, character strings are defined by double quotation marks:

a<-"abc"
b<-"123"

Numbers can be characters (as in b, above), but characters cannot be numbers.

as.numeric(a)

[1] NA
Warning message:
NAs introduced by coercion
as.numeric(b)

[1] 123

One of the initially confusing things about character strings is the distinction between
the length of a character object (a vector) and the numbers of characters in the strings
comprising that object. An example should make the distinction clear:

pets<-c("cat","dog","gerbil","terrapin")

Here, pets is a vector comprising four character strings:

44 THE R BOOK

length(pets)

[1] 4

and the individual character strings have 3, 3, 6 and 7 characters, respectively:

nchar(pets)

[1] 3 3 6 7

When first defined, character strings are not factors:

class(pets)

[1] "character"

is.factor(pets)

[1] FALSE

However, if the vector of characters called pets was part of a dataframe, then R would
coerce all the character variables to act as factors:

df<-data.frame(pets)
is.factor(df$pets)

[1] TRUE

There are built-in vectors in R that contain the 26 letters of the alphabet in lower case
(letters) and in upper case (LETTERS):

letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p"

[17] "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

LETTERS

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P"
[17] "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

To discover which number in the alphabet the letter n is, you can use the which function
like this:

which(letters=="n")

[1] 14

For the purposes of printing you might want to suppress the quotes that appear around
character strings by default. The function to do this is called noquote:

noquote(letters)

[1] a b c d e f g h i j k l m n o p q r s t u v w x y z

You can amalgamate strings into vectors of character information:

c(a,b)

[1] "abc" "123"

This shows that the concatenation produces a vector of two strings. It does not convert two
3-character strings into one 6-charater string. The R function to do that is paste:

ESSENTIALS OF THE R LANGUAGE 45

paste(a,b,sep="")

[1] "abc123"

The third argument, sep="", means that the two character strings are to be pasted together
without any separator between them: the default for paste is to insert a single blank space,
like this:

paste(a,b)

[1] "abc 123"

Notice that you do not lose blanks that are within character strings when you use the sep=""
option in paste.

paste(a,b,"a longer phrase containing blanks",sep="")

[1] "abc123a longer phrase containing blanks"

If one of the arguments to paste is a vector, each of the elements of the vector is pasted
to the specified character string to produce an object of the same length as the vector:

d<-c(a,b,"new")
e<-paste(d,"a longer phrase containing blanks")
e

[1] "abc a longer phrase containing blanks"
[2] "123 a longer phrase containing blanks"
[3] "new a longer phrase containing blanks"

Extracting parts of strings

We being by defining a phrase:

phrase<-"the quick brown fox jumps over the lazy dog"

The function called substr is used to extract substrings of a specified number of characters
from a character string. Here is the code to extract the first, the first and second, the first,
second and third, � � � (up to 20) characters from our phrase

q<-character(20)
for (i in 1:20) q[i]<- substr(phrase,1,i)
q

[1] "t" "th" "the"
[4] "the " "the q" "the qu"
[7] "the qui" "the quic" "the quick"
[10] "the quick " "the quick b" "the quick br"
[13] "the quick bro" "the quick brow" "the quick brown"
[16] "the quick brown " "the quick brown f" "the quick brown fo"
[19] "the quick brown fox " "the quick brown fox "

The second argument in substr is the number of the character at which extraction is to
begin (in this case always the first), and the third argument is the number of the character at
which extraction is to end (in this case, the ith). To split up a character string into individual
characters, we use strsplit like this

46 THE R BOOK

strsplit(phrase,split=character(0))

[[1]]
[1] "t" "h" "e" " " "q" "u" "i" "c" "k" " " "b" "r" "o" "w" "n" " "
[17] "f" "o" "x" " " "j" "u" "m" "p" "s" " " "o" "v" "e" "r"
[31] " " "t" "h" "e" " " "l" "a" "z" "y" " " "d" "o" "g"

The table function is useful for counting the number of occurrences of characters of
different kinds:

table(strsplit(phrase,split=character(0)))

a b c d e f g h i j k l m n o p q r s t u v w x y z
8 1 1 1 1 3 1 1 2 1 1 1 1 1 1 4 1 1 2 1 2 2 1 1 1 1 1

This demonstrates that all of the letters of the alphabet were used at least once within our
phrase, and that there were 8 blanks within phrase. This suggests a way of counting the
number of words in a phrase, given that this will always be one more than the number of
blanks:

words<-1+table(strsplit(phrase,split=character(0)))[1]
words

9

When we specify a particular string to form the basis of the split, we end up with a list
made up from the components of the string that do not contain the specified string. This is
hard to understand without an example. Suppose we split our phrase using ‘the’:

strsplit(phrase,"the")

[[1]]

[1] "" " quick brown fox jumps over " " lazy dog"

There are three elements in this list: the first one is the empty string "" because the first
three characters within phrase were exactly ‘the’ ; the second element contains the part of
the phrase between the two occurrences of the string ‘the’; and the third element is the end
of the phrase, following the second ‘the’. Suppose that we want to extract the characters
between the first and second occurrences of ‘the’. This is achieved very simply, using
subscripts to extract the second element of the list:

strsplit(phrase,"the")[[1]] [2]

[1] " quick brown fox jumps over "

Note that the first subscript in double square brackets refers to the number within the list
(there is only one list in this case) and the second subscript refers to the second element
within this list. So if we want to know how many characters there are between the first and
second occurrences of the word “the” within our phrase, we put:

nchar(strsplit(phrase,"the")[[1]] [2])

[1] 28

It is easy to switch between upper and lower cases using the toupper and tolower functions:

toupper(phrase)

ESSENTIALS OF THE R LANGUAGE 47

[1] "THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG"

tolower(toupper(phrase))

[1] "the quick brown fox jumps over the lazy dog"

The match Function

The match function answers the question ‘Where do the values in the second vector appear
in the first vector?’. This is impossible to understand without an example:

first<-c(5,8,3,5,3,6,4,4,2,8,8,8,4,4,6)
second<-c(8,6,4,2)
match(first,second)

[1] NA 1 NA NA NA 2 3 3 4 1 1 1 3 3 2

The first thing to note is that match produces a vector of subscripts (index values) and that
these are subscripts within the second vector. The length of the vector produced by match
is the length of the first vector (15 in this example). If elements of the first vector do not
occur anywhere in the second vector, then match produces NA.

Why would you ever want to use this? Suppose you wanted to give drug A to all the
patients in the first vector that were identified in the second vector, and drug B to all the
others (i.e. those identified by NA in the output of match, above, because they did not
appear in the second vector). You create a vector called drug with two elements (A and
B), then select the appropriate drug on the basis of whether or not match(first,second)
is NA:

drug<-c("A","B")
drug[1+is.na(match(first,second))]

[1] "B" "A" "B" "B" "B" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A"

The match function can also be very powerful in manipulating dataframes to mimic the
functionality of a relational database (p. 127).

Writing functions in R

Functions in R are objects that carry out operations on arguments that are supplied to them
and return one or more values. The syntax for writing a function is

function (argument list) body

The first component of the function declaration is the keyword function, which indicates to
R that you want to create a function. An argument list is a comma-separated list of formal
arguments. A formal argument can be a symbol (i.e. a variable name such as x or y), a
statement of the form symbol = expression (e.g. pch=16) or the special formal argument
� � � (triple dot). The body can be any valid R expression or set of R expressions. Generally,
the body is a group of expressions contained in curly brackets { }, with each expression on
a separate line. Functions are typically assigned to symbols, but they need not to be. This
will only begin to mean anything after you have seen several examples in operation.

48 THE R BOOK

Arithmetic mean of a single sample

The mean is the sum of the numbers
∑

y divided by the number of numbers n = ∑
1

(summing over the number of numbers in the vector called y). The R function for n is
length(y) and for

∑
y is sum(y), so a function to compute arithmetic means is

arithmetic.mean<-function(x) sum(x)/length(x)

We should test the function with some data where we know the right answer:

y<-c(3,3,4,5,5)

arithmetic.mean(y)

[1] 4

Needless to say, there is a built-in function for arithmetic means called mean:

mean(y)

[1] 4

Median of a single sample

The median (or 50th percentile) is the middle value of the sorted values of a vector of
numbers:

sort(y)[ceiling(length(y)/2)

There is slight hitch here, of course, because if the vector contains an even number of
numbers, then there is no middle value. The logic is that we need to work out the arithmetic
average of the two values of y on either side of the middle. The question now arises as
to how we know, in general, whether the vector y contains an odd or an even number of
numbers, so that we can decide which of the two methods to use. The trick here is to use
modulo 2 (p. 12). Now we have all the tools we need to write a general function to calculate
medians. Let’s call the function med and define it like this:

med<-function(x) {
odd.even<-length(x)%%2
if (odd.even == 0) (sort(x)[length(x)/2]+sort(x)[1+ length(x)/2])/2
else sort(x)[ceiling(length(x)/2)]
}

Notice that when the if statement is true (i.e. we have an even number of numbers) then the
expression immediately following the if function is evaluated (this is the code for calculating
the median with an even number of numbers). When the if statement is false (i.e. we have
an odd number of numbers, and odd.even == 1) then the expression following the else
function is evaluated (this is the code for calculating the median with an odd number of
numbers). Let’s try it out, first with the odd-numbered vector y, then with the even-numbered
vector y[-1], after the first element of y (y[1] = 3) has been dropped (using the negative
subscript):

med(y)

[1] 4

med(y[-1])

[1] 4.5

ESSENTIALS OF THE R LANGUAGE 49

Again, you won’t be surprised that there is a built-in function for calculating medians,
and helpfully it is called median.

Geometric mean

For processes that change multiplicatively rather than additively, neither the arithmetic
mean nor the median is an ideal measure of central tendency. Under these conditions,
the appropriate measure is the geometric mean. The formal definition of this is somewhat
abstract: the geometric mean is the nth root of the product of the data. If we use capital Greek
pi �

∏
� to represent multiplication, and ŷ (pronounced y-hat) to represent the geometric

mean, then

ŷ = n

√∏
y�

Let’s take a simple example we can work out by hand: the numbers of insects on 5 plants
were as follows: 10, 1, 1000, 1, 10. Multiplying the numbers together gives 100 000. There
are five numbers, so we want the fifth root of this. Roots are hard to do in your head, so
we’ll use R as a calculator. Remember that roots are fractional powers, so the fifth root is
a number raised to the power 1/5 = 0�2. In R, powers are denoted by the ∧ symbol:

100000^0.2

[1] 10

So the geometric mean of these insect numbers is 10 insects per stem. Note that two of
the data were exactly like this, so it seems a reasonable estimate of central tendency. The
arithmetic mean, on the other hand, is a hopeless measure of central tendency, because the
large value (1000) is so influential: it is given by �10 + 1 + 1000 + 1 + 10�/5 = 204�4, and
none of the data is close to it.

insects<-c(1,10,1000,10,1)
mean(insects)

[1] 204.4

Another way to calculate geometric mean involves the use of logarithms. Recall that to
multiply numbers together we add up their logarithms. And to take roots, we divide the
logarithm by the root. So we should be able to calculate a geometric mean by finding the
antilog (exp) of the average of the logarithms (log) of the data:

exp(mean(log(insects)))

[1] 10

So a function to calculate geometric mean of a vector of numbers x:

geometric<-function (x) exp(mean(log(x)))

and testing it with the insect data

geometric(insects)
[1] 10

The use of geometric means draws attention to a general scientific issue. Look at the
figure below, which shows numbers varying through time in two populations. Now ask
yourself which population is the more variable. Chances are, you will pick the upper line:

50 THE R BOOK

N
um

be
rs

25
0

20
0

15
0

10
0

50
0

Index

5 10 15 20

But now look at the scale on the y axis. The upper population is fluctuating 100, 200,
100, 200 and so on. In other words, it is doubling and halving, doubling and halving. The
lower curve is fluctuating 10, 20, 10, 20, 10, 20 and so on. It, too, is doubling and halving,
doubling and halving. So the answer to the question is that they are equally variable. It is
just that one population has a higher mean value than the other (150 vs. 15 in this case). In
order not to fall into the trap of saying that the upper curve is more variable than the lower
curve, it is good practice to graph the logarithms rather than the raw values of things like
population sizes that change multiplicatively, as below.

lo
g

nu
m

be
rs

6
5

4
3

2
1

Index

5 10 15 20

ESSENTIALS OF THE R LANGUAGE 51

Now it is clear that both populations are equally variable. Note the change of scale, as
specified using the ylim=c(1,6) option within the plot function (p. 181).

Harmonic mean

Consider the following problem. An elephant has a territory which is a square of side
= 2 km. Each morning, the elephant walks the boundary of this territory. He begins the
day at a sedate pace, walking the first side of the territory at a speed of 1 km/hr. On the
second side, he has sped up to 2 km/hr. By the third side he has accelerated to an impressive
4 km/hr, but this so wears him out, that he has to return on the final side at a sluggish
1 km/hr. So what is his average speed over the ground? You might say he travelled at 1, 2,
4 and 1 km/hr so the average speed is �1 + 2 + 4 + 1�/4 = 8/4 = 2 km/hr. But that is wrong.
Can you see how to work out the right answer? Recall that velocity is defined as distance
travelled divided by time taken. The distance travelled is easy: it’s just 4 × 2 = 8 km. The
time taken is a bit harder. The first edge was 2 km long, and travelling at 1 km/hr this must
have taken 2 hr. The second edge was 2 km long, and travelling at 2 km/hr this must have
taken 1 hr. The third edge was 2 km long and travelling at 4 km/hr this must have taken
0.5 hr. The final edge was 2 km long and travelling at 1 km/hr this must have taken 2 hr. So
the total time taken was 2 + 1 + 0�5 + 2 = 5�5 hr. So the average speed is not 2 km/hr but
8/5�5 = 1�4545 km/hr. The way to solve this problem is to use the harmonic mean.

The harmonic mean is the reciprocal of the average of the reciprocals. The average of
our reciprocals is

1
1

+ 1
2

+ 1
4

+ 1
1

= 2�75
4

= 0�6875�

The reciprocal of this average is the harmonic mean

4
2�75

= 1
0�6875

= 1�4545�

In symbols, therefore, the harmonic mean, ỹ (y-curl), is given by

ỹ = 1
�	�1/y��/n

= n

	�1/y�
�

An R function for calculating harmonic means, therefore, could be

harmonic<-function (x) 1/mean(1/x)

and testing it on our elephant data gives

harmonic(c(1,2,4,1))

[1] 1.454545

Variance

A measure of variability is perhaps the most important quantity in statistical analysis. The
greater the variability in the data, the greater will be our uncertainty in the values of
parameters estimated from the data, and the less will be our ability to distinguish between
competing hypotheses about the data.

52 THE R BOOK

The variance of a sample is measured as a function of ‘the sum of the squares of the
difference between the data and the arithmetic mean’. This important quantity is called the
‘sum of squares’:

SS = 	�y − ȳ�2�

Naturally, this quantity gets bigger with every new data point you add to the sample. An
obvious way to compensate for this is to measure variability as the average of the squared
departures from the mean (the ‘mean square deviation’.). There is a slight problem, however.
Look at the formula for the sum of squares, SS, above and ask yourself what you need to
know before you can calculate it. You have the data, y, but the only way you can know the
sample mean, ȳ, is to calculate it from the data (you will never know ȳ in advance).

Degrees of freedom

To complete our calculation of the variance we need the degrees of freedom (d.f.) This
important concept in statistics is defined as follows:

d�f� = n − k�

which is the sample size, n, minus the number of parameters, k, estimated from the data.
For the variance, we have estimated one parameter from the data, ȳ, and so there are n − 1
degrees of freedom. In a linear regression, we estimate two parameters from the data, the
slope and the intercept, and so there are n − 2 degrees of freedom in a regression analysis.

Variance is denoted by the lower-case Latin letter s squared: s2. The square root of
variance, s, is called the standard deviation. We always calculate variance as

variance = s2 = sum of squares
degrees of freedom

�

Consider the following data, y:

y<-c(13,7,5,12,9,15,6,11,9,7,12)

We need to write a function to calculate the sample variance: we call it variance and define
it like this:

variance<-function(x) sum((x – mean(x))∧2)/(length(x)-1)

and use it like this:

variance(y)

[1] 10.25455

Our measure of variability in these data, the variance, is thus 10.25455. It is said to be an
unbiased estimator because we divide the sum of squares by the degrees of freedom �n− 1�
rather than by the sample size, n, to compensate for the fact that we have estimated one
parameter from the data. So the variance is close to the average squared difference between
the data and the mean, especially for large samples, but it is not exactly equal to the mean
squared deviation. Needless to say, R has a built-in function to calculate variance called var:

ESSENTIALS OF THE R LANGUAGE 53

var(y)

[1] 10.25455

Variance Ratio Test

How do we know if two variances are significantly different from one another? We need
to carry out Fisher’s F test, the ratio of the two variances (see p. 224). Here is a function
to print the p value (p. 290) associated with a comparison of the larger and smaller
variances:

variance.ratio<-function(x,y) {
v1<-var(x)
v2<-var(y)
if (var(x) > var(y)) {
vr<-var(x)/var(y)
df1<-length(x)-1
df2<-length(y)-1}

else { vr<-var(y)/var(x)
df1<-length(y)-1
df2<-length(x)-1}

2*(1-pf(vr,df1,df2)) }

The last line of our function works out the probability of getting an F ratio as big as vr
or bigger by chance alone if the two variances were really the same, using the cumulative
probability of the F distribution, which is an R function called pf. We need to supply
pf with three arguments: the size of the variance ratio (vr), the number of degrees of
freedom in the numerator (9) and the number of degrees of freedom in the denominator
(also 9).

Here are some data to test our function. They are normally distributed random numbers
but the first set has a variance of 4 and the second a variance of 16 (i.e. standard deviations
of 2 and 4, respectively):

a<-rnorm(10,15,2)
b<-rnorm(10,15,4)

Here is our function in action:

variance.ratio(a,b)

[1] 0.01593334

We can compare our p with the p-value given by the built-in function called var.test

var.test(a,b)

F test to compare two variances

data: a and b
F = 0.1748, num df = 9, denom df = 9, p-value = 0.01593
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.04340939 0.70360673

54 THE R BOOK

sample estimates:
ratio of variances

0.1747660

Using Variance

Variance is used in two main ways: for establishing measures of unreliability (e.g. confidence
intervals) and for testing hypotheses (e.g. Student’s t test). Here we will concentrate on the
former; the latter is discussed in Chapter 8.

Consider the properties that you would like a measure of unreliability to possess. As
the variance of the data increases, what would happen to the unreliability of estimated
parameters? Would it go up or down? Unreliability would go up as variance increased, so
we would want to have the variance on the top (the numerator) of any divisions in our
formula for unreliability:

unreliability ∝ s2�

What about sample size? Would you want your estimate of unreliability to go up or down
as sample size, n, increased? You would want unreliability to go down as sample size went
up, so you would put sample size on the bottom of the formula for unreliability (i.e. in the
denominator):

unreliability ∝ s2

n
�

Finally, consider the units in which unreliability is measured. What are the units in
which our current measure is expressed? Sample size is dimensionless, but variance is
based on the sum of squared differences, so it has dimensions of mean squared. So if the
mean was a length in cm, the variance would be an area in cm2. This is an unfortunate
state of affairs. It would make good sense to have the dimensions of the unreliability
measure and of the parameter whose unreliability it is measuring the same. That is why
all unreliability measures are enclosed inside a big square root term. Unreliability measures
are called standard errors. What we have just worked out is the standard error of the
mean,

seȳ =
√

s2

n
�

where s2 is the variance and n is the sample size. There is no built-in R function to calculate
the standard error of a mean, but it is easy to write one:

se<-function(x) sqrt(var(x)/length(x))

You can refer to functions from within other functions. Recall that a confidence interval
(CI) is ‘t from tables times the standard error’:

CI = t
/2�df × se�

ESSENTIALS OF THE R LANGUAGE 55

The R function qt gives the value of Student’s t with 1 −
/2 =0.975 and degrees of
freedom df = length(x)-1. Here is a function called ci95 which uses our function se to
compute 95% confidence intervals for a mean:

ci95<-function(x) {
t.value<- qt(0.975,length(x)-1)
standard.error<-se(x)
ci<-t.value*standard.error
cat("95% Confidence Interval = ", mean(x) -ci, "to ", mean(x) +ci,"\n") }

We can test the function with 150 normally distributed random numbers with mean 25 and
standard deviation 3:

x<-rnorm(150,25,3)
ci95(x)

95% Confidence Interval = 24.76245 to 25.74469

If we were to repeat the experiment, we can be 95% certain that the mean of the new sample
would lie between 24.76 and 25.74.

We can use the se function to investigate how the standard error of the mean changes with
the sample size. First we generate one set of data from which we shall take progressively
larger samples:

xv<-rnorm(30)

Now in a loop take samples of size 2� 3� 4� � � � � 30:

sem<-numeric(30)
sem[1]<-NA
for(i in 2:30) sem[i]<-se(xv[1:i])
plot(1:30,sem,ylim=c(0,0.8),

ylab="standard error of mean",xlab="sample size n",pch=16)

You can see clearly that as the sample size falls below about n = 15, so the standard error
of the mean increases rapidly. The blips in the line are caused by outlying values being
included in the calculations of the standard error with increases in sample size. The smooth
curve is easy to compute: since the values in xv came from a standard normal distribution
with mean 0 and standard deviation 1, so the average curve would be 1/

√
n which we can

add to our graph using lines:

lines(2:30,1/sqrt(2:30))

56 THE R BOOK

sample size n

st
an

da
rd

 e
rr

or
 o

f m
ea

n

302520151050

0.
0

0.
2

0.
4

0.
6

0.
8

You can see that our single simulation captured the essence of the shape but was wrong in
detail, especially for the samples with the lowest replication. However, our single sample
was reasonably good for n > 24.

Error Bars

There is no function in the base package of R for drawing error bars on bar charts, although
several contributed packages use the arrows function for this purpose (p. 147). Here is a
simple, stripped down function that is supplied with three arguments: the heights of the
bars (yv), the lengths (up and down) of the error bars �z� and the labels for the bars on the
x axis (nn):

error.bars<-function(yv,z,nn){
xv<-
barplot(yv,ylim=c(0,(max(yv)+max(z))),names=nn,ylab=deparse(substitute(yv)
))
g=(max(xv)-min(xv))/50
for (i in 1:length(xv)) {
lines(c(xv[i],xv[i]),c(yv[i]+z[i],yv[i]-z[i]))
lines(c(xv[i]-g,xv[i]+g),c(yv[i]+z[i], yv[i]+z[i]))
lines(c(xv[i]-g,xv[i]+g),c(yv[i]-z[i], yv[i]-z[i]))
}}

Here is the error.bars function in action with the plant competition data (p. 370):

comp<-read.table("c:\\temp\\competition.txt",header=T)
attach(comp)

ESSENTIALS OF THE R LANGUAGE 57

names(comp)

[1] "biomass" "clipping"

se<-rep(28.75,5)
labels<-as.character(levels(clipping))
ybar<-as.vector(tapply(biomass,clipping,mean))

Now the invoke the function with the means, standard errors and bar labels:

error.bars(ybar,se,labels)

yb
ar

r5r10n50n25control

0
10

0
20

0
30

0
40

0
50

0
60

0

Here is a function to plot error bars on a scatterplot in both the x and y directions:

xy.error.bars<-function (x,y,xbar,ybar){
plot(x, y, pch=16, ylim=c(min(y-ybar),max(y+ybar)),

xlim=c(min(x-xbar),max(x+xbar)))
arrows(x, y-ybar, x, y+ybar, code=3, angle=90, length=0.1)
arrows(x-xbar, y, x+xbar, y, code=3, angle=90, length=0.1) }

We test it with these data:

x <- rnorm(10,25,5)
y <- rnorm(10,100,20)
xb <- runif(10)*5
yb <- runif(10)*20
xy.error.bars(x,y,xb,yb)

58 THE R BOOK

x

y

50
60

70
80

90
10

0
11

0
12

0

15 20 25 30 35

Loops and Repeats

The classic, Fortran-like loop is available in R. The syntax is a little different, but the idea
is identical; you request that an index, i, takes on a sequence of values, and that one or more
lines of commands are executed as many times as there are different values of i. Here is a
loop executed five times with the values of i from 1 to 5: we print the square of each value:

for (i in 1:5) print(i∧2)

[1] 1
[1] 4
[1] 9
[1] 16
[1] 25

For multiple lines of code, you use curly brackets {} to enclose material over which the
loop is to work. Note that the ‘hard return’ (the Enter key) at the end of each command line
is an essential part of the structure (you can replace the hard returns by semicolons if you
like, but clarity is improved if you put each command on a separate line):

j<-k<-0
for (i in 1:5) {
j<-j+1
k<-k+i*j
print(i+j+k) }

[1] 3
[1] 9

ESSENTIALS OF THE R LANGUAGE 59

[1] 20
[1] 38
[1] 65

Here we use a for loop to write a function to calculate factorial x (written x!) which is

x! = x × �x − 1� × �x − 2� × �x − 3� � � � × 2 × 1

So 4! = 4 × 3 × 2 = 24. Here is the function:

fac1<-function(x) {
f <- 1
if (x<2) return (1)
for (i in 2:x) {
f <- f*i
f }}

That seems rather complicated for such a simple task, but we can try it out for the numbers
0 to 5:

sapply(0:5,fac1)

[1] 1 1 2 6 24 120

There are two other looping functions in R: repeat and while. We demonstrate their use
for the purpose of illustration, but we can do much better in terms of writing a compact
function for finding factorials (see below). First, the while function:

fac2<-function(x) {
f <- 1
t <- x
while(t>1) {
f <- f*t
t <- t-1 }
return(f) }

The key point is that if you want to use while, you need to set up an indicator variable (t
in this case) and change its value within each iteration (t<-t-1). We test the function on the
numbers 0 to 5:

sapply(0:5,fac2)

[1] 1 1 2 6 24 120

Finally, we demonstrate the use of the repeat function:

fac3<-function(x) {
f <- 1
t <- x
repeat {
if (t<2) break
f <- f*t
t <- t-1 }
return(f) }

60 THE R BOOK

Because the repeat function contains no explicit limit, you need to be careful not to program
an infinite loop. You must have a logical escape clause that leads to a break command:

sapply(0:5,fac3)

[1] 1 1 2 6 24 120

It is almost always better to use a built-in function that operates on the entire vector and
hence removes the need for loops or repeats of any sort. In this case, we can make use of
the cumulative product function, cumprod. Here it is in action:

cumprod(1:5)

[1] 1 2 6 24 120

This is already pretty close to what we need for our factorial function. It does not work for
0! of course, because the whole vector would end up full of zeros if the first element in the
vector was zero (try 0:5 and see). The factorial of x > 0 is the maximum value from the
vector produced by cumprod:

fac4<-function(x) max(cumprod(1:x))

This definition has the desirable side effect that it also gets 0! correct, because when x is 0
the function finds the maximum of 1 and 0 which is 1 which is 0!.

max(cumprod(1:0))

[1] 1

sapply(0:5,fac4)

[1] 1 1 2 6 24 120

Alternatively, you could adapt an existing built-in function to do the job. x! is the same
as ��x + 1�, so

fac5<-function(x) gamma(x+1)
sapply(0:5,fac5)

[1] 1 1 2 6 24 120

Until recently there was no built-in factorial function in R, but now there is:

sapply(0:5,factorial)

[1] 1 1 2 6 24 120

Here is a function that uses the while function in converting a specified number to its
binary representation. The trick is that the smallest digit (0 for even or 1 for odd numbers)
is always at the right-hand side of the answer (in location 32 in this case):

binary<-function(x) {
i<-0
string<-numeric(32)
while(x>0) {

string[32-i]<-x %% 2
x<-x%/% 2
i<-i+1 }

ESSENTIALS OF THE R LANGUAGE 61

first<-match(1,string)
string[first:32] }

The leading zeros (1 to first − 1) within the string are not printed. We run the function to
find the binary representation of the numbers 15 to 17:

sapply(15:17,binary)

[[1]]
[1] 1 1 1 1

[[2]]
[1] 1 0 0 0 0

[[3]]
[1] 1 0 0 0 1

The next function uses while to generate the Fibonacci series 1, 1, 2, 3, 5, 8, � � � in which
each term is the sum of its two predecessors. The key point about while loops is that the
logical variable controlling their operation is altered inside the loop. In this example, we
alter n, the number whose Fibonacci number we want, starting at n, reducing the value of
n by 1 each time around the loop, and ending when n gets down to 0. Here is the code:

fibonacci<-function(n) {
a<-1
b<-0
while(n>0)

{swap<-a
a<-a+b
b<-swap
n<-n-1 }

b }

An important general point about computing involves the use of the swap variable above.
When we replace a by a + b on line 6 we lose the original value of a. If we had not stored
this value in swap, we could not set the new value of b to the old value of a on line 7. Now
test the function by generating the Fibonacci numbers 1 to 10:

sapply(1:10,fibonacci)

[1] 1 1 2 3 5 8 13 21 34 55

Loop avoidance

It is good R programming practice to avoid using loops wherever possible. The use of vector
functions (p. 17) makes this particularly straightforward in many cases. Suppose that you
wanted to replace all of the negative values in an array by zeros. In the old days, you might
have written something like this:

for (i in 1:length(y)) { if(y[i] < 0) y[i] <- 0 }

Now, however, you would use logical subscripts (p. 21) like this:

y [y < 0] <- 0

62 THE R BOOK

The ifelse function

Sometimes you want to do one thing if a condition is true and a different thing if the
condition is false (rather than do nothing, as in the last example). The ifelse function allows
you to do this for entire vectors without using for loops. We might want to replace any
negative values of y by −1 and any positive values and zero by +1:

z <- ifelse (y < 0, -1, 1)

Here we use ifelse to convert the continuous variable called Area into a new, two-level
factor with values ‘big’ and ‘small’ defined by the median Area of the fields:

data<-read.table("c:\\temp\\worms.txt",header=T)
attach(data)
ifelse(Area>median(Area),"big","small")

[1] "big" "big" "small" "small" "big" "big" "big" "small" "small"
[10] "small" "small" "big" "big" "small" "big" "big" "small" "big"
[19] "small" "small"

You should use the much more powerful function called cut when you want to convert a
continuous variable like Area into many levels (p. 241).

Another use of ifelse is to override R’s natural inclinations. The log of zero in R is -Inf,
as you see in these 20 random numbers from a Poisson process with a mean count of 1.5:

y<-log(rpois(20,1.5))
y

[1] 0.0000000 1.0986123 1.0986123 0.6931472 0.0000000 0.6931472 0.6931472
[8] 0.0000000 0.0000000 0.0000000 0.0000000 -Inf -Inf -Inf

[15] 1.3862944 0.6931472 1.6094379 -Inf -Inf 0.0000000

However, we want the log of zero to be represented by NA in our particular application:

ifelse(y<0,NA,y)

[1] 0.0000000 1.0986123 1.0986123 0.6931472 0.0000000 0.6931472 0.6931472
[8] 0.0000000 0.0000000 0.0000000 0.0000000 NA NA NA

[15] 1.3862944 0.6931472 1.6094379 NA NA 0.0000000

The slowness of loops

To see how slow loops can be, we compare two ways of finding the maximum number in
a vector of 10 million random numbers from a uniform distribution:

x<-runif(10000000)

First, using the vector function max:

system.time(max(x))

[1] 0.13 0.00 0.12 NA NA

As you see, this operation took just over one-tenth of a second (0.12) to solve using the
vector function max to look at the 10 million numbers in x. Using a loop, however, took
more than 15 seconds:

pc<-proc.time()
cmax<-x[1]

ESSENTIALS OF THE R LANGUAGE 63

for (i in 2:10000000) {
if(x[i]>cmax) cmax<-x[i] }
proc.time()-pc

[1] 15.52 0.00 15.89 NA NA

The functions system.time and proc.time produce a vector of five numbers, showing the
user, system and total elapsed times for the currently running R process, and the cumulative
sum of user (subproc1) and system times (subproc2) of any child processes spawned by it
(none in this case, so NA). It is the third number (elapsed time in seconds) that is typically
the most useful.

Do not ‘grow’ data sets in loops or recursive function calls

Here is an extreme example of what not to do. We want to generate a vector containing the
integers 1 to 1 000 000:

z<-NULL
for (i in 1:1000000){
z<-c(z,i) }

This took a ridiculous 4 hours 14 minutes to execute. The moral is clear: do not use
concatenation c(z,i) to generate iterative arrays. The simple way to do it,

z<-1:1000000

took 0.05 seconds to accomplish.

The switch Function

When you want a function to do different things in different circumstances, then the
switch function can be useful. Here we write a function that can calculate any one of four
different measures of central tendency: arithmetic mean, geometric mean, harmonic mean
or median (p. 51). The character variable called measure should take one value of Mean,
Geometric, Harmonic or Median; any other text will lead to the error message Measure
not included. Alternatively, you can specify the number of the switch (e.g. 1 for Mean,
4 for Median).

central<-function(y, measure) {
switch(measure,

Mean = mean(y),
Geometric = exp(mean(log(y))),
Harmonic = 1/mean(1/y),
Median = median(y),

stop("Measure not included")) }

Note that you have to include the character strings in quotes as arguments to the function,
but they must not be in quotes within the switch function itself.

central(rnorm(100,10,2),"Harmonic")

[1] 9.554712

central(rnorm(100,10,2),4)

[1] 10.46240

64 THE R BOOK

The Evaluation Environment of a Function

When a function is called or invoked a new evaluation frame is created. In this frame
the formal arguments are matched with the supplied arguments according to the rules of
argument matching (below). The statements in the body of the function are evaluated
sequentially in this environment frame.

The first thing that occurs in a function evaluation is the matching of the formal to the
actual or supplied arguments. This is done by a three-pass process:

• Exact matching on tags. For each named supplied argument the list of formal arguments
is searched for an item whose name matches exactly.

• Partial matching on tags. Each named supplied argument is compared to the remaining
formal arguments using partial matching. If the name of the supplied argument matches
exactly with the first part of a formal argument then the two arguments are considered
to be matched.

• Positional matching. Any unmatched formal arguments are bound to unnamed supplied
arguments, in order. If there is a � � � argument, it will take up the remaining arguments,
tagged or not.

• If any arguments remain unmatched an error is declared.

Supplied arguments and default arguments are treated differently. The supplied arguments
to a function are evaluated in the evaluation frame of the calling function. The default
arguments to a function are evaluated in the evaluation frame of the function. In general,
supplied arguments behave as if they are local variables initialized with the value supplied
and the name of the corresponding formal argument. Changing the value of a supplied
argument within a function will not affect the value of the variable in the calling frame.

Scope

The scoping rules are the set of rules used by the evaluator to find a value for a symbol.
A symbol can be either bound or unbound. All of the formal arguments to a function
provide bound symbols in the body of the function. Any other symbols in the body of
the function are either local variables or unbound variables. A local variable is one that is
defined within the function, typically by having it on the left-hand side of an assignment.
During the evaluation process if an unbound symbol is detected then R attempts to find a
value for it: the environment of the function is searched first, then its enclosure and so on
until the global environment is reached. The value of the first match is then used.

Optional Arguments

Here is a function called charplot that produces a scatterplot of x and y using solid red
circles as the plotting symbols: there are two essential arguments (x and y) and two optional
(pc and co) to control selection of the plotting symbol and its colour:

charplot<-function(x,y,pc=16,co="red"){
plot(y~x,pch=pc,col=co)}

ESSENTIALS OF THE R LANGUAGE 65

The optional arguments are given their default values using = in the argument list. To
execute the function you need only provide the vectors of x and y,

charplot(1:10,1:10)

to get solid red circles. You can get a different plotting symbol simply by adding a third
argument

charplot(1:10,1:10,17)

which produces red solid triangles (pch=17). If you want to change only the colour (the
fourth argument) then you have to specify the variable name because the optional arguments
would not then be presented in sequence. So, for navy-coloured solid circles, you put

charplot(1:10,1:10,co="navy")

To change both the plotting symbol and the colour you do not need to specify the variable
names, so long as the plotting symbol is the third argument and the colour is the fourth

charplot(1:10,1:10,15,"green")

which produces solid green squares. Reversing the optional arguments does not work

charplot(1:10,1:10,"green",15)

(this uses the letter g as the plotting symbol and colour no. 15). If you specify both variable
names, then the order does not matter:

charplot(1:10,1:10,co="green",pc=15)

This produces solid green squares despite the arguments being out of sequence.

Variable Numbers of Arguments � � � � �

Some applications are much more straightforward if the number of arguments does not need
to be specified in advance. There is a special formal name � � � (triple dot) which is used in
the argument list to specify that an arbitrary number of arguments are to be passed to the
function. Here is a function that takes any number of vectors and calculates their means and
variances:

many.means <- function (� � �) {
data <- list(� � �)
n<- length(data)
means <- numeric(n)
vars <- numeric(n)
for (i in 1:n) {

means[i]<-mean(data[[i]])
vars[i]<-var(data[[i]])

}
print(means)
print(vars)
invisible(NULL)

}

66 THE R BOOK

The main features to note are these. The function definition has � � � as its only argument. The
‘triple dot’ argument � � � allows the function to accept additional arguments of unspecified
name and number, and this introduces tremendous flexibility into the structure and behaviour
of functions. The first thing done inside the function is to create an object called data out
of the list of vectors that are actually supplied in any particular case. The length of this list
is the number of vectors, not the lengths of the vectors themselves (these could differ from
one vector to another, as in the example below). Then the two output variables (means and
vars) are defined to have as many elements as there are vectors in the parameter list. The
loop goes from 1 to the number of vectors, and for each vector uses the built-in functions
mean and var to compute the answers we require. It is important to note that because data
is a list, we use double [[]] subscripts in addressing its elements.

Now try it out. To make things difficult we shall give it three vectors of different lengths.
All come from the standard normal distribution (with mean 0 and variance 1) but x is 100
in length, y is 200 and z is 300 numbers long.

x<-rnorm(100)
y<-rnorm(200)
z<-rnorm(300)

Now we invoke the function:

many.means(x,y,z)

[1] -0.039181830 0.003613744 0.050997841
[1] 1.146587 0.989700 0.999505

As expected, all three means (top row) are close to 0 and all 3 variances are close to 1 (bottom
row). You can use � � � to absorb some arguments into an intermediate function which can
then be extracted by functions called subsequently. R has a form of lazy evaluation of
function arguments in which arguments are not evaluated until they are needed (in some
cases the argument will never be evaluated).

Returning Values from a Function

Often you want a function to return a single value (like a mean or a maximum), in which
case you simply leave the last line of the function unassigned (i.e. there is no ‘gets arrow’ on
the last line). Here is a function to return the median value of the parallel maxima (built-in
function pmax) of two vectors supplied as arguments:

parmax<-function (a,b) {
c<-pmax(a,b)
median(c) }

Here is the function in action: the unassigned last line median(c) returns the answer

x<-c(1,9,2,8,3,7)
y<-c(9,2,8,3,7,2)
parmax(x,y)

[1] 8

If you want to return two or more variables from a function you should use return with
a list containing the variables to be returned. Suppose we wanted the median value of both
the parallel maxima and the parallel minima to be returned:

ESSENTIALS OF THE R LANGUAGE 67

parboth<-function (a,b) {
c<-pmax(a,b)
d<-pmin(a,b)
answer<-list(median(c),median(d))
names(answer)[[1]]<-"median of the parallel maxima"
names(answer)[[2]]<-"median of the parallel minima"
return(answer) }

Here it is in action with the same x and y data as above:

parboth(x,y)

$"median of the parallel maxima"
[1] 8

$"median of the parallel minima"
[1] 2

The point is that you make the multiple returns into a list, then return the list. The provision of
multi-argument returns (e.g. return(median(c),median(d)) in the example above) has been
deprecated in R and a warning is given, as multi-argument returns were never documented
in S, and whether or not the list was named differs from one version of S to another.

Anonymous Functions

Here is an example of an anonymous function. It generates a vector of values but the
function is not allocated a name (although the answer could be).

(function(x,y){ z <- 2*x^2 + y^2; x+y+z })(0:7, 1)

[1] 2 5 12 23 38 57 80 107

The function first uses the supplied values of x and y to calculate z, then returns the value
of x+ y + z evaluated for eight values of x (from 0 to 7) and one value of y (1). Anonymous
functions are used most frequently with apply, sapply and lapply (p. 68).

Flexible Handling of Arguments to Functions

Because of the lazy evaluation practised by R, it is very simple to deal with missing
arguments in function calls, giving the user the opportunity to specify the absolute minimum
number of arguments, but to override the default arguments if they want to. As a simple
example, take a function plotx2 that we want to work when provided with either one or
two arguments. In the one-argument case (only an integer x > 1 provided), we want it to
plot z2 against z for z = 1 to x in steps of 1. In the second case, when y is supplied, we
want it to plot y against z for z = 1 to x.

plotx2 <- function (x, y=z^2) {
z<-1:x
plot(z,y,type="l") }

In many other languages, the first line would fail because z is not defined at this point. But
R does not evaluate an expression until the body of the function actually calls for it to be

68 THE R BOOK

evaluated (i.e. never, in the case where y is supplied as a second argument). Thus for the
one-argument case we get a graph of z2 against z and in the two-argument case we get a
graph of y against z (in this example, the straight line 1:12 vs. 1:12)

par(mfrow=c(1,2))
plotx2(12)
plotx2(12,1:12)

z

2

yy

2
4

6
8

10
12

20
0

40
60

80
12

0

4 6 8 10 12

z

2 4 6 8 10 12

You need to specify that the type of plot you want is a line (type="l" using lower-case
L, not upper-case I and not number 1) because the default is to produce a scatterplot with
open circles as the plotting symbol (type="p"). If you want your plot to consist of points
with lines joining the dots, then use type="b" (for ‘both’ lines and points). Other types of
plot that you might want to specify include vertical lines from the x axis up to the value of
the response variable (type="h"), creating an effect like very slim barplots or histograms,
and type="s" to produce a line drawn as steps between successive ranked values of x. To
plot the scaled axes, but no lines or points, use type="n" (see p. 137).

It is possible to access the actual (not default) expressions used as arguments inside the
function. The mechanism is implemented via promises. You can find an explanation of
promises by typing ?promise at the command prompt.

Evaluating Functions with apply, sapply and lapply

apply and sapply

The apply function is used for applying functions to the rows or columns of matrices or
dataframes. For example:

(X<-matrix(1:24,nrow=4))

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 5 9 13 17 21
[2,] 2 6 10 14 18 22
[3,] 3 7 11 15 19 23
[4,] 4 8 12 16 20 24

Note that placing the expression to be evaluated in parentheses (as above) causes the value
of the result to be printed on the screen. This saves an extra line of code, because to achieve
the same result without parentheses requires us to type

ESSENTIALS OF THE R LANGUAGE 69

X<-matrix(1:24,nrow=4)
X

Often you want to apply a function across one of the margins of a matrix – margin 1
being the rows and margin 2 the columns. Here are the row totals (four of them):

apply(X,1,sum)

[1] 66 72 78 84

and here are the column totals (six of them):

apply(X,2,sum)

[1] 10 26 42 58 74 90

Note that in both cases, the answer produced by apply is a vector rather than a matrix. You
can apply functions to the individual elements of the matrix rather than to the margins. The
margin you specify influences only the shape of the resulting matrix.

apply(X,1,sqrt)

[,1] [,2] [,3] [,4]
[1,] 1.000000 1.414214 1.732051 2.000000
[2,] 2.236068 2.449490 2.645751 2.828427
[3,] 3.000000 3.162278 3.316625 3.464102
[4,] 3.605551 3.741657 3.872983 4.000000
[5,] 4.123106 4.242641 4.358899 4.472136
[6,] 4.582576 4.690416 4.795832 4.898979

apply(X,2,sqrt)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.000000 2.236068 3.000000 3.605551 4.123106 4.582576
[2,] 1.414214 2.449490 3.162278 3.741657 4.242641 4.690416
[3,] 1.732051 2.645751 3.316625 3.872983 4.358899 4.795832
[4,] 2.000000 2.828427 3.464102 4.000000 4.472136 4.898979

Here are the shuffled numbers from each of the rows, using sample without replacement:

apply(X,1,sample)

[,1] [,2] [,3] [,4]
[1,] 5 14 19 8
[2,] 21 10 7 16
[3,] 17 18 15 24
[4,] 1 22 23 4
[5,] 9 2 3 12
[6,] 13 6 11 20

Note that the resulting matrix has 6 rows and 4 columns (i.e. it has been transposed).
You can supply your own function definition within apply like this:

apply(X,1,function(x) x^2+x)

70 THE R BOOK

[,1] [,2] [,3] [,4]
[1,] 2 6 12 20
[2,] 30 42 56 72
[3,] 90 110 132 156
[4,] 182 210 240 272
[5,] 306 342 380 420
[6,] 462 506 552 600

This is an anonymous function because the function is not named.
If you want to apply a function to a vector then use sapply (rather than apply for matrices

or margins of matrices). Here is the code to generate a list of sequences from 1:3 up to 1:7
(see p. 30):

sapply(3:7, seq)

[[1]]
[1] 1 2 3

[[2]]
[1] 1 2 3 4

[[3]]
[1] 1 2 3 4 5

[[4]]
[1] 1 2 3 4 5 6

[[5]]
[1] 1 2 3 4 5 6 7

The function sapply is most useful with complex iterative calculations. The following data
show decay of radioactive emissions over a 50-day period, and we intend to use non-linear
least squares (see p. 663) to estimate the decay rate a in y = exp�−ax�:

sapdecay<-read.table("c:\\temp\\sapdecay.txt",header=T)
attach(sapdecay)
names(sapdecay)

[1] "x" "y"

We need to write a function to calculate the sum of the squares of the differences between
the observed �y� and predicted (yf) values of y, when provided with a specific value of the
parameter a:

sumsq <- function(a,xv=x,yv=y)
{ yf <- exp(-a*xv)
sum((yv-yf)^2) }

We can get a rough idea of the decay constant, a, for these data by linear regression of
log�y� against x, like this:

lm(log(y)~x)

Coefficients:
(Intercept) x
0.04688 -0.05849

ESSENTIALS OF THE R LANGUAGE 71

So our parameter a is somewhere close to 0.058. We generate a range of values for a
spanning an interval on either side of 0.058:

a<-seq(0.01,0.2,.005)

Now we can use sapply to apply the sum of squares function for each of these values of a
(without writing a loop), and plot the deviance against the parameter value for a:

plot(a,sapply(a,sumsq),type="l")

a

sa
pp

ly
(a

, s
um

sq
)

0
1

2
3

4
5

6

0.05 0.10 0.15 0.20

This shows that the least-squares estimate of a is indeed close to 0.06 (this is the value of
a associated with the minimum deviance). To extract the minimum value of a we use min
with subscripts (square brackets) to extract the relevant value of a:

a[min(sapply(a,sumsq))==sapply(a,sumsq)]

[1] 0.055

Finally, we could use this value of a to generate a smooth exponential function to fit through
our scatter of data points:

plot(x,y)
xv<-seq(0,50,0.1)
lines(xv,exp(-0.055*xv))

72 THE R BOOK

y

0.
2

0.
4

0.
6

0.
8

1.
0

x
0 10 20 30 40 50

Here is the same procedure streamlined by using the optimize function. Write a function
showing how the sum of squares depends on the value of the parameter a:

fa<-function(a) sum((y-exp(-a*x))^2)

Now use optimize with a specified range of values for a, here c(0.01,0.1), to find the value
of a that minimizes the sum of squares:

optimize(fa,c(0.01,0.1))

$minimum

[1] 0.05538411

$objective
[1] 0.01473559

The value of a is that minimizes the sum of squares is 0.055 38 and the minimum value of
the sum of squares is 0.0147. What if we had chosen a different way of assessing the fit of
the model to the data? Instead of minimizing the sum of the squares of the residuals, we
might want to minimize the sum of the absolute values of the residuals. We need to write
a new function to calculate this quantity,

fb<-function(a) sum(abs(y-exp(-a*x)))

then use optimize as before:

optimize(fb,c(0.01,0.1))

$minimum

[1] 0.05596058

ESSENTIALS OF THE R LANGUAGE 73

$objective
[1] 0.3939221

The results differ only in the fourth digit after the decimal point, and you could not choose
between the two methods from a plot of the model.

Lists and lapply

We start by creating a list object that consists of three parts: character information in a
vector called a, numeric information in a vector called b, and logical information in a vector
called c:

a<-c("a","b","c","d")
b<-c(1,2,3,4,4,3,2,1)
c<-c(T,T,F)

We create our list object by using the list function to bundle these variables together:

list.object<-list(a,b,c)
class(list.object)

[1] "list"

To see the contents of the list we just type its name:

list.object

[[1]]
[1] "a" "b" "c" "d"

[[2]]
[1] 1 2 3 4 4 3 2 1

[[3]]
[1] TRUE TRUE FALSE

The function lapply applies a specified function to each of the elements of a list in turn
(without the need for specifying a loop, and not requiring us to know how many elements
there are in the list). A useful function to apply to lists is the length function; this asks the
question how many elements comprise each component of the list. Technically we want to
know the length of each of the vectors making up the list:

lapply(list.object,length)

[[1]]
[1] 4

[[2]]
[1] 8

[[3]]
[1] 3

This shows that list.object consists of three vectors ([[1]], [[2]] and [[3]]), and shows that
there were four elements in the first vector, eight in the second and three in the third. But
four of what, and eight of what? To find out, we apply the function class to the list:

74 THE R BOOK

lapply(list.object,class)

[[1]]
[1] "character"

[[2]]
[1] "numeric"

[[3]]
[1] "logical"

So the answer is there were 4 characters in the first vector, 8 numbers in the second and 3
logical values in the third vector.

Applying numeric functions to lists will only work for objects of class numeric or objects
(like logical values) that can be coerced into numbers. Here is what happens when we use
lapply to apply the function mean to list.object:

lapply(list.object,mean)

[[1]]
[1] NA

[[2]]
[1] 2.5

[[3]]
[1] 0.6666667

Warning message:
argument is not numeric or logical: returning NA in:
mean.default(X[[1]], � � �)

We get a warning message pointing out that the first vector cannot be coerced to a number
(it is not numeric or logical), so NA appears in the output. The second vector is averaged as
expected. The third vector produces the answer 2/3 because logical false (F) is coerced to
numeric 0 and logical true (T) is coerced to numeric 1.

Looking for runs of numbers within vectors

The function is called rle, which stands for ‘run length encoding’ and is most easily
understood with an example. Here is a vector of 150 random numbers from a Poisson
distribution with mean 0.7:

(poisson<-rpois(150,0.7))

[1] 1 1 0 0 2 1 0 1 0 1 0 0 0 0 2 1 0 0 3 1
0 0 1 0 2 0 1 1 0 0 0 1 0 0 0 2 1

[38] 0 0 0 1 0 0 0 2 0 0 0 1 1 0 2 1 0 0 0 2
0 0 2 3 2 1 0 2 0 0 0 0 0 1 1 0 0

[75] 0 0 0 1 1 1 0 0 1 0 1 2 2 0 0 2 0 0 0 0
0 0 0 2 1 0 0 1 0 1 0 1 1 1 2 0 3

[112] 0 0 2 0 0 1 0 1 0 4 0 0 1 0 2 1 0 1 1 0
0 1 3 3 0 0 1 1 0 1 0 0 0 0 0 1 0

[149] 2 0

ESSENTIALS OF THE R LANGUAGE 75

We can do our own run length encoding on the vector by eye: there is a run of two 1s,
then a run of two 0s, then a single 2, then a single 1, then a single 0, and so on. So the run
lengths are 2, 2, 1, 1, 1, 1, � � � . The values associated with these runs were 1, 0, 2, 1, 0,
1, � � � . Here is the output from rle:

rle(poisson)

Run Length Encoding
lengths: int [1:93] 2 2 1 1 1 1 1 1 4 1 � � �

values : num [1:93] 1 0 2 1 0 1 0 1 0 2 � � �

The object produced by rle is a list of two vectors: the lengths and the values. To find the
longest run, and the value associated with that longest run, we use the indexed lists like this:

max(rle(poisson)[[1]])

[1] 7

So the longest run in this vector of numbers was 7. But 7 of what? We use which to find
the location of the 7 in lengths, then apply this index to values to find the answer:

which(rle(poisson)[[1]]==7)

[1] 55

rle(poisson)[[2]][55]

[1] 0

So, not surprisingly given that the mean was just 0.7, the longest run was of zeros.
Here is a function to return the length of the run and its value for any vector:

run.and.value<-function (x) {
a<- max(rle(poisson)[[1]])
b<-rle(poisson)[[2]][which(rle(poisson)[[1]] == a)]
cat("length = ",a," value = ",b, "\n")}

Testing the function on the vector of 150 Poisson data gives

run.and.value(poisson)

length = 7 value = 0

It is sometimes of interest to know the number of runs in a given vector (for instance, the
lower the number of runs, the more aggregated the numbers; and the greater the number of
runs, the more regularly spaced out). We use the length function for this:

length(rle(poisson)[[2]])

[1] 93

indicating that the 150 values were arranged in 93 runs (an intermediate value, characteristic
of a random pattern). The value 93 appears in square brackets [1:93] in the output of the
run length encoding function.

In a different example, suppose we had n1 values of 1 representing ‘present’ and n2

values of 0 representing ‘absent’, then the minimum number of runs would be 2 (a solid
block of 1s and a sold block of 0s). The maximum number of runs would be 2n + 1 if they
alternated (until the smaller number n = min(n1,n2) ran out). Here is a simple runs test
based on 1000 randomizations of 25 ones and 30 zeros:

76 THE R BOOK

n1<-25
n2<-30
y<-c(rep(1,n1),rep(0,n2))
len<-numeric(10000)
for (i in 1:10000) len[i]<-length(rle(sample(y))[[2]])
quantile(len,c(0.025,0.975))

2.5% 97.5%
21 35

Thus, for these data (n1 = 25 and n2 = 30) an aggregated pattern would score 21 or fewer
runs, and a regular pattern would score 35 or more runs. Any scores between 21 and 35 fall
within the realm of random patterns.

Saving Data Produced within R to Disc

It is often convenient to generate numbers within R and then to use them somewhere else
(in a spreadsheet, say). Here are 1000 random integers from a negative binomial distribution
with mean mu= 1.2 and clumping parameter or aggregation parameter �k� size = 1.0, that
I want to save as a single column of 1000 rows in a file called nbnumbers.txt in directory
‘temp’ on the c: drive:

nbnumbers<-rnbinom(1000, size=1, mu=1.2)

There is general point to note here about the number and order of arguments provided
to built-in functions like rnbinom. This function can have two of three optional arguments:
size, mean (mu) and probability (prob) (see ?rnbinom). R knows that the unlabelled number
1000 refers to the number of numbers required because of its position, first in the list
of arguments. If you are prepared to specify the names of the arguments, then the order
in which they appear is irrelevant: rnbinom(1000, size=1, mu=1.2) and rnbinom(1000,
mu=1.2, size=1) would give the same output. If optional arguments are not labelled, then
their order is crucial: so rnbinom(1000, 0.9, 0.6) is different from rnbinom(1000, 0.6,
0.9) because if there are no labels, then the second argument must be size and the third
argument must be prob.

To export the numbers I use write like this, specifying that the numbers are to be output
in a single column (i.e. with third argument 1 because the default is 5 columns):

write(nbnumbers,"c:\\temp\\nbnumbers.txt",1)

Sometimes you will want to save a table or a matrix of numbers to file. There is an issue
here, in that the write function transposes rows and columns. It is much simpler to use the
write.table function which does not transpose the rows and columns

xmat<-matrix(rpois(100000,0.75),nrow=1000)
write.table(xmat,"c:\\temp\\table.txt",col.names=F,row.names=F)

but it does add made-up row names and column names unless (as here) you specify
otherwise. You have saved 1000 rows each of 100 Poisson random numbers with �= 0�75.

Suppose that you have counted the number of different entries in the vector of negative
binomial numbers (above):

nbtable<-table(nbnumbers)
nbtable

ESSENTIALS OF THE R LANGUAGE 77

nbnumbers

0 1 2 3 4 5 6 7 8 9 11 15
445 248 146 62 41 33 13 4 1 5 1 1

and you want write this output to a file. If you want to save both the counts and their
frequencies in adjacent columns, use

write.table(nbtable,"c:\\temp\\table.txt",col.names=F,row.names=F)

but if you only want to export a single column of frequencies (445, 248, .. etc) use

write.table(unclass(nbtable),"c:\\temp\\table.txt",col.names=F,row.names=F)

Pasting into an Excel Spreadsheet

Writing a vector from R to the Windows clipboard uses the function writeClipboard(x)
where x is a character vector, so you need to build up a spreadsheet in Excel one column
at a time. Remember that character strings in dataframes are converted to factors on input
unless you protect them by as.is(name) on input. For example

writeClipboard(as.character(factor.name))

Go into Excel and press Ctrl+V, and then back into R and type

writeClipboard(as.character(numeric.variable))

Then go into Excel and Ctrl+V in the second column, and so on.

Writing an Excel Readable File from R

Suppose you want to transfer the dataframe called data to Excel:

write.table(data,"clipboard",sep="\t",col.names=NA)

Then, in Excel, just type Ctrl+V or click on the Paste icon (the clipboard).

Testing for Equality

You need to be careful in programming when you want to test whether or not two computed
numbers are equal. R will assume that you mean ‘exactly equal’, and what that means
depends upon machine precision. Most numbers are rounded to 53 binary digits accuracy.
Typically therefore, two floating point numbers will not reliably be equal unless they were
computed by the same algorithm, and not always even then. You can see this by squaring
the square root of 2: surely these values are the same?

x <- sqrt(2)
x * x == 2

[1] FALSE

78 THE R BOOK

We can see by how much the two values differ by subtraction:

x * x - 2

[1] 4.440892e-16

Sets: union, intersect and setdiff

There are three essential functions for manipulating sets. The principles are easy to see if
we work with an example of two sets:

setA<-c("a", "b", "c", "d", "e")
setB<-c("d", "e", "f", "g")

Make a mental note of what the two sets have in common, and what is unique to each.
The union of two sets is everything in the two sets taken together, but counting elements

only once that are common to both sets:

union(setA,setB)

[1] "a" "b" "c" "d" "e" "f" "g"

The intersection of two sets is the material that they have in common:

intersect(setA,setB)

[1] "d" "e"

Note, however, that the difference between two sets is order-dependent. It is the material
that is in the first named set, that is not in the second named set. Thus setdiff(A,B) gives a
different answer than setdiff(B,A). For our example,

setdiff(setA,setB)

[1] "a" "b" "c"

setdiff(setB,setA)

[1] "f" "g"

Thus, it should be the case that setdiff(setA,setB) plus intersect(setA,setB) plus set-
diff(setB,setA) is the same as the union of the two sets. Let’s check:

all(c(setdiff(setA,setB),intersect(setA,setB),setdiff(setB,setA))==
union(setA,setB))

[1] TRUE

There is also a built-in function setequal for testing if two sets are equal

setequal(c(setdiff(setA,setB),intersect(setA,setB),setdiff(setB,setA)),
union(setA,setB))

[1] TRUE

You can use %in% for comparing sets. The result is a logical vector whose length matches
the vector on the left

ESSENTIALS OF THE R LANGUAGE 79

setA %in% setB

[1] FALSE FALSE FALSE TRUE TRUE

setB %in% setA

[1] TRUE TRUE FALSE FALSE

Using these vectors of logical values as subscripts, we can demonstrate, for instance, that
setA[setA %in% setB] is the same as intersect(setA,setB):

setA[setA %in% setB]

[1] "d" "e"

intersect(setA,setB)

[1] "d" "e"

Pattern Matching

We need a dataframe with a serious amount of text in it to make these exercises relevant:

wf<-read.table("c:\\temp\\worldfloras.txt",header=T)
attach(wf)
names(wf)

[1] "Country" "Latitude" "Area" "Population" "Flora"
[6] "Endemism" "Continent"

Country

As you can see, there are 161 countries in this dataframe (strictly, 161 places, since some
of the entries, such as Sicily and Balearic Islands, are not countries). The idea is that we
want to be able to select subsets of countries on the basis of specified patterns within the
character strings that make up the country names (factor levels). The function to do this
is grep. This searches for matches to a pattern (specified in its first argument) within the
character vector which forms the second argument. It returns a vector of indices (subscripts)
within the vector appearing as the second argument, where the pattern was found in whole
or in part. The topic of pattern matching is very easy to master once the penny drops, but it
hard to grasp without simple, concrete examples. Perhaps the simplest task is to select all
the countries containing a particular letter – for instance, upper case R:

as.vector(Country[grep("R",as.character(Country))])

[1] "Central African Republic" "Costa Rica"
[3] "Dominican Republic" "Puerto Rico"
[5] "Reunion" "Romania"
[7] "Rwanda" "USSR"

To restrict the search to countries whose first name begins with R use the ∧ character
like this:

as.vector(Country[grep("^R",as.character(Country))])

[1] "Reunion" "Romania" "Rwanda"

To select those countries with multiple names with upper case R as the first letter of their
second or subsequent names, we specify the character string as ‘blank R’ like this:

80 THE R BOOK

as.vector(Country[grep(" R",as.character(Country)])

[1] "Central African Republic" "Costa Rica"
[3] "Dominican Republic" "Puerto Rico"

To find all the countries with two or more names, just search for a blank " "

as.vector(Country[grep(" ",as.character(Country))])

[1] "Balearic Islands" "Burkina Faso"
[3] "Central African Republic" "Costa Rica"
[5] "Dominican Republic" "El Salvador"
[7] "French Guiana" "Germany East"
[9] "Germany West" "Hong Kong"

[11] "Ivory Coast" "New Caledonia"
[13] "New Zealand" "Papua New Guinea"
[15] "Puerto Rico" "Saudi Arabia"
[17] "Sierra Leone" "Solomon Islands"
[19] "South Africa" "Sri Lanka"
[21] "Trinidad & Tobago" "Tristan da Cunha"
[23] "United Kingdom" "Viet Nam"
[25] "Yemen North" "Yemen South"

To find countries with names ending in ‘y’ use the $ (dollar) symbol like this:

as.vector(Country[grep("y$",as.character(Country))])

[1] "Hungary" "Italy" "Norway" "Paraguay" "Sicily" "Turkey"
[7] "Uruguay"

To recap: the start of the character string is denoted by ^ and the end of the character string
is denoted by $. For conditions that can be expressed as groups (say, series of numbers or
alphabetically grouped lists of letters), use square brackets inside the quotes to indicate the
range of values that is to be selected. For instance, to select countries with names containing
upper-case letters from C to E inclusive, write:

as.vector(Country[grep("[C-E]",as.character(Country))])

[1] "Cameroon" "Canada"
[3] "Central African Republic" "Chad"
[5] "Chile" "China"
[7] "Colombia" "Congo"
[9] "Corsica" "Costa Rica"

[11] "Crete" "Cuba"
[13] "Cyprus" "Czechoslovakia"
[15] "Denmark" "Dominican Republic"
[17] "Ecuador" "Egypt"
[19] "El Salvador" "Ethiopia"
[21] "Germany East" "Ivory Coast"
[23] "New Caledonia" "Tristan da Cunha"

Notice that this formulation picks out countries like Ivory Coast and Tristan da Cunha that
contain upper-case Cs in places other than as their first letters. To restrict the choice to first
letters use the ^ operator before the list of capital letters:

as.vector(Country[grep("^[C-E]",as.character(Country))])

ESSENTIALS OF THE R LANGUAGE 81

[1] "Cameroon" "Canada"
[3] "Central African Republic" "Chad"
[5] "Chile" "China"
[7] "Colombia" "Congo"
[9] "Corsica" "Costa Rica"
[11] "Crete" "Cuba"
[13] "Cyprus" "Czechoslovakia"
[15] "Denmark" "Dominican Republic"
[17] "Ecuador" "Egypt"
[19] "El Salvador" "Ethiopia"

How about selecting the counties not ending with a specified patterns? The answer is
simply to use negative subscripts to drop the selected items from the vector. Here are the
countries that do not end with a letter between ‘a’ and ‘t’:

as.vector(Country[-grep("[a-t]$",as.character(Country))])

[1] "Hungary" "Italy" "Norway" "Paraguay" "Peru" "Sicily"
[7] "Turkey" "Uruguay" "USA" "USSR" "Vanuatu"

You see that USA and USSR are included in the list because we specified lower-case
letters as the endings to omit. To omit these other countries, put ranges for both upper- and
lower-case letters inside the square brackets, separated by a space:

as.vector(Country[-grep("[A-T a-t]$",as.character(Country))])

[1] "Hungary" "Italy" "Norway" "Paraguay" "Peru" "Sicily"
[7] "Turkey" "Uruguay" "Vanuatu"

Dot . as the ‘anything’ character

Countries with ‘y’ as their second letter are specified by ^.y The ^ shows ‘starting’, then a
single dot means one character of any kind, so y is the specified second character:

as.vector(Country[grep("^.y",as.character(Country))])

[1] "Cyprus" "Syria"

To search for countries with ‘y’ as third letter:

as.vector(Country[grep("^..y",as.character(Country))])

[1] "Egypt" "Guyana" "Seychelles"

If we want countries with ‘y’ as their sixth letter

as.vector(Country[grep("^. {5}y",as.character(Country))])

[1] "Norway" "Sicily" "Turkey"

(5 ‘anythings’ is shown by ‘.’ then curly brackets {5} then y). Which are the countries with
4 or fewer letters in their names?

as.vector(Country[grep("^. {,4}$",as.character(Country))])

[1] "Chad" "Cuba" "Iran" "Iraq" "Laos" "Mali" "Oman"
[8] "Peru" "Togo" "USA" "USSR"

The ‘.’ means ‘anything’ while the {,4} means ‘repeat up to four’ anythings (dots) before $ (the
end of the string). So to find all the countries with 15 or more characters in their name is just

82 THE R BOOK

as.vector(Country[grep("^. {15, }$",as.character(Country))])

[1] "Balearic Islands" "Central African Republic"
[3] "Dominican Republic" "Papua New Guinea"
[5] "Solomon Islands" "Trinidad & Tobago"
[7] "Tristan da Cunha"

Substituting text within character strings

Search-and-replace operations are carried out in R using the functions sub and gsub. The
two substitution functions differ only in that sub replaces only the first occurrence of a
pattern within a character string, whereas gsub replaces all occurrences. An example should
make this clear. Here is a vector comprising seven character strings, called text:

text <- c("arm","leg","head", "foot","hand", "hindleg", "elbow")

We want to replace all lower-case ‘h’ with upper-case ‘H’:

gsub("h","H",text)

[1] "arm" "leg" "Head" "foot" "Hand" "Hindleg" "elbow"

Now suppose we want to convert the first occurrence of a lower-case ‘o’ into an upper-case
‘O’. We use sub for this (not gsub):

sub("o","O",text)

[1] "arm" "leg" "head" "fOot" "hand" "hindleg" "elbOw"

You can see the difference between sub and gsub in the following, where both instances
of ‘o’ in foot are converted to upper case by gsub but not by sub:

gsub("o","O",text)

[1] "arm" "leg" "head" "fOOt" "hand" "hindleg" "elbOw"

More general patterns can be specified in the same way as we learned for grep (above).
For instance, to replace the first character of every string with upper-case ‘O’ we use the
dot notation (. stands for ‘anything’) coupled with ^ (the ‘start of string’ marker):

gsub("^.","O",text)

[1] "Orm" "Oeg" "Oead" "Ooot" "Oand" "Oindleg" "Olbow"

It is useful to be able to manipulate the cases of character strings. Here, we capitalize the
first character in each string:

gsub("(\\w)(\\w*)", "\\U\\1\\L\\2",text, perl=TRUE)

[1] "Arm" "Leg" "Head" "Foot" "Hand" "Hindleg" "Elbow"

while here we convert all the characters to upper case:

gsub("(\\w*)", "\\U\\1",text, perl=TRUE)

[1] "ARM" "LEG" "HEAD" "FOOT" "HAND" "HINDLEG" "ELBOW"

ESSENTIALS OF THE R LANGUAGE 83

Locations of the pattern within a vector of character strings using regexpr

Instead of substituting the pattern, we might want to know if it occurs in a string and,
if so, where it occurs within each string. The result of regexpr, therefore, is a numeric
vector (as with grep, above), but now indicating the position of the (first instance of the)
pattern within the string (rather than just whether the pattern was there). If the pattern does
not appear within the string, the default value returned by regexpr is −1. An example is
essential to get the point of this:

text

[1] "arm" "leg" "head" "foot" "hand" "hindleg" "elbow"

regexpr("o",text)

[1] -1 -1 -1 2 -1 -1 4

attr(,"match.length")

[1] -1 -1 -1 1 -1 -1 1

This indicates that there were lower-case ‘o’s in two of the elements of text, and that they
occurred in positions 2 and 4, respectively. Remember that if we wanted just the subscripts
showing which elements of text contained an ‘o’ we would use grep like this:

grep("o",text)

[1] 4 7

and we would extract the character strings like this:

text[grep("o",text)]

[1] "foot" "elbow"

Counting how many ‘o’s there are in each string is a different problem again, and this
involves the use of gregexpr:

freq<-as.vector(unlist (lapply(gregexpr("o",text),length)))
present<-ifelse(regexpr("o",text)<0,0,1)
freq*present

[1] 0 0 0 2 0 0 1

indicating that there are no ‘o’s in the first three character strings, two in the fourth and one
in the last string. You will need lots of practice with these functions to appreciate all of the
issues involved.

The function charmatch is for matching characters. If there are multiple matches (two
or more) then the function returns the value 0 (e.g. when all the elements contain ‘m’):

charmatch("m", c("mean", "median", "mode"))

[1] 0

If there is a unique match the function returns the index of the match within the vector of
character strings (here in location number 2):

charmatch("med", c("mean", "median", "mode"))

[1] 2

84 THE R BOOK

Using %in% and which

You want to know all of the matches between one character vector and another:

stock<-c(’car’,’van’)
requests<-c(’truck’,’suv’,’van’,’sports’,’car’,’waggon’,’car’)

Use which to find the locations in the first-named vector of any and all of the entries in the
second-named vector:

which(requests %in% stock)

[1] 3 5 7

If you want to know what the matches are as well as where they are,

requests [which(requests %in% stock)]

[1] "van" "car" "car"

You could use the match function to obtain the same result (p. 47):

stock[match(requests,stock)][!is.na(match(requests,stock))]

[1] "van" "car" "car"

but it’s more clumsy. A slightly more complicated way of doing it involves sapply

which(sapply(requests, "%in%", stock))

van car car
3 5 7

Note the use of quotes around the %in% function. Note that the match must be perfect for
this to work (‘car’ with ‘car’ is not the same as ‘car’ with ‘cars’).

More on pattern matching

For the purposes of specifying these patterns, certain characters are called metacharacters,
specifically \| () [{^ $ * + ? Any metacharacter with special meaning in your string may
be quoted by preceding it with a backslash: \\{$ or * for instance. You might be used to
specifying one or more ‘wildcards’ by ∗ in DOS-like applications. In R, however, the regular
expressions used are those specified by POSIX 1003.2, either extended or basic, depending
on the value of the extended argument, unless perl = TRUE when they are those of PCRE
(see ?grep for details).

Note that the square brackets in these class names [] are part of the symbolic names,
and must be included in addition to the brackets delimiting the bracket list. For example,
[[:alnum:]] means [0-9A-Za-z], except the latter depends upon the locale and the character
encoding, whereas the former is independent of locale and character set. The interpretation
below is that of the POSIX locale.

[:alnum:] Alphanumeric characters: [:alpha:] and [:digit:].
[:alpha:] Alphabetic characters: [:lower:] and [:upper:].
[:blank:] Blank characters: space and tab.
[:cntrl:] Control characters in ASCII, octal codes 000 through 037, and 177 (DEL).
[:digit:] Digits: 0 1 2 3 4 5 6 7 8 9.
[:graph:] Graphical characters: [:alnum:] and [:punct:].
[:lower:] Lower-case letters in the current locale.
[:print:] Printable characters: [:alnum:], [:punct:] and space.

ESSENTIALS OF THE R LANGUAGE 85

[:punct:] Punctuation characters:
! " # $ % & () ∗+, - ./: ; <=> ? @ [\] ∧ _ ‘ { � } ∼.

[:space:] Space characters: tab, newline, vertical tab, form feed, carriage return, space.
[:upper:] Upper-case letters in the current locale.
[:xdigit:] Hexadecimal digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f.

Most metacharacters lose their special meaning inside lists. Thus, to include a literal],
place it first in the list. Similarly, to include a literal ^, place it anywhere but first. Finally,
to include a literal -, place it first or last. Only these and \ remain special inside character
classes. To recap:

• Dot . matches any single character.

• Caret ^ matches the empty string at the beginning of a line.

• Dollar sign $ matches the empty string at the end of a line.

• Symbols \< and \> respectively match the empty string at the beginning and end of
a word.

• The symbol \b matches the empty string at the edge of a word, and \B matches the empty
string provided it is not at the edge of a word.

A regular expression may be followed by one of several repetition quantifiers:

? The preceding item is optional and will be matched at most once.

* The preceding item will be matched zero or more times.

+ The preceding item will be matched one or more times.

{n} The preceding item is matched exactly n times.

{n, } The preceding item is matched n or more times.

{,m} The preceding item is matched up to m times.

{n,m} The preceding item is matched at least n times, but not more than m times.

You can use the OR operator | so that "abba|cde" matches either the string "abba" or the
string "cde".

Here are some simple examples to illustrate the issues involved.

text <- c("arm","leg","head", "foot","hand", "hindleg", "elbow")

The following lines demonstrate the "consecutive characters" {n} in operation:

grep("o{1}",text,value=T)

[1] "foot" "elbow"

grep("o{2}",text,value=T)

[1] "foot"

86 THE R BOOK

grep("o{3}",text,value=T)

character(0)

The following lines demonstrate the use of {n, } "n or more" character counting in words:

grep("[[:alnum:]]{4, }",text,value=T)

[1] "head" "foot" "hand" "hindleg" "elbow"

grep("[[:alnum:]]{5, }",text,value=T)

[1] "hindleg" "elbow"

grep("[[:alnum:]]{6, }",text,value=T)

[1] "hindleg"

grep("[[:alnum:]]{7, }",text,value=T)

[1] "hindleg"

Perl regular expressions

The perl = TRUE argument switches to the PCRE library that implements regular expression
pattern matching using the same syntax and semantics as Perl 5.6 or later (with just a few
differences). For details (and there are many) see ?regexp.

Perl is good for altering the cases of letters. Here, we capitalize the first character in each
string:

gsub("(\\w)(\\w*)", "\\U\\1\\L\\2",text, perl=TRUE)

[1] "Arm" "Leg" "Head" "Foot" "Hand" "Hindleg" "Elbow"

while here we convert all the character to upper case:

gsub("(\\w*)", "\\U\\1",text, perl=TRUE)

[1] "ARM" "LEG" "HEAD" "FOOT" "HAND" "HINDLEG" "ELBOW"

Stripping patterned text out of complex strings

Suppose that we want to tease apart the information in these complicated strings:

(entries <-c ("Trial 1 58 cervicornis (52 match)", "Trial 2 60 terrestris (51 matched)",
"Trial 8 109 flavicollis (101 matches)"))

[1] "Trial 1 58 cervicornis (52 match)"
[2] "Trial 2 60 terrestris (51 matched)"
[3] "Trial 8 109 flavicollis (101 matches)"

The first task is to remove the material on numbers of matches including the brackets:

gsub(" *$", "", gsub("\\(.*\\)$", "", entries))

[1] "Trial 1 58 cervicornis" "Trial 2 60 terrestris"
[3] "Trial 8 109 flavicollis"

ESSENTIALS OF THE R LANGUAGE 87

The first argument " *$", "", removes the "trailing blanks" while the second deletes every-
thing .∗ between the left \\(and right \\) hand brackets "\\(.*\\)$" substituting this with nothing
"". The next job is to strip out the material in brackets and to extract that material, ignoring
the brackets themselves:

pos<- regexpr("\\(.*\\)$", entries)
substring(entries, first=pos+1, last=pos+attr(pos,"match.length")-2)

[1] "52 match" "51 matched" "101 matches"

To see how this has worked it is useful to inspect the values of pos that have emerged from
the regexpr function:

pos

[1] 25 23 25
attr(,"match.length")
[1] 10 12 13

The left-hand bracket appears in position 25 in the first and third elements (note that there
are two blanks before ‘cervicornis’) but in position 23 in the second element. Now the
lengths of the strings matching the pattern \\(.*\\)$ can be checked; it is the number of
‘anything’ characters between the two brackets, plus one for each bracket: 10, 12 and 13.

Thus, to extract the material in brackets, but to ignore the brackets themselves, we need
to locate the first character to be extracted (pos+1) and the last character to be extracted
pos+attr(pos,"match.length")-2, then use the substring function to do the extracting. Note
that first and last are vectors of length 3 (= length(entries)).

Testing and Coercing in R

Objects have a type, and you can test the type of an object using an is.type function
(Table 2.4). For instance, mathematical functions expect numeric input and text-processing

Table 2.4. Functions for testing (is) the attributes of different categories of
object (arrays, lists, etc.) and for coercing (as) the attributes of an object into
a specified form. Neither operation changes the attributes of the object.

Type Testing Coercing

Array is.array as.array
Character is.character as.character
Complex is.complex as.complex
Dataframe is.data.frame as.data.frame
Double is.double as.double
Factor is.factor as.factor
List is.list as.list
Logical is.logical as.logical
Matrix is.matrix as.matrix
Numeric is.numeric as.numeric
Raw is.raw as.raw
Time series (ts) is.ts as.ts
Vector is.vector as.vector

88 THE R BOOK

functions expect character input. Some types of objects can be coerced into other types. A
familiar type of coercion occurs when we interpret the TRUE and FALSE of logical variables
as numeric 1 and 0, respectively. Factor levels can be coerced to numbers. Numbers can be
coerced into characters, but non-numeric characters cannot be coerced into numbers.

as.numeric(factor(c("a","b","c")))

[1] 1 2 3

as.numeric(c("a","b","c"))

[1] NA NA NA
Warning message:
NAs introduced by coercion

as.numeric(c("a","4","c"))

[1] NA 4 NA
Warning message:
NAs introduced by coercion

If you try to coerce complex numbers to numeric the imaginary part will be discarded. Note
that is.complex and is.numeric are never both TRUE.

We often want to coerce tables into the form of vectors as a simple way of stripping off
their dimnames (using as.vector), and to turn matrixes into dataframes (as.data.frame).
A lot of testing involves the NOT operator ! in functions to return an error message if the
wrong type is supplied. For instance, if you were writing a function to calculate geometric
means you might want to test to ensure that the input was numeric using the !is.numeric
function

geometric<-function(x){
if(!is.numeric(x)) stop ("Input must be numeric")
exp(mean(log(x))) }

Here is what happens when you try to work out the geometric mean of character data

geometric(c("a","b","c"))

Error in geometric(c("a", "b", "c")) : Input must be numeric

You might also want to check that there are no zeros or negative numbers in the input,
because it would make no sense to try to calculate a geometric mean of such data:

geometric<-function(x){
if(!is.numeric(x)) stop ("Input must be numeric")
if(min(x)<=0) stop ("Input must be greater than zero")
exp(mean(log(x))) }

Testing this:

geometric(c(2,3,0,4))

Error in geometric(c(2, 3, 0, 4)) : Input must be greater than zero

But when the data are OK there will be no messages, just the numeric answer:

geometric(c(10,1000,10,1,1))

[1] 10

ESSENTIALS OF THE R LANGUAGE 89

Dates and Times in R

The measurement of time is highly idiosyncratic. Successive years start on different days
of the week. There are months with different numbers of days. Leap years have an extra
day in February. Americans and Britons put the day and the month in different places:
3/4/2006 is March 4 for the former and April 3 for the latter. Occasional years have an
additional ‘leap second’ added to them because friction from the tides is slowing down the
rotation of the earth from when the standard time was set on the basis of the tropical year
in 1900. The cumulative effect of having set the atomic clock too slow accounts for the
continual need to insert leap seconds (32 of them since 1958). There is currently a debate
about abandoning leap seconds and introducing a ‘leap minute’ every century or so instead.
Calculations involving times are complicated by the operation of time zones and daylight
saving schemes in different countries. All these things mean that working with dates and
times is excruciatingly complicated. Fortunately, R has a robust system for dealing with this
complexity. To see how R handles dates and times, have a look at Sys.time():

Sys.time()

[1] "2005-10-23 10:17:42 GMT Daylight Time"

The answer is strictly hierarchical from left to right: the longest time scale (years) comes
first, then month then day separated by hyphens (minus signs), then there is a blank space
and the time, hours first (in the 24-hour clock) then minutes, then seconds separated by
colons. Finally there is a character string explaining the time zone. You can extract the date
from Sys.time() using substr like this:

substr(as.character(Sys.time()),1,10)

[1] "2005-10-23"

or the time

substr(as.character(Sys.time()),12,19)

[1] "10:17:42"

If you type

unclass(Sys.time())

[1] 1130679208

you get the number of seconds since 1 January 1970. There are two basic classes of
date/times. Class POSIXct represents the (signed) number of seconds since the beginning
of 1970 as a numeric vector: this is more convenient for including in dataframes. Class
POSIXlt is a named list of vectors closer to human-readable forms, representing seconds,
minutes, hours, days, months and years. R will tell you the date and time with the date
function:

date()

[1] "Fri Oct 21 06:37:04 2005"

The default order is day name, month name (both abbreviated), day of the month, hour
(24-hour clock), minute, second (separated by colons) then the year. You can convert
Sys.time to an object that inherits from class POSIXlt like this:

90 THE R BOOK

date<- as.POSIXlt(Sys.time())

You can use the element name operator $ to extract parts of the date and time from this
object using the following names: sec, min, hour, mday, mon, year, wday, yday and
isdst (with obvious meanings except for mday (=day number within the month), wday
(day of the week starting at 0 = Sunday), yday (day of the year after 1 January = 0) and
isdst which means ‘is daylight savings time in operation?’ with logical 1 for TRUE or 0
for FALSE). Here we extract the day of the week (date$wday = 0 meaning Sunday) and
the Julian date (day of the year after 1 January as date$yday)

date$wday

[1] 0

date$yday

[1] 295

for 23 October. Use unclass with unlist to view all of the components of date:

unlist(unclass(date))

sec min hour mday mon year wday yday isdst
42 17 10 23 9 105 0 295 1

Note that the month of October is 9 (not 10) because January is scored as month 0, and
years are scored as post-1900.

Calculations with dates and times

You can do the following calculations with dates and times:

• time + number

• time – number

• time1 – time2

• time1 ‘logical operation’ time2

where the logical operations are one of ==, !=, <, <=, '>' or >=. You can add or subtract
a number of seconds or a difftime object (see below) from a date-time object, but you
cannot add two date-time objects. Subtraction of two date-time objects is equivalent to using
difftime (see below). Unless a time zone has been specified, POSIXlt objects are interpreted
as being in the current time zone in calculations.

The thing you need to grasp is that you should convert your dates and times into
POSIXlt objects before starting to do any calculations. Once they are POSIXlt objects, it
is straightforward to calculate means, differences and so on. Here we want to calculate the
number of days between two dates, 22 October 2003 and 22 October 2005:

y2<-as.POSIXlt("2003-10-22")
y1<-as.POSIXlt("2005-10-22")

Now you can do calculations with the two dates:

y1-y2

Time difference of 731 days

ESSENTIALS OF THE R LANGUAGE 91

Note that you cannot add two dates. It is easy to calculate differences between times using
this system. Note that the dates are separated by hyphens whereas the times are separated
by colons:

y3<-as.POSIXlt("2005-10-22 09:30:59")
y4<-as.POSIXlt("2005-10-22 12:45:06")
y4-y3

Time difference of 3.235278 hours

The difftime function

Working out the time difference between to dates and times involves the difftime function,
which takes two date-time objects as its arguments. The function returns an object of class
difftime with an attribute indicating the units. How many days elapsed between 15 August
2003 and 21 October 2005?

difftime("2005-10-21","2003-8-15")

Time difference of 798 days

If you want only the number of days, for instance to use in calculation, then write

as.numeric(difftime("2005-10-21","2003-8-15"))

[1] 798

For differences in hours include the times (colon-separated) and write

difftime("2005-10-21 5:12:32","2005-10-21 6:14:21")

Time difference of -1.030278 hours

The result is negative because the first time (on the left) is before the second time (on the
right). Alternatively, you can subtract one date-time object from another directly:

ISOdate(2005,10,21)-ISOdate(2003,8,15)

Time difference of 798 days

You can convert character stings into difftime objects using the as.difftime function:

as.difftime(c("0:3:20", "11:23:15"))

Time differences of 3.333333, 683.250000 mins

You can specify the format of your times. For instance, you may have no information on
seconds, and your times are specified just as hours (format %H) and minutes (%M). This
is what you do:

as.difftime(c("3:20", "23:15", "2:"), format= "%H:%M")

Time differences of 3.333333, 23.250000, NA hours

Because the last time in the sequence ‘2:’ had no minutes it is marked as NA.

92 THE R BOOK

The strptime function

You can ‘strip a date’ out of a character string using the strptime function. There are
functions to convert between character representations and objects of classes POSIXlt and
POSIXct representing calendar dates and times. The details of the formats are system-
specific, but the following are defined by the POSIX standard for strptime and are likely
to be widely available. Any character in the format string other than the % symbol is
interpreted literally.

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Date and time, locale-specific

%d Day of the month as decimal number (01–31)

%H Hours as decimal number (00–23) on the 24-hour clock

%I Hours as decimal number (01–12) on the 12-hour clock

%j Day of year as decimal number (001–366)

%m Month as decimal number (01–12)

%M Minute as decimal number (00–59)

%p AM/PM indicator in the locale

%S Second as decimal number (00–61, allowing for two ‘leap seconds’)

%U Week of the year (00–53) using the first Sunday as day 1 of week 1

%w Weekday as decimal number (0–6, Sunday is 0)

%W Week of the year (00–53) using the first Monday as day 1 of week 1

%x Date, locale-specific

%X Time, locale-specific

%Y Year with century

%Z Time zone as a character string (output only)

Where leading zeros are shown they will be used on output but are optional on input.

Dates in Excel spreadsheets

The trick is to learn how to specify the format of your dates properly in strptime. If you
had dates (and no times) in a dataframe in Excel format (day/month/year)

excel.dates <- c("27/02/2004", "27/02/2005", "14/01/2003",
"28/06/2005", "01/01/1999")

ESSENTIALS OF THE R LANGUAGE 93

then the appropriate format would be "%d/%m/%Y" showing the format names (from
the list above) and the ‘slash’ separators / (note the upper case for year %Y; this is the
unambiguous year including the century, 2005 rather than the potentially ambiguous 05 for
which the format is %y). To turn these into R dates, write

strptime(excel.dates,format="%d/%m/%Y")

[1] "2004-02-27" "2005-02-27" "2003-01-14" "2005-06-28" "1999-01-01"

Here is another example, but with years in two-digit form (%y), and the months as abbre-
viated names (%b) and no separators:

other.dates<- c("1jan99", "2jan05", "31mar04", "30jul05")
strptime(other.dates, "%d%b%y")

[1] "1999-01-01" "2005-01-02" "2004-03-31" "2005-07-30"

You will often want to create POSIXlt objects from components stored in vectors within
dataframes. For instance, here is a dataframe with the hours, minutes and seconds from an
experiment with two factor levels in separate columns:

times<-read.table("c:\\temp\\times.txt",header=T)
times

hrs min sec experiment
1 2 23 6 A
2 3 16 17 A
3 3 2 56 A
4 2 45 0 A
5 3 4 42 A
6 2 56 25 A
7 3 12 28 A
8 1 57 12 A
9 2 22 22 B

10 1 42 7 B
11 2 31 17 B
12 3 15 16 B
13 2 28 4 B
14 1 55 34 B
15 2 17 7 B
16 1 48 48 B

attach(times)

Because the times are not in POSIXlt format, you need to paste together the hours, minutes
and seconds into a character string with colons as the separator:

paste(hrs,min,sec,sep=":")

[1] "2:23:6" "3:16:17" "3:2:56" "2:45:0" "3:4:42" "2:56:25" "3:12:28"
[8] "1:57:12" "2:22:22" "1:42:7" "2:31:17" "3:15:16" "2:28:4" "1:55:34"
[15] "2:17:7" "1:48:48"

Now save this object as a difftime vector called duration:

duration<-as.difftime (paste(hrs,min,sec,sep=":"))

Then you can carry out calculations like mean and variance using the tapply function:

94 THE R BOOK

tapply(duration,experiment,mean)

A B
2.829375 2.292882

Calculating time differences between the rows of a dataframe

A common action with time data is to compute the time difference between successive rows
of a dataframe. The vector called duration created above is of class difftime and contains
16 times measured in decimal hours:

class(duration)

[1] "difftime"

duration

Time differences of 2.385000, 3.271389, 3.048889, 2.750000, 3.078333,
2.940278, 3.207778, 1.953333, 2.372778, 1.701944, 2.521389, 3.254444,
2.467778, 1.926111, 2.285278, 1.813333 hours

We can compute the differences between successive rows using subscripts, like this

duration[1:15]-duration[2:16]

Time differences of -0.8863889, 0.2225000, 0.2988889, -0.3283333,
0.1380556, -0.2675000, 1.2544444, -0.4194444, 0.6708333, -0.8194444,
-0.7330556, 0.7866667, 0.5416667, -0.3591667, 0.4719444 hours

You might want to make the differences between successive rows into part of the dataframe
(for instance, to relate change in time to one of the explanatory variables in the dataframe).
Before doing this, you need to decide on the row in which to put the first of the differences.
Is the change in time between rows 1 and 2 related to the explanatory variables in row 1
or row 2? Suppose it is row 1 that we want to contain the first time difference �−0�886�.
Because we are working with differences (see p. 719) the vector of differences is shorter
by one than the vector from which it was calculated:

length(duration[1:15]-duration[2:16])

[1] 15

length(duration)

[1] 16

so we need to add one ‘NA’ to the bottom of the vector (in row 16).

diffs<-c(duration[1:15]-duration[2:16],NA)
diffs
[1] -0.8863889 0.2225000 0.2988889 -0.3283333 0.1380556 -0.2675000
[7] 1.2544444 -0.4194444 0.6708333 -0.8194444 -0.7330556 0.7866667
[13] 0.5416667 -0.3591667 0.4719444 NA

Now we can make this new vector part of the dataframe called times:

times$diffs<-diffs
times

ESSENTIALS OF THE R LANGUAGE 95

hrs min sec experiment diffs
1 2 23 6 A -0.8863889
2 3 16 17 A 0.2225000
3 3 2 56 A 0.2988889
4 2 45 0 A -0.3283333
5 3 4 42 A 0.1380556
6 2 56 25 A -0.2675000
7 3 12 28 A 1.2544444
8 1 57 12 A -0.4194444
9 2 22 22 B 0.6708333
10 1 42 7 B -0.8194444
11 2 31 17 B -0.7330556
12 3 15 16 B 0.7866667
13 2 28 4 B 0.5416667
14 1 55 34 B -0.3591667
15 2 17 7 B 0.4719444
16 1 48 48 B NA

There is more about dates and times in dataframes on p. 126.

3
Data Input

You can get numbers into R through the keyboard, from the clipboard or from an external
file. For a single variable of up to 10 numbers or so, it is probably quickest to type the
numbers at the command line, using the concatenate function c like this:

y <- c (6,7,3,4,8,5,6,2)

For intermediate sized variables, you might want to enter data from the keyboard using the
scan function. For larger data sets, and certainly for sets with several variables, you should
make a dataframe in Excel and read it into R using read.table (p. 98).

The scan Function

This is the function to use if you want to type (or paste) a few numbers into a vector from
the keyboard.

x<-scan()

1:

At the 1: prompt type your first number, then press the Enter key. When the 2: prompt
appears, type in your second number and press Enter, and so on. When you have put in all
the numbers you need (suppose there are eight of them) then simply press the Enter key at
the 9: prompt.

x<-scan()

1: 6
2: 7
3: 3
4: 4
5: 8
6: 5
7: 6
8: 2
9:
Read 8 items

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

98 THE R BOOK

You can also use scan to paste in groups of numbers from the clipboard. In Excel,
highlight the column of numbers you want, then type Ctrl+C (the accelerator keys for
Copy). Now go back into R. At the 1: prompt just type Ctrl+V (the accelerator keys for
Paste) and the numbers will be scanned into the named variable (x in this example). You
can then paste in another set of numbers, or press Return to complete data entry. If you try
to read in a group of numbers from a row of cells in Excel, the characters will be pasted
into a single multi-digit number (definitely not what is likely to have been intended). So, if
you are going to paste numbers from Excel, make sure the numbers are in columns, not in
rows, in the spreadsheet. Use Edit / Paste Special / Transpose in Excel to turn a row into a
column if necessary.

Data Input from Files

You can read data from a file using scan (see p. 102) but read.table is much more user-
friendly. The read.table function reads a file in table format and automatically creates a
dataframe from it, with cases corresponding to rows (lines) and variables to columns (fields)
in the file (see p. 107). Much the simplest way to proceed is always to make your dataframe
as a spreadsheet in Excel, and always to save it as a tab-delimited text file. That way you
will always use read.table for data input, and you will avoid many of the most irritating
problems that people encounter when using other input formats.

Saving the File from Excel

Once you have made your dataframe in Excel and corrected all the inevitable data-entry and
spelling errors, then you need to save the dataframe in a file format that can be read by R.
Much the simplest way is to save all your dataframes from Excel as tab-delimited text files:
File/Save As � � � / then from the ‘Save as type’ options choose ‘Text (Tab delimited)’. There
is no need to add a suffix, because Excel will automatically add ‘.txt’ to your file name.
This file can then be read into R directly as a dataframe, using the read.table function
like this:

data<-read.table("c:\\temp\\regression.txt",header=T)

Common Errors when Using read.table

It is important to note that read.table would fail if there were any spaces in any of the
variable names in row 1 of the dataframe (the header row, see p. 107), such as Field Name,
Soil pH or Worm Density, or between any of the words within the same factor level (as in
many of the field names). You should replace all these spaces by dots ‘.’ before saving the
dataframe in Excel (use Edit/Replace with “ ” replaced by “.”). Now the dataframe can be
read into R. There are three things to remember:

• The whole path and file name needs to be enclosed in double quotes: “c:\\abc.txt”.

• header=T says that the first row contains the variable names.

• Always use double backslash \\ rather than \ in the file path definition.

DATA INPUT 99

The commonest cause of failure is that the number of variable names (characters strings
in row 1) does not match the number of columns of information. In turn, the commonest
cause of this is that you have blank spaces in your variable names:

state name population home ownership cars insurance

This is wrong because R expects seven columns of numbers when there are only five.
Replace the spaces within the names by dots and it will work fine:

state.name population home.ownership cars insurance

The next most common cause of failure is that the data file contains blank spaces where
there are missing values. Replace these blanks with NA in Excel (or use a different separator
symbol: see below).

Finally, there can be problems when you are trying to read variables that consist of
character strings containing blank spaces (as in files containing place names). You can use
read.table so long as you export the file from Excel using commas to separate the fields,
and you tell read.table that the separators are commas using sep=","

map<-read.table("c:\\temp\\bowens.csv",header=T,sep=",")

but it is quicker and easier to use read.csv in this case(and there is no need for header=T)

map<-read.csv("c:\\temp\\bowens.csv")

If you are tired of writing header=T in all your read.table functions, then switch to

read.delim("c:\\temp\\file.txt")

or write your own function

rt<-function(x) read.delim(x)

then use the function rt to read data-table files like this:

rt("c:\\temp\\regression.txt")

Better yet, remove the need to enter the drive and directory or the file suffix:

rt<-function(x) read.delim(paste("c:\\temp\\",x,".txt",sep=" "))
rt("regression")

Browsing to Find Files

The R function for this is file.choose(). Here it is in action with read.table:

data<-read.table(file.choose(),header=T)

Once you click on your selected file this is read into the dataframe called data.

Separators and Decimal Points

The default field separator character in read.table is sep=" ". This separator is white
space, which is produced by one or more spaces, one or more tabs \t, one or more

100 THE R BOOK

newlines \n, or one or more carriage returns. If you do have a different separa-
tor between the variables sharing the same line (i.e. other than a tab within a .txt
file) then there may well be a special read function for your case. Note that these
all have the sensible default that header=TRUE (the first row contains the vari-
able names): for comma-separated fields use read.csv("c:\\temp\\file.txt"), for semi-
colon separated fields read.csv2("c:\\temp\\file.txt"), and for decimal points as a comma
read.delim2("c:\\temp\\file.txt"). You would use comma or semicolon separators if you had
character variables that might contain one or more blanks (e.g. country names like ‘United
Kingdom’ or ‘United States of America’).

If you want to specify row.names then one of the columns of the dataframe must be a
vector of unique row names. This can be a single number giving the column of the table
which contains the row names, or character string giving the variable name of the table
column containing the row names (see p. 123). Otherwise if row.names is missing, the
rows are numbered.

The default behaviour of read.table is to convert character variables into factors. If you
do not want this to happen (you want to keep a variable as a character vector) then use
as.is to specify the columns that should not be converted to factors:

murder<-read.table("c:\\temp\\murders.txt",header=T,as.is="region"); attach(murder)

We use the attach function so that the variables inside a dataframe can be accessed directly
by name. Technically, this means that the database is attached to the R search path, so that
the database is searched by R when evaluating a variable.

table(region)

region
North.Central Northeast South West

12 9 16 13

If we had not attached a dataframe, then we would have had to specify the name of the
dataframe first like this:

table(murder$region)

The following warning will be produced if your attach function causes a duplication of one
or more names:

The following object(s) are masked _by_ .GlobalEnv:
murder

The reason in the present case is that we have created a dataframe called murder and attached
a variable which is also called murder. This ambiguity might cause difficulties later. The
commonest cause of this problem occurs with simple variable names like x and y. It is very
easy to end up with multiple variables of the same name within a single session that mean
totally different things. The warning after using attach should alert you to the possibility
of such problems. If the vectors sharing the same name are of different lengths, then R is
likely to stop you before you do anything too silly, but if the vectors are the same length
then you run the serious risk of fitting the wrong explanatory variable (e.g. fitting the wrong
one from two vectors both called x) or having the wrong response variable (e.g. from two
vectors both called y). The moral is:

DATA INPUT 101

• use longer, more self-explanatory variable names;

• do not calculate variables with the same name as a variables inside a dataframe;

• always detach dataframes once you are finished using them;

• remove calculated variables once you are finished with them (rm; see p. 8).

The best practice, however, is not to use attach in the first place, but to use functions like
with instead (see p. 18). If you get into a real tangle, it is often easiest to quit R and start
another R session. To check that region is not a factor, write:

is.factor(region)

[1] FALSE

Input and Output Formats

Formatting is controlled using escape sequences, typically within double quotes:

\n newline
\r carriage return
\t tab character
\b backspace
\a bell
\f form feed
\v vertical tab

Setting the Working Directory

You do not have to type the drive name and folder name every time you want to read or
write a file, so if you use the same path frequently it is sensible to set the working directory
using the setwd function:

setwd("c:\\temp")
� � �
� � �
read.table("daphnia.txt",header=T)

If you want to find out the name of the current working directory, use getwd():

getwd()

[1] "c:/temp"

Checking Files from the Command Line

It can be useful to check whether a given filename exists in the path where you think it
should be. The function is file.exists and is used like this:

file.exists("c:\\temp\\Decay.txt")

[1] TRUE

102 THE R BOOK

For more on file handling, see ?files.

Reading Dates and Times from Files

You need to be very careful when dealing with dates and times in any sort of computing.
R has a particularly robust system for working with dates and times, which is explained in
detail on p. 89. Typically, you will read dates and times as character strings, then convert
them into dates and/or times within R.

Built-in Data Files

There are many built-in data sets within the base package of R. You can see their names
by typing

data()

You can read the documentation for a particular data set with the usual query:

?lynx

Many of the contributed packages contain data sets, and you can view their names using
the try function. This evaluates an expression and traps any errors that occur during the
evaluation. The try function establishes a handler for errors that uses the default error
handling protocol:

try(data(package="spatstat"));Sys.sleep(3)
try(data(package="spdep"));Sys.sleep(3)
try(data(package="MASS"))

Built-in data files can be attached in the normal way; then the variables within them accessed
by their names:

attach(OrchardSprays)
decrease

Reading Data from Files with Non-standard Formats Using scan

The scan function is very flexible, but as a consequence of this, it is much harder to use
than read.table. This example uses the US murder data. The filename comes first, in the
usual format (enclosed in double quotes and using paired backslashes to separate the drive
name from the folder name and the folder name from the file name). Then comes skip=1
because the first line of the file contains the variable names (as indicated by header=T in
a read.table function). Next comes what, which is a list of length the number of variables
(the number of columns to be read; 4 in this case) specifying their type (character “ ” in
this case):

murders<-scan("c:\\temp\\murders.txt", skip=1, what=list("","","",""))

Read 50 records

The object produced by scan is a list rather than a dataframe as you can see from

DATA INPUT 103

class(murders)

[1] "list"

It is simple to convert the list to a dataframe using the as.data.frame function

murder.frame<-as.data.frame(murders)

You are likely to want to use the variables names from the file as variable names in the
dataframe. To do this, read just the first line of the file using scan with nlines=1:

murder.names<-
scan("c:\\temp\\murders.txt",nlines=1,what="character",quiet=T)
murder.names

[1] "state" "population" "murder" "region"

Note the use of quiet=T to switch off the report of how many records were read. Now give
these names to the columns of the dataframe

names(murder.frame)<-murder.names

Finally, convert columns 2 and 3 of the dataframe from factors to numbers:

murder.frame[,2]<-as.numeric(murder.frame[,2])
murder.frame[,3]<-as.numeric(murder.frame[,3])
summary(murder.frame)

state population murder region
Alabama : 1 Min. : 1.00 Min. : 1.00 North.Central :12
Alaska : 1 1st Qu. :13.25 1st Qu. :11.25 Northeast : 9
Arizona : 1 Median :25.50 Median :22.50 South :16
Arkansas : 1 Mean :25.50 Mean :22.10 West :13
California : 1 3rd Qu. :37.75 3rd Qu. :32.75
Colorado : 1 Max. :50.00 Max. :44.00
(Other) :44

You can see why people prefer to use read.table for this sort of data file:

murders<-read.table("c:\\temp\\murders.txt",header=T)
summary(murders)

state population murder region
Alabama : 1 Min. : 365 Min. : 1.400 North.Central :12
Alaska : 1 1st Qu. : 1080 1st Qu. : 4.350 Northeast : 9
Arizona : 1 Median : 2839 Median : 6.850 South :16
Arkansas : 1 Mean : 4246 Mean : 7.378 West :13
California : 1 3rd Qu. : 4969 3rd Qu. :10.675
Colorado : 1 Max. :21198 Max. :15.100
(Other) :44

Note, however, that the scan function is quicker than read.table for input of large (numeric
only) matrices.

104 THE R BOOK

Reading Files with Different Numbers of Values per Line

Here is a case where you might want to use scan because the data are not configured like
a dataframe. The file rt.txt has different numbers of values per line (a neighbours file in
spatial analysis, for example; see p. 769). In this example, the file contains five lines with
1, 2, 4, 2 and 1 numbers respectively: in general, you will need to find out the number of
lines of data in the file by counting the number of end-of-line control character "\n" using
the length function like this:

line.number<-length(scan("c:\\temp\\rt.txt",sep="\n"))

The trick is to combine the skip and nlines options within scan to read one line at a time,
skipping no lines to read the first row, skipping one row to read the second line, and so on.
Note that since the values are numbers we do not need to specify what:

(my.list<-sapply(0:(line.number-1),
function(x) scan("c:\\temp\\rt.txt",skip=x,nlines=1,quiet=T)))

[[1]]
[1] 138

[[2]]
[1] 27 44

[[3]]
[1] 19 20 345 48

[[4]]
[1] 115 23 66

[[5]]
[1] 59

The scan function has produced a list of vectors, each of a different length. You might
want to know the number of numbers in each row, using length with lapply like this:

unlist(lapply(my.list,length))

[1] 1 2 4 2 1

Alternatively, you might want to create a vector containing the last element from each row:

unlist(lapply(1:length(my.list), function(i) my.list[[i]][length(my.list[[i]])]))

[1] 138 44 48 2366 59

The readLines Function

In some cases you might want to read each line from a file separately. The argument
n=-1 means read to the end of the file. Let’s try it out with the murders data (p. 100):

readLines("c:\\temp\\murders.txt",n=-1)

This produces the rather curious object of class = "character":

[1] "state\tpopulation\tmurder\tregion" "Alabama\t3615\t15.1\tSouth"
[3] "Alaska\t365\t11.3\tWest" "Arizona\t2212\t7.8\tWest"

DATA INPUT 105

� � � � � � .
� � � � � � ..
[49] "West.Virginia\t1799\t6.7\tSouth" "Wisconsin\t4589\t3\tNorth.Central"
[51] "Wyoming\t376\t6.9\tWest"
Each line has been converted into a single character string. Line [1] contains the four
variable names (see above) separated by tab characters \t. Line [2] contains the first row
of data for murders in Alabama, while row [51] contains the last row of data for murders
in Wyoming. You can use the string-splitting function strsplit to tease apart the elements
of the string (say, for the Wyoming data [51]):

mo<-readLines("c:\\temp\\murders.txt",n=-1)
strsplit(mo[51],"\t")

[[1]]
[1] "Wyoming""376" "6.9" "West"

You would probably want 376 and 6.9 as numeric rather than character objects:

as.numeric(unlist(strsplit(mo[51],"\t")))

[1] NA 376.0 6.9 NA
Warning message:
NAs introduced by coercion

where the two names Wyoming and West have been coerced to NA, or

as.vector(na.omit(as.numeric(unlist(strsplit(mo[51],"\t")))))

[1] 376.0 6.9
Warning message:
NAs introduced by coercion

to get the numbers on their own. Here is how to extract the two numeric variables (murder
= mur and population = pop) from this object using sapply:

mv<-sapply(2:51,function(i)
as.vector(na.omit(as.numeric(unlist(strsplit(mo[i],"\t"))))))

pop<-mv[1,]
mur<-mv[2,]

and here is how to get character vectors of the state names and regions (the first and fourth
elements of each row of the list called ms, called sta and reg, respectively):

ms<-sapply(2:51,function(i) strsplit(mo[i],"\t"))
texts<-unlist(lapply(1:50,function(i) ms[[i]][c(1,4)]))
sta<-texts[seq(1,99,2)]
reg<- texts[seq(2,100,2)]

Finally, we can convert all the information from readLines into a data.frame

data.frame(sta,pop,mur,reg)

sta pop mur reg
1 Alabama 3615 15.1 South
2 Alaska 365 11.3 West
� � �
49 Wisconsin 4589 3.0 North.Central
50 Wyoming 376 6.9 West

106 THE R BOOK

This could all have been achieved in a single line with read.table (see above), and the
readLines function is much more useful when the rows in the file contain different numbers
of entries. Here is the simple example from p. 104 using readLines instead of scan:

rlines<-readLines("c:\\temp\\rt.txt")
split.lines<-strsplit(rlines,"\t")
new<-sapply(1:5,function(i) as.vector(na.omit(as.numeric(split.lines[[i]]))))
new

[[1]]
[1] 138

[[2]]
[1] 27 44

[[3]]
[1] 19 20 345 48

[[4]]
[1] 115 2366

[[5]]
[1] 59

The key features of this procedure are the removal of the tabs (\t) and the separation of the
values with each row with the strsplit function, the conversion of the characters to numbers,
and the removal of the NAs which are introduced by default by the as.numeric function. I
think that scan (p. 104) is more intuitive in such a case.

4
Dataframes

Learning how to handle your data, how to enter it into the computer, and how to read the
data into R are amongst the most important topics you will need to master. R handles data
in objects known as dataframes. A dataframe is an object with rows and columns (a bit
like a matrix). The rows contain different observations from your study, or measurements
from your experiment. The columns contain the values of different variables. The values
in the body of a matrix can only be numbers; those in a dataframe can also be numbers,
but they could also be text (e.g. the names of factor levels for categorical variables, like
male or female in a variable called gender), they could be calendar dates (e.g. 23/5/04), or
they could be logical variables (TRUE or FALSE). Here is a spreadsheet in the form of a
dataframe with seven variables, the leftmost of which comprises the row names, and other
variables are numeric (Area, Slope, Soil pH and Worm density), categorical (Field Name
and Vegetation) or logical (Damp is either true = T or false = F).

Field Name Area Slope Vegetation Soil pH Damp Worm density

Nash’s Field 3�6 11 Grassland 4�1 F 4
Silwood Bottom 5�1 2 Arable 5�2 F 7
Nursery Field 2�8 3 Grassland 4�3 F 2
Rush Meadow 2�4 5 Meadow 4�9 T 5
Gunness’ Thicket 3�8 0 Scrub 4�2 F 6
Oak Mead 3�1 2 Grassland 3�9 F 2
Church Field 3�5 3 Grassland 4�2 F 3
Ashurst 2�1 0 Arable 4�8 F 4
The Orchard 1�9 0 Orchard 5�7 F 9
Rookery Slope 1�5 4 Grassland 5 T 7
Garden Wood 2�9 10 Scrub 5�2 F 8
North Gravel 3�3 1 Grassland 4�1 F 1
South Gravel 3�7 2 Grassland 4 F 2
Observatory Ridge 1�8 6 Grassland 3�8 F 0
Pond Field 4�1 0 Meadow 5 T 6
Water Meadow 3�9 0 Meadow 4�9 T 8
Cheapside 2�2 8 Scrub 4�7 T 4
Pound Hill 4�4 2 Arable 4�5 F 5
Gravel Pit 2�9 1 Grassland 3�5 F 1
Farm Wood 0�8 10 Scrub 5�1 T 3

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

108 THE R BOOK

Perhaps the most important thing about analysing your own data properly is getting your
dataframe absolutely right. The expectation is that you will have used a spreadsheet such
as Excel to enter and edit the data, and that you will have used plots to check for errors.
The thing that takes some practice is learning exactly how to put your numbers into the
spreadsheet. There are countless ways of doing it wrong, but only one way of doing it right.
And this way is not the way that most people find intuitively to be the most obvious.

The key thing is this: all the values of the same variable must go in the same column. It
does not sound like much, but this is what people tend to get wrong. If you had an experiment
with three treatments (control, pre-heated and pre-chilled), and four measurements per
treatment, it might seem like a good idea to create the spreadsheet like this:

control preheated prechilled

6.1 6.3 7.1

5.9 6.2 8.2

5.8 5.8 7.3

5.4 6.3 6.9

However, this is not a dataframe, because values of the response variable appear in three
different columns, rather than all in the same column. The correct way to enter these data is
to have two columns: one for the response variable and one for the levels of the experimental
factor called Treatment (control, preheated and prechilled). Here are the same data, entered
correctly as a dataframe:

Response Treatment

6.1 control

5.9 control

5.8 control

5.4 control

6.3 preheated

6.2 preheated

5.8 preheated

6.3 preheated

7.1 prechilled

8.2 prechilled

7.3 prechilled

6.9 prechilled

A good way to practise this layout is to use the Excel function called PivotTable (found
under Data on the main menu bar) on your own data: it requires your spreadsheet to be in
the form of a dataframe, with each of the explanatory variables in its own column.

DATAFRAMES 109

Once you have made your dataframe in Excel and corrected all the inevitable data-entry
and spelling errors, then you need to save the dataframe in a file format that can be read by
R. Much the simplest way is to save all your dataframes from Excel as tab-delimited text
files: File/Save As� � � / then from the ‘Save as type’ options choose ‘Text (Tab delimited)’.
There is no need to add a suffix, because Excel will automatically add ‘.txt’ to your file
name. This file can then be read into R directly as a dataframe, using the read.table
function.

As pointed out in Chapter 3, is important to note that read.table would fail if there were
any spaces in any of the variable names in row 1 of the dataframe (the header row), such
as Field Name, Soil pH or Worm Density (above), or between any of the words within the
same factor level (as in many of the field names). These should be replaced by dots ‘.’
before the dataframe is saved in Excel. Also, it is good idea to remove any apostrophes, as
these can sometimes cause problems because there is more than one ASCII code for single
quote. Now the dataframe can be read into R. Think of a name for the dataframe (say,
‘worms’ in this case) and then allocate the data from the file to the dataframe name using
the gets arrow <- like this:

worms<-read.table("c:\\temp\\worms.txt",header=T)

Once the file has been imported to R we often want to do two things:

• use attach to make the variables accessible by name within the R session;

• use names to get a list of the variable names.

Typically, the two commands are issued in sequence, whenever a new dataframe is imported
from file (but see p. 18 for superior alternatives to attach):

attach(worms)
names(worms)

�1� "Field.Name" "Area" "Slope" "Vegetation"
�5� "Soil.pH" "Damp" "Worm.density"

To see the contents of the dataframe, just type its name:

worms
Field.Name Area Slope Vegetation Soil.pH Damp Worm.density

1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0

110 THE R BOOK

15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

Notice that R has expanded our abbreviated T and F into TRUE and FALSE. The object
called worms now has all the attributes of a dataframe. For example, you can summarize
it, using summary:

summary(worms)

Field.Name Area Slope Vegetation

Ashurst : 1 Min. :0.800 Min. : 0.00 Arable :3
Cheapside : 1 1st Qu. :2.175 1st Qu. : 0.75 Grassland :9
Church.Field : 1 Median :3.000 Median : 2.00 Meadow :3
Farm.Wood : 1 Mean :2.990 Mean : 3.50 Orchard :1
Garden.Wood : 1 3rd Qu. :3.725 3rd Qu. : 5.25 Scrub :4
Gravel.Pit : 1 Max. :5.100 Max. :11.00
(Other) :14

Soil.pH Damp Worm.density

Min. :3.500 Mode :logical Min. :0.00
1st Qu. :4.100 FALSE :14 1st Qu.:2.00
Median :4.600 TRUE :6 Median :4.00
Mean :4.555 Mean :4.35
3rd Qu. :5.000 3rd Qu.:6.25
Max. :5.700 Max. :9.00

Values of continuous variables are summarized under six headings: one parametric (the
arithmetic mean) and five non-parametric (maximum, minimum, median, 25th percentile or
first quartile, and 75th percentile or third quartile). Tukey’s famous five-number function
(fivenum; see p. 281) is slightly different, with hinges rather than first and third quartiles.
Levels of categorical variables are counted. Note that the field names are not listed in full
because they are unique to each row; six of them are named, then R says ‘plus 14 others’.

The two functions by and aggregate allow summary of the dataframe on the basis
of factor levels. For instance, it might be interesting to know the means of the numeric
variables for each vegetation type. The function for this is by:

by(worms,Vegetation,mean)

Vegetation: Arable
Field.Name Area Slope Vegetation Soil.pH Damp

NA 3.866667 1.333333 NA 4.833333 0.000000
Worm.density

5.333333

- - - - - - - - - - - - - - - - - - -
Vegetation: Grassland
Field.Name Area Slope Vegetation Soil.pH Damp

NA 2.9111111 3.6666667 NA 4.1000000 0.1111111
Worm.density

2.4444444

- - - - - - - - - - - - - - - - - - -

DATAFRAMES 111

Vegetation: Meadow
Field.Name Area Slope Vegetation Soil.pH Damp

NA 3.466667 1.666667 NA 4.933333 1.000000
Worm.density

6.333333
- - - - - - - - - - - - - - - - - - -
Vegetation: Orchard
Field.Name Area Slope Vegetation Soil.pH Damp

NA 1.9 0.0 NA 5.7 0.0
Worm.density

9.0
- - - - - - - - - - - - - - - - - - -
Vegetation: Scrub
Field.Name Area Slope Vegetation Soil.pH Damp

NA 2.425 7.000 NA 4.800 0.500
Worm.density

5.250

Notice that the logical variable Damp has been coerced to numeric (TRUE=1, FALSE=0)
and then averaged. Warning messages are printed for the non-numeric variables to which
the function mean is not applicable, but this is a useful and quick overview of the effects
of the five types of vegetation.

Subscripts and Indices

The key thing about working effectively with dataframes is to become completely at ease
with using subscripts (or indices, as some people call them). In R, subscripts appear in square
brackets []. A dataframe is a two-dimensional object, comprising rows and columns. The
rows are referred to by the first (left-hand) subscript, the columns by the second (right-hand)
subscript. Thus

worms[3,5]

[1] 4.3

is the value of Soil.pH (the variable in column 5) in row 3. To extract a range of values
(say the 14th to 19th rows) from worm density (the variable in the seventh column) we use
the colon operator : to generate a series of subscripts (14, 15, 16, 17, 18 and 19):

worms[14:19,7]

[1] 0 6 8 4 5 1

To extract a group of rows and a group of columns, you need to generate a series of subscripts
for both the row and column subscripts. Suppose we want Area and Slope (columns 2 and
3) from rows 1 to 5:

worms[1:5,2:3]

Area Slope
1 3.6 11
2 5.1 2
3 2.8 3
4 2.4 5
5 3.8 0

112 THE R BOOK

This next point is very important, and is hard to grasp without practice. To select all the
entries in a row the syntax is ‘number comma blank’. Similarly, to select all the entries in
a column the syntax is ‘blank comma number’. Thus, to select all the columns in row 3

worms[3,]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2

whereas to select all of the rows in column number 3 we enter

worms[,3]

[1] 11 2 3 5 0 2 3 0 0 4 10 1 2 6 0 0 8 2 1 1 0

This is a key feature of the R language, and one that causes problems for beginners. Note
that these two apparently similar commands create objects of different classes:

class(worms[3,])

[1] "data.frame"

class(worms[,3])

[1] "integer"

You can create sets of rows or columns. For instance, to extract all the rows for Field
Name and the Soil pH (columns 1 and 5) use the concatenate function, c, to make a vector
of the required column numbers c(1,5):

worms[,c(1,5)]

Field.Name Soil.pH
1 Nashs.Field 4.1
2 Silwood.Bottom 5.2
3 Nursery.Field 4.3
4 Rush.Meadow 4.9
5 Gunness.Thicket 4.2
6 Oak.Mead 3.9
7 Church.Field 4.2
8 Ashurst 4.8
9 The.Orchard 5.7

10 Rookery.Slope 5.0
11 Garden.Wood 5.2
12 North.Gravel 4.1
13 South.Gravel 4.0
14 Observatory.Ridge 3.8
15 Pond.Field 5.0
16 Water.Meadow 4.9
17 Cheapside 4.7
18 Pound.Hill 4.5
19 Gravel.Pit 3.5
20 Farm.Wood 5.1

DATAFRAMES 113

Selecting Rows from the Dataframe at Random

In bootstrapping or cross-validation we might want to select certain rows from the dataframe
at random. We use the sample function to do this: the default replace = FALSE performs
shuffling (each row is selected once and only once), while the option replace = TRUE
(sampling with replacement) allows for multiple copies of certain rows. Here we use
replace = F to select a unique 8 of the 20 rows at random:

worms[sample(1:20,8),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
8 Ashurst 2.1 0 Arable 4.8 FALSE 4

Note that the row numbers are in random sequence (not sorted), so that if you want a sorted
random sample you will need to order the dataframe after the randomization.

Sorting Dataframes

It is common to want to sort a dataframe by rows, but rare to want to sort by columns.
Because we are sorting by rows (the first subscript) we specify the order of the row
subscripts before the comma. Thus, to sort the dataframe on the basis of values in one of
the columns (say, Slope), we write

worms[order(Slope),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4

114 THE R BOOK

There are some points to notice here. Because we wanted the sorting to apply to all the
columns, the column subscript (after the comma) is blank: [order(Slope),]. The original row
numbers are retained in the leftmost column. Where there are ties for the sorting variable
(e.g. there are five ties for Slope = 0) then the rows are in their original order. If you want
the dataframe in reverse order (ascending order) then use the rev function outside the order
function like this:

worms[rev(order(Slope)),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6

Notice, now, that when there are ties (e.g. Slope = 0), the original rows are also in
reverse order.

More complicated sorting operations might involve two or more variables. This is achieved
very simply by separating a series of variable names by commas within the order function.
R will sort on the basis of the left-hand variable, with ties being broken by the second
variable, and so on. Suppose that we want to order the rows of the database on worm density
within each vegetation type:

worms[order(Vegetation,Worm.density),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8

DATAFRAMES 115

9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8

Notice that as with single-condition sorts, when there are ties (as in grassland with worm
density = 2), the rows are in their original sequence (here, 3, 6, 13). We might want to
override this by specifying a third sorting condition (e.g. soil pH):

worms[order(Vegetation,Worm.density,Soil.pH),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8

The rule is this: if in doubt, sort using more variables than you think you need. That
way you can be absolutely certain that the rows are in the order you expect them to
be in. This is exceptionally important when you begin to make assumptions about the
variables associated with a particular value of the response variable on the basis of its row
number.

Perhaps you want only certain columns in the sorted dataframe? Suppose we want
Vegetation, Worm.density, Soil.pH and Slope, and we want them in that order from left to
right, then we specify the column numbers in the sequence we want them to appear as a
vector, thus: c(4,7,5,3):

worms[order(Vegetation,Worm.density),c(4,7,5,3)]

Vegetation Worm.density Soil.pH Slope
8 Arable 4 4.8 0
18 Arable 5 4.5 2
2 Arable 7 5.2 2
14 Grassland 0 3.8 6
12 Grassland 1 4.1 1
19 Grassland 1 3.5 1
3 Grassland 2 4.3 3
6 Grassland 2 3.9 2

116 THE R BOOK

13 Grassland 2 4.0 2
7 Grassland 3 4.2 3
1 Grassland 4 4.1 11
10 Grassland 7 5.0 4
4 Meadow 5 4.9 5
15 Meadow 6 5.0 0
16 Meadow 8 4.9 0
9 Orchard 9 5.7 0
20 Scrub 3 5.1 10
17 Scrub 4 4.7 8
5 Scrub 6 4.2 0
11 Scrub 8 5.2 10

You can select the columns on the basis of their variables names, but this is more fiddly to
type, because you need to put the variable names in quotes like this:

worms[order(Vegetation,Worm.density),
c("Vegetation", "Worm.density", "Soil.pH", "Slope")]

Using Logical Conditions to Select Rows from the Dataframe

A very common operation is selecting certain rows from the dataframe on the basis of
values in one or more of the variables (the columns of the dataframe). Suppose we want to
restrict the data to cases from damp fields. We want all the columns, so the syntax for the
subscripts is [‘which rows’, blank]:

worms[Damp == T,]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

Note that because Damp is a logical variable (with just two potential values, TRUE or
FALSE) we can refer to true or false in abbreviated form, T or F. Also notice that the T in
this case is not enclosed in quotes: the T means true, not the character string ‘T’. The other
important point is that the symbol for the logical condition is == (two successive equals
signs with no gap between them; see p. 27).

The logic for the selection of rows can refer to values (and functions of values) in more
than one column. Suppose that we wanted the data from the fields where worm density was
higher than the median (>median(Worm.density)) and soil pH was less than 5.2. In R, the
logical operator for AND is the & symbol:

worms[Worm.density > median(Worm.density) & Soil.pH < 5.2,]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6

DATAFRAMES 117

10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5

Suppose that we want to extract all the columns that contain numbers (rather than
characters or logical variables) from the dataframe. The function is.numeric can be applied
across all the columns of worms using sapply to create subscripts like this:

worms[,sapply(worms,is.numeric)]

Area Slope Soil.pH Worm.density
1 3.6 11 4.1 4
2 5.1 2 5.2 7
3 2.8 3 4.3 2
4 2.4 5 4.9 5
5 3.8 0 4.2 6
6 3.1 2 3.9 2
7 3.5 3 4.2 3
8 2.1 0 4.8 4
9 1.9 0 5.7 9
10 1.5 4 5.0 7
11 2.9 10 5.2 8
12 3.3 1 4.1 1
13 3.7 2 4.0 2
14 1.8 6 3.8 0
15 4.1 0 5.0 6
16 3.9 0 4.9 8
17 2.2 8 4.7 4
18 4.4 2 4.5 5
19 2.9 1 3.5 1
20 0.8 10 5.1 3

We might want to extract the columns that were factors:

worms[,sapply(worms,is.factor)]

Field.Name Vegetation
1 Nashs.Field Grassland
2 Silwood.Bottom Arable
3 Nursery.Field Grassland
4 Rush.Meadow Meadow
5 Gunness.Thicket Scrub
6 Oak.Mead Grassland
7 Church.Field Grassland
8 Ashurst Arable
9 The.Orchard Orchard
10 Rookery.Slope Grassland
11 Garden.Wood Scrub
12 North.Gravel Grassland
13 South.Gravel Grassland
14 Observatory.Ridge Grassland

118 THE R BOOK

15 Pond.Field Meadow
16 Water.Meadow Meadow
17 Cheapside Scrub
18 Pound.Hill Arable
19 Gravel.Pit Grassland
20 Farm.Wood Scrub

Because worms is a dataframe, the characters have all been coerced to factors, so
worms[,sapply(worms,is.character)] produces the answer NULL.

To drop a row or rows from the dataframe, use negative subscripts. Thus to drop the
middle 10 rows (i.e. row numbers 6 to 15 inclusive) do this:

worms[-(6:15),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

Here are all the rows that are not grasslands (the logical symbol ! means NOT):

worms[!(Vegetation=="Grassland"),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

If you want to use minus signs rather than logical NOT to drop rows from the dataframe,
the expression you use must evaluate to numbers. The which function is useful for this.
Let’s use this technique to drop the non-damp fields.

worms[-which(Damp==F),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

DATAFRAMES 119

which achieves the same end as the more elegant

worms[!Damp==F,]

or even simpler,

worms[Damp==T,]

Omitting Rows Containing Missing Values, NA

In statistical modelling it is often useful to have a dataframe that contains no missing values
in the response or explanatory variables. You can create a shorter dataframe using the
na.omit function. Here is a sister dataframe of worms in which certain values are NA:

data<-read.table("c:\\temp\\worms.missing.txt",header=T)
data

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
2 Silwood.Bottom 5.1 NA Arable 5.2 FALSE 7
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
7 Church.Field 3.5 3 Grassland NA NA NA
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
19 Gravel.Pit NA 1 Grassland 3.5 FALSE 1
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

By inspection we can see that we should like to leave out row 2 (one missing value), row
7 (three missing values) and row 19 (one missing value). This could not be simpler:

na.omit(data)

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5

120 THE R BOOK

5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

and you see that rows 2, 7 and 19 have been omitted in creating the new dataframe. Alter-
natively, you can use the na.exclude function. This differs from na.omit only in the class
of the na.action attribute of the result, which gives different behaviour in functions making
use of naresid and napredict: when na.exclude is used the residuals and predictions are
padded to the correct length by inserting NAs for cases omitted by na.exclude (in this
example they would be of length 20, whereas na.omit would give residuals and predictions
of length 17).

new.frame<-na.exclude(data)

The function to test for the presence of missing values across a dataframe is
complete.cases:

complete.cases(data)

[1] TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[13] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE

You could use this as a less efficient analogue of na.omit(data), but why would you?

data[complete.cases(data),]

It is well worth checking the individual variables separately, because it is possible that
one (or a few) variable(s) contributes most of the missing values, and it may be preferable
to remove these variables from the modelling rather than lose the valuable information
about the other explanatory variables associated with these cases. Use summary to count
the missing values for each variable in the dataframe, or use apply with the function is.na
to sum up the missing values in each variable:

apply(apply(data,2,is.na),2,sum)

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
0 1 1 0 1 1 1

You can see that in this case no single variable contributes more missing values than
any other.

DATAFRAMES 121

Using order and unique to Eliminate Pseudoreplication

In this rather more complicated example, you are asked to extract a single record for each
vegetation type, and that record is to be the case within that vegetation type that has the
greatest worm density. There are two steps to this: first order all of the rows of the dataframe
using rev(order(Worm.density)), then select the subset of these rows which is unique for
vegetation type:

worms[rev(order(Worm.density)),][unique(Vegetation),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7

Complex Ordering with Mixed Directions

Sometimes there are multiple sorting variables, but the variables have to be sorted in
opposing directions. In this example, the task is to order the database first by vegetation
type in alphabetical order (the default) and then within each vegetation type to sort by worm
density in decreasing order (highest densities first). The trick here is to use order (rather
than rev(order())) but to put a minus sign in front of Worm.density like this:

worms[order(Vegetation,-Worm.density),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

Using the minus sign only works when sorting numerical variables. For factor levels you
can use the rank function to make the levels numeric like this:

122 THE R BOOK

worms[order(-rank(Vegetation),-Worm.density),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
8 Ashurst 2.1 0 Arable 4.8 FALSE 4

It is less likely that you will want to select columns on the basis of logical operations, but
it is perfectly possible. Suppose that for some reason you want to select the columns that
contain the character ‘S’ (upper-case S). In R the function for this is grep, which returns the
subscript (a number or set of numbers) indicating which character strings within a vector of
character strings contained an upper-case S. The names of the variables within a dataframe
are obtained by the names function:

names(worms)

[1] "Field.Name" "Area" "Slope" "Vegetation"
[5] "Soil.pH" "Damp" "Worm.density"

so we want our function grep to pick out variables numbers 3 and 5 because they are the
only ones containing upper-case S:

grep("S",names(worms))

[1] 3 5

Finally, we can use these numbers as subscripts [,c(3,5)] to select columns 3 and 5:

worms[,grep("S",names(worms))]

Slope Soil.pH
1 11 4.1
2 2 5.2
3 3 4.3
4 5 4.9
5 0 4.2
6 2 3.9
7 3 4.2
8 0 4.8
9 0 5.7

DATAFRAMES 123

10 4 5.0
11 10 5.2
12 1 4.1
13 2 4.0
14 6 3.8
15 0 5.0
16 0 4.9
17 8 4.7
18 2 4.5
19 1 3.5
20 10 5.1

A Dataframe with Row Names instead of Row Numbers

You can suppress the creation of row numbers and allocate your own unique names to
each row by altering the syntax of the read.table function. The first column of the worms
database contains the names of the fields in which the other variables were measured. Up
to now, we have read this column as if it was the first variable (p. 107).

detach(worms)
worms<-read.table("c:\\temp\\worms.txt",header=T,row.names=1)
worms

Area Slope Vegetation Soil.pH Damp Worm.density
Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
Church.Field 3.5 3 Grassland 4.2 FALSE 3
Ashurst 2.1 0 Arable 4.8 FALSE 4
The.Orchard 1.9 0 Orchard 5.7 FALSE 9
Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
North.Gravel 3.3 1 Grassland 4.1 FALSE 1
South.Gravel 3.7 2 Grassland 4.0 FALSE 2
Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
Pond.Field 4.1 0 Meadow 5.0 TRUE 6
Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
Cheapside 2.2 8 Scrub 4.7 TRUE 4
Pound.Hill 4.4 2 Arable 4.5 FALSE 5
Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

Notice that the field names column is not now headed by a variable name, and that the row
numbers, as intended, have been suppressed.

Creating a Dataframe from Another Kind of Object

We have seen that the simplest way to create a dataframe in R is to read a table of data from
an external file using the read.table function. Alternatively, you can create a dataframe by

124 THE R BOOK

using the data.frame function to bind together a number of objects. Here are three vectors
of the same length:

x<-runif(10)
y<-letters[1:10]
z<-sample(c(rep(T,5),rep(F,5)))

To make them into a dataframe called new, just type:

new<-data.frame(y,z,x)
new

y z x
1 a TRUE 0.72675982
2 b FALSE 0.83847227
3 c FALSE 0.61765685
4 d TRUE 0.78541650
5 e FALSE 0.51168828
6 f TRUE 0.53526324
7 g TRUE 0.05552335
8 h TRUE 0.78486234
9 i FALSE 0.68385443
10 j FALSE 0.89367837

Note that the order of the columns is controlled simply the sequence of the vector names
(left to right) specified within the data.frame function.

In this example, we create a table of counts of random integers from a Poisson distribution,
then convert the table into a dataframe. First, we make a table object:

y<-rpois(1500,1.5)
table(y)

y
0 1 2 3 4 5 6 7

344 502 374 199 63 11 5 2

Now it is simple to convert this table object into a dataframe with two variables, the count
and the frequency using the as.data.frame function:

as.data.frame(table(y))

y Freq
1 0 344
2 1 502
3 2 374
4 3 199
5 4 63
6 5 11
7 6 5
8 7 2

In some cases you might want to expand a dataframe like the one above such that it had
a separate row for every distinct count (i.e. 344 rows with y = 0, 502 rows with y = 1, 374
rows with y = 2, and so on). You use lapply with rep for this:

short.frame<-as.data.frame(table(y))
long<-as.data.frame(lapply(short.frame, function(x) rep(x, short.frame$Freq)))
long[,1]

DATAFRAMES 125

[1] 0
0 0 0 0 0 0 0 0 0 0

[38] 0
0 0 0 0 0 0 0 0 0 0

[75] 0
0 0 0 0 0 0 0 0 0 0

� � �
� � �

[1444] 4
4 4 4 4 4 4 4 4 4 4

[1481] 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 7 7

Note the use of the anonymous function to generate the repeats of each row by the
value specified in Freq. We drop the second column of long because it is redundant (the
Freq value).

Eliminating Duplicate Rows from a Dataframe

Sometimes a dataframe will contain duplicate rows where all the variables have exactly the
same values in two or more rows. Here is a simple example:

dups<-read.table("c:\\temp\\dups.txt",header=T)
dups

var1 var2 var3 var4
1 1 2 3 1
2 1 2 2 1
3 3 2 1 1
4 4 4 2 1
5 3 2 1 1
6 6 1 2 5
7 1 2 3 2

Note that row number 5 is an exact duplicate of row number 3. To create a dataframe with
all the duplicate rows stripped out, use the unique function like this:

unique(dups)

var1 var2 var3 var4
1 1 2 3 1
2 1 2 2 1
3 3 2 1 1
4 4 4 2 1
6 6 1 2 5
7 1 2 3 2

Notice that the row names in the new dataframe are the same as in the original, so that you
can spot that row number 5 was removed by the operation of the function unique.

To view the rows that are duplicates in a dataframe (if any) use the duplicated function:

dups[duplicated(dups),]

var1 var2 var3 var4
5 3 2 1 1

126 THE R BOOK

Dates in Dataframes

There is an introduction to the complexities of using dates and times in dataframes on
pp. 89–95. Here we work with a simple example:

nums<-read.table("c:\\temp\\sortdata.txt",header=T)
attach(nums)
names(nums)

[1] "name" "date" "response" "treatment"

The idea is to order the rows by date. The ordering is to be applied to all four columns of
the dataframe. Note that ordering on the basis of our variable called date does not work in
the way we want it to:

nums[order(date),]

name date response treatment
53 rachel 01/08/2003 32.98792196 B
65 albert 02/06/2003 38.41979568 A
6 ann 02/07/2003 2.86983693 B
10 cecily 02/11/2003 6.81467571 A
4 ian 02/12/2003 2.09505949 A
29 michael 03/05/2003 15.59890900 B
� � �

This is because of the format used for depicting date in the dataframe called nums: date is
a character string in which the first characters are the day, then the month, then the year.
When we sort by date, we typically want 2001 to come before 2006, May 2006 before
September 2006 and 12 May 2006 before 14 May 2006. In order to sort by date we need
first to convert our variable into date-time format using the strptime function (see p. 92 for
details):

dates<-strptime(date,format="%d/%m/%Y")
dates
[1] "2003-08-25" "2003-05-21" "2003-10-12" "2003-12-02" "2003-10-18"
[6] "2003-07-02" "2003-09-27" "2003-06-05" "2003-06-11" "2003-11-02"

Note how strptime has produced a date object with year first, then a hyphen, then month,
then a hyphen, then day which will sort into the desired sequence. We bind the new variable
to the dataframe called nums like this:

nums<-cbind(nums,dates)

Now that the new variable is in the correct format the dates can be sorted as characters:

nums[order(as.character(dates)),1:4]

name date response treatment
49 albert 21/04/2003 30.66632632 A
63 james 24/04/2003 37.04140266 A
24 john 27/04/2003 12.70257306 A
33 william 30/04/2003 18.05707279 B
29 michael 03/05/2003 15.59890900 B
71 ian 06/05/2003 39.97237868 A
50 rachel 09/05/2003 30.81807436 B

DATAFRAMES 127

Note the use of subscripts to omit the new dates variable by selecting only columns 1 to
4 of the dataframe. Another way to extract elements of a dataframe is to use the subset
function with select like this:

subset(nums,select=c("name","dates"))

name dates
1 albert 2003-08-25
2 ann 2003-05-21
3 john 2003-10-12
4 ian 2003-12-02
5 michael 2003-10-18
� � �
� � �
73 georgina 2003-05-24
74 georgina 2003-08-16
75 heather 2003-11-14
76 elizabeth 2003-06-23

Selecting Variables on the Basis of their Attributes

In this example, we want to extract all of the columns from nums (above) that are numeric.
Use sapply to obtain a vector of logical values:

sapply(nums,is.numeric)

name date response treatment dates
FALSE FALSE TRUE FALSE TRUE

Now use this object to form the column subscripts to extract the two numeric variables:

nums[,sapply(nums,is.numeric)]

response dates
1 0.05963704 2003-08-25
2 1.46555993 2003-05-21
3 1.59406539 2003-10-12
4 2.09505949 2003-12-02

Note that dates is numeric but date was not (it is a factor, having been converted from a
character string by the read.table function).

Using the match Function in Dataframes

The worms dataframe (above) contains fields of five different vegetation types:

unique(worms$Vegetation)

[1] Grassland Arable Meadow Scrub Orchard

and we want to know the appropriate herbicides to use in each of the 20 fields. The
herbicides are in a separate dataframe that contains the recommended herbicides for a much
larger set of plant community types:

herbicides<-read.table("c:\\temp\\herbicides.txt",header=T)
herbicides

128 THE R BOOK

Type Herbicide
1 Woodland Fusilade
2 Conifer Weedwipe
3 Arable Twinspan
4 Hill Weedwipe
5 Bracken Fusilade
6 Scrub Weedwipe
7 Grassland Allclear
8 Chalk Vanquish
9 Meadow Propinol
10 Lawn Vanquish
11 Orchard Fusilade
12 Verge Allclear

The task is to create a vector of length 20 (one for every field in worms) containing the name
of the appropriate herbicide. The first value needs to be Allclear because Nash’s Field
is grassland, and the second needs to be Twinspan because Silwood Bottom is arable,
and so on. The first vector in match is worms$Vegetation and the second vector in
match is herbicides$Type. The result of this match is used as a vector of subscripts
to extract the relevant herbicides from herbicides$Herbicide like this:

herbicides$Herbicide[match(worms$Vegetation,herbicides$Type)]

[1] Allclear Twinspan Allclear Propinol Weedwipe Allclear
Allclear Twinspan

[9] Fusilade Allclear Weedwipe Allclear Allclear Allclear
Propinol Propinol

[17] Weedwipe Twinspan Allclear Weedwipe

You could add this information as a new column in the worms dataframe:

worms$hb<-herbicides$Herbicide[match(worms$Vegetation,herbicides$Type)]

or create a new dataframe called recs containing the herbicide recommendations:

recs<-data.frame(
worms,hb=herbicides$Herbicide[match(worms$Vegetation,herbicides$Type)])

recs
Field.Name Area Slope Vegetation Soil.pH Damp Worm.density hb

1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4 Allclear
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7 Twinspan
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2 Allclear
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5 Propinol
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6 Weedwipe
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2 Allclear
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3 Allclear
8 Ashurst 2.1 0 Arable 4.8 FALSE 4 Twinspan
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9 Fusilade
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7 Allclear
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8 Weedwipe
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1 Allclear
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2 Allclear
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0 Allclear
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6 Propinol
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8 Propinol
17 Cheapside 2.2 8 Scrub 4.7 TRUE 4 Weedwipe

DATAFRAMES 129

18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5 Twinspan
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1 Allclear
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3 Weedwipe

Merging Two Dataframes

Suppose we have two dataframes, the first containing information on plant life forms and the
second containing information of time of flowering. We want to produce a single dataframe
showing information on both life form and flowering time. Both dataframes contain variables
for genus name and species name:

(lifeforms<-read.table("c:\\temp\\lifeforms.txt",header=T))

Genus species lifeform
1 Acer platanoides tree
2 Acer palmatum tree
3 Ajuga reptans herb
4 Conyza sumatrensis annual
5 Lamium album herb

(flowering<-read.table("c:\\temp\\fltimes.txt",header=T))

Genus species flowering
1 Acer platanoides May
2 Ajuga reptans June
3 Brassica napus April
4 Chamerion angustifolium July
5 Conyza bilbaoana August
6 Lamium album January

Because at least one of the variable names is identical in the two dataframes (in this case,
two variables are identical, namely Genus and species) we can use the simplest of all merge
commands:

merge(flowering,lifeforms)

Genus species flowering lifeform
1 Acer platanoides May tree
2 Ajuga reptans June herb
3 Lamium album January herb

The important point to note is that the merged dataframe contains only those rows which
had complete entries in both dataframes. Two rows from the lifeforms database were
excluded because there were no flowering time data for them (Acer platanoides and Conyza
sumatrensis), and three rows from the flowering-time database were excluded because there
were no lifeform data for them (Chamerion angustifolium, Conyza bilbaoana and Brassica
napus).

If you want to include all the species, with missing values (NA) inserted when flowering
times or lifeforms are not known, then use the all=T option:

(both<-merge(flowering,lifeforms,all=T))

Genus species flowering lifeform
1 Acer platanoides May tree
2 Acer palmatum <NA> tree
3 Ajuga reptans June herb

130 THE R BOOK

4 Brassica napus April <NA>
5 Chamerion angustifolium July <NA>
6 Conyza bilbaoana August <NA>
7 Conyza sumatrensis <NA> annual
8 Lamium album January herb

One complexity that often arises is that the same variable has different names in the two
dataframes that need to be merged. The simplest solution is often to edit the variable names
in Excel before reading them into R, but failing this, you need to specify the names in
the first dataframe (known conventionally as the x dataframe) and the second dataframe
(known conventionally as the y dataframe) using the by.x and by.y options in merge. We
have a third dataframe containing information on the seed weights of all eight species, but
the variable Genus is called ‘name1’ and the variable species is called ‘name2’.

(seeds<-read.table("c:\\temp\\seedwts.txt",header=T))

name1 name2 seed
1 Acer platanoides 32.0
2 Lamium album 12.0
3 Ajuga reptans 4.0
4 Chamerion angustifolium 1.5
5 Conyza bilbaoana 0.5
6 Brassica napus 7.0
7 Acer palmatum 21.0
8 Conyza sumatrensis 0.6

Just using merge(both,seeds) fails miserably: you should try it, to see what happens. We
need to inform the merge function that Genus and name1 are synonyms (different names
for the same variable), as are species and name2.

merge(both,seeds,by.x=c("Genus","species"),by.y=c("name1","name2"))

Genus species flowering lifeform seed
1 Acer palmatum <NA> tree 21.0
2 Acer platanoides May tree 32.0
3 Ajuga reptans June herb 4.0
4 Brassica napus April <NA> 7.0
5 Chamerion angustifolium July <NA> 1.5
6 Conyza bilbaoana August <NA> 0.5
7 Conyza sumatrensis <NA> annual 0.6
8 Lamium album January herb 12.0

Note that the variable names used in the merged dataframe are the names used in the x
dataframe.

Adding Margins to a Dataframe

Suppose we have a dataframe showing sales by season and by person:

frame<-read.table("c:\\temp\\sales.txt",header=T)
frame

name spring summer autumn winter
1 Jane.Smith 14 18 11 12
2 Robert.Jones 17 18 10 13

DATAFRAMES 131

3 Dick.Rogers 12 16 9 14
4 William.Edwards 15 14 11 10
5 Janet.Jones 11 17 11 16

and we want to add margins to this dataframe showing departures of the seasonal means
from the overall mean (as an extra row at the bottom) and departures of the peoples’ means
(as an extra column on the right). Finally, we want the sales in the body of the dataframe
to be represented by departures from the overall mean.

people<-rowMeans(frame[,2:5])
people<-people-mean(people)
people

1 2 3 4 5
0.30 1.05 -0.70 -0.95 0.30

It is very straightforward to add a new column to the dataframe using cbind:

(new.frame<-cbind(frame,people))

name spring summer autumn winter people
1 Jane.Smith 14 18 11 12 0.30
2 Robert.Jones 17 18 10 13 1.05
3 Dick.Rogers 12 16 9 14 -0.70
4 William.Edwards 15 14 11 10 -0.95
5 Janet.Jones 11 17 11 16 0.30

Robert Jones is the most effective sales person �+1�05� and William Edwards is the least
effective �−0�95�. The column means are calculated in a similar way:

seasons<-colMeans(frame[,2:5])
seasons<-seasons-mean(seasons)
seasons
spring summer autumn winter
0.35 3.15 -3.05 -0.45

Sales are highest in summer �+3�15� and lowest in autumn �−3�05�.
Now there is a hitch, however, because there are only four column means but there are

six columns in new.frame, so we can not use rbind directly. The simplest way to deal with
this is to make a copy of one of the rows of the new dataframe

new.row<-new.frame[1,]

and then edit this to include the values we want: a label in the first column to say ‘seasonal
means’ then the four column means, and then a zero for the grand mean of the effects:

new.row[1]<-"seasonal effects"
new.row[2:5]<-seasons
new.row[6]<-0

Now we can use rbind to add our new row to the bottom of the extended dataframe:

(new.frame<-rbind(new.frame,new.row))

name spring summer autumn winter people
1 Jane.Smith 14.00 18.00 11.00 12.00 0.30
2 Robert.Jones 17.00 18.00 10.00 13.00 1.05

132 THE R BOOK

3 Dick.Rogers 12.00 16.00 9.00 14.00 -0.70
4 William.Edwards 15.00 14.00 11.00 10.00 -0.95
5 Janet.Jones 11.00 17.00 11.00 16.00 0.30
11 seasonal effects 0.35 3.15 -3.05 -0.45 0.00

The last task is to replace the counts of sales in the dataframe new.frame[1:5,2:5]
by departures from the overall mean sale per person per season (the grand mean, gm =
13�45). We need to use unlist to stop R from estimating a separate mean for each column,
then create a vector of length 4 containing repeated values of the grand mean (one for
each column of sales). Finally, we use sweep to subtract the grand mean from each
value.

gm<-mean(unlist(new.frame[1:5,2:5]))
gm<-rep(gm,4)
new.frame[1:5,2:5]<-sweep(new.frame[1:5,2:5],2,gm)
new.frame

name spring summer autumn winter people
1 Jane.Smith 0.55 4.55 -2.45 -1.45 0.30
2 Robert.Jones 3.55 4.55 -3.45 -0.45 1.05
3 Dick.Rogers -1.45 2.55 -4.45 0.55 -0.70
4 William.Edwards 1.55 0.55 -2.45 -3.45 -0.95
5 Janet.Jones -2.45 3.55 -2.45 2.55 0.30
11 seasonal effects 0.35 3.15 -3.05 -0.45 0.00

The best per-season performance was shared by Jane Smith and Robert Jones who each
sold 4.55 units more than the overall average in summer.

Summarizing the Contents of Dataframes

There are three useful functions here

• summary summarize all the contents of all the variables

• aggregate create a table after the fashion of tapply

• by perform functions for each level of specified factors

Use of summary and by with the worms database on p. 110.
The other useful function for summarizing a dataframe is aggregate. It is used like tapply

(see p. 18) to apply a function (mean in this case) to the levels of a specified categorical
variable (Vegetation in this case) for a specified range of variables (Area, Slope, Soil.pH and
Worm.density are defined using their subscripts as a column index in worms[,c(2,3,5,7)]):

aggregate(worms[,c(2,3,5,7)],by=list(veg=Vegetation),mean)

veg Area Slope Soil.pH Worm.density
1 Arable 3.866667 1.333333 4.833333 5.333333
2 Grassland 2.911111 3.666667 4.100000 2.444444
3 Meadow 3.466667 1.666667 4.933333 6.333333
4 Orchard 1.900000 0.000000 5.700000 9.000000
5 Scrub 2.425000 7.000000 4.800000 5.250000

DATAFRAMES 133

The by argument needs to be a list even if, as here, we have only one classifying factor.
Here are the aggregated summaries for Vegetation and Damp:

aggregate(worms[,c(2,3,5,7)],by=list(veg=Vegetation,d=Damp),mean)

veg d Area Slope Soil.pH Worm.density
1 Arable FALSE 3.866667 1.333333 4.833333 5.333333
2 Grassland FALSE 3.087500 3.625000 3.987500 1.875000
3 Orchard FALSE 1.900000 0.000000 5.700000 9.000000
4 Scrub FALSE 3.350000 5.000000 4.700000 7.000000
5 Grassland TRUE 1.500000 4.000000 5.000000 7.000000
6 Meadow TRUE 3.466667 1.666667 4.933333 6.333333
7 Scrub TRUE 1.500000 9.000000 4.900000 3.500000

Note that this summary is unbalanced because there were no damp arable or orchard sites
and no dry meadows.

5
Graphics

Producing high-quality graphics is one of the main reasons for doing statistical computing.
The particular plot function you need will depend on the number of variables you want to
plot and the pattern you wish to highlight. The plotting functions in this chapter are dealt
with under four headings:

• plots with two variables;

• plots for a single sample;

• multivariate plots;

• special plots for particular purposes.

Changes to the detailed look of the graphs are dealt with in Chapter 27.

Plots with Two Variables

With two variables (typically the response variable on the y axis and the explanatory
variable on the x axis), the kind of plot you should produce depends upon the nature of
your explanatory variable. When the explanatory variable is a continuous variable, such
as length or weight or altitude, then the appropriate plot is a scatterplot. In cases where
the explanatory variable is categorical, such as genotype or colour or gender, then the
appropriate plot is either a box-and-whisker plot (when you want to show the scatter in
the raw data) or a barplot (when you want to emphasize the effect sizes).

The most frequently used plotting functions for two variables in R are the following:

• plot(x,y) scatterplot of y against x

• plot(factor, y) box-and-whisker plot of y at levels of factor

• barplot(y) heights from a vector of y values

Plotting with two continuous explanatory variables: scatterplots

The plot function draws axes and adds a scatterplot of points. Two extra functions, points
and lines, add extra points or lines to an existing plot. There are two ways of specifying
plot, points and lines and you should choose whichever you prefer:

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

136 THE R BOOK

• Cartesian plot(x,y)

• formula plot(y~x)

The advantage of the formula-based plot is that the plot function and the model fit look
and feel the same (response variable, tilde, explanatory variable). If you use Cartesian plots
(eastings first, then northings, like the grid reference on a map) then the plot has ‘x then y’
while the model has ‘y then x’.

At its most basic, the plot function needs only two arguments: first the name of the
explanatory variable (x in this case), and second the name of the response variable (y in
this case): plot(x,y). The data we want to plot are read into R from a file:

data1<-read.table("c:\\temp\\scatter1.txt",header=T)
attach(data1)
names(data1)

[1] "xv" "ys"

Producing the scatterplot could not be simpler: just type

plot(xv,ys,col="red")

with the vector of x values first, then the vector of y values (changing the colour of the
points is optional). Notice that the axes are labelled with the variable names, unless you
chose to override these with xlab and ylab. It is often a good idea to have longer, more
explicit labels for the axes than are provided by the variable names that are used as default
options (xv and ys in this case). Suppose we want to change the label ‘xv’ into the longer
label ‘Explanatory variable’ and the label on the y axis from ‘ys’ to ‘Response variable’.
Then we use xlab and ylab like this:

plot(xv,ys,col="red,xlab="Explanatory variable",ylab="Response variable")

The great thing about graphics in R is that it is extremely straightforward to add things to
your plots. In the present case, we might want to add a regression line through the cloud of
data points. The function for this is abline which can take as its argument the linear model
object lm(ys~xv) (as explained on p. 387):

abline(lm(ys~xv))

Just as it is easy to add lines to the plot, so it is straightforward to add more points. The
extra points are in another file:

data2<-read.table("c:\\temp\\scatter2.txt",header=T)
attach(data2)
names(data2)

[1] "xv2" "ys2"

The new points (xv2,ys2) are added using the points function like this:

points(xv2,ys2,col="blue")

and we can finish by adding a regression line to the extra points:

abline(lm(ys2~xv2))

GRAPHICS 137

ys

20
30

40
50

60

xv
0 20 40 60 80 100

This example shows a very important feature of the plot function. Notice that several of
the lower values from the second (blue) data set have not appeared on the graph. This is
because (unless we say otherwise at the outset) R chooses ‘pretty’ scaling for the axes based
on the data range in the first set of points to be drawn. If, as here, the range of subsequent
data sets lies outside the scale of the x and y axes, then points are simply left off without
any warning message.

One way to cure this problem is to plot all the data with type="n" so that the axes are
scaled to encompass all the points form all the data sets (using the concatenation function),
then to use points and lines to add the data to the blank axes, like this:

plot(c(xv,xv2),c(ys,ys2),xlab="x",ylab="y",type="n")
points(xv,ys,col="red")
points(xv2,ys2,col="blue")
abline(lm(ys~xv))
abline(lm(ys2~xv2))

Now all of the points from both data sets appear on the scattergraph. Another way to
ensure that all the data are within the plotted axes is to scale the axes yourself, rather than
rely on R’s choice of pretty scaling, using xlim and ylim. Each of these requires a vector
of length 2 to show the minimum and maximum values for each axis. These values are
automatically rounded to make them pretty for axis labelling. You will want to control
the scaling of the axes when you want two comparable graphs side by side, or when you
want to overlay several lines or sets of points on the same axes. Remember that the initial
plot function sets the axes scales: this can be a problem if subsequent lines or points are
off-scale.

138 THE R BOOK

x
0 20 40 60 80 100

y

20
30

40
50

60

A good way to find out the axis values is to use the range function applied to the data
sets in aggregate:

range(c(xv,xv2))

[1] 0.02849861 99.93262000

range(c(ys,ys2))

[1] 13.41794 62.59482

Here the x axis needs to go from 0.02 up to 99.93 (0 to 100 would be pretty) and the y
axis needs to go from 13.4 up to 62.6 (0 to 80 would be pretty). This is how the axes are
drawn; the points and lines are added exactly as before:

plot(c(xv,xv2),c(ys,ys2),xlim=c(0,100),ylim=c(0,80),xlab="x",ylab="y",type="n")
points(xv,ys,col="red")
points(xv2,ys2,col="blue")
abline(lm(ys~xv))
abline(lm(ys2~xv2))

Adding a legend to the plot to explain the difference between the two colours of points
would be useful. The thing to understand about the legend function is that the number of
lines of text inside the legend box is determined by the length of the vector containing the
labels (2 in this case: c("treatment","control") The other two vectors must be of the same
length as this: for the plotting symbols pch=c(1,1) and the colours col=c(2,4). The legend
function can be used with locator(1) to allow you to select exactly where on the plot surface
the legend box should be placed. Click the mouse button when the cursor is where you want
the top left of the box around the legend to be. It is useful to know the first six colours
(col=) used by the plot function:

GRAPHICS 139

x
0 20 40 60 80 100

y

20
0

40
60

80

• 1 black (the default)

• 2 red

• 3 green

• 4 blue

• 5 pale blue

• 6 purple

Here, the red circles (col = 2) are the treatment values and the blue circles (col = 4) are the
control values. Both are represented by open plotting symbols pch=c(1,1).

legend(locator(1),c("treatment","control"),pch=c(1,1),col=c(2,4))

This is about as complicated as you would want to make any figure. Adding more information
would begin to detract from the message.

Changing the plotting characters used in the points function and in scatterplots involves
the function pch: here is the full set of plotting characters:

plot(0:10,0:10,type="n",xlab="",ylab="")
k<- -1
for (i in c(2,5,8)) {
for (j in 0:9) {
k<-k+1
points(i,j,pch=k,cex=2)}}

Starting at y = 0 and proceeding vertically from x = 2, you see plotting symbols 0 (open
square), 1 (the default open circle), 2 (open triangle), 3 (plus) etc., up to 25 (by which point

140 THE R BOOK

x
0 20 40 60 80 100

y

20
0

40
60

treatment
control

80

0
2

4
6

8
10

0 2 4 6 8 10

GRAPHICS 141

the characters are repeating). My favourite symbol for scatterplots with few data points is
pch=16, the solid circle (in the central column), but with many points you might prefer to
use pch="." or pch=20. Higher values for pch include the upper-case characters from the
top row of the keyboard such as !, $, %, &, ∗ (33–47), numerals (48–57), logical symbols
(58–64) and letters (65 and up).

Identifying individuals in scatterplots

The best way to identify multiple individuals in scatterplots is to use a combination of
colours and symbols, using as.numeric to convert the grouping factor (the variable acting
as the subject identifier) into a colour and/or a symbol. Here is an example where reaction
time is plotted against days of sleep deprivation for 18 subjects:

data<-read.table("c:\\temp\\sleep.txt",header=T)
attach(data)
Subject<-factor(Subject)
plot(Days,Reaction,col=as.numeric(Subject),pch=as.numeric(Subject))

R
ea

ct
io

n

20
0

25
0

30
0

35
0

40
0

45
0

Days

0 2 4 6 8

The individuals stand out more clearly from one another when both colour and symbol
are used.

Using a third variable to label a scatterplot

The following example concerns the response of a grass species Festuca rubra as measured
by its biomass in small samples (FR) to two explanatory variables, soil pH and total hay

142 THE R BOOK

yield (the mass of all plant species combined). A scatterplot of pH against hay shows the
locations of the various samples. The idea is to use the text function to label each of the
points on the scatterplot with the dry mass of F. rubra in that particular sample, to see
whether there is systematic variation in the mass of Festuca with changes in hay yield and
soil pH.

data<-read.table("c:\\temp\\pgr.txt",header=T)
attach(data)
names(data)

[1] "FR" "hay" "pH"

plot(hay,pH)
text(hay, pH, labels=round(FR, 2), pos=1, offset=0.5,cex=0.7)

3.
5

4.
0

4.
5

5.
0

5.
5

pH

6.
0

6.
5

7.
0

00
00.02

hay

0.01
0

4.46

0

8.83
8.59

23.69 4.06

4.66
2.45 4.32

0
0.09

21.4 9.55

19.250.76
4.05

0.22

7.74
6.85

2.44

7.43

5.58

1.7

1.45

5.94

9.11

1.01

14.15
11.28

9.99
6.89 8.31

0.68 7.15

3.65

7.07

4.92
9.13

6.01

4.39
2.36

7.32 0.97

0.58
9.22

3.49

2.10
2.090

4.1 4.43

0.01
3.56

0.02
0.92

6.98
91.45

0.91
1.98

1.87

536

4.86
22.73

5.47

1.06

1.73

7.65
0.820.021.04

2.98

5.26
7.13

7.66
270.958.75

0.92

0

2 3 4 5 6 7 8 9

7.39

7192

The labels are centred on the x value of the point (pos=1) and are offset half a character
below the point (offset=0.5). They show the value of FR rounded to two significant digits
(labels=round(FR, 2)) at 70% character expansion (cex=0.7). There is an obvious problem
with this method when there is lots of overlap between the labels (as in the top right), but
the technique works well for more widely spaced points. The plot shows that high values
of Festuca biomass are concentrated at intermediate values of both soil pH and hay yield.

You can also use a third variable to choose the colour of the points in your scatterplot.
Here the points with FR above median are shown in red, the others in black:

plot(hay,pH,pch=16,col=ifelse(FR>median(FR),"red","black"))

For three-dimensional plots see image, contour and wireframe on p. 843, and for more
on adding text to plots see p. 143.

GRAPHICS 143

2

3.
5

4.
0

4.
5

5.
0

5.
5

pH

6.
0

6.
5

7.
0

3 4 5 6
hay

7 8 9

Adding text to scatterplots

It is very easy to add text to graphics. Suppose you wanted to add the text ‘(b)’ to a plot at
the location x = 0�8 and y = 45; just type

text(0.8,45,"(b)")

In this example we want to produce a map of place names and the place names are in
a file called map.places.csv, but their coordinates are in another, much longer file called
bowens.csv, containing many more place names than we want to plot. If you have factor
level names with spaces in them (e.g. multiple words), then the best format for reading files
is comma-delimited (‘.csv’ rather than the standard tab-delimited, ‘.txt’ files). You read
them into a dataframe in R using read.csv in place of read.table:

map.places <-read.csv("c:\\temp\\map.places.csv",header=T)
attach(map.places)
names(map.places)

[1] "wanted"

map.data<-read.csv("c:\\temp\\bowens.csv",header=T)
attach(map.data)
names(map.data)

[1] "place" "east" "north"

There is a slight complication to do with the coordinates. The northernmost places are
in a different 100 km square so, for instance, a northing of 3 needs to be altered to 103.
It is convenient that all of the values that need to be changed have northings < 60 in the
dataframe:

144 THE R BOOK

nn<-ifelse(north<60,north+100,north)

This says change all of the northings for which north < 60 is TRUE to nn<-north+100,
and leave unaltered all the others (FALSE) as nn<-north.

We begin by plotting a blank space (type="n") of the right size (eastings from 20 to 100
and northings from 60 to 110) with blank axis labels ”:

plot(c(20,100),c(60,110),type="n",xlab="" ylab="")

The trick is to select the appropriate places in the vector called place and use text to plot
each name in the correct position (east[i],nn[i]). For each place name in wanted we find the
correct subscript for that name within place using the which function:

for (i in 1:length(wanted)){
ii <- which(place == as.character(wanted[i]))
text(east[ii], nn[ii], as.character(place[ii]), cex = 0.6) }

60
70

80
90

10
0

11
0

Wytham Meads
Wytham Wood

Farmoor Botley

Cumnor

Appleton
Kennington

Radley
Abingdon

Cothil
Tubney

Frilford
Manoham

Drayton
Sutton Courtenay

Hinton Waldnist

Buckland

Pusey
Busoot

Faringdon

Coleshil

Femham Denchworth
Grove

Wantage

Uffington

Whitehorse Hill
Ashbury

Kingstone Down

Upper Lamboum

Lamboum

East Garston
Shefford

Welford

Chilton Foliat

Hungerford

Boxford

Boot

Wildemess

Kintbury
Inkpen

Shalboume

Walbury Camp

Greenham Commom

Silchester Riseley

Farley Hill
Mortimer

Grazeley Arborfield

SwallowfieldAldemaston

Beenham Bunghfield
Pingewood

Theale
Bradfield

SulhamYattendon

Peasemore
Beedon

Compton
Basildon

Streatley

Moulsford

East IIsley

Brightwalton

Fambonough
Fawley

Chum

Blewbury
Aston Tirrold

Wallingford
Didcot

Harwell

Aere Harwell

Steventon

Letoombe Bassett

Charney Bassett

Reading

Winnersh
Wokingham

Sandhurst

Bagshot Health

Nine Mile Ride

Swimley Park

AscotBracknell

Binfield Windsor Great Park

Cranbourme

Old Windsor

Windsor

Bray

Shurlock Row

White Waltham

Knowl Hill

Maidenhead

Cookham
Cliveden Reach

Twyford

Woodley

Ashampstead Pangboume

Newbury
Thatcham

Speen
Cold Ash

Fence Wood

Hemitage

Watchfield

Shrivenham

20 40 60 80 100

Drawing mathematical functions

The curve function is used for this. Here is a plot of x3 − 3x between x = −2 and x = 2:

curve(x^3-3*x, -2, 2)

Here is the more cumbersome code to do the same thing using plot:

x<-seq(-2,2,0.01)
y<-x^3-3*x
plot(x,y,type="l")

GRAPHICS 145

x

–2
–1

0
1

2

x∧ 3
 –

 3
∗ x

–2 –1 0 1 2

x

–2
–1

0
1

y

–2 –1 0 1 2

2

146 THE R BOOK

Adding other shapes to a plot

Once you have produced a set of axes using plot it is straightforward to locate and insert
other kinds of things. Here are two unlabelled axes, without tick marks (xaxt="n"), both
scaled 0 to 10 but without any of the 11 points drawn on the axes (type="n"):

plot(0:10,0:10,xlab="",ylab="",xaxt="n",yaxt="n",type="n")

You can easily add extra graphical objects to plots:

• rect rectangles

• arrows arrows and bars

• polygon more complicated straight-sided shapes

For the purposes of demonstration we shall add a single-headed arrow, a double-headed
arrow, a rectangle and a six-sided polygon to this space.

We want to put a solid square object in the top right-hand corner, and we know the
precise coordinates to use. The syntax for the rect function is to provide four numbers:

rect(xleft, ybottom, xright, ytop)

so to plot the square from (6,6) to (9,9) involves

rect(6,6,9,9)

text overlay

You can fill the shape with solid colour (col) or with shading lines (density, angle) as
described on p. 829. You might want R to tell you the coordinates of the corners of the

GRAPHICS 147

rectangle and you can use the locator() function for this. The rect function does not accept
locator as its arguments but you can easily write a function (here called corners) to do this:

corners<-function(){
coos<-c(unlist(locator(1)),unlist(locator(1)))
rect(coos[1],coos[2],coos[3],coos[4])
}

Run the function like this:

corners()

Then click in the bottom left-hand corner and again in the top right-hand corner, and a
rectangle will be drawn.

Drawing arrows as in the diagram above is straightforward. The syntax for the arrows
function to draw a line from the point (x0, y0) to the point (x1, y1) with the arrowhead, by
default, at the ‘second’ end (x1, y1) is:

arrows(x0, y0, x1, y1)

Thus, to draw an arrow from (1,1) to (3,8) with the head at (3,8) type

arrows(1,1,3,8)

A double-headed arrow from (1,9) to (5,9) is produced by adding code=3 like this:

arrows(1,9,5,9,code=3)

A vertical bar with two square ends (e.g. like an error bar) uses angle = 90 instead of the
default angle = 30)

arrows(4,1,4,6,code=3,angle=90)

Here is a function that draws an arrow from the cursor position of your first click to the
position of your second click:

click.arrows<-function(){
coos<-c(unlist(locator(1)),unlist(locator(1)))
arrows(coos[1],coos[2],coos[3],coos[4])
}

To run this, type

click.arrows()

We now wish to draw a polygon. To do this, it is often useful to save the values of a
series of locations. Here we intend to save the coordinates of six points in a vector called
locations to define a polygon for plotting

locations<-locator(6)

After you have clicked over the sixth location, control returns to the screen. What kind of
object has locator produced?

class(locations)

[1] "list"

148 THE R BOOK

It has produced a list, and we can extract the vectors of x and y values from the list using
$ to name the elements of the list (R has created the helpful names x and y):

locations$x

[1] 1.185406 3.086976 5.561308 6.019518 4.851083 1.506152

locations$y

[1] 8.708933 9.538905 8.060518 4.377520 1.239191 2.536021

Now we draw the lavender-coloured polygon like this

polygon(locations,col="lavender")

Note that the polygon function has automatically closed the shape, drawing a line from the
last point to the first.

The polygon function can be used to draw more complicated shapes, even curved ones.
In this example we are asked to shade the area beneath a standard normal curve for values
of x that are less than or equal to −1. First draw the line for the standard normal:

xv<-seq(-3,3,0.01)
yv<-dnorm(xv)
plot(xv,yv,type="l")

Then fill the area to the left of xv ≤ −1 in red:

polygon(c(xv[xv<=-1],-1),c(yv[xv<=-1],yv[xv==-3]),col="red")

0.
0

0.
1

0.
2

0.
3

0.
4

xv

yv

–3 –2 –1 0 1 2 3

Note the insertion of the point (-1, yv[xv== -3]) to draw the polygon down to the x axis.

GRAPHICS 149

Smooth curves

Up to this point our response variable was shown as a scatter of data points. In many cases,
however, we want to show the response as a smooth curve. The important tip is that to
produce reasonably smooth-looking curves in R you should draw about 100 straight line
sections between the minimum and maximum values of your x axis.

The Ricker curve is named after the famous Canadian fish biologist who introduced this
two-parameter hump-shaped model for describing recruitment to a fishery y as a function
of the density of the parental stock, x. We wish to compare two Ricker curves with the
following parameter values:

yA = 482xe−0�045x� yB = 518xe−0�055x�

The first decision to be made is the range of x values for the plot. In our case this is easy
because we know from the literature that the minimum value of x is 0 and the maximum
value of x is 100. Next we need to generate about 100 values of x at which to calculate and
plot the smoothed values of y:

xv<-0:100

Next, calculate vectors containing the values of yA and yB at each of these x values:

yA<-482*xv*exp(-0.045*xv)
yB<-518*xv*exp(-0.055*xv)

We are now ready to draw the two curves, but we do not know how to scale the y axis.
We could find the maximum and minimum values of yA and yB then use ylim to specify
the extremes of the y axis, but it is more convenient to use the option type="n" to draw the
axes without any data, then use lines to add the two smooth functions later. The blank axes
(not shown here) are produced like this:

plot(c(xv,xv),c(yA,yB),xlab="stock",ylab="recruits",type="n")

We want to draw the smooth curve for yA as a solid blue line (lty = 1, col = "blue"),

lines(xv,yA,lty=1,col="blue")

and the curve for yB as a navy blue dotted line (lty = 2, col = "navy"),

lines(xv,yB,lty=2,col="navy")

Fitting non-linear parametric curves through a scatterplot

Here is a set of data showing a response variable, y (recruits to a fishery), as a function of
a continuous explanatory variable x (the size of the fish stock):

rm(x,y)
info<-read.table("c:\\temp\\plotfit.txt",header=T)
attach(info)
names(info)

[1] "x" "y"

plot(x,y,xlab="stock",ylab="recruits",pch=16)

150 THE R BOOK

0 20 40
stock

re
cr

ui
ts

0
10

00
20

00
30

00
40

00

60 80 100

We do not know the parameter values of the best-fit curve in advance, but we can estimate
them from the data using non-linear least squares nls. Note that you need to provide an
initial guesstimate for the two parameter values in what is called a ‘start list’ (p. 663 for
details):

model<-nls(y~a*x*exp(-b*x),start=list(a=500,b=0.05))

Formula: y ~ a * x * exp(-b * x)

Parameters:
Estimate Std. Error t value Pr(>�t�)

a 4.820e+02 1.593e+01 30.26 <2e-16 ***
b 4.461e-02 8.067e-04 55.29 <2e-16 ***
Residual standard error: 204.2 on 27 degrees of freedom

So the least-squares estimates of the two parameters are a = 482�0 and b = 0�044 61, and
their standard errors are 15.93 and 0.000 806 7 respectively. We already have a set of x
values, xv (above), so we can use predict to add this as a dashed line to the plot:

lines(xv,predict(model,list(x=xv)),lty=2)

Next, you want to compare this regression line with a theoretical model, which was

y = 480xe−0�047x�

We need to evaluate y across the xv values for the theoretical model:

yv<-480*xv*exp(-0.047*xv)

Now use the lines function to add this second curve to the plot as a solid line:

GRAPHICS 151

lines(xv,yv)

Notice that the regression model (dashed line) predicts the values of y for x > 30 much
better than the theoretical model (solid line), and that both models slightly underestimate
the values of y for x < 20. The plot is imperfect to the extent that the maximum of the
dashed regression curve does not fit within the limits of the y axis. You should correct this
as an exercise.

Fitting non-parametric curves through a scatterplot

It is common to want to fit a non-parametric smoothed curve through data, especially when
there is no obvious candidate for a parametric function. R offers a range of options:

• lowess (a non-parametric curve fitter);

• loess (a modelling tool);

• gam (fits generalized additive models; p. 611);

• lm for polynomial regression (fit a linear model involving powers of x).

We will illustrate these options using the jaws data. First, we load the data:

data<-read.table("c:\\temp\\jaws.txt",header=T)
attach(data)
names(data)

[1] "age" "bone"

152 THE R BOOK

Before we fit our curves to the data, we need to consider how best to display the results
together.

Without doubt, the graphical parameter you will change most often just happens to be the
least intuitive to use. This is the number of graphs per screen, called somewhat unhelpfully,
mfrow. The idea is simple, but the syntax is hard to remember. You need to specify the
number of rows of plots you want, and number of plots per row, in a vector of two numbers.
The first number is the number of rows and the second number is the number of graphs per
row. The vector is made using c in the normal way. The default single-plot screen is

par(mfrow=c(1,1))

Two plots side by side is

par(mfrow=c(1,2))

A panel of four plots in a 2 × 2 square is

par(mfrow=c(2,2))

To move from one plot to the next, you need to execute a new plot function. Control
stays within the same plot frame while you execute functions like points, lines or text.
Remember to return to the default single plot when you have finished your multiple plot by
executing par(mfrow=c(1,1)). If you have more than two graphs per row or per column,
the character expansion cex is set to 0.5 and you get half-size characters and labels.

Let us now plot our four graphs:

par(mfrow=c(2,2))
plot(age,bone,pch=16)
text(45,20,"lowess",pos=2)
lines(lowess(age,bone))

plot(age,bone,pch=16)
text(45,20,"loess",pos=2)
model<-loess(bone~age)
xv<-0:50
yv<-predict(model,data.frame(age=xv))
lines(xv,yv)

plot(age,bone,pch=16)
text(45,20,"gam",pos=2)
library(mgcv)
model<-gam(bone~s(age))
yv<-predict(model,list(age=xv))
lines(xv,yv)

plot(age,bone,pch=16)
text(45,20,"polynomial",pos=2)
model<-lm(bone~age+I(age^2)+I(age^3))
yv<-predict(model,list(age=xv))
lines(xv,yv)

The lowess function (top left) is a curve-smoothing function that returns x and y coordinates
that are drawn on the plot using the lines function. The modern loess function (top right) is
a modelling tool (y~x) from which the coordinates to be drawn by lines are extracted using

GRAPHICS 153

age

lowess loess

polynomialgam

bo
ne

0 10 20 30 40 50

age
0 10 20 30 40 50

age
0 10 20 30 40 50

age
0 10 20 30 40 50

bo
ne

0
20

40
60

80
12

0
0

20
40

60
80

12
0

bo
ne

bo
ne

0
20

40
60

80
12

0
0

20
40

60
80

12
0

predict with a data.frame function containing the x values for plotting. Alternatively, you
can use a generalized additive model, gam (bottom left) to generate the smoothed curve
(y~s(x)) using predict. Finally, you might use a linear model with a polynomial function
of x (here a cubic, bottom right).

Joining the dots

Sometimes you want to join the points on a scatterplot by lines. The trick is to ensure that
the points on the x axis are ordered: if they are not ordered, the result is a mess.

smooth<-read.table("c:\\temp\\smoothing.txt",header=T)
attach(smooth)
names(smooth)

[1] "x" "y"

Begin by producing a vector of subscripts representing the ordered values of the explana-
tory variable. Then draw lines with the vector as subscripts to both the x and y variables:

sequence<-order(x)
lines(x[sequence],y[sequence])

If you do not order the x values, and just use the lines function, this is what happens:

plot(x,y,pch=16)
lines(x,y)

154 THE R BOOK

4
6

8
10

12
14

16
0 2 4 6 8 10

x

y

0

4
6

8
12

10
14

16

2 4 6

x

y

8 10

Plotting with a categorical explanatory variable

When the explanatory variable is categorical rather than continuous, we cannot produce a
scatterplot. Instead, we choose between a barplot and a boxplot. I prefer box-and-whisker
plots because they convey so much more information, and this is the default plot in R with
a categorical explanatory variable.

Categorical variables are factors with two or more levels (see p. 26). Our first exam-
ple uses the factor called month (with levels 1 to 12) to investigate weather patterns at
Silwood Park:

weather<-read.table("c:\\temp\\SilwoodWeather.txt",header=T)
attach(weather)
names(weather)

[1] "upper" "lower" "rain" "month" "yr"

There is one bit of housekeeping we need to do before we can plot the data. We need to
declare month to be a factor. At the moment, R just thinks it is a number:

month<-factor(month)

Now we can plot using a categorical explanatory variable (month) and, because the first
variable is a factor, we get a boxplot rather than a scatterplot:

plot(month,upper)

GRAPHICS 155

1

0
10

20
30

2 3 4 5 6 7 8 9 10 11 12

Note that there are no axis labels in the default box-and-whisker plot, and to get informative
labels we should need to type

plot(month,upper,ylab="daily maximum temperature",xlab="month")

The boxplot summarizes a great deal of information very clearly. The horizontal line
shows the median upper daily temperature for each month. The bottom and top of the
box show the 25th and 75th percentiles, respectively (i.e. the location of the middle 50%
of the data, also called the first and third quartiles). The vertical dashed lines are called
the ‘whiskers’. They show one of two things: either the maximum value or 1.5 times the
interquartile range of the data, whichever is the smaller. The quantity ‘1.5 times the
interquartile range of the data’ is roughly 2 standard deviations, and the interquartile range is
the difference in the response variable between its first and third quartiles. Points more than
1.5 times the interquartile range above the third quartile and points more than 1.5 times the
interquartile range below the first quartile are defined as outliers and plotted individually.
Thus, when there are no outliers the whiskers show the maximum and minimum values
(here only in month 12). Boxplots not only show the location and spread of data but also
indicate skewness (which shows up as asymmetry in the sizes of the upper and lower parts
of the box). For example, in February the range of lower temperatures was much greater
than the range of higher temperatures. Boxplots are also excellent for spotting errors in the
data when the errors are represented by extreme outliers.

Data for the next example come from an experiment on plant competition, with five
factor levels in a single categorical variable called clipping: a control (unclipped), two root
clipping treatments (r5 and r10) and two shoot clipping treatments (n25 and n50) in which
the leaves of neighbouring plants were reduced by 25% and 50%. The response variable is
yield at maturity (a dry weight).

156 THE R BOOK

trial<-read.table("c:\\temp\\compexpt.txt",header=T)
attach(trial)
names(trial)

[1] "biomass" "clipping"

The boxplot is created with exactly the same syntax as the scatterplot, with the x variable
first, then the y variable, the only difference being that the x variable is categorical rather
than continuous:

plot(clipping,biomass,xlab="treatment",ylab="yield")

control

45
0

50
0

55
0

60
0

65
0

70
0

yi
el

d

n25 n50
treatment

r10 r5

In this case there are no outliers, so the top of the upper bar represents the maximum value
of the response for that factor level, and the bottom of the lower bar represents the minimum
value. Because there are no outliers, the upper and lower bars are of different lengths.

Boxplots with notches to indicate significant differences

Boxplots are very good at showing the distribution of the data points around the median:
for instance, the range of values for n25 is much greater than for any other treatment, and
the control data are skew, with a bigger range of values for the third quartile than for the
second (the upper box is bigger than the lower box). On the other hand, boxplots are not
so good at indicating whether or not the median values are significantly different from one
another. Tukey invented notches to get the best of both worlds. The notches are drawn as
a ‘waist’ on either side of the median and are intended to give a rough impression of the

GRAPHICS 157

significance of the differences between two medians. Boxes in which the notches do not
overlap are likely to prove to have significantly different medians under an appropriate test.
Boxes with overlapping notches probably do not have significantly different medians. The
size of the notch increases with the magnitude of the interquartile range and declines with
the square root of the replication, like this:

notch = ∓1�58
IQR√

n
�

where IQR is the interquartile range and n is the replication per sample. Notches are based
on assumptions of asymptotic normality of the median and roughly equal sample sizes for
the two medians being compared, and are said to be rather insensitive to the underlying
distributions of the samples. The idea is to give roughly a 95% confidence interval for the
difference in two medians, but the theory behind this is somewhat vague.

When the sample sizes are small and/or the within-sample variance is high, the notches
are not drawn as you might expect them (i.e. as a waist within the box). Instead, the notches
are extended above the 75th percentile and/or below the 25th percentile. This looks odd,
but it is an intentional feature, intended to act as a warning of the likely invalidity of the
test. You can see this in action for the biomass data:

par(mfrow=c(1,2))
boxplot(biomass~clipping)
boxplot(biomass~clipping,notch=T)

control

45
0

50
0

55
0

60
0

65
0

70
0

n50 r5 control

45
0

40
0

50
0

55
0

60
0

65
0

70
0

n50 r5

Note the different scales on the two y axes: our original boxplot on the left and the new
boxplot with notches on the right. The notches for the three rightmost boxes do not overlap

158 THE R BOOK

the notches for the controls, but the notches for n25 overlap those of both the controls
and the three rightmost boxes. For each factor level, however, one or both of the notches
extends beyond the limits of the box, indicating that we should not have any confidence in
the significance of the pairwise comparisons. In this example, replication is too low, and
within-level variance is too great, to justify such a test.

Rather than use plot to produce a boxplot, an alternative is to use a barplot to show
the heights of the five mean values from the different treatments. We need to calculate the
means using the function tapply like this:

means<-tapply(biomass,clipping,mean)

Then the barplot is produced very simply:

par(mfrow=c(1,1))
barplot(means,xlab="treatment",ylab="yield")

control

0
10

0
20

0
30

0
40

0
50

0
60

0

n25

treatment

yi
el

d

n50 r10 r5

Unless we add error bars to such a barplot, the graphic gives no indication of the extent
of the uncertainty associated with each of the estimated treatment means. A function to
produce barplots with error bars is described on p. 462, where it is applied to these plant
competition data.

Plots for multiple comparisons

When there are many levels of a categorical explanatory variable, we need to be cautious
about the statistical issues involved with multiple comparisons (see p. 483). Here we contrast

GRAPHICS 159

two graphical techniques for displaying multiple comparisons: boxplots with notches, and
Tukey’s ‘honest significant difference’.

The data show the response of yield to a categorical variable (fact) with eight levels
representing eight different genotypes of seed (cultivars) used in the trial:

data<-read.table("c:\\temp\\box.txt",header=T)
attach(data)
names(data)

[1] "fact" "response"

plot(response~factor(fact))

1 2 3 4 5 6 7 8

5
10

15

re
sp

on
se

factor(fact)

Because the genotypes (factor levels) are unordered, it is hard to judge from the plot
which levels might be significantly different from which others. We start, therefore, by
calculating an index which will rank the mean values of response across the different factor
levels:

index<-order(tapply(response,fact,mean))
ordered<-factor(rep(index,rep(20,8)))
boxplot(response~ordered,notch=T,names=as.character(index),

xlab="ranked treatments",ylab="response")

There are several points to clarify here. We plot the response as a function of the factor
called ordered (rather than fact) so that the boxes are ranked from lowest mean yield on the
left (cultivar 6) to greatest mean on the right (cultivar 5). We change the names of the boxes
to reflect the values of index (i.e. the original values of fact: otherwise they would read 1

160 THE R BOOK

6

5
10

15

ranked treatments

re
sp

on
se

3 2 4 8 1 7 5

to 8). Note that the vector called index is of length 8 (the number of boxes on the plot),
but ordered is of length 160 (the number of values of response). Looking at the notches,
no two adjacent pairs of medians appear to be significantly different, but the median of
treatment 4 appears to be significantly greater than the median of treatment 6, and the
median of treatment 5 appears to be significantly greater than the median of treatment 8 (but
only just).

The statistical analysis of these data might involve user-specified contrasts (p. 370), once
it is established that there are significant differences to be explained. This we assess with
a one-way analysis of variance to test the hypothesis that at least one of the means is
significantly different from the others (see p. 457):

model<-aov(response~factor(fact))
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
factor(fact) 7 925.70 132.24 17.477 < 2.2e-16 ***

Residuals 152 1150.12 7.57

Indeed, there is very compelling evidence �p<0�0001� for accepting that there are significant
differences between the mean yields of the eight different crop cultivars.

Alternatively, if you want to do multiple comparisons, then because there is no a priori
way of specifying contrasts between the eight treatments, you might use Tukey’s honest
significant difference (see p. 483):

plot(TukeyHSD(model))

Comparisons having intervals that do not overlap the vertical dashed line are significantly
different. The vertical dashed line indicates no difference between the mean values for the

GRAPHICS 161

–10

8–
7

8–
5

8–
4

5–
4

6–
3

8–
2

5–
2

8–
1

5–
1

2–
1

–5 0

Difference in mean levels of factor (fact)

95% family-wise confidence level

5

factor-level comparisons indicated on the y axis. Thus, we can say that the contrast between
cultivars 8 and 7 (8-7) falls just short of significance (despite the fact that their notches do
not overlap; see above), but the comparisons 7-6 and 8-6 are both significant (their boxes
do not overlap, let alone their notches). The missing comparison labels on the y axis have
to be inferred from a knowledge of the number of factor levels (8 in this example). So,
since 8 vs. 7 is labelled, the next one up must be 8-6 and the one above that is 7-6, then we
find the labelled 8-5, so it must be 7-5 above that and 6-5 above that, then the labelled 8-4,
and so on.

Plots for Single Samples

When we have a just one variable, the choice of plots is more restricted:

• histograms to show a frequency distribution;

• index plots to show the values of y in sequence;

• time-series plots;

• compositional plots like pie diagrams

162 THE R BOOK

Histograms

The commonest plots for a single sample are histograms and index plots. Histograms are
excellent for showing the mode, the spread and the symmetry (skew) of a set of data. The
R function hist is deceptively simple. Here is a histogram of 1000 random points drawn
from a Poisson distribution with a mean of 1.7:

hist(rpois(1000,1.7),
main="",xlab="random numbers from a Poisson with mean 1.7")

0

0
10

0
20

0
30

0
40

0
50

0

2

random numbers from a Poisson with mean 1.7

F
re

qu
en

cy

4 6 8

This illustrates perfectly one of the big problems with histograms: it is not clear what the
bar of height 500 is showing. Is it the frequency of zeros, or the frequency of zeros and
ones lumped together? What we really want in a case like this is a separate histogram bar
for each integer value from 0 to 8. We achieve this by specifying the breaks on the x axis
to be at −0�5, 0.5, 1.5, � � � , like this:

hist(rpois(1000,1.7),breaks=seq(-0.5,9.5,1),
main="",xlab="random numbers from a Poisson with mean 1.7")

That’s more like it. Now we can see that the mode is 1 (not 0), and that 2s are substantially
more frequent than 0s. The distribution is said to be ‘skew to the right’ (or ‘positively
skew’) because the long tail is on the right-hand side of the histogram.

Overlaying histograms with smooth density functions

If it is in any way important, then you should always specify the break points yourself.
Unless you do this, the hist function may not take your advice about the number of bars

GRAPHICS 163

0

0
50

10
0

15
0

20
0

25
0

30
0

2 4

random numbers from a Poisson with mean 1.7

Fr
eq

ue
nc

y

6 8

or the width of bars. For small-integer data (less than 20, say), the best plan is to have one
bin for each value. You create the breaks by starting at −0�5 to accommodate the zeros and
going up to max�y� + 0�5 to accommodate the biggest count. Here are 158 random integers
from a negative binomial distribution with � = 1�5 and k = 1�0:

y<-rnbinom(158,mu=1.5,size=1)
bks<- -0.5:(max(y)+0.5)
hist(y,bks,main="")

To get the best fit of a density function for this histogram we should estimate the
parameters of our particular sample of negative binomially distributed counts:

mean(y)

[1] 1.772152

var(y)

[1] 4.228009

mean(y)^2/(var(y)-mean(y))

[1] 1.278789

In R, the parameter k of the negative binomial distribution is known as size and the mean
is known as mu. We want to generate the probability density for each count between 0 and
11, for which the R function is dnbinom:

xs<-0:11
ys<-dnbinom(xs,size=1.2788,mu=1.772)
lines(xs,ys*158)

164 THE R BOOK

y

0

Fr
eq

ue
nc

y

0
10

20
30

40
50

2 4 6 8 10

Not surprisingly, since we generated the data, the negative binomial distribution is a very
good description of the frequency distribution. The frequency of 1s is a bit low and of 2s
is a bit high, but the other frequencies are very well described.

Density estimation for continuous variables

The problems associated with drawing histograms of continuous variables are much more
challenging. The subject of density estimation is an important issue for statisticians, and
whole books have been written about it (Silverman 1986; Scott 1992). You can get a
feel for what is involved by browsing the ?density help window. The algorithm used in
density.default disperses the mass of the empirical distribution function over a regular grid
of at least 512 points, uses the fast Fourier transform to convolve this approximation with a
discretized version of the kernel, and then uses linear approximation to evaluate the density
at the specified points. The choice of bandwidth is a compromise between smoothing enough
to rub out insignificant bumps and smoothing too much so that real peaks are eliminated.
The rule of thumb for bandwidth is

b = max�x� − min�x�

2�1 + log2 n�

(where n is the number of data points). For details see Venables and Ripley (2002). We can
compare hist with Venables and Ripley’s truehist for the Old Faithful eruptions data. The
rule of thumb for bandwidth gives:

library(MASS)
attach(faithful)
(max(eruptions)-min(eruptions))/(2*(1+log(length(eruptions),base=2)))

GRAPHICS 165

[1] 0.192573

but this produces much too bumpy a fit. A bandwidth of 0.6 looks much better:

par(mfrow=c(1,2))
hist(eruptions,15,freq=FALSE,main="",col=27)
lines(density(eruptions,width=0.6,n=200))
truehist(eruptions,nbins=15,col=27)
lines(density(eruptions,n=200))

1.5 2.5 3.5

D
en

si
ty

4.5
eruptions eruptions

1.5 2.5 3.5 4.5

0.
7

0.
6

0.
5

0.
4

0.
3

0.
1

0.
0

0.
2

0.
7

0.
6

0.
5

0.
4

0.
3

0.
1

0.
0

0.
2

Note that although we asked for 15 bins, we actually got 18. Note also, that although both
histograms have 18 bins, they differ substantially in the heights of several of the bars. The
left hist has two peaks above density = 0�5 while truehist on the right has three. There
is a sub-peak in the trough of hist at about 3.5 but not of truehist. And so on. Such are
the problems with histograms. Note, also, that the default probability density curve (on the
right) picks out the heights of the peaks and troughs much less well than our bandwidth of
0.6 (on the left).

Index plots

The other plot that is useful for single samples is the index plot. Here, plot takes a single
argument which is a continuous variable and plots the values on the y axis, with the x
coordinate determined by the position of the number in the vector (its ‘index’, which is 1
for the first number, 2 for the second, and so on up to length(y) for the last value). This
kind of plot is especially useful for error checking. Here is a data set that has not yet been
quality checked, with an index plot of response$y:

166 THE R BOOK

Index

re
sp

on
se

$y

0 20

5
10

15
20

40 60 80 100

response<-read.table("c:\\temp\\das.txt",header=T)
plot(response$y)

The error stands out like a sore thumb. We should check whether this might have been a
data-entry error, such as a decimal point in the wrong place. But which value is it, precisely,
that is wrong? What is clear is that it is the only point for which y > 15, so we can use the
which function to find out its index (the subscript within y):

which(response$y > 15)

[1] 50

We can then use this value as the subscript to see the precise value of the erroneous y:

response$y[50]

[1] 21.79386

Having checked in the lab notebook, it is obvious that this number should be 2.179 rather
than 21.79, so we replace the 50th value of y with the correct value:

response$y[50]<-2.179386

Now we can repeat the index plot to see if there are any other obvious mistakes

plot(response$y)

That’s more like it.

GRAPHICS 167

Time series plots

When a time series is complete, the time series plot is straightforward, because it just
amounts to joining the dots in an ordered set of y values. The issues arise when there are
missing values in the time series, particularly groups of missing values for which periods
we typically know nothing about the behaviour of the time series.

There are two functions in R for plotting time series data: ts.plot and plot.ts. Here is
ts.plot in action, producing three time series on the same axes using different line types:

data(UKLungDeaths)
ts.plot(ldeaths, mdeaths, fdeaths, xlab="year", ylab="deaths", lty=c(1:3))

50
0

10
00

15
00

20
00

25
00

de
at

hs

30
00

35
00

40
00

year
1974 1975 1976 1977 1978 1979 1980

The upper, solid line shows total deaths, the heavier dashed line shows male deaths and the
faint dotted line shows female deaths. The difference between the sexes is clear, as is the
pronounced seasonality, with deaths peaking in midwinter.

The alternative function plot.ts works for plotting objects inheriting from class ts (rather
than simple vectors of numbers in the case of ts.plot).

data(sunspots)
plot(sunspots)

The simple statement plot(sunspots) works because sunspots inherits from the time
series class:

class(sunspots)

[1] "ts"

168 THE R BOOK

0
50

10
0

su
ns

po
rt

s 15
0

20
0

25
0

Time
1750 1800 1850 1900 1950

is.ts(sunspots)

[1] TRUE

Pie charts

Statisticians don’t like pie charts because they think that people should know what 50%
looks like. Pie charts, however, can sometimes be useful to illustrate the proportional make-
up of a sample in presentations. The function pie takes a vector of numbers, turns them into
proportions, and divides up the circle on the basis of those proportions. It is essential to use
a label to indicate which pie segment is which. The label is provided as a vector of character
strings, here called data$names: Because there are blank spaces in some of the names
(‘oil shales’ and ‘methyl clathrates’) we cannot use read.table with a tab-delimited text file
to enter the data. Instead, we save the file called piedata from Excel as a comma-delimited
file, with a ‘.csv’ extention, and input the data to R using read.csv in place of read.table,
like this:

data<-read.csv("c:\\temp\\piedata.csv",header=T)
data

names amounts
1 coal 4
2 oil 2
3 gas 1
4 oil shales 3
5 methyl clathrates 6

GRAPHICS 169

The pie chart is created like this:

methyl clathrates

oil shales

gas

oil

coal

pie(data$amounts,labels=as.character(data$names))

You can change the colours of the segments if you want to (p. 855).

The stripchart function

For sample sizes that are too small to use box-and-whisker plots, an alternative plotting
method is to use the stripchart function. The point of using stripchart is to look carefully
at the location of individual values within the small sample, and to compare values across
cases. The stripchart plot can be specified by a model formula y~factor and the strips can
be specified to run vertically rather than horizontally. Here is an example from the built-in
OrchardSprays data set where the response variable is called decrease and there is a single
categorical variable called treatment (with eight levels A–H). Note the use of with instead
of attach:

data(OrchardSprays)
with(OrchardSprays,

stripchart(decrease ~ treatment,
ylab = "decrease", vertical = TRUE, log = "y"))

This has the layout of the box-and-whisker plot, but shows all the raw data values. Note the
logarithmic y axis and the vertical alignment of the eight strip charts.

Plots with multiple variables

Initial data inspection using plots is even more important when there are many variables,
any one of which might contain mistakes or omissions. The principal plot functions when
there are multiple variables are:

170 THE R BOOK

A

2
5

10
20

50
10

0

de
cr

ea
se

B C D E F G H

• pairs for a matrix of scatterplots of every variable against every other;

• coplot for conditioning plots where y is plotted against x for different values of z;

• xyplot where a set of panel plots is produced.

We illustrate these functions with the ozone data.

The pairs function

With two or more continuous explanatory variables (i.e. in a multiple regression; see p. 433)
it is valuable to be able to check for subtle dependencies between the explanatory variables.
The pairs function plots every variable in the dataframe on the y axis against every other
variable on the x axis: you will see at once what this means from the following example:

ozonedata<-read.table("c:\\temp\\ozone.data.txt",header=T)
attach(ozonedata)
names(ozonedata)

[1] "rad" "temp" "wind" "ozone"

The pairs function needs only the name of the whole dataframe as its first argument. We
exercise the option to add a non-parametric smoother to the scatterplots:

pairs(ozonedata,panel=panel.smooth)

The response variables are named in the rows and the explanatory variables are named in
the columns. In the upper row, labelled rad, the response variable (on the y axis) is solar
radiation. In the bottom row the response variable, ozone, is on the y axis of all three panels.
Thus, there appears to be a strong negative non-linear relationship between ozone and wind

GRAPHICS 171

60

rad

temp

wind

ozone

70 80 90 0 50 100 150

0 50 150 250

250

150

50
0

20

15

10

5

15
0

10
0

50
0

90
80

70
60

2015105

speed, a positive non-linear relationship between air temperature and ozone (middle panel
in the bottom row) and an indistinct, perhaps humped, relationship between ozone and solar
radiation (left-most panel in the bottom row). As to the explanatory variables, there appears
to be a negative correlation between wind speed and temperature.

The coplot function

A real difficulty with multivariate data is that the relationship between two variables may
be obscured by the effects of other processes. When you draw a two-dimensional plot of y
against x, then all of the effects of the other explanatory variables are squashed flat onto the
plane of the paper. In the simplest case, we have one response variable (ozone) and just two
explanatory variables (wind speed and air temperature). The function is written like this:

coplot(ozone~wind�temp,panel = panel.smooth)

With the response (ozone) on the left of the tilde and the explanatory variable on the x axis
(wind) on the right, with the conditioning variable after the conditioning operator � (here
read as ‘given temp’). An option employed here is to fit a non-parametric smoother through
the scatterplot in each of the panels.

The coplot panels are ordered from lower-left to upper right, associated with the values
of the conditioning variable in the upper panel (temp) from left to right. Thus, the lower-left
plot is for the lowest temperatures (56–72 degrees F) and the upper right plot is for the
highest temperatures (82–96 degrees F). This coplot highlights an interesting interaction.
At the two lowest levels of the conditioning variable, temp, there is little or no relationship

172 THE R BOOK

Given : temp

5

oz
on

e

15
0

10
0

50
0

10 15 20

5 10
wind

15 20

5 10 15 20

15
0

10
0

50
0

60 70 80 90

between ozone and wind speed, but in the four remaining panels (at higher temperatures)
there is a distinct negative relationship between wind speed and ozone concentration. The
hard thing to understand about coplot involves the ‘shingles’ that are shown in the upper
margin (given temp in this case). The overlap between the shingles is intended to show
how much overlap there is between one panel and the next in terms of the data points they
have in common. In this default configuration, half of the data in a panel is shared with the
panel to the left, and half of the data is shared with the panel to the right (overlap = 0.5).
You can alter the shingle as far as the other extreme, when all the data points in a panel are
unique to that panel (there is no overlap between adjacent shingles; overlap = -0.05).

Interaction plots

These are useful when the response to one factor depends upon the level of another factor.
They are a particularly effective graphical means of interpreting the results of factorial
experiments (p. 466). Here is an experiment with grain yields in response to irrigation and
fertilizer application:

GRAPHICS 173

yields<-read.table("c:\\temp\\splityield.txt",header=T)
attach(yields)
names(yields)

[1] "yield" "block" "irrigation" "density" "fertilizer"

The interaction plot has a rather curious syntax, because the response variable (yield) comes
last in the list of arguments. The factor listed first forms the x axis of the plot (three levels of
fertilizer), and the factor listed second produces the family of lines (two levels of irrigation).
The lines join the mean values of the response for each combination of factor levels:

interaction.plot(fertilizer,irrigation, yield)

N

90
95

10
0m
ea

n
of

 y
ie

ld

10
5

11
0

11
5

12
0

NP

fertilizer

irrigated

irrigation

control

P

The interaction plot shows that the mean response to fertilizer depends upon the level of
irrigation, as evidenced by the fact that the lines are not parallel.

Special Plots

Trellis graphics

The main purpose of trellis graphics is to produce multiple plots per page and multi-page
plots. The plots are produced in adjacent panels, typically with one plot for each level
of a categorical variable (called the conditioning variable). For instance, you might plot
weight against age for each of two genders (males and females). The response variable
is weight, the continuous explanatory variable is age (also called the primary covariate

174 THE R BOOK

in documentation on trellis graphics) and the categorical explanatory variable is gender (a
factor with two levels). In a case like this, the default would produce two panels side by
side in one row, with the panel for females on the left (simply because ‘f’ comes before ‘m’
in the alphabet). In the jargon of trellis graphics, gender is a grouping factor that divides
the observations into distinct groups. Here are the data:

data<-read.table("c:\\temp\\panels.txt",header=T)
attach(data)
names(data)

[1] "age" "weight" "gender"

The package for producing trellis graphics in R is called lattice (not trellis as you might
have guessed, because that name was pre-empted by a commercial package):

library(lattice)

The panel plots are created by the xyplot function, using a formula to indicate the grouping
structure: weight ~ age � gender. This is read as ‘weight is plotted as a function of age,
given gender’ (the vertical bar � is the ‘given’ symbol).

xyplot(weight ~ age � gender)

0 1 2 3 4 5 6
age

0 1 2 3 4 5 6

w
ei

gh
t

2

4

6

8

female male

Trellis graphics is a framework for data visualization developed at Bell Laboratories
by Rick Becker, Bill Cleveland and others, extending the ideas about what makes for an

GRAPHICS 175

effective graph (layout, colour, style, symbol sizes and so forth) presented in Cleveland
(1993). The interface is based on the implementation in S-PLUS, but there are several
differences, and code produced for S-PLUS might not work in R.

Most of the high-level trellis functions in S-PLUS are implemented in R, with the
exception of the pie chart:

• barchart for barplots;

• bwplot for box-and-whisker plots;

• densityplot for kernel density plots;

• dotplot for dot plots;

• histogram for panels of histograms;

• qqmath for quantile plots against mathematical distributions;

• stripplot for a one-dimensional scatterplot;

• qq for a QQ plot for comparing two distributions;

• xyplot for a scatterplot;

• levelplot for creating level plots (similar to image plots);

• contourplot for contour plots;

• cloud for three-dimensional scatterplots;

• wireframe for 3D surfaces (similar to persp plots);

• splom for a scatterplot matrix;

• parallel for creating parallel coordinate plots;

• rfs to produce a residual and fitted value plot (see also oneway);

• tmd for a Tukey mean–difference plot.

The lattice package has been developed by Deepayan Sarkar, and the plots created by
lattice are rendered by the Grid Graphics engine for R (developed by Paul Murrell). Lattice
plots are highly customizable via user-modifiable settings, but these are completely unrelated
to base graphics settings. In particular, changing par() settings usually has no effect on
lattice plots. To read more about the background and capabilities of the lattice package,
type

help(package = lattice)

Here is an example trellis plot for the interpretation of a designed experiment where
all the explanatory variables are categorical. It uses bwplot to illustrate the results of a
three-way analysis of variance (p. 479).

data<-read.table("c:\\temp\\daphnia.txt",header=T)
attach(data)
names(data)

[1] "Growth.rate" "Water" "Detergent" "Daphnia"

176 THE R BOOK

library(lattice)
trellis.par.set(col.whitebg())
bwplot(Growth.rate~Water+Daphnia�Detergent)

BrandC

BrandA

G
ro

w
th

.r
at

e

7

6

5

4

Clone1 Clone1Clone2 Clone2Clone3 Clone3Tyne TyneWear Wear

3

2

7

6

5

4

3

2

BrandB

BrandD

Design plots

An effective way of visualizing effect sizes in designed experiments is the plot.design
function which is used just like a model formula:

plot.design(Growth.rate~Water*Detergent*Daphnia)

This shows the main effects of the three factors, drawing attention to the major differences
between the daphnia clones and the small differences between the detergent brands A, B
and C. The default (as here) is to plot means, but other functions can be specified such as
median, var or sd. Here are the standard deviations for the different factor levels

plot.design(Growth.rate~Water*Detergent*Daphnia,fun="sd")

GRAPHICS 177

BrandD

BrandC
BrandA

BrandBWear

Tyne

Clone2

Clone3

Clone1

m
ea

n
of

 G
ro

w
th

.r
at

e

4.
5

4.
0

3.
5

3.
0

DaphniaDetergentWater

Factors

1.
4

Wear

BrandD

BrandC

BrandA

BrandB

Clone2

Clone1

DaphniaDetergentWater

Factors

Tyne

‘s
d’

 o
f G

ro
w

th
.r

at
e 1.

2
1.

0
0.

8
0.

6

178 THE R BOOK

Effect sizes

An alternative is to use the effects package which takes a model object (a linear model or
a generalized linear model) and provides trellis plots of specified effects

install.packages("effects")
library(effects)
model<-lm(Growth.rate~Water*Detergent*Daphnia)

First calculate all the effects using the all.effects function, then plot this object, specifying
the interaction you want to see, using double quotes:

daph.effects<-all.effects(model)
plot(daph.effects,"Water:Detergent:Daphnia")

Water*Detergent*Daphnia effect plot

BrandA

BrandA

Daphnia : Clone3

Water : Tyne

7

6

5

4

3

2

7

6

5

4

3

2

7

6

5

4

3

2

Daphnia : Clone3

Water : Wear

Daphnia : Clone2

Water : Wear

Daphnia : Clone2

Water : Tyne

Daphnia : Clone1

Water : Wear

Daphnia : Clone1

Water : Tyne

G
ro

w
th

.r
at

e

BrandB

BrandB

BrandC

BrandC

BrandD

BrandD

Detergent

GRAPHICS 179

Bubble plots

The bubble plot is useful for illustrating variation in a third variable across different locations
in the x–y plane. Here are data on grass yields ate different combinations of biomass and
soil pH:

ddd<-read.table("c:\\temp\\pgr.txt",header=T)
attach(ddd)
names(ddd)

[1] "FR" "hay" "pH"

bubble.plot(hay,pH,FR)

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

2 3 4 5 6 7
hay

pH

8 9

3.
5

In the vicinity of hay = 6 and pH = 6 Festuca rubra shows one very high value, four
intermediate values, two low values and one very low value. Evidently, hay crop and soil
pH are not the only factors determining the abundance of F. rubra in this experiment. Here
is a simple function for drawing bubble plots (see also p. 853):

bubble.plot<-function(xv,yv,rv,bs=0.1){
r<-rv/max(rv)
yscale<-max(yv)-min(yv)
xscale<-max(xv)-min(xv)

plot(xv,yv,type="n", xlab=deparse(substitute(xv)),
ylab=deparse(substitute(yv)))

180 THE R BOOK

for (i in 1:length(xv)) bubble(xv[i],yv[i],r[i],bs,xscale,yscale) }

bubble<-function (x,y,r,bubble.size,xscale,yscale) {
theta<-seq(0,2*pi,pi/200)
yv<-r*sin(theta)*bubble.size*yscale
xv<-r*cos(theta)* bubble.size*xscale
lines(x+xv,y+yv) }

Plots with many identical values

Sometimes, especially with count data, it happens that two or more points fall in exactly
the same location in a scatterplot. In such a case, the repeated values of y are hidden, one
buried beneath the other, and you might want to indicate the number of cases represented
at each point on the scatterplot. The function to do this is called sunflowerplot, so-called
because it produces one ‘petal’ of a flower for each value of y (if there is more than one)
that is located at that particular point. Here it is in action:

numbers<-read.table("c:\\temp\\longdata.txt",header=T)
attach(numbers)
names(numbers)

[1] "xlong" "ylong"

sunflowerplot(xlong,ylong)

0

35
40

45
50

55
60

65

10 20 30
xlong

yl
on

g

40 50

As you can see, the replication at each point increases as x increases from 1 on the left
to 50 on the right. The petals stop being particularly informative once there are more than

GRAPHICS 181

about 20 of them (about half way along the x axis). Single values (as on the extreme left)
are shown without any petals, while two points in the same place have two petals. As an
option, you can specify two vectors containing the unique values of x and y with a third
vector containing the frequency of each combination (the number of repeats of each value).

Summary

It is worth restating the really important things about plotting:

• Plots: plot(x,y) gives a scatterplot if x is continuous, and a box-and-whisker plot if x is
a factor. Some people prefer the alternative syntax plot(y~x) using ‘tilde’ as in a model
formula.

• Type of plot: Options include lines type="l" or null (axes only) type="n".

• Lines: lines(x,y) plots a smooth function of y against x using the x and y values provided.
You might prefer lines(y~x).

• Line types: Useful with multiple line plots, lty=2 (an option in plot or lines).

• Points: points(x,y) adds another set of data points to a plot. You might prefer
points(y~x).

• Plotting characters for different data sets: pch=2 or pch="*" (an option in points
or plot)

• Setting non-default limits to the x or y axis scales uses xlim=c(0,25) and/or ylim=c(0,1)
as an option in plot.

6
Tables

The alternative to using graphics is to summarize your data in tabular form. Broadly
speaking, if you want to convey detail use a table, and if you want to show effects then
use graphics. You are more likely to want to use a table to summarize data when your
explanatory variables are categorical (such as people’s names, or different commodities)
than when they are continuous (in which case a scatterplot is likely to be more informative;
see p. 135).

Summary Tables

The most important function in R for generating summary tables is the somewhat obscurely
named tapply function. It is called tapply because it applies a named function (such as
mean or variance) across specified margins (factor levels) to create a table. If you have used
the PivotTable function in Excel you will be familiar with the concept.

Here is tapply in action:

data<-read.table("c:\\temp\\Daphnia.txt",header=T)
attach(data)
names(data)

[1] "Growth.rate" "Water" "Detergent" "Daphnia"

The response variable is growth rate of the animals, and there are three categorical explana-
tory variables: the river from which the water was sampled, the kind of detergent experi-
mentally added, and the clone of daphnia employed in the experiment. In the simplest case
we might want to tabulate the mean growth rates for the four brands of detergent tested,

tapply(Growth.rate,Detergent,mean)

BrandA BrandB BrandC BrandD
3.884832 4.010044 3.954512 3.558231

or for the two rivers,

tapply(Growth.rate,Water,mean)

Tyne Wear
3.685862 4.017948

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

184 THE R BOOK

or for the three daphnia clones,

tapply(Growth.rate,Daphnia,mean)

Clone1 Clone2 Clone3
2.839875 4.577121 4.138719

Two-dimension summary tables are created by replacing the single explanatory variable
(the second argument in the function call) by a list indicating which variable is to be used
for the rows of the summary table and which variable is to be used for creating the columns
of the summary table. To get the daphnia clones as the rows and detergents as the columns,
we write list(Daphnia,Detergent) – rows first then columns – and use tapply to create the
summary table as follows:

tapply(Growth.rate,list(Daphnia,Detergent),mean)

BrandA BrandB BrandC BrandD
Clone1 2.732227 2.929140 3.071335 2.626797
Clone2 3.919002 4.402931 4.772805 5.213745
Clone3 5.003268 4.698062 4.019397 2.834151

If we wanted the median values (rather than the means), then we would just alter the third
argument of the tapply function like this:

tapply(Growth.rate,list(Daphnia,Detergent),median)

BrandA BrandB BrandC BrandD
Clone1 2.705995 3.012495 3.073964 2.503468
Clone2 3.924411 4.282181 4.612801 5.416785
Clone3 5.057594 4.627812 4.040108 2.573003

To obtain a table of the standard errors of the means (where each mean is based
on 6 numbers −2 replicates and 3 rivers) the function we want to apply is

√
s2/n.

There is no built-in function for the standard error of a mean, so we create what is
known as an anonymous function inside the tapply function with function(x)sqrt(var(x)/
length(x)):

tapply(Growth.rate,list(Daphnia,Detergent), function(x)sqrt(var(x)/length(x)))

BrandA BrandB BrandC BrandD
Clone1 0.2163448 0.2319320 0.3055929 0.1905771
Clone2 0.4702855 0.3639819 0.5773096 0.5520220
Clone3 0.2688604 0.2683660 0.5395750 0.4260212

When tapply is asked to produce a three-dimensional table, it produces a stack of two-
dimensional tables, the number of stacked tables being determined by the number of levels
of the categorical variable that comes third in the list (Water in this case):

tapply(Growth.rate,list(Daphnia,Detergent,Water),mean)

,,Tyne
BrandA BrandB BrandC BrandD

Clone1 2.811265 2.775903 3.287529 2.597192
Clone2 3.307634 4.191188 3.620532 4.105651
Clone3 4.866524 4.766258 4.534902 3.365766

TABLES 185

,,Wear
BrandA BrandB BrandC BrandD

Clone1 2.653189 3.082377 2.855142 2.656403
Clone2 4.530371 4.614673 5.925078 6.321838
Clone3 5.140011 4.629867 3.503892 2.302537

In cases like this, the function ftable (which stands for ‘flat table’) often produces more
pleasing output:

ftable(tapply(Growth.rate,list(Daphnia,Detergent,Water),mean))

Tyne Wear
Clone1 BrandA 2.811265 2.653189

BrandB 2.775903 3.082377
BrandC 3.287529 2.855142
BrandD 2.597192 2.656403

Clone2 BrandA 3.307634 4.530371
BrandB 4.191188 4.614673
BrandC 3.620532 5.925078
BrandD 4.105651 6.321838

Clone3 BrandA 4.866524 5.140011
BrandB 4.766258 4.629867
BrandC 4.534902 3.503892
BrandD 3.365766 2.302537

Notice that the order of the rows, columns or tables is determined by the alphabetical
sequence of the factor levels (e.g. Tyne comes before Wear in the alphabet). If you want to
override this, you must specify that the factor is.ordered in a non-standard way:

water<-factor(Water,levels=c("Wear","Tyne"),ordered=is.ordered(Water))

Now the summary statistics for the Wear appear in the left-hand column of output:

ftable(tapply(Growth.rate,list(Daphnia,Detergent,water),mean))

Wear Tyne
Clone1 BrandA 2.653189 2.811265

BrandB 3.082377 2.775903
BrandC 2.855142 3.287529
BrandD 2.656403 2.597192

Clone2 BrandA 4.530371 3.307634
BrandB 4.614673 4.191188
BrandC 5.925078 3.620532
BrandD 6.321838 4.105651

Clone3 BrandA 5.140011 4.866524
BrandB 4.629867 4.766258
BrandC 3.503892 4.534902
BrandD 2.302537 3.365766

The function to be applied in generating the table can be supplied with extra arguments:

tapply(Growth.rate,Detergent,mean,trim=0.1)

BrandA BrandB BrandC BrandD
3.874869 4.019206 3.890448 3.482322

186 THE R BOOK

An extra argument is essential if you want means when there are missing values:

tapply(Growth.rate,Detergent,mean,na.rm=T)

You can use tapply to create new, abbreviated dataframes comprising summary parame-
ters estimated from larger dataframe. Here, for instance, is a dataframe of mean growth rate
classified by detergent and daphina clone (i.e. averaged over river water and replicates).
The trick is to convert the factors to numbers before using tapply, then using these numbers
to extract the relevant levels from the original factors:

dets<-as.vector(tapply(as.numeric(Detergent),list(Detergent,Daphnia),mean))
levels(Detergent)[dets]

[1] "BrandA" "BrandB" "BrandC" "BrandD" "BrandA" "BrandB"
"BrandC" "BrandD"

[9] "BrandA" "BrandB" "BrandC" "BrandD"

clones<-as.vector(tapply(as.numeric(Daphnia),list(Detergent,Daphnia),mean))
levels(Daphnia)[clones]

[1] "Clone1" "Clone1" "Clone1" "Clone1" "Clone2" "Clone2"
"Clone2" "Clone2"

[9] "Clone3" "Clone3" "Clone3" "Clone3"

You will see that these vectors of factor levels are the correct length for the new reduced
dataframe (12, rather than the original length 72). The 12 mean values

tapply(Growth.rate,list(Detergent,Daphnia),mean)

Clone1 Clone2 Clone3
BrandA 2.732227 3.919002 5.003268
BrandB 2.929140 4.402931 4.698062
BrandC 3.071335 4.772805 4.019397
BrandD 2.626797 5.213745 2.834151

can now be converted into a vector called means, and the three new vectors combined into
a dataframe:

means<-as.vector(tapply(Growth.rate,list(Detergent,Daphnia),mean))
detergent<-levels(Detergent)[dets]
daphnia<-levels(Daphnia)[clones]
data.frame(means,detergent,daphnia)

means detergent daphnia
1 2.732227 BrandA Clone1
2 2.929140 BrandB Clone1
3 3.071335 BrandC Clone1
4 2.626797 BrandD Clone1
5 3.919002 BrandA Clone2
6 4.402931 BrandB Clone2
7 4.772805 BrandC Clone2
8 5.213745 BrandD Clone2
9 5.003268 BrandA Clone3
10 4.698062 BrandB Clone3
11 4.019397 BrandC Clone3
12 2.834151 BrandD Clone3

TABLES 187

The same result can be obtained using the as.data.frame.table function

as.data.frame.table(tapply(Growth.rate,list(Detergent,Daphnia),mean))

Var1 Var2 Freq
1 BrandA Clone1 2.732227
2 BrandB Clone1 2.929140
3 BrandC Clone1 3.071335
4 BrandD Clone1 2.626797
5 BrandA Clone2 3.919002
6 BrandB Clone2 4.402931
7 BrandC Clone2 4.772805
8 BrandD Clone2 5.213745
9 BrandA Clone3 5.003268
10 BrandB Clone3 4.698062
11 BrandC Clone3 4.019397
12 BrandD Clone3 2.834151

but you would need to edit the names like this:

new<-as.data.frame.table(tapply(Growth.rate,list(Detergent,Daphnia),mean))
names(new)<-c("detergents","daphina","means")

Tables of Counts

Here are simulated data from a trial in which red blood cells were counted on 10 000 slides.
The mean number of cells per slide ��� was 1.2 and the distribution had an aggregation
parameter k=0�63 (known in R as size). The probability for a negative binomial distribution
(prob in R) is given by k/�� + k� = 0�63/1�83 so

cells<-rnbinom(10000,size=0.63,prob=0.63/1.83)

We want to count how many times we got no red blood cells on the slide, and how often
we got 1� 2� 3� � � � cells. The R function for this is table:

table(cells)

cells
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5149 2103 1136 629 364 226 158 81 52 33 22 11 11 6 9 5
16 17 24
3 1 1

That’s all there is to it. You will get slightly different values because of the randomization.
We found 5149 slides with no red blood cells and one slide with a massive 24 red blood
cells.

We often want to count separately for each level of a factor. Here we know that the first
5000 samples came from male patients and the second 5000 from females:

gender<-rep(c("male","female"),c(5000,5000))

To tabulate the counts separately for the two sexes we just write

table(cells,gender)

188 THE R BOOK

gender
cells female male

0 2646 2503
1 1039 1064
2 537 599
3 298 331
4 165 199
5 114 112
6 82 76
7 43 38
8 30 22
9 16 17
10 7 15
11 5 6
12 5 6
13 6 0
14 3 6
15 3 2
16 0 3
17 1 0
24 0 1

Evidently there are no major differences between the sexes in these red blood counts. A
statistical comparison of the two sets of counts involves the use of log-linear models (see
p. 556). Here, we need only note that the slightly higher mean count for males is not
statistically significant (p = 0�061 in a GLM with quasi-Poisson errors):

tapply(cells,gender,mean)

female male
1.1562 1.2272

Expanding a Table into a Dataframe

For the purposes of model-fitting, we often want to expand a table of explanatory variables
to create a dataframe with as many repeated rows as specified by a count. Here are the data:

count.table<-read.table("c:\\temp \\tabledata.txt",header=T)
attach(count.table)
names(count.table)

[1] "count" "sex" "age" "condition"

count.table
count sex age condition

1 12 male young healthy
2 7 male old healthy
3 9 female young healthy
4 8 female old healthy
5 6 male young parasitized
6 7 male old parasitized
7 8 female young parasitized
8 5 female old parasitized

TABLES 189

The idea is to create a new dataframe with a separate row for each case. That is to say, we
want 12 copies of the first row (for healthy young males), seven copies of the second row
(for healthy old males), and so on. The trick is to use lapply to apply the repeat function
rep to each variable in count.table such that each row is repeated by the number of times
specified in the vector called count:

lapply(count.table,function(x)rep(x, count.table$count))

Then we convert this object from a list to a dataframe using as.data.frame like this:

dbtable<-as.data.frame(lapply(count.table,function(x) rep(x, count.table$count)))

To tidy up, we probably want to remove the redundant vector of counts:

dbtable<-dbtable[,-1]
dbtable

sex age condition
1 male young healthy
2 male young healthy
3 male young healthy
4 male young healthy
5 male young healthy
6 male young healthy
7 male young healthy
8 male young healthy
9 male young healthy
10 male young healthy
11 male young healthy
12 male young healthy
13 male old healthy
14 male old healthy
15 male old healthy
16 male old healthy
� � �
60 female old parasitized
61 female old parasitized
62 female old parasitized

Now we can use the contents of dbtable as explanatory variables in modelling other
responses of each of the 62 cases (e.g. the animals’ body weights).

Converting from a Dataframe to a Table

The reverse procedure of creating a table from a dataframe is much more straightforward,
and involves nothing more than the table function:

table(dbtable)

, , condition = healthy

age
sex old young
female 8 9
male 7 12

190 THE R BOOK

, , condition = parasitized
age

sex old young
female 5 8
male 7 6

You might want this tabulated object itself to be another dataframe, in which case use

as.data.frame(table(dbtable))

sex age condition Freq
1 female old healthy 8
2 male old healthy 7
3 female young healthy 9
4 male young healthy 12
5 female old parasitized 5
6 male old parasitized 7
7 female young parasitized 8
8 male young parasitized 6

You will see that R has invented the variable name Freq for the counts of the various
contingencies. To change this to ‘count’ use names with the appropriate subscript [4]:

frame<-as.data.frame(table(dbtable))
names(frame)[4]<-"count"
frame

sex age condition count
1 female old healthy 8
2 male old healthy 7
3 female young healthy 9
4 male young healthy 12
5 female old parasitized 5
6 male old parasitized 7
7 female young parasitized 8
8 male young parasitized 6

Calculating tables of proportions

The margins of a table (the row totals or the column totals) are often useful for calculating
proportions instead of counts. Here is a data matrix called counts:

counts<-matrix(c(2,2,4,3,1,4,2,0,1,5,3,3),nrow=4)
counts

[,1] [,2] [,3]

[1,] 2 1 1
[2,] 2 4 5
[3,] 4 2 3
[4,] 3 0 3

The proportions will be different when they are expressed as a fraction of the row totals or
as a fraction of the column totals. You need to remember that the row subscripts come first,
which is why margin number 1 refers to the row totals:

TABLES 191

prop.table(counts,1)

[,1] [,2] [,3]
[1,] 0.5000000 0.2500000 0.2500000
[2,] 0.1818182 0.3636364 0.4545455
[3,] 0.4444444 0.2222222 0.3333333
[4,] 0.5000000 0.0000000 0.5000000

The column totals are the second margin, so to express the counts as proportions of the
relevant column total use:

prop.table(counts,2)

[,1] [,2] [,3]
[1,] 0.1818182 0.1428571 0.08333333
[2,] 0.1818182 0.5714286 0.41666667
[3,] 0.3636364 0.2857143 0.25000000
[4,] 0.2727273 0.0000000 0.25000000

To check that the column proportions sum to one, use colSums like this:

colSums(prop.table(counts,2))

[1] 1 1 1

If you want the proportions expressed as a fraction of the grand total sum(counts), then
simply omit the margin number:

prop.table(counts)

[,1] [,2] [,3]
[1,] 0.06666667 0.03333333 0.03333333
[2,] 0.06666667 0.13333333 0.16666667
[3,] 0.13333333 0.06666667 0.10000000
[4,] 0.10000000 0.00000000 0.10000000

sum(prop.table(counts))

[1] 1

In any particular case, you need to choose carefully whether it makes sense to express your
counts as proportions of the row totals, column totals or grand total.

The scale function

For a numeric matrix, you might want to scale the values within a column so that they have
a mean of 0. You might also want to know the standard deviation of the values within each
column. These two actions are carried out simultaneously with the scale function:

scale(counts)

[,1] [,2] [,3]
[1,] -0.7833495 -0.439155 -1.224745
[2,] -0.7833495 1.317465 1.224745
[3,] 1.3055824 0.146385 0.000000
[4,] 0.2611165 -1.024695 0.000000

attr(,"scaled:center")
[1] 2.75 1.75 3.00

192 THE R BOOK

attr(,"scaled:scale")
[1] 0.9574271 1.7078251 1.6329932

The values in the table are the counts minus the column means of the counts. The means of
the columns – attr(,"scaled:center") – are 2.75, 1.75 and 3.0, while the standard
deviations of the columns – attr(,"scaled:scale") – are 0.96, 1.71 and 1.63. To
check that the scales are the standard deviations (sd) of the counts within a column, you
could use apply to the columns (margin = 2) like this:

apply(counts,2,sd)

[1] 0.9574271 1.7078251 1.6329932

The expand.grid function

This is a useful function for generating tables of combinations of factor levels. Suppose we
have three variables: height with five levels between 60 and 80 in steps of 5, weight with
five levels between 100 and 300 in steps of 50, and two sexes.

expand.grid(height = seq(60, 80, 5), weight = seq(100, 300, 50),
sex = c("Male","Female"))

height weight sex
1 60 100 Male
2 65 100 Male
3 70 100 Male
4 75 100 Male
5 80 100 Male
6 60 150 Male
7 65 150 Male
8 70 150 Male
9 75 150 Male
10 80 150 Male
11 60 200 Male
� � �
47 65 300 Female
48 70 300 Female
49 75 300 Female
50 80 300 Female

The model.matrix function

Creating tables of dummy variables for use in statistical modelling is extremely easy with
the model.matrix function. You will see what the function does with a simple example.
Suppose that our dataframe contains a factor called parasite indicating the identity of a gut
parasite. The variable called parasite has five levels: vulgaris, kochii, splendens, viridis and
knowlesii. Note that there was no header row in the data file, so the variable name parasite
had to be added subsequently, using names:

data<-read.table("c:\\temp \\parasites.txt")
names(data)<-"parasite"
attach(data)

TABLES 193

In our modelling we want to create a two-level dummy variable (present/absent) for
each parasite species, so that we can ask questions such as whether the mean value of the
response variable is significantly different in cases where vulgaris is present and when it is
absent. The long-winded way of doing this is to create a new factor for each species:

vulgaris<-factor(1*(parasite=="vulgaris"))
kochii<-factor(1*(parasite=="kochii"))

and so on, with 1 for TRUE (present) and 0 for FALSE (absent). This is how easy it is to
do with model.matrix:

model.matrix(~parasite-1)

parasite kochii parasiteknowlesii parasitesplendens parasiteviridis
1 0 0 0 0
2 0 0 1 0
3 0 1 0 0
4 0 0 0 0
5 0 1 0 0
6 0 0 0 1
7 0 0 1 0
8 0 0 1 0
9 0 0 0 1

10 0 0 0 0
11 0 0 1 0
12 0 0 0 1
13 0 0 1 0

The −1 in the model formula ensures that we create a dummy variable for each of the five
parasite species (technically, it suppresses the creation of an intercept). Now we can join
these five columns of dummy variables to the dataframe containing the response variable
and the other explanatory variables,

new.frame<-data.frame(original.frame, model.matrix(~parasite-1))
attach(new.frame)

after which we can use variable names like parasiteknowlesii in statistical modelling.

7
Mathematics

You can do a lot of maths in R. Here we concentrate on the kinds of mathematics that find
most frequent application in scientific work and statistical modelling:

• functions;

• continuous distributions;

• discrete distributions;

• matrix algebra;

• calculus;

• differential equations.

Mathematical Functions

For the kinds of functions you will meet in statistical computing there are only three
mathematical rules that you need to learn: these are concerned with powers, exponents and
logarithms. In the expression xb the explanatory variable is raised to the power b. In ex the
explanatory variable appears as a power – in this special case, of e = 2�71828, of which x
is the exponent. The inverse of ex is the logarithm of x, denoted by log(x) – note that all
our logs are to the base e and that, for us, writing log(x) is the same as ln(x).

It is also useful to remember a handful of mathematical facts that are useful for working
out behaviour at the limits. We would like to know what happens to y when x gets very
large (e.g. x → �) and what happens to y when x goes to 0 (i.e. what the intercept is, if
there is one). These are the most important rules:

• Anything to the power zero is 1: x0 = 1.

• One raised to any power is still 1: 1x = 1.

• Infinity plus 1 is infinity: � + 1 = �.

• One over infinity (the reciprocal of infinity, �−1) is zero: 1
� = 0.

• A number bigger than 1 raised to the power infinity is infinity: 1�2� = �.

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

196 THE R BOOK

• A fraction (e.g. 0.99) raised to the power infinity is zero: 0�99� = 0.

• Negative powers are reciprocals: x−b = 1
xb

.

• Fractional powers are roots: x1/3 = 3
√

x.

• The base of natural logarithms, e, is 2.718 28, so e� = �.

• Last, but perhaps most usefully: e−� = 1
e� = 1

� = 0.

There are built-in functions in R for logarithmic, probability and trigonometric functions
(p. 11).

Logarithmic functions

The logarithmic function is given by

y = a ln�bx��

Here the logarithm is to base e. The exponential function, in which the response y is the
antilogarithm of the continuous explanatory variable x, is given by

y = aebx�

Both these functions are smooth functions, and to draw smooth functions in R you need to
generate a series of 100 or more regularly spaced x values between min(x) and max(x):

x<-seq(0,10,0.1)

In R the exponential function is exp and the natural log function (ln) is log. Let a = b = 1.
To plot the exponential and logarithmic functions with these values together in a row, write

y<-exp(x)
plot(y~x,type="l",main="Exponential")

y<-log(x)
plot(y~x,type="l",main="Logarithmic")

Exponential

0
x x

0
50

00
15

00
0

y y

2 4 6 8 10

–2
–1

0
1

2

20 4 6 8 10

Logarithmic

Note that the plot function can be used in an alternative way, specifying the Cartesian
coordinates of the line using plot(x,y) rather than the formula plot(y~x) (see p. 181).

These functions are most useful in modelling process of exponential growth and decay.

MATHEMATICS 197

Trigonometric functions

Here are the cosine (base / hypotenuse), sine (perpendicular / hypotenuse) and tangent (per-
pendicular / base) functions of x (measured in radians) over the range 0 to 2�. Recall that
the full circle is 2� radians, so 1 radian = 360/2� = 57�295 78 degrees.

x<-seq(0,2*pi,2*pi/100)
y1<-cos(x)
y2<-sin(x)
plot(y1~x,type="l",main="cosine")
plot(y2~x,type="l",main="sine")
y3<-tan(x)
plot(y3~x,type="l",ylim=c(-3,3),main="tangent")

1.
0

0 1 2 3

x

tangent

cosine sine

4 5 6

0.
5

y1 0.
0

–0
.5

–1
.0

1.
0

0 1 2 3

x

4 5 6

0.
5

y2 0.
0

–0
.5

–1
.0

3

0 1 2 3
x

4 5 6

2

y3

1
0

–1
–2

–3

The tangent of x has discontinuities, shooting off to positive infinity at x = �/2 and again
at x = 3�/2. Restricting the range of values plotted on the y axis (here from −3 to +3)
therefore gives a better picture of the shape of the tan function. Note that R joins the plus
infinity and minus infinity ‘points’ with a straight line at x = �/2 and at x = 3�/2 within
the frame of the graph defined by ylim.

Power laws

There is an important family of two-parameter mathematical functions of the form

y = axb

198 THE R BOOK

known as power laws. Depending on the value of the power, b, the relationship can take
one of five forms. In the trivial case of b = 0 the function is y = a (a horizontal straight
line). The four more interesting shapes are as follows:

x<-seq(0,1,0.01)
y<-x^0.5
plot(x,y,type="l",main="0<b<1")
y<-x
plot(x,y,type="l",main="b=1")
y<-x^2
plot(x,y,type="l",main="b>1")
y<-1/x
plot(x,y,type="l",main="b<0")

0.
8

0.
4y

0.
0

0.
8

0.
4

0.
0

0.
8

0.
4

0.
0

0.0 0.2 0.4 0.6 0.8
x

1.0

y
y

0.0 0.2 0.4 0.6

b < 0

0 < b < 1 b = 1

b > 1

0.8
x

1.0

10
0

80
60

40
20

0

y

0.0 0.2 0.4 0.6 0.8
x

1.0 0.0 0.2 0.4 0.6 0.8
x

1.0

These functions are useful in a wide range of disciplines. The parameters a and
b are easy to estimate from data because the function is linearized by a log-log
transformation,

log�y� = log�axb� = log�a� + b log�x��

so that on log-log axes the intercept is log(a) and the slope is b. These are often called
allometric relationships because when b �=1 the proportion of x that becomes y varies with x.

An important empirical relationship from ecological entomology that has applications in
a wide range of statistical analysis is known as Taylor’s power law. It has to do with
the relationship between the variance and the mean of a sample. In elementary statistical
models, the variance is assumed to be constant (i.e. the variance does not depend upon the

MATHEMATICS 199

mean). In field data, however, Taylor found that variance increased with the mean according
to a power law, such that on log-log axes the data from most systems fell above a line
through the origin with slope = 1 (the pattern shown by data that are Poisson distributed,
where the variance is equal to the mean) and below a line through the origin with a slope
of 2. Taylor’s power law states that, for a particular system:

• log(variance) is a linear function of log(mean);

• the scatter about this straight line is small;

• the slope of the regression of log(variance) against log(mean) is greater than 1 and less than 2;

• the parameter values of the log-log regression are fundamental characteristics of the system.

Polynomial functions

Polynomial functions are functions in which x appears several times, each time raised to
a different power. They are useful for describing curves with humps, inflections or local
maxima like these:

30
20

5

0 2 4
x

decelerating humped

local maximuminflection

6 8 10

10

15
10

5

0 2 4
x

6 8 10

20
15

10

y
y

5

0 2 4
x

6 8 10

40
30

20

y
y

10

0 2 4
x

6 8 10

The top left-hand panel shows a decelerating positive function, modelled by the quadratic

x<-seq(0,10,0.1)
y1<-2+5*x-0.2*x^2

Making the negative coefficient of the x2 term larger produces a curve with a hump as in
the top right-hand panel:

y2<-2+5*x-0.4*x^2

200 THE R BOOK

Cubic polynomials can show points of inflection, as in the lower left-hand panel:

y3<-2+4*x-0.6*x^2+0.04*x^3

Finally, polynomials containing powers of 4 are capable of producing curves with local
maxima, as in the lower right-hand panel:

y4<-2+4*x+2*x^2-0.6*x^3+0.04*x^4
par(mfrow=c(2,2)
plot(x,y1,type="l",ylab="y",main="decelerating")
plot(x,y2,type="l",ylab="y",main="humped")
plot(x,y3,type="l",ylab="y",main="inflection")
plot(x,y4,type="l",ylab="y",main="local maximum")

Inverse polynomials are an important class of functions which are suitable for setting up
generalized linear models with gamma errors and inverse link functions:

1
y

= a + bx + cx2 + dx3 + … + zxn�

Various shapes of function are produced, depending on the order of the polynomial (the
maximum power) and the signs of the parameters:

par(mfrow=c(2,2))
y1<-x/(2+5*x)
y2<-1/(x-2+4/x)
y3<-1/(x^2-2+4/x)
plot(x,y1,type="l",ylab="y",main="Michaelis-Menten")
plot(x,y2,type="l",ylab="y",main="shallow hump")
plot(x,y3,type="l",ylab="y",main="steep hump")

0.
4

0.
3

0.
2

0.
1

0.
0

0 2 4
x

Michaelis Menten shallow hump

steep hump

6 8 10

0.
3

0.
2

y
y

0.
1

0.
0

0 2 4
x

6 8 10

0.
4

0.
2y

0.
0

0 2 4
x

6 8 10

MATHEMATICS 201

There are two ways of parameterizing the Michaelis–Menten equation:

y = ax

1 + bx
and y = x

c + dx
�

In the first case, the asymptotic value of y is a/b and in the second it is 1/d.

Gamma function

The gamma function ��t� is an extension of the factorial function, t!, to positive real
numbers:

��t� =
∫ �

0
xt−1e−xdx�

It looks like this:

t<-seq(0.2,4,0.01)
plot(t,gamma(t),type="l")
abline(h=1,lty=2)

6
5

4

ga
m

m
a(

t)

3
2

1

432
t

1

Note that ��t� is equal to 1 at both t =1 and t =2. For integer values of t� ��t +1�= t!, and.

Asymptotic functions

Much the most commonly used asymptotic function is

y = ax

1 + bx
�

which has a different name in almost every scientific discipline. For example, in biochemistry
it is called Michaelis–Menten, and shows reaction rate as a function of enzyme concentration;
in ecology it is called Holling’s disc equation and shows predator feeding rate as a function

202 THE R BOOK

of prey density. The graph passes through the origin and rises with diminishing returns to
an asymptotic value at which increasing the value of x does not lead to any further increase
in y.

The other common function is the asymptotic exponential

y = a�1 − e−bx��

This, too, is a two-parameter model, and in many cases the two functions would describe
data equally well (see p. 664 for an example of this comparison).

Let’s work out the behaviour at the limits of our two asymptotic functions, starting with
the asymptotic exponential. For x = 0 we have

y = a�1 − e−b×0� = a�1 − e0� = a�1 − 1� = a × 0 = 0�

so the graph goes through the origin. At the other extreme, for x = �, we have

y = a�1 − e−b×�� = a�1 − e−�� = a�1 − 0� = a�1� = a�

which demonstrates that the relationship is asymptotic, and that the asymptotic value of y
is a.

For the Michaelis–Menten equation, determining the behaviour at the limits is somewhat
more difficult, because for x = � we end up with y = �/� which you might imagine is
always going to be 1 no matter what the values of a and b. In fact, there is a special
mathematical rule for this case, called l’Hospital’s rule: when you get a ratio of infinity to
infinity, you work out the ratio of the derivatives to obtain the behaviour at the limit. For
x = 0 the limit is easy:

y = a × 0
1 + b × 0

= 0
1 + 0

= 0
1

= 0�

For x=� we get y =�/�1 +��=�/�. The numerator is ax so its derivative with respect
to x is a. The denominator is 1 + bx so its derivative with respect to x is 0 + b = b. So
the ratio of the derivatives is a/b, and this is the asymptotic value of the Michaelis–Menten
equation.

Parameter estimation in asymptotic functions

There is no way of linearizing the asymptotic exponential model, so we must resort to non-
linear least squares (nls) to estimate parameter values for it (p. 662). One of the advantages
of the Michaelis–Menten function is that it is easy to linearize. We use the reciprocal
transformation

1
y

= 1 + bx

ax
�

which, at first glance, isn’t a big help. But we can separate the terms on the right because
they have a common denominator. Then we can cancel the xs, like this:

1
y

= 1
ax

+ bx

ax
= 1

ax
+ b

a

MATHEMATICS 203

so if we put y = 1/y, x = 1/x, A = 1/a, and C = b/a, we see that

Y = AX + C

which is linear: C is the intercept and A is the slope. So to estimate the values of a and b
from data, we would transform both x and y to reciprocals, plot a graph of 1/y against 1/x,
carry out a linear regression, then back-transform, to get:

a = 1
A

�

b = aC�

Suppose that we knew that the graph passed through the two points (0.2, 44.44) and (0.6,
70.59). How do we work out the values of the parameters a and b? First, we calculate the
four reciprocals. The slope of the linearized function, A, is the change in 1/y divided by
the change in 1/x:

(1/44.44 - 1/70.59)/(1/0.2 - 1/0.6)

[1] 0.002500781

so a = 1/A = 1/0�0025 = 400. Now we rearrange the equation and use one of the points
(say x = 0�2� y = 44�44) to get the value of b:

b = 1
x

(
ax

y
− 1

)
= 1

0�2

(
400 × 0�2

44�44
− 1

)
= 4�

Sigmoid (S-shaped) functions

The simplest S-shaped function is the two-parameter logistic where, for 0 ≤ y ≤ 1,

y = ea+bx

1 + ea+bx

which is central to the fitting of generalized linear models for proportion data (Chapter 16).
The three-parameter logistic function allows y to vary on any scale:

y = a

1 + be−cx
�

The intercept is a/�1 + b�, the asymptotic value is a and the initial slope is measured by c.
Here is the curve with parameters 100, 90 and 1.0:

par(mfrow=c(2,2))
x<-seq(0,10,0.1)
y<-100/(1+90*exp(-1*x))
plot(x,y,type="l",main="three-parameter logistic")

The four-parameter logistic function has asymptotes at the left-�a� and right-hand �b�
ends of the x axis and scales �c� the response to x about the midpoint �d� where the curve
has its inflexion:

y = a + b − a

1 + ec�d−x�
�

204 THE R BOOK

Letting a = 20� b = 120� c = 0�8 and d = 3, the function

y = 20 + 100
1 + e0�8×�3−x�

looks like this

y<-20+100/(1+exp(0.8*(3-x)))
plot(x,y,ylim=c(0,140),type="l",main="four-parameter logistic")

Negative sigmoid curves have the parameter c < 0 as for the function

y = 20 + 100
1 + e−0�8×�3−x�

�

An asymmetric S-shaped curve much used in demography and life insurance work is the
Gompertz growth model,

y = aebecx

�

The shape of the function depends on the signs of the parameters b and c. For a negative
sigmoid, b is negative (here −1) and c is positive (here +0�02):

x<- -200:100
y<-100*exp(-exp(0.02*x))
plot(x,y,type="l",main="negative Gompertz")

For a positive sigmoid both parameters are negative:

x<- 0:100
y<- 50*exp(-5*exp(-0.08*x))
plot(x,y,type="l",main="positive Gompertz")

0 2 4
x x

x x

6 8 10

–100–200 0 50 100

0 2 4 6 8 10

0 20 40 60 80 100

10
0

80
60y

40
20

0
10

0
80

60y y

40
20

0

50
40

30
20

10
0

0
40

80
12

0

y

three-parameter logistic four-parameter logistic

negative Gompertz positive Gompertz

MATHEMATICS 205

Biexponential model

This is a useful four-parameter non-linear function, which is the sum of two exponential
functions of x:

y = aebx + cedx�

Various shapes depend upon the signs of the parameters b, c and d:

x

y

0 2 4 6 8 10

0.
6

0.
8

1.
0

1.
2

1.
4

x

y2

0 2 4 6 8 10

1.
1

1.
2

1.
3

1.
4

x

y3

0 2 4 6 8 10

20
0

40
0

60
0

80
0

x

y4

0 2 4 6 8 10

10
00

30
00

50
00

the upper left-hand panel shows c positive, b and d negative; the upper right-hand panel
shows c and d positive, b negative; the lower left-hand panel shows c and d negative, b
positive; and the lower right panel shows c and b negative, d positive. When b, c and d are
all negative, this function is known as the first-order compartment model in which a drug
administered at time 0 passes through the system with its dynamics affected by elimination,
absorption and clearance.

Transformations of the response and explanatory variables

We have seen the use of transformation to linearize the relationship between the response
and the explanatory variables:

• log�y� against x for exponential relationships;

• log�y� against log�x� for power functions;

• exp�y� against x for logarithmic relationships;

• 1/y against 1/x for asymptotic relationships;

• log�p/�1 − p�� against x for proportion data.

206 THE R BOOK

Other transformations are useful for variance stabilization:

• √
y to stabilize the variance for count data;

• arcsin(y) to stabilize the variance of percentage data.

Probability functions

There are many specific probability distributions in R (normal, Poisson, binomial, etc.), and
these are discussed in detail later. Here we look at the base mathematical functions that
deal with elementary probability. The factorial function gives the number of permutations
of n items. How many ways can 4 items be arranged? The first position could have any
one of the 4 items in it, but by the time we get to choosing the second item we shall
already have specified the first item so there are just 4 − 1 = 3 ways of choosing the second
item. There are only 4 − 2 = 2 ways of choosing the third item, and by the time we get
to the last item we have no degrees of freedom at all: the last number must be the one
item out of four that we have not used in positions 1, 2 or 3. So with 4 items the answer
is 4 × �4 − 1� × �4 − 2� × �4 − 3� which is 4 × 3 × 2 × 1 = 24. In general, factorial�n� is
given by

n! = n�n − 1��n − 2� � � � × 3 × 2�

The R function is factorial and we can plot it for values of x from 0 to 10 using the step
option type="s", in plot with a logarithmic scale on the y axis log="y",

x<-0:6
plot(x,factorial(x),type="s",main="factorial x",log="y")

50
0

20
0

10
0

50
20

fa
ct

or
ia

l(x
)

factorial x

10
5

2
1

0 1 2 3

x
4 5 6

MATHEMATICS 207

The other important base function for probability calculations in R is the choose function
which calculates binomial coefficients. These show the number of ways there are of
selecting x items out of n items when the item can be one of just two types (e.g. either
male or female, black or white, solvent or insolvent). Suppose we have 8 individuals and
we want to know how many ways there are that 3 of them could be males (and hence 5 of
them females). The answer is given by

(
n
x

)
= n!

x!�n − x�! ,

so with n = 8 and x = 3 we get

(
n
x

)
= 8!

3!�8 − 3�! = 8 × 7 × 6
3 × 2

= 56

and in R

choose(8,3)

[1] 56

Obviously there is only one way that all 8 individuals could be male or female, so there
is only one way of getting 0 or 8 ‘successes’. One male could be the first individual you
select, or the second, or the third, and so on. So there are 8 ways of selecting 1 out of 8.
By the same reasoning, there must be 8 ways of selecting 7 males out of 8 individuals (the
lone female could be in any one of the 8 positions). The following is a graph of the number
of ways of selecting from 0 to 8 males out of 8 individuals:

plot(0:8,choose(8,0:8),type="s",main="binomial coefficients")

70
60

50
40

ch
oo

se
(8

, 0
:8

)

30
20

10
0

0.8

binomial coeffiecients

0 2 4 6 8

208 THE R BOOK

Continuous Probability Distributions

R has a wide range of built-in probability distributions, for each of which four functions are
available: the probability density function (which has a d prefix); the cumulative probability
(p); the quantiles of the distribution (q); and random numbers generated from the distribution
(r). Each letter can be prefixed to the R function names in Table 7.1 (e.g. dbeta).

Table 7.1. The probability distributions supported by R. The meanings of
the parameters are explained in the text.

R function Distribution Parameters

beta beta shape1, shape2
binom binomial sample size, probability
cauchy Cauchy location, scale
exp exponential rate (optional)
chisq chi-squared degrees of freedom
f Fisher’s F df1, df2
gamma gamma shape
geom geometric probability
hyper hypergeometric m, n, k
lnorm lognormal mean, standard deviation
logis logistic location, scale
nbinom negative binomial size, probability
norm normal mean, standard deviation
pois Poisson mean
signrank Wilcoxon signed rank statistic sample size n
t Student’s t degrees of freedom
unif uniform minimum, maximum (opt.)
weibull Weibull shape
wilcox Wilcoxon rank sum m, n

The cumulative probability function is a straightforward notion: it is an S-shaped curve
showing, for any value of x, the probability of obtaining a sample value that is less than or
equal to x. Here is what it looks like for the normal distribution:

curve(pnorm(x),-3,3)
arrows(-1,0,-1,pnorm(-1),col="red")
arrows(-1,pnorm(-1),-3,pnorm(-1),col="green")

The value of x�−1� leads up to the cumulative probability (red arrow) and the probability
associated with obtaining a value of this size �−1� or smaller is on the y axis (green arrow).
The value on the y axis is 0.158 655 3:

pnorm(-1)

[1] 0.1586553

The probability density is the slope of this curve (its ‘derivative’). You can see at once that
the slope is never negative. The slope starts out very shallow up to about x = −2, increases
up to a peak (at x = 0 in this example) then gets shallower, and becomes very small indeed
above about x = 2. Here is what the density function of the normal (dnorm) looks like:

curve(dnorm(x),-3,3)

MATHEMATICS 209

1.
0

0.
8

0.
6

0.
4pn

or
m

(x
)

0.
2

0.
0

–3 –2 –1 0
x

1 2 3

dn
or

m
(x

)

0.
0

0.
1

0.
2

0.
3

0.
4

–3 –2 –1 0
x

1 2 3

For a discrete random variable, like the Poisson or the binomial, the probability density
function is straightforward: it is simply a histogram with the y axis scaled as probabilities
rather than counts, and the discrete values of x (0, 1, 2, 3, � � � � � �) on the horizontal axis.
But for a continuous random variable, the definition of the probability density function is
more subtle: it does not have probabilities on the y axis, but rather the derivative (the slope)
of the cumulative probability function at a given value of x.

210 THE R BOOK

Normal distribution

This distribution is central to the theory of parametric statistics. Consider the following
simple exponential function:

y = exp�−�x�m��

As the power �m� in the exponent increases, the function becomes more and more like a
step function. The following panels show the relationship between y and x for m = 1� 2� 3
and 8, respectively:

par(mfrow=c(2,2))
x<-seq(-3,3,0.01)
y<-exp(-abs(x))
plot(x,y,type="l")
y<-exp(-abs(x)^2)
plot(x,y,type="l")
y<-exp(-abs(x)^3)
plot(x,y,type="l")
y<-exp(-abs(x)^8)
plot(x,y,type="l")

0.
0

–3 –2 –1 0
x

1 2 3

0.
4

y y0.
6

0.
4

0.
2

0.
8

0.
8

1.
0

–3 –2 –1 0
x

1 2 3

0.
0

0.
4

y

0.
8

–3 –2 –1 0
x

1 2 3

0.
0

0.
4

y

0.
8

–3 –2 –1 0
x

1 2 3

The second of these panels (top right), where y = exp�−x2�, is the basis of an extremely
important and famous probability density function. Once it has been scaled, so that the
integral (the area under the curve from −� to +�) is unity, this is the normal distribution.

MATHEMATICS 211

Unfortunately, the scaling constants are rather cumbersome. When the distribution has mean
0 and standard deviation 1 (the standard normal distribution) the equation becomes:

f�z� = 1√
2�

e−z
2
/2 �

Suppose we have measured the heights of 100 people. The mean height was 170 cm and
the standard deviation was 8 cm (top left panel, below). We can ask three sorts of questions
about data like these: what is the probability that a randomly selected individual will be:

• shorter than a particular height?

• taller than a particular height?

• between one specified height and another?

The area under the whole curve is exactly 1; everybody has a height between minus infinity
and plus infinity. True, but not particularly helpful. Suppose we want to know the probability
that one of our people, selected at random from the group, will be less than 160 cm tall.
We need to convert this height into a value of z; that is to say, we need to convert 160 cm
into a number of standard deviations from the mean. What do we know about the standard
normal distribution? It has a mean of 0 and a standard deviation of 1. So we can convert
any value y, from a distribution with mean ȳ and standard deviation s very simply by
calculating:

z = y − ȳ

s
�

So we convert 160 cm into a number of standard deviations. It is less than the mean height
(170 cm) so its value will be negative:

z = 160 − 170
8

= −1�25�

Now we need to find the probability of a value of the standard normal taking a value of
−1�25 or smaller. This is the area under the left hand tail (the integral) of the density
function. The function we need for this is pnorm: we provide it with a value of z (or, more
generally, with a quantile) and it provides us with the probability we want:

pnorm(-1.25)

[1] 0.1056498

So the answer to our first question (the red area, top right) is just over 10%.
Next, what is the probability of selecting one of our people and finding that they are

taller than 185 cm (bottom left)? The first two parts of the exercise are exactly the same as
before. First we convert our value of 185 cm into a number of standard deviations:

z = 185 − 170
8

= 1�875�

Then we ask what probability is associated with this, using pnorm:

212 THE R BOOK

0.
05

0.
04

0.
03

P
ro

ba
bi

lit
y

0.
02

0.
01

150 160 170

Height

180 190

0.
05

0.
04

0.
03

P
ro

ba
bi

lit
y

0.
02

0.
01

150 160 170

Height

180 190

0.
05

0.
04

0.
03

P
ro

ba
bi

lit
y

0.
02

0.
01

150 160 170

Height

180 190

0.
05

0.
04

0.
03

P
ro

ba
bi

lit
y

0.
02

0.
01

150 160 170

Height

180 190

pnorm(1.875)

[1] 0.9696036

But this is the answer to a different question. This is the probability that someone will
be less than or equal to 185 cm tall (that is what the function pnorm has been written to
provide). All we need to do is to work out the complement of this:

1-pnorm(1.875)

[1] 0.03039636

So the answer to the second question is about 3%.
Finally, we might want to know the probability of selecting a person between 165 cm and

180 cm. We have a bit more work to do here, because we need to calculate two z values:

z1 = 165 − 170
8

= −0�625 and z2 = �180 − 170�

8
= 1�25�

The important point to grasp is this: we want the probability of selecting a person between
these two z values, so we subtract the smaller probability from the larger probability:

pnorm(1.25)-pnorm(-0.625)

[1] 0.6283647

Thus we have a 63% chance of selecting a medium-sized person (taller than 165 cm and
shorter than 180 cm) from this sample with a mean height of 170 cm and a standard deviation
of 8 cm (bottom right, above).

MATHEMATICS 213

The central limit theorem

If you take repeated samples from a population with finite variance and calculate their
averages, then the averages will be normally distributed. This is called the central limit
theorem. Let’s demonstrate it for ourselves. We can take five uniformly distributed random
numbers between 0 and 10 and work out the average. The average will be low when we
get, say, 2,3,1,2,1 and big when we get 9,8,9,6,8. Typically, of course, the average will be
close to 5. Let’s do this 10 000 times and look at the distribution of the 10 000 means. The
data are rectangularly (uniformly) distributed on the interval 0 to 10, so the distribution of
the raw data should be flat-topped:

hist(runif(10000)*10,main="")

runif(10000) * 10

Fr
eq

ue
nc

y

0
10

0
20

0
30

0
40

0
50

0

0 2 4 6 108

What about the distribution of sample means, based on taking just 5 uniformly distributed
random numbers?

means<-numeric(10000)
for (i in 1:10000){
means[i]<-mean(runif(5)*10)
}
hist(means,ylim=c(0,1600))

Nice, but how close is this to a normal distribution? One test is to draw a normal distribution
with the same parameters on top of the histogram. But what are these parameters? The
normal is a two-parameter distribution that is characterized by its mean and its standard
deviation. We can estimate these two parameters from our sample of 10 000 means (your
values will be slightly different because of the randomization):

214 THE R BOOK

means

Fr
eq

ue
nc

y

0
50

0
10

00
15

00

Histogram of means

2 4 6 108

mean(means)

[1] 4.998581

sd(means)

[1] 1.289960

Now we use these two parameters in the probability density function of the normal distri-
bution (dnorm) to create a normal curve with our particular mean and standard deviation.
To draw the smooth line of the normal curve, we need to generate a series of values for the
x axis; inspection of the histograms suggest that sensible limits would be from 0 to 10 (the
limits we chose for our uniformly distributed random numbers). A good rule of thumb is
that for a smooth curve you need at least 100 values, so let’s try this:

xv<-seq(0,10,0.1)

There is just one thing left to do. The probability density function has an integral of 1.0
(that’s the area beneath the normal curve), but we had 10 000 samples. To scale the normal
probability density function to our particular case, however, depends on the height of the
highest bar (about 1500 in this case). The height, in turn, depends on the chosen bin widths;
if we doubled with width of the bin there would be roughly twice as many numbers in the
bin and the bar would be twice as high on the y axis. To get the height of the bars on our
frequency scale, therefore, we multiply the total frequency, 10 000 by the bin width, 0.5
to get 5000. We multiply 5000 by the probability density to get the height of the curve.
Finally, we use lines to overlay the smooth curve on our histogram:

yv<-dnorm(xv,mean=4.998581,sd=1.28996)*5000
lines(xv,yv)

MATHEMATICS 215

means

Fr
eq

ue
nc

y

0
50

0
10

00
15

00

Histogram of means

2 4 6 108

The fit is excellent. The central limit theorem really works. Almost any distribution, even
a ‘badly behaved’ one like the uniform distribution we worked with here, will produce a
normal distribution of sample means taken from it.

A simple example of the operation of the central limit theorem involves the use of dice.
Throw one die lots of times and each of the six numbers should come up equally often: this
is an example of a uniform distribution:

par(mfrow=c(2,2))
hist(sample(1:6,replace=T,10000),breaks=0.5:6.5,main="",xlab="one die")

Now throw two dice and add the scores together: this is the ancient game of craps. There
are 11 possible scores from a minimum of 2 to a maximum of 12. The most likely score is
7 because there are 6 ways that this could come about:

1,6 6,1 2,5 5,2 3,4 4,3

For many throws of craps we get a triangular distribution of scores, centred on 7:

a<-sample(1:6,replace=T,10000)
b<-sample(1:6,replace=T,10000)
hist(a+b,breaks=1.5:12.5,main="", xlab="two dice")

There is already a clear indication of central tendency and spread. For three dice we get

c<-sample(1:6,replace=T,10000)
hist(a+b+c,breaks=2.5:18.5,main="", xlab="three dice")

216 THE R BOOK

and the bell shape of the normal distribution is starting to emerge. By the time we get to
five dice, the binomial distribution is virtually indistinguishable from the normal:

d<-sample(1:6,replace=T,10000)
e<-sample(1:6,replace=T,10000)
hist(a+b+c+d+e,breaks=4.5:30.5,main="", xlab="five dice")

The smooth curve is given by a normal distribution with the same mean and standard
deviation:

mean(a+b+c+d+e)

[1] 17.5937

sd(a+b+c+d+e)

[1] 3.837668

lines(seq(1,30,0.1),dnorm(seq(1,30,0.1),17.5937,3.837668)*10000)

1

0
50

0
10

00

Fr
eq

ue
nc

y

15
00

0
60

0
20

0

0
20

0
40

0
60

0
80

0
10

00

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

10
00

0
50

0
10

00

Fr
eq

ue
nc

y

15
00

2 3

one die

4 5 6

5 10

three dice

15

2 4 6

two dice

8 10 12

5 10 15

five dice

20 25 30

Maximum likelihood with the normal distribution

The probability density of the normal is

f�y�	�
� = 1

√

2�
exp

[
− �y − 	�2

2
2

]
�

MATHEMATICS 217

which is read as saying the probability of getting a data value y, given ��� a mean of
	 and a variance of
2, is calculated from this rather complicated-looking two-parameter
exponential function. For any given combination of 	 and
2, it gives a value between 0
and 1. Recall that likelihood is the product of the probability densities, for each of the values
of the response variable, y. So if we have n values of y in our experiment, the likelihood
function is

L�	�
� =
n∏

i=1

(
1

√

2�
exp

[
− �yi − 	�2

2
2

])
�

where the only change is that y has been replaced by yi and we multiply together the
probabilities for each of the n data points. There is a little bit of algebra we can do to simplify
this: we can get rid of the product operator, �, in two steps. First, for the constant term:
that, multiplied by itself n times, can just be written as 1/�

√
2��n. Second, remember that

the product of a set of antilogs (exp) can be written as the antilog of a sum of the values
of xi like this:

∏
exp�xi�= exp�

∑
xi�. This means that the product of the right-hand part of

the expression can be written as

exp
[
−
∑n

i=1 �yi − 	�2

2
2

]

so we can rewrite the likelihood of the normal distribution as

L�	�
� = 1(

√
2�

)n exp

[
− 1

2
2

n∑
i=1

�yi − 	�2

]
�

The two parameters 	 and
 are unknown, and the purpose of the exercise is to use statistical
modelling to determine their maximum likelihood values from the data (the n different
values of y). So how do we find the values of 	 and
 that maximize this likelihood? The
answer involves calculus: first we find the derivative of the function with respect to the
parameters, then set it to zero, and solve.

It turns out that because of the exp function in the equation, it is easier to work out the
log of the likelihood,

l�	�
� = −n

2
log�2�� − n log�
� −∑

�yi − 	�2/2
2�

and maximize this instead. Obviously, the values of the parameters that maximize the log-
likelihood l�	�
� = log�L�	�
�� will be the same as those that maximize the likelihood.
From now on, we shall assume that summation is over the index i from 1 to n.

Now for the calculus. We start with the mean, 	. The derivative of the log-likelihood
with respect to 	 is

dl

d	
=∑

�yi − 	�/
2�

Set the derivative to zero and solve for 	:

∑
�yi − 	�/
2 = 0 so

∑
�yi − 	� = 0�

218 THE R BOOK

Taking the summation through the bracket, and noting that
∑

	 = n	,

∑
yi − n	 = 0 so

∑
yi = n	 and 	 =

∑
yi

n
�

The maximum likelihood estimate of 	 is the arithmetic mean.
Next we find the derivative of the log-likelihood with respect to
:

dl

d

= − n

+

∑
�yi − 	�2

3
�

recalling that the derivative of log�x� is 1/x and the derivative of −1/x2 is 2/x3. Solving,
we get

− n

+

∑
�yi − 	�2

3
= 0 so

∑
�yi − 	�2 =
3

(n

)
=
2n

2 =
∑

�yi − 	�2

n
�

The maximum likelihood estimate of the variance
2 is the mean squared deviation of the
y values from the mean. This is a biased estimate of the variance, however, because it does
not take account of the fact that we estimated the value of 	 from the data. To unbias the
estimate, we need to lose 1 degree of freedom to reflect this fact, and divide the sum of
squares by n − 1 rather than by n (see p. 52 and restricted maximum likelihood estimators
in Chapter 19).

Here, we illustrate R’s built-in probability functions in the context of the normal distri-
bution. The density function dnorm has a value of z (a quantile) as its argument. Optional
arguments specify the mean and standard deviation (default is the standard normal with
mean 0 and standard deviation 1). Values of z outside the range −3�5 to +3�5 are very
unlikely.

par(mfrow=c(2,2))
curve(dnorm,-3,3,xlab="z",ylab="Probability density",main="Density")

The probability function pnorm also has a value of z (a quantile) as its argument. Optional
arguments specify the mean and standard deviation (default is the standard normal with
mean 0 and standard deviation 1). It shows the cumulative probability of a value of z less
than or equal to the value specified, and is an S-shaped curve:

curve(pnorm,-3,3,xlab="z",ylab="Probability",main="Probability")

Quantiles of the normal distribution qnorm have a cumulative probability as their argu-
ment. They perform the opposite function of pnorm, returning a value of z when provided
with a probability.

curve(qnorm,0,1,xlab="p",ylab="Quantile (z)",main="Quantiles")

The normal distribution random number generator rnorm produces random real numbers
from a distribution with specified mean and standard deviation. The first argument is the
number of numbers that you want to be generated: here are 1000 random numbers with
mean 0 and standard deviation 1:

MATHEMATICS 219

y<-rnorm(1000)
hist(y,xlab="z",ylab="frequency",main="Random numbers")

0.
0

0.
1

0.
2

0.
0

0.
4

0.
8

0.
3

0.
4

P
ro

ba
bi

lit
y

de
ns

ity

P
ro

ba
bi

lit
y

fr
eq

ue
nc

y

–3 –2 –1 0

z

1 2 3 –3 –2 –1 0

z

1 2 3

–3 –2 –1 0
z

1 2 3

Density
–1

–2
0

1
2

15
0

10
0

50
0

Q
ua

nt
ile

 (
z)

0.0 0.2 0.4 0.6
p

0.8 1.0

Quantiles Random numbers

Probability

The four functions (d, p, q and r) work in similar ways with all the other probability
distributions.

Generating random numbers with exact mean standard deviation

If you use a random number generator like rnorm then, naturally, the sample you generate
will not have exactly the mean and standard deviation that you specify, and two runs will
produce vectors with different means and standard deviations. Suppose we want 100 normal
random numbers with a mean of exactly 24 and a standard deviation of precisely 4:

yvals<-rnorm(100,24,4)
mean(yvals)

[1] 24.2958

sd(yvals)

[1] 3.5725

Close, but not spot on. If you want to generate random numbers with an exact mean and
standard deviation, then do the following:

ydevs<-rnorm(100,0,1)

Now compensate for the fact that the mean is not exactly 0 and the standard deviation is
not exactly 1 by expressing all the values as departures from the sample mean scaled in
units of the sample’s standard deviations:

220 THE R BOOK

ydevs<-(ydevs-mean(ydevs))/sd(ydevs)

Check that the mean is zero and the standard deviation is exactly 1:

mean(ydevs)

[1] -2.449430e-17

sd(ydevs)

[1] 1

The mean is as close to zero as makes no difference, and the standard deviation is one.
Now multiply this vector by your desired standard deviation and add to your desired mean
value to get a sample with exactly the means and standard deviation required:

yvals<-24 + ydevs*4
mean(yvals)

[1] 24

sd(yvals)

[1] 4

Comparing data with a normal distribution

Various tests for normality are described on p. 281. Here we are concerned with the task
of comparing a histogram of real data with a smooth normal distribution with the same
mean and standard deviation, in order to look for evidence of non-normality (e.g. skew or
kurtosis).

par(mfrow=c(1,1))
fishes<-read.table("c:\\temp\\fishes.txt",header=T)
attach(fishes)
names(fishes)

[1] "mass"

mean(mass)

[1] 4.194275

max(mass)

[1] 15.53216

Now the histogram of the mass of the fish is produced, specifying integer bins that are 1
gram in width, up to a maximum of 16.5 g:

hist(mass,breaks=-0.5:16.5,col="green",main="")

For the purposes of demonstration, we generate everything we need inside the lines function:
the sequence of x values for plotting (0 to 16), and the height of the density function (the num-
ber of fish (length(mass)) times the probability density for each member of this sequence,
for a normal distribution with mean(mass) and standard deviation sqrt(var(mass)) as its
parameters, like this:

lines(seq(0,16,0.1),length(mass)*dnorm(seq(0,16,0.1),mean(mass),sqrt(var(mass))))

MATHEMATICS 221

0

0
10

20
30

Fr
eq

ue
nc

y

40
50

60

5
mass

10 15

The distribution of fish sizes is clearly not normal. There are far too many fishes of 3 and
4 grams, too few of 6 or 7 grams, and too many really big fish (more than 8 grams). This
kind of skewed distribution is probably better described by a gamma distribution than a
normal distribution (see p. 231).

Other distributions used in hypothesis testing

The main distributions used in hypothesis testing are: the chi-squared, for testing hypotheses
involving count data; Fisher’s F, in analysis of variance (ANOVA) for comparing two
variances; and Student’s t, in small-sample work for comparing two parameter estimates.
These distributions tell us the size of the test statistic that could be expected by chance
alone when nothing was happening (i.e. when the null hypothesis was true). Given the rule
that a big value of the test statistic tells us that something is happening, and hence that the
null hypothesis is false, these distributions define what constitutes a big value of the test
statistic.

For instance, if we are doing a chi-squared test, and our test statistic is 14.3 on 9 d.f., we
need to know whether this is a large value (meaning the null hypothesis is false) or a small
value (meaning the null hypothesis is accepted, or at least cannot be rejected). In the old
days we would have looked up the value in chi-squared tables. We would have looked in
the row labelled 9 (the degrees of freedom row) and the column headed by � = 0�05. This
is the conventional value for the acceptable probability of committing a Type I error: that
is to say we allow a 1 in 20 chance of rejecting the null hypothesis when it is actually true;
see p. 317). Nowadays, we just type:

1-pchisq(14.3,9)

[1] 0.1120467

222 THE R BOOK

This indicates that 14.3 is actually a relatively small number when we have 9 d.f. We would
conclude that nothing is happening, because a value of chi-squared as large as 14.3 has a
greater than an 11% probability of arising by chance alone. We would want the probability
to be less than 5% before we rejected the null hypothesis. So how large would the test
statistic need to be, before we would reject the null hypothesis? We use qchisq to answer
this. Its two arguments are 1 − � and the number of degrees of freedom:

qchisq(0.95,9)

[1] 16.91898

So the test statistic would need to be larger than 16.92 in order for us to reject the null
hypothesis when there were 9 d.f.

We could use pf and qf in an exactly analogous manner for Fisher’s F . Thus, the
probability of getting a variance ratio of 2.85 by chance alone when the null hypothesis is
true, given that we have 8 d.f. in the numerator and 12 d.f. in the denominator, is just under
5% (i.e. the value is just large enough to allow us to reject the null hypothesis):

1-pf(2.85,8,12)

[1] 0.04992133

Note that with pf, degrees of freedom in the numerator (8) come first in the list of arguments,
followed by d.f. in the denominator (12).

Similarly, with Student’s t statistics and pt and qt. For instance, the value of t in tables
for a two-tailed test at �/2 = 0�025 with d.f. = 10 is

qt(0.975,10)

[1] 2.228139

chi-squared

Perhaps the best known of all the statistical distributions, introduced to generations of
school children in their geography lessons, and comprehensively misunderstood thereafter.
It is a special case of the gamma distribution (p. 229) characterized by a single parameter,
the number of degrees of freedom. The mean is equal to the degrees of freedom (‘nu’,
pronounced ‘new’), and the variance is equal to 2. The density function looks like this:

f�x� = 1
2/2��/2�

x/2−1e−x/2,

where � is the gamma function (see p. 201). The chi-squared is important because many
quadratic forms follow the chi-squared distribution under the assumption that the data follow
the normal distribution. In particular, the sample variance is a scaled chi-squared variable.
Likelihood ratio statistics are also approximately distributed as a chi-squared (see the F
distribution, below).

When the cumulative probability is used, an optional third argument can be provided to
describe non-centrality. If the non-central chi-squared is the sum of independent normal
random variables, then the non-centrality parameter is equal to the sum of the squared
means of the normal variables. Here are the cumulative probability plots for a non-centrality
parameter (ncp) based on three normal means (of 1, 1.5 and 2) and another with 4 means
and ncp = 10:

MATHEMATICS 223

par(mfrow=c(1,2))
x<-seq(0,30,.25)
plot(x,pchisq(x,3,7.25),type="l",ylab="p(x)",xlab="x")
plot(x,pchisq(x,5,10),type="l",ylab="p(x)",xlab="x")

1.
0

0.
8

0.
6

p(
x)

0.
4

0.
2

0.
0

0 10
x

20 305

1.
0

0.
8

0.
6

p(
x)

0.
4

0.
2

0.
0

0 10
x

20 305

The cumulative probability on the left has 3 d.f. and non-centrality parameter �12 + 1�52 +
22 = 7�25�, while the distribution on the right has 4 d.f. and non-centrality 10 (note the
longer left-hand tail at low probabilities).

chi-squared is also used to establish confidence intervals for sample variances. The quantity

�n − 1�s2

2

is the degrees of freedom �n − 1� multiplied by the ratio of the sample variance s2 to
the unknown population variance
2. This follows a chi-squared distribution, so we can
establish a 95% confidence interval for
2 as follows:

�n − 1�s2

�2
1−�/2

≤
2 ≤ �n − 1�s2

�2
�/2

Suppose the sample variance s2 = 10�2 on 8 d.f. Then the interval on
2 is given by

8*10.2/qchisq(.975,8)

[1] 4.65367

8*10.2/qchisq(.025,8)

[1] 37.43582

which means that we can be 95% confident that the population variance lies in the range
4�65 ≤
2 ≤ 37�44

224 THE R BOOK

Fisher’s F

This is the famous variance ratio test that occupies the penultimate column of every ANOVA
table. The ratio of treatment variance to error variance follows the F distribution, and you
will often want to use the quantile qf to look up critical values of F . You specify, in order,
the probability of your one-tailed test (this will usually be 0.95), then the two degrees of
freedom: numerator first, then denominator. So the 95% value of F with 2 and 18 d.f. is

qf(.95,2,18)

[1] 3.554557

This is what the density function of F looks like for 2 and 18 d.f. (left) and 6 and 18
d.f. (right):

x<-seq(0.05,4,0.05)
plot(x,df(x,2,18),type="l",ylab="f(x)",xlab="x")
plot(x,df(x,6,18),type="l",ylab="f(x)",xlab="x")

0.
8

0.
6

f(
x)

0.
4

0.
2

0.
0

0
x
2 431 0

x
2 431

0.
6

f(
x) 0.

4
0.

2
0.

0

The F distribution is a two-parameter distribution defined by the density function

f�x� = r��1/2�r + s��

s��1/2r���1/2s�

�rx/s��r−1�/2

�1 + �rx/s���r+s�/2

where r is the degrees of freedom in the numerator and s is the degrees of freedom in
the denominator. The distribution is named after R.A. Fisher, the father of analysis of
variance, and principal developer of quantitative genetics. It is central to hypothesis testing,
because of its use in assessing the significance of the differences between two variances.
The test statistic is calculated by dividing the larger variance by the smaller variance. The

MATHEMATICS 225

two variances are significantly different when this ratio is larger than the critical value of
Fisher’s F . The degrees of freedom in the numerator and in the denominator allow the
calculation of the critical value of the test statistic. When there is a single degree of freedom
in the numerator, the distribution is equal to the square of Student’s t � F = t2. Thus, while
the rule of thumb for the critical value of t is 2, so the rule of thumb for F = t2 = 4. To see
how well the rule of thumb works, we can plot critical F against d.f. in the numerator:

df<-seq(1,30,.1)
plot(df,qf(.95,df,30),type="l",ylab="Critical F")
lines(df,qf(.95,df,10),lty=2)

0

C
rit

ic
al

 F

2.
0

2.
5

3.
0

3.
5

4.
0

5 10

df

15 20 25 30

You see that the rule of thumb (critical F =4) quickly becomes much too large once the d.f.
in the numerator (on the x axis) is larger than 2. The lower (solid) line shows the critical
values of F when the denominator has 30 d.f. and the upper (dashed) line shows the case
in which the denominator has 10 d.f.

The shape of the density function of the F distribution depends on the degrees of freedom
in the numerator.

x<-seq(0.01,3,0.01)
plot(x,df(x,1,10),type="l",ylim=c(0,1),ylab="f(x)")
lines(x,df(x,2,10),lty=6)
lines(x,df(x,5,10),lty=2)
lines(x,df(x,30,10),lty=3)

The probability density f�x� declines monotonically when the numerator has 1 d.f. or 2 d.f.,
but rises to a maximum for d.f. of 3 or more (5 and 30 are shown here): all the graphs have
10 d.f. in the denominator.

226 THE R BOOK

0.0

0.
0

f(
x)

0.
2

0.
4

0.
6

0.
8

1.
0

0.5 1.0

x

1.5 2.0 2.5 3.0

Student’s t

This famous distribution was first published by W.S. Gossett in 1908 under the pseudonym
of ‘Student’ because his then employer, the Guinness brewing company in Dublin, would
not permit employees to publish under their own names. It is a model with one parameter,
r, with density function:

f�x� = � �1/2�r + 1��

��r�1/2� �1/2r�

(
1 + x2

r

)−�r+1�/2

where −� < x < +�. This looks very complicated, but if all the constants are stripped
away, you can see just how simple the underlying structure really is

f�x� = (
1 + x2

)−1/2
�

We can plot this for values of x from −3 to +3 as follows:

x<-seq(-3,3,0.01)
fx<-(1+x^2)^(-0.5)
plot(x,fx,type="l")

The main thing to notice is how fat the tails of the distribution are, compared with the
normal distribution. The plethora of constants is necessary to scale the density function so
that its integral is 1. If we define U as

U = �n − 1�

2
s2,

MATHEMATICS 227

–3

0.
3

0.
4

0.
5

0.
6

fx

0.
7

0.
8

0.
9

1.
0

–2 –1 0

x

1 2 3

then this is chi-squared distributed on n − 1 d.f. (see above). Now define V as

V = n1/2

�ȳ − 	�

and note that this is normally distributed with mean 0 and standard deviation 1 (the standard
normal distribution), so

V

�U/�n − 1��1/2

is the ratio of a normal distribution and a chi-squared distribution. You might like to compare
this with the F distribution (above), which is the ratio of two chi-squared distributed random
variables.

At what point does the rule of thumb for Student’s t = 2 break down so seriously that
it is actually misleading? To find this out, we need to plot the value of Student’s t against
sample size (actually against degrees of freedom) for small samples. We use qt (quantile of
t) and fix the probability at the two-tailed value of 0.975:

plot(1:30,qt(0.975,1:30), ylim=c(0,12),type="l",ylab="Student"s t
value",xlab="d.f.")

As you see, the rule of thumb only becomes really hopeless for degrees of freedom less
than about 5 or so. For most practical purposes t ≈2 really is a good working rule of thumb.
So what does the t distribution look like, compared to a normal? Let’s redraw the standard
normal as a dotted line (lty=2):

xvs<-seq(-4,4,0.01)
plot(xvs,dnorm(xvs),type="l",lty=2,ylab="Probability density",xlab="Deviates")

228 THE R BOOK

0

0
2

4
6

8
10

12

S
tu

de
nt

’s
 t

va
lu

e

5 10 15

d.f.

20 25 30

Now we can overlay Student’s t with d.f. = 5 as a solid line to see the difference:

lines(xvs,dt(xvs,df=5))

Deviates

0.
4

–4 –2 0 2 4

0.
3

0.
2

P
ro

ba
bi

lit
y

de
ns

ity

0.
1

0.
0

The difference between the normal (dotted) and Student’s t distributions (solid line) is that
the t distribution has ‘fatter tails’. This means that extreme values are more likely with a t
distribution than with a normal, and the confidence intervals are correspondingly broader.
So instead of a 95% interval of ±1�96 with a normal distribution we should have a 95%
interval of ±2�57 for a Student’s t distribution with 5 degrees of freedom:

MATHEMATICS 229

qt(0.975,5)

[1] 2.570582

The gamma distribution

The gamma distribution is useful for describing a wide range of processes where the data are
positively skew (i.e. non-normal, with a long tail on the right). It is a two-parameter distribu-
tion, where the parameters are traditionally known as shape and rate. Its density function is:

f�x� = 1
������

x�−1e−x/�

where � is the shape parameter and �−1 is the rate parameter (alternatively, � is known as
the scale parameter). Special cases of the gamma distribution are the exponential �� = 1�
and chi-squared �� = �/2, � = 2�.

To see the effect of the shape parameter on the probability density, we can plot the
gamma distribution for different values of shape and rate over the range 0.01 to 4:

x<-seq(0.01,4,.01)
par(mfrow=c(2,2))
y<-dgamma(x,.5,.5)
plot(x,y,type="l")
y<-dgamma(x,.8,.8)
plot(x,y,type="l")
y<-dgamma(x,2,2)
plot(x,y,type="l")
y<-dgamma(x,10,10)
plot(x,y,type="l")

0 1 2
x

3 4

0
1

2y

3
4

0 1 2
x

3 4

0.
0

0.
2

0.
4

y

0.
6

0 1 2
x

3 4

0.
0

0.
4

0.
8

y

1.
2

0 1 2
x

3 4

0.
0

0.
5

1.
0

y

1.
5

230 THE R BOOK

The graphs from top left to bottom right show different values of �: 0.5, 0.8, 2 and 10. Note
how � < 1 produces monotonic declining functions and � > 1 produces humped curves that
pass through the origin, with the degree of skew declining as � increases.

The mean of the distribution is ��, the variance is ��2, the skewness is 2/
√

� and the
kurtosis is 6/�. Thus, for the exponential distribution we have a mean of �, a variance
of �2, a skewness of 2 and a kurtosis of 6, while for the chi-squared distribution we have
a mean of �, a variance of 2� a skewness of 2

√
2/ and a kurtosis of 12/�. Observe

also that

1
�

= mean
variance

�

shape = 1
�

× mean�

We can now answer questions like this: what value is 95% quantile expected from a
gamma distribution with mean =2 and variance =3? This implies that rate is 2/3 and shape
is 4/3 so:

qgamma(0.95,2/3,4/3)

[1] 1.732096

An important use of the gamma distribution is in describing continuous measurement
data that are not normally distributed. Here is an example where body mass data for 200
fishes are plotted as a histogram and a gamma distribution with the same mean and variance
is overlaid as a smooth curve:

fishes<-read.table("c:\\temp\\fishes.txt",header=T)
attach(fishes)
names(fishes)

[1] "mass"

First, we calculate the two parameter values for the gamma distribution:

rate<-mean(mass)/var(mass)
shape<-rate*mean(mass)
rate

[1] 0.8775119

shape

[1] 3.680526

We need to know the largest value of mass, in order to make the bins for the histogram:

max(mass)

[1] 15.53216

Now we can plot the histogram, using break points at 0.5 to get integer-centred bars up to
a maximum of 16.5 to accommodate our biggest fish:

hist(mass,breaks=-0.5:16.5,col="green",main="")

MATHEMATICS 231

The density function of the gamma distribution is overlaid using lines like this:

lines(seq(0.01,15,0.01),length(mass)*dgamma(seq(0.01,15,0.01),shape,rate))

0

0
10

20
30

Fr
eq

ue
nc

y

40
50

60

5
mass

10 15

The fit is much better than when we tried to fit a normal distribution to these same data
earlier (see p. 221).

The exponential distribution

This is a one-parameter distribution that is a special case of the gamma distribution. Much
used in survival analysis, its density function is given on p. 792 and its use in survival
analysis explained on p. 802. The random number generator of the exponential is useful
for Monte Carlo simulations of time to death when the hazard (the instantaneous risk of
death) is constant with age. You specify the hazard, which is the reciprocal of the mean age
at death:

rexp(15,0.1)

[1] 9.811752 5.738169 16.261665 13.170321 1.114943
[6] 1.986883 5.019848 9.399658 11.382526 2.121905
[11] 10.941043 5.868017 1.019131 13.040792 38.023316

These are 15 random lifetimes with an expected value of 1/0�1 = 10 years; they give a
sample mean of 9.66 years.

The beta distribution

This has two positive constants, a and b, and x is bounded 0 ≤ x ≤ 1:

f�x�=
��a + b�

��a���b�
xa−1�1 − x�b−1�

232 THE R BOOK

In R we generate a family of density functions like this:

x<-seq(0,1,0.01)
fx<-dbeta(x,2,3)
plot(x,fx,type="l")
fx<-dbeta(x,0.5,2)
plot(x,fx,type="l")
fx<-dbeta(x,2,0.5)
plot(x,fx,type="l")
fx<-dbeta(x,0.5,0.5)
plot(x,fx,type="l")

x x

fx fx

0.0 0.2 0.4 0.6 0.8 1.0

x
0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

x
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

fx

1.
0

2.
0

3.
0

0
2

4
6

fx

0
2

4
6

The important point is whether the parameters are greater or less than 1. When both are
greater than 1 we get an n-shaped curve which becomes more skew as b > a (top left). If
0 <a< 1 and b> 1 then the density is negative (top right), while for a> 1 and 0 <b< 1 the
density is positive (bottom left). The function is U-shaped when both a and b are positive
fractions. If a = b = 1, then we obtain the uniform distribution on [0,1].

Here are 20 random numbers from the beta distribution with shape parameters 2 and 3:

rbeta(20,2,3)

[1] 0.5820844 0.5150638 0.5420181 0.1110348 0.5012057 0.3641780
[7] 0.1133799 0.3340035 0.2802908 0.3852897 0.6496373 0.3377459

[13] 0.1743189 0.4568897 0.7343201 0.3040988 0.5670311 0.2241543
[19] 0.6358050 0.5932503

Cauchy

This is a long-tailed two-parameter distribution, characterized by a location parameter a and
a scale parameter b. It is real-valued, symmetric about a (which is also its median), and is

MATHEMATICS 233

a curiosity in that it has long enough tails that the expectation does not exist – indeed, it
has no moments at all (it often appears in counter-examples in maths books). The harmonic
mean of a variable with positive density at 0 is typically distributed as Cauchy, and the
Cauchy distribution also appears in the theory of Brownian motion (e.g. random walks).
The general form of the distribution is

f�x� = 1
�b�1 + ��x − a�/b�2�

,

for −� < x < �. There is also a one-parameter version, with a = 0 and b = 1, which is
known as the standard Cauchy distribution and is the same as Student’s t distribution with
one degree of freedom:

f�x� = 1
��1 + x2�

,

for −� < x < �.

par(mfrow=c(1,2))
plot(-200:200,dcauchy(-200:200,0,10),type="l",ylab="p(x)",xlab="x")
plot(-200:200,dcauchy(-200:200,0,50),type="l",ylab="p(x)",xlab="x")

–200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

0 100 200
x

–200 0 100 200
x

p(
x)

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5
0.

00
6

p(
x)

Note the very long, fat tail of the Cauchy distribution. The left-hand density function has
scale = 10 and the right hand plot has scale = 50; both have location = 0.

234 THE R BOOK

The lognormal distribution

The lognormal distribution takes values on the positive real line. If the logarithm of a
lognormal deviate is taken, the result is a normal deviate, hence the name. Applications
for the lognormal include the distribution of particle sizes in aggregates, flood flows,
concentrations of air contaminants, and failure times. The hazard function of the lognormal
is increasing for small values and then decreasing. A mixture of heterogeneous items that
individually have monotone hazards can create such a hazard function.

Density, cumulative probability, quantiles and random generation for the lognormal dis-
tribution employ the function dlnorm like this:

dlnorm(x, meanlog=0, sdlog=1)

The mean and standard deviation are optional, with default meanlog = 0 and sdlog = 1.
Note that these are not the mean and standard deviation; the lognormal distribution has
mean e	+
2/2, variance �e
2 − 1�e2 	+
2

, skewness �e
2 + 2�
√

e
2 − 1 and kurtosis e4
2 +
2e3
2 + 3e2
2 − 6.

par(mfrow=c(1,1))
plot(seq(0,10,0.05),dlnorm(seq(0,10,0.05)), type="l",xlab="x",ylab="LogNormal f(x)")

x
0

Lo
g

N
or

m
al

 f(
x)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

2 4 6 8 10

The extremely long tail and exaggerated positive skew are characteristic of the lognormal
distribution. Logarithmic transformation followed by analysis with normal errors is often
appropriate for data such as these.

The logistic distribution

The logistic is the canonical link function in generalized linear models with binomial errors
and is described in detail in Chapter 16 on the analysis of proportion data. The cumulative

MATHEMATICS 235

probability is a symmetrical S-shaped distribution that is bounded above by 1 and below
by 0. There are two ways of writing the cumulative probability equation:

p�x� = ea+bx

1 + ea+bx

and

p�x� = 1
1 + �e−�x

The great advantage of the first form is that it linearizes under the log-odds transformation
(see p. 572) so that

ln
(

p

q

)
= a + bx,

where p is the probability of success and q = �1 − p� is the probability of failure. The
logistic is a unimodal, symmetric distribution on the real line with tails that are longer than
the normal distribution. It is often used to model growth curves, but has also been used
in bioassay studies and other applications. A motivation for using the logistic with growth
curves is that the logistic distribution function f�x� has the property that the derivative of
f�x� with respect to x is proportional to �f�x�−A��B − f�x�� with A<B. The interpretation
is that the rate of growth is proportional to the amount already grown, times the amount of
growth that is still expected.

par(mfrow=c(1,2))
plot(seq(-5,5,0.02),dlogis(seq(-5,5,.02)), type="l",ylab="Logistic f(x)")
plot(seq(-5,5,0.02),dnorm(seq(-5,5,.02)), type="l",ylab="Normal f(x)")

–4

Lo
gi

st
ic

 f(
x)

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

–2 0

seq(–5, 5, 0.02)

2 4 –4

N
or

m
al

 f(
x)

0.
00

0.
1

0.
2

0.
3

0.
4

–2 0

seq(–5, 5, 0.02)

2 4

236 THE R BOOK

Here, the logistic density function dlogis (left) is compared with an equivalent normal density
function dnorm (right) using the default mean 0 and standard deviation 1 in both cases. Note
the much fatter tails of the logistic (still substantial probability at ±4 standard deviations. Note
also the difference in the scales of the two y axes (0.25 for the logistic, 0.4 for the normal).

The log-logistic distribution

The log-logistic is a very flexible four-parameter model for describing growth or decay
processes:

y = a + b

[
exp�c�log�x� − d�

1 + exp�c�log�x� − d�

]
�

Here are two cases. The first is a negative sigmoid with c = −1�59 and a = −1�4:

x<-seq(0.1,1,0.01)
y<- -1.4+2.1*(exp(-1.59*log(x)-1.53)/(1+exp(-1.59*log(x)-1.53)))
plot(log(x),y,type="l", main="c = -1.59")

For the second we have c = 1�59 and a = 0�1:

y<-0.1+2.1*(exp(1.59*log(x)-1.53)/(1+exp(1.59*log(x)-1.53)))
plot(log(x),y,type="l",main="c = -1.59")

log(x)

c = 1.59

–2.0 –1.0 0.0

y

0.
1–0

.1
–0

.5
0.

0
0.

5

0.
2

0.
3

0.
4

log(x)

c = –1.59

–2.0 –1.0 0.0

y

The Weibull distribution

The origin of the Weibull distribution is in weakest link analysis. If there are r links in
a chain, and the strengths of each link Zi are independently distributed on �0, ��, then
the distribution of weakest links V = min�Zj� approaches the Weibull distribution as the
number of links increases.

MATHEMATICS 237

The Weibull is a two-paramter model that has the exponential distribution as a special case.
Its value in demographic studies and survival analysis is that it allows for the death rate to
increase or to decrease with age, so that all three types of survivorship curve can be analysed
(as explained on p. 802). The density, survival and hazard functions with � = 	−� are:

f�t� = ��t�−1e−�t� �

S�t� = e−�t� ,

h�t� = f�t�

S�t�
= ��t�−1�

The mean of the Weibull distribution is ��1 + �−1�	 and the variance is 	2���1 + 2/�� −
���1 + 1/���2�, and the parameter � describes the shape of the hazard function (the back-
ground to determining the likelihood equations is given by Aitkin et al. (1989, pp. 281–283).
For � = 1 (the exponential distribution) the hazard is constant, while for � > 1 the hazard
increases with age and for � < 1 the hazard decreases with age.

Because the Weibull, lognormal and log-logistic all have positive skewness, it is difficult
to discriminate between them with small samples. This is an important problem, because
each distribution has differently shaped hazard functions, and it will be hard, therefore,
to discriminate between different assumptions about the age-specificity of death rates. In
survival studies, parsimony requires that we fit the exponential rather than the Weibull
unless the shape parameter � is significantly different from 1.

Here is a family of three Weibull distributions with � = 1, 2 and 3 (dotted, dashed
and solid lines, respectively). Note that for large values of � the distribution becomes
symmetrical, while for � ≤ 1 the distribution has its mode at t = 0.

a<-3
l<-1
t<-seq(0,1.8,.05)
ft<-a*l*t^(a-1)*exp(-l*t^a)
plot(t,ft,type="l")
a<-1
ft<-a*l*t^(a-1)*exp(-l*t^a)
lines(t,ft,type="l",lty=2)
a<-2
ft<-a*l*t^(a-1)*exp(-l*t^a)
lines(t,ft,type="l",lty=3)

Multivariate normal distribution

If you want to generate two (or more) vectors or normally distributed random numbers that
are correlated with one another to a specified degree, then you need the mvrnorm function
from the MASS library:

library(MASS)

Suppose we want two vectors of 1000 random numbers each. The first vector has a mean of 50
and the second has a mean of 60. The difference from rnorm is that we need to specify their
covariance as well as the standard deviations of each separate variable. This is achieved with a
positive-definite symmetric matrix specifying the covariance matrix of the variables.

238 THE R BOOK

0.
0

0.
2

0.
4

0.
6

ft

0.
8

1.
0

1.
2

0.0

t

0.5 1.0 1.5

xy<-mvrnorm(1000,mu=c(50,60),matrix(c(4,3.7,3.7,9),2))

We can check how close the variances are to our specified values:

var(xy)

[,1] [,2]
[1,] 3.983063 3.831880
[2,] 3.831880 8.922865

Not bad: we said the covariance should be 3.70 and the simulated data are 3.83. We extract
the two separate vectors x and y and plot them to look at the correlation

x<-xy[,1]
y<-xy[,2]
plot(x,y,pch=16,ylab="y",xlab="x")

It is worth looking at the variances of x and y in more detail:

var(x)

[1] 3.983063

var(y)

[1] 8.922865

If the two samples were independent, then the variance of the sum of the two variables
would be equal to the sum of the two variances. Is this the case here?

var(x+y)

[1] 20.56969

MATHEMATICS 239

55
60

65

y

44
x

46 48 50 52 54 56

var(x)+var(y)

[1] 12.90593

No it isn’t. The variance of the sum (20.57) is much greater than the sum of the variances
(12.91). This is because x and y are positively correlated; big values of x tend to be
associated with big values of y and vice versa. This being so, we would expect the variance
of the difference between x and y to be less than the sum of the two variances:

var(x-y)

[1] 5.242167

As predicted, the variance of the difference (5.24) is much less than the sum of the variances
(12.91). We conclude that the variance of a sum of two variables is only equal to the
variance of the difference of two variables when the two variables are independent. What
about the covariance of x and y? We found this already by applying the var function to the
matrix xy (above). We specified that the covariance should be 3.70 in calling the multivariate
normal distribution, and the difference between 3.70 and 3.831 880 is simply due to the
random selection of points. The covariance is related to the separate variances through the
correlation coefficient � as follows (see p. 310):

cov�x� y� = �
√

s2
xs

2
y �

For our example, this checks out as follows, where the sample value of � is cor(x,y)

cor(x,y)*sqrt(var(x)*var(y))

[1] 3.83188

which is our observed covariance between x and y with � = 0�642 763 5.

240 THE R BOOK

The uniform distribution

This is the distribution that the random number generator in your calculator hopes to
emulate. The idea is to generate numbers between 0 and 1 where every possible real
number on this interval has exactly the same probability of being produced. If you have
thought about this, it will have occurred to you that there is something wrong here.
Computers produce numbers by following recipes. If you are following a recipe then the
outcome is predictable. If the outcome is predictable, then how can it be random? As
John von Neumann once said: ‘Anyone who uses arithmetic methods to produce random
numbers is in a state of sin.’ This raises the question as to what, exactly, a computer-
generated random number is. The answer turns out to be scientifically very interesting
and very important to the study of encryption (for instance, any pseudorandom number
sequence generated by a linear recursion is insecure, since from a sufficiently long sub-
sequence of the outputs, one can predict the rest of the outputs). If you are interested,
look up the Mersenne twister online. Here we are only concerned with how well the
modern pseudo-random number generator performs. Here is the outcome of the R func-
tion runif simulating the throwing a 6-sided die 10 000 times: the histogram ought to
be flat:

x<-ceiling(runif(10000)*6)
table(x)

x
1 2 3 4 5 6

1620 1748 1607 1672 1691 1662

hist(x,breaks=0.5:6.5,main="")

F
re

qu
en

cy

0
50

0
10

00
15

00

x

1 2 3 4 5 6

This is remarkably close to theoretical expectation, reflecting the very high efficiency of
R’s random-number generator. Try mapping 1 000 000 points to look for gaps:

MATHEMATICS 241

x<-runif(1000000)
y<-runif(1000000)
plot(x,y,pch=16)

This produced an absolutely solid black map for me: there were no holes in the pattern, so there
were no pairs of numbers that were not generated at this scale of resolution (pch=16). For a
more thorough check we can count the frequency of combinations of numbers: with 36 cells,
the expected frequency is 1 000 000/36 = 27 777�78: numbers per cell. We use the cut function
to produce 36 bins:

table(cut(x,6),cut(y,6))

(-0.001,0.166] (0.166,0.333] (0.333,0.5] (0.5,0.667] (0.667,0.834] (0.834,1]

(-0.001,0.166] 27541 27795 27875 27851 27664 27506

(0.166,0.333] 27908 28033 27975 27859 27862 27600

(0.333,0.5] 27509 27827 27991 27689 27878 27733

(0.5,0.667] 27718 28074 27548 28062 27777 27760

(0.667,0.834] 27820 28084 27466 27753 27784 27454

(0.834,1] 27463 27997 27982 27685 27571 27906

As you can see the observed frequencies are remarkably close to expectation.

Plotting empirical cumulative distribution functions

The function ecdf is used to compute or plot an empirical cumulative distribution function.
Here it is in action for the fishes data (p. 220 and 230):

fishes<-read.table("c:\\temp\\fishes.txt",header=T)
attach(fishes)
names(fishes)

[1] "mass"

plot(ecdf(mass))

F
n(

x)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0
x

ecdf (mass)

5 10 15

242 THE R BOOK

The pronounced positive skew in the data is evident from the fact that the left-hand side of
the cumulative distribution is much steeper than the right-hand side (and see p. 230).

Discrete probability distributions

The Bernoulli distribution

This is the distribution underlying tests with a binary response variable. The response takes
one of only two values: it is 1 with probability p (a ‘success’) and is 0 with probability
1 − p (a ‘failure’). The density function is given by:

p�X� = px�1 − p�1−x

The statistician’s definition of variance is the expectation of x2 minus the square of the
expectation of x �
2 = E�X2� − �E�X��2. We can see how this works with a simple distri-
bution like the Bernoulli. There are just two outcomes in f�x�: a success, where x = 1 with
probability p and a failure, where x = 0 with probability 1 −p. Thus, the expectation of x is

E�X� =∑
xf�x� = 0 × �1 − p� + 1 × p = 0 + p = p

and expectation of x2 is

E�X2� =∑
x2f�x� = 02 × �1 − p� + 12 × p = 0 + p = p,

so the variance of the Bernoulli is

var�X� = E�X2� − �E�X��2 = p − p2 = p�1 − p� = pq�

The binomial distribution

This is a one-parameter distribution in which p describes the probability of success in a
binary trial. The probability of x successes out of n attempts is given by multiplying together
the probability of obtaining one specific realization and the number of ways of getting that
realization.

We need a way of generalizing the number of ways of getting x items out of n items.
The answer is the combinatorial formula

(
n
x

)
= n!

x!�n − x�! ,

where the ‘exclamation mark’ means ‘factorial’. For instance, 5!=5 × 4 × 3 × 2=120. This
formula has immense practical utility. It shows you at once, for example, how unlikely you
are to win the National Lottery in which you are invited to select six numbers between 1
and 49. We can use the built-in factorial function for this

factorial(49)/(factorial(6)*factorial(49-6))

[1] 13983816

MATHEMATICS 243

which is roughly a 1 in 14 million chance of winning the jackpot. You are more likely
to die between buying your ticket and hearing the outcome of the draw. As we have seen
(p. 11), there is a built-in R function for the combinatorial function

choose(49,6)

[1] 13983816

and we use the choose function from here on.
The general form of the binomial distribution is given by

p�x� =
(

n
x

)
px�1 − p�n−x,

using the combinatorial formula above. The mean of the binomial distribution is np and the
variance is np�1 − p�.

Since 1 − p is less than 1 it is obvious that the variance is less than the mean for the
binomial distribution (except, of course, in the trivial case when p = 0 and the variance is
0). It is easy to visualize the distribution for particular values of n and p.

p<-0.1
n<-4
x<-0:n
px<-choose(n,x)*p^x*(1-p)^(n-x)
barplot(px,names=as.character(x))

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

1 2 3 4

The four distribution functions available for the binomial in R (density, cumulative
probability, quantiles and random generation) are used like this:

dbinom(x, size, prob)

244 THE R BOOK

The density function shows the probability for the specified count x (e.g. the number of
parasitized fish) out of a sample of n = size, with probability of success = prob. So if we
catch four fish when 10% are parasitized in the parent population, we have size = 4 and
prob = 0�1, so a graph of probability density against number of parasitized fish can be
obtained like this:

barplot(dbinom(0:4,4,0.1),names=as.character(0:4),xlab="x",ylab="f(x)")

0

0.
0

0.
1

0.
2

0.
3

0.
4

f(
x)

0.
5

0.
6

x

1 2 3 4

The most likely number of parasitized fish is 0. Note that we can generate the sequence of
x values we want to plot (0:4 in this case) inside the density function.

The cumulative probability shows the sum of the probability densities up to and including
p�x�, plotting cumulative probability against the number of successes, for a sample of
n = size and probability = prob. Our fishy plot looks like this:

barplot(pbinom(0:4,4,0.1),names=as.character(0:4),xlab="x",ylab="p(x)")

This says that the probability of getting 2 or fewer parasitized fish out of a sample of 4 is
very close to 1.

The quantiles function asks ‘with specified probability p (often 0.025 and 0.975 for two-
tailed 95% tests), what is the expected number of fish to be caught in a sample of n = size
and a probability = prob?’. So for our example, the two-tailed (no pun intended) lower and
upper 95% expected catches of parasitized fish are

qbinom(.025,4,0.1)

[1] 0

qbinom(.975,4,0.1)

[1] 2

MATHEMATICS 245

0

0.
0

0.
2

0.
4

0.
6

p(
x)

0.
8

1.
0

x

1 2 3 4

which means that with 95% certainty we shall catch between 0 and 2 parasitized fish out
of 4 if we repeat the sampling exercise. We are very unlikely to get 3 or more parasitized
fish out of a sample of 4 if the proportion parasitized really is 0.1.

This kind of calculation is very important in power calculations in which we are interested
in determining whether or not our chosen sample size (n = 4 in this case) is capable of
doing the job we ask of it. Suppose that the fundamental question of our survey is whether
or not the parasite is present in a given lake. If we find one or more parasitized fish then the
answer is clearly ‘yes’. But how likely are we to miss out on catching any parasitized fish
and hence of concluding, wrongly, that the parasites are not present in the lake? With out
sample size of n=4 and p=0�1 we have a probability of missing the parasite of 0.9 for each
fish caught and hence a probability of 0�94 = 0�6561 of missing out altogether on finding
the parasite. This is obviously unsatisfactory. We need to think again about the sample size.
What is the smallest sample, n, that makes the probability of missing the parasite altogether
less than 0.05?

We need to solve

Taking logs, 0�05 = 0�9n

log�0�05� = n log�0�9�

so

n = log�0�05�

log�0�9�
= 28.433 16

which means that to make our journey worthwhile we should keep fishing until we have
found more than 28 unparasitized fishes, before we reject the hypothesis that parasitism

246 THE R BOOK

is present at a rate of 10%. Of course, it would take a much bigger sample to reject a
hypothesis of presence at a much lower rate.

Random numbers are generated from the binomial distribution like this. The first argument
is the number of random numbers we want. The second argument is the sample size �n= 4�
and the third is the probability of success �p = 0�1�.

rbinom(10,4,0.1)

[1] 0 0 0 0 0 1 0 1 0 1

Here we repeated the sampling of 4 fish ten times. We got 1 parasitized fish out of 4 on
three occasions, and 0 parasitized fish on the remaining seven occasions. We never caught
2 or more parasitized fish in any of these samples of 4.

The geometric distribution

Suppose that a series of independent Bernoulli trails with probability p are carried out at
times 1, 2, 3, � � � . Now let W be the waiting time until the first success occurs. So

P�W > x� = �1 − p�x�

which means that

P�W = x�=P�W > x − 1� − P�W > x�

The density function, therefore, is

f�x�=p�1 − p�x−1

fx<-dgeom(0:20,0.2)
barplot(fx,names=as.character(0:20),xlab="x",ylab="f(x)")

For the geometric distribution,

• the mean is
1 − p

p
,

• the variance is
1 − p

p2
.

The geometric has a very long tail. Here are 100 random numbers from a geometric
distribution with p= 0�1: the mode is 0 but outlying values as large as 43 and 51 have been
generated.

table(rgeom(100,0.1)

0 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 21
13 8 9 6 4 12 5 4 3 4 3 6 1 1 3 1 1 3 1 1

22 23 25 26 30 43 51
1 2 1 3 2 1 1

MATHEMATICS 247

00.
00

0.
05

0.
10

f(
x)

0.
15

0.
20

2 4 6 8 10
x

12 14 16 18 20

The hypergeometric distribution

‘Balls in urns’ are the classic sort of problem solved by this distribution. The density
function of the hypergeometric is

f�x� =

(
b
x

)(
N − b
n − x

)
(

N
n

) �

Suppose that there are N coloured balls in the statistician’s famous urn: b of them are blue
and r = N − b of them are red. Now a sample of n balls is removed from the urn; this
is sampling without replacement. Now f�x� gives the probability that x of these n balls
are blue.

The built-in functions for the hypergeometric are used like this:

dhyper(q, b,r,n),
rhyper(m, b,r,n).

Here

• q is a vector of values of a random variable representing the number of blue balls out of
a sample of size n drawn from an urn containing b blue balls and r red ones.

• b is the number of blue balls in the urn. This could be a vector with non-negative integer
elements

• r is the number of red balls in the urn = N − b. This could also be a vector with
non-negative integer elements

248 THE R BOOK

• n is the number of balls drawn from an urn with b blue and r red balls. This can be a
vector like b and r.

• p is a vector of probabilities with values between 0 and 1.

• m is the number of hypergeometrically distributed random numbers to be generated.

Let the urn contain N = 20 balls of which 6 are blue and 14 are red. We take a sample
of n = 5 balls so x could be 0, 1, 2, 3, 4 or 5 of them blue, but since the proportion blue is
only 6/20 the higher frequencies are most unlikely. Our example is evaluated like this:

ph<-numeric(6)
for(i in 0:5) ph[i]<-dhyper(i,6,14,5)
barplot(ph,names=as.character(0:5))

0 1 2 3 4 50.
0

0.
1

0.
2

0.
3

We are very unlikely to get more than 2 red balls out of 5. The most likely outcome is that
we get 0 or 1 red ball out of 5. We can simulate a set of Monte Carlo trials of size 5. Here
are the numbers of red balls obtained in 20 realizations of our example

rhyper(20,6,14,5)

[1] 1 1 1 2 1 2 0 1 3 2 3 0 2 0 1 1 2 1 1 2

The binomial distribution is a limiting case of the hypergeometric which arises as N, b
and r approach infinity in such a way that b/N approaches p, and r/N approaches 1 − p
(see p. 242). This is because as the numbers get large, the fact that we are sampling
without replacement becomes irrelevant. The binomial distribution assumes sampling with
replacement from a finite population, or sampling without replacement from an infinite
population.

MATHEMATICS 249

The multinomial distribution

Suppose that there are t possible outcomes from an experimental trial, and the outcome i
has probability pi. Now allow n independent trials where n = n1 + n2 + � � � + nt and ask
what is the probability of obtaining the vector of Ni occurrences of the ith outcome:

P�Ni = ni� = n!
n1!n2!n3!� � � nt!

p
n1
1 p

n2
2 p

n3
3 � � � p

nt
t �

where i goes from 1 to t. Take an example with three outcomes, where the first outcome
is twice as likely as the other two (p1 = 0�5� p2 = 0�25 and p3 = 0�25). We do 4 trials with
n1 = 6� n2 = 5� n3 = 7 and n4 = 6, so n = 24. We need to evaluate the formula for i = 1,
2 and 3 (because there are three possible outcomes). It is sensible to start by writing a
function called multi to carry out the calculations for any numbers of successes a� b and c
for the three outcomes given our three probabilities 0.5, 0.25 and 0.25:

multi<-function(a,b,c) {
factorial(a+b+c)/(factorial(a)*factorial(b)*factorial(c))*.5^a*.25^b*.25^c}

Now put the function in a loop to work out the probability of getting the required patterns
of success, psuc, for the three outcomes. We illustrate just one case, in which the third
outcome is fixed at four successes. This means that the first and second cases vary stepwise
between 19 and 1 and 9 and 11 respectively:

psuc<-numeric(11)
for (i in 0:10) psuc[i]<-multi(19-i,1+i,4)
barplot(psuc,names=as.character(0:10))

00.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

1 2 3 4 5 6 7 8 9 10

The most likely outcome here is that we would get 19 − 4 = 15 or 19 − 5 = 14 successes
of type 1 in a trial of size 24 with probabilities 0.5, 0.25 and 0.25 when the number of
successes of the third case was 4 out of 24. You can easily modify the function to deal with
other probabilities and other number of outcomes.

250 THE R BOOK

The Poisson distribution

This is one of the most useful and important of the discrete probability distributions for
describing count data. We know how many times something happened (e.g. kicks from
cavalry horses, lightening strikes, bomb hits), but we have no way of knowing how many
times it did not happen. The Poisson is a one-parameter distribution with the interesting
property that its variance is equal to its mean. A great many processes show variance
increasing with the mean, often faster than linearly (see the negative binomial distribution
below). The density function of the Poisson shows the probability of obtaining a count of
x when the mean count per unit is �:

p�x� = e−��x

x! �

The zero term of the Poisson (the probability of obtaining a count of zero) is obtained by
setting x = 0:

p�0� = e−�,

which is simply the antilog of minus the mean. Given p�0�, it is clear that p�1� is just

p�1� = p�0�� = �e−�,

and any subsequent probability is readily obtained by multiplying the previous probability
by the mean and dividing by the count, thus:

p�x� = p�x − 1�
�

x
�

Functions for the density, cumulative distribution, quantiles and random number generation
of the Poisson distribution are obtained by

dpois(x, lambda)
ppois(q, lambda)
qpois(p, lambda)
rpois(n, lambda)

where lambda is the mean count per sample.
The Poisson distribution holds a central position in three quite separate areas of statistics:

• in the description of random spatial point patterns (see p. 749);

• as the frequency distribution of counts of rare but independent events (see p. 208);

• as the error distribution in GLMs for count data (see p. 527).

If we wanted 600 simulated counts from a Poisson distribution with a mean of, say, 0.90
blood cells per slide, we just type:

count<-rpois(600,0.9)

We can use table to see the frequencies of each count generated:

MATHEMATICS 251

table(count)

count
0 1 2 3 4 5

244 212 104 33 6 1

or hist to see a histogram of the counts:

hist(count,breaks = - 0.5:6.5,main="")

0

0
50

10
0

15
0

Fr
eq

ue
nc

y

20
0

25
0

1 2 3
count

4 5 6

Note the use of the vector of break points on integer increments from −0�5 to create integer
bins for the histogram bars.

The negative binomial distribution

This discrete, two-parameter distribution is useful for describing the distribution of count
data, where the variance is often much greater than the mean. The two parameters are the
mean 	 and the clumping parameter k, given by

k = 	2

2 − 	

The smaller the value of k, the greater the degree of clumping. The density function is

p�x� =
(

1 + 	

k

)−k �k + x − 1�!
x!�k − 1�!

(
	

	 + k

)x

�

The zero term is found by setting x = 0 and simplifying:

p�0� =
(

1 + 	

k

)−k

252 THE R BOOK

Successive terms in the distribution can then be computed iteratively from

p�x� = p�x − 1�

(
k + x − 1

x

)(
	

	 + k

)
�

An initial estimate of the value of k can be obtained from the sample mean and variance

k ≈ x̄2

s2 − x̄
�

Since k cannot be negative, it is clear that the negative binomial distribution should not be
fitted to data where the variance is less than the mean.

The maximum likelihood estimate of k is found numerically, by iterating progressively more
fine-tuned values of k until the left- and right-hand sides of the following equation are equal:

n ln
(

1 + 	

k

)
=

max∑
x=0

(
A�x�

k + x

)

where the vector A�x� contains the total frequency of values greater than x. You could
write a function to work out the probability densities like this:

negbin<-function(x,u,k) (1+u/k)^(-k)*(u/(u+k))^x*gamma(k+x)/(factorial(x)*gamma(k))

then use the function to produce a barplot of probability densities for a range of x values
(say 0 to 10, for a distribution with specified mean and aggregation parameter (say 	 =
0�8� k = 0�2) like this

xf<-sapply(0:10, function(i) negbin(i,0.8,0.2))
barplot(xf,names=as.character(0:10),xlab="count",ylab="probability density")

00.
0

0.
1

0.
2

0.
3

pr
ob

ab
ili

ty
 d

en
si

ty

0.
4

0.
5

0.
6

0.
7

1 2 3 4 5
count

6 7 8 9 10

MATHEMATICS 253

There is another, quite different way of looking at the negative binomial distribution.
Here, the response variable is the waiting time Wr for the rth success:

f�x� =
(

x − 1
r − 1

)
pr�1 − p�x−r

It is important to realize that x starts at r and increases from there (obviously, the rth
success cannot occur before the rth attempt). The function dnbinom represents the number
of failures x (e.g. tails in coin tossing) before size successes (or heads in coin tossing) are
achieved, when the probability of a success (or of a head) is prob:

dnbinom(x, size, prob)

Suppose we are interested in the distribution of waiting times until the 5th success occurs
in a negative binomial process with p = 0�1. We start the sequence of x values at 5

plot(5:100,dnbinom(5:100,5,0.1),type="s",xlab="x",ylab="f(x)")

0.
00

0
0.

00
5

0.
01

0

f(
x)

0.
01

5
0.

02
0

20 40 60 80 100
x

This shows that the most likely waiting time for the 5th success, when probability of
a success is 1/10, is about 31 trials after the 5th trial. Note that the negative binomial
distribution is quite strongly skew to the right.

It is easy to generate negative binomial data using the random number generator:

rnbinom(n, size, prob)

The number of random numbers required is n. When the second parameter, size, is set
to 1 the distribution becomes the geometric (see above). The final parameter, prob, is the
probability of success per trial, p. Here we generate 100 counts with a mean of 0.6:

254 THE R BOOK

count<-rnbinom(100,1,0.6)

We can use table to see the frequency of the different counts:

table(count)

0 1 2 3 5 6
65 18 13 2 1 1

It is sensible to check that the mean really is 0.6 (or very close to it)

mean(count)

[1] 0.61

The variance will be substantially greater than the mean

var(count)

[1] 1.129192

and this gives an estimate of k of

0�612

1�129 − 0�61
= 0�717�

The following data show the number of spores counted on 238 buried glass slides. We are
interested in whether these data are well described by a negative binomial distribution. If they
are we would like to find the maximum likelihood estimate of the aggregation parameter k.

x<-0:12
freq<-c(131,55,21,14,6,6,2,0,0,0,0,2,1)
barplot(freq,names=as.character(x),ylab="frequency",xlab="spores")

0 1 3 5 7 9 11

0

fr
eq

ue
nc

y

12
0

10
0

80
60

40
20

2 4 6
spores

8 10 12

MATHEMATICS 255

We start by looking at the variance – mean ratio of the counts. We cannot use mean and
variance directly, because our data are frequencies of counts, rather than counts themselves.
This is easy to rectify: we use rep to create a vector of counts y in which each count
�x� is repeated the relevant number of times (freq). Now we can use mean and var
directly:

y<-rep(x,freq)
mean(y)

[1] 1.004202

var(y)

[1] 3.075932

This shows that the data are highly aggregated (the variance mean ratio is roughly 3,
recalling that it would be 1 if the data were Poisson distributed). Our rough estimate of k
is therefore

mean(y)^2/(var(y)-mean(y))

[1] 0.4867531

Here is a function that takes a vector of frequencies of counts x (between 0 and length(x)
− 1) and computes the maximum likelihood estimate of the aggregation parameter, k:

kfit <-function(x)
{

lhs<-numeric()
rhs<-numeric()
y <-0:(length(x) - 1)
j<-0:(length(x)-2)
m <-sum(x * y)/(sum(x))
s2 <-(sum(x * y^2) - sum(x * y)^2/sum(x))/(sum(x)- 1)
k1 <-m^2/(s2 - m)
a<-numeric(length(x)-1)
for(i in 1:(length(x) - 1)) a[i] <-sum(x [- c(1:i)])
i<-0
for (k in seq(k1/1.2,2*k1,0.001)) {
i<-i+1
lhs[i] <-sum(x) * log(1 + m/k)
rhs[i] <-sum(a/(k + j))

}
k<-seq(k1/1.2,2*k1,0.001)
plot(k, abs(lhs-rhs),xlab="k",ylab="Difference",type="l")

d<-min(abs(lhs-rhs))
sdd<-which(abs(lhs-rhs)==d)
k[sdd]

}

We can try it out with our spore count data.

256 THE R BOOK

kfit(freq)

[1] 0.5826276

0.4

0
5

10
15

20
25

0.5 0.6 0.7

k

D
iff

er
en

ce

0.8 0.9

The minimum difference is close to zero and occurs at about k = 0�55. The printout shows that
the maximum likelihood estimate of k is 0.582 (to the 3 decimal places we simulated; the last 4
decimals (6276) are meaningless and would not be printed in a more polished function).

How would a negative binomial distribution with a mean of 1.0042 and a k value of
0.583 describe our count data? The expected frequencies are obtained by multiplying the
probability density (above) by the total sample size (238 slides in this case).

nb<-238*(1+1.0042/0.582)^(-0.582)*factorial(.582+(0:12)-1)/
(factorial(0:12)*factorial(0.582-1))*(1.0042/(1.0042+0.582))^(0:12)

We shall compare the observed and expected frequencies using barplot. We need to alternate
the observed and expected frequencies. There are three steps to the procedure:

• Concatenate the observed and expected frequencies in an alternating sequence.

• Create list of labels to name the bars (alternating blanks and counts).

• Produce a legend to describe the different bar colours.

The concatenated list of frequencies (called both) is made like this, putting the 13 observed
counts (freq) in the odd-numbered bars and the 13 expected counts (nb) in the even-
numbered bars (note the use of modulo %% to do this):

both<-numeric(26)
both[1:26 %% 2 != 0]<-freq
both[1:26 %% 2 == 0]<-nb

MATHEMATICS 257

Now we can draw the combined barplot:

barplot(both,col=rep(c(1,0),13),ylab="frequency")

Because two adjacent bars refer to the same count (the observed and expected frequencies)
we do not want to use barplot’s built-in names argument for labelling the bars (it would
want to write a label on every bar, 26 labels in all). Instead, we want to write the count
just once for each pair of bars, located between the observed and expected bars, using
as.character(0:12). This is a job for the mtext function, which writes text in the margins
of plot. We need to specify the margin in which we want to write. The bottom margin in
side = 1. The only slightly tricky thing is to work out the x coordinates for the 13 labels
along the axis. To see how the x axis has been scaled by the barplot function, allocate the
barplot function (as above) to a vector name, then inspect its contents:

xscale<-barplot(both,col=rep(c(1,0),13),ylab="frequency")
as.vector(xscale)

[1] 0.7 1.9 3.1 4.3 5.5 6.7 7.9 9.1 10.3 11.5 12.7 13.9 15.1
[14] 16.3 17.5 18.7 19.9 21.1 22.3 23.5 24.7 25.9 27.1 28.3 29.5 30.7

Here you can see that the left-hand side of the first bar is at x = 0�7 and the 26th bar is at
x = 30�7. A little experimentation will show that we want to put out first label at x = 1�4
and then at intervals of 2.4 (two bars are separated by, for instance, 11�5 − 9�1 = 2�4). We
specify the sequence seq(1.4,30.2,2.4) as the argument to at within mtext:

mtext(as.character(0:12),side=1,at=seq(1.4,30.2,2.4))

The default used here is for mtext to write the labels in line number 0 away from the side
in question: if you want to change this, add the argument line=1 to mtext.

The legend function creates a legend to show which bars represent the observed frequen-
cies (black in this case) and which represent the expected, negative binomial frequencies
(open bars). Just click when the cursor is in the position where you want the top left-hand
corner of the legend box to be:

legend(locator(1),c("observed","expected"),fill=c("black","white"))

0

0
20

40
60

fr
eq

ue
nc

y

80
10

0
12

0

1 2 3 4 5 6 7 8 9 10 11 12

observed
expected

258 THE R BOOK

The fit is very close, so we can be reasonably confident in describing the observed counts
as negative binomially distributed. The tail of the observed distribution is rather fatter than
the expected negative binomial tail, so we might want to measure the lack of fit between
observed and expected distributions. A simple way to do this is to use Pearson’s chi-squared
taking care to use only those cases where the expected frequency nb is greater than 5:

sum(((freq-nb)^2/nb)[nb > 5])

[1] 1.634975

This is based on five legitimate comparisons

sum(nb>5)

[1] 5

and hence on 5 − p − 1 = 2 d.f. because we have estimated p = 2 parameters from the data
in estimating the expected distribution (the mean and k of the negative binomial) and lost
one degree of freedom for contingency (the total number of counts must add up to 238).
Our calculated value of chi-squared =1�63 is much less than the value in tables

qchisq(0.95,2)

[1] 5.991465

so we accept the hypothesis that our data are not significantly different from a negative
binomial with mean = 1�0042 and k = 0�582.

The Wilcoxon rank-sum statistic

This function calculates the distribution of the Wilcoxon rank-sum statistic (also known as
Mann–Whitney), and returns values for the exact probability at discrete values of q:

dwilcox(q, m, n)

Here q is a vector of quantiles, m is the number of observations in sample x (a positive
integer not greater than 50), and n is the number of observations in sample y (also a
positive integer not greater than 50). The Wilcoxon rank-sum statistic is the sum of the
ranks of x in the combined sample c(x,y). The Wilcoxon rank-sum statistic takes on values
W between the limits:

m�m + 1�

2
≤ W ≤ m�m + 2n + 1�

2
�

This statistic can be used for a non-parametric test of location shift between the parent
populations x and y.

Matrix Algebra

There is a comprehensive set of functions for handling matrices in R. We begin with a
matrix called a that has three rows and two columns. Data are typically entered into matrices
columnwise, so the first three numbers (1, 0, 4) go in column 1 and the second three numbers
(2, −1, 1) go in column 2:

MATHEMATICS 259

a<-matrix(c(1,0,4,2,-1,1),nrow=3)
a

[,1] [,2]
[1,] 1 2
[2,] 0 -1
[3,] 4 1

Our second matrix, called b, has the same number of columns as A has rows (i.e. three in
this case). Entered columnwise, the first two numbers (1, −1) go in column 1, the second
two numbers (2, 1) go in column 2, and the last two numbers (1, 0) go in column 3:

b<-matrix(c(1,-1,2,1,1,0),nrow=2)
b

[,1] [,2] [,3]
[1,] 1 2 1
[2,] -1 1 0

Matrix multiplication

To multiply one matrix by another matrix you take the rows of the first matrix and the
columns of the second matrix. Put the first row of a side by side with the first column of b:

a[1,]

[1] 1 2

b[,1]

[1] 1 -1

and work out the point products:

a[1,]*b[,1]

[1] 1 -2

then add up the point products

sum(a[1,]*b[,1])

[1] -1

The sum of the point products is −1 and this is the first element of the product matrix.
Next, put the first row of a with the second column of b:

a[1,]

[1] 1 2

b[,2]

[1] 2 1

a[1,]*b[,2]

[1] 2 2

260 THE R BOOK

sum(a[1,]*b[,2])

[1] 4

so the point products are 2, 2 and the sum of the point products is 2 + 2 = 4. So 4 goes in
row 1 and column 2 of the answer. Then take the last column of b and match it against the
first row of a:

a[1,]*b[,3]

[1] 1 0

sum(a[1,]*b[,3])

[1] 1

so the sum of the point products is 1 + 0 = 1. This goes in row 1, column 3 of the answer.
And so on. We repeat these steps for row 2 of matrix a (0, −1) and then again for row 3
of matrix a (4, 1) to obtain the complete matrix of the answer. In R, the symbol for matrix
multiplication is %∗%. Here is the full answer:

a%*%b
[,1] [,2] [,3]

[1,] -1 4 1
[2,] 1 -1 0
[3,] 3 9 4

where you see the values we calculated by hand (−1, 4, 1) in the first row.
It is important to understand that with matrices a times b is not the same as b times a.

The matrix resulting from a multiplication has the number of rows of the matrix on the left
(a has 3 rows in the case above). But b has just two rows, so multiplication

b%*%a
[,1] [,2]

[1,] 5 1
[2,] -1 -3

produces a matrix with 2 rows. The value 5 in row 1 column 1 of the answer is the sum of
the point products �1 × 1� + �2 × 0� + �1 × 4� = 1 + 0 + 4 = 5.

Diagonals of matrices

To create a diagonal matrix of 3 rows and 3 columns, with 1s on the diagonal use the diag
function like this:

(ym<-diag(1,3,3))

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

You can alter the values of the diagonal elements of a matrix like this:

diag(ym)<-1:3
ym

MATHEMATICS 261

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 2 0
[3,] 0 0 3

or extract a vector containing the diagonal elements of a matrix like this:

diag(ym)

[1] 1 2 3

You might want to extract the diagonal of a variance – covariance matrix:

M <-cbind(X=1:5, Y=rnorm(5))
var(M)

X Y
X 2.50000000 0.04346324
Y 0.04346324 0.88056034

diag(var(M))

X Y
2.5000000 0.8805603

Determinant

The determinant of the square �2 × 2� array

[
a b
c d

]

is defined for any numbers a,b,c and d as

∣∣∣∣a b
c d

∣∣∣∣ ≡ ad − bc�

Suppose that A is a square matrix of order �3 × 3�:

A =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a23

⎤
⎦ �

Then the third-order determinant of A is defined to be the number

det A = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣ �

Applying the rule

∣∣∣∣a b
c d

∣∣∣∣≡ ad − bc to this equation gives

det A = a11a22aa33 − a11a23a32 + a12a23a31 − a12a21a33 + a13a21a32 − a13a22a31�

262 THE R BOOK

Take a numerical example:

A =
⎡
⎣1 2 3

2 1 1
4 1 2

⎤
⎦ �

This has determinant

det A = �1 × 1 × 2� − �1 × 1 × 1� + �2 × 1 × 4� − �2 × 2 × 2� + �3 × 2 × 1� − �3 × 1 × 4�

= 2 − 1 + 8 − 8 + 6 − 12 = −5�

Here is the example in R using the determinant function det:

A<-matrix(c(1,2,4,2,1,1,3,1,2),nrow=3)
A

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 1 1
[3,] 4 1 2

det(A)

[1] -5

The great thing about determinants is that if any row or column of a determinant is
multiplied by a scalar �, then the value of the determinant is multiplied by � (since a factor
� will appear in each of the products). Also, if all the elements of a row or a column are
zero then the determinant �A� = 0. Again, if all the corresponding elements of two rows or
columns of �A� are equal then �A� = 0.

For instance, here is the bottom row of A multiplied by 3:

B<-A
B[3,]<-3*B[3,]
B

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 1 1
[3,] 12 3 6

and here is the determinant:

det(B)

[1] -15

Here is an example when all the elements of column 2 are zero, so det C = 0:

C<-A
C[,2]<-0
C

[,1] [,2] [,3]
[1,] 1 0 3
[2,] 2 0 1
[3,] 4 0 2

MATHEMATICS 263

det(C)

[1] 0

If det A �=0 then the rows and columns of A must be linearly independent. This important
concept is expanded in terms of contrast coefficients on p. 372.

Inverse of a matrix

The operation of division is not defined for matrices. However, for a square matrix that has
�A� �= 0 a multiplicative inverse matrix denoted by A−1 can be defined. This multiplicative
inverse A−1 is unique and has the property that

A−1A = AA−1 = I ,

where I is the unit matrix. So if A is a square matrix for which �A� �= 0 the matrix inverse
is defined by the relationship

A−1 = adjA

�A� ,

where the adjoint matrix of A (adj A) is the matrix of cofactors of A. The cofactors of A
are computed as Aij = �−1�i+jMij , where Mij are the ‘minors’ of the elements aij (these are
the determinants of the matrices of A from which row i and column j have been deleted).
The properties of the inverse matrix can be laid out for two non-singular square matrices,
A and B, of the same order as follows:

AA−1 = A−1A = I

�AB�−1 = B−1A−1

�A−1�′ = �A′�−1

�A−1�−1 = A

�A� = 1

�A−1�
Here is R’s version of the inverse of the 3 × 3 matrix A (above) using the ginv function

from the MASS library

library(MASS)
ginv(A)

[,1] [,2] [,3]
[1,] -2.000000e-01 0.2 0.2
[2,] -2.224918e-16 2.0 -1.0
[3,] 4.000000e-01 -1.4 0.6

where the number in row 2 column 1 is a zero (except for rounding error).
Here is the penultimate rule �A−1�−1 = A evaluated by R:

ginv(ginv(A))

264 THE R BOOK

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 1 1
[3,] 4 1 2

and here is the last rule �A� = 1/
∣∣A−1

∣∣:
1/det(ginv(A))

[1] -5

Eigenvalues and eigenvectors

We have a square matrix A and two column vectors X and K, where

AX = K,

and we want to discover the scalar multiplier � such that

AX = �X�

This is equivalent to �A − �I�X = 0, where I is the unit matrix. This can only have one
non-trivial solution when the determinant associated with the coefficient matrix A vanishes,
so we must have

�A − �I� = 0�

When expanded, this determinant gives rise to an algebraic equation of degree n in � called
the characteristic equation. It has n roots �1,�2, � � � ,�n, each of which is called an eigen-
value. The corresponding solution vector Xi is called an eigenvector of A corresponding
to �i.

Here is an example from population ecology. The matrix A shows the demography
of different age classes: the top row shows fecundity (the number of females born per
female of each age) and the sub-diagonals show survival rates (the fraction of one age
class that survives to the next age class). When these numbers are constants the matrix is
known as the Leslie matrix. In the absence of density dependence the constant parameter
values in A will lead either to exponential increase in total population size (if �1 > 1) or
exponential decline (if �1 < 1) once the initial transients in age structure have damped away.
Once exponential growth has been achieved, then the age structure, as reflected by the
proportion of individuals in each age class, will be a constant. This is known as the first
eigenvector.

Consider the Leslie matrix, L, which is to be multiplied by a column matrix of age-
structured population sizes, n:

L<-c(0,0.7,0,0,6,0,0.5,0,3,0,0,0.3,1,0,0,0)
L<-matrix(L,nrow=4)

Note that the elements of the matrix are entered in columnwise, not row-wise sequence. We
make sure that the Leslie matrix is properly conformed:

MATHEMATICS 265

L
[,1] [,2] [,3] [,4]

[1,] 0.0 6.0 3.0 1
[2,] 0.7 0.0 0.0 0
[3,] 0.0 0.5 0.0 0
[4,] 0.0 0.0 0.3 0

The top row contains the age-specific fecundities (e.g. 2-year-olds produce 6 female off-
spring per year), and the sub-diagonal contains the survivorships (70% of 1-year-olds become
2-year-olds, etc.). Now the population sizes at each age go in a column vector, n:

n<-c(45,20,17,3)
n<-matrix(n,ncol=1)
n

[,1]
[1,] 45
[2,] 20
[3,] 17
[4,] 3

Population sizes next year in each of the four age classes are obtained by matrix multipli-
cation, %∗%

L %*% n
[,1]

[1,] 174.0
[2,] 31.5
[3,] 10.0
[4,] 5.1

We can check this the long way. The number of juveniles next year (the first element of n)
is the sum of all the babies born last year:

45*0+20*6+17*3+3*1

[1] 174

We write a function to carry out the matrix multiplication, giving next year’s population
vector as a function of this year’s:

fun<-function(x) L %*% x

Now we can simulate the population dynamics over a period long enough (say, 40 gener-
ations) for the age structure to approach stability. So long as the population growth rate
� > 1 the population will increase exponentially, once the age structure has stabilized:

n<-c(45,20,17,3)
n<-matrix(n,ncol=1)
structure<-numeric(160)
dim(structure)<-c(40,4)
for (i in 1:40) {
n<-fun(n)
structure[i,]<-n
}
matplot(1:40,log(structure),type="l")

266 THE R BOOK

0 10 20 30 40

0
5

10
15

20
25

30
35

lo
g(

st
ru

ct
ur

e)

1:40

You can see that after some initial transient fluctuations, the age structure has more or
less stabilized by year 20 (the lines for log population size of juveniles (top line), 1-, 2-
and 3-year-olds are parallel). By year 40 the population is growing exponentially in size,
multiplying by a constant of � each year.

The population growth rate (the per-year multiplication rate, �) is approximated by the
ratio of total population sizes in the 40th and 39th years:

sum(structure[40,])/sum(structure[39,])

[1] 2.164035

and the approximate stable age structure is obtained from the 40th value of n:

structure[40,]/sum(structure[40,])

[1] 0.709769309 0.230139847 0.052750539 0.007340305

The exact values of the population growth rate and the stable age distribution are obtained
by matrix algebra: they are the dominant eigenvalue and dominant eigenvector, respectively.
Use the function eigen applied to the Leslie matrix, L, like this:

eigen(L)

$values
[1] 2.1694041+0.0000000i -1.9186627+0.0000000i -0.1253707+0.0975105i
[4] -0.1253707-0.0975105i
$vectors

[,1] [,2] [,3]
[1,] -0.949264118+0i -0.93561508+0i -0.01336028-0.03054433i
[2,] -0.306298338+0i 0.34134741+0i -0.03616819+0.14241169i
[3,] -0.070595039+0i -0.08895451+0i 0.36511901-0.28398118i
[4,] -0.009762363+0i 0.01390883+0i -0.87369452+0.00000000i

MATHEMATICS 267

[,4]
[1,] -0.01336028+0.03054433i
[2,] -0.03616819-0.14241169i
[3,] 0.36511901+0.28398118i
[4,] -0.87369452+0.00000000i

The dominant eigenvalue is 2.1694 (compared with our empirical approximation of 2.1640
after 40 years). The stable age distribution is given by the first eigenvector, which we need
to turn into proportions

eigen(L)$vectors[,1]/sum(eigen(L)$vectors[,1])

[1] 0.710569659+0i 0.229278977+0i 0.052843768+0i 0.007307597+0i

This compares with our approximation (above) in which the proportion in the first age class
was 0.70977 after 40 years (rather than 0.71057).

Matrices in statistical models

Perhaps the main use of matrices in R is in statistical calculations, in generalizing the
calculation of sums of squares and sums of products (see p. 388 for background). Here are the
data used in Chapter 10 to introduce the calculation of sums of squares in linear regression:

numbers<-read.table("c:\\temp\\tannin.txt",header=T)
attach(numbers)
names(numbers)

[1] "growth" "tannin"

The response variable is growth �y� and the explanatory variable is tannin concentration
�x� in the diet of a group of insect larvae. We need the famous five (see p. 270): the sum
of the y values,

growth

[1] 12 10 8 11 6 7 2 3 3

sum(growth)

[1] 62

the sum of the squares of the y values,

growth^2

[1] 144 100 64 121 36 49 4 9 9

sum(growth^2)

[1] 536

the sum of the x values,

tannin

[1] 0 1 2 3 4 5 6 7 8

sum(tannin)

[1] 36

268 THE R BOOK

the sum of the squares of the x values,

tannin^2

[1] 0 1 4 9 16 25 36 49 64

sum(tannin^2)

[1] 204

and finally, to measure the covariation between x and y, we need the sum of the products,

growth*tannin

[1] 0 10 16 33 24 35 12 21 24

sum(growth*tannin)

[1] 175

You can see at once that for more complicated models (such as multiple regression) it is
essential to be able to generalize and streamline this procedure. This is where matrices come
in. Matrix multiplication involves the calculation of sums of products where a row vector is
multiplied by a column vector of the same length to obtain a single value. Thus, we should
be able to obtain the required sum of products, 175, by using matrix multiplication symbol
%*% in place of the regular multiplication symbol:

growth%*%tannin

[,1]
[1,] 175

That works fine. But what about sums of squares? Surely if we use matrix multiplication
on the same vector we will get an object with many rows (9 in this case). Not so.

growth%*%growth

[,1]
[1,] 536

R has coerced the left-hand vector of growth into a row vector in order to obtain the desired
result. You can override this, if for some reason you wanted the answer to have 9 rows, by
specifying the transpose t() of the right-hand growth vector,

growth%*%t(growth)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 144 120 96 132 72 84 24 36 36
[2,] 120 100 80 110 60 70 20 30 30
[3,] 96 80 64 88 48 56 16 24 24
[4,] 132 110 88 121 66 77 22 33 33
[5,] 72 60 48 66 36 42 12 18 18
[6,] 84 70 56 77 42 49 14 21 21
[7,] 24 20 16 22 12 14 4 6 6
[8,] 36 30 24 33 18 21 6 9 9
[9,] 36 30 24 33 18 21 6 9 9

but, of course, that is not what we want. R’s default is what we need. So this should also
work in obtaining the sum of squares of the explanatory variable:

MATHEMATICS 269

tannin%*%tannin

[,1]
[1,] 204

So far, so good. But how do we obtain the sums using matrix multiplication? The trick here
is to matrix multiply the vector by a vector of 1s: here are the sum of the y values,

growth%*%rep(1,9)

[,1]
[1,] 62

and the sum of the x values,

tannin%*%rep(1,9)

[,1]
[1,] 36

Finally, can we use matrix multiplication to arrive at the sample size, n? We do this by
matrix multiplying a row vector of 1s by a column vector of 1s. This rather curious operation
produces the right result, by adding up the nine 1s that result from the nine repeats of the
calculation 1 × 1:

rep(1,9)%*%rep(1,9)

[,1]
[1,] 9

But how do we get all of the famous five in a single matrix? The thing to understand is the
dimensionality of such a matrix. It needs to contain sums as well as sums of products. We
have two variables (growth and tannin) and their matrix multiplication produces a single
scalar value (see above). In order to get to the sums of squares as well as the sums of
products we use cbind to create a 9 × 2 matrix like this:

a<-cbind(growth,tannin)
a

growth tannin
[1,] 12 0
[2,] 10 1
[3,] 8 2
[4,] 11 3
[5,] 6 4
[6,] 7 5
[7,] 2 6
[8,] 3 7
[9,] 3 8

To obtain a results table with 2 rows rather than 9 rows we need to multiply the transpose
of matrix a by matrix a:

t(a)%*%a

growth tannin
growth 536 175
tannin 175 204

270 THE R BOOK

That’s OK as far as it goes, but it has only given us the sums of squares (536 and 204) and
the sum of products (175). How do we get the sums as well? The trick is to bind a column
of 1s onto the left of matrix a:

b<-cbind(1,growth,tannin)
b

growth tannin
[1,] 1 12 0
[2,] 1 10 1
[3,] 1 8 2
[4,] 1 11 3
[5,] 1 6 4
[6,] 1 7 5
[7,] 1 2 6
[8,] 1 3 7
[9,] 1 3 8

It would look better if the first column had a variable name: let’s call it ‘sample’:

dimnames(b)[[2]] [1]<-"sample"

Now to get a summary table of sums as well as sums of products, we matrix multiply b by
itself. We want the answer to have three rows (rather than nine) so we matrix multiply the
transpose of b (which has three rows) by b (which has nine rows):

t(b)%*%b

sample growth tannin
sample 9 62 36
growth 62 536 175
tannin 36 175 204

So there you have it. All of the famous five, plus the sample size, in a single matrix
multiplication.

Statistical models in matrix notation

We continue this example to show how matrix algebra is used to generalize the procedures
used in linear modelling (such as regression or analysis of variance) based on the values
of the famous five. We want to be able to determine the parameter estimates (such as
the intercept and slope of a linear regression) and to apportion the total sum of squares
between variation explained by the model (SSR) and unexplained variation (SSE). Expressed
in matrix terms, the linear regression model is

Y = Xb + e,

and we want to determine the least-squares estimate of b, given by

b = �X′X� − 1X′Y ,

and then carry out the analysis of variance

b′X′Y ′�

We look at each of these in turn.

MATHEMATICS 271

The response variable Y , 1 and the errors e are simple n × 1 column vectors, X is an
n × 2 matrix and � is a 2 × 1 vector of coefficients, as follows:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
10

8
11

6
7
2
3
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1
1
1
1

0
1
2
3
4
5
6
7
8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

e2

e3

e4

e5

e6

e7

e8

e9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, � =
[
�0

�1

]
�

The y vector and the 1 vector are created like this:

Y<-growth
one<-rep(1,9)

The sample size is given by 1′1 (transpose of vector 1 times vector 1):

t(one) %*% one

[,1]
[,1] 9

The vector of explanatory variable(s) X is created by binding a column of ones to the left

X<-cbind(1,tannin)
X

tannin
[1,] 1 0
[2,] 1 1
[3,] 1 2
[4,] 1 3
[5,] 1 4
[6,] 1 5
[7,] 1 6
[8,] 1 7
[9,] 1 8

In this notation ∑
y2 = y2

1 + y2
2 + · · · + y2

n = Y ′Y ,

t(Y)%*%Y

[,1]
[,1] 536 ∑

y =ny = y1 + y2 + · · · + yn = 1′Y

t(one)%*%Y

[,1]
[,1] 62

272 THE R BOOK

(∑
y
)2 = Y ′11′Y

t(Y) %*% one %*% t(one) %*% Y

[1,]
[1,] 3844

For the matrix of explanatory variables, we see that X′X gives a 2 × 2 matrix containing
n�

∑
x and

∑
x2. The numerical values are easy to find using matrix multiplication %∗%

t(X)%*%X

tannin
9 36

tannin 36 204

Note that X′X (a 2 × 2 matrix) is completely different from XX′ (a 9 × 9 matrix). The
matrix X′Y gives a 2 × 1 matrix containing

∑
y and the sum of products

∑
xy:

t(X)%*%Y

[,1]
62

tannin 175

Now, using the beautiful symmetry of the normal equations

b0n + b1

∑
x =∑

y,

b0

∑
x + b1

∑
x2 =∑

xy,

we can write the regression directly in matrix form as

X′Xb = X′Y

because we already have the necessary matrices to form the left- and right-hand sides. To
find the least-squares parameter values b we need to divide both sides by X′X. This involves
calculating the inverse of the X′X matrix. The inverse exists only when the matrix is square
and when its determinant is non-singular. The inverse contains −x and

∑
x2 as its terms,

with SSX =∑
�x − x̄�2, the sum of the squared differences between the x values and mean

x, or n.SSX as the denominator:

�X′X�−1 =

⎡
⎢⎢⎣

∑
x2

n
∑

�x − x̄�2

−x̄∑
�x − x̄�2

−x̄∑
�x − x̄�2

1∑
�x − x̄�2

⎤
⎥⎥⎦ �

When every element of a matrix has a common factor, it can be taken outside the matrix.
Here, the term 1/�n�SSX� can be taken outside to give

�X′X�−1 = 1
n
∑

�x − x̄�2

[∑
x2 −∑

x
−∑

x n

]
�

Computing the numerical value of this is easy using the matrix function ginv:

MATHEMATICS 273

library(MASS)
ginv(t(X)%*%X)

[,1] [,2]
[1,] 0.37777778 -0.06666667
[2,] -0.06666667 0.01666667

Now we can solve the normal equations

�X′X� − 1�X′X�b = �X′X� − 1X′Y ,

using the fact that �X′X� − 1�X′X� = I to obtain the important general result:

b = �X′X� − 1X′Y ,

ginv(t(X)%*%X)%*%t(X)%*%Y

[,1]
[1,] 11.755556
[2,] -1.216667

which you will recognize from our hand calculations as the intercept and slope respectively
(see p. 392). The ANOVA computations are as follows. The correction factor is

CF = Y ′11′Y/n

CF<-t(Y) %*% one %*% t(one)%*% Y/9
CF

[,1]
[1,] 427.1111

The total sum of squares, SSY, is Y ′Y − CF :

t(Y)%*%Y-CF

[,1]
[1,] 108.8889

The regression sum of squares, SSR, is b′X′Y − CF :

b<-ginv(t(X)%*%X)%*%t(X)%*%Y
t(b)%*%t(X)%*%Y-CF

[,1]
[1,] 88.81667

and the error sum of squares, SSE, is Y ′Y − b′X′Y

t(Y) %*% Y - t(b) %*% t(X) %*% Y

[,1]
[1,] 20.07222

You should check these figures against the hand calculations on p. 396. Obviously, this
is not a sensible way to carry out a single linear regression, but it demonstrates how to
generalize the calculations for cases that have two or more continuous explanatory variables.

274 THE R BOOK

Solving systems of linear equations using matrices

Suppose we have two equations containing two unknown variables:

3x + 4y = 12�

x + 2y = 8�

We can use the function solve to find the values of the variables if we provide it with two
matrices:

• a square matrix A containing the coefficients (3, 1, 4 and 2, columnwise);

• a column vector kv containing the known values (12 and 8).

We set the two matrices up like this (columnwise, as usual)

A<-matrix(c(3,1,4,2),nrow=2)
A

[,1] [,2]
[1,] 3 4
[2,] 1 2

kv<-matrix(c(12,8),nrow=2)
kv

[,1]
[1,] 12
[2,] 8

Now we can solve the simultaneous equations

solve(A,kv)

[,1]
[1,] -4
[2,] 6

to give x=−4 and y =6 (which you can easily verify by hand). The function is most useful
when there are many simultaneous equations to be solved.

Calculus

The rules of differentiation and integration are known to R. You will use them in modelling
(e.g. in calculating starting values in non-linear regression) and for numeric minimization
using optim. Read the help files for D and integrate to understand the limitations of these
functions.

Derivatives

The R function for symbolic and algorithmic derivatives of simple expressions is D. Here
are some simple examples to give you the idea. See also ?deriv.

D(expression(2*x^3),"x")

2 * (3 * x^2)

MATHEMATICS 275

D(expression(log(x)),"x")

1/x

D(expression(a*exp(-b * x)),"x")

-(a * (exp(-b * x) * b))

D(expression(a/(1+b*exp(-c * x))),"x")

a * (b * (exp(-c * x) * c))/(1 + b * exp(-c * x))^2

trig.exp <-expression(sin(cos(x + y^2)))
D(trig.exp, "x")

-(cos(cos(x + y^2)) * sin(x + y^2))

Integrals

The R function is integrate. Here are some simple examples to give you the idea:

integrate(dnorm,0,Inf)

0.5 with absolute error < 4.7e-05

integrate(dnorm,-Inf,Inf)

1 with absolute error < 9.4e-05

integrate(function(x) rep(2, length(x)), 0, 1)

2 with absolute error < 2.2e-14

integrand <-function(x) {1/((x+1)*sqrt(x))}
integrate(integrand, lower = 0, upper = Inf)

3.141593 with absolute error < 2.7e-05

xv<-seq(0,10,0.1)
plot(xv,integrand(xv),type="l")

The area under the curve is � = 3�141 593.

Differential equations

We need to solve a system of ordinary differential equations (ODEs) and choose to use the
classical Runge–Kutta fourth-order integration function rk4 from the odesolve package:

install.packages("odesolve")
library(odesolve)

The example involves a simple resource-limited plant herbivore where V = vegetation
and N = herbivore population. We need to specify two differential equations: one for the
vegetation (dV /dt) and one for the herbivore population �dN/dt�:

dV

dt
= rV

(
K − V

K

)
− bVN�

276 THE R BOOK

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

in
te

gr
an

d(
xv

)

0 2 4 6
xv

8 10

dN

dt
= cVN − dN�

The steps involved in solving these ODEs in R are as follows:

• Define a function (called phmodel in this case).

• Name the response variables V and N from x[1] and x[2].

• Write the vegetation equation as dv using with.

• Write the herbivore equation as dn using with.

• Combine these vectors into a list called res.

• Generate a time series over which to solve the equations.

• Here, t is from 0 to 500 in steps of 1.

• Set the parameter values in parms.

• Set the starting values for V and N in y and xstart.

• Use rk4 to create a dataframe with the V and N time series.

phmodel <-function(t, x, parms) {
v<-x[1]
n<-x[2]
with(as.list(parms), {
dv<-r*v*(K-v)/K - b*v*n
dn<-c*v*n – d*n
res<-c(dv, dn)

MATHEMATICS 277

list(res)
})}

times <-seq(0, 500, length=501)

parms <-c(r=0.4, K=1000, b=0.02, c=0.01, d=0.3)

y<-xstart <-c(v=50, n=10)
output <-as.data.frame(rk4(xstart, times, phmodel, parms))

plot (output$time, output$v,
ylim=c(0,60),type="n",ylab="abundance",xlab="time")
lines (output$time, output$v)
lines (output$time, output$n,lty=2)

The output shows plants abundance as a solid line against time and herbivore abundance as
a dotted line:

0 100 200 300 400 500

time

0
10

20
30

40
50

60

ab
un

da
nc

e

The system exhibits damped oscillations to a stable point equilibrium at which dV/dt and
dN/dt are both equal to zero, so equilibrium plant abundance = d/c = 0�3/0�01 = 30 and
equilibrium herbivore abundance = r�K − V ∗�/bK = 19�4.

8
Classical Tests

There is absolutely no point in carrying out an analysis that is more complicated than it
needs to be. Occam’s razor applies to the choice of statistical model just as strongly as
to anything else: simplest is best. The so-called classical tests deal with some of the most
frequently used kinds of analysis for single-sample and two-sample problems.

Single Samples

Suppose we have a single sample. The questions we might want to answer are these:

• What is the mean value?

• Is the mean value significantly different from current expectation or theory?

• What is the level of uncertainty associated with our estimate of the mean value?

In order to be reasonably confident that our inferences are correct, we need to establish
some facts about the distribution of the data:

• Are the values normally distributed or not?

• Are there outliers in the data?

• If data were collected over a period of time, is there evidence for serial correlation?

Non-normality, outliers and serial correlation can all invalidate inferences made by standard
parametric tests like Student’s t test. It is much better in cases with non-normality and/or
outliers to use a non-parametric technique such as Wilcoxon’s signed-rank test. If there is
serial correlation in the data, then you need to use time series analysis or mixed-effects
models.

Data summary

To see what is involved in summarizing a single sample, read the data called y from the
file called das.txt:

data<-read.table("c:\\temp\\das.txt",header=T)

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

280 THE R BOOK

names(data)

[1] "y"

attach(data)

As usual, we begin with a set of single sample plots: an index plot (scatterplot with a single
argument, in which data are plotted in the order in which they appear in the dataframe), a
box-and-whisker plot (see p. 155) and a frequency plot (a histogram with bin-widths chosen
by R):

par(mfrow=c(2,2))
plot(y)
boxplot(y)
hist(y,main="")
y2<-y
y2[52]<-21.75
plot(y2)

0 20 40 60 80 100

Index

0 20 40 60 80 100

Index

2.
0

2.
4

2.
8

2.
0

2.
4

2.
8

y

y

y2

2.0 2.2 2.4 2.6 2.8 3.0

0
5

10
15

5
10

20
25

15

F
re

qu
en

cy

The index plot (bottom right) is particularly valuable for drawing attention to mistakes in
the dataframe. Suppose that the 52nd value had been entered as 21.75 instead of 2.175: the
mistake stands out like a sore thumb in the plot (bottom right).

Summarizing the data could not be simpler. We use the built-in function called summary
like this:

CLASSICAL TESTS 281

summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.904 2.241 2.414 2.419 2.568 2.984

This gives us six pieces of information about the vector called y. The smallest value is 1.904
(labelled Min. for minimum) and the largest value is 2.984 (labelled Max. for maximum).
There are two measures of central tendency: the median is 2.414 and the arithmetic mean in
2.419. The other two figures (labelled 1st Qu. and 3rd Qu.) are the first and third quartiles
(see p. 155).

An alternative is Tukey’s ‘five-number summary’ which comprises minimum, lower-
hinge, median, upper-hinge and maximum for the input data. Hinges are close to the first and
third quartiles (compare with summary, above), but different for small samples (see below):

fivenum(y)

[1] 1.903978 2.240931 2.414137 2.569583 2.984053

This is how the fivenum summary is produced: x takes the sorted values of y, and n is
the length of y. Then five numbers, d, are calculated to use as subscripts to extract five
averaged values from x like this:

x<-sort(y)
n<-length(y)
d <- c(1, 0.5 * floor(0.5 * (n + 3)), 0.5 * (n + 1),

n + 1 - 0.5 * floor(0.5 * (n + 3)), n)
0.5 * (x[floor(d)] + x[ceiling(d)])

[1] 1.903978 2.240931 2.414137 2.569583 2.984053

where the d values are

[1] 1.0 25.5 50.5 75.5 100.0

with floor and ceiling providing the lower and upper subscripts for averaging.

Plots for testing normality

The simplest test of normality (and in many ways the best) is the ‘quantile–quantile plot’.
This plots the ranked samples from our distribution against a similar number of ranked
quantiles taken from a normal distribution. If our sample is normally distributed then the line
will be straight. Departures from normality show up as various sorts of non-linearity (e.g. S-
shapes or banana shapes). The functions you need are qqnorm and qqline (quantile–quantile
plot against a normal distribution):

qqnorm(y)
qqline(y,lty=2)

This shows a slight S-shape, but there is no compelling evidence of non-normality (our
distribution is somewhat skew to the left; see the histogram, above).

Test for normality

We might use shapiro.test for testing whether the data in a vector come from a normal
distribution. Let’s generate some data that are lognormally distributed, so we should want
them to fail the normality test:

282 THE R BOOK

–2

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

–1 0
Theoretical Quantiles

Normal Q–Q Plot

S
am

pl
e

Q
ua

nt
ile

s

1 2

x<-exp(rnorm(30))
shapiro.test(x)

Shapiro-Wilk normality test

data: x
W = 0.5701, p-value = 3.215e-08

They do: p < 0�000 001. A p value is an estimate of the probability that a particular result,
or a result more extreme than the result observed, could have occurred by chance, if the
null hypothesis were true. In short, the p value is a measure of the credibility of the null
hypothesis. If something is sufficiently unlikely to have occurred by chance (say, p< 0�05),
we say that it is statistically significant. For example, in comparing two sample means,
where the null hypothesis is that the means are the same, a low p value means that the
hypothesis is unlikely to be true and the difference is statistically significant. A large p
value (say p = 0�23) means that there is no compelling evidence on which to reject the null
hypothesis. Of course, saying ‘we do not reject the null hypothesis’ and ‘the null hypothesis
is true’ are two quite different things. For instance, we may have failed to reject a false null
hypothesis because our sample size was too low, or because our measurement error was too
large. Thus, p values are interesting, but they don’t tell the whole story: effect sizes and
sample sizes are equally important in drawing conclusions.

An example of single-sample data

We can investigate the issues involved by examining the data from Michelson’s famous
experiment in 1879 to measure the speed of light (see Michelson, 1880). The dataframe
called light contains his results �km s−1�, but with 299 000 subtracted.

light<-read.table("c:\\temp\\light.txt",header=T)

CLASSICAL TESTS 283

attach(light)
names(light)

[1] "speed"

hist(speed,main="")

700 800 900 1000 1100

speed

0
2

4
6

8

Fr
eq

ue
nc

y

We get a summary of the non-parametric descriptors of the sample like this:

summary(speed)

Min. 1st Qu. Median Mean 3rd Qu. Max.
650 850 940 909 980 1070

From this, you see at once that the median (940) is substantially bigger than the mean
(909), as a consequence of the strong negative skew in the data seen in the histogram. The
interquartile range is the difference between the first and third quartiles: 980 − 850 = 130.
This is useful in the detection of outliers: a good rule of thumb is this: an outlier is a value
more than 1.5 times the interquartile range above the third quartile or below the first quartile
�130 × 1�5 = 195�. In this case, therefore, outliers would be measurements of speed that
were less than 850 − 195 = 655 or greater than 980 + 195 = 1175. You will see that there
are no large outliers in this data set, but one or more small outliers (the minimum is 650).

We want to test the hypothesis that Michelson’s estimate of the speed of light is signif-
icantly different from the value of 299 990 thought to prevail at the time. Since the data
have all had 299 000 subtracted from them, the test value is 990. Because of the non-
normality, the use of Student’s t test in this case is ill advised. The correct test is Wilcoxon’s
signed-rank test.

wilcox.test(speed,mu=990)

284 THE R BOOK

Wilcoxon signed rank test with continuity correction
data: speed
V = 22.5, p-value = 0.00213
alternative hypothesis: true mu is not equal to 990

Warning message:
Cannot compute exact p-value with ties in: wilcox.test.default(speed,
mu = 990)

We reject the null hypothesis and accept the alternative hypothesis because p = 0�002 13
(i.e. much less than 0.05). The speed of light is significantly less than 299 990.

Bootstrap in hypothesis testing

You have probably heard the old phrase about ‘pulling yourself up by your own bootlaces’.
That is where the term ‘bootstrap’ comes from. It is used in the sense of getting ‘something
for nothing’. The idea is very simple. You have a single sample of n measurements, but
you can sample from this in very many ways, so long as you allow some values to appear
more than once, and other samples to be left out (i.e. sampling with replacement). All you
do is calculate the sample mean lots of times, once for each sampling from your data, then
obtain the confidence interval by looking at the extreme highs and lows of the estimated
means using a function called quantile to extract the interval you want (e.g. a 95% interval
is specified using c(0.0275, 0.975) to locate the lower and upper bounds).

Our sample mean value of y is 909. The question we have been asked to address is this:
how likely is it that the population mean that we are trying to estimate with our random
sample of 100 values is as big as 990? We take 10 000 random samples with replacement
using n=100 from the 100 values of light and calculate 10 000 values of the mean. Then we
ask: what is the probability of obtaining a mean as large as 990 by inspecting the right-hand
tail of the cumulative probability distribution of our 10 000 bootstrapped mean values? This
is not as hard as it sounds:

850 900 950
a

0
50

0
10

00
15

00

Fr
eq

ue
nc

y

CLASSICAL TESTS 285

a<-numeric(10000)
for(i in 1:10000) a[i]<-mean(sample(speed,replace=T))
hist(a,main="")

The test value of 990 is way off the scale to the right, so a mean of 990 is clearly most
unlikely, given the data with max(a) = 979. In our 10 000 samples of the data, we never
obtained a mean value greater than 979, so the probability that the mean is 990 is clearly
p < 0�0001.

Higher-order moments of a distribution: quantifying non-normality

So far, and without saying so explicitly, we have encountered the first two moments of a
sample distribution. The quantity

∑
y was used in the context of defining the arithmetic

mean of a single sample: this is the first moment ȳ =∑
y/n. The quantity

∑
�y − ȳ�2, the

sum of squares, was used in calculating sample variance, and this is the second moment
of the distribution s2 =∑

�y − ȳ�2/�n − 1�. Higher-order moments involve powers of the
difference greater than 2 such as

∑
�y − ȳ�3 and

∑
�y − ȳ�4.

Skew

Skew (or skewness) is the dimensionless version of the third moment about the mean,

m3 =
∑

�y − ȳ�3

n
�

which is rendered dimensionless by dividing by the cube of the standard deviation of y
(because this is also measured in units of y3):

s3 = sd�y�3 = �
√

s2�3

The skew is then given by

skew =�1
= m3

s3

�

It measures the extent to which a distribution has long, drawn-out tails on one side or the
other. A normal distribution is symmetrical and has �1 = 0. Negative values of �1 mean
skew to the left (negative skew) and positive values mean skew to the right.

To test whether a particular value of skew is significantly different from 0 (and hence
the distribution from which it was calculated is significantly non-normal) we divide the
estimate of skew by its approximate standard error:

se�1
=
√

6
n

It is straightforward to write an R function to calculate the degree of skew for any vector
of numbers, x, like this:

skew<-function(x){
m3<-sum((x-mean(x))^3)/length(x)
s3<-sqrt(var(x))^3
m3/s3 }

286 THE R BOOK

0 1 2 3 4

x

0.
0

0.
2

0.
4

0.
6

f(
x)

0 1 2 3 4

x

0.
0

0.
2

0.
4

0.
6

f(
x)

Positive skew Negative skew

Note the use of the length(x) function to work out the sample size, n, whatever the size of
the vector x. The last expression inside a function is not assigned to a variable name, and
is returned as the value of skew(x) when this is executed from the command line.

data<-read.table("c:\\temp\\skewdata.txt",header=T)
attach(data)
names(data)

[1] "values"

hist(values)

The data appear to be positively skew (i.e. to have a longer tail on the right than on the
left). We use the new function skew to quantify the degree of skewness:

skew(values)

[1] 1.318905

Now we need to know whether a skew of 1.319 is significantly different from zero. We do
a t test, dividing the observed value of skew by its standard error

√
6/n:

skew(values)/sqrt(6/length(values))

[1] 2.949161

Finally, we ask what is the probability of getting a t value of 2.949 by chance alone, when
the skew value really is zero.

CLASSICAL TESTS 287

0

0
2

4
6

8
10

20 40
values

Histogram of values

F
re

qu
en

cy

60 80

1-pt(2.949,28)

[1] 0.003185136

We conclude that these data show significant non-normality �p < 0�0032�.
The next step might be to look for a transformation that normalizes the data by reducing

the skewness. One way of drawing in the larger values is to take square roots, so let’s try
this to begin with:

skew(sqrt(values))/sqrt(6/length(values))

[1] 1.474851

This is not significantly skew. Alternatively, we might take the logs of the values:

skew(log(values))/sqrt(6/length(values))

[1] -0.6600605

This is now slightly skew to the left (negative skew), but the value of Student’s t is smaller
than with a square root transformation, so we might prefer a log transformation in this case.

Kurtosis

This is a measure of non-normality that has to do with the peakyness, or flat-toppedness, of
a distribution. The normal distribution is bell-shaped, whereas a kurtotic distribution is other

288 THE R BOOK

than bell-shaped. In particular, a more flat-topped distribution is said to be platykurtic, and
a more pointy distribution is said to be leptokurtic.

–200

0.
00

0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5
0.

03
0

–100 0
x x

Leptokurtosis

Platykurtosis

f(
x)

f(
x)

100 200 0 500 1000 1500

Kurtosis is the dimensionless version of the fourth moment about the mean,

m4 =
∑

�y − ȳ�4

n
�

which is rendered dimensionless by dividing by the square of the variance of y (because
this is also measured in units of y4):

s4 = �var�y��2 = �s2�2

Kurtosis is then given by

kurtosis = �2 = m4

s4

− 3

The minus 3 is included because a normal distribution has m4/s4 = 3. This formulation
therefore has the desirable property of giving zero kurtosis for a normal distribution,
while a flat-topped (platykurtic) distribution has a negative value of kurtosis, and a pointy
(leptokurtic) distribution has a positive value of kurtosis. The approximate standard error of
kurtosis is

se�2
=
√

24
n

�

CLASSICAL TESTS 289

An R function to calculate kurtosis might look like this:

kurtosis<-function(x) {
m4<-sum((x-mean(x))^4)/length(x)
s4<-var(x)^2
m4/s4 - 3 }

For our present data, we find that kurtosis is not significantly different from normal:

kurtosis(values)

[1] 1.297751

kurtosis(values)/sqrt(24/length(values))

[1] 1.45093

Two samples

The classical tests for two samples include:

• comparing two variances (Fisher’s F test, var.test)

• comparing two sample means with normal errors (Student’s t test, t.test)

• comparing two means with non-normal errors (Wilcoxon’s rank test, wilcox.test)

• comparing two proportions (the binomial test, prop.test)

• correlating two variables (Pearson’s or Spearman’s rank correlation, cor.test)

• testing for independence of two variables in a contingency table (chi-squared, chisq.test,
or Fisher’s exact test, fisher.test).

Comparing two variances

Before we can carry out a test to compare two sample means (see below), we need to test
whether the sample variances are significantly different (see p. 294). The test could not be
simpler. It is called Fisher’s F test after the famous statistician and geneticist R.A. Fisher,
who worked at Rothamsted in south-east England. To compare two variances, all you do is
divide the larger variance by the smaller variance. Obviously, if the variances are the same,
the ratio will be 1. In order to be significantly different, the ratio will need to be significantly
bigger than 1 (because the larger variance goes on top, in the numerator). How will we
know a significant value of the variance ratio from a non-significant one? The answer, as
always, is to look up the critical value of the variance ratio. In this case, we want critical
values of Fisher’s F. The R function for this is qf, which stands for ‘quantiles of the F
distribution’.

For our example of ozone levels in market gardens (see p. 51) there were 10 replicates in
each garden, so there were 10 −1=9 degrees of freedom for each garden. In comparing two
gardens, therefore, we have 9 d.f. in the numerator and 9 d.f. in the denominator. Although
F tests in analysis of variance are typically one-tailed (the treatment variance is expected to
be larger than the error variance if the means are significantly different; see p. 451), in this
case, we had no expectation as to which garden was likely to have the higher variance, so

290 THE R BOOK

we carry out a two-tailed test �p = 1 − �/2�. Suppose we work at the traditional � = 0�05,
then we find the critical value of F like this:

qf(0.975,9,9)

4.025994

This means that a calculated variance ratio will need to be greater than or equal to 4.02 in
order for us to conclude that the two variances are significantly different at � = 0�05.

To see the test in action, we can compare the variances in ozone concentration for market
gardens B and C:

f.test.data<-read.table("c:\\temp\\f.test.data.txt",header=T)
attach(f.test.data)
names(f.test.data)

[1] "gardenB" "gardenC"

First, we compute the two variances:

var(gardenB)

[1] 1.333333

var(gardenC)

[1] 14.22222

The larger variance is clearly in garden C, so we compute the F ratio like this:

F.ratio<-var(gardenC)/var(gardenB)
F.ratio

[1] 10.66667

The variance in garden C is more than 10 times as big as the variance in garden B. The
critical value of F for this test (with 9 d.f. in both the numerator and the denominator)
is 4.026 (see qf, above), so, since the calculated value is larger than the critical value
we reject the null hypothesis. The null hypothesis was that the two variances were not
significantly different, so we accept the alternative hypothesis that the two variances are
significantly different. In fact, it is better practice to present the p value associated with
the calculated F ratio rather than just to reject the null hypothesis; to do this we use pf
rather than qf. We double the resulting probability to allow for the two-tailed nature of
the test:

2*(1-pf(F.ratio,9,9))

[1] 0.001624199

so the probability that the variances are the same is p < 0�002. Because the variances are
significantly different, it would be wrong to compare the two sample means using Student’s
t-test.

There is a built-in function called var.test for speeding up the procedure. All we provide
are the names of the two variables containing the raw data whose variances are to be
compared (we don’t need to work out the variances first):

CLASSICAL TESTS 291

var.test(gardenB,gardenC)

F test to compare two variances
data: gardenB and gardenC
F = 0.0938, num df = 9, denom df = 9, p-value = 0.001624
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.02328617 0.37743695
sample estimates:
ratio of variances

0.09375

Note that the variance ratio, F , is given as roughly 1/10 rather than roughly 10 because
var.test put the variable name that came first in the alphabet (gardenB) on top (i.e. in the
numerator) instead of the bigger of the two variances. But the p value of 0.0016 is correct,
and we reject the null hypothesis. These two variances are highly significantly different.
This test is highly sensitive to outliers, so use it with care.

It is important to know whether variance differs significantly from sample to sample.
Constancy of variance (homoscedasticity) is the most important assumption underlying
regression and analysis of variance (p. 389). For comparing the variances of two samples,
Fisher’s F test is appropriate (p. 225). For multiple samples you can choose between the
Bartlett test and the Fligner–Killeen test. Here are both tests in action:

refs<-read.table("c:\\temp\\refuge.txt",header=T)
attach(refs)
names(refs)

[1] "B" "T"

T is an ordered factor with 9 levels. Each level produces 30 estimates of yields except for
level 9 which is a single zero. We begin by looking at the variances:

tapply(B,T,var)

1 2 3 4 5 6 7 8
1354.024 2025.431 3125.292 1077.030 2542.599 2221.982 1445.490 1459.955

9
NA

When it comes to the variance tests we shall have to leave out level 9 of T because the
tests require at least two replicates at each factor level. We need to know which data point
refers to treatment T = 9:

which(T==9)

[1] 31

So we shall omit the 31st data point using negative subscripts. First Bartlett:

bartlett.test(B[-31],T[-31])

Bartlett test of homogeneity of variances

data: B[-31] and T[-31]
Bartlett’s K-squared = 13.1986, df = 7, p-value = 0.06741

So there is no significant difference between the eight variances �p = 0�067�. Now Fligner:

292 THE R BOOK

fligner.test(B[-31],T[-31])

Fligner-Killeen test of homogeneity of variances

data: B[-31] and T[-31]
Fligner-Killeen:med chi-squared = 14.3863, df = 7, p-value = 0.04472

Hmm. This test says that there are significant differences between the variances �p< 0�05�.
What you do next depends on your outlook. There are obviously some close-to-significant
differences between these eight variances, but if you simply look at a plot of the data,
plot(T,B), the variances appear to be very well behaved. A linear model shows some slight
pattern in the residuals

model<-lm(B~T)
plot(model)

0

–1
50

–1
00

–5
0

0
50

10
0

15
0

2000 4000

Fitted values
Im(B~T)

Residuals vs Fitted

151
126

R
es

id
ua

ls

6000 8000

The various tests can give wildly different interpretations. Here are the ozone data from
three market gardens:

ozone<-read.table("c:\\temp\\gardens.txt",header=T)
attach(ozone)
names(ozone)

[1] "gardenA" "gardenB" "gardenC"

CLASSICAL TESTS 293

y<-c(gardenA,gardenB,gardenC)
garden<-factor(rep(c("A","B","C"),c(10,10,10)))

The question is whether the variance in ozone concentration differs from garden to garden
or not. Fisher’s F test comparing gardens B and C says that variance is significantly greater
in garden C:

var.test(gardenB,gardenC)

F test to compare two variances

data: gardenB and gardenC
F = 0.0938, num df = 9, denom df = 9, p-value = 0.001624
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.02328617 0.37743695
sample estimates:
ratio of variances

0.09375

Bartlett’s test, likewise, says there is a highly significant difference in variance:

bartlett.test(y~garden)

Bartlett test of homogeneity of variances

data: y by garden
Bartlett’s K-squared = 16.7581, df = 2, p-value = 0.0002296

In contrast, the Fligner–Killeen test (preferred over Bartlett’s test by many statisticians)
says there is no compelling evidence for non-constancy of variance (heteroscedasticity) in
these data:

fligner.test(y~garden)

Fligner-Killeen test of homogeneity of variances

data: y by garden
Fligner-Killeen: med chi-squared = 1.8061, df = 2, p-value = 0.4053

The reason for the difference is that Fisher and Bartlett are very sensitive to outliers, whereas
Fligner–Killeen is not (it is a non-parametric test which uses the ranks of the absolute
values of the centred samples and weights a(i) = qnorm((1 + i/(n+1))/2). Of the many
tests for homogeneity of variances, this is the most robust against departures from normality
(Conover et al., 1981).

You can use either a formula (as above) or a list (as below) to run these tests:

fligner.test(list(gardenA,gardenB,gardenC))

Comparing two means

Given what we know about the variation from replicate to replicate within each sample
(the within-sample variance), how likely is it that our two sample means were drawn from
populations with the same average? If it is highly likely, then we shall say that our two
sample means are not significantly different. If it is rather unlikely, then we shall say that
our sample means are significantly different. But perhaps a better way to proceed is to

294 THE R BOOK

work out the probability that the two samples were indeed drawn from populations with
the same mean. If this probability is very low (say, less than 5% or less than 1%) then we
can be reasonably certain (95% or 99% in these two examples) than the means really are
different from one another. Note, however, that we can never be 100% certain; the apparent
difference might just be due to random sampling – we just happened to get a lot of low
values in one sample, and a lot of high values in the other.

There are two simple tests for comparing two sample means:

• Student’s t test when the samples are independent, the variances constant, and the errors
are normally distributed;

• Wilcoxon’s rank-sum test when the samples are independent but the errors are not
normally distributed (e.g. they are ranks or scores or some sort).

What to do when these assumptions are violated (e.g. when the variances are different) is
discussed later on.

Student’s t test

Student was the pseudonym of W.S. Gossett who published his influential paper in
Biometrika in 1908. He was prevented from publishing under his own name by dint of the
archaic employment laws in place at the time, which allowed his employer, the Guinness
Brewing Company, to prevent him publishing independent work. Student’s t distribution,
later perfected by R.A. Fisher, revolutionized the study of small-sample statistics where
inferences need to be made on the basis of the sample variance s2 with the population vari-
ance �2 unknown (indeed, usually unknowable). The test statistic is the number of standard
errors by which the two sample means are separated:

t = difference between the two means
standard error of the difference

= ȳA − ȳB

sediff

�

We know the standard error of the mean (see p. 54) but we have not yet met the
standard error of the difference between two means. For two independent (i.e. non-correlated)
variables, the variance of a difference is the sum of the separate variances. This important
result allows us to write down the formula for the standard error of the difference between
two sample means:

sediff =
√

s2
A

nA

+ s2
B

nB

We now have everything we need to carry out Student’s t test. Our null hypothesis is that
the two sample means are the same, and we shall accept this unless the value of Student’s
t is so large that it is unlikely that such a difference could have arisen by chance alone.
For the ozone example introduced on p. 289, each sample has 9 degrees of freedom, so we
have 18 d.f. in total. Another way of thinking of this is to reason that the complete sample
size as 20, and we have estimated two parameters from the data, ȳA and ȳB, so we have
20 − 2 = 18 d�f. We typically use 5% as the chance of rejecting the null hypothesis when it
is true (this is the Type I error rate). Because we didn’t know in advance which of the two
gardens was going to have the higher mean ozone concentration (and we usually don’t),
this is a two-tailed test, so the critical value of Student’s t is:

CLASSICAL TESTS 295

qt(0.975,18)

[1] 2.100922

This means that our test statistic needs to be bigger than 2.1 in order to reject the null
hypothesis, and hence to conclude that the two means are significantly different at �=0�05.

The dataframe is attached like this:

t.test.data<-read.table("c:\\temp\\t.test.data.txt",header=T)
attach(t.test.data)
names(t.test.data)

[1] "gardenA" "gardenB"

A useful graphical test for two samples employs the notch option of boxplot:

ozone<-c(gardenA,gardenB)
label<-factor(c(rep("A",10),rep("B",10)))
boxplot(ozone~label,notch=T,xlab="Garden",ylab="Ozone")

A

1
2

3
4

5
6

7

B

Garden

O
zo

ne

Because the notches of two plots do not overlap, we conclude that the medians are signifi-
cantly different at the 5% level. Note that the variability is similar in both gardens, both in
terms of the range + (the whiskers) + and the interquartile range + (the boxes).

To carry out a t test long-hand, we begin by calculating the variances of the two samples:

s2A<-var(gardenA)
s2B<-var(gardenB)

The value of the test statistic for Student’s t is the difference divided by the standard error of
the difference. The numerator is the difference between the two means, and the denominator
is the square root of the sum of the two variances divided by their sample sizes:

(mean(gardenA)-mean(gardenB))/sqrt(s2A/10+s2B/10)

which gives the value of Student’s t as

[1] -3.872983

296 THE R BOOK

With t-tests you can ignore the minus sign; it is only the absolute value of the difference
between the two sample means that concerns us. So the calculated value of the test statistic
is 3.87 and the critical value is 2.10 (qt(0.975,18), above). We say that, since the calculated
value is larger than the critical value, we reject the null hypothesis. Notice that the wording
is exactly the same as it was for the F test (above). Indeed, the wording is always the
same for all kinds of tests, and you should try to memorize it. The abbreviated form is
easier to remember: ‘larger reject, smaller accept’. The null hypothesis was that the two
means are not significantly different, so we reject this and accept the alternative hypothesis
that the two means are significantly different. Again, rather than merely rejecting the null
hypothesis, it is better to state the probability that data as extreme as this (or more extreme)
would be observed if the mean values were the same. For this we use pt rather than qt, and
2×pt because we are doing a two-tailed test:

2*pt(-3.872983,18)

[1] 0.001114540

so p < 0�0015.
You won’t be surprised to learn that there is a built-in function to do all the work for us.

It is called, helpfully, t.test and is used simply by providing the names of the two vectors
containing the samples on which the test is to be carried out (gardenA and gardenB in
our case).

t.test(gardenA,gardenB)

There is rather a lot of output. You often find this: the simpler the statistical test, the more
voluminous the output.

Welch Two Sample t-test

data: gardenA and gardenB
t = -3.873, df = 18, p-value = 0.001115
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.0849115 -0.9150885
sample estimates:
mean of x mean of y

3 5

The result is exactly the same as we obtained the long way. The value of t is −3�873
and since the sign is irrelevant in a t test we reject the null hypothesis because the test
statistic is larger than the critical value of 2.1. The mean ozone concentration is significantly
higher in garden B than in garden A. The computer output also gives a p value and a
confidence interval. Note that, because the means are significantly different, the confidence
interval on the difference does not include zero (in fact, it goes from −3�085 up to −0�915).
You might present the result like this: ‘Ozone concentration was significantly higher in
garden B �mean = 5�0 pphm� than in garden A (mean = 3�0 pphm	 t = 3�873� p = 0�0011
(2-tailed), d�f� = 18).’

There is a formula-based version of t.test that you can use when your explanatory variable
consists of a two-level factor (see p. 492).

CLASSICAL TESTS 297

Wilcoxon rank-sum test

This is a non-parametric alternative to Student’s t test, which we could use if the errors
were non-normal. The Wilcoxon rank-sum test statistic, W , is calculated as follows. Both
samples are put into a single array with their sample names clearly attached (A and B in this
case, as explained below). Then the aggregate list is sorted, taking care to keep the sample
labels with their respective values. A rank is assigned to each value, with ties getting the
appropriate average rank (two-way ties get (rank i+ (rank i+ 1))/2, three-way ties get (rank
i+ (rank i + 1) + (rank i + 2))/3, and so on). Finally the ranks are added up for each of the
two samples, and significance is assessed on size of the smaller sum of ranks.

First we make a combined vector of the samples:

ozone<-c(gardenA,gardenB)
ozone

[1] 3 4 4 3 2 3 1 3 5 2 5 5 6 7 4 4 3 5 6 5

Then we make a list of the sample names:

label<-c(rep("A",10),rep("B",10))
label

[1] "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "B" "B" "B" "B"
"B" "B" "B" "B" "B" "B"

Now use the built-in function rank to get a vector containing the ranks, smallest to largest,
within the combined vector:

combined.ranks<-rank(ozone)
combined.ranks
[1] 6.0 10.5 10.5 6.0 2.5 6.0 1.0 6.0 15.0 2.5 15.0 15.0

18.5 20.0 10.5
[16] 10.5 6.0 15.0 18.5 15.0

Notice that the ties have been dealt with by averaging the appropriate ranks. Now all we
need to do is calculate the sum of the ranks for each garden. We use tapply with sum as
the required operation

tapply(combined.ranks,label,sum)

A B
66 144

Finally, we compare the smaller of the two values (66) with values in tables of Wilcoxon
rank sums (e.g. Snedecor and Cochran, 1980, p. 555), and reject the null hypothesis if our
value of 66 is smaller than the value in tables. For samples of size 10 and 10 like ours, the
5% value in tables is 78. Our value is smaller than this, so we reject the null hypothesis.
The two sample means are significantly different (in agreement with our earlier t test).

We can carry out the whole procedure automatically, and avoid the need to use tables of
critical values of Wilcoxon rank sums, by using the built-in function wilcox.test:

wilcox.test(gardenA,gardenB)

Wilcoxon rank sum test with continuity correction

data: gardenA and gardenB

298 THE R BOOK

W = 11, p-value = 0.002988
alternative hypothesis: true mu is not equal to 0

Warning message:
Cannot compute exact p-value with ties in:
wilcox.test.default(gardenA, gardenB)

The function uses a normal approximation algorithm to work out a z value, and from this a
p value to assess the hypothesis that the two means are the same. This p value of 0.002 988
is much less than 0.05, so we reject the null hypothesis, and conclude that the mean ozone
concentrations in gardens A and B are significantly different. The warning message at the
end draws attention to the fact that there are ties in the data (repeats of the same ozone
measurement), and this means that the p value cannot be calculated exactly (this is seldom
a real worry).

It is interesting to compare the p values of the t test and the Wilcoxon test with the
same data: p=0�001 115 and 0.002 988, respectively. The non-parametric test is much more
appropriate than the t test when the errors are not normal, and the non-parametric test is
about 95% as powerful with normal errors, and can be more powerful than the t test if
the distribution is strongly skewed by the presence of outliers. Typically, as here, the t test
will give the lower p value, so the Wilcoxon test is said to be conservative: if a difference
is significant under a Wilcoxon test it would have been even more significant under a t
test.

Tests on paired samples

Sometimes, two-sample data come from paired observations. In this case, we might expect
a correlation between the two measurements, either because they were made on the same
individual, or were taken from the same location. You might recall that the variance of a
difference is the average of

�yA −
A�2 + �yB −
B�2 − 2�yA −
A��yB −
B�

which is the variance of sample A, plus the variance of sample B, minus twice the covariance
of A and B. When the covariance of A and B is positive, this is a great help because it
reduces the variance of the difference, which makes it easier to detect significant differences
between the means. Pairing is not always effective, because the correlation between yA and
yB may be weak.

The following data are a composite biodiversity score based on a kick sample of aquatic
invertebrates.

streams<-read.table("c:\\temp\\streams.txt",header=T)
attach(streams)
names(streams)

[1] "down" "up"

The elements are paired because the two samples were taken on the same river, one upstream
and one downstream from the same sewage outfall.

If we ignore the fact that the samples are paired, it appears that the sewage outfall has
no impact on biodiversity score �p = 0�6856�:

CLASSICAL TESTS 299

t.test(down,up)

Welch Two Sample t-test

data: down and up
t = -0.4088, df = 29.755, p-value = 0.6856
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-5.248256 3.498256
sample estimates:
mean of x mean of y

12.500 13.375

However, if we allow that the samples are paired (simply by specifying the option
paired=T), the picture is completely different:

t.test(down,up,paired=T)

Paired t-test
data: down and up
t = -3.0502, df = 15, p-value = 0.0081
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.4864388 -0.2635612
sample estimates:
mean of the differences

-0.875

Now the difference between the means is highly significant �p = 0�0081�. The moral is
clear. If you can do a paired t test, then you should always do the paired test. It can never
do any harm, and sometimes (as here) it can do a huge amount of good. In general, if
you have information on blocking or spatial correlation (in this case, the fact that the two
samples came from the same river), then you should always use it in the analysis.

Here is the same paired test carried out as a one-sample t test on the differences between
the pairs:

d <- up-down
t.test(d)

One Sample t-test

data: d
t = 3.0502, df = 15, p-value = 0.0081
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.2635612 1.4864388
sample estimates:
mean of x

0.875

As you see, the result is identical to the two-sample t test with paired=T �p = 0�0081�.
The upstream values of the biodiversity score were greater by 0.875 on average, and this

300 THE R BOOK

difference is highly significant. Working with the differences has halved the number of
degrees of freedom (from 30 to 15), but it has more than compensated for this by reducing
the error variance, because there is such a strong positive correlation between yA and yB.

The sign test

This is one of the simplest of all statistical tests. Suppose that you cannot measure a
difference, but you can see it (e.g. in judging a diving contest). For example, nine springboard
divers were scored as better or worse, having trained under a new regime and under the
conventional regime (the regimes were allocated in a randomized sequence to each athlete:
new then conventional, or conventional then new). Divers were judged twice: one diver
was worse on the new regime, and 8 were better. What is the evidence that the new regime
produces significantly better scores in competition? The answer comes from a two-tailed
binomial test. How likely is a response of 1/9 (or 8/9 or more extreme than this, i.e. 0/9 or
9/9) if the populations are actually the same (i.e. p = 0�5)? We use a binomial test for this,
specifying the number of ‘failures’ (1) and the total sample size (9):

binom.test(1,9)

Exact binomial test
data: 1 out of 9
number of successes = 1, n = 9, p-value = 0.0391
alternative hypothesis: true p is not equal to 0.5

We would conclude that the new training regime is significantly better than the traditional
method, because p < 0�05.

It is easy to write a function to carry out a sign test to compare two samples, x and y

sign.test <- function(x, y)
{
if(length(x) != length(y)) stop("The two variables must be the same length")
d <- x - y
binom.test(sum(d > 0), length(d))
}

The function starts by checking that the two vectors are the same length, then works out
the vector of the differences, d. The binomial test is then applied to the number of positive
differences (sum(d > 0)) and the total number of numbers (length(d)). If there was no
difference between the samples, then on average, the sum would be about half of length(d).
Here is the sign test used to compare the ozone levels in gardens A and B (see above):

sign.test(gardenA,gardenB)

Exact binomial test

data: sum(d > 0) and length(d)
number of successes = 0, number of trials = 10, p-value = 0.001953
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.0000000 0.3084971
sample estimates:
probability of success

0

CLASSICAL TESTS 301

Note that the p value (0.002) from the sign test is larger than in the equivalent t test
�p = 0�0011� that we carried out earlier. This will generally be the case: other things being
equal, the parametric test will be more powerful than the non-parametric equivalent.

Binomial test to compare two proportions

Suppose that only four females were promoted, compared to 196 men. Is this an example
of blatant sexism, as it might appear at first glance? Before we can judge, of course, we
need to know the number of male and female candidates. It turns out that 196 men were
promoted out of 3270 candidates, compared with 4 promotions out of only 40 candidates
for the women. Now, if anything, it looks like the females did better than males in the
promotion round (10% success for women versus 6% success for men).

The question then arises as to whether the apparent positive discrimination in favour
of women is statistically significant, or whether this sort of difference could arise through
chance alone. This is easy in R using the built-in binomial proportions test prop.test in
which we specify two vectors, the first containing the number of successes for females
and males c(4,196) and second containing the total number of female and male candidates
c(40,3270):

prop.test(c(4,196),c(40,3270))

2-sample test for equality of proportions with continuity correction

data: c(4, 196) out of c(40, 3270)
X-squared = 0.5229, df = 1, p-value = 0.4696
alternative hypothesis: two.sided
95 percent confidence interval:
-0.06591631 0.14603864
sample estimates:

prop 1 prop 2
0.10000000 0.05993884

Warning message:
Chi-squared approximation may be incorrect in: prop.test(c(4, 196),
c(40, 3270))

There is no evidence in favour of positive discrimination �p=0�4696�. A result like this will
occur more than 45% of the time by chance alone. Just think what would have happened if
one of the successful female candidates had not applied. Then the same promotion system
would have produced a female success rate of 3/39 instead of 4/40 (7.7% instead of 10%).
In small samples, small changes have big effects.

Chi-squared contingency tables

A great deal of statistical information comes in the form of counts (whole numbers or
integers); the number of animals that died, the number of branches on a tree, the number of
days of frost, the number of companies that failed, the number of patients who died. With
count data, the number 0 is often the value of a response variable (consider, for example,
what a 0 would mean in the context of the examples just listed). The analysis of count data
in tables is discussed in more detail in Chapters 14 and 15.

The dictionary definition of contingency is ‘a thing dependent on an uncertain event’
(OED, 2004). In statistics, however, the contingencies are all the events that could possibly

302 THE R BOOK

happen. A contingency table shows the counts of how many times each of the contingencies
actually happened in a particular sample. Consider the following example that has to do
with the relationship between hair colour and eye colour in white people. For simplicity, we
just chose two contingencies for hair colour: ‘fair’ and ‘dark’. Likewise we just chose two
contingencies for eye colour: ‘blue’ and ‘brown’. Each of these two categorical variables,
eye colour and hair colour, has two levels (‘blue’ and ‘brown’, and ‘fair’ and ‘dark’,
respectively). Between them, they define four possible outcomes (the contingencies): fair
hair and blue eyes, fair hair and brown eyes, dark hair and blue eyes, and dark hair and
brown eyes. We take a sample of people and count how many of them fall into each of
these four categories. Then we fill in the 2 × 2 contingency table like this:

Blue eyes Brown eyes

Fair hair 38 11

Dark hair 14 51

These are our observed frequencies (or counts). The next step is very important. In order
to make any progress in the analysis of these data we need a model which predicts the
expected frequencies. What would be a sensible model in a case like this? There are all sorts
of complicated models that you might select, but the simplest model (Occam’s razor, or
the principle of parsimony) is that hair colour and eye colour are independent. We may not
believe that this is actually true, but the hypothesis has the great virtue of being falsifiable.
It is also a very sensible model to choose because it makes it easy to predict the expected
frequencies based on the assumption that the model is true. We need to do some simple
probability work. What is the probability of getting a random individual from this sample
whose hair was fair? A total of 49 people �38+11� had fair hair out of a total sample of 114
people. So the probability of fair hair is 49/114 and the probability of dark hair is 65/114.
Notice that because we have only two levels of hair colour, these two probabilities add up to
1 ��49 + 65�/114�. What about eye colour? What is the probability of selecting someone at
random from this sample with blue eyes? A total of 52 people had blue eyes �38 + 14� out
of the sample of 114, so the probability of blue eyes is 52/114 and the probability of brown
eyes is 62/114. As before, these sum to 1 ��52 + 62�/114�. It helps to add the subtotals to
the margins of the contingency table like this:

Blue eyes Brown eyes Row totals

Fair hair 38 11 49

Dark hair 14 51 65

Column totals 52 62 114

Now comes the important bit. We want to know the expected frequency of people with
fair hair and blue eyes, to compare with our observed frequency of 38. Our model says
that the two are independent. This is essential information, because it allows us to calculate
the expected probability of fair hair and blue eyes. If, and only if, the two traits are
independent, then the probability of having fair hair and blue eyes is the product of the
two probabilities. So, following our earlier calculations, the probability of fair hair and blue
eyes is 49/114 × 52/114. We can do exactly equivalent things for the other three cells of
the contingency table:

CLASSICAL TESTS 303

Blue eyes Brown eyes Row totals

Fair hair 49/114 × 52/114 49/114 × 62/114 49

Dark hair 65/114 × 52/114 65/114 × 62/114 65

Column totals 52 62 114

Now we need to know how to calculate the expected frequency. It couldn’t be simpler. It
is just the probability multiplied by the total sample �n = 114�. So the expected frequency
of blue eyes and fair hair is 49/114 × 52/114 × 114 = 22�35, which is much less than our
observed frequency of 38. It is beginning to look as if our hypothesis of independence of
hair and eye colour is false.

You might have noticed something useful in the last calculation: two of the sample sizes
cancel out. Therefore, the expected frequency in each cell is just the row total �R� times
the column total �C� divided by the grand total �G� like this:

E = R × C

G
�

We can now work out the four expected frequencies:

Blue eyes Brown eyes Row totals

Fair hair 22.35 26.65 49

Dark hair 29.65 35.35 65

Column totals 52 62 114

Notice that the row and column totals (the so-called ‘marginal totals’) are retained under the
model. It is clear that the observed frequencies and the expected frequencies are different.
But in sampling, everything always varies, so this is no surprise. The important question is
whether the expected frequencies are significantly different from the observed frequencies.

We can assess the significance of the differences between observed and expected fre-
quencies in a variety of ways:

• Pearson’s chi-squared;

• G test;

• Fisher’s exact test.

Pearson’s chi-squared

We begin with Pearson’s chi-squared test. The test statistic �2 is

�2 =∑ �O − E�2

E
�

304 THE R BOOK

where O is the observed frequency and E is the expected frequency. It makes the calculations
easier if we write the observed and expected frequencies in parallel columns, so that we can
work out the corrected squared differences more easily.

O E �O − E�2 �O − E�2

E

Fair hair and blue eyes 38 22.35 244.92 10.96

Fair hair and brown eyes 11 26.65 244.92 9.19

Dark hair and blue eyes 14 29.65 244.92 8.26

Dark hair and brown eyes 51 35.35 244.92 6.93

All we need to do now is to add up the four components of chi-squared to get �2 = 35�33.
The question now arises: is this a big value of chi-squared or not? This is important,

because if it is a bigger value of chi-squared than we would expect by chance, then we
should reject the null hypothesis. If, on the other hand, it is within the range of values that
we would expect by chance alone, then we should accept the null hypothesis.

We always proceed in the same way at this stage. We have a calculated value of the test
statistic: �2 = 35�33. We compare this value of the test statistic with the relevant critical
value. To work out the critical value of chi-squared we need two things:

• the number of degrees of freedom, and

• the degree of certainty with which to work.

In general, a contingency table has a number of rows �r� and a number of columns �c�,
and the degrees of freedom is given by

d�f� = �r − 1� × �c − 1��

So we have �2 − 1�× �2 − 1�= 1 degree of freedom for a 2 × 2 contingency table. You can
see why there is only one degree of freedom by working through our example. Take the
‘fair hair, brown eyes’ box (the top right in the table) and ask how many values this could
possibly take. The first thing to note is that the count could not be more than 49, otherwise
the row total would be wrong. But in principle, the number in this box is free to take any
value between 0 and 49. We have one degree of freedom for this box. But when we have
fixed this box to be 11

Blue eyes Brown eyes Row totals

Fair hair 11 49

Dark hair 65

Column totals 52 62 114

CLASSICAL TESTS 305

you will see that we have no freedom at all for any of the other three boxes. The top left
box has to be 49 − 11 = 38 because the row total is fixed at 49. Once the top left box is
defined as 38 then the bottom left box has to be 52 − 38 = 14 because the column total is
fixed (the total number of people with blue eyes was 52). This means that the bottom right
box has to be 65 − 14 = 51. Thus, because the marginal totals are constrained, a 2 × 2
contingency table has just one degree of freedom.

The next thing we need to do is say how certain we want to be about the falseness of
the null hypothesis. The more certain we want to be, the larger the value of chi-squared we
would need to reject the null hypothesis. It is conventional to work at the 95% level. That
is our certainty level, so our uncertainty level is 100 − 95 = 5%. Expressed as a fraction,
this is called alpha �� = 0�05�. Technically, alpha is the probability of rejecting the null
hypothesis when it is true. This is called a Type I error. A Type II error is accepting the
null hypothesis when it is false.

Critical values in R are obtained by use of quantiles (q) of the appropriate statistical
distribution. For the chi-squared distribution, this function is called qchisq. The function
has two arguments: the certainty level �p = 0�95�, and the degrees of freedom �d�f� = 1�:

qchisq(0.95,1)

[1] 3.841459

The critical value of chi-squared is 3.841. Since the calculated value of the test statistic is
greater than the critical value we reject the null hypothesis.

What have we learned so far? We have rejected the null hypothesis that eye colour
and hair colour are independent. But that’s not the end of the story, because we have not
established the way in which they are related (e.g. is the correlation between them positive
or negative?). To do this we need to look carefully at the data, and compare the observed
and expected frequencies. If fair hair and blue eyes were positively correlated, would the
observed frequency be greater or less than the expected frequency? A moment’s thought
should convince you that the observed frequency will be greater than the expected frequency
when the traits are positively correlated (and less when they are negatively correlated). In
our case we expected only 22.35 but we observed 38 people (nearly twice as many) to
have both fair hair and blue eyes. So it is clear that fair hair and blue eyes are positively
associated.

In R the procedure is very straightforward. We start by defining the counts as a 2 × 2
matrix like this:

count<-matrix(c(38,14,11,51),nrow=2)
count

[,1] [,2]
[1,] 38 11
[2,] 14 51

Notice that you enter the data columnwise (not row-wise) into the matrix. Then the test uses
the chisq.test function, with the matrix of counts as its only argument.

chisq.test(count)

Pearson’s Chi-squared test with Yates’ continuity correction
data: count
X-squared = 33.112, df = 1, p-value = 8.7e-09

306 THE R BOOK

The calculated value of chi-squared is slightly different from ours, because Yates’ correction
has been applied as the default (see Sokal and Rohlf, 1995, p. 736). If you switch the
correction off (correct=F), you get the value we calculated by hand:

chisq.test(count,correct=F)

Pearson’s Chi-squared test

data: count
X-squared = 35.3338, df = 1, p-value = 2.778e-09

It makes no difference at all to the interpretation: there is a highly significant positive
association between fair hair and blue eyes for this group of people. If you need to extract
the frequencies expected under the null hypothesis of independence then use

chisq.test(count,correct=F)$expected

[,1] [,2]
[1,] 22.35088 26.64912
[2,] 29.64912 35.35088

G test of contingency

The idea is exactly the same – we are looking for evidence of non-independence of hair
colour and eye colour. Even the distribution of the test statistic is the same: chi-squared.
The difference is in the test statistic. Instead of computing

∑
�O − E�2/E we compute the

deviance from a log-linear model (see p. 552):

G = 2
∑

O ln
(

O

E

)
�

Here are the calculations:

O E ln
(

O

E

)
O ln

(
O

E

)

Fair hair and blue eyes 38 22.35 0.5307598 20.168874

Fair hair and brown eyes 11 26.65 −0.8848939 −9.733833

Dark hair and blue eyes 14 29.65 −0.7504048 −10.505667

Dark hair and brown eyes 51 35.35 0.3665272 18.692889

The test statistic G is twice the sum of the right-hand column: 2×18�62226 = 37�24453.
This value is compared with chi-squared in tables with 1 d.f. The calculated value of the
test statistic is much greater than the critical value (3.841) so we reject the null hypothesis
of independence. Hair colour and eye colour are correlated in this group of people. We
need to look at the data to see which way the correlation goes. We see far more people
with fair hairs and blue eyes (38) than expected under the null hypothesis of indepen-
dence (22.35) so the correlation is positive. Pearson’s chi-squared was �2 = 35�33 (above)

CLASSICAL TESTS 307

so the test statistics are slightly different (�2 = 37�24 in the G test) but the interpretation is
identical.

So far we have assumed equal probabilities but chisq.test can deal with cases with
unequal probabilities. This example has 21 individuals distributed over four categories:

chisq.test(c(10,3,2,6))

Chi-squared test for given probabilities
data: c(10, 3, 2, 6)
X-squared = 7.381, df = 3, p-value = 0.0607

The four counts are not significantly different from null expectation if p = 0�25 in each
cell. However, if the null hypothesis was that the third and fourth cells had 1.5 times the
probability of the first two cells, then these counts are highly significant.

chisq.test(c(10,3,2,6),p=c(0.2,0.2,0.3,0.3))

Chi-squared test for given probabilities
data: c(10, 3, 2, 6)
X-squared = 11.3016, df = 3, p-value = 0.01020

Warning message:
Chi-squared approximation may be incorrect in:
chisq.test(c(10, 3, 2, 6), p = c(0.2, 0.2, 0.3, 0.3))

Note the warning message associated with the low expected frequencies in cells 1 and 2.
You can use the chisq.test function with table objects as well as vectors. To test

the random number generator as a simulator of the throws of a six-sided die we could
simulate 100 throws like this, then use table to count the number of times each number
appeared:

die<-ceiling(runif(100,0,6))
table(die)

die
1 2 3 4 5 6

18 17 16 13 20 16

So we observed only 13 fours in this trail and 20 fives. But is this a significant departure
from fairness of the die? chisq.test will answer this:

chisq.test(table(die))

Chi-squared test for given probabilities
data: table(die)
X-squared = 1.64, df = 5, p-value = 0.8964

No. This is a fair die �p = 0�896�. Note that the syntax is chisq.test(table(die)) not
chisq.test(die) and that there are 5 degrees of freedom in this case.

Contingency tables with small expected frequencies: Fisher’s exact test

When one or more of the expected frequencies is less than 4 (or 5 depending on the rule
of thumb you follow) then it is wrong to use Pearson’s chi-squared or log-linear models (G
tests) for your contingency table. This is because small expected values inflate the value

308 THE R BOOK

of the test statistic, and it no longer can be assumed to follow the chi-squared distribution.
The individual counts are a, b, c and d like this:

Column 1 Column 2 Row totals

Row 1 a b a + b

Row 2 c d c + d

Column totals a + c b + d n

The probability of any one particular outcome is given by

p = �a + b�!�c + d�!�a + c�!�b + d�!
a!b!c!d!n!

where n is the grand total.
Our data concern the distribution of 8 ants’ nests over 10 trees of each of two species

(A and B). There are two categorical explanatory variables (ants and trees), and four
contingencies, ants (present or absent) and trees (A or B). The response variable is the
vector of four counts c(6,4,2,8) entered columnwise:

Tree A Tree B Row totals

With ants 6 2 8

Without ants 4 8 12

Column totals 10 10 20

We can calculate the probability for this particular outcome:

factorial(8)*factorial(12)*factorial(10)*factorial(10)/
(factorial(6)*factorial(2)*factorial(4)*factorial(8)*factorial(20))

[1] 0.07501786

But this is only part of the story. We need to compute the probability of outcomes that are
more extreme than this. There are two of them. Suppose only 1 ant colony was found on
Tree B. Then the table values would be 7, 1, 3, 9 but the row and column totals would
be exactly the same (the marginal totals are constrained). The numerator always stays the
same, so this case has probability

factorial(8)*factorial(12)*factorial(10)*factorial(10)/
(factorial(7)*factorial(3)*factorial(1)*factorial(9)*factorial(20))

[1] 0.009526078

There is an even more extreme case if no ant colonies at all were found on Tree B. Now
the table elements become 8, 0, 2, 10 with probability

factorial(8)*factorial(12)*factorial(10)*factorial(10)/
(factorial(8)*factorial(2)*factorial(0)*factorial(10)*factorial(20))

CLASSICAL TESTS 309

[1] 0.0003572279

and we need to add these three probabilities together:

0.07501786+0.009526078+0.000352279

[1] 0.08489622

But there was no a priori reason for expecting the result to be in this direction. It might
have been tree A that had relatively few ant colonies. We need to allow for extreme counts
in the opposite direction by doubling this probability (all Fisher’s exact tests are two-tailed):

2*(0.07501786+0.009526078+0.000352279)

[1] 0.1697924

This shows that there is no evidence of a correlation between tree and ant colonies. The
observed pattern, or a more extreme one, could have arisen by chance alone with probability
p = 0�17.

There is a built-in function called fisher.test, which saves us all this tedious computation.
It takes as its argument a 2 × 2 matrix containing the counts of the four contingencies. We
make the matrix like this (compare with the alternative method of making a matrix, above):

x<-as.matrix(c(6,4,2,8))
dim(x)<-c(2,2)
x

[,1] [,2]
[1,] 6 2
[2,] 4 8

we then run the test like this:

fisher.test(x)

Fisher’s Exact Test for Count Data

data: x
p-value = 0.1698
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.6026805 79.8309210
sample estimates:
odds ratio
5.430473

Another way of using the function is to provide it with two vectors containing factor
levels, instead of a two-dimensional matrix of counts. This saves you the trouble of counting
up how many combinations of each factor level there are:

table<-read.table("c:\\temp\\fisher.txt",header=T)
attach(table)
fisher.test(tree,nests)

Fisher’s Exact Test for Count Data

data: tree and nests
p-value = 0.1698

310 THE R BOOK

alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.6026805 79.8309210
sample estimates:
odds ratio
5.430473

The fisher.test can be used with matrices much bigger than 2 × 2.

Correlation and covariance

With two continuous variables, x and y, the question naturally arises as to whether their
values are correlated with each other. Correlation is defined in terms of the variance of x,
the variance of y, and the covariance of x and y (the way the two vary together, which is
to say the way they covary) on the assumption that both variables are normally distributed.
We have symbols already for the two variances: s2

x and s2
y . We denote the covariance of x

and y by cov�x� y�, so the correlation coefficient r is defined as

r = cov�x� y�√
s2
xs

2
y

�

We know how to calculate variances, so it remains only to work out the value of the
covariance of x and y. Covariance is defined as the expectation of the vector product x∗y.
The covariance of x and y is the expectation of the product minus the product of the two
expectations. Note that when x and y are independent (i.e. they are not correlated) then the
covariance between x and y is 0, so E�xy=E�x�E�y (i.e. the product of their mean values).

Let’s do a numerical example.

data<-read.table("c:\\temp\\twosample.txt",header=T)
attach(data)
plot(x,y)

10

20
40

60
80

10
0

12
0

14
0

20 30
x

y

40 50

CLASSICAL TESTS 311

First, we need the variance of x and the variance of y:

var(x)

[1] 199.9837

var(y)

[1] 977.0153

The covariance of x and y, cov�x� y�, is given by the var function when we supply it with
two vectors like this:

var(x,y)

[1] 414.9603

Thus, the correlation coefficient should be 414�96/
√

199�98 × 977�02:

var(x,y)/sqrt(var(x)*var(y))

[1] 0.9387684

Let’s see if this checks out:

cor(x,y)

[1] 0.9387684

So now you know the definition of the correlation coefficient: it is the covariance divided
by the geometric mean of the two variances.

Data dredging

The R function cor returns the correlation matrix of a data matrix, or a single value showing
the correlation between one vector and another:

pollute<-read.table("c:\\temp\\Pollute.txt",header=T)
attach(pollute)
names(pollute)

[1] "Pollution" "Temp" "Industry" "Population" "Wind"
[6] "Rain" "Wet.days"

cor(pollute)

Pollution Temp Industry Population Wind
Pollution 1.00000000 -0.43360020 0.64516550 0.49377958 0.09509921
Temp -0.43360020 1.00000000 -0.18788200 -0.06267813 -0.35112340
Industry 0.64516550 -0.18788200 1.00000000 0.95545769 0.23650590
Population 0.49377958 -0.06267813 0.95545769 1.00000000 0.21177156
Wind 0.09509921 -0.35112340 0.23650590 0.21177156 1.00000000
Rain 0.05428389 0.38628047 -0.03121727 -0.02606884 -0.01246601
Wet.days 0.36956363 -0.43024212 0.13073780 0.04208319 0.16694974

Rain Wet.days
Pollution 0.05428389 0.36956363
Temp 0.38628047 -0.43024212
Industry -0.03121727 0.13073780
Population -0.02606884 0.04208319
Wind -0.01246601 0.16694974
Rain 1.00000000 0.49605834
Wet.days 0.49605834 1.00000000

312 THE R BOOK

The phrase ‘data dredging’ is used disparagingly to describe the act of trawling through
a table like this, desperately looking for big values which might suggest relationships that
you can publish. This behaviour is not to be encouraged. The correct approach is model
simplification (see p. 327). Note that the correlations are identical in opposite halves of the
matrix (in contrast to regression, where regression of y on x would give different parameter
values and standard errors than regression of x on y). The correlation between two vectors
produces a single value:

cor(Pollution,Wet.days)

[1] 0.3695636

Correlations with single explanatory variables can be highly misleading if (as is typical)
there is substantial correlation amongst the explanatory variables (see p. 434).

Partial correlation

With more than two variables, you often want to know the correlation between x and y
when a third variable, say, z, is held constant. The partial correlation coefficient measures
this. It enables correlation due to a shared common cause to be distinguished from direct
correlation. It is given by

rxy�z = rxy − rxz�ryz√
�1 − r2

xz��1 − r2
yz�

�

Suppose we had four variables and we wanted to look at the correlation between x and y
holding the other two, z and w, constant. Then

rxy�zw = rxy�z − rxw�z�ryw�z√
�1 − r2

xw�z��1 − r2
yw�z�

�

You will need partial correlation coefficients if you want to do path analysis. R has a
package called sem for carrying out structural equation modelling (including the produc-
tion of path.diagram) and another called corpcor for converting correlations into partial
correlations using the cor2pcor function (or vice versa with pcor2cor).

Correlation and the variance of differences between variables

Samples often exhibit positive correlations that result from pairing, as in the upstream
and downstream invertebrate biodiversity data that we investigated earlier. There is an
important general question about the effect of correlation on the variance of differences
between variables. In the extreme, when two variables are so perfectly correlated that they
are identical, then the difference between one variable and the other is zero. So it is clear
that the variance of a difference will decline as the strength of positive correlation increases.

The following data show the depth of the water table (m below the surface) in winter and
summer at 9 locations:

paired<-read.table("c:\\temp\\paired.txt",header=T)
attach(paired)
names(paired)

[1] "Location" "Summer" "Winter"

CLASSICAL TESTS 313

We begin by asking whether there is a correlation between summer and winter water
table depths across locations:

cor(Summer, Winter)

[1] 0.8820102

There is a strong positive correlation. Not surprisingly, places where the water table is high
in summer tend to have a high water table in winter as well. If you want to determine
the significance of a correlation (i.e. the p value associated with the calculated value of r)
then use cor.test rather than cor. This test has non-parametric options for Kendall’s tau or
Spearman’s rank, depending on the method you specify (method="k" or method="s"), but
the default method is Pearson’s product-moment correlation (method="p"):

cor.test(Summer, Winter)

Pearson’s product-moment correlation

data: Summer and Winter
t = 4.9521, df = 7, p-value = 0.001652
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.5259984 0.9750087
sample estimates:

cor
0.8820102

The correlation is highly significant �p = 0�00165�.
Now, let’s investigate the relationship between the correlation coefficient and the three

variances: the summer variance, the winter variance, and the variance of the differences
(Summer−Winter)

varS=var(Summer)
varW=var(Winter)
varD=var(Summer - Winter)

The correlation coefficient � is related to these three variances by:

� = �2
y + �2

z − �2
y−z

2�y�z

So, using the values we have just calculated, we get the correlation coefficient to be

(varS+varW-varD)/(2*sqrt(varS)*sqrt(varW))

[1] 0.8820102

which checks out. We can also see whether the variance of the difference is equal to the
sum of the component variances (see p. 298):

varD

[1] 0.01015

varS+varW

[1] 0.07821389

314 THE R BOOK

No, it is not. They would be equal only if the two samples were independent. In fact,
we know that the two variables are positively correlated, so the variance of the difference
should be less than the sum of the variances by an amount equal to 2 × r × s1 × s2

varS + varW – 2 * 0.8820102 * sqrt(varS) * sqrt(varW)

[1] 0.01015

That’s more like it.

Scale-dependent correlations

Another major difficulty with correlations is that scatterplots can give a highly misleading
impression of what is going on. The moral of this exercise is very important: things are not
always as they seem. The following data show the number of species of mammals in forests
of differing productivity:

par(mfrow=c(1,1))
rm(x,y)
productivity<-read.table("c:\\temp\\productivity.txt",header=T)
attach(productivity)
names(productivity)

[1] "x" "y" "f"

plot(x,y,ylab="Mammal species",xlab="Productivity")

0

0
5

10M
am

m
al

 s
pe

ci
es

15
20

25

5 10 15

Productivity

20 25 30

There is a very clear positive correlation: increasing productivity is associated with increas-
ing species richness. The correlation is highly significant:

CLASSICAL TESTS 315

cor.test(x,y,method="spearman")

Spearman’s rank correlation rho

data: x and y
S = 6515, p-value = < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.7516389

However, what if we look at the relationship for each region �f� separately, using xyplot
from the library of lattice plots?

xyplot(y~x�f,
panel=function(x,y) {
panel.xyplot(x,y,pch=16)
panel.abline(lm(y~x)) })

0

0

5

10

15

20

25

0

5

10

15

20

25

0
5

10

15

20

25

5 10 15 20 25 30 0
x

a b c

d e f

g

y

5 10 15 20 25 30

I’ve added the regression lines for emphasis, but the pattern is obvious. In every single case,
increasing productivity is associated with reduced mammal species richness within each
region (labelled a–g). The lesson is clear: you need to be extremely careful when looking
at correlations across different scales. Things that are positively correlated over short time
scales may turn out to be negatively correlated in the long term. Things that appear to be
positively correlated at large spatial scales may turn out (as in this example) to be negatively
correlated at small scales.

316 THE R BOOK

Kolmogorov–Smirnov test

People know this test for its wonderful name, rather than for what it actually does. It is an
extremely simple test for asking one of two different questions:

• Are two sample distributions the same, or are they significantly different from one
another in one or more (unspecified) ways?

• Does a particular sample distribution arise from a particular hypothesized distribution?

The two-sample problem is the one most often used. The apparently simple question is
actually very broad. It is obvious that two distributions could be different because their means
were different. But two distributions with exactly the same mean could be significantly
different if they differed in variance, or in skew or kurtosis (see p. 287).

The Kolmogorov–Smirnov test works on cumulative distribution functions. These give
the probability that a randomly selected value of X is less than or equal to x

F�x� = P�X ≤ x�

This sounds somewhat abstract. Suppose we had insect wing sizes for two geographically
separated populations and we wanted to test whether the distribution of wing lengths was
the same in the two places.

wings<-read.table("c:\\temp\\wings.txt",header=T)
attach(wings)
names(wings)

[1] "size" "location"

We need to find out how many specimens there are from each location:

table(location)
location
A B

50 70

So the samples are of unequal size (50 insects from location A, 70 from B). It will be useful,
therefore, to create two separate variables containing the wing lengths from sites A and B:

A<-size[location=="A"]
B<-size[location=="B"]

We could begin by comparing mean wing length in the two locations with a t test:

t.test(A,B)

Welch Two Sample t-test

data: A and B
t = -1.6073, df = 117.996, p-value = 0.1107
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.494476 0.259348
sample estimates:

CLASSICAL TESTS 317

mean of x mean of y
24.11748 25.23504

which shows than mean wing length is not significantly different in the two locations
�p = 0�11�.

But what about other attributes of the distribution? This is where Kolmogorov–Smirnov
is really useful:

ks.test(A,B)

Two-sample Kolmogorov–Smirnov test

data: A and B
D = 0.2629, p-value = 0.02911
alternative hypothesis: two.sided

The two distributions are, indeed, significantly different from one another �p < 0�05�. But
if not in their means, then in what respect do they differ? Perhaps they have different
variances?

var.test(A,B)

F test to compare two variances

data: A and B
F = 0.5014, num df = 49, denom df = 69, p-value = 0.01192
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.3006728 0.8559914
sample estimates:
ratio of variances

0.5014108

Indeed they do: the variance of wing length from location B is double that from location
A �p < 0�02�. We can finish by drawing the two histograms side by side to get a visual
impression of the difference in the shape of the two distributions; open bars show the data
from location B, solid bars show location A (see p. 538 for the code to draw a figure
like this):

The spread of wing lengths is much greater at location B despite the fact that the mean
wing length is similar in the two places. Also, the distribution is skew to the left in location
B, with the result that modal wing length is greater in location B (26 mm, compared with
22 mm at A).

Power analysis

The power of a test is the probability of rejecting the null hypothesis when it is false. It
has to do with Type II errors: � is the probability of accepting the null hypothesis when it
is false. In an ideal world, we would obviously make � as small as possible. But there is
a snag. The smaller we make the probability of committing a Type II error, the greater we
make the probability of committing a Type I error, and rejecting the null hypothesis when,
in fact, it is correct. A compromise is called for. Most statisticians work with � = 0�05 and
� = 0�2. Now the power of a test is defined as 1 − � = 0�8 under the standard assumptions.
This is used to calculate the sample sizes necessary to detect a specified difference when

318 THE R BOOK

14 16 18 20 22 24 26 28 30 32 34

Wing length

A
B

0
5

10
15

the error variance is known (or can be guessed at). Suppose that for a single sample the size
of the difference you want to detect is � and the variance in the response is s2 (e.g. known
from a pilot study or extracted from the literature). Then you will need n replicates to reject
the null hypothesis with power = 80%:

n ≈ 8 × s2

�2

This is a reasonable rule of thumb, but you should err on the side of caution by hav-
ing larger, not smaller, samples than these. Suppose that the mean is close to 20, and
the variance is 10, but we want to detect a 10% change (i.e. � = ±2) with probability 0.8,
then n = 8 × 10/22 = 20. There are built-in functions in R for carrying out power analyses
for ANOVA, proportion data and t tests:

power.t.test power calculations for one- and two-sample t tests;

power.prop.test power calculations two-sample test for proportions;

power.anova.test power calculations for balanced one-way ANOVA tests.

The arguments to the power.t.test function are n (the number of observations per group),
delta (the difference in means we want to be able to detect; you will need to think hard
about this value), sd (the standard deviation of the sample), sig.level (the significance level
(Type I error probability) where you will often accept the default value of 5%), power (the
power you want the test to have where you will often accept the default value of 80%), type

CLASSICAL TESTS 319

(the type of t test you want to carry out: two-sample, one-sample or paired) and alternative
(whether you want to do a one- or a two-tailed test, where you will typically want to do
the default, two-tailed test). One of the parameters n, delta, power, sd and sig.level must
be passed as NULL, and that parameter is determined from the others. This sounds like a
lot of work, but you will typically use all of the defaults so you only need to specify the
difference, delta, and the standard deviation, sd, to work out the sample size n that will give
you the power you want.

So how many replicates do we need in each of two samples to detect a difference of
10% with power =80% when the mean is 20 (i.e. delta = 2�0) and the standard deviation
is about 3.5?

power.t.test(delta=2,sd=3.5,power=0.8)

Two-sample t test power calculation

n = 49.05349
delta = 2

sd = 3.5
sig.level = 0.05

power = 0.8
alternative = two.sided

If you had been working with a rule of thumb like ‘30 is a big enough sample’ then you
would be severely disappointed in this case. You simply could not have detected a difference
of 10% with this experimental design. You need 50 replicates in each sample (100 replicates
in all) to achieve a power of 80%. You can work out what size of difference your sample
of 30 would allow you to detect, by specifying n and omitting delta:

power.t.test(n=30,sd=3.5,power=0.8)

Two-sample t test power calculation

n = 30
delta = 2.574701

sd = 3.5
sig.level = 0.05

power = 0.8
alternative = two.sided

which shows that you could have detected a 13% change �100 × �22�575 − 20�/20�. The
work you need to do before carrying out a power analysis before designing your experiment
is to find values for the standard deviation (from the literature or by carrying out a pilot
experiment) and the size of the difference your want to detect (from discussions with your
sponsor or your colleagues).

Bootstrap

We want to use bootstrapping to obtain a 95% confidence interval for the mean of a vector
of numbers called values:

data<-read.table("c:\\temp\\skewdata.txt",header=T)
attach(data)
names(data)

[1] "values"

320 THE R BOOK

We shall sample with replacement from values using sample(values,replace=T), then
work out the mean, repeating this operation 10 000 times, and storing the 10 000 different
mean values in a vector called ms:

ms<-numeric(10000)
for (i in 1:10000){
ms[i]<-mean(sample(values,replace=T)) }

The answer to our problem is provided by the quantile function applied to ms: we want
to know the values of ms associated with the 0.025 and the 0.975 tails of ms

quantile(ms,c(0.025,0.975))

2.5% 97.5%
24.97918 37.62932

so the intervals below and above the mean are

mean(values)-quantile(ms,c(0.025,0.975))

2.5% 97.5%
5.989472 -6.660659

How does this compare with the parametric confidence interval, CI = 1�96 ×√
s2/n?

1.96*sqrt(var(values)/length(values))

[1] 6.569802

Close, but not identical. Our bootstrapped intervals are skew because the data are skewed,
but the parametric interval, of course, is symmetric.

Now let’s see how to do the same thing using the boot function from the library
called boot:

install.packages("boot")
library(boot)

The syntax of boot is very simple:

boot(data, statistic, R)

The trick to using boot lies in understanding how to write the statistic function. R is the
number of resamplings you want to do (R =10000 in this example), and data is the name of the
data object to be resampled (values in this case). The attribute we want to estimate repeatedly
is the mean value of values. Thus, the first argument to our function must be values. The
second argument is an index (a vector of subscripts) that is used within boot to select random
assortments of values. Our statistic function can use the built-in function mean to calculate
the mean value of the sample of values.

mymean<-function(values,i) mean(values[i])

The key point is that we write mean(values[i]) not mean(values). Now we can run the
bootstrap for 10 000 iterations

myboot<-boot(values,mymean,R=10000)
myboot

ORDINARY NONPARAMETRIC BOOTSTRAP

CLASSICAL TESTS 321

Call:
boot(data = values, statistic = mymean, R = 10000)

Bootstrap Statistics :
original bias std. error

t1* 30.96866 -0.08155796 3.266455

The output is interpreted as follows. The original is the mean of the whole sample

mean(values)

[1] 30.96866

while bias is the difference between the arithmetic mean and the mean of the bootstrapped
samples which are in the variable called myboot$t

mean(myboot$t)-mean(values)

[1] -0.08155796

and std. error is the standard deviation of the simulated values in myboot$t

sqrt(var(myboot$t))

[,1]
[1,] 3.266455

20

F
re

qu
en

cy
F

re
qu

en
cy

0
50

0
15

00

25 30
myboot$t

Histogram of myboot$t

Histogram of ms

35 40

20

0
50

0
15

00

25 30 35
ms

40 45

322 THE R BOOK

The components of myboot can be used to do other things. For instance, we can compare
our homemade vector (ms, above) with a histogram of myboot$t:

par(mfrow=c(2,1))
hist(ms)
hist(myboot$t)

They differ in detail because they were generated with different series of random numbers.
Here are the 95% intervals for comparison with ours, calculated form the quantiles of
myboot$t:

mean(values)-quantile(myboot$t,c(0.025,0.975))

2.5% 97.5%
6.126120 -6.599232

There is a function boot.ci for calculating confidence intervals from the boot object:

boot.ci(myboot)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates
CALL :
boot.ci(boot.out = myboot)
Intervals :
Level Normal Basic
95% (24.65, 37.45) (24.37, 37.10)
Level Percentile BCa
95% (24.84, 37.57) (25.63, 38.91)
Calculations and Intervals on Original Scale
Warning message:
bootstrap variances needed for studentized intervals in:
boot.ci(myboot)

Normal is the parametric CI based on the standard error of the mean and the sample size
(p. 54). The Percentile interval is the quantile from the bootstrapped estimates:

quantile(myboot$t,c(0.025,0.975))

2.5% 97.5%
24.84254 37.56789

which, as we saw earlier, was close to our home-made values (above). The BCa interval
is the bias-corrected accelerated percentile. It is not greatly different in this case, but is
the interval preferred by statisticians. A more complex example of the use of bootstrapping
involving a generalized linear model is explained on p. 523. For other examples see ?boot,
and for more depth read the Davison and Hinkley (1997) book from which the boot package
is developed (as programmed by A.J. Canty).

9
Statistical Modelling

The hardest part of any statistical work is getting started. And one of the hardest things
about getting started is choosing the right kind of statistical analysis. The choice depends
on the nature of your data and on the particular question you are trying to answer. The
key is to understand what kind of response variable you have, and to know the nature of
your explanatory variables. The response variable is the thing you are working on: it is the
variable whose variation you are attempting to understand. This is the variable that goes
on the y axis of the graph. The explanatory variable goes on the x axis of the graph; you
are interested in the extent to which variation in the response variable is associated with
variation in the explanatory variable. You also need to consider the way that the variables
in your analysis measure what they purport to measure. A continuous measurement is a
variable such as height or weight that can take any real numbered value. A categorical
variable is a factor with two or more levels: sex is a factor with two levels (male and
female), and colour might be a factor with seven levels (red, orange, yellow, green, blue,
indigo, violet).

It is essential, therefore, that you can answer the following questions:

• Which of your variables is the response variable?

• Which are the explanatory variables?

• Are the explanatory variables continuous or categorical, or a mixture of both?

• What kind of response variable do you have: is it a continuous measurement, a count, a
proportion, a time at death, or a category?

These simple keys will lead you to the appropriate statistical method:

The explanatory variables

(a) All explanatory variables continuous Regression

(b) All explanatory variables categorical Analysis of variance (ANOVA)

(c) Explanatory variables both continuous and
categorical

Analysis of covariance (ANCOVA)

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

tuhocr
Highlight

324 THE R BOOK

The response variable

(a) Continuous Normal regression, ANOVA or ANCOVA

(b) Proportion Logistic regression

(c) Count Log-linear models

(d) Binary Binary logistic analysis

(e) Time at death Survival analysis

The object is to determine the values of the parameters in a specific model that lead to
the best fit of the model to the data. The data are sacrosanct, and they tell us what actually
happened under a given set of circumstances. It is a common mistake to say ‘the data were
fitted to the model’ as if the data were something flexible, and we had a clear picture of the
structure of the model. On the contrary, what we are looking for is the minimal adequate
model to describe the data. The model is fitted to data, not the other way around. The
best model is the model that produces the least unexplained variation (the minimal residual
deviance), subject to the constraint that all the parameters in the model should be statistically
significant.

You have to specify the model. It embodies your mechanistic understanding of the
explanatory variables involved, and of the way that they are related to the response variable.
You want the model to be minimal because of the principle of parsimony, and adequate
because there is no point in retaining an inadequate model that does not describe a significant
fraction of the variation in the data. It is very important to understand that there is not
one model; this is one of the common implicit errors involved in traditional regression and
ANOVA, where the same models are used, often uncritically, over and over again. In most
circumstances, there will be a large number of different, more or less plausible models that
might be fitted to any given set of data. Part of the job of data analysis is to determine
which, if any, of the possible models are adequate, and then, out of the set of adequate
models, which is the minimal adequate model. In some cases there may be no single best
model and a set of different models may all describe the data equally well (or equally poorly
if the variability is great).

Maximum Likelihood

What, exactly, do we mean when we say that the parameter values should afford the ‘best
fit of the model to the data’? The convention we adopt is that our techniques should lead
to unbiased, variance-minimizing estimators. We define ‘best’ in terms of maximum
likelihood. This notion may be unfamiliar, so it is worth investing some time to get a feel
for it. This is how it works:

• given the data,

• and given our choice of model,

• what values of the parameters of that model make the observed data most likely?

We judge the model on the basis how likely the data would be if the model were correct.

STATISTICAL MODELLING 325

The Principle of Parsimony (Occam’s Razor)

One of the most important themes running through this book concerns model simplifica-
tion. The principle of parsimony is attributed to the early 14th-century English nominalist
philosopher, William of Occam, who insisted that, given a set of equally good explanations
for a given phenomenon, the correct explanation is the simplest explanation. It is called
Occam’s razor because he ‘shaved’ his explanations down to the bare minimum: his point
was that in explaining something, assumptions must not be needlessly multiplied. In par-
ticular, for the purposes of explanation, things not known to exist should not, unless it is
absolutely necessary, be postulated as existing. For statistical modelling, the principle of
parsimony means that:

• models should have as few parameters as possible;

• linear models should be preferred to non-linear models;

• experiments relying on few assumptions should be preferred to those relying on many;

• models should be pared down until they are minimal adequate;

• simple explanations should be preferred to complex explanations.

The process of model simplification is an integral part of hypothesis testing in R. In
general, a variable is retained in the model only if it causes a significant increase in deviance
when it is removed from the current model. Seek simplicity, then distrust it.

In our zeal for model simplification, however, we must be careful not to throw the baby
out with the bathwater. Einstein made a characteristically subtle modification to Occam’s
razor. He said: ‘A model should be as simple as possible. But no simpler.’ Remember, too,
what Oscar Wilde said: ‘Truth is rarely pure, and never simple.’

Types of Statistical Model

Fitting models to data is the central function of R. The process is essentially one of
exploration; there are no fixed rules and no absolutes. The object is to determine a minimal
adequate model (see Table 9.1) from the large set of potential models that might be used to
describe the given set of data. In this book we discuss five types of model:

• the null model;

• the minimal adequate model;

• the current model;

• the maximal model; and

• the saturated model.

The stepwise progression from the saturated model (or the maximal model, whichever is
appropriate) through a series of simplifications to the minimal adequate model is made on
the basis of deletion tests. These are F -tests or chi-squared tests that assess the significance
of the increase in deviance that results when a given term is removed from the current model.

326 THE R BOOK

Table 9.1. Statistical modelling involves the selection of a minimal adequate model from a poten-
tially large set of more complex models, using stepwise model simplification.

Model Interpretation

Saturated model One parameter for every data point
Fit: perfect
Degrees of freedom: none
Explanatory power of the model: none

Maximal model Contains all �p� factors, interactions and covariates that
might be of any interest. Many of the model’s terms are
likely to be insignificant
Degrees of freedom: n − p − 1
Explanatory power of the model: it depends

Minimal adequate model A simplified model with 0 ≤ p′ ≤ p parameters
Fit: less than the maximal model, but not significantly so
Degrees of freedom: n − p′ − 1
Explanatory power of the model: r2 = SSR/SSY

Null model Just one parameter, the overall mean ȳ
Fit: none; SSE = SSY
Degrees of freedom: n − 1
Explanatory power of the model: none

Models are representations of reality that should be both accurate and convenient. However,
it is impossible to maximize a model’s realism, generality and holism simultaneously, and
the principle of parsimony is a vital tool in helping to choose one model over another. Thus,
we would only include an explanatory variable in a model if it significantly improved the fit
of the model. The fact that we went to the trouble of measuring something does not mean
we have to have it in our model. Parsimony says that, other things being equal, we prefer:

• a model with n − 1 parameters to a model with n parameters;

• a model with k − 1 explanatory variables to a model with k explanatory variables;

• a linear model to a model which is curved;

• a model without a hump to a model with a hump;

• a model without interactions to a model containing interactions between factors.

Other considerations include a preference for models containing explanatory variables that
are easy to measure over variables that are difficult or expensive to measure. Also, we prefer
models that are based on a sound mechanistic understanding of the process over purely
empirical functions.

Parsimony requires that the model should be as simple as possible. This means that the
model should not contain any redundant parameters or factor levels. We achieve this by
fitting a maximal model and then simplifying it by following one or more of these steps:

• remove non-significant interaction terms;

• remove non-significant quadratic or other non-linear terms;

STATISTICAL MODELLING 327

• remove non-significant explanatory variables;

• group together factor levels that do not differ from one another;

• in ANCOVA, set non-significant slopes of continuous explanatory variables to zero.

All the above are subject, of course, to the caveats that the simplifications make good
scientific sense and do not lead to significant reductions in explanatory power.

Just as there is no perfect model, so there may be no optimal scale of measurement for a
model. Suppose, for example, we had a process that had Poisson errors with multiplicative
effects amongst the explanatory variables. Then, one must chose between three different
scales, each of which optimizes one of three different properties:

• the scale of
√

y would give constancy of variance;

• the scale of y2/3 would give approximately normal errors;

• the scale of ln�y� would give additivity.

Thus, any measurement scale is always going to be a compromise, and you should choose
the scale that gives the best overall performance of the model.

Steps Involved in Model Simplification

There are no hard and fast rules, but the procedure laid out in Table 9.2 works well in
practice. With large numbers of explanatory variables, and many interactions and non-linear
terms, the process of model simplification can take a very long time. But this is time

Table 9.2. Model simplication process.

Step Procedure Explanation

1 Fit the maximal model Fit all the factors, interactions and covariates of interest. Note
the residual deviance. If you are using Poisson or binomial
errors, check for overdispersion and rescale if necessary.

2 Begin model simplification Inspect the parameter estimates using the R function
summary. Remove the least significant terms first, using
update -, starting with the highest-order interactions.

3 If the deletion causes an
insignificant increase in
deviance

Leave that term out of the model.
Inspect the parameter values again.
Remove the least significant term remaining.

4 If the deletion causes a
significant increase in
deviance

Put the term back in the model using update +. These are
the statistically significant terms as assessed by deletion from
the maximal model.

5 Keep removing terms from
the model

Repeat steps 3 or 4 until the model contains nothing but
significant terms.
This is the minimal adequate model.
If none of the parameters is significant, then the minimal
adequate model is the null model.

328 THE R BOOK

well spent because it reduces the risk of overlooking an important aspect of the data. It is
important to realize that there is no guaranteed way of finding all the important structures
in a complex dataframe.

Caveats

Model simplification is an important process but it should not be taken to extremes. For
example, care should be taken with the interpretation of deviances and standard errors
produced with fixed parameters that have been estimated from the data. Again, the search
for ‘nice numbers’ should not be pursued uncritically. Sometimes there are good scientific
reasons for using a particular number (e.g. a power of 0.66 in an allometric relationship
between respiration and body mass). It is much more straightforward, for example, to say
that yield increases by 2 kg per hectare for every extra unit of fertilizer, than to say that
it increases by 1.947 kg. Similarly, it may be preferable to say that the odds of infection
increase 10-fold under a given treatment, than to say that the logits increase by 2.321;
without model simplification this is equivalent to saying that there is a 10.186-fold increase
in the odds. It would be absurd, however, to fix on an estimate of 6 rather than 6.1 just
because 6 is a whole number.

Order of deletion

The data in this book fall into two distinct categories. In the case of planned experiments,
all of the treatment combinations are equally represented and, barring accidents, there are
no missing values. Such experiments are said to be orthogonal. In the case of observational
studies, however, we have no control over the number of individuals for which we have
data, or over the combinations of circumstances that are observed. Many of the explana-
tory variables are likely to be correlated with one another, as well as with the response
variable. Missing treatment combinations are commonplace, and the data are said to be
non-orthogonal. This makes an important difference to our statistical modelling because,
in orthogonal designs, the variation that is attributed to a given factor is constant, and does
not depend upon the order in which factors are removed from the model. In contrast, with
non-orthogonal data, we find that the variation attributable to a given factor does depend
upon the order in which factors are removed from the model. We must be careful, therefore,
to judge the significance of factors in non-orthogonal studies, when they are removed from
the maximal model (i.e. from the model including all the other factors and interactions
with which they might be confounded). Remember that, for non-orthogonal data, order
matters.

Also, if your explanatory variables are correlated with each other, then the significance
you attach to a given explanatory variable will depend upon whether you delete it from a
maximal model or add it to the null model. If you always test by model simplification then
you won’t fall into this trap.

The fact that you have laboured long and hard to include a particular experimental
treatment does not justify the retention of that factor in the model if the analysis shows it
to have no explanatory power. ANOVA tables are often published containing a mixture of
significant and non-significant effects. This is not a problem in orthogonal designs, because
sums of squares can be unequivocally attributed to each factor and interaction term. But as
soon as there are missing values or unequal weights, then it is impossible to tell how the
parameter estimates and standard errors of the significant terms would have been altered if
the non-significant terms had been deleted. The best practice is as follows:

STATISTICAL MODELLING 329

• Say whether your data are orthogonal or not.

• Explain any correlations amongst your explanatory variables.

• Present a minimal adequate model.

• Give a list of the non-significant terms that were omitted, and the deviance changes that
resulted from their deletion.

Readers can then judge for themselves the relative magnitude of the non-significant factors,
and the importance of correlations between the explanatory variables.

The temptation to retain terms in the model that are ‘close to significance’ should be
resisted. The best way to proceed is this. If a result would have been important if it had been
statistically significant, then it is worth repeating the experiment with higher replication
and/or more efficient blocking, in order to demonstrate the importance of the factor in a
convincing and statistically acceptable way.

Model Formulae in R

The structure of the model is specified in the model formula like this:

response variable~explanatory variable(s)

where the tilde symbol ~ reads ‘is modelled as a function of’ (see Table 9.3 for examples).

Table 9.3. Examples of R model formulae. In a model formula, the function I case i) stands
for ‘as is’ and is used for generating sequences I(1:10) or calculating quadratic terms I(x^2).

Model Model formula Comments

Null y ~ 1 1 is the intercept in regression
models, but here it is the
overall mean y

Regression y ~ x x is a continuous explanatory
variable

Regression through
origin

y ~ x-1 Do not fit an intercept

One-way ANOVA y ~ sex sex is a two-level categorical
variable

One-way ANOVA y ~ sex-1 as above, but do not fit an
intercept (gives two means
rather than a mean and a
difference)

Two-way ANOVA y ~ sex + genotype genotype is a four-level
categorical variable

Factorial ANOVA y ~ N * P * K N, P and K are two-level
factors to be fitted along with
all their interactions

tuhocr
Highlight

330 THE R BOOK

Table 9.3. (Continued)

Model Model formula Comments

Three-way ANOVA y ~ N*P*K – N:P:K As above, but don’t fit the
three-way interaction

Analysis of covariance y ~ x + sex A common slope for y against
x but with two intercepts, one
for each sex

Analysis of covariance y ~ x * sex Two slopes and two intercepts

Nested ANOVA y ~ a/b/c Factor c nested within factor b
within factor a

Split-plot ANOVA y ~ a*b*c+Error(a/b/c) A factorial experiment but with
three plot sizes and three
different error variances, one
for each plot size

Multiple regression y ~ x + z Two continuous explanatory
variables, flat surface fit

Multiple regression y ~ x * z Fit an interaction term as well
(x + z + x:z)

Multiple regression y ~ x + I(x^2) + z + I(z^2) Fit a quadratic term for both x
and z

Multiple regression y <- poly(x,2) + z Fit a quadratic polynomial for x
and linear z

Multiple regression y ~ (x + z + w)^2 Fit three variables plus all their
interactions up to two-way

Non-parametric model y ~ s(x) +s(z) y is a function of smoothed x
and z in a generalized additive
model

Transformed response
and explanatory variables

log(y) ~ I(1/x) + sqrt(z) All three variables are
transformed in the model

So a simple linear regression of y on x would be written as

y ~ x

and a one-way ANOVA where sex is a two-level factor would be written as

y ~ sex

The right-hand side of the model formula shows:

• the number of explanatory variables and their identities – their attributes (e.g. continuous
or categorical) are usually defined prior to the model fit;

• the interactions between the explanatory variables (if any);

• non-linear terms in the explanatory variables.

STATISTICAL MODELLING 331

On the right of the tilde, one also has the option to specify offsets or error terms in
some special cases. As with the response variable, the explanatory variables can appear as
transformations, or as powers or polynomials.

It is very important to note that symbols are used differently in model formulae than in
arithmetic expressions. In particular:

+ indicates inclusion of an explanatory variable in the model (not addition);

- indicates deletion of an explanatory variable from the model (not subtraction);

* indicates inclusion of explanatory variables and interactions (not multiplication);

/ indicates nesting of explanatory variables in the model (not division);

| indicates conditioning (not ‘or’), so that y ~ x | z is read as ‘y as a function of x
given z’.

There are several other symbols that have special meaning in model formulae. A colon
denotes an interaction, so that A:B means the two-way interaction between A and B, and
N:P:K:Mg means the four-way interaction between N� P� K and Mg.

Some terms can be written in an expanded form. Thus:

A*B*C is the same as A+B+C+A:B+A:C+B:C+A:B:C

A/B/C is the same as A+B%in%A+C%in%B%in%A

(A+B+C)^3 is the same as A*B*C

(A+B+C)^2 is the same as A*B*C – A:B:C

Interactions between explanatory variables

Interactions between two two-level categorical variables of the form A*B mean that two
main effect means and one interaction mean are evaluated. On the other hand, if factor
A has three levels and factor B has four levels, then seven parameters are estimated for
the main effects (three means for A and four means for B). The number of interaction
terms is �a − 1��b − 1�, where a and b are the numbers of levels of the factors A and
B, respectively. So in this case, R would estimate �3 − 1��4 − 1� = 6 parameters for the
interaction.

Interactions between two continuous variables are fitted differently. If x and z are two
continuous explanatory variables, then x*z means fit x+z+x:z and the interaction term x:z
behaves as if a new variable had been computed that was the pointwise product of the two
vectors x and z. The same effect could be obtained by calculating the product explicitly,

product.xz <- x * z

then using the model formula y ~ x + z + product.xz. Note that the representation of the
interaction by the product of the two continuous variables is an assumption, not a fact. The
real interaction might be of an altogether different functional form (e.g. x * z^2).

Interactions between a categorical variable and a continuous variable are interpreted as
an analysis of covariance; a separate slope and intercept are fitted for each level of the
categorical variable. So y ~ A*x would fit three regression equations if the factor A had three
levels; this would estimate six parameters from the data – three slopes and three intercepts.

332 THE R BOOK

The slash operator is used to denote nesting. Thus, with categorical variables A and B,

y ~ A/B

means fit ‘A plus B within A’. This could be written in two other equivalent ways:

y ~ A + A:B

y ~ A + B %in% A

both of which alternatives emphasize that there is no point in attempting to estimate a main
effect for B (it is probably just a factor label like ‘tree number 1’ that is of no scientific
interest; see p. 479).

Some functions for specifying non-linear terms and higher order interactions are useful.
To fit a polynomial regression in x and z, we could write

y ~ poly(x,3) + poly(z,2)

to fit a cubic polynomial in x and a quadratic polynomial in z. To fit interactions, but only
up to a certain level, the ^ operator is useful. The formula

y ~ (A + B + C)^2

fits all the main effects and two-way interactions (i.e. it excludes the three-way interaction
that A*B*C would have included).

The I function (upper-case letter i) stands for ‘as is’. It overrides the interpretation of a
model symbol as a formula operator when the intention is to use it as an arithmetic operator.
Suppose you wanted to fit 1/x as an explanatory variable in a regression. You might try

y~1/x

but this actually does something very peculiar. It fits x nested within the intercept! When it
appears in a model formula, the slash operator is assumed to imply nesting. To obtain the
effect we want, we use I to write

y ~ I(1/x)

We also need to use I when we want * to represent multiplication and ^ to mean ‘to the
power’ rather than an interaction model expansion: thus to fit x and x2 in a quadratic
regression we would write

y ~ x+I(x^2)

Creating formula objects

You can speed up the creation of complicated model formulae using paste to create series
of variable names and collapse to join the variable names together by symbols. Here, for
instance, is a multiple regression formula with 25 continuous explanatory variables created
using the as.formula function:

xnames <- paste("x", 1:25, sep="")
(model.formula <- as.formula(paste("y ~ ", paste(xnames, collapse= "+"))))

y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 +
x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20 + x21 +
x22 + x23 + x24 + x25

STATISTICAL MODELLING 333

Multiple error terms

When there is nesting (e.g. split plots in a designed experiment; see p. 470) or tem-
poral pseudoreplication (see p. 474) you can include an Error function as part of the
model formula. Suppose you had a three-factor factorial experiment with categorical vari-
ables A, B and C. The twist is that each treatment is applied to plots of different sizes:
A is applied to replicated whole fields, B is applied at random to half fields and C is
applied to smaller split–split plots within each field. This is shown in a model formula
like this:

y ~ A*B*C + Error(A/B/C)

Note that the terms within the model formula are separated by asterisks to show that it is a
full factorial with all interaction terms included, whereas the terms are separated by slashes
in the Error statement. There are as many terms in the Error statement as there are different
sizes of plots – three in this case, although the smallest plot size (C in this example) can be
omitted from the list – and the terms are listed left to right from the largest to the smallest
plots; see p. 469 for details and examples.

The intercept as parameter 1

The simple command

y~1

causes the null model to be fitted. This works out the grand mean (the overall average)
of all the data and works out the total deviance (or the total sum of squares, SSY, in
models with normal errors and the identity link). In some cases, this may be the minimal
adequate model; it is possible that none of the explanatory variables we have measured
contribute anything significant to our understanding of the variation in the response variable.
This is normally what you don’t want to happen at the end of your three-year research
project.

To remove the intercept (parameter 1) from a regression model (i.e. to force the regression
line through the origin) you fit ‘−1’ like this:

y ~ x – 1

You should not do this unless you know exactly what you are doing, and exactly why you
are doing it (see p. 393 for details). Removing the intercept from an ANOVA model where
all the variables are categorical has a different effect:

y ~ sex - 1

This gives the mean for males and the mean for females in the summary table, rather than
the mean for females and the difference in mean for males (see p. 366).

The update function in model simplification

In the update function used during model simplification, the dot ‘.’ is used to specify ‘what
is there already’ on either side of the tilde. So if your original model said

model<-lm(y ~ A*B)

334 THE R BOOK

then the update function to remove the interaction term A:B could be written like this:

model2<-update(model, ~ .- A:B)

Note that there is no need to repeat the name of the response variable, and the punctuation
‘tilde dot’ means take model as it is, and remove from it the interaction term A:B.

Model formulae for regression

The important point to grasp is that model formulae look very like equations but there are
important differences. Our simplest useful equation looks like this:

y = a + bx�

It is a two-parameter model with one parameter for the intercept, a, and another for the
slope, b, of the graph of the continuous response variable y against a continuous explanatory
variable x. The model formula for the same relationship looks like this:

y ~ x

The equals sign is replaced by a tilde, and all of the parameters are left out. It we had
a multiple regression with two continuous explanatory variables x and z, the equation
would be

y=a+bx+cz,

but the model formula is

y ~ x + z

It is all wonderfully simple. But just a minute. How does R know what parameters we want
to estimate from the data? We have only told it the names of the explanatory variables. We
have said nothing about how to fit them, or what sort of equation we want to fit to the data.
The key to this is to understand what kind of explanatory variable is being fitted to the data.
If the explanatory variable x specified on the right of the tilde is a continuous variable,
then R assumes that you want to do a regression, and hence that you want to estimate two
parameters in a linear regression whose equation is y = a + bx.

A common misconception is that linear models involve a straight-line relationship between
the response variable and the explanatory variables. This is not the case, as you can see
from these two linear models:

par(mfrow=c(1,2))
x<-seq(0,10,0.1)
plot(x,1+x-x^2/15,type="l")
plot(x,3+0.1*exp(x),type="l")

STATISTICAL MODELLING 335

x

1
+

 x
 –

 x
∧ 2

/1
5

0 2 4 6 8 10

1
2

3
4

x

3
+

 0
.1

 ∗
 e

xp
(x

)

0 2 4 6 8 10

0
50

0
10

00
15

00
20

00

The definition of a linear model is an equation that contains mathematical variables, param-
eters and random variables and that is linear in the parameters and in the random variables.
What this means is that if a, b and c are parameters then obviously

y = a + bx

is a linear model, but so is

y = a + bx − cx2

because x2 can be replaced by z which gives a linear relationship

y = a + bx + cz�

and so is

y = a + bex

because we can create a new variable z = exp�x�, so that

y = a + bz�

Some models are non-linear but can be readily linearized by transformation. For example:

y = exp�a + bx�

is non-linear, but on taking logs of both sides, it becomes

ln�y� = a + bx

336 THE R BOOK

If the equation you want to fit is more complicated than this, then you need to specify the
form of the equation, and use non-linear methods (nls or nlme) to fit the model to the data
(see p. 661).

Box–Cox Transformations

Sometimes it is not clear from theory what the optimal transformation of the response
variable should be. In these circumstances, the Box–Cox transformation offers a simple
empirical solution. The idea is to find the power transformation, � (lambda), that maximizes
the likelihood when a specified set of explanatory variables is fitted to

y� − 1
�

as the response. The value of lambda can be positive or negative, but it cannot be zero (you
would get a zero-divide error when the formula was applied to the response variable, y).
For the case � = 0 the Box–Cox transformation is defined as log�y�. Suppose that � = −1.
The formula now becomes

y−1 − 1
−1

= 1/y − 1
−1

= 1 − 1
y

�

and this quantity is regressed against the explanatory variables and the log-likelihood
computed.

In this example, we want to find the optimal transformation of the response variable,
which is timber volume:

data<-read.delim("c:\\temp\\timber.txt") attach(data) names(data)

[1] "volume" "girth" "height"

We start by loading the MASS library of Venables and Ripley:

library(MASS)

The boxcox function is very easy to use: just specify the model formula, and the default
options take care of everything else.

boxcox(volume ~ log(girth)+log(height))

It is clear that the optimal value of lambda is close to zero (i.e. the log transformation). We
can zoom in to get a more accurate estimate by specifying our own, non-default, range of
lambda values. It looks as if it would be sensible to plot from −0�5 to +0�5:

boxcox(volume ~ log(girth)+log(height),lambda=seq(-0.5,0.5,0.01))

STATISTICAL MODELLING 337

λ

lo
g-

Li
ke

ho
od

–2 –1 0

95%

21

–5
0

–4
0

–3
0

–2
0

–1
0

0

λ

lo
g-

Li
ke

ho
od

–0.4 –0.2 0.0

95%

0.40.2

–6
–4

–2
0

2
4

6

The likelihood is maximized at � ≈−0�08, but the log-likelihood for � = 0 is very close to
the maximum. This also gives a much more straightforward interpretation, so we would go
with that, and model log(volume) as a function of log(girth) and log(height) (see p. 518).

What if we had not log-transformed the explanatory variables? What would have been the
optimal transformation of volume in that case? To find out, we rerun the boxcox function,
simply changing the model formula like this:

boxcox(volume ~ girth+height)

338 THE R BOOK

λ

lo
g-

Li
ke

ho
od

–2 –1 0

95%

21

–5
0

–4
0

–3
0

–2
0

–1
0

0

We can zoom in from 0.1 to 0.6 like this:

boxcox(volume ~ girth+height,lambda=seq(0.1,0.6,0.01))

0.1 0.2 0.3 0.4 0.5 0.6

1
2

3
4

5

λ

lo
g-

Li
ke

lih
oo

d 95%

This suggests that the cube root transformation would be best ��=1/3�. Again, this accords
with dimensional arguments, since the response and explanatory variables would all have
dimensions of length in this case.

STATISTICAL MODELLING 339

Model Criticism

There is a temptation to become personally attached to a particular model. Statisticians call
this ‘falling in love with your model’. It is as well to remember the following truths about
models:

• All models are wrong.

• Some models are better than others.

• The correct model can never be known with certainty.

• The simpler the model, the better it is.

There are several ways that we can improve things if it turns out that our present model
is inadequate:

• Transform the response variable.

• Transform one or more of the explanatory variables.

• Try fitting different explanatory variables if you have any.

• Use a different error structure.

• Use non-parametric smoothers instead of parametric functions.

• Use different weights for different y values.

All of these are investigated in the coming chapters. In essence, you need a set of tools to
establish whether, and how, your model is inadequate. For example, the model might:

• predict some of the y values poorly;

• show non-constant variance;

• show non-normal errors;

• be strongly influenced by a small number of influential data points;

• show some sort of systematic pattern in the residuals;

• exhibit overdispersion.

Model checking

After fitting a model to data we need to investigate how well the model describes the data.
In particular, we should look to see if there are any systematic trends in the goodness
of fit. For example, does the goodness of fit increase with the observation number, or is
it a function of one or more of the explanatory variables? We can work with the raw
residuals:

residuals = y − fitted values�

340 THE R BOOK

For instance, we should routinely plot the residuals against:

• the fitted values (to look for heteroscedasticity);

• the explanatory variables (to look for evidence of curvature);

• the sequence of data collection (to took for temporal correlation);

• standard normal deviates (to look for non-normality of errors).

Heteroscedasticity

A good model must also account for the variance–mean relationship adequately and pro-
duce additive effects on the appropriate scale (as defined by the link function). A plot of
standardized residuals against fitted values should look like the sky at night (points scattered
at random over the whole plotting region), with no trend in the size or degree of scatter of
the residuals. A common problem is that the variance increases with the mean, so that we
obtain an expanding, fan-shaped pattern of residuals (right-hand panel).

fitted(model)

re
si

d(
m

od
el

)

30 35 40

–1
0

–5
0

5
10

–2
–1

0
1

2

fitted(model)

re
si

d(
m

od
el

)

25 30 35 40 45

The plot on the left is what we want to see: no trend in the residuals with the fitted values.
The plot on the right is a problem. There is a clear pattern of increasing residuals as the
fitted values get larger. This is a picture of what heteroscedasticity looks like.

Non-normality of errors

Errors may be non-normal for several reasons. They may be skew, with long tails to the
left or right. Or they may be kurtotic, with a flatter or more pointy top to their distribution.
In any case, the theory is based on the assumption of normal errors, and if the errors are

STATISTICAL MODELLING 341

not normally distributed, then we shall not know how this affects our interpretation of the
data or the inferences we make from it.

It takes considerable experience to interpret normal error plots. Here we generate a series
of data sets where we introduce different but known kinds of non-normal errors. Then we
plot them using a simple home-made function called mcheck (first developed by John
Nelder in the original GLIM language; the name stands for model checking). The idea is to
see what patterns are generated in normal plots by the different kinds of non-normality. In
real applications we would use the generic plot(model) rather than mcheck (see below).
First, we write the function mcheck. The idea is to produce two plots, side by side: a plot of
the residuals against the fitted values on the left, and a plot of the ordered residuals against
the quantiles of the normal distribution on the right.

mcheck <-function (obj, � � �) {
rs<-obj$resid
fv<-obj$fitted
par(mfrow=c(1,2))
plot(fv,rs,xlab="Fitted values",ylab="Residuals")
abline(h=0, lty=2)
qqnorm(rs,xlab="Normal scores",ylab="Ordered residuals",main="")
qqline(rs,lty=2)
par(mfrow=c(1,1))
invisible(NULL) }

Note the use of $ (component selection) to extract the residuals and fitted values from the
model object which is passed to the function as obj (the expression x$name is the name
component of x). The functions qqnorm and qqline are built-in functions to produce normal
probability plots. It is good programming practice to set the graphics parameters back to
their default settings before leaving the function.

The aim is to create a catalogue of some of the commonest problems that arise in model
checking. We need a vector of x values for the following regression models:

x<-0:30

Now we manufacture the response variables according to the equation

y = 10 + x + �

where the errors, �, have zero mean but are taken from different probability distributions in
each case.

Normal errors

e<-rnorm(31,mean=0,sd=5)
yn<-10+x+e
mn<-lm(yn ~ x)
mcheck(mn)

342 THE R BOOK

Fitted values Normal scores

O
rd

er
ed

 r
es

id
ua

ls

R
es

id
ua

ls

30 352015 25

–1
0

–5
0

5
10

–1
0

–2 –1 0 1 2

–5
0

5
10

There is no suggestion of non-constant variance (left plot) and the normal plot (right)
is reasonably straight. The judgement as to what constitutes an important departure from
normality takes experience, and this is the reason for looking at some distinctly non-normal,
but known, error structures next.

Uniform errors

eu<-20*(runif(31)-0.5)
yu<-10+x+eu
mu<-lm(yu ~ x)
mcheck(mu)

Uniform errors show up as a distinctly S-shaped pattern in the QQ plot on the right. The fit
in the centre is fine, but the largest and smallest residuals are too small (they are constrained
in this example to be ±10).

Negative binomial errors

enb<-rnbinom(31,2,.3)
ynb<-10+x+enb
mnb<-lm(ynb ~ x)
mcheck(mnb)

The large negative residuals are all above the line, but the most obvious feature of the plot
is the single, very large positive residual (in the top right-hand corner). In general, negative
binomial errors will produce a J-shape on the QQ plot. The biggest positive residuals are
much too large to have come from a normal distribution. These values may turn out to be
highly influential (see below).

STATISTICAL MODELLING 343

Fitted values Normal scores

O
rd

er
ed

 r
es

id
ua

ls

R
es

id
ua

ls

30 402010

–5
0

5
10

–2 –1 0 1 2

–5
0

5
10

Fitted values Normal scores

O
rd

er
ed

 r
es

id
ua

ls

R
es

id
ua

ls

30 4020

–5
0 0

5
10

–5
5

10

–2 –1 0 1 2

344 THE R BOOK

Gamma errors and increasing variance

Here the shape parameter is set to 1 and the rate parameter to 1/x, and the variance increases
with the square of the mean.

eg<-rgamma(31,1,1/x)
yg<-10+x+eg
mg<-lm(yg ~ x)
mcheck(mg)

The left-hand plot shows the residuals increasing steeply with the fitted values, and illustrates
an asymmetry between the size of the positive and negative residuals. The right-hand plot
shows the highly non-normal distribution of errors.

Fitted values Normal scores

O
rd

er
ed

 r
es

id
ua

ls

R
es

id
ua

ls

30 50 7010

0
–2

0
–1

0
10

20
30

40

0
–2

0
–1

0
10

20
30

40

–2 –1 0 1 2

Influence

One of the commonest reasons for a lack of fit is through the existence of outliers in the
data. It is important to understand, however, that a point may appear to be an outlier because
of misspecification of the model, and not because there is anything wrong with the data.
It is important to understand that analysis of residuals is a very poor way of looking for
influence. Precisely because a point is highly influential, it forces the regression line close
to it, and hence the influential point may have a very small residual.

Take this circle of data that shows no relationship between y and x:

x<-c(2,3,3,3,4)
y<-c(2,3,2,1,2)

STATISTICAL MODELLING 345

We want to draw two graphs side by side, and we want them to have the same axis scales:

par(mfrow=c(1,2))
plot(x,y,xlim=c(0,8,),ylim=c(0,8))

Obviously, there is no relationship between y and x in the original data. But let’s add an
outlier at the point (7,6) using concatenation and see what happens.

x1<-c(x,7)
y1<-c(y,6)
plot(x1,y1,xlim=c(0,8,),ylim=c(0,8))
abline(lm(y1 ~ x1))

x

y y1

0 2 4 6 8

0
2

4
6

8

2
0

4
6

8

x1
0 2 4 6 8

Now, there is a significant regression of y on x. The outlier is said to be highly influential.
To reduce the influence of outliers, there are a number of modern techniques known as

robust regression. To see one of these in action, let’s do a straightforward linear regression
on these data and print the summary:

reg<-lm(y1 ~ x1)
summary(reg)

Residuals:
1 2 3 4 5 6

0.78261 0.91304 -0.08696 -1.08696 -0.95652 0.43478

346 THE R BOOK

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.5217 0.9876 -0.528 0.6253
x1 0.8696 0.2469 3.522 0.0244 *

Residual standard error: 0.9668 on 4 degrees of freedom
Multiple R-Squared: 0.7561, Adjusted R-squared: 0.6952
F-statistic: 12.4 on 1 and 4 DF, p-value: 0.02441

The residual values make the important point that analysis of residuals is a very poor way
of looking for influence. Precisely because point number 6 is so influential, it forces the
regression line close to it, and hence point number 6 has a small residual (as you can see,
0.4348 is the second smallest of all the residuals). The slope of the regression line is 0.8696
with a standard error of 0.2469, and this is significantly different from 0 �p = 0�0244�
despite the tiny sample size.

Continuing the analysis of the simple linear regression on p. 267, we investigate the
function lm.influence. This produces four components: $hat, $coefficients, $sigma and
$wt.res (weighted residuals):

lm.influence(lm(growth~tannin))

$hat
1 2 3 4 5 6
0.3777778 0.2611111 0.1777778 0.1277778 0.1111111 0.1277778
7 8 9
0.1777778 0.2611111 0.3777778

$coefficients
(Intercept) tannin

1 0.14841270 -2.619048e-02
2 -0.22690058 3.646617e-02
3 -0.39309309 5.360360e-02
4 0.58995046 5.530786e-02
5 -0.11111111 -2.794149e-18
6 0.06765747 2.537155e-02
7 0.06636637 -9.954955e-02
8 0.02873851 -1.616541e-02
9 -0.24444444 1.047619e-01

$sigma
1 2 3 4 5 6

1.824655 1.811040 1.729448 1.320801 1.788078 1.734501
7 8 9

1.457094 1.825513 1.757636

$wt.res
1 2 3 4 5 6

0.2444444 -0.5388889 -1.3222222 2.8944444 -0.8888889 1.3277778
7 8 9

-2.4555556 -0.2388889 0.9777778

Let’s look at each of these components in turn.

The first component, $hat, is a vector containing the diagonal of the hat matrix. This is
the orthogonal projector matrix onto the model space (see p. 273). The matrix X is made

STATISTICAL MODELLING 347

up of a column of 1s (corresponding to the intercept) and a column of the x values (the
explanatory variable; see p. 271):

X<-cbind(1,tannin)

Then the hat matrix, H , is given by H = X�X′X�−1X′, where X′ is the transpose of X:

H<-X%*%ginv(t(X)%*%X)%*%t(X)

and we want the diagonal of this, which we could get by typing:

diag(H)

Large values of elements of this vector mean that changing yi will have a big impact on the
fitted values; i.e. the hat diagonals are measures of the leverage of yi.

Next, $coefficients is a matrix whose ith row contains the change in the estimated
coefficients which results when the ith case is dropped from the regression (this is different
from S-PLUS, which shows the coefficients themselves). Data in row 9 have the biggest
effect on slope and data in row 4 have the biggest effect on intercept.

The third component, $sigma, is a vector whose ith element contains the estimate of
the residual standard error obtained when the ith case is dropped from the regression;
thus 1.824655 is the residual standard error when point number 1 is dropped lm(growth[-
1] ~ tannin[-1]), and the error variance in this case is 1�8246552 = 3�329.

Finally, $wt.res is a vector of weighted residuals (or deviance residuals in a generalized
linear model) or raw residuals if weights are not set (as in this example).

A bundle of functions is available to compute some of the regression (leave-one-out
deletion) diagnostics for linear and generalized linear models:

influence.measures(lm(growth ~ tannin))

Influence measures of
lm(formula = growth~tannin) :

dfb.1_ dfb.tnnn dffit cov.r cook.d hat inf

1 0.1323 -1.11e-01 0.1323 2.167 0.01017 0.378 *
2 -0.2038 1.56e-01 -0.2058 1.771 0.02422 0.261
3 -0.3698 2.40e-01 -0.3921 1.323 0.08016 0.178
4 0.7267 -3.24e-01 0.8981 0.424 0.24536 0.128
5 -0.1011 -1.21e-17 -0.1864 1.399 0.01937 0.111
6 0.0635 1.13e-01 0.3137 1.262 0.05163 0.128
7 0.0741 -5.29e-01 -0.8642 0.667 0.27648 0.178
8 0.0256 -6.86e-02 -0.0905 1.828 0.00476 0.261
9 -0.2263 4.62e-01 0.5495 1.865 0.16267 0.378 *

The column names are as follows: dfb = DFBETAS, dffit = DFFITS (two terms
explained in Cook and Weisberg, 1982, pp. 124–125), cov.r = covariance ratio, cook.d
= Cook’s distance, hat = the diagonal of the hat matrix, and inf marks influential data
points with an asterisk. You can extract the influential points for plotting using $is.inf
like this:

modi<-influence.measures(lm(growth ~ tannin))
which(apply(modi$is.inf, 1, any))

1 9
1 9

348 THE R BOOK

growth[which(apply(modi$is.inf, 1, any))]

[1] 12 3

tannin[which(apply(modi$is.inf, 1, any))]

[1] 0 8

summary(modi)

Potentially influential observations of
lm(formula = growth~tannin) :

dfb.1_ dfb.tnnn dffit cov.r cook.d hat
1 0.13 -0.11 0.13 2.17_* 0.01 0.38
9 -0.23 0.46 0.55 1.87_* 0.16 0.38

yp<-growth[which(apply(modi$is.inf, 1, any))]
xp<-tannin[which(apply(modi$is.inf, 1, any))]
plot(tannin,growth,pch=16)
points(xp,yp,col="red",cex=1.3,pch=16)
abline(model)

tannin

gr
ow

th

0 2 4 6 8

2
4

6
8

10
12

The slope would be much steeper were it not for the two points at the top left and bottom
right that do not appear as black diamonds – these will be shown in red on your screen:

coef(lm(growth ~ tannin))

(Intercept) tannin
11.755556 -1.216667

coef(lm(growth ~ tannin,subset=(1:9 != 1 & 1:9 != 9)))

(Intercept) tannin
12.000000 -1.321429

STATISTICAL MODELLING 349

Summary of Statistical Models in R

Models are fitted using one of the following model-fitting functions:

lm fits a linear model with normal errors and constant variance; generally this is used
for regression analysis using continuous explanatory variables.

aov fits analysis of variance with normal errors, constant variance and the identity link;
generally used for categorical explanatory variables or ANCOVA with a mix of
categorical and continuous explanatory variables.

glm fits generalized linear models to data using categorical or continuous explanatory
variables, by specifying one of a family of error structures (e.g. Poisson for count
data or binomial for proportion data) and a particular link function.

gam fits generalized additive models to data with one of a family of error structures
(e.g. Poisson for count data or binomial for proportion data) in which the continuous
explanatory variables can (optionally) be fitted as arbitrary smoothed functions
using non-parametric smoothers rather than specific parametric functions.

lme and lmer fit linear mixed-effects models with specified mixtures of fixed effects and
random effects and allow for the specification of correlation structure amongst the
explanatory variables and autocorrelation of the response variable (e.g. time series
effects with repeated measures). lmer allows for non-normal errors and non-constant
variance with the same error families as a GLM.

nls fits a non-linear regression model via least squares, estimating the parameters of a
specified non-linear function.

nlme fits a specified non-linear function in a mixed-effects model where the parameters of
the non-linear function are assumed to be random effects; allows for the specification
of correlation structure amongst the explanatory variables and autocorrelation of the
response variable (e.g. time series effects with repeated measures).

loess fits a local regression model with one or more continuous explanatory variables
using non-parametric techniques to produce a smoothed model surface.

tree fits a regression tree model using binary recursive partitioning whereby the data
are successively split along coordinate axes of the explanatory variables so that at
any node, the split is chosen that maximally distinguishes the response variable in
the left and right branches. With a categorical response variable, the tree is called a
classification tree, and the model used for classification assumes that the response
variable follows a multinomial distribution.

For most of these models, a range of generic functions can be used to obtain information
about the model. The most important and most frequently used are as follows:

summary produces parameter estimates and standard errors from lm, and ANOVA tables
from aov; this will often determine your choice between lm and aov. For
either lm or aov you can choose summary.aov or summary.lm to get the
alternative form of output (an ANOVA table or a table of parameter estimates
and standard errors; see p. 364)

plot produces diagnostic plots for model checking, including residuals against fitted
values, influence tests, etc.

350 THE R BOOK

anova is a wonderfully useful function for comparing different models and producing
ANOVA tables.

update is used to modify the last model fit; it saves both typing effort and computing time.

Other useful generic functions include the following:

coef gives the coefficients (estimated parameters) from the model.

fitted gives the fitted values, predicted by the model for the values of the explanatory
variables included.

resid gives the residuals (the differences between measured and predicted values of y).

predict uses information from the fitted model to produce smooth functions for plotting
a line through the scatterplot of your data.

Optional arguments in model-fitting functions

Unless you argue to the contrary, all of the rows in the dataframe will be used in the
model fitting, there will be no offsets, and all values of the response variable will be given
equal weight. Variables named in the model formula will come from the defined dataframe
(data=mydata), the with function (p. 18) or from the attached dataframe (if there is one).
Here we illustrate the following options:

• subset

• weights

• data

• offset

• na.action

We shall work with an example involving analysis of covariance (p. 490 for details) where
we have a mix of both continuous and categorical explanatory variables:

data<-read.table("c:\\temp\\ipomopsis.txt",header=T)
attach(data)
names(data)

[1] "Root" "Fruit" "Grazing"

The response is seed production (Fruit) with a continuous explanatory variable (Root diam-
eter) and a two-level factor Grazing (Grazed and Ungrazed).

Subsets

Perhaps the most commonly used modelling option is to fit the model to a subset of the data
(e.g. fit the model to data from just the grazed plants). You could do this using subscripts
on the response variable and all the explanatory variables:

model<-lm(Fruit[Grazing=="Grazed"] ~ Root[Grazing=="Grazed"])

STATISTICAL MODELLING 351

but it is much more straightforward to use the subset argument, especially when there are
lots of explanatory variables:

model<-lm(Fruit ~ Root,subset=(Grazing=="Grazed"))

The answer, of course, is the same in both cases, but the summary.lm and summary.aov
tables are neater with subset. Note the round brackets used with the subset option (not
the square brackets used with subscripts in the first example)

Weights

The default is for all the values of the response to have equal weights (all equal one)

weights = rep(1, nobs)

There are two sorts of weights in statistical modelling, and you need to be able to distinguish
between them:

• case weights give the relative importance of case, so a weight of 2 means there are two
such cases;

• inverse of variances, in which the weights downplay highly variable data.

Instead of using initial root size as a covariate (as above) you could use Root as a weight
in fitting a model with Grazing as the sole categorical explanatory variable:

model<-lm(Fruit ~ Grazing,weights=Root)
summary(model)

Call:
lm(formula = Fruit~Grazing, weights = Root)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 70.725 4.849 14.59 <2e-16 ***
GrazingUngrazed -16.953 7.469 -2.27 0.029 *

Residual standard error: 62.51 on 38 degrees of freedom
Multiple R-Squared: 0.1194, Adjusted R-squared: 0.0962
F-statistic: 5.151 on 1 and 38 DF, p-value: 0.02899

Needless to say, the use of weights alters the parameter estimates and their standard errors:

model<-lm(Fruit ~ Grazing)
summary(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 67.941 5.236 12.976 1.54e-15 ***
GrazingUngrazed -17.060 7.404 -2.304 0.0268 *

Residual standard error: 23.41 on 38 degrees of freedom
Multiple R-Squared: 0.1226, Adjusted R-squared: 0.09949
F-statistic: 5.309 on 1 and 38 DF, p-value: 0.02678

When weights �w� are specified the model is fitted using weighted least squares, in which
the quantity to be minimized is

∑
w × d2 (rather than

∑
d2), where d is the difference

between the response variable and the fitted values predicted by the model.

352 THE R BOOK

Missing values

What to do about missing values in the dataframe is an important issue (p. 120). Ideally, of
course, there are no missing values, so you don’t need to worry about what action to take
(na.action). If there are missing values, you have two choices:

• leave out any row of the dataframe in which one or more variables are missing, then
na.action = na.omit

• fail the fitting process, so na.action = na.fail

If in doubt, you should specify na.action = na.fail because you will not get nasty surprises
if unsuspected NAs in the dataframe cause strange (but unwarned) behaviour in the model.
Let’s introduce a missing value into the initial root weights:

Root[37]<-NA
model<-lm(Fruit ~ Grazing*Root)

The model is fitted without comment, and the only thing you might notice is that the residual
degrees of freedom is reduced from 36 to 35. If you want to be warned about missing
values, then use the na.action option.

model<-lm(Fruit ~ Grazing*Root,na.action=na.fail)

Error in na.fail.default(list(Fruit = c(59.77, 60.98, 14.73, 19.28,
34.25, : missing values in object

If you are carrying out regression with time series data that include missing values then you
should use na.action = NULL so that residuals and fitted values are time series as well (if
the missing values were omitted, then the resulting vector would not be a time series of the
correct length).

Offsets

You would not use offsets with a linear model (you could simply subtract the offset from the
value of the response variable, and work with the transformed values). But with generalized
linear models you may want to specify part of the variation in the response using an offset
(see p. 518 for details and examples).

Dataframes containing the same variable names

If you have several different dataframes containing the same variable names (say x and y)
then the simplest way to ensure that the correct variables are used in the modelling is to
name the dataframe in the function call:

model<-lm(y ~ x,data=correct.frame)

The alternative is much more cumbersome to type:

model<-lm(correct.frame$y ~ correct.frame$x)

STATISTICAL MODELLING 353

Akaike’s Information Criterion

Akaike’s information criterion (AIC) is known in the statistics trade as a penalized log-
likelihood. If you have a model for which a log-likelihood value can be obtained, then

AIC = −2 × log -likelihood + 2�p + 1��

where p is the number of parameters in the model, and 1 is added for the estimated variance
(you could call this another parameter if you wanted to). To demystify AIC let’s calculate it
by hand. We revisit the regression data for which we calculated the log-likelihood by hand
on p. 217.

attach(regression)
names(regression)

[1] "growth" "tannin"

growth

[1] 12 10 8 11 6 7 2 3 3

The are nine values of the response variable, growth, and we calculated the log-likelihood
as −23�989 41 earlier. There was only one parameter estimated from the data for these
calculations (the mean value of y), so p = 1. This means that AIC should be

AIC = −2 × −23�989 41 + 2 × �1 + 1� = 51�978 82�

Fortunately, we do not need to carry out these calculations, because there is a built-in
function for calculating AIC. It takes a model object as its argument, so we need to fit a
one-parameter model to the growth data like this:

model<-lm(growth~1)

Then we can get the AIC directly:

AIC(model)

[1] 51.97882

AIC as a measure of the fit of a model

The more parameters that there are in the model, the better the fit. You could obtain a perfect
fit if you had a separate parameter for every data point, but this model would have absolutely
no explanatory power. There is always going to be a trade-off between the goodness of fit
and the number of parameters required by parsimony. AIC is useful because it explicitly
penalizes any superfluous parameters in the model, by adding 2�p + 1� to the deviance.

When comparing two models, the smaller the AIC, the better the fit. This is the basis of
automated model simplification using step.

You can use the function AIC to compare two models, in exactly the same way as you
can use anova (as explained on p. 325). Here we develop an analysis of covariance that is
introduced on p. 490.

model.1<-lm(Fruit ~ Grazing*Root)
model.2<-lm(Fruit ~ Grazing+Root)

354 THE R BOOK

AIC(model.1, model.2)

df AIC
model.1 5 273.0135
model.2 4 271.1279

Because model.2 has the lower AIC, we prefer it to model.l. The log-likelihood was
penalized by 2 × �4 + 1� = 10 in model 1 because that model contained 4 parameters (2
slopes and 2 intercepts) and by 2 × �3 + 1� = 8 in model.2 because that model had 3
parameters (two intercepts and a common slope). You can see where the two values of AIC
come from by calculation:

-2*logLik(model.1)+2*(4+1)

[1] 273.0135

-2*logLik(model.2)+2*(3+1)

[1] 271.1279

Leverage

Points increase in influence to the extent that they lie on their own, a long way from the
mean value of x (to either the left or right). To account for this, measures of leverage for a
given data point y are proportional to �x − x̄�2. The commonest measure of leverage is

hi =
1
n

+ �xi − x̄�2∑
�xj − x̄�2

where the denominator is SSX. A good rule of thumb is that a point is highly influential if its

hi >
2p

n
�

where p is the number of parameters in the model. We could easily calculate the leverage
value of each point in our vector x1 created on p. 345. It is more efficient, perhaps, to write a
general function that could carry out the calculation of the h values for any vector of x values,

leverage<-function(x){1/length(x)+(x-mean(x))^2/sum((x-mean(x))^2)}

Then use the function called leverage on x1:

leverage(x1)

[1] 0.3478261 0.1956522 0.1956522 0.1956522 0.1739130
[6] 0.8913043

This draws attention immediately to the sixth x value: its h value is more than double the
next largest. The result is even clearer if we plot the leverage values

plot(leverage(x1),type="h")
abline(0.66,0,lty=2)
points(leverage(x1))

STATISTICAL MODELLING 355

Note that if the plot directive has a single argument (as here), then the x values for the
plot are taken as the order of the numbers in the vector to be plotted (called Index and
taking the sequence 1:6 in this case). It would be useful to plot the rule-of-thumb value of
what constitutes an influential point. In this case, p = 2 and n (the number of points on the
graph) = 6, so a point is influential if hi > 0�66.

Index

le
ve

ra
ge

(x
1)

1 2 3 4 5 6

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

This is enough to warn us that the point (7,6) could be having a marked effect on the
parameter estimates of our model. We can see if this is true by repeating the regression
without the point (7,6). There are several ways of doing this. If we know the subscript of
the point, [6] in this example, we can drop that point explicitly using the negative subscript
convention (see p. 24).

reg2<-lm(y1[-6] ~ x1[-6])
summary(reg2)

Residuals:
1 2 3 4 5

1.955e-16 1.000e+00 4.572e-18 -1.000e+00 -9.890e-17
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.000e+00 1.770e+00 1.13 0.341
x1[-6] -2.587e-17 5.774e-01 -4.48e-17 1.000

Residual standard error: 0.8165 on 3 degrees of freedom
Multiple R-Squared: 2.465e-32, Adjusted R-squared: -0.3333
F-statistic: 7.396e-32 on 1 and 3 DF, p-value: 1

The point (7,6) was indeed highly influential because without it, the slope of the graph is
zero. Notice that the residuals of the points we created are not exactly zero; they are various
numbers times 10−17.

356 THE R BOOK

Alternatively, we could use weights to ‘weight out’ the point (7,6) whose influence we
want to test. We need to create a vector of weights: 1s for the data we want to include
and 0s for the data we want to leave out. In this simple case we could type in the weights
directly like this:

w<-c(1,1,1,1,1,0)

but in general, we will want to calculate them on the basis of some logical criterion.
A suitable condition for inclusion here would be x1 < 6:

(w<-(x1<6))

[1] TRUE TRUE TRUE TRUE TRUE FALSE

Note that when we calculate the weight vector in this way, we get TRUE and FALSE rather
than 1 and 0, but this works equally well. The new model looks like this:

reg3<-lm(y1 ~ x1,weights=w)
summary(reg3)

Finally, we could use subset to leave out the point(s) we wanted to exclude from the model
fit. Of all the options, this is the most general, and the easiest to use. As with weights, the
subset is stated as part of the model specification. It says which points to include, rather
than to exclude, so the logic to include any points for which x1 < 6 (say):

reg4<-lm(y1 ~ x1,subset=(x1<6))
summary(reg4)

The outputs of reg4 and reg3 are exactly the same as in reg2 using subscripts.

Misspecified Model

The model may have the wrong terms in it, or the terms may be included in the model in the
wrong way. We deal with the selection of terms for inclusion in the minimal adequate model
in Chapter 9. Here we simply note that transformation of the explanatory variables often
produces improvements in model performance. The most frequently used transformations
are logs, powers and reciprocals.

When both the error distribution and functional form of the relationship are unknown,
there is no single specific rationale for choosing any given transformation in preference to
another. The aim is pragmatic, namely to find a transformation that gives:

• constant error variance;

• approximately normal errors;

• additivity;

• a linear relationship between the response variables and the explanatory variables;

• straightforward scientific interpretation.

The choice is bound to be a compromise and, as such, is best resolved by quantitative compar-
ison of the deviance produced under different model forms. Again, in testing for non-linearity

STATISTICAL MODELLING 357

in the relationship between y and x we might add a term in x2 to the model; a significant
parameter in the x2 term indicates curvilinearity in the relationship between y and x.

A further element of misspecification can occur because of structural non-linearity.
Suppose, for example, that we were fitting a model of the form

y = a + b

x
�

but the underlying process was really of the form

y = a + b

c + x
	

then the fit is going to be poor. Of course if we knew that the model structure was of this
form, then we could fit it as a non-linear model (p. 663) or as a non-linear mixed-effects
model (p. 671), but in practice this is seldom the case.

Model checking in R

The data we examine in this section are on the decay of a biodegradable plastic in soil: the
response, y, is the mass of plastic remaining and the explanatory variable, x, is duration of
burial:

Decay<-read.table("c:\\temp\\Decay.txt",header=T)
attach(Decay)
names(Decay)

[1] "time" "amount"

For the purposes of illustration we shall fit a linear regression to these data and then use
model-checking plots to investigate the adequacy of that model:

model<-lm(amount ~ time)

The basic model checking could not be simpler:

plot(model)

This one command produces a series of graphs, spread over four pages. The first two graphs
are the most important. First, you get a plot of the residuals against the fitted values (left
plot) which shows very pronounced curvature; most of the residuals for intermediate fitted
values are negative, and the positive residuals are concentrated at the smallest and largest
fitted values. Remember, this plot should look like the sky at night, with no pattern of
any sort. This suggests systematic inadequacy in the structure of the model. Perhaps the
relationship between y and x is non-linear rather than linear as we assumed here? Second,
you get a QQ plot (p. 341) which indicates pronounced non-normality in the residuals (the
line should be straight, not banana-shaped as here).

358 THE R BOOK

Fitted values

Residuals vs Fitted Normal Q–Q

Theoretical Quantities

S
ta

nd
ar

di
ze

d
re

si
du

al
s

R
es

id
ua

ls

40 60 800 20

0
–1

1
2

3

0
–2

0
–1

0
10

20
30

40

–2 –1 0

5
5

1

30
30

1

1 2

Fitted values

Residuals vs Leverage

0.5

Scale-Location

Cook's distance

S
ta

nd
ar

di
ze

d
re

si
du

al
s

40 60 800 20

0
–1

1
2

3

1.
0

0.
0

0.
5

1.
5

0.00 0.04 0.08

5

5

1

30

30

1

0.12

|S
ta

nd
ar

di
ze

d
re

si
du

al
s|

√

 Leverage

STATISTICAL MODELLING 359

The third graph is like a positive-valued version of the first graph; it is good for detecting
non-constancy of variance (heteroscedasticity), which shows up as a triangular scatter (like
a wedge of cheese). The fourth graph shows a pronounced pattern in the standardized
residuals as a function of the leverage. The graph also shows Cook’s distance, highlighting
the identity of particularly influential data points.

Cook’s distance is an attempt to combine leverage and residuals in a single measure. The
absolute values of the deletion residuals �r∗

i � are weighted as follows:

Ci = �r∗
i �
(

n − p

p
�

hi

1 − hi

)1/2

�

Data points 1, 5 and 30 are singled out as being influential, with point number 1 especially
so. When we were happier with other aspects of the model, we would repeat the modelling,
leaving out each of these points in turn. Alternatively, we could jackknife the data (see
p. 422), which involves leaving every data point out, one at a time, in turn. In any event,
this is clearly not a good model for these data. The analysis is completed on p. 407.

Extracting information from model objects

You often want to extract material from fitted models (e.g. slopes, residuals or p values)
and there are three different ways of doing this:

• by name, e.g. coef(model)

• with list subscripts, e.g. summary(model)[[3]]

• using $ to name the component, e.g. model$resid

The model object we use to demonstrate these techniques is the simple linear regression
that was analysed in full by hand on p. 388.

data<-read.table("c:\\temp\\regression.txt",header=T)
attach(data)
names(data)

[1] "growth" "tannin"

model<-lm(growth ~ tannin)
summary(model)

Call:
lm(formula = growth~tannin)

Residuals:
Min 1Q Median 3Q Max

-2.4556 -0.8889 -0.2389 0.9778 2.8944

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.7556 1.0408 11.295 9.54e-06 ***
tannin -1.2167 0.2186 -5.565 0.000846 ***

Residual standard error: 1.693 on 7 degrees of freedom
Multiple R-Squared: 0.8157, Adjusted R-squared: 0.7893
F-statistic: 30.97 on 1 and 7 DF, p-value: 0.000846

360 THE R BOOK

By name

You can extract the coefficients of the model, the fitted values, the residuals, the effect sizes
and the variance–covariance matrix by name, as follows:

coef(model)

(Intercept) tannin
11.755556 -1.216667

gives the parameter estimates (‘coefficients’) for the intercept �a� and slope �b�;

fitted(model)

1 2 3 4 5 6
11.755556 10.538889 9.322222 8.105556 6.888889 5.672222

7 8 9
4.455556 3.238889 2.022222

gives the nine fitted values �ŷ = a + bx� used in calculating the residuals;

resid(model)

1 2 3 4 5
0.2444444 -0.5388889 -1.3222222 2.8944444 -0.8888889

6 7 8 9
1.3277778 -2.4555556 -0.2388889 0.9777778

gives the residuals (y – fitted values) for the nine data points;

effects(model)

(Intercept) tannin

-20.6666667 -9.4242595 -1.3217694 2.8333333 -1.0115639 1.1435388

-2.7013585 -0.5462557 0.6088470

attr(,"assign")
[1] 0 1
attr(,"class")
[1] "coef"

For a linear model fitted by lm or aov the effects are the uncorrelated single-degree-of-
freedom values obtained by projecting the data onto the successive orthogonal subspaces
generated by the QR decomposition during the fitting process. The first r (= 2 in this case;
the rank of the model) are associated with coefficients and the remainder span the space of
residuals but are not associated with particular residuals. It produces a numeric vector of the
same length as residuals of class coef. The first two rows are labelled by the corresponding
coefficients (intercept and slope), and the remaining 7 rows are unlabelled.

vcov(model)

(Intercept) tannin
(Intercept) 1.0832628 -0.19116402

tannin -0.1911640 0.04779101

This extracts the variance–covariance matrix of the model’s parameters.

STATISTICAL MODELLING 361

With list subscripts

The model object is a list with many components. Here each of them is explained in turn.
The first is the model formula (or ‘Call’) showing the response variable (growth) and the
explanatory variable(s) (tannin):

summary(model)[[1]]

lm(formula = growth~tannin)

The second describes the attributes of the object called summary(model):

summary(model)[[2]]

growth~tannin
attr(,"variables")
list(growth, tannin)
attr(,"factors")

tannin
growth 0
tannin 1

attr(,"term.labels")
[1] "tannin"
attr(,"order")
[1] 1 attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>
attr(,"predvars")
list(growth, tannin)
attr(,"dataClasses")

growth tannin
"numeric" "numeric"

The third gives the residuals for the nine data points:

summary(model)[[3]]

1 2 3 4 5
0.2444444 -0.5388889 -1.3222222 2.8944444 -0.8888889

6 7 8 9
1.3277778 -2.4555556 -0.2388889 0.9777778

The fourth gives the parameter table, including standard errors of the parameters, t values
and p values:

summary(model)[[4]]

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.755556 1.0407991 11.294740 9.537315e-06
tannin -1.216667 0.2186115 -5.565427 8.460738e-04

The fifth is concerned with whether the corresponding components of the fit (the model
frame, the model matrix, the response or the QR decomposition) should be returned. The
default is FALSE:

362 THE R BOOK

summary(model)[[5]]

(Intercept) tannin
FALSE FALSE

The sixth is the residual standard error: the square root of the error variance from the
summary.aov table (which is not shown here: s2 = 2�867; see p. 396):

summary(model)[[6]]

[1] 1.693358

The seventh shows the number of rows in the summary.lm table (showing two parameters
to have been estimated from the data with this model, and the residual degrees of freedom
(d.f.= 7):

summary(model)[[7]]

[1] 2 7 2

The eighth is r2 = SSR/SST , the fraction of the total variation in the response variable that
is explained by the model (see p. 399 for details):

summary(model)[[8]]

[1] 0.8156633

The ninth is the adjusted R2, explained on p. 399 but seldom used in practice:

summary(model)[[9]]

[1] 0.7893294

The tenth gives F ratio information: the three values given here are the F ratio (30.97398),
the number of degrees of freedom in the model (i.e. in the numerator: numdf) and the
residual degrees of freedom (i.e. in the denominator: dendf):

summary(model)[[10]]

value numdf dendf
30.97398 1.00000 7.00000

The eleventh component is the correlation matrix of the parameter estimates:

summary(model)[[11]]

(Intercept) tannin
(Intercept) 0.37777778 -0.06666667
tannin -0.06666667 0.01666667

You will often want to extract elements from the parameter table that was the fourth
object above. The first of these is the intercept (a, the value of growth at tannin = 0):

summary(model)[[4]][[1]]

[1] 11.75556

The second is the slope (b, the change in growth per unit change in tannin):

summary(model)[[4]][[2]]

[1] -1.216667

STATISTICAL MODELLING 363

The third is the standard error of the intercept, sea:

summary(model)[[4]][[3]]

[1] 1.040799

The fourth is the standard error of the slope, seb:

summary(model)[[4]][[4]]

[1] 0.2186115

The fifth is the value of Student’s t for the intercept = a/sea:

summary(model)[[4]][[5]]

[1] 11.29474

The sixth is the value of Student’s t for the slope = b/seb:

summary(model)[[4]][[6]]
[1] -5.565427

The seventh is the p value for the intercept: the probability of observing a t value this large
or larger, if the null hypothesis (H0: intercept= 0) is true:

summary(model)[[4]][[7]]

[1] 9.537315e-06

We reject H0 because p < 0�05. The eighth is the p value for the slope: the probability of
observing a t value this big or larger, if the null hypothesis (H0: slope= 0) is true:

summary(model)[[4]][[8]]

[1] 0.0008460738

We reject H0 because p < 0�05. To save the two standard errors (1.040 799 1 and
0.218 611 5) write

sea<-summary(model)[[4]][[3]]
seb<-summary(model)[[4]][[4]]

Extracting components of the model using $

Another way to extract model components is to use the $ symbol. To get the intercept �a�
and the slope �b� of the regression, type

model$coef

(Intercept) tannin
11.755556 -1.216667

To get the fitted values �ŷ = a + bx� used in calculating the residuals, type

model$fitted

1 2 3 4 5 6
11.755556 10.538889 9.322222 8.105556 6.888889 5.672222

7 8 9
4.455556 3.238889 2.022222

364 THE R BOOK

To get the residuals themselves, type

model$resid
1 2 3 4 5

0.2444444 -0.5388889 -1.3222222 2.8944444 -0.8888889
6 7 8 9

1.3277778 -2.4555556 -0.2388889 0.9777778

Finally, the residual degrees of freedom (9 points – 2 estimated parameters = 7 d.f.) are

model$df

[1] 7

Extracting components from the summary.aov table

summary.aov(model)

Df Sum Sq Mean Sq F value Pr(>F)
tannin 1 88.817 88.817 30.974 0.000846 ***
Residuals 7 20.072 2.867

You can get the degrees of freedom, sums of squares, mean squares, F ratios and p values
out of the ANOVA table for a model like this:

summary.aov(model)[[1]][[1]]

[1] 1 7

summary.aov(model)[[1]][[2]]

[1] 88.81667 20.07222

summary.aov(model)[[1]][[3]]

[1] 88.816667 2.867460

summary.aov(model)[[1]][[4]]

[1] 30.97398 NA

summary.aov(model)[[1]][[5]]

[1] 0.0008460738 NA

You should experiment to see the components of the model object itself (e.g. model[[3]]).

The summary.lm table for continuous and categorical explanatory variables

It is important to understand the difference between summary.lm and summary.aov for the
samemodel.Here isaone-wayanalysisofvarianceof theplantcompetitionexperiment (p.155):

comp<-read.table("c:\\temp\\competition.txt",header=T)
attach(comp)
names(comp)

[1] "biomass" "clipping"

The categorical explanatory variable is clipping and it has five levels as follows:

levels(clipping)

STATISTICAL MODELLING 365

[1] "control" "n25" "n50" "r10" "r5"

The analysis of variance model is fitted like this:

model<-lm(biomass ~ clipping)

and the two different summaries of it are:

summary.aov(model)

Df Sum Sq Mean Sq F value Pr(>F)
clipping 4 85356 21339 4.3015 0.008752 **
Residuals 25 124020 4961

summary.lm(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 28.75 16.177 9.4e-15 ***
clippingn25 88.17 40.66 2.168 0.03987 *
clippingn50 104.17 40.66 2.562 0.01683 *
clippingr10 145.50 40.66 3.578 0.00145 **
clippingr5 145.33 40.66 3.574 0.00147 **

Residual standard error: 70.43 on 25 degrees of freedom
Multiple R-Squared: 0.4077, Adjusted R-squared: 0.3129
F-statistic: 4.302 on 4 and 25 DF, p-value: 0.008752

The latter, summary.lm, is much the more informative. It shows the effect sizes and their
standard errors. The effect sizes are shown in the form of contrasts (as explained in detail on
p. 370). The only interesting things in summary.aov are the error variance (s2 = 4961) and
the F ratio (4.3015) showing that there are significant differences to be explained. The first
row of the summary.lm table contains a mean and all the other rows contain differences
between means. Thus, the standard error in the first row (labelled (Intercept)) is the
standard error of a mean semean =√

s2/�k × n�, while the standard errors on the other rows
are standard errors of the difference between two means sediff =√

2 × s2/n, where there are
k factor levels each with replication = n.

So where do the effect sizes come from? What is 465.17 and what is 88.17? To understand
the answers to these questions, we need to know how the equation for the explanatory
variables is structured in a linear model when the explanatory variable, as here, is categorical.
To recap, the linear regression model is written as

lm(y ~ x)

which R interprets as the two-parameter linear equation. R knows this because x is a
continuous variable,

y = a + bx� (9.1)

in which the values of the parameters a and b are to be estimated from the data. But what
about our analysis of variance? We have one explanatory variable, x = clipping, but it is a
categorical variable with five levels, control, n25, n50, r10 and r5. The aov model is exactly
analogous to the regression model

aov(y ~ x)

366 THE R BOOK

but what is the associated equation? Let’s look at the equation first, then try to understand it:

y = a + bx1 + cx2 + dx3 + ex4 + fx5�

This looks just like a multiple regression, with five explanatory variables, x1� � � � � x5. The
key point to understand is that x1� � � � � x5 are the levels of the factor called x. The intercept,
a, is the overall (or grand) mean for the whole experiment. The parameters b� � � � � f are
differences between the grand mean and the mean for a given factor level. You will need
to concentrate to understand this.

With a categorical explanatory variable, all the variables are coded as x = 0 except for
the factor level that is associated with the y value in question, when x is coded as x = 1.
You will find this hard to understand without a good deal of practice. Let’s look at the first
row of data in our dataframe:

comp[1,]

biomass clipping
1 551 n25

So the first biomass value (551) in the dataframe comes from clipping treatment n25 which,
out of all the factor levels (above), comes second in the alphabet. This means that for this
row of the dataframe x1 = 0� x2 = 1� x3 = 0� x4 = 0� x5 = 0. The equation for the first row
therefore looks like this:

y = a + b × 0 + c × 1 + d × 0 + e × 0 + f × 0�

so the model for the fitted value at n25 is

ŷ = a + c	

and similarly for the other factor levels. The fitted value ŷ is the sum of two parameters,
a and c. The equation apparently does not contain an explanatory variable (there is no x
in the equation as there would be in a regression equation, above). Note, too, how many
parameters the full model contains: they are represented by the letters a to f and there are
six of them. But we can only estimate five parameters in this experiment (one mean for
each of the five factor levels). Our model contains one redundant parameter, and we need to
deal with this. There are several sensible ways of doing this, and people differ about what
is the best way. The writers of R agree that treatment contrasts represent the best solution.
This method does away with parameter a, the overall mean. The mean of the factor level
that comes first in the alphabet (control, in our example) is promoted to pole position, and
the other effects are shown as differences (contrasts) between this mean and the other four
factor level means.

An example might help make this clearer. Here are our five means:

means<-tapply(biomass,clipping,mean)
means
control n25 n50 r10 r5

465.1667 553.3333 569.3333 610.6667 610.5000

STATISTICAL MODELLING 367

The idea is that the control mean (465.1667) becomes the first parameter of the model
(known as the intercept). The second parameter is the difference between the second mean
�n25 = 553�333� and the intercept:

means[2]-means[1]

n25
88.16667

The third parameter is the difference between the third mean �n50 = 569�333� and the
intercept:

means[3]-means[1]

n50
104.1667

The fourth parameter is the difference between the fourth mean �r10 = 610�6667� and the
intercept:

means[4]-means[1]

r10
145.5

The fifth parameter is the difference between the fifth mean �r5 = 610�5� and the intercept:

means[5]-means[1]

r5
145.3333

So much for the effect sizes. What about their standard errors? The first row is a mean, so
we need the standard error of one factor-level mean. This mean is based on six numbers in
this example, so the standard error of the mean is

√
s2/n where the error variance s2 = 4961

is obtained from the summary.aov(model) above:

sqrt(4961/6)

[1] 28.75471

All the other rows have the same standard error, but it is bigger than this. That is because
the effects on the 2nd and subsequent rows are not means, but differences between means.
That means that the appropriate standard error is not the standard error of a mean, but rather
the standard error of the difference between two means. When two samples are independent,
the variance of their difference is the sum of their two variances. Thus, the formula for the
standard error of a difference between two means is

sediff =
√

s2
1

n1

+ s2
2

n2

�

When the two variances and the two sample sizes are the same (as here, because our design
is balanced and we are using the pooled error variance (4961) from the summary.aov
table) the formula simplifies to

√
2 × s2/n:

sqrt(2*4961/6)

[1] 40.6653

368 THE R BOOK

With some practice, that should demystify the origin of the numbers in the summary.lm
table. But it does take lots of practice, and people do find this very difficult at first, so don’t
feel bad about it.

Contrasts

Contrasts are the essence of hypothesis testing and model simplification in analysis of
variance and analysis of covariance. They are used to compare means or groups of means
with other means or groups of means, in what are known as single-degree-of-freedom
comparisons. There are two sorts of contrasts we might be interested in:

• contrasts we had planned to examine at the experimental design stage (these are referred
to as a priori contrasts);

• contrasts that look interesting after we have seen the results (these are referred to as a
posteriori contrasts).

Some people are very snooty about a posteriori contrasts, on the grounds that they were
unplanned. You are not supposed to decide what comparisons to make after you have seen
the analysis, but scientists do this all the time. The key point is that you should only do
contrasts after the ANOVA has established that there really are significant differences to
be investigated. It is not good practice to carry out tests to compare the largest mean with
the smallest mean, if the ANOVA has failed to reject the null hypothesis (tempting though
this may be).

There are two important points to understand about contrasts:

• there is a huge number of possible contrasts, and

• there are only k − 1 orthogonal contrasts,

where k is the number of factor levels. Two contrasts are said to be orthogonal to one
another if the comparisons are statistically independent. Technically, two contrasts are
orthogonal if the products of their contrast coefficients sum to zero (we shall see what this
means in a moment).

Let’s take a simple example. Suppose we have one factor with five levels and the factor
levels are called a, b, c, d, and e. Let’s start writing down the possible contrasts. Obviously
we could compare each mean singly with every other:

a vs� b� a vs� c� a vs� d� a vs� e� b vs� c� b vs� d� b vs� e� c vs� d� c vs� e� d vs� e�

But we could also compare pairs of means:

a� b� vs�
c�d��
a� b� vs�
c� e��
a� b� vs�
d� e��
a� c� vs�
b�d��
a� c� vs�
b� e�� � � �

or triplets of means:

a� b� c� vs� d�
a� b� c� vs� e�
a� b�d� vs� c�
a� b�d� vs� e�
a� c�d� vs� b� � � �

STATISTICAL MODELLING 369

or groups of four means:

a� b� c�d� vs� e�
a� b� c� e� vs� d�
a� b�d� e� vs� c�
a� c�d� e� vs� b�
b� c�d� e� vs� a�

You doubtless get the idea. There are absolutely masses of possible contrasts. In practice,
however, we should only compare things once, either directly or implicitly. So the two
contrasts a vs. b and a vs. c implicitly contrast b vs. c. This means that if we have carried
out the two contrasts a vs. b and a vs. c then the third contrast b vs. c is not an orthogonal
contrast because you have already carried it out, implicitly. Which particular contrasts are
orthogonal depends very much on your choice of the first contrast to make. Suppose there
were good reasons for comparing {a,b,c,e} vs. d. For example, d might be the placebo and
the other four might be different kinds of drug treatment, so we make this our first contrast.
Because k − 1 = 4 we only have three possible contrasts that are orthogonal to this. There
may be a priori reasons to group {a,b} and {c,e} so we make this our second orthogonal
contrast. This means that we have no degrees of freedom in choosing the last two orthogonal
contrasts: they have to be a vs. b and c vs. e. Just remember that with orthogonal contrasts
you only compare things once.

Contrast coefficients

Contrast coefficients are a numerical way of embodying the hypothesis we want to test. The
rules for constructing contrast coefficients are straightforward:

• Treatments to be lumped together get the same sign (plus or minus).

• Groups of means to be to be contrasted get opposite sign.

• Factor levels to be excluded get a contrast coefficient of 0.

• The contrast coefficients, c, must add up to 0.

Suppose that with our five-level factor {a,b,c,d,e} we want to begin by comparing the
four levels {a,b,c,e} with the single level d. All levels enter the contrast, so none of the
coefficients is 0. The four terms {a,b,c,e} are grouped together so they all get the same
sign (minus, for example, although it makes no difference which sign is chosen). They are
to be compared to d, so it gets the opposite sign (plus, in this case). The choice of what
numeric values to give the contrast coefficients is entirely up to you. Most people use whole
numbers rather than fractions, but it really doesn’t matter. All that matters is that the cs
sum to 0. The positive and negative coefficients have to add up to the same value. In our
example, comparing four means with one mean, a natural choice of coefficients would be
−1 for each of {a,b,c,e} and +4 for d. Alternatively, with could select +0�25 for each of
{a,b,c,e} and −1 for d.

Factor level: a b c d e
contrast 1 coefficients: −1 −1 −1 4 −1

Suppose the second contrast is to compare {a,b} with {c,e}. Because this contrast excludes
d, we set its contrast coefficient to 0. {a,b} get the same sign (say, plus) and {c,e} get the
opposite sign. Because the number of levels on each side of the contrast is equal (2 in both

370 THE R BOOK

cases) we can use the name numeric value for all the coefficients. The value 1 is the most
obvious choice (but you could use 13.7 if you wanted to be perverse):

Factor level: a b c d e
Contrast 2 coefficients: 1 1 −1 0 −1

There are only two possibilities for the remaining orthogonal contrasts: a vs. b and c vs. e:

Factor level: a b c d e
Contrast 3 coefficients: 1 −1 0 0 0
Contrast 4 coefficients: 0 0 1 0 −1

The variation in y attributable to a particular contrast is called the contrast sum of
squares, SSC. The sums of squares of the k − 1 orthogonal contrasts add up to the total
treatment sum of squares, SSA (

∑k−1
i=1 SSCi = SSA; see p. 451). The contrast sum of squares

is computed like this:

SSCi =
�
∑

�ciTi/ni��
2∑

�c2
i /ni�

�

where the ci are the contrast coefficients (above), ni are the sample sizes within each factor
level and Ti are the totals of the y values within each factor level (often called the treatment
totals). The significance of a contrast is judged by an F test, dividing the contrast sum of
squares by the error variance. The F test has 1 degree of freedom in the numerator (because
a contrast is a comparison of two means, and 2 − 1 = 1) and k�n − 1� degrees of freedom
in the denominator (the error variance degrees of freedom).

An example of contrasts in R

The following example comes from the competition experiment we analysed on p. 155,
in which the biomass of control plants is compared to the biomass of plants grown in
conditions where competition was reduced in one of four different ways. There are two
treatments in which the roots of neighbouring plants were cut (to 5 cm or 10 cm depth) and
two treatments in which the shoots of neighbouring plants were clipped (25% or 50% of
the neighbours were cut back to ground level).

comp<-read.table("c:\\temp\\competition.txt",header=T)
attach(comp)
names(comp)

[1] "biomass" "clipping"

We start with the one-way analysis of variance:

model1<-aov(biomass ~ clipping)
summary(model1)

Df Sum Sq Mean Sq F value Pr(>F)
clipping 4 85356 21339 4.3015 0.008752 **
Residuals 25 124020 4961

STATISTICAL MODELLING 371

Clipping treatment has a highly significant effect on biomass. But have we fully understood
the result of this experiment? Probably not. For example, which factor levels had the biggest
effect on biomass, and were all of the competition treatments significantly different from
the controls? To answer these questions, we need to use summary.lm:

summary.lm(model1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 28.75 16.177 9.33e-15 ***
clippingn25 88.17 40.66 2.168 0.03987 *
clippingn50 104.17 40.66 2.562 0.01683 *
clippingr10 145.50 40.66 3.578 0.00145 **
clippingr5 145.33 40.66 3.574 0.00147 **

Residual standard error: 70.43 on 25 degrees of freedom
Multiple R-Squared: 0.4077, Adjusted R-squared: 0.3129
F-statistic: 4.302 on 4 and 25 DF, p-value: 0.008752

This looks as if we need to keep all five parameters, because all five rows of the summary
table have one or more significance stars. If fact, this is not the case. This example highlights
the major shortcoming of treatment contrasts: they do not show how many significant factor
levels we need to retain in the minimal adequate model because all of the rows are being
compared with the intercept (with the controls in this case, simply because the factor level
name for ‘controls’ comes first in the alphabet):

levels(clipping)

[1] "control" "n25" "n50" "r10" "r5"

A priori contrasts

In this experiment, there are several planned comparisons we should like to make. The obvious
place to start is by comparing the control plants, exposed to the full rigours of competition,
with all of the other treatments. That is to say, we want to contrast the first level of clipping
with the other four levels. The contrast coefficients, therefore, would be 4�−1�−1�−1�−1.
The next planned comparison might contrast the shoot-pruned treatments (n25 and n50)
with the root-pruned treatments (r10 and r5). Suitable contrast coefficients for this would be
0� 1� 1�−1�−1 (because we are ignoring the control in this contrast). A third contrast might
compare the two depths of root pruning; 0, 0, 0, 1, −1. The last orthogonal contrast would
therefore have to compare the two intensities of shoot pruning: 0, 1, −1, 0, 0. Because the
factor called clipping has five levels there are only 5 − 1 = 4 orthogonal contrasts.

R is outstandingly good at dealing with contrasts, and we can associate these five user-
specified a priori contrasts with the categorical variable called clipping like this:

contrasts(clipping)<-cbind(c(4,-1,-1,-1,-1),c(0,1,1,-1,-1),c(0,0,0,1,-1),c(0,1,-1,0,0))

We can check that this has done what we wanted by typing

contrasts(clipping)

372 THE R BOOK

[,1] [,2] [,3] [,4]
control 4 0 0 0
n25 -1 1 0 1
n50 -1 1 0 -1
r10 -1 -1 1 0
r5 -1 -1 -1 0

which produces the matrix of contrast coefficients that we specified. Note that all the
columns add to zero (i.e. each set of contrast coefficients is correctly specified). Note also
that the products of any two of the columns sum to zero (this shows that all the contrasts
are orthogonal, as intended): for example, comparing contrasts 1 and 2 gives products
0 + �−1� + �−1� + 1 + 1 = 0.

Now we can refit the model and inspect the results of our specified contrasts, rather than
the default treatment contrasts:

model2<-aov(biomass ~ clipping)
summary.lm(model2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 561.80000 12.85926 43.688 <2e-16 ***
clipping1 -24.15833 6.42963 -3.757 0.000921 ***
clipping2 -24.62500 14.37708 -1.713 0.099128 .
clipping3 0.08333 20.33227 0.004 0.996762
clipping4 -8.00000 20.33227 -0.393 0.697313

Residual standard error: 70.43 on 25 degrees of freedom
Multiple R-Squared: 0.4077, Adjusted R-squared: 0.3129
F-statistic: 4.302 on 4 and 25 DF, p-value: 0.008752

Instead of requiring five parameters (as suggested by out initial treatment contrasts), this
analysis shows that we need only two parameters: the overall mean (561.8) and the contrast
between the controls and the four competition treatments �p = 0�000 921�. All the other
contrasts are non-significant.

When we specify the contrasts, the intercept is the overall (grand) mean:

mean(biomass)

[1] 561.8

The second row, labelled clipping1, estimates, like all contrasts, the difference between two
means. But which two means, exactly? The means for the different factor levels are:

tapply(biomass,clipping,mean)

control n25 n50 r10 r5
465.1667 553.3333 569.3333 610.6667 610.5000

Our first contrast compared the controls (mean = 465�1667, above) with the mean of the
other four treatments. The simplest way to get this other mean is to create a new factor, c1

that has value 1 for the controls and 2 for the rest:

c1<-factor(1+(clipping!="control"))
tapply(biomass,c1,mean)

1 2
465.1667 585.9583

STATISTICAL MODELLING 373

The estimate in the first row, reflecting contrast 1, is the difference between the overall
mean (561.8) and the mean of the four non-control treatments (585.9583):

mean(biomass)-tapply(biomass,c1,mean)

1 2
96.63333 -24.15833

and you see the estimate on line 2 as -24.158 33. What about the second contrast on line 3?
This compares the root- and shoot-pruned treatments, and c2 is a factor that lumps together
the two root and two shoot treatments

c2<-factor(2*(clipping=="n25")+2*(clipping=="n50")+(clipping=="r10")+(clipping=="r5"))

We can compute the mean biomass for the two treatments using tapply, then subtract the
means from one another using the diff function, then half the differences:

diff(tapply(biomass,c2,mean))/2

1 2
72.70833 -24.62500

So the second contrast on row 3�−24�625� is half the difference between the root- and
shoot-pruned treatments. What about the third row? Contrast number 3 is between the two
root-pruned treatments. We know their values already from tapply, above:

r10 r5
610.6667 610.5000

The two means differ by 0.166 666 so the third contrast is half the difference between the
two means:

(610.666666-610.5)/2

[1] 0.083333

The final contrast compares the two shoot-pruning treatments, and the contrast is half the
difference between these two means:

(553.3333-569.3333)/2

[1] -8

To recap: the first contrast compares the overall mean with the mean of the four non-control
treatments, the second contrast is half the difference between the root and shoot-pruned
treatment means, the third contrast is half the difference between the two root-pruned
treatments, and the fourth contrast is half the difference between the two shoot-pruned
treatments.

It is important to note that the first four standard errors in the summary.lm table are all
different from one another. As we have just seen, the estimate in the first row of the table
is a mean, while all the other rows contain estimates that are differences between means.
The overall mean on the top row is based on 30 numbers so the standard error of the mean
is se =√

s2/30, where s2 comes from the ANOVA table:

sqrt(4961/30)

[1] 12.85950

374 THE R BOOK

The small difference in the fourth decimal place is due to rounding errors in calling the
variance 4961.0. The next row compares two means so we need the standard error of the
difference between two means. The complexity comes from the fact that the two means are
each based on different numbers of numbers. The overall mean is based on all five factor
levels (30 numbers) while the non-control mean with which it is compared is based on
four means (24 numbers). Each factor level has n = 6 replicates, so the denominator in the
standard error formula is 5 × 4 × 6=120. Thus, the standard error of the difference between
the these two means is se =√

s2/�5 × 4 × 6�:

sqrt(4961/(5*4*6))

[1] 6.429749

For the second contrast on row 3, each of the means is based on 12 numbers so the standard
error is se =√

2 × �s2/12� so the standard error of half the difference is:

sqrt(2*(4961/12))/2

[1] 14.37735

The last two contrasts are both between means based on six numbers, so the standard error
of the difference is se =√

2 × �s2/6� and the standard error of half the difference is:

sqrt(2*(4961/6))/2

[1] 20.33265

The complexity of these calculations is another reason for preferring treatment contrasts
rather than user-specified contrasts as the default. The advantage of orthogonal contrasts,
however, is that the summary.lm table gives us a much better idea of the number of
parameters required in the minimal adequate model (2 in this case). Treatment contrasts had
significance stars on all five rows (see below) because all the non-control treatments were
compared to the controls (the Intercept).

Model simplification by stepwise deletion

An alternative to specifying the contrasts ourselves (as above) is to aggregate non-significant
factor levels in a stepwise a posteriori procedure. To demonstrate this, we revert to treatment
contrasts. First, we switch off our user-defined contrasts:

contrasts(clipping)<-NULL
options(contrasts=c("contr.treatment","contr.poly"))

Now we fit the model with all five factor levels as a starting point:

model3<-aov(biomass ~ clipping)
summary.lm(model3)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 28.75 16.177 9.33e-15 ***
clippingn25 88.17 40.66 2.168 0.03987 *
clippingn50 104.17 40.66 2.562 0.01683 *
clippingr10 145.50 40.66 3.578 0.00145 **
clippingr5 145.33 40.66 3.574 0.00147 **

STATISTICAL MODELLING 375

Looking down the list of parameter estimates, we see that the most similar are the effects
of root pruning to 10 and 5 cm (145.5 vs. 145.33). We shall begin by simplifying these to
a single root-pruning treatment called root. The trick is to use the gets arrow to change the
names of the appropriate factor levels. Start by copying the original factor name:

clip2<-clipping

Now inspect the level numbers of the various factor level names:

levels(clip2)

[1] "control" "n25" "n50" "r10" "r5"

The plan is to lump together r10 and r5 under the same name, ‘root’. These are the fourth
and fifth levels of clip2, so we write:

levels(clip2)[4:5]<-"root"

If we type

levels(clip2)

[1] "control" "n25" "n50" "root"

we see that r10 and r5 have indeed been replaced by root.
The next step is to fit a new model with clip2 in place of clipping, and to test whether

the new simpler model is significantly worse as a description of the data using anova:

model4<-aov(biomass ~ clip2)
anova(model3,model4)

Analysis of Variance Table
Model 1: biomass~clipping
Model 2: biomass~clip2

Res.Df RSS Df Sum of Sq F Pr(>F)
1 25 124020
2 26 124020 -1 -0.0833333 0.0000168 0.9968

As we expected, this model simplification was completely justified.
The next step is to investigate the effects using summary.lm:

summary.lm(model4)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 28.20 16.498 2.66e-15 ***
clip2n25 88.17 39.87 2.211 0.036029 *
clip2n50 104.17 39.87 2.612 0.014744 *
clip2root 145.42 34.53 4.211 0.000269 ***

It looks as if the two shoot-clipping treatments (n25 and n50) are not significantly different
from one another (they differ by just 16.0 with a standard error of 39.87). We can lump
these together into a single shoot-pruning treatment as follows:

clip3<-clip2
levels(clip3)[2:3]<-"shoot"
levels(clip3)

[1] "control" "shoot" "root"

376 THE R BOOK

Then fit a new model with clip3 in place of clip2:

model5<-aov(biomass ~ clip3)
anova(model4,model5)

Analysis of Variance Table
Model 1: biomass~clip2
Model 2: biomass~clip3

Res.Df RSS Df Sum of Sq F Pr(>F)
1 26 124020
2 27 124788 -1 -768 0.161 0.6915

Again, this simplification was fully justified. Do the root and shoot competition treatments
differ?

clip4<-clip3
levels(clip4)[2:3]<-"pruned"
levels(clip4)

[1] "control" "pruned"

Now fit a new model with clip4 in place of clip3:

model6<-aov(biomass ~ clip4)
anova(model5,model6)

Analysis of Variance Table

Model 1: biomass~clip3
Model 2: biomass~clip4

Res.Df RSS Df Sum of Sq F Pr(>F)
1 27 124788
2 28 139342 -1 -14553 3.1489 0.08726.

This simplification was close to significant, but we are ruthless �p > 0�05�, so we accept
the simplification. Now we have the minimal adequate model:

summary.lm(model6)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.2 28.8 16.152 1.11e-15 ***
clip4pruned 120.8 32.2 3.751 0.000815 ***

It has just two parameters: the mean for the controls (465.2) and the difference between the
control mean and the 4 treatment means �465�2 + 120�8 = 586�0�:

tapply(biomass,clip4,mean)

control pruned
465.1667 585.9583

We know that these two means are significantly different from the p value of 0.000 815,
but just to show how it is done, we can make a final model7 that has no explanatory variable
at all (it fits only the overall mean). This is achieved by writing y~1 in the model formula:

model7<-aov(biomass~1)
anova(model6,model7)

STATISTICAL MODELLING 377

Analysis of Variance Table

Model 1: biomass~clip4
Model 2: biomass~1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 28 139342
2 29 209377 -1 -70035 14.073 0.000815 ***

Note that the p value is exactly the same as in model6. The p values in R are calculated
such that they avoid the need for this final step in model simplification: they are ‘p on
deletion’ values.

Comparison of the three kinds of contrasts

In order to show the differences between treatment, Helmert and sum contrasts, we shall
reanalyse the competition experiment using each in turn.

Treatment contrasts

This is the default in R. These are the contrasts you get, unless you explicitly choose
otherwise.

options(contrasts=c("contr.treatment","contr.poly"))

Here are the contrast coefficients as set under treatment contrasts:

contrasts(clipping)

n25 n50 r10 r5
control 0 0 0 0
n25 1 0 0 0
n50 0 1 0 0
r10 0 0 1 0
r5 0 0 0 1

Notice that the contrasts are not orthogonal (the products of the coefficients do not sum
to zero).

output.treatment<-lm(biomass ~ clipping)
summary(output.treatment)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 28.75 16.177 9.33e-15 ***
clippingn25 88.17 40.66 2.168 0.03987 *
clippingn50 104.17 40.66 2.562 0.01683 *
clippingr10 145.50 40.66 3.578 0.00145 **
clippingr5 145.33 40.66 3.574 0.00147 **

With treatment contrasts, the factor levels are arranged in alphabetical sequence, and the
level that comes first in the alphabet is made into the intercept. In our example this is
control, so we can read off the control mean as 465.17, and the standard error of a mean as
28.75. The remaining four rows are differences between means, and the standard errors are
standard errors of differences. Thus, clipping neighbours back to 25 cm increases biomass
by 88.17 over the controls and this difference is significant at p = 0�039 87. And so on.
The downside of treatment contrasts is that all the rows appear to be significant despite

378 THE R BOOK

the fact that rows 2–5 are actually not significantly different from one another, as we saw
earlier.

Helmert contrasts

This is the default in S-PLUS, so beware if you are switching back and forth between the
two languages.

options(contrasts=c("contr.helmert","contr.poly"))
contrasts(clipping)

[,1] [,2] [,3] [,4]
control -1 -1 -1 -1
n25 1 -1 -1 -1
n50 0 2 -1 -1
r10 0 0 3 -1
r5 0 0 0 4

Notice that the contrasts are orthogonal (the products sum to zero) and their coefficients
sum to zero, unlike treatment contrasts, above.

output.helmert<-lm(biomass ~ clipping)
summary(output.helmert)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 561.800 12.859 43.688 <2e-16 ***
clipping1 44.083 20.332 2.168 0.0399 *
clipping2 20.028 11.739 1.706 0.1004
clipping3 20.347 8.301 2.451 0.0216 *
clipping4 12.175 6.430 1.894 0.0699 .

With Helmert contrasts, the intercept is the overall mean (561.8). The first contrast (contrast
1 on row 2, labelled clipping1) compares the first mean in alphabetical sequence with the
average of the first and second factor levels in alphabetical sequence (control plus n25; see
above): its parameter value is the mean of the first two factor levels, minus the mean of the
first factor level:

(465.16667+553.33333)/2-465.166667

[1] 44.08332

The third row contains the contrast between the third factor level (n50) and the two levels
already compared (control and n25): its value is the difference between the average of the
first 3 factor levels and the average of the first two factor levels:

(465.16667+553.33333+569.333333)/3-(465.166667+553.3333)/2

[1] 20.02779

The fourth row contains the contrast between the fourth factor level (r10) and the three
levels already compared (control, n25 and n50): its value is the difference between the
average of the first four factor levels and the average of the first three factor levels

(465.16667+553.33333+569.333333+610.66667)/
4-(553.3333+465.166667+569.3333)/3

[1] 20.34725

STATISTICAL MODELLING 379

The fifth and final row contains the contrast between the fifth factor level (r5) and the four
levels already compared (control, n25, n50 and r10): its value is the difference between the
average of the first five factor levels (the grand mean), and the average of the first four
factor levels:

mean(biomass)-(465.16667+553.33333+569.333333+610.66667)/4

[1] 12.175

So much for the parameter estimates. Now look at the standard errors. We have seen
rather few of these values in any of the analyses we have done to date. The standard error
in row 1 is the standard error of the overall mean, with s2 taken from the overall ANOVA
table:

√
s2/kn.

sqrt(4961/30)

[1] 12.85950

The standard error in row 2 is a comparison of a group of two means with a single mean
�2 × 1 = 2�. Thus 2 is multiplied by the sample size n in the denominator:

√
s2/2n.

sqrt(4961/(2*6))

[1] 20.33265

The standard error in row 3 is a comparison of a group of three means with a group of two
means (so 3 × 2 = 6 in the denominator):

√
s2/6n.

sqrt(4961/(3*2*6))

[1] 11.73906

The standard error in row 4 is a comparison of a group of four means with a group of three
means (so 4 × 3 = 12 in the denominator):

√
s2/12n.

sqrt(4961/(4*3*6))

[1] 8.30077

The standard error in row 5 is a comparison of a group of five means with a group of four
means (so 5 × 4 = 20 in the denominator):

√
s2/20n.

sqrt(4961/(5*4*6))

[1] 6.429749

It is true that the parameter estimates and their standard errors are much more difficult to
understand in Helmert than in treatment contrasts. But the advantage of Helmert contrasts
is that they give you proper orthogonal contrasts, and hence give a much clearer picture of
which factor levels need to be retained in the minimal adequate model. They do not eliminate
the need for careful model simplification, however. As we saw earlier, this example requires
only two parameters in the minimal adequate model, but Helmert contrasts (above) suggest
the need for three (albeit only marginally significant) parameters.

380 THE R BOOK

Sum contrasts

Sum contrasts are the third alternative:

options(contrasts=c("contr.sum","contr.poly"))

output.sum<-lm(biomass ~ clipping)
summary(output.sum)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 561.800 12.859 43.688 <2e-16 ***
clipping1 -96.633 25.719 -3.757 0.000921 ***
clipping2 -8.467 25.719 -0.329 0.744743
clipping3 7.533 25.719 0.293 0.772005
clipping4 48.867 25.719 1.900 0.069019 .

As with Helmert contrasts, the first row contains the overall mean and the standard error of
the overall mean. The remaining four rows are different: they are the differences between
the grand mean and the first four factor means (control, n25, n50, r10 and r5):

tapply(biomass,clipping,mean) - 561.8

control n25 n50 r10 r5
-96.633333 -8.466667 7.533333 48.866667 48.700000

The standard errors are all the same (25.719) for all four contrasts. The contrasts compare
the grand mean (based on 30 numbers) with a single treatment mean

sqrt(4961/30+4961/10)

[1] 25.71899

Aliasing

Aliasing occurs when there is no information available on which to base an estimate of a
parameter value. Parameters can be aliased for one of two reasons:

• there are no data in the dataframe from which to estimate the parameter (e.g. missing
values, partial designs or correlation amongst the explanatory variables), or

• the model is structured in such a way that the parameter value cannot be estimated
(e.g. overspecified models with more parameters than necessary)

Intrinsic aliasing occurs when it is due to the structure of the model. Extrinsic aliasing
occurs when it is due to the nature of the data.

Suppose that in a factorial experiment all of the animals receiving level 2 of diet (factor A)
and level 3 of temperature (factor B) have died accidentally as a result of attack by a fungal
pathogen. This particular combination of diet and temperature contributes no data to the
response variable, so the interaction term A(2):B(3) cannot be estimated. It is extrinsically
aliased, and its parameter estimate is set to zero.

If one continuous variable is perfectly correlated with another variable that has already
been fitted to the data (perhaps because it is a constant multiple of the first variable), then
the second term is aliased and adds nothing to the model. Suppose that x2 = 0�5x1 then
fitting a model with x1 + x2 will lead to x2 being intrinsically aliased and given a zero
parameter estimate.

STATISTICAL MODELLING 381

If all the values of a particular explanatory variable are set to zero for a given level of
a particular factor, then that level is intentionally aliased. This sort of aliasing is a useful
programming trick in ANCOVA when we wish a covariate to be fitted to some levels of a
factor but not to others.

Orthogonal polynomial contrasts: contr.poly

Here are the data from a randomized experiment with four levels of dietary supplement:

data<-read.table("c:\\temp\\poly.txt",header=T)
attach(data)
names(data)

[1] "treatment" "response"

We begin by noting that the factor levels are in alphabetical order (not in ranked sequence –
none, low, medium, high – as we might prefer):

tapply(response,treatment,mean)

high low medium none
4.50 5.25 7.00 2.50

The summary.lm table from the one-way analysis of variance looks like this

model<-lm(response ~ treatment)
summary(model)

Call:
lm(formula = response~treatment)

Residuals :
Min 1Q Median 3Q Max

-1.250e+00 -5.000e-01 -1.388e-16 5.000e-01 1.000e+00

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.5000 0.3750 12.000 4.84e-08 ***
treatmentlow 0.7500 0.5303 1.414 0.182717
treatmentmedium 2.5000 0.5303 4.714 0.000502 ***
treatmentnone -2.0000 0.5303 -3.771 0.002666 **

Residual standard error: 0.75 on 12 degrees of freedom
Multiple R-Squared: 0.8606, Adjusted R-squared: 0.8258
F-statistic: 24.7 on 3 and 12 DF, p-value: 2.015e-05

The summary.aov table looks like this:

summary.aov(model)

Df Sum Sq Mean Sq F value Pr(>F)
treatment 3 41.687 13.896 24.704 2.015e-05 ***
Residuals 12 6.750 0.563

We can see that treatment is a factor but it is not ordered:

is.factor(treatment)

[1] TRUE

382 THE R BOOK

is.ordered(treatment)

[1] FALSE

To convert it into an ordered factor, we use the ordered function like this:

treatment<-ordered(treatment,levels=c("none","low","medium","high"))
levels(treatment)

[1] "none" "low" "medium" "high"

Now the factor levels appear in their ordered sequence, rather than in alphabetical order.
Fitting the ordered factor makes no difference to the summary.aov table:

model2<-lm(response ~ treatment)
summary.aov(model2)

Df Sum Sq Mean Sq F value Pr(>F)
treatment 3 41.687 13.896 24.704 2.015e-05 ***
Residuals 12 6.750 0.562

but the summary.lm table is fundamentally different when the factors are ordered. Now the
contrasts are not contr.treatment but contr.poly (which stands for orthogonal polynomial
contrasts):

summary(model2)

Call:
lm(formula = response~treatment)
Residuals:

Min 1Q Median 3Q Max
-1.250e+00 -5.000e-01 -1.596e-16 5.000e-01 1.000e+00

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.8125 0.1875 25.667 7.45e-12 ***
treatment.L 1.7330 0.3750 4.621 0.000589 ***
treatment.Q -2.6250 0.3750 -7.000 1.43e-05 ***
treatment.C -0.7267 0.3750 -1.938 0.076520 .

Residual standard error: 0.75 on 12 degrees of freedom
Multiple R-Squared: 0.8606, Adjusted R-squared: 0.8258
F-statistic: 24.7 on 3 and 12 DF, p-value: 2.015e-05

The levels of the factor called treatment are no longer labelled low, medium, none as with
treatment contrasts (above). Instead they are labelled L, Q and C, which stand for linear,
quadratic and cubic polynomial terms, respectively. But what are the coefficients, and why
are they so difficult to interpret? The first thing you notice is that the intercept 4.8125 is no
longer one of the treatment means:

tapply(response,treatment, mean)

none low medium high
2.50 5.25 7.00 4.50

You could fit a polynomial regression model to the mean values of the response with the
four levels of treatment represented by a continuous (dummy) explanatory variable (say,
x<-c(1, 2, 3, 4)), then fitting terms for x x2 and x3 independently. This is what it would
look like:

STATISTICAL MODELLING 383

yv<-as.vector(tapply(response,treatment,mean))
x<-1:4
model<-lm(yv ~ x+1(x^2)+l(x^3))
summary(model)

Call:
lm(formula = yv~x + I(x^2) + I(x^3))

Residuals:
ALL 4 residuals are 0: no residual degrees of freedom!
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.0000 NA NA NA
x -1.7083 NA NA NA
I(x^2) 2.7500 NA NA NA
I(x^3) -0.5417 NA NA NA

Residual standard error: NaN on 0 degrees of freedom
Multiple R-Squared: 1, Adjusted R-squared: NaN
F-statistic: NaN on 3 and 0 DF, p-value: NA Call:
lm(formula = yv~xv + I(xv^2) + I(xv^3))

Thus the equation for y as a function of treatment �x� could be written

y = 2 − 1�7083x + 2�75x2 − 0�5417x3�

Notice that the intercept is not one of the factor-level means (the mean of factor level
1 (none) is the equation evaluated for x = 1 (namely 2 − 1�7083 + 2�75 − 0�5417 = 2�5).
So why does R not do it this way? There are two main reasons: orthogonality and com-
putational accuracy. If the linear, quadratic and cubic contrasts are orthogonal and fitted
stepwise, then we can see whether adding an extra term produces significantly improved
explanatory power in the model. In this case, for instance, there is no justification for
retaining the cubic term �p = 0�076 52�. Computational accuracy can become a major prob-
lem when fitting many polynomial terms, because these terms are necessarily so highly
correlated:

x<-1:4
x2<-x^2
x3<-x^3
cor(cbind(x,x2,x3))

x x2 x3
x 1.0000000 0.9843740 0.9513699
x2 0.9843740 1.0000000 0.9905329
x3 0.9513699 0.9905329 1.0000000

Orthogonal polynomial contrasts fix both these problems simultaneously. Here is one
way to obtain orthogonal polynomial contrasts for a factor with four levels. The contrasts
will go up to polynomials of degree = k − 1 = 4 − 1 = 3.

384 THE R BOOK

term x1 x2 x3 x4

linear −3 −1 1 3

quadratic 1 −1 −1 1

cubic −1 3 −3 1

Note that the linear x terms are equally spaced, and have a mean of zero (i.e. each point on
the x axis is separated by 2). Also, note that all the rows sum to zero. The key point is that
the pointwise products of the terms in any two rows also sum to zero: thus for the linear
and quadratic terms we have products of (−3, 1, −1, 3), for the linear and cubic terms
(3, −3� −3, 3) and for the quadratic and cubic terms (1, −3, 3, 1). In R, the orthogonal
polynomial contrasts have different numerical values, but the same properties:

t(contrasts(treatment))

none low medium high
.L -0.6708204 -0.2236068 0.2236068 0.6708204
.Q 0.5000000 -0.5000000 -0.5000000 0.5000000
.C -0.2236068 0.6708204 -0.6708204 0.2236068

If you wanted to be especially perverse, you could reconstruct the four estimated mean
values from these polynomial contrasts and the treatment effects shown in summary.lm

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.8125 0.1875 25.667 7.45e-12 ***
treatment.L 1.7330 0.3750 4.621 0.000589 ***
treatment.Q -2.6250 0.3750 -7.000 1.43e-05 ***
treatment.C -0.7267 0.3750 -1.938 0.076520 .

taking care with the signs in both contrasts and coefficients. The means for none, low,
medium and high are respectively

4.8125 - 0.6708204*1.733 - 0.5*2.6250 + 0.2236068*0.7267

[1] 2.499963

4.8125 - 0.2236068*1.733+0.5*2.6250 - 0.6708204*0.7267

[1] 5.250004

4.8125 + 0.2236068*1.733 + 0.5*2.6250 + 0.6708204*0.7267

[1] 6.999996

4.8125 + 0.6708204*1.733 - 0.5*2.6250 - 0.2236068*0.7267

[1] 4.500037

in agreement (to 3 decimal places) with the four mean values

tapply(response,treatment,mean)

none low medium high
2.50 5.25 7.00 4.50

STATISTICAL MODELLING 385

Thus, the parameters can be interpreted as the coefficients in a polynomial model of degree
3 (= k − 1 because there are k = 4 levels of the factor called treatment), but only so long
as the factor levels are equally spaced (and we don’t know whether that is true from the
information in the current dataframe, because we know only the ranking) and the class sizes
are equal (that is true in the present case where n = 4).

Because we have four data points (the treatment means) and four parameters, the fit of the
model to the data is perfect (there are no residual degrees of freedom and no unexplained
variation). We can see what the polynomial function looks like by drawing the smooth curve
on top of a barplot for the means:

y<-as.vector(tapply(response,treatment,mean))
model<-lm(y ~ poly(x,3))
model

Call:
lm(formula = y~poly(x, 3))

Coefficients:

(Intercept) poly(x, 3)1 poly(x, 3)2 poly(x, 3)3
4.8125 1.7330 -2.6250 -0.7267

none low medium high

1
0

2
3

4
5

6
7

Now we can generate a smooth series of x values between 1 and 4 from which to predict
the smooth polynomial function:

xv<-seq(1,4,0.1)
yv<-predict(model,list(x=xv))

The only slight difficulty is that the x axis values on the barplot do not scale exactly
one-to-one with our x values, and we need to adjust the x-location of our smooth lime from

386 THE R BOOK

xv to xs = −0�5 + 1�2xv. The parameters −0�5 and 1.2 come from noting that the centres
of the four bars are at

(bar.x<-barplot(y))

[,1]
[1,] 0.7
[2,] 1.9
[3,] 3.1
[4,] 4.3

barplot(y,names=levels(treatment))
xs<--0.5+1.2*xv
lines(xs,yv)

10
Regression

Regression analysis is the statistical method you use when both the response variable and
the explanatory variable are continuous variables (i.e. real numbers with decimal places –
things like heights, weights, volumes, or temperatures). Perhaps the easiest way of knowing
when regression is the appropriate analysis is to see that a scatterplot is the appropriate
graphic (in contrast to analysis of variance, say, when the plot would have been a box
and whisker or a bar chart). We cover seven important kinds of regression analysis in
this book:

• linear regression (the simplest, and much the most frequently used);

• polynomial regression (often used to test for non-linearity in a relationship);

• piecewise regression (two or more adjacent straight lines);

• robust regression (models that are less sensitive to outliers);

• multiple regression (where there are numerous explanatory variables);

• non-linear regression (to fit a specified non-linear model to data);

• non-parametric regression (used when there is no obvious functional form).

The first five cases are covered here, nonlinear regression in Chapter 20 and non-parametric
regression in Chapter 18 (where we deal with generalized additive models and non-
parametric smoothing).

The essence of regression analysis is using sample data to estimate parameter values
and their standard errors. First, however, we need to select a model which describes the
relationship between the response variable and the explanatory variable(s). The simplest of
all is the linear model

y = a + bx�

There are two variables and two parameters. The response variable is y, and x is a single
continuous explanatory variable. The parameters are a and b: the intercept is a (the value
of y when x = 0); and the slope is b (the change in y divided by the change in x which
brought it about).

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

388 THE R BOOK

Linear Regression

Let’s start with an example which shows the growth of caterpillars fed on experimental
diets differing in their tannin content:

reg.data<-read.table("c:\\temp\\regression.txt",header=T)
attach(reg.data)
names(reg.data)

[1] "growth" "tannin"

plot(tannin,growth,pch=16)

tannin

gr
ow

th

2
4

6
8

10
12

0 2 4 6 8

The higher the percentage of tannin in the diet, the more slowly the caterpillars grew. You
can get a crude estimate of the parameter values by eye. Tannin content increased by 8
units, in response to which growth declined from about 12 units to about 2 units, a change
of −10 units of growth. The slope, b, is the change in y divided by the change in x, so

b ≈ −10
8

= −1�25�

The intercept, a, is the value of y when x=0, and we see by inspection of the scatterplot that
growth was close to 12 units when tannin was zero. Thus, our rough parameter estimates
allow us to write the regression equation as

y ≈ 12�0 − 1�25x�

Of course, different people would get different parameter estimates by eye. What we want
is an objective method of computing parameter estimates from the data that are in some
sense the ‘best’ estimates of the parameters for these data and this particular model. The

REGRESSION 389

convention in modern statistics is to use the maximum likelihood estimates of the parame-
ters as providing the ‘best’ estimates. That is to say that, given the data, and having selected
a linear model, we want to find the values of the slope and intercept that make the data
most likely. Keep re-reading this sentence until you understand what it is saying.

For the simple kinds of regression models with which we begin, we make several
important assumptions:

• The variance in y is constant (i.e. the variance does not change as y gets bigger).

• The explanatory variable, x, is measured without error.

• The difference between a measured value of y and the value predicted by the model for
the same value of x is called a residual.

• Residuals are measured on the scale of y (i.e. parallel to the y axis).

• The residuals are normally distributed.

tannin

gr
ow

th

2
4

6
8

10
12

0 2 4 6 8

Under these assumptions, the maximum likelihood is given by the method of least squares.
The phrase ‘least squares’ refers to the residuals, as shown in the figure. The residuals are
the vertical differences between the data (solid circles) and the fitted model (the straight
line). Each of the residuals is a distance, d, between a data point, y, and the value predicted
by the fitted model, ŷ, evaluated at the appropriate value of the explanatory variable, x:

d = y − ŷ�

Now we replace the predicted value ŷ by its formula ŷ = a + bx, noting the change in sign:

d = y − a − bx�

390 THE R BOOK

Finally, our measure of lack of fit is the sum of the squares of these distances

∑
d2 =∑

�y − a − bx�2�

The sum of the residuals will always be zero, because the positive and negative residuals
cancel out, so

∑
d is no good as a measure of lack of fit (although

∑ �d� is useful in
computationally intensive statistics; see p. 685). The best fit line is defined as passing
through the point defined by the mean value of x �x̄� and the mean value of y �ȳ�. The large
open circle marks the point �x̄� ȳ�. You can think of maximum likelihood as working as
follows. Imagine that the straight line is pivoted, so that it can rotate around the point �x̄� ȳ�.
When the line is too steep, some of the residuals are going to be very large. Likewise, if the
line is too shallow, some of the residuals will again be very large. Now ask yourself what
happens to the sum of the squares of the residuals as the slope is rotated from too shallow,
through just right, to too steep. The sum of squares will be big at first, then decline to a
minimum value, then increase again. A graph of the sum of squares against the value of the
slope used in estimating it, would look like this:

slope b

su
m

 o
f s

qu
ar

ed
 r

es
id

ua
ls

–2.0 –1.5 –1.0 –0.5

20
30

40
50

The maximum likelihood estimate of the slope is the value of b associated with the minimum
value of the sum of the squares of the residuals (i.e. close to −1�25). Ideally we want an
analytic solution that gives the maximum likelihood of the slope directly (this is done using
calculus in Box 10.1). It turns out, however, that the least-squares estimate of b can be
calculated very simply from the covariance of x and y (which we met on p. 239).

The famous five in R

We want to find the minimum value of
∑

d2. To work this out we need the ‘famous five’:
these are

∑
y2 and

∑
y�
∑

x2 and
∑

x and the sum of products,
∑

xy (introduced on p. 391).
The sum of products is worked out pointwise. You can calculate the numbers from the data
the long way:

REGRESSION 391

sum(tannin);sum(tannin^2);sum(growth);sum(growth^2);sum(tannin*growth)

[1] 36
[1] 204
[1] 62
[1] 536
[1] 175

Alternatively, as we saw on p. 271, you can create a matrix and use matrix multiplication:

XY<-cbind(1,growth,tannin)
t(XY) %*% XY

growth tannin
9 62 36

growth 62 536 175
tannin 36 175 204

Corrected sums of squares and sums of products

The next thing is to use the famous five to work out three essential ‘corrected sums’. We
are already familiar with corrected sums of squares, because these are used in calculating
variance: s2 is calculated as the corrected sum of squares divided by the degrees of freedom
(p. 52). We shall need the corrected sum of squares of both the explanatory variable, SSX,
and the response variable, SSY:

SSX =∑
x2 − �

∑
x�2

n
�

SSY =∑
y2 − �

∑
y�2

n
�

The third term is the corrected sum of products, SSXY. The covariance of x and y is the
expectation of the vector product E ��x − x̄��y − ȳ��, and this depends on the value of the
corrected sum of products (p. 271), which is given by

SSXY =∑
xy − �

∑
x� �

∑
y�

n
�

If you look carefully you will see that the corrected sum of products has exactly the same
kind of structure as SSY and SSX. For SSY, the first term is the sum of y times y and the
second term contains the sum of y times the sum of y (and likewise for SSX). For SSXY, the
first term contains the sum of x times y and the second term contains the sum of x times
the sum of y.

Note that for accuracy within a computer program it is best not to use these shortcut
formulae, because they involve differences (minus) between potentially very large numbers
(sums of squares) and hence are potentially subject to rounding errors. Instead, when
programming, use the following equivalent formulae:

SSY =∑
�y − ȳ�2�

SSX =∑
�x − x̄�2�

SSXY =∑
�y − ȳ��x − x̄��

392 THE R BOOK

The three key quantities SSY, SSX and SSXY can be computed the long way, substituting
the values of the famous five:

SSY = 536 − 622

9
= 108.8889�

SSX = 204 − 362

9
= 60�

SSXY = 175 − 36 × 62
9

= −73�

Alternatively, the matrix can be used (see p. 271).
Thenextquestion ishowweuseSSX,SSYandSSXY to find themaximumlikelihoodestimates

of the parameters and their associated standard errors. It turns out that this step is much simpler
than what has gone before. The maximum likelihood estimate of the slope, b, is just:

b = SSXY

SSX

(the detailed derivation of this is in Box 10.1). So, for our example,

b = −73
60

= −1�216 667�

Compare this with our by-eye estimate of −1�25. Now that we know the value of the slope,
we can use any point that we know to lie on the fitted straight line to work out the maximum
likelihood estimate of the intercept, a. One part of the definition of the best-fit straight line
is that it passes through the point �x̄� ȳ� determined by the mean values of x and y. Since
we know that y = a + bx, it must be the case that ȳ = a + bx̄, and so

a = ȳ − bx̄ =
∑

y

n
− b

∑
x

n

and, using R as a calculator, we get the value of the intercept as

mean(growth)+1.216667*mean(tannin)

[1] 11.75556

noting the change of sign. This is reasonably close to our original estimate by eye �a≈ 12�.
The function for carrying out linear regression in R is lm (which stands for ‘linear model’).
The response variable comes first (growth in our example), then the tilde ~, then the name
of the continuous explanatory variable (tannin). R prints the values of the intercept and
slope like this:

lm(growth~tannin)

Coefficients:
(Intercept) tannin

11.756 -1.217

We can now write the maximum likelihood equation like this:

growth = 11�75556 − 1�216667 × tannin�

REGRESSION 393

Box 10.1 The least-squares estimate of the regression slope, b

The best fit slope is found by rotating the line until the error sum of squares, SSE, is
minimized, so we want to find the minimum of

∑
�y − a − bx�2. We start by finding

the derivative of SSE with respect to b:

dSSE

db
= −2

∑
x�y − a − bx��

Now, multiplying through the bracketed term by x gives

dSSE

db
= −2

∑
xy − ax − bx2�

Apply summation to each term separately, set the derivative to zero, and divide both
sides by −2 to remove the unnecessary constant:

∑
xy −∑

ax −∑
bx2 = 0�

We cannot solve the equation as it stands because there are two unknowns, a and b.
However, we know that the value of a is ȳ − bx̄. Also, note that

∑
ax can be written

as a
∑

x, so replacing a and taking both a and b outside their summations gives:

∑
xy −

[∑
y

n
− b

∑
x

n

]∑
x − b

∑
x2 = 0�

Now multiply out the bracketed term by
∑

x to get

∑
xy −

∑
x
∑

y

n
+ b

�
∑

x�2

n
− b

∑
x2 = 0�

Next, take the two terms containing b to the right-hand side, and note their change of sign:

∑
xy −

∑
x
∑

y

n
= b

∑
x2 − b

�
∑

x�2

n
�

Finally, divide both sides by
∑

x2 − �
∑

x�2/n to obtain the required estimate b:

b =
∑

xy −∑
x
∑

y/n∑
x2 − �

∑
x�2/n

�

Thus, the value of b that minimizes the sum of squares of the departures is given simply by

b = SSXY

SSX
�

This is the maximum likelihood estimate of the slope of the linear regression.

394 THE R BOOK

Degree of scatter

There is another very important issue that needs to be considered, because two data sets
with exactly the same slope and intercept could look quite different:

0
20

40
60

80

10 20 30 40 50 60 70 80
x

y

0
20

40
60

80

10 20 30 40 50 60 70 80
x

y

We need a way to quantify the degree of scatter, so that the graph on the left has a high
value and the graph on the right has a low value. It turns out that we already have the
appropriate quantity: it is the sum of squares of the residuals (p. 389). This is referred to as
the error sum of squares, SSE. Here, error does not mean ‘mistake’, but refers to residual
variation or unexplained variation:

SSE =∑
�y − a − bx�2�

Graphically, you can think of SSE as the sum of the squares of the lengths of the vertical
residuals in the plot on p. 389. By tradition, however, when talking about the degree of
scatter we actually quantify the lack of scatter, so the graph on the left, with a perfect fit
(zero scatter) gets a value of 1, and the graph on the right, which shows no relationship at
all between y and x (100% scatter), gets a value of 0. This quantity used to measure the
lack of scatter is officially called the coefficient of determination, but everybody refers to
it as ‘r squared’. This is an important definition that you should try to memorize: r2 is the
fraction of the total variation in y that is explained by variation in x. We have already defined

5
10

15
20

25

x

y

5
10

15
20

25

5 10 15 20 255 10 15 20 25
x

y

REGRESSION 395

the total variation in the response variable as SSY (p. 273). The unexplained variation in
the response variable is defined above as SSE (the error sum of squares) so the explained
variation is simply SSY – SSE. Thus,

r2 = SSY − SSE

SSY
�

A value of r2 = 1 means that all of the variation in the response variable is explained
by variation in the explanatory variable (the left-hand graph on p. 394) while a value of
r2 = 0 means none of the variation in the response variable is explained by variation in the
explanatory variable (the right-hand graph on p. 394).

You can get the value of SSY the long way as on p. 392 �SSY = 108�8889�, or using R to
fit the null model in which growth is described by a single parameter, the intercept a. In R,
the intercept is called parameter 1, so the null model is expressed as lm(growth~1). There
is a function called deviance that can be applied to a linear model which returns the sum
of the squares of the residuals (in this null case, it returns

∑
�y − ȳ�2, which is SSY as we

require):

deviance(lm(growth~1))

[1] 108.8889

The value of SSE is worked out longhand from
∑

�y −a− bx�2 but this is a pain, and the
value can be extracted very simply from the regression model using deviance like this:

deviance(lm(growth~tannin))

[1] 20.07222

Now we can calculate the value of r2:

r2 = SSY − SSE

SSY
= 108�8889 − 20�072 22

108�8889
= 0.815 663 3�

You will not be surprised that the value of r2 can be extracted from the model:

summary(lm(growth~tannin))[[8]]

[1] 0.8156633

The correlation coefficient, r, introduced on p. 311, is given by

r = SSXY√
SSX × SSY

Of course r is the square root of r2, but we use the formula above so that we retain the
sign of the correlation: SSXY is positive for positive correlations between y and x and SSXY
is negative when there is a negative correlation between y and x. For our example, the
correlation coefficient is

r = −73√
60 × 108�8889

= −0�903 140 7�

396 THE R BOOK

Analysis of variance in regression: SSY = SSR + SSE

The idea is simple: we take the total variation in y, SSY, and partition it into components
that tell us about the explanatory power of our model. The variation that is explained by
the model is called the regression sum of squares (denoted by SSR), and the unexplained
variation is called the error sum of squares (denoted by SSE). Then SSY =SSR+SSE. Now,
in principle, we could compute SSE because we know that it is the sum of the squares of
the deviations of the data points from the fitted model,

∑
d2 =∑

�y − a − bx�2. Since we
know the values of a and b, we are in a position to work this out. The formula is fiddly,
however, because of all those subtractions, squarings and addings-up. Fortunately, there is a
very simple shortcut that involves computing SSR, the explained variation, rather than SSE.
This is because

SSR = b�SSXY = SSXY 2

SSX
�

so we can immediately work out SSR = −1�21667 × −73 = 88�81667. And since SSY =
SSR + SSE we can get SSE by subtraction:

SSE = SSY − SSR = 108�8889 − 88�816 67 = 20�072 22�

Using R to do the calculations, we get

(sse<-deviance(lm(growth~tannin)))

[1] 20.07222

(ssy<-deviance(lm(growth~1)))

[1] 108.8889

(ssr<-ssy-sse)

[1] 88.81667

We now have all of the sums of squares, and all that remains is to think about the degrees
of freedom. We had to estimate one parameter, the overall mean, ȳ, before we could calcu-
late SSY = ∑

�y − ȳ�2, so the total degrees of freedom are n − 1. The error sum of squares
was calculated only after two parameters had been estimated from the data (the intercept
and the slope) since SSE = ∑

�y − a − bx�2, so the error degrees of freedom are n − 2.
Finally, the regression model added just one parameter, the slope b, compared with the null
model, so there is one regression degree of freedom. Thus, the ANOVA table looks like this:

Source Sum of squares Degrees of freedom Mean squares F ratio

Regression 88�817 1 88�817 30.974
Error 20�072 7 s2 = 2�867 46
Total 108�889 8

Notice that the component degrees of freedom add up to the total degrees of freedom
(this is always true, in any ANOVA table, and is a good check on your understanding
of the design of the experiment). The third column, headed ‘Mean Squares’, contains the

REGRESSION 397

variances obtained by dividing the sums of squares by the degrees of freedom in the same
row. In the row labelled ‘Error’ we obtain the very important quantity called the error
variance, denoted by s2, by dividing the error sum of squares by the error degrees of
freedom. Obtaining the value of the error variance is the main reason for drawing up the
ANOVA table. Traditionally, one does not fill in the bottom box (it would be the overall
variance in y�SSY/�n − 1�, although this is the basis of the adjusted r2; value; see p. 399).
Finally, the ANOVA table is completed by working out the F ratio, which is a ratio between
two variances. In most simple ANOVA tables, you divide the treatment variance in the
numerator (the regression variance in this case) by the error variance s2 in the denominator.
The null hypothesis under test in a linear regression is that the slope of the regression line
is zero (i.e. no dependence of y on x). The two-tailed alternative hypothesis is that the
slope is significantly different from zero (either positive or negative). In many applications
it is not particularly interesting to reject the null hypothesis, because we are interested in
the estimates of the slope and its standard error (we often know from the outset that the
null hypothesis is false). To test whether the F ratio is sufficiently large to reject the null
hypothesis, we compare the calculated value of F in the final column of the ANOVA table
with the critical value of F , expected by chance alone (this is found from quantiles of the F
distribution qf, with 1 d.f. in the numerator and n − 2 d.f. in the denominator, as described
below). The table can be produced directly from the fitted model in R by using the anova
function:

anova(lm(growth~tannin))

Df Sum Sq Mean Sq F value Pr(>F)
tannin 1 88.817 88.817 30.974 0.000846 ***
Residuals 7 20.072 2.867

The same output can be obtained using summary.aov(lm(growth~tannin)). The extra
column given by R is the p value associated with the computed value of F .

There are two ways to assess our F ratio of 30.974. One way is to compare it with the
critical value of F , with 1 d.f. in the numerator and 7 d.f. in the denominator. We have
to decide on the level of uncertainty that we are willing to put up with; the traditional
value for work like this is 5%, so our certainty is 0.95. Now we can use quantiles of the F
distribution, qf, to find the critical value of F :

qf(0.95,1,7)

[1] 5.591448

Because our calculated value of F is much larger than this critical value, we can be confident
in rejecting the null hypothesis. The other way, which is perhaps better than working rigidly
at the 5% uncertainty level, is to ask what is the probability of getting a value for F as big
as 30.974 or larger if the null hypothesis is true. For this we use 1-pf rather than qf:

1-pf(30.974,1,7)

[1] 0.0008460725

It is very unlikely indeed �p < 0�001�. This value is in the last column of the R output.

Unreliability estimates for the parameters

Finding the least-squares values of slope and intercept is only half of the story, however.
In addition to the parameter estimates, a = 11�756 and b = −1�2167, we need to measure

398 THE R BOOK

the unreliability associated with each of the estimated parameters. In other words, we need
to calculate the standard error of the intercept and the standard error of the slope. We have
already met the standard error of a mean, and we used it in calculating confidence intervals
(p. 54) and in doing Student’s t test (p. 294). Standard errors of regression parameters are
similar in so far as they are enclosed inside a big square root term (so that the units of the
standard error are the same as the units of the parameter), and they have the error variance,
s2, from the ANOVA table (above) in the numerator. There are extra components, however,
which are specific to the unreliability of a slope or an intercept (see Boxes 10.2 and 10.3
for details).

Box 10.2 Standard error of the slope

The uncertainty of the estimated slope increases with increasing variance and declines
with increasing number of points on the graph. In addition, however, the uncertainty
is greater when the range of x values (as measured by SSX) is small:

seb =
√

s2

SSX

Box 10.3 Standard error of the intercept

The uncertainty of the estimated intercept increases with increasing variance and
declines with increasing number of points on the graph. As with the slope, uncertainty
is greater when the range of x values (as measured by SSX) is small. Uncertainty in the
estimate of the intercept increases with the square of the distance between the origin
and the mean value of x (as measured by

∑
x2�:

sea =
√

s2
∑

x2

n × SSX

Longhand calculation shows that the standard error of the slope is

seb =
√

s2

SSX
=
√

2�867
60

= 0�2186�

and the standard error of the intercept is

sea =
√

s2
∑

x2

n × SSX
=
√

2�867 × 204
9 × 60

= 1�0408�

However, in practice you would always use the summary function applied to the fitted
linear model like this:

REGRESSION 399

summary(lm(growth~tannin))

Coefficients:
Estimate Std. Error t value Pr(>�t�)

(Intercept) 11.7556 1.0408 11.295 9.54e-06 ***
tannin -1.2167 0.2186 -5.565 0.000846 ***

Residual standard error: 1.693 on 7 degrees of freedom
Multiple R-Squared: 0.8157, Adjusted R-squared: 0.7893
F-statistic: 30.97 on 1 and 7 DF, p-value: 0.000846

I have stripped out the details about the residuals and the explanation of the signifi-
cance stars in order to highlight the parameter estimates and their standard errors (as
calculated above). The residual standard error is the square root of the error variance
from the ANOVA table �1�693 = √

2�867�. Multiple R-squared is the fraction of the total
variance explained by the model �SSR/SSY = 0�8157�. The Adjusted R-squared is close
to, but different from, the value of r2 we have just calculated. Instead of being based
on the explained sum of squares SSR and the total sum of squares SSY, it is based
on the overall variance (a quantity we do not typically calculate), s2

T = SSY/�n − 1� =
13�611, and the error variance s2 (from the ANOVA table, s2 = 2�867) and is worked out
like this:

adjusted R-squared = ss
T − s2

s2
T

�

So in this example, adjusted R-squared = �13�611 − 2�867�/13�611 = 0�7893. We discussed
the F statistic and p value in the previous section.

The summary.lm table shows everything you need to know about the parameters and
their standard errors, but there is a built-in function, confint, which produces 95% confidence
intervals for the estimated parameters from the model directly like this:

confint(model)

2.5 % 97.5 %
(Intercept) 9.294457 14.2166544
tannin -1.733601 -0.6997325

These values are obtained by subtracting from, and adding to, each parameter estimate
an interval which is the standard error times Student’s t with 7 degrees of freedom (the
appropriate value of t is given by qt(.975,7) = 2�364 624). The fact that neither interval
includes 0 indicates that both parameter values are significantly different from zero, as
established by the earlier F tests.

Of the two sorts of summary table, summary.lm is by far the more informative, because
it shows the effect sizes (in this case the slope of the graph) and their unreliability estimates
(the standard error of the slope). Generally, you should resist the temptation to put ANOVA
tables in your written work. The important information such the p value and the error
variance can be put in the text, or in figure legends, much more efficiently. ANOVA
tables put far too much emphasis on hypothesis testing, and show nothing directly about
effect sizes.

400 THE R BOOK

Box 10.4 Standard error for a predicted value

The standard error of a predicted value ŷ is given by:

seŷ =
√

s2

[
1
n

+ �x − x̄�2

SSX

]
�

It increases with the square of the difference between mean x and the value of x at
which the prediction is made. As with the standard error of the slope, the wider the
range of x values, SSX, the lower the uncertainty. The bigger the sample size, n, the
lower the uncertainty. Note that the formula for the standard error of the intercept is
just the special case of this for x = 0 (you should check the algebra of this result as
an exercise).

For predictions made on the basis of the regression equation we need to know the
standard error for a predicted single sample of y,

sey =
√

s2

[
1 + 1

n
+ �x − x̄�2

SSX

]
�

while the standard error for a predicted mean for k items at a given level of xi is

seȳi
=
√

s2

[
1
k

+ 1
n

+ �x − x̄�2

SSX

]
�

Prediction using the fitted model

It is good practice to save the results of fitting the model in a named object. Naming models
is very much a matter of personal taste: some people like the name of the model to describe
its structure, other people like the name of the model to be simple and to rely on the formula
(which is part of the structure of the model) to describe what the model does. I like the
second approach, so I might write

model<-lm(growth~tannin)

The object called model can now be used for all sorts of things. For instance, we can use
the predict function to work out values for the response at values of the explanatory variable
that we did not measure. Thus, we can ask for the predicted growth if tannin concentration
was 5.5%. The value or values of the explanatory variable to be used for prediction are
specified in a list like this:

predict(model,list(tannin=5.5))

[1] 5.063889

indicating a predicted growth rate of 5.06 if a tannin concentration of 5.5% had been applied.
To predict growth at more than one level of tannin, the list of values for the explanatory

REGRESSION 401

variable is specified as a vector. Here are the predicted growth rates at 3.3, 4.4, 5.5 and
6.6% tannin:

predict(model,list(tannin=c(3.3,4.4,5.5,6.6)))

1 2 3 4
7.740556 6.402222 5.063889 3.725556

For drawing smooth curves through a scatterplot we use predict with a vector of 100 or so
closely-spaced x values, as illustrated on p. 577.

Model checking

The final thing you will want to do is to expose the model to critical appraisal. The
assumptions we really want to be sure about are constancy of variance and normality of
errors. The simplest way to do this is with model-checking plots. Six plots (selectable by
which) are currently available: a plot of residuals against fitted values; a scale–location plot
of

√�residuals� against fitted values; a normal QQ plot; a plot of Cook’s distances versus
row labels; a plot of residuals against leverages; and a plot of Cook’s distances against
leverage/(1−leverage). By default four plots are provided (the first three plus the fifth):

402 THE R BOOK

par(mfrow=c(2,2))
plot(model)

The first graph (top left) shows residuals on the y axis against fitted values on the x
axis. It takes experience to interpret these plots, but what you do not want to see is lots of
structure or pattern in the plot. Ideally, as here, the points should look like the sky at night.
It is a major problem if the scatter increases as the fitted values get bigger; this would look
like a wedge of cheese on its side (see p. 340). But in our present case, everything is OK on
the constancy of variance front. Likewise, you do not want to see any trend on the residuals
with the fitted values; we are OK here (but see p. 344 for a counter example).

The next plot (top right) shows the normal qqnorm plot (p. 341) which should be a
straight line if the errors are normally distributed. Again, the present example looks fine.
If the pattern were S-shaped or banana-shaped, we would need to fit a different model to
the data.

The third plot (bottom left) is a repeat of the first, but on a different scale; it shows
the square root of the standardized residuals (where all the values are positive) against the
fitted values. If there was a problem, such as the variance increasing with the mean, then
the points would be distributed inside a triangular shape, with the scatter of the residuals
increasing as the fitted values increase. But there is no such pattern here, which is good.

The fourth and final plot (bottom right) shows standardized residuals as a function of
leverage, along with Cook’s distance (p. 359) for each of the observed values of the response
variable. The point of this plot is to highlight those y values that have the biggest effect
on the parameter estimates (high influence; p. 344). You can see that point number 9 has
the highest leverage, but point number 7 is quite influential (it is closest to the Cook’s
distance contour). You might like to investigate how much this influential point (6, 2)
affected the parameter estimates and their standard errors. To do this, we repeat the statistical
modelling but leave out the point in question, using subset like this (!= means ‘not
equal to’):

model2<-update(model,subset=(tannin != 6))
summary(model2)

Coefficients:
Estimate Std. Error t value Pr(>�t�)

(Intercept) 11.6892 0.8963 13.042 1.25e-05 ***
tannin -1.1171 0.1956 -5.712 0.00125 **

Residual standard error: 1.457 on 6 degrees of freedom
Multiple R-Squared: 0.8446, Adjusted R-squared: 0.8188
F-statistic: 32.62 on 1 and 6 DF, p-value: 0.001247

First of all, notice that we have lost one degree of freedom, because there are now eight
values of y rather than nine. The estimate of the slope has changed from −1�2167 to −1�1171
(a difference of about 9%) and the standard error of the slope has changed from 0.2186 to
0.1956 (a difference of about 12%). What you do in response to this information depends
on the circumstances. Here, we would simply note that point (6, 2) was influential and stick
with our first model, using all the data. In other circumstances, a data point might be so
influential that the structure of the model is changed completely by leaving it out. In that
case, we might gather more data or, if the study was already finished, we might publish both
results (with and without the influential point) so that the reader could make up their own

REGRESSION 403

mind about the interpretation. The important point is that we always do model checking;
the summary.lm(model) table is not the end of the process of regression analysis.

You might also want to check for lack of serial correlation in the residuals (e.g. time
series effects) using the durbin.watson function from the car package (see p. 424), but
there are too few data to use it with this example.

Polynomial Approximations to Elementary Functions

Elementary functions such sin�x�, log�x� and exp�x� can be expressed as Maclaurin series:

sin�x� = x − x3

3! + x5

5! − x7

7! + · · ·�

cos�x� = 1 − x2

2! + x4

4! − x6

6! + · · ·�

exp�x� = x0

0! + x1

1! + x2

2! + x3

3! · · ·�

log�x + 1� = x − x2

2
+ x3

3
− x4

4
+ x5

5
+ · · ·�

In fact, we can approximate any smooth continuous single-valued function by a polynomial
of sufficiently high degree. To see this in action, consider the graph of sin�x� against x in
the range 0 < x < � (where x is an angle measured in radians):

404 THE R BOOK

x<-seq(0,pi,0.01)
y<-sin(x)
plot(x,y,type="l",ylab="sin(x)")

Up to about x = 0�3 the very crude approximation sin�x� = x works reasonably well. The
first approximation, including a single extra term for −x3/3!, extends the reasonable fit up
to about x = 0�8:

a1<-x-x^3/factorial(3)
lines(x,a1,col="green")

Adding the term in x5/5! captures the first peak in sin�x� quite well. And so on.

a2<-x-x^3/factorial(3)+x^5/factorial(5)
lines(x,a2,col="red")

Polynomial Regression

The relationship between y and x often turns out not to be a straight line. However, Occam’s
razor requires that we fit a straight-line model unless a non-linear relationship is significantly
better at describing the data. So this begs the question: how do we assess the significance
of departures from linearity? One of the simplest ways is to use polynomial regression.

The idea of polynomial regression is straightforward. As before, we have just one con-
tinuous explanatory variable, x, but we can fit higher powers of x, such as x2 and x3, to the
model in addition to x to explain curvature in the relationship between y and x. It is useful
to experiment with the kinds of curves that can be generated with very simple models. Even
if we restrict ourselves to the inclusion of a quadratic term, x2, there are many curves we
can describe, depending upon the signs of the linear and quadratic terms:

In the top left-hand panel, there is a curve with positive but declining slope, with no
hint of a hump �y = 4 + 2x − 0�1x2�. The top right-hand graph shows a curve with a clear
maximum �y = 4 + 2x − 0�2x2�, and at bottom left we have a curve with a clear minimum
�y = 12 − 4x + 0�35x2�. The bottom right-hand curve shows a positive association between
y and x with the slope increasing as x increases �y =4+0�5x+0�1x2�. So you can see that a
simple quadratic model with three parameters (an intercept, a slope for x, and a slope for x2)
is capable of describing a wide range of functional relationships between y and x. It is very
important to understand that the quadratic model describes the relationship between y and
x; it does not pretend to explain the mechanistic (or causal) relationship between y and x.

We can see how polynomial regression works by analysing an example where diminishing
returns in output (yv) are suspected as inputs (xv) are increased:

poly<-read.table("c:\\temp\\diminish.txt",header=T)
attach(poly)
names(poly)

[1] "xv" "yv"

We begin by fitting a straight line model to the data:

plot(xv,yv,pch=16)
model1<-lm(yv~xv)
abline(model1)

REGRESSION 405

x

0
5

10
15

0 2 4 6 8 10

y

x

0
5

10
15

0 2 4 6 8 10

y
y

x

0
5

10
15

0 2 4 6 8 10

y

x

0
5

10
15

0 2 4 6 8 10

xv
20 40 60 80

yv

30
35

40
45

406 THE R BOOK

This is not a bad fit to the data �r2 = 0�8725�, but there is a distinct hint of curvature
(diminishing returns in this case).

Next, we fit a second explanatory variable which is the square of the x value (the so-called
‘quadratic term’). Note the use of I (for ‘as is’) in the model formula; see p. 332.

model2<-lm(yv~xv+I(xv^2))

Now we use model2 to predict the fitted values for a smooth range of x values between 0
and 90:

x<-0:90
y<-predict(model2,list(xv=x))
plot(xv,yv,pch=16)
lines(x,y)

This looks like a slightly better fit than the straight line �r2 = 0�9046�, but we shall choose
between the two models on the basis of an F test using anova:

anova(model1,model2)

Analysis of Variance Table

Model 1: yv ~ xv
Model 2: yv ~ xv + I(xv∧2)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 16 91.057
2 15 68.143 1 22.915 5.0441 0.0402 *

The more complicated curved model is a significant improvement over the linear model
�p = 0�04� so we accept that there is evidence of curvature in these data.

xv
20 40 60 80

yv

30
35

40
45

REGRESSION 407

Fitting a Mechanistic Model to Data

Rather than fitting some arbitrary model for curvature (as above, with a quadratic term
for inputs), we sometimes have a mechanistic model relating the value of the response
variable to the explanatory variable (e.g. a mathematical model of a physical process). In
the following example we are interested in the decay of organic material in soil, and our
mechanistic model is based on the assumption that the fraction of dry matter lost per year is
a constant. This leads to a two-parameter model of exponential decay in which the amount
of material remaining (y) is a function of time (t)

y = y0e−bt�

Here y0 is the initial dry mass (at time t = 0) and b is the decay rate (the parameter we want
to estimate by linear regression). Taking logs of both sides, we get

log�y� = log�y0� − bt�

Now you can see that we can estimate the parameter of interest, b, as the slope of a linear
regression of log(y) on t (i.e. we log-transform the y axis but not the x axis) and the value
of y0 as the antilog of the intercept. We begin by plotting our data:

data<-read.table("c:\\temp \\Decay.txt",header=T)
names(data)

[1] "time" "amount"

attach(data)
plot(time,amount,pch=16)

time

am
ou

nt

20
40

60
80

10
0

12
0

0 5 10 15 20 25 30

408 THE R BOOK

The curvature in the relationship is clearly evident from the scatterplot. Now we fit the
linear model of log(amount) as a function of time:

model<-lm(log(amount)~time)
summary(model)

Call:
lm(formula = log(amount) ~ time)

Residuals:
Min 1Q Median 3Q Max

-0.593515 -0.204324 0.006701 0.219835 0.629730

Coefficients:
Estimate Std. Error t value Pr(>�t�)

(Intercept) 4.547386 0.100295 45.34 < 2e-16 ***
time -0.068528 0.005743 -11.93 1.04e-12 ***

Residual standard error: 0.286 on 29 degrees of freedom
Multiple R-Squared:0.8308, Adjusted R-squared: 0.825
F-statistic: 142.4 on 1 and 29 DF,p-value: 1.038e-12

Thus, the slope is −0�068 528 and y0 is the antilog of the intercept: y0 = exp�4�547 386� =
94�385 36. The equation can now be parameterized (with standard errors in brackets) as:

y = e4�5474�±0�1003�−0�0685�±0�00574�t

or written in its original form, without the uncertainty estimates, as

y = 94�385e−0�0685t

and we can draw the fitted line through the data, remembering to take the antilogs of the
predicted values (the model predicts log(amount) and we want amount), like this:

time

am
ou

nt

20
40

60
80

10
0

12
0

0 5 10 15 20 25 30

REGRESSION 409

xv<-seq(0,30,0.2)
yv<-exp(predict(model,list(time=xv)))
lines(xv,yv)

Linear Regression after Transformation

Many mathematical functions that are non-linear in their parameters can be linearized by
transformation (see p. 205). The most frequent transformations (in order of frequency of
use), are logarithms, antilogs and reciprocals. Here is an example of linear regression
associated with a power law (p. 198): this is a two-parameter function

y = axb�

where the parameter a describes the slope of the function for low values of x and b is the
shape parameter. For b = 0 we have a horizontal relationship y = a, for b = 1 we have a
straight line through the origin y =ax with slope =a, for b > 1 the slope is positive but the
slope increases with increasing x, for 0 < b < 1 the slope is positive but the slope decreases
with increasing x, while for b < 0 (negative powers) the curve is a negative hyperbola that
is asymptotic to infinity as x approaches 0 and asymptotic to zero as x approaches infinity.

Let’s load a new dataframe and plot the data:

power<-read.table("c:\\temp \\power.txt",header=T)
attach(power)
names(power)

[1] "area" "response"

par(mfrow=c(1,2))
plot(area,response,pch=16)
abline(lm(response~area))
plot(log(area),log(response),pch=16)
abline(lm(log(response)~log(area)))

The two plots look very similar in this case (they don’t always), but we need to compare
the two models.

model1<-lm(response~area)
model2<-lm(log(response)~log(area))

summary(model2)

Coefficients:
Estimate Std. Error t value Pr(>�t�)

(Intercept) 0.75378 0.02613 28.843 < 2e-16 ***
log(area) 0.24818 0.04083 6.079 1.48e-06 ***

Residual standard error: 0.06171 on 28 degrees of freedom
Multiple R-Squared: 0.5689, Adjusted R-squared: 0.5535
F-statistic: 36.96 on 1 and 28 DF, p-value: 1.480e-06

410 THE R BOOK

area

2.
2

2.
4

2.
6

2.
8

re
sp

on
se

2.52.01.51.0
log(area)

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

re
sp

on
se

1.00.80.60.40.2

We need to do a t test to see whether the estimated shape parameter b = 0�248 18 is
significantly less than b = 1 (a straight line):

t = �0�248 18 − 1�0�
0�040 83

= 18.413 42�

This is highly significant �p<0�0001�, so we conclude that there is a non-linear relationship
between response and area. Let’s get a visual comparison of the two models:

par(mfrow=c(1,1))
plot(area,response)
abline(lm(response~area))
xv<-seq(1,2.7,0.01)
yv<-exp(0.75378)*xv^0.24818
lines(xv,yv)

This is a nice example of the distinction between statistical significance and scientific
importance. The power law transformation shows that the curvature is highly significant
(b < 1 with p < 0�0001) but over the range of the data, and given the high variance in y,
the effect of the curvature is very small; the straight line and the power function are very
close to one another. However, the choice of model makes an enormous difference if the
function is to be used for prediction. Here are the two functions over an extended range of
values for x:

REGRESSION 411

area
1.0 1.5 2.0 2.5

re
sp

on
se

2.
2

2.
4

2.
6

2.
8

xv<-seq(0,5,0.01)
yv<-exp(0.75378)*xv^0.24818
plot(area,response,xlim=c(0,5),ylim=c(0,4),pch=16)
abline(model1)
lines(xv,yv)

0 1 2 3 54

re
sp

on
se

area

1
0

2
3

4

412 THE R BOOK

The moral is clear: you need to extremely careful when using regression models for
prediction. If you know that the response must be zero when area = 0 (the graph has to pass
through the origin) then obviously the power function is likely to be better for extrapolation
to the left of the data. But if we have no information on non-linearity other than that
contained within the data, then parsimony suggests that errors will be smaller using the
simpler, linear model for prediction. Both models are equally good at describing the data
(the linear model has r2 = 0�574 and the power law model has r2 = 0�569) but extrapolation
beyond the range of the data is always fraught with difficulties. Targeted collection of new
data for response at areas close to 0 and close to 5 might resolve the issue.

Prediction following Regression

The popular notion is that predicting the future is impossible, and that attempts at prediction
are nothing more that crystal-gazing. However, all branches of applied science rely upon
prediction. These predictions may be based on extensive experimentation (as in engineering
or agriculture) or they may be based on detailed, long-term observations (as in astronomy
or meteorology). In all cases, however, the main issue to be confronted in prediction is how
to deal with uncertainty: uncertainty about the suitability of the fitted model, uncertainty
about the representativeness of the data used to parameterize the model, and uncertainty
about future conditions (in particular, uncertainty about the future values of the explanatory
variables).

There are two kinds of prediction, and these are subject to very different levels of uncer-
tainty. Interpolation, which is prediction within the measured range of the data, can often be
very accurate and is not greatly affected by model choice. Extrapolation, which is predic-
tion beyond the measured range of the data, is far more problematical, and model choice is a
major issue. Choice of the wrong model can lead to wildly different predictions (see p. 411).

Here are two kinds of plots involved in prediction following regression: the first illustrates
uncertainty in the parameter estimates; the second indicates uncertainty about predicted
values of the response. We continue with the tannin example:

data<-read.table("c:\\temp\\regression.txt",header=T)
attach(data)
names(data)

[1] "growth" "tannin"

plot(tannin,growth,pch=16,ylim=c(0,15))
model<-lm(growth ~ tannin)
abline(model)

The first plot is intended to show the uncertainty associated with the estimate of the slope.
It is easy to extract the slope from the vector of coefficients:

coef(model)[2]

tannin
-1.216667

The standard error of the slope is a little trickier to find. After some experimentation, you
will discover that it is in the fourth element of the list that is summary(model):

summary(model)[[4]][4]

REGRESSION 413

[1] 0.2186115

Here is a function that will add dotted lines showing two extra regression lines to our
existing plot – the estimated slope plus and minus one standard error of the slope:

se.lines<-function(model){
b1<-coef(model)[2]+ summary(model)[[4]][4]
b2<-coef(model)[2]- summary(model)[[4]][4]
xm<-mean(model[[12]][2])
ym<-mean(model[[12]][1])
a1<-ym-b1*xm
a2<-ym-b2*xm
abline(a1,b1,lty=2)
abline(a2,b2,lty=2)
}

se.lines(model)

0 2 4

tannin

6 8

0
5

gr
ow

th

10
15

More often, however, we are interested in the uncertainty about predicted values (rather
than uncertainty of parameter estimates, as above). We might want to draw the 95%
confidence intervals associated with predictions of y at different values of x. As we saw on
p. 400, uncertainty increases with the square of the difference between the mean value of x
and the value of x at which the value of y is to be predicted. Before we can draw these lines
we need to calculate a vector of x values; you need 100 or so values to make an attractively
smooth curve. Then we need the value of Student’s t (p. 222). Finally, we multiply Student’s
t by the standard error of the predicted value of y (p. 223) to get the confidence interval.
This is added to the fitted values of y to get the upper limit and subtracted from the fitted
values of y to get the lower limit. Here is the function:

414 THE R BOOK

ci.lines<-function(model){
xm<-mean(model[[12]][2])
n<-length(model[[12]][[2]])
ssx<- sum(model[[12]][2]∧2)- sum(model[[12]][2])∧2/n
s.t<- qt(0.975,(n-2))
xv<-seq(min(model[[12]][2]),max(model[[12]][2]),(max(model[[12]][2])-
min(model[[12]][2]))/100)
yv<- coef(model)[1]+coef(model)[2]*xv
se<-sqrt(summary(model)[[6]]∧2*(1/n+(xv-xm)∧2/ssx))
ci<-s.t*se
uyv<-yv+ci
lyv<-yv-ci
lines(xv,uyv,lty=2)
lines(xv,lyv,lty=2)
}

We replot the linear regression, then overlay the confidence intervals (Box 10.4):

plot(tannin,growth,pch=16,ylim=c(0,15))
abline(model)
ci.lines(model)

This draws attention to the points at tannin = 3 and tannin = 6 that fall outside the 95%
confidence limits of our fitted values.

tannin

0 2 4 6 8

gr
ow

th

0
5

10
15

You can speed up this procedure by using the built-in ability to generate confidence
intervals coupled with matlines. The familiar 95% confidence intervals are int="c", while
prediction intervals (fitted values plus or minus 2 standard deviations) are int="p".

REGRESSION 415

plot(tannin,growth,pch=16,ylim=c(0,15))
model<-lm(growth~tannin)

As usual, start by generating a series of x values for generating the curves, then create the
scatterplot. The y values are predicted from the model, specifying int="c", then matlines is
used to draw the regression line (solid) and the two confidence intervals (dotted), producing
exactly the same graph as our last plot (above):

xv<-seq(0,8,0.1)
yv<-predict(model,list(tannin=xv),int="c")
matlines(xv,yv,lty=c(1,2,2),col="black")

A similar plot can be obtained using the effects library (see p. 178).

Testing for Lack of Fit in a Regression with Replicated Data at Each
Level of x

The unreliability estimates of the parameters explained in Boxes 10.2 and 10.3 draw attention
to the important issues in optimizing the efficiency of regression designs. We want to make
the error variance as small as possible (as always), but in addition, we want to make SSX as
large as possible, by placing as many points as possible at the extreme ends of the x axis.
Efficient regression designs allow for:

• replication of least some of the levels of x;

• a preponderance of replicates at the extremes (to maximize SSX);

• sufficient different values of x to allow accurate location of thresholds.

Here is an example where replication allows estimation of pure sampling error, and
this in turn allows a test of the significance of the data’s departure from linearity. As the
concentration of an inhibitor is increased, the reaction rate declines:

data<-read.delim("c:\\temp\\lackoffit.txt")
attach(data)
names(data)

[1] "conc" "rate"

plot(conc,rate,pch=16,ylim=c(0,8))
abline(lm(rate~conc))

The linear regression does not look too bad, and the slope is highly significantly different
from zero:

model.reg<-lm(rate~conc)
summary.aov(model.reg)

Df Sum Sq Mean Sq F value Pr(>F)
conc 1 74.298 74.298 55.333 4.853e-07 ***
Residuals 19 25.512 1.343

Because there is replication at each level of x we can do something extra, compared with
a typical regression analysis. We can estimate what is called the pure error variance. This

416 THE R BOOK

conc
0 1 2 3 4 5 6

ra
te

0
2

4
8

6

is the sum of the squares of the differences between the y values and the mean values of y
for the relevant level of x. This should sound a bit familiar. In fact, it is the definition of
SSE from a one-way analysis of variance (see p. 451). By creating a factor to represent the
seven levels of x, we can estimate this SSE simply by fitting a one-way analysis of variance:

fac.conc<-factor(conc)
model.aov<-aov(rate~fac.conc)
summary(model.aov)

Df Sum Sq Mean Sq F value Pr(>F)
fac.conc 6 87.810 14.635 17.074 1.047e-05 ***
Residuals 14 12.000 0.857

This shows that the pure error sum of squares is 12.0 on 14 degrees of freedom (three
replicates, and hence 2 d.f., at each of seven levels of x). See if you can figure out why
this sum of squares is less than the observed in the model.reg regression (25.512). If the
means from the seven different concentrations all fell exactly on the same straight line then
the two sums of squares would be identical. It is the fact that the means do not fall on the
regression line that causes the difference. The difference between these two sums of squares
�25�512 − 12�9 = 13�512� is a measure of lack of fit of the rate data to the straight-line
model. We can compare the two models to see if they differ in their explanatory powers:

anova(model.reg,model.aov)

Analysis of Variance Table

Model 1: rate ~ conc
Model 2: rate ~ fac.conc

Res.Df RSS Df Sum of Sq F Pr(>F)
1 19 25.512
2 14 12.000 5 13.512 3.1528 0.04106 *

REGRESSION 417

A single anova table showing the lack-of-fit sum of squares on a separate line is obtained
by fitting both the regression line (1 d.f.) and the lack of fit (5 d.f.) in the same model:

anova(lm(rate~conc+fac.conc))

Analysis of Variance Table

Response: rate

Df Sum Sq Mean Sq F value Pr(>F)
conc 1 74.298 74.298 86.6806 2.247e-07 ***
fac.conc 5 13.512 2.702 3.1528 0.04106 *
Residuals 14 12.000 0.857

To get a visual impression of this lack of fit we can draw vertical lines from the mean
values to the fitted values of the linear regression for each level of x:

my<-as.vector(tapply(rate,fac.conc,mean))
for (i in 0:6)
lines(c(i,i),c(my[i+1],predict(model.reg,list(conc=0:6))[i+1]),col="red")
points(0:6,my,pch=16,col="red")

conc
0 1 2 3 4 5 6

ra
te

0
2

4
6

8

This significant lack of fit indicates that the straight line model is not an adequate description
of these data �p < 0�05�. A negative S-shaped function is likely to fit the data better (see
p. 204).

There is an R package called lmtest on CRAN, which is full of tests for linear models.

418 THE R BOOK

Bootstrap with Regression

An alternative to estimating confidence intervals on the regression parameters from the
pooled error variance in the ANOVA table (p. 396) is to use bootstrapping. There are two
ways of doing this:

• sample cases with replacement, so that some points are left off the graph while others
appear more than once in the dataframe;

• calculate the residuals from the fitted regression model, and randomize which fitted y
values get which residuals.

In both cases, the randomization is carried out many times, the model fitted and the param-
eters estimated. The confidence interval is obtained from the quantiles of the distribution of
parameter values (see p. 284).

The following dataframe contains a response variable (profit from the cultivation of a
crop of carrots for a supermarket) and a single explanatory variable (the cost of inputs,
including fertilizers, pesticides, energy and labour):

regdat<-read.table("c:\\temp\\regdat.txt",header=T)
attach(regdat)
names(regdat)

[1] "explanatory" "response"

plot(explanatory,response)

re
sp

on
se

15
20

25

explanatory
6 8 10 12 14 16

REGRESSION 419

The response is a reasonably linear function of the explanatory variable, but the variance in
response is quite large. For instance, when the explanatory variable is about 12, the response
variable ranges between less than 20 and more than 24.

model<-lm(response~explanatory)
model
Coefficients:
(Intercept) explanatory

9.630 1.051

Theory suggests that the slope should be 1.0 and our estimated slope is very close to
this (1.051). We want to establish a 95% confidence interval on the estimate. Here is a
home-made bootstrap which resamples the data points 10 000 times and gives a bootstrapped
estimate of the slope:

b.boot<-numeric(10000)
for (i in 1:10000){
indices<-sample(1:35,replace=T)
xv<-explanatory[indices]
yv<-response[indices]
model<-lm(yv~xv)
b.boot[i]<-coef(model)[2] }
hist(b.boot,main="")

b.boot

F
re

qu
en

cy

0
50

0
10

00
15

00
20

00

0.6 0.8 1.0 1.2

Here is the 95% interval for the bootstrapped estimate of the slope:

420 THE R BOOK

quantile(b.boot,c(0.025,0.975))

2.5% 97.5%
0.8212288 1.1961992

Evidently, the bootstrapped data provide no support for the hypothesis that the slope is
significantly greater than 1.0.

We now repeat the exercise, using the boot function from the boot library:

library(boot)

The first step is to write what is known as the ‘statistic’ function. This shows boot how
to calculate the statistic we want from the resampled data. The resampling of the data
is achieved by a subscript provided by boot (here called index). The point is that every
time the model is fitted within the bootstrap it uses a different data set (yv and xv): we
need to describe how these data are constructed and how they are used in the model
fitting:

reg.boot<-function(regdat, index){
xv<-explanatory[index]
yv<-response[index]
model<-lm(yv~xv)
coef(model) }

Now we can run the boot function, then extract the intervals with the boot.ci function:

reg.model<-boot(regdat,reg.boot,R=10000)
boot.ci(reg.model,index=2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

CALL :
boot.ci(boot.out = reg.model, index = 2)

Intervals :

Level Normal Basic
95% (0.872, 1.253) (0.903, 1.283)

Level Percentile BCa
95% (0.818, 1.198) (0.826, 1.203)
Calculations and Intervals on Original Scale

All the intervals are reasonably similar: statisticians typically prefer the bias-corrected,
accelerated (BCa) intervals. These indicate that if we were to repeat the data-collection
exercise we can be 95% confident that the regression slope for those new data would be
between 0.826 and 1.203.

The other way of bootstrapping with a model is to randomize the allocation of the residuals
to fitted y values estimated from the original regression model. We start by calculating the
residuals and the fitted values:

model<-lm(response~explanatory)
fit<-fitted(model)
res<-resid(model)

REGRESSION 421

What we intend to do is to randomize which of the res values is added to the fit values
to get a reconstructed response variable, y, which we regress as a function of the original
explanatory variable. Here is the statistic function to do this:

residual.boot<-function(res, index){
y<-fit+res[index]
model<-lm(y~explanatory)
coef(model) }

Note that the data passed to the statistic function are res in this case (rather than the original
dataframe regdat as in the first example, above). Now use the boot function and the boot.ci
function to obtain the 95% confidence intervals on the slope (this is index = 2; the intercept
is index= 1):

res.model<-boot(res,residual.boot,R=10000)
boot.ci(res.model,index=2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

CALL :
boot.ci(boot.out = res.model, index = 2)

Intervals :
Level Normal Basic
95% (0.879, 1.223) (0.876, 1.224)
Level Percentile BCa
95% (0.877, 1.225) (0.869, 1.214)
Calculations and Intervals on Original Scale

The BCa from randomizing the residuals is from 0.869 to 1.214, while from selecting
random x and y points with replacement it was from 0.826 to 1.203 (above). The two rather
different approaches to bootstrapping produce reassuringly similar estimates of the same
parameter.

Jackknife with regression

A second alternative to alternating confidence intervals on regression parameters is to
jackknife the data. Each point in the data set is left out, one at a time, and the parameter
of interest is re-estimated. The regdat dataframe has length(response) data points:

names(regdat)

[1] "explanatory" "response"

length(response)

[1] 35

We create a vector to contain the 35 different estimates of the slope:

jack.reg<-numeric(35)

Now carry out the regression 35 times, leaving out a different x� y pair in each case:

422 THE R BOOK

for (i in 1:35) {
model<-lm(response[-i]~explanatory[-i])
jack.reg[i]<-coef(model)[2] }

Here is a histogram of the different estimates of the slope of the regression:

hist(jack.reg)

F
re

qu
en

cy

0
2

4
6

8
10

12

jack.reg
0.98 1.00 1.02 1.04 1.06 1.08

Histogram of jack.reg

As you can see, the distribution is strongly skew to the left. The jackknife draws attention
to one particularly influential point (the extreme left-hand bar) which, when omitted from
the dataframe, causes the estimated slope to fall below 1.0. We say the point is influential
because it is the only one of the 35 points whose omission causes the estimated slope to
fall below 1.0. To see what is going on we should plot the data:

plot(explanatory,response)

We need to find out the identity of this influential point:

which(explanatory>15)

[1] 22

Now we can draw regression lines for the full data set (solid line) and for the model with
the influential point number 22 omitted (dotted line):

abline(lm(response~explanatory))
abline(lm(response[-22]~explanatory[-22]),lty=2)

REGRESSION 423

explanatory

re
sp

on
se

15
20

25

6 8 10 12 14 16

Jackknife after Bootstrap

The jack.after.boot function calculates the jackknife influence values from a bootstrap
output object, and plots the corresponding jackknife-after-bootstrap plot. We illustrate its

5,
 1

0,
 1

6,
 5

0,
 8

4,
 9

0,
 9

5%
-il

es
 o

f (
T

*–
t)

–0
.3

–0
.2

–0
.1

0.
0

0.
1

0.
2

34

30

33

27

3

15

21

24

2

10

20

16

23

1

25 17

26

14

12

8 4 9

19

6

31
32

11
29

35

18

13
28

7

5

22

Standardized jackknife value
–2 –1 0 1 2 3

424 THE R BOOK

use with the boot object calculated earlier called reg.model. We are interested in the slope,
which is index=2:

jack.after.boot(reg.model,index=2)

The centred jackknife quantiles for each observation are estimated from those bootstrap
samples in which the particular observation did not appear. These are then plotted against
the influence values. From the top downwards, the horizontal dotted lines show the 95th,
90th, 84th, 50th, 16th, 10th and 5th percentiles. The numbers at the bottom identify the 35
points by their index values within regdat. Again, the influence of point no. 22 shows up
clearly (this time on the right-hand side), indicating that it has a strong positive influence
on the slope.

Serial correlation in the residuals

The Durbin-Watson function is used for testing whether there is autocorrelation in the
residuals from a linear model or a GLM, and is implemented as part of the car package
(see Fox, 2002):

install.packages("car")
model<-lm(response~explanatory)
durbin.watson(model)

lag Autocorrelation D-W Statistic p-value
1 -0.07946739 2.049899 0.874

Alternative hypothesis: rho != 0

There is no evidence of serial correlation in these residuals �p = 0�874�.

REGRESSION 425

The car package also contains functions for drawing ellipses, including data ellipses,
and confidence ellipses for linear and generalized linear models. Here is the data.ellipse
function for the present example: by default, the ellipses are drawn at 50 and 90%:

data.ellipse(explanatory,response)

Piecewise Regression

This kind of regression fits different functions over different ranges of the explanatory
variable. For example, it might fit different linear regressions to the left- and right-hand
halves of a scatterplot. Two important questions arise in piecewise regression:

• how many segments to divide the line into;

• where to position the break points on the x axis.

Suppose we want to do the simplest piecewise regression, using just two linear segments.
Where do we break up the x values? A simple, pragmatic view is to divide the x values
at the point where the piecewise regression best fits the response variable. Let’s take an
example using a linear model where the response is the log of a count (the number of
species recorded) and the explanatory variable is the log of the size of the area searched for
the species:

data<-read.table("c:\\temp\\sasilwood.txt",header=T)
attach(data)
names(data)

[1] "Species" "Area"

A quick scatterplot suggests that the relationship between log(Species) and log (Area) is not
linear:

plot(log(Species)~log(Area),pch=16)

The slope appears to be shallower at small scales than at large. The overall regression
highlights this at the model-checking stage:

model1<-lm(log(Species)~log(Area))
plot(log(Area),resid(model1))

The residuals are very strongly U-shaped (this plot should look like the sky at night).
If we are to use piecewise regression, then we need to work out how many straight-line

segments to use and where to put the breaks. Visual inspection of the scatterplot suggests
that two segments would be an improvement over a single straight line and that the break
point should be about log�Area� = 5. The choice of break point is made more objective
by choosing a range of values for the break point and selecting the break that produces
the minimum deviance. We should have at least two x values for each of the pieces of the
regression, so the areas associated with the first and last breaks can obtained by examination
of the table of x values:

426 THE R BOOK

lo
g(

S
pe

ci
es

)

0
1

2
3

4
5

6

log(Area)
–5 0 5 10

table(Area)

0.01 0.1 1 10 100 1000 10000 40000 90000 160000 250000 1000000
346 345 259 239 88 67 110 18 7 4 3 1

re
si

d(
m

od
el

1)

–3
–2

–1
0

1

log(Area)
–5 0 5 10

REGRESSION 427

Piecewise regression is extremely simple in R: we just include a logical statement as part
of the model formula, with as many logical statements as we want straight-line segments
in the fit. In the present example with two linear segments, the two logical statements
are �Area < Break� to define the left-hand regression and �Area ≥ Break� to define the
right-hand regression. The smallest break would be at Area = 1 and the largest break at
Area = 250 000. The piecewise model looks like this:

model2<-lm(log(Species)~log(Area)*(Area<Break)+log(Area)*(Area>=Break))

Note the use of the multiply operator (*) so that when the logical expression is false, the
model entry evaluates to zero, and hence it is not fitted to the response (see the discussion
on aliasing, p. 380). We want to fit the model for all values of Break between 1 and 250 000,
so we create a vector of breaks like this:

sort(unique(Area))[3:11]

[1] 1 10 100 1000 10000 40000 90000 160000 250000

Break<-sort(unique(Area))[3:11]

Now we use a loop to fit the two-segment piecewise model nine times and to store the value
of the residual standard error in a vector called d. This quantity is the sixth element of the
list that is the model summary object, d[i]<-summary(model)[[6]]:

d<-numeric(9)
for (i in 1:9) {
model<-
lm(log(Species)~(Area<Break[i])*log(Area)+(Area>=Break[i])*log(Area))
d[i]<-summary(model)[[6]] }

Index

d

0.
66

0.
67

0.
68

0.
69

0.
70

2 4 6 8

428 THE R BOOK

We have defined the best two-segment piecewise regression as the model with the minimal
residual standard error. Here is an index plot of our vector d:

plot(d,type="l")

The best model is clearly at index 3 or 4, with a slight preference for index 3. This is
associated with a break of

Break[3]

[1] 100

so Area = 100. We can refit the model for this value of Area and inspect the parameter
values:

model2<-lm(log(Species)~(Area<100)*log(Area)+(Area>=100)*log(Area))
summary(model2)

Call:
lm(formula = log(Species) ~ (Area < 100) * log(Area) + (Area >=

100) * log(Area))

Residuals:

Min 1Q Median 3Q Max
-2.5058 -0.3091 0.1128 0.4822 1.3443

Coefficients: (2 not defined because of singularities)
Estimate Std. Error t value Pr(>�t�)

(Intercept) 0.61682 0.13059 4.723 2.54e-06 ***
Area < 100TRUE 1.07854 0.13246 8.143 8.12e-16 ***
log(Area) 0.41019 0.01655 24.787 < 2e-16 ***
Area >= 100TRUE NA NA NA NA
Area < 100TRUE:log(Area) -0.25611 0.01816 -14.100 < 2e-16 ***
log(Area):Area >= 100TRUE NA NA NA NA

Residual standard error: 0.6525 on 1483 degrees of freedom
Multiple R-Squared: 0.724, Adjusted R-squared: 0.7235
F-statistic: 1297 on 3 and 1483 DF, p-value: < 2.2e-16

The output needs a little getting used to. First things first: the residual standard error
is down to 0.6525, a considerable improvement over the linear regression with which we
began (where the deviance was 0.7021):

anova(model1,model2)

Analysis of Variance Table

Model 1: log(Species) ~ log(Area)
Model 2: log(Species) ~ (Area < 100) * log(Area) + (Area >= 100) *
log(Area)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 1485 731.98
2 1483 631.36 2 100.62 118.17 < 2.2e-16 ***

Although there are six rows to the summary table, there are only four parameters (not six) to
be estimated (two slopes and two intercepts). We have intentionally created a singularity in
the piecewise regression between Area =100 and Area =1000 (the aliased parameters show
up as NAs). The intercept of 0.616 82 is for the right-hand (steeper) segment of the graph,

REGRESSION 429

whose slope (labelled log(Area)) is 0.410 19. The other two parameters (labelled Area <
100TRUE and Area < 100TRUE:log(Area), respectively) are the difference between
the two intercepts and the difference between the two slopes. So the left-hand segment of
the graph has intercept = 0�616 82 + 1�078 54 = 1�695 36 and slope = 0�410 19 − 0�256 11 =
0�154 08. You might like to confirm this by fitting the two regressions separately, using the
subset option). Here is the piecewise regression fitted through the scatterplot:

area=sort(unique(Area))
plot(log(Species)~log(Area))
lines(log(area),predict(model2,list(Area=area)))

lo
g(

S
pe

ci
es

)

log(Area)

0
1

3
2

4
5

6

–5 0 5 10

The fit is a great improvement over the single linear regression, but perhaps we could
improve the fit for the largest areas by fitting three piecewise lines (the values of log(Species)
all lie above the regression line for the four largest Areas)? We choose a break point of
Area = 40000 for the higher threshold, and note that now we need to use logical AND (&)
for the middle section of the regression:

model3<-lm(log(Species)~(Area<100)*log(Area)+
(Area>=100 & Area < 40000)*log(Area)+(Area>=40000)*log(Area))

Here is the fitted model on the scatterplot:

plot(log(Species)~log(Area))
lines(log(area),predict(model3,list(Area=area)))

Visually, this is a much better fit for the largest values of Area, but because of the low
replication at these larger Areas (see above), the difference between models 2 and 3 is not
significant (anova(model2,model3) gives p = 0�0963).

430 THE R BOOK

lo
g(

S
pe

ci
es

)

log(Area)

0
1

3
2

4
5

6

–5 0 5 10

Robust Fitting of Linear Models

This uses the rlm function from the MASS library. The function allows one to fit a linear
model by robust regression using an M estimator, allowing robust inference for parameters
and robust model selection. The robust fit is minimally influenced by outliers in the response
variable, in the explanatory variable(s) or in both.

robreg<-read.table("c:\\temp\\robreg.txt",header=T)
attach(robreg)
names(robreg)

[1] "amount" "rate"

plot(amount,rate,pch=16)
abline(lm(rate~amount))
summary(lm(rate~amount))

Coefficients:
Estimate Std. Error t value Pr(>�t�)

(Intercept) 12.1064 1.4439 8.385 1.52e-05 ***
amount -1.0634 0.2552 -4.166 0.00243 **

Residual standard error: 2.851 on 9 degrees of freedom
Multiple R-Squared: 0.6585, Adjusted R-squared: 0.6206
F-statistic: 17.36 on 1 and 9 DF, p-value: 0.002425

We can leave out the maximum and minimum values of the response or explanatory
variables separately or together using subset to test for influence:

summary(lm(rate~amount,subset=(rate<max(rate))))

REGRESSION 431

ra
te

amount

2
4

8
6

10
12

14
16

0 2 4 10 1286

Coefficients:

Estimate Std. Error t value Pr(>�t�)
(Intercept) 10.8163 1.0682 10.126 7.73e-06 ***
amount -0.9201 0.1811 -5.081 0.000952 ***

Residual standard error: 1.964 on 8 degrees of freedom
Multiple R-Squared: 0.7634, Adjusted R-squared: 0.7339
F-statistic: 25.82 on 1 and 8 DF, p-value: 0.000952

The intercept is lower by more than 1.0 and the slope is shallower by almost 0.1, while r2

is more than 10% higher with the maximum value of rate removed. What about removing
the maximum value of the explanatory variable?

summary(lm(rate~amount,subset=(amount<max(amount))))

Coefficients:

Estimate Std. Error t value Pr(>�t�)
(Intercept) 13.1415 1.5390 8.539 2.72e-05 ***
amount -1.4057 0.3374 -4.166 0.00314 **

Residual standard error: 2.691 on 8 degrees of freedom
Multiple R-Squared: 0.6845, Adjusted R-squared: 0.645
F-statistic: 17.35 on 1 and 8 DF, p-value: 0.003141

The intercept is now greater by more than 1.0 and the slope is steeper by almost 0.4.
You can see that leaving out the maximum value of amount (on the x axis) has a bigger

impact than leaving out the largest value of rate (which is at amount = 2). But all of the
models are different from the original model based on all the data. Here is what rlm makes
of these data:

432 THE R BOOK

ra
te

amount

2
4

8
6

10
12

14
16

0 2 4 10 1286

library(MASS)
summary(rlm(rate~amount))

Call: rlm(formula = rate ~ amount)
Residuals:

Min 1Q Median 3Q Max
-3.5707 -1.5366 -0.5139 1.4293 6.4748

Coefficients:
Value Std. Error t value

(Intercept) 11.5025 1.3457 8.5476
amount -0.9886 0.2379 -4.1558

Residual standard error: 2.295 on 9 degrees of freedom

Correlation of Coefficients:
(Intercept)
amount -0.8035

Note that rlm retains all its degrees of freedom, while our outlier deletion lost one degree
of freedom per point omitted. The parameter estimates and standard errors from rlm are
much closer to our model with all data points included �intercept =12�1� se=1�44� slope =
−1�06� se= 0�25� than to either of our reduced models. Using plot(model) draws attention
to data points 10 and 11 as being highly influential in both the lm and rlm, so we try leaving
them both out:

summary(lm(rate~amount,subset=(amount<max(amount)& rate<max(rate))))

Coefficients:
Estimate Std. Error t value Pr(>�t�)

(Intercept) 11.7556 1.0408 11.295 9.54e-06 ***
amount -1.2167 0.2186 -5.565 0.000846 ***

REGRESSION 433

Residual standard error: 1.693 on 7 degrees of freedom
Multiple R-Squared: 0.8157, Adjusted R-squared: 0.7893
F-statistic: 30.97 on 1 and 7 DF, p-value: 0.000846

The slope is steeper than in rlm but the intercept is quite close. Our removal of one or two
influential points has a much bigger effect on the estimate of the slope than does using rlm
compared with lm on the full data set. You pays your money and you takes your choice.

Model Simplification

A multiple regression is a statistical model with two or more continuous explanatory vari-
ables. We contrast this kind of model with analysis of variance, where all the explana-
tory variables are categorical (Chapter 11) and analysis of covariance, where the explanatory
variables are a mixture of continuous and categorical (Chapter 12).

The principle of parsimony (Occam’s razor), discussed in the previous chapter on p. 325,
is again relevant here. It requires that the model should be as simple as possible. This means
that the model should not contain any redundant parameters or factor levels. We achieve this
by fitting a maximal model and then simplifying it by following one or more of these steps:

• Remove non-significant interaction terms.

• Remove non-significant quadratic or other non-linear terms.

• Remove non-significant explanatory variables.

• Group together factor levels that do not differ from one another.

• Amalgamate explanatory variables that have similar parameter values.

• Set non-significant slopes to zero within ANCOVA.

Of course, such simplifications must make good scientific sense, and must not lead to
significant reductions in explanatory power. It is likely that many of the explanatory variables
are correlated with each other, and so the order in which variables are deleted from the
model will influence the explanatory power attributed to them. The thing to remember about
multiple regression is that, in principle, there is no end to it. The number of combinations
of interaction terms and curvature terms is endless. There are some simple rules (like
parsimony) and some automated functions (like step) to help. But, in principle, you could
spend a very great deal of time in modelling a single dataframe. There are no hard-and-fast
rules about the best way to proceed, but we shall typically carry out simplification of a
complex model by stepwise deletion: non-significant terms are left out, and significant terms
are added back (see Chapter 9).

At the data inspection stage, there are many more kinds of plots we could do:

• Plot the response against each of the explanatory variables separately.

• Plot the explanatory variables against one another (e.g. pairs).

• Plot the response against pairs of explanatory variables in three-dimensional plots.

• Plot the response against explanatory variables for different combinations of other
explanatory variables (e.g. conditioning plots, coplot; see p. 16).

434 THE R BOOK

• Fit non-parametric smoothing functions (e.g. using generalized additive models, to look
for evidence of curvature).

• Fit tree models to investigate whether interaction effects are simple or complex.

The Multiple Regression Model

There are several important issues involved in carrying out a multiple regression:

• which explanatory variables to include;

• curvature in the response to the explanatory variables;

• interactions between explanatory variables;

• correlation between explanatory variables;

• the risk of overparameterization.

The assumptions about the response variable are the same as with simple linear regression:
the errors are normally distributed, the errors are confined to the response variable, and
the variance is constant. The explanatory variables are assumed to be measured without
error. The model for a multiple regression with two explanatory variables (x1 and x2) looks
like this:

yi = 	0 + 	1x1i + 	2x2i +
i�

The ith data point, yi, is determined by the levels of the two continuous explanatory variables
x1i and x2i by the model’s three parameters (the intercept 	0 and the two slopes 	1 and
	2), and by the residual
i of point i from the fitted surface. More generally, the model is
presented like this:

yi =
∑

	ixi +
i�

where the summation term is called the linear predictor and can involve many explanatory
variables, non-linear terms and interactions.

Example

Let’s begin with an example from air pollution studies. How is ozone concentration related
to wind speed, air temperature and the intensity of solar radiation?

ozone.pollution<-read.table("c:\\temp\\ozone.data.txt",header=T)
attach(ozone.pollution)
names(ozone.pollution)

[1] "rad" "temp" "wind" "ozone"

In multiple regression, it is always a good idea to use pairs to look at all the correlations:

pairs(ozone.pollution,panel=panel.smooth)

REGRESSION 435

60 70 80 90

0
50

15
0

25
0

0 50 100 150

0 50 150 250

0
50

10
0

15
0

5
10

15
20

60
70

80
90

5 10 15 20

ozone

wind

rad

temp

The response variable, ozone concentration, is shown on the y axis of the bottom row of
panels: there is a strong negative relationship with wind speed, a positive correlation with
temperature and a rather unclear, humped relationship with radiation.

A good way to tackle a multiple regression problem is using non-parametric smoothers
in a generalized additive model like this:

library(mgcv)
par(mfrow=c(2,2))
model<-gam(ozone~s(rad)+s(temp)+s(wind))
plot(model)
par(mfrow=c(1,1))

The confidence intervals are sufficiently narrow to suggest that the curvature in the rela-
tionship between ozone and temperature is real, but the curvature of the relationship with
wind is questionable, and a linear model may well be all that is required for solar radiation.

The next step might be to fit a tree model to see whether complex interactions between
the explanatory variables are indicated:

library(tree)
model<-tree(ozone~.,data=ozone.pollution)
plot(model)
text(model)

436 THE R BOOK

60 70 80 90
temp

5 10 15 20
wind

0 50 100 150 200 250 300
rad

–2
0

0
20

40
60

–2
0

0
20

40
60

s(
te

m
p,

 3
.8

4)

–2
0

0
20

40
60

s(
ra

d,
 2

.7
6)

s(
w

in
d,

 2
.9

2)

This shows that temperature is by far the most important factor affecting ozone concentration
(the longer the branches in the tree, the greater the deviance explained). Wind speed is
important at both high and low temperatures, with still air being associated with higher mean
ozone levels (the figures at the ends of the branches). Radiation shows an interesting but
subtle effect. At low temperatures, radiation matters at relatively high wind speeds �>7�15�,
whereas at high temperatures, radiation matters at relatively low wind speeds �< 10�6�; in
both cases, however, higher radiation is associated with higher mean ozone concentration.
The tree model therefore indicates that the interaction structure of the data is not complex
(a reassuring finding).

Armed with this background information (likely curvature of the temperature response and
an uncomplicated interaction structure), we can begin the linear modelling. We start with the
most complicated model: this includes interactions between all three explanatory variables
plus quadratic terms to test for curvature in response to each of the three explanatory
variables. If you want to do calculations inside the model formula (e.g. produce a vector of
squares for fitting quadratic terms), then you need to use the ‘as is’ function, I ():

model1<-lm(ozone~temp*wind*rad+I(rad∧2)+I(temp∧2)+I(wind∧2))
summary(model1)

Coefficients:
Estimate Std.Error t value Pr(>�t�)

(Intercept) 5.683e+02 2.073e+02 2.741 0.00725 **
temp -1.076e+01 4.303e+00 -2.501 0.01401 *
wind -3.237e+01 1.173e+01 -2.760 0.00687 **
rad -3.117e-01 5.585e-01 -0.558 0.57799

REGRESSION 437

wind <10.6wind <7.15

rad <79.5
rad <205

temp <88.5

temp <82.5

temp <77.561.00
12.22

20.97 34.56

74.54 83.43 102.40

48.71

I(rad^2) -3.619e-04 2.573e-04 -1.407 0.16265
I(temp^2) 5.833e-02 2.396e-02 2.435 0.01668 *
I(wind^2) 6.106e-01 1.469e-01 4.157 6.81e-05 ***
temp:wind 2.377e-01 1.367e-01 1.739 0.08519 � � �
temp:rad 8.402e-03 7.512e-03 1.119 0.26602
wind:rad 2.054e-02 4.892e-02 0.420 0.67552
temp:wind:rad -4.324e-04 6.595e-04 -0.656 0.51358

Residual standard error: 17.82 on 100 degrees of freedom
Multiple R-Squared: 0.7394, Adjusted R-squared: 0.7133
F-statistic: 28.37 on 10 and 100 DF, p-value: 0

The three-way interaction is clearly not significant, so we remove it to begin the process of
model simplification:

model2<-update(model1,~. - temp:wind:rad)
summary(model2)

Coefficients:
Estimate Std.Error t value Pr(>|t|)

(Intercept) 5.245e+02 1.957e+02 2.680 0.0086 **
temp -1.021e+01 4.209e+00 -2.427 0.0170 *
wind -2.802e+01 9.645e+00 -2.906 0.0045 **
rad 2.628e-02 2.142e-01 0.123 0.9026
I(rad^2) -3.388e-04 2.541e-04 -1.333 0.1855

438 THE R BOOK

I(temp^2) 5.953e-02 2.382e-02 2.499 0.0141 *
I(wind^2) 6.173e-01 1.461e-01 4.225 5.25e-05 ***
temp:wind 1.734e-01 9.497e-02 1.825 0.0709 .
temp:rad 3.750e-03 2.459e-03 1.525 0.1303
wind:rad -1.127e-02 6.277e-03 -1.795 0.0756 .

We now remove the least significant interaction term. From model1 this looks like
wind:rad �p = 0�675 52�, but the sequence has been altered by removing the three-way
term (it is now temp:rad with p = 0�1303):

model3<-update(model2,~. - temp:rad)
summary(model3)

Coefficients:
Estimate Std.Error t value Pr(>|t|)

(Intercept) 5.488e+02 1.963e+02 2.796 0.00619 **
temp -1.144e+01 4.158e+00 -2.752 0.00702 **
wind -2.876e+01 9.695e+00 -2.967 0.00375 **
rad 3.061e-01 1.113e-01 2.751 0.00704 **
I(rad^2) -2.690e-04 2.516e-04 -1.069 0.28755
I(temp^2) 7.145e-02 2.265e-02 3.154 0.00211 **
I(wind^2) 6.363e-01 1.465e-01 4.343 3.33e-05 ***
temp:wind 1.840e-01 9.533e-02 1.930 0.05644 .
wind:rad -1.381e-02 6.090e-03 -2.268 0.02541 *

The temp:wind interaction is close to significance, but we are ruthless in our pruning, so
we take it out:

model4<-update(model3,~. - temp:wind)
summary(model4)

Coefficients:
Estimate Std.Error t value Pr(>|t|)

(Intercept) 2.310e+02 1.082e+02 2.135 0.035143 *
temp -5.442e+00 2.797e+00 -1.946 0.054404 .
wind -1.080e+01 2.742e+00 -3.938 0.000150 ***
rad 2.405e-01 1.073e-01 2.241 0.027195 *
I(rad^2) -2.010e-04 2.524e-04 -0.796 0.427698
I(temp^2) 4.484e-02 1.821e-02 2.463 0.015432 *
I(wind^2) 4.308e-01 1.020e-01 4.225 5.16e-05 ***
wind:rad -9.774e-03 5.794e-03 -1.687 0.094631 .

Now the wind:rad interaction, which looked so significant in model3 �p = 0�02541�, is
evidently not significant, so we take it out as well:

model5<-update(model4,~. - wind:rad)
summary(model5)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.985e+02 1.014e+02 2.942 0.00402 **
temp -6.584e+00 2.738e+00 -2.405 0.01794 *
wind -1.337e+01 2.300e+00 -5.810 6.89e-08 ***
rad 1.349e-01 8.795e-02 1.533 0.12820
I(rad^2) -2.052e-04 2.546e-04 -0.806 0.42213
I(temp^2) 5.221e-02 1.783e-02 2.928 0.00419 **
I(wind^2) 4.652e-01 1.008e-01 4.617 1.12e-05 ***

REGRESSION 439

There is no evidence to support retaining any of the two-way interactions. What about the
quadratic terms: the term in rad^2 looks insignificant, so we take it out:

model6<-update(model5,~. - I(rad^2))
summary(model6)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 291.16758 100.87723 2.886 0.00473 **
temp -6.33955 2.71627 -2.334 0.02150 *
wind -13.39674 2.29623 -5.834 6.05e-08 ***
rad 0.06586 0.02005 3.285 0.00139 **
I(temp^2) 0.05102 0.01774 2.876 0.00488 **
I(wind^2) 0.46464 0.10060 4.619 1.10e-05 ***

Residual standard error: 18.25 on 105 degrees of freedom
Multiple R-Squared: 0.713, Adjusted R-squared: 0.6994
F-statistic: 52.18 on 5 and 105 DF, p-value: < 2.2e-16

Now we are making progress. All the terms in model6 are significant. We should check the
assumptions:

plot(model6)

0 20 40 60 80 100

0

0

20

20

40 60

60

80 100

Fitted values

Fitted values

R
es

id
ua

ls

0.
0

0.
5

1.
0

1.
5

2.
0

–4
0

Scale-Location

Residuals vs Fitted

77

5323

5323

77

Residuals vs Leverage

Theoretical Quantiles

Leverage

–2 –1 0 1 2

–2
0

2
4

–2
0

2
4

Normal Q–Q

S
ta

nd
ar

di
ze

d
re

si
du

al
s

S
ta

nd
ar

di
ze

d
re

si
du

al
s

0.0 0.1 0.2 0.3 0.4 0.5

77

5323

1

1

77

0.5

0.5
7

Cook’s distance

|S
ta

nd
ar

di
ze

d
re

si
du

al
s|

There is a clear pattern of variance increasing with the mean of the fitted values. This
heteroscedasticity is bad news. Also, the normality plot is distinctly curved; again, this

440 THE R BOOK

is bad news. Let’s try transformation of the response variable. There are no zeros in the
response, so a log transformation is worth trying:

model7<-lm(log(ozone) ~ temp + wind + rad + I(temp^2) + I(wind^2))
summary(model7)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.5538486 2.7359735 0.933 0.35274
temp -0.0041416 0.0736703 -0.056 0.95528
wind -0.2087025 0.0622778 -3.351 0.00112 **
rad 0.0025617 0.0005437 4.711 7.58e-06 ***
I(temp^2) 0.0003313 0.0004811 0.689 0.49255
I(wind^2) 0.0067378 0.0027284 2.469 0.01514 *

Residual standard error: 0.4949 on 105 degrees of freedom
Multiple R-Squared: 0.6882, Adjusted R-squared: 0.6734
F-statistic: 46.36 on 5 and 105 DF, p-value: 0

On the log(ozone) scale, there is no evidence for a quadratic term in temperature, so let’s
remove that:

model8<-update(model7,~. - I(temp^2))
summary(model8)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.7231644 0.6457316 1.120 0.26528
temp 0.0464240 0.0059918 7.748 5.94e-12 ***
wind -0.2203843 0.0597744 -3.687 0.00036 ***
rad 0.0025295 0.0005404 4.681 8.49e-06 ***
I(wind^2) 0.0072233 0.0026292 2.747 0.00706 **

Residual standard error: 0.4936 on 106 degrees of freedom
Multiple R-Squared: 0.6868, Adjusted R-squared: 0.675
F-statistic: 58.11 on 4 and 106 DF, p-value: 0

plot(model8)

The heteroscedasticity and the non-normality have been cured, but there is now a highly
influential data point (no. 17 on the Cook’s plot). We should refit the model with this point
left out, to see if the parameter estimates or their standard errors are greatly affected:

model9<-lm(log(ozone) ~ temp + wind + rad + I(wind^2),subset=(1:length(ozone)!=17))
summary(model9)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.1932358 0.5990022 1.992 0.048963 *
temp 0.0419157 0.0055635 7.534 1.81e-11 ***
wind -0.2208189 0.0546589 -4.040 0.000102 ***
rad 0.0022097 0.0004989 4.429 2.33e-05 ***
I(wind^2) 0.0068982 0.0024052 2.868 0.004993 **

Residual standard error: 0.4514 on 105 degrees of freedom
Multiple R-Squared: 0.6974, Adjusted R-squared: 0.6859
F-statistic: 60.5 on 4 and 105 DF, p-value: 0

REGRESSION 441

Residuals vs Leverage

Theoretical Quantiles

Leverage

–2 –1 0 1 2

–4
–2

0
2

–4
–2

0
2

Normal Q–Q

S
ta

nd
ar

di
ze

d
re

si
du

al
s

S
ta

nd
ar

di
ze

d
re

si
du

al
s

0.00 0.10 0.20 0.302.0 3.0 4.0 5.0

–1
0

1

Fitted values

2.0 3.0 4.0 5.0

Fitted values

R
es

id
ua

ls

0.
0

0.
5

1.
0

1.
5

2.
0

–2

Scale-Location

Residuals vs Fitted

1

1

0.5

0.5

Cook’s distance

17

11
20

17 20

18

17

20

17

|S
ta

nd
ar

di
ze

d
re

si
du

al
s|

Finally, plot(model9) shows that the variance and normality are well behaved, so we can
stop at this point. We have found the minimal adequate model. It is on a scale of log(ozone
concentration), all the main effects are significant, but there are no interactions, and there
is a single quadratic term for wind speed (five parameters in all, with 105 d.f. for error).

Let us repeat the example using the automatic model simplification function step, to see
how well it does:

model10<-step(model1)

Start: AIC= 649.8
ozone ~ temp * wind * rad + I(rad^2) + I(temp^2) + I(wind^2)

Df Sum of Sq RSS AIC
- temp:wind:rad 1 136 31879 648
<none> 31742 650
- I(rad^2) 1 628 32370 650
- I(temp^2) 1 1882 33624 654
- I(wind^2) 1 5486 37228 665

Step: AIC= 648.28
ozone ~ temp + wind + rad + I(rad^2) + I(temp^2) + I(wind^2) +
temp:wind + temp:rad + wind:rad

Df Sum of Sq RSS AIC
- I(rad^2) 1 561 32440 648
<none> 31879 648

442 THE R BOOK

- temp:rad 1 734 32613 649
- wind:rad 1 1017 32896 650
- temp:wind 1 1052 32930 650
- I(temp^2) 1 1971 33850 653
- I(wind^2) 1 5634 37513 664

Step: AIC= 648.21
ozone ~ temp + wind + rad + I(temp^2) + I(wind^2) + temp:wind +
temp:rad + wind:rad

Df Sum of Sq RSS AIC
- temp:rad 1 539 32978 648
<none> 32440 648
- temp:wind 1 883 33323 649
- wind:rad 1 1034 33473 650
- I(temp^2) 1 1817 34256 652
- I(wind^2) 1 5361 37800 663

Step: AIC= 648.04
ozone ~ temp + wind + rad + I(temp^2) + I(wind^2) + temp:wind +
wind:rad

Df Sum of Sq RSS AIC
<none> 32978 648
- temp:wind 1 1033 34011 649
- wind:rad 1 1588 34566 651
- I(temp^2) 1 2932 35910 655
- I(wind^2) 1 5781 38759 664

summary(model10)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 514.401470 193.783580 2.655 0.00920 **
temp -10.654041 4.094889 -2.602 0.01064 *
wind -27.391965 9.616998 -2.848 0.00531 **
rad 0.212945 0.069283 3.074 0.00271 **
I(temp^2) 0.067805 0.022408 3.026 0.00313 **
I(wind^2) 0.619396 0.145773 4.249 4.72e-05 ***
temp:wind 0.169674 0.094458 1.796 0.07538 .
wind:rad -0.013561 0.006089 -2.227 0.02813 *

Residual standard error: 17.89 on 103 degrees of freedom
Multiple R-Squared: 0.7292, Adjusted R-squared: 0.7108
F-statistic: 39.63 on 7 and 103 DF, p-value: < 2.2e-16

This is quite typical of the step function: it has erred on the side of generosity (which is what
you would want of an automated procedure, of course) and it has left the interaction between
temperature and wind speed in the model �p = 0�075 38�. Manual model simplification of
model10 leads to the same minimal adequate model as we obtained earlier (model9 after
log transformation of the response variable).

REGRESSION 443

A more complex example

In the next example we introduce two new difficulties: more explanatory variables, and
fewer data points. It is another air pollution dataframe, but the response variable in this case
is sulphur dioxide concentration. There are six continuous explanatory variables:

pollute<-read.table("c:\\temp\\sulphur.dioxide.txt",header=T)
attach(pollute)
names(pollute)

[1] "Pollution" "Temp" "Industry" "Population" "Wind"
[6] "Rain" "Wet.days"

Here are the 36 scatterplots:

pairs(pollute,panel=panel.smooth)

45 55 65 75 0 1500 3500 10 30 50

20
60

10
0

6
8

10
12

10
30

50
0

15
00

35
00

45
55

65
75

20 60 100 0 1500 6 8 10 12 40 80 140

40
80

14
0

0
15

00

Pollution

Temp

Industry

Population

Wind

Rain

Wet.days

444 THE R BOOK

This time, let’s begin with the tree model rather than the generalized additive model. A
look at the pairs plots suggests that interactions may be more important than non-linearity
in this case.

library(tree)
model<-tree(Pollution~.,data=pollute)
plot(model)
text(model)

Industry <748

Wer.days <108

Temp <59.35

Wind <9.65

Population <190

15.00
23.0033.88

12.00

43.43

67.00

This is interpreted as follows. The most important explanatory variable is Industry, and the
threshold value separating low and high values of Industry is 748. The right-hand branch
of the tree indicates the mean value of air pollution for high levels of industry (67.00).
The fact that this limb is unbranched means that no other variables explain a significant
amount of the variation in pollution levels for high values of Industry. The left-hand limb
does not show the mean values of pollution for low values of Industry, because there are
other significant explanatory variables. Mean values of pollution are only shown at the
extreme ends of branches. For low values of Industry, the tree shows us that Population
has a significant impact on air pollution. At low values of Population �< 190� the mean
level of air pollution was 43.43. For high values of Population, the number of wet days is
significant. Low numbers of wet days �< 108� have mean pollution levels of 12.00 while
Temperature has a significant impact on pollution for places where the number of wet days

REGRESSION 445

is large. At high temperatures �> 59�35 �F� the mean pollution level was 15.00 while at
lower temperatures the run of Wind is important. For still air (Wind < 9�65) pollution was
higher (33.88) than for higher wind speeds (23.00).

We conclude that the interaction structure is highly complex. We shall need to carry out
the linear modelling with considerable care. Start with some elementary calculations. With
six explanatory variables, how many interactions might we fit? Well, there are 5 + 4 + 3 +
2 + 1 = 15 two-way interactions for a start. Plus 20 three-way, 15 four-way and 6 five-way
interactions, and a six-way interaction for good luck. Then there are quadratic terms for
each of the six explanatory variables. So we are looking at about 70 parameters that might
be estimated from the data. But how many data points have we got?

length(Pollution)

[1] 41

Oops! We are planning to estimate almost twice as many parameters as there are data
points. That is taking overparameterization to new heights. We already know that you
cannot estimate more parameter values than there are data points (i.e. a maximum of 41
parameters). But we also know that when we fit a saturated model to the data, it has no
explanatory power (there are no degrees of freedom, so the model, by explaining everything,
ends up explaining nothing at all). There is a useful rule of thumb: don’t try to estimate
more than n/3 parameters during a multiple regression. In the present case n=41 so the rule
of thumb is suggesting that we restrict ourselves to estimating about 41/3 ≈ 13 parameters
at any one time. We know from the tree model that the interaction structure is going to be
complicated so we shall concentrate on that. We begin, therefore, by looking for curvature,
to see if we can eliminate this:

model1<-
lm(Pollution~Temp+I(Temp^2)+Industry+I(Industry ^2)+Population+I
(Population ^2)+ Wind+I(Wind ^2)+Rain+I(Rain ^2)+Wet.days+I(Wet.days ^2))
summary(model1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.641e+01 2.234e+02 -0.297 0.76844
Temp 5.814e-01 6.295e+00 0.092 0.92708
I(Temp ^2) -1.297e-02 5.188e-02 -0.250 0.80445
Industry 8.123e-02 2.868e-02 2.832 0.00847 **
I(Industry ^2) -1.969e-05 1.899e-05 -1.037 0.30862
Population -7.844e-02 3.573e-02 -2.195 0.03662 *
I(Population ^2) 2.551e-05 2.158e-05 1.182 0.24714
Wind 3.172e+01 2.067e+01 1.535 0.13606
I(Wind ^2) -1.784e+00 1.078e+00 -1.655 0.10912
Rain 1.155e+00 1.636e+00 0.706 0.48575
I(Rain ^2) -9.714e-03 2.538e-02 -0.383 0.70476
Wet.days -1.048e+00 1.049e+00 -0.999 0.32615
I(Wet.days ^2) 4.555e-03 3.996e-03 1.140 0.26398

Residual standard error: 14.98 on 28 degrees of freedom
Multiple R-Squared: 0.7148, Adjusted R-squared: 0.5925
F-statistic: 5.848 on 12 and 28 DF, p-value: 5.868e-005

So that’s our first bit of good news. There is no evidence of curvature for any of the six
explanatory variables on their own (there may be curved interaction effects, of course).

446 THE R BOOK

Only the main effects of Industry and Population are significant in this (overparameterized)
model. Now we need to consider the interaction terms. We do not fit interaction terms
without both their component main effects, so we cannot fit all the two-way interaction
terms at the same time (that would be 15 + 6=21 parameters; well above the rule-of-thumb
value of 13). One approach is to fit the interaction terms in randomly selected pairs. With
all six main effects, we can afford to try 13 − 6 = 7 interaction terms at a time. We’ll try
this. Make a vector containing the names of the 15 two-way interactions:

interactions<-c("ti","tp","tw","tr","td","ip","iw","ir","id","pw","pr","pd","wr","wd","rd")

Now shuffle the interactions into random order using sample without replacement:

sample(interactions)

[1] "wr" "wd" "id" "ir" "rd" "pr" "tp" "pw" "ti" "iw" "tw"
"pd" "tr" "td" "ip"

It would be sensible and pragmatic to test the two-way interactions in three models, each
containing five different two-way interaction terms:

model2<-
lm(Pollution~Temp+Industry+Population+Wind+Rain+Wet.days+Wind:Rain+
Wind:Wet.days+Industry:Wet.days+Industry:Rain+Rain:Wet.days)
model3<-
lm(Pollution~Temp+Industry+Population+Wind+Rain+Wet.days+Population:Rain+
Temp:Population+Population:Wind+Temp:Industry+Industry:Wind)
model4<-
lm(Pollution~Temp+Industry+Population+Wind+Rain+Wet.days+Temp:Wind+
Population:Wet.days+Temp:Rain+Temp:Wet.days+Industry:Population)

Extracting only the interaction terms from the three models, we see:

Industry:Rain -1.616e-04 9.207e-04 -0.176 0.861891
Industry:Wet.days 2.311e-04 3.680e-04 0.628 0.534949
Wind:Rain 9.049e-01 2.383e-01 3.798 0.000690 ***
Wind:Wet.days -1.662e-01 5.991e-02 -2.774 0.009593 **
Rain:Wet.days 1.814e-02 1.293e-02 1.403 0.171318

Temp:Industry -1.643e-04 3.208e-03 -0.051 0.9595
Temp:Population 1.125e-03 2.382e-03 0.472 0.6402
Industry:Wind 2.668e-02 1.697e-02 1.572 0.1267
Population:Wind -2.753e-02 1.333e-02 -2.066 0.0479 *
Population:Rain 6.898e-04 1.063e-03 0.649 0.5214

Temp:Wind 1.261e-01 2.848e-01 0.443 0.66117
Temp:Rain -7.819e-02 4.126e-02 -1.895 0.06811
Temp:Wet.days 1.934e-02 2.522e-02 0.767 0.44949
Industry:Population 1.441e-06 4.178e-06 0.345 0.73277
Population:Wet.days 1.979e-05 4.674e-04 0.042 0.96652

The next step might be to put all of the significant or close-to-significant interactions into
the same model, and see which survive:

model5<-
lm(Pollution~Temp+Industry+Population+Wind+Rain+Wet.days+Wind:Rain+
Wind:Wet.days+Population:Wind+Temp:Rain)

REGRESSION 447

summary(model5)

Coefficients:
Estimate Std.Error t value Pr(>|t|)

(Intercept) 323.054546 151.458618 2.133 0.041226 *
Temp -2.792238 1.481312 -1.885 0.069153 .
Industry 0.073744 0.013646 5.404 7.44e-06 ***
Population 0.008314 0.056406 0.147 0.883810
Wind -19.447031 8.670820 -2.243 0.032450 *
Rain -9.162020 3.381100 -2.710 0.011022 *
Wet.days 1.290201 0.561599 2.297 0.028750 *
Temp:Rain 0.017644 0.027311 0.646 0.523171
Population:Wind -0.005684 0.005845 -0.972 0.338660
Wind:Rain 0.997374 0.258447 3.859 0.000562 ***
Wind:Wet.days -0.140606 0.053582 -2.624 0.013530 *

We certainly don’t need Temp:Rain, so

model6<-update(model5,~. – Temp:Rain)

or Population:Wind:

model7<-update(model6,~. – Population:Wind)

All the terms in model7 are significant. Time for a check on the behaviour of the model:

plot(model7)

That’s not bad at all. But what about the higher-order interactions? One way to proceed is
to specify the interaction level using ^3 in the model formula, but if you do this, you will
find that we run out of degrees of freedom straight away. A pragmatic option is to fit three
way terms for the variables that already appear in two-way interactions: in our case, that is
just one term: Wind:Rain:Wet.days

model8<-update(model7,~. + Wind:Rain:Wet.days)
summary(model8)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 278.464474 68.041497 4.093 0.000282 ***
Temp -2.710981 0.618472 -4.383 0.000125 ***
Industry 0.064988 0.012264 5.299 9.1e-06 ***
Population -0.039430 0.011976 -3.293 0.002485 **
Wind -7.519344 8.151943 -0.922 0.363444
Rain -6.760530 1.792173 -3.772 0.000685 ***
Wet.days 1.266742 0.517850 2.446 0.020311 *
Wind:Rain 0.631457 0.243866 2.589 0.014516 *
Wind:Wet.days -0.230452 0.069843 -3.300 0.002440 **
Wind:Rain:Wet.days 0.002497 0.001214 2.056 0.048247 *

Residual standard error: 11.2 on 31 degrees of freedom
Multiple R-Squared: 0.8236, Adjusted R-squared: 0.7724
F-statistic: 16.09 on 9 and 31 DF, p-value: 2.231e-009

That’s enough for now. I’m sure you get the idea. Multiple regression is difficult, time-
consuming, and always vulnerable to subjective decisions about what to include and what
to leave out. The linear modelling confirms the early impression from the tree model:

448 THE R BOOK

for low levels of industry, the SO2 level depends in a simple way on population (people
tend to want to live where the air is clean) and in a complicated way on daily weather
(the three-way interaction between wind, total rainfall and the number of wet days (i.e. on
rainfall intensity)). Note that the relationship between pollution and population in the initial
scatterplot suggested a positive correlation between these two variables, not the negative
relationship we discovered by statistical modelling. This is one of the great advantages of
multiple regression.

Note that the automatic model-simplification function step was no use in this example
because we had too few data points to fit the full model to begin with.

Common problems arising in multiple regression

The following are some of the problems and difficulties that crop up when we do multiple
regression:

• differences in the measurement scales of the explanatory variables, leading to large
variation in the sums of squares and hence to an ill-conditioned matrix;

• multicollinearity, in which there is a near-linear relation between two of the explanatory
variables, leading to unstable parameter estimates;

• rounding errors during the fitting procedure;

• non-independence of groups of measurements;

• temporal or spatial correlation amongst the explanatory variables;

• pseudoreplication.

Wetherill et al. (1986) give a detailed discussion of these problems. We shall encounter other
examples of multiple regressions in the context of generalized linear models (Chapter 13),
generalized additive models (Chapter 18), survival models (Chapter 25) and mixed-effects
models (Chapter 19).

11
Analysis of Variance

Analysis of variance is the technique we use when all the explanatory variables are cat-
egorical. The explanatory variables are called factors, and each factor has two or more
levels. When there is a single factor with three or more levels we use one-way ANOVA.
If we had a single factor with just two levels, we would use Student’s t test (see p. 294),
and this would give us exactly the same answer that we would have obtained by ANOVA
(remember the rule that F = t2). Where there are two or more factors, then we use two-way
or three-way ANOVA, depending on the number of explanatory variables. When there is
replication at each combination of levels in a multi-way ANOVA, the experiment is called
a factorial design, and this allows us to study interactions between variables, in which we
test whether the response to one factor depends on the level of another factor.

One-Way ANOVA

There is a real paradox about analysis of variance, which often stands in the way of a clear
understanding of exactly what is going on. The idea of analysis of variance is to compare
two or more means, but it does this by comparing variances. How can that work?

The best way to see what is happening is to work through a simple example. We have
an experiment in which crop yields per unit area were measured from 10 randomly selected
fields on each of three soil types. All fields were sown with the same variety of seed and
provided with the same fertilizer and pest control inputs. The question is whether soil type
significantly affects crop yield, and if so, to what extent.

results<-read.table("c:\\temp\\yields.txt",header=T)
attach(results)
names(results)

[1] "sand" "clay" "loam"

To see the data just type results followed by the Return key:

sand clay loam
1 6 17 13
2 10 15 16
3 8 3 9
4 6 11 12
5 14 14 15

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

450 THE R BOOK

6 17 12 16
7 9 12 17
8 11 8 13
9 7 10 18
10 11 13 14

The function sapply is used to calculate the mean yields for the three soils:

sapply(list(sand,clay,loam),mean)

[1] 9.9 11.5 14.3

Mean yield was highest on loam (14.3) and lowest on sand (9.9).
It will be useful to have all of the yield data in a single vector called y:

y<-c(sand,clay,loam)

and to have a single vector called soil to contain the factor levels for soil type:

soil<-factor(rep(1:3,c(10,10,10)))

Before carrying out analysis of variance, we should check for constancy of variance (see
Chapter 8) across the three soil types:

sapply(list(sand,clay,loam),var)

[1] 12.544444 15.388889 7.122222

The variances differ by more than a factor of 2. But is this significant? We test for
heteroscedasticity using the Fligner–Killeen test of homogeneity of variances:

fligner.test(y~soil)

Fligner-Killeen test of homogeneity of variances

data: y by soil
Fligner-Killeen:med chi-squared = 0.3651, df = 2, p-value = 0.8332

We could have used bartlett.test(y~soil), which gives p = 0�5283 (but this is more a test
of non-normality than of equality of variances). Either way, there is no evidence of any
significant difference in variance across the three samples, so it is legitimate to continue
with our one-way analysis of variance.

Because the explanatory variable is categorical (three levels of soil type), initial data
inspection involves a box-and-whisker plot of y against soil like this:

plot(soil,y,names=c("sand","clay","loam"),ylab="yield")

ANALYSIS OF VARIANCE 451

yi
el

d
5

10
15

sand clay loam

Median yield is lowest on sand and highest on loam but there is considerable variation from
replicate to replicate within each soil type (there is even an outlier on clay). It looks as
if yield on loam will turn out to be significantly higher than on sand (their boxes do not
overlap) but it is not clear whether yield on clay is significantly greater than on sand or
significantly lower than on loam. The analysis of variance will answer these questions.

The analysis of variance involves calculating the total variation in the response variable
(yield in this case) and partitioning it (‘analysing it’) into informative components. In the
simplest case, we partition the total variation into just two components: explained variation
and unexplained variation:

SSY

SSA

SSE

Explained variation is called the treatment sum of squares (SSA) and unexplained variation
is called the error sum of squares (SSE, also known as the residual sum of squares). The
unexplained variation is defined as the sum of the squares of the differences between the
individual y values and the relevant treatment mean:

SSE =
k∑

i=1

∑
�y − ȳi�

2�

We compute the mean for the ith level of the factor in advance, and then add up the squares
of the differences. Given that we worked it out this way, can you see how many degrees
of freedom should be associated with SSE? Suppose that there were n replicates in each
treatment (n=10 in our example). And suppose that there are k levels of the factor (k=3 in
our example). If you estimate k parameters from the data before you can work out SSE, then
you must have lost k degrees of freedom in the process. Since each of the k levels of the
factor has n replicates, there must be k × n numbers in the whole experiment (3 × 10 = 30
in our example). So the degrees of freedom associated with SSE are kn – k = k�n − 1�.
Another way of seeing this is to say that there are n replicates in each treatment, and hence

452 THE R BOOK

n − 1 degrees of freedom for error in each treatment (because 1 d.f. is lost in estimating
each treatment mean). There are k treatments (i.e. k levels of the factor) and hence there
are k × �n − 1� d.f. for error in the experiment as a whole.

The component of the variation that is explained by differences between the treatment
means, the treatment sum of squares, is traditionally denoted by SSA. This is because in
two-way analysis of variance, with two different categorical explanatory variables, SSB is
used to denote the sum of squares attributable to differences between the means of the
second factor, SSC to denote the sum of squares attributable to differences between the
means of the third factor, and so on.

Typically, we compute all but one of the components of the total variance, then find
the value of the last component by subtraction of the others from SSY. We already have a
formula for SSE, so we could obtain SSA by difference: SSA = SSY − SSE. Box 11.1 looks
at the formula for SSA in more detail.

Box 11.1 Corrected sums of squares in one-way ANOVA

The definition of the total sum of squares, SSY, is the sum of the squares of the
differences between the data points, yij , and the overall mean, ¯̄y:

SSY =
k∑

i=1

n∑
j=1

�yij − ¯̄y�2�

where
∑n

j=1 yij means the sum over the n replicates within each of the k factor levels.
The error sum of squares, SSE, is the sum of the squares of the differences between
the data points, yij , and their individual treatment means, ȳi:

SSE =
k∑

i=1

n∑
j=1

�yij − ȳi�
2�

The treatment sum of squares, SSA, is the sum of the squares of the differences between
the individual treatment means, ȳi, and the overall mean, ¯̄y:

SSA =
k∑

i=1

n∑
j=1

�ȳi − ¯̄y�2 = n
k∑

i=1

�ȳi − ¯̄y�2�

Squaring the bracketed term and applying summation gives

∑
ȳ2

i − 2 ¯̄y∑ ȳi + k¯̄y2
�

Let the grand total of all the values of the response variable
∑k

i=1

∑n
j=1 yij be shown as∑

y. Now replace ȳi by Ti/n (where T is our conventional name for the k individual
treatment totals) and replace ¯̄y by

∑
y/kn to get

∑k
i=1 T 2

i

n2
− 2

∑
y
∑k

i=1 Ti

nkn
+ k

∑
y
∑

y

knkn
�

ANALYSIS OF VARIANCE 453

Note that
∑k

i=1 Ti =
∑k

i=1

∑n
j=1 yij , so the right-hand positive and negative terms both

have the form �
∑

y�2/kn2. Finally, multiplying through by n gives

SSA =
∑

T 2

n
− �

∑
y�2

kn
�

As an exercise, you should prove that SSY = SSA + SSE.

Let’s work through the numbers in R. From the formula for SSY, we can obtain the total
sum of squares by finding the differences between the data and the overall mean:

sum((y-mean(y))^2)

[1] 414.7

The unexplained variation, SSE, is calculated from the differences between the yields and
the mean yields for that soil type:

sand-mean(sand)

[1] -3.9 0.1 -1.9 -3.9 4.1 7.1 -0.9 1.1 -2.9 1.1

clay-mean(clay)

[1] 5.5 3.5 -8.5 -0.5 2.5 0.5 0.5 -3.5 -1.5 1.5

loam-mean(loam)

[1] -1.3 1.7 -5.3 -2.3 0.7 1.7 2.7 -1.3 3.7 -0.3

We need the sums of the squares of these differences:

sum((sand-mean(sand))^2)

[1] 112.9

sum((clay-mean(clay))^2)

[1] 138.5

sum((loam-mean(loam))^2)

[1] 64.1

To get the sum of these totals across all soil types, we can use sapply like this:

sum(sapply(list(sand,clay,loam),function (x) sum((x-mean(x))^2)))

[1] 315.5

So SSE, the unexplained (or residual, or error) sum of squares, is 315.5.
The extent to which SSE is less than SSY is a reflection of the magnitude of the differences

between the means. The greater the difference between the mean yields on the different
soil types, the greater will be the difference between SSE and SSY. This is the basis of
analysis of variance. We can make inferences about differences between means by looking
at differences between variances (or between sums or squares, to be more precise at this
stage).

454 THE R BOOK

At top left we have an ‘index plot’ of the yields with different symbols for the different soil
types: square = sand, diamond = clay, triangle = loam. At top right is a picture of the total
sum of squares: SSY is the sum of the squares of the lengths of the lines joining each data
point to the overall mean, ¯̄y. At bottom left is a picture of the error sum of squares: SSE is
the sum of the squares of the lengths of the lines joining each data point to its particular
treatment mean, ȳi. The extent to which the lines are shorter in SSE than in SSY is a measure
of the significance of the difference between the mean yields on the different soils. In the
extreme case in which there was no variation between the replicates, then SSY is large, but
SSE is zero:

This picture was created with the following code, where the x values, xvc, are

xvc<-1:15

and the y values, yvs, are

yvs<-rep(c(10,12,14),each=5)

To produce the two plots side by side, we write:

par(mfrow=c(1,2))
plot(xvc,yvs,ylim=c(5,16),pch=(15+(xvc>5)+(xvc>10)))
for (i in 1:15) lines(c(i,i),c(yvs[i],mean(yvs)))

ANALYSIS OF VARIANCE 455

yv
s

6
8

10
12

14
16

yv
s

SSY SSE
6

8
10

12
14

16

xvc
2 4 6 8 10 14

xvc
2 4 6 8 10 14

abline(h=mean(yvs))
text(3,15,"SSY")
plot(xvc,yvs, ylim=c(5,16),pch=(15+(xvc(>)5)+(xvc(>)10)))
lines(c(1,5),c(10,10))
lines(c(6,10),c(12,12))
lines(c(11,15),c(14,14))
text(3,15,"SSE")

The difference between SSY and SSE is called the treatment sum of squares, SSA: this is
the amount of the variation in yield that is explained by differences between the treatment
means. In our example,

SSA = SSY − SSE = 414�7 − 315�5 = 99�2�

Now we can draw up the ANOVA table. There are six columns indicating, from left to
right, the source of variation, the sum of squares attributable to that source, the degrees of
freedom for that source, the variance for that source (traditionally called the mean square
rather than the variance), the F ratio (testing the null hypothesis that this source of variation
is not significantly different from zero) and the p value associated with that F value (if
p < 0�05 then we reject the null hypothesis). We can fill in the sums of squares just
calculated, then think about the degrees of freedom:

There are 30 data points in all, so the total degrees of freedom are 30 − 1 = 29. We lose
1 d.f. because in calculating SSY we had to estimate one parameter from the data in advance,

456 THE R BOOK

Source Sum of
squares

Degrees of
freedom

Mean square F ratio p value

Soil type 99�2 2 49.6 4.24 0.025
Error 315�5 27 s2 =11.685
Total 414�7 29

namely the overall mean, ¯̄y. Each soil type has n = 10 replications, so each soil type has
10 − 1 = 9 d.f. for error, because we estimated one parameter from the data for each soil
type, namely the treatment means ȳi in calculating SSE. Overall, therefore, the error has
3 × 9 = 27 d.f. There were 3 soil types, so there are 3 − 1 = 2 d.f. for soil type.

The mean squares are obtained simply by dividing each sum of squares by its respective
degrees of freedom (in the same row). The error variance, s2, is the residual mean square
(the mean square for the unexplained variation); this is sometimes called the ‘pooled error
variance’ because it is calculated across all the treatments; the alternative would be to have
three separate variances, one for each treatment:

sapply(list(sand,clay,loam),var)

[1] 12.544444 15.388889 7.122222

You will see that the pooled error variance s2 = 11�685 is simply the mean of the three
separate variances, because there is equal replication in each soil type �n = 10�:

mean(sapply(list(sand,clay,loam),var))

[1] 11.68519

By tradition, we do not calculate the total mean square, so the bottom cell of the fourth
column of the ANOVA table is empty. The F ratio is the treatment variance divided by
the error variance, testing the null hypothesis that the treatment means are all the same.
If we reject this null hypothesis, we accept the alternative hypothesis that at least one of
the means is significantly different from the others. The question naturally arises at this
point as to whether 4.24 is a big number or not. If it is a big number then we reject the
null hypothesis. If it is not a big number, then we accept the null hypothesis. As ever, we
decide whether the test statistic F = 4�24 is big or small by comparing it with the critical
value of F , given that there are 2 d.f. in the numerator and 27 d.f. in the denominator.
Critical values in R are found from the function qf which gives us quantiles of the F
distribution:

qf(.95,2,27)

[1] 3.354131

Our calculated test statistic of 4.24 is larger than the critical value of 3.35, so we reject
the null hypothesis. At least one of the soils has a mean yield that is significantly different
from the others. The modern approach is not to work slavishly at the 5% level but rather to
calculate the p-value associated with our test statistic of 4.24. Instead of using the function
for quantiles of the F distribution, we use the function pf for cumulative probabilities of
the F distribution like this:

ANALYSIS OF VARIANCE 457

1-pf(4.24,2,27)

[1] 0.02503987

The p-value is 0.025, which means that a value of F =4�24 or bigger would arise by chance
alone when the null hypothesis was true about 25 times in 1000. This is a sufficiently small
probability (i.e. it is less than 5%) for us to conclude that there is a significant difference
between the mean yields (i.e. we reject the null hypothesis).

That was a lot of work. R can do the whole thing in a single line:

summary(aov(y~soil))

Df Sum Sq Mean Sq F value Pr(>F)
soil 2 99.200 49.600 4.2447 0.02495 *

Residuals 27 315.500 11.685

Here you see all the values that we calculated long-hand. The error row is labelled
Residuals. In the second and subsequent columns you see the degrees of freedom for
treatment and error (2 and 27), the treatment and error sums of squares (99.2 and 315.5), the
treatment mean square of 49.6, the error variance s2 = 11�685, the F ratio and the p-value
(labelled Pr�>F�). The single asterisk next to the p value indicates that the difference

R
es

id
ua

ls

S
ta

nd
ar

di
ze

d
re

si
du

al
s

–1
0

–5
0

5

2
1

0
–1

–2

–2 –1 0 1 2

Residuals vs Fitted

6

11

13
13

66

6

11

11

13

13

11

Fitted values Theoretical Quantiles

Constant Leverage:
Residuals vs Factor LevelsScale-Location

Fitted values

0.
0

0.
5

1.
0

1.
5

Factor Level Combinations
1

soil:

S
ta

nd
ar

di
ze

d
re

si
du

al
s

–3
–2

–1
0

1
2

2 3

Normal Q–Q

10 11 12 13 14

10 11 12 13 14

√S
ta

nd
ar

di
ze

d
re

si
du

al
s

458 THE R BOOK

between the soil means is significant at 5% (but not at 1%, which would have merited two
asterisks). Notice that R does not print the bottom row of the ANOVA table showing the
total sum of squares and total degrees of freedom.

The next thing we would do is to check the assumptions of the aov model. This is done
using plot like this (see Chapter 10):

plot(aov(y~soil))

The first plot (top left) checks the most important assumption of constancy of variance;
there should be no pattern in the residuals against the fitted values (the three treatment
means) – and, indeed, there is none. The second plot (top right) tests the assumption of
normality of errors: there should be a straight-line relationship between our standardized
residuals and theoretical quantiles derived from a normal distribution. Points 6, 11 and 13
lie a little off the straight line, but this is nothing to worry about (see p. 339). The residuals
are well behaved (bottom left) and there are no highly influential values that might be
distorting the parameter estimates (bottom right).

Effect sizes

The best way to view the effect sizes graphically is to use plot.design (which takes a
formula rather than a model object):

plot.design(y~soil)

For more complicated models, you might want to use the effects library to get more
attractive plots (p. 178). To see the effect sizes in tabular form use model.tables (which
takes a model object as its argument) like this:

model<-aov(y~soil);model.tables(model,se=T)

ANALYSIS OF VARIANCE 459

Tables of effects

soil
soil

1 2 3
-2.0 -0.4 2.4

Standard errors of effects
soil

1.081
replic. 10

The effects are shown as departures from the overall mean: soil 1 (sand) has a mean yield
that is 2.0 below the overall mean, and soil 3 (loam) has a mean that is 2.4 above the
overall mean. The standard error of effects is 1.081 on a replication of n = 10 (this is the
standard error of a mean). You should note that this is not the appropriate standard error
for comparing two means (see below). If you specify "means" you get:

model.tables(model,"means",se=T)

Tables of means
Grand mean

11.9

soil
soil

1 2 3
9.9 11.5 14.3

Standard errors for differences of means
soil

1.529
replic. 10

Now the three means are printed (rather than the effects) and the standard error of the difference
of means is given (this is what you need for doing a t test to compare any two means).

Another way of looking at effect sizes is to use the summary.lm option for viewing the
model, rather than summary.aov (as we used above):

summary.lm(aov(y~soil))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.900 1.081 9.158 9.04e-10 ***

soil2 1.600 1.529 1.047 0.30456
soil3 4.400 1.529 2.878 0.00773 **

Residual standard error: 3.418 on 27 degrees of freedom
Multiple R-Squared: 0.2392, Adjusted R-squared: 0.1829
F-statistic: 4.245 on 2 and 27 DF, p-value: 0.02495

In regression analysis (p. 399) the summary.lm output was easy to understand because it
gave us the intercept and the slope (the two parameters estimated by the model) and their
standard errors. But this table has three rows. Why is that? What is an intercept in the

460 THE R BOOK

context of analysis of variance? And why are the standard errors different for the intercept
and for soil 2 and soil 3? Come to that, what are soil 2 and soil 3?

It will take a while before you feel at ease with summary.lm tables for analysis of
variance. The details are explained on p. 365, but the central point is that all summary.lm
tables have as many rows as there are parameters estimated from the data. There are three
rows in this case because our aov model estimates three parameters; a mean yield for each
of the three soil types. In the context of aov, an intercept is a mean value; in this case it is
the mean yield for sand because we gave that factor level 1 when we computed the vales for
the factor called soil, earlier. In general, the intercept would be the factor level whose name
came lowest in alphabetical order (see p. 366). So if Intercept is the mean yield for sand,
what are the other two rows labelled soil2 and soil3. This is the hardest thing to understand.
All other rows in the summary.lm table for aov are differences between means. Thus row
2, labelled soil2, is the difference between the mean yields on sand and clay, and row 3,
labelled soil3, is the difference between the mean yields of sand and loam:

tapply(y,soil,mean)-mean(sand)

1 2 3
0.0 1.6 4.4

The first row (Intercept) is a mean, so the standard error column in row 1 contains the
standard error of a mean. Rows 2 and 3 are differences between means, so their standard
error columns contain the standard error of the difference between two means (and this is
a bigger number; see p. 367). The standard error of a mean is

semean =
√

s2

n
=
√

11�685
10

= 1�081�

whereas the standard error of the difference between two means is

sediff =
√

2
s2

n
=
√

2 × 11�685
10

= 1�529�

The summary.lm table shows that soil 3 produces significantly bigger yields than soil
1 (the intercept) with a p-value of 0.007 73. The difference between the two means was
4.400 and the standard error of the difference was 1.529. This difference is of two-star
significance, meaning 0�001 < p < 0�01. In contrast, soil 2 does not produce a significantly
greater yield than soil 1; the difference is 1.600 and the standard error of the difference was
1.529 �p = 0�304 56�. The only remaining issue is whether soil 2 yielded significantly less
than soil 3. We need to do some mental arithmetic to work this out: the difference between
these two means was 4�4 − 1�6 = 2�8 and so the t value is 2�8/1�529 = 1�83. This is less
than 2 (the rule of thumb for t) so the mean yields of soils 2 and 3 are not significantly
different. To find the precise value with 10 replicates, the critical value of t is given by the
function qt with 18 d.f.:

qt(0.975,18)

[1] 2.100922

Alternatively we can work out the p value associated with our calculated t = 1�83:

2*(1 - pt(1.83, df = 18))

[1] 0.0838617

ANALYSIS OF VARIANCE 461

giving p = 0�084. We multiply by 2 because this is a two-tailed test (see p. 208); we did
not know in advance that loam would out-yield clay under the particular circumstances of
this experiment.

The residual standard error in the summary.lm output is the square root of the error
variance from the ANOVA table:

√
11�685 = 3�418. R-Squared and Adjusted R-Squared

are explained on p. 399. The F -statistic and the p-value come from the last two columns of
the ANOVA table.

So there it is. That is how analysis of variance works. When the means are significantly
different, then the sum of squares computed from the individual treatment means will be
significantly smaller than the sum of squares computed from the overall mean. We judge the
significance of the difference between the two sums of squares using analysis of variance.

Plots for interpreting one-way ANOVA

There are two traditional ways of plotting the results of ANOVA:

• box-and-whisker plots;

• barplots with error bars.

Here is an example to compare the two approaches. We have an experiment on plant competi-
tion with one factor and five levels. The factor is called clipping and the five levels consist of
control (i.e. unclipped), two intensities of shoot pruning and two intensities of root pruning:

comp<-read.table("c:\\temp\\competition.txt",header=T);attach(comp);names(comp)

[1] "biomass" "clipping"

plot(clipping,biomass,xlab="Competition treatment",ylab="Biomass")

45
0

50
0

55
0

60
0

65
0

70
0

B
io

m
as

s

Competition treatment
control n25 n50 r10 r5

The box-and-whisker plot is good at showing the nature of the variation within each
treatment, and also whether there is skew within each treatment (e.g. for the control plots,

462 THE R BOOK

there is a wider range of values between the median and third quartile than between the
median and first quartile). No outliers are shown above the whiskers, so the tops and
bottoms of the bars are the maxima and minima within each treatment. The medians for the
competition treatments are all higher than the third quartile of the controls, suggesting that
they may be significantly different from the controls, but there is little to suggest that any
of the competition treatments are significantly different from one another (see below for the
analysis). We could use the notch=T option to get a visual impression of the significance
of differences between the means; all the treatment medians fall outside the notch of the
controls, but no other comparisons appear to be significant.

Barplots with error bars are preferred by many journal editors, and some people think
that they make hypothesis testing easier. We shall see. Unlike S-PLUS, R does not have a
built-in function called error.bar so we shall have to write our own. Here is a very simple
version without any bells or whistles. We shall call it error.bars to distinguish it from the
much more general S-PLUS function.

error.bars<-function(yv,z,nn) {
xv<-
barplot(yv,ylim=c(0,(max(yv)+max(z))),names=nn,ylab=deparse(substitute(yv)
))
g=(max(xv)-min(xv))/50
for (i in 1:length(xv)) {
lines(c(xv[i],xv[i]),c(yv[i]+z[i],yv[i]-z[i]))
lines(c(xv[i]-g,xv[i]+g),c(yv[i]+z[i], yv[i]+z[i]))
lines(c(xv[i]-g,xv[i]+g),c(yv[i]-z[i], yv[i]-z[i]))
}}

To use this function we need to decide what kind of values �z� to use for the lengths of
the bars. Let’s use the standard error of a mean based on the pooled error variance from the
ANOVA, then return to a discussion of the pros and cons of different kinds of error bars
later. Here is the one-way analysis of variance:

model<-aov(biomass~clipping)
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
clipping 4 85356 21339 4.3015 0.008752 **

Residuals 25 124020 4961

From the ANOVA table we learn that the pooled error variance s2 = 4961�0. Now we need
to know how many numbers were used in the calculation of each of the five means:

table(clipping)

clipping
control n25 n50 r10 r5

6 6 6 6 6

There was equal replication (which makes life easier), and each mean was based on six
replicates, so the standard error of a mean is

√
s2/n =√

4961/6 = 28�75. We shall draw an
error bar up 28.75 from each mean and down by the same distance, so we need 5 values
for z, one for each bar, each of 28.75:

se<-rep(28.75,5)

ANALYSIS OF VARIANCE 463

We need to provide labels for the five different bars: the factor levels should be good for this:

labels<-as.character(levels(clipping))

Now we work out the five mean values which will be the heights of the bars, and save them
as a vector called ybar:

ybar<-as.vector(tapply(biomass,clipping,mean))

Finally, we can create the barplot with error bars (the function is defined on p. 462):

error.bars(ybar,se,labels)

yb
ar

control n25 n50 r10 r5

0
10

0
20

0
30

0
40

0
50

0
60

0

We do not get the same feel for the distribution of the values within each treatment as was
obtained by the box-and-whisker plot, but we can certainly see clearly which means are not
significantly different. If, as here, we use ±1 standard error as the length of the error bars,
then when the bars overlap this implies that the two means are not significantly different.
Remember the rule of thumb for t: significance requires 2 or more standard errors, and
if the bars overlap it means that the difference between the means is less than 2 standard
errors. There is another issue, too. For comparing means, we should use the standard error
of the difference between two means (not the standard error of one mean) in our tests (see
p. 294); these bars would be about 1.4 times as long as the bars we have drawn here. So
while we can be sure that the two root-pruning treatments are not significantly different
from one another, and that the two shoot-pruning treatments are not significantly different
from one another (because their bars overlap), we cannot conclude from this plot that the
controls have significantly lower biomass than the rest (because the error bars are not the
correct length for testing differences between means).

464 THE R BOOK

An alternative graphical method is to use 95% confidence intervals for the lengths of
the bars, rather than standard errors of means. This is easy to do: we multiply our standard
errors by Student’s t, qt(.975,5) = 2.570 582, to get the lengths of the confidence intervals:

control n25 n50 r10 r5

yb
ar

0
10

0
20

0
30

0
40

0
50

0
60

0

Now, all of the error bars overlap, implying visually that there are no significant differ-
ences between the means. But we know that this is not true from our analysis of variance,
in which we rejected the null hypothesis that all the means were the same at p = 0�008 75.
If it were the case that the bars did not overlap when we are using confidence intervals (as
here), then that would imply that the means differed by more than 4 standard errors, and this
is a much greater difference than is required to conclude that the means are significantly
different. So this is not perfect either. With standard errors we could be sure that the means
were not significantly different when the bars did overlap. And with confidence intervals
we can be sure that the means are significantly different when the bars do not overlap. But
the alternative cases are not clear-cut for either type of bar. Can we somehow get the best
of both worlds, so that the means are significantly different when the bars do not overlap,
and the means are not significantly different when the bars do overlap?

The answer is yes, we can, if we use least significant difference (LSD) bars. Let’s revisit
the formula for Student’s t test:

t = a difference
standard error of the difference

We say that the difference is significant when t>2 (by the rule of thumb, or t>qt(0.975,df)
if we want to be more precise). We can rearrange this formula to find the smallest difference
that we would regard as being significant. We can call this the least significant difference:

LSD = qt(0.975,df) × standard error of a difference ≈ 2 × sediff �

ANALYSIS OF VARIANCE 465

In our present example this is

qt(0.975,10)*sqrt(2*4961/6)

[1] 90.60794

because a difference is based on 12 − 2 = 10 degrees of freedom. What we are saying is the
two means would be significantly different if they differed by 90.61 or more. How can we
show this graphically? We want overlapping bars to indicate a difference less than 90.61,
and non-overlapping bars to represent a difference greater than 90.61. With a bit of thought
you will realize that we need to draw bars that are LSD/2 in length, up and down from each
mean. Let’s try it with our current example:

lsd<-qt(0.975,10)*sqrt(2*4961/6)
lsdbars<-rep(lsd,5)/2
error.bars(ybar,lsdbars,labels)

control n25 n50 r10 r5

yb
ar

0
10

0
20

0
30

0
40

0
50

0
60

0

Now we can interpret the significant differences visually. The control biomass is signifi-
cantly lower than any of the four treatments, but none of the four treatments is significantly
different from any other. The statistical analysis of this contrast is explained in detail in
Chapter 9. Sadly, most journal editors insist on error bars of 1 standard error. It is true
that there are complicating issues to do with LSD bars (not least the vexed question of
multiple comparisons; see p. 483), but at least they do what was intended by the error
plot (i.e. overlapping bars means non-significance and non-overlapping bars means sig-
nificance); neither standard errors nor confidence intervals can say that. A better option
might be to use box-and-whisker plots with the notch=T option to indicate significance
(see p. 159).

466 THE R BOOK

Factorial Experiments

A factorial experiment has two or more factors, each with two or more levels, plus repli-
cation for each combination of factors levels. This means that we can investigate statistical
interactions, in which the response to one factor depends on the level of another factor.
Our example comes from a farm-scale trial of animal diets. There are two factors: diet
and supplement. Diet is a factor with three levels: barley, oats and wheat. Supplement is a
factor with four levels: agrimore, control, supergain and supersupp. The response variable
is weight gain after 6 weeks.

weights<-read.table("c:\\temp\\growth.txt",header=T)
attach(weights)

Data inspection is carried out using barplot (note the use of beside=T to get the bars in
adjacent clusters rather than vertical stacks):

barplot(tapply(gain,list(diet,supplement),mean),
beside=T,ylim=c(0,30),col=rainbow(3))

0
5

10
15

20
25

30

Barley
Oats
Wheat

agrimore control supergain supersupp

Note that the second factor in the list (supplement) appears as groups of bars from left to
right in alphabetical order by factor level, from agrimore to supersupp. The second factor
(diet) appears as three levels within each group of bars: red = barley, green = oats, blue =
wheat, again in alphabetical order by factor level. We should really add a key to explain
the levels of diet. Use locator(1) to find the coordinates for the top left corner of the box
around the legend. You need to increase the default scale on the y axis to make enough
room for the legend box.

ANALYSIS OF VARIANCE 467

labs<-c("Barley","Oats","Wheat")
legend(locator(1),labs,fill=rainbow(3))

We inspect the mean values using tapply as usual:

tapply(gain,list(diet,supplement),mean)

agrimore control supergain supersupp
barley 26.34848 23.29665 22.46612 25.57530
oats 23.29838 20.49366 19.66300 21.86023
wheat 19.63907 17.40552 17.01243 19.66834

Now we use aov or lm to fit a factorial analysis of variance (the choice affects whether
we get an ANOVA table or a list of parameters estimates as the default output from
summary). We estimate parameters for the main effects of each level of diet and each
level of supplement, plus terms for the interaction between diet and supplement. Interaction
degrees of freedom are the product of the degrees of freedom of the component terms (i.e.
�3 − 1� × �4 − 1� = 6). The model is gain~diet + supplement + diet:supplement, but
this can be simplified using the asterisk notation like this:

model<-aov(gain~diet*supplement)
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
diet 2 287.171 143.586 83.5201 2.998e-14 ***
supplement 3 91.881 30.627 17.8150 2.952e-07 **
diet:supplement 6 3.406 0.568 0.3302 0.9166
Residuals 36 61.890 1.719

The ANOVA table shows that there is no hint of any interaction between the two
explanatory variables �p=0�9166�; evidently the effects of diet and supplement are additive.
The disadvantage of the ANOVA table is that it does not show us the effect sizes, and
does not allow us to work out how many levels of each of the two factors are significantly
different. As a preliminary to model simplification, summary.lm is often more useful than
summary.aov:
summary.lm(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.3485 0.6556 40.191 < 2e-16 ***
dietoats –3.0501 0.9271 –3.290 0.002248 **
dietwheat –6.7094 0.9271 –7.237 1.61e-08 ***
supplementcontrol –3.0518 0.9271 –3.292 0.002237 **
supplementsupergain –3.8824 0.9271 –4.187 0.000174 ***
supplementsupersupp –0.7732 0.9271 –0.834 0.409816
dietoats:supplementcontrol 0.2471 1.3112 0.188 0.851571
dietwheat:supplementcontrol 0.8183 1.3112 0.624 0.536512
dietoats:supplementsupergain 0.2470 1.3112 0.188 0.851652
dietwheat:supplementsupergain 1.2557 1.3112 0.958 0.344601
dietoats:supplementsupersupp –0.6650 1.3112 –0.507 0.615135
dietwheat:supplementsupersupp 0.8024 1.3112 0.612 0.544381

Residual standard error: 1.311 on 36 degrees of freedom
Multiple R-Squared: 0.8607, Adjusted R-squared: 0.8182
F-statistic: 20.22 on 11 and 36 DF, p-value: 3.295e-012

468 THE R BOOK

This is a rather complex model, because there are 12 estimated parameters (the number
of rows in the table): six main effects and six interactions. The output re-emphasizes that
none of the interaction terms is significant, but it suggests that the minimal adequate model
will require five parameters: an intercept, a difference due to oats, a difference due to
wheat, a difference due to control and difference due to supergain (these are the five rows
with significance stars). This draws attention to the main shortcoming of using treatment
contrasts as the default. If you look carefully at the table, you will see that the effect sizes
of two of the supplements, control and supergain, are not significantly different from one
another. You need lots of practice at doing t tests in your head, to be able to do this quickly.
Ignoring the signs (because the signs are negative for both of them), we have 3.05 vs. 3.88,
a difference of 0.83. But look at the associated standard errors (both 0.927); the difference
is less than 1 standard error of a difference between two means. For significance, we would
need roughly 2 standard errors (remember the rule of thumb, in which t ≥ 2 is significant;
see p. 228). The rows get starred in the significance column because treatments contrasts
compare all the main effects in the rows with the intercept (where each factor is set to its
first level in the alphabet, namely agrimore and barley in this case). When, as here, several
factor levels are different from the intercept, but not different from one another, they all get
significance stars. This means that you cannot count up the number of rows with stars in
order to determine the number of significantly different factor levels.

We first simplify the model by leaving out the interaction terms:

model<-aov(gain~diet+supplement)
summary.lm(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.1230 0.4408 59.258 < 2e-16 ***

dietoats –3.0928 0.4408 –7.016 1.38e-08 ***

dietwheat –5.9903 0.4408 –13.589 < 2e-16 ***

supplementcontrol –2.6967 0.5090 –5.298 4.03e-06 ***

supplementsupergain –3.3815 0.5090 –6.643 4.72e-08 ***

supplementsupersupp –0.7274 0.5090 –1.429 0.160

It is clear that we need to retain all three levels of diet (oats differ from wheat by 5�99 −
3�09 = 2�90 with a standard error of 0.44). It is not clear that we need four levels of
supplement, however. Supersupp is not obviously different from agrimore (0.727 with
standard error 0.509). Nor is supergain obviously different from the unsupplemented control
animals �3�38 − 2�70 = 0�68�. We shall try a new two-level factor to replace the four-level
supplement, and see if this significantly reduces the model’s explanatory power. Agrimore
and supersupp are recoded as best and control and supergain as worst:

supp2<-factor(supplement)
levels(supp2)

[1] "agrimore" "control" "supergain" "supersupp"

levels(supp2)[c(1,4)]<-"best"
levels(supp2)[c(2,3)]<-"worst"
levels(supp2)

[1] "best" "worst"

Now we can compare the two models:

ANALYSIS OF VARIANCE 469

model2<-aov(gain~diet+supp2)
anova(model,model2)

Analysis of Variance Table

Model 1: gain ~ diet + supplement
Model 2: gain ~ diet + supp2

Res.Df RSS Df Sum of Sq F Pr((>)F)
1 42 65.296
2 44 71.284 –2 –5.988 1.9257 0.1584

The simpler model2 has saved two degrees of freedom and is not significantly worse than the
more complex model �p=0�158�. This is the minimal adequate model: all of the parameters
are significantly different from zero and from one another:

summary.lm(model2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.7593 0.3674 70.106 < 2e-16 ***

dietoats –3.0928 0.4500 –6.873 1.76e-08 ***

dietwheat –5.9903 0.4500 –13.311 < 2e-16 ***

supp2worst –2.6754 0.3674 –7.281 4.43e-09 ***

Residual standard error: 1.273 on 44 degrees of freedom
Multiple R-Squared: 0.8396, Adjusted R-squared: 0.8286
F-statistic: 76.76 on 3 and 44 DF, p-value: 0

Model simplification has reduced our initial 12-parameter model to a four-parameter model.

Pseudoreplication: Nested Designs and Split Plots

The model-fitting functions aov and lmer have the facility to deal with complicated error
structures, and it is important that you can recognize them, and hence avoid the pitfalls of
pseudoreplication. There are two general cases:

• nested sampling, as when repeated measurements are taken from the same individual,
or observational studies are conduced at several different spatial scales (mostly random
effects);

• split-plot analysis, as when designed experiments have different treatments applied to
plots of different sizes (mostly fixed effects).

Split-plot experiments

In a split-plot experiment, different treatments are applied to plots of different sizes. Each
different plot size is associated with its own error variance, so instead of having one error
variance (as in all the ANOVA tables up to this point), we have as many error terms as there
are different plot sizes. The analysis is presented as a series of component ANOVA tables,
one for each plot size, in a hierarchy from the largest plot size with the lowest replication
at the top, down to the smallest plot size with the greatest replication at the bottom.

470 THE R BOOK

The following example refers to a designed field experiment on crop yield with three
treatments: irrigation (with two levels, irrigated or not), sowing density (with three levels,
low, medium and high), and fertilizer application (with three levels, low, medium and high).

yields<-read.table("c:\\temp\\splityield.txt",header=T)
attach(yields)
names(yields)

[1] "yield" "block" "irrigation" "density" "fertilizer"

The largest plots were the four whole fields (block), each of which was split in half, and
irrigation was allocated at random to one half of the field. Each irrigation plot was split into
three, and one of three different seed-sowing densities (low, medium or high) was allocated
at random (independently for each level of irrigation and each block). Finally, each density
plot was divided into three, and one of three fertilizer nutrient treatments (N, P, or N and P
together) was allocated at random. The model formula is specified as a factorial, using the
asterisk notation. The error structure is defined in the Error term, with the plot sizes listed
from left to right, from largest to smallest, with each variable separated by the slash opera-
tor /. Note that the smallest plot size, fertilizer, does not need to appear in the Error term:

model<-aov(yield~irrigation*density*fertilizer+Error(block/irrigation/density))
summary(model)

Error: block
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 3 194.444 64.815

Error: block:irrigation

Df Sum Sq Mean Sq F value Pr(>F)
irrigation 1 8277.6 8277.6 17.590 0.02473 *
Residuals 3 1411.8 470.6

Error: block:irrigation:density

Df Sum Sq Mean Sq F value Pr(>F)
density 2 1758.36 879.18 3.7842 0.05318 .
irrigation:density 2 2747.03 1373.51 5.9119 0.01633 *
Residuals 12 2787.94 232.33

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

fertilizer 2 1977.44 988.72 11.4493 0.0001418 ***

irrigation:fertilizer 2 953.44 476.72 5.5204 0.0081078 **

density:fertilizer 4 304.89 76.22 0.8826 0.4840526
irrigation:density:fertilizer 4 234.72 58.68 0.6795 0.6106672
Residuals 36 3108.83 86.36

Here you see the four ANOVA tables, one for each plot size: blocks are the biggest plots, half
blocks get the irrigation treatment, one third of each half block gets a sowing density treatment,
and one third of a sowing density treatment gets each fertilizer treatment. Note that the non-
significant main effect for density �p = 0�053� does not mean that density is unimportant,
because density appears in a significant interaction with irrigation (the density terms cancel
out, when averaged over the two irrigation treatments; see below). The best way to understand
the two significant interaction terms is to plot them using interaction.plot like this:

interaction.plot(fertilizer,irrigation,yield)

ANALYSIS OF VARIANCE 471

m
ea

n
of

 y
ie

ld

90
95

10
0

10
5

11
0

11
5

12
0

fertilizer

irrigated

irrigation

control

N NP P

90
10

0
11

0
12

0

density

m
ea

n
of

 y
ie

ld

high low medium

irrigated

irrigation

control

Irrigation increases yield proportionately more on the N-fertilized plots than on the
P-fertilized plots. The irrigation–density interaction is more complicated:

interaction.plot(density,irrigation,yield)

472 THE R BOOK

On the irrigated plots, yield is minimal on the low-density plots, but on control plots yield is
minimal on the high-density plots. Alternatively, you could use the effects package which
takes a model object (a linear model or a generalized linear model) and provides attractive
trellis plots of specified interaction effects (p. 178).

Missing values in a split-plot design

When there are missing values, then factors have effects in more than one stratum and the
same main effect turns up in more than one ANOVA table. Suppose that the 69th yield
value was missing:

yield[69]<-NA

Now the summary table looks very different:

model<-aov(yield~irrigation*density*fertilizer+Error(block/irrigation/density))
summary(model)

Error: block
Df Sum Sq Mean Sq F value Pr(>F)

irrigation 1 0.075 0.075 9e-04 0.9788
Residuals 2 167.704 83.852

Error: block:irrigation
Df Sum Sq Mean Sq F value Pr(>F)

irrigation 1 7829.9 7829.9 21.9075 0.04274 *

density 1 564.4 564.4 1.5792 0.33576
Residuals 2 714.8 357.4

Error: block:irrigation:density
Df Sum Sq Mean Sq F value Pr(>F)

density 2 1696.47 848.24 3.4044 0.07066 .
fertilizer 1 0.01 0.01 2.774e-05 0.99589
irrigation:density 2 2786.75 1393.37 5.5924 0.02110 *

Residuals 11 2740.72 249.16

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

fertilizer 2 1959.36 979.68 11.1171 0.0001829 ***

irrigation:fertilizer 2 993.59 496.79 5.6375 0.0075447 **

density:fertilizer 4 273.56 68.39 0.7761 0.5482571
irrigation:density:fertilizer 4 244.49 61.12 0.6936 0.6014280
Residuals 35 3084.33 88.12

Notice that with just one missing value, each main effect appears in two tables (not one,
as above). It is recommended that when there are missing values in a split-plot experiment
you use lmer or lme instead of aov to fit the model.

Random effects and nested designs

Mixed-effects models are so called because the explanatory variables are a mixture of fixed
effects and random effects:

• fixed effects influence only the mean of y;

• random effects influence only the variance of y.

ANALYSIS OF VARIANCE 473

A random effect should be thought of as coming from a population of effects: the existence
of this population is an extra assumption. We speak of prediction of random effects, rather
than estimation: we estimate fixed effects from data, but we intend to make predictions about
the population from which our random effects were sampled. Fixed effects are unknown
constants to be estimated from the data. Random effects govern the variance – covariance
structure of the response variable. The fixed effects are often experimental treatments that
were applied under our direction, and the random effects are either categorical or continuous
variables that are distinguished by the fact that we are typically not interested in the
parameter values, but only in the variance they explain.

One of more of the explanatory variables represents grouping in time or in space. Random
effects that come from the same group will be correlated, and this contravenes one of the
fundamental assumptions of standard statistical models: independence of errors. Mixed-
effects models take care of this non-independence of errors by modelling the covariance
structure introduced by the grouping of the data. A major benefit of random-effects models
is that they economize on the number of degrees of freedom used up by the factor levels.
Instead of estimating a mean for every single factor level, the random-effects model estimates
the distribution of the means (usually as the standard deviation of the differences of the
factor-level means around an overall mean). Mixed-effects models are particularly useful
in cases where there is temporal pseudoreplication (repeated measurements) and/or spatial
pseudoreplication (e.g. nested designs or split-plot experiments). These models can allow for

• spatial autocorrelation between neighbours;

• temporal autocorrelation across repeated measures on the same individuals;

• differences in the mean response between blocks in a field experiment;

• differences between subjects in a medical trial involving repeated measures.

The point is that we really do not want to waste precious degrees of freedom in estimating
parameters for each of the separate levels of the categorical random variables. On the other
hand, we do want to make use of the all measurements we have taken, but because of the
pseudoreplication we want to take account of both the

• correlation structure, used to model within-group correlation associated with temporal
and spatial dependencies, using correlation, and

• variance function, used to model non-constant variance in the within-group errors using
weights.

Fixed or random effects?

It is difficult without lots of experience to know when to use categorical explanatory
variables as fixed effects and when as random effects. Some guidelines are given below.

• Am I interested in the effect sizes? Yes means fixed effects.

• Is it reasonable to suppose that the factor levels come from a population of levels? Yes
means random effects.

• Are there enough levels of the factor in the dataframe on which to base an estimate of
the variance of the population of effects? No means fixed effects.

474 THE R BOOK

• Are the factor levels informative? Yes means fixed effects.

• Are the factor levels just numeric labels? Yes means random effects.

• Am I mostly interested in making inferences about the distribution of effects, based on
the random sample of effects represented in the dataframe? Yes means random effects.

• Is there hierarchical structure? Yes means you need to ask whether the data are experi-
mental or observations.

• Is it a hierarchical experiment, where the factor levels are experimental manipulations?
Yes means fixed effects in a split-plot design (see p. 469)

• Is it a hierarchical observational study? Yes means random effects, perhaps in a variance
components analysis (see p. 475).

• When your model contains both fixed and random effects, use mixed-effects models.

• If your model structure is linear, use linear mixed effects, lmer.

• Otherwise, specify the model equation and use non-linear mixed effects, nlme.

Removing the pseudoreplication

The extreme response to pseudoreplication in a data set is simply to eliminate it. Spatial
pseudoreplication can be averaged away and temporal pseudoreplication can be dealt with
by carrying out carrying out separate ANOVAs, one at each time. This approach has two
major weaknesses:

• It cannot address questions about treatment effects that relate to the longitudinal develop-
ment of the mean response profiles (e.g. differences in growth rates between successive
times).

• Inferences made with each of the separate analyses are not independent, and it is not
always clear how they should be combined.

Analysis of longitudinal data

The key feature of longitudinal data is that the same individuals are measured repeatedly
through time. This would represent temporal pseudoreplication if the data were used uncrit-
ically in regression or ANOVA. The set of observations on one individual subject will tend
to be positively correlated, and this correlation needs to be taken into account in carrying
out the analysis. The alternative is a cross-sectional study, with all the data gathered at a
single point in time, in which each individual contributes a single data point. The advantage
of longitudinal studies is that they are capable of separating age effects from cohort effects;
these are inextricably confounded in cross-sectional studies. This is particularly important
when differences between years mean that cohorts originating at different times experience
different conditions, so that individuals of the same age in different cohorts would be
expected to differ.

There are two extreme cases in longitudinal studies:

• a few measurements on a large number of individuals;

• a large number of measurements on a few individuals.

ANALYSIS OF VARIANCE 475

In the first case it is difficult to fit an accurate model for change within individuals, but
treatment effects are likely to be tested effectively. In the second case, it is possible to get
an accurate model of the way that individuals change though time, but there is less power
for testing the significance of treatment effects, especially if variation from individual to
individual is large. In the first case, less attention will be paid to estimating the correlation
structure, while in the second case the covariance model will be the principal focus of
attention. The aims are:

• to estimate the average time course of a process;

• to characterize the degree of heterogeneity from individual to individual in the rate of
the process;

• to identify the factors associated with both of these, including possible cohort effects.

The response is not the individual measurement, but the sequence of measurements on an
individual subject. This enables us to distinguish between age effects and year effects; see
Diggle et al. (1994) for details.

Derived variable analysis

The idea here is to get rid of the pseudoreplication by reducing the repeated measures
into a set of summary statistics (slopes, intercepts or means), then analyse these summary
statistics using standard parametric techniques such as ANOVA or regression. The technique
is weak when the values of the explanatory variables change through time. Derived variable
analysis makes most sense when it is based on the parameters of scientifically interpretable
non-linear models from each time sequence. However, the best model from a theoretical
perspective may not be the best model from the statistical point of view.

There are three qualitatively different sources of random variation:

• random effects, where experimental units differ (e.g. genotype, history, size, physiolog-
ical condition) so that there are intrinsically high responders and other low responders;

• serial correlation, where there may be time-varying stochastic variation within a unit
(e.g. market forces, physiology, ecological succession, immunity) so that correlation
depends on the time separation of pairs of measurements on the same individual, with
correlation weakening with the passage of time;

• measurement error, where the assay technique may introduce an element of correlation
(e.g. shared bioassay of closely spaced samples; different assay of later specimens).

Variance components analysis

For random effects we are often more interested in the question of how much of the variation
in the response variable can be attributed to a given factor, than we are in estimating means
or assessing the significance of differences between means. This procedure is called variance
components analysis.

The following classic example of pseudoreplication comes from Snedecor Cochran (1980):

rats<-read.table("c:\\temp\\rats.txt",header=T)
attach(rats)
names(rats)

476 THE R BOOK

[1] "Glycogen" "Treatment" "Rat" "Liver"

Three experimental treatments were administered to rats, and the glycogen content of the
rats’ livers was analysed as the response variable. There were two rats per treatment, so
the total sample was n = 3 × 2 = 6. The tricky bit was that after each rat was killed, its
liver was cut up into three pieces: a left-hand bit, a central bit and a right-hand bit. So
now there are six rats each producing three bits of liver, for a total of 6 × 3 = 18 numbers.
Finally, two separate preparations were made from each macerated bit of liver, to assess
the measurement error associated with the analytical machinery. At this point there are
2 × 18 = 36 numbers in the data frame as a whole. The factor levels are numbers, so we
need to declare the explanatory variables to be categorical before we begin:

Treatment<-factor(Treatment)
Rat<-factor(Rat)
Liver<-factor(Liver)

Here is the analysis done the wrong way:

model<-aov(Glycogen~Treatment)
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
Treatment 2 1557.56 778.78 14.498 3.031e–05 ***

Residuals 33 1772.67 53.72

Treatment has a highly significant effect on liver glycogen content �p = 0�000 03�. This is
wrong! We have committed a classic error of pseudoreplication. Look at the error line in
the ANOVA table: it says the residuals have 33 degrees of freedom. But there were only 6
rats in the whole experiment, so the error d.f. has to be 6 − 1 − 2 = 3 (not 33)!

Here is the analysis of variance done properly, averaging away the pseudoreplication:

tt<-as.numeric(Treatment)
yv<-tapply(Glycogen,list(Treatment,Rat),mean)

tv<-tapply(tt,list(Treatment,Rat),mean)
model<-aov(as.vector(yv)~factor(as.vector(tv)))
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
factor(as.vector(tv)) 2 259.593 129.796 2.929 0.1971
Residuals 3 132.944 44.315

Now the error degrees of freedom are correct (d�f� = 3, not 33), and the interpretation is
completely different: there is no significant differences in liver glycogen under the three
experimental treatments �p = 0�1971�.

There are two different ways of doing the analysis properly in R: ANOVA with multiple
error terms (aov) or linear mixed-effects models (lmer). The problem is that the bits of the
same liver are pseudoreplicates because they are spatially correlated (they come from the
same rat); they are not independent, as required if they are to be true replicates. Likewise,
the two preparations from each liver bit are very highly correlated (the livers were macerated
before the preparations were taken, so they are essentially the same sample (certainly not
independent replicates of the experimental treatments).

ANALYSIS OF VARIANCE 477

Here is the correct analysis using aov with multiple error terms. In the Error term we
start with the largest scale (treatment), then rats within treatments, then liver bits within rats
within treatments. Finally, there were replicated measurements (two preparations) made for
each bit of liver.

model2<-aov(Glycogen~Treatment+Error(Treatment/Rat/Liver))
summary(model2)

Error: Treatment

Df Sum Sq Mean Sq
Treatment 2 1557.56 778.78

Error: Treatment:Rat

Df Sum Sq Mean Sq F value Pr(>F)
Residuals 3 797.67 265.89

Error: Treatment:Rat:Liver

Df Sum Sq Mean Sq F value Pr(>F)
Residuals 12 594.0 49.5

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)
Residuals 18 381.00 21.17

You can do the correct, non-pseudoreplicated analysis of variance from this output (Box 11.2).

Box 11.2 Sums of squares in hierarchical designs

The trick to understanding these sums of squares is to appreciate that with nested
categorical explanatory variables (random effects) the correction factor, which is sub-
tracted from the sum of squared subtotals, is not the conventional �

∑
y�2 /kn. Instead,

the correction factor is the uncorrected sum of squared subtotals from the level in the
hierarchy immediately above the level in question. This is very hard to see without
lots of practice. The total sum of squares, SSY, and the treatment sum of squares, SSA,
are computed in the usual way (see Box 11.1):

SSY =∑
y2 − �

∑
y�2

n
�

SSA =
∑k

i=1 C2
i

n
− �

∑
y�2

kn
�

The analysis is easiest to understand in the context of an example. For the rats data,
the treatment totals were based on 12 numbers (two rats, three liver bits per rat and
two preparations per liver bit). In this case, in the formula for SSA, above, n = 12 and
kn = 36. We need to calculate sums of squares for rats within treatments, SSRats, liver
bits within rats within treatments, SSLiverbits, and preparations within liver bits within
rats within treatments, SSPreparations:

478 THE R BOOK

SSRats =
∑

R2

6
−

∑
C2

12
�

SSLiverbits =
∑

L2

2
−

∑
R2

6
�

SSPreparations =
∑

y2

1
−

∑
L2

2
�

The correction factor at any level is the uncorrected sum of squares from the level
above. The last sum of squares could have been computed by difference:

SSPreparations = SSY − SSA − SSRats − SSLiverbits�

The F test for equality of the treatment means is the treatment variance divided by the
‘rats within treatment variance’ from the row immediately beneath: F = 778�78/265�89 =
2�928 956, with 2 d.f. in the numerator and 3 d.f. in the denominator (as we obtained in the
correct ANOVA, above).

To turn this into a variance components analysis we need to do a little work. The mean
squares are converted into variance components like this:

Residuals = preparations within liver bits: unchanged = 21.17,

Liver bits within rats within treatments: �49�5 − 21�17�/2 = 14�165,

Rats within treatments: �265�89 − 49�5�/6 = 36�065.

You divide the difference in variance by the number of numbers in the level below (i.e. two
preparations per liver bit, and six preparations per rat, in this case).

Analysis of the rats data using lmer is explained on p. 648.

What is the difference between split-plot and hierarchical samples?

Split-plot experiments have informative factor levels. Hierarchical samples have uninfor-
mative factor levels. That’s the distinction. In the irrigation experiment, the factor levels
were as follows:

levels(density)

[1] "high" "low" "medium"

levels(fertilizer)

[1] "N" "NP" "P"

They show the density of seed sown, and the kind of fertilizer applied: they are informative.
Here are the factor levels from the rats experiment:

levels(Rat)

[1] "1" "2"

ANALYSIS OF VARIANCE 479

levels(Liver)

[1] "1" "2" "3"

These factor levels are uninformative, because rat number 2 in treatment 1 has nothing in
common with rat number 2 in treatment 2, or with rat number 2 in treatment 3. Liver bit
number 3 from rat 1 has nothing in common with liver bit number 3 from rat 2. Note,
however, that numbered factor levels are not always uninformative: treatment levels 1, 2,
and 3 are informative: 1 is the control, 2 is a diet supplement, and 3 is a combination of
two supplements.

When the factor levels are informative, the variable is known as a fixed effect. When the
factor levels are uninformative, the variable is known as a random effect. Generally, we
are interested in fixed effects as they influence the mean, and in random effects as they
influence the variance. We tend not to speak of effect sizes attributable to random effects,
but effect sizes and their standard errors are often the principal focus when we have fixed
effects. Thus, irrigation, density and fertilizer are fixed effects, and rat and liver bit are
random effects.

ANOVA with aov or lm

The difference between lm and aov is mainly in the form of the output: the summary
table with aov is in the traditional form for analysis of variance, with one row for each
categorical variable and each interaction term. On the other hand, the summary table for lm
produces one row per estimated parameter (i.e. one row for each factor level and one row
for each interaction level). If you have multiple error terms then you must use aov because
lm does not support the Error term. Here is the same two-way analysis of variance fitted
using aov first then using lm:

daphnia<-read.table("c:\\temp\\Daphnia.txt",header=T)
attach(daphnia)
names(daphnia)

[1] "Growth.rate" "Water" "Detergent" "Daphnia"

model1<-aov(Growth.rate~Water*Detergent*Daphnia)
summary(model1)

Df Sum Sq Mean Sq F value Pr(>F)
Water 1 1.985 1.985 2.8504 0.0978380 .
Detergent 3 2.212 0.737 1.0586 0.3754783
Daphnia 2 39.178 19.589 28.1283 8.228e-09 ***
Water:Detergent 3 0.175 0.058 0.0837 0.9686075
Water:Daphnia 2 13.732 6.866 9.8591 0.0002587 ***
Detergent:Daphnia 6 20.601 3.433 4.9302 0.0005323 ***
Water:Detergent:Daphnia 6 5.848 0.975 1.3995 0.2343235
Residuals 48 33.428 0.696

model2<-lm(Growth.rate~Water*Detergent*Daphnia)
summary(model2)

480 THE R BOOK

Coefficients:

Estimate Std. Error t value Pr (>|t|)
(Intercept) 2.81126 0.48181 5.835 4.48e-07
WaterWear −0.15808 0.68138 −0.232 0.81753
DetergentBrandB −0.03536 0.68138 −0.052 0.95883
DetergentBrandC 0.47626 0.68138 0.699 0.48794
DetergentBrandD −0.21407 0.68138 −0.314 0.75475
DaphniaClone2 0.49637 0.68138 0.728 0.46986
DaphniaClone3 2.05526 0.68138 3.016 0.00408
WaterWear:DetergentBrandB 0.46455 0.96361 0.482 0.63193
WaterWear:DetergentBrandC −0.27431 0.96361 −0.285 0.77712
WaterWear:DetergentBrandD 0.21729 0.96361 0.225 0.82255
WaterWear:DaphniaClone2 1.38081 0.96361 1.433 0.15835
WaterWear:DaphniaClone3 0.43156 0.96361 0.448 0.65627
DetergentBrandB:DaphniaClone2 0.91892 0.96361 0.954 0.34506
DetergentBrandC:DaphniaClone2 −0.16337 0.96361 −0.170 0.86609
DetergentBrandD:DaphniaClone2 1.01209 0.96361 1.050 0.29884
DetergentBrandB:DaphniaClone3 −0.06490 0.96361 −0.067 0.94658
DetergentBrandC:DaphniaClone3 −0.80789 0.96361 −0.838 0.40597
DetergentBrandD:DaphniaClone3 −1.28669 0.96361 −1.335 0.18809
WaterWear:DetergentBrandB:DaphniaClone2 −1.26380 1.36275 −0.927 0.35837
WaterWear:DetergentBrandC:DaphniaClone2 1.35612 1.36275 0.995 0.32466
WaterWear:DetergentBrandD:DaphniaClone2 0.77616 1.36275 0.570 0.57164
WaterWear:DetergentBrandB:DaphniaClone3 −0.87443 1.36275 −0.642 0.52414
WaterWear:DetergentBrandC:DaphniaClone3 −1.03019 1.36275 −0.756 0.45337
WaterWear:DetergentBrandD:DaphniaClone3 −1.55400 1.36275 −1.140 0.25980

Residual standard error: 0.8345 on 48 degrees of freedom
Multiple R-Squared: 0.7147, Adjusted R-squared: 0.578
F-statistic: 5.227 on 23 and 48 DF, p-value: 7.019e-07

Note that two significant interactions, Water–Daphnia and Detergent–Daphnia, show up
in the aov table but not in the lm summary (this is often due to the fact that the lm
summary shows treatment contrasts rather than Helmert contrasts). This draws attention
to the importance of model simplification rather than per-row t tests (i.e. removing the
non-significant three-way interaction term in this case). In the aov table, the p values are
‘on deletion’ p values, which is a big advantage.

The main difference is that there are eight rows in the aov summary table (three main
effects, three two-way interactions, one three-way interaction and an error term) but there
are 24 rows in the lm summary table (four levels of detergent by three levels of daphnia
clone by two levels of water). You can easily view the output of model1 in linear model
layout, or model2 as an ANOVA table using the summary options .lm or .aov:

summary.lm(model1)
summary.aov(model2)

Effect Sizes

In complicated designed experiments, it is easiest to summarize the effect sizes with
the model.tables function. This takes the name of the fitted model object as its first
argument, and you can specify whether you want the standard errors (as you typically
would):

model.tables(model1, "means", se = TRUE)

ANALYSIS OF VARIANCE 481

Tables of means
Grand mean

3.851905

Water

Water
Tyne Wear

3.686 4.018

Detergent

Detergent
BrandA BrandB BrandC BrandD
3.885 4.010 3.955 3.558

Daphnia
Daphnia
Clone1 Clone2 Clone3
2.840 4.577 4.139

Water:Detergent

Detergent
Water BrandA BrandB BrandC BrandD
Tyne 3.662 3.911 3.814 3.356
Wear 4.108 4.109 4.095 3.760

Water:Daphnia

Daphnia
Water Clone1 Clone2 Clone3
Tyne 2.868 3.806 4.383
Wear 2.812 5.348 3.894

Detergent:Daphnia

Daphnia
Detergent Clone1 Clone2 Clone3

BrandA 2.732 3.919 5.003
BrandB 2.929 4.403 4.698
BrandC 3.071 4.773 4.019
BrandD 2.627 5.214 2.834

Water:Detergent:Daphnia
, , Daphnia = Clone1

Detergent
Water BrandA BrandB BrandC BrandD
Tyne 2.811 2.776 3.288 2.597
Wear 2.653 3.082 2.855 2.656

, , Daphnia = Clone2

Detergent
Water BrandA BrandB BrandC BrandD
Tyne 3.308 4.191 3.621 4.106
Wear 4.530 4.615 5.925 6.322

, , Daphnia = Clone3

482 THE R BOOK

Detergent
Water BrandA BrandB BrandC BrandD
Tyne 4.867 4.766 4.535 3.366
Wear 5.140 4.630 3.504 2.303

Standard errors for differences of means
Water Detergent Daphnia Water:Detergent Water:Daphnia
0.1967 0.2782 0.2409 0.3934 0.3407

replic. 36 18 24 9 12
Detergent:Daphnia Water:Detergent:Daphnia

0.4818 0.6814
replic. 6 3

Note that the standard errors are standard errors of differences, and they are different in
each of the different strata because the replication differs. All standard errors use the same
pooled error variance s2 = 0�696 (see above). For instance, the three-way interactions have
se=√

2 × 0�696/3=0�681 and the daphnia main effects have se=√
2 × 0�696/24=0�2409.

Attractive plots of effect sizes can be obtained using the effects library (p. 178).

Replications

The replications function allows you to check the number of replicates at each level in an
experimental design:

replications(Growth.rate~Daphnia*Water*Detergent,daphnia)

Daphnia Water
Detergent

24 36
18

Daphnia:Water Daphnia:Detergent
Water:Detergent

12 6
9
Daphnia:Water:Detergent

3

There are three replicates for the three-way interaction and for all of the two-way interactions
(you need to remember the number of levels for each factor to see this: there are two water
types, three daphnia clones and four detergents (see above).

Multiple Comparisons

When comparing the means for the levels of a factor in an analysis of variance, a simple
comparison using multiple t tests will inflate the probability of declaring a significant
difference when there is none. This because the intervals are calculated with a given coverage
probability for each interval but the interpretation of the coverage is usually with respect to
the entire family of intervals (i.e. for the factor as a whole).

If you follow the protocol of model simplification recommended in this book, then issues
of multiple comparisons will not arise very often. An occasional significant t test amongst
a bunch of non-significant interaction terms is not likely to survive a deletion test (see
p. 325). Again, if you have factors with large numbers of levels you might consider using

ANALYSIS OF VARIANCE 483

mixed-effects models rather than ANOVA (i.e. treating the factors as random effects rather
than fixed effects; see p. 627).

John Tukey introduced intervals based on the range of the sample means rather than the
individual differences; nowadays, these are called Tukey’s honest significant differences.
The intervals returned by the TukeyHSD function are based on Studentized range statistics.
Technically the intervals constructed in this way would only apply to balanced designs
where the same number of observations is made at each level of the factor. This function
incorporates an adjustment for sample size that produces sensible intervals for mildly
unbalanced designs.

The following example concerns the yield of fungi gathered from 16 different habitats:

data<-read.table("c:\\temp\\Fungi.txt",header=T)
attach(data)
names(data)

First we establish whether there is any variation in fungus yield to explain:

model<-aov(Fungus.yield~Habitat)
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
Habitat 15 7527.4 501.8 72.141 < 2.2e-16 ***
Residuals 144 1001.7 7.0

Yes, there is �p< 0�000 001�. But this is not of much real interest, because it just shows that
some habitats produce more fungi than others. We are likely to be interested in which habitats
produce significantly more fungi than others. Multiple comparisons are an issue because
there are 16 habitats and so there are �16 × 15�/2 = 120 possible pairwise comparisons.
There are two options:

• apply the function TukeyHSD to the model to get Tukey’s honest significant differences;

• use the function pairwise.t.test to get adjusted p values for all comparisons.

Here is Tukey’s test in action: it produces a table of p values by default:

TukeyHSD(model)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Fungus.yield ~ Habitat)
$Habitat

diff lwr upr p adj
Ash-Alder 3.53292777 −0.5808096 7.6466651 0.1844088
Aspen-Alder 12.78574402 8.6720067 16.8994814 0.0000000
Beech-Alder 12.32365349 8.2099161 16.4373908 0.0000000
Birch-Alder 14.11348150 9.9997441 18.2272189 0.0000000
Cherry-Alder 10.29508769 6.1813503 14.4088250 0.0000000
Chestnut-Alder 12.24107899 8.1273416 16.3548163 0.0000000
Holmoak-Alder −1.44360558 −5.5573429 2.6701318 0.9975654
Hornbeam-Alder 10.60271044 6.4889731 14.7164478 0.0000000
Lime-Alder 19.19458205 15.0808447 23.3083194 0.0000000
Oak-Alder 20.29457340 16.1808360 24.4083108 0.0000000
Pine-Alder 14.34084715 10.2271098 18.4545845 0.0000000

484 THE R BOOK

Rowan-Alder 6.29495226 2.1812149 10.4086896 0.0000410
Spruce-Alder −2.15119456 −6.2649319 1.9625428 0.9036592
Sycamore-Alder 2.80900108 −1.3047363 6.9227384 0.5644643
� � �
Spruce-Rowan −8.44614681 −12.5598842 −4.3324095 0.0000000
Sycamore-Rowan −3.48595118 −7.5996885 0.6277862 0.2019434
Willow-Rowan −3.51860059 −7.6323379 0.5951368 0.1896363
Sycamore-Spruce 4.96019563 0.8464583 9.0739330 0.0044944
Willow-Spruce 4.92754623 0.8138089 9.0412836 0.0049788
Willow-Sycamore −0.03264941 −4.1463868 4.0810879 1.0000000

You can plot the confidence intervals if you prefer (or do both, of course):

plot(TukeyHSD(model))

Differences in mean levels of Habitat

W
ill

ow
-S

yc
am

or
e

P
in

e-
H

ol
m

oa
k

P
in

e-
B

irc
h

P
in

e-
A

sp
en

S
pr

uc
e-

A
ld

er

95% family-wise confidence level

–20 –10 0 10 20

Habitats on opposite sides of the dotted line and not overlapping it are significantly different
from one another.

Alternatively, you can use the pairwise.t.test function in which you specify the response
variable, and then the categorical explanatory variable containing the factor levels you want
to be compared, separated by a comma (not a tilde):

ANALYSIS OF VARIANCE 485

pairwise.t.test(Fungus.yield,Habitat)

Pairwise comparisons using t tests with pooled SD
data: Fungus.yield and Habitat

Alder Ash Aspen Beech Birch Cherry Chestnut Holmoak
Ash 0.10011 - - - - - - -
Aspen < 2e-16 6.3e-11 - - - - - -
Beech < 2e-16 5.4e-10 1.00000 - - - - -
Birch < 2e-16 1.2e-13 1.00000 1.00000 - - - -
Cherry 4.7e-13 2.9e-06 0.87474 1.00000 0.04943 - - -
Chestnut < 2e-16 7.8e-10 1.00000 1.00000 1.00000 1.00000 - -
Holmoak 1.00000 0.00181 < 2e-16 < 2e-16 < 2e-16 3.9e-16 < 2e-16 -
Hornbeam 1.1e-13 8.6e-07 1.00000 1.00000 0.10057 1.00000 1.00000 < 2e-16
Lime < 2e-16 < 2e-16 1.1e-05 1.9e-06 0.00131 3.3e-10 1.4e-06 < 2e-16
Oak < 2e-16 < 2e-16 1.4e-07 2.0e-08 2.7e-05 1.9e-12 1.5e-08 < 2e-16
Pine < 2e-16 3.9e-14 1.00000 1.00000 1.00000 0.02757 1.00000 < 2e-16
Rowan 1.8e-05 0.51826 8.5e-06 4.7e-05 3.9e-08 0.03053 6.2e-05 5.3e-08
Spruce 1.00000 0.00016 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 1.00000
Sycamore 0.50084 1.00000 2.1e-12 1.9e-11 3.3e-15 1.5e-07 2.7e-11 0.01586
Willow 0.51826 1.00000 1.9e-12 1.6e-11 2.8e-15 1.4e-07 2.4e-11 0.01702

Hornbeam Lime Oak Pine Rowan Spruce Sycamore
Ash - - - - - - -
Aspen - - - - - - -
Beech - - - - - - -
Birch - - - - - - -
Cherry - - - - - - -
Chestnut - - - - - - -
Holmoak - - - - - - -
Hornbeam - - - - - - -
Lime 1.3e-09 - - - - - -
Oak 8.4e-12 1.00000 - - - - -
Pine 0.05975 0.00253 6.1e-05 - - - -
Rowan 0.01380 < 2e-16 < 2e-16 1.5e-08 - - -
Spruce < 2e-16 < 2e-16 < 2e-16 < 2e-16 2.5e-09 - -
Sycamore 4.2e-08 < 2e-16 < 2e-16 1.1e-15 0.10218 0.00187 -
Willow 3.8e-08 < 2e-16 < 2e-16 9.3e-16 0.10057 0.00203 1.00000

P value adjustment method: holm

As you see, the default method of adjustment of the p-values is holm, but other adjustment
methods include hochberg, hommel, bonferroni, BH, BY, fdr and none. Without adjust-
ment of the p values, the rowan–willow comparison looks highly significant �p=0�003 35�,
as you can see if you try

pairwise.t.test(Fungus.yield,Habitat,p.adjust.method="none")

I like TukeyHSD because it is conservative without being ridiculously so (in contrast
to Bonferroni). For instance, Tukey gives the birch–cherry comparison as non-significant
�p = 0�101 102 7� while Holm makes this difference significant �p = 0�049 43�. Tukey had
Willow-Holm Oak as significant �p = 0�038 091 0�, whereas Bonferroni throws this baby
out with the bathwater �p= 0�056 72�. You need to decide how circumspect you want to be
in the context of your particular question.

There is a useful package for multiple comparisons called multcomp:

install.packages("multcomp")

486 THE R BOOK

You can see at once how contentious the issue of multiple comparisons is, just by look-
ing at the length of the list of different multiple comparisons methods supported in this
package

• the many-to-one comparisons of Dunnett

• the all-pairwise comparisons of Tukey

• Sequen

• AVE

• changepoint

• Williams

• Marcus

• McDermott

• Tetrade

• Bonferroni correction

• Holm

• Hochberg

• Hommel

• Benjamini–Hochberg

• Benjamini–Yekutieli

The old-fashioned Bonferroni correction is highly conservative, because the p values are
multiplied by the number of comparisons. Instead of using the usual Bonferroni and Holm
procedures, the adjustment methods include less conservative corrections that take the exact
correlations between the test statistics into account by use of the multivariate t-distribution.
The resulting procedures are therefore substantially more powerful (the Bonferroni and
Holm adjusted p values are reported for reference). There seems to be no reason to use
the unmodified Bonferroni correction because it is dominated by Holm’s method, which is
valid under arbitrary assumptions.

The tests are designed to suit multiple comparisons within the general linear model, so
they allow for covariates, nested effects, correlated means and missing values. The first four
methods are designed to give strong control of the familywise error rate. The methods of
Benjamini, Hochberg, and Yekutieli control the false discovery rate, which is the expected
proportion of false discoveries amongst the rejected hypotheses. The false discovery rate is
a less stringent condition than the familywise error rate, so these methods are more powerful
than the others.

Projections of Models

If you want to see how the different factor levels contribute their additive effects to each of
the observed values of the response, then use the proj function like this:

ANALYSIS OF VARIANCE 487

library(help="multcomp")

(Intercept) Water Detergent Daphnia Water:Detergent
Water:Daphnia
1 3.851905 −0.1660431 0.03292724 −1.0120302 −0.05698158
0.1941404
2 3.851905 −0.1660431 0.03292724 −1.0120302 −0.05698158
0.1941404
3 3.851905 −0.1660431 0.03292724 −1.0120302 −0.05698158
0.1941404
� � �

The name proj comes from the fact that the function returns a matrix or list of matrices
giving the ‘projections of the data onto the terms of a linear model’.

Multivariate Analysis of Variance

Two or more response variables are sometimes measured in the same experiment. Of course
you can analyse each response variable separately, and that is the typical way to proceed.
But there are occasions where you want to treat the group of response variables as one
multivariate response. The function for this is manova, the multivariate analysis of variance.
Note that manova does not support multi-stratum analysis of variance, so the formula must
not include an Error term.

data<-read.table("c:\\temp\\manova.txt",header=T)
attach(data)
names(data)

[1] "tear" "gloss" "opacity" "rate" "additive"

First, create a multivariate response variable, Y , by binding together the three separate
response variables (tear, gloss and opacity), like this:

Y <- cbind(tear, gloss, opacity)

Then fit the multivariate analysis of variance using the manova function:

model<-manova(Y~rate*additive)

There are two ways to inspect the output. First, as a multivariate analysis of variance:

summary(model)

Df Pillai approx F num Df den Df Pr(>F)
rate 1 0.6181 7.5543 3 14 0.003034 **
additive 1 0.4770 4.2556 3 14 0.024745 *
rate:additive 1 0.2229 1.3385 3 14 0.301782
Residuals 16

This shows significant main effects for both rate and additive, but no interaction. Note
that the F tests are based on 3 and 14 degrees of freedom (not 1 and 16). The default
method in summary.manova is the Pillai–Bartlett statistic. Other options include Wilks,
Hotelling–Lawley and Roy. Second, you will want to look at each of the three response
variables separately:

488 THE R BOOK

summary.aov(model)

Response tear :
Df Sum Sq Mean Sq F value Pr(>F)

rate 1 1.74050 1.74050 15.7868 0.001092 **
additive 1 0.76050 0.76050 6.8980 0.018330 *
rate:additive 1 0.00050 0.00050 0.0045 0.947143
Residuals 16 1.76400 0.11025

Response gloss :
Df Sum Sq Mean Sq F value Pr(>F)

rate 1 1.30050 1.30050 7.9178 0.01248 *
additive 1 0.61250 0.61250 3.7291 0.07139 .
rate:additive 1 0.54450 0.54450 3.3151 0.08740 .
Residuals 16 2.62800 0.16425

Response opacity :
Df Sum Sq Mean Sq F value Pr(>F)

rate 1 0.421 0.421 0.1036 0.7517
additive 1 4.901 4.901 1.2077 0.2881
rate:additive 1 3.961 3.961 0.9760 0.3379
Residuals 16 64.924 4.058

Notice that one of the three response variables, opacity, is not significantly associated with
either of the explanatory variables.

12
Analysis of Covariance

Analysis of covariance (ANCOVA) combines elements from regression and analysis of
variance. The response variable is continuous, and there is at least one continuous explana-
tory variable and at least one categorical explanatory variable. The procedure works like
this:

• Fit two or more linear regressions of y against x (one for each level of the factor).

• Estimate different slopes and intercepts for each level.

• Use model simplification (deletion tests) to eliminate unnecessary parameters.

For example, we could use ANCOVA in a medical experiment where the response variable
was ‘days to recovery’ and the explanatory variables were ‘smoker or not’ (categorical) and
‘blood cell count’ (continuous). In economics, local unemployment rate might be modelled
as a function of country (categorical) and local population size (continuous). Suppose we
are modelling weight (the response variable) as a function of sex and age. Sex is a factor
with two levels (male and female) and age is a continuous variable. The maximal model
therefore has four parameters: two slopes (a slope for males and a slope for females) and
two intercepts (one for males and one for females) like this:

weightmale = amale + bmale × age�

weightfemale = afemale + bfemale × age�

This maximal model is shown in the top left-hand panel. Model simplification is an essential
part of analysis of covariance, because the principle of parsimony requires that we keep as
few parameters in the model as possible.

There are six possible models in this case, and the process of model simplification begins
by asking whether we need all four parameters (top left). Perhaps we could make do with
2 intercepts and a common slope (top right), or a common intercept and two different
slopes (centre left). There again, age may have no significant effect on the response, so we
only need two parameters to describe the main effects of sex on weight; this would show
up as two separated, horizontal lines in the plot (one mean weight for each sex; centre
right). Alternatively, there may be no effect of sex at all, in which case we only need two
parameters (one slope and one intercept) to describe the effect of age on weight (bottom

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

490 THE R BOOK

Age

1.00.80.0 0.2 0.4 0.6

0.
0

0.
4

0.
8

Age

1.00.80.0 0.2 0.4 0.6

0.
0

0.
4

0.
8

Age

1.00.80.0 0.2 0.4 0.6

0.
0

0.
4

0.
8

Age

W
ei

gh
t

W
ei

gh
t

W
ei

gh
t

1.00.80.0 0.2 0.4 0.6

0.
0

0.
4

0.
8

Age

1.00.80.0 0.2 0.4 0.6

0.
0

0.
4

0.
8

Age

W
ei

gh
t

W
ei

gh
t

W
ei

gh
t

1.00.80.0 0.2 0.4 0.6

0.
0

0.
4

0.
8

left). In the limit, neither the continuous nor the categorical explanatory variables might
have any significant effect on the response, in which case model simplification will lead to
the one-parameter null model ŷ = ȳ (a single horizontal line; bottom right).

Analysis of Covariance in R

We could use either lm or aov; the choice affects only the format of the summary table. We
shall use both and compare their output. Our worked example concerns an experiment on the
impact of grazing on the seed production of a biennial plant. Forty plants were allocated to
two treatments, grazed and ungrazed, and the grazed plants were exposed to rabbits during
the first two weeks of stem elongation. They were then protected from subsequent grazing
by the erection of a fence and allowed to regrow. Because initial plant size was thought
likely to influence fruit production, the diameter of the top of the rootstock was measured
before each plant was potted up. At the end of the growing season, the fruit production (dry
weight in milligrams) was recorded on each of the 40 plants, and this forms the response
variable in the following analysis.

regrowth<-read.table("c:\\temp\\ipomopsis.txt",header=T)
attach(regrowth)
names(regrowth)

[1] "Root" "Fruit" "Grazing"

ANALYSIS OF COVARIANCE 491

The object of the exercise is to estimate the parameters of the minimal adequate model
for these data. We begin by inspecting the data with a plot of fruit production against root
size for each of the two treatments separately: the diamonds are ungrazed plants and the
triangles are grazed plants:

plot(Root,Fruit,
pch=16+as.numeric(Grazing),col=c("blue","red")[as.numeric(Grazing)])

where red diamonds represent the ungrazed plants and blue triangles represent the grazed
plants. Note the use of as.numeric to select the plotting symbols and colours. How are the
grazing treatments reflected in the factor levels?

levels(Grazing)

[1] "Grazed" "Ungrazed"

Now we can use logical subscripts (p. 21) to draw linear regression lines for the two grazing
treatments separately, using abline (we could have used subset instead):

abline(lm(Fruit[Grazing=="Grazed"]~Root[Grazing=="Grazed"]),lty=2,col="blue")
abline(lm(Fruit[Grazing=="Ungrazed"]~Root[Grazing=="Ungrazed"]),lty=2,col="red")

Note the use of as.numeric to select the plotting symbols and colours, and the use of
subscripts within the abline function to fit linear regression models separately for each level
of the grazing treatment (we could have used subset instead).

F
ru

it

5 6 7
Root

9 108

20
40

60
80

10
0

12
0

The odd thing about these data is that grazing seems to increase fruit production, a highly
counter-intuitive result:

492 THE R BOOK

tapply(Fruit,Grazing, mean)

Grazed Ungrazed
67.9405 50.8805

This difference is statistically significant �p = 0�027� if you do a t test (although this is the
wrong thing to do in this case, as explained below):

t.test(Fruit~Grazing)

Welch Two Sample t-test

data: Fruit by Grazing
t = 2.304, df = 37.306, p-value = 0.02689
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
2.061464 32.058536
sample estimates:
mean in group Grazed mean in group Ungrazed

67.9405 50.8805

Several important points are immediately apparent from this initial analysis:

• Different sized plants were allocated to the two treatments.

• The grazed plants were bigger at the outset.

• The regression line for the ungrazed plants is above the line for the grazed plants.

• The regression lines are roughly parallel.

• The intercepts (not shown to the left) are likely to be significantly different.

Each of these points will be addressed in detail.
To understand the output from analysis of covariance it is useful to work through the

calculations by hand. We start by working out the sums, sums of squares and sums of
products for the whole data set combined (40 pairs of numbers), and then for each treatment
separately (20 pairs of numbers). We shall fill in a table of totals, because it helps to be
really well organized for these calculations. Check to see where (and why) the sums and the
sums of squares of the root diameters (the x values) and the fruit yields (the y values) have
gone in the table: First, we shall work out the overall totals based on all 40 data points.

sum(Root);sum(Root^2)

[1] 287.246
[1] 2148.172

sum(Fruit);sum(Fruit^2)

[1] 2376.42
[1] 164928.1

sum(Root*Fruit)

[1] 18263.16

These are the famous five, which we shall make use of shortly, and complete the overall
data summary. Now we select the root diameters for the grazed and ungrazed plants and
then the fruit yields for the grazed and ungrazed plants:

ANALYSIS OF COVARIANCE 493

sum(Root[Grazing=="Grazed"]);sum(Root[Grazing=="Grazed"]^2)

[1] 166.188
[1] 1400.834

sum(Root[Grazing=="Ungrazed"]);sum(Root[Grazing=="Ungrazed"]^2)

[1] 121.058
[1] 747.3387

sum(Fruit[Grazing=="Grazed"]);sum(Fruit[Grazing=="Grazed"]^2)

[1] 1358.81
[1] 104156.0

sum(Fruit[Grazing=="Ungrazed"]);sum(Fruit[Grazing=="Ungrazed"]^2)

[1] 1017.61
[1] 60772.11

Finally, we want the sums of products: first for the grazed plants and then for the ungrazed
plants:

sum(Root[Grazing=="Grazed"]*Fruit[Grazing=="Grazed"])

[1] 11753.64

sum(Root[Grazing=="Ungrazed"]*Fruit[Grazing=="Ungrazed"])

[1] 6509.522

Here is our table:

Sums Squares and products

x ungrazed 121�058 747�3387
y ungrazed 1017�61 60772�11
xy ungrazed 6509�522

x grazed 166�188 1400�834
y grazed 1358�81 104156�0
xy grazed 11753�64

x overall 287�246 2148�172
y overall 2376�42 164928�1
xy overall 18263�16

Now we have all of the information necessary to carry out the calculations of the corrected
sums of squares and products, SSY, SSX and SSXY, for the whole data set �n = 40� and
for the two separate treatments (with 20 replicates in each). To get the right answer you
will need to be extremely methodical, but there is nothing mysterious or difficult about
the process. First, calculate the regression statistics for the whole experiment, ignoring the
grazing treatment, using the famous five which we have just calculated:

SSY = 164 928�1 − 2376�422

40
= 23 743�84�

494 THE R BOOK

SSX = 2148�172 − 287�2462

40
= 85�4158�

SSXY = 18 263�16 − 287�246 × 2376�42
40

= 1197�731�

SSR = 1197�7312

85�4158
= 16 795�

SSE = 23 743�84 − 16 795 = 6948�835�

The effect of differences between the two grazing treatments, SSA, is

SSA = 1358�812 + 1017�612

20
− 2376�422

40
= 2910�436�

Next calculate the regression statistics for each of the grazing treatments separately. First,
for the grazed plants:

SSYg = 104 156 − 1358�812

20
= 11 837�79�

SSXg = 1400�834 − 166�1882

20
= 19�9111�

SSXYg = 11 753�64 − 1358�81 × 166�188
20

= 462�7415�

SSRg = 462�74152

19�9111
= 10 754�29�

SSEg = 11837�79 − 10754�29 = 1083�509�

so the slope of the graph of Fruit against Root for the grazed plants is given by

bg = SSXYg

SSXg

= 462�7415
19�9111

= 23�240�

Now for the ungrazed plants:

SSYu = 60 772�11 − 1017�612

20
= 8995�606�

SSXu = 747�3387 − 121�0582

20
= 14�58677�

SSXYu = 6509�522 − 121�058 × 1017�61
20

= 350�0302�

SSRu = 350�03022

14�58677
= 8399�466�

SSEu = 8995�606 − 8399�466 = 596�1403�

ANALYSIS OF COVARIANCE 495

so the slope of the graph of Fruit against Root for the ungrazed plants is given by

bu = SSXYu

SSXu

= 350�0302
14�58677

= 23�996

Now add up the regression statistics across the factor levels (grazed and ungrazed):

SSYg+u = 11 837�79 + 8995�606 = 20 833�4�

SSXg+u = 19�9111 + 14�58677 = 34�49788�

SSXYg+u = 462�7415 + 350�0302 = 812�7717�

SSRg+u = 10 754�29 + 8399�436 = 19 153�75�

SSEg+u = 1083�509 + 596�1403 = 1684�461�

The SSR for a model with a single common slope is given by

SSRc = �SSXYg+u�
2

SSXg+u

= 812�77172

34�49788
= 19 148�94�

and the value of the single common slope is

b = SSXYg+u

SSXg+u

= 812�7717
34�49788

= 23�560

The difference between the two estimates of SSR (SSRdiff = SSRg+u − SSRc = 19153�75 −
19148�94 = 4�81� is a measure of the significance of the difference between the two slopes
estimated separately for each factor level. Finally, SSE is calculated by difference:

SSE = SSY − SSA − SSRc − SSRdiff

= 23743�84 − 2910�44 − 19148�94 − 4�81 = 1679�65�

Now we can complete the ANOVA table for the full model:

Source SS d.f. MS F

Grazing 2910�44 1
Root 19148�94 1
Different slopes 4�81 1 4�81 n.s.
Error 1679�65 36 46�66
Total 23743�84 39

Degrees of freedom for error are 40 − 4 = 36 because we have estimated four parameters
from the data: two slopes and two intercepts. So the error variance is 46�66�= SSE/36�.
The difference between the slopes is clearly not significant �F = 4�81/46�66 = 0�10� so we

496 THE R BOOK

can fit a simpler model with a common slope of 23.56. The sum of squares for differences
between the slopes (4.81) now becomes part of the error sum of squares:

Source SS d.f. MS F

Grazing 2910�44 1 2910�44 63�9291
Root 19148�94 1 19148�94 420�6156
Error 1684�46 37 45�526
Total 23743�84 39

This is the minimal adequate model. Both of the terms are highly significant and there are
no redundant factor levels.

The next step is to calculate the intercepts for the two parallel regression lines. This is
done exactly as before, by rearranging the equation of the straight line to obtain a= y − bx.
For each line we can use the mean values of x and y, with the common slope in each case.
Thus:

a1 = Y1 − bX1 = 50�88 − 23�56 × 6�0529 = −91�7261�

a2 = Y2 − bX2 = 67�94 − 23�56 × 8�309 = −127�8294�

This demonstrates that the grazed plants produce, on average, 36.1 mg of fruit less than the
ungrazed plants �127�83 − 91�73�.

Finally, we need to calculate the standard errors for the common regression slope and for
the difference in mean fecundity between the treatments, based on the error variance in the
minimal adequate model, given in the table above:

s2 = 1684�46
37

= 45�526

The standard errors are obtained as follows. The standard error of the common slope is
found in the usual way:

seb =
√

s2

SSXg+u

=
√

45�526
19�9111 + 14�45667

= 1�149�

The standard error of the intercept of the regression for the grazed treatment is also found
in the usual way:

sea =
√

s2

[
1
n

+ �0 − x�2

SSXg+u

]
=
√

45�526
[

1
20

+ 8�30942

34�498

]
= 9�664�

It is clear that the intercept of −127�829 is very significantly less than zero
�t = 127�829/9�664 = 13�2�, suggesting that there is a threshold rootstock size before repro-
duction can begin. Finally, the standard error of the difference between the elevations of
the two lines (the grazing effect) is given by

seŷu−ŷg
=
√

s2

[
2
n

+ �x1 − x2�
2

SSXg+u

]

ANALYSIS OF COVARIANCE 497

which, substituting the values for the error variance and the mean rootstock sizes of the
plants in the two treatments, becomes:

seŷu−ŷg
=
√

45�526
[

2
20

+ �6�0529 − 8�3094�2

34�498

]
= 3�357�

This suggests that any lines differing in elevation by more than about 2 × 3�357 = 6�66 mg
dry weight would be regarded as significantly different. Thus, the present difference of 36.09
clearly represents a highly significant reduction in fecundity caused by grazing �t = 10�83�.

The hand calculations were convoluted, but ANCOVA is exceptionally straightforward in
R using lm. The response variable is fecundity, and there is one experimental factor (Grazing)
with two levels (Ungrazed and Grazed) and one covariate (initial rootstock diameter). There
are 40 values for each of these variables. As we saw earlier, the largest plants were allocated
to the grazed treatments, but for a given rootstock diameter (say, 7 mm) the scatterplot
shows that the grazed plants produced fewer fruits than the ungrazed plants (not more, as
a simple comparison of the means suggested). This is an excellent example of the value of
analysis of covariance. Here, the correct analysis using ANCOVA completely reverses our
interpretation of the data.

The analysis proceeds in the following way. We fit the most complicated model first,
then simplify it by removing non-significant terms until we are left with a minimal adequate
model, in which all the parameters are significantly different from zero. For ANCOVA, the
most complicated model has different slopes and intercepts for each level of the factor. Here
we have a two-level factor (Grazed and Ungrazed) and we are fitting a linear model with
two parameters �y =a+bx� so the most complicated mode has four parameters (two slopes
and two intercepts). To fit different slopes and intercepts we use the asterisk * notation:

ancova <- lm(Fruit~Grazing*Root)

You should realize that order matters: we would get a different output if the model had
been written Fruit ~ Root * Grazing (more of this on p. 507).

summary(ancova)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) −125.173 12.811 −9.771 1.15e-11 ***
GrazingUngrazed 30.806 16.842 1.829 0.0757 .
Root 23.240 1.531 15.182 < 2e-16 ***
GrazingUngrazed:Root 0.756 2.354 0.321 0.7500

This shows that initial root size has a massive effect on fruit production �t = 15�182�, but
there is no indication of any difference in the slope of this relationship between the two
grazing treatments (this is the Grazing by Root interaction with t = 0�321, p � 0�05). The
ANOVA table for the maximal model looks like this:

anova(ancova)

Analysis of Variance Table

Response: Fruit
Df Sum Sq Mean Sq F value Pr(>F)

Grazing 1 2910�4 2910�4 62�3795 2.262e-09 ***
Root 1 19148�9 19148�9 410�4201 < 2.2e-16 ***
Grazing:Root 1 4�8 4�8 0�1031 0.75
Residuals 36 1679�6 46�7

498 THE R BOOK

The next step is to delete the non-significant interaction term from the model. We can
do this manually or automatically: here we shall do both for the purposes of demonstration.
The function for manual model simplification is update. We update the current model (here
called ancova) by deleting terms from it. The syntax is important: the punctuation reads
‘comma tilde dot minus’. We define a new name for the simplified model:

ancova2<-update(ancova, ~ . - Grazing:Root)

Now we compare the simplified model with just three parameters (one slope and two
intercepts) with the maximal model using anova like this:

anova(ancova,ancova2)

Analysis of Variance Table

Model 1: Fruit ~ Grazing * Root
Model 2: Fruit ~ Grazing + Root

Res.Df RSS Df Sum of Sq F Pr (>F)
1 36 1679.65
2 37 1684.46 −1 −4.81 0.1031 0.75

This says that model simplification was justified because it caused a negligible reduction in
the explanatory power of the model (p = 0�75; to retain the interaction term in the model
we would need p < 0�05).

The next step in model simplification involves testing whether or not grazing had a
significant effect on fruit production once we control for initial root size. The procedure is
similar: we define a new model and use update to remove Grazing from ancova2 like this:

ancova3<-update(ancova2, ~ . - Grazing)

Now we compare the two models using anova:

anova(ancova2,ancova3)

Analysis of Variance Table

Model 1: Fruit ~ Grazing + Root
Model 2: Fruit ~ Root

Res.Df RSS Df Sum of Sq F Pr(>F)
1 37 1684.5
2 38 6948.8 −1 −5264.4 115.63 6.107e-13 ***

This model simplification is a step too far. Removing the Grazing term causes a massive
reduction in the explanatory power of the model, with an F value of 115.63 and a vanishingly
small p value. The effect of grazing in reducing fruit production is highly significant and
needs to be retained in the model. Thus ancova2 is our minimal adequate model, and we
should look at its summary table to compare with our earlier calculations carried out by
hand:

summary(ancova2)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) −127.829 9.664 −13.23 1.35e-15 ***
GrazingUngrazed 36.103 3.357 10.75 6.11e-13 ***
Root 23.560 1.149 20.51 < 2e-16 ***

ANALYSIS OF COVARIANCE 499

Residual standard error: 6.747 on 37 degrees of freedom
Multiple R-Squared: 0.9291, Adjusted R-squared: 0.9252
F-statistic: 242.3 on 2 and 37 DF, p-value: < 2.2e-16

You know when you have got the minimal adequate model, because every row of the
coefficients table has one or more significance stars (three in this case, because the effects
are all so strong). In contrast to our initial interpretation based on mean fruit production,
grazing is associated with a 36.103 mg reduction in fruit production.

anova(ancova2)

Analysis of Variance Table

Response: Fruit
Df Sum Sq Mean Sq F value Pr(>F)

Grazing 1 2910.4 2910.4 63.929 1.397e-09 ***
Root 1 19148.9 19148.9 420.616 < 2.2e-16 ***
Residuals 37 1684.5 45.5

These are the values we obtained the long way on p. 495.
Now we repeat the model simplification using the automatic model-simplification function

called step. It couldn’t be easier to use. The full model is called ancova:

step(ancova)

This function causes all the terms to be tested to see whether they are needed in the minimal
adequate model. The criterion used is AIC, Akaike’s information criterion (p. 353). In the
jargon, this is a ‘penalized log-likelihood’. What this means in simple terms is that it weighs
up the inevitable trade-off between degrees of freedom and fit of the model. You can have a
perfect fit if you have a parameter for every data point, but this model has zero explanatory
power. Thus deviance goes down as degrees of freedom in the model go up. The AIC adds
2 times the number of parameters in the model to the deviance (to penalize it). Deviance,
you will recall, is twice the log-likelihood of the current model. Anyway, AIC is a measure
of lack of fit; big AIC is bad, small AIC is good. The full model (four parameters: two
slopes and two intercepts) is fitted first, and AIC calculated as 157.5:

Start: AIC = 157.5
Fruit ~ Grazing * Root

Df Sum of Sq RSS AIC
- Grazing: Root 1 4.81 1684.46 155.61
<none> 1679.65 157.50

Step: AIC = 155.61
Fruit ~ Grazing + Root

Df Sum of Sq RSS AIC
<none> 1684.5 155.6
- Grazing 1 5264.4 6948.8 210.3
- Root 1 19148.9 20833.4 254.2

500 THE R BOOK

Call:
lm(formula = Fruit ~ Grazing + Root)

Coefficients:

(Intercept) GrazingUngrazed Root
-127.83 36.10 23.56

Then step tries removing the most complicated term (the Grazing by Root interaction).
This reduces AIC to 155.61 (an improvement, so the simplification is justified). No further
simplification is possible (as we saw when we used update to remove the Grazing term
from the model) because AIC goes up to 210.3 when Grazing is removed and up to 254.2 if
Root size is removed. Thus, step has found the minimal adequate model (it doesn’t always,
as we shall see later; it is good, but not perfect).

ANCOVA and Experimental Design

There is an extremely important general message in this example for experimental design.
No matter how carefully we randomize at the outset, our experimental groups are likely to
be heterogeneous. Sometimes, as in this case, we may have made initial measurements that
we can use as covariates later on, but this will not always be the case. There are bound to
be important factors that we did not measure. If we had not measured initial root size in
this example, we would have come to entirely the wrong conclusion about the impact of
grazing on plant performance.

A far better design for this experiment would have been to measure the rootstock diameters
of all the plants at the beginning of the experiment (as was done here), but then to place
the plants in matched pairs with rootstocks of similar size. Then, one of the plants would
be picked at random and allocated to one of the two grazing treatments (e.g. by tossing a
coin); the other plant of the pair then receives the unallocated gazing treatment. Under this
scheme, the size ranges of the two treatments would overlap, and the analysis of covariance
would be unnecessary.

A More Complex ANCOVA: Two Factors and One Continuous
Covariate

The following experiment, with Weight as the response variable, involved Genotype and
Sex as two categorical explanatory variables and Age as a continuous covariate. There are
six levels of Genotype and two levels of Sex.

Gain <-read.table("c:\\temp\\Gain.txt",header=T)
attach(Gain)
names(Gain)

[1] "Weight" "Sex" "Age" "Genotype" "Score"

We begin by fitting the maximal model with its 24 parameters: different slopes and intercepts
for every combination of Sex and Genotype.

m1<-lm(Weight~Sex*Age*Genotype)
summary(m1)

ANALYSIS OF COVARIANCE 501

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) 7.80053 0.24941 31.276 < 2e-16 ***
Sexmale −0.51966 0.35272 −1.473 0.14936
Age 0.34950 0.07520 4.648 4.39e-05 ***
GenotypeCloneB 1.19870 0.35272 3.398 0.00167 **
GenotypeCloneC −0.41751 0.35272 −1.184 0.24429
GenotypeCloneD 0.95600 0.35272 2.710 0.01023 *
GenotypeCloneE −0.81604 0.35272 −2.314 0.02651 *
GenotypeCloneF 1.66851 0.35272 4.730 3.41e-05 ***
Sexmale:Age −0.11283 0.10635 −1.061 0.29579
Sexmale:GenotypeCloneB −0.31716 0.49882 −0.636 0.52891
Sexmale:GenotypeCloneC −1.06234 0.49882 −2.130 0.04010 *
Sexmale:GenotypeCloneD −0.73547 0.49882 −1.474 0.14906
Sexmale:GenotypeCloneE −0.28533 0.49882 −0.572 0.57087
Sexmale:GenotypeCloneF −0.19839 0.49882 −0.398 0.69319
Age:GenotypeCloneB −0.10146 0.10635 −0.954 0.34643
Age:GenotypeCloneC −0.20825 0.10635 −1.958 0.05799 .
Age:GenotypeCloneD −0.01757 0.10635 −0.165 0.86970
Age:GenotypeCloneE −0.03825 0.10635 −0.360 0.72123
Age:GenotypeCloneF −0.05512 0.10635 −0.518 0.60743
Sexmale:Age:GenotypeCloneB 0.15469 0.15040 1.029 0.31055
Sexmale:Age:GenotypeCloneC 0.35322 0.15040 2.349 0.02446 *
Sexmale:Age:GenotypeCloneD 0.19227 0.15040 1.278 0.20929
Sexmale:Age:GenotypeCloneE 0.13203 0.15040 0.878 0.38585
Sexmale:Age:GenotypeCloneF 0.08709 0.15040 0.579 0.56616

Residual standard error: 0.2378 on 36 degrees of freedom
Multiple R-Squared: 0.9742, Adjusted R-squared: 0.9577
F-statistic: 59.06 on 23 and 36 DF, p-value: < 2.2e-16

There are one or two significant parameters, but it is not at all clear that the three-way
or two-way interactions need to be retained in the model. As a first pass, let’s use step to
see how far it gets with model simplification:

m2<-step(m1)

Start: AIC= -155.01

Weight ~ Sex * Age * Genotype

Df Sum of Sq RSS AIC
- Sex:Age:Genotype 5 0.349 2.385 −155.511
<none> 2.036 −155.007
Step: AIC= -155.51
Weight ~ Sex + Age + Genotype + Sex:Age + Sex:Genotype +
Age:Genotype

Df Sum of Sq RSS AIC
- Sex:Genotype 5 0.147 2.532 −161.924
- Age:Genotype 5 0.168 2.553 −161.423
- Sex:Age 1 0.049 2.434 −156.292
<none> 2.385 −155.511

502 THE R BOOK

Step: AIC= -161.92
Weight ~ Sex + Age + Genotype + Sex:Age + Age:Genotype

Df Sum of Sq RSS AIC
- Age:Genotype 5 0.168 2.700 −168.066
- Sex:Age 1 0.049 2.581 −162.776
<none> 2.532 −161.924
Step: AIC= -168.07
Weight ~ Sex + Age + Genotype + Sex:Age

Df Sum of Sq RSS AIC
- Sex:Age 1 0.049 2.749 −168.989
<none> 2.700 −168.066
- Genotype 5 54.958 57.658 5.612

Step: AIC= -168.99
Weight ~ Sex + Age + Genotype

Df Sum of Sq RSS AIC
<none> 2.749 −168.989
- Sex 1 10.374 13.122 −77.201
- Age 1 10.770 13.519 −75.415
- Genotype 5 54.958 57.707 3.662

Call:
lm(formula = Weight ~ Sex + Age + Genotype)

Coefficients:
(Intercept) Sexmale Age GenotypeCloneB

GenotypeCloneC
7.9370 −0.8316 0.2996 0.9678

−1.0436
GenotypeCloneD GenotypeCloneE GenotypeCloneF

0.8240 −0.8754 1.5346

We definitely do not need the three-way interaction, despite the effect of
Sexmale:Age:GenotypeCloneC which gave a significant t test on its own. How
about the three 2-way interactions? The step function leaves out Sex by Genotype and then
assesses the other two. No need for Age by Genotype. Try removing Sex by Age. Nothing.
What about the main effects? They are all highly significant. This is R’s idea of the minimal
adequate model: three main effects but no interactions. That is to say, the slope of the graph
of weight gain against age does not vary with sex or genotype, but the intercepts do vary.
It would be a good idea to look at the summary.lm table for this model:

summary(m2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.93701 0.10066 78.851 < 2e-16 ***
Sexmale −0.83161 0.05937 −14.008 < 2e-16 ***
Age 0.29958 0.02099 14.273 < 2e-16 ***
GenotypeCloneB 0.96778 0.10282 9.412 8.07e-13 ***
GenotypeCloneC −1.04361 0.10282 −10.149 6.21e-14 ***
GenotypeCloneD 0.82396 0.10282 8.013 1.21e-10 ***
GenotypeCloneE −0.87540 0.10282 −8.514 1.98e-11 ***
GenotypeCloneF 1.53460 0.10282 14.925 < 2e-16 ***

ANALYSIS OF COVARIANCE 503

Residual standard error: 0.2299 on 52 degrees of freedom
Multiple R-Squared: 0.9651, Adjusted R-squared: 0.9604
F-statistic: 205.7 on 7 and 52 DF, p-value: < 2.2e-16

This is where Helmert contrasts would actually come in handy (see p. 378). Everything
is three-star significantly different from Genotype[1] Sex[1], but it is not obvious that the
intercepts for genotypes B and D need different values (+0�96 and +0�82 above genotype
A with sediff = 0�1028), nor is it obvious that C and E have different intercepts (−1�043 and
–0.875). Perhaps we could reduce the number of factor levels of Genotype from the present
six to four without any loss of explanatory power ?

We create a new categorical variable called newGenotype with separate levels for clones
A and F, and for B and D combined and C and E combined.

newGenotype<-Genotype
levels(newGenotype)

[1] "CloneA" "CloneB" "CloneC" "CloneD" "CloneE" "CloneF"

levels(newGenotype)[c(3,5)]<-"ClonesCandE"
levels(newGenotype)[c(2,4)]<-"ClonesBandD"
levels(newGenotype)

[1] "CloneA" "ClonesBandD" "ClonesCandE" "CloneF"

Then we redo the modelling with newGenotype (4 levels) instead of Genotype (6 levels):

m3<-lm(Weight~Sex+Age+newGenotype)

and check that the simplification was justified

anova(m2,m3)

Analysis of Variance Table

Model 1: Weight ~ Sex + Age + Genotype
Model 2: Weight ~ Sex + Age + newGenotype

Res.Df RSS Df Sum of Sq F Pr(>F)
1 52 2.74890
2 54 2.99379 –2 –0.24489 2.3163 0.1087

Yes, it was. The p value was 0.1087 so we accept the simpler model m3:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.93701 0.10308 76.996 < 2e-16 ***
Sexmale −0.83161 0.06080 −13.679 < 2e-16 ***
Age 0.29958 0.02149 13.938 < 2e-16 ***
newGenotypeClonesBandD 0.89587 0.09119 9.824 1.28e-13 ***
newGenotypeClonesCandE −0.95950 0.09119 −10.522 1.10e-14 ***
newGenotypeCloneF 1.53460 0.10530 14.574 < 2e-16 ***

Residual standard error: 0.2355 on 54 degrees of freedom
Multiple R-Squared: 0.962, Adjusted R-squared: 0.9585
F-statistic: 273.7 on 5 and 54 DF, p-value: < 2.2e-16

504 THE R BOOK

After an analysis of covariance, it is useful to draw the fitted lines through a scatterplot,
with each factor level represented by different plotting symbols and line types (see p. 167):

plot(Age,Weight,col=as.numeric(newGenotype),pch=(15+as.numeric(Sex)))

xv<-c(1,5)

for (i in 1:2) {
for (j in 1:4){

a<-coef(m3)[1]+(i>1)* coef(m3)[2]+(j>1)*coef(m3)[j+2];b<-coef(m3)[3]
yv<-a+b*xv
lines(xv,yv,lty=2)
} }

W
ei

gh
t

1 2 3
Age

54

6
7

8
9

10
11

Note the use of colour to represent the four genotypes col = as.numeric(newGenotype)
and plotting symbols to represent the two sexes pch=(15+as.numeric(Sex)). You can see
that the males (circles) are heavier than the females (triangles) in all of the genotypes. Other
functions to be considered in plotting the results of ANCOVA are split and augPred in
lattice graphics.

Contrasts and the Parameters of ANCOVA Models

In analysis of covariance, we estimate a slope and an intercept for each level of one or more
factors. Suppose we are modelling weight (the response variable) as a function of sex and

ANALYSIS OF COVARIANCE 505

age, as illustrated on p. 490. The difficulty arises because there are several different ways
of expressing the values of the four parameters in the summary.lm table:

• two slopes, and two intercepts (as in the equations on p. 490);

• one slope and one difference between slopes, and one intercept and one difference
between intercepts;

• the overall mean slope and the overall mean intercept, and one difference between slopes
and one difference between intercepts.

In the second case (two estimates and two differences) a decision needs to be made about
which factor level to associate with the estimate, and which level with the difference (e.g.
should males be expressed as the intercept and females as the difference between intercepts,
or vice versa)? When the factor levels are unordered (the typical case), then R takes the
factor level that comes first in the alphabet as the estimate and the others are expressed as
differences. In our example, the parameter estimates would be female, and male parameters
would be expressed as differences from the female values, because ‘f’ comes before ‘m’ in
the alphabet. This should become clear from an example:

Ancovacontrasts <-read.table("c:\\temp\\Ancovacontrasts.txt",header=T)
attach(Ancovacontrasts)
names(Ancovacontrasts)

[1] "weight" "sex" "age"

First we work out the two regressions separately so that we know the values of the two
slopes and the two intercepts:

lm(weight[sex=="male"]~age[sex=="male"])

Coefficients:
(Intercept) age[sex == "male"]

3.115 1.561

lm(weight[sex=="female"]~age[sex=="female"])

Coefficients:
(Intercept) age[sex == "female"]

1.9663 0.9962

So the intercept for males is 3.115 and the intercept for females is 1.966. The difference
between the first (female) and second intercepts (male) is therefore

3�115 − 1�9266 = +1�1884�

Now we can do an overall regression, ignoring gender:

lm(weight~age)

Coefficients:
(Intercept) age

2.541 1.279

This tells us that the average intercept is 2.541 and the average slope is 1.279.
Next we can carry out an analysis of covariance and compare the output produced by

each of the three different contrast options allowed by R: treatment (the default in R and

506 THE R BOOK

in Glim), Helmert (the default in S-PLUS), and sum. First, the analysis using treatment
contrasts as used by R and by Glim:

options(contrasts=c("contr.treatment", "contr.poly"))
model1<-lm(weight~age*sex)
summary(model1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.9663 0.6268 3.137 0.00636 ***
age 0.9962 0.1010 9.862 3.33e-08 ***
sexmale 1.1489 0.8864 1.296 0.21331
age:sexmale 0.5646 0.1429 3.952 0.00114 ***

The intercept (1.9663) is the intercept for females (because f comes before m in the alphabet).
The age parameter (0.9962) is the slope of the graph of weight against age for females. The
sex parameter (1.1489) is the difference between the (female) intercept and the male intercept
�1�9663+1�1489=3�1152�. The age – sex interaction term is the difference between slopes
of the female and male graphs �0�9962 + 0�5646 = 1�5608�. So with treatment contrasts, the
parameters (in order 1 to 4) are an intercept, a slope, a difference between two intercepts,
and a difference between two slopes. In the standard error column we see, from row 1
downwards, the standard error of an intercept for a regression with females only (0.6268
with n = 10�

∑
x2 = 385 and SSX = 82�5), the standard error of a slope for females only

(0.1010, with SSX = 82�5), the standard error of the difference between two intercepts
each based on n = 10 data points �

√
2 × 0�62682 = 0�8864� and the standard error of the

difference between two slopes each based on n = 10 data points �
√

2 × 0�10102 = 0�1429�.
The formulas for these standard errors are on p. 496. Many people are more comfortable
with this method of presentation than they are with Helmert or sum contrasts.

We now turn to the analysis using Helmert contrasts:

options(contrasts=c("contr.helmert", "contr.poly"))
model2<-lm(weight~age*sex)
summary(model2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.54073 0.44319 5.733 3.08e-05 ***
age 1.27851 0.07143 17.899 5.26e-12 ***
sex1 0.57445 0.44319 1.296 0.21331
age:sex1 0.28230 0.07143 3.952 0.00114 ***

Let’s see if we can work out what the four parameter values represent. The first
parameter, 2.540 73 (labelled Intercept), is the intercept of the overall regression, ignor-
ing sex (see above). The parameter labelled age (1.278 51) is a slope because age
is our continuous explanatory variable. Again, you will see that it is the slope for
the regression of weight against age, ignoring sex. The third parameter, labelled sex
(0.574 45), must have something to do with intercepts because sex is our categori-
cal variable. If we want to reconstruct the second intercept (for males) we need to
add 0.5744 to the overall intercept: 2�540 73 + 0�574 45 = 3�115 18. To get the inter-
cept for females we need to subtract it: 2�540 73 − 0�574 45 = 1�966 28. The fourth
parameter (0.282 30), labelled age:sex, is the difference between the overall mean slope
(1.279) and the male slope: 1�278 51 + 0�282 30 = 1�560 81. To get the slope of weight

ANALYSIS OF COVARIANCE 507

against age for females we need to subtract the interaction term from the age term:
1�278 51 − 0�282 30 = 0�996 21.

In the standard errors column, from the top row downwards, you see the standard error
of an intercept based on a regression with all 20 points (the overall regression, ignoring sex,
0.443 19) and the standard error of a slope based on a regression with all 20 points (0.071 43).
The standard errors of differences (both intercept and slope) involve half the difference
between the male and female values, because with Helmert contrasts the difference is
between the male value and the overall value, rather than between the male and female
values. Thus the third row has the standard error of a difference between the overall intercept
and the intercept for males based on a regression with 10 points �0�443 19 = 0�8864/2�,
and the bottom row has the standard error of a difference between the overall slope and
the slope for males, based on a regression with 10 points �0�1429/2 = 0�071 43�. Thus the
values in the bottom two rows of the Helmert table are simply half the values in the same
rows of the treatment table.

The advantage of Helmert contrasts is in hypothesis testing in more complicated models
than this, because it is easy to see which terms we need to retain in a simplified model by
inspecting their significance levels in the summary.lm table. The disadvantage is that it
is much harder to reconstruct the slopes and the intercepts from the estimated parameters
values (see also p. 378).

Finally, we look at the third option which is sum contrasts:

options(contrasts=c("contr.sum", "contr.poly"))
model3<-lm(weight~age*sex)
summary(model3)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.54073 0.44319 5.733 3.08e-05 ***
age 1.27851 0.07143 17.899 5.26e-12 ***
sex1 −0.57445 0.44319 −1.296 0.21331
age:sex1 −0.28230 0.07143 −3.952 0.00114 ***

The first two estimates are the same as those produced by Helmert contrasts: the overall
intercept and slope of the graph relating weight to age, ignoring sex. The sex parameter
�−0�574 45� is sign reversed compared with the Helmert option: it shows how to calculate
the female (the first) intercept from the overall intercept 2�540 73–0�574 45 = 1�966 28. The
interaction term also has reversed sign: to get the slope for females, add the interaction term
to the slope for age: 1�278 51–0�282 30 = 0�996 21.

The four standard errors for the sum contrasts are exactly the same as those for Helmert
contrasts (explained above).

Order matters in summary.aov

People are often disconcerted by the ANOVA table produced by summary.aov in analysis
of covariance. Compare the tables produced for these two models:

summary.aov(lm(weight~sex*age))

508 THE R BOOK

Df Sum Sq Mean Sq F value Pr(>F)
sex 1 90.492 90.492 107.498 1.657e-08 ***
age 1 269.705 269.705 320.389 5.257e-12 ***
sex:age 1 13.150 13.150 15.621 0.001141 ***
Residuals 16 13.469 0.842

summary.aov(lm(weight~age*sex))

Df Sum Sq Mean Sq F value Pr(>F)
age 1 269.705 269.705 320.389 5.257e-12 ***
sex 1 90.492 90.492 107.498 1.657e-08 ***
age:sex 1 13.150 13.150 15.621 0.001141 ***
Residuals 16 13.469 0.842

Exactly the same sums of squares and p values. No problem. But look at these two models
from the plant compensation example analysed in detail earlier (p. 490):

summary.aov(lm(Fruit~Grazing*Root))

Df Sum Sq Mean Sq F value Pr(>F)
Grazing 1 2910.4 2910.4 62.3795 2.262e-09 ***
Root 1 19148.9 19148.9 410.4201 <2.2e-16 ***
Grazing:Root 1 4.8 4.8 0.1031 0.75
Residuals 36 1679.6 46.7

summary.aov(lm(Fruit~Root*Grazing))

Df Sum Sq Mean Sq F value Pr(>F)
Root 1 16795.0 16795.0 359.9681 < 2.2e-16 ***
Grazing 1 5264.4 5264.4 112.8316 1.209e-12 ***
Root:Grazing 1 4.8 4.8 0.1031 0.75
Residuals 36 1679.6 46.7

In this case the order of variables within the model formula has a huge effect: it changes the
sum of squares associated with the two main effects (root size is continuous and grazing is
categorical, grazed or ungrazed) and alters their p values. The interaction term, the residual
sum of squares and the error variance are unchanged. So what is the difference between the
two cases?

In the first example, where order was irrelevant, the x values for the continuous variable
(age) were identical for both sexes (there is one male and one female value at each of the
ten experimentally controlled ages):

table(sex,age)

age
sex 1 2 3 4 5 6 7 8 9 10
female 1 1 1 1 1 1 1 1 1 1
male 1 1 1 1 1 1 1 1 1 1

In the second example, the x values (root size) were different in the two treatments, and
mean root size was greater for the grazed plants than for the ungrazed ones:

tapply(Root,Grazing, mean)

Grazed Ungrazed
8.3094 6.0529

ANALYSIS OF COVARIANCE 509

Whenever the x values are different in different factor levels, and/or there is different
replication in different factor levels, then SSX and SSXY will vary from level to level and
this will affect the way the sum of squares is distributed across the main effects. It is of no
consequence in terms of your interpretation of the model, however, because the effect sizes
and standard errors in the summary.lm table are unaffected:

summary(lm(Fruit~Root*Grazing))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) −125.173 12.811 −9.771 1.15e-11 ***
Root 23.240 1.531 15.182 < 2e-16 ***
GrazingUngrazed 30.806 16.842 1.829 0.0757 .
Root:GrazingUngrazed 0.756 2.354 0.321 0.7500

summary(lm(Fruit~Grazing*Root))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) −125.173 12.811 −9.771 1.15e-11 ***
GrazingUngrazed 30.806 16.842 1.829 0.0757 .
Root 23.240 1.531 15.182 < 2e-16 ***
GrazingUngrazed:Root 0.756 2.354 0.321 0.7500

13
Generalized Linear Models

We can use generalized linear models (GLMs) pronounced ‘glims’ – when the variance
is not constant, and/or when the errors are not normally distributed. Certain kinds of
response variables invariably suffer from these two important contraventions of the standard
assumptions, and GLMs are excellent at dealing with them. Specifically, we might consider
using GLMs when the response variable is:

• count data expressed as proportions (e.g. logistic regressions);

• count data that are not proportions (e.g. log-linear models of counts);

Mean

V
ar

ia
nc

e

0 2 4 6 8 10

0
1

2
3

4

Mean

V
ar

ia
nc

e

0 2 4 6 8 10

0
2

4
6

8
10

Mean

V
ar

ia
nc

e

0 2 4 6 8 10

0.
0

1.
0

2.
0

3.
0

Mean

V
ar

ia
nc

e

0 2 4 6 8 10

0
20

40
60

80
10

0

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

512 THE R BOOK

• binary response variables (e.g. dead or alive);

• data on time to death where the variance increases faster than linearly with the mean
(e.g. time data with gamma errors).

The central assumption that we have made up to this point is that variance was constant (top
left-hand graph). In count data, however, where the response variable is an integer and there
are often lots of zeros in the dataframe, the variance may increase linearly with the mean
(top tight). With proportion data, where we have a count of the number of failures of an
event as well as the number of successes, the variance will be an inverted U-shaped function
of the mean (bottom left). Where the response variable follows a gamma distribution (as in
time-to-death data) the variance increases faster than linearly with the mean (bottom right).
Many of the basic statistical methods such as regression and Student’s t test assume that
variance is constant, but in many applications this assumption is untenable. Hence the great
utility of GLMs.

A generalized linear model has three important properties:

• the error structure;

• the linear predictor;

• the link function.

These are all likely to be unfamiliar concepts. The ideas behind them are straightforward,
however, and it is worth learning what each of the concepts involves.

Error Structure

Up to this point, we have dealt with the statistical analysis of data with normal errors. In
practice, however, many kinds of data have non-normal errors: for example:

• errors that are strongly skewed;

• errors that are kurtotic;

• errors that are strictly bounded (as in proportions);

• errors that cannot lead to negative fitted values (as in counts).

In the past, the only tools available to deal with these problems were transformation of
the response variable or the adoption of non-parametric methods. A GLM allows the
specification of a variety of different error distributions:

• Poisson errors, useful with count data;

• binomial errors, useful with data on proportions;

• gamma errors, useful with data showing a constant coefficient of variation;

• exponential errors, useful with data on time to death (survival analysis).

GENERALIZED LINEAR MODELS 513

The error structure is defined by means of the family directive, used as part of the
model formula. Examples are

glm(y ~ z, family = poisson)

which means that the response variable y has Poisson errors, and

glm(y ~ z, family = binomial)

which means that the response is binary, and the model has binomial errors. As with previous
models, the explanatory variable z can be continuous (leading to a regression analysis) or
categorical (leading to an ANOVA-like procedure called analysis of deviance, as described
below).

Linear Predictor

The structure of the model relates each observed y value to a predicted value. The predicted
value is obtained by transformation of the value emerging from the linear predictor. The
linear predictor, � (eta), is a linear sum of the effects of one or more explanatory variables, xj:

�i =
p∑

j=1

xij�j

where the xs are the values of the p different explanatory variables, and the �s are the
(usually) unknown parameters to be estimated from the data. The right-hand side of the
equation is called the linear structure.

There are as many terms in the linear predictor as there are parameters, p, to be estimated
from the data. Thus, with a simple regression, the linear predictor is the sum of two terms
whose parameters are the intercept and the slope. With a one-way ANOVA with four
treatments, the linear predictor is the sum of four terms leading to the estimation of the
mean for each level of the factor. If there are covariates in the model, they add one term
each to the linear predictor (the slope of each relationship). Interaction terms in a factorial
ANOVA add one or more parameters to the linear predictor, depending upon the degrees
of freedom of each factor (e.g. there would be three extra parameters for the interaction
between a two-level factor and a four-level factor, because �2 − 1� × �4 − 1� = 3�.

To determine the fit of a given model, a GLM evaluates the linear predictor for each value
of the response variable, then compares the predicted value with a transformed value of y.
The transformation to be employed is specified in the link function, as explained below.
The fitted value is computed by applying the reciprocal of the link function, in order to get
back to the original scale of measurement of the response variable.

Link Function

One of the difficult things to grasp about GLMs is the relationship between the values of
the response variable (as measured in the data and predicted by the model in fitted values)
and the linear predictor. The thing to remember is that the link function relates the mean
value of y to its linear predictor. In symbols, this means that

� = g����

514 THE R BOOK

which is simple, but needs thinking about. The linear predictor, �, emerges from the linear
model as a sum of the terms for each of the p parameters. This is not a value of y (except
in the special case of the identity link that we have been using (implicitly) up to now). The
value of � is obtained by transforming the value of y by the link function, and the predicted
value of y is obtained by applying the inverse link function to �.

The most frequently used link functions are shown below. An important criterion in the
choice of link function is to ensure that the fitted values stay within reasonable bounds. We
would want to ensure, for example, that counts were all greater than or equal to 0 (negative
count data would be nonsense). Similarly, if the response variable was the proportion of
individuals that died, then the fitted values would have to lie between 0 and 1 (fitted values
greater than 1 or less than 0 would be meaningless). In the first case, a log link is appropriate
because the fitted values are antilogs of the linear predictor, and all antilogs are greater than
or equal to 0. In the second case, the logit link is appropriate because the fitted values are
calculated as the antilogs of the log odds, log�p/q�.

By using different link functions, the performance of a variety of models can be compared
directly. The total deviance is the same in each case, and we can investigate the consequences
of altering our assumptions about precisely how a given change in the linear predictor brings
about a response in the fitted value of y. The most appropriate link function is the one which
produces the minimum residual deviance.

Canonical Link Functions

The canonical link functions are the default options employed when a particular error
structure is specified in the family directive in the model formula. Omission of a link
directive means that the following settings are used:

Error Canonical link

normal identity

poisson log

binomial logit

Gamma reciprocal

You should try to memorize these canonical links and to understand why each is appropriate to
its associated error distribution. Note that only gamma errors have a capital initial letter in R.

Choosing between using a link function (e.g. log link) and transforming the response
variable (i.e. having log�y� as the response variable rather than y) takes a certain amount
of experience. The decision is usually based on whether the variance is constant on the
original scale of measurement. If the variance was constant, you would use a link function.
If the variance increased with the mean, you would be more likely to log transform the
response.

Proportion Data and Binomial Errors

Proportion data have three important properties that affect the way the data should be
analysed:

GENERALIZED LINEAR MODELS 515

• the data are strictly bounded;

• the variance is non-constant;

• errors are non-normal.

You cannot have a proportion greater than 1 or less than 0. This has obvious implica-
tions for the kinds of functions fitted and for the distributions of residuals around these
fitted functions. For example, it makes no sense to have a linear model with a negative
slope for proportion data because there would come a point, with high levels of the x
variable, that negative proportions would be predicted. Likewise, it makes no sense to
have a linear model with a positive slope for proportion data because there would come
a point, with high levels of the x variable, that proportions greater than 1 would be
predicted.

With proportion data, if the probability of success is 0, then there will be no successes in
repeated trials, all the data will be zeros and hence the variance will be zero. Likewise, if
the probability of success is 1, then there will be as many successes as there are trials, and
again the variance will be 0. For proportion data, therefore, the variance increases with the
mean up to a maximum (when the probability of success is one half) then declines again
towards zero as the mean approaches 1. The variance–mean relationship is humped, rather
than constant as assumed in the classical tests.

The final assumption is that the errors (the differences between the data and the fitted
values estimated by the model) are normally distributed. This cannot be so in proportional
data because the data are bounded above and below: no matter how big a negative residual
might be at high predicted values, ŷ, a positive residual cannot be bigger than 1 − ŷ.
Similarly, no matter how big a positive residual might be for low predicted values ŷ, a
negative residual cannot be greater than ŷ (because you cannot have negative proportions).
This means that confidence intervals must be asymmetric whenever ŷ takes large values
(close to 1) or small values (close to 0).

All these issues (boundedness, non-constant variance, non-normal errors) are dealt with
by using a generalized linear model with a binomial error structure. It could not be simpler
to deal with this. Instead of using a linear model and writing

lm(y~x)

we use a generalized linear model and specify that the error family is binomial like this:

glm(y~x,family=binomial)

That’s all there is to it. In fact, it is even easier than that, because we don’t need to write
family=:

glm(y~x,binomial)

Count Data and Poisson Errors

Count data have a number of properties that need to be considered during modelling:

• count data are bounded below (you cannot have counts less than zero);

• variance is not constant (variance increases with the mean);

516 THE R BOOK

• errors are not normally distributed;

• the fact that the data are whole numbers (integers) affects the error distribution.

It is very simple to deal with all these issues by using a GLM. All we need to write is

glm(y~x,poisson)

and the model is fitted with a log link (to ensure that the fitted values are bounded below)
and Poisson errors (to account for the non-normality).

Deviance: Measuring the Goodness of Fit of a GLM

The fitted values produced by the model are most unlikely to match the values of the data
perfectly. The size of the discrepancy between the model and the data is a measure of the
inadequacy of the model; a small discrepancy may be tolerable, but a large one will not be.
The measure of discrepancy in a GLM to assess the goodness of fit of the model to the data
is called the deviance. Deviance is defined as −2 times the difference in log-likelihood
between the current model and a saturated model (i.e. a model that fits the data perfectly).
Because the latter does not depend on the parameters of the model, minimizing the deviance
is the same as maximizing the likelihood.

Deviance is estimated in different ways for different families within glm (Table 13.1).
Numerical examples of the calculation of deviance for different glm families are given in
Chapter 14 (Poisson errors), Chapter 15 (binomial errors), and Chapter 24 (gamma errors).
Where there is grouping structure in the data, leading to spatial or temporal pseudoreplica-
tion, you will want to use generalized mixed models (lmer) with one of these error families
(p. 590).

Table 13.1. Deviance formulae for different GLM families where y is observed data, ȳ the mean
value of y, � are the fitted values of y from the maximum likelihood model, and n is the binomial
denominator in a binomial GLM.

Family (error structure) Deviance Variance function

normal
∑

�y − ȳ�2 1
poisson 2

∑
y ln�y/�� − �y − �� �

binomial 2
∑

y ln�y/�� + �n − y� ln�n − y�/�n − ��
��n − ��

n
Gamma 2

∑
�y − ��/y − ln�y/�� �2

inverse. gaussian
∑

�y − ��2/��2y� �3

Quasi-likelihood

The precise relationship between the variance and the mean is well established for all
the GLM error families (Table 13.1). In some cases, however, we may be uneasy about
specifying the precise form of the error distribution. We may know, for example, that it is
not normal (e.g. because the variance increases with the mean), but we don’t know with
any confidence that the underlying distribution is, say, negative binomial.

GENERALIZED LINEAR MODELS 517

There is a very simple and robust alternative known as quasi-likelihood, introduced by
Wedderburn (1974), which uses only the most elementary information about the response
variable, namely the variance–mean relationship (see Taylor’s power law, p. 198). It is
extraordinary that this information alone is often sufficient to retain close to the full effi-
ciency of maximum likelihood estimators.

Suppose that we know that the response is always positive, the data are invariably skew
to the right, and the variance increases with the mean. This does not enable us to specify a
particular distribution (e.g. it does not discriminate between Poisson or negative binomial
errors), and hence we cannot use techniques like maximum likelihood or likelihood ratio
tests. Quasi-likelihood frees us from the need to specify a particular distribution, and requires
us only to specify the mean-to-variance relationship up to a proportionality constant, which
can be estimated from the data:

var�yi� ∝ ���i�	

An example of the principle at work compares quasi-likelihood with maximum likelihood
in the case of Poisson errors (full details are in McCulloch and Searle, 2001). This means
that the maximum quasi-likelihood (MQL) equations for � are

�

∑
�yi log �i − �i� = 0�

which is exactly the same as the maximum likelihood equation for the Poisson (see p. 250).
In this case, MQL and maximum likelihood give precisely the same estimates, and MQL
would therefore be fully efficient. Other cases do not work out quite as elegantly as this,
but MQL estimates are generally robust and efficient. Their great virtue is the simplicity
of the central premise that var�yi� ∝ ���i�, and the lack of the need to assume a specific
distributional form.

If we take the original GLM density function and find the derivative of the log-likelihood
with respect to the mean,

li

�i

=
li

�i

�i

�i

= yib
′��i�

ai���

1
b′′��i�

= yi − �i

var�yi�

(where the primes denote differentiation), the quasi-likelihood Q is defined as

Q�y��� =
�∫

y

y − �

�V���
d�	

Here, the denominator is the variance of y� var�y� = �V���, where � is called the scale
parameter (or the dispersion parameter) and V��� is the variance function. We need only
specify the two moments (mean � and variance �V���) and maximize Q to find the MQL
estimates of the parameters.

The scale parameter is estimated from the generalized Pearson statistic rather than from the
residual deviance (as when correcting for overdispersion with Poisson or binomial errors):

�̂ =
∑

i �yi − �̂i�/Vi��̂i��

n − p
= �2

n − p
	

For normally distributed data, the residual sum of squares SSE is chi-squared distributed.

518 THE R BOOK

Generalized Additive Models

Generalized additive models (GAMs) are like GLMs in that they can have different error
structures and different link functions to deal with count data or proportion data. What makes
them different is that the shape of the relationship between y and a continuous variable x
is not specified by some explicit functional form. Instead, non-parametric smoothers are
used to describe the relationship. This is especially useful for relationships that exhibit
complicated shapes, such as hump-shaped curves (see p. 666). The model looks just like a
GLM, except that the relationships we want to be smoothed are prefixed by s: thus, if we had
a three-variable multiple regression (with three continuous explanatory variables w, x and
z) on count data and we wanted to smooth all three explanatory variables, we would write:

model<-gam(y~s(w)+s(x)+s(z),poisson)

These are hierarchical models, so the inclusion of a high-order interaction (such as A:B:C)
necessarily implies the inclusion of all the lower-order terms marginal to it (i.e. A:B, A:C
and B:C, along with main effects for A, B and C).

Because the models are nested, the more complicated model will necessarily explain at
least as much of the variation as the simpler model (and usually more). What we want to
know is whether the extra parameters in the more complex model are justified in the sense
that they add significantly to the models explanatory power. If they do not, then parsimony
requires that we accept the simpler model.

Offsets

An offset is a component of the linear predictor that is known in advance (typically from
theory, or from a mechanistic model of the process) and, because it is known, requires no
parameter to be estimated from the data. For linear models with normal errors an offset is
redundant, since you can simply subtract the offset from the values of the response variable,
and work with the residuals instead of the y values. For GLMs, however, it is necessary
to specify the offset; this is held constant while other explanatory variables are evaluated.
Here is an example from the timber data.

The background theory is simple. We assume the logs are roughly cylindrical (i.e. that
taper is negligible between the bottom and the top of the log). Then volume, v, in relation
to girth, g, and height, h, is given by

v = g2

4�
h	

Taking logarithms gives

log�v� = log
(

1
4�

)
+ 2 log�g� + log�h�	

We would expect, therefore, that if we did a multiple linear regression of log�v� on log�h�
and log�g� we would get estimated slopes of 1.0 for log�h� and 2.0 for log�g�. Let’s see
what happens:

data <-read.delim("c:\\temp\\timber.txt")
attach(data)
names(data)

GENERALIZED LINEAR MODELS 519

[1] "volume" "girth" "height"

The girths are in centimetres but all the other data are in metres, so we convert the girths
to metres at the outset:

girth<-girth/100

Now fit the model:

model1<-glm(log(volume)~log(girth)+log(height))
summary(model1)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) −2.89938 0.63767 −4.547 9.56e-05 ***
log(girth) 1.98267 0.07503 26.426 < 2e-16 ***
log(height) 1.11714 0.20448 5.463 7.83e-06 ***

Residual deviance: 0.18555 on 28 degrees of freedom
AIC: -62.697

The estimates are reasonably close to expectation (1.11714 rather than 1.0 for log�h� and
1.98267 rather than 2.0 for log�g�).

Now we shall use offset to specify the theoretical response of log�v� to log�h�; i.e. a
slope of 1.0 rather than the estimated 1.11714:

model2<-glm(log(volume)~log(girth)+offset(log(height)))
summary(model2)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) −2.53419 0.01457 −174.0 <2e-16 ***
log(girth) 2.00545 0.06287 31.9 <2e-16 ***

Residual deviance: 0.18772 on 29 degrees of freedom
AIC: -64.336

Naturally the residual deviance is greater, but only by a very small amount. The AIC has
gone down from −62	697 to −64	336, so the model simplification was justified.

Let us try including the theoretical slope (2.0) for log�g� in the offset as well:

model3<-glm(log(volume)~1+offset(log(height)+2*log(girth)))
summary(model3)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) −2.53403 0.01421 −178.3 <2e-16 ***

Residual deviance: 0.18777 on 30 degrees of freedom
AIC: -66.328

Again, the residual deviance is only marginally greater, and AIC is smaller, so the simpli-
fication is justified.

What about the intercept? If our theoretical model of cylindrical logs is correct then the
intercept should be

log(1/(4*pi))

[1] -2.531024

520 THE R BOOK

This is almost exactly the same as the intercept estimated by GLM in model3, so we are
justified in putting the entire model in the offset and informing GLM not to estimate an
intercept from the data (y~-1):

model4<-glm(log(volume) ~ offset(log(1/(4*pi))+log(height)+2*log(girth))-1)
summary(model4)

No Coefficients

Residual deviance: 0.18805 on 31 degrees of freedom
AIC: -68.282

This is a rather curious model with no estimated parameters, but it has a residual deviance
of just 0.18805 (compared with model1, where all three parameters were estimated from
the data, which had a deviance of 0.18555). Because we were saving one degree of freedom
with each step in the procedure, AIC became smaller with each step, justifying all of the
model simplifications.

Residuals

After fitting a model to data, we should investigate how well the model describes the data.
In particular, we should look to see if there are any systematic trends in the goodness of
fit. For example, does the goodness of fit increase with the observation number, or is it a
function of one or more of the explanatory variables? We can work with the raw residuals:

residuals = response variable – fitted values	

With normal errors, the identity link, equal weights and the default scale factor, the raw
and standardized residuals are identical. The standardized residuals are required to correct
for the fact that with non-normal errors (like count or proportion data) we violate the
fundamental assumption that the variance is constant (p. 389) because the residuals tend to
change in size as the mean value the response variable changes.

For Poisson errors, the standardized residuals are

y − fitted values√
fitted values

	

For binomial errors they are

y − fitted values√
fitted values ×

[
1 − fitted values

binomial denominator

]

where the binomial denominator is the size of the sample from which the y successes were
drawn. For Gamma errors they are

y − fitted values
fitted values

GENERALIZED LINEAR MODELS 521

In general, we can use several kinds of standardized residuals

standardized residuals = �y − fitted values�

√
prior weight

scale parameter × variance funcion

where the prior weights are optionally specified by you to give individual data points more
or less influence (see p. 345), the scale parameter measures the degree of overdispersion
(see p. 573), and the variance function describes the relationship between the variance and
the mean (e.g. equality for a Poisson process; see Table 13.1).

Misspecified Error Structure

A common problem with real data is that the variance increases with the mean. The
assumption in previous chapters has been of normal errors with constant variance at all
values of the response variable. For continuous measurement data with non-constant errors
we can specify a generalized linear model with gamma errors. These are discussed in
Chapter 25 along with worked examples, and we need only note at this stage that they
assume a constant coefficient of variation (see Taylor’s power law, p. 198).

With count data, we often assume Poisson errors, but the data may exhibit overdispersion
(see below and p. 540), so that the variance is actually greater than the mean (rather than
equal to it, as assumed by the Poisson distribution). An important distribution for describing
aggregated data is the negative binomial. While R has no direct facility for specifying
negative binomial errors, we can use quasi-likelihood to specify the variance function in a
GLM with family = quasi (see p. 517).

Misspecified Link Function

Although each error structure has a canonical link function associated with it (see p. 514),
it is quite possible that a different link function would give a better fit for a particular
model specification. For example, in a GLM with normal errors we might try a log link or
a reciprocal link using quasi to improve the fit (for examples, see p. 513). Similarly, with
binomial errors we might try a complementary log-log link instead of the default logit link
function (see p. 572).

An alternative to changing the link function is to transform the values of the response
variable. The important point to remember here is that changing the scale of y will alter
the error structure (see p. 327). Thus, if you take logs of y and carry out regression with
normal errors, then you will be assuming that the errors in y were log normally distributed.
This may well be a sound assumption, but a bias will have been introduced if the errors
really were additive on the original scale of measurement. If, for example, theory suggests
that there is an exponential relationship between y and x,

y = aebx�

then it would be reasonable to suppose that the log of y would be linearly related to x:

ln y = ln a + bx	

522 THE R BOOK

Now suppose that the errors � in y are multiplicative with a mean of 0 and constant variance,
like this:

y = aebx�1 + ��	

Then they will also have a mean of 0 in the transformed model. But if the errors are additive,

y = aebx + ��

then the error variance in the transformed model will depend upon the expected value
of y. In a case like this, it is much better to analyse the untransformed response vari-
able and to employ the log link function, because this retains the assumption of additive
errors.

When both the error distribution and functional form of the relationship are unknown,
there is no single specific rationale for choosing any given transformation in preference to
another. The aim is pragmatic, namely to find a transformation that gives:

• constant error variance;

• approximately normal errors;

• additivity;

• a linear relationship between the response variables and the explanatory variables;

• straightforward scientific interpretation.

The choice is bound to be a compromise and, as such, is best resolved by quantitative
comparison of the deviance produced under different model forms (see Chapter 9).

Overdispersion

Overdispersion is the polite statistician’s version of Murphy’s law: if something can go
wrong, it will. Overdispersion can be a problem when working with Poisson or binomial
errors, and tends to occur because you have not measured one or more of the factors that turn
out to be important. It may also result from the underlying distribution being non-Poisson or
non-binomial. This means that the probability you are attempting to model is not constant
within each cell, but behaves like a random variable. This, in turn, means that the residual
deviance is inflated. In the worst case, all the predictor variables you have measured may
turn out to be unimportant so that you have no information at all on any of the genuinely
important predictors. In this case, the minimal adequate model is just the overall mean, and
all your ‘explanatory’ variables provide no extra information.

The techniques of dealing with overdispersion are discussed in detail when we consider
Poisson errors (p. 527) and binomial errors (p. 569). Here it is sufficient to point out that
there are two general techniques available to us:

• use F tests with an empirical scale parameter instead of chi-squared;

• use quasi-likelihood to specify a more appropriate variance function.

GENERALIZED LINEAR MODELS 523

It is important, however, to stress that these techniques introduce another level of uncertainty
into the analysis. Overdispersion happens for real, scientifically important reasons, and these
reasons may throw doubt upon our ability to interpret the experiment in an unbiased way.
It means that something we did not measure turned out to have an important impact on the
results. If we did not measure this factor, then we have no confidence that our randomization
process took care of it properly and we may have introduced an important bias into the
results.

Bootstrapping a GLM

There are two contrasting ways of using bootstrapping with statistical models:

• Fit the model lots of times by selecting cases for inclusion at random with replacement,
so that some data points are excluded and others appear more than once in any particular
model fit.

• Fit the model once and calculate the residuals and the fitted values, then shuffle the
residuals lots of times and add them to the fitted values in different permutations, fitting
the model to the many different data sets.

In both cases, you will obtain a distribution of parameter values for the model from which
you can derive confidence intervals. Here we use the timber data (a multiple regression with
two continuous explanatory variables, introduced on p. 336) to illustrate the two approaches
(see p. 284 for an introduction to the bootstrap).

library(boot)

The GLM model with its parameter estimates and standard errors is on p. 519. The hard
part of using boot is writing the sampling function correctly. It has at least two arguments:
the first must be the data on which the resampling is to be carried out (in this case, the
whole dataframe called trees), and the second must be the index (the randomized subscripts
showing which data values are to be used in a given realization; some cases will be repeated,
others will be omitted). Inside the function we create a new dataframe based on the randomly
selected indices, then fit the model to this new data set. Finally, the function should return
the coefficients of the model. Here is the ‘statistic’ function in full:

model.boot<-function(data,indices){
sub.data<-data[indices,]
model<-glm(log(volume)~log(girth)+log(height),data=sub.data)
coef(model) }

Now run the bootstrap for 2000 resamplings using the boot function:

glim.boot<-boot(trees,model.boot,R=2000)
glim.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = trees, statistic = model.boot, R = 2000)

524 THE R BOOK

Bootstrap Statistics :
original bias std. error

t1* −2.899379 −0.046089511 0.6452832
t2* 1.982665 −0.001071986 0.0603073
t3* 1.117138 0.014858487 0.2082793

There is very little bias in any of the three parameters, and the bootstrapped standard errors
are close to their parametric estimates.

The other way of bootstrapping with a model, mentioned above, is to include all the
original cases (rather than a subset of them with repeats, as we did above) but to randomize
the residuals that are associated with each case. The raw residuals are y – fitted(model)
and it is these values that are shuffled and allocated to cases at random. The model is
then refitted and the coefficients extracted. The new y values, therefore, are fitted(model)+
sample(y − fitted(model)). Here is a home-made version:

model<-glm(log(volume)~log(girth)+log(height))
yhat<-fitted(model)
residuals<- log(volume)- yhat
coefs<-numeric(6000)
coefs<-matrix(coefs,nrow=2000)

We shuffle the residuals 2000 times to get different vectors of y values:

for (i in 1:2000){
y<-yhat+sample(residuals)
boot.model<-glm(y~log(girth)+log(height))
coefs[i,]<-coef(boot.model) }

Extracting the means and standard deviations of the coefficients gives

apply(coefs,2,mean)

[1] -2.898088 1.982693 1.116724

apply(coefs,2,sd)

[1] 0.60223281 0.07231379 0.19317107

These values are close to the estimates obtained by other means earlier. Next, we use
the boot function to carry out this method. The preliminaries involve fitting the GLM
and extracting the fitted values (yhat which will be the same each time) and the residuals
(resids) which will be independently shuffled each time:

model<-glm(log(volume)~log(girth)+log(height))
yhat<-fitted(model)
resids<-resid(model)

Now make a dataframe that will be fed into the bootstrap, containing the residuals to be
shuffled, along with the two explanatory variables:

res.data<-data.frame(resids,girth,height)

Now for the only hard part: writing the ‘statistic’ function to do the work within boot.
The first argument is always the dataframe and the second is always the index i, which
controls the shuffling:

GENERALIZED LINEAR MODELS 525

bf<-function(res.data,i) {
y<-yhat+res.data[i,1]
ndv-data.frame(y,girth,height)
model<-glm(y~log(girth)+log(height),data=nd)
coef(model) }

Inside the function we create a particular vector of y values by adding the shuffled
residuals res.data[i,1] to the fitted values, then put this vector, y, along with the explanatory
variables into a new dataframe nd that will be different each time GLM the is fitted. The
function returns the three coefficients from the particular fitted model coef(model); the
coefficients are the ‘statistics’ of the bootstrap, hence the name of the function.

Finally, because we want to shuffle the residuals rather than sample them with replace-
ment, we specify sim="permutation" in the call to the boot function:

boot(res.data, bf, R=2000, sim="permutation")

DATA PERMUTATION
Call:
boot(data = res.data, statistic = bf, R = 2000, sim = "permutation")
Bootstrap Statistics :

original bias std. error
t1* −2.899379 0.014278399 0.62166875
t2* 1.982665 0.001601178 0.07064475
t3* 1.117138 −0.004586529 0.19938992

Again, the parameter values and their standard errors are very close to those obtained by
our other bootstrapping methods. Here are the confidence intervals for the three parameters,
specified by index = 1 fo the intercept, index = 2 for the slope of the regression on log�g�
and index = 3 for the slope of the regression on log�h�:

perms<- boot(res.data, bf, R=2000, sim="permutation")
boot.ci(perms,index=1)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL :
boot.ci(boot.out = perms, index = 1)

Intervals :
Level Normal Basic
95% (−4.117, −1.692) (−4.118, −1.680)
Level Percentile BCa
95% (−4.119, −1.681) (−4.302, −1.784)
Calculations and Intervals on Original Scale
There were 32 warnings (use warnings() to see them)

boot.ci(perms,index=2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL :
boot.ci(boot.out = perms, index = 2)

526 THE R BOOK

Intervals :
Level Normal Basic
95% (1.837, 2.125) (1.836, 2.124)

Level Percentile BCa
95% (1.841, 2.129) (1.827, 2.115)
Calculations and Intervals on Original Scale
There were 32 warnings (use warnings() to see them)

boot.ci(perms,index=3)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL :
boot.ci(boot.out = perms, index = 3)

Intervals :
Level Normal Basic
95% (0.730, 1.508) (0.726, 1.509)

Level Percentile BCa
95% (0.725, 1.508) (0.758, 1.566)
Calculations and Intervals on Original Scale
There were 32 warnings (use warnings() to see them)

You can see that all the intervals for the slope on log�g� include the value 2.0 and all the
intervals for the slope on log�h� include 1.0, consistent with the theoretical expectation that
the logs are cylindrical, and that the volume of usable timber can be estimated from the
length of the log and the square of its girth.

14
Count Data

Up to this point, the response variables have all been continuous measurements such as
weights, heights, lengths, temperatures, and growth rates. A great deal of the data collected
by scientists, medical statisticians and economists, however, is in the form of counts (whole
numbers or integers). The number of individuals that died, the number of firms going
bankrupt, the number of days of frost, the number of red blood cells on a microscope
slide, and the number of craters in a sector of lunar landscape are all potentially interesting
variables for study. With count data, the number 0 often appears as a value of the response
variable (consider, for example, what a 0 would mean in the context of the examples
just listed). In this chapter we deal with data on frequencies, where we count how many
times something happened, but we have no way of knowing how often it did not happen
(e.g. lightning strikes, bankruptcies, deaths, births). This is in contrast to count data on
proportions, where we know the number doing a particular thing, but also the number
not doing that thing (e.g. the proportion dying, sex ratios at birth, proportions of different
groups responding to a questionnaire).

Straightforward linear regression methods (assuming constant variance, normal errors)
are not appropriate for count data for four main reasons:

• The linear model might lead to the prediction of negative counts.

• The variance of the response variable is likely to increase with the mean.

• The errors will not be normally distributed.

• Zeros are difficult to handle in transformations.

In R, count data are handled very elegantly in a generalized linear model by specifying
family=poisson which sets errors = Poisson and link = log (see p. 515). The log link
ensures that all the fitted values are positive, while the Poisson errors take account of the
fact that the data are integer and have variances that are equal to their means.

A Regression with Poisson Errors

The following example has a count (the number of reported cancer cases per year per clinic)
as the response variable, and a single continuous explanatory variable (the distance from a

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

528 THE R BOOK

nuclear plant to the clinic in km). The question is whether or not proximity to the reactor
affects the number of cancer cases.

clusters<-read.table("c:\\temp\\clusters.txt",header=T)
attach(clusters)
names(clusters)

[1] "Cancers" "Distance"

plot(Distance,Cancers)

There seems to be a downward trend in cancer cases with distance (see the plot below).
But is the trend significant? We do a regression of cases against distance, using a GLM
with Poisson errors:

model1<-glm(Cancers~Distance,poisson)
summary(model1)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.186865 0.188728 0.990 0.3221
Distance -0.006138 0.003667 -1.674 0.0941 .

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 149.48 on 93 degrees of freedom
Residual deviance: 146.64 on 92 degrees of freedom
AIC: 262.41

The trend does not look to be significant, but look at the residual deviance. It is assumed
that this is the same as the residual degrees of freedom. The fact that residual deviance
is larger than residual degrees of freedom indicates that we have overdispersion (extra,
unexplained variation in the response). We compensate for the overdispersion by refitting
the model using quasi-Poisson rather than Poisson errors:

model2<-glm(Cancers~Distance,quasipoisson)
summary(model2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.186865 0.235341 0.794 0.429
Distance -0.006138 0.004573 -1.342 0.183

(Dispersion parameter for quasipoisson family taken to be 1.555271)

Null deviance: 149.48 on 93 degrees of freedom
Residual deviance: 146.64 on 92 degrees of freedom
AIC: NA

Compensating for the overdispersion has increased the p value to 0.183, so there is no
compelling evidence to support the existence of a trend in cancer incidence with distance
from the nuclear plant. To draw the fitted model through the data, you need to understand
that the GLM with Poisson errors uses the log link, so the parameter estimates and the
predictions from the model (the ‘linear predictor’) are in logs, and need to be antilogged
before the (non-significant) fitted line is drawn.

COUNT DATA 529

xv<-seq(0,100,.1
yv<-predict(model2,list(Distance=xv))
lines(xv,exp(yv))

0

0
1

2
3

4
5

6

20 40
Distance

C
an

ce
rs

60 80 100

Analysis of Deviance with Count Data

In our next example the response variable is a count of infected blood cells per mm2 on
microscope slides prepared from randomly selected individuals. The explanatory variables
are smoker (logical, yes or no), age (three levels, under 20, 21 to 59, 60 and over), sex
(male or female) and body mass score (three levels, normal, overweight, obese).

count<-read.table("c:\\temp\\cells.txt",header=T)
attach(count)
names(count)

[1] "cells" "smoker" "age" "sex" "weight"

It is always a good idea with count data to get a feel for the overall frequency distribution
of counts using table:

table(cells)

0 1 2 3 4 5 6 7
314 75 50 32 18 13 7 2

Most subjects (314 of them) showed no damaged cells, and the maximum of 7 was observed
in just two patients.

We begin data inspection by tabulating the main effect means:

530 THE R BOOK

tapply(cells,smoker,mean)

FALSE TRUE
0.5478723 1.9111111

tapply(cells,weight,mean)

normal obese over
0.5833333 1.2814371 0.9357143

tapply(cells,sex,mean)

female male
0.6584507 1.2202643

tapply(cells,age,mean)

mid old young
0.8676471 0.7835821 1.2710280

It looks as if smokers have a substantially higher mean count than non-smokers, that
overweight and obese subjects had higher counts than normal weight, males had a higher
count that females, and young subjects had a higher mean count than middle-aged or older
people. We need to test whether any of these differences are significant and to assess
whether there are interactions between the explanatory variables.

model1<-glm(cells~smoker*sex*age*weight,poisson)
summary(model1)

Null deviance: 1052.95 on 510 degrees of freedom
Residual deviance: 736.33 on 477 degrees of freedom
AIC: 1318

Number of Fisher Scoring iterations: 6

The residual deviance (736.33) is much greater than the residual degrees of freedom (477),
indicating overdispersion, so before interpreting any of the effects, we should refit the model
using quasi-Poisson errors:

model2<-glm(cells~smoker*sex*age*weight,quasipoisson)
summary(model2)

Call:
glm(formula = cells ~ smoker * sex * age * weight, family = quasipoisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.236 -1.022 -0.851 0.520 3.760

Coefficients: (2 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.8329 0.4307 -1.934 0.0537 .
smokerTRUE -0.1787 0.8057 -0.222 0.8246
sexmale 0.1823 0.5831 0.313 0.7547
ageold -0.1830 0.5233 -0.350 0.7267
ageyoung 0.1398 0.6712 0.208 0.8351
weightobese 1.2384 0.8965 1.381 0.1678
weightover -0.5534 1.4284 -0.387 0.6986
smokerTRUE:sexmale 0.8293 0.9630 0.861 0.3896
smokerTRUE:ageold -1.7227 2.4243 -0.711 0.4777

COUNT DATA 531

smokerTRUE:ageyoung 1.1232 1.0584 1.061 0.2892
sexmale:ageold -0.2650 0.9445 -0.281 0.7791
sexmale:ageyoung -0.2776 0.9879 -0.281 0.7788
smokerTRUE:weightobese 3.5689 1.9053 1.873 0.0617 .
smokerTRUE:weightover 2.2581 1.8524 1.219 0.2234
sexmale:weightobese -1.1583 1.0493 -1.104 0.2702
sexmale:weightover 0.7985 1.5256 0.523 0.6009
ageold:weightobese -0.9280 0.9687 -0.958 0.3386
ageyoung:weightobese -1.2384 1.7098 -0.724 0.4693
ageold:weightover 1.0013 1.4776 0.678 0.4983
ageyoung:weightover 0.5534 1.7980 0.308 0.7584
smokerTRUE:sexmale:ageold 1.8342 2.1827 0.840 0.4011
smokerTRUE:sexmale:ageyoung -0.8249 1.3558 -0.608 0.5432
smokerTRUE:sexmale: -2.2379 1.7788 -1.258 0.2090
weightobese
smokerTRUE:sexmale:weightover -2.5033 2.1120 -1.185 0.2365
smokerTRUE:ageold: 0.8298 3.3269 0.249 0.8031
weightobese
smokerTRUE:ageyoung: -2.2108 1.0865 -2.035 0.0424 *
weightobese
smokerTRUE:ageold: 1.1275 1.6897 0.667 0.5049
weightover
smokerTRUE:ageyoung:weightover -1.6156 2.2168 -0.729 0.4665
sexmale:ageold:weightobese 2.2210 1.3318 1.668 0.0960 .
sexmale:ageyoung:weightobese 2.5346 1.9488 1.301 0.1940
sexmale:ageold:weightover -1.0641 1.9650 -0.542 0.5884
sexmale:ageyoung:weightover -1.1087 2.1234 -0.522 0.6018
smokerTRUE:sexmale:ageold: -1.6169 3.0561 -0.529 0.5970
weightobese
smokerTRUE:sexmale:ageyoung NA NA NA NA
weightobese
smokerTRUE:sexmale:ageold: NA NA NA NA
weightover
smokerTRUE:sexmale:ageyoung: 2.4160 2.6846 0.900 0.3686
weightover

(Dispersion parameter for quasipoisson family taken to be 1.854815)

Null deviance: 1052.95 on 510 degrees of freedom
Residual deviance: 736.33 on 477 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

There is an apparently significant three-way interaction between smoking, age and obesity
�p = 0�0424�. There were too few subjects to assess the four-way interaction (see the NAs
in the table), so we begin model simplification by removing the highest-order interaction:

model3<-update(model2, ~. -smoker:sex:age:weight)
summary(model3)

Call:
glm(formula = cells ~ smoker + sex + age + weight + smoker:sex +

smoker:age + sex:age + smoker:weight + sex:weight + age:weight +

532 THE R BOOK

smoker:sex:age + smoker:sex:weight + smoker:age:weight +
sex:age:weight, family = quasipoisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.2442 -1.0477 -0.8921 0.5195 3.7613

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.897195 0.436988 -2.053 0.04060 *
smokerTRUE 0.030263 0.735386 0.041 0.96719
sexmale 0.297192 0.570009 0.521 0.60234
ageold -0.118726 0.528165 -0.225 0.82224
ageyoung 0.289259 0.639618 0.452 0.65130
weightobese 1.302660 0.898307 1.450 0.14768
weightover -0.005052 1.027198 -0.005 0.99608
smokerTRUE:sexmale 0.527345 0.867294 0.608 0.54345
smokerTRUE:ageold -0.566584 1.700590 -0.333 0.73915
smokerTRUE:ageyoung 0.757297 0.939746 0.806 0.42073
sexmale:ageold -0.379884 0.935365 -0.406 0.68483
sexmale:ageyoung -0.610703 0.920969 -0.663 0.50758
smokerTRUE:weightobese 3.924591 1.475476 2.660 0.00808 **
smokerTRUE:weightover 1.192159 1.259888 0.946 0.34450
sexmale:weightobese -1.273202 1.040701 -1.223 0.22178
sexmale:weightover 0.154097 1.098781 0.140 0.88853
ageold:weightobese -0.993355 0.970484 -1.024 0.30656
ageyoung:weightobese -1.346913 1.459454 -0.923 0.35653
ageold:weightover 0.454217 1.090260 0.417 0.67715
ageyoung:weightover -0.483955 1.300866 -0.372 0.71004
smokerTRUE:sexmale:ageold 0.771116 1.451512 0.531 0.59549
smokerTRUE:sexmale:ageyoung -0.210317 1.140384 -0.184 0.85376
smokerTRUE:sexmale:weightobese -2.500668 1.369941 −1.825 0.06857 .
smokerTRUE:sexmale:weightover -1.110222 1.217531 -0.912 0.36230
smokerTRUE:ageold:weightobese -0.882951 1.187871 -0.743 0.45766
smokerTRUE:ageyoung:weightobese -2.453315 1.047067 −2.343 0.01954 *
smokerTRUE:ageold:weightover 0.823018 1.528233 0.539 0.59045
smokerTRUE:ageyoung:weightover 0.040795 1.223664 0.033 0.97342
sexmale:ageold:weightobese 2.338617 1.324805 1.765 0.07816 .
sexmale:ageyoung:weightobese 2.822032 1.623849 1.738 0.08288 .
sexmale:ageold:weightover -0.442066 1.545451 -0.286 0.77497
sexmale:ageyoung:weightover 0.357807 1.291194 0.277 0.78181

(Dispersion parameter for quasipoisson family taken to be 1.847991)

Null deviance: 1052.95 on 510 degrees of freedom
Residual deviance: 737.87 on 479 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

The remaining model simplification is left to you as an exercise. Your minimal adequate
model might look something like this:

summary(model18)

Call:
glm(formula = cells ~ smoker + weight + smoker:weight, family =
quasipoisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.6511 -1.1742 -0.9148 0.5533 3.6436

COUNT DATA 533

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.8712 0.1760 -4.950 1.01e-06 ***
smokerTRUE 0.8224 0.2479 3.318 0.000973 ***
weightobese 0.4993 0.2260 2.209 0.027598 *
weightover 0.2618 0.2522 1.038 0.299723
smokerTRUE:weightobese 0.8063 0.3105 2.597 0.009675 **
smokerTRUE:weightover 0.4935 0.3442 1.434 0.152226

(Dispersion parameter for quasipoisson family taken to be 1.827927)

Null deviance: 1052.95 on 510 degrees of freedom
Residual deviance: 737.87 on 479 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 6

This model shows a highly significant interaction between smoking and weight in deter-
mining the number of damaged cells, but there are no convincing effects of age or sex. In
a case like this, it is useful to produce a summary table to highlight the effects:

tapply (cells,list(smoker,weight),mean)

normal obese over
FALSE 0.4184397 0.689394 0.5436893
TRUE 0.9523810 3.514286 2.0270270

The interaction arises because the response to smoking depends on body weight: smoking
adds a mean of about 0.5 damaged cells for individuals with normal body weight, but adds
2.8 damaged cells for obese people.

It is straightforward to turn the summary table into a barplot:

barplot(tapply(cells,list(smoker,weight),mean),col=c(2,7),beside=T)
legend(1.2,3.4,c("non","smoker"),fill=c(2,7))

normal0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

non
smoker

3.
0

3.
5

obese over

534 THE R BOOK

Analysis of Covariance with Count Data

In this next example the response is a count of the number of plant species on plots that have
different biomass (a continuous explanatory variable) and different soil pH (a categorical
variable with three levels: high, mid and low).

species<-read.table("c:\\temp\\species.txt",header=T)
attach(species)
names(species)

[1] "pH" "Biomass" "Species"

plot(Biomass,Species,type="n")
spp<-split(Species,pH)
bio<-split(Biomass,pH)
points(bio[[1]],spp[[1]],pch=16)
points(bio[[2]],spp[[2]],pch=17)
points(bio[[3]],spp[[3]])

Note the use of split to create separate lists of plotting coordinates for the three levels
of pH. It is clear that Species declines with Biomass, and that soil pH has a big effect
on Species, but does the slope of the relationship between Species and Biomass depend
on pH? The lines look reasonably parallel from the scatterplot. This is a question about
interaction effects, and in analysis of covariance, interaction effects are about differences
between slopes:

COUNT DATA 535

model1<-glm(Species~ Biomass*pH,poisson)
summary(model1)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.76812 0.06153 61.240 < 2e-16 ***
Biomass -0.10713 0.01249 -8.577 < 2e-16 ***
pHlow -0.81557 0.10284 -7.931 2.18e-15 ***
pHmid -0.33146 0.09217 -3.596 0.000323 ***
Biomass:pHlow -0.15503 0.04003 -3.873 0.000108 ***
Biomass:pHmid -0.03189 0.02308 -1.382 0.166954
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 452.346 on 89 degrees of freedom
Residual deviance: 83.201 on 84 degrees of freedom
AIC: 514.39

Number of Fisher Scoring iterations: 4

We can test for the need for different slopes by comparing this maximal model (with
six parameters) with a simpler model with different intercepts but the same slope (four
parameters):

model2<-glm(Species~Biomass+pH,poisson)
anova(model1,model2,test="Chi")

Analysis of Deviance Table

Model 1: Species ~ Biomass * pH
Model 2: Species ~ Biomass + pH

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 84 83.201
2 86 99.242 -2 -16.040 0.0003288

The slopes are very significantly different �p = 0�000 33�, so we are justified in retaining
the more complicated model1.

Finally, we draw the fitted lines through the scatterplot, using predict:

xv<-seq(0,10,0.1)
levels(pH)

[1] "high" "low" "mid"

length(xv)

[1] 101

phv<-rep("high",101)
yv<-predict(model1,list(pH=factor(phv),Biomass=xv),type="response")
lines(xv,yv)
phv<-rep("mid",101)
yv<-predict(model1,list(pH=factor(phv),Biomass=xv),type="response")
lines(xv,yv)
phv<-rep("low",101)
yv<-predict(model1,list(pH=factor(phv),Biomass=xv),type="response")
lines(xv,yv)

536 THE R BOOK

Note the use of type="response" in the predict function. This ensures that yv is calculated
as Species rather than log(Species), and means we do not need to back-transform using
antilogs before drawing the lines (compare with the example on p. 579). You could make
the R code more elegant by writing a function to plot any number of lines, depending on
the number of levels of the factor (three levels of pH in this case).

Frequency Distributions

Here are data on the numbers of bankruptcies in 80 districts. The question is whether there is
any evidence that some districts show greater than expected numbers of cases. What would
we expect? Of course we should expect some variation, but how much, exactly? Well that
depends on our model of the process. Perhaps the simplest model is that absolutely nothing
is going on, and that every singly bankruptcy case is absolutely independent of every other.
That leads to the prediction that the numbers of cases per district will follow a Poisson
process, a distribution in which the variance is equal to the mean (see p. 250). Let’s see
what the data show.

case.book<-read.table("c:\\temp\\cases.txt",header=T)
attach(case.book)
names(case.book)

[1] "cases"

First we need to count the numbers of districts with no cases, one case, two cases, and
so on. The R function that does this is called table:

frequencies<-table(cases)
frequencies

COUNT DATA 537

cases
0 1 2 3 4 5 6 7 8 9 10

34 14 10 7 4 5 2 1 1 1 1

There were no cases at all in 34 districts, but one district had 10 cases. A good way to
proceed is to compare our distribution (called frequencies) with the distribution that would
be observed if the data really did come from a Poisson distribution as postulated by our
model. We can use the R function dpois to compute the probability density of each of the
11 frequencies from 0 to 10 (we multiply the probability produced by dpois by the total
sample of 80 to obtain the predicted frequencies). We need to calculate the mean number
of cases per district: this is the Poisson distribution’s only parameter:

mean(cases)

[1] 1.775

The plan is to draw two distributions side by side, so we set up the plotting region:

par(mfrow=c(1,2))

Now we plot the observed frequencies in the left-hand panel and the predicted, Poisson
frequencies in the right-hand panel:

barplot(frequencies,ylab="Frequency",xlab="Cases",col="red")

barplot(dpois(0:10,1.775)*80,names=as.character(0:10),
ylab="Frequency",xlab="Cases",col="red")

538 THE R BOOK

The distributions are very different: the mode of the observed data is 0, but the mode of
the Poisson with the same mean is 1; the observed data contained examples of 8, 9 and 10
cases, but these would be highly unlikely under a Poisson process. We would say that the
observed data are highly aggregated; they have a variance–mean ratio much greater than 1
(the Poisson distribution, of course, has a variance–mean ratio of 1):

var(cases)/mean(cases)

[1] 2.99483

So, if the data are not Poisson distributed, how are they distributed? A good candidate
distribution where the variance–mean ratio is this big (c. 3.0) is the negative binomial
distribution (see p. 252). This is a two-paramter distribution: the first parameter is the mean
number of cases (1.775), and the second is called the clumping parameter, k (measuring the
degree of aggregation in the data: small values of k�k < 1� show high aggregation, while
large values of k�k > 5� show randomness). We can get an approximate estimate of the
magnitude of k from

k̂ = x2

s2 − x
�

We can work this out:

mean(cases)^2/(var(cases)-mean(cases))

[1] 0.8898003

so we shall work with k= 0�89. How do we compute the expected frequencies? The density
function for the negative binomial distribution is dnbinom and it has three arguments: the
frequency for which we want the probability (in our case 0 to 10), the number of successes
(in our case 1), and the mean number of cases (1.775); we multiply by the total number of
cases (80) to obtain the expected frequencies

exp<-dnbinom(0:10,1,mu=1.775)*80

We will draw a single figure in which the observed and expected frequencies are drawn
side by side. The trick is to produce a new vector (called both) which is twice as long
as the observed and expected frequency vectors �2 × 11 = 22�. Then, we put the observed
frequencies in the odd-numbered elements (using modulo 2 to calculate the values of the
subscripts), and the expected frequencies in the even-numbered elements:

both<-numeric(22)
both[1:22 %% 2 != 0]<-frequencies
both[1:22 %% 2 == 0]<-exp

On the x axis, we intend to label only every other bar:

labels<-character(22)
labels[1:22 %% 2 == 0]<-as.character(0:10)

Now we can produce the barplot, using white for the observed frequencies and grey for the
negative binomial frequencies:

par(mfrow=c(1,1))
barplot(both,col=rep(c("white","grey"),11),names=labels,ylab="Frequency",

xlab="Cases")

COUNT DATA 539

Now we need to add a legend to show what the two colours of the bars mean. You can
locate the legend by trial and error, or by left-clicking mouse when the cursor is in the
correct position, using the locator(1) function (see p. 257):

legend(16,30,c("Observed","Expected"), fill=c("white","grey"))

The fit to the negative binomial distribution is much better than it was with the Poisson
distribution, especially in the right-hand tail. But the observed data have too many 0s and
too few 1s to be represented perfectly by a negative binomial distribution. If you want to
quantify the lack of fit between the observed and expected frequency distributions, you can
calculate Pearson’s chi-squared

∑
�O − E�2/E based on the number of comparisons that

have expected frequency greater than 4:

exp

[1] 28.8288288 18.4400617 11.7949944 7.5445460 4.8257907 3.0867670
[7] 1.9744185 1.2629164 0.8078114 0.5167082 0.3305070

If we accumulate the rightmost six frequencies, then all the values of exp will be bigger
than 4. The degrees of freedom are then given by the number of comparisons (6) - the
number of parameters estimated from the data (2 in our case) −1 (for contingency, because
the total frequency must add up to 80) = 3. We use a gets arrow to reduce the lengths of
the observed and expected vectors, creating an upper interval called 5+ for ‘5 or more’:

cs<-factor(0:10)
levels(cs)[6:11]<-"5+"
levels(cs)

540 THE R BOOK

[1] "0" "1" "2" "3" "4" "5+"

Now make the two shorter vectors ‘of’ and ‘ef’ (for observed and expected frequencies):

ef<-as.vector(tapply(exp,cs,sum))
of<-as.vector(tapply(frequencies,cs,sum))

Finally we can compute the chi-squared value measuring the difference between the observed
and expected frequency distributions, and use 1-pchisq to work out the p value:

sum((of-ef)ˆ2/ef)

[1] 3.594145

1-pchisq(3.594145,3)

[1] 0.3087555

We conclude that a negative binomial description of these data is reasonable (the observed
and expected distributions are not significantly different; p = 0�31).

Overdispersion in Log-linear Models

The data analysed in this section refer to children from Walgett, New South Wales, Australia,
who were classified by sex (with two levels: male (M) and female (F)), culture (also
with two levels: Aboriginal (A) and not (N)), age group (with four levels: F0 (primary),
F1, F2 and F3) and learner status (with two levels: average (AL) and slow (SL)). The
response variable is a count of the number of days absent from school in a particular school
year.

library(MASS)
data(quine)
attach(quine)
names(quine)

[1] "Eth" "Sex" "Age" "Lrn" "Days"

We begin with a log-linear model for the counts, and fit a maximal model containing all
the factors and all their interactions:

model1<-glm(Days~Eth*Sex*Age*Lrn,poisson)
summary(model1)

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2073.5 on 145 degrees of freedom
Residual deviance: 1173.9 on 118 degrees of freedom
AIC: 1818.4

Next, we check the residual deviance to see if there is overdispersion. Recall that the
residual deviance should be equal to the residual degrees of freedom if the Poisson errors
assumption is appropriate. Here it is 1173.9 on 118 d.f., indicating overdispersion by a
factor of roughly 10. This is much too big to ignore, so before embarking on model
simplification we try a different approach, using quasi-Poisson errors to account for the
overdispersion:

COUNT DATA 541

model2<-glm(Days~Eth*Sex*Age*Lrn,quasipoisson)
summary(model2)

Deviance Residuals:

Min 1Q Median 3Q Max
-7.3872 -2.5129 -0.4205 1.7424 6.6783

Coefficients: (4 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0564 0.3346 9.135 2.22e-15 ***
EthN -0.1386 0.4904 -0.283 0.7780
SexM -0.4914 0.5082 -0.967 0.3356
AgeF1 -0.6227 0.5281 -1.179 0.2407
AgeF2 -2.3632 2.2066 -1.071 0.2864
AgeF3 -0.3784 0.4296 -0.881 0.3802
LrnSL -1.9577 1.8120 -1.080 0.2822
EthN:SexM -0.7524 0.8272 -0.910 0.3649
EthN:AgeF1 0.1029 0.7427 0.139 0.8901
EthN:AgeF2 -0.5546 3.8094 -0.146 0.8845
EthN:AgeF3 0.0633 0.6194 0.102 0.9188
SexM:AgeF1 0.4092 0.9372 0.437 0.6632
SexM:AgeF2 3.1098 2.2506 1.382 0.1696
SexM:AgeF3 1.1145 0.6173 1.806 0.0735 .
EthN:LrnSL 2.2588 1.9474 1.160 0.2484
SexM:LrnSL 1.5900 1.9448 0.818 0.4152
AgeF1:LrnSL 2.6421 1.8688 1.414 0.1601
AgeF2:LrnSL 4.8585 2.8413 1.710 0.0899 .
AgeF3:LrnSL NA NA NA NA
EthN:SexM:AgeF1 -0.3105 1.6756 -0.185 0.8533
EthN:SexM:AgeF2 0.3469 3.8928 0.089 0.9291
EthN:SexM:AgeF3 0.8329 0.9629 0.865 0.3888
EthN:SexM:LrnSL -0.1639 2.1666 -0.076 0.9398
EthN:AgeF1:LrnSL -3.5493 2.0712 -1.714 0.0892 .
EthN:AgeF2:LrnSL -3.3315 4.2739 -0.779 0.4373
EthN:AgeF3:LrnSL NA NA NA NA
SexM:AgeF1:LrnSL -2.4285 2.1901 -1.109 0.2697
SexM:AgeF2:LrnSL -4.1914 2.9472 -1.422 0.1576
SexM:AgeF3:LrnSL NA NA NA NA
EthN:SexM:AgeF1:LrnSL 2.1711 2.7527 0.789 0.4319
EthN:SexM:AgeF2:LrnSL 2.1029 4.4203 0.476 0.6351
EthN:SexM:AgeF3:LrnSL NA NA NA NA
- - -
Signif. codes: 0 '***'0.001 '**'0.01 '*'0.05 '.'0.1 ''1
(Dispersion parameter for quasipoisson family taken to be 9.514226)

Null deviance: 2073.5 on 145 degrees of freedom
Residual deviance: 1173.9 on 118 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5

Notice that certain interactions have not been estimated because of missing factor-level
combinations, as indicated by the zeros in the following table:

ftable(table(Eth,Sex,Age,Lrn))

542 THE R BOOK

Eth Sex Age Lrn AL SL
A F F0 4 1

F1 5 10
F2 1 8
F3 9 0

M F0 5 3
F1 2 3
F2 7 4
F3 7 0

N F F0 4 1
F1 6 11
F2 1 9
F3 10 0

M F0 6 3
F1 2 7
F2 7 3
F3 7 0

This occurs because slow learners never get into Form 3.
Unfortunately, AIC is not defined for this model, so we cannot automate the simplification

using stepAIC. We need to do the model simplification long-hand, therefore, remembering
to do F tests (not chi-squared) because of the overdispersion. Here is the last step of the
simplification before obtaining the minimal adequate model. Do we need the age by learning
interaction?

model4<-update(model3,~. - Age:Lrn)
anova(model3,model4,test="F")

Analysis of Deviance Table

Resid. Df Res.Dev Df Deviance F Pr(>-F)
1 127 1280.52
2 129 1301.08 -2 -20.56 1.0306 0.3598

No we don’t. So here is the minimal adequate model with quasi-Poisson errors:

summary(model4)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.83161 0.30489 9.287 4.98e-16 ***
EthN 0.09821 0.38631 0.254 0.79973
SexM -0.56268 0.38877 -1.447 0.15023
AgeF1 -0.20878 0.35933 -0.581 0.56223
AgeF2 0.16223 0.37481 0.433 0.66586
AgeF3 -0.25584 0.37855 -0.676 0.50036
LrnSL 0.50311 0.30798 1.634 0.10479
EthN:SexM -0.24554 0.37347 -0.657 0.51206
EthN:AgeF1 -0.68742 0.46823 -1.468 0.14450
EthN:AgeF2 -1.07361 0.42449 -2.529 0.01264 *
EthN:AgeF3 0.01879 0.42914 0.044 0.96513
EthN:LrnSL -0.65154 0.45857 -1.421 0.15778
SexM:AgeF1 -0.26358 0.50673 -0.520 0.60385

COUNT DATA 543

SexM:AgeF2 0.94531 0.43530 2.172 0.03171 *
SexM:AgeF3 1.35285 0.42933 3.151 0.00202 *
SexM:LrnSL -0.29570 0.41144 -0.719 0.47363
EthN:SexM:LrnSL 1.60463 0.57112 2.810 0.00573 *

(Dispersion parameter for quasipoisson family taken to be 9.833426)

Null deviance: 2073.5 on 145 degrees of freedom
Residual deviance: 1301.1 on 129 degrees of freedom

There is a very significant three-way interaction between ethnic origin, sex and learning
difficulty; non-Aboriginal slow-learning boys were more likely to be absent than non-
aboriginal boys without learning difficulties.

ftable(tapply(Days,list(Eth,Sex,Lrn),mean))

AL SL
A F 14.47368 27.36842

M 22.28571 20.20000
N F 13.14286 7.00000

M 13.36364 17.00000

Note, however, that amongst the pupils without learning difficulties it is the Aboriginal
boys who miss the most days, and it is Aboriginal girls with learning difficulties who have
the highest rate of absenteeism overall.

Negative binomial errors

Instead of using quasi-Poisson errors (as above) we could use a negative binomial model.
This is in the MASS library and involves the function glm.nb. The modelling proceeds in
exactly the same way as with a typical GLM:

model.nb1<-glm.nb(Days~Eth*Sex*Age*Lrn)
summary(model.nb1,cor=F)

Call:
glm.nb(formula = Days ~ Eth * Sex * Age * Lrn, init.theta =
1.92836014510701, link = log)

(DispersionparameterforNegativeBinomial(1.9284)family taken to be 1)

Null deviance: 272.29 on 145 degrees of freedom
Residual deviance: 167.45 on 118 degrees of freedom
AIC: 1097.3

Theta: 1.928
Std. Err.: 0.269

2 x log-likelihood: −1039.324
The output is slightly different than a conventional GLM: you see the estimated negative
binomial parameter (here called theta, but known to us as k and equal to 1.928) and
its approximate standard error (0.269) and 2 times the log-likelihood (contrast this with
the residual deviance from our quasi-Poisson model, which was 1301.1; see above). Note
that the residual deviance in the negative binomial model (167.45) is not 2 times the
log-likelihood.

544 THE R BOOK

An advantage of the negative binomial model over the quasi-Poisson is that we can
automate the model simplification with stepAIC:

model.nb2<-stepAIC(model.nb1)
summary(model.nb2,cor=F)

Coefficients: (3 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.1693 0.3411 9.292 < 2e-16 ***
EthN -0.3560 0.4210 -0.845 0.397848
SexM -0.6920 0.4138 -1.672 0.094459 .
AgeF1 -0.6405 0.4638 -1.381 0.167329
AgeF2 -2.4576 0.8675 -2.833 0.004612 **
AgeF3 -0.5880 0.3973 -1.480 0.138885
LrnSL -1.0264 0.7378 -1.391 0.164179
EthN:SexM -0.3562 0.3854 -0.924 0.355364
EthN:AgeF1 0.1500 0.5644 0.266 0.790400
EthN:AgeF2 -0.3833 0.5640 -0.680 0.496746
EthN:AgeF3 0.4719 0.4542 1.039 0.298824
SexM:AgeF1 0.2985 0.6047 0.494 0.621597
SexM:AgeF2 3.2904 0.8941 3.680 0.000233 ***
SexM:AgeF3 1.5412 0.4548 3.389 0.000702 ***
EthN:LrnSL 0.9651 0.7753 1.245 0.213255
SexM:LrnSL 0.5457 0.8013 0.681 0.495873
AgeF1:LrnSL 1.6231 0.8222 1.974 0.048373 *
AgeF2:LrnSL 3.8321 1.1054 3.467 0.000527 ***
AgeF3:LrnSL NA NA NA NA
EthN:SexM:LrnSL 1.3578 0.5914 2.296 0.021684 *
EthN:AgeF1:LrnSL -2.1013 0.8728 -2.408 0.016058 *
EthN:AgeF2:LrnSL -1.8260 0.8774 -2.081 0.037426 *
EthN:AgeF3:LrnSL NA NA NA NA
SexM:AgeF1:LrnSL -1.1086 0.9409 -1.178 0.238671
SexM:AgeF2:LrnSL -2.8800 1.1550 -2.493 0.012651 *
SexM:AgeF3:LrnSL NA NA NA NA

(DispersionparameterforNegativeBinomial(1.8653)family taken tobe1)

Null deviance: 265.27 on 145 degrees of freedom
Residual deviance: 167.44 on 123 degrees of freedom
AIC: 1091.4

Theta: 1.865
Std. Err.: 0.258

2 x log-likelihood: −1043.409

model.nb3<-update(model.nb2,~. - Sex:Age:Lrn)
anova(model.nb3,model.nb2)

Likelihood ratio tests of Negative Binomial Models

theta Resid. df 2 x log-lik. Test df LR stat. Pr(Chi)
1 1.789507 125 -1049.111
2 1.865343 123 -1043.409 1 vs 2 2 5.701942 0.05778817

The sex-by-age-by-learning interaction does not survive a deletion test �p = 0�058�, nor
does ethnic-origin-by-age-by-learning �p = 0�115� nor age-by-learning �p = 0�150�:

COUNT DATA 545

model.nb4<-update(model.nb3,~. - Eth:Age:Lrn)
anova(model.nb3,model.nb4)

Likelihood ratio tests of Negative Binomial Models

theta Resid. df 2 x log-lik. Test df LR stat. Pr(Chi)
1 1.724987 127 -1053.431
2 1.789507 125 -1049.111 1 vs 2 2 4.320086 0.1153202

model.nb5<-update(model.nb4,~. - Age:Lrn)
anova(model.nb4,model.nb5)

Likelihood ratio tests of Negative Binomial Models

theta Resid. df 2 x log-lik. Test df LR stat. Pr(Chi)
1 1.678620 129 -1057.219
2 1.724987 127 -1053.431 1 vs 2 2 3.787823 0.150482

summary(model.nb5,cor=F)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.91755 0.32626 8.942 < 2e-16 ***
EthN 0.05666 0.39515 0.143 0.88598
SexM -0.55047 0.39014 -1.411 0.15825
AgeF1 -0.32379 0.38373 -0.844 0.39878
AgeF2 -0.06383 0.42046 -0.152 0.87933
AgeF3 -0.34854 0.39128 -0.891 0.37305
LrnSL 0.57697 0.33382 1.728 0.08392 .
EthN:SexM -0.41608 0.37491 -1.110 0.26708
EthN:AgeF1 -0.56613 0.43162 -1.312 0.18965
EthN:AgeF2 -0.89577 0.42950 -2.086 0.03702 *
EthN:AgeF3 0.08467 0.44010 0.192 0.84744
SexM:AgeF1 -0.08459 0.45324 -0.187 0.85195
SexM:AgeF2 1.13752 0.45192 2.517 0.01183 *
SexM:AgeF3 1.43124 0.44365 3.226 0.00126 **
EthN:LrnSL -0.78724 0.43058 -1.828 0.06750 .
SexM:LrnSL -0.47437 0.45908 -1.033 0.30147
EthN:SexM:LrnSL 1.75289 0.58341 3.005 0.00266 **

(DispersionparameterforNegativeBinomial(1.6786)familytakentobe1)

Null deviance: 243.98 on 145 degrees of freedom
Residual deviance: 168.03 on 129 degrees of freedom
AIC: 1093.2

Theta: 1.679
Std. Err.: 0.22

2 x log-likelihood: −1057.219
The minimal adequate model, therefore, contains exactly the same terms as we obtained
with quasi-Poisson, but the significance levels are higher (e.g. the three-way interaction has
p=0�002 66 compared with p=0�005 73). We need to plot the model to check assumptions:

par(mfrow=c(1,2))
plot(model.nb5)
par(mfrow=c(1,1))

546 THE R BOOK

1.0

–3
–2

–1
0

1
2

1.5 2.0
Predicted values

Residuals vs Fitted Normal Q–Q

Theoretical Quantiles

S
td

.d
ev

ia
nc

e
re

si
d.

R
es

id
ua

ls

2.5

92
61

98

98

61
92

3.0 3.5 –2

–3
–2

–1
0

1
2

–1 0 1 2

The variance is well behaved and the residuals are close to normally distributed. The
combination of low p values plus the ability to use stepAIC makes glm.nb a very useful
modelling function for count data such as these.

Use of lmer with Complex Nesting

In this section we have count data (snails) so we want to use family = poisson. But we
have complicated spatial pseudoreplication arising from a split-plot design, so we cannot
use a GLM. The answer is to use generalized mixed models, lmer. The default method for a
generalized linear model fit with lmer has been switched from PQL to the Laplace method.
The Laplace method is more reliable than PQL, and is not so much slower to as to preclude
its routine use (Doug Bates, personal communication).

The syntax is extended in the usual way to accommodate the random effects (Chapter 19),
with slashes showing the nesting of the random effects, and with the factor associated
with the largest plot size on the left and the smallest on the right. We revisit the split-
plot experiment on biomass (p. 469) and analyse the count data on snails captured from
each plot. The model we want to fit is a generalized mixed model with Poisson errors
(because the data are counts) with complex nesting to take account of the four-level
split-plot design (Rabbit exclusion within Blocks, Lime treatment within Rabbit plots,

COUNT DATA 547

3 Competition treatments within each Lime plot and 4 nutrient regimes within each
Competition plot):

counts<-read.table("c:\\temp\\splitcounts.txt",header=T)
attach(counts)
names(counts)

[1] "vals" "Block" "Rabbit" "Lime"
[5] "Competition" "Nutrient"

The syntax within lmer is very straightforward: fixed effects after the tilde ∼, then random
effects inside brackets, then the GLM family:

library(lme4)
model<-
lmer(vals~Nutrient+(1|Block/Rabbit/Lime/Competition),family=poisson)
summary(model)

Generalized linear mixed model fit using Laplace
Formula: vals ~ Nutrient + (1 | Block/Rabbit/Lime/Competition)
Family: poisson(log link)
AIC BIC logLik deviance

420.2 451.8 -202.1 404.2

Random effects:

Groups Name Variance Std.Dev.
Competition:(Lime:(Rabbit:Block)) (Intercept) 2.2660e-03 4.7603e-02
Lime:(Rabbit:Block) (Intercept) 5.0000e-10 2.2361e-05
Rabbit:Block (Intercept) 5.0000e-10 2.2361e-05
Block (Intercept) 5.0000e-10 2.2361e-05
number of obs: 384, groups: Competition:(Lime:(Rabbit:Block)),96;
Lime:(Rabbit:Block), 32; Rabbit:Block, 16; Block, 8
Estimated scale (compare to 1) 0.974339

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.10794 0.05885 18.826 <2e-16 ***
NutrientNP 0.11654 0.08063 1.445 0.148
NutrientO -0.02094 0.08338 -0.251 0.802
NutrientP -0.01047 0.08316 -0.126 0.900

Correlation of Fixed Effects:

(Intr) NtrnNP NtrntO
NutrientNP -0.725
NutrientO -0.701 0.512
NutrientP -0.703 0.513 0.496

There are no significant differences in snail density under any of the four nutrient
treatments (Fixed effects, minimum p = 0�148) and only Competition within Lime within
Rabbit within Block has an appreciable variance component (standard deviation 0.047 603).
Note that because we are using Poisson errors, the fixed effects are on the log scale (the
scale of the linear predictor; see p. 513). You might want to compare these best linear
unbiased predictors with the logs of the arithmetic mean snail counts:

548 THE R BOOK

log(tapply(vals,Nutrient,mean))

N NP O P
1.108975 1.225612 1.088141 1.098612

The values are so close because in this case the random effects are so slight (see p. 627).
Note, too, that there is no evidence of overdispersion once the random effects have been
incorporated, and the estimated scale parameter is 0.974 339 (it would be 1 in a perfect
Poisson world).

15
Count Data in Tables

The analysis of count data with categorical explanatory variables comes under the heading
of contingency tables. The general method of analysis for contingency tables involves
log-linear modelling, but the simplest contingency tables are often analysed by Pearson’s
chi-squared, Fisher’s exact test or tests of binomial proportions (see p. 308)

A Two-Class Table of Counts

You count 47 animals and find that 29 of them are males and 18 are females. Are these
data sufficiently male-biased to reject the null hypothesis of an even sex ratio? With an
even sex ratio the expected number of males and females is 47/2 = 23�5. The simplest test
is Pearson’s chi-squared in which we calculate

�2 =∑ �observed − expected�2

expected
�

Substituting our observed and expected values, we get

�2 = �29 − 23�5�2 + �18 − 23�5�2

23�5
= 2�574 468�

This is less than the critical value for chi-squared with 1 degree of freedom (3.841), so
we conclude that the sex ratio is not significantly different from 50:50. There is a built-in
function for this

observed<-c(29,18)
chisq.test(observed)

Chi-squared test for given probabilities

data: observed
X-squared = 2.5745, df = 1, p-value = 0.1086

which indicates that a sex ratio of this size or more extreme than this would arise by chance
alone about 10% of the time �p=0�1086�. Alternatively, you could carry out a binomial test:

binom.test(observed)

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

550 THE R BOOK

Exact binomial test
data: observed
number of successes = 29, number of trials = 47, p-value = 0.1439
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.4637994 0.7549318
sample estimates:
probability of success

0.6170213

You can see that the 95% confidence interval for the proportion of males (0.46, 0.75)
contains 0.5, so there is no evidence against a 50:50 sex ratio in these data. The p value
is slightly different than it was in the chi-squared test, but the interpretation is exactly
the same.

Sample Size for Count Data

How many samples do you need before you have any chance of detecting a significant
departure from equality? Suppose you are studying sex ratios in families. How many female
children would you need to discover in a family with no males before you could conclude
that a father’s sex-determining chromosomes were behaving oddly? What about five females
and no males? This is not significant because it can occur by chance when p = 0�5 with
probability 2 × 0�55 = 0�0625 (note that this is a two-tailed test). The smallest sample that
gives significance is a family of six children, all of one sex: 2 × 0�56 = 0�031 25. How big
would the sample need to be to reject the null hypothesis if one of the children was of the
opposite sex? One out of seven is no good, as is one out of eight. You need a sample of
at least nine children before you can reject the hypothesis that p = 0�5 when one of the
children is of the opposite sex. Here is that calculation using the binom.test function:

binom.test(1,9)

Exact binomial test
data: 1 and 9
number of successes = 1, number of trials = 9, p-value = 0.03906
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.002809137 0.482496515
sample estimates:
probability of success

0.1111111

A Four-Class Table of Counts

Mendel’s famous peas produced 315 yellow round phenotypes, 101 yellow wrinkled, 108
green round and 32 green wrinkled offspring (a total of 556):

observed<-c(315,101,108,32)

The question is whether these data depart significantly from the 9:3:3:1 expectation that
would arise if there were two independent 3:1 segregations (with round seeds dominating
wrinkled, and yellow seeds dominating to green)?

COUNT DATA IN TABLES 551

Because the null hypothesis is not a 25:25:25:25 distribution across the four categories,
we need to calculate the expected frequencies explicitly:

(expected<-556*c(9,3,3,1)/16)

312.75 104.25 104.25 34.75

The expected frequencies are very close to the observed frequencies in Mendel’s exper-
iment, but we need to quantify the difference between them and ask how likely such a
difference is to arise by chance alone:

chisq.test(observed,p=c(9,3,3,1),rescale.p=TRUE)

Chi-squared test for given probabilities

data: observed
X-squared = 0.47, df = 3, p-value = 0.9254

Note the use of different probabilities for the four phenotypes p=c(9,3,3,1). Because these
values do not sum to 1.0, we require the extra argument rescale.p=TRUE. A difference
as big as or bigger than the one observed will arise by chance alone in more than 92% of
cases and is clearly not statistically significant. The chi-squared value is

sum((observed-expected)^2/expected)

[1] 0.470024

and the p-value comes from the right-hand tail of the cumulative probability function of
the chi-squared distribution 1-pchisq with 3 degrees of freedom (4 comparisons −1 for
contingency; the total count must be 556)

1-pchisq(0.470024,3)

[1] 0.9254259

exactly as we obtained using the built-in chisq.test function, above.

Two-by-Two Contingency Tables

Count data are often classified by more than one categorical explanatory variable. When
there are two explanatory variables and both have just two levels, we have the famous
two-by-two contingency table (see p. 309). We can return to the example of Mendel’s peas.
We need to convert the vector of observed counts into a matrix with two rows:

observed<-matrix(observed,nrow=2)
observed

[,1] [,2]
[1,] 315 108
[2,] 101 32

Fisher’s exact test (p. 308) can take such a matrix as its sole argument:

fisher.test(observed)

552 THE R BOOK

Fisher’s Exact Test for Count Data

data: observed
p-value = 0.819
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.5667874 1.4806148
sample estimates:
odds ratio
0.9242126

Alternatively we can use Pearson’s chi-squared test with Yates’ continuity correction:

chisq.test(observed)

Pearson’s Chi-squared test with Yates’ continuity correction

data: observed
X-squared = 0.0513, df = 1, p-value = 0.8208

Again, the p-values are different with different tests, but the interpretation is the same: these
pea plants behave in accordance with Mendel’s predictions of two independent traits, coat
colour and seed shape, each segregating 3:1.

Using Log-linear Models for Simple Contingency Tables

It is worth repeating these simple examples with a log-linear model so that when we analyse
more complex cases you have a feel for what the GLM is doing. Recall that the deviance
for a log-linear model of count data (p. 516) is

deviance = 2
∑

O ln
(

O

E

)
�

where O is a vector of observed counts and E is a vector of expected counts. Our first
example had 29 males and 18 females and we wanted to know if the sex ratio was
significantly male-biased:

observed<-c(29,18)
summary(glm(observed~1,poisson))

Null deviance: 2.5985 on 1 degrees of freedom
Residual deviance: 2.5985 on 1 degrees of freedom
AIC: 14.547
Number of Fisher Scoring iterations: 4

Only the bottom part of the summary table is informative in this case. The residual deviance
is compared to the critical value of chi-squared in tables with 1 d.f.:

1-pchisq(2.5985,1)

[1] 0.1069649

We accept the null hypothesis that the sex ratio is 50:50 �p = 0�106 96�.
In the case of Mendel’s peas we had a four-level categorical variable (i.e. four phenotypes)

and the null hypothesis was a 9:3:3:1 distribution of traits:

COUNT DATA IN TABLES 553

observed<-c(315,101,108,32)

We need vectors of length 4 for the two seed traits, shape and colour:

shape<-factor(c("round","round","wrinkled","wrinkled"))
colour<-factor(c("yellow","green","yellow","green"))

Now we fit a saturated model (model1) and a model without the interaction term (model2)
and compare the two models using anova with a chi-squared test:

model1<-glm(observed~shape*colour,poisson)
model2<-glm(observed~shape+colour,poisson)
anova(model1,model2,test="Chi")

Analysis of Deviance Table

Model 1: observed ~ shape * colour
Model 2: observed ~ shape + colour

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 0 1.021e-14
2 1 0.11715 −1 −0.11715 0.73215

There is no interaction between seed colour and seed shape �p = 0�732 15� so we conclude
that the two traits are independent and the phenotypes are distributed 9:3:3:1 as predicted.
The p-value is slightly different because the ratios of the two dominant traits are not exactly
3:1 in the data: round to wrinkled is exp�1�089 04� = 2�971 42 and yellow to green is
exp�1�157 02� = 3�180 441:

summary(model2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.60027 0.09013 51.04 <2e-16 ***
shapewrinkled −1.08904 0.09771 −11.15 <2e-16 ***
colouryellow 1.15702 0.09941 11.64 <2e-16 ***

To summarize, the log-linear model involves fitting a saturated model with zero residual
deviance (a parameter is estimated for every row of the dataframe) and then simplifying
the model by removing the highest-order interaction term. The increase in deviance gives
the chi-squared value for testing the hypothesis of independence. The minimal model must
contain all the nuisance variables necessary to constrain the marginal totals (i.e. main effects
for shape and colour in this example), as explained on p. 302.

The Danger of Contingency Tables

We have already dealt with simple contingency tables and their analysis using Fisher’s exact
test or Pearson’s chi-squared (see p. 308). But there is an important further issue to be dealt
with. In observational studies we quantify only a limited number of explanatory variables.
It is inevitable that we shall fail to measure a number of factors that have an important
influence on the behaviour of the system in question. That’s life, and given that we make
every effort to note the important factors, there is little we can do about it. The problem
comes when we ignore factors that have an important influence on the response variable.

554 THE R BOOK

This difficulty can be particularly acute if we aggregate data over important explanatory
variables. An example should make this clear.

Suppose we are carrying out a study of induced defences in trees. A preliminary trial has
suggested that early feeding on a leaf by aphids may cause chemical changes in the leaf
which reduce the probability of that leaf being attacked later in the season by hole-making
insects. To this end we mark a large cohort of leaves, then score whether they were infested
by aphids early in the season and whether they were holed by insects later in the year. The
work was carried out on two different trees and the results were as follows:

Tree Aphids Holed Intact Total leaves Proportion holed

Tree 1 Absent 35 1750 1785 0�0196
Present 23 1146 1169 0�0197

Tree 2 Absent 146 1642 1788 0�0817
Present 30 333 363 0�0826

There are four variables: the response variable, count, with eight values (highlighted above),
a two-level factor for late season feeding by caterpillars (holed or intact), a two-level factor
for early season aphid feeding (aphids present or absent) and a two-level factor for tree
(the observations come from two separate trees, imaginatively named Tree1 and Tree2).

induced<-read.table("C:\\temp\\induced.txt",header=T)
attach(induced)
names(induced)

[1] "Tree" "Aphid" "Caterpillar" "Count"

We begin by fitting what is known as a saturated model. This is a curious thing, which
has as many parameters as there are values of the response variable. The fit of the model is
perfect, so there are no residual degrees of freedom and no residual deviance. The reason
why we fit a saturated model is that it is always the best place to start modelling complex
contingency tables. If we fit the saturated model, then there is no risk that we inadvertently
leave out important interactions between the so-called ‘nuisance variables’. These are the
parameters that need to be in the model to ensure that the marginal totals are properly
constrained.

model<-glm(Count~Tree*Aphid*Caterpillar,family=poisson)

The asterisk notation ensures that the saturated model is fitted, because all of the main
effects and two-way interactions are fitted, along with the 3-way interaction Tree by Aphid
by Caterpillar. The model fit involves the estimation of 2 × 2 × 2 = 8 parameters, and
exactly matches the eight values of the response variable, Count. Looking at the saturated
model in any detail serves no purpose, because the reams of information it contains are all
superfluous.

The first real step in the modelling is to use update to remove the three-way interaction
from the saturated model, and then to use anova to test whether the three-way interaction
is significant or not:

model2<-update(model , ~ . - Tree:Aphid:Caterpillar)

The punctuation here is very important (it is comma, tilde, dot, minus), and note the use
of colons rather than asterisks to denote interaction terms rather than main effects plus

COUNT DATA IN TABLES 555

interaction terms. Now we can see whether the three-way interaction was significant by
specifying test="Chi" like this:

anova(model,model2,test="Chi")

Analysis of Deviance Table

Model 1: Count~Tree * Aphid * Caterpillar
Model 2: Count~ Tree + Aphid + Caterpillar + Tree:Aphid +
Tree:Caterpillar + Aphid:Caterpillar

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 0 −9.97e-14
2 1 0.00079 −1 −0.00079 0.97756

This shows clearly that the interaction between caterpillar attack and leaf holing does not
differ from tree to tree �p=0�977 56�. Note that if this interaction had been significant, then
we would have stopped the modelling at this stage. But it wasn’t, so we leave it out and
continue.

What about the main question? Is there an interaction between aphid attack and leaf
holing? To test this we delete the Caterpillar–Aphid interaction from the model, and assess
the results using anova:

model3<-update(model2 , ~ . - Aphid:Caterpillar)
anova(model3,model2,test="Chi")

Analysis of Deviance Table

Model 1: Count~ Tree + Aphid + Caterpillar + Tree:Aphid +
Tree:Caterpillar
Model 2: Count~ Tree + Aphid + Caterpillar + Tree:Aphid +
Tree:Caterpillar + Aphid:Caterpillar

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 2 0.00409
2 1 0.00079 1 0.00329 0.95423

There is absolutely no hint of an interaction �p = 0�954�. The interpretation is clear: this
work provides no evidence for induced defences caused by early season caterpillar feeding.

But look what happens when we do the modelling the wrong way. Suppose we went
straight for the interaction of interest, Aphid–Caterpillar. We might proceed like this:

wrong<-glm(Count~Aphid*Caterpillar,family=poisson)
wrong1<-update (wrong,~. - Aphid:Caterpillar)
anova(wrong,wrong1,test="Chi")

Analysis of Deviance Table
Model 1: Count ~ Aphid * Caterpillar
Model 2: Count ~ Aphid + Caterpillar

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 4 550.19
2 5 556.85 −1 −6.66 0.01

The Aphid by Caterpillar interaction is highly significant �p = 0�01�, providing strong
evidence for induced defences. This is wrong! By failing to include Tree in the model we
have omitted an important explanatory variable. As it turns out, and as we should really

556 THE R BOOK

have determined by more thorough preliminary analysis, the trees differ enormously in their
average levels of leaf holing:

as.vector(tapply(Count,list(Caterpillar,Tree),sum))[1]/tapply(Count,Tree,sum) [1]

Tree1
0.01963439

as.vector(tapply(Count,list(Caterpillar,Tree),sum))[3]/tapply(Count,Tree,sum) [2]

Tree2
0.08182241

Tree2 has more than four times the proportion of its leaves holed by caterpillars. If we had
been paying more attention when we did the modelling the wrong way, we should have
noticed that the model containing only Aphid and Caterpillar had massive overdispersion,
and this should have alerted us that all was not well.

The moral is simple and clear. Always fit a saturated model first, containing all the
variables of interest and all the interactions involving the nuisance variables (Tree in this
case). Only delete from the model those interactions that involve the variables of interest
(Aphid and Caterpillar in this case). Main effects are meaningless in contingency tables,
as are the model summaries. Always test for overdispersion. It will never be a problem if
you follow the advice of simplifying down from a saturated model, because you only ever
leave out non-significant terms, and you never delete terms involving any of the nuisance
variables.

Quasi-Poisson and Negative Binomial Models Compared

The data on red blood cell counts were introduced on p. 187. Here we read similar count
data from a file:

data<-read.table("c:\\temp\\bloodcells.txt",header=T)
attach(data)
names(data)

[1] "count"

Now we need to create a vector for gender containing 5000 repeats of ‘female’ and then
5000 repeats of ‘male’:

gender<-factor(rep(c("female","male"),c(5000,5000)))

The idea is to test the significance of the difference in mean cell counts for the two genders,
which is slightly higher in males than in females:

tapply(count,gender,mean)

female male
1.1986 1.2408

We begin with the simplest log-linear model – a GLM with Poisson errors:

model<-glm(count~gender,poisson)
summary(model)

COUNT DATA IN TABLES 557

You should check for overdispersion before drawing any conclusions about the significance
of the gender effect. It turns out that there is substantial overdispersion (scale parameter =
23 154/9998 = 2�315 863), so we repeat the modelling using quasi-Poisson errors instead:

model<-glm(count~gender,quasipoisson)
summary(model)

Call:
glm(formula = count ~ gender, family = quasipoisson)

Deviance Residuals:
Min 1Q Median 3Q Max

−1.5753 −1.5483 −1.5483 0.6254 7.3023

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.18115 0.02167 8.360 <2e-16 ***
gendermale 0.03460 0.03038 1.139 0.255

(Dispersion parameter for quasipoisson family taken to be 2.813817)

Null deviance: 23158 on 9999 degrees of freedom
Residual deviance: 23154 on 9998 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

As you see, the gender effect falls well short of significance �p = 0�255�.
Alternatively, you could use a GLM with negative binomial errors. The function is in the

MASS library:

library(MASS)
model<-glm.nb(count~gender)
summary(model)

Call:
glm.nb(formula = count ~ gender, init.theta = 0.667624600666417,

link = log)

Deviance Residuals:

Min 1Q Median 3Q Max
−1.1842 −1.1716 −1.1716 0.3503 3.1523

Coefficients:

Estimate Std. Error z value Pr(>| z|)
(Intercept) 0.18115 0.02160 8.388 <2e-16 ***
gendermale 0.03460 0.03045 1.136 0.256

Dispersion parameter for Negative Binomial(0.6676) family taken to be 1)

Null deviance: 9610.8 on 9999 degrees of freedom
Residual deviance: 9609.5 on 9998 degrees of freedom
AIC: 30362

Number of Fisher Scoring iterations: 1
Correlation of Coefficients:

(Intercept)

558 THE R BOOK

gendermale −0.71
Theta: 0.6676

Std. Err.: 0.0185

2 × log-likelihood: −30355.6010
You would come to the same conclusion, although the p value is slightly different �p= 0�256�.

A Contingency Table of Intermediate Complexity

We start with a three-dimenstional table of count data from college records. It is a
contingency table with two levels of year (freshman and sophomore), two levels of discipline
(arts and science), and two levels of gender (male and female):

numbers<-c(24,30,29,41,14,31,36,35)

The statistical question is whether the relationship between gender and discipline varies
between freshmen and sophomores (i.e. we want to know the significance of the three-way
interaction between year, discipline and gender).

The first task is to define the dimensions of numbers using the dim function.

dim(numbers)<-c(2,2,2)
numbers

, , 1
[,1] [,2]

[1,] 24 29
[2,] 30 41

, , 2

[,1] [,2]
[1,] 14 36
[2,] 31 35

The top table refers to the males [„1] and the bottom table to the females [„2]. Within each
table, the rows are the year groups and the columns are the disciplines. It would make
the table much easier to understand if we provided these dimensions with names using the
dimnames function:

dimnames(numbers)[[3]] <- list("male", "female")
dimnames(numbers)[[2]] <- list("arts", "science")
dimnames(numbers)[[1]] <- list("freshman", "sophomore")

To see this as a flat table, use the ftable function like this

ftable(numbers)

male female

freshman arts 24 14
science 29 36

sophomore arts 30 31
science 41 35

The thing to understand is that the dimnames are the factor levels (e.g. male or female),
not the names of the factors (e.g. gender).

COUNT DATA IN TABLES 559

We convert this table into a dataframe using the as.data.frame.table function. This
saves us from having to create separate vectors to describe the levels of gender, year and
discipline associated with each count:

as.data.frame.table(numbers)

Var1 Var2 Var3 Freq
1 freshman arts male 24
2 sophomore arts male 30
3 freshman science male 29
4 sophomore science male 41
5 freshman arts female 14
6 sophomore arts female 31
7 freshman science female 36
8 sophomore science female 35

You can see that R has generated reasonably sensible variable names for the four columns,
but we want to use our own names:

frame<-as.data.frame.table(numbers)
names(frame)<-c("year","discipline","gender","count")
frame

year discipline gender count
1 freshman arts male 24
2 sophomore arts male 30
3 freshman science male 29
4 sophomore science male 41
5 freshman arts female 14
6 sophomore arts female 31
7 freshman science female 36
8 sophomore science female 35

Now we can do the statistical modelling. The response variable is count, and we begin
by fitting a saturated model with eight estimated parameters (i.e. the model generates the
observed counts exactly, so the deviance is zero and there are no degrees of freedom):

attach(frame)
model1<-glm(count~year*discipline*gender,poisson)

We test for the significance of the year-by-discipline-by-gender interaction by deleting the
year by discipline by gender interaction from model1 to make model2 using update

model2<-update(model1,~. - year:discipline:gender)

then comparing model1 and model2 using anova with a chi-squared test:

anova(model1,model2,test="Chi")

Analysis of Deviance Table
Model 1: count ~ year * discipline * gender
Model 2: count ~ year + discipline + gender + year:discipline +
year:gender +

discipline:gender
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 0 −5.329e-15
2 1 3.08230 −1 −3.08230 0.07915

560 THE R BOOK

The interaction is not significant �p = 0�079�, indicating similar gender-by-discipline rela-
tionships in the two year groups. We finish the analysis at this point because we have
answered the question that we were asked to address.

Schoener’s Lizards: A Complex Contingency Table

In this section we are interested in whether lizards show any niche separation across various
ecological factors and, in particular, whether there are any interactions – for example,
whether they show different habitat separation at different times of day.

lizards<-read.table("c:\\temp\\lizards.txt",header=T)
attach(lizards)
names(lizards)

[1] "n" "sun" "height" "perch" "time" "species"

The response variable is n, the count for each contingency. The explanatory variables are
all categorical: sun is a two-level factor (Sun and Shade), height is a two-level factor (High
and Low), perch is a two-level factor (Broad and Narrow), time is a three-level factor
(Afternoon, Mid.day and Morning), and there are two lizard species both belonging to the
genus Anolis (A. grahamii and A. opalinus). As usual, we begin by fitting a saturated model,
fitting all the interactions and main effects:

model1<-glm(n~sun*height*perch*time*species,poisson)

Model simplification begins with removal of the highest-order interaction effect: the
sun-by-height-by-perch-by-time-by-species interaction (!):

model2<-update(model1, ~.- sun:height:perch:time:species)
anova(model1,model2,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 0 3.348e-10
2 2 2.181e-10 −2 1.167e-10 1

It is a considerable relief that this interaction is not significant (imagine trying to explain
what it meant in the Discussion section of your paper). The key point to understand in this
kind of analysis is that the only interesting terms are interactions involving species. All of
the other interactions and main effects are nuisance variables that have to be retained in the
model to constrain the marginal totals (see p. 302 for an explanation of what this means).

There are four 4-way interactions of interest – species by sun by height by perch, species
by sun by height by time, species by sun by perch by time, and species by height by perch by
time – and we should test their significance by deleting them from model2 which contains
all of the four-way interactions. Here goes:

model3<-update(model2, ~.-sun:height:perch:species)
anova(model2,model3,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 2 2.181e-10
2 3 2.7088 −1 −2.7088 0.0998

COUNT DATA IN TABLES 561

Close, but not significant �p = 0�0998�.

model4<-update(model2, ~.-sun:height:time:species)
anova(model2,model4,test="Chi")

Analysis of Deviance Table
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 2 2.181e-10
2 4 0.44164 −2 −0.44164 0.80186

Nothing at all �p = 0�802�.

model5<-update(model2, ~.-sun:perch:time:species)
anova(model2,model5,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 2 2.181e-10
2 4 0.81008 −2 −0.81008 0.66695

Again, nothing there �p = 0�667�. Finally,

model6<-update(model2, ~.-height:perch:time:species)
anova(model2,model6,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 2 2.181e-10
2 4 3.2217 −2 −3.2217 0.1997

This means that none of the four-way interactions involving species need be retained.
Now we have to assess all six of the three-way interactions involving species: species

by height by perch, species by height by time, species by perch by time, species by sun
by height, species by sun by time, and species by sun by perch. Can we speed this up by
using automatic deletion? Yes and no. Yes, we can use step, to remove terms assessed
by AIC to be non-significant (p. 501). No, unless we are very careful. We must not allow
step to remove any interactions that do not involve species (because these are the nuisance
variables). We do this with the lower argument:

model7<-step(model1,lower=~sun*height*perch*time)

Df Deviance AIC
<none> 3.340 246.589
- sun:height:perch:time 2 7.529 246.778
- sun:height:perch:species 1 5.827 247.076
- height:perch:time:species 2 8.542 247.791

You can see that step has been very forgiving, and has left two of the four-way interactions
involving species in the model. What we can do next is to take out all of the four-way interactions
and start step off again with this simpler starting point. We want to start at the lower model
plus all the three-way interactions involving species with sun, height, perch and time:

model8<-
glm(n ~sun*height*perch*time+(species+sun+height+perch+time)^3,poisson)
model9<-step(model8,lower= ~sun*height*perch*time)

562 THE R BOOK

Df Deviance AIC
<none> 11.984 237.233
- sun:height:species 1 14.205 237.453
- sun:height:perch:time 2 17.188 238.436
- time:species 2 23.714 244.962
- perch:species 1 24.921 248.170

Again, we need to be harsh and to test whether these terms really to deserve to stay in
model9. The most complex term is the interaction sun by height by perch by time, but we
don’t want to remove this because it is a nuisance variable (the interaction does not involve
species). We should start by removing sun by height by species:

model10<-update(model9, ~.-sun:height:species)
anova(model9,model10,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 17 11.9843
2 18 14.2046 −1 −2.2203 0.1362

This interaction is not significant, so we leave it out. Model10 contains no three- or four-way
interactions involving species.

Let’s try deleting the two-way interactions in turn from model10:

model11<-update(model10, ~.-sun:species)
model12<-update(model10, ~.-height:species)
model13<-update(model10, ~.-perch:species)
model14<-update(model10, ~.-time:species)
anova(model10,model11,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 18 14.2046
2 19 21.8917 −1 −7.6871 0.0056

We need to retain a main effect for sun �p = 0�0056�.

anova(model10,model12,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 18 14.205
2 19 36.271 −1 −22.066 2.634e-06

We need to retain a main effect for height �p < 0�0001�

anova(model10,model13,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 18 14.2046
2 19 27.3346 −1 −13.1300 0.0003

We need to retain a main effect for perch �p = 0�0003�.

COUNT DATA IN TABLES 563

anova(model10,model14,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 18 14.205
2 20 25.802 −2 −11.597 0.003

We need to retain a main effect for time of day �p = 0�003�. To see where we are, we
should produce a summary table of the counts:

ftable(tapply(n,list(species,sun,height,perch,time),sum))

Afternoon Mid.day Morning
grahamii Shade High Broad 4 1 2

Narrow 3 1 3
Low Broad 0 0 0

Narrow 1 0 0
Sun High Broad 10 20 11

Narrow 8 32 15
Low Broad 3 4 5

Narrow 4 5 1
opalinus Shade High Broad 4 8 20

Narrow 5 4 8
Low Broad 12 8 13

Narrow 1 0 6
Sun High Broad 18 69 34

Narrow 8 60 17
Low Broad 13 55 31

Narrow 4 21 12

The modelling has indicated that species differ in their responses to all four explanatory
variables, but that there are no interactions between the factors. The only remaining question
for model simplification is whether we need to keep all three levels for time of day, or
whether two levels would do just as well (we lump together Mid.Day and Morning):

tod<-factor(1+(time=="Afternoon"))
model15<-update(model10, ~.-species:time+species:tod)
anova(model10,model15,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 18 14.2046
2 19 15.0232 −1 −0.8186 0.3656

That simplification was justified, so we keep time in the model but as a two-level factor.
That was hard, I think you will agree. You need to be extremely well organized to do

this sort of analysis without making any mistakes. A high degree of serenity is required
throughout. What makes it difficult is keeping track of the interactions that are in the
model and those that have been excluded, and making absolutely sure that no nuisance
variables have been omitted unintentionally. It turns out that life can be made much more
straightforward if the analysis can be reformulated as an exercise in proportions rather than
counts, because if it can, then all of the problems with nuisance variables disappear. On
p. 584 the example is reanalysed with the proportion of all lizards that belong to species A.
opalinus as the response variable in a GLM with binomial errors.

564 THE R BOOK

Plot Methods for Contingency Tables

The departures from expectations of the observed frequencies in a contingency table can
be regarded as �O − E�/

√
E. The R function called assocplot produces a Cohen–Friendly

association plot indicating deviations from independence of rows and columns in a two-
dimensional contingency table.

Here are data on hair colour and eye colour:

data(HairEyeColor)
(x <- margin.table(HairEyeColor, c(1, 2)))

Eye

Hair Brown Blue Hazel Green
Black 68 20 15 5
Brown 119 84 54 29
Red 26 17 14 14

Blond 7 94 10 16

assocplot(x, main = "Relation between hair and eye color")

The plot shows the excess (black bars) of people with black hair that have brown eyes, the
excess of people with blond hair that have blue eyes, and the excess of redheads that have
green eyes. The red bars show categories where fewer people were observed than expected
under the null hypothesis of independence of hair colour and eye colour.

COUNT DATA IN TABLES 565

Here are the same data plotted as a mosaic plot:

mosaicplot(HairEyeColor, shade = TRUE)

Black Brown

HairEyeColor

B
ro

w
n

B
lu

e

E
ye

Hair

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

:
<

–4
–4

:–
2

–2
:0

0:
2

2:
4

>
4

G
re

en
H

az
el

Red Blond
Male Male MaleFemale Male FemaleFemale Female

The plot indicates that there are significantly more blue-eyed blond females than expected in
the case of independence, and too few brown-eyed blond females. Extended mosaic displays
show the standardized residuals of a log-linear model of the counts from by the color and
outline of the mosaic’s tiles. Negative residuals are drawn in shades of red and with broken
outlines, while positive residuals are drawn in shades of blue with solid outlines.

Where there are multiple 2 × 2 tables (dataframes with three or more categorical explana-
tory variables), then fourfoldplot might be useful. It allows a visual inspection of the
association between two dichotomous variables in one or several populations (known as
strata). Here are the college admissions data plotted for each department separately:

data(UCBAdmissions)
x <- aperm(UCBAdmissions, c(2, 1, 3))
names(dimnames(x)) <- c("Sex", "Admit?", "Department")
ftable(x)

566 THE R BOOK

Department: A

Sex: Male

512 313

1989

353 207

817

53 138

29994

22120

202 391

205 351

31724

138 279

244131

A
dm

it?
: A

dm
itt

ed

A
dm

it?
: R

ej
ec

te
d

A
dm

it?
: R

ej
ec

te
d

A
dm

it?
: A

dm
itt

ed

A
dm

it?
: A

dm
itt

ed

A
dm

it?
: R

ej
ec

te
d

A
dm

it?
: R

ej
ec

te
d

A
dm

it?
: A

dm
itt

ed

Sex: Male
Department: D

Department: B

Sex: Male

Sex:Female Sex:Female

Sex:Female Sex:Female

Sex: Male
Department: E

A
dm

it?
: A

dm
itt

ed

A
dm

it?
: R

ej
ec

te
d

A
dm

it?
: R

ej
ec

te
d

A
dm

it?
: A

dm
itt

ed

Department: C

Sex: Male

Sex: Female Sex: Female

Sex: Male
Department: F

Department A B C D E F
Sex Admit?
Male Admitted 512 353 120 138 53 22

Rejected 313 207 205 279 138 351
Female Admitted 89 17 202 131 94 24

Rejected 19 8 391 244 299 317

COUNT DATA IN TABLES 567

fourfoldplot(x, margin = 2)

You will need to compare the graphs with the frequency table (above) to see what is
going on. The central questions are whether the rejection rate for females is different from
the rejection rate for males, and whether any such difference varies from department to
department. The log-linear model suggests that the difference does vary with department
(p=0�0011; see below). That Department B attracted a smaller number of female applicants
is very obvious. What is less clear (but in many ways more interesting) is that they rejected
proportionally fewer of the female applicants (32%) than the male applicants (37%). You
may find these plots helpful, but I must admit that I do not.

Here were use gl to generate factor levels for department, sex and admission, then fit a
saturated contingency table model for the counts, x. We then use anova with test="Chi" to
assess the significance of the three-way interaction

dept<-gl(6,4)
sex<-gl(2,1,24)
admit<-gl(2,2,24)
model1<-glm(as.vector(x) ~dept*sex*admit,poisson)
model2<-update(model1, ~. -dept:sex:admit)
anova(model1,model2,test="Chi")

Analysis of Deviance Table

Model 1: as.vector(x) ~ dept * sex * admit
Model 2: as.vector(x) ~ dept + sex + admit + dept:sex + dept:admit +
sex:admit

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 0 −5.551e-14
2 5 20.2043 −5 −20.2043 0.0011

Department A B C D E F
Sex Admit?
Male Admitted 512 353 120 138 53 22

Rejected 313 207 205 279 138 351
Female Admitted 89 17 202 131 94 24

Rejected 19 8 391 244 299 317

The interaction is highly significant, indicating that the admission rates of the two sexes
differ from department to department.

16
Proportion Data

An important class of problems involves data on proportions such as:

• studies on percentage mortality,

• infection rates of diseases,

• proportion responding to clinical treatment,

• proportion admitting to particular voting intentions,

• sex ratios, or

• data on proportional response to an experimental treatment.

What all these have in common is that we know how many of the experimental objects
are in one category (dead, insolvent, male or infected) and we also know how many are in
another (alive, solvent, female or uninfected). This contrasts with Poisson count data, where
we knew how many times an event occurred, but not how many times it did not occur
(p. 527).

We model processes involving proportional response variables in R by specifying a
generalized linear model with family=binomial. The only complication is that whereas with
Poisson errors we could simply specify family=poisson, with binomial errors we must give
the number of failures as well as the numbers of successes in a two-vector response variable.
To do this we bind together two vectors using cbind into a single object, y, comprising
the numbers of successes and the number of failures. The binomial denominator, n, is the
total sample, and

number.of.failures = binomial.denominator – number.of.successes
y <- cbind(number.of.successes, number.of.failures)

The old fashioned way of modelling this sort of data was to use the percentage mortality as
the response variable. There are four problems with this:

• The errors are not normally distributed.

• The variance is not constant.

• The response is bounded (by 1 above and by 0 below).

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

570 THE R BOOK

• By calculating the percentage, we lose information of the size of the sample, n, from
which the proportion was estimated.

R carries out weighted regression, using the individual sample sizes as weights, and the logit
link function to ensure linearity. There are some kinds of proportion data, such as percentage
cover, which are best analysed using conventional models (normal errors and constant
variance) following arcsine transformation. The response variable, y, measured in radians,
is sin−1 √

0�01 × p, where p is percentage cover. If, however, the response variable takes
the form of a percentage change in some continuous measurement (such as the percentage
change in weight on receiving a particular diet), then rather than arcsine-transforming the
data, it is usually better treated by either

• analysis of covariance (see p. 489), using final weight as the response variable and initial
weight as a covariate, or

• by specifying the response variable as a relative growth rate, measured as log(final
weight/initial weight),

both of which can be analysed with normal errors without further transformation.

Analyses of Data on One and Two Proportions

For comparisons of one binomial proportion with a constant, use binom.test (see p. 300).
For comparison of two samples of proportion data, use prop.test (see p. 301). The methods
of this chapter are required only for more complex models of proportion data, including
regression and contingency tables, where GLMs are used.

Count Data on Proportions

The traditional transformations of proportion data were arcsine and probit. The arcsine
transformation took care of the error distribution, while the probit transformation was used
to linearize the relationship between percentage mortality and log dose in a bioassay. There
is nothing wrong with these transformations, and they are available within R, but a simpler
approach is often preferable, and is likely to produce a model that is easier to interpret.

The major difficulty with modelling proportion data is that the responses are strictly
bounded. There is no way that the percentage dying can be greater than 100% or less than
0%. But if we use simple techniques such as regression or analysis of covariance, then
the fitted model could quite easily predict negative values or values greater than 100%,
especially if the variance was high and many of the data were close to 0 or close to 100%.

The logistic curve is commonly used to describe data on proportions, because, unlike the
straight-line model, it asymptotes at 0 and 1 so that negative proportions and responses of
more than 100% cannot be predicted. Throughout this discussion we shall use p to describe
the proportion of individuals observed to respond in a given way. Because much of their
jargon was derived from the theory of gambling, statisticians call these successes, although
to a demographer measuring death rates this may seem somewhat macabre. The proportion
of individuals that respond in other ways (the statistician’s failures) is therefore 1 − p, and

PROPORTION DATA 571

we shall call this proportion q. The third variable is the size of the sample, n, from which p
was estimated (this is the binomial denominator, and the statistician’s number of attempts).

An important point about the binomial distribution is that the variance is not constant. In
fact, the variance of a binomial distribution with mean np is

s2 = npq�

so that the variance changes with the mean like this:

0.
25

0.
20

0.
15

0.
10

s2

0.
05

0.
0

0.0 0.2 0.4 0.6
p

0.8 1.0

The variance is low when p is very high or very low, and the variance is greatest when
p = q = 0�5. As p gets smaller, so the binomial distribution gets closer and closer to the
Poisson distribution. You can see why this is so by considering the formula for the variance
of the binomial (above). Remember that for the Poisson, the variance is equal to the mean:
s2 = np. Now, as p gets smaller, so q gets closer and closer to 1, so the variance of the
binomial converges to the mean:

s2 = npq ≈ np �q ≈ 1��

Odds

The logistic model for p as a function of x is given by

p = ea+bx

1 + ea+bx
�

and there are no prizes for realizing that the model is not linear. But if x = −�, then
p = 0, and if x = +� then p = 1, so the model is strictly bounded. If x = 0, then p =
exp�a�/�1 + exp�a��. The trick of linearizing the logistic model actually involves a very
simple transformation. You may have come across the way in which bookmakers specify

572 THE R BOOK

probabilities by quoting the odds against a particular horse winning a race (they might give
odds of 2 to 1 on a reasonably good horse or 25 to 1 on an outsider). This is a rather
different way of presenting information on probabilities than scientists are used to dealing
with. Thus, where the scientist might state a proportion as 0.667 (2 out of 3), the bookmaker
would give odds of 2 to 1 (2 successes to 1 failure). In symbols, this is the difference
between the scientist stating the probability p, and the bookmaker stating the odds p/q.
Now if we take the odds p/q and substitute this into the formula for the logistic, we get

p

q
= ea+bx

1 + ea+bx

[
1 − ea+bx

1 + ea+bx

]−1

which looks awful. But a little algebra shows that

p

q
= ea+bx

1 + ea+bx

[
1

1 + ea+bx

]−1

= ea+bx�

Now, taking natural logs and recalling that ln�ex�= x will simplify matters even further, so
that

ln
(

p

q

)
= a + bx�

This gives a linear predictor, a+bx, not for p but for the logit transformation of p, namely
ln�p/q�. In the jargon of R, the logit is the link function relating the linear predictor to the
value of p.

Here are p as a function of x (left panel) and logit(p) as a function of x (right panel) for
the logistic model with a = 0�2 and b = 0�1:

–60 –40 –20 20 40 600
x

–60

0.
0

0.
2

0.
4

p

lo
gi

t0.
6

0.
8

1.
0

–2
–4

–6
0

2
4

6

–40 –20 20 40 600
x

You might ask at this stage: ‘why not simply do a linear regression of ln�p/q� against
the explanatory x-variable?’ R has three great advantages here:

PROPORTION DATA 573

• It allows for the non-constant binomial variance.

• It deals with the fact that logits for ps near 0 or 1 are infinite.

• It allows for differences between the sample sizes by weighted regression.

Overdispersion and Hypothesis Testing

All the different statistical procedures that we have met in earlier chapters can also be used
with data on proportions. Factorial analysis of variance, multiple regression, and a variety
of models in which different regression lines are fitted in each of several levels of one or
more factors, can be carried out. The only difference is that we assess the significance of
terms on the basis of chi-squared – the increase in scaled deviance that results from removal
of the term from the current model.

The important point to bear in mind is that hypothesis testing with binomial errors is less
clear-cut than with normal errors. While the chi-squared approximation for changes in scaled
deviance is reasonable for large samples (i.e. larger than about 30), it is poorer with small
samples. Most worrisome is the fact that the degree to which the approximation is satisfactory
is itself unknown. This means that considerable care must be exercised in the interpretation of
tests of hypotheses on parameters, especially when the parameters are marginally significant
or when they explain a very small fraction of the total deviance. With binomial or Poisson
errors we cannot hope to provide exact p-values for our tests of hypotheses.

As with Poisson errors, we need to address the question of overdispersion (see p. 522).
When we have obtained the minimal adequate model, the residual scaled deviance should be
roughly equal to the residual degrees of freedom. When the residual deviance is larger than
the residual degrees of freedom there are two possibilities: either the model is misspecified,
or the probability of success, p, is not constant within a given treatment level. The effect
of randomly varying p is to increase the binomial variance from npq to

s2 = npq + n�n − 1��2�

leading to a large residual deviance. This occurs even for models that would fit well if the
random variation were correctly specified.

One simple solution is to assume that the variance is not npq but npq	, where 	 is an
unknown scale parameter �	>1�. We obtain an estimate of the scale parameter by dividing
the Pearson chi-squared by the degrees of freedom, and use this estimate of 	 to compare
the resulting scaled deviances. To accomplish this, we use family = quasibinomial rather
than family = binomial when there is overdispersion.

The most important points to emphasize in modelling with binomial errors are as follows:

• Create a two-column object for the response, using cbind to join together the two vectors
containing the counts of success and failure.

• Check for overdispersion (residual deviance greater than the residual degrees of freedom),
and correct for it by using family=quasibinomial rather than binomial if necessary.

• Remember that you do not obtain exact p-values with binomial errors; the chi-squared
approximations are sound for large samples, but small samples may present a problem.

• The fitted values are counts, like the response variable.

574 THE R BOOK

• The linear predictor is in logits (the log of the odds = ln�p/q�).

• You can back-transform from logits �z� to proportions (p) by p = 1/�1 + 1/ exp�z��.

Applications

You can do as many kinds of modelling in a GLM as in a linear model. Here we show
examples of:

• regression with binomial errors (continuous explanatory variables);

• analysis of deviance with binomial errors (categorical explanatory variables);

• analysis of covariance with binomial errors (both kinds of explanatory variables).

Logistic Regression with Binomial Errors

This example concerns sex ratios in insects (the proportion of all individuals that are males).
In the species in question, it has been observed that the sex ratio is highly variable, and an
experiment was set up to see whether population density was involved in determining the
fraction of males.

numbers <-read.table("c:\\temp\\sexratio.txt",header=T)
numbers

density females males
1 1 1 0
2 4 3 1
3 10 7 3
4 22 18 4
5 55 22 33
6 121 41 80
7 210 52 158
8 444 79 365

It certainly looks as if there are proportionally more males at high density, but we should
plot the data as proportions to see this more clearly:

attach(numbers)
par(mfrow=c(1,2))
p<-males/(males+females)
plot(density,p,ylab="Proportion male")
plot(log(density),p,ylab="Proportion male")

Evidently, a logarithmic transformation of the explanatory variable is likely to improve the
model fit. We shall see in a moment.

The question is whether increasing population density leads to a significant increase
in the proportion of males in the population – or, more briefly, whether the sex ratio is
density-dependent. It certainly looks from the plot as if it is.

The response variable is a matched pair of counts that we wish to analyse as proportion
data using a GLM with binomial errors. First, we bind together the vectors of male and
female counts into a single object that will be the response in our analysis:

y<-cbind(males,females)

PROPORTION DATA 575

0.
8

0.
6

0.
4

0.
2

density log(density)

0.
0

0 100 200 300 400 5 60 1 2 3 4

0.
8

0.
6

0.
4

0.
2

0.
0

P
ro

po
rt

io
n

m
al

e

P
ro

po
rt

io
n

m
al

e

This means that y will be interpreted in the model as the proportion of all individuals that
were male. The model is specified like this:

model<-glm(y~density,binomial)

This says that the object called model gets a generalized linear model in which y (the sex
ratio) is modelled as a function of a single continuous explanatory variable (called density),
using an error distribution from the binomial family. The output looks like this:

summary(model)

Coefficients:
Estimate Std. Error z value Pr(>| z |)

(Intercept) 0.0807368 0.1550376 0.521 0.603
density 0.0035101 0.0005116 6.862 6.81e-12 ***

Null deviance: 71.159 on 7 degrees of freedom
Residual deviance: 22.091 on 6 degrees of freedom
AIC: 54.618

The model table looks just as it would for a straightforward regression. The first parameter
is the intercept and the second is the slope of the graph of sex ratio against population
density. The slope is highly significantly steeper than zero (proportionately more males
at higher population density; p = 6�81 × 10−12�. We can see if log transformation of the
explanatory variable reduces the residual deviance below 22.091:

576 THE R BOOK

model<-glm(y~log(density),binomial)
summary(model)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) −2.65927 0.48758 −5.454 4.92e-08 ***
log(density) 0.69410 0.09056 7.665 1.80e-14 ***

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 71.1593 on 7 degrees of freedom
Residual deviance: 5.6739 on 6 degrees of freedom
AIC: 38.201

This is a big improvement, so we shall adopt it. There is a technical point here, too. In a
GLM like this, it is assumed that the residual deviance is the same as the residual degrees
of freedom. If the residual deviance is larger than the residual degrees of freedom, this is
called overdispersion. It means that there is extra, unexplained variation, over and above
the binomial variance assumed by the model specification. In the model with log(density)
there is no evidence of overdispersion (residual deviance = 5�67 on 6 d.f.), whereas the
lack of fit introduced by the curvature in our first model caused substantial overdispersion
(residual deviance = 22�09 on 6 d.f.).

Model checking involves the use of plot(model). As you will see, there is no pattern in
the residuals against the fitted values, and the normal plot is reasonably linear. Point no. 4
is highly influential (it has a large Cook’s distance), but the model is still significant with
this point omitted.

We conclude that the proportion of animals that are males increases significantly with
increasing density, and that the logistic model is linearized by logarithmic transformation of
the explanatory variable (population density). We finish by drawing the fitted line though
the scatterplot:

xv<-seq(0,6,0.1)
plot(log(density),p,ylab="Proportion male")
lines(xv,predict(model,list(density=exp(xv)),type="response"))

Note the use of type="response" to back-transform from the logit scale to the S-shaped
proportion scale.

Estimating LD50 and LD90 from bioassay data

The data consist of numbers dead and initial batch size for five doses of pesticide application,
and we wish to know what dose kills 50% of the individuals (or 90% or 95%, as required).
The tricky statistical issue is that one is using a value of y (50% dead) to predict a value of
x (the relevant dose) and to work out a standard error on the x axis.

data<-read.table("c:\\temp\\bioassay.txt",header=T)
attach(data)
names(data)

[1] "dose" "dead" "batch"

The logistic regression is carried out in the usual way:

y<-cbind(dead,batch-dead)
model<-glm(y~log(dose),binomial)

PROPORTION DATA 577

0.
8

0.
6

0.
4

0.
2

P
ro

po
rt

io
n

m
al

e

0.
0

0 1

log(density)

2 3 4 5 6

Then the function dose.p from the MASS library is run with the model object, specifying
the proportion killed (p = 0�5 is the default for LD50):

library(MASS)
dose.p(model,p=c(0.5,0.9,0.95))

Dose SE
p = 0.50: 2.306981 0.07772065
p = 0.90: 3.425506 0.12362080
p = 0.95: 3.805885 0.15150043

Here the logs of LD50, LD90 and LD95 are printed, along with their standard errors.

Proportion data with categorical explanatory variables

This next example concerns the germination of seeds of two genotypes of the parasitic
plant Orobanche and two extracts from host plants (bean and cucumber) that were used to
stimulate germination. It is a two-way factorial analysis of deviance.

germination<-read.table("c:\\temp\\germination.txt",header=T)
attach(germination)
names(germination)

[1] "count" "sample" "Orobanche" "extract"

578 THE R BOOK

Count is the number of seeds that germinated out of a batch of size = sample. So the
number that did not germinate is sample – count, and we construct the response vector like
this:

y<-cbind(count, sample-count)

Each of the categorical explanatory variables has two levels:

levels(Orobanche)

[1] "a73" "a75"

levels(extract)

[1] "bean" "cucumber"

We want to test the hypothesis that there is no interaction between Orobanche genotype
(a73 or a75) and plant extract (bean or cucumber) on the germination rate of the seeds. This
requires a factorial analysis using the asterisk * operator like this:

model<-glm(y ~ Orobanche * extract, binomial)

summary(model)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) −0.4122 0.1842 −2.238 0.0252 *
Orobanchea75 −0.1459 0.2232 −0.654 0.5132
extractcucumber 0.5401 0.2498 2.162 0.0306 *
Orobanchea75:extractcucumber 0.7781 0.3064 2.539 0.0111 *

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 98.719 on 20 degrees of freedom
Residual deviance: 33.278 on 17 degrees of freedom
AIC: 117.87

At first glance, it looks as if there is a highly significant interaction �p = 0�0111�. But
we need to check that the model is sound. The first thing is to check for is overdispersion.
The residual deviance is 33.278 on 17 d.f. so the model is quite badly overdispersed:

33.279 / 17

[1] 1.957588

The overdispersion factor is almost 2. The simplest way to take this into account is to
use what is called an ‘empirical scale parameter’ to reflect the fact that the errors are not
binomial as we assumed, but were larger than this (overdispersed) by a factor of 1.9576.
We refit the model using quasibinomial to account for the overdispersion:

model<-glm(y ~ Orobanche * extract, quasibinomial)

Then we use update to remove the interaction term in the normal way:

model2<-update(model, ~ . - Orobanche:extract)

The only difference is that we use an F test instead of a chi-squared test to compare the
original and simplified models:

PROPORTION DATA 579

anova(model,model2,test="F")

Analysis of Deviance Table

Model 1: y ~ Orobanche * extract
Model 2: y ~ Orobanche + extract

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 17 33.278
2 18 39.686 −1 −6.408 3.4418 0.08099 .

Now you see that the interaction is not significant �p = 0�081�. There is no compelling
evidence that different genotypes of Orobanche respond differently to the two plant extracts.
The next step is to see if any further model simplification is possible.

anova(model2,test="F")

Analysis of Deviance Table

Model: quasibinomial, link: logit
Response: y

Df Deviance Resid. Df Resid. Dev F Pr(>F)
NULL 20 98.719
Orobanche 1 2.544 19 96.175 1.1954 0.2887
extract 1 56.489 18 39.686 26.5412 6.692e-05 ***

There is a highly significant difference between the two plant extracts on germination
rate, but it is not obvious that we need to keep Orobanche genotype in the model. We try
removing it:

model3<-update(model2, ~ . - Orobanche)
anova(model2,model3,test="F")

Analysis of Deviance Table

Model 1: y ~ Orobanche + extract
Model 2: y ~ extract

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 18 39.686
2 19 42.751 −1 −3.065 1.4401 0.2457

There is no justification for retaining Orobanche in the model. So the minimal adequate
model contains just two parameters:

coef(model3)

(Intercept) extract
−0.5121761 1.0574031

What, exactly, do these two numbers mean? Remember that the coefficients are from
the linear predictor. They are on the transformed scale, so because we are using binomial
errors, they are in logits �ln�p/�1 −p��. To turn them into the germination rates for the two
plant extracts requires a little calculation. To go from a logit x to a proportion p, you need
to do the following sum

p = 1
1 + 1/ex

�

580 THE R BOOK

So our first x value is −0�5122 and we calculate

1/(1+1/(exp(−0.5122)))

[1] 0.3746779

This says that the mean germination rate of the seeds with the first plant extract was 37%.
What about the parameter for extract (1.0574). Remember that with categorical explana-
tory variables the parameter values are differences between means. So to get the second
germination rate we add 1.057 to the intercept before back-transforming:

1/(1+1/(exp(−0.5122+1.0574)))

[1] 0.6330212

This says that the germination rate was nearly twice as great (63%) with the second plant
extract (cucumber). Obviously we want to generalize this process, and also to speed up the
calculations of the estimated mean proportions. We can use predict to help here, because
type="response" makes predictions on the back-transformed scale automatically:

tapply(predict(model3,type="response"),extract,mean)

bean cucumber
0.3746835 0.6330275

It is interesting to compare these figures with the averages of the raw proportions. First
we need to calculate the proportion germinating, p, in each sample:

p<-count/sample

Then we can find the average germination rates for each extract:

tapply(p,extract,mean)

bean cucumber
0.3487189 0.6031824

You see that this gives different answers. Not too different in this case, it’s true,
but different none the less. The correct way to average proportion data is to add up
the total counts for the different levels of abstract, and only then to turn them into
proportions:

tapply(count,extract,sum)

bean cucumber
148 276

This means that 148 seeds germinated with bean extract and 276 with cucumber. But how
many seeds were involved in each case?

tapply(sample,extract,sum)

bean cucumber
395 436

This means that 395 seeds were treated with bean extract and 436 seeds were treated
with cucumber. So the answers we want are 148/395 and 276/436 (i.e. the correct mean
proportions). We automate the calculation like this:

PROPORTION DATA 581

as.vector(tapply(count,extract,sum))/as.vector(tapply(sample,extract,sum))

[1] 0.3746835 0.6330275

These are the correct mean proportions that were produced by the GLM. The moral here
is that you calculate the average of proportions by using total counts and total samples and
not by averaging the raw proportions.

To summarize this analysis:

• Make a two-column response vector containing the successes and failures.

• Use glm with family=binomial (you can omit family=).

• Fit the maximal model (in this case it had four parameters).

• Test for overdispersion.

• If, as here, you find overdispersion then use quasibinomial rather than binomial errors.

• Begin model simplification by removing the interaction term.

• This was non-significant once we had adjusted for overdispersion.

• Try removing main effects (we didn’t need Orobanche genotype in the model).

• Use plot to obtain your model-checking diagnostics.

• Back-transform using predict with the option type=“response” to obtain means.

Analysis of covariance with binomial data

We now turn to an example concerning flowering in five varieties of perennial plants.
Replicated individuals in a fully randomized design were sprayed with one of six doses of
a controlled mixture of growth promoters. After 6 weeks, plants were scored as flowering
or not flowering. The count of flowering individuals forms the response variable. This is an
ANCOVA because we have both continuous (dose) and categorical (variety) explanatory
variables. We use logistic regression because the response variable is a count (flowered)
that can be expressed as a proportion (flowered/number).

props<-read.table("c:\\temp\\flowering.txt",header=T)
attach(props)
names(props)

[1] "flowered" "number" "dose" "variety"

y<-cbind(flowered,number-flowered)
pf<-flowered/number
pfc<-split(pf,variety)
dc<-split(dose,variety)

plot(dose,pf,type="n",ylab="Proportion flowered")
points(dc[[1]],pfc[[1]],pch=16)
points(dc[[2]],pfc[[2]],pch=1)
points(dc[[3]],pfc[[3]],pch=17)
points(dc[[4]],pfc[[4]],pch=2)
points(dc[[5]],pfc[[5]],pch=3)

582 THE R BOOK

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

P
ro

po
rt

io
n

flo
w

er
ed

0 5 10 15

dose

20 25 30

There is clearly a substantial difference between the plant varieties in their response to
the flowering stimulant. The modelling proceeds in the normal way. We begin by fitting
the maximal model with different slopes and intercepts for each variety (estimating ten
parameters in all):

model1<-glm(y~dose*variety,binomial)
summary(model1)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) −4.591189 1.021236 −4.496 6.93e-06 ***
dose 0.412564 0.099107 4.163 3.14e-05 ***
varietyB 3.061504 1.082866 2.827 0.004695 **
varietyC 1.232022 1.178527 1.045 0.295842
varietyD 3.174594 1.064689 2.982 0.002866 **
varietyE −0.715041 1.537320 −0.465 0.641844
dose:varietyB −0.342767 0.101188 −3.387 0.000706 ***
dose:varietyC −0.230334 0.105826 −2.177 0.029515 *
dose:varietyD −0.304762 0.101374 −3.006 0.002644 **
dose:varietyE −0.006443 0.131786 −0.049 0.961006

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 303.350 on 29 degrees of freedom
Residual deviance: 51.083 on 20 degrees of freedom
AIC: 123.55

The model exhibits substantial overdispersion, but this is probably due to poor model
selection rather than extra, unmeasured variability. Here is the mean proportion flowered at
each dose for each variety:

PROPORTION DATA 583

p<-flowered/number
tapply(p,list(dose,variety),mean)

A B C D E
0 0.0000000 0.08333333 0.00000000 0.06666667 0.0000000
1 0.0000000 0.00000000 0.14285714 0.11111111 0.0000000
4 0.0000000 0.20000000 0.06666667 0.15789474 0.0000000
8 0.4000000 0.50000000 0.17647059 0.53571429 0.1578947
16 0.8181818 0.90000000 0.25000000 0.73076923 0.7500000
32 1.0000000 0.50000000 1.00000000 0.77777778 1.0000000

There are several ways to plot the five different curves on the scatterplot, but perhaps the
simplest is to fit the regression model separately for each variety (see the book’s website):

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

P
ro

po
rt

io
n

flo
w

er
ed

0 5 10 15

dose

20 25 30

As you can see, the model is reasonable for two of the genotypes (A and E, represented by
open and solid diamonds, respectively), moderate for one genotype (C, solid triangles) but
poor for two of them, B (open circles) and D (the open triangles). For both of the latter,
the model overestimates the proportion flowering at zero dose, and for genotype B there
seems to be some inhibition of flowering at the highest dose because the graph falls from
90% flowering at dose 16 to just 50% at dose 32. Variety D appears to be asymptoting at
less than 100% flowering. These failures of the model focus attention for future work.

The moral is that the fact that we have proportion data does not mean that the data will
necessarily be well described by the logistic model. For instance, in order to describe the
response of genotype B, the model would need to have a hump, rather than to asymptote at
p = 1 for large doses.

584 THE R BOOK

Converting Complex Contingency Tables to Proportions

In this section we show how to remove the need for all of the nuisance variables that are
involved in complex contingency table modelling (see p. 302) by converting the response
variable from a count to a proportion. We work thorough the analysis of Schoener’s lizards,
which we first encountered in Chapter 15. Instead of analysing the counts of the numbers
of Anolis grahamii and A. opalinus, we restructure the data to represent the proportions of
all lizards that were A. grahamii under the various contingencies.

lizards<-read.table("c:\\temp\\lizards.txt",header=T)
attach(lizards)
names(lizards)

[1] "n" "sun" "height" "perch" "time" "species"

First, we need to make absolutely sure that all the explanatory variables are in exactly
the same order for both species of lizards. The reason for this is that we are going to cbind
the counts for one of the lizard species onto the half dataframe containing the other species
counts and all of the explanatory variables. Any mistakes here would be disastrous because
the count would be lined up with the wrong combination of explanatory variables, and the
analysis would be wrong and utterly meaningless.

sorted<-lizards[order(species,sun,height,perch,time),]
sorted

n sun height perch time species
41 4 Shade High Broad Afternoon grahamii
33 1 Shade High Broad Mid.day grahamii
25 2 Shade High Broad Morning grahamii
43 3 Shade High Narrow Afternoon grahamii
35 1 Shade High Narrow Mid.day grahamii
27 3 Shade High Narrow Morning grahamii
42 0 Shade Low Broad Afternoon grahamii
34 0 Shade Low Broad Mid.day grahamii
26 0 Shade Low Broad Morning grahamii
44 1 Shade Low Narrow Afternoon grahamii
36 0 Shade Low Narrow Mid.day grahamii
28 0 Shade Low Narrow Morning grahamii
45 10 Sun High Broad Afternoon grahamii
37 20 Sun High Broad Mid.day grahamii
...
24 4 Sun Low Narrow Afternoon opalinus
16 21 Sun Low Narrow Mid.day opalinus
8 12 Sun Low Narrow Morning opalinus

Next we need to take the top half of this dataframe (i.e. rows 1–24):

short<-sorted[1:24,]
short

PROPORTION DATA 585

n sun height perch time species
41 4 Shade High Broad Afternoon grahamii
33 1 Shade High Broad Mid.day grahamii
25 2 Shade High Broad Morning grahamii
43 3 Shade High Narrow Afternoon grahamii
35 1 Shade High Narrow Mid.day grahamii
27 3 Shade High Narrow Morning grahamii
42 0 Shade Low Broad Afternoon grahamii
34 0 Shade Low Broad Mid.day grahamii
26 0 Shade Low Broad Morning grahamii
44 1 Shade Low Narrow Afternoon grahamii
36 0 Shade Low Narrow Mid.day grahamii
28 0 Shade Low Narrow Morning grahamii
45 10 Sun High Broad Afternoon grahamii
37 20 Sun High Broad Mid.day grahamii
29 11 Sun High Broad Morning grahamii
47 8 Sun High Narrow Afternoon grahamii
39 32 Sun High Narrow Mid.day grahamii
31 15 Sun High Narrow Morning grahamii
46 3 Sun Low Broad Afternoon grahamii
38 4 Sun Low Broad Mid.day grahamii
30 5 Sun Low Broad Morning grahamii
48 4 Sun Low Narrow Afternoon grahamii
40 5 Sun Low Narrow Mid.day grahamii
32 1 Sun Low Narrow Morning grahamii

Note that this loses all of the data for A. opalinus. Also, the name for the left-hand variable,
n� is no longer appropriate. It is the count for A. grahamii, so we should rename it Ag, say
(with the intention of adding another column called Ao in a minute to contain the counts of
A. opalinus):

names(short)[1]<-"Ag"
names(short)

[1] "Ag" "sun" "height" "perch" "time" "species"

The right-hand variable, species, is redundant now (all the entries are grahamii), so we
should drop it:

short<-short[,-6]
short

Ag sun height perch time
41 4 Shade High Broad Afternoon
33 1 Shade High Broad Mid.day
25 2 Shade High Broad Morning
43 3 Shade High Narrow Afternoon
...

The counts for each row of A. opalinus are in the variable called n in the bottom half of the
dataframe called sorted. We extract them like this:

586 THE R BOOK

sorted$n[25:48]

[1] 4 8 20 5 4 8 12 8 13 1 0 6 18 69 34 8 60 17 13 55
31 4 21 12

The idea is to create a new dataframe with these counts for A. opalinus lined up alongside
the equivalent counts for A. grahamii:

new.lizards<-data.frame(sorted$n[25:48], short)

The first variable needs an informative name, like Ao:

names(new.lizards)[1]<-"Ao"
new.lizards

Ao Ag sun height perch time
41 4 4 Shade High Broad Afternoon
33 8 1 Shade High Broad Mid.day
25 20 2 Shade High Broad Morning
43 5 3 Shade High Narrow Afternoon
35 4 1 Shade High Narrow Mid.day
27 8 3 Shade High Narrow Morning
...

That completes the editing of the dataframe. Notice, however, that we have got three
dataframes, all of different configurations, but each containing the same variable names
(sun, height, perch and time) – look at objects() and search(). We need to do some
housekeeping:

detach(lizards)
rm(short,sorted)
attach(new.lizards)

Analysing Schoener’s Lizards as Proportion Data

names(new.lizards)

[1] "Ao" "Ag" "sun" "height" "perch" "time"

The response variable is a two-column object containing the counts of the two species:

y<-cbind(Ao,Ag)

We begin by fitting the saturated model with all possible interactions:

model1<-glm(y~sun*height*perch*time,binomial)

Since there are no nuisance variables, we can use step directly to begin the model simpli-
fication (compare this with p. 560 with a log-linear model of the same data):

model2<-step(model1)

Start: AIC= 102.82
y ~ sun * height * perch * time

PROPORTION DATA 587

Df Deviance AIC
- sun:height:perch:time 1 2.180e-10 100.82
<none> 3.582e-10 102.82

Out goes the four-way interaction (with a sigh of relief):

Step: AIC= 100.82

Df Deviance AIC
- sun:height:time 2 0.442 97.266
- sun:perch:time 2 0.810 97.634
- height:perch:time 2 3.222 100.046
<none> 2.18e-10 100.824
- sun:height:perch 1 2.709 101.533

Next, we wave goodbye to three of the three-way interactions

Step: AIC= 97.27

Df Deviance AIC
- sun:perch:time 2 1.071 93.896
<none> 0.442 97.266
- height:perch:time 2 4.648 97.472
- sun:height:perch 1 3.111 97.936

Step: AIC= 93.9

Df Deviance AIC
- sun:time 2 3.340 92.165
<none> 1.071 93.896
- sun:height:perch 1 3.302 94.126
- height:perch:time 2 5.791 94.615

and the two-way interaction of sun by time

Step: AIC= 92.16

Df Deviance AIC
<none> 3.340 92.165
- sun:height:perch 1 5.827 92.651
- height:perch:time 2 8.542 93.366

summary(model2)

Call:
glm(formula = y ~ sun + height + perch + time + sun:height + sun:perch

+ height:perch + height:time + perch:time + sun:height:perch +
height:perch:time, family = binomial)

We need to test whether we would have kept the two 3-way interactions and the five
2-way interactions by hand:

model3<-update(model2,~. - height:perch:time)
model4<-update(model2,~. - sun:height:perch)
anova(model2,model3,test="Chi")

588 THE R BOOK

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 7 3.3403
2 9 8.5418 −2 −5.2014 0.0742

anova(model2,model4,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 7 3.3403
2 8 5.8273 −1 −2.4869 0.1148

No. We would not keep either of those three-way interactions. What about the two-way
interactions? We need to start with a simpler base model than model2:

model5<-glm(y~(sun+height+perch+time)^2-sun:time,binomial)
model6<-update(model5,~. - sun:height)
anova(model5,model6,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 10 10.9032
2 11 13.2543 −1 −2.3511 0.1252

model7<-update(model5,~. - sun:perch)
anova(model5,model7,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 10 10.9032
2 11 10.9268 −1 −0.0236 0.8779

model8<-update(model5,~. - height:perch)
anova(model5,model8,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 10 10.9032
2 11 11.1432 −1 −0.2401 0.6242

model9<-update(model5,~. - time:perch)
anova(model5,model9,test="Chi")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 10 10.9032
2 12 10.9090 −2 −0.0058 0.9971

model10<-update(model5,~. - time:height)
anova(model5,model10,test="Chi")

PROPORTION DATA 589

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 10 10.9032
2 12 11.7600 −2 −0.8568 0.6516

So we do not need any of the two-way interactions. What about the main effects?

model11<-glm(y~sun+height+perch+time,binomial)
summary(model11)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.2079 0.3536 3.416 0.000634 ***
sunSun −0.8473 0.3224 −2.628 0.008585 **
heightLow 1.1300 0.2571 4.395 1.11e-05 ***
perchNarrow −0.7626 0.2113 −3.610 0.000306 ***
timeMid.day 0.9639 0.2816 3.423 0.000619 ***
timeMorning 0.7368 0.2990 2.464 0.013730 *

All the main effects are significant and so must be retained.
Just one last point. We might not need all three levels for time, since the summary

suggests that Mid.day and Morning are not significantly different (parameter difference of
0�9639 − 0�7368 = 0�2271 with a standard error of the difference of 0.29). We lump them
together in a new factor called t2:

t2<-time
levels(t2)[c(2,3)]<-"other"
levels(t2)

[1] "Afternoon" "other"

model12<-glm(y~sun+height+perch+t2,binomial)
anova(model11,model12,test="Chi")

Analysis of Deviance Table

Model 1: y ~ sun + height + perch + time
Model 2: y ~ sun + height + perch + t2

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 17 14.2046
2 18 15.0232 −1 −0.8186 0.3656

summary(model12)

Coefficients:
Estimate Std. Error z value Pr(>| z |)

(Intercept) 1.1595 0.3484 3.328 0.000874 ***
sunSun −0.7872 0.3159 −2.491 0.012722 *
heightLow 1.1188 0.2566 4.360 1.30e-05 ***
perchNarrow −0.7485 0.2104 −3.557 0.000375 ***
t2other 0.8717 0.2611 3.338 0.000844 ***

All the parameters are significant, so this is the minimal adequate model. There are
just five parameters, and the model contains no nuisance variables (compare this with the

590 THE R BOOK

massive contingency table model on p. 560). The ecological interpretation is straightforward:
the two lizard species differ significantly in their niches on all the niche axes that were
measured. However, there were no significant interactions (nothing subtle was happening
such as swapping perch sizes at different times of day).

Generalized mixed models lmer with proportion data

Generalized mixed models using lmer are introduced on p. 546. The data concern the
proportion of insects killed by pesticide application in four pseudoreplicated plots within
each randomly selected half-field in six different farms (blocks A to F):

data<-read.table("c:\\temp\\insects.txt",header=T)
attach(data)
names(data)

[1] "block" "treatment" "replicate" "dead" "alive"

The response variable for the binomial analysis is created like this:

y<-cbind(dead,alive)

We intend to use the lmer function, which is part of the lme4 library:

library(lme4)

The model is fitted by specifying the fixed effects (block and treatment), the random
effects (replicates within treatments within blocks), the error family (binomial) and the
dataframe name (data) like this:

model<-lmer(y~block+treatment+(1�block/treatment),binomial,data=data)
summary(model)

This summary indicates a very high level of overdispersion (estimated scale (compare
to 1) = 2�19) so we refit the model with quasi-binomial rather than binomial errors:

model<-lmer(y~block+treatment+(1|block/treatment),quasibinomial,data=data)
summary(model)

Generalized linear mixed model fit using Laplace
Formula: y ~ block + treatment + (1 | block/treatment)

Data: data
Family: quasibinomial(logit link)
AIC BIC logLik deviance

255.2 272 -118.6 237.2

Random effects:

Groups Name Variance Std.Dev.
treatment:block (Intercept) 2.4134e-09 4.9127e-05
block (Intercept) 2.4134e-09 4.9127e-05
Residual 4.8268e+00 2.1970e+00

number of obs: 48, groups: treatment:block, 12; block, 6

PROPORTION DATA 591

Fixed effects:
Estimate Std. Error t value

(Intercept) −0.5076 0.1624 −3.126
blockB −0.8249 0.4562 −1.808
blockC −0.2981 0.2854 −1.044
blockD −1.3308 0.3270 −4.069
blockE −1.2758 0.7244 −1.761
blockF −0.4250 0.3025 −1.405
treatmentsrayed 3.2676 0.2597 12.582

The treatment (sprayed) effect is highly significant, but there are also significant differ-
ences between the blocks (largely due to blocks D and E). Here is how to calculate the
mean proportions dead in the sprayed and unsprayed halves of each block:

tapply(dead,list(treatment,block),sum)/tapply(dead+alive,list(treatment,block),sum)

A B C D E F
control 0.3838798 0.2035398 0.3176101 0.1209150 0.2105263 0.2611940
srayed 0.9169960 0.8815789 0.9123377 0.8309179 0.7428571 0.9312715

Does the spray differ significantly in effectiveness across different blocks? A simple
measure of insecticide effectiveness is the ratio of the proportion killed by the pesticide to
the proportion dying without the insecticide. Note the use of the two rows of the tapply
object to calculate this ratio:

effectiveness-tapply(dead,list(treatment,block),sum)/
tapply(dead+alive,list(treatment,block),sum)

effectiveness[2,]/effectiveness[1,]

A B C D E F
2.388758 4.331236 2.872509 6.871915 3.528571 3.565439

The effectiveness was highest in block D and lowest in block A. We have replication within
each block, so we can test this by fitting an interaction term treatment:block and comparing
the two models using ANOVA. Because we are changing the fixed-effects structure of the
model we need to switch to maximum likelihood:

model2<-
lmer(y~block*treatment+(1|block/treatment),quasibinomial,data=data,method="ML")
model1<-
lmer(y~block+treatment+(1|block/treatment),quasibinomial,data=data,method="ML")
anova(model1,model2,test="F")

Data: data
models:
model1: y ~ block + treatment + (1 | block/treatment)
model2: y ~ block * treatment + (1 | block/treatment)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
model1 9 255.16 272.00 −118.58
model2 14 256.26 282.46 −114.13 8.8981 5 0.1132

The model containing interaction effects uses up five more degrees of freedom, and its AIC
is greater than that of the simpler model, so we accept that there is no significant interaction
between blocks and spray effectiveness �p = 0�1132�.

17
Binary Response Variables

Many statistical problems involve binary response variables. For example, we often classify
individuals as

• dead or alive,

• occupied or empty,

• healthy or diseased,

• wilted or turgid,

• male or female,

• literate or illiterate,

• mature or immature,

• solvent or insolvent, or

• employed or unemployed.

It is interesting to understand the factors that are associated with an individual being
in one class or the other. Binary analysis will be a useful option when at least one of
your explanatory variables is continuous (rather than categorical). In a study of company
insolvency, for instance, the data would consist of a list of measurements made on the
insolvent companies (their age, size, turnover, location, management experience, workforce
training, and so on) and a similar list for the solvent companies. The question then becomes
which, if any, of the explanatory variables increase the probability of an individual company
being insolvent.

The response variable contains only 0s or 1s; for example, 0 to represent dead individuals
and 1 to represent live ones. Thus, there is only a single column of numbers for the response,
in contrast to proportion data where two vectors (successes and failures) were bound together
to form the response (see Chapter 16). The way that R treats binary data is to assume that
the 0s and 1s come from a binomial trial with sample size 1. If the probability that an
individual is dead is p, then the probability of obtaining y (where y is either dead or alive,

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

594 THE R BOOK

0 or 1) is given by an abbreviated form of the binomial distribution with n = 1, known as
the Bernoulli distribution:

P�y� = py�1 − p��1−y��

The random variable y has a mean of p and a variance of p�1 − p�, and the objective is to
determine how the explanatory variables influence the value of p. The trick to using binary
response variables effectively is to know when it is worth using them, and when it is better
to lump the successes and failures together and analyse the total counts of dead individuals,
occupied patches, insolvent firms or whatever. The question you need to ask yourself is: do I
have unique values of one or more explanatory variables for each and every individual case?

If the answer is ‘yes’, then analysis with a binary response variable is likely to be fruitful.
If the answer is ‘no’, then there is nothing to be gained, and you should reduce your data
by aggregating the counts to the resolution at which each count does have a unique set
of explanatory variables. For example, suppose that all your explanatory variables were
categorical – sex (male or female), employment (employed or unemployed) and region
(urban or rural). In this case there is nothing to be gained from analysis using a binary
response variable because none of the individuals in the study have unique values of any of
the explanatory variables. It might be worthwhile if you had each individual’s body weight,
for example, then you could ask whether, when you control for sex and region, heavy people
are more likely to be unemployed than light people. In the absence of unique values for any
explanatory variables, there are two useful options:

• Analyse the data as a contingency table using Poisson errors, with the count of the total
number of individuals in each of the eight contingencies �2 × 2 × 2� as the response
variable (see Chapter 15) in a dataframe with just eight rows.

• Decide which of your explanatory variables is the key (perhaps you are interested in
gender differences), then express the data as proportions (the number of males and the
number of females) and recode the binary response as a count of a two-level factor. The
analysis is now of proportion data (the proportion of all individuals that are female, for
instance) using binomial errors (see Chapter 16).

If you do have unique measurements of one or more explanatory variables for each indi-
vidual, these are likely to be continuous variables such as body weight, income, medical
history, distance to the nuclear reprocessing plant, geographic isolation, and so on. This
being the case, successful analyses of binary response data tend to be multiple regression
analyses or complex analyses of covariance, and you should consult Chapters 9 and 10 for
details on model simplification and model criticism.

In order to carry out modelling on a binary response variable we take the following steps:

• Create a single vector containing 0s and 1s as the response variable.

• Use glm with family=binomial.

• Consider changing the link function from default logit to complementary log-log.

• Fit the model in the usual way.

• Test significance by deletion of terms from the maximal model, and compare the change
in deviance with chi-squared.

BINARY RESPONSE VARIABLES 595

Note that there is no such thing as overdispersion with a binary response variable, and hence
no need to change to using quasibinomial when the residual deviance is large. The choice
of link function is generally made by trying both links and selecting the link that gives
the lowest deviance. The logit link that we used earlier is symmetric in p and q, but the
complementary log-log link is asymmetric. You may also improve the fit by transforming
one or more of the explanatory variables. Bear in mind that you can fit non-parametric
smoothers to binary response variables using generalized additive models (as described in
Chapter 18) instead of carrying out parametric logistic regression.

Incidence functions

In this example, the response variable is called incidence; a value of 1 means that an island
was occupied by a particular species of bird, and 0 means that the bird did not breed there.
The explanatory variables are the area of the island �km2� and the isolation of the island
(distance from the mainland, km).

island<-read.table("c:\\temp\\isolation.txt",header=T)
attach(island)
names(island)

[1] "incidence" "area" "isolation"

There are two continuous explanatory variables, so the appropriate analysis is multiple
regression. The response is binary, so we shall do logistic regression with binomial errors.

We begin by fitting a complex model involving an interaction between isolation and area:

model1<-glm(incidence~area*isolation,binomial)

Then we fit a simpler model with only main effects for isolation and area:

model2<-glm(incidence~area+isolation,binomial)

We now compare the two models using ANOVA:

anova(model1,model2,test="Chi")

Analysis of Deviance Table

Model 1: incidence ~ area * isolation
Model 2: incidence ~ area + isolation

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 46 28.2517
2 47 28.4022 -1 -0.1504 0.6981

The simpler model is not significantly worse, so we accept this for the time being, and
inspect the parameter estimates and standard errors:

summary(model2)

Call:
glm(formula = incidence ~ area + isolation, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.8189 -0.3089 0.0490 0.3635 2.1192

596 THE R BOOK

Coefficients:
Estimate Std. Error Z value Pr(>|z|)

(Intercept) 6.6417 2.9218 2.273 0.02302 *
area 0.5807 0.2478 2.344 0.01909 *
isolation -1.3719 0.4769 -2.877 0.00401 **

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 68.029 on 49 degrees of freedom
Residual deviance: 28.402 on 47 degrees of freedom

The estimates and their standard errors are in logits. Area has a significant positive effect
(larger islands are more likely to be occupied), but isolation has a very strong negative
effect (isolated islands are much less likely to be occupied). This is the minimal adequate
model. We should plot the fitted model through the scatterplot of the data. It is much easier
to do this for each variable separately, like this:

modela<-glm(incidence~area,binomial)
modeli<-glm(incidence~isolation,binomial)
par(mfrow=c(2,2))
xv<-seq(0,9,0.01)
yv<-predict(modela,list(area=xv),type="response")
plot(area,incidence)
lines(xv,yv)
xv2<-seq(0,10,0.1)
yv2<-predict(modeli,list(isolation=xv2),type="response")
plot(isolation,incidence)
lines(xv2,yv2)

Graphical Tests of the Fit of the Logistic to Data

The logistic plots above are all well and good, but it is very difficult to know how good
the fit of the model is when the data are shown only as 0s or 1s. Some people have argued
for putting histograms instead of rugs on the top and bottom axes, but there are issues here
about the arbitrary location of the bins (see p. 162). Rugs are a one-dimensional addition
to the bottom (or top) of the plot showing the locations of the data points along the x axis.
The idea is to indicate the extent to which the values are clustered at certain values of the

BINARY RESPONSE VARIABLES 597

explanatory variable, rather than evenly spaced out along it. If there are many values at the
same value of x, it will be useful to use the jitter function to spread them out (by randomly
selected small distances from x).

A different tack is to cut the data into a number of sectors and plot empirical probabilities
(ideally with their standard errors) as a guide to the fit of the logistic curve, but this, too,
can be criticized on the arbitrariness of the boundaries to do the cutting, coupled with the
fact that there are often too few data points to give acceptable precision to the empirical
probabilities and standard errors in any given group.

For what it is worth, here is an example of this approach: the response is occupation of
territories and the explanatory variable is resource availability in each territory:

occupy<-read.table("c:\\temp\\occupation.txt",header=T)
attach(occupy)
names(occupy)

[1] "resources" "occupied"

plot(resources,occupied,type="n")
rug(jitter(resources[occupied==0]))
rug(jitter(resources[occupied==1]),side=3)

Now fit the logistic regression and draw the line:

model<-glm(occupied~resources,binomial)
xv<-0:1000
yv<-predict(model,list(resources=xv),type="response")
lines(xv,yv)

The idea is to cut up the ranked values on the x axis (resources) into five categories and
then work out the mean and the standard error of the proportions in each group:

cutr<-cut(resources,5)
tapply(occupied,cutr,sum)

(13.2,209] (209,405] (405,600] (600,796] (796,992]
0 10 25 26 31

table(cutr)
cutr
(13.2,209] (209,405] (405,600] (600,796] (796,992]

31 29 30 29 31

So the empirical probabilities are given by

probs<-tapply(occupied,cutr,sum)/table(cutr)
probs

(13.2,209] (209,405] (405,600] (600,796] (796,992]
0.0000000 0.3448276 0.8333333 0.8965517 1.0000000

probs<-as.vector(probs)
resmeans<-tapply(resources,cutr,mean)
resmeans<-as.vector(resmeans)

We can plot these as big points on the graph – the closer they fall to the line, the better the
fit of the logistic model to the data:

598 THE R BOOK

points(resmeans,probs,pch=16,cex=2)

We need to add a measure of unreliability to the points. The standard error of a binomial
proportion will do: se =√

p�1 − p�/n.

se<-sqrt(probs*(1-probs)/table(cutr))

Finally, draw lines up and down from each point indicating 1 standard error:

up<-probs+as.vector(se)
down<-probs-as.vector(se)
for (i in 1:5){

lines(c(resmeans[i],resmeans[i]),c(up[i],down[i]))}

Evidently, the logistic is a good fit to the data above resources of 800 (not surprising,
though, given that there were no unoccupied patches in this region), but it is rather a poor
fit for resources between 400 and 800, as well as below 200, despite the fact that there were
no occupied patches in the latter region (empirical p = 0).

ANCOVA with a Binary Response Variable

In our next example the binary response variable is parasite infection (infected or not) and
the explanatory variables are weight and age (continuous) and sex (categorical). We begin
with data inspection:

BINARY RESPONSE VARIABLES 599

infection<-read.table(“c:\\temp\\infection.txt”,header=T)
attach(infection)
names(infection)

[1] "infected" "age" "weight" "sex"

par(mfrow=c(1,2))
plot(infected,weight,xlab="Infection",ylab="Weight")
plot(infected,age,xlab="Infection",ylab="Age")

absent

15

20
0

15
0

10
0

50
0

10
5

Infection

present absent

W
ei

gh
t

A
ge

Infection

present

Infected individuals are substantially lighter than uninfected individuals, and occur in a
much narrower range of ages. To see the relationship between infection and gender (both
categori cal variables) we can use table:

table(infected,sex)

table(infected,sex)
sex

infected female male
absent 17 47

present 11 6

This indicates that the infection is much more prevalent in females (11/28) than in males
(6/53).

We now proceed, as usual, to fit a maximal model with different slopes for each level of
the categorical variable:

600 THE R BOOK

model<-glm(infected~age*weight*sex,family=binomial)
summary(model)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.109124 1.375388 -0.079 0.937
age 0.024128 0.020874 1.156 0.248
weight -0.074156 0.147678 -0.502 0.616
sexmale -5.969109 4.278066 -1.395 0.163
age:weight -0.001977 0.002006 -0.985 0.325
age:sexmale 0.038086 0.041325 0.922 0.357
weight:sexmale 0.213830 0.343265 0.623 0.533
age:weight:sexmale -0.001651 0.003419 -0.483 0.629

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 55.706 on 73 degrees of freedom
AIC: 71.706

Number of Fisher Scoring iterations: 6

It certainly does not look as if any of the high-order interactions are significant. Instead of
using update and anova for model simplification, we can use step to compute the AIC
for each term in turn:

model2<-step(model)

Start: AIC= 71.71

First, it tests whether the three-way interaction is required:

infected ~ age * weight * sex

Df Deviance AIC
- age:weight:sex 1 55.943 69.943
<none> 55.706 71.706

This causes a reduction in AIC of just 71�7 − 69�9 = 1�8 and hence is not significant. Next,
it looks at the three 2-way interactions and decides which to delete first:

Step: AIC= 69.94
infected ~ age + weight + sex + age:weight + age:sex + weight:sex

Df Deviance AIC
- weight:sex 1 56.122 68.122
- age:sex 1 57.828 69.828
<none> 55.943 69.943
- age:weight 1 58.674 70.674

Step: AIC= 68.12
infected ~ age + weight + sex + age:weight + age:sex

Df Deviance AIC
<none> 56.122 68.122
- age:sex 1 58.142 68.142
- age:weight 1 58.899 68.899

BINARY RESPONSE VARIABLES 601

Only the removal of the weight–sex interaction causes a reduction in AIC, so this interaction
is deleted and the other two interactions are retained. Let’s see if we would have been this
lenient:

summary(model2)

Call:
glm(formula = infected ~ age + weight + sex + age:weight + age:sex,

family = binomial)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.391566 1.265230 -0.309 0.7570
age 0.025764 0.014921 1.727 0.0842 .
weight -0.036494 0.128993 -0.283 0.7772
sexmale -3.743771 1.791962 -2.089 0.0367 *
age:weight -0.002221 0.001365 -1.627 0.1038
age:sexmale 0.020464 0.015232 1.343 0.1791

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 56.122 on 75 degrees of freedom
AIC: 68.122

Number of Fisher Scoring iterations: 6

Neither of the two interactions retained by step would figure in our model �p > 0�10�. We
shall use update to simplify model2:

model3<-update(model2,~.-age:weight)
anova(model2,model3,test="Chi")

Analysis of Deviance Table

Model 1: infected ~ age + weight + sex + age:weight + age:sex
Model 2: infected ~ age + weight + sex + age:sex

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 75 56.122
2 76 58.899 -1 -2.777 0.096

So there is no really persuasive evidence of an age–weight term �p = 0�096�.

model4<-update(model2,~.-age:sex)
anova(model2,model4,test="Chi")

Note that we are testing all the two-way interactions by deletion from the model that contains
all two-way interactions (model2): p = 0�155, so nothing there, then.

Analysis of Deviance Table

Model 1: infected ~ age + weight + sex + age:weight + age:sex
Model 2: infected ~ age + weight + sex + age:weight

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 75 56.122
2 76 58.142 -1 -2.020 0.155

602 THE R BOOK

What about the three main effects?

model5<-glm(infected~age+weight+sex,family=binomial)
summary(model5)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.609369 0.803288 0.759 0.448096
age 0.012653 0.006772 1.868 0.061701 .
weight -0.227912 0.068599 -3.322 0.000893 ***
sexmale -1.543444 0.685681 -2.251 0.024388 *

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 59.859 on 77 degrees of freedom
AIC: 67.859

Number of Fisher Scoring iterations: 5

Weight is highly significant, as we expected from the initial boxplot, sex is quite significant,
and age is marginally significant. It is worth establishing whether there is any evidence
of non-linearity in the response of infection to weight or age. We might begin by fitting
quadratic terms for the two continuous explanatory variables:

model6<-
glm(infected~age+weight+sex+I(weight^2)+I(age^2),family=binomial)
summary(model6)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.4475839 1.7978359 -1.918 0.0552 .
age 0.0829364 0.0360205 2.302 0.0213 *
weight 0.4466284 0.3372352 1.324 0.1854
sexmale -1.2203683 0.7683288 -1.588 0.1122
I(weight^2) -0.0415128 0.0209677 -1.980 0.0477 *
I(age^2) -0.0004009 0.0002004 -2.000 0.0455 *

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 48.620 on 75 degrees of freedom
AIC: 60.62

Evidently, both relationships are significantly non-linear. It is worth looking at these non-
linearities in more detail, to see if we can do better with other kinds of models (e.g.
non-parametric smoothers, piecewise linear models or step functions). A generalized additive
model is often a good way to start when we have continuous covariates:

library(mgcv)
model7<-gam(infected~sex+s(age)+s(weight),family=binomial)
par(mfrow=c(1,2))
plot.gam(model7)

These non-parametric smoothers are excellent at showing the humped relationship between
infection and age, and at highlighting the possibility of a threshold at weight ≈ 8 in the
relationship between weight and infection. We can now return to a GLM to incorporate

BINARY RESPONSE VARIABLES 603

these ideas. We shall fit age and age2 as before, but try a piecewise linear fit for weight,
estimating the threshold weight at a range of values (say 8–14) and selecting the threshold
that gives the lowest residual deviance; this turns out to be a threshold of 12. The piecewise
regression is specified by the term:

I((weight - 12) * (weight > 12))

The I (‘as is’) is necessary to stop the ∗ as being evaluated as an interaction term in the
model formula. What this expression says is ‘regress infection on the value of weight −12,
but only do this when (weight > 12) is true’ (see p. 429). Otherwise, assume that infection
is independent of weight.

model8<-glm(infected~sex+age+I(age^2)+I((weight-12)*(weight>12)),family=binomial)
summary(model8)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.7511382 1.3678824 -2.011 0.0443 *
sexmale -1.2864683 0.7349201 -1.750 0.0800 .
age 0.0798629 0.0348184 2.294 0.0218 *
I(age^2) -0.0003892 0.0001955 -1.991 0.0465 *
I((weight - 12) * (weight > 12)) -1.3547520 0.5350853 -2.532 0.0113 *

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 48.687 on 76 degrees of freedom

604 THE R BOOK

AIC: 58.687

Number of Fisher Scoring iterations: 7

model9<-update(model8,~.-sex)
anova(model8,model9,test="Chi")
model10<-update(model8,~.-I(age^2))
anova(model8,model10,test="Chi")

The effect of sex on infection is not quite significant (p = 0�071 for a chi-squared test on
deletion), so we leave it out. The quadratic term for age does not look highly significant
here, but a deletion test gives p = 0�011, so we retain it. The minimal adequate model is
therefore model9:

summary(model9)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.1207552 1.2665593 -2.464 0.0137 *
age 0.0765784 0.0323376 2.368 0.0179 *
I(age^2) -0.0003843 0.0001846 -2.081 0.0374 *
I((weight - 12) ∗ (weight > 12)) -1.3511706 0.5134681 -2.631 0.0085 **

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 51.953 on 77 degrees of freedom
AIC: 59.953

Number of Fisher Scoring iterations: 7

We conclude there is a humped relationship between infection and age, and a threshold effect
of weight on infection. The effect of sex is marginal, but might repay further investigation
�p = 0�071�.

Binary Response with Pseudoreplication

In the bacteria dataframe, which is part of the MASS library, we have repeated assessment
of bacterial infection (yes or no, coded as y or n) in a series of patients allocated at random
to one of three treatments: placebo, drug and drug plus supplement. The trial lasted for
11 weeks and different patients were assessed different numbers of times. The question is
whether the two treatments significantly reduced bacterial infection.

library(MASS)
attach(bacteria)
names(bacteria)

[1] "y" "ap" "hilo" "week" "ID" "trt"

table(y)

y
n y
43 177

The data are binary, so we need to use family=binomial. There is temporal pseudorepli-
cation (repeated measures on the same patients) so we cannot use glm. The ideal solution is

BINARY RESPONSE VARIABLES 605

the generalized mixed models function lmer. Unlike glm, the lmer function cannot take
text (e.g. a two-level factor like y) as the response variable, so we need to convert the y
and n into a vector of 1s and 0s:

y<-1*(y=="y")
table(y,trt)

trt
y placebo drug drug+
0 12 18 13
1 84 44 49

Preliminary data inspection suggests that the drug might be effective because only 12 out
of 96 patient visits were bacteria-free in the placebos, compared with 31 out of 124 for the
treated individuals. We shall see. The modelling goes like this: the lmer function is in the
Ime4 package and the random effects appear in the same formula as the fixed effects, but
defined by the brackets and the ‘given’ operator |

library(lme4)
model1<-lmer(y~trt+(week�ID),family=binomial,method=”PQL”)
summary(model1)

Generalized linear mixed model fit using PQL
Formula: y ~ trt + (week | ID)
Family: binomial(logit link)
AIC BIC logLik deviance

217.4 237.7 −102.7 205.4

Random effects:
Groups Name Variance Std.Dev. Corr
ID (Intercept) 2.78887 1.66999

week 0.17529 0.41868 -0.221

number of obs: 220, groups: ID, 50

Estimated scale (compare to 1) 0.7029861

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.4802 0.5877 4.220 2.44e-05 ***
trtdrug -1.0422 0.8479 -1.229 0.219
trtdrug+ -0.4054 0.8736 -0.464 0.643

Correlation of Fixed Effects:

(Intr) trtdrg
trtdrug -0.693
trtdrug+ -0.673 0.466

There is no indication of a significant drug effect �p = 0�219� and the random effect for
week had a standard deviation of just 0.41868. We can simplify the model by removing the
dependence of infection on week, retaining only the intercept as a random effect +(1�ID)

model2<-lmer(y~trt+(1�ID),family=binomial,method=”PQL”)
anova(model1,model2)

Data:
Models:

606 THE R BOOK

model2: y ~ trt + (1 | ID)
model1: y ~ trt + (week | ID)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
model2 4 216.76 230.33 -104.38
model1 6 217.39 237.75 -102.69 3.3684 2 0.1856

The simpler model2 is not significantly worse �p = 0�1856� so we accept it (it has a lower
AIC than model1).

There is a question about the factor levels: perhaps the drug effect would be more
significant if we combine the drug and drug plus treatments?

drugs<-factor(1+(trt!="placebo"))
table(y,drugs)

drugs
y 1 2

0 12 31
1 84 93

model3<-lmer(y~drugs+(1�ID),family=binomial,method=”PQL”)
summary(model3)

Generalized linear mixed model fit using PQL
Formula: y ~ drugs + (1 | ID)
Family: binomial(logit link)
AIC BIC logLik deviance

215.5 225.7 -104.7 209.5

Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 2.1316 1.46
number of obs: 220, groups: ID, 50

Estimated scale (compare to 1) 0.8093035

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.2085 0.4798 4.603 4.16e-06 ***
drugs2 -0.9212 0.6002 -1.535 0.125

Correlation of Fixed Effects:
(Intr)

drugs2 -0.799

The interpretation is straightforward: there is no evidence in this experiment that either
treatment significantly reduces bacterial infection. Note that this is not the same as saying
that the drug does not work. It is simply that this trial is too small to demonstrate the
significance of its efficacy.

It is also important to appreciate the importance of the pseudoreplication. If we had
ignored the fact that there were multiple measures per patient we should have concluded
wrongly that the drug effect was significant. Here are the raw data on the counts:

table(y,trt)

trt

y placebo drug drug+
0 12 18 13
1 84 44 49

BINARY RESPONSE VARIABLES 607

and here is the wrong way of testing for the significance of the treatment effect:

prop.test(c(12,18,13),c(96,62,62))

3-sample test for equality of proportions without continuity

correction data: c(12, 18, 13) out of c(96, 62, 62)
X-squared = 6.6585, df = 2, p-value = 0.03582
alternative hypothesis: two.sided
sample estimates:

prop 1 prop 2 prop 3
0.1250000 0.2903226 0.2096774

It appears that the drug has increased the rate of non-infection from 0.125 in the placebos
to 0.29 in the treated patients, and that this effect is significant �p = 0�035 82�. As we
have seen, however, when we remove the pseudoreplication by using the appropriate mixed
model with lmer the response is non-significant.

Another way to get rid of the pseudoreplication is to restrict the analysis to the patients
that were there at the end of the experiment. We just use subset(week==11) and this
removes all the pseudoreplication because no subjects were measured twice within any
week – we can check this with the any function:

any(table(ID,week) >1)

[1] FALSE

The model is a straightforward GLM with a binary response variable and a single explanatory
variable (the three-level factor called trt):

model<-glm(y~trt,binomial,subset=(week==11))
summary(model)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.3863 0.5590 2.480 0.0131 *
trtdrug -0.6931 0.8292 -0.836 0.4032
trtdrug+ -0.6931 0.8292 -0.836 0.4032

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 51.564 on 43 degrees of freedom
Residual deviance: 50.569 on 41 degrees of freedom
AIC: 56.569

Neither drug treatment has anything approaching a significant effect in lowering bacterial
infection rates compared with the placebos �p = 0�4032�. The supplement was expected
to increase bacterial control over the drug treatment, so perhaps the interpretation will be
modified lumping together the two drug treatments:

drugs<-factor(1+(trt=="placebo"))

so there are placebos plus patients getting one drug treatment or the other:

table(drugs[week==11])

1 2
24 20

Thus there were 24 patients receiving one drug or the other, and 20 placebos (at 11 weeks).

608 THE R BOOK

model <-glm(y~drugs,binomial,subset=(week==11))
summary(model)

Call:
glm(formula = y ~ drugs, family = binomial, subset = (week == 11))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7941 -1.4823 0.6680 0.9005 0.9005

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.6931 0.4330 1.601 0.109
drugs2 0.6931 0.7071 0.980 0.327

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 51.564 on 43 degrees of freedom
Residual deviance: 50.569 on 42 degrees of freedom
AIC: 54.569

Clearly, there is no convincing effect for the drug treatments on bacterial infection when
we use this subset of the data �p = 0�327�.

An alternative way of analysing all the data (including the pseudoreplication) is to ask
what proportion of tests on each patient scored positive for the bacteria. The response
variable now becomes a proportion, and the pseudoreplication disappears because we only
have one number for each patient (i.e. a count of the number of occasions on which each
patient scored positive for the bacteria, with the binomial denominator as the total number
of tests on that patient).

There are some preliminary data-shortening tasks. We need to create a vector of length
50 containing the drug treatments of each patient (tss) and a table (ys, with elements of
length 50) scoring how many times each patient was infected and uninfected by bacteria.
Finally, we use cbind to create a two-column response variable, yv:

dss<-data.frame(table(trt,ID))
tss<-dss[dss[,3]>0,]$trt
ys<- table(y,ID)
yv<-cbind(ys[2,],ys[1,])

Now we can fit a very simple model for the binomial response (glm with binomial errors):

model<-glm(yv~tss,binomial)
summary(model)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.9459 0.3086 6.306 2.87e-10 ***
tssdrug -1.0521 0.4165 -2.526 0.0115 *
tssdrug+ -0.6190 0.4388 -1.411 0.1583

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 86.100 on 49 degrees of freedom
Residual deviance: 79.444 on 47 degrees of freedom
AIC: 130.9

BINARY RESPONSE VARIABLES 609

Drug looks to be significant here, but note that the residual deviance is much bigger
than the residual degrees of freedom so we should correct for overdispersion by using
quasibinomial instead of binomial errors (p. 522):

model<-glm(yv~tss,quasibinomial)
summary(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.9459 0.3837 5.071 6.61e-06 ***
tssdrug -1.0521 0.5180 -2.031 0.0479 *
tssdrug+ -0.6190 0.5457 -1.134 0.2624

(Dispersion parameter for quasibinomial family taken to be 1.546252)

Null deviance: 86.100 on 49 degrees of freedom
Residual deviance: 79.444 on 47 degrees of freedom
AIC: NA

There is a marginally significant effect of drug, but no significant difference between the
two drug treatments, so we aggregate them into a single drug treatment:

tss2<-factor(1+(tss=="placebo"))
model<-glm(yv~tss2,quasibinomial)
summary(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.0986 0.2582 4.255 9.63e-05 ***
tss22 0.8473 0.4629 1.830 0.0734 .

Again, the treatment effect is not significant, as we concluded in the generalized mixed-
effects model (p. 606).

18
Generalized Additive Models

Up to this point, continuous explanatory variables have been added to models as linear
functions, linearized parametric transformations, or through various link functions. In all
cases, an explicit or implicit assumption was made about the parametric form of the function
to be fitted to the data (whether quadratic, logarithmic, exponential, logistic, reciprocal or
whatever). In many cases, however, you have one or more continuous explanatory variables,
but you have no a priori reason to choose one particular parametric form over another for
describing the shape of the relationship between the response variable and the explanatory
variable(s). Generalized additive models (GAMs) are useful in such cases because they
allow you to capture the shape of a relationship between y and x without prejudging the
issue by choosing a particular parametric form.

Generalized additive models (implemented in R by the function gam) extend the range
of application of generalized linear models (glm) by allowing non-parametric smoothers in
addition to parametric forms, and these can be associated with a range of link functions.
All of the error families allowed with glm are available with gam (binomial, Poisson,
gamma, etc.). Indeed, gam has many of the attributes of both glm and lm, and the output
can be modified using update. You can use all of the familiar methods such as print,
plot, summary, anova, predict, and fitted after a GAM has been fitted to data. The gam
function used in this book is in the mgcv library contributed by Simon Wood:

library(mgcv)

There are many ways of specifying the model in a GAM: all of the continuous explanatory
variables x, w and z can enter the model as non-parametrically smoothed functions s�x�,
s�w�, and s�z�:

y~s(x) + s(w) + s(z)

Alternatively, the model can contain a mix of parametrically estimated parameters (x and
z) and smoothed variables s�w�:

y~x + s(w) + z

Formulae can involve nested (two-dimensional) terms in which the smoothing s() terms
have more than one argument, implying an isotropic smooth:

y~s(x) + s(z) + s(x,z)

Alternatively the smoothers can have overlapping terms such as

y~s(x,z) + s(z,w)

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

612 THE R BOOK

The user has a high degree of control over the way that interactions terms can be fitted,
and te() smooths are provided as an effective means for modelling smooth interactions of
any number of variables via scale-invariant tensor product smooths. Here is an example of
a model formula with a fully nested tensor product te(x,z,k=6):

y ~ s(x,bs="cr",k=6) + s(z,bs="cr",k=6) + te(x,z,k=6)

The optional arguments to the smoothers are bs="cr",k=6, where bs indicates the basis to
use for the smooth ("cr" is a cubic regression spline; the default is thin plate bs="tp"), and
k is the dimension of the basis used to represent the smooth term (it defaults to k = 10*3^
(d-1) where d is the number of covariates for this term).

Non-parametric Smoothers

You can see non-parametric smoothers in action for fitting a curve through a scatterplot in
Chapter 5 (p. 151). Here we are concerned with using non-parametric smoothers in statistical
modelling where the object is to assess the relative merits of a range of different models in
explaining variation in the response variable. One of the simplest model-fitting functions is
loess (which replaces its predecessor called lowess).

The following example shows population change, Delta= log�N�t+1�/N�t�� as a function
of population density �N�t�� in an investigation of density dependence in a sheep population.
This is what the data look like:

soay<-read.table("c:\\temp\\soaysheep.txt",header=T)
attach(soay)
names(soay)

[1] "Year" "Population" "Delta"

plot(Population,Delta)

Broadly speaking, population change is positive at low densities �Delta > 0� and negative
at high densities �Delta < 0� but there is a great deal of scatter, and it is not at all obvious
what shape of smooth function would best describe the data. Here is the default loess:

model<-loess(Delta~Population)
summary(model)

Call:
loess(formula = Delta~Population)

Number of Observations: 44
Equivalent Number of Parameters: 4.66
Residual Standard Error: 0.2616
Trace of smoother matrix: 5.11

Control settings:
normalize:TRUE
span : 0.75
degree : 2
family : gaussian
surface : interpolate cell = 0.2

Now draw the smoothed line using predict to extract the predicted values from model:

GENERALIZED ADDITIVE MODELS 613

xv<-seq(600,2000,1)
yv<-predict(model,data.frame(Population=xv))
lines(xv,yv)

600

–0
.8

–0
.6

–0
.4

–0
.2

0.
0

0.
2

0.
4

800 1000 1200 1400

Population

D
el

ta

1600 1800 2000

The smooth curve looks rather like a step function. We can compare this smooth function
with a step function, using a tree model (p. 686) as an objective way of determining the
threshold for splitting the data into low- and high-density parts:

library(tree)
thresh<-tree(Delta~Population)
print(thresh)

The threshold for the first split of the tree model is at Population = 1289�5 so we define this
as the threshold density:

th<-1289.5

Then we can use this threshold to create a two-level factor for fitting two constant rates of
population change using aov

model2<-aov(Delta~(Population>th))
summary(model2)

Df Sum Sq Mean Sq F value Pr(> F)
Population > th 1 2.80977 2.80977 47.636 2.008e-08 ***
Residuals 42 2.47736 0.05898

showing a residual sum of squares of 0.059. This compares with the residual of 0�26162 =
0�068 from the loess (above). To draw the step function we need the average low-density
population increase and the average high-density population decline:

614 THE R BOOK

tapply(Delta[-45],(Population[-45]>th),mean)

FALSE TRUE
0.2265084 −0.2836616

Note the use of negative subscripts to drop the NA from the last value of Delta. Then use
these figures to draw the step function:

lines(c(600,th),c(0.2265,0.2265),lty=2)
lines(c(th,2000),c(−0.2837,−0.2837),lty=2)
lines(c(th,th),c(−0.2837,0.2265),lty=2)

600

–0
.8

–0
.6

–0
.4

–0
.2

0.
0

0.
2

0.
4

800 1000 1200 1400

Population

D
el

ta

1600 1800 2000

It is a moot point which of these two models is the most realistic scientifically, but the
step function involved three estimated parameters (two averages and a threshold), while the
loess is based on 4.66 degrees of freedom, so parsimony favours the step function (it also
has a slightly lower residual sum of squares).

Generalized Additive Models

This dataframe contains measurements of radiation, temperature, wind speed and ozone
concentration. We want to model ozone concentration as a function of the three continu-
ous explanatory variables using non-parametric smoothers rather than specified nonlinear
functions (the parametric multiple regression analysis is on p. 434):

ozone.data<-read.table("c:\\temp\\ozone.data.txt",header=T)
attach(ozone.data)
names(ozone.data)

GENERALIZED ADDITIVE MODELS 615

[1] "rad" "temp" "wind" "ozone"

For data inspection we use pairs with a non-parametric smoother, lowess:

pairs(ozone.data, panel=function(x,y) { points(x,y); lines(lowess(x,y))})

0

0
50

10
0

15
0

60
70

80
90

rad

100 200 300 5 10 15 20

60 70 80 90 0 50 100 150

30
0

20
0

10
0

0
20

15
10

0

temp

wind

ozone

Now fit all three explanatory variables using the non-parametric smoother s():

model<-gam(ozone~s(rad)+s(temp)+s(wind))
summary(model)

Family: gaussian
Link function: identity

Formula:
ozone ~ s(rad) + s(temp) + s(wind)
Parametric coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 42.10 1.66 25.36 < 2e-16 ***

616 THE R BOOK

Approximate significance of smooth terms:
edf Est.rank F p-value

s(rad) 2.763 6.000 2.830 0.0138 *
s(temp) 3.841 8.000 8.080 2.27e-08 ***
s(wind) 2.918 6.000 8.973 7.62e-08 ***

R-sq.(adj) = 0.724 Deviance explained = 74.8%
GCV score = 338 Scale est. = 305.96 n = 111

Note that the intercept is estimated as a parametric coefficient (upper table) and the three
explanatory variables are fitted as smooth terms. All three are significant, but radiation is
the least significant at p = 0�0138. We can compare a GAM with and without a term for
radiation using ANOVA in the normal way:

model2<-gam(ozone~s(temp)+s(wind))
anova(model,model2,test="F")

Analysis of Deviance Table

Model 1: ozone~s(rad) + s(temp) + s(wind)
Model 2: ozone~s(temp) + s(wind)

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 100.4779 30742
2 102.8450 34885 −2.3672 −4142 5.7192 0.002696 **

Clearly, radiation should remain in the model, since deletion of radiation caused a highly sig-
nificant increase in deviance �p= 0�0027�, emphasizing the fact that deletion is a better test
than inspection of parameters (the p values in the full model table were not deletion p values).

We should investigate the possibility that there is an interaction between wind and
temperature:

model3<-gam(ozone~s(temp)+s(wind)+s(rad)+s(wind,temp))
summary(model3)

Family: gaussian
Link function: identity

Formula:
ozone˜s(temp) + s(wind) + s(rad) + s(wind, temp)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.099 1.361 30.92 <2e-16 ***

Approximate significance of smooth terms:
edf Est.rank F p-value

s(temp) 1.000 1 0.000292 0.98640
s(wind) 5.613 9 5.349 9.19e-06 ***
s(rad) 1.389 3 4.551 0.00528 **
s(wind,temp) 18.246 27 3.791 1.53e-06 ***

R-sq.(adj) = 0.814 Deviance explained = 85.9%
GCV score = 272.66 Scale est. = 205.72 n = 111

The interaction appears to be highly significant, but the main effect of temperature is
cancelled out. We can inspect the fit of model3 like this:

GENERALIZED ADDITIVE MODELS 617

par(mfrow=c(2,2))
plot(model3,residuals=T,pch=16)

60

–5
0

0
50

10
0

s(
te

m
p,

1)

70

temp

80 90 5

–5
0

0
50

10
0

s(
w

in
d,

5.
61

)

10

wind

15 20

0

–5
0

0
50

10
0

s(
ra

d,
1.

39
)

50

rad

150 250 5

60
70

80
90

te
m

p

10

wind

–1se +1se

15 20

s(wind,temp,18.25)

You need to press the Return key to see each of the four graphs in turn. The etchings on the
x axis are called rugs (see p. 596) and indicate the locations of measurements of x values on
each axis. The default option is rug=T. The bottom right-hand plot shows the complexity
of the interaction between temperature and wind speed.

Technical aspects

The degree of smoothness of model terms is estimated as part of fitting; isotropic or scale-
invariant smooths of any number of variables are available as model terms. Confidence or
credible intervals are readily available for any quantity predicted using a fitted model. In
mgcv, gam solves the smoothing parameter estimation problem by using the generalized
cross validation (GCV) criterion

CGCV = nD

�n − DoF�2

or an unbiased risk estimator (UBRE) criterion

UBRE = D

n
+ 2�

DoF

n
− �

where D is the deviance, n the number of data, � the scale parameter and DoF the effective
degrees of freedom of the model. Notice that UBRE is effectively just AIC rescaled, but is
only used when � is known. It is also possible to replace D by the Pearson statistic (see

618 THE R BOOK

?gam.method), but this can lead to oversmoothing. Smoothing parameters are chosen to
minimize the GCV or UBRE score for the model, and the main computational challenge
solved by the mgcv package is to do this efficiently and reliably. Various alternative
numerical methods are provided: see ?gam.method. Smooth terms are represented using
penalized regression splines (or similar smoothers) with smoothing parameters selected by
GCV/UBRE or by regression splines with fixed degrees of freedom (mixtures of the two are
permitted). Multi-dimensional smooths are available using penalized thin plate regression
splines (isotropic) or tensor product splines (when an isotropic smooth is inappropriate).

This gam function is not a clone of what S-PLUS provides – there are three major
differences: First, by default, estimation of the degree of smoothness of model terms is
part of model fitting. Second, a Bayesian approach to variance estimation is employed that
makes for easier confidence interval calculation (with good coverage probabilities). Third,
the facilities for incorporating smooths of more than one variable are different.

If absolutely any smooth functions were allowed in model fitting then maximum likelihood
estimation of such models would invariably result in complex overfitting estimates of the
smoothed functions s�x� and s�z�. For this reason the models are usually fitted by penalized
likelihood maximization, in which the model (negative log-)likelihood is modified by the
addition of a penalty for each smooth function, penalizing what gam’s author, Simon Wood,
calls its ‘wiggliness’. To control the trade-off between penalizing wiggliness and penalizing
badness of fit, each penalty is multiplied by an associated smoothing parameter: how to
estimate these parameters and how to practically represent the smooth functions are the
main statistical questions introduced by moving from GLMs to GAMs.

The built-in alternatives for univariate smooths terms are: a conventional penalized cubic
regression spline basis, parameterized in terms of the function values at the knots; a cyclic
cubic spline with a similar parameterization; and thin plate regression splines. The cubic
spline bases are computationally very efficient, but require knot locations to be chosen
(automatically by default). The thin plate regression splines are optimal low-rank smooths
which do not have knots, but are computationally more costly to set up. Smooths of
several variables can be represented using thin plate regression splines, or tensor products
of any available basis, including user-defined bases (tensor product penalties are obtained
automatically form the marginal basis penalties).

Thin plate regression splines are constructed by starting with the basis for a full thin
plate spline and then truncating this basis in an optimal manner, to obtain a low-rank
smoother. Details are given in Wood (2003). One key advantage of the approach is that
it avoids the knot placement problems of conventional regression spline modelling, but it
also has the advantage that smooths of lower rank are nested within smooths of higher
rank, so that it is legitimate to use conventional hypothesis testing methods to compare
models based on pure regression splines. The thin plate regression spline basis can become
expensive to calculate for large data sets. In this case the user can supply a reduced set of
knots to use in basis construction (see knots in the argument list), or use tensor products
of cheaper bases. In the case of the cubic regression spline basis, knots of the spline are
placed evenly throughout the covariate values to which the term refers. For example, if
fitting 101 data points with an 11-knot spline of x then there would be a knot at every
10th (ordered) x value. The parameterization used represents the spline in terms of its
values at the knots. The values at neighbouring knots are connected by sections of cubic
polynomial constrained to be continuous up to and including second derivatives at the knots.
The resulting curve is a natural cubic spline through the values at the knots (given two
extra conditions specifying that the second derivative of the curve should be zero at the two

GENERALIZED ADDITIVE MODELS 619

end knots). This parameterization gives the parameters a nice interpretability. Details of the
underlying fitting methods are given in Wood (2000, 2004).

You must have more unique combinations of covariates than the model has total param-
eters. (Total parameters is the sum of basis dimensions plus the sum of non-spline terms
less the number of spline terms.) Automatic smoothing parameter selection is not likely to
work well when fitting models to very few response data. With large data sets (more than a
few thousand data) the tp basis gets very slow to use: use the knots argument as discussed
above and shown in the examples. Alternatively, for low-density smooths you can use the
cr basis and for multi-dimensional smooths use te smooths.

For data with many zeros clustered together in the covariate space it is quite easy to set
up GAMs which suffer from identifiability problems, particularly when using Poisson or
binomial families. The problem is that with log or logit links, for example, mean value zero
corresponds to an infinite range on the linear predictor scale.

Another situation that occurs quite often is the one in which we would like to find out if
the model

E�y� = f�x� z�

is really necessary, or whether

E�y� = f1�x� + f2�z�

would not do just as well. One way to do this is to look at the results of fitting

y~s(x)+s(z)+s(x,z)

gam automatically generates side conditions to make this model identifiable. You can also
estimate overlapping models such as

y~s(x,z)+s(z,v)

Sometimes models of the form

E�y� = b0 + f�x�z

need to be estimated (where f is a smooth function, as usual). The appropriate formula is

y~z+s(x,by=z)

where the by argument ensures that the smooth function gets multiplied by covariate z, but
GAM smooths are centred (average value zero), so the parametric term for z is needed as
well (f is being represented by a constant plus a centred smooth). If we had wanted

E�y� = f�x�z

then the appropriate formula would be

y~z+s(x,by=z)-1

The by mechanism also allows models to be estimated in which the form of a smooth
depends on the level of a factor, but to do this the user must generate the dummy variables
for each level of the factor. Suppose, for example, that fac is a factor with three levels 1,

620 THE R BOOK

2, 3, and at each level of this factor the response depends smoothly on a variable x in a
manner that is level-dependent. Three dummy variables fac.1, fac.2, fac.3, can be generated
for the factor (e.g. fac.1<-as.numeric(fac==1)). Then the model formula would be:

y~fac+s(x,by=fac.1)+s(x,by=fac.2)+s(x,by=fac.3)

In the above examples the smooths of more than one covariate have all employed single-
penalty thin plate regression splines. These isotropic smooths are not always appropriate:
if variables are not naturally well scaled relative to each other then it is often preferable to
use tensor product smooths, with a wiggliness penalty for each covariate of the term. See
?te for examples.

The most logically consistent method to use for deciding which terms to include in the
model is to compare GCV/UBRE scores for models with and without the term. More gener-
ally, the score for the model with a smooth term can be compared to the score for the model
with the smooth term replaced by appropriate parametric terms. Candidates for removal
can be identified by reference to the approximate p values provided by summary.gam.
Candidates for replacement by parametric terms are smooth terms with estimated degrees
of freedom close to their minimum possible.

An example with strongly humped data

The ethanol dataframe contains 88 sets of measurements for variables from an experiment in
which ethanol was burned in a single cylinder automobile test engine. The response variable,
NOx, is the concentration of nitric oxide (NO) and nitrogen dioxide �NO2� in engine exhaust,
normalized by the work done by the engine, and the two continuous explanatory variables
are C (the compression ratio of the engine), and E (the equivalence ratio at which the engine
was run, which is a measure of the richness of the air–ethanol mix).

0.6

–2
–1

0
1

2

0.8

E

s(
E

, 7
.5

5)

1.0 1.2 8

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

10

C

P
ar

tia
l f

or
 C

14 18

GENERALIZED ADDITIVE MODELS 621

install.packages("SemiPar")
library(SemiPar)
data(ethanol)
attach(ethanol)
names(ethanol)

[1] "NOx" "C" "E"

Because NOx is such a strongly humped function of the equivalence ratio, E, we start with
a model, NOx ~ s(E) + C, that fits this as a smoothed term and estimates a parametric term
for the compression ratio:

model<-gam(NOx~s(E)+C)
par(mfrow=c(1,2))
plot.gam(model,residuals=T,pch=16,all.terms=T)

The coplot function is helpful in showing where the effect of C on NOx was most
marked:

C

8

1
2

3
4

N
O

X

1
2

3
4

10 12 14 16 18

8 10

0.6 0.7 0.8 0.9

Given: E

1.0 1.1 1.2

12 14 16 18 8 10 12 14 16 18

622 THE R BOOK

–2
–1

0
1

2

s(
E

, 7
.6

4)

0.6 0.8

E

1.0 1.2 5 10

CE

15 20

–2
–1

0
1

2

s(
C

E
, 4

.2
6)

coplot(NOx~C|E,panel=panel.smooth)

There is a pronounced positive effect of C on NOx only in panel 2 (ethanol 0�7 < E < 0�9
from the shingles in the upper panel), but only slight effects elsewhere. You can estimate
the interaction between E and C from the product of the two variables:

CE<-E*C
model2<-gam(NOx~s(E)+s(CE))
plot.gam(model2,residuals=T,pch=16,all.terms=T)

summary(model2)

Family: gaussian

Link function: identity

Formula:
NOx ~ s(E) + s(CE)

Parametric coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 1.95738 0.02126 92.07 < 2e-16 ***

Approximate significance of smooth terms:
edf Est.rank F p-value

s(E) 7.636 9 267.26 < 2e-16 ***
s(CE) 4.261 9 15.75 4.12e-14 ***

R-sq.(adj) = 0.969 Deviance explained = 97.3%
GCV score = 0.0466 Scale est. = 0.039771 n = 88

The summary of this GAM shows highly significant terms for both smoothed terms: the
effect of ethanol, s(E), on 7.6 estimated degrees of freedom, and the interaction between

GENERALIZED ADDITIVE MODELS 623

–5
0

5
10

15

s(
ar

ea
, 2

.4
3)

0 2

area

4 6 8 2 4

isolation

6 8

–5
0

5
10

15

s(
is

ol
at

io
n,

 1
)

E and C, s(CE), on 4.3 estimated degrees of freedom. The model explains 97.3% of the
deviance in NOx concentration.

Generalized Additive Models with Binary Data

GAMs are particularly valuable with binary response variables (for background, see p. 593).
To illustrate the use of gam for modelling binary response data, we return to the example
analysed by logistic regression on p. 595. We want to understand how the isolation of an
island and its area influence the probability that the island is occupied by our study species.

island<-read.table("c:\\temp\\isolation.txt",header=T)
attach(island)
names(island)

[1] "incidence" "area" "isolation"

In the logistic regression, isolation had a highly significant negative effect on the prob-
ability that an island will be occupied by our species �p = 0�004�, and area (island size)
had a significant positive effect on the likelihood of occupancy �p = 0�019�. But we have
no a priori reason to believe that the logit of the probability should be linearly related to
either of the explanatory variables. We can try using a GAM to fit smoothed functions to
the incidence data:

model3<-gam(incidence~s(area)+s(isolation),binomial)
summary(model3)

Family: binomial
Link function: logit

624 THE R BOOK

Formula:
incidence ~ s(area) + s(isolation)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.6371 0.8545 1.916 0.0554 .

Approximate significance of smooth terms:
edf Est.rank Chi.sq p-value

s(area) 2.429 5 6.335 0.27494
s(isolation) 1.000 1 7.532 0.00606 **

R-sq.(adj) = 0.63 Deviance explained = 63.1%
UBRE score = -0.32096 Scale est. = 1 n = 50

This indicates a highly significant effect of isolation on occupancy �p = 0�006 06� but no
effect of area �p = 0�274 94�. We plot the model to look at the residuals:

par(mfrow=c(1,2))
plot.gam(model3,residuals=T,pch=16)

This suggests a strong effect of area, with very little scatter, above a threshold of about
area = 5. We assess the significance of area by deletion and compare a model containing
s(area)+ s(isolation) with a model containing s(isolation) alone:

model4<-gam(incidence~s(isolation),binomial)
anova(model3,model4,test="Chi")

Analysis of Deviance Table
Model 1: incidence ~ s(area) + s(isolation)
Model 2: incidence ~ s(isolation)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 45.5710 25.094
2 48.0000 36.640 −2.4290 −11.546 0.005

This shows the effect of area to be highly significant �p=0�005�, despite the non-significant
p value in the summary table of model3. An alternative is to fit area as a parametric term
and isolation as a smoothed term:

model5<-gam(incidence~area+s(isolation),binomial)
summary(model5)

Family: binomial
Link function: logit

Formula:
incidence~area + s(isolation)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) −1.3928 0.9002 −1.547 0.1218
area 0.5807 0.2478 2.344 0.0191 *

Approximate significance of smooth terms:

edf Est.rank Chi.sq p-value
s(isolation) 1 1 8.275 0.00402 **

GENERALIZED ADDITIVE MODELS 625

R-sq. (adj) = 0.597 Deviance explained = 58.3%
UBRE score = -0.31196 Scale est. = 1 n = 50

Again, this shows a significant effect of area on occupancy. The lesson here is that a term can
appear to be significant when entered into the model as a parametric term (area has p=0�019
in model5) but not come close to significance when entered as a smoothed term (s(area)
has p = 0�275 in model3). Also, the comparison of model3 and model4 draws attention to
the benefits of using deletion with anova in assessing the significance of model terms.

Three-Dimensional Graphic Output from gam

Here is an example by Simon Wood which shows the kind of three-dimensional graphics
that can be obtained from gam using vis.gam when there are two continuous explanatory
variables. Note that in this example the smother works on both variables together, y~s(x,z):

par(mfrow=c(1,1))
test1<-function(x,z,sx=0.3,sz=0.4)

{(pi**sx*sz)*(1.2*exp(-(x-0.2)^2/sx^2-(z-0.3)^2/sz^2)+
0.8*exp(-(x-0.7)^2/sx^2-(z-0.8)^2/sz^2))
}
n<-500

x<-runif(n);z-runif(n);
y<-test1(x,z)+rnorm(n)*0.1
b4<-gam(y~s(x,z))
vis.gam(b4)

z

x

linear predictor

Note also that the vertical scale of the graph is the linear predictor, not the response.

19
Mixed-Effects Models

Up to this point, we have treated all categorical explanatory variables as if they were the
same. This is certainly what R. A. Fisher had in mind when he invented the analysis of
variance in the 1920s and 1930s. It was Eisenhart (1947) who realized that there were
actually two fundamentally different sorts of categorical explanatory variables: he called
these fixed effects and random effects. It will take a good deal of practice before you are
confident in deciding whether a particular categorical explanatory variable should be treated
as a fixed effect or a random effect, but in essence:

• fixed effects influence only the mean of y;

• random effects influence only the variance of y.

Fixed effects are unknown constants to be estimated from the data. Random effects
govern the variance–covariance structure of the response variable (see p. 473). Nesting
(or hierarchical structure) of random effects is a classic source of pseudoreplication, so
it important that you are able to recognize it and hence not fall into its trap. Random
effects that come from the same group will be correlated, and this contravenes one of the
fundamental assumptions of standard statistical models: independence of errors. Random
effects occur in two contrasting kinds of circumstances:

• observational studies with hierarchical structure;

• designed experiments with different spatial or temporal scales.

Fixed effects have informative factor levels, while random effects often have uninfor-
mative factor levels. The distinction is best seen by an example. In most mammal species
the categorical variable sex has two levels: male and female. For any individual that you
find, the knowledge that it is, say, female conveys a great deal of information about the
individual, and this information draws on experience gleaned from many other individuals
that were female. A female will have a whole set of attributes (associated with her being
female) no matter what population that individual was drawn from. Take a different cate-
gorical variable like genotype. If we have two genotypes in a population we might label
them A and B. If we take two more genotypes from a different population we might label
them A and B as well. In a case like this, the label A does not convey any information at
all about the genotype, other than that it is probably different from genotype B. In the case

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

628 THE R BOOK

of sex, the factor level (male or female) is informative: sex is a fixed effect. In the case of
genotype, the factor level (A or B) is uninformative: genotype is a random effect.

Random effects have factor levels that are drawn from a large (potentially very large)
population in which the individuals differ in many ways, but we do not know exactly how
or why they differ. To get a feel for the difference between fixed effects and random effects
here are some more examples:

.

Fixed effects Random effects

Drug administered or not Genotype
Insecticide sprayed or not Brood
Nutrient added or not Block within a field
One country versus another Split plot within a plot
Male or female History of development
Upland or lowland Household
Wet versus dry Individuals with repeated measures
Light versus shade Family
One age versus another Parent

The important point is that because the random effects come from a large population,
there is not much point in concentrating on estimating means of our small subset of factor
levels, and no point at all in comparing individual pairs of means for different factor levels.
Much better to recognize them for what they are, random samples from a much larger
population, and to concentrate on their variance. This is the added variation caused by
differences between the levels of the random effects. Variance components analysis is all
about estimating the size of this variance, and working out its percentage contribution to the
overall variation. There are five fundamental assumptions of linear mixed-effects models:

• Within-group errors are independent with mean zero and variance �2.

• Within-group errors are independent of the random effects.

• The random effects are normally distributed with mean zero and covariance matrix � .

• The random effects are independent in different groups.

• The covariance matrix does not depend on the group.

The validity of these assumptions needs to be tested by employing a series of plotting
methods involving the residuals, the fitted values and the predicted random effects. The
tricks with mixed-effects models are

• learning which variables are random effects;

• specifying the fixed and random effects in two model formulae;

• getting the nesting structure of the random effects right;

• remembering to get library(lme4) or library(nlme) at the outset.

MIXED-EFFECTS MODELS 629

The issues fall into two broad categories: questions about experimental design and the
management of experimental error (e.g. where does most of the variation occur, and where
would increased replication be most profitable?); and questions about hierarchical structure,
and the relative magnitude of variation at different levels within the hierarchy (e.g. studies
on the genetics of individuals within families, families within parishes, and parishes with
counties, to discover the relative importance of genetic and phenotypic variation).

Most ANOVA models are based on the assumption that there is a single error term. But
in hierarchical studies and nested experiments, where the data are gathered at two or more
different spatial scales, there is a different error variance for each different spatial scale.
There are two reasonably clear-cut sets of circumstances where your first choice would be
to use a linear mixed-effects model: you want to do variance components analysis because
all your explanatory variables are categorical random effects and you don’t have any fixed
effects; or you do have fixed effects, but you also have pseudoreplication of one sort or
another (e.g. temporal pseudoreplication resulting from repeated measurements on the same
individuals; see p. 645). To test whether one should use a model with mixed effects or just
a plain old linear model, Douglas Bates wrote in the R help archive: ‘I would recommend
the likelihood ratio test against a linear model fit by lm. The p-value returned from this test
will be conservative because you are testing on the boundary of the parameter space.’

Replication and Pseudoreplication

To qualify as replicates, measurements must have the following properties:

• They must be independent.

• They must not form part of a time series (data collected from the same place on successive
occasions are not independent).

• They must not be grouped together in one place (aggregating the replicates means that
they are not spatially independent).

• They must be of an appropriate spatial scale;

• Ideally, one replicate from each treatment ought to be grouped together into a block, and
each treatment repeated in many different blocks.

• Repeated measures (e.g. from the same individual or the same spatial location) are not
replicates (this is probably the commonest cause of pseudoreplication in statistical work).

Pseudoreplication occurs when you analyse the data as if you had more degrees of
freedom than you really have. There are two kinds of pseudoreplication:

• temporal pseudoreplication, involving repeated measurements from the same individual;

• spatial pseudoreplication, involving several measurements taken from the same vicinity.

Pseudoreplication is a problem because one of the most important assumptions of stan-
dard statistical analysis is independence of errors. Repeated measures through time on the
same individual will have non-independent errors because peculiarities of the individual
will be reflected in all of the measurements made on it (the repeated measures will be

630 THE R BOOK

temporally correlated with one another). Samples taken from the same vicinity will have
non-independent errors because peculiarities of the location will be common to all the
samples (e.g. yields will all be high in a good patch and all be low in a bad patch).

Pseudoreplication is generally quite easy to spot. The question to ask is this. How many
degrees of freedom for error does the experiment really have? If a field experiment appears to
have lots of degrees of freedom, it is probably pseudoreplicated. Take an example from pest
control of insects on plants. There are 20 plots, 10 sprayed and 10 unsprayed. Within each
plot there are 50 plants. Each plant is measured five times during the growing season. Now
this experiment generates 20 × 50 × 5 = 5000 numbers. There are two spraying treatments,
so there must be 1 degree of freedom for spraying and 4998 degrees of freedom for error.
Or must there? Count up the replicates in this experiment. Repeated measurements on the
same plants (the five sampling occasions) are certainly not replicates. The 50 individual
plants within each quadrat are not replicates either. The reason for this is that conditions
within each quadrat are quite likely to be unique, and so all 50 plants will experience
more or less the same unique set of conditions, irrespective of the spraying treatment they
receive. In fact, there are 10 replicates in this experiment. There are 10 sprayed plots and
10 unsprayed plots, and each plot will yield only one independent datum for the response
variable (the proportion of leaf area consumed by insects, for example). Thus, there are
9 degrees of freedom within each treatment, and 2 × 9 = 18 degrees of freedom for error
in the experiment as a whole. It is not difficult to find examples of pseudoreplication on
this scale in the literature (Hurlbert 1984). The problem is that it leads to the reporting
of masses of spuriously significant results (with 4998 degrees of freedom for error, it is
almost impossible not to have significant differences). The first skill to be acquired by the
budding experimenter is the ability to plan an experiment that is properly replicated. There
are various things that you can do when your data are pseudoreplicated:

• Average away the pseudoreplication and carry out your statistical analysis on the means.

• Carry out separate analyses for each time period.

• Use proper time series analysis or mixed-effects models.

The lme and lmer Functions

Most of the examples in this chapter use the linear mixed model formula lme. This is
to provide compatibility with the excellent book by Pinheiro and Bates (2000) on Mixed-
Effects Models in S and S-PLUS. More recently, however, Douglas Bates has released the
generalized mixed model function lmer as part of the lme4 package, and you may prefer
to use this in your own work (see the Index for worked examples of lmer in this book; all
of the analyses in this chapter using lme are repeated using lmer on the book’s website).
Here, I provide a simple comparison of the basic syntax of the two functions.

lme

Specifying the fixed and random effects in the model formula is done with two formulae.
Suppose that there are no fixed effects, so that all of the categorical variables are random
effects. Then the fixed effect simply estimates the intercept (parameter 1):

fixed = y~1

MIXED-EFFECTS MODELS 631

The fixed effect (a compulsory part of the lme structure) is just the overall mean value of
the response variable y ~ 1. The fixed = part of the formula is optional. The random effects
show the identities of the random variables and their relative locations in the hierarchy. The
random effects are specified like this:

random = ~ 1 | a/b/c

and in this case the phrase random = is not optional. An important detail to notice is that
the name of the response variable �y� is not repeated in the random-effects formula: there
is a blank space to the left of the tilde ∼. In most mixed-effects models we assume that the
random effects have a mean of zero and that we are interested in quantifying variation in the
intercept (this is parameter 1) caused by differences between the factor levels of the random
effects. After the intercept comes the vertical bar � which is read as ‘given the following
spatial arrangement of the random variables’. In this example there are three random effects
with ‘c nested within b which in turn is nested within a’. The factors are separated by
forward slash characters, and the variables are listed from left to right in declining order
of spatial (or temporal) scale. This will only become clear with practice, but it is a simple
idea. The formulae are put together like this:

lme(fixed = y~1, random = ~ 1 | a/b/c)

lmer

There is just one formula in lmer, not separate formulae for the fixed and random effects.
The fixed effects are specified first, to the right of the tilde, in the normal way. Next comes
a plus sign, then one or more random terms enclosed in parentheses (in this example there
is just one random term, but we might want separate random terms for the intercept and
for the slopes, for instance). R can identify the random terms because they must contain a
‘given’ symbol �, to the right of which are listed the random effects in the usual way, from
largest to smallest scale, left to right. So the lmer formula for this example is

lmer(y~1+(1 | a/b/c))

Best Linear Unbiased Predictors

In aov, the effect size for treatment i is defined as ȳi − �, where � is the overall mean.
In mixed-effects models, however, correlation between the pseudoreplicates within a group
causes what is called shrinkage. The best linear unbiased predictors (BLUPs, denoted by
ai) are smaller than the effect sizes �ȳi − ��, and are given by

ai = �ȳi − ��

(
�2

a

�2
a + �2/n

)
�

where �2 is the residual variance and �2
a is the between-group variance which introduces the

correlation between the pseudoreplicates within each group. Thus, the parameter estimate
ai is ‘shrunk’ compared to the fixed effect size �ȳi − ��. When �2

a is estimated to be
large compared with the estimate of �2/n, then the fixed effects and the BLUP are similar
(i.e. when most of the variation is between classes and there is little variation within classes).
On the other hand, when �2

a is estimated to be small compared with the estimate of �2/n,
then the fixed effects and the BLUP can be very different (p. 547).

632 THE R BOOK

A Designed Experiment with Different Spatial Scales: Split Plots

The important distinction in models with categorical explanatory variables is between cases
where the data come from a designed experiment, in which treatments were allocated to
locations or subjects at random, and cases where the data come from an observational study
in which the categorical variables are associated with an observation before the study. Here,
we call the first case split-plot experiments and the second case hierarchical designs. The
point is that their dataframes look identical, so it is easy to analyse one case wrongly as if it
were the other. You need to be able to distinguish between fixed effects and random effects
in both cases. Here is the linear model for a split-plot experiment analysed in Chapter 11
by aov (see p. 470).

yields<-read.table("c:\\temp\\splityield.txt",header=T)
attach(yields)
names(yields)

[1] "yield" "block" "irrigation" "density" "fertilizer"

library(nlme)

The fixed-effects part of the model is specified in just the same way as in a straightforward
factorial experiment: yield~irrigation*density*fertilizer. The random-effects part of the
model says that we want the random variation to enter via effects on the intercept (which is
parameter 1) as random=~1. Finally, we define the spatial structure of the random effects
after the ‘given’ symbol � as: block/irrigation/density. There is no need to specify the
smallest spatial scale (fertilizer plots in this example).

model<-lme(yield~irrigation*density*fertilizer,random=~1|block/irrigation/density)
summary(model)

Linear mixed-effects model fit by REML
Data: NULL

AIC BIC logLik
481.6212 525.3789 -218.8106

Random effects:
Formula: ~ 1 | block

(Intercept)
StdDev: 0.0006601056

Formula: ~ 1 | irrigation %in% block
(Intercept)

StdDev: 1.982461

Formula: ~ 1 | density %in% irrigation %in% block
(Intercept) Residual

StdDev: 6.975554 9.292805

Fixed effects: yield ~ irrigation * density * fertilizer
Value Std.Error DF t-value

(Intercept) 80.50 5.893741 36 13.658558

irrigationirrigated 31.75 8.335008 3 3.809234

densitylow 5.50 8.216282 12 0.669403

MIXED-EFFECTS MODELS 633

densitymedium 14.75 8.216282 12 1.795216

fertilizerNP 5.50 6.571005 36 0.837010

fertilizerP 4.50 6.571005 36 0.684827

irrigationirrigated:densitylow -39.00 11.619577 12 -3.356404

irrigationirrigated:densitymedium -22.25 11.619577 12 -1.914872

irrigationirrigated:fertilizerNP 13.00 9.292805 36 1.398932

irrigationirrigated:fertilizerP 5.50 9.292805 36 0.591856

densitylow:fertilizerNP 3.25 9.292805 36 0.349733

densitymedium:fertilizerNP -6.75 9.292805 36 -0.726368

densitylow:fertilizerP -5.25 9.292805 36 -0.564953

densitymedium:fertilizerP -5.50 9.292805 36 -0.591856

irrigationirrigated:densitylow:fertilizerNP 7.75 13.142011 36 0.589712

irrigationirrigated:densitymedium:fertilizerNP 3.75 13.142011 36 0.285344

irrigationirrigated:densitylow:fertilizerP 20.00 13.142011 36 1.521837

irrigationirrigated:densitymedium:fertilizerP 4.00 13.142011 36 0.304367

p-value

(Intercept) 0.0000

irrigationirrigated 0.0318

densitylow 0.5159

densitymedium 0.0978

fertilizerNP 0.4081

fertilizerP 0.4978

irrigationirrigated:densitylow 0.0057

irrigationirrigated:densitymedium 0.0796

irrigationirrigated:fertilizerNP 0.1704

irrigationirrigated:fertilizerP 0.5576

densitylow:fertilizerNP 0.7286

densitymedium:fertilizerNP 0.4723

densitylow:fertilizerP 0.5756

densitymedium:fertilizerP 0.5576

irrigationirrigated:densitylow:fertilizerNP 0.5591

irrigationirrigated:densitymedium:fertilizerNP 0.7770

irrigationirrigated:densitylow:fertilizerP 0.1368

irrigationirrigated:densitymedium:fertilizerP 0.7626

This output suggests that the only significant effects are the main effect of irriga-
tion �p = 0�0318� and the irrigation by density interaction �p = 0�0057�. The three-
way interaction is not significant so we remove it, fitting all terms up to two-way
interactions:

model<-
lme(yield~(irrigation+density+fertilizer)^2,random=~1|block/irrigation/density)
summary(model)

Linear mixed-effects model fit by REML
Data: NULL

AIC BIC logLik
503.1256 540.2136 -233.5628

Random effects:
Formula: ~ 1 | block

(Intercept)
StdDev: 0.000563668

634 THE R BOOK

Formula: ~ 1 | irrigation %in% block
(Intercept)

StdDev: 1.982562

Formula: ~ 1 | density %in% irrigation %in% block
(Intercept) Residual

StdDev: 7.041303 9.142696

Fixed effects: yield ~ (irrigation + density + fertilizer)^2

Value Std.Error DF t-value p-value
(Intercept) 82.47222 5.443438 40 15.150760 0.0000
irrigationirrigated 27.80556 7.069256 3 3.933307 0.0293
densitylow 0.87500 7.256234 12 0.120586 0.9060
densitymedium 13.45833 7.256234 12 1.854727 0.0884
fertilizerNP 3.58333 5.278538 40 0.678850 0.5011
fertilizerP 0.50000 5.278538 40 0.094723 0.9250
irrigationirrigated:densitylow -29.75000 8.800165 12 -3.380618 0.0055
irrigationirrigated:densitymedium -19.66667 8.800165 12 -2.234807 0.0452
irrigationirrigated:fertilizerNP 16.83333 5.278538 40 3.189014 0.0028
irrigationirrigated:fertilizerP 13.50000 5.278538 40 2.557526 0.0144
densitylow:fertilizerNP 7.12500 6.464862 40 1.102112 0.2770
densitymedium:fertilizerNP -4.87500 6.464862 40 -0.754076 0.4552
densitylow:fertilizerP 4.75000 6.464862 40 0.734741 0.4668
densitymedium:fertilizerP -3.50000 6.464862 40 -0.541388 0.5912

The fertilizer by density interaction is not significant, so we remove it:

model<-
lme(yield~irrigation*density+irrigation*fertilizer,random=~1|block/irrigation/density)
summary(model)

Linear mixed-effects model fit by REML
Data: NULL

AIC BIC logLik
519.9035 549.6834 -245.9517

Random effects:
Formula: ~ 1 | block

(Intercept)
StdDev: 0.0005569251

Formula: ~ 1 | irrigation %in% block
(Intercept)

StdDev: 1.982615

Formula: ~ 1 | density %in% irrigation %in% block
(Intercept) Residual

StdDev: 7.057132 9.105995

Fixed effects: yield ~ irrigation * density + irrigation * fertilizer

MIXED-EFFECTS MODELS 635

Value Std.Error DF t-value p-value
(Intercept) 82.08333 4.994999 44 16.433103 0.0000
irrigationirrigated 27.80556 7.063995 3 3.936236 0.0292
densitylow 4.83333 6.222653 12 0.776732 0.4524
densitymedium 10.66667 6.222653 12 1.714167 0.1122
fertilizerNP 4.33333 3.717507 44 1.165656 0.2500
fertilizerP 0.91667 3.717507 44 0.246581 0.8064
irrigationirrigated:densitylow -29.75000 8.800160 12 -3.380620 0.0055
irrigationirrigated:densitymedium -19.66667 8.800160 12 -2.234808 0.0452
irrigationirrigated:fertilizerNP 16.83333 5.257349 44 3.201867 0.0025
irrigationirrigated:fertilizerP 13.50000 5.257349 44 2.567834 0.0137

The moral is that you must do the model simplification to get the appropriate p values.
Remember, too, that if you want to use anova to compare mixed models with different

fixed-effects structures, then you must use maximum likelihood (method = "ML") rather
than the default restricted maximum likelihood (REML). Here is the analysis again, but this
time using anova to compare models with progressively simplified fixed effects.

model.lme<-lme(yield~irrigation*density*fertilizer,
random=~ 1| block/irrigation/density,method="ML")

model.lme.2<-update(model.lme,~. - irrigation:density:fertilizer)
anova(model.lme,model.lme.2)

Model df AIC BIC logLik Test L.Ratio p-value
model.lme 1 22 573.5108 623.5974 -264.7554
model.lme.2 2 18 569.0046 609.9845 -266.5023 1 vs 2 3.493788 0.4788

model.lme.3<-update(model.lme.2,~. - density:fertilizer)
anova(model.lme.3,model.lme.2)

Model df AIC BIC logLik Test L.Ratio p-value
model.lme.3 1 14 565.1933 597.0667 -268.5967
model.lme.2 2 18 569.0046 609.9845 -266.5023 1 vs 2 4.188774 0.3811

model.lme.4<-update(model.lme.3,~. - irrigation:fertilizer)
anova(model.lme.3,model.lme.4)

Model df AIC BIC logLik Test L.Ratio p-value
model.lme.3 1 14 565.1933 597.0667 -268.5967
model.lme.4 2 12 572.3373 599.6573 -274.1687 1 vs 2 11.14397 0.0038

model.lme.5<-update(model.lme.2,~. - irrigation:density)
anova(model.lme.5,model.lme.2)

Model df AIC BIC logLik Test L.Ratio p-value
model.lme.5 1 16 576.7134 613.1400 -272.3567
model.lme.2 2 18 569.0046 609.9845 -266.5023 1 vs 2 11.70883 0.0029

The irrigation–fertilizer interaction is more significant (p=0�0038 compared to p=0�0081)
under this mixed-effects model than it was in the linear model earlier, as is the irrigation–
density interaction (p = 0�0029 compared to p = 0�016 33). You need to do the model
simplification in lme to uncover the significance of the main effect and interaction terms,
but it is worth it, because the lme analysis can be more powerful. The minimal adequate
model under the lme is:

636 THE R BOOK

summary(model.lme.3)

Linear mixed-effects model fit by maximum likelihood
Data: NULL

AIC BIC logLik
565.1933 597.0667 -268.5967

Random effects:
Formula: ~ 1 | block

(Intercept)
StdDev: 0.0005261129

Formula: ~ 1 | irrigation %in% block
(Intercept)

StdDev: 1.716889

Formula: ~ 1 | density %in% irrigation %in% block
(Intercept) Residual

StdDev: 5.722413 8.718327

Fixed effects: yield ~ irrigation + density + fertilizer +
irrigation:density + irrigation:fertilizer

Value Std.Error DF t-value p-value
(Intercept) 82.08333 4.756285 44 17.257867 0.0000
irrigationirrigated 27.80556 6.726403 3 4.133793 0.0257
densitylow 4.83333 5.807347 12 0.832279 0.4215
densitymedium 10.66667 5.807347 12 1.836754 0.0911
fertilizerNP 4.33333 3.835552 44 1.129781 0.2647
fertilizerP 0.91667 3.835552 44 0.238992 0.8122
irrigationirrigated:densitylow -29.75000 8.212829 12 -3.622382 0.0035
irrigationirrigated:densitymedium -19.66667 8.212829 12 -2.394628 0.0338
irrigationirrigated:fertilizerNP 16.83333 5.424290 44 3.103325 0.0033
irrigationirrigated:fertilizerP 13.50000 5.424290 44 2.488805 0.0167

Note that the degrees of freedom are not pseudoreplicated: d�f�=12 for testing the irrigation
by density interaction and d�f� = 44 for irrigation by fertilizer (this is 36 + 4 + 4 = 44 after
model simplification). Also, remember that you must do your model simplification using
maximum likelihood (method = "ML") because you cannot compare models with different
fixed-effect structures using REML.

Model-checking plots show that the residuals are well behaved:

plot(model.lme.3)

The response variable is a reasonably linear function of the fitted values:

plot(model.lme.3,yield~fitted(.))

and the errors are reasonably close to normally distributed in all four blocks:

qqnorm(model.lme.3,~ resid(.)| block)

When, as here, the experiment is balanced and there are no missing values, then it is
much simpler to interpret the aov using an Error term to describe the structure of the spatial
pseudoreplication (p. 470). Without balance, however, you will need to use lme and to use
model simplification to estimate the p values of the significant interaction terms.

MIXED-EFFECTS MODELS 637

Fitted values

80 90 100 110 120 130 140

S
ta

nd
ar

di
ze

d
re

si
du

al
s

2

1

0

–2

–1

120

100

80

60

yi
el

d

Fitted values

80 90 100 110 120 130 140

638 THE R BOOK

A

C D

B

Q
ua

nt
ile

s
of

 s
ta

nd
ar

d
no

rm
al

2

1

0

–1

–2

–20 –10 0 10 20

Residuals

2

1

0

–1

–2

–20 –10 0 10 20

Hierarchical Sampling and Variance Components Analysis

Hierarchical data are often encountered in observational studies where information is col-
lected at a range of different spatial scales. Consider an epidemiological study of childhood
diseases in which blood samples were taken for individual children, households, streets,
districts, towns, regions, and countries. All these categorical variables are random effects.
The spatial scale increases with each step in the hierarchy. The interest lies in discovering
where most of the variation originates: is it between children within households or between
districts within the same town? When it comes to testing hypotheses at larger spatial scales
(such as town or regions), such data sets contain huge amounts of pseudoreplication.

The following example has a slightly simpler spatial structure than this: infection is
measured for two replicate males and females within each of three families within four
streets within three districts within five towns (720 measurements in all). We want to carry
out a variance components analysis. Here are the data:

hierarchy<-read.table("c:\\temp\\hre.txt",header=T)
attach(hierarchy)
names(hierarchy)

[1] "subject" "town" "district" "street" "family"
[6] "gender" "replicate"

library(nlme)
library(lattice)

MIXED-EFFECTS MODELS 639

model1<-lme(subject~1,random=~1|town/district/street/family/gender)
summary(model1)

Linear mixed-effects model fit by REML
Data: NULL

AIC BIC logLik
3351.294 3383.339 -1668.647

Random effects:
Formula: ~1 | town

(Intercept)
StdDev: 1.150604

Formula: ~1 | district %in% town
(Intercept)

StdDev: 1.131932

Formula: ~1 | street %in% district %in% town
(Intercept)

StdDev: 1.489864

Formula: ~1 | family %in% street %in% district %in% town
(Intercept)

StdDev: 1.923191

Formula: ~1 | gender %in% family %in% street %in% district %in% town
(Intercept) Residual

StdDev: 3.917264 0.9245321

Fixed effects: subject ~ 1
Value Std.Error DF t-value p-value

(Intercept) 8.010941 0.6719753 360 11.92148 0

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-2.64600654 -0.47626815 -0.06009422 0.47531635 2.35647504

Number of Observations: 720
Number of Groups:

town
5

district %in% town
15

street %in% district %in% town
60

family %in% street %in% district %in% town
180

gender %in% family %in% street %in% district %in% town
360

Notice that the model was fitted by REML rather than by the more familiar maximum
likelihood. REML methods differ because they allow for the degrees of freedom used up
in estimating the fixed effects. Thus, the variance components are estimated without being
affected by the fixed effects (they are invariant to the values of the fixed effects). Also,
REML estimators are less sensitive to outliers than are ML estimators.

640 THE R BOOK

To calculate the variance components we need to extract the standard deviations of the
random effects from the model summary, square them to get the variances, then express
each as a percentage of the total:

sds<-c(1.150604,1.131932,1.489864,1.923191,3.917264,0.9245321)
vars<-sds^2
100*vars/sum(vars)

[1] 5.354840 5.182453 8.978173 14.960274 62.066948 3.457313

This indicates that the gender effect (62%) is much the most important component of overall
variance. Next most important is variation from family to family (15%).

For comparison, here is the layout of the output for the same analysis using lmer:

library(lme4)
model1<-lmer(subject~1+(1|town/district/street/family/gender))
summary(model1)

Linear mixed-effects model fit by REML
Formula: subject ~ 1 + (1 | town/district/street/family/gender)
AIC BIC logLik MLdeviance REMLdeviance

3349 3377 -1669 3338 3337

Random effects:
Groups Name Variance Std.Dev.
gender:(family:(street:(district:town))) (Intercept) 15.3387 3.91647
family:(street:(district:town)) (Intercept) 3.7008 1.92375
street:(district:town) (Intercept) 2.2283 1.49274
district:town (Intercept) 1.2796 1.13121
town (Intercept) 1.3238 1.15056
Residual 0.8548 0.92456

number of obs: 720, groups: gender:(family:(street:(district:town))),
360; family:(street:(district:town)), 180; street:(district:town), 60;
district:town, 15; town, 5

Fixed effects:
Estimate Std. Error t value

(Intercept) 8.011 0.672 11.92

You will see that the variance components are given in the penultimate column. Fixed
effects in this model are discussed on p. 656.

Model Simplification in Hierarchical Sampling

We need to know whether all of the random effects are required in the model. The key point
to grasp here is that you will need to recode the factor levels if you want to leave out a
random effect from a larger spatial scale. Suppose we want to test the effect of leaving out
the identity of the towns. Because the districts were originally coded with the same names
within each town,

levels(district)

[1] "d1" "d2" "d3"

MIXED-EFFECTS MODELS 641

we shall need to create 15 new, unique district names. Much the simplest way to do this is
to use paste to combine the town names and the district names:

newdistrict<-factor(paste(town,district,sep=""))
levels(newdistrict)

[1] "Ad1" "Ad2" "Ad3" "Bd1" "Bd2" "Bd3" "Cd1" "Cd2" "Cd3" "Dd1"
[11] "Dd2" "Dd3" "Ed1" "Ed2" "Ed3"

In model2 we leave out the random effect for towns and include the new factor for districts:

model2<-lme(subject~1,random=~1|newdistrict/street/family/gender)
anova(model1,model2)

Model df AIC BIC logLik Test L.Ratio p-value
model1 1 7 3351.294 3383.339 -1668.647
model2 2 6 3350.524 3377.991 -1669.262 1 vs 2 1.229803 0.2674

Evidently there is no significant effect attributable to differences between towns
�p = 0�2674�.

The next question concerns differences between the districts. Because the streets within
districts were all coded in the same way in the original dataframe, we need to create 60
unique codes for the different streets:

newstreet<-factor(paste(newdistrict,street,sep=""))
levels(newstreet)

[1] "Ad1s1" "Ad1s2" "Ad1s3" "Ad1s4" "Ad2s1" "Ad2s2" "Ad2s3" "Ad2s4" "Ad3s1"
[10] "Ad3s2" "Ad3s3" "Ad3s4" "Bd1s1" "Bd1s2" "Bd1s3" "Bd1s4" "Bd2s1" "Bd2s2"
[19] "Bd2s3" "Bd2s4" "Bd3s1" "Bd3s2" "Bd3s3" "Bd3s4" "Cd1s1" "Cd1s2" "Cd1s3"
[28] "Cd1s4" "Cd2s1" "Cd2s2" "Cd2s3" "Cd2s4" "Cd3s1" "Cd3s2" "Cd3s3" "Cd3s4"
[37] "Dd1s1" "Dd1s2" "Dd1s3" "Dd1s4" "Dd2s1" "Dd2s2" "Dd2s3" "Dd2s4" "Dd3s1"
[46] "Dd3s2" "Dd3s3" "Dd3s4" "Ed1s1" "Ed1s2" "Ed1s3" "Ed1s4" "Ed2s1" "Ed2s2"
[55] "Ed2s3" "Ed2s4" "Ed3s1" "Ed3s2" "Ed3s3" "Ed3s4"

Now fit the new model leaving out both towns and districts,

model3<-lme(subject~1,random=~1|newstreet/family/gender)

and compare this with model2 from which towns had been removed:

anova(model2,model3)

Model df AIC BIC logLik Test L.Ratio p-value
model2 1 6 3350.524 3377.991 -1669.262
model3 2 5 3354.084 3376.973 -1672.042 1 vs 2 5.559587 0.0184

This simplification was not justified �p = 0�0184� so we conclude that there is significant
variation from district to district. Model-checking plots are illustrated on p. 657.

Mixed-Effects Models with Temporal Pseudoreplication

A common cause of temporal pseudoreplication in growth experiments with fixed effects
is when each individual is measured several times as it grows during the course of an
experiment. The next example is as simple as possible: we have a single fixed effect
(a two-level categorical variable: with fertilizer added or not) and six replicate plants in

642 THE R BOOK

each treatment, with each plant measured on five occasions (after 2, 4, 6, 8 or 10 weeks of
growth). The response variable is root length. The fixed-effect formula looks like this:

fixed = root~fertilizer

The random-effects formula needs to indicate that the week of measurement (a continuous
random effect) represents pseudoreplication within each individual plant:

random = ~week|plant

Because we have a continuous random effect (weeks) we write ~week in the random-effects
formula rather than the ~1 that we used with categorical random effects (above). Here are
the data:

results<-read.table("c:\\temp\\fertilizer.txt",header=T)
attach(results)
names(results)

[1] "root" "week" "plant" "fertilizer"

We begin with data inspection. For the kind of data involved in mixed-effects models
there are some excellent built-in plotting functions (variously called panel plots, trellis plots,
or lattice plots).

library(nlme)
library(lattice)

To use trellis plotting, we begin by turning our dataframe called results (created by
read.table) into a groupedData object (p. 668). To do this we specify the nesting structure
of the random effects, and indicate the fixed effect by defining fertilizer as outer to this
nesting:

results<-groupedData(root~week|plant,outer = ~ fertilizer,results)

Because results is now a groupedData object, the plotting is fantastically simple:

plot(results)

Here you get separate time series plots for each of the individual plants, ranked from bottom
left to top right on the basis of mean root length. In terms of understanding the fixed effects,
it is often more informative to group together the six replicates within each treatment, and
to have two panels, one for the fertilized plants and one for the controls. This is easy:

plot(results,outer=T)

You can see that by week 10 there is virtually no overlap between the two treatment groups.
The largest control plant has about the same root length as the smallest fertilized plant �c�9 cm�.

Now for the statistical modelling. Ignoring the pseudoreplication, we should have 1 d.f.
for fertilizer and 2 × �6 − 1� = 10 d.f. for error.

model<-lme(root~fertilizer,random=~week|plant)
summary(model)

Linear mixed-effects model fit by REML
Data: NULL

AIC BIC logLik
171.0236 183.3863 -79.51181

MIXED-EFFECTS MODELS 643

10

8

6

4

2

ro
ot

10

8

6

4

2

108642

ID6

ID10

ID12 ID9 ID11ID8

ID5 ID7 ID2

ID3 ID1 ID4

108642

10

8

6

4

2

10
week

8642 108642

10

8

6

4

2

ro
ot

week

added

ID6 ID1
ID4

ID12
ID8

ID9
ID11

ID10
ID7ID3

control

2 4 6 8 10

2 4 6 8 10

644 THE R BOOK

Random effects:
Formula: ~week | plant
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
(Intercept) 2.8639832 (Intr)
week 0.9369412 -0.999
Residual 0.4966308

Fixed effects: root ~ fertilizer
Value Std.Error DF t-value p-value

(Intercept) 2.799710 0.1438367 48 19.464499 0e+00
fertilizercontrol -1.039383 0.2034158 10 -5.109645 5e-04

Correlation:
(Intr)

fertilizercontrol −0.707
Standardized Within-Group Residuals:

Min Q1 Med Q3 Max
-1.9928118 -0.6586834 -0.1004301 0.6949714 2.0225381

Number of Observations: 60
Number of Groups: 12

The output looks dauntingly complex, but once you learn your way around it, the essential
information is relatively easy to extract. The mean reduction in root size associated with
the unfertilized controls is −1�039 383 and this has a standard error of 0.203 415 8 based on
the correct 10 residual d.f. (six replicates per factor level). Can you see why the intercept
has 48 d.f.?

Here is a simple one-way ANOVA for the non-pseudoreplicated data from week 10:

model2<-aov(root~fertilizer,subset=(week==10))
summary(model2)

Df Sum Sq Mean Sq F value Pr(>F)
fertilizer 1 4.9408 4.9408 11.486 0.006897 **
Residuals 10 4.3017 0.4302

summary.lm(model2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.6167 0.2678 35.915 6.65e-12 ***
fertilizercontrol -1.2833 0.3787 -3.389 0.0069 **

We can compare this with the output from the lme. The effect size in the lme is slightly
smaller (−1�039393 compared to −1�2833) but the standard error is appreciably lower
(0.203 415 8 compared to 0.3787), so the significance of the result is higher in the lme than
in the aov. You get increased statistical power as a result of going to the trouble of fitting
the mixed-effects model. And, crucially, you do not need to make potentially arbitrary
judgements about which time period to select for the non-pseudoreplicated analysis. You
use all of the data in the model, and you specify its structure appropriately so that the
hypotheses are tested with the correct degrees of freedom (10 in this case, not 48).

The reason why the effect sizes are different in the lm and lme models is that linear
models use maximum likelihood estimates of the parameters based on arithmetic means.
The linear mixed models, however, use the wonderfully named BLUPs.

MIXED-EFFECTS MODELS 645

Time Series Analysis in Mixed-Effects Models

It is common to have repeated measures on subjects in observational studies, where we
would expect that the observation on an individual at time t + 1 would be quite strongly
correlated with the observation on the same individual at time t. This contravenes one of
the central assumptions of mixed-effects models (p. 627), that the within-group errors are
independent. However, we often observe significant serial correlation in data such as these.

The following example comes from Pinheiro and Bates (2000) and forms part of the nlme
library. The data refer to the numbers of ovaries observed in repeated measures on 11 mares
(their oestrus cycles have been scaled such that ovulation occurred at time 0 and at time 1).
The issue is how best to model the correlation structure of the data. We know from previous
work that the fixed effect can be modelled as a three-parameter sine–cosine function

y = a + b sin�2	x� + d cos�2	x� +
ij�

and we want to assess different structures for modelling the within-class correlation
structure. The dataframe is of class groupedData which makes the plotting and error
checking much simpler.

library(nlme)
library(lattice)
data(Ovary)
attach(Ovary)
names(Ovary)

[1] "Mare" "Time" "follicles"

plot(Ovary)

The panel plot has ranked the horses from bottom left to top right on the basis of their mean
number of ovules (mare 4 with the lowest number, mare 8 with the highest). Some animals
show stronger cyclic behaviour than others.

We begin by fitting a mixed-effects model making no allowance for the correlation
structure, and investigate the degree of autocorrelation that is exhibited by the residuals
(recall that the assumption of the model is that there is no correlation).

model<-lme(follicles~sin(2*pi*Time)+cos(2*pi*Time),
data=Ovary,random=~ 1| Mare)

summary(model)

Linear mixed-effects model fit by REML
Data: Ovary

AIC BIC logLik
1669.360 1687.962 -829.6802

Random effects:
Formula: ~ 1 | Mare

(Intercept) Residual
StdDev: 3.041344 3.400466

Fixed effects: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)

646 THE R BOOK

25

3 8

6 101

7 5 9

1124

20
15
10
5
0

25
20
15
10

5
0

0.0

N
um

be
r

of
 o

va
ria

n
fo

lli
cl

es
 >

10
 m

m
. d

ia
m

et
er

0.5 1.0

Time in estrus cycle

0.0 0.5 1.0

25
20
15
10
5
0

25
20
15
10
5
0

0.0 0.5 1.0

Value Std.Error DF t-value p-value
(Intercept) 12.182244 0.9390010 295 12.973623 0.0000
sin(2 * pi * Time) -3.339612 0.2894013 295 -11.539727 0.0000
cos(2 * pi * Time) -0.862422 0.2715987 295 -3.175353 0.0017

Correlation:
(Intr) s(*p*T)

sin(2 * pi * Time) 0.00
cos(2 * pi * Time) -0.06 0.00

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-2.4500138 -0.6721813 -0.1349236 0.5922957 3.5506618

Number of Observations: 308
Number of Groups: 11

The function ACF allows us to calculate the empirical autocorrelation structure of the
residuals from this model:

plot(ACF(model),alpha=0.05)

You can see that there is highly significant autocorrelation at lags 1 and 2 and marginally
significant autocorrelation at lags 3 and 4. We model the autocorrelation structure using one
of the standard corStruct classes (p. 701). For time series data like this, we typically choose
between ‘moving average’, ‘autoregressive’ or ‘autoregressive moving average’ classes.
Again, experience with horse biology suggests that a simple moving average model might
be appropriate, so we start with this. The class is called corARMA and we need to specify

MIXED-EFFECTS MODELS 647

the order of the model (the lag of the moving average part): the simplest assumption is that
only the first two lags exhibit non-zero correlations (q = 2):

model2<-update(model,correlation=corARMA(q=2))
anova(model,model2)

Model df AIC BIC logLik Test L.Ratio p-value
model 1 5 1669.360 1687.962 -829.6802
model2 2 7 1574.895 1600.937 -780.4476 1 vs 2 98.4652 <.0001

This is a great improvement over the original model, which assumed no correlation in the
residuals. But what about a different time series assumption? Let us compare the moving
average assumption with a simple first-order autoregressive model corAR1():

model3<-update(model2,correlation=corAR1())
anova(model2,model3)

Model df AIC BIC logLik Test L.Ratio p-value
model2 1 7 1574.895 1600.937 -780.4476
model3 2 6 1573.453 1595.775 -780.7264 1 vs 2 0.5577031 0.4552

There is nothing to chose between the models on the basis of ANOVA, p = 0�455, so we
choose the corAR1() because it has the lowest AIC (it also uses fewer degrees of freedom,
d.f. = 6). Error checking on model3 might proceed like this:

plot(model3,resid(.,type="p")~fitted(.)|Mare)

The residuals appear to be reasonably well behaved. And the normality assumption?

qqnorm(model3,~resid(.)|Mare)

The model is well behaved, so we accept a first-order autocorrelation structure corAR1().

648 THE R BOOK

3

2

1

0

–1

–2

5

10 3 8

4 2 11 7

9 1 6

S
ta

nd
ar

di
ze

d
re

si
du

al
s

3

2

1

0

–1

–2

5 10 15

5 10 155 10 15

Fitted values

3

2

1

0

–1

–2

Random Effects in Designed Experiments

The rats example, studied by aov with an Error term on p. 476, can be repeated as a linear
mixed-effects model. This example works much better with lmer than with lme.

dd<-read.table("c:\\temp\\rats.txt",h=T)
attach(dd)
names(dd)

[1] "Glycogen" "Treatment" "Rat" "Liver"

Treatment<-factor(Treatment)
Liver<-factor(Liver)
Rat<-factor(Rat)

There is a single fixed effect (Treatment), and pseudoreplication enters the dataframe because
each rat’s liver is cut into three pieces and each separate liver bit produces two readings.

MIXED-EFFECTS MODELS 649

3
10 3 8

6195

4 2 11 7

–5 0 5 10

2

1

0

–1

–2

–3

Q
ua

nt
ile

s
of

 s
ta

nd
ar

d
no

rm
al

3

2

1

0

–1

–2

–3

3

2

1

0

–1

–2

–3

–5 0 5 10
Residuals

–5 0 5 10

The rats are numbered 1 and 2 within each treatment, so we need Treatment as the largest
scale of the random effects.

model<-lmer(Glycogen~Treatment+(1|Treatment/Rat/Liver))
summary(model)

Linear mixed-effects model fit by REML
Formula: Glycogen ~ Treatment + (1 | Treatment/Rat/Liver)

AIC BIC logLik MLdeviance REMLdeviance
231.6 241.1 -109.8 234.9 219.6

Random effects:
Groups Name Variance Std.Dev.
Liver:(Rat:Treatment) (Intercept) 14.1617 3.7632
Rat:Treatment (Intercept) 36.0843 6.0070
Treatment (Intercept) 4.7039 2.1689
Residual 21.1678 4.6008

number of obs: 36, groups: Liver:(Rat:Treatment), 18; Rat:Treatment, 6;
Treatment, 3

650 THE R BOOK

Fixed effects:
Estimate Std. Error t value

(Intercept) 140.500 5.184 27.104
Treatment2 10.500 7.331 1.432
Treatment3 -5.333 7.331 -0.728

Correlation of Fixed Effects:
(Intr) Trtmn2

Treatment2 -0.707
Treatment3 -0.707 0.500

You can see that the treatment effect is correctly interpreted as being non-significant �t<2�.
The variance components (p. 478) can be extracted by squaring the standard deviations,
then expressing them as percentages:

vars<- c(14.1617,36.0843,21.1678)
100*vars/sum(vars)

[1] 19.83048 50.52847 29.64105

so 50.5% of the variation is between rats within treatments, 19.8% is between liver bits
within rats and 29.6% is between readings within liver bits within rats (see p. 333). You
can extract the variance components with the VarCorr(model) function.

Regression in Mixed-Effects Models

The next example involves a regression of plant size against local point measurements
of soil nitrogen �N� at five places within each of 24 farms. It is expected that plant size
and soil nitrogen will be positively correlated. There is only one measurement of plant
size and soil nitrogen at any given point (i.e. there is no temporal pseudoreplication; cf.
p. 629):

yields<-read.table("c:\\temp\\farms.txt",header=T)
attach(yields)
names(yields)

[1] "N" "size" "farm"

Here are the data in aggregate, with different plotting colours for each farm:

plot(N,size,pch=16,col=farm)

The most obvious pattern is that there is substantial variation in mean values of both soil
nitrogen and plant size across the farms: the minimum (yellow) fields have a mean y value
of less than 80, while the maximum (red) fields have a mean y value above 110.

The key distinction to understand is between fitting lots of linear regression mod-
els (one for each farm) and fitting one mixed-effects model, taking account of
the differences between farms in terms of their contribution to the variance in
response as measured by a standard deviation in intercept and a standard devia-
tion in slope. We investigate these differences by contrasting the two fitting func-
tions, lmList and lme. We begin by fitting 24 separate linear models, one for each
farm:

MIXED-EFFECTS MODELS 651

11
0

10
0

si
ze

90
80

N

15 20 25

linear.models<-lmList(size~N|farm,yields)
coef(linear.models)

(Intercept) N
1 67.46260 1.5153805
2 118.52443 -0.5550273
3 91.58055 0.5551292
4 87.92259 0.9212662
5 92.12023 0.5380276
6 97.01996 0.3845431
7 68.52117 0.9339957
8 91.54383 0.8220482
9 92.04667 0.8842662
10 85.08964 1.4676459
11 114.93449 -0.2689370
12 82.56263 1.0138488
13 78.60940 0.1324811
14 80.97221 0.6551149
15 84.85382 0.9809902
16 87.12280 0.3699154
17 52.31711 1.7555136
18 83.40400 0.8715070
19 88.91675 0.2043755

652 THE R BOOK

20 93.08216 0.8567066
21 90.24868 0.7830692
22 78.30970 1.1441291
23 59.88093 0.9536750
24 89.07963 0.1091016

You see very substantial variations in the value of the intercept from 118.52 on farm
2 to 52.32 on farm 17. Slopes are also dramatically different, from negative −0�555 on
farm 2 to steep and positive 1.7555 on farm 17. This is a classic problem in regression
analysis when (as here) the intercept is a long way from the average value of x (see p. 398);
large values of the intercept are almost bound to be correlated with low values of the
slope.

Here are the slopes and intercepts from the model specified entirely in terms of random
effects: a population of regression slopes predicted within each farm with nitrogen as the
continuous explanatory variable:

random.model<-lme(size~1,random=~N|farm)
coef(random.model)

(Intercept) N
1 85.98139 0.574205307
2 104.67366 -0.045401473
3 95.03442 0.331080922
4 98.62679 0.463579823
5 95.00270 0.407906211
6 99.82294 0.207203698
7 85.57345 0.285520353
8 96.09461 0.520896471
9 95.22186 0.672262924
10 93.14157 1.017995727
11 108.27200 0.015213748
12 87.36387 0.689406409
13 80.83933 0.003617002
14 89.84309 0.306402249
15 93.37050 0.636778709
16 92.10914 0.145772153
17 94.93395 0.084935465
18 85.90160 0.709943262
19 92.00628 0.052485986
20 95.26296 0.738029400
21 93.35069 0.591151955
22 87.66161 0.673119269
23 70.57827 0.432993915
24 90.29151 0.036747120

Variation in the intercepts explains 97.26% of the variance, differences in slope a mere
0.245%, with a residual variance of 2.49% (see the summary table). The thing you notice
is that the random effects are less extreme (i.e. closer to the mean) than the fixed effects.
This is an example of shrinkage (p. 631), and is most clear from a graphical comparison of
the coefficients of the linear and mixed models:

mm<-coef(random.model)
ll<-coef(linear.models)

MIXED-EFFECTS MODELS 653

par(mfrow=c(2,2))
plot(ll[,1],mm[,1],pch=16,xlab="linear",ylab="random effects")
abline(0,1)
plot(ll[,2],mm[,2],pch=16,xlab="linear",ylab="random effects")
abline(0,1)

10
0

90
80

70

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0.5 0.0 0.5 1.0 1.550 60 70 80 90 100 110 120

linear linear

ra
nd

om
 e

ffe
ct

s

ra
nd

om
 e

ffe
ct

s

Most of the random-effects intercepts (left) are greater than their linear model equivalents
(they are above the 45 degree line) while most of the random-effects slopes (right) are
shallower than their linear model equivalents (i.e. below the line). For farm 17 the linear
model had an intercept of 52.317 11 while the random-effects model had an intercept of
94.933 95. Likewise, the linear model for farm 17 had a slope of 1.755 513 6 while the
random-effects model had a slope of 0.084 935 465.

We can fit a mixed model with both fixed and random effects. Here is a model in which
size is modelled as a function of nitrogen and farm as fixed effects, and farm as a random
effect. Because we intend to compare models with different fixed effect structures we need
to specify method="ML" in place of the default REML.

farm<-factor(farm)
mixed.model1<-lme(size~N*farm,random=~1|farm,method="ML")
mixed.model2<-lme(size~N+farm,random=~1|farm,method="ML")
mixed.model3<-lme(size~N,random=~1|farm,method="ML")
mixed.model4<-lme(size~1,random=~1|farm,method="ML")
anova(mixed.model1,mixed.model2,mixed.model3,mixed.model4)

Model df AIC BIC logLik Test L.Ratio p-value
mixed.model1 1 50 542.9035 682.2781 -221.4518
mixed.model2 2 27 524.2971 599.5594 -235.1486 1 vs 2 27.39359 0.2396
mixed.model3 3 4 614.3769 625.5269 -303.1885 2 vs 3 136.07981 <.0001
mixed.model4 4 3 658.0058 666.3683 -326.0029 3 vs 4 45.62892 <.0001

The first model contains a full factorial, with different slopes and intercepts for each of the
25 farms (using up 50 degrees of freedom). The second model has a common slope but
different intercepts for the 25 farms (using 27 degrees of freedom); model2 does not have
significantly lower explanatory power than model1 �p = 0�2396�. The main effects of farm
and of nitrogen application (model3 and model4) are both highly significant �p < 0�0001�.

Finally, we could do an old-fashioned analysis of covariance, fitting a different two-
parameter model to each and every farm without any random effects:

654 THE R BOOK

model<-lm(size~N*factor(farm))
summary(model)

Call:
lm(formula = size ~ N * factor(farm))

Residuals:
Min 1Q Median 3Q Max

-3.60765 -1.29473 0.04789 1.07322 4.12972
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 67.46260 14.43749 4.673 1.35e-05 ***
N 1.51538 0.73395 2.065 0.0426 *
factor(farm)2 51.06183 22.86930 2.233 0.0287 *
factor(farm)3 24.11794 16.54029 1.458 0.1492
factor(farm)4 20.45999 34.59610 0.591 0.5561
factor(farm)5 24.65762 17.29578 1.426 0.1583
factor(farm)6 29.55736 17.74007 1.666 0.1000
factor(farm)7 1.05856 20.53771 0.052 0.9590
factor(farm)8 24.08122 16.23722 1.483 0.1424
factor(farm)9 24.58407 15.45967 1.590 0.1162
factor(farm)10 17.62703 16.68467 1.056 0.2943
factor(farm)11 47.47189 18.24214 2.602 0.0112 *
factor(farm)12 15.10002 15.77085 0.957 0.3415
factor(farm)13 11.14680 17.82896 0.625 0.5338
factor(farm)14 13.50961 19.36739 0.698 0.4877
factor(farm)15 17.39122 20.74850 0.838 0.4047
factor(farm)16 19.66019 18.72739 1.050 0.2973
factor(farm)17 -15.14550 49.01250 -0.309 0.7582
factor(farm)18 15.94140 15.15371 1.052 0.2963
factor(farm)19 21.45414 17.99214 1.192 0.2370
factor(farm)20 25.61956 15.50019 1.653 0.1027
factor(farm)21 22.78608 15.65699 1.455 0.1499
factor(farm)22 10.84710 17.69820 0.613 0.5419
factor(farm)23 -7.58167 16.89435 -0.449 0.6549
factor(farm)24 21.61703 17.28697 1.250 0.2152
N:factor(farm)2 -2.07041 0.98369 -2.105 0.0388 *
N:factor(farm)3 -0.96025 0.89786 -1.069 0.2884
N:factor(farm)4 -0.59411 1.52204 -0.390 0.6974
N:factor(farm)5 -0.97735 0.84718 -1.154 0.2525
N:factor(farm)6 -1.13084 0.97207 -1.163 0.2485
N:factor(farm)7 -0.58138 0.92164 -0.631 0.5302
N:factor(farm)8 -0.69333 0.87773 -0.790 0.4322
N:factor(farm)9 -0.63111 0.81550 -0.774 0.4415
N:factor(farm)10 -0.04773 0.86512 -0.055 0.9562
N:factor(farm)11 -1.78432 0.87838 -2.031 0.0459 *
N:factor(farm)12 -0.50153 0.84820 -0.591 0.5562
N:factor(farm)13 -1.38290 0.98604 -1.402 0.1651
N:factor(farm)14 -0.86027 0.89294 -0.963 0.3386
N:factor(farm)15 -0.53439 0.94640 -0.565 0.5741
N:factor(farm)16 -1.14547 0.91070 -1.258 0.2125
N:factor(farm)17 0.24013 1.97779 0.121 0.9037
N:factor(farm)18 -0.64387 0.79080 -0.814 0.4182

MIXED-EFFECTS MODELS 655

N:factor(farm)19 -1.31100 0.90886 -1.442 0.1535
N:factor(farm)20 -0.65867 0.78956 -0.834 0.4069
N:factor(farm)21 -0.73231 0.81990 -0.893 0.3747
N:factor(farm)22 -0.37125 0.89597 -0.414 0.6798
N:factor(farm)23 -0.56171 0.85286 -0.659 0.5122
N:factor(farm)24 -1.40628 0.95103 -1.479 0.1436

Residual standard error: 1.978 on 72 degrees of freedom
Multiple R-Squared: 0.9678, Adjusted R-squared: 0.9468
F-statistic: 46.07 on 47 and 72 DF, p-value: < 2.2e-16

There is a marginally significant overall effect of soil nitrogen on plant size (N has p =
0�0426) and (compared to farm 1) farms 2 and 11 have significantly higher intercepts and
shallower slopes. The problem, of course, is that this model, with its 24 slopes and 24
intercepts, is vastly overparameterized. Let’s fit a greatly simplified model with a common
slope but different intercepts for the different farms:

model2<-lm(size~N+factor(farm))
anova(model,model2)

Analysis of Variance Table

Model 1: size ~ N * factor(farm)
Model 2: size ~ N + factor(farm)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 72 281.60
2 95 353.81 -23 -72.21 0.8028 0.717

This analysis provides no support for any significant differences between slopes. What about
differences between farms in their intercepts?

model3<-lm(size~N)
anova(model2,model3)

Analysis of Variance Table

Model 1: size ~ N + factor(farm)
Model 2: size ~ N

Res.Df RSS Df Sum of Sq F Pr(>F)
1 95 353.8
2 118 8454.9 -23 -8101.1 94.574 < 2.2e-16 ***

This shows that there are highly significant differences in intercepts between farms. The
interpretation of the analysis of covariance is exactly the same as the interpretation of the
mixed model in this case where there is balanced structure and equal replication, but lme
is vastly superior to the linear model when there is unequal replication.

Generalized Linear Mixed Models

Pseudoreplicated data with non-normal errors lead to a choice of generalized linear mixed-
effects models using lmer with a specified error family. These were previously handled
by the function glmmPQL which is part of the MASS library (see Venables and Ripley,
2002). That function fitted a generalized linear mixed model with multivariate normal
random effects, using penalized quasi-likelihood (hence the ‘PQL’). The default method for
a generalized linear model fit with lmer has been switched from PQL to the more reliable

656 THE R BOOK

Laplace method, as explained in Chapter 14. The lmer function can deal with the same
error structures as a generalized linear model, namely Poisson (for count data), binomial (for
binary data or proportion data) or gamma (for continuous data where the variance increase
with the square of the mean). The model call is just like a mixed-effects model but with the
addition of the name of the error family, like this:

lmer(y~fixed+(time | random), family=binomial)

For a worked example, involving patients who were tested for the presence of a bacterial
infection on a number of occasions (the number varying somewhat from patient to patient),
see pp. 604–609. The response variable is binary: yes for infected patients or no for patients
not scoring as infected, so the family is binomial. There is a single categorical explanatory
variable (a fixed effect) called treatment, which has three levels: drug, drug plus supplement,
and placebo. The week numbers in which the repeated assessments were made is also
recorded.

Fixed Effects in Hierarchical Sampling

Given that the gender effect in our hierarchical sampling example on p. 639 was so large,
and that gender makes a sensible fixed effect (it has informative factor levels: male and
female), we might fit gender as a main effect. The important point to note is that when you
want to compare models with different fixed effects using lme you must change the fitting
method from the default REML to the optional maximum likelihood method="ML". This
then allows you to use anova to compare lme models with different fixed effects:

model10<-lme(subject~gender,random=~1|town/district/street/family/gender,
method="ML")

model11<-lme(subject~1,random=~1|town/district/street/family/gender,
method="ML")

anova(model10,model11)

Model df AIC BIC logLik Test L.Ratio p-value
model10 1 8 3331.584 3368.218 -1657.792
model11 2 7 3352.221 3384.276 -1669.111 1 vs 2 22.63755 <.0001

It is clear that the model with gender as a fixed effect (model10) is vastly superior to the
model with out any fixed effects �p < 0�0001�. It has a much lower AIC, despite its extra
parameter. The variance components have been little affected by fitting gender as a fixed
effect, and the effect size of gender is given by:

summary(model10)

Fixed effects: subject ~ gender
Value Std.Error DF t-value p-value

(Intercept) 8.976328 0.6332402 360 14.175234 0
gendermale -1.930773 0.3936610 179 -4.904659 0

You can see what the parameter values are by looking at the treatment means:

tapply(subject,gender,mean)

female male
8.976328 7.045555

The intercept in the lme is the mean for females and the gender.male effect is the
difference between the male and female means: 7�045 555 − 8�976 328 = −1�930 773.

MIXED-EFFECTS MODELS 657

Error Plots from a Hierarchical Analysis

You will find the syntax of model checking in lme both complicated and difficult to
remember.

library(nlme)
library(lattice)
trellis.par.set(col.whitebg())

If you use the standard plot(model) with lme you get a single panel showing the standardized
residuals as a function of the fitted values. For more comprehensive model checking, it is
useful to make the dataframe into a groupedData object, then refit the model. Here we
investigate the REML model with gender as a fixed effect:

hs<-groupedData(subject~gender|town/district/street/family/gender/replicate,
outer=~gender,data=hierarchy)

model<-
lme(subject~gender,random=~1|town/district/street/family/gender,data=hs)
plot(model,gender~resid(.))

male

female

ge
nd

er

–2 –1 0
Residuals

1 2

To inspect the constancy of variance across towns and check for heteroscedasticity:

plot(model,resid(.,type="p")~fitted(.)|town)

It should be clear that this kind of plot only makes sense for those variables with informative
factor levels such as gender and town; it would make no sense to group together the streets
labelled s1 or s3 or the families labelled f1, f2 or f3.

Tests for normality use the familiar QQ plots, but applied to panels:

qqnorm(model,~resid(.)|gender)

658 THE R BOOK

S
ta

nd
ar

di
ze

d
re

si
du

al
s

2

1

0

–1

–2

0 5 10 15 20
Fitted values

0 5 10 15 20

0

D

A B C

E

5 10 15 20

2

1

0

–1

–2

2

0

Q
ua

nt
ile

s
of

 s
ta

nd
ar

d
no

rm
al

–2

–2 –1 0 1 2
Residuals

female male

–2 –1 0 1 2

MIXED-EFFECTS MODELS 659

2

0

–2

2

0

–2

–2

Q
ua

nt
ile

s
of

 s
ta

nd
ar

d
no

rm
al

–1 0 1 2
Residuals

–2 –1 0 1 2

–2

D E

A B C

–1 0 1 2

2

1

0

–1

–2

Q
ua

nt
ile

s
of

 s
ta

nd
ar

d
no

rm
al

Random effects

(intercept)

–2 –1 0 1

660 THE R BOOK

The residuals are normally distributed for both genders, and within each town:

qqnorm(model,~resid(.)|town)

To assess the normality of the random effects, you need to specify the level of interest. In
this example we have five levels, and you can experiment with the others:

qqnorm(model,~ranef(.,level=3))

By level 5, the random effects are beautifully normal, but at level 1 (towns) the data are too
sparse to be particularly informative. Here at level 3 there is reasonable, but not perfect,
normality of the random effects.

Finally, we plot the response variable plotted against the fitted values:

plot(model,subject~fitted(.))

20
Non-linear Regression

Sometimes we have a mechanistic model for the relationship between y and x, and we want
to estimate the parameters and standard errors of the parameters of a specific non-linear
equation from data. Some frequently used non-linear models are shown in Table 20.1. What
we mean in this case by ‘non-linear’ is not that the relationship is curved (it was curved in
the case of polynomial regressions, but these were linear models), but that the relationship
cannot be linearized by transformation of the response variable or the explanatory variable
(or both). Here is an example: it shows jaw bone length as a function of age in deer. Theory
indicates that the relationship is an asymptotic exponential with three parameters:

y = a − be−cx�

In R, the main difference between linear models and non-linear models is that we have to
tell R the exact nature of the equation as part of the model formula when we use non-linear
modelling. In place of lm we write nls (this stands for ‘non-linear least squares’). Then,
instead of y~x, we write y~a-b*exp(-c*x) to spell out the precise nonlinear model we want
R to fit to the data.

The slightly tedious thing is that R requires us to specify initial guesses for the values
of the parameters a�b and c (note, however, that some common non-linear models have
‘self-starting’ versions in R which bypass this step; see p. 675). Let’s plot the data to work
out sensible starting values. It always helps in cases like this to work out the equation’s
‘behaviour at the limits’ – that is to say, to find the values of y when x = 0 and when x =�
(p. 195). For x = 0, we have exp�−0� which is 1, and 1 × b = b, so y = a − b. For x = �,
we have exp�−�� which is 0, and 0 × b = 0, so y = a. That is to say, the asymptotic value
of y is a, and the intercept is a − b.

deer<-read.table("c:\\temp\\jaws.txt",header=T)
attach(deer)
names(deer)

[1] "age" "bone"

plot(age,bone,pch=16)

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

662 THE R BOOK

Table 20.1. Useful non-linear functions.

Name Equation

Asymptotic functions

Michaelis–Menten y = ax

1 + bx

2-parameter asymptotic exponential y = a�1 − e−bx�

3-parameter asymptotic exponential y = a − be−cx

S-shaped functions

2-parameter logistic y = ea+bx

1 + ea+bx

3-paramerter logistic y = a

1 + be−cx

4-parameter logistic y = a + b − a

1 + e�c−x�/d

Weibull y = a − be−�cxd�

Gompertz y = ae−be−cx

Humped curves
Ricker curve y = axe−bx

First-order compartment y = k exp�− exp�a�x� − exp�− exp�b�x�

Bell-shaped y = a exp�−�bx�2�
Biexponential y = aebx − ce−dx

0

0

10 20

20

30

60

age

bo
ne

40

40

50

80
10

0
12

0
14

0

Inspection suggests that a reasonable estimate of the asymptote is a ≈ 120 and intercept
≈ 10, so b = 120 − 10 = 110. Our guess at the value of c is slightly harder. Where the curve
is rising most steeply, jaw length is about 40 where age is 5. Rearranging the equation gives

NON-LINEAR REGRESSION 663

c = − log��a − y�/b�

x
= − log�120 − 40�/110�

5
= 0�063 690 75�

Now that we have the three parameter estimates, we can provide them to R as the starting
conditions as part of the nls call like this:

model<-nls(bone~a-b*exp(-c*age),start=list(a=120,b=110,c=0.064))
summary(model)

Formula: bone~a - b * exp(-c * age)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 115.2528 2.9139 39.55 < 2e-16 ***
b 118.6875 7.8925 15.04 < 2e-16 ***
c 0.1235 0.0171 7.22 2.44e-09 ***

Residual standard error: 13.21 on 51 degrees of freedom

All the parameters appear to be significantly different from zero at p < 0�001. Beware,
however. This does not necessarily mean that all the parameters need to be retained in the
model. In this case, a = 115�2528 with standard error 2.9139 is clearly not significantly
different from b = 118�6875 with standard error 7.8925 (they would need to differ by more
than 2 standard errors to be significant). So we should try fitting the simpler two-parameter
model

y = a�1 − e−cx��

model2<-nls(bone~a*(1-exp(-c*age)),start=list(a=120,c=0.064))
anova(model,model2)

Analysis of Variance Table

Model 1: bone~a - b * exp(-c * age)
Model 2: bone~a * (1 - exp(-c * age))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)
1 51 8897.3
2 52 8929.1 −1 −31.8 0.1825 0.671

Model simplification was clearly justified �p = 0�671�, so we accept the two-parameter
version, model2, as our minimal adequate model. We finish by plotting the curve through
the scatterplot. The age variable needs to go from 0 to 50 in smooth steps:

av<-seq(0,50,0.1)

and we use predict with model2 to generate the predicted bone lengths:

bv<-predict(model2,list(age=av))
lines(av,bv)

664 THE R BOOK

0

0

10 20

20

30

60

age

bo
ne

40

40

50

80
10

0
12

0
14

0

The parameters of this curve are obtained from model2:

summary(model2)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 115.58056 2.84365 40.645 < 2e-16 ***
c 0.11882 0.01233 9.635 3.69e-13 ***

Residual standard error: 13.1 on 52 degrees of freedom

which we could write as y = 115�58�1 − e−0�1188x� or as y = 115�58�1 − exp�−0�1188x��
according to taste or journal style. If you want to present the standard errors as well
as the parameter estimates, you could write: ‘The model y = a�1 − exp�−bx�� had a =
115�58 ± 2�84 (1 standard error) and b = 0�1188 ± 0�0123 (1 standard error, n = 54) and
explained 84.6% of the total variation in bone length’. Note that because there are only two
parameters in the minimal adequate model, we have called them a and b (rather than a and
c as in the original formulation).

Comparing Michaelis–Menten and Asymptotic Exponential

Model choice is always an important issue in curve fitting. We shall compare the fit of the
asymptotic exponential (above) with a Michaelis–Menten with parameter values estimated
from the same deer jaws data. As to starting values for the parameters, it is clear that a
reasonable estimate for the asymptote would be 100 (this is a/b; see p. 202). The curve
passes close to the point (5, 40) so we can guess a value of a of 40/5 = 8 and hence
b = 8/100 = 0�08. Now use nls to estimate the parameters:

(model3<-nls(bone~a*age/(1+b*age),start=list(a=8,b=0.08)))

Nonlinear regression model
model: bone~a * age/(1 + b * age)

NON-LINEAR REGRESSION 665

data: parent.frame()
a b

18.7253859 0.1359640

residual sum-of-squares: 9854.409

Finally, we can add the line for Michaelis–Menten to the original plot. You could draw the
best-fit line by transcribing the parameter values

ymm<-18.725*av/(1+0.13596*av)
lines(av,ymm,lty=2)

Alternatively, you could use predict with the model name, using list to allocate x values to
age:

ymm<-predict(model3, list(age=av))
lines(av,ymm,lty=2)

0

0

10 20

20

30

60

age

bo
ne

40

40

50

80
10

0
12

0
14

0

You can see that the asymptotic exponential (solid line) tends to get to its asymptote first,
and that the Michaelis–Menten (dotted line) continues to increase. Model choice, therefore
would be enormously important if you intended to use the model for prediction to ages
much greater than 50 months.

Generalized Additive Models

Sometimes we can see that the relationship between yand x is non-linear but we don’t have
any theory or any mechanistic model to suggest a particular functional form (mathematical
equation) to describe the relationship. In such circumstances, generalized additive models
GAMs are particularly useful because they fit non-parametric smoothers to the data without
requiring us to specify any particular mathematical model to describe the non-linearity
(background and more examples are given in Chapter 18).

666 THE R BOOK

humped<-read.table("c:\\temp\\hump.txt",header=T)
attach(humped)
names(humped)

[1] "y" "x"

plot(x,y,pch=16)
library(mgcv)

The model is specified very simply by showing which explanatory variables (in this case
just x) are to be fitted as smoothed functions using the notation y~s(x):

model<-gam(y~s(x))

Now we can use predict in the normal way to fit the curve estimated by gam:

xv<-seq(0.5,1.3,0.01)
yv<-predict(model,list(x=xv))
lines(xv,yv)

4
3

2

y

1

0.6 0.7 0.8 0.9
x

1.0 1.1 1.2

summary(model)

Family: gaussian
Link function: identity

Formula:
y ~ s(x)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.95737 0.03446 56.8 <2e-16 ***

NON-LINEAR REGRESSION 667

Approximate significance of smooth terms:
edf Est.rank F p-value

s(x) 7.452 9 110.0 <2e-16 ***

R-sq.(adj) = 0.919 Deviance explained = 92.6%
GCV score = 0.1156 Scale est. = 0.1045 n = 88

Fitting the curve uses up 7.452 degrees of freedom (i.e. it is quite expensive) but the resulting
fit is excellent and the model explains more than 92% of the deviance in y.

Grouped Data for Non-linear Estimation

Here is a dataframe containing experimental results on reaction rates as a function of
enzyme concentration for five different bacterial strains, with reaction rate measured just
once for each strain at each of ten enzyme concentrations. The idea is to fit a family of five
Michaelis–Menten functions with parameter values depending on the strain.

reaction<-read.table("c:\\temp\\reaction.txt",header=T)
attach(reaction)
names(reaction)

[1] "strain" "enzyme" "rate"

plot(enzyme,rate,pch=as.numeric(strain))

enzyme

ra
te

20
40

60
80

10
0

12
0

0 1 2 3 4 5

Clearly the different strains will require different parameter values, but there is a reasonable
hope that the same functional form will describe the response of the reaction rate of each
strain to enzyme concentration.

library(nlme)

668 THE R BOOK

The function we need is nlsList which fits the same functional form to a group of subjects
(as indicated by the ‘given’ operator �):

model<-nlsList(rate~c+a*enzyme/(1+b*enzyme)|strain,
data=reaction,start=c(a=20,b=0.25,c=10))

Note the use of the groupedData style formula rate~enzyme | strain.

summary(model)

Call:
Model: rate ~ c + a * enzyme/(1 + b * enzyme) | strain
Data: reaction

Coefficients:
a
Estimate Std. Error t value Pr(>|t|)

A 51.79746 4.093791 12.652686 1.943005e-06
B 26.05893 3.063474 8.506335 2.800344e-05
C 51.86774 5.086678 10.196781 7.842353e-05
D 94.46245 5.813975 16.247482 2.973297e-06
E 37.50984 4.840749 7.748767 6.462817e-06

b
Estimate Std. Error t value Pr(>|t|)

A 0.4238572 0.04971637 8.525506 2.728565e-05
B 0.2802433 0.05761532 4.864041 9.173722e-04
C 0.5584898 0.07412453 7.534479 5.150210e-04
D 0.6560539 0.05207361 12.598587 1.634553e-05
E 0.5253479 0.09354863 5.615774 5.412405e-05

c
Estimate Std. Error t value Pr(>|t|)

A 11.46498 1.194155 9.600916 1.244488e-05
B 11.73312 1.120452 10.471780 7.049415e-06
C 10.53219 1.254928 8.392663 2.671651e-04
D 10.40964 1.294447 8.041768 2.909373e-04
E 10.30139 1.240664 8.303123 4.059887e-06

Residual standard error: 1.81625 on 35 degrees of freedom

There is substantial variation from strain to strain in the values of a and b, but we
should test whether a model with a common intercept of, say, 11.0 might not fit equally
well.

The plotting is made much easier if we convert the dataframe to a grouped data
object:

reaction<-groupedData(rate~enzyme|strain,data=reaction)
library(lattice)
plot(reaction)

NON-LINEAR REGRESSION 669

5432

DA

E B C

10

enzyme
543210543210

120

100

80

60

40

20

ra
te

120

100

80

60

40

20

This plot has just joined the dots, but we want to fit the separate non-linear regressions. To
do this we fit a non-linear mixed-effects model with nlme, rather than use nlsList:

model<-nlme(rate~c+a*enzyme/(1+b*enzyme),fixed=a+b+c~1,
random=a+b+c~1|strain,data=reaction,start=c(a=20,b=0.25,c=10))

Now we can employ the very powerful augPred function to fit the curves to each panel:

plot(augPred(model))

Here is the summary of the non-linear mixed model:

summary(model)

Nonlinear mixed-effects model fit by maximum likelihood
Model: rate ~ c + a * enzyme/(1 + b * enzyme)
Data: reaction

AIC BIC logLik
253.4805 272.6007 −116.7403
Random effects:
Formula: list(a ~ 1, b ~ 1, c ~ 1)
Level: strain
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
a 22.9151522 a b
b 0.1132367 0.876
c 0.4230049 -0.537 -0.875
Residual 1.7105945

670 THE R BOOK

DA

E B C

543210

enzyme
543210543210

120

100

80

60

40

20

ra
te

120

100

80

60

40

20

Fixed effects: a + b + c ~ 1

Value Std.Error DF t-value p-value
a 51.59880 10.741364 43 4.803747 0
b 0.47665 0.058786 43 8.108295 0
c 10.98537 0.556452 43 19.741797 0

Correlation:

a b
b 0.843
c -0.314 -0.543

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.79186411 -0.65635614 0.05687126 0.74269371 2.02721778

Number of Observations: 50
Number of Groups: 5

The fixed effects in this model are the means of the parameter values. To see the separate
parameter estimates for each strain use coef:

NON-LINEAR REGRESSION 671

coef(model)
a b c

E 34.09051 0.4533456 10.81722
B 28.01273 0.3238688 11.54813
C 49.63892 0.5193772 10.67189
A 53.20468 0.4426243 11.23613
D 93.04715 0.6440384 10.65348

Note that the rows of this table are no longer in alphabetical order but sequenced in the
way they appeared in the panel plot (i.e. ranked by their asymptotic values). The parameter
estimates are close to, but not equal to, the values estimated by nlsList (above) as a result
of ‘shrinkage’ in the restricted maximum likelihood estimates (see p. 631).

Non-linear Time Series Models (Temporal Pseudoreplication)

The previous example was a designed experiment in which there was no pseudoreplication.
However, we often want to fit non-linear models to growth curves where there is temporal
pseudoreplication across a set of subjects, each providing repeated measures on the response
variable. In such a case we shall want to model the temporal autocorrelation.

nl.ts<-read.table("c:\\temp\\nonlinear.txt",header=T)
attach(nl.ts)
names(nl.ts)

[1] "time" "dish" "isolate" "diam"

growth<-groupedData(diam~time|dish,data=nl.ts)

Here, we model the temporal autocorrelation as first-order autoregessive, corAR1():

model<-nlme(diam~a+b*time/(1+c*time),
fixed=a+b+c~1,
random=a+b+c~1,
data=growth,
correlation=corAR1(),
start=c(a=0.5,b=5,c=0.5))

summary(model)

Nonlinear mixed-effects model fit by maximum likelihood
Model: diam ~ a + b * time/(1 + c * time)
Data: growth

AIC BIC logLik
129.7694 158.3157 −53�88469

Random effects:
Formula: list(a ~ 1, b ~ 1, c ~ 1)
Level: dish
Structure: General positive-definite, Log-Cholesky parametrization

672 THE R BOOK

StdDev Corr
a 0.1014474 a b
b 1.2060379 -0.557
c 0.1095790 -0.958 0.772
Residual 0.3150068

Correlation Structure: AR(1)
Formula: ~1 | dish
Parameter estimate(s):

Phi
-0.03344944
Fixed effects: a + b + c ~ 1

Value Std.Error DF t-value p-value
a 1.288262 0.1086390 88 11.85819 0
b 5.215251 0.4741954 88 10.99810 0
c 0.498222 0.0450644 88 11.05578 0

Correlation:
a b

b -0.506
c -0.542 0.823

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.74222882 -0.64713657 -0.03349834 0.70298805 2.24686653

Number of Observations: 99
Number of Groups: 9

coef(model)

a b c
5 1.288831 3.348752 0.4393772
4 1.235632 5.075219 0.5373948
1 1.252725 5.009538 0.5212435
3 1.285847 4.843221 0.4885947
9 1.111135 7.171305 0.7061053
7 1.272570 5.361570 0.5158167
6 1.435784 4.055242 0.3397510
2 1.348523 5.440494 0.4553723
8 1.363310 6.631920 0.4803384

It could not be simpler to plot the family of non-linear models in a panel of scatterplots.
We just use augPred like this:

plot(augPred(model))

To get all the curves in a single panel we could use predict instead of augPred:

xv<-seq(0,10,0.1)
plot(time,diam,pch=16,col=as.numeric(dish))
sapply(1:9,function(i) lines(xv,predict(model,list(dish=i,time=xv)),lty=2))

NON-LINEAR REGRESSION 673

12

10

8

6

4

2

12

10

8

6

4

2

12

10

8

6

4

2

0

time

5 4

3 9

1

7

6 2

2 4 6 8 100 2 4 6 8 10

0 2 4 6 8 10
di

am

8

time

di
am

2
4

6
8

10
12

0 2 4 6 8 10

674 THE R BOOK

Self-starting Functions

One of the most likely things to go wrong in non-linear least squares is that the model fails
because your initial guesses for the starting parameter values were too far off. The simplest
solution is to use one of R’s ‘self-starting’ models, which work out the starting values for
you automatically. These are the most frequently used self-starting functions:

SSasymp asymptotic regression model

SSasympOff asymptotic regression model with an offset

SSasympOrig asymptotic regression model through the origin

SSbiexp biexponential model

SSfol first-order compartment model

SSfpl four-parameter logistic model

SSgompertz Gompertz growth model

SSlogis logistic model

SSmicmen Michaelis–Menten model

SSweibull Weibull growth curve model

Self-starting Michaelis–Menten model

In our next example, reaction rate is a function of enzyme concentration; reaction rate
increases quickly with concentration at first but asymptotes once the reaction rate is no
longer enzyme-limited. R has a self-starting version called SSmicmen parameterized as

y = ax

b + x
�

where the two parameters are a (the asymptotic value of y) and b (which is the x value at
which half of the maximum response, a/2, is attained). In the field of enzyme kinetics a
is called the Michaelis parameter (see p. 202; in R help the two parameters are called Vm
and K respectively).

Here is SSmicmen in action:

data<-read.table("c:\\temp\\mm.txt",header=T)
attach(data)
names(data)

[1] "conc" "rate"

plot(rate~conc,pch=16)

To fit the non-linear model, just put the name of the response variable (rate) on the left of
the tilde ~ then put SSmicmen(conc,a,b)) on the right of the tilde, with the name of your
explanatory variable first in the list of arguments (conc in this case), then your names for
the two parameters (a and b, above):

model<-nls(rate~SSmicmen(conc,a,b))
summary(model)

NON-LINEAR REGRESSION 675

Formula: rate ~ SSmicmen(conc, a, b)
Parameters:

Estimate Std. Error t value Pr(>|t|)
a 2.127e+02 6.947e+00 30.615 3.24e-11 ***
b 6.412e-02 8.281e-03 7.743 1.57e-05 ***

So the equation looks like this:

rate = 212�7 × conc
0�064 12 + conc

and we can plot it like this:

xv<-seq(0,1.2,.01)
yv<-predict(model,list(conc=xv))
lines(xv,yv)

conc

ra
te

50
10

0
15

0
20

0

0.0 0.2 0.4 0.6 0.8 1.0

Self-starting asymptotic exponential model

In Chapter 7 we wrote the three-paramter asymptotic exponential like this:

y = a − be−cx�

In R’s self-starting version SSasymp, the parameters are:

• a is the horizontal asymptote on the right-hand side (called Asym in R help);

• b = a − R0 where R0 is the intercept (the response when x is zero);

• c is the rate constant (the log of lrc in R help).

676 THE R BOOK

Here is SSasymp applied to the jaws data (p. 151):

deer<-read.table("c:\\temp\\jaws.txt",header=T)
attach(deer)
names(deer)

[1] "age" "bone"

model<-nls(bone~SSasymp(age,a,b,c))
plot(age,bone,pch=16)
xv<-seq(0,50,0.2)
yv<-predict(model,list(age=xv))
lines(xv,yv)
summary(model)

Formula: bone~SSasymp(age, a, b, c)

Parameters:

Estimate Std. Error t value Pr(>|t|)
a 115.2527 2.9139 39.553 <2e-16 ***
b -3.4348 8.1961 -0.419 0.677
c -2.0915 0.1385 -15.101 <2e-16 ***

Residual standard error: 13.21 on 51 degrees of freedom

The plot of this fit is on p. 664 along with the simplified model without the non-significant
parameter b.

Alternatively, one can use the two-parameter form that passes through the origin,
SSasympOrig, which fits the function y =a�1 − exp�−bx��. The final form of the asymp-
totic exponential allows one to specify the function with an offset, d, on the x values, using
SSasympOff, which fits the function y = a − b exp�−c�x − d��.

Profile likelihood

The profile function is a generic function for profiling models, by investigating the behaviour
of the objective function near the solution represented by the model’s fitted values. In the
case of nls, it investigates the profile log-likelihood function:

par(mfrow=c(2,2))
plot(profile(model))

The profile t-statistic (tau) is defined as the square root of change in sum-of-squares divided
by residual standard error with an appropriate sign.

Self-starting logistic

This is one of the most commonly used three-parameter growth models, producing a classic
S-shaped curve:

sslogistic<-read.table("c:\\temp\\sslogistic.txt",header=T)
attach(sslogistic)
names(sslogistic)

[1] "density" "concentration"

plot(density~log(concentration),pch=16)

NON-LINEAR REGRESSION 677

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

a
110 115 120 125

b
–20 –10 0 10 20

c
–2.4 –2.2 –2.0 –1.8

hd hd

hd

log(concentration)

de
ns

ity

0.
0

0.
5

1.
0

1.
5

–3 –2 –1 0 1 2

678 THE R BOOK

We estimate the three parameters �a� b� c� using the self-starting function SSlogis:

model<-nls(density ~ SSlogis(log(concentration), a, b, c))

Now draw the fitted line using predict (note the antilog of xv in list):

xv<-seq(-3,3,0.1)
yv<-predict(model,list(concentration=exp(xv)))
lines(xv,yv)

The fit is excellent, and the parameter values and their standard errors are given by:

summary(model)

Parameters:

Estimate Std. Error t value Pr(>|t|)
a 2.34518 0.07815 30.01 2.17e-13 ***
b 1.48309 0.08135 18.23 1.22e-10 ***
c 1.04146 0.03227 32.27 8.51e-14 ***

Here a is the asymptotic value, b is the mid-value of x when y is a/2, and c is the scale.

Self-starting four-parameter logistic

This model allows a lower asymptote (the fourth parameter) as well as an upper:

data<-read.table("c:\\temp\\chicks.txt",header=T)
attach(data)
names(data)

[1] "weight" "Time"

model <- nls(weight~SSfpl(Time, a, b, c, d))
xv<-seq(0,22,.2)
yv<-predict(model,list(Time=xv))
plot(weight~Time,pch=16)
lines(xv,yv)

summary(model)
Formula: weight~SSfpl(Time, a, b, c, d)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 27.453 6.601 4.159 0.003169 **
b 348.971 57.899 6.027 0.000314 ***
c 19.391 2.194 8.836 2.12e-05 ***
d 6.673 1.002 6.662 0.000159 ***

Residual standard error: 2.351 on 8 degrees of freedom

The four-parameter logistic is given by

y = A + B − A

1 + e�D−x�/C
�

NON-LINEAR REGRESSION 679

Time

w
ei

gh
t

0 5 10 15 20

50
10

0
15

0
20

0

This is the same formula as we used in Chapter 7, but note that C above is 1/c on p. 203. A
is the horizontal asymptote on the left (for low values of x), B is the horizontal asymptote
on the right (for large values of x), D is the value of x at the point of inflection of the
curve (represented by xmid in our model for the chicks data), and C is a numeric scale
parameter on the x axis (represented by scal). The parameterized model would be written
like this:

y = 27�453 + 348�971 − 27�453
1 + exp��19�391 − x�/6�673�

�

Self-starting Weibull growth function

R’s parameterization of the Weibull growth function is

Asym-Drop*exp(-exp(lrc)*x^pwr)

where Asym is the horizontal asymptote on the right, Drop is the difference between the
asymptote and the intercept (the value of y at x = 0), lrc is the natural logarithm of the rate
constant, and pwr is the power to which x is raised.

weights<-read.table("c:\\temp\\weibull.growth.txt",header=T)
attach(weights)
model <- nls(weight ~ SSweibull(time, Asym, Drop, lrc, pwr))
summary(model)

Formula: weight ~ SSweibull(time, Asym, Drop, lrc, pwr)

680 THE R BOOK

Parameters:

Estimate Std. Error t value Pr(>|t|)
Asym 158.5012 1.1769 134.67 3.28e-13 ***
Drop 110.9971 2.6330 42.16 1.10e-09 ***
lrc -5.9934 0.3733 -16.06 8.83e-07 ***
pwr 2.6461 0.1613 16.41 7.62e-07 ***

Residual standard error: 2.061 on 7 degrees of freedom

plot(time,weight,pch=16)
xt<-seq(2,22,0.1)
yw<-predict(model,list(time=xt))
lines(xt,yw)

w
ei

gh
t

60
80

10
0

12
0

14
0

16
0

time
5 10 15 20

The fit is good, but the model cannot accommodate a drop in y values once the asymptote
has been reached (you would need some kind of humped function).

Self-starting first-order compartment function

In the following, the response, drug concentration in the blood, is modelled as a function of
time after the dose was administered. There are three parameters �a� b� c� to be estimated:

foldat<-read.table("c:\\temp\\fol.txt",header=T)
attach(foldat)

The model looks like this:

y = k exp�− exp�a�x� − exp�− exp�b�x��

where k=Dose × exp�a + b − c�/�exp�b�- exp�a�� and Dose is a vector of identical values
provided to the fit (4.02 in this example):

NON-LINEAR REGRESSION 681

model<-nls(conc~SSfol(Dose,Time,a,b,c))
summary(model)

Formula: conc ~ SSfol(Dose, Time, a, b, c)

Parameters:
Estimate Std. Error t value Pr(>| t|)

a -2.9196 0.1709 -17.085 1.40e-07 ***
b 0.5752 0.1728 3.328 0.0104 *
c -3.9159 0.1273 -30.768 1.35e-09 ***

plot(conc~Time,pch=16)
xv<-seq(0,25,0.1)
yv<-predict(model,list(Time=xv))
lines(xv,yv)

Time

co
nc

0 5 10 15 20 25

2
4

10
6

8

As you can see, this is a rather poor model for predicting the value of the peak concentration,
but a reasonable description of the ascending and declining sections.

Bootstrapping a Family of Non-linear Regressions

There are two broad applications of bootstrapping to the estimation of parameters in non-
linear models:

• Select certain of the data points at random with replacement, so that, for any given model
fit, some data points are duplicated and others are left out.

• Fit the model and estimate the residuals, then allocate the residuals at random, adding
them to different fitted values in different simulations

682 THE R BOOK

Our next example involves the viscosity data from the MASS library, where sinking time
is measured for three different weights in fluids of nine different viscosities:

Time = b × Viscosity
Wt − c

�

We need to estimate the two parameters b and c and their standard errors.

library(MASS)
data(stormer)
attach(stormer)

Here are the results of the straightforward non-linear regression:

model<-nls(Time~b*Viscosity/(Wt-c),start=list(b=29,c=2))
summary(model)

Formula: Time ~ b * Viscosity/(Wt - c)

Parameters:

Estimate Std. Error t value Pr(>| t|)
b 29.4013 0.9155 32.114 < 2e-16 ***
c 2.2182 0.6655 3.333 0.00316 **

Residual standard error: 6.268 on 21 degrees of freedom

Here is a home-made bootstrap which leaves out cases at random. The idea is to sample the
indices (subscripts) of the 23 cases at random with replacement:

sample(1:23,replace=T)
[1] 4 4 10 10 12 3 23 22 21 13 9 14 8 5 15 14 21 14 12 3 20 14 19

In this realization cases 1 and 2 were left out, case 3 appeared twice, and so on. We call
the subscripts ss as follows, and use the subscripts to select values for the response �y1� and
the two explanatory variables (x1 and x2) like this:

ss<-sample(1:23,replace=T)
y<-Time[ss]
x1<-Viscosity[ss]
x2<-Wt[ss]

Now we put this in a loop and fit the model

model<-nls(y~b*x1/(x2-c),start=list(b=29,c=2))

one thousand times, storing the coefficients in vectors called bv and cv:

bv<-numeric(1000)
cv<-numeric(1000)
for(i in 1:1000){
ss<-sample(1:23,replace=T)
y<-Time[ss]
x1<-Viscosity[ss]
x2<-Wt[ss]
model<-nls(y~b*x1/(x2-c),start=list(b=29,c=2))
bv[i]<-coef(model)[1]

NON-LINEAR REGRESSION 683

cv[i]<-coef(model)[2]
}

This took 7 seconds for 1000 iterations. The 95% confidence intervals for the two parameters
are obtained using the quantile function:

quantile(bv,c(0.025,0.975))

2.5% 97.5%
27.91842 30.74411

quantile(cv,c(0.025,0.975))

2.5% 97.5%
0.9084572 3.7694501

Alternatively, you can randomize the locations of the residuals while keeping all the
cases in the model for every simulation. We use the built-in functions in the boot library
to illustrate this procedure.

library(boot)

First, we need to calculate the residuals and the fitted values from the nls model we fitted
on p. 682:

rs<-resid(model)
fit<-fitted(model)

and make the fit along with the two explanatory variables Viscosity and Wt into a new
dataframe called storm that will be used inside the ‘statistic’ function

storm<-data.frame(fit,Viscosity,Wt)

Next, you need to write a statistic function (p. 320) to describe the model fitting:

statistic<-function(rs,i){
storm$y<-storm$fit+rs[i]
coef(nls(y~b*Viscosity/(Wt-c),storm,start=coef(model)))}

The two arguments to statistic are the vector of residuals, rs, and the randomized indices,
i. Now we can run the boot function over 1000 iterations:

boot.model<-boot(rs,statistic,R=1000)
boot.model

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = rs, statistic = statistic, R = 1000)

Bootstrap Statistics :

original bias std. error
t1* 29.401294 0.6915554 0.8573951
t2* 2.218247 −0.2552968 0.6200594

The parametric estimates for b (t1) and c (t2) in boot.model are reasonably unbiased,
and the bootstrap standard errors are slightly smaller than when we used nls. We get the boot-
strapped confidence intervals with the boot.ci function: b is index = 1 and c is index = 2:

684 THE R BOOK

boot.ci(boot.model,index=1)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = storm.boot)

Intervals :

Level Normal Basic Studentized
95% (26.33, 29.65) (26.43, 29.78) (25.31, 29.63)

Level Percentile BCa
95% (27.65, 31.00) (26.92, 29.60)

boot.ci(boot.model,index=2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = boot.model, index = 2)

Intervals :

Level Normal Basic
95% (1.258, 3.689) (1.278, 3.637)

Level Percentile BCa
95% (0.800, 3.159) (1.242, 3.534)

For comparison, here are the parametric confidence intervals (from model): for b, from
28.4858 to 30.3168; and for c, from 0.8872 to 3.5492.

Viscosity

T
im

e

50
10

0
15

0
20

0
25

0

50 100 150 200 250 300

21
Tree Models

Tree models are computationally intensive methods that are used in situations where there
are many explanatory variables and we would like guidance about which of them to include
in the model. Often there are so many explanatory variables that we simply could not test
them all, even if we wanted to invest the huge amount of time that would be necessary
to complete such a complicated multiple regression exercise. Tree models are particularly
good at tasks that might in the past have been regarded as the realm of multivariate statistics
(e.g. classification problems). The great virtues of tree models are as follows:

• They are very simple.

• They are excellent for initial data inspection.

• They give a very clear picture of the structure of the data.

• They provide a highly intuitive insight into the kinds of interactions between variables.

It is best to begin by looking at a tree model in action, before thinking about how it
works. Here is the air pollution example that we have worked on already as a multiple
regression (see p. 311):

install.packages("tree")
library(tree)
Pollute<-read.table("c:\\temp\\Pollute.txt",header=T)
attach(Pollute)
names(Pollute)

[1] "Pollution" "Temp" "Industry" "Population" "Wind"
[6] "Rain" "Wet.days"

model<-tree(Pollute)
plot(model)
text(model)

You follow a path from the top of the tree (called, in defiance of gravity, the root) and
proceed to one of the terminal nodes (called a leaf) by following a succession of rules
(called splits). The numbers at the tips of the leaves are the mean values in that subset of
the data (mean SO2 concentration in this case). The details are explained below.

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

686 THE R BOOK

Industry <748

67.00

33.88 23.00
15.00

12.00

43.43

Population <190

Wet.days <108

Temp <59.35

Wind <9.65

Background

The model is fitted using binary recursive partitioning, whereby the data are successively
split along coordinate axes of the explanatory variables so that, at any node, the split which
maximally distinguishes the response variable in the left and the right branches is selected.
Splitting continues until nodes are pure or the data are too sparse (fewer than six cases, by
default).

Each explanatory variable is assessed in turn, and the variable explaining the greatest
amount of the deviance in y is selected. Deviance is calculated on the basis of a threshold
in the explanatory variable; this threshold produces two mean values for the response (one
mean above the threshold, the other below the threshold).

low<-(Industry<748)
tapply(Pollution,low,mean)

FALSE TRUE
67.00000 24.91667

plot(Industry,Pollution,pch=16)
abline(v=748,lty=2)
lines(c(0,748),c(24.92,24.92))
lines(c(748,max(Industry)),c(67,67))

The procedure works like this. For a given explanatory variable (say Industry, above):

• Select a threshold value of the explanatory variable (the vertical dotted line at Industry =
748).

• Calculate the mean value of the response variable above and below this threshold (the
two horizontal solid lines).

TREE MODELS 687

P
ol

lu
tio

n

10
0

80
60

40
20

Industry

0 500 1000 1500 2000 2500 3000

• Use the two means to calculate the deviance (as with SSE, see p. 451).

• Go through all possible values of the threshold (values on the x axis).

• Look to see which value of the threshold gives the lowest deviance.

• Split the data into high and low subsets on the basis of the threshold for this variable.

• Repeat the whole procedure on each subset of the data on either side of the threshold.

• Keep going until no further reduction in deviance is obtained, or there are too few data
points to merit further subdivision (e.g. the right-hand side of the Industry split, above,
is too sparse to allow further subdivision).

The deviance is defined as

D = ∑
casesj

�yj − ��j��
2�

where ��j� is the mean of all the values of the response variable assigned to node j and
this sum of squares is add up over all the nodes. The value of any split is defined as the
reduction in this residual sum of squares. The probability model used in R is that the values
of the response variable are normally distributed within each leaf of the tree with mean
�i and variance �2. Note that because this assumption applies to the terminal nodes, the
interior nodes represent a mixture of different normal distributions, so the deviance is only
appropriate at the terminal nodes (i.e. for the leaves).

688 THE R BOOK

If the twigs of the tree are categorical (i.e. levels of a factor like names of particular
species) then we have a classification tree. On the other hand, if the terminal nodes of the
tree are predicted values of a continuous variable, then we have a regression tree.

The key questions are these:

• Which variables to use for the division.

• How best to achieve the splits for each selected variable.

It is important to understand that tree models have a tendency to over-interpret the data:
for instance, the occasional ‘ups’ in a generally negative correlation probably don’t mean
anything substantial.

Regression Trees

In this case the response variable is a continuous measurement, but the explanatory variables
can be any mix of continuous and categorical variables. You can think of regression trees
as analogous to multiple regression models. The difference is that a regression tree works
by forward selection of variables, whereas we have been used to carrying out regression
analysis by deletion (backward selection).

For our air pollution example, the regression tree is fitted by stating that the continuous
response variable Pollution is to be estimated as a function of all of the explanatory variables
in the dataframe called Pollute by use of the ‘tilde dot’ notation like this:

model<-tree(Pollution ~ . , Pollute)

For a regression tree, the print method produces the following kind of output:

print(model)

node), split, n, deviance, yval
* denotes terminal node

1) root 41 22040 30.05
2) Industry < 748 36 11260 24.92
4) Population < 190 7 4096 43.43 *
5) Population > 190 29 4187 20.45
10) Wet.days < 108 11 96 12.00 *
11) Wet.days > 108 18 2826 25.61
22) Temp < 59.35 13 1895 29.69
44) Wind < 9.65 8 1213 33.88 *
45) Wind > 9.65 5 318 23.00 *

23) Temp > 59.35 5 152 15.00 *
3) Industry > 748 5 3002 67.00 *

The terminal nodes (the leaves) are denoted by * (there are six of them). The node number
is on the left, labelled by the variable on which the split at that node was made. Next
comes the ‘split criterion’ which shows the threshold value of the variable that was used
to create the split. The number of cases going into the split (or into the terminal node)
comes next. The penultimate figure is the deviance at that node. Notice how the deviance

TREE MODELS 689

goes down as non-terminal nodes are split. In the root, based on all n = 41 data points, the
deviance is SSY (see p. 311) and the y value is the overall mean for Pollution. The last
figure on the right is the mean value of the response variable within that node or at that
that leaf. The highest mean pollution (67.00) was in node 3 and the lowest (12.00) was in
node 10.

Note how the nodes are nested: within node 2, for example, node 4 is terminal but node
5 is not; within node 5 node 10 is terminal but node 11 is not; within node 11, node 23 is
terminal but node 22 is not, and so on.

Tree models lend themselves to circumspect and critical analysis of complex dataframes.
In the present example, the aim is to understand the causes of variation in air pollution
levels from case to case. The interpretation of the regression tree would proceed something
like this:

• The five most extreme cases of Industry stand out �mean = 67	00� and need to be
considered separately.

• For the rest, Population is the most important variable but, interestingly, it is low
populations that are associated with the highest levels of pollution �mean = 43	43�. Ask
yourself which might be cause, and which might be effect.

• For high levels of population �> 190�, the number of wet days is a key determinant of
pollution; the places with the fewest wet days (less than 108 per year) have the lowest
pollution levels of anywhere in the dataframe �mean = 12	00�.

• For those places with more than 108 wet days, it is temperature that is most important in
explaining variation in pollution levels; the warmest places have the lowest air pollution
levels �mean = 15	00�.

• For the cooler places with lots of wet days, it is wind speed that matters: the windier
places are less polluted than the still places.

This kind of complex and contingent explanation is much easier to see, and to understand,
in tree models than in the output of a multiple regression.

Tree models as regressions

To see how a tree model works when there is a single, continuous response variable, it is
useful to compare the output with a simple linear regression. Take the relationship between
mileage and weight in the car.test.frame data:

car.test.frame<-read.table("c:\\temp\\car.test.frame.txt",header=T)
attach(car.test.frame)
names(car.test.frame)

[1] "Price" "Country" "Reliability" "Mileage"
[5] "Type" "Weight" "Disp." "HP"

plot(Weight,Mileage)

The heavier cars do fewer miles per gallon, but there is a lot of scatter. The tree model
starts by finding the weight that splits the mileage data in a way that explains the maximum
deviance. This weight turns out to be 2567.5.

690 THE R BOOK

a<-mean(Mileage[Weight<2567.5])
b<-mean(Mileage[Weight>=2567.5])
lines(c(1500,2567.5,2567.5,4000),c(a,a,b,b))

35
30

25
20

M
ile

ag
e

2000 2500 3000

Weight

3500

The next thing the tree model does is to work out the threshold weight that would best
split the mileage data for the lighter cars: this turns out to be 2280. It then works out the
threshold split for the heavier cars: this turns out to be 3087.5. And so the process goes on,
until there are too few cars in each split to justify continuation (five or fewer by default).
To see the full regression tree as a function plot we can use the predict function with the
regression tree object car.model like this:

car.model<-tree(Mileage~Weight)
plot(Weight,Mileage)
wt<-seq(1500,4000,10)
y<-predict(car.model,list(Weight=wt))
lines(wt,y)

You would not normally do this, of course (and you could not do it with more than two
explanatory variables) but it is a good way of showing how tree models work with a
continuous response variable.

Model simplification

Model simplification in regression trees is based on a cost–complexity measure. This
reflects the trade-off between fit and explanatory power (a model with a perfect fit would
have as many parameters as there were data points, and would consequently have no
explanatory power at all. We return to the air pollution example, analysed earlier where we
fitted the tree model object called ‘model’.

TREE MODELS 691

M
ile

ag
e

35
30

25
20

Weight

2000 2500 3000 3500

Regression trees can be over-elaborate and can respond to random features of the data (the
so-called training set). To deal with this, R contains a set of procedures to prune trees
on the basis of the cost–complexity measure. The function prune.tree determines a nested
sequence of sub-trees of the supplied tree by recursively ‘snipping’ off the least important
splits, based upon the cost–complexity measure. The prune.tree function returns an object
of class tree.sequence, which contains the following components:

prune.tree(model)

$size:

[1] 6 5 4 3 2 1

This shows the number of terminal nodes in each tree in the cost–complexity pruning
sequence: the most complex model had six terminal nodes (see above)

$dev:

[1] 8876.589 9240.484 10019.992 11284.887 14262.750 22037.902

This is the total deviance of each tree in the cost–complexity pruning sequence.

$k:

[1] -Inf 363.8942 779.5085 1264.8946 2977.8633 7775.1524

This is the value of the cost–complexity pruning parameter of each tree in the sequence. If
determined algorithmically (as here, k is not specified as an input), its first value defaults
to −�, its lowest possible bound.

plot(prune.tree(model))

692 THE R BOOK

1

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0

7800 3000 1300 780 360 -Inf

2 3 4 5 6

size

de
vi

an
ce

This shows the way that deviance declines as complexity is increased. The total deviance
is 22 037.902 �size = 1�, and this is reduced to as the complexity of the tree increases
up to 6 nodes. An alternative is to specify the number of nodes to which you want the
tree to be pruned; this uses the "best =" option. Suppose we want the best tree with four
nodes.

model2<-prune.tree(model,best=4)
plot(model2)
text(model2)

In printed form, this is

model2

node), split, n, deviance, yval
* denotes terminal node

1) root 41 22040 30.05
2) Industry<748 36 11260 24.92
4) Population<190 7 4096 43.43 *
5) Population>190 29 4187 20.45
10) Wet.days<108 11 96 12.00 *
11) Wet.days>108 18 2826 25.61 *

3) Industry>748 5 3002 67.00 *

TREE MODELS 693

Industry <748

43.43

12.00 25.61

67.00

Population <190

Wet.days <108

Subtrees and subscripts

It is straightforward to remove parts of trees, or to select parts of trees, using subscripts.
For example, a negative subscript �−3� leaves off everything above node 3, while a positive
subscript [3] selects only that part of the tree above node 3.

Classification trees with categorical explanatory variables

Tree models are a superb tool for helping to write efficient and effective taxonomic keys.
Suppose that all of our explanatory variables are categorical, and that we want to use tree

models to write a dichotomous key. There is only one entry for each species, so we want
the twigs of the tree to be the individual rows of the dataframe (i.e. we want to fit a tree
perfectly to the data). To do this we need to specify two extra arguments: minsize = 2
and mindev = 0. In practice, it is better to specify a very small value for the minimum
deviance (say, 10−6) rather than zero (see below).

The following example relates to the nine lowland British species in the genus Epilobium
(Onagraceae). We have eight categorical explanatory variables and we want to find the
optimal dichotomous key. The dataframe looks like this:

epilobium<-read.table("c:\\temp\\epilobium.txt",header=T)
attach(epilobium)
epilobium

species stigma stem.hairs glandular.hairs seeds pappilose
1 hirsutum lobed spreading absent none uniform
2 parviflorum lobed spreading absent none uniform
3 montanum lobed spreading present none uniform
4 lanceolatum lobed spreading present none uniform
5 tetragonum clavate appressed present none uniform

694 THE R BOOK

6 obscurum clavate appressed present none uniform
7 roseum clavate spreading present none uniform
8 palustre clavate spreading present appendage uniform
9 ciliatum clavate spreading present appendage ridged

stolons petals base
1 absent >9mm rounded
2 absent <10mm rounded
3 absent <10mm rounded
4 absent <10mm cuneate
5 absent <10mm rounded
6 stolons <10mm rounded
7 absent <10mm cuneate
8 absent <10mm rounded
9 absent <10mm rounded

Producing the key could not be easier:

model<-tree(species ~ .,epilobium,mindev=1e-6,minsize=2)
plot(model)
text(model)

stigma:a

seeds:astolons:a

tetragonum obscurum

ciliatum palustre

roseum

parviflorum hirsutum lanceolatum montanum

petals:a base:a

glandular.hairs:astem.hairs:a

pappilose:a

The window in which the above tree appears has been stretched to make it easier to read.
Here is the tree written as a dichotomous key:

1. Stigma entire and club-shaped 2
1. Stigma four lobed 6

2. Stem hairs all appressed 3
2. At least some stem hairs spreading 4

TREE MODELS 695

3. Glandular hairs present on hypanthium E. obscurum
3. No glandular hairs on hypanthium E. tetragonum

4. Seeds with a terminal appendage 5
4. Seeds without terminal appendage E. roseum

5. Surface of seed with longitudinal papillose ridges E. ciliatum
5. Surface of seed uniformly papillose E. palustre

6. At least some spreading hairs non-glandular 7
6. Spreading hairs all glandular 8

7. Petals large (>9 mm) E. hirsutum
7. Petals small (<10 mm) E. parviflorum

8. Leaf base cuneate E. lanceolatum
8. Leaf base rounded E. montanum

The computer has produced a working key to a difficult group of plants. The result stands
as testimony to the power and usefulness of tree models. The same principle underlies good
key-writing as is used in tree models: find the characters that explain most of the variation,
and use these to split the cases into roughly equal-sized groups at each dichotomy.

Classification trees for replicated data

In this next example from plant taxonomy, the response variable is a four-level, categorical
variable called Taxon (it is a label expressed as Roman numerals I to IV). The aim is to
use the measurements from the seven morphological explanatory variables to construct the
best key to separate these four taxa (the ‘best’ key is the one with the lowest error rate –
the key that misclassifies the smallest possible number of cases).

taxonomy<-read.table("c:\\temp\\taxonomy.txt",header=T)
attach(taxonomy)
names(taxonomy)

[1] "Taxon" "Petals" "Internode" "Sepal" "Bract" "Petiole"
[7] "Leaf" "Fruit"

Using the tree model for classification could not be simpler:

model1<-tree(Taxon~.,taxonomy)

We begin by looking at the plot of the tree:

plot(model1)
text(model1)

With only a small degree of rounding on the suggested break points, the tree model
suggests a simple (and for these 120 plants, completely error-free) key for distinguishing
the four taxa:

696 THE R BOOK

Sepal <3.53232

Petiole < 9.91246

III

IV

III

Leaf <2.00426

1. Sepal length > 4.0 Taxon IV
1. Sepal length <=4.0 2.

2. Leaf width > 2.0 Taxon III
2. Leaf width <=2.0 3.

3. Petiole length < 10 Taxon II
3. Petiole length >=10 Taxon I

The summary option for classification trees produces the following:

summary(model1)

Classification tree:
tree(formula = Taxon ∼ ., data = taxonomy)
Variables actually used in tree construction:
[1] "Sepal" "Leaf" "Petiole"
Number of terminal nodes: 4
Residual mean deviance: 0 = 0 / 116
Misclassification error rate: 0 = 0 / 120

Three of the seven variables were chosen for use (Sepal, Leaf and Petiole); four variables
were assessed and rejected (Petals, Internode, Bract and Fruit). The key has four nodes and
hence three dichotomies. As you see, the misclassification error rate was an impressive 0 out
of 120. It is noteworthy that this classification tree does much better than the multivariate
classification methods described in Chapter 23.

For classification trees, the print method produces a great deal of information

print(model1)

node), split, n, deviance, yval, (yprob)
* denotes terminal node

TREE MODELS 697

1) root 120 332.70 I (0.2500 0.2500 0.2500 0.25)
2) Sepal<3.53232 90 197.80 I (0.3333 0.3333 0.3333 0.00)
4) Leaf<2.00426 60 83.18 I (0.5000 0.5000 0.0000 0.00)
8) Petiole<9.91246 30 0.00 II (0.0000 1.0000 0.0000 0.00) *
9) Petiole>9.91246 30 0.00 I (1.0000 0.0000 0.0000 0.00) *

5) Leaf>2.00426 30 0.00 III (0.0000 0.0000 1.0000 0.00) *
3) Sepal>3.53232 30 0.00 IV (0.0000 0.0000 0.0000 1.00) *

The node number is followed by the split criterion (e.g. Sepal < 3.53 at node 2). Then
comes the number of cases passed through that node (90 in this case, versus 30 going into
node 3, which is the terminal node for Taxon IV). The remaining deviance within this node
is 197.8 (compared with zero in node 3 where all the individuals are alike; they are all
Taxon IV). Next is the name of the factor level(s) left in the split (I, II and III in this
case, with the convention that the first in the alphabet is listed), then a list of the empirical
probabilities: the fractions of all the cases at that node that are associated with each of the
levels of the response variable (in this case the 90 cases are equally split between taxa I, II
and III and there are no individuals of taxon IV at this node, giving 0.33, 0.33, 0.33 and 0
as the four probabilities).

There is quite a useful plotting function for classification trees called partition.tree but it
is only sensible to use it when the model has two explanatory variables. Its use is illustrated
here by taking the two most important explanatory variables, Sepal and Leaf:

model2<-tree(Taxon~Sepal+Leaf,taxonomy);
partition.tree(model2)

This shows how the phase space defined by sepal length and leaf width has been divided
up between the four taxa, but it does not show where the data fall. We could use
points(Sepal,Leaf) to overlay the points, but for illustration we shall use text. We create
a vector called labels that has ‘a’ for taxon I, ‘b’ for II, and so on:

label<-ifelse(Taxon=="I", "a", ifelse(Taxon=="II","b",ifelse(Taxon=="III","c","d")))

c c
c
c c c c

c
c

c

cccc
cc

cc

c c
c c

c
c

III

II

IV

c
c
ccc

c
a aa aa

aa

d
d dd

d
d
dd

d
d
d
d
dd
d

d d d
d

d
ddd

dd
d

dd
dd

a

a

a

a

a

b
b

bb

b
b

b

b

b
b

b
b b

b
b b

b
bb

b b b

b

bb b

b bb

b

a
a

aa aa aa
a

aa
a
a

aa
aa

a

3.
0

2.
5

2.
0

1.
5

1.
0

Sepal

Le
af

2.0 2.5 3.0 3.5 4.0 4.5 5.0

698 THE R BOOK

Then we use these letters as a text overlay on the partition.tree like this:

text(Sepal,Leaf,label)

You see that taxa III and IV are beautifully separated on the basis of sepal length and leaf
width, but taxa I and II are all jumbled up (recall that they are separated from one another
on the basis of petiole length).

Testing for the existence of humps

Tree models can be useful in assessing whether or not there is a hump in the relationship
between y and x. This is difficult to do using other kinds of regression, because linear
models seldom distinguish between humps and asymptotes. If a tree model puts a lower
section at the right of the graph than in the centre, then this hints at the presence of a hump
in the data. Likewise, if it puts an elevated section at the left-hand end of the x axis then
that is indicative of a U-shaped function.

Here is a function called hump which extracts information from a tree model to draw
the stepped function through a scatterplot:

hump<-function(x,y){
library(tree)
model<-tree(y~x)
xs<-grep("[0-9]",model[[1]][[5]])
xv<-as.numeric(substring(model[[1]][[5]][xs],2,10))
xv<-xv[1:(length(xv)/2)]
xv<-c(min(x),sort(xv),max(x))
yv<-model[[1]][[4]][model[[1]][[1]]=="<leaf>"]
plot(x,y, xlab=deparse(substitute(x)),ylab=deparse(substitute(y)))
i<-1
j<-2
k<-1
b<-2*length(yv)+1
for (a in 1:b){
lines(c(xv[i],xv[j]),c(yv[k],yv[i]))
if (a %% 2 == 0){
j<-j+1
k<-k+1 }
else{
i<-i+1
}}}

We shall test it on the ethanol data which are definitely humped (p. 840):

library(lattice)
attach(ethanol)
names(ethanol)

[1] "NOx" "C" "E"

hump(E,NOx)

TREE MODELS 699

N
O

x

4
3

2
1

E

0.6 0.7 0.8 0.9 1.0 1.1 1.2

4
3

2
1

3
2

4
1

N
O

x[
E

 <
 1

.0
07

]

N
O

x[
E

 <
 1

.0
06

]

0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0
E[E < 1.007] E[E < 1.006]

700 THE R BOOK

There is a minimum number of points necessary for creating a new step �n = 5�, and a
minimum difference in the mean of one group and the next. To see this, you should contrast
these two fits:

hump(E[E<1.007],NOx[E<1.007])
hump(E[E<1.006],NOx[E<1.006])

The data set on the left has evidence of a hump, but the one on the right does not.

22
Time Series Analysis

Time series data are vectors of numbers, typically regularly spaced in time. Yearly counts of
animals, daily prices of shares, monthly means of temperature, and minute-by-minute details
of blood pressure are all examples of time series, but they are measured on different time
scales. Sometimes the interest is in the time series itself (e.g. whether or not it is cyclic, or
how well the data fit a particular theoretical model), and sometimes the time series is inciden-
tal to a designed experiment (e.g. repeated measures). We cover each of these cases in turn.

The three key concepts in time series analysis are

• trend,

• serial dependence, and

• stationarity

Most time series analyses assume that the data are untrended. If they do show a consistent
upward or downward trend, then they can be detrended before analysis (e.g. by differencing).
Serial dependence arises because the values of adjacent members of a time series may well
be correlated. Stationarity is a technical concept, but it can be thought of simply as meaning
that the time series has the same properties wherever you start looking at it (e.g. white noise
is a sequence of mutually independent random variables each with mean zero and variance
�2 > 0).

Nicholson’s Blowflies

The Australian ecologist, A.J. Nicholson, reared blowfly larvae on pieces of liver in labora-
tory cultures that his technicians kept running continuously for almost 7 years (361 weeks,
to be exact). The time series for numbers of adult flies looks like this:

blowfly<-read.table("c:\\temp\\blowfly.txt",header=T)
attach(blowfly)
names(blowfly)

[1] "flies"

First, make the flies variable into a time series object:

flies<-ts(flies)

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

702 THE R BOOK

15
00

0
10

00
0

fli
es

50
00

0

0 50 100 150 200

Time

250 300 350

and plot it:

plot(flies)

This classic time series has two clear features:

• For the first 200 weeks the system exhibits beautifully regular cycles.

• After week 200 things change (perhaps a genetic mutation had arisen); the cycles become
much less clear-cut, and the population begins a pronounced upward trend.

There are two important ideas to understand in time series analysis: autocorrelation and
partial autocorrelation. The first describes how this week’s population is related to last
week’s population. This is the autocorrelation at lag 1. The second describes the relationship
between this week’s population and the population at lag t once we have controlled for the
correlations between all of the successive weeks between this week and week t. This should
become clear if we draw the scatterplots from which the first four autocorrelation terms are
calculated (lag 1 to lag 4).

There is a snag, however. The vector of flies at lag 1 is shorter (by one) than the original
vector because the first element of the lagged vector is the second element of flies. The
coordinates of the first data point to be drawn on the scatterplot are (flies[1],flies[2]) and
the coordinates of the last plot that can be drawn are (flies[360], flies[361]) because the
original vector is 361 element long:

length(flies)

[1] 361

Thus, the lengths of the vectors that can be plotted go down by one for every increase in
the lag of one. We can produce the four plots for lags 1 to 4 in a function like this:

TIME SERIES ANALYSIS 703

par(mfrow=c(2,2))
sapply(1:4, function(x) plot(flies[-c(361: (361-x+1))], flies[-c(1:x)]))

15
00

0

fli
es

[–
c(

1:
x)

]

10
00

0
50

00
0

15000100005000

flies[–c(361:(361 – x + 1))]

0

15
00

0

fli
es

[–
c(

1:
x)

]

10
00

0
50

00
0

15000100005000

flies[–c(361:(361 – x + 1))]

0

15
00

0

fli
es

[–
c(

1:
x)

]

10
00

0
50

00
0

15000100005000

flies[–c(361:(361 – x + 1))]

0

15
00

0

fli
es

[–
c(

1:
x)

]

10
00

0
50

00
0

15000100005000

flies[–c(361:(361 – x + 1))]

0

The correlation is very strong at lag 1, but notice how the variance increases with
population size: small populations this week are invariably correlated with small populations
next week, but large populations this week may be associated with large or small populations
next week. The striking pattern here is the way that the correlation fades away as the size
of the lag increases. Because the population is cyclic, the correlation goes to zero, then
becomes weakly negative and then becomes strongly negative. This occurs at lags that are
half the cycle length. Looking back at the time series, the cycles look to be about 20 weeks in
length. So let’s repeat the exercise by producing scatterplots at lags of 7, 8, 9 and 10 weeks:

sapply(7:10, function(x) plot(flies[-c((361-x+1):361)], flies[-c(1:x)]))
par(mfrow=c(1,1))

The negative correlation at lag 10 gradually emerges from the fog of no correlation at lag 7.
More formally, the autocorrelation function ��k� at lag k is

��k� = ��k�

��0�
�

where ��k� is the autocovariance function at lag k of a stationary random function �Y�t�	
given by

��k� = cov�Y�t�� Y�t − k�	

The most important properties of the autocorrelation coefficient are these:

704 THE R BOOK

15
00

0

fli
es

[–
c(

1:
x)

]

10
00

0
50

00
0

15000100005000

flies[–c((361 – x + 1):361)]

flies[–c((361 – x + 1):361)]

flies[–c((361 – x + 1):361)]

flies[–c((361 – x + 1):361)]

0

15
00

0

fli
es

[–
c(

1:
x)

]

10
00

0
50

00
0

150001000050000

15
00

0

fli
es

[–
c(

1:
x)

]

10
00

0
50

00
0

150001000050000

15
00

0

fli
es

[–
c(

1:
x)

]

10
00

0
50

00
0

150001000050000

• They are symmetric backwards and forwards, so ��k� = ��−k�.

• The limits are −1 ≤ ��k� ≤ 1.

• When Y�t� and Y�t − k� are independent, then ��k� = 0.

• The converse of this is not true, so that ��k� = 0 does not imply that Y�t� and Y�t − k�
are independent (look at the scatterplot for k = 7 in the scatterplots above).

A first-order autoregressive process is written as

Yt = �Yt−1 + Zt

This says that this week’s population is � times last week’s population plus a random term
Zt. (The randomness is white noise; the values of Z are serially independent, they have a
mean of zero, and they have finite variance �2.)

In a stationary times series −1 < � < 1. In general, then, the autocorrelation function of
�Y�t�	 is

�k = �k� k = 0� 1� 2� � � �

Partial autocorrelation is the relationship between this week’s population and the popu-
lation at lag t when we have controlled for the correlations between all of the successive
weeks between this week and week t. That is to say, the partial autocorrelation is the
correlation between Y�t� and Y�t +k� after regression of Y�t� on Y�t + 1�, Y�t + 2�, Y�t + 3�,
� � � .. Y�t + k − 1�. It is obtained by solving the Yule–Walker equation

TIME SERIES ANALYSIS 705

�k =
p∑
1

�i�k−i� k > 0�

with the � replaced by r (correlation coefficients estimated from the data). Suppose we
want the partial autocorrelation between time 1 and time 3. To calculate this, we need the
three ordinary correlation coefficients r1�2, r1�3 and r2�3. The partial r13�2 is then

r13�2 = r13 − r12r23√
�1 − r2

12��1 − r2
23�

For more on the partial correlation coefficients, see p. 715.
Let’s look at the correlation structure of the blowfly data. The R function for calculating

autocorrelations and partial autocorrelations is acf (the ‘autocorrelation function’). First, we
produce the autocorrelation plot to look for evidence of cyclic behaviour:

acf(flies,main="")

1.
0

0.
8

0.
6

0.
4

A
C

F

0.
2

–0
.2

0.
0

0 5 10

Lag

15 20 25

You will not see more convincing evidence of cycles than this. The blowflies exhibit highly
significant, regular cycles with a period of 19 weeks. What kind of time lags are involved
in the generation of these cycles? We use partial autocorrelation (type="p") to find this out:

acf(flies,type="p",main="")

The significant density-dependent effects are manifest at lags of 2 and 3 weeks, with other,
marginally significant negative effects at lags of 4 and 5 weeks. These lags reflect the
duration of the larval and pupal period (1 and 2 periods, respectively). The cycles are clearly

706 THE R BOOK

0.
8

0.
6

0.
4

P
ar

tia
l A

C
F

0.
2

–0
.2

0.
0

5 10
Lag

15 20 25

caused by overcompensating density dependence, resulting from intraspecific competition
between the larvae for food (what Nicholson christened ‘scramble competition’). There is
a curious positive feedback at a lag of 12 weeks (12–16 weeks, in fact). Perhaps you can
think of a possible cause for this?

We should investigate the behaviour of the second half of the time series separately. Let’s
say it is from week 201 onwards:

second<-flies[201:361]

Now test for a linear trend in mean fly numbers against day number, from 1 to
length(second):

summary(lm(second~I(1:length(second))))

Note the use of I in the model formula (for ‘as is’) to tell R that the colon we have used
is to generate a sequence of x values for the regression (and not an interaction term as it
would otherwise have assumed).

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2827.531 336.661 8.399 2.37e-14 ***
I(1:length(second)) 21.945 3.605 6.087 8.29e-09 ***

Residual standard error: 2126 on 159 degrees of freedom
Multiple R-Squared: 0.189, Adjusted R-squared: 0.1839
F-statistic: 37.05 on 1 and 159 DF, p-value: 8.289e-09

This shows that there is a highly significant upward trend of about 22 extra flies on average
each week in the second half of time series. We can detrend the data by subtracting the
fitted values from the linear regression of second on day number:

TIME SERIES ANALYSIS 707

detrended<-second - predict(lm(second~I(1:length(second))))
ts.plot(detrended)

80
00

60
00

40
00

20
00

–2
00

0
–4

00
0

0 50 100 150

Time

de
tr

en
de

d

0

1.
0

0.
8

0.
6

0.
4

A
C

F

0.
2

–0
.2

–0
.4

0.
0

0 5 10

Lag

Series detrended

15 20

708 THE R BOOK

There are still cycles there, but they are weaker and less regular. We repeat the correlation
analysis on the detrended data:

acf(detrended)

0.
8

0.
6

0.
4

P
ar

tia
l A

C
F

0.
2

–0
.2

0.
0

5 10
lag

15 20

Series detrended

These look more like damped oscillations than repeated cycles. What about the partials?

acf(detrended, type="p")

There are still significant negative partial autocorrelations at lags 3 and 5, but now there is
a curious extra negative partial at lag 18. It looks, therefore, as if the main features of the
ecology are the same (a scramble contest for food between the larvae, leading to negative
partials at 3 and 5 weeks after 1 and 2 generation lags), but population size is drifting
upwards and the cycles are showing a tendency to dampen out.

Moving Average

The simplest way of seeing pattern in time series data is to plot the moving average. A
useful summary statistic is the three-point moving average:

y′
i =

yi−1 + yi + yi+1

3

The function ma3 will compute the three-point moving average for any input vector x:

ma3<-function (x) {
y<-numeric(length(x)-2)

TIME SERIES ANALYSIS 709

for (i in 2:(length(x)-1)) {
y[i]<-(x[i-1]+x[i]+x[i+1])/3

}
y }

A time series of mean monthly temperatures will illustrate the use of the moving average:

temperature<-read.table("c:\\temp\\temp.txt",header=T)
attach(temperature)
tm<-ma3(temps)
plot(temps)
lines(tm[2:158])

25
20

te
m

ps

15
10

5

0 50 100

Index

150

The seasonal pattern of temperature change over the 13 years of the data is clear. Note that
a moving average can never capture the maxima or minima of a series (because they are
averaged away). Note also that the three-point moving average is undefined for the first and
last points in the series.

Seasonal Data

Many time series applications involve data that exhibit seasonal cycles. The commonest
applications involve weather data: here are daily maximum and minimum temperatures from
Silwood Park in south-east England over the period 1987–2005 inclusive:

710 THE R BOOK

weather<-read.table("c:\\temp\\SilwoodWeather.txt",header=T)
attach(weather)
names(weather)

[1] "upper" "lower" "rain" "month" "yr"

plot(upper,type="l")
30

20
10

up
pe

r

0

0 1000 2000 3000

Index

4000 5000 6000 7000

The seasonal pattern of temperature change over the 19-year period is clear, but there is no
clear trend (e.g. warming, see p. 715). Note that the x axis is labelled by the day number
of the time series (Index).

We start by modelling the seasonal component. The simplest models for cycles are scaled
so that a complete annual cycle is of length 1.0 (rather than 365 days). Our series consists
of 6940 days over a 19-year span, so we write:

length(upper)

[1] 6940

index<-1:6940
6940/19

[1] 365.2632

time<-index/365.2632

The equation for the seasonal cycle is this:

y = � + sin�2�t� + � cos�2�t� + �

TIME SERIES ANALYSIS 711

This is a linear model, so we can estimate its three parameters very simply:

model<-lm(upper~sin(time*2*pi)+cos(time*2*pi))

To investigate the fit of this model we need to plot the scattergraph using very small symbols
(otherwise the fitted line will be completely obscured). The smallest useful plotting symbol
is the dot “.”

plot(time, upper, pch=".")
lines(time, predict(model))

0

0
10

20

5 10 15
time

up
pe

r

30

The three parameters of the model are all highly significant:

summary(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.95647 0.04088 365.86 <2e-16 ***
sin(time * 2 * pi) -2.53883 0.05781 -43.91 <2e-16 ***
cos(time * 2 * pi) -7.24017 0.05781 -125.23 <2e-16 ***

Residual standard error: 3.406 on 6937 degrees of freedom
Multiple R-Squared: 0.7174, Adjusted R-squared: 0.7173
F-statistic: 8806 on 2 and 6937 DF, p-value: < 2.2e-16

We can investigate the residuals to look for patterns (e.g. trends in the mean, or autocor-
relation structure). Remember that the residuals are stored as part of the model object:

plot(model$resid,pch=".")

712 THE R BOOK

0

–1
5

–1
0

–5
0

5
10

15

1000 2000 3000
Index

m
od

el
$r

es
id

4000 5000 6000 7000

There looks to be some periodicity in the residuals, but no obvious trends. To look for serial
correlation in the residuals, we use the acf function like this:

par(mfrow=c(1,2))
acf(model$resid)
acf(model$resid,type=”p”)

0

0.
0

0.
0

0.
2

0.
2

A
C

F

P
ar

tia
l A

C
F

0.
4

0.
40.

6

0.
6

0.
8

1.
0

Series model$resid Series model$resid

10 20
Lag

30 0 10 20
Lag

30

TIME SERIES ANALYSIS 713

There is very strong serial correlation in the residuals, and this drops off roughly exponen-
tially with increasing lag (left-hand graph). The partial autocorrelation at lag 1 is very large
(0.7317), but the correlations at higher lags are much smaller. This suggests that an AR(1)
model (autoregressive model with order 1) might be appropriate. This is the statistical jus-
tification behind the old joke about the weather forecaster who was asked what tomorrow’s
weather would be. ‘Like today’s’, he said.

Pattern in the monthly means

The monthly average upper temperatures show a beautiful seasonal pattern when analysed
by acf:

temp<-ts(as.vector(tapply(upper,list(month,yr),mean)))
par(mfrow=c(1,1))
acf(temp)

0

A
C

F

0.
0

0.
5

1.
0

–0
.5

5 10

Lag

Series temp

15 20

There is a perfect cycle with period 12 (as expected). What about patterns across years?

ytemp<-ts(as.vector(tapply(upper,yr,mean)))
acf(ytemp)

Nothing! The pattern you may (or may not) see depends upon the scale at which you look
for it. As for spatial patterns (Chapter 24), so it is with temporal patterns. There is strong
pattern between days within months (tomorrow will be like today). There is very strong
pattern from month to month within years (January is cold, July is warm). But there is
no pattern at all from year to year (there may be progressive global warming, but it is not
apparent within this recent time series (see below), and there is absolutely no evidence for
untrended serial correlation).

714 THE R BOOK

0

A
C

F

0.
0

0.
5

1.
0

–0
.5

2 4 6 8 10 12
Lag

Series ytemp

Built-in Time Series Functions

The analysis is simpler, and the graphics are better labelled, if we convert the temperature
data into a regular time series object using ts. We need to specify the first date (January
1987) as start=c(1987,1), and the number of data points per year as frequency=365.

high<-ts(upper,start=c(1987,1),frequency=365)

Now use plot to see a plot of the time series, correctly labelled by years:

plot(high)

1990

0
10

hi
gh

20
30

1995
Time

2000 2005

TIME SERIES ANALYSIS 715

Decompositions

It is useful to be able to turn a time series into components. The function stl (letter L, not
numeral one) performs seasonal decomposition of a time series into seasonal, trend and
irregular components using loess. First, we make a time series object, specifying the start
date and the frequency (above), then use stl to decompose the series:

up<-stl(high,"periodic")

The plot function produces the data series, the seasonal component, the trend and the
residuals in a single frame:

plot(up)

1990

13

re
m

ai
nd

er
tr

en
d

se
as

on
al

da
ta

0
10

20
30

14
15

16

1995

time

2000 2005

–1
0

–5
0

5
10

–5
0

5
10

The remainder component is the residuals from the seasonal plus trend fit. The bars at the
right-hand side are of equal heights (in user coordinates).

Testing for a Trend in the Time Series

It is important to know whether these data provide any evidence for global warming. The
trend part of the figure indicates a fluctuating increase, but is it significant? The mean
temperature in the last 9 years was 0
71� C higher degrees than in the first 10 years:

ys<-factor(1+(yr>1996))
tapply(upper,ys,mean)

1 2
14.62056 15.32978

716 THE R BOOK

We cannot test for a trend with linear regression because of the massive temporal pseu-
doreplication. Suppose we tried this:

model1<-lm(upper~index+sin(time*2*pi)+cos(time*2*pi))
summary(model1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.433e+01 8.136e-02 176.113 <2e-16 ***
index 1.807e-04 2.031e-05 8.896 <2e-16 ***
sin(time ∗ 2 ∗ pi) -2.518e+00 5.754e-02 -43.758 <2e-16 ***
cos(time ∗ 2 ∗ pi) -7.240e+00 5.749e-02 -125.939 <2e-16 ***

It would suggest (wrongly, as we shall see) that the warming was highly significant (index
p value < 2 × 10−16 for a slope of 0.000 180 7 degrees of warming per day, leading to a
predicted increase in mean temperature of 1.254 degrees over the 6940 days of the time
series).

Since there is so much temporal pseudoreplication we should use a mixed model (lmer,
p. 640), and because we intend to compare two models with different fixed effects we use
the method of maximum likelihood (“ML” rather than “REML”). The explanatory variable
for any trend is index, and we fit the model with and without this variable, allowing for
different intercepts for the different years as a random effect:

library(lme4)
model2<-
lmer(upper~index+sin(time*2*pi)+cos(time*2*pi)+(1�factor(yr)),method="ML")
model3<-lmer(upper~sin(time*2*pi)+cos(time*2*pi)+(1�factor(yr)),method="ML")
anova(model2,model3)

Data:
Models:
model3: upper ~ sin(time * 2 * pi) + cos(time * 2 * pi) + (1 |
factor(yr))
model2: upper ~ index + sin(time * 2 * pi) + cos(time * 2 * pi) + (1 |
model3: factor(yr))

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
model3 4 36450 36477 -18221
model2 5 36451 36485 -18220 1.0078 1 0.3154

Clearly, the trend is not significant �p = 0
3154�. If you are prepared to ignore all the
within-year variation (day-to-day and month-to-month), then you can get rid of the pseu-
doreplication by averaging and test for trend in the yearly mean values: these show a
significant trend if the first year (1987) is included, but not if it is omitted:

means<-as.vector(tapply(upper,yr,mean))
model<-lm(means~I(1:19))
summary(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.27105 0.32220 44.293 <2e−16 ***
I(1:19) 0.06858 0.02826 2.427 0.0266 *

model<-lm(means[-1]~I(1:18))

TIME SERIES ANALYSIS 717

summary(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.59826 0.30901 47.243 <2e-16 ***
I(1:18) 0.04761 0.02855 1.668 0.115

Obviously, you need to be circumspect when interpreting trends in time series.

Spectral Analysis

There is an alternative approach to time series analysis, which is based on the analysis of
frequencies rather than fluctuations of numbers. Frequency is the reciprocal of cycle period.
Ten-year cycles would have a frequency 0.1 per year. Here are the famous Canadian lynx
data:

numbers<-read.table("c:\\temp\\lynx.txt",header=T)
attach(numbers)
names(numbers)

[1] "Lynx"

plot.ts(Lynx)

20 40 60
Time

80 1000

0
10

00
20

00
30

00
40

00

Ly
nx

50
00

60
00

70
00

The fundamental tool of spectral analysis is the periodogram. This is based on the
squared correlation between the time series and sine/cosine waves of frequency �, and
conveys exactly the same information as the autocovariance function. It may (or may not)
make the information easier to interpret. Using the function is straightforward; we employ
the spectrum function like this:

spectrum(Lynx)

718 THE R BOOK

Series:x
Raw Periodogram

frequency
bandwidth = 0.00241

0.0

sp
ec

tr
um

5
 e

 +
 0

6
5

 e
 +

 0
3

5
 e

 +
 0

4
5

 e
 +

 0
5

5
 e

 +
 0

7

0.1 0.2 0.3 0.4 0.5

The plot is on a log scale, in units of decibels, and the sub-title on the x axis shows the
bandwidth, while the 95% confidence interval in decibels is shown by the vertical bar in the
top right-hand corner. The figure is interpreted as showing strong cycles with a frequency
of about 0.1, where the maximum value of spectrum occurs. That is to say, it indicates
cycles with a period of 1/0
1 = 10 years. There is a hint of longer period cycles (the local
peak at frequency 0.033 would produce cycles of length 1/0
033 = 30 years) but no real
suggestion of any shorter-term cycles.

Multiple Time Series

When we have two or more time series measured over the same period, the question
naturally arises as to whether or not the ups and downs of the different series are correlated.
It may be that we suspect that change in one of the variables causes changes in the other
(e.g. changes in the number of predators may cause changes in the number of prey, because
more predators means more prey eaten). We need to be careful, of course, because it will
not always be obvious which way round the causal relationship might work (e.g. predator
numbers may go up because prey numbers are higher; ecologists call this a numerical
response). Suppose we have the following sets of counts:

twoseries<-read.table("c:\\temp\\twoseries.txt",header=T)
attach(twoseries)
names(twoseries)

[1] "x" "y"

We start by inspecting the two time series one above the other:

plot.ts(cbind(x,y),main="")

TIME SERIES ANALYSIS 719

Time
5

10
0

30
0

50
0

0
10

0
20

0
30

0

x
y

40
0

10 15 20

There is some evidence of periodicity (at least in x) and it looks as if y lags behind x by
roughly 2 periods (sometimes 1). Now let’s carry out straightforward analyses on each time
series separately:

par(mfrow=c(1,2))
acf(x,type="p")
acf(y,type="p")

As we suspected, the evidence for periodicity is stronger in x than in y: the partial autocor-
relation is significant and negative at lag 2 for x, but none of the partial autocorrelations
are significant for y.

To look at the cross-correlation between the two series we use the same acf function, but
we provide it with a matrix containing both x and y as its argument:

par(mfrow=c(1,1))
acf(cbind(x,y))

The four plots show the autocorrelations for x�x and y� y and x, and y. The plots for x and
y are exactly the same as in the single-series case. Note the reversal of the time lag scale
on the plot of y against x. In the case of partial autocorrelations, things are a little different,
because we now see in the xx column the values of the autocorrelation of x controlling for
x and for y (not just for x as in the earlier figure).

acf(cbind(x,y),type="p")

This indicates a hint (not quite significant) of a positive partial autocorrelation for x at lag
4 that we did not see in the analysis of the single time series of x. There are significant
negative cross-correlations of x and y at lags of 1 and 2, strongly suggestive of some sort
of relationship between the two time series.

To get a visual assessment of the relationship between x and y we can plot the change in
y against the change in x using the diff function like this:

plot(diff(x),diff(y))

720 THE R BOOK

2

–0
.4

–0
.2

P
ar

tia
l A

C
F

0.
0

0.
2

0.
4

Series x Series y

4

Lag

6 8 10 2

–0
.4

–0
.2

P
ar

tia
l A

C
F

0.
0

0.
2

0.
4

4

Lag

6 8 10

0

A
C

F

–0
.5

0.
0

0.
5

1.
0

2

x

Lag
4 6 8 10 0

–0
.5

0.
0

0.
5

1.
0

2

x & y

Lag
4 6 8 10

–10

A
C

F

–0
.5

0.
0

0.
5

1.
0

–8

y & x

Lag

–6 –4 –2 0 0

–0
.5

0.
0

0.
5

1.
0

2

y

Lag

4 6 8 10

TIME SERIES ANALYSIS 721

P
ar

tia
l A

C
F

–0
.4

0.
0

0.
4

P
ar

tia
l A

C
F

–0
.4

0.
0

0.
4

–0
.4

0.
0

0.
4

2

Lag

4 6 8 10 2

x x & y

Lag

4 6 8 10

–10 –8

Lag

–6 –4 –2

y & x y

2

Lag

4 6 8 10

–0
.4

0.
0

0.
4

0
–3

00
–2

00
–1

00
10

0
20

0
30

0

di
ff(

y)

–300 –200 –100 0 100

diff(x)

200 300

722 THE R BOOK

The negative correlation is clear enough, but there are two conspicuous outliers, making it
clear that not all negative changes in x are associated with large positive changes in y.

Simulated Time Series

To see how the correlation structure of an AR(1) depends on the value of �, we can
simulate the process over, say, 250 time periods using different values of �. We generate
the white noise Zt using the random number generator rnorm(n,0,s) which gives n random
numbers with a mean of 0 and a standard deviation of s. To simulate the time series we
evaluate

Yt = �Yt−1 + Zt�

multiplying last year’s population by � then adding the relevant random number from Zt.
We begin with the special case of � = 0 so Yt = Zt and the process is pure white

noise:

Y<-rnorm(250,0,2)
par(mfrow=c(1,2))
plot.ts(Y)
acf(Y)

Lag

1.
0

Series y

0.
8

0.
6

0.
4

0.
2

0.
0

–6

y

A
C

F

–4
–2

0
2

4

0 5 10 15 20

Time

0 50 150 250

The time series is bound to be stationary because each value of Z is independent of the
value before it. The correlation at lag 0 is 1 (of course), but there is absolutely no hint of
any correlations at higher lags.

TIME SERIES ANALYSIS 723

To generate the time series for non-zero values of � we need to use recursion: this year’s
population is last years population times � plus the white noise. We begin with a negative
value of � =−0
5. First we generate all the noise values (by definition, these don’t depend
on population size):

Z<-rnorm(250,0,2)

Now the initial population at time 0 is set to 0 (remember that the population is stationary,
so we can think of the Y values as departures from the long-term mean population size).
This means that Y1 = Z1. Thus, Y2 will be whatever Y1 was, times −0
5, plus Z2. And
so on.

Y<-numeric(250)
Y[1]<-Z[1]
for (i in 2:250) Y[i]<- - 0.5*Y[i-1]+Z[i]
plot.ts(Y)
acf(Y)

Lag

Series Y

1.
0

0.
8

0.
4

0.
6

0.
2

0.
0

–0
.2

–0
.4

Y

A
C

F

–4
–2

0
2

4
6

0 5 10 15 20

Time

0 50 150 250

The time series shows rapid return to equilibrium following random departures from
it. There is a highly significant negative autocorrelation at lag 1, significant positive
autocorrelation at lag 2 and so on, with the size of the correlation gradually damping
away.

Let’s simulate a time series with a positive value of, say, � = 0
5:

Z<-rnorm(250,0,2)
Y[1]<-Z[1]

724 THE R BOOK

for (i in 2:250) Y[i]<- 0.5*Y[i-1]+Z[i]
plot.ts(Y)
acf(Y)

Lag

Series Y

1.
0

0.
8

0.
4

0.
6

0.
2

0.
0

–0
.2

Y

A
C

F

–8
–6

–4
0

–2
2

4
6

0 5 10 15 20

Time

0 50 150 250

Now the time series plot looks very different, with protracted periods spent drifting away
from the long-term average. The autocorrelation plot shows significant positive correlations
for the first three lags.

Finally, we look at the special case of � = 1. This means that the time series is a classic
random walk, given by

Yt = Yt−1 + Zt

Z<-rnorm(250,0,2)
Y[1]<-Z[1]
for (i in 2:250) Y[i]<- Y[i-1]+Z[i]
plot.ts(Y)
acf(Y)

The time series wanders about and strays far away from the long-term average. The acf
plot shows positive correlations dying away very slowly, and still highly significant at lags
of more than 20. Of course, if you do another realization of the process, the time series will
look very different, but the autocorrelations will be similar:

TIME SERIES ANALYSIS 725

Series Y

1.
0

0.
8

0.
4

0.
6

0.
2

0.
0

Y

A
C

F

–2
0

–1
0

0
10

Lag

0 5 10 15 20

Time

0 50 150 250

Series Y

1.
0

0.
8

0.
4

0.
6

0.
2

0.
0

Y

A
C

F

–2
0

–1
5

–5
–1

0
0

5
10

Lag

0 5 10 15 20

Time

0 50 150 250

726 THE R BOOK

Time Series Models

Time series models come in three kinds (Box and Jenkins 1976):

• Moving average (MA) models where

Xt =
q∑
0

j�t−j�

• autoregressive (AR) models where

Xt =
p∑
1

�iXt−i + �t�

• autoregressive moving average (ARMA) models where

Xt =
p∑
1

�iXt−i +
q∑
0

j�t−j

A moving average of order q averages the random variation over the last q time periods.
An autoregressive model of order p computes Xt as a function of the last p values of X, so,
for a second-order process, we would use

Xt = �1Xt−1 + �2Xt−2 + �t

Typically, we would use the partial autocorrelation plot (above) to determine the order. So,
for the lynx data (p. 717) we would use order 2 or 4, depending on taste. Other things being
equal, parsimony suggests the use of order 2. The fundamental difference is that a set of ran-
dom components ��t−j� influences the current value of a MA process, whereas only the cur-
rent random effect ��t� affects an AR process. Both kinds of effects are at work in an ARMA
processes. Ecological models of population dynamics are typically AR models. For instance,

Nt = �Nt−1

(the discrete-time version of exponential growth �� > 1� or decay �� < 1�� looks just like
an first order AR process with the random effects missing. This is somewhat misleading,
however, since time series are supposed to be stationary, which would imply a long-term
average value of � = 1. But, in the absence of density dependence (as here), this is
impossible. The � of the AR model is not the � of the population model.

Models are fitted using the arima function, and their performances are compared using
AIC (see p. 728). The most important component of the model is order. This is a vector
of length 3 specifying the order of the autoregressive operators, the number of differences,
and the order of moving average operators. Thus order=c(1,3,2) is based on a first-order
autoregressive process, three differences, and a second-order moving average. The Canadian
lynx data are used as an example of arima in time series modelling.

TIME SERIES ANALYSIS 727

Time series modelling on the Canadian lynx data

Records of the number of skins of predators (lynx) and prey (snowshoe hares) returned
by trappers were collected over many years by the Hudson’s Bay Company. The lynx
numbers are shown on p. 717 and exhibit a clear 10-year cycle. We begin by plotting the
autocorrelation and partial autocorrelation functions:

par(mfrow=c(1,2))
acf(Lynx,main="")
acf(Lynx,type="p",main="")

LagLag

–0
.5

0.
0

0.
5

1.
0

0 5 10 15 20

P
ar

tia
l A

C
F

A
C

F

–0
.6

–0
.4

–0
.2

0.
0

0.
2

0.
4

0.
6

5 10 15 20

The population is very clearly cyclic, with a period of 10 years. The dynamics appear to be
driven by strong, negative density dependence (a partial autocorrelation of −0
588) at lag 2.
There are other significant partials at lag 1 and lag 8 (positive) and lag 4 (negative). Of course
you cannot infer the mechanism by observing the dynamics, but the lags associated with
significant negative and positive feedbacks are extremely interesting and highly suggestive.
The main prey species of the lynx is the snowshoe hare and the negative feedback at lag 2
may reflect the timescale of this predator–prey interaction. The hares are known to cause
medium-term induced reductions in the quality of their food plants as a result of heavy
browsing pressure when the hares at high density, and this could map through to lynx
populations with lag 4.

The order vector specifies the non-seasonal part of the ARIMA model: the three compo-
nents (p, d, q) are the AR order, the degree of differencing, and the MA order. We start by
investigating the effects of AR order with no differencing and no moving average terms,
comparing models on the basis of AIC:

728 THE R BOOK

model10<-arima(Lynx,order=c(1,0,0))
model20<-arima(Lynx,order=c(2,0,0))
model30<-arima(Lynx,order=c(3,0,0))
model40<-arima(Lynx,order=c(4,0,0))
model50<-arima(Lynx,order=c(5,0,0))
model60<-arima(Lynx,order=c(6,0,0))
AIC(model10,model20,model30,model40,model50,model60)

df AIC
model10 3 1926.991
model20 4 1878.032
model30 5 1879.957
model40 6 1874.222
model50 7 1875.276
model60 8 1876.858

On the basis of AR alone, it appears that order 4 is best (AIC = 1874.222). What about
MA?

model01<-arima(Lynx,order=c(0,0,1))
model02<-arima(Lynx,order=c(0,0,2))
model03<-arima(Lynx,order=c(0,0,3))
model04<-arima(Lynx,order=c(0,0,4))
model05<-arima(Lynx,order=c(0,0,5))
model06<-arima(Lynx,order=c(0,0,6))
AIC(model01,model02,model03,model04,model05,model06)

df AIC
model01 3 1917.947
model02 4 1890.061
model03 5 1887.770
model04 6 1888.279
model05 7 1885.698
model06 8 1885.230

The AIC values are generally higher than given by the AR models. Perhaps there is a
combination of AR and MA terms that is better than either on their own?

model40<-arima(Lynx,order=c(4,0,0))
model41<-arima(Lynx,order=c(4,0,1))
model42<-arima(Lynx,order=c(4,0,2))
model43<-arima(Lynx,order=c(4,0,3))
AIC(model40,model41,model42,model43)

df AIC
model40 6 1874.222
model41 7 1875.351
model42 8 1862.435
model43 9 1880.432

Evidently there is no need for a moving average term (model40 is best). What about the
degree of differencing?

model400<-arima(Lynx,order=c(4,0,0))

TIME SERIES ANALYSIS 729

model401<-arima(Lynx,order=c(4,1,0))
model402<-arima(Lynx,order=c(4,2,0))
model403<-arima(Lynx,order=c(4,3,0))
AIC(model400,model401,model402,model403)

df AIC
model400 6 1874.222
model401 5 1890.961
model402 5 1917.882
model403 5 1946.143

The model with no differencing performs best. The lowest AIC is 1874.222, which suggests
that a model with an AR lag of 4, no differencing and no moving average terms is best.
This implies that a rather complex ecological model is required which takes account of
both the significant partial correlations at lags of 2 and 4 years, and not just the 2-year
lag (i.e. plant–herbivore effects may be necessary to explain the dynamics, in addition to
predator–prey effects).

23
Multivariate Statistics

This class of statistical methods is fundamentally different from the others in this book
because there is no response variable. Instead of trying to understand variation in a response
variable in terms of explanatory variables, in multivariate statistics we look for structure in
the data. The problem is that structure is rather easy to find, and all too often it is a feature
of that particular data set alone. The real challenge is to find general structure that will
apply to other data sets as well. Unfortunately, there is no guaranteed means of detecting
pattern, and a great deal of ingenuity has been shown by statisticians in devising means
of pattern recognition in multivariate data sets. The main division is between methods that
assume a given structure and seek to divide the cases into groups, and methods that seek
to discover structure from inspection of the dataframe.

The multivariate techniques implemented in R include:

• principal components analysis (prcomp);

• factor analysis (factanal);

• cluster analysis (hclust, kmeans);

• discriminant analysis (lda, qda);

• neural networks (nnet).

These techniques are not recommended unless you know exactly what you are doing, and
exactly why you are doing it. Beginners are sometimes attracted to multivariate techniques
because of the complexity of the output they produce, making the classic mistake of
confusing the opaque for the profound.

Principal Components Analysis

The idea of principal components analysis (PCA) is to find a small number of linear
combinations of the variables so as to capture most of the variation in the dataframe as a
whole. With a large number of variables it may be easier to consider a small number of
combinations of the original data rather than the entire dataframe. Suppose, for example,
that you had three variables measured on each subject, and you wanted to distil the essence
of each individual’s performance into a single number. An obvious solution is the arithmetic

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

732 THE R BOOK

mean of the three numbers 1/3v1 +1/3v2 +1/3v3 where v1� v2 and v3 are the three variables
(e.g. maths score, physics score and chemistry score for pupils’ exam results). The vector of
coefficients l = �1/3� 1/3� 1/3� is called a linear combination. Linear combinations where∑

l2 = 1 are called standardized linear combinations. Principal components analysis finds a
set of orthogonal standardized linear combinations which together explain all of the variation
in the original data. There are as many principal components as there are variables, but
typically it is only the first few that explain important amounts of the total variation.

Calculating principal components is easy. Interpreting what the components mean in
scientific terms is hard, and potentially equivocal. You need to be more than usually
circumspect when evaluating multivariate statistical analyses.

The following dataframe contains mean dry weights (g) for 54 plant species on 89 plots,
averaged over 10 years; see Crawley et al. (2005) for species names and more background.
The question is what are the principal components and what environmental factors are
associated with them?

pgdata<-read.table("c:\\temp\\pgfull.txt",header=T)
names(pgdata)

[1] "AC" "AE" "AM" "AO" "AP" "AR" "AS"
[8] "AU" "BH" "BM" "CC" "CF" "CM" "CN"

[15] "CX" "CY" "DC" "DG" "ER" "FM" "FP"
[22] "FR" "GV" "HI" "HL" "HP" "HS" "HR"
[29] "KA" "LA" "LC" "LH" "LM" "LO" "LP"
[36] "OR" "PL" "PP" "PS" "PT" "QR" "RA"
[43] "RB" "RC" "SG" "SM" "SO" "TF" "TG"
[50] "TO" "TP" "TR" "VC" "VK" "plot" "lime"
[57] "species" "hay" "pH"

We need to extract the 54 variables that refer to the species’ abundances and leave behind the
variables containing the experimental treatments (plot and lime) and the covariates (species
richness, hay biomass and soil pH). This creates a smaller dataframe containing all 89 plots
(i.e. all the rows) but only columns 1 to 54 (see p. 742 for details):

pgd<-pgdata[,1:54]

There are two functions for carrying out PCA in R. The generally preferred method
for numerical accuracy is prcomp (where the calculation is done by a singular value
decomposition of the centred and scaled data matrix, not by using eigen on the covariance
matrix, as in the alternative function princomp).

The aim is to find linear combinations of a set of variables that maximize the variation
contained within them, thereby displaying most of the original variation in fewer dimensions.
These principal components have a value for every one of the 89 rows of the dataframe. By
contrast, in factor analysis (see p. 735), each factor contains a contribution (which may in
some cases be zero) from each variable, so the length of each factor is the total number of
variables (54 in the current example). This has practical implications, because you can plot
the principal components against other explanatory variables from the dataframe, but you
cannot do this for factors because the factors are of length 54 while the covariates are of
length 89.

You need to use the option scale=TRUE because the variances are significantly different
for the 54 plant species:

model<-prcomp(pgd,scale=TRUE)

MULTIVARIATE STATISTICS 733

summary(model)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Standard deviation 3.005 2.336 1.9317 1.786 1.7330 1.5119 1.5088 1.3759
Proportion of Variance 0.167 0.101 0.0691 0.059 0.0556 0.0423 0.0422 0.0351
Cumulative Proportion 0.167 0.268 0.3373 0.396 0.4520 0.4943 0.5365 0.5716
� � �

PC53 PC54
Standard deviation 0.11255 0.01721
Proportion of Variance 0.00023 0.00001
Cumulative Proportion 0.99999 1.00000

You can see that the first principal component (PC1) explains 16.7% of the total variation,
and only the next four (PC2–PC5) explain more than 5% of the total variation. Here is the
plot of this model, showing the relative importance of PC1.

plot(model,main="")

0
2

4
6

8
V

ar
ia

nc
es

This is called a scree plot in PCA because it is supposed to look like a cliff face on a
mountainside (on the left), with a scree slope below it (the tail on the right). The standard
practice is to assume that you need sufficient principal components to account for 90 % of the
total variation (but that would take 24 components in the present case). Principal component
loadings show how the original variables (the 54 different species in our example) influence
the principal components.

In a biplot, the original variables are shown by arrows (54 of them in this case):

biplot(model)

The numbers represent the rows in the original dataframe, and the directions of the arrows
show the relative loadings of the species on the first and second principal components.

734 THE R BOOK

Thus, the species AP, AE and HS have strong positive loadings on PC1 and LC, PS BM
and LO have strong negative loadings. PC2 has strong positive loadings from species AO
and AC and negative loadings from TF, PL and RA.

If there are explanatory variables available, you can plot these against the principal
components to look for patterns. In this example, it looks as if the first principal component
is associated with increasing biomass (and hence increasing competition for light) and as if
the second principal component is associated with declining soil pH (increasing acidity):

biomass soil pH

P
C

 1

P
C

 2

4 5 6 7 8 92 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.03

0
–6

–8
–4

–2
2

4

0
–4

–6
–2

2
4

6

MULTIVARIATE STATISTICS 735

yv<-predict(model)[,1]
yv2<-predict(model)[,2]
par(mfrow=c(2,2))
plot(pgdata$hay,yv,pch=16,xlab="biomass",ylab="PC 1")
plot(pgdata$pH,yv2,pch=16,xlab="soil pH",ylab="PC 2")

Factor Analysis

With principal components analysis we were fundamentally interested in the variables and
their contributions. Factor analysis aims to provide usable numerical values for quantities
such as intelligence or social status that are not directly measurable. The idea is to use
correlations between observable variables in terms of underlying ‘factors’. Note that ‘factors’
in factor analysis are not the same as the categorical explanatory variables we have been
calling factors throughout the rest of this book.

Compared with PCA, the variables themselves are of relatively little interest in factor
analysis; it is an understanding of the hypothesized underlying factors that is the main aim.
The idea is that the correlations amongst the variables are explained by the common factors.
The function factanal performs maximum likelihood factor analysis on a covariance matrix
or data matrix. The pgd dataframe is introduced on p. 732. You need to specify the number
of factors you want to estimate – we begin with 8:

factanal(pgd,8)

Call:
factanal(x = pgd, factors = 8)

Uniquenesses:
AC AE AM AO AP AR AS AU BH BM

0.638 0.086 0.641 0.796 0.197 0.938 0.374 0.005 0.852 0.266
CC CF CM CN CX CY DC DG ER FM

0.056 0.574 0.786 0.579 0.549 0.733 0.837 0.408 0.072 0.956
FP FR GV HI HL HP HS HR KA LA

0.371 0.815 0.971 0.827 0.921 0.218 0.332 0.915 0.319 0.305
LC LH LM LO LP OR PL PP PS PT

0.349 0.333 0.927 0.121 0.403 0.005 0.286 0.606 0.336 0.401
QR RA RB RC SG SM SO TF TG TO

0.913 0.491 0.005 0.754 0.341 0.212 0.825 0.428 0.476 0.469
TP TR VC VK

0.309 0.611 0.651 0.170

Loadings:

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8
AC −0.512 −0.268 0.121
AE 0.925 −0.107 −0.146 −0.118
AM −0.206 0.413 0.213 0.163 0.115 0.153 0.186
AO −0.312 −0.196 −0.151 −0.105 −0.148 −0.102
AP 0.827 −0.173 −0.195 −0.167 −0.123
AR 0.150 0.111 0.127
AS 0.778
AU 0.996

736 THE R BOOK

BH 0.380
BM −0.116 0.292 0.695 0.380
CC −0.152 0.159 0.943
CF 0.539 0.342
CM 0.434 −0.110
CN −0.276 0.143 0.541 0.147
CX 0.628 0.169 0.146
CY −0.211 −0.162 0.340 0.270
DC −0.125 0.372
DG 0.738 −0.127 0.145
ER 0.960
FM −0.108 0.133
FP 0.245 0.226 0.478 0.493 −0.176
FR −0.386 −0.144
GV −0.134
HI −0.202 −0.129 −0.163 0.182 0.216
HL −0.157 −0.127 −0.139
HP −0.155 0.832 0.240
HS 0.746 −0.102 0.257 −0.152
HR −0.155 −0.107 −0.122 0.101 0.150
KA −0.167 0.774 −0.169 0.139
LA 0.829
LC −0.306 0.378 −0.125 0.529 0.328
LH −0.256 0.556 −0.132 0.421 0.223 0.195
LM 0.112 0.221
LO −0.129 0.432 0.781 0.251
LP 0.115 0.745
OR 0.996
PL 0.369 0.675 0.337
PP 0.527 0.226 −0.167 −0.175
PS −0.212 0.301 −0.130 0.681 0.150 0.158
PT 0.741 −0.100 0.150 −0.105
QR −0.194 −0.135
RA 0.195 0.227 0.578 0.205 −0.166 −0.107
RB −0.122 0.158 0.272 0.934
RC 0.361 −0.198 −0.176 −0.152
SG 0.806
SM 0.388 0.787
SO −0.100 0.386
TF 0.702 0.260
TG 0.141 0.583 −0.110 0.367 0.107
TO 0.418 0.567 −0.158
TP 0.818
TR 0.141 0.306 0.238 0.458
VC 0.403 0.246 0.309 −0.169
VK 0.909

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8
SS loadings 5.840 3.991 3.577 3.540 3.028 2.644 2.427 2.198
Proportion Var 0.108 0.074 0.066 0.066 0.056 0.049 0.045 0.041
Cumulative Var 0.108 0.182 0.248 0.314 0.370 0.419 0.464 0.505

Test of the hypothesis that 8 factors are sufficient.
The chi-squared statistic is 1675.57 on 1027 degrees of freedom.
The p-value is 5.92e-34

MULTIVARIATE STATISTICS 737

On factor 1 you see strong positive correlations with AE, AP and AS and negative
correlations with AC, AO and FR: this has a natural interpretation as a gradient from tall
neutral grassland (positive correlations) to short, acidic grasslands (negative correlations).
On factor 2, low-growing species associated with moderate to high soil pH (AM, CF, HP,
KA) have large positive values and low-growing acid-loving species (AC and AO) have
negative values. Factor 3 picks out the key nitrogen-fixing (legume) species LP and TP with
high positive values. And so on.

Note that the loadings are of length 54 (the number of variables) not 89 (the number of
rows in the dataframe representing the different plots in the experiment), so we cannot plot
the loadings against the covariates as we did with PCA (p. 734). However, we can plot the
factor loadings against one another:

par(mfrow=c(2,2))
plot(loadings(model)[,1],loadings(model)[,2],pch=16,xlab="Factor 1",ylab="Factor 2")
plot(loadings(model)[,1],loadings(model)[,3],pch=16,xlab="Factor 1",ylab="Factor 3")
plot(loadings(model)[,1],loadings(model)[,4],pch=16,xlab="Factor 1",ylab="Factor 4")
plot(loadings(model)[,1],loadings(model)[,5],pch=16,xlab="Factor 1",ylab="Factor 5")

Factor 1 Factor 1

Factor 1Factor 1

F
ac

to
r

3

F
ac

to
r

2
F

ac
to

r
4

F
ac

to
r

5

–0.4 0.0 0.2 0.4 0.6 0.8 –0.4 0.0 0.2 0.4 0.6 0.8

–0.4 0.0 0.2 0.4 0.6 0.8–0.4 0.0 0.2 0.4 0.6 0.8

–0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

–0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

–0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

What factanal does would conventionally be described as exploratory, not confirmatory,
factor analysis. For the latter, try the sem package:

install.packages("sem")
library(sem)
?sem

738 THE R BOOK

Cluster Analysis

Cluster analysis is a set of techniques that look for groups (clusters) in the data.
Objects belonging to the same group resemble each other. Objects belonging to differ-
ent groups are dissimilar. Sounds simple, doesn’t it? The problem is that there is usu-
ally a huge amount of redundancy in the explanatory variables. It is not obvious which
measurements (or combinations of measurements) will turn out to be the ones that are
best for allocating individuals to groups. There are three ways of carrying out such
allocation:

• partitioning into a number of clusters specified by the user, with functions such as
kmeans

• hierarchical, starting with each individual as a separate entity and ending up with a single
aggregation, using functions such as hclust

• divisive, starting with a single aggregate of all the individuals and splitting up clusters
until all the individuals are in different groups.

Partitioning

The kmeans function operates on a dataframe in which the columns are variables and
the rows are the individuals. Group membership is determined by calculating the centroid
for each group. This is the multidimensional equivalent of the mean. Each individual is
assigned to the group with the nearest centroid. The kmeans function fits a user-specified
number of cluster centres, such that the within-cluster sum of squares from these centres is
minimized, based on Euclidian distance. Here are data from six groups with two continuous
explanatory variables (x and y):

kmd<-read.table("c:\\temp\\kmeansdata.txt",header=T)
attach(kmd)
names(kmd)

[1] "x" "y" "group"

The raw data show hints of clustering (top left) but the clustering becomes clear only
after the groups have been coloured differently using col=group (top right). kmeans does
an excellent job when it is told that there are six clusters (open symbols, bottom left) but, of
course, there can be no overlap in assignation (as there was in the original data). When just
four clusters are estimated, it is the centre cluster and the south-east cluster that disappear
(open symbols, bottom right). The plots were produced like this:

par(mfrow=c(2,2))
plot(x,y,pch=16)
plot(x,y,col=group,pch=16)
model<-kmeans(data.frame(x,y),6)
plot(x,y,col=model[[1]])
model<-kmeans(data.frame(x,y),4)
plot(x,y,col=model[[1]])
par(mfrow=c(1,1))

MULTIVARIATE STATISTICS 739

5
10

15

5 10

x

y

15

5
10

15

5 10
x

y

15

5
10

15

5 10

x

y

15

5
10

15

5 10

x

y

15

To see the rate of misclassification we can tabulate the real groups against the groups
determined by kmeans:

model<-kmeans(data.frame(x,y),6)
table(model[[1]],group)

group
1 2 3 4 5 6

1 20 0 0 1 0 0
2 0 24 0 0 3 0
3 0 0 0 18 0 0
4 0 0 25 0 0 0
5 0 0 0 0 0 25
6 0 1 0 1 27 0

Group 1 were associated perfectly (20 out of 20) but one member of group 4 was included,
group 2 had one omission (1 out of 25 was allocated to group 6) and three members
of group 5 were included, group 3 was associated perfectly (out of 25), there were 2
omissions from group 4 (one to group 1 and one to group 6 out of 20), there were
three omissions from group 5 (3 out of 30 were allocated to group 2) and the group was
tainted by one from group 2 and one from group 4, while group 6 was matched perfectly
(25 out of 25). This is impressive, given that there were several obvious overlaps in the
original data.

740 THE R BOOK

Taxonomic use of kmeans

In the next example we have measurements of seven variables on 120 individual plants.
The question is which of the variables (fruit size, bract length, internode length, petal width,
sepal length, petiole length or leaf width) are the most useful taxonomic characters.

taxa<-read.table("c:\\temp\\taxon.txt",header=T)
attach(taxa)
names(taxa)

[1] "Petals" "Internode" "Sepal" "Bract" "Petiole" "Leaf"
[7] "Fruit"

A simple and sensible way to start is by looking at the dataframe as a whole, using pairs
to plot every variable against every other:

pairs(taxa)

Petals

Internode

Sepal

Bract

Petiole

Leaf

Fruit

–10

4 5 6 7 8

4
5

6
7

8

7 9 11

7
9

11

1.
0

2.
0

2.
0

3.
5

5.
0

2.0 3.5 5.0 7.0

7.
0

7.4

7.
4

7.8

7.
8

3.
0

1.0 2.0 3.0

17
.0

18
.5

20
.0

17.0 18.5 20.0

25
27

29
31

25 27 29 31

There appears to be excellent data separation on sepal length, and reasonable separation on
petiole length and leaf width, but nothing obvious for the other variables.

MULTIVARIATE STATISTICS 741

These data actually come from four taxa (labelled I–IV), so in this contrived case we
know that there are four groups. In reality, of course, we would not know this, and finding
out the number of groups would be one of the central aims of the study. We begin, therefore,
by seeing how well kmeans allocates individuals to four groups:

kmeans(taxa,4)

$cluster

[1] 4 4 4 2 2 2 4 4 4 2 4 2 4 4 4 4 4 2 4 4 1 4 2 4 4 1 4 4 1 4
3 3 1 1 4 3 3

[38] 2 3 3 1 1 3 3 2 1 3 3 4 3 3 3 2 3 1 3 1 1 1 3 1 2 2 2 1 1 2
2 2 1 1 2 1 2

[75] 4 2 2 1 1 1 3 2 2 3 1 1 1 2 4 1 3 1 3 1 3 3 1 4 3 3 1 3 2 3
1 3 3 3 3 3 3

[112] 1 1 3 3 3 1 3 1 1

$centers

Petals Internode Sepal Bract Petiole Leaf Fruit
1 6.710503 29.95147 3.058517 18.29739 9.671325 2.022993 7.518510
2 6.544988 26.13485 2.523379 18.53230 10.297043 2.156161 7.482513
3 7.122162 26.69160 3.580120 18.37431 9.174025 1.570292 7.418814
4 5.421399 28.21695 2.548485 18.65893 10.645695 1.468021 7.540113

$withinss
[1] 132.59054 78.67365 186.29369 67.54199

$size
[1] 35 24 36 25

Because we know what the answer ought to be (the data are arranged so that the first 30
numbers are taxon I, the next 30 are taxon II, and so on) we can see that kmeans has made
lots of mistakes. The output of the clustering vector should really look like this:

[1] 1
[26] 1 1 1 1 1 2
[51] 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[76] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4

[101] 4

Let’s try three groups:

kmeans(taxa,3)

$cluster

[1] 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2 3 3 2 3 1 1 2 2 3 1 1
[38] 1 1 1 2 2 1 2 1 2 1 1 3 1 1 1 1 1 2 1 2 2 2 1 2 1 1 1 2 2 1 1 1 2 2 1 2 1
[75] 3 1 1 2 2 2 1 3 1 1 2 2 2 1 3 2 1 2 1 2 1 2 2 3 1 1 2 1 1 1 2 1 1 1 1 1 1

[112] 2 2 1 1 1 2 1 2 2

$centers

Petals Internode Sepal Bract Petiole Leaf Fruit
1 6.974714 26.42633 3.208105 18.30580 9.460762 1.804778 7.427979
2 6.784111 29.86369 3.088054 18.37981 9.642643 2.006003 7.532579
3 5.489770 27.83010 2.552457 18.74768 10.751460 1.539130 7.527354

742 THE R BOOK

$withinss

[1] 249.1879 152.1044 105.0409

$size

[1] 52 37 31

Not very impressive at all. Of course, the computer was doing its classification blind. But
we know the four islands from which the plants were collected. Can we write a key that
ascribes taxa to islands better than the blind scheme adopted by kmeans? The answer is
definitely yes. When we used a classification tree model on the same data, it discovered a
faultless key on its own (see p. 695).

Hierarchical cluster analysis

The idea behind hierarchical cluster analysis is to show which of a (potentially large) set
of samples are most similar to one another, and to group these similar samples in the same
limb of a tree. Groups of samples that are distinctly different are placed in other limbs.
The trick is in defining what we mean by ‘most similar’. Each of the samples can be
thought of a sitting in an m-dimensional space, defined by the m variables (columns) in the
dataframe. We define similarity on the basis of the distance between two samples in this
m-dimensional space. Several different distance measures could be used, but the default is
Euclidean distance (for the other options, see ?dist), and this is used to work out the distance
from every sample to every other sample. This quantitative dissimilarity structure of the data
is stored in a matrix produced by the dist function. Initially, each sample is assigned to its
own cluster, and then the hclust algorithm proceeds iteratively, at each stage joining the two
most similar clusters, continuing until there is just a single cluster (see ?hclust for details).

The following data (introduced on p. 732) show the distribution of 54 plant species over
89 plots receiving different experimental treatments. The aim is to see which plots are
most similar in their botanical composition, and whether there are reasonably homogeneous
groups of plots that might represent distinct plant communities.

pgdata<-read.table("c:\\temp\\pgfull.txt",header=T)
attach(pgdata)
labels<-paste(plot,letters[lime],sep="")

The first step is to turn the matrix of measurements on individuals into a dissimilarity
matrix. In the dataframe, the columns are variables and the rows are the individuals, and we
need to calculate the ‘distances’ between each row in the dataframe and every other using
dist(pgdata[,1:54]). These distances are then used to carry out hierarchical cluster analysis
using the hclust function:

hpg<-hclust(dist(pgdata[,1:54]))

We can plot the object called hpg, and we specify that the leaves of the hierarchy are
labelled by their plot numbers (pasted together from the plot number and lime treatment):

plot(hpg,labels=labels,main="")

If you view this object in full-screen mode within R you will be able to read all the plot
labels, and to work out the groupings. It turns out that the groupings have very natural
scientific interpretations. The highest break, for instance, separates the two plots dominated
by Holcus lanatus (11.1d and 11.2d) from the other 87 plots. The plots on the right-hand

MULTIVARIATE STATISTICS 743

744 THE R BOOK

side all have soils that exhibit phosphorus deficiency. The leftmost groups are all from plots
receiving high rates of nitrogen and phosphorus input. More subtly, plots 12a and 3a are
supposed to be the same (they are replicates of the no-fertilizer, high-lime treatment), yet
they are separated at a break at height approximately 15. And so on.

Let’s try hierarchical clustering on the taxonomic data (p. 740).

plot(hclust(dist(taxa)),main="taxa cluster analysis")

Because in this artificial example we know that the first 30 rows in the dataframe come
from group 1, rows 31–60 from group 2, rows 61–90 from group 3 and rows 91–120 from
group 4, we can see than the grouping produced by hclust is pretty woeful. Most of the
rows in the leftmost major split are from group 2, but the rightmost split contains members
from groups 1, 4 and 3. Neither kmeans nor hclust is up to the job in this case. When we
know the group identities, then it is easy to use tree models to devise the optimal means of
distinguishing and classifying individual cases (see p. 695).

So there we have it. When we know the identity of the species, then tree models are
wonderfully efficient at constructing keys to distinguish between the individuals, and at
allocating them to the relevant categories. When we do not know the identities of the
individuals, then the statistical task is much more severe, and inevitably ends up being
much more error-prone. The best that cluster analysis could achieve through kmeans was
with five groups (one too many, as we know, having constructed the data) and in realistic
cases we have no way of knowing whether five groups was too many, too few or just right.
Multivariate clustering without a response variable is fundamentally difficult and equivocal.

Discriminant analysis

In this case, you know the identity of each individual (unlike cluster analysis) and you
want to know how the explanatory variables contribute to the correct classification of
individuals. The method works by uncovering relationships among the groups’ covariance
matrices to discriminate between groups. With k groups you will need k− 1 discriminators.
The functions you will need for discriminant analysis are available in the MASS library.
Returning to the taxon dataframe (see p. 740), we will illustrate the use of lda to carry out
a linear discriminant analysis. For further relevant information, see ?predict.lda and ?qda
in the MASS library.

library(MASS)
model<-lda(Taxon~.,taxa)
plot(model)

The linear discriminators LD1 and LD2 clearly separate taxon IV without error, but this is
easy because there is no overlap in sepal length between this taxon and the others. LD2 and
LD3 are quite good at finding taxon II (upper right), and LC1 and LC3 are quite good at
getting taxon I (bottom right). Taxon III would be what was left over. Here is the printed
model:

model

Call:
lda(Taxon~., data = taxa)

Prior probabilities of groups:
I II III IV

0.25 0.25 0.25 0.25

MULTIVARIATE STATISTICS 745

LD1

LD2

LD3

–4 –2 0 2 –4 –2 0 24 6

–2 0 2 4

–2
0

2
4

–2
–4

0
2

4
6

–2
–4

0
2

Group means:

Petals Internode Sepal Bract Petiole Leaf Fruit
I 5.476128 27.91886 2.537955 18.60268 10.864184 1.508029 7.574642
II 7.035078 27.69834 2.490336 18.47557 8.541085 1.450260 7.418702
III 6.849666 27.99308 2.446003 18.26330 9.866983 2.588555 7.482349
IV 6.768464 27.78503 4.532560 18.42953 10.128838 1.645945 7.467917

Coefficients of linear discriminants:

LD1 LD2 LD3
Petals −0.01891137 0.034749952 0.559080267
Internode 0.03374178 0.009670875 0.008808043
Sepal 3.45605170 −0.500418135 0.401274694
Bract 0.07557480 0.068774714 −0.024930728
Petiole 0.25041949 −0.343892260 −1.249519047
Leaf −1.13036429 −3.008335468 0.647932763
Fruit 0.18285691 −0.208370808 −0.269924935

746 THE R BOOK

Proportion of trace:

LD1 LD2 LD3
0.7268 0.1419 0.1313

So you would base your key on sepal first (3.45) then leaf �−3�008� then petiole �−1�249�.
Compare this with the key uncovered by the tree model on p. 695. Here are the predictions
from the linear discriminant analysis:

predict(model)

$class

[1] I I I I I I I I I I I I I I I I I I
[19] I I III I I I I I I I I I II II II II II II
[37] II II II II II II II II II II II II II II II II II II
[55] II II II II II II III III III III III III III III III III III III
[73] III III III III III III III III III III III III III III III III III III
[91] IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV
[109] IV IV IV IV IV IV IV IV IV IV IV IV

Levels: I II III IV

One of the members of taxon I is misallocated to taxon III (case 21), but otherwise the
discrimination is perfect. You can train the model with a random subset of the data (say,
half of it):

train<-sort(sample(1:120,60))
table(Taxon[train])

I II III IV
13 18 16 13

This set has only 13 members of taxon I and IV but reasonable representation of the other
two taxa.

model2<-lda(Taxon~.,taxa,subset=train)
predict(model2)

$class

[1] I I I I I I I I I I I I I II II II II II II
[20] II II II II II II II II II II II II III III III III III III III
[39] III III III III III III III III III IV IV IV IV IV IV IV IV IV IV
[58] IV IV IV

Levels: I II III IV

This is still very good: the first 13 should be I, the next 18 II, and so on. The discrimination
is perfect in this randomization. You can use the model based on the training data to predict
the unused data:

unused<-taxa[-train,]
predict(model,unused)$class
[1] I I I I I I I I I I I III I I I I I II II

[20] II II II II II II II II II II III III III III III III III III III
[39] III III III III III IV IV IV IV IV IV IV IV IV IV IV IV IV IV
[58] IV IV IV

Levels: I II III IV

table(unused$Taxon)

MULTIVARIATE STATISTICS 747

I II III IV
17 12 14 17

As you can see, one of the first 17 that should have been Taxon I was misclassified as
Taxon III, but all the other predictions were spot on.

Neural Networks

These are computationally intensive methods for finding pattern in data sets that are so
large, and contain so many explanatory variables, that standard methods such as multiple
regression are impractical (they would simply take too long to plough through). The key
feature of neural network models is that they contain a hidden layer: each node in the hidden
layer receives information from each of many inputs, sums the inputs, adds a constant (the
bias) then transforms the result using a fixed function. Neural networks can operate like
multiple regressions when the outputs are continuous variables, or like classifications when
the outputs are categorical. They are described in detail by Ripley (1996). Facilities for
analysing neural networks in the MASS library.

24
Spatial Statistics

There are three kinds of problems that you might tackle with spatial statistics:

• point processes (locations and spatial patterns of individuals);

• maps of a continuous response variable (kriging);

• spatially explicit responses affected by the identity, size and proximity of neighbours.

Point Processes

There are three broad classes of spatial pattern on a continuum from complete regularity
(evenly spaced hexagons where every individual is the same distance from its nearest
neighbour) to complete aggregation (all the individuals clustered into a single clump): we
call these regular, random and aggregated patterns and they look like this:

Regular

xregular

yr
eg

ul
ar

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Random

xrandom

yr
an

do
m

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Aggregated

xagg

ya
gg

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

In their simplest form, the data consist of sets of x and y coordinates within some sampling
frame such as a square or a circle in which the individuals have been mapped. The first
question is often whether there is any evidence to allow rejection of the null hypothesis
of complete spatial randomness (CSR). In a random pattern the distribution of each
individual is completely independent of the distribution of every other. Individuals neither
inhibit nor promote one another. In a regular pattern individuals are more spaced out

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

750 THE R BOOK

than in a random one, presumably because of some mechanism (such as competition) that
eliminates individuals that are too close together. In an aggregated pattern, individual
are more clumped than in a random one, presumably because of some process such as
reproduction with limited dispersal, or because of underlying spatial heterogeneity (e.g.
good patches and bad patches).

Counts of individuals within sample areas (quadrats) can be analysed by comparing the
frequency distribution of counts with a Poisson distribution with the same mean. Aggre-
gated spatial patterns (in which the variance is greater than the mean) are often well
described by a negative binomial distribution with aggregation parameter k (see p. 76).
The main problem with quadrat-based counts is that they are highly scale-dependent. The
same spatial pattern could appear to be regular when analysed with small quadrats, aggre-
gated when analysed with medium-sized quadrats, yet random when analysed with large
quadrats.

Distance measures are of two broad types: measures from individuals to their near-
est neighbours, and measures from random points to the nearest individual. Recall
that the nearest individual to a random point is not a randomly selected individual:
this protocol favours selection of isolated individuals and individuals on the edges of
clumps.

In other circumstances, you might be willing to take the existence of patchiness for
granted, and to carry out a more sophisticated analysis of the spatial attributes of the patches
themselves, their mean size and the variance in size, spatial variation in the spacing of
patches of different sizes, and so on.

Nearest Neighbours

Suppose that we have been set the problem of drawing lines to join the nearest neighbour
pairs of any given set of points �x� y� that are mapped in two dimensions. There are three
steps to the computing: we need to

• compute the distance to every neighbour;

• identify the smallest neighbour distance for each individual;

• use these minimal distances to identify all the nearest neighbours.

We start by generating a random spatial distribution of 100 individuals by simulating
their x and y coordinates from a uniform probability distribution:

x<-runif(100)
y<-runif(100)

The graphics parameter pty="s" makes the plotting area square, as we would want for a
map like this:

par(pty="s")
plot(x,y,pch=16)

SPATIAL STATISTICS 751

0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.4 0.6
x

y

0.8 1.0

Computing the distances is straightforward: for each individual we use Pythagoras to cal-
culate the distance to every other plant. The distance between two points with coordinates
�x1� y1� and �x2� y2� is d:

(x1, y1)

(x2, y2)

d

The square on the hypotenuse �d2� is the sum of the squares on the two adjacent sides:
�x2 − x1�

2 + �y2 − y1�
2 so the distance d is given by

d =√
�y2 − y1�

2 + �x2 − x1�
2�

We write a function for this as follows:

distance<-function(x1, y1, x2, y2) sqrt((x2 − x1)^2 + (y2 − y1)^2)

Now we loop through each individual i and calculate a vector of distances, d, from every
other individual. The nearest neighbour distance is the minimum value of d, and the identity
of the nearest neighbour, nn, is found using the which function, which(d==min(d[-i])),
which gives the subscript of the minimum value of d (the [-i] is necessary to exclude the
distance 0 which results from the ith individual’s distance from itself). Here is the complete

752 THE R BOOK

code to compute nearest neighbour distances, r , and identities, nn, for all 100 individuals
on the map:

r<-numeric(100)
nn<-numeric(100)
d<-numeric(100)
for (i in 1:100) �
for (k in 1:100) d[k]<-distance(x[i],y[i],x[k],y[k])
r[i]<-min(d[-i])
nn[i]<-which(d==min(d[-i]))
�

Now we can fulfil the brief, and draw lines to join each individual to its nearest neighbour,
like this:

for (i in 1:100) lines(c(x[i],x[nn[i]]),c(y[i],y[nn[i]]))

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

0.0 0.2 0.4 0.6 0.8 1.0

Note that when two points are very close together, and each is the nearest neighbour of the
other, it can look as if a single point is not joined to any neighbours.

The next task is to work out how many of the individuals are closer to the edge of the
area than they are to their nearest neighbour. Because the bottom and left margins are at
y = 0 and x = 0 respectively, the y coordinate of any point gives the distance from the
bottom edge of the area and the x coordinate gives the distance from the left-hand margin.
We need only work out the distance of each individual from the top and right-hand margins
of the area:

topd <- 1-y
rightd <- 1-x

SPATIAL STATISTICS 753

Now we use the parallel minimum function pmin to work out the distance to the nearest
margin for each of the 100 individuals:

edge<-pmin(x,y,topd,rightd)

Finally, we count the number of cases where the distance to the edge is less than the distance
to the nearest neighbour:

sum(edge<r)

[1] 18

and identify these points on the map by circling them in red:

id<-which(edge<r)
points(x[id],y[id],col="red",cex=1.5)

0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.4
x

y

0.6 0.8 1.0

Edge effects are potentially very important in spatial point processes, especially when
there are few individuals or the mapped area is long and thin (rather than square or circular).
Excluding the individuals that are closer to the edge reduces the mean nearest neighbour
distance:

mean(r)

[1] 0.05404338

mean(r[-id])

[1] 0.04884806

754 THE R BOOK

Tests for Spatial Randomness

Clark and Evans (1954) give a very simple test of spatial randomness. Making the strong
assumption that you know the population density of the individuals, � (generally you do not
know this, and would need to estimate it independently), then the expected mean distance
to the nearest neighbour is

E�r� =
√

�

2
�

In our example we have 100 individuals in a unit square, so � = 0�01 and E�r� = 0�05. The
actual mean nearest neighbour distance was

mean(r)

[1] 0.05404338

which is very close to expectation: this clearly is a random distribution of individuals (as
we constructed it to be). An index of randomness is given by the ratio r̄/E�r�= 2r̄

√
�. This

takes the value 1 for random patterns, more than 1 for regular (spaced-out) patterns, and
less than 1 for aggregated patterns.

One problem with such first-order estimates of spatial pattern (including measures such
as the variance–mean ratio) is that they can give no feel for the way that spatial distribution
changes within an area.

Ripley’s K

The second-order properties of a spatial point process describe the way that spatial interac-
tions change through space. These are computationally intensive measures that take a range
of distances within the area, calculate a pattern measure, then plot a graph of the function
against distance, to show how the pattern measure changes with scale. The most widely
used second order measure is the K function, which is defined as

K�d� = 1
�

E	number of points ≤ distance d of an arbitrary point
�

where � is the mean number of points per unit area (the intensity of the pattern). If there
is no spatial dependence, then the expected number of points that are within a distance d
of an arbitrary point is �d2 times the mean density. So, if the mean density is 2 points
per square metre �� = 2�, then the expected number of points within a 5 m radius is
��d2 = 2 ×� × 52 = 50� = 157�1. If there is clustering, then we expect an excess of points
at short distances (i.e. K�d� > �d2 for small d). Likewise, for a regularly spaced pattern,
we expect an excess of long distances, and hence few individuals at short distances (i.e.
K�d� < �d2). Ripley’s K (published in 1976) is calculated as follows:

K̂�d� = 1
n2

�A�∑∑
i �=j

Id�dij�

wij

�

Here n is the number of points in region A with area �A�, dij are the distances between points
(the distance between the ith and jth points, to be precise). To account for edge effects,
the model includes the term wij which is the fraction of the area, centred on i and passing

SPATIAL STATISTICS 755

through j, that lies within the area A (all the wij are 1 for points that lie well away from the
edges of the area). Id�dij� is an indicator function to show which points are to be counted as
neighbours at this value of d: it takes the value 1 if dij ≤d and zero otherwise (i.e. points with
dij > d are omitted from the summation). The pattern measure is obtained by plotting K̂�d�
against d . This is then compared with the curve that would be observed under complete
spatial randomness (namely, a plot of �d2 against d). When clustering occurs, K�d� > �d2

and the curve lies above the CSR curve, while regular patterns produce a curve below the
CSR curve.

You can see why you need the edge correction, from this simple simulation experiment.
For individual number 1, with coordinates �x1� y1�, calculate the distances to all the other
individuals, using the function dist that we wrote earlier (p. 751):

distances<-numeric(100)
for(i in 1:100) distances[i]<-distance(x[1],y[1],x[i],y[i])

Now find out how many other individuals are within a distance d of this individual. Take
as an example d = 0�1.

sum(distances<0.1) − 1

[1] 1

There was one other individual within a distance d = 0�1 of the first individual (the distance
0 from itself is included in the sum so we have to correct for this by subtracting 1). The
next step is to generalize the procedure from this one individual to all the individuals. We
make a two-dimensional matrix called dd to contain all the distances from every individual
(rows) to every other individual (columns):

dd<-numeric(10000)
dd<-matrix(dd,nrow=100)

The matrix of distances is computed within loops for both individual �j� and neighbour �i�
like this:

for (j in 1:100) {for(i in 1:100) dd[j,i]<-distance(x[j],y[j],x[i],y[i])}

Alternatively, you could use sapply with an anonymous function like this:

dd<-sapply(1:100,function (i,j=1:100) distance(x[j],y[j],x[i],y[i]))

We should check that the number of individuals within 0.1 of individual 1 is still 1 under
this new notation. Note the use of blank subscripts [1,] to mean ‘all the individuals in row
number 1’:

sum(dd[1,]<0.1)-1

[1] 1

So that’s OK. We want to calculate the sum of this quantity over all individuals, not just
individual number 1.

sum(dd<0.1)-100

[1] 252

756 THE R BOOK

This means that there are 252 cases in which other individuals are counted within d = 0�1
of focal individuals. Next, create a vector containing a range of different distances, d, over
which we want to calculate K�d� by counting the number of individuals within distance d,
summed over all individuals:

d<-seq(0.01,1,0.01)

For each of these distances we need to work out the total number of neighbours of all
individuals. So, in place of 0.1 (in the sum, above), we need to put each of the d values in
turn. The count of individuals is going to be a vector of length 100 (one for each d):

count<-numeric(100)

Calculate the count for each distance d:

for (i in 1:100) count[i]<-sum(dd<d[i])-100

The expected count increases with d as �d2 so we scale our count by dividing by the square
of the total number of individuals n2 = 1002 = 10000.

K<-count/10000

Finally, plot a graph of K against d:

plot(d,K,type="l")

0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.4 0.6

d

K

0.8 1.0

Not surprisingly, when we sample the whole area �d = 1�, we count all of the individuals
in every neighbourhood �K = 1�. For CSR the graph should follow �d2 so we add a line to
show this

lines(d,pi*d^2)

SPATIAL STATISTICS 757

0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.4 0.6

d

K

0.8 1.0

Up to about d = 0�2 the agreement between the two lines is reasonably good, but for longer
distances our algorithm is counting far too few neighbours. This is because much of the
area scanned around marginal individuals is invisible, since it lies outside the study area
(there may well be individuals out there, but we shall never know). This demonstrates that
the edge correction is a fundamental part of Ripley’s K.

Fortunately, we don’t have to write a function to work out a corrected value for K; it is
available as Kfn in the built-in spatial library. Here we use it to analyse the pattern of trees
in the dataframe called pines. The library function ppinit reads the data from a library file
called pines.dat which is stored in directory spatial/ppdata. It then converts this into a list
with names $x, $y and $area. The first row of the file contains the number of trees (71)
the second row has the name of the data set (PINES), the third row has the four boundaries
of the region plus the scaling factor (0, 96, 0, 100, 10 so that the coordinates of lower and
upper x are computed as 0 and 9.6, and the coordinates of lower and upper y are 0 and 10).
The remaining rows of the data file contain x and y coordinates for each individual tree,
and these are converted into a list of x values and a separate list of y values. You need to
know these details about the structure of the data files in order to use these library functions
with your own data (see p. 102).

library(spatial)
pines<-ppinit("pines.dat")

First, set up the plotting area with two square frames:

par(mfrow=c(1,2),pty="s")

758 THE R BOOK

On the left, make a map using the x and y locations of the trees, and on the right make a
plot of L�t� (the pattern measure) against distance:

plot(pines,pch=16)
plot(Kfn(pines,5),type="s",xlab="distance",ylab="L(t)")

Recall that if there was CSR, then the expected value of K would be �d2; to linearize this,
we could divide by � and then take the square root. This is the measure used in the function
Kfn, where it is called L�t� =√

K�t�/�. Now for the simulated upper and lower bounds:
the first argument in Kenvl (calculating envelopes for K) is the maximum distance (half
the length of one side), the second is the number of simulations (100 is usually sufficient),
and the third is the number of individuals within the mapped area (71 pine trees in this
case).

lims<-Kenvl(5,100,Psim(71))
lines(lims$x,lims$lower,lty=2,col="green")
lines(lims$x,lims$upper,lty=2,col="green")

0

0
2

4
6

8
10

2 4
pines$x

pi
ne

s$
y

6 8
distance

L(
t)

0

0
1

2
3

4
5

1 2 3 4 5

There is a suggestion that at relatively small distances (around 1 or so), the trees are
rather regularly distributed (more spaced out than random), because the plot of L�t� against
distance falls below the lower envelope of the CSR line (it should lie between the two limits
for its whole length if there was CSR). The mechanism underlying this spatial regularity
(e.g. non-random recruitment or mortality, competition between growing trees, or underlying
non-randomness in the substrate) would need to be investigated in detail. With an aggregated
pattern, the line would fall above the upper envelope (see p. 766).

Quadrat-based methods

Another approach to testing for spatial randomness is to count the number of individuals in
quadrats of different sizes. Here, the quadrats have an area of 0.01, so the expected number
per quadrat is 1.

x<-runif(100)
y<-runif(100)
plot(x,y,pch=16)
grid(10,10,lty=1)

SPATIAL STATISTICS 759

0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.4
x

y

0.6 0.8 1.0

The trick here is to use cut to convert the x and y coordinates of the map into bin numbers
(between 1 and 10 for the quadrat size we have drawn here). To achieve this, the break
points are generated by the sequence (0,1,0.1)

xt<-cut(x,seq(0,1,0.1))
yt<-cut(y,seq(0,1,0.1))

which creates vectors of integer subscripts between 1 and 10 for xt and yt. Now all we
need to do is use table to count up the number of individuals in every cell (i.e. in every
combination of xt and yt):

count<-as.vector (table(xt,yt))
table(count)

count

0 1 2 3 4
36 39 17 5 3

This shows that 36 cells are empty, 3 cells had four individuals, but no cells contained five
or more individuals. Now we need to see what this distribution would look like under a
particular null hypothesis. For a Poisson process (see p. 250), for example,

P�x� = e−��x

x! �

Note that the mean depends upon the quadrat size we have chosen. With 100 individuals in
the whole area, the expected number in any one of our 100 cells, �, is 1.0. The expected
frequencies of counts between 0 and 5 are therefore given by

760 THE R BOOK

(expected<-100*exp(-1)/sapply(0:5,factorial))

[1] 36.7879441 36.7879441 18.3939721 6.1313240 1.5328310
[6] 0.3065662

The fit between observed and expected is almost perfect (as we should expect, of course,
having generated the random pattern ourselves). A test of the significance of the difference
between an observed and expected frequency distribution is shown on p. 762.

Aggregated pattern and quadrat count data

Here is an example of a quadrat-based analysis of an aggregated spatial pattern:

trees<-read.table("c:\\temp\\trees.txt",header=T)
attach(trees)
names(trees)

[1] "x" "y"

plot(x,y,pch=16)
grid(10,10,lty=1)

0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.4

x

y

0.6 0.8 1.0

Now there are quadrats with as many as eight individuals, and despite the fact that the
mean number is greater than one individual per square, there are still 14 completely empty
squares. We cut up the data and tabulate the counts:

xt<-cut(x,seq(0,1,0.1))
yt<-cut(y,seq(0,1,0.1))
count<-as.vector(table(xt,yt))
table(count)

SPATIAL STATISTICS 761

count

0 1 2 3 4 5 6 7 8
14 26 19 21 6 7 1 3 3

The expected frequencies under the null hypothesis of a random pattern depend only on the
mean number per cell

mean(count)

[1] 2.37

and as a preliminary estimate of the departure from randomness we calculate the variance–
mean ratio (recall that with the Poisson distribution the variance is equal to the mean):

var(count)/mean(count)

[1] 1.599582

These data are distinctly aggregated (variance/mean � 1), so we might compare the counts
with a negative binomial distribution (p. 251). The expected frequencies are estimated by
multiplying our total number of squares (100) by the probability densities from a negative
binomial distribution generated by the function dnbinom. This has three arguments: the
counts for which we want the probabilities (0:8), the mean (mu=2.37) and the aggregation
parameter k = mu^2/(var-mu) = size=3.95:

expected<-dnbinom(0:8, size=3.95, mu=2.37)*100

The observed (black) and expected frequencies (white) are to be shown as paired bars –
you need to click when the cursor is in the right position on the graph, then the locator(1)
function will return the x and y coordinates of the bottom left-hand corner of the legend:

ht<-numeric(18)
observed<-table(count)
ht[seq(1,17,2)]<-observed
ht[seq(2,18,2)]<-expected
names<-rep("",18)
names[seq(1,17,4)]<-as.character(seq(0,8,2))
barplot(ht,col=c(1,0),names=names)
legend(locator(1),c("observed","expected"),fill=c(1,0))

The fit is reasonably good, but we need a quantitative estimate of the lack of agreement
between the observed and expected distributions. Pearson’s chi-squared is perhaps the
simplest (p. 303). We need to trim the observed and expected vectors so that none of the
expected frequencies is less than 4:

expected[7]<-sum(expected[7:9])
expected<-expected[-c(8:9)]
observed[7]<-sum(observed[7:9])
observed<-observed[-c(8:9)]

Now calculate Pearson’s chi-squared as
∑

	�O − E�2/E
:

sum((observed-expected)^2/expected)

[1] 4.442496

762 THE R BOOK

0

0
5

10
15

20
25

2 4 6 8

observed
expected

The number of degrees of freedom is the number of comparisons minus the number of
parameters estimated minus 1 (i.e. 7 − 2 − 1 = 4 d.f.). So the probability of obtaining a
chi-squared value of this size (4.44) or greater is

1-pchisq(4.44,4)

[1] 0.3497213

We conclude that the negative binomial is a reasonable description of these quadrat data
(because p is much greater than 0.05).

Libraries for spatial statistics

In addition to the built-in library spatial there are two substantial contributed packages for
analysing spatial data. The spatstat library is what you need for the statistical analysis of
spatial point patterns (below left), while the spdep library is good for the spatial analysis
of data from mapped regions (right).

With point patterns the things you will want to do include

• creation, manipulation and plotting of point patterns,

• exploratory data analysis,

• simulation of point process models,

• parametric model fitting,

• hypothesis tests and diagnostics,

SPATIAL STATISTICS 763

0

0
40

0
80

0
12

00

500 1500 2500 –84

32
34

36
38

–82 –80 –78 –76

whereas with maps you might

• compute basic spatial statistics such as Moran’s I and Geary’s C,

• create neighbour objects of class nb,

• create weights list objects of class lw,

• work out neighbour relations from polygons (outlines of regions),

• colour mapped regions on the basis of derived statistics.

You need to take time to master the different formats of the data objects used by the two
libraries. You will waste a lot of time if you try to use the functions in these libraries with
your own, unreconstructed data files.

Here is the code for installing and reading about spatstat and spdep:

install.packages("spatstat")
library(help=spatstat)
library(spatstat)
demo(spatstat)
install.packages("spdep")
library(help=spdep)
library(spdep)

The spatstat library

You need to use the function ppp to convert your coordinate data into an object of class
ppp representing a point pattern data set in the two-dimensional plane. Our next dataframe
contains information on the locations and sizes of 3359 ragwort plants in a 30 m ×15 mmap:

data<-read.table("c:\\temp\\ragwortmap2006.txt",header=T)
attach(data)
names(data)

[1] "ROW" "COLUMN" "X" "Y" "rosette"
[6] "regenerating" "stems" "diameter" "xcoord" "ycoord"
[11] "type"

The plants are classified as belonging to one of four types: skeletons are dead stems of
plants that flowered the year before, regrowth are skeletons that have live shoots at the

764 THE R BOOK

base), seedlings are small plants (a few weeks old) and rosettes are larger plants (one or
more years old) destined to flower this year. The function ppp requires separate vectors
for the x and y coordinates: these are in our file under the names xcoord and ycoord. The
third and fourth arguments to ppp are the boundary coordinates for x and y respectively (in
this example c(0,3000) for x and c(0,1500) for y). The final argument to ppp contains a
vector of what are known as ‘marks’: these are the factor levels associated with each of the
points (in this case, type is either skeleton, regrowth, seedling or rosette). You give a name
to the ppp object (ragwort) and define it like this:

ragwort<-ppp(xcoord,ycoord,c(0,3000),c(0,1500),marks=type)

You can now use the object called ragwort in a host of different functions for plotting and
statistical modelling within the spatstat library. For instance, here are maps of the point
patterns for the four plant types separately:

plot(split(ragwort),main="")

regrowth

seedling skeleton

rosette

Point patterns are summarized like this:

summary(ragwort)

Marked planar point pattern: 3359 points
Average intensity 0.000746 points per unit area
Marks:

frequency proportion intensity
regrowth 135 0.0402 3.00e-05
rosette 146 0.0435 3.24e-05
seedling 1100 0.3270 2.44e-04
skeleton 1980 0.5890 4.40e-04

Window: rectangle = [0 , 3000] × [0 , 1500]
Window area = 4500000

SPATIAL STATISTICS 765

which computes the frequency and intensity for each mark (‘intensity’ is the mean density
of points per unit area). In this case, where distances are in cem centimetres, the intensity
is the mean number of plants per square centimetre (the highest intensity is skeletons, with
0�000 44/cm2). The function quadratcount produces a useful summary of counts:

plot(quadratcount(ragwort))

quadratcount(ragwort)

60 147 261 292 76

105 101 188 155 141

64 95 151 228 147

98 129 115 177 154

62 77 88 145 103

This is the default, but you can specify either the numbers of quadrats in the x and y
directions (default 5 and 5), or provide numeric vectors giving the x and y coordinates of
the boundaries of the quadrats. If we want counts in 0.5 m squares, then

plot(quadratcount(ragwort,
xbreaks=c(0,500,1000,1500,2000,2500,3000),
ybreaks=c(0,500,1000,1500)),main="")

100 145 261 388 267 149

100 169 157 261 259 171

83 169 96 190 216 178

There are functions for producing density plots of the point pattern:

Z <- density.ppp(ragwort)
plot(Z,main="")

766 THE R BOOK

The classic graphical description of spatial point patterns is Ripley’s K (see p. 757).
K <- Kest(ragwort)
plot(K, main = "K function")

The red dotted line shows the expected number of plants within a radius r of a plant under
the assumption of complete spatial randomness. The observed curve (black) lies above this
line, indicating spatial aggregation at all spatial scales up to more than 300 cm.

The pair correlation function for the ragwort data looks like this:

g(
r)

2
4

6
8

10
12

r
0 100 200 300

Pair correlation function

SPATIAL STATISTICS 767

pc <- pcf(ragwort)
plot(pc, main = "Pair correlation function")

There is strong correlation between pairs of plants at small scales but much less above
r = 20 cm. The function distmap shows the distance map around individual plants:

Z <- distmap(ragwort)
plot(Z,main="")

0 1000 1500 2000500 2500 3000

50
0

10
00

15
00

0 0
50

10
0

15
0

20
0

You can use spatstat to generate a wide range of patterns of random points, including
independent uniform random points, inhomogeneous Poisson point processes, inhibition
processes, and Gibbs point processes using Metropolis–Hastings (see ?spatstat for details).
Some useful functions on point-to-point distances in spatstat include

nndist nearest neighbour distances

nnwhich find nearest neighbours

pairdist distances between all pairs of points

crossdist distances between points in two patterns

exactdt distance from any location to nearest data point

distmap distance map image

density.ppp kernel smoothed density.

There are several summary statistics for a multitype point pattern with a component $marks
which is a factor.

Gcross,Gdot,Gmulti multitype nearest neighbour distributions.

Kcross,Kdot, Kmulti multitype K-functions.

Jcross,Jdot,Jmulti multitype J -functions.

alltypes estimates of the above for all i� j pairs

768 THE R BOOK

lest multitype I-function

Kcross.inhom inhomogeneous counterpart of Kcross

Kdot.inhom inhomogeneous counterpart of Kdot.

Point process models are fitted using the ppm function like this:

model <- ppm(ragwort, ~marks + polynom(x, y, 2), Poisson())
plot(model)
summary(model)

The spdep library

The key to using this library is to understand the differences between the various formats
in which the spatial data can be held:

• x and y coordinates (in a two-column matrix, with x in column 1 and y in 2);

• lists of the regions that are neighbours to each region, with (potentially) unequal num-
bers of neighbours in different cases (this is called a neighbour file and belongs to
class nb);

• dataframes containing a region, its neighbour and the statistical weight of the association
between the two regions on each row (class data.frame);

• lists containing the identities of the k nearest neighbours (class knn);

• a weights list object suitable for computing Moran’s I or Geary’s C (class lw);

• lists of polygons, defining the outlines of regions on a map (class polylist).

Unlike spatstat (above) where the x and y coordinates were in separate vectors, spdep
wants the x and y coordinates in a single two-column matrix. For the ragwort data (p. 763)
we need to write:

library(spdep)
myco<-cbind(xcoord,ycoord)
myco<-matrix(myco,ncol=2)

A raw list of coordinates contains no information about neighbours, but we can use the
knearneigh function to convert a matrix of coordinates into an object of class knn. Here
we ask for the four nearest neighbours of each plant:

myco. knn <- knearneigh(myco, k=4)

This list object has the following structure:

str(myco.knn)

List of 5
$ nn : int [1:3359, 1:4] 2 1 4 3 7 4 8 7 10 9 � � �
$ np : int 3359
$ k : num 4
$ dimension: int 2
$ x : num [1:3359, 1:2] 27 29 20 20 78 25 89 97 253 259 � � �

SPATIAL STATISTICS 769

- attr(*, "class")= chr "knn"
- attr(*, "call")= language knearneigh(x = myco, k = 4)

• $nn contains 3359 lists, each a vector of length 4, containing the identities of the four
points that are the nearest neighbours of each of the points from 1 to 3359.

• $np (an integer) is the number of points in the pattern.

• $k is the number of neighbours of each point.

• $dimension is 2.

• $x is the matrix of coordinates of each point (x in the first column, y in the second).

Before you can do much with a knn object you will typically want to convert it to a
neighbour object (nb) using the knn2nb function like this:

myco.nb<-knn2nb(myco.knn)

You can do interesting things with nb objects. Here is a plot with each point joined to its
four nearest neighbours – you specify the nb object and the matrix of coordinates:

plot(myco.nb,myco)

The essential concept for using the spdep package is the neighbour object (with class
nb). For a given location, typically identified by the �x� y� coordinates of its centroid, the
neighbour object is a list, with the elements of the list numbered from 1 to the number
of locations, and each element of the list contains a vector of integers representing the
identities of the locations that share a boundary with that location. The important point is
that different vectors are likely to be of different lengths.

The simplest way to create an nb object is to read a text file containing one row for each
neighbour relationship, using the special input function read.gwt2nb. The header row can
take one of two forms. The simplest (called ‘Old-style GWT’) is a single integer giving
the number of locations in the file. There will always be many more rows in the data file
than this number, because each location will typically have several neighbours. The second
form of the header row has four elements: the first is set arbitrarily to zero, the second is

770 THE R BOOK

the integer number of locations, the third is the name of the shape object and the fourth is
the vector of names identifying the locations. An example should make this clear. These
are the contents of a text file called naydf.txt:

5
1 2 1
1 3 1
2 1 1
2 3 1
2 4 1
3 1 1
3 2 1
3 5 1
4 2 1
4 3 1
4 5 1
5 3 1
5 4 1

The 5 in the first row indicates that this file contains information on five locations. On
subsequent lines the first number identifies the location, the second number identifies one
of its neighbours, and the third number is the weight of that relationship. Thus, location 5
has just two neighbours, and they are locations 3 and 4 (the last two rows of the file). We
create a neighbour object for these data with the read.gwt2nb function like this:

dd<-read.gwt2nb("c:\\temp\\naydf.txt")

Here is a summary of the newly-created neighbour object called dd:

summary(dd)

Neighbour list object:
Number of regions: 5
Number of nonzero links: 13
Percentage nonzero weights: 52
Average number of links: 2.6
Non-symmetric neighbours list
Link number distribution:

2 3
2 3
2 least connected regions:
1 5 with 2 links
3 most connected regions:
2 3 4 with 3 links

Here are the five vectors of neighbours:

dd[[1]]

[1] 2 3

dd[[2]]

[1] 1 3 4

SPATIAL STATISTICS 771

dd[[3]]

[1] 1 2 5

dd[[4]]

[1] 2 3 5

dd[[5]]

[1] 3 4

The coordinates of the five locations need to be specified:

coox<-c(1,2,3,4,5)
cooy<-c(3,1,2,0,3)

and the vectors of coordinates need to be combined into a two-column matrix. Now we can
use plot with dd and the coordinate matrix to indicate the neighbour relations of all five
locations like this:

plot(dd,matrix(cbind(coox,cooy),ncol=2))
text(coox,cooy,as.character(1:5),pos=rep(3,5))

1

3

2

5

4

Note the use of pos = 3 to position the location numbers 1 to 5 above their points. You
can see that locations 1 and 5 are the least connected (two neighbours) and location 3
is the most connected (four neighbours). Note that the specification in the data file was
not fully reciprocal, because location 4 was defined as a neighbour of location 3 but not
vice versa. There is a comment, Non-symmetric neighbours list, in the output
to summary(dd) to draw attention to this. A function make.sym.nb(dd) is available to
convert the object dd into a symmetric neighbours list.

For calculating indices much as Moran’s I and Geary’s C you need a ‘weights list’ object.
This is created most simply from a neighbour object using the function nb2listw. For the
ragwort data, we have already created a neighbour object called myco.nb (p. 768) and we
create the weights list object myco.lw like this:

772 THE R BOOK

myco.lw<-nb2listw(myco.nb, style="W")
myco.lw

Characteristics of weights list object:
Neighbour list object:
Number of regions: 3359
Number of nonzero links: 13436
Percentage nonzero weights: 0.1190831
Average number of links: 4
Non-symmetric neighbours list

Weights style: W
Weights constants summary:

n nn S0 S1 S2
W 3359 11282881 3359 1347.625 10385.25

There are three classic tests based on spatial cross products C�i� j�, where z�i� = �x�i� −
mean�x��/sd�x�:

• Moran �C(i,j) = z(i)z(j)�;

• Geary �C(i,j) = (z(i) - z(j))∧ 2�;

• Sokal �C(i,j) = �z(i) − z(j)��.

Here is the Moran I test for the ragwort data, using the weights list object myco.lw:

moran(1:3359,myco.lw,length(myco.nb),Szero(myco.lw))

$I
	1] 0.9931224

$K
	1] 1.800000

Here is Geary’s C for the same data:

geary(1:3359,myco.lw,length(myco.nb),length(myco.nb)-1,Szero(myco.lw))

$C

	1] 0.004549794

$K

	1] 1.800000

Here is Mantel’s permutation test:

sp.mantel.mc(1:3359,myco.lw,nsim=99)

Mantel permutation test for moran measure

data: 1:3359
weights: myco.lw
number of simulations + 1: 100

SPATIAL STATISTICS 773

statistic = 3334.905, observed rank = 100, p-value = 0.01
alternative hypothesis: greater
sample estimates:
mean of permutations sd of permutations

3.291485 35.557043

In all cases, the first argument is a vector of location numbers (1 to 3359 in the rag-
wort example), the second argument is the weight list object myco.lw. For moran, the
third argument is the length of the neighbours object, length(myco.nb) and the fourth is
Szero(myco.lw), the global sum of weights, both of which evaluate to 3359 in this case.
The function geary has an extra argument, length(myco.nb)-1 and sp.mantel.mc specifies
the number of simulations.

Polygon lists

Perhaps the most complex spatial data handled by spdep comprise digitized outlines (sets
of x and y coordinates) defining multiple regions, each of which can be interpreted by R as
a polygon. Here is such a list from the built-in columbus data set:

data(columbus)
polys

The polys object is of class polylist and comprises a list of 49 polygons. Each element of the
list contains a two-column matrix with x coordinates in column 1 and y coordinates in column
2, with as many rows as there are digitized points on the outline of the polygon in question.
After the matrix of coordinates come the boundary box, and various plotting options:

attr(,"bbox")
[1] 10.42425 11.63387 11.20483 12.03754
attr(,"ringDir")
[1] 1
attr(,"after")
[1] NA
attr(,"plotOrder")
[1] 1
attr(,"nParts")
[1] 1
attr(,"pstart")
attr(,"pstart")$from
[1] 1
attr(,"pstart")$to
[1] 27

There is an extremely useful function poly2nb that takes the list of polygons and works
out which regions are neighbours of one another by looking for shared boundaries. The
result is an nb object (here called colnbs), and we can get a visual check of how well
poly2nb has worked by overlaying the neighbour relations on a map of the polygon outlines:

plot(polys, border="grey", forcefill=FALSE)
colnbs<- poly2nb(polys)
plot(colnbs,coords,add=T)

The agreement is perfect. Obviously, creating a polygon list is likely to be a huge amount
of work, especially if there are many regions, each with complicated outlines. Before you

774 THE R BOOK

6 7 8 9 10 11

11
12

13
14

15

start making one, you should check that it has not been done already by someone else who
might be willing to share it with you. To create polygon lists and bounding boxes from
imported shape files you should use one of read.shapefile or Map2poly

?read.shapefile
?Map2poly

Subtleties include the facts that lakes are digitized anti-clockwise and islands are digitized
clockwise.

Geostatistical data

Mapped data commonly show the value of a continuous response variable (e.g. the concen-
tration of a mineral ore) at different spatial locations. The fundamental problem with this
kind of data is spatial pseudoreplication. Hot spots tend to generate lots of data, and these
data tend to be rather similar because they come from essentially the same place. Cold spots
are poorly represented and typically widely separated. Large areas between the cold spots
have no data at all.

Spatial statistics takes account of this spatial autocorrelation in various ways. The fun-
dament tool of spatial statistics is the variogram (or semivariogram). This measures how
quickly spatial autocorrelation �h� falls off with increasing distance:

�h� = 1
2 �N�h��

∑
N�h�

�zi − zj�
2

SPATIAL STATISTICS 775

where N�h� is the set of all pairwise Euclidean distances i − j = h� �N�h�� is the number
of distinct pairs within N�h�, and zi and zj are values of the response variable at spatial
locations i and j. There are two important rules of thumb: (1) the distance of reliability of
the variogram is less than half the maximum distance over the entire field of data; and (2)
you should only consider producing an empirical variogram when you have more than 30
data points on the map.

Plots of the empirical variogram against distance are characterized by some quaintly
named features which give away its origin in geological prospecting:

• nugget, small-scale variation plus measurement error;

• sill, the asymptotic value of �h� as h → 	, representing the variance of the random field;

• range, the threshold distance (if such exists) beyond which the data are no longer
autocorrelated

Variogram plots that do not asymptote may be symptomatic of trended data or a non-
stationary stochastic process. The covariogram C�h� is the covariance of z values at
separation h, for all i and i + h within the maximum distance over the whole field of data:

cov�Z�i + h��Z�i�� = C�h�

The correlogram is a ratio of covariances:

��h� = C�h�

C�0�
= 1 − �h�

C�0�
�

Here C�0� is the variance of the random field and �h� is the variogram. Where the
variogram increases with distance, the correlogram and covariogram decline with distance.

The variogram assumes that the data are untrended. If there are trends, then one option is
median polishing. This involves modelling row and column effects from the map like this:

y ~ overall mean + row effect + column effect + residual

This two-way model assumes additive effects and would not work if there was an interaction
between the rows and columns of the map. An alternative would be to use a generalized
additive model (p. 611) with non-parametric smoothers for latitude and longitude.

Anisotropy occurs when spatial autocorrelation changes with direction. If the sill changes
with direction, this is called zonal anisotropy. When it is the range that changes with
direction, the process is called geometric anisotropy.

Geographers have a wonderful knack of making the simplest ideas sound complicated.
Kriging is nothing more than linear interpolation through space. Ordinary kriging uses a
random function model of spatial correlation to calculate a weighted linear combination of
the available samples to predict the response for an unmeasured location. Universal kriging
is a modification of ordinary kriging that allows for spatial trends. We say no more about
models for spatial prediction here; details can be found in Kaluzny et al. (1998). Our concern
is with using spatial information in the interpretation of experimental or observational
studies that have a single response variable. The emphasis is on using location-specific
measurements to model the spatial autocorrelation structure of the data.

The idea of a variogram is to illustrate the way in which spatial variance increases with
spatial scale (or alternatively, how correlation between neighbours falls off with distance).

776 THE R BOOK

Confusingly, R has two functions with the same name: variogram (lower-case v) is in the
spatial library and Variogram (upper-case V) is in nlme. Their usage is contrasted here
for the ragwort data (p. 763).

To use variogram from the spatial library, you need to create a trend surface or a kriging
object with columns x� y and z. The first two columns are the spatial coordinates, while the
third contains the response variable (basal stem diameter in the case of the ragwort data):

library(spatial)
data<-read.table("c:\\temp\\ragwortmap2006.txt",header=T)
attach(data)
names(data)

[1] "stems" "diameter" "xcoord" "ycoord"

dts<-data.frame(x=xcoord,y=ycoord,z=diameter)

Next, you need to create a trend surface using a function such as surf.ls:

surface<-surf.ls(2,dts)

This trend surface object is then the first argument to variogram, followed by the number
of bins (here 300). The function computes the average squared difference for pairs with
separation in each bin, returning results for bins that contain six or more pairs:

variogram(surface,300)

yp

6
8

10
12

xp
0 500 1500 2000 2500 30001000

The sister function is correlogram, which takes identical arguments:

correlogram(surface,300)

The positive correlations have disappeared by about 100 cm.

SPATIAL STATISTICS 777

yp

–1
.0

–0
.5

0.
0

0.
5

1.
0

xp

0 500 1000 1500 2500 30002000

1.0

0.8

0.6

0.4

0.2

500 1000 1500 2000
Distance

S
em

iv
ar

io
gr

am

778 THE R BOOK

For the Variogram function in the nlme library, you need to fit a model (typically using
gls or lme), then provide the model object along with a form function in the call:

model<-gls(diameter~xcoord+ycoord)
plot(Variogram(model,form= ~xcoord+ycoord))

Regression Models with Spatially Correlated Errors: Generalized
Least Squares

In Chapter 19 we looked at the use of linear mixed-effects models for dealing with random
effects and temporal pseudoreplication. Here we illustrate the use of generalized least
squares (GLS) for regression modelling where we would expect neighbouring values of the
response variable to be correlated. The great advantage of the gls function is that the errors
are allowed to be correlated and/or to have unequal variances. The gls function is part of
the nlme package:

library(nlme)

The following example is a geographic-scale trial to compare the yields of 56 different
varieties of wheat. What makes the analysis more challenging is that the farms carrying out
the trial were spread out over a wide range of latitudes and longitudes.

spatialdata<-read.table("c:\\temp\\spatialdata.txt",header=T)
attach(spatialdata)
names(spatialdata)

[1] "Block" "variety" "yield" "latitude" "longitude"

We begin with graphical data inspection to see the effect of location on yield:

par(mfrow=c(1,2))
plot(latitude,yield)
plot(longitude,yield)

There are clearly big effects of latitude and longitude on both the mean yield and the
variance in yield. The latitude effect looks like a threshold effect, with little impact for
latitudes less than 30. The longitude effect looks more continuous but there is a hint of
non-linearity (perhaps even a hump). The varieties differ substantially in their mean yields:

par(mfrow=c(1,1))
barplot(sort(tapply(yield,variety,mean)))

The lowest-yielding varieties are producing about 20 and the highest about 30 kg of grain
per unit area. There are also substantial block effects on yield:

tapply(yield,Block,mean)

1 2 3 4
27.575 28.81091 24.42589 21.42807

Here is the simplest possible analysis – a one-way analysis of variance using variety as
the only explanatory variable:

model1<-aov(yield~variety)
summary(model1)

SPATIAL STATISTICS 779

latitude longitude

5 10 15 20 2510 20 30 40

yi
el

d

yi
el

d

0
10

20
30

40

0
10

20
30

40

NE83432 NE87612 NORKAN NE85556 TAM107 NE86501

0
5

10
25

30
20

15

780 THE R BOOK

Df Sum Sq Mean Sq F value Pr(>F)
variety 55 2387.5 43.4 0.73 0.912
Residuals 168 9990.2 59.5

This says that there are no significant differences between the yields of the 56 varieties. We
can try a split plot analysis (see p. 470) using varieties nested within blocks:

Block<-factor(Block)
model2<-aov(yield~Block+variety+Error(Block))
summary(model2)

Error: Block
Df Sum Sq Mean Sq

Block 3 1853.57 617.86

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)
variety 55 2388.8 43.4 0.8809 0.7025
Residuals 165 8135.3 49.3

This has made no difference to our interpretation. We could fit latitude and longitude as
covariates:

model3<-aov(yield~Block+variety+latitude+longitude)
summary(model3)

Df Sum Sq Mean Sq F value Pr(>F)
Block 3 1853.6 617.9 19.8576 5.072e-11 ***
variety 55 2388.8 43.4 1.3959 0.05652 .
latitude 1 686.1 686.1 22.0515 5.603e-06 ***
longitude 1 2377.6 2377.6 76.4137 2.694e-15 ***
Residuals 163 5071.6 31.1

This makes an enormous difference. Now the differences between varieties are close to
significance �p = 0�056 52�.

Finally, we could use a GLS model to introduce spatial covariance between yields from
locations that are close together. We begin by making a grouped data object:

space<-groupedData(yield~variety|Block)

Now we use this to fit a model using gls which allows the errors to be correlated and to
have unequal variances. We shall add these sophistications later:

model4<-gls(yield~variety-1,space)
summary(model4)

Generalized least squares fit by REML
Model: yield ~ variety - 1
Data: space

AIC BIC logLik
1354.742 1532.808 -620.3709

Coefficients:
Value Std.Error t-value p-value

varietyARAPAHOE 29.4375 3.855687 7.634827 0
varietyBRULE 26.0750 3.855687 6.762738 0
varietyBUCKSKIN 25.5625 3.855687 6.629818 0

SPATIAL STATISTICS 781

and so on, for all 56 varieties. The variety means are given, rather than differences between
means, because we removed the intercept from the model by using yield~variety-1 rather
than yield~variety in the model formula (see p. 333).

Now we want to include the spatial covariance. The Variogram function is applied to
model4 like this:

plot(Variogram(model4,form=~latitude+longitude))

10 20 30 40

1.2

1.0

0.8

0.6

0.4

0.2

Distance

S
em

iv
ar

io
gr

am

The sample variogram increases with distance, illustrating the expected spatial correlation.
Extrapolating back to zero distance, there appears to be a nugget of about 0.2. There are
several assumptions we could make about the spatial correlation in these data. For instance,
we could try a spherical correlation structure, using the corSpher class (the range of options

Table 24.1. Spatial correlation structures. Options for specifying the form and
distance-dependence of spatial correlation in generalized least squares models. For more
detail, see the help on ?corClasses and on the individual correlation structures (e.g.
?corExp).

corExp exponential spatial correlation
corGaus Gaussian spatial correlation
corLin linear spatial correlation
corRatio rational quadratic spatial correlation
corSpher spherical spatial correlation
corSymm general correlation matrix, with no additional structure

782 THE R BOOK

for spatial correlation structure is shown in Table 24.1). We need to specify the distance at
which the semivariogram first reaches 1. Inspection shows this distance to be about 28. We
can update model4 to include this information:

model5<-update(model4,
corr=corSpher(c(28,0.2),form=~latitude+longitude,nugget=T))
summary(model5)

Generalized least squares fit by REML
Model: yield ~ variety - 1
Data: space

AIC BIC logLik
1185.863 1370.177 -533.9315

Correlation Structure: Spherical spatial correlation
Formula: ~latitude + longitude
Parameter estimate(s):

range nugget
27.4574777 0.2093144

Coefficients:

Value Std.Error t-value p-value
varietyARAPAHOE 26.65898 3.437352 7.755672 0
varietyBRULE 25.84956 3.441792 7.510496 0
varietyBUCKSKIN 34.84837 3.478290 10.018822 0

This is a big improvement, and AIC has dropped from 1354.742 to 1185.863. The range
(27.46) and nugget (0.209) are very close to our visual estimates. There are other kinds of
spatial model, of course. We might try a rational quadratic model (corRatio); this needs an
estimate of the distance at which the semivariogram is (1 + nugget)/ 2 = 1�2/2 = 0�6, as
well as an estimate of the nugget. Inspection gives a distance of about 12.5, so we write

model6<-update(model4,
corr=corRatio(c(12.5,0.2),form=~latitude+longitude,nugget=T))

We can use anova to compare the two spatial models:

anova(model5,model6)

Model df AIC BIC logLik
model5 1 59 1185.863 1370.177 -533.9315
model6 2 59 1183.278 1367.592 -532.6389

The rational quadratic model (model6) has the lower AIC and is therefore preferred to the
spherical model. To test for the significance of the spatial correlation parameters we need to
compare the preferred spatial model6 with the non-spatial model4 (which assumed spatially
independent errors):

anova(model4,model6)

Model df AIC BIC logLik Test L.Ratio p-value
model4 1 57 1354.742 1532.808 -620.3709
model6 2 59 1183.278 1367.592 -532.6389 1 vs 2 175.464 <.0001

The two extra degrees of freedom used up in accounting for the spatial structure are clearly
justified. We need to check the adequacy of the corRatio model. This is done by inspection
of the sample variogram for the normalized residuals of model6:

SPATIAL STATISTICS 783

plot(Variogram(model6,resType="n"))

Distance

S
em

iv
ar

io
gr

am

0.6

0.4

0.2

3010 20 40

There is no pattern in the plot of the sample variogram, so we conclude that the rational
quadratic is adequate. To check for constancy of variance, we can plot the normalized
residuals against the fitted values like this:

plot(model6,resid(., type="n")~fitted(.),abline=0)

and the normal plot is obtained in the usual way:

qqnorm(model6,~resid(.,type="n"))

The model looks fine.
The next step is to investigate the significance of any differences between the varieties.

Use update to change the structure of the model from yield~variety-1 to yield~variety:

model7<-update(model6,model=yield~variety)
anova(model7)

Denom. DF: 168

numDF F-value p-value
(Intercept) 1 30.40490 <.0001

variety 55 1.85092 0.0015

784 THE R BOOK

N
or

m
al

iz
ed

 r
es

id
ua

ls
2

1

0

–1

–2

–3

Fitted values
20 25 30 35

–3

–2

–1

0

1

2

3

Normalized residuals

Q
ua

nt
ile

s
of

 s
ta

nd
ar

d
no

rm
al

–3 –2 –1 0 1 2

SPATIAL STATISTICS 785

The differences between the varieties now appear to be highly significant (recall that they
were only marginally significant with our linear model3 using analysis of covariance to
take account of the latitude and longitude effects). Specific contrasts between varieties can
be carried out using the L argument to anova. Suppose that we want to compare the mean
yields of the first and third varieties. To do this, we set up a vector of contrast coefficients
c(-1,0,1) and apply the contrast like this:

anova(model6,L=c(-1,0,1))

Denom. DF: 168
F-test for linear combination(s)
varietyARAPAHOE varietyBUCKSKIN

-1 1
numDF F-value p-value

1 1 7.696578 0.0062

Note that we use model6 (with all the variety means), not model7 (with an intercept
and Helmert contrasts). The specified varieties, Arapahoe and Buckskin, exhibit highly
significant differences in mean yield.

25
Survival Analysis

A great many studies in statistics deal with deaths or with failures of components: they
involve the numbers of deaths, the timing of death, or the risks of death to which different
classes of individuals are exposed. The analysis of survival data is a major focus of the
statistics business (see Kalbfleisch and Prentice, 1980; Miller, 1981; Fleming and Harrington
1991), for which R supports a wide range of tools. The main theme of this chapter is the
analysis of data that take the form of measurements of the time to death, or the time to
failure of a component. Up to now, we have dealt with mortality data by considering the
proportion of individuals that were dead at a given time. In this chapter each individual is
followed until it dies, then the time of death is recorded (this will be the response variable).
Individuals that survive to the end of the experiment will die at an unknown time in the
future; they are said to be censored (as explained below).

A Monte Carlo Experiment

With data on time to death, the most important decision to be made concerns the error
distribution. The key point to understand is that the variance in age at death is almost certain
to increase with the mean, and hence standard models (assuming constant variance and
normal errors) will be inappropriate. You can see this at once with a simple Monte Carlo
experiment. Suppose that the per-week probability of failure of a component is 0.1 from
one factory but 0.2 from another. We can simulate the fate of an individual component in
a given week by generating a uniformly distributed random number between 0 and 1. If
the value of the random number is less than or equal to 0.1 (or 0.2 for the second factory),
then the component fails during that week and its lifetime can be calculated. If the random
number is larger than 0.1, then the component survives to the next week. The lifetime of the
component is simply the number of the week in which it finally failed. Thus, a component
that failed in the first week has an age at failure of 1 (this convention means that there are
no zeros in the dataframe).

The simulation is very simple. We create a vector of random numbers, rnos, that is long
enough to be certain to contain a value that is less than our failure probabilities of 0.1
and 0.2. Remember that the mean life expectancy is the reciprocal of the failure rate, so
our mean lifetimes will be 1/0�1 = 10 and 1/0�2 = 5 weeks, respectively. A length of 100
should be more than sufficient:

rnos<-runif(100)

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

788 THE R BOOK

The trick is to find the week number in which the component failed; this is the lowest
subscript for which rnos ≤0�1 for factory 1. We can do this very efficiently using the which
function: which returns a vector of subscripts for which the specified logical condition is
true. So for factory 1 we would write

which(rnos<= 0.1)

[1] 5 8 9 19 29 33 48 51 54 63 68 74 80 83 94 95

This means that 16 of my first set of 100 random numbers were less than or equal to 0.1.
The important point is that the first such number occurred in week 5. So the simulated value
of the age of death of this first component is 5 and is obtained from the vector of failure
ages using the subscript [1]:

which(rnos<= 0.1)[1]

[1] 5

All we need to do to simulate the life spans of a sample of 30 components, death1, is to
repeat the above procedure 30 times:

death1<-numeric(30)

for (i in 1:30) �
rnos<-runif(100)
death1[i]<- which(rnos<= 0.1)[1]
�

death1
[1] 5 8 7 23 5 4 18 2 6 4 10 12 7 3 5 17 1 3 2 1 12

[22] 8 2 12 6 3 13 16 3 4

The fourth component survived for a massive 23 weeks but the 17th component failed
during its first week. The simulation has roughly the right average weekly failure rate:

1/mean(death1)

[1] 0.1351351

which is as close to 0.1 as we could reasonably expect from a sample of only 30 components.
Now we do the same for the second factory with its failure rate of 0.2:

death2<-numeric(30)

for (i in 1:30) �
rnos<-runif(100)
death2[i]<- which(rnos<= 0.2)[1]
�

The sample mean is again quite reasonable:

1/mean(death2)

[1] 0.2205882

We now have the simulated raw data to carry out a comparison in age at death between
factories 1 and 2. We combine the two vectors into one, and generate a vector to represent
the factory identities:

SURVIVAL ANALYSIS 789

death<-c(death1,death2)
factory<-factor(c(rep(1,30),rep(2,30)))

We get a visual assessment of the data as follows:

plot(factory,death)

20
15

10
5

1 2

The median age at death for factory 1 is somewhat greater, but the variance in age at
death is much higher than from factory 2. For data like this we expect the variance to be
proportional to the square of the mean, so an appropriate error structure is the gamma (as
explained below). We model the data very simply as a one-way analysis of deviance using
glm with family = Gamma (note the upper-case G):

model1<-glm(death~factory,Gamma)
summary(model1)

Call:
glm(formula = death ~ factory, family = Gamma)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.5077 -0.7366 -0.3772 0.2998 2.1323

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.13514 0.02218 6.092 9.6e-08 ***
factory2 0.08545 0.04246 2.013 0.0488 *

790 THE R BOOK

(Dispersion parameter for Gamma family taken to be 0.8082631)

Null deviance: 44.067 on 59 degrees of freedom
Residual deviance: 40.501 on 58 degrees of freedom
AIC: 329.62

Number of Fisher Scoring iterations: 6

We conclude that the factories are just marginally significantly different in mean age at
failure of these components �p = 0�0488�. So, even with a twofold difference in the true
failure rate, it is hard to detect a significant difference in mean age at death with samples
of size n = 30. The moral is that for data like this on age at death you are going to need
really large sample sizes in order to find significant differences.

It is good practice to remove variable names (like death) that you intend to use later in
the same session (see rm on p. 804).

Background

Since everything dies eventually, it is often not possible to analyse the results of survival
experiments in terms of the proportion that were killed (as we did in Chapter 16); in due
course, they all die. Look at the following figure:

time

su
rv

iv
al

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

It is clear that the two treatments caused different patterns of mortality, but both start out
with 100% survival and both end up with zero. We could pick some arbitrary point in the
middle of the distribution at which to compare the percentage survival (say at time = 40),
but this may be difficult in practice, because one or both of the treatments might have few
observations at the same location. Also, the choice of when to measure the difference is
entirely subjective and hence open to bias. It is much better to use R’s powerful facilities

SURVIVAL ANALYSIS 791

for the analysis of survival data than it is to pick an arbitrary time at which to compare two
proportions.

Demographers, actuaries and ecologists use three interchangeable concepts when dealing
with data on the timing of death: survivorship, age at death and instantaneous risk of
death. There are three broad patterns of survivorship: Type I, where most of the mortality
occurs late in life (e.g. humans); Type II, where mortality occurs at a roughly constant rate
throughout life; and Type III, where most of the mortality occurs early in life (e.g. salmonid
fishes). On a log scale, the numbers surviving from an initial cohort of 1000, say, would
look like this:

time

su
rv

iv
or

s

0 20 40 60 80 100

1
5

10
50

10
0

50
0

The survivor function

The survivorship curve plots the natural log of the proportion of a cohort of individuals
starting out at time 0 that is still alive at time t. For the so-called Type II survivorship curve,
there is a linear decline in log numbers with time (see above). This means that a constant
proportion of the individuals alive at the beginning of a time interval will die during that
time interval (i.e. the proportion dying is independent of density and constant for all ages).
When the death rate is highest for the younger age classes we get Type III survivorship
curve, which descends steeply at first, with the rate of descent easing later on. When it is
the oldest animals that have the highest risk of death (as in the case of human populations
in affluent societies where there is low infant mortality) we obtain the Type I curve, which
has a shallow descent to start, becoming steeper later.

The density function

The density function describes the fraction of all deaths from our initial cohort that are
likely to occur in a given brief instant of time. For the Type II curve this is a negative

792 THE R BOOK

exponential. Because the fraction of individuals dying is constant with age, the number
dying declines exponentially as the number of survivors (the number of individuals at risk
of death) declines exponentially with the passage of time. The density function declines
more steeply than exponentially for Type III survivorship curves. In the case of Type I
curves, however, the density function has a maximum at the time when the product of the
risk of death and the number of survivors is greatest (see below).

The hazard function

The hazard is the instantaneous risk of death – that is, the derivative of the survivorship
curve. It is the instantaneous rate of change in the log of the number of survivors per unit
time. Thus, for the Type II survivorship the hazard function is a horizontal line, because the
risk of death is constant with age. Although this sounds highly unrealistic, it is a remarkably
robust assumption in many applications. It also has the substantial advantage of parsimony.
In some cases, however, it is clear that the risk of death changes substantially with the age
of the individuals, and we need to be able to take this into account in carrying out our
statistical analysis. In the case of Type III survivorship, the risk of death declines with age,
while for Type I survivorship (as in humans) the risk of death increases with age.

The Exponential Distribution

This is a one-parameter distribution in which the hazard function is independent of age (i.e.
it describes a Type II survivorship curve). The exponential is a special case of the gamma
distribution in which the shape parameter � is equal to 1.

Density function

The density function is the probability of dying in the small interval of time between t and
t + dt, and a plot of the number dying in the interval around time t as a function of t (i.e.
the proportion of the original cohort dying at a given age) declines exponentially:

f�t� = e−t/�

�
�

where both � and t > 0. Note that the density function has an intercept of 1/� (remember
that e0 is 1). The number from the initial cohort dying per unit time declines exponentially
with time, and a fraction 1/� dies during the first time interval (and, indeed, during every
subsequent time interval).

Survivor function

This shows the proportion of individuals from the initial cohort that are still alive at time t:

S�t� = e−t/��

The survivor function has an intercept of 1 (i.e. all the cohort is alive at time 0), and shows
the probability of surviving at least as long as t.

SURVIVAL ANALYSIS 793

Hazard function

This is the statistician’s equivalent of the ecologist’s instantaneous death rate. It is defined
as the ratio between the density function and the survivor function, and is the conditional
density function at time t, given survival up to time t. In the case of Type II curves this has
an extremely simple form:

h�t� = f�t�

S�t�
= e−t/�

�e−t/�
= 1

�
�

because the exponential terms cancel out. Thus, with the exponential distribution the hazard
is the reciprocal of the mean time to death, and vice versa. For example, if the mean time to
death is 3.8 weeks, then the hazard is 0.2632; if the hazard were to increase to 0.32, then the
mean time of death would decline to 3.125 weeks. The survivor, density and hazard func-
tions of the exponential distribution are as follows (note the changes of scale on the y axes):

time

S
(t

)

0 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

time

f(
t)

0 20 40 60 80 100

0.
00

5
0.

01
0

0.
01

5
0.

02
0

time

h(
t)

0 20 40 60 80 100

0.
0

0.
01

0.
03

0.
05

Of course, the death rate may not be a linear function of age. For example, the death rate
may be high for very young as well as for very old animals, in which case the survivorship
curve is like an S shape on its side.

Kaplan–Meier Survival Distributions

This is a discrete stepped survivorship curve that adds information as each death occurs.
Suppose we had n = 5 individuals and that the times at death were 12, 17, 29, 35 and 42
weeks after the beginning of a trial. Survivorship is 1 at the outset, and stays at 1 until
time 12, when it steps down to 4/5 = 0�8. It stays level until time 17, when it drops to
0�8 × 3/4 = 0�6. Then there is a long level period until time 29, when survivorship drops to
0�6 × 2/3 = 0�4, then drops at time 35 to 0�4 × 1/2 = 0�2, and finally to zero at time 42.

794 THE R BOOK

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

The solid line shows the survival distribution and the dotted lines show the confidence
intervals (see below). In general, therefore, we have two groups at any one time: the number
of deaths d�ti� and the number at risk r�ti� (i.e. those that have not yet died: the survivors).
The Kaplan–Meier survivor function is

ŜKM = ∏
ti<t

r�ti� − d�ti�

r�ti�

which, as we have seen, produces a step at every time at which one or more deaths occurs.
Censored individuals that survive beyond the end of the study are shown by a + on the plot
or after their age in a dataframe (thus 65 means died at time 65, but 65+ means still alive
when last seen at age 65).

Age-Specific Hazard Models

In many circumstances, the risk of death increases with age. There are many models to
chose from:

Distribution Hazard

Exponential constant = 1
�

Weibull ����t��−1

Gompertz bect

Makeham a + bect

Extreme value
1
	

e�t−
�/	

Rayleigh a + bt

SURVIVAL ANALYSIS 795

The Rayleigh is obviously the simplest model in which hazard increases with time, but
the Makeham is widely regarded as the best description of hazard for human subjects.
After infancy, there is a constant hazard (a) which is due to age-independent accidents,
murder, suicides, etc., with an exponentially increasing hazard in later life. The Gompertz
assumption was that ‘the average exhaustion of a man’s power to avoid death is such that at
the end of equal infinitely small intervals of time he has lost equal portions of his remaining
power to oppose destruction which he had at the commencement of these intervals’. Note
that the Gompertz differs from the Makeham only by the omission of the extra background
hazard (a), and this becomes negligible in old age.

age

h(
t)

0 20 40 60 80 100

0.
0

0.
01

0
0.

02
0

0.
03

0

age

h(
t)

0 20 40 60 80 100

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5

age

h(
t)

0 20 40 60 80 100

0.
0

0.
01

0
0.

02
0

0.
03

0

age

h(
t)

0 20 40 60 80 100

0.
0

0.
00

5
0.

01
0

0.
01

5
0.

02
0

age
h(

t)

0 20 40 60 80 100

0.
0

0.
00

5
0.

01
0

0.
01

5
0.

02
0

age

h(
t)

0 20 40 60 80 100

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5

These plots show how hazard changes with age for the following distributions: from top
left to bottom right: exponential, Weibull, Gompertz, Makeham, extreme value and
Rayleigh.

Survival analysis in R

There are three cases that concern us here:

• constant hazard and no censoring;

• constant hazard with censoring;

• age-specific hazard, with or without censoring.

The first case is dealt with very simply in R by specifying a generalized linear model with
gamma errors. The second case involves the use of exponential survival models with a
censoring indicator (1 indicates that the response is a time at death, 0 indicates that the
individual was alive when last seen; see below, and p. 801). The third case involves a

796 THE R BOOK

choice between parametric models, based on the Weibull distribution, and non-parametric
techniques, based on the Cox proportional hazard model.

Parametric models

We are unlikely to know much about the error distribution in advance of the study, except
that it will certainly not be normal. In R we are offered several choices for the analysis of
survival data:

• gamma;

• exponential;

• piecewise exponential;

• extreme value;

• log-logistic;

• lognormal;

• Weibull.

In practice, it is often difficult to choose between them. In general, the best solution is to
try several distributions and to pick the error structure that produces the minimum error
deviance.

Cox proportional hazards model

This is the most widely used regression model for survival data. It assumes that the hazard
is of the form

��t�Zi� = �0�t�ri�t��

where Zi�t� is the set of explanatory variables for individual i at time t. The risk score for
subject i is

ri�t� = e�Zi�t��

in which � is a vector of parameters from the linear predictor and �0�t� is an unspecified
baseline hazard function that will cancel out in due course. The antilog guarantees that �
is positive for any regression model �Zi�t�. If a death occurs at time t∗, then, conditional
on this death occurring, the likelihood that it is individual i that dies, rather than any other
individual at risk, is

Li��� = �0�t
∗�ri�t

∗�∑
j Yj�t

∗��0�t
∗�rj�t

∗�
= ri�t

∗�∑
j Yj�t

∗�rj�t
∗�

�

The product of these terms over all times of death, L���=∏
Li���, was christened a partial

likelihood by Cox (1972). This is clever, because maximizing log�L���� allows an estimate
of � without knowing anything about the baseline hazard function ��0�t� is a nuisance
variable in this context). The proportional hazards model is nonparametric in the sense that
it depends only on the ranks of the survival times.

SURVIVAL ANALYSIS 797

Cox’s proportional hazard or a parametric model?

In cases where you have censoring, or where you want to use a more complex error structure,
you will need to choose between a parametric model, fitted using survreg, and a non-
parametric model, fitted using coxph. If you want to use the model for prediction, then you
have no choice: you must use the parametric survreg because coxph does not extrapolate
beyond the last observation. Traditionally, medical studies use coxph while engineering
studies use survreg (so-called accelerated failure-time models), but both disciples could
fruitfully use either technique, depending on the nature of the data and the precise question
being asked. Here is a typical question addressed with coxph: ‘How much does the risk
of dying decrease if a new drug treatment is given to a patient?’ In contrast, parametric
techniques are typically used for questions like this: ‘What proportion of patients will die
in 2 years based on data from an experiment that ran for just 4 months?’

Parametric analysis

The following example concerns survivorship of two cohorts of seedlings. All the seedlings
died eventually, so there is no censoring in this case. There are two questions:

• Was survivorship different in the two cohorts?

• Was survivorship affected by the size of the canopy gap in which germination occurred?

Here are the data:

seedlings<-read.table("c:\\temp\\seedlings.txt",header=T)
attach(seedlings)
names(seedlings)

[1] "cohort" "death" "gapsize"

We need to load the survival library:

library(survival)

We begin by creating a variable called status to indicate which of the data are censored:

status<-1*(death>0)

There are no cases of censoring in this example, so all of the values of status are equal to 1.
The fundamental object in survival analysis is Surv(death,status), the Kaplan–Meier

survivorship object. We can plot it out using survfit with plot like this:

plot(survfit(Surv(death,status)),ylab="Survivorship",xlab="Weeks")

This shows the overall survivorship curve with the confidence intervals. All the seedlings
were dead by week 21. Were there any differences in survival between the two
cohorts?

model<-survfit(Surv(death,status)~cohort)
summary(model)

Call: survfit(formula = Surv(death, status) ~ cohort)

cohort=October

798 THE R BOOK

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

5 10 15 200

S
ur

vi
vo

rs
hi

p

Weeks

time n.risk n.event survival std.err lower 95% CI upper 95% CI
1 30 7 0.7667 0.0772 0.62932 0.934
2 23 3 0.6667 0.0861 0.51763 0.859
3 20 3 0.5667 0.0905 0.41441 0.775
4 17 2 0.5000 0.0913 0.34959 0.715
5 15 3 0.4000 0.0894 0.25806 0.620
6 12 1 0.3667 0.0880 0.22910 0.587
8 11 2 0.3000 0.0837 0.17367 0.518
9 9 4 0.1667 0.0680 0.07488 0.371
10 5 1 0.1333 0.0621 0.05355 0.332
11 4 1 0.1000 0.0548 0.03418 0.293
14 3 1 0.0667 0.0455 0.01748 0.254
16 2 1 0.0333 0.0328 0.00485 0.229
21 1 1 0.0000 NA NA NA

cohort=September

time n.risk n.event survival std.err lower 95% CI upper 95% CI
1 30 6 0.8000 0.0730 0.6689 0.957
2 24 6 0.6000 0.0894 0.4480 0.804
3 18 3 0.5000 0.0913 0.3496 0.715
4 15 3 0.4000 0.0894 0.2581 0.620
5 12 1 0.3667 0.0880 0.2291 0.587
6 11 2 0.3000 0.0837 0.1737 0.518
7 9 2 0.2333 0.0772 0.1220 0.446
8 7 2 0.1667 0.0680 0.0749 0.371
10 5 1 0.1333 0.0621 0.0535 0.332
11 4 1 0.1000 0.0548 0.0342 0.293
12 3 1 0.0667 0.0455 0.0175 0.254
14 2 2 0.0000 NA NA NA

SURVIVAL ANALYSIS 799

To plot these figures use plot(model) like this:

plot(model,lty=c(1,3),ylab="Survivorship",xlab="week")

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

5 10 15 200

S
ur

vi
vo

rs
hi

p

week

The solid line is for the October cohort and the dashed line is for September. To see the
median times at death for the two cohorts, just type

model

Call: survfit(formula = Surv(death, status) ~ cohort)

n events median 0.95LCL 0.95UCL
cohort=October 30 30 4.5 3 9
cohort=September 30 30 3.5 2 7

Cox’s Proportional Hazards

The median age at death was one week later in the October cohort, but look at the width of
the confidence intervals: 3 to 9 versus 2 to 7. Clearly there is no significant effect of cohort
on time of death. What about gap size? We start with a full analysis of covariance using
coxph rather than survfit.

model1<-coxph(Surv(death,status)~strata(cohort)*gapsize)
summary(model1)

Call:
coxph(formula = Surv(death, status) ~ strata(cohort) * gapsize)

n= 60

800 THE R BOOK

coef exp(coef) se(coef) z p
gapsize -1.19 0.305 0.621 -1.910 0.056
gapsize:strata(cohort)
cohort=September

0.58 1.785 0.826 0.701 0.480

exp(coef) exp(-coef) lower .95 upper .95
gapsize 0.305 3.27 0.0904 1.03
gapsize:strata(cohort)
cohort=September

1.785 0.56 0.3534 9.02

Rsquare= 0.076 (max possible= 0.993)
Likelihood ratio test= 4.73 on 2 df, p=0.0937
Wald test = 4.89 on 2 df, p=0.0868
Score (logrank) test = 5.04 on 2 df, p=0.0805

There is no evidence of any interaction �p = 0�480� and the main effect of gap size is not
quite significant in this model �p = 0�056�. We fit the simpler model with no interaction:

model2<-coxph(Surv(death,status)~strata(cohort)+gapsize)
anova(model1,model2)

Analysis of Deviance Table

Model 1: Surv(death, status)~ strata(cohort) * gapsize
Model 2: Surv(death, status)~ strata(cohort) + gapsize

Resid. Df Resid. Dev Df Deviance
1 58 293.898
2 59 294.392 −1 −0.494
There is no significant difference in explanatory power, so we accept the simpler model
without an interaction term. Note that removing the interaction makes the main effect of
gap size significant �p = 0�035�:

summary(model2)

Call:
coxph(formula = Surv(death, status)~ strata(cohort) + gapsize)
n= 60

coef exp(coef) se(coef) z p
gapsize −0.855 0.425 0.405 −2.11 0.035

exp(coef) exp(-coef) lower .95 upper .95
gapsize 0.425 2.35 0.192 0.942

Rsquare= 0.068 (max possible= 0.993)
Likelihood ratio test = 4.24 on 1 df, p=0.0395
Wald test = 4.44 on 1 df, p=0.0350
Score (logrank) test = 4.54 on 1 df, p=0.0331

We conclude that risk of seedling death is lower in bigger gaps �coef = −0�855� but this
effect is similar in the September and October-germinating cohorts.

You see that the modelling methodology is exactly the same as usual: fit a complicated
model and simplify it to find a minimal adequate model. The only difference is the use of
Surv(death,status) if that the response is a Kaplan–Meier object.

detach(seedlings)
rm(status)

SURVIVAL ANALYSIS 801

Models with Censoring

Censoring occurs when we do not know the time of death for all of the individuals. This
comes about principally because some individuals outlive the experiment, while others leave
the experiment before they die. We know when we last saw them alive, but we have no way
of knowing their age at death. These individuals contribute something to our knowledge of
the survivor function, but nothing to our knowledge of the age at death. Another reason for
censoring occurs when individuals are lost from the study: they may be killed in accidents,
they may emigrate, or they may lose their identity tags.

In general, then, our survival data may be a mixture of times at death and times after
which we have no more information on the individual. We deal with this by setting up
an extra vector called the censoring indicator to distinguish between the two kinds of
numbers. If a time really is a time to death, then the censoring indicator takes the value 1.
If a time is just the last time we saw an individual alive, then the censoring indicator is set
to 0. Thus, if we had the time data T and censoring indicator W on seven individuals,

T 4 7 8 8 12 15 22
W 1 1 0 1 1 0 1

this would mean that five of the times were times at death while in two cases, one at time
8 and another at time 15, individuals were seen alive but never seen again.

With repeated sampling in survivorship studies, it is usual for the degree of censoring
to decline as the study progresses. Early on, many of the individuals are alive at the end
of each sampling interval, whereas few if any survive to the end of the last study period.
The following example comes from a study of cancer patients undergoing one of four drug
treatment programmes (drugs A, B and C and a placebo):

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

10 20 30 400

S
ur

vi
vo

rs
hi

p

Time

802 THE R BOOK

cancer<-read.table("c:\\temp\\cancer.txt",header=T)
attach(cancer)
names(cancer)

[1] "death" "treatment" "status"

plot(survfit(Surv(death,status)~treatment),lty=c(1:4),ylab="Surivorship",xlab="Time")
tapply(death[status==1],treatment[status==1],mean)

DrugA DrugB DrugC placebo
9.480000 8.360000 6.800000 5.238095

The long tail is for drug A. The latest deaths in the other treatments were at times 14 and
19. The variances in age at death are dramatically different under the various treatments:

tapply(death[status==1],treatment[status==1],var)

DrugA DrugB DrugC placebo
117.51000 32.65667 27.83333 11.39048

Parametric models

The simplest model assumes a constant hazard: dist="exponential".

model1<-survreg(Surv(death,status)~treatment,dist="exponential")
summary(model1)

Call:
survreg(formula = Surv(death, status) ~ treatment, dist = "exponential")

Value Std. Error z p
(Intercept) 2.448 0.200 12.238 1.95e-34
treatmentDrugB -0.125 0.283 -0.443 6.58e-01
treatmentDrugC -0.430 0.283 -1.520 1.28e-01
treatmentplacebo -0.333 0.296 -1.125 2.61e-01

Scale fixed at 1

Exponential distribution
Loglik(model)= -310.1 Loglik(intercept only)= -311.5

Chisq= 2.8 on 3 degrees of freedom, p= 0.42
Number of Newton-Raphson Iterations: 4
n= 120

Under the assumption of exponential errors there are no significant effects of drug treatment
on survivorship (all p > 0�1). How about modelling non-constant hazard using Weibull
errors instead (these are the default for survreg)?

model2<-survreg(Surv(death,status)~treatment)
summary(model2)

Call:
survreg(formula = Surv(death, status)~ treatment)

Value Std. Error z p
(Intercept) 2.531 0.1572 16.102 2.47e-58
treatmentDrugB -0.191 0.2193 -0.872 3.83e-01
treatmentDrugC -0.475 0.2186 -2.174 2.97e-02
treatmentplacebo -0.454 0.2313 -1.963 4.96e-02
Log(scale) -0.260 0.0797 -3.264 1.10e-03

SURVIVAL ANALYSIS 803

Scale= 0.771

Weibull distribution
Loglik(model)= -305.4 Loglik(intercept only)= -308.3

Chisq= 5.8 on 3 degrees of freedom, p= 0.12
Number of Newton-Raphson Iterations: 5
n= 120

The scale parameter 0.771, being less than 1, indicates that hazard decreases with age in
this study. Drug B is not significantly different from drug A �p = 0�38�, but drug C and
the placebo are significantly poorer �p < 0�05�. We can use anova to compare model1 and
model2:

anova(model1,model2)

Terms Resid. Df -2*LL Test Df Deviance P>|Chi|)
1 treatment 116 620.1856 NA NA NA
2 treatment 115 610.7742 = 1 9.4114 0.002156405

model2 with Weibull errors is significant improvement over model1 with exponential errors
�p = 0�002�.

We can try amalgamating the factor levels – the analysis suggests that we begin by
grouping A and B together:

treat2<-treatment
levels(treat2)

[1] "DrugA" "DrugB" "DrugC" "placebo"

levels(treat2)[1:2]<-"DrugsAB"
levels(treat2)

[1] "DrugsAB" "DrugC" "placebo"

model3<-survreg(Surv(death,status)~treat2)
anova(model2,model3)

Terms Resid. Df -2*LL Test Df Deviance P>|Chi|)
1 treatment 115 610.7742 NA NA NA
2 treat2 116 611.5190 1 vs. 2 -1 -0.744833 0.3881171

That model simplification was justified. What about drug C? Can we lump it together with
the placebo?

levels(treat2)[2:3]<-"placeboC"
model4<-survreg(Surv(death,status)~treat2)
anova(model3,model4)

Terms Resid. Df -2*LL Test Df Deviance P>|Chi|)
1 treat2 116 611.5190 NA NA NA
2 treat2 117 611.5301 = -1 -0.01101309 0.9164208

Yes we can. That simplification was clearly justified �p = 0�916�:

summary(model4)

Call:
survreg(formula = Surv(death, status)~ treat2)

804 THE R BOOK

Value Std. Error z p
(Intercept) 2.439 0.112 21.76 5.37e-105
treat2placeboC -0.374 0.160 -2.33 1.96e-02
Log(scale) -0.249 0.078 -3.20 1.39e-03

Scale= 0.78

Weibull distribution
Loglik(model)= -305.8 Loglik(intercept only)= -308.3

Chisq= 5.05 on 1 degrees of freedom, p= 0.025
Number of Newton-Raphson Iterations: 5
n= 120

We can summarize the results in terms of the mean age at death, taking account of the
censoring:

tapply(predict(model4,type="response"),treat2,mean)

DrugsAB placeboC
11.459885 7.887685

detach(cancer)
rm(death, status)

Comparing coxph and survreg survival analysis

Finally, we shall compare the methods, parametric and non-parametric, by analysing the
same data set both ways. It is an analysis of covariance with one continuous explanatory
variable (initial weight) and one categorical explanatory variable (group):

insects<-read.table("c:\\temp\\roaches.txt",header=T)
attach(insects)
names(insects)

[1] "death" "status" "weight" "group"

First, we plot the survivorship curves of the three groups:

plot(survfit(Surv(death,status)~group),lty=c(1,3,5),ylab="Survivorship",xlab="Time")

The crosses + at the end of the survivorship curves for groups A and B indicate that
there was censoring in these groups (not all of the individuals were dead at the end of the
experiment).

We begin the modelling with parametric methods (survreg). We shall compare the default
error distribution (Weibull, which allows for non-constant hazard with age) with the simpler
exponential (assuming constant hazard):

model1<-survreg(Surv(death,status)~weight*group,dist="exponential")
summary(model1)

Call:
survreg(formula = Surv(death, status) ~ weight * group, dist =
"exponential")

SURVIVAL ANALYSIS 805

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

10 20 30 40 500

S
ur

vi
vo

rs
hi

p

Time

Value Std. Error z p
(Intercept) 3.8702 0.3854 10.041 1.00e-23
weight -0.0803 0.0659 -1.219 2.23e-01
groupB -0.8853 0.4508 -1.964 4.95e-02
groupC -1.7804 0.4386 -4.059 4.92e-05
weight:groupB 0.0643 0.0674 0.954 3.40e-01
weight:groupC 0.0796 0.0674 1.180 2.38e-01

Scale fixed at 1

Exponential distribution
Loglik(model)= -480.6 Loglik(intercept only)= -502.1

Chisq= 43.11 on 5 degrees of freedom, p= 3.5e-08
Number of Newton-Raphson Iterations: 5
n= 150

model2 employs the default Weibull distribution allowing non-constant hazard:

model2<-survreg(Surv(death,status)~weight*group)
summary(model2)

Call:
survreg(formula = Surv(death, status) ~ weight * group)

Value Std. Error z p
(Intercept) 3.9506 0.5308 7.443 9.84e-14
weight -0.0973 0.0909 -1.071 2.84e-01
groupB -1.1337 0.6207 -1.826 6.78e-02
groupC -1.9841 0.6040 -3.285 1.02e-03

806 THE R BOOK

weight:groupB 0.0826 0.0929 0.889 3.74e-01
weight:groupC 0.0931 0.0930 1.002 3.16e-01
Log(scale) 0.3083 0.0705 4.371 1.24e-05

Scale= 1.36

Weibull distribution
Loglik(model)= -469.6 Loglik(intercept only)= -483.3

Chisq= 27.42 on 5 degrees of freedom, p= 4.7e-05
Number of Newton-Raphson Iterations: 5
n= 150

The fact that the scale parameter is greater than 1 indicates that the risk of death increases
with age in this case. We compare the two models in the usual way, using anova:

anova(model1,model2)

Terms Resid. Df -2∗LL Test Df Deviance P(>|Chi|)
1 weight * group 144 961.1800 NA NA NA
2 weight * group 143 939.2261 = 1 21.95388 2.792823e-06

The Weibull model (2) is vastly superior to the exponential �p < 0�000 01� so we continue
with model2. There is no evidence in model2 (summary above) of any interaction between
weight and group �p = 0�374� so we simplify using step:

model3<-step(model2)

Start: AIC= 953.23
Surv(death, status) ~ weight * group

Df AIC
- weight:group 2 950.30
<none> 953.23

Step: AIC= 950.3
Surv(death, status) ~ weight + group

Df AIC
- weight 1 949.01
<none> 950.30
-group 2 967.75

Step: AIC= 949.01
Surv(death, status) ~ group

Df AIC
<none> 949.01
-group 2 970.64

After eliminating the non-significant interaction �AIC = 950�30�, R has removed the main
effect of weight �AIC = 949�01�, but has kept the main effect of group (AIC of <none>
is less than AIC of -group). The minimal model with survreg is this:

summary(model3)

Call:
survreg(formula = Surv(death, status) ~ group)

SURVIVAL ANALYSIS 807

Value Std. Error z p
(Intercept) 3.459 0.2283 15.15 7.20e-52
groupB −0.822 0.3097 −2.65 7.94e-03
groupC −1.540 0.3016 −5.11 3.28e-07
Log(scale) 0.314 0.0705 4.46 8.15e-06

Scale= 1.37

Weibull distribution
Loglik(model)= -470.5 Loglik(intercept only)= -483.3

Chisq= 25.63 on 2 degrees of freedom, p= 2.7e-06
Number of Newton-Raphson Iterations: 5
n= 150

It is clear that all three groups are required (B and C differ by 0.72, with standard error
0.31), so this is the minimal adequate model. Here are the predicted mean ages at death:

tapply(predict(model3),group,mean)
A B C

31.796137 13.972647 6.814384

You can compare these with the mean ages of those insects that died

tapply(death[status==1],group[status==1],mean)
A B C

12.611111 9.568182 8.020000

and the ages when insects were last seen (dead or alive)

tapply(death,group,mean)

A B C
23.08 14.42 8.02

The predicted ages at death are substantially greater than the observed ages at last sighting
when there is lots of censoring (e.g. 31.8 vs. 23.08 for group A).

Here are the same data analysed with the Cox proportional hazards model:

model10<-coxph(Surv(death,status)~weight*group)
summary(model10)

Call:
coxph(formula = Surv(death, status) ~ weight * group)

n= 150

coef exp(coef) se(coef) z p
weight 0.0633 1.065 0.0674 0.940 0.3500
groupB 0.7910 2.206 0.4564 1.733 0.0830
groupC 1.2863 3.620 0.4524 2.843 0.0045
weight:groupB -0.0557 0.946 0.0688 -0.809 0.4200
weight:groupC -0.0587 0.943 0.0690 -0.851 0.3900

exp(coef) exp(-coef) lower .95 upper .95
weight 1.065 0.939 0.934 1.22
groupB 2.206 0.453 0.902 5.40
groupC 3.620 0.276 1.491 8.79
weight:groupB 0.946 1.057 0.827 1.08
weight:groupC 0.943 1.060 0.824 1.08

808 THE R BOOK

Rsquare= 0.135 (max possible= 0.999)
Likelihood ratio test= 21.8 on 5 df, p=0.000564
Wald test = 20.8 on 5 df, p=0.000903
Score (logrank) test = 22.1 on 5 df, p=0.000513

As you see, the interaction terms are not significant �p > 0�39� so we simplify using step
as before:

model11<-step(model10)

Start: AIC= 1113.54
Surv(death, status) ~ weight * group

Df AIC
- weight:group 2 1110.3
<none> 1113.5

Step: AIC= 1110.27
Surv(death, status) ~ weight + group

Df AIC
- weight 1 1108.8
<none> 1110.3
- group 2 1123.7

Step: AIC= 1108.82
Surv(death, status) ~ group

Df AIC
<none> 1108.8
- group 2 1125.4

Note that the AIC values are different than they were with the parametric model. The
interaction term is dropped because this simplification reduces AIC to 1110.3. Then the
covariate (weight) is dropped because this simplification also reduces AIC (to 1108.8). But
removing group would increase AIC to 1125.4, so this is not done. The minimal model
contains a main effect for group but no effect of initial weight:

summary(model11)

Call:
coxph(formula = Surv(death, status) ~ group)

n= 150
coef exp(coef) se(coef) z p

groupB 0.561 1.75 0.226 2.48 1.3e-02
groupC 1.008 2.74 0.226 4.46 8.3e-06

exp(coef) exp(-coef) lower .95 upper .95
groupB 1.75 0.571 1.13 2.73
groupC 2.74 0.365 1.76 4.27

Rsquare= 0.128 (max possible= 0.999)
Likelihood ratio test= 20.6 on 2 df, p=3.45e-05
Wald test = 19.9 on 2 df, p=4.87e-05
Score (logrank) test = 21 on 2 df, p=2.77e-05

To see what these numbers mean, it is a good idea to go back to the raw data on times of
death (or last sighting for the censored individuals). Here are the mean values:

SURVIVAL ANALYSIS 809

tapply(death,group,mean)

A B C
23.08 14.42 8.02

Evidently, individuals in group A lived a lot longer than those in group C. The ratio of their
mean ages at death is 23.08/8.02 which evaluates to:

23.08/8.02

[1] 2.877805

Likewise, individuals in group A lived linger than individuals in group B by a ratio

23.08/14.42

[1] 1.600555

These figures are the approximate hazards for an individual in group C or group B relative
to an individual in group A. In the coxph output of model11 they are labelled exp(coef).
The model values are slightly different from the raw means because of the way that the
model has dealt with censoring (14 censored individuals in group A, 6 in group B and none
in group C): 1.6 vs. 1.75 and 2.8778 vs. 2.74

You should compare the outputs from the two functions coxph and survreg to make
sure you understand their similarities and their differences. One fundamental difference is
that the parametric Kaplan–Meier survivorship curves refer to the population, whereas Cox
proportional hazards refer to an individual in a particular group.

plot(survfit(model11))
legend(35,0.8,c("Group A","Group B","Group C"),lty=c(2,1,2))

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

10 20 30 400

Group A
Group B
Group C

This plot shows the survivorship curve for the average individual in each group with the covari-
ates held at their average values (but not in this example, since we have eliminated them).

26
Simulation Models

Simulation modelling is an enormous topic, and all I intend here is to demonstrate a few
very simple temporal and spatial simulation techniques that give the flavour of what is
possible in R.

Simulation models are used for investigating dynamics in time, in space, or in both space
and time together. For temporal dynamics we might be interested in:

• the transient dynamics (the behaviour after the start but before equilibrium is attained –
if indeed equilibrium is ever attained);

• equilibrium behaviour (after the transients have damped away);

• chaos (random-looking, but actually deterministic temporal dynamics that are extremely
sensitive to initial conditions).

For spatial dynamics, we might use simulation models to study:

• metapopulation dynamics (where local extinction and recolonization of patches charac-
terize the long-term behaviour, with constant turnover of occupied patches);

• neighbour relations (in spatially explicit systems where the performance of individuals
is determined by the identity and attributes of their immediate neighbours);

• pattern generation (dynamical processes that lead to the generation of emergent, but more
or less coherent patterns).

Temporal Dynamics: Chaotic Dynamics in Population Size

Biological populations typically increase exponentially when they are small, but individuals
perform less well as population density rises, because of competition, predation or disease.
In aggregate, these effects on birth and death rates are called density-dependent processes,
and it is the nature of the density-dependent processes that determines the temporal pattern
of population dynamics. The simplest density-dependent model of population dynamics is
known as the quadratic map. It is a first-order non-linear difference equation,

N�t + 1� = �N�t� �1 − N�t�� �

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

812 THE R BOOK

where N�t� is the population size at time t, N�t + 1� is the population size at time t + 1, and
the single parameter, �, is known as the per-capita multiplication rate. The population can
only increase when the population is small if � > 1, the so-called invasion criterion. But
how does the system behave as � increases above 1?

We begin by simulating time series of populations for different values of � and plotting
them to see what happens. First, here are the dynamics with � = 2:

par(mfrow=c(2,2))
lambda<-2
x<-numeric(40)
x[1]<-0.6
for (t in 2 : 40) x[t] <- lambda * x[t-1] * (1 - x[t-1])
plot(1:40,x,type="l",ylim=c(0,1),ylab="population",xlab="time",main="2.0")

The population falls very quickly from its initial value (0.6) to equilibrium �N ∗ = 0�5� and
stays there; this system has a stable point equilibrium. What if � were to increase to 3.3?

lambda<-3.3
x<-numeric(40)
x[1]<-0.6
for (t in 2 : 40) x[t] <- lambda * x[t-1] * (1 - x[t-1])
plot(1:40,x,type="l",ylim=c(0,1),ylab="population",xlab="time",main="3.3")

Now the dynamics show persistent two-point cycles. What about � = 3�5?

lambda<-3.5
x<-numeric(40)
x[1]<-0.6
for (t in 2 : 40) x[t] <- lambda * x[t-1] * (1 - x[t-1])
plot(1:40,x,type="l",ylim=c(0,1),ylab="population",xlab="time",main="3.5")

The outcome is qualitatively different. Now we have persistent four-point cycles. Suppose
that � were to increase to 4:

lambda<-4
x<-numeric(40)
x[1]<-0.6
for (t in 2 : 40) x[t] <- lambda * x[t-1] * (1 - x[t-1])
plot(1:40,x,type="l",ylim=c(0,1),ylab="population",xlab="time",main="4.0")

Now this is really interesting. The dynamics to not repeat in any easily described pattern.
They are said to be chaotic because the pattern shows extreme sensitivity to initial condi-
tions: tiny changes in initial conditions can have huge consequences on numbers at a given
time in the future.

Investigating the route to chaos

We have seen four snapshots of the relationship between � and population dynamics. To
investigate this more fully, we should write a function to describe the dynamics as a function
of �, and extract a set of (say, 20) sequential population densities, after any transients have
died away (after, say, 380 iterations):

SIMULATION MODELS 813

2.0

0.
8

0.
4

po
pu

la
tio

n

0.
0

0 10 20
time

30 40

3.5 4.0

0.
8

0.
4

po
pu

la
tio

n

0.
0

0 10 20
time

30 40

0.
8

0.
4

po
pu

la
tio

n

0.
0

0 10 20
time

30 40

0.
8

0.
4

po
pu

la
tio

n

0.
0

0 10 20
time

30 40

3.3

numbers<-function (lambda) �
x<-numeric(400)
x[1]<-0.6
for (t in 2 : 400) x[t] <- lambda * x[t-1] * (1 - x[t-1])
x[381:400] �

The idea is to plot these 20 values on the y axis of a new graph, against the value of � that
produced them. A stable point equilibrium will be represented by a single point, because
all 20 values of y will be identical. Two-point cycles will show up as two points, four-point
cycles as four points, but chaotic systems will appear as many points. Start with a blank
graph:

par(mfrow=c(1,1))
plot(c(2,4),c(0,1),type="n",xlab="lambda",ylab="population")

Now, simulate using a for loop a wide range of values for � between 2 and 4 (the range we
investigated earlier), and use the function sapply to apply our function to the current value
of �, then use points to add these results to the graph:

for(lam in seq(2,4,0.01))
points(rep(lam,20),sapply(lam,numbers),pch=16,cex=0.5)

814 THE R BOOK

1.
0

0.
8

0.
6

po
pu

la
tio

n

0.
4

0.
2

2.0 2.5 3.0

lambda

3.5 4.0

0.
0

This graph shows what is called ‘the period-doubling route to chaos’; see May (1976) for
details.

Temporal and Spatial Dynamics: a Simulated Random Walk in Two
Dimensions

The idea is to follow an individual as it staggers its way around a two-dimensional random
walk, starting at the point (50, 50) and leaving a trail of lines on a square surface which
scales from 0 to 100. First, we need to define what we mean by our random walk. Suppose
that in the x direction the individual could move one step to the left in a given time period,
stay exactly where it is for the whole time period, or move one step to the right. We
need to specify the probabilities of these three outcomes. Likewise, in the y direction the
individual could move one step up in a given time period, stay exactly where it is for the
whole time period, or move one step down. Again, we need to specify probabilities. In
R, the three movement options are c(1,0,-1) for each of the types of motion (left, stay
or right, and up, stay or down) and we might as well say that each of the three motions
is equally likely. We need to select one of the three motions at random independently
for the x and y directions at each time period. In R we use the sample function for
this:

sample(c(1,0,-1),1)

SIMULATION MODELS 815

which selects one value (the last argument is 1) with equal probability from the three listed
options (+1, 0 or −1). Out of 99 repeats of this procedure, we should expect an average of
33 ups and 33 downs, 33 lefts and 33 rights.

We begin by defining the axes and drawing the start position in red:

plot(0:100,0:100,type="n",xlab="",ylab="")
x<-y<-50
points(50,50,pch=16,col="red",cex=1.5)

Now simulate the spatial dynamics of the random walk with up to 10 000 time steps:

for (i in 1:10000)�
xi<-sample(c(1,0,-1),1)
yi<-sample(c(1,0,-1),1)
lines(c(x,x+xi),c(y,y+yi))
x<-x+xi
y<-y+yi
if (x>100 | x<0 | y>100 | y<0) break
�

10
0

80
60

40
20

0

0 20 40 60 80 100

You could make the walk more sophisticated by providing wrap-around margins (see
below). On average, of course, the random walk should stay in the middle, where it started,
but as you will see by running this model repeatedly, most random walks do nothing of
the sort. Instead, they wander off and fall over one of the edges in more or less short
order.

816 THE R BOOK

Spatial Simulation Models

There are two broad types of spatial simulation models:

• spatial models that are divided but not spatially explicit;

• spatially explicit models where neighbours can be important.

Metapopulation dynamics is a classic example of a spatial model that is not spatially explicit.
Patches are occupied or not, but the fate of a patch is not related to the fate of its immediate
neighbours but rather by the global supply of propagules generated by all the occupied
patches in the entire metapopulation.

Metapopulation dynamics

The theory is very simple. The world is divided up into many patches, all of which are
potentially habitable. Populations on inhabited patches go extinct with a density-independent
probability, e. Occupied patches all contain the same population density, and produce
migrants (propagules) at a rate m per patch. Empty patches are colonized at a rate propor-
tional to the total density of propagules and the availability of empty patches that are suitable
for colonization. The response variable is the proportion of patches that are occupied, p.
The dynamics of p, therefore, are just gains minus losses, so

dp

dt
= p�1 − p�m − ep�

At equilibrium dp/dt = 0, and so

p�1 − p�m = ep�

giving the equilibrium proportion of occupied patches p∗ as

p∗ = 1 − e

m
�

This draws attention to a critical result: there is a threshold migration rate �m = e� below
which the metapopulation cannot persist, and the proportion of occupied patches will drift
inexorably to zero. Above this threshold, the metapopulation persists in dynamic equilibrium
with patches continually going extinct (the mean lifetime of a patch is 1/e) and other patches
becoming colonized by immigrant propagules.

The simulation produces a moving cartoon of the occupied (light colour) and empty
patches (dark colour). We begin by setting the parameter values

m<-0.15
e<-0.1

We create a square universe of 10 000 patches in a 100 ×100 array, but this is not a spatially
explicit model, and so the map-like aspects of the image should be ignored. The response
variable is just the proportion of all patches that are occupied. Here are the initial conditions,
placing occupied 100 patches at random in a sea of unoccupied patches:

SIMULATION MODELS 817

s<-(1-e)
N<-matrix(rep(0,10000),nrow=100)
xs<-sample(1:100)
ys<-sample(1:100)
for (i in 1:100){
N[xs[i],ys[i]]<-1 }
image(1:100,1:100,N)

We want the simulation to run over 1000 generations:

for (t in 1:1000){

First we model the survival (or not) of occupied patches. Each cell of the universe gets an
independent random number from a uniform distribution (a real number between 0 and 1).
If the random number is bigger than or equal to the survival rate s (= 1 − e, above) then the
patch survives for another generation. If the random number is less than s, then the patch
goes extinct and N is set to zero:

S <-matrix(runif(10000),nrow=100)
N<-N*(S<s)

Note that this one statement updates the whole matrix of 10 000 patches. Next, we work
out the production of propagules, im, by the surviving patches (the rate per patch is m):

im<-floor(sum(N*m))

We assume that the settlement of the propagules is random, some falling in empty patches
but others being ‘wasted’ by falling in already occupied patches:

placed<-matrix(sample(c(rep(1,im) ,rep (0,10000-im))),nrow=100)
N<-N+placed
N<-apply(N,2,function(x) ifelse(x>1,1,x))

The last line is necessary to keep the values of N just 0 (empty) or 1 (occupied) because
our algorithm gives N = 2 when a propagule falls in an occupied patch. Now we can draw
the map of the occupied patches

image(1:100,1:100,N)
box(col="red")
}

Because the migration rate �m = 0�15� exceeds the extinction rate �e = 0�1� the metapopu-
lation is predicted to persist. The analytical solution for the long term proportion of patches
occupied is one-third of patches �1 − 0�1/0�15 = 0�333�. At any particular time of stopping
the simulation, you can work out the actual proportion occupancy as

sum(N)/length(N)

[1] 0.268

because there were 2680 occupied patches in this map:
Remember that a metapopulation model is not spatially explicit, so you should not read

anything into any the apparent neighbour relations in this graph (the occupied patches should
be distributed at random over the surface).

818 THE R BOOK

10
0

80
60

1:
10

0

1:100

40
20

20 40 60 80 100

Coexistence resulting from spatially explicit (local) density dependence

We have two species which would not coexist in a well-mixed environment because the
fecundity of species A is greater than the fecundity of species B, and this would lead, sooner
or later, to the competitive exclusion of species B and the persistence of a monoculture
of species A. The idea is to see whether the introduction of local neighbourhood density
dependence is sufficient to prevent competitive exclusion and allow long-term coexistence
of the two species.

The kind of mechanism that might allow such an outcome is the build-up of spe-
cialist natural enemies such as insect herbivores or fungal pathogens in the vicinity
of groups of adults of species A, that might prevent recruitment by species A when
there were more than a threshold number, say T , of individuals of species A in a
neighbourhood.

The problem with spatially explicit models is that we have to model what happens at the
edges of the universe. All locations need to have the same numbers of neighbours in the
model, but patches on the edge have fewer neighbours than those in the middle. The simplest
solution is to model the universe as having ‘wrap-around margins’ in which the left-hand
edge is assumed to have the right-hand edge as its left-hand neighbour (and vice versa),
while the top edge is assumed to have the bottom edge as its neighbour above (and vice
versa). The four corners of the universe are assumed to be reciprocal diagonal neighbours.

We need to define who is a neighbour of whom. The simplest method, adopted here, is
to assume a square grid in which a central cell has eight neighbours – three above, three
below and one to either side:

SIMULATION MODELS 819

plot(c(0,1),c(0,1),xaxt="n",yaxt="n",type="n",xlab="",ylab="")
abline("v"=c(1/3,2/3))
abline("h"=c(1/3,2/3))
xs<-c(.15,.5,.85,.15,.85,.15,.5,.85)
ys<-c(.85,.85,.85,.5,.5,.15,.15,.15)
for (i in 1:8) text(xs[i],ys[i],as.character(i))
text(.5,.5,"target cell")

This code produces a plot showing a target cell in the centre of a matrix, and the numbers
in the other cells indicate its ‘first-order neighbours’:

1 2 3

4 target cell 5

6 7 8

We need to write a function to define the margins for cells on the top, bottom and
edge of our universe, N , and which determines all the neighbours of the four corner cells.
Our universe is 100 × 100 cells and so the matrix containing all the neighbours will be
102 × 102. Note the use of subscripts (see p. 20 for revision of this):

margins<-function(N){
edges<-matrix(rep(0,10404),nrow=102)
edges[2:101,2:101]<-N
edges[1,2:101]<-N[100,]
edges[102,2:101]<-N[1,]
edges[2:101,1]<-N[,100]
edges[2:101,102]<-N[,1]
edges[1,1]<-N[100,100]
edges[102,102]<-N[1,1]
edges[1,102]<-N[100,1]
edges[102,1]<-N[1,100]
edges}

820 THE R BOOK

Next, we need to write a function to count the number of species A in the eight neigh-
bouring cells, for any cell i� j:

nhood<-function(X,j,i) sum(X[(j-1):(j+1),(i-1):(i+1)]==1)

Now we can set the parameter values: the reproductive rates of species A and B, the
death rate of adults (which determines the space freed up for recruitment) and the threshold
number, T , of species A (out of the eight neighbours) above which recruitment cannot
occur:

Ra<-3
Rb<-2.0
D<-0.25
s<-(1-D)
T<-6

The initial conditions fill one half of the universe with species A and the other half with
species B, so that we can watch any spatial pattern as it emerges:

N<-matrix(c(rep(1,5000),rep(2,5000)),nrow=100)
image(1:100,1:100,N)

We run the simulation for 1000 time steps:

for (t in 1:1000){

First, we need to see if the occupant of a cell survives or dies. For this, we compare a
uniformly distributed random number between 0 and 1 with the specified survival rate
s = 1 − D. If the random number is less than s the occupant survives, if it is greater than s
it dies:

S <-1*(matrix(runif(10000),nrow=100)<s)

We kill the necessary number of cells to open up space for recruitment:

N<-N*S
space<-10000-sum(S)

Next, we need to compute the neighbourhood density of A for every cell (using the wrap-
around margins):

nt<-margins(N)

tots<-matrix(rep(0,10000),nrow=100)
for (a in 2:101) {
for (b in 2:101) {
tots[a-1,b-1]<-nhood(nt,a,b)
}}

The survivors produce seeds as follows:

seedsA<- sum(N==1)*Ra
seedsB<- sum(N==2)*Rb
all.seeds<-seedsA+seedsB
fA=seedsA/all.seeds
fB=1-fA

SIMULATION MODELS 821

Seeds settle over the universe at random.

setA<-ceiling(10000*fA)
placed<-matrix(sample(c(rep(1,setA) ,rep (2,10000-setA))),nrow=100)

Seeds only produce recruits in empty cells N[i,j] == 0. If the winner of an empty cell
(placed) is species B, then species B gets that cell: if(placed[i,j]== 2) N[i,j]<-2. If species
A is supposed to win a cell, then we need to check that it has fewer than T neighbours
of species A. If so, species A gets the cell. If not, the cell is forfeited to species B: if
(tots[i,j]>=T) N[i,j]<-2.

for (i in 1:100){
for(j in 1:100){
if (N[i,j] == 0)
if(placed[i,j]== 2) N[i,j]<-2
else
if (tots[i,j]>=T) N[i,j]<-2
else N[i,j]<-1
}}

Finally, we can draw the map, showing species A in red and species B in white:

image(1:100,1:100,N)
box(col="red")}

10
0

80
60

1:
10

0

1:100

40
20

20 40 60 80 100

822 THE R BOOK

You can watch as the initial half-and-half pattern breaks down, and species A increases
in frequency at the expense of species B. Eventually, however, species A gets to the
point where most of the cells have six or more neighbouring cells containing species
A, and its recruitment begins to fail. At equilibrium, species B persists in isolated cells
or in small (white) patches, where the cells have six or more occupants that belong to
species A.

If you set the threshold T = 9, you can watch as species A drives species B to extinction.
If you want to turn the tables, and see species B take over the universe, set T = 0.

Pattern Generation Resulting from Dynamic Interactions

In this section we look at an example of an ecological interaction between a species and its
parasite. The interaction is unstable in a non-spatial model, with increasing oscillations in
numbers leading quickly to extinction of the host species and then, in the next generation,
its parasite. The non-spatial dynamics look like this:

20
0

15
0

10
0

N

50
0

2 4 6
Index

8 10

The parasite increases in generation number 1 and drives the host to extinction in generation
2, subsequently going extinct itself.

In a spatial model, we allow that hosts and parasites can move from the location in
which they were born to any one of the eight first-order neighbouring cells (p. 819). For the
purposes of dispersal, the universe is assumed have wrap-around margins for both species.
The interaction is interesting because it is capable of producing beautiful spatial patterns
that fluctuate with host and parasite abundance. We begin by setting the parameter values
for the dynamics of the host (r) and the parasite (a) and the migration rates of the host

SIMULATION MODELS 823

�Hmr = 0�1� and parasite �Pmr = 0�9�: in this case the hosts are relatively sedentary and the
parasites are highly mobile:

r<-0.4
a<-0.1
Hmr<-0.1
Pmr<-0.9

Next, we set up the matrices of host (N) and parasite (P) abundance. These will form what
is termed a coupled map lattice:

N<-matrix(rep(0,10000),nrow=100)
P<-matrix(rep(0,10000),nrow=100)

The simulation is seeded by introducing 200 hosts and 100 parasites into a single cell at
location (33,33):

N[33,33]<-200
P[33,33]<-100

We need to define a function called host to calculate the next host population as a function
of current numbers of hosts and parasites (N and P), and another function called parasite
to calculate the next parasite population as a function of N and P – this is called a
Nicholson–Bailey model:

host<-function(N,P) N*exp(r-a*P)
parasite<-function(N,P) N*(1-exp(-a*P))

Both species need a definition of their wrap-around margins for defining the destinations
of migrants from each cell:

host.edges<-function(N){
Hedges<-matrix(rep(0,10404),nrow=102)
Hedges[2:101,2:101]<-N
Hedges[1,2:101]<-N[100,]
Hedges[102,2:101]<-N[1,]
Hedges[2:101,1]<-N[,100]
Hedges[2:101,102]<-N[,1]
Hedges[1,1]<-N[100,100]
Hedges[102,102]<-N[1,1]
Hedges[1,102]<-N[100,1]
Hedges[102,1]<-N[1,100]
Hedges}

parasite.edges<-function(P){
Pedges<-matrix(rep(0,10404),nrow=102)
Pedges[2:101,2:101]<-P
Pedges[1,2:101]<-P[100,]
Pedges[102,2:101]<-P[1,]
Pedges[2:101,1]<-P[,100]
Pedges[2:101,102]<-P[,1]
Pedges[1,1]<-P[100,100]
Pedges[102,102]<-P[1,1]

824 THE R BOOK

Pedges[1,102]<-P[100,1]
Pedges[102,1]<-P[1,100]
Pedges}

A function is needed to define the eight cells that comprise the neighbourhood of any cell
and add up the total number of neighbouring individuals:

nhood<-function(X,j,i) sum(X[(j-1):(j+1),(i-1):(i+1)])

The number of host migrants arriving in every cell is calculated as follows:

h.migration<-function(Hedges){
Hmigs<-matrix(rep(0,10000),nrow=100)
for (a in 2:101) {
for (b in 2:101) {
Hmigs[a-1,b-1]<-nhood(Hedges,a,b)
}}
Hmigs}

The number of parasites migrants is given by:

p.migration<-function(Pedges){
Pmigs<-matrix(rep(0,10000),nrow=100)
for (a in 2:101) {
for (b in 2:101) {
Pmigs[a-1,b-1]<-nhood(Pedges,a,b)
}}
Pmigs}

The simulation begins here, and runs for 600 generations:

for (t in 1:600){

he<-host.edges(N)
pe<-parasite.edges(P)

Hmigs<-h.migration(he)
Pmigs<-p.migration(pe)

N<-N-Hmr*N+Hmr*Hmigs/9
P<-P-Pmr*P+Pmr*Pmigs/9

Ni<-host(N,P)
P<-parasite(N,P)
N<-Ni

image(1:100,1:100,N)
}

You can watch as the initial introduction at (33,33) spreads out and both host and parasite
populations pulse in abundance. Eventually, the wave of migration reaches the margin and
appears on the right hand edge. The fun starts when the two waves meet one another. The
pattern below is typical of the structure that emerges towards the middle of a simulation
run:

SIMULATION MODELS 825

10
0

80
60

1:
10

0

1:100

40
20

20 40 60 80 100

27
Changing the Look of Graphics

Many of the changes that you want to make to the look of your graphics will involve the
use of the graphics parameters function, par. Other changes, however, can be made through
alterations to the arguments to high-level functions such as plot, points, lines, axis, title
and text (these are shown with an asterisk in Table 27.1).

Graphs for Publication

The most likely changes you will be asked to make are to the orientation of the numbers on
the tick marks, and to the sizes of the plotting symbols and text labels on the axes. There
are four functions involved here:

las determines the orientation of the numbers on the tick marks;

cex determines the size of plotting characters (pch);

cex.lab determines the size of the text labels on the axes;

cex.axis determines the size of the numbers on the tick marks.

Here we show four different combinations of options. You should pick the settings that
look best for your particular graph.

par(mfrow=c(2,2))
x<-seq(0,150,10)
y<-16+x*0.4+rnorm(length(x),0,6)
plot(x,y,pch=16,xlab="label for x axis",ylab="label for y axis")
plot(x,y,pch=16,xlab="label for x axis",ylab="label for y axis",

las=1,cex.lab=1.2, cex.axis=1.1)
plot(x,y,pch=16,xlab="label for x axis",ylab="label for y axis",

las=2,cex=1.5)
plot(x,y,pch=16,xlab="label for x axis",ylab="label for y axis",

las=3,cex=0.7,cex.lab=1.3, cex.axis=1.3)

The top left-hand graph uses all the default settings:

las = 0, cex = 1, cex.lab = 1

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

828 THE R BOOK

20

30

40

50

60

70

80

20
40

60
80

la
be

l f
or

 y
 a

xi
s

20
40

60
80

la
be

l f
or

 y
 a

xi
s

la
be

l f
or

 y
 a

xi
s

20

30

40

50

60

70

80

la
be

l f
or

 y
 a

xi
s

label for x axis

0 50 10
0

15
0

label for x axis

0 50 100 150

label for x axis

0

50

10
0

15
0

label for x axis

0 50 100 150

In the top right-hand graph the numbers have been rotated so that they are all vertical
(las = 1), the label size has been increased by 20% and the numbers by 10%:

las = 1, cex = 1, cex.lab = 1.2, cex.axis=1.1

In the bottom left-hand graph the plotting symbol (pch = 16) has been increased in size by
50% and the numbers on both axes are parallel with their axes (las = 2):

las = 2, cex = 1.5, cex.lab = 1

Finally, in the bottom right-hand graph the label size has been increased by 30%, the plotting
symbols reduced by 30% and the axes numbers are all at 90 degrees (las = 3)

las = 3, cex = 0.7, cex.lab = 1.3, cex.axis = 1.3

My favourite is the top right-hand graph with slightly larger text and numbers and with
vertical numbering on the y axis.

Shading

You can control five aspects of the shading: the density of the lines, the angle of the shading,
the border of the shaded region, the colour of the lines and the line type. Here are their
default values:

density = NULL
angle = 45

CHANGING THE LOOK OF GRAPHICS 829

border = NULL
col = NA
lty = par("lty"), …)

Other graphical parameters such as xpd, lend, ljoin and lmitre (Table 27.1) can be given
as arguments.

The following data come from a long-term study of the botanical composition of a pasture,
where the response variable is the dry mass of a grass species called Festuca rubra (FR),
and the two explanatory variables are total hay biomass and soil pH:

data<-read.table("c:\\temp\\pgr.txt",header=T)
attach(data)
names(data)

[1] "FR" "hay" "pH"

The idea is to draw polygons to represent the convex hulls for the abundance of Festuca in
the space defined by hay biomass and soil pH. The polygon is to be red for Festuca > 5,
green for Festuca > 10 and cross-hatched in blue for Festuca > 20. After all of the solid
objects have been drawn, the data are to be overlaid as a scatterplot with pch = 16:

plot(hay,pH)
x<-hay[FR>5]
y<-pH[FR>5]
polygon(x[chull(x,y)],y[chull(x,y)],col="red")

hay

pH

9875 6432

3.
5

4.
5

4.
0

5.
5

5.
0

6.
0

6.
5

7.
0

830 THE R BOOK

x<-hay[FR>10]
y<-pH[FR>10]
polygon(x[chull(x,y)],y[chull(x,y)],col="green")
x<-hay[FR>20]
y<-pH[FR>20]
polygon(x[chull(x,y)],y[chull(x,y)],density=10,angle=90,col=”blue”)
polygon(x[chull(x,y)],y[chull(x,y)],density=10,angle=0,col=”blue”)
points(hay,pH,pch=16)

The issue of transparency (i.e. what you can see ‘through’ what) is described in the help
files for ?polygon and ?rgb. If in doubt, use points, lines and polygons in sequence, so
that objects (‘on top’) that you want to be visible in the final image are drawn last.

Logarithmic Axes

You can transform the variables inside the plot function (e.g. plot(log(y) ~ x)) or you can
plot the untransformed variables on logarithmically scaled axes (e.g. log="x").

data<-read.table("c:\\temp\\logplots.txt",header=T)
attach(data)
names(data)

[1] "x" "y"

–0
.2

0.
2

0.
6

lo
g

(y
)

y

1.
0

1.
5

2.
0

y

1.
0

1.
5

2.
0

y

x
0 50 100 150

log (x)

2.5 3.0 3.5 4.0 4.5 5.0

x
0 20 50 100

x

0

0.
0

0.
5

1.
0

1.
5

2.
0

50 100 150

CHANGING THE LOOK OF GRAPHICS 831

par(mfrow=c(2,2))

plot(x,y,pch=16)
plot(log(x),log(y),pch=16)
plot(x,y,pch=16,log="xy")
plot(x,y,pch=16,log="y")

The untransformed data are in the top left-hand graph, and both x and y are transformed
to logs before plotting in the upper right. The bottom left-hand plot shows both axes log-
transformed, while the bottom right shows the data with only the y axis log-transformed.
Note that all logs in R are to the base e by default (not base 10). It is important to understand
that when R is asked to plot the log of zero it simply omits any such points without comment
(compare the top left-hand graph with a point at (0, 0) with the other three graphs).

Axis Labels Containing Subscripts and Superscripts

The default xlab and ylab do not allow subscripts like r2 or superscripts or xi. For these
you need to master the expression function. In R, the operator for superscripts is ‘hat’
(or, more correctly, ‘caret’) so ‘r squared’ is written r^2. Likewise subscripts in R involve
square brackets [] so xi is written x[i]. Suppose that we want r2 to be the label on the y axis
and xi to be the label on the x axis. The expression function turns R code into text like this:

plot(1:10,1:10, ylab=expression(r^2), xlab=expression(x[i]),type="n")

Different font families for text

To change the typeface used for plotted text, change the name of a font family. Standard
values are family = "serif ", "sans" (the default font), "mono", and "symbol", and the
Hershey font families are also available. Some devices will ignore this setting completely.
Text drawn onto the plotting region is controlled using par like this:

par(family="sans")
text(5,8,"This is the default font")
par(family="serif")
text(5,6,"This is the serif font")
par(family="mono")
text(5,4,"This is the mono font")
par(family="symbol")
text(5,2,"This is the symbol font")
par(family="sans")

Don’t forget to turn the family back to "sans", otherwise you may get some very
unexpected symbols in your next text. To write the results of calculations using text, it is
necessary to use substitute with expression. Here, the coefficient of determination (cd)
was calculated earlier and we want to write its value on the plot, labelled with ‘r2 =’:

cd<- 0.63
...
text(locator(1),as.expression(substitute(r^2 == cd,list(cd=cd))))

Just click when the cursor is where you want the text to appear. Note the use of ‘double
equals’.

832 THE R BOOK

x i

r2
r2

 = 0.63

108642

4
2

6
8

10

Mathematical Symbols on Plots

To write on plots using more intricate symbols such as mathematical symbols or Greek
letters we use expression or substitute. Here are some examples of their use. First, we
produce a plot of sin � against the phase angle � over the range −� to +� radians:

x <- seq(-4, 4, len = 101)
plot(x,sin(x),type="l",xaxt="n",

xlab=expression(paste("Phase Angle ",phi)),
ylab=expression("sin "*phi))

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),
lab = expression(-pi, -pi/2, 0, pi/2, pi))

Note the use of xaxt = “n” to suppress the default labelling of the x axis, and the use of
expression in the labels for the x and y axes to obtain mathematical symbols such as phi
��� and pi ���. The more intricate values for the tick marks on the x axis are obtained
by the axis function, specifying 1 (the x (‘bottom’) axis is axis no. 1), then using the at
function to say where the labels and tick marks are to appear, and lab with expression to
say what the labels are to be.

Suppose you wanted to add �2 = 24�5 to this graph at location �−�/2� 0�5�. You use
text with substitute, like this:

text(-pi/2,0.5,substitute(chi^2=="24.5"))

CHANGING THE LOOK OF GRAPHICS 833

Note the use of ‘double equals’ to print a single equals sign. You can write quite complicated
formulae on plots using paste to join together the elements of an equation. Here is the
density function of the normal written on the plot at location ��/2� −0�5�:

text(pi/2, -0.5, expression(paste(frac(1, sigma*sqrt(2*pi)), " ",
e^{frac(-(x-mu)^2, 2*sigma^2)})))

Note the use of frac to obtain individual fractions: the first argument is the text for the
numerator, the second the text for the denominator. Most of the arithmetic operators have
obvious formats (+�−� /�∗� ˆ, etc.); the only non-intuitive symbol that is commonly used
is ‘plus or minus’ ±; this is written as % + −% like this:

text(pi/2,0,expression(hat(y) %+-% se))

e
1

——–

–(x–μ)2
––———

2σ2

Phase Angle φ

y ± se

σ√ 2π

0–π –π/2 π/2 π

si
n

φ

χ2 = 24.5

–1
.0

–0
.5

0.
0

0.
5

1.
0

∧

Phase Planes

Suppose that we have two competing species (named 1 and 2) and we are interested in
modelling the dynamics of the numbers of each species (N1 and N2). We want to draw a
phase plane showing the behaviour of the system close to equilibrium. Setting the derivates
to zero and dividing both sides by riNi we get

0 = 1 − 	11N1 − 	12N2�

834 THE R BOOK

which is called the isocline for species 1. It is linear in N1 and N2 and we want to draw it
on a phase plane with N2 on the y axis and N1 on the x axis. The intercept on the y axis
shows the abundance of N2 when N1 = 0: this is 1/	12. Likewise, when N2 = 0 we can see
that N1 = 1/	11 (the value of its single-species equilibrium). Similarly,

0 = 1 − 	21N1 − 	22N2

describes the isocline for species 2. The intercept on the y axis is 1/	22 and the value of
N1 when N2 = 0 is 1/	21. Now we draw a phase plane with both isoclines, and label the
ends of the lines appropriately. We might as well scale the axes from 0 to 1 but we want to
suppress the default tick marks:

plot(c(0,1),c(0,1),ylab="",xlab="",xaxt="n",yaxt="n",type="n")
abline(0.8,-1.5)
abline(0.6,-0.8,lty=2)

The solid line shows the isocline for species 1 and the dotted line shows species 2.
Now for the labels. We use at to locate the tick marks – first the x axis (axis = 1),

axis(1, at = 0.805, lab = expression(1/alpha[21]))
axis(1, at = 0.56, lab = expression(1/alpha[11]))

and now the y axis (axis = 2),

axis(2, at = 0.86, lab = expression(1/alpha[12]),las=1)
axis(2, at = 0.63, lab = expression(1/alpha[22]),las=1)

Note the use of las=1 to turn the labels through 90 degrees to the horizontal. Now label the
lines to show which species isocline is which. Note the use of the function fract to print
fractions and square brackets (outside the quotes) for subscripts:

text(0.05,0.85, expression(paste(frac("d N"[1],"dt"), " = 0")))
text(0.78,0.07, expression(paste(frac("d N"[2],"dt"), " = 0")))

We need to draw phase plane trajectories to show the dynamics. Species will increase
when they are at low densities (i.e. ‘below’ their isoclines) and decrease at high densities
(i.e. ‘above’ their isoclines). Species 1 increasing is a horizontal arrow pointing to the right.
Species 2 declining is a vertical arrow pointing downwards. The resultant motion shows
how both species’ abundances change through time from a given point on the phase plane.

arrows(-0.02,0.72,0.05,0.72,length=0.1)
arrows(-0.02,0.72,-0.02,0.65,length=0.1)
arrows(-0.02,0.72,0.05,0.65,length=0.1)

arrows(0.65,-0.02,0.65,0.05,length=0.1)
arrows(0.65,-0.02,0.58,-0.02,length=0.1)
arrows(0.65,-0.02,0.58,0.05,length=0.1)

arrows(0.15,0.25,0.15,0.32,length=0.1)
arrows(0.15,0.25,0.22,0.25,length=0.1)
arrows(0.15,0.25,0.22,0.32,length=0.1)

arrows(.42,.53,.42,.46,length=0.1)
arrows(.42,.53,.35,.53,length=0.1)
arrows(.42,.53,.35,.46,length=0.1)

CHANGING THE LOOK OF GRAPHICS 835

All the motions converge, so the point is a stable equilibrium and the two species would
coexist. All other configurations of the isoclines lead to competitive exclusion of one of the
two species. Finally, label the axes with the species’ identities:

axis(1, at = 1, lab = expression(N[1]))
axis(2, at = 1, lab = expression(N[2]),las=1)

dN2 —— = 0
dt

dN1 —— = 0
dt

1/α11 1/α21 N1

1/α22

1/α12

N2

Fat Arrows

You often want to add arrows to plots in order to draw attention to particular features. Here
is a function called fat.arrows that uses locator(1) to identify the bottom of the point of a
vertical fat arrow. You can modify the function to draw the arrow at any specified angle
to the clicked point of its arrowhead. The default widths and heights of the arrow are 0.5
scaled x or y units and the default colour is red:

fat.arrow<-function(size.x=0.5,size.y=0.5,ar.col="red"){
size.x<-size.x*(par("usr")[2]-par("usr")[1])*0.1
size.y<-size.y*(par("usr")[4]-par("usr")[3])*0.1
pos<-locator(1)
xc<-c(0,1,0.5,0.5,-0.5,-0.5,-1,0)
yc<-c(0,1,1,6,6,1,1,0)
polygon(pos$x+size.x*xc,pos$y+size.y*yc,col=ar.col) }

We will use this function later in this chapter (p. 857).

836 THE R BOOK

Trellis Plots

You need to load the lattice package and set the background colour to white. You can read
the details in ?trellis.device.

library(lattice)

The most commonly use trellis plot is xyplot, which produces conditional scatterplots
where the response, y, is plotted against a continuous explanatory variable x, for different
levels of a conditioning factor, or different values of the shingles of a conditioning variable.
This is the standard plotting method that is used for linear mixed-effects models and in cases
where there are nested random effects (i.e. with groupedData see p. 668). The structure of
the plot is typically controlled by the formula; for example

xyplot(y ~ x | subject)

where a separate graph of y against x is produced for each level of subject (the vertical bar
| is read as ‘given’). If there are no conditioning variables, xyplot(y ~ x), the plot produced
consists of a single panel. All arguments that are passed to a high-level trellis function like
xyplot that are not recognized by it are passed through to the panel function. It is thus
generally good practice when defining panel functions to allow a

 argument. Such extra
arguments typically control graphical parameters.

Panels are by default drawn starting from the bottom left-hand corner, going right and then
up, unless as.table = TRUE, in which case panels are drawn from the top left-hand corner,
going right and then down. Both of these orders can be modified using the index.cond and
perm.cond arguments. There are some grid-compatible replacements for commonly used
base R graphics functions: for example, lines can be replaced by llines (or equivalently,
panel.lines). Note that base R graphics functions like lines will not work in a lattice panel
function. The following example is concerned with root growth measured over time, as
repeated measures on 12 individual plants:

results< -read.table("c:\\temp\\fertilizer.txt",header=T)
attach(results)
names(results)

[1] "root" "week" "plant" "fertilizer"

Panel scatterplots

Panel plots are very easy to use. Here is a set of 12 scatterplots, showing root ~ week with
one panel for each plant like this: | plant

xyplot(root ~ week | plant)

By default, the panels are shown in alphabetical order by plant name from bottom left (ID1)
to top right (ID9). If you want to change things like the plotting symbol you can do this
within the xyplot function,

xyplot(root ~ week | plant,pch=16)

but if you want to make more involved changes, you should use a panel function. Suppose
we want to fit a separate linear regression for each individual plant. We write

CHANGING THE LOOK OF GRAPHICS 837

xyplot(root ~ week | plant ,
panel = function(x, y) {
panel.xyplot(x, y, pch=16)
panel.abline(lm(y ~ x))

})

2 4 6 8 10

ro
ot

week

ID1 ID10 ID12

ID2 ID3 ID4

ID11

ID5

ID6 ID7 ID8 ID9

2 4 6 8 10 2 4 6 8 10

10

8

6

4

2

10

8

6

4

2

10

8

6

4

2

2 4 6 8 10

Panel boxplots

Here is the basic box-and-whisker trellis plot for the Daphnia data:

data< -read.table("c:\\temp\\Daphnia.txt",header=T)
attach(data)
names(data)

[1] "Growth.rate" "Water" "Detergent" "Daphnia"

bwplot(Growth.rate ~ Detergent | Daphnia, xlab = "detergent")

838 THE R BOOK

7

6

5

4

3

2

7

6

5

4

3

2

detergent
BrandA BrandB BrandC BrandD BrandA BrandB BrandC BrandD

Clone 3

Clone 1

G
ro

w
th

 r
at

e

Clone 2

A separate box-and-whisker is produced for each level of detergent within each clone, and
a separate panel is produced for each level of Daphnia.

Panel barplots

The following example shows the use of the trellis version of barchart with the barley data.
The data are shown separately for each year (groups = year) and the bars are stacked for
each year (stack = TRUE) in different shades of blue (col=c("cornflowerblue","blue")):
The barcharts are produced in three rows of two plots each (layout = c(2,3)). Note the use
of scales to rotate the long labels on the x axis through 45 degrees:

barchart(yield ~ variety | site, data = barley,
groups = year, layout = c(2,3), stack = TRUE,
col=c("cornflowerblue","blue"),
ylab = "Barley Yield (bushels/acre)",
scales = list(x = list(rot = 45)))

Panels for conditioning plots

In this example we put each of the panels side by side (layout=c(9,1)) on the basis of an
equal-count split of the variable called E within the ethanol dataframe:

CHANGING THE LOOK OF GRAPHICS 839

120
Crookston

University Farm

B
ar

le
y

Y
ie

ld
 (

bu
sh

el
s/

ac
re

)

Waseca

Morris

DuluthGrand Rapids

Sva
ns

ot
a

No.
 4

62

M
an

ch
ur

ia

No.
 4

75

Velv
et

Pea
tla

nd

Glab
ro

n

No.
 4

57

W
isc

on
sin

 N
o.

 3
8

Tre
bi

Sva
ns

ot
a

No.
 4

62

M
an

ch
ur

ia

No.
 4

75

Velv
et

Pea
tla

nd

Glab
ro

n

No.
 4

57

W
isc

on
sin

 N
o.

 3
8

Tre
bi

100

80

60

40

20

0

120

100

80

60

40

20

0

120

100

80

60

40

20

0

EE < - equal.count(ethanol$E, number=9, overlap=1/4)

Within each panel defined by EE we draw a grid (panel.grid(h=-1, v= 2)), create a
scatterplot of NOx against C (panel.xyplot(x, y)) and draw an individual linear regression
(panel.abline(lm(y ~ x))):

xyplot(NOx ~ C | EE, data = ethanol,layout=c(9,1),
panel = function(x, y) {

panel.grid(h=-1, v= 2)
panel.xyplot(x, y)
panel.abline(lm(y~x))

})

This is an excellent way of illustrating that the correlation between NOx and C is positive
for all levels of EE except the highest one, and that the relationship is steepest for values
of EE just below the median (i.e. in the third panel from the left).

840 THE R BOOK

N
O

x

4

3

2

1

C

EE EE EE EE EE EE EE EE EE

810 14 18

810 14 18 810 14 18 810 14 18 810 14 18 810 14 18

810 14 18 810 14 18 810 14 18

Panel histograms

The task is to use the Silwood weather data to draw a panel of histograms, one for each
month of the year, showing the number of years in which there were 0, 1, 2,

 rainy
days per month during the period 1987–2005. We use the built-in function month.abb to
generate a vector of labels for the panels.

months < -month.abb
data < -read.table("c: \\ temp \\ SilwoodWeather.txt",header=T)
attach(data)
names(data)

[1] "upper" "lower" "rain" "month" "yr"

We define a rainy day as a day when there was measurable rain

wet < -(rain > 0)

then create a vector, wd, containing the total number of wet days in each month in each
of the years in the dataframe, along with a vector of the same length, mos, indicating the
month, expressed as a factor:

CHANGING THE LOOK OF GRAPHICS 841

wd < -as.vector(tapply(wet,list(yr,month),sum))
mos < -factor(as.vector(tapply(month,list(yr,month),mean)))

The panel histogram is drawn using the histogram function which takes a model formula
without a response variable ~ wd|mos as its first argument. We want integer bins so
that we can see the number of days with no rain at all, breaks=-0.5:28.5, and we want
the strips labelled with the months of the year (rather than the variable name) using
strip=strip.custom(factor.levels=months)):

histogram(~ wd | mos,type="count",xlab="rainy days",ylab="frequency",
breaks=-0.5:28.5,strip=strip.custom(factor.levels=months))

0 5 10 15 20 25 0 5 10 15 20 25

0 5 10 15 20 25 0 5 10 15 20 25

rainy days

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

Jan Feb Mar Apr

May

Sep Oct Nov Dec

Jun Jul Aug

fr
eq

ue
nc

y

You can see at once that there is rather little seasonality in rainfall at Silwood, and that
most months have had at least 20 wet days in at least one year since 1987. No months have
been entirely rain-free, but May and August have had just 3 days with rain (in 1990 and
1995, respectively). The rainiest months in terms of number of wet days were October 2000
and November 2002, when there were 28 days with rain.

842 THE R BOOK

More panel functions

Plots can be transformed by specifying the grouping (groups = rowpos), indicating that each
group should be drawn in a different colour (panel = "panel.superpose"), or by specifying
that the dots should be joined by lines for each member of the group (panel.groups =
"panel.linejoin"). Here are the orchard spray data with each row shown in a different colour
and the treatment means joined together by lines. This example also shows how to use
auto.key to locate a key to the groups on the right of the plot, showing lines rather than
points:

xyplot(decrease ~ treatment, OrchardSprays, groups = rowpos,
type="a",
auto.key =
list(space = "right", points = FALSE, lines = TRUE))

C D E F G HBA

0

50

100

treatment

de
cr

ea
se

1
2
3
4
5
6
7
8

Three-Dimensional Plots

When there are two continuous explanatory variables, it is often useful to plot the response
as a contour map. In this example, the biomass of one plant species (the response variable)

CHANGING THE LOOK OF GRAPHICS 843

is plotted against soil pH and total community biomass. The species is a grass called Festuca
rubra that peaks in abundance in communities of intermediate total biomass:

data < -read.table("c: \\ temp \\ pgr.txt",header=T)
attach(data)
names(data)

[1] "FR" "hay" "pH"

You need the library called akima in order to implement bivariate interpolation onto a
grid for irregularly spaced input data like these, using the function interp:

install.packages("akima")
library(akima)

The two explanatory variables are presented first (hay and pH in this case), with the
response variable (the ‘height’ of the topography), which is FR in this case, third:

zz < -interp(hay,pH,FR)

The list called zz can now be used in any of the four functions contour, filled.contour,
image or persp. We start by using contour and image together. Rather than the red and
yellows of heat.colors we choose the cooler blues and greens of topo.colors:

image(zz,col = topo.colors(12),xlab="biomass",ylab="pH")
contour(zz,add=T)

10
12

16

20

18

2
4

9

12
16

14

10

8

6

2

9

9

4
140

18
12

10

8

5

6

0

4

4

2

4

2

14

10
12

10

4

2
2

8

pH

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

biomass

3 4 5 6 7 8 9

844 THE R BOOK

biomass

3 4 5 6 7 8 9

20

15

10

5

0

pH

6.5

7.5

6.0

5.5

5.0

4.5

4.0

biomass

F
estuca rubra

pH

CHANGING THE LOOK OF GRAPHICS 845

Alternatively, you can use the filled.contour function,

filled.contour(zz,col = topo.colors(24),xlab="biomass",ylab="pH")

which provides a useful colour key to the abundance of Festuca. Evidently the grass peaks
in abundance at intermediate biomass, but it also occurs at lower biomasses on soils of
intermediate pH (5.0 to 6.0). It is found in only trace amounts in communities where the
biomass is above 7.5 tonnes per hectare, except where soil pH is c.6.6.

The function persp allows an angled view of a 3D-like object, rather than the map-like
views of contour and image. The angles theta and phi define the viewing direction: theta
gives the azimuthal direction and phi gives the colatitude.

persp(zz,xlab="biomass",ylab="pH",zlab="Festuca rubra",
theta = 30, phi = 30,col="lightblue")

It is straightforward to create 3D images of mathematical functions from regularly spaced
grids produced by the outer function without using interp. First create a series of values
for the x and y axis (the base of the plot):

x < -seq(0,10,0.1)
y < -seq(0,10,0.1)

Now write a function to predict the height of the graph (the response variable, z) as a
function of the two explanatory variables x and y:

func < -function(x,y) 3 * x * exp(0.1*x) * sin(y*exp(-0.5*x))

Now use the outer function to evaluate the function over the complete grid of points defined
by x and y:

image(x,y,outer(x,y,func))
contour(x,y,outer(x,y,func),add=T)

Complex 3D plots with wireframe

If you want to create really fancy 3D graphics you will want to master the wireframe
function, which allows you to specify the location of the notional light source that illuminates
your object (and hence creates the shadows). Here are two examples from demo(trellis) that
produce pleasing 3D objects. In the first case, the surface is based on data (in the dataframe
called volcano), whereas in the second case (strips on a globe) the graphic is based on an
equation (z ~ x ∗ y). It is in library(lattice). This is how wireframe is invoked:

wireframe(volcano, shade = TRUE, aspect = c(61/87,
0.4), screen = list(z = -120, x = -45), light.source = c(0,
0, 10), distance = 0.2, shade.colors = function(irr, ref,
height, w = 0.5) grey(w * irr + (1 - w) * (1 - (1 - ref)ˆ0.4)))

Next, we see a shaded globe with the surface turned into strips by leaving out every other
pair of coloured orbits by setting their values to NA.

n < - 50
tx < - matrix(seq(-pi, pi, len = 2 * n), 2 * n, n)
ty < - matrix(seq(-pi, pi, len = n)/2, 2 * n, n, byrow = T)
xx < - cos(tx) * cos(ty)
yy <- sin(tx) * cos(ty)

846 THE R BOOK

2

4

6

8

10

12

14

16

–4

–2

0

18

20 4 6 8 10

x

y

0
2

4
6

8
10

volcano

ro
w

column

CHANGING THE LOOK OF GRAPHICS 847

zz <- sin(ty)
zzz <- zz
zzz[, 1:12 * 4] <- NA

Now draw the globe and shade the front and back surfaces appropriately:

wireframe(zzz ~ xx * yy, shade = TRUE, light.source = c(3,3,3))

zzz

yy
xx

An Alphabetical Tour of the Graphics Parameters

Beginners cannot be expected to know which graphics attributes are changed with the par
function, which can be changed inside the plot function, and which stand alone. This section
therefore unites all the various kinds of graphics control into a single list (see Table 27.1):
properties that are altered by a call to the par function are shown as par(name), while
properties that can be altered inside a plot function are shown in that context; other graphics
functions that stand alone (such as axis) are not shown in the table.

When writing functions, you need to know things about the current plotting region. For
instance to find out the limits of the current axes, use

par("usr")

[1] 1947.92 2004.08 -80.00 2080.00

which shows the minimum x value par("usr")[1], the maximum x value par("usr")[2], the
minimum y value par("usr")[3] and the maximum y value par("usr")[4] of the current
plotting region for the gales data (p. 859).

If you need to use par, then the graphics parameters should be altered before you use the
first plot function. It is a good idea to save a copy of the default parameter settings so that
they can be changed back at the end of the session to their default values:

848 THE R BOOK

Table 27.1. Graphical parameters and their default values. Each of the functions is illustrated in
detail in the text. The column headed ‘In plot?’ indicates with an asterisk whether this parameter can
be changed as an argument to the plot, points or lines functions.

Parameter In plot? Default
value

Meaning

adj ∗ centred Justification of text

ann ∗ TRUE Annotate plots with axis and overall titles?

ask FALSE Pause before new graph?

bg ∗ "transparent" Background style or colour

bty full box Type of box drawn around the graph

cex ∗ 1 Character expansion: enlarge if > 1, reduce if < 1

cex.axis ∗ 1 Magnification for axis notation

cex.lab ∗ 1 Magnification for label notation

cex.main ∗ 1.2 Main title character size

cex.sub ∗ 1 Sub-title character size

cin 0.1354167
0.1875000

Character size (width, height) in inches

col ∗ "black" colors() to see range of colours

col.axis "black" Colour for graph axes

col.lab ∗ "black" Colour for graph labels

col.main ∗ "black" Colour for main heading

col.sub ∗ "black" Colour for sub-heading

cra 13 18 Character size (width, height) in rasters (pixels)

crt 0 Rotation of single characters in degrees (see srt)

csi 0.1875 Character height in inches

cxy 0.02255379
0.03452245

Character size (width, height) in user-defined units

din 7.166666
7.156249

Size of the graphic device (width, height) in inches (the
window is bigger than this)

family ∗ "sans" Font style: from “serif”, “sans”, “mono” and “symbol”
(and see font, below)

fg "black" Colour for objects such as axes and boxes in the foreground

fig 0 1 0 1 Coordinates of the figure region within the display region:
c(x1, x2, y1, y2)

fin 7.166666
7.156249

Dimensions of the figure region (width, height) in inches

font ∗ 1 Font (regular = 1, bold = 2 or italics = 3) in which text is
written (and see family, above)

font.axis ∗ 1 Font in which axis is numbered

font.lab ∗ 1 Font in which labels are written

font.main ∗ 1 Font for main heading

font.sub ∗ 1 Font for sub-heading

gamma 1 Correction for hsv colours

CHANGING THE LOOK OF GRAPHICS 849

hsv 1 1 1 Values (range [0, 1]) for hue, saturation and value of colour

lab 5 5 7 Number of tick marks on the x axis, y axis and size of
labels

las 0 Orientation of axis numbers: use las = 1 for publication

lend "round" Style for the ends of lines; could be “square” or “butt”

lheight 1 Height of a line of text used to vertically space multi-line
text

ljoin "round" Style for joining two lines; could be “mitre” or “bevel”

lmitre 10 Controls when mitred line joins are automatically
converted into bevelled line joins

log ∗ neither Which axes to log: "log=x", "log=y" or "log=xy"

lty ∗ "solid" Line type (e.g. dashed: lty=2)

lwd ∗ 1 Width of lines on a graph

mai 0.95625
0.76875
0.76875
0.39375

Margin sizes in inches for c(bottom, left, top, right)

mar 5.1 Margin sizes in numbers of lines for c(bottom, left, top,
right)

4.1
4.1
2.1

mex 1 Margin expansion specifies the size of font used to convert
between "mar" and "mai", and between "oma" and "omi"

mfcol 1 1 Number of graphs per page (same layout as mfrow (see
below), but graphs produced columnwise)

mfg 1 1 1 1 Which figure in an array of figures is to be drawn next (if
setting) or is being drawn (if enquiring); the array must
already have been set by mfcol or mfrow

mfrow 1 1 Multiple graphs per page (first number = rows, second
number = columns): mfrow = c(2,3) gives graphs in two
rows each with three columns, drawn row-wise

mgp 3 1 0 Margin line (in mex units) for the axis title, axis labels and
axis line

new FALSE To draw another plot on top of the existing plot, set
new=TRUE so that plot does not wipe the slate clean

oma 0 0 0 0 Size of the outer margins in lines of text

c(bottom, left, top, right)

omd 0 1 0 1 Size of the outer margins in normalized device coordinate
(NDC) units, expressed as a fraction (in [0,1]) of the
device region

c(bottom, left, top, right)

omi 0 0 0 0 Size of the outer margins in inches

c(bottom, left, top, right)

pch ∗ 1 Plotting symbol; e.g. pch=16

850 THE R BOOK

Table 27.1. (Continued)

Parameter In plot? Default
value

Meaning

pin 6.004166
5.431249

Current plot dimensions (width, height), in inches

plt 0.1072675
0.9450581
0.1336245
0.8925764

Coordinates of the plot region as fractions of the current
figure region c(x1, x2, y1, y2)

ps 12 Point size of text and symbols

pty "m" Type of plot region to be used: pty="s" generates a square
plotting region, "m" stands for maximal.

srt ∗ 0 String rotation in degrees

tck tcl=-0.5 Big tick marks (grid-lines); to use this set tcl=NA

tcl −0.5 Tick marks outside the frame

tmag 1.2 Enlargement of text of the main title relative to the other
annotating text of the plot

type ∗ "p" Plot type: e.g. type="n" to produce blank axes

usr set by the
last plot
function

Extremes of the user-defined coordinates of the plotting
region

c(xmin, xmax, ymin, ymax)

xaxp 0 1 5 Tick marks for log axes: xmin, xmax and number of
intervals

xaxs "r" Pretty x axis intervals

xaxt "s" x axis type: use xaxt = "n" to set up the axis but not plot it

xlab ∗ label for
the x axis

xlab="label for x axis"

xlim ∗ pretty User control of x axis scaling: xlim=c(0,1)

xlog FALSE Is the x axis on a log scale? If TRUE, a logarithmic scale
is in use; e.g. following

plot(y∼x, log ="x")

xpd FALSE The way plotting is clipped: if FALSE, all plotting is
clipped to the plot region; if TRUE, all plotting is clipped
to the figure region; and if NA, all plotting is clipped to
the device region

yaxp 0 1 5 Tick marks for log axes: ymin, ymax and number of
intervals

yaxs "r" Pretty y axis intervals

yaxt "s" y axis type: use yaxt = "n" to set up the axis but not plot it

ylab ∗ label for
the y axis

ylab="label for y axis"

ylim ∗ pretty User control of y axis scaling: ylim=c(0,100)

ylog FALSE Is the y axis on a log scale? If TRUE, a logarithmic scale
is in use; e.g. following plot(y∼x, log ="xy")

CHANGING THE LOOK OF GRAPHICS 851

default.parameters <- par(no.readonly = TRUE)
…
par(…)
…
par(default.parameters)

To inspect the current values of any of the graphics parameters (par), type the name of
the option in double quotes: thus, to see the current limits of the x and y axes, type

par("usr")

[1] 1947.92 2004.08 -80.00 2080.00

and to see the sizes of the margins (for the gales data on p. 859),

par("mar")

[1] 5.1 4.1 4.1 2.1

Text justification, adj

To alter the justification of text strings, run the par function like this:

par(adj=0)

The parameter adj=0 produces left-justified text, adj=0.5 centred text (the default) and
adj=1 right-justified text. For the text function you can vary justification in the x and y
directions independently like this:

adj=c(1,0)

Annotation of graphs, ann

If you want to switch off the annotation from a plot (i.e. leave the numbers on the tick
marks but not to write the x and y axis labels or print any titles on the graph), then set
ann = FALSE.

Delay moving on to the next in a series of plots, ask

Setting ask = TRUE means that the user is asked for input, before the next figure is drawn.

Control over the axes, axis

The attributes of four sides of the graph (1 = bottom (the x axis); 2 = left (the y axis); 3
= above and 4 = right) are controlled by the axis function.

When you want to put two graphs with different y scales on the same plot, you will
likely want to scale the right axis (axis = 4) differently from the usual y axis on the left
(see below).

Again, you may want to label the tick marks on the axis with letters (rather than the usual
numbers) and this, too, is controlled by the axis function.

First, draw the graph with no axes at all using plot with the axes=FALSE option:

plot(1:10, 10:1, type="n", axes=FALSE,xlab="",ylab="")

For the purposes of illustration only, we use different styles on each of the four axes.

852 THE R BOOK

axis(1, 1:10, LETTERS[1:10], col.axis = "blue")
axis(2, 1:10, letters[10:1], col.axis = "red")
axis(3, lwd=3, col.axis = "green")
axis(4, at=c(2,5,8), labels=c("one","two","three"))

A B C D E F G H I J
on

e
tw

o
th

re
e

a
b

c
d

e
f

g
h

i
j

2 4 6 8 10

On axis 1 there are upper-case letters in place of the default numbers 1 to 10 with blue
rather than black lettering. On axis 2 there are lower-case letters in reverse sequence in red
on each of the 10 tick marks. On axis 3 (the top of the graph) there is green lettering for the
default numbers (2 to 10 in steps of 2) and an extra thick black line for the axis itself (lwd =
3). On axis 4 we have overwritten the default number and location of the tick marks using
at, and provided our own labels for each tick mark (note that the vectors of at locations
and labels must be the same length).

Because we did not use box() there are gaps between the ends of each of the four axes.

Background colour for plots, bg

The colour to be used for the background of plots is set by the bg function like this:

par(bg="cornsilk")

The default setting is par(bg="transparent").

Boxes around plots, bty

Boxes are altered with the bty parameter, and bty="n" suppresses the box. If the character is
one of "o", "l", (lower-case L not numeral 1), "7", "c", "u", or "]" the resulting box resembles
the corresponding upper case letter. Here are six options:

CHANGING THE LOOK OF GRAPHICS 853

par(mfrow=c(3,2))
plot(1:10,10:1)
plot(1:10,10:1,bty="n")
plot(1:10,10:1,bty="]")
plot(1:10,10:1,bty="c")
plot(1:10,10:1,bty="u")
plot(1:10,10:1,bty="7")
par(mfrow=c(1,1))

2
4

6
8

10
2

4
6

8
10

2
4

6
8

10

2
4

6
8

10
2

4
6

8
10

2
4

6
8

10
2 4 6 8 10 2 4 6 8 10

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10 2 4 6 8 10

10
:1

10
:1

10
:1

10
:1

10
:1

10
:1

1:10 1:10

1:10 1:10

1:10 1:10

Size of plotting symbols using the character expansion function, cex

You can use points with cex to create ‘bubbles’ of different sizes. You need to specify the
x� y coordinates of the centre of the bubble, then use cex = value to alter the diameter of
the bubble (in multiples of the default character size: cex stands for character expansion).

plot(0:10,0:10,type="n",xlab="",ylab="")
for (i in 1:10) points(2,i,cex=i)
for (i in 1:10) points(6,i,cex=(10+(2*i)))

The left column shows points of size 1, 2, 3, 4, etc. (cex = i) and the big circles on the
right are in sequence cex = 12, 14, 16, etc. (cex=(10+(2*i))).

854 THE R BOOK

0 2 4 6 8 10

0
2

4
6

8
10

Colour specification

Colours are specified in R in one of three ways:

• by colour name (e.g. “red” as an element of colors());

• by a hexadecimal string of the form #rrggbb;

• by an integer subscript i, meaning palette()[i].

To see all 657 colours available in R (note the US spelling of colors in R), type

colors()

[1] "white" "aliceblue" "antiquewhite"
[4] "antiquewhite1" "antiquewhite2" "antiquewhite3"
[7] "antiquewhite4" "aquamarine" "aquamarine1"

[10] "aquamarine2" "aquamarine3" "aquamarine4"
[13] "azure" "azure1" "azure2"
[16] "azure3" "azure4" "beige"
[19] "bisque" "bisque1" "bisque2"
[22] "bisque3" "bisque4" "black"
[25] "blanchedalmond" "blue" "blue1"

[640] "violet" "violetred" "violetred1"
[643] "violetred2" "violetred3" "violetred4"
[646] "wheat" "wheat1" "wheat2"
[649] "wheat3" "wheat4" "whitesmoke"
[652] "yellow" "yellow1" "yellow2"
[655] "yellow3" "yellow4" "yellowgreen"

CHANGING THE LOOK OF GRAPHICS 855

The simplest way to specify a colour is with a character string giving the colour name (e.g.
col = “red”). Alternatively, colours can be specified directly in terms of their red/green/blue
(RGB) components with a string of the form "#RRGGBB" where each of the pairs RR,
GG, BB consists of two hexadecimal digits giving a value in the range 00 to FF. Colours
can also be specified by giving an index into a small table of colours, known as the palette.
This provides compatibility with S. The functions rgb (red–green–blue) and hsv (hue–
saturation–value) provide additional ways of generating colours (see the relevant help ?rgb
and ?hsv). This code demonstrates the effect of varying gamma in red colours:

n <- 20
y <- -sin(3*pi*((1:n)-1/2)/n)
par(mfrow=c(3,2),mar=rep(1.5,4))
for(gamma in c(.4, .6, .8, 1, 1.2, 1.5))
plot(y, axes = FALSE, frame.plot = TRUE,

xlab = "", ylab = "", pch = 21, cex = 30,
bg = rainbow(n, start=.85, end=.1, gamma = gamma),
main = paste("Red tones; gamma=",format(gamma)))

Note the use of bg within the plot function to colour the different discs and the use of
paste with format to get different titles for the six different plots.

Palettes

There are several built-in palettes: here are four of them

pie(rep(1,12),col=gray(seq(0.1,.8,length=12)),main="gray")
pie(rep(1,12),col=rainbow(12),main="rainbow")
pie(rep(1,12),col=terrain.colors(12),main="terrain.colors")
pie(rep(1,12),col=heat.colors(12),main="heat.colors")

gray

3

2

1

12

11

109

8

7

6

4
5

terrain.colors

3

2

1

12

11

109
8

7

6

4

5

heat.colors

3

2

1

12

11

109

8

7

6

4

5

rainbow

3

2

1

12

11
109

8

7

6

4
5

856 THE R BOOK

You can create your own customized palette either by colour name (as below) or by RGB
levels (e.g. #FF0000, #00FF00, #0000FF):

palette(c("wheat1","wheat2","wheat3","wheat4","whitesmoke","beige",
"bisque1","bisque2","bisque3",”bisque4","yellow1",
"yellow2","yellow3", "yellow4","yellowgreen"))

pie(1:15,col=palette())

To reset the palette back to the default use

palette("default")

The RColorBrewer package

This is a very useful package of tried and tested colour schemes:

install.packages("RColorBrewer")
library(RColorBrewer)
?brewer.pal

The function called colour.pics produces a square with a specified number (x) of striped
colours: the default colours are drawn from mypalette which is set outside the function,
using different options from brewer.pal.

colour.pics<-function(x){
image(1:x,1,as.matrix(1:x),col=mypalette,xlab="",
ylab="",xaxt="n",yaxt="n",bty="n") }

You can change the number of colours in your palette and the colour scheme from which
they are to be extracted. Here are three schemes with 7, 9 and 11 colours, respectively:

mypalette<-brewer.pal(7,"Spectral")
colour.pics(7)
Sys.sleep(3)
mypalette<-brewer.pal(9,"Greens")
colour.pics(9)
Sys.sleep(3)
mypalette<-brewer.pal(11,"BrBG")
colour.pics(11)

Note the use of Sys.sleep(3) to create a pause of 3 seconds between the appearance of
each of the palettes, as in a slide show.

Different colours and font styles for different parts of the graph

The colours for different parts of the graph are specified as follows:

col.axis is the colour to be used for axis annotation;

col.lab is the colour to be used for x and y labels;

col.main is the colour to be used for plot main titles;

col.sub is the colour to be used for plot sub-titles.

CHANGING THE LOOK OF GRAPHICS 857

The font functions change text from normal (1 = plain text) to bold (2 = bold face),
italic (3 = italic and 4 = bold italic). You can control the font separately for the axis (tick
mark numbers) with font.axis, for the axes labels with font.lab, for the main graph title
with font.main and for the sub-title with font.sub.

plot(1:10,1:10, xlab="x axis label", ylab="y axis label", pch=16, col="orange",
col.lab="green4",col.axis="blue",col.main="red",main="TITLE",
col.sub="navy",sub="Subtitle",
las=1,font.axis=3,font.lab=2,font.main=4,font.sub=3)

x axis label

y
ax

is
 la

b
el

Subtitle

TITLE

2 4 6 8 10

2

4

6

8

10

We add three fat arrows using locator(1) (p. 835) to draw attention to selected points:

fat.arrow()
fat.arrow(ar.col="blue")
fat.arrow(size.x=1,ar.col="green")

Foreground colours, fg

Changing the colour of such things as axes and boxes around plots uses the ‘foreground’
parameter, fg:

par(mfrow=c(2,2))
plot(1:10,1:10,xlab="x label",ylab="y label")
plot(1:10,1:10,xlab="x label",ylab="y label",fg="blue")
plot(1:10,1:10,xlab="x label",ylab="y label",fg="red")
plot(1:10,1:10,xlab="x label",ylab="y label",fg="green")
par(mfrow=c(1,1))

858 THE R BOOK

Colour with histograms

Let’s produce a histogram based on 1000 random numbers from a normal distribution with
mean 0 and standard deviation 1:

x <- rnorm(1000)

We shall draw the histogram on cornsilk coloured paper

par(bg = "cornsilk")

with the bars of the histogram in a subtle shade of lavender:

hist(x, col = "lavender", main = "")

The purpose of main = "" is to suppress the graph title. See what happens if you leave this out.

Changing the shape of the plotting region, plt

Suppose that you wanted to draw a map that was 30 m along the x axis and 15 m along the
y axis. The standard plot would have roughly twice the scale on the y axis as the x. What
you want to do is reduce the height of the plotting region by half while retaining the full
width of the x axis so that the scales on the two axes are the same. You achieve this with
the plt option, which allows you to specify the coordinates of the plot region as fractions
of the current figure region. Here we are using the full screen for one figure so we want to
use only the central 40% of the region (from y = 0�3 to 0.7):

par(plt=c(0.15,0.94,0.3,0.7))
plot(c(0,3000),c(0,1500),type="n",ylab="y",xlab="x")

50
0

0
10

00
15

00

5000 1000

x

y

1500 2000 2500 3000

Locating multiple graphs in non-standard layouts using fig

Generally, you would use mfrow to get multiple plots on the same graphic screen (see
p. 152); for instance, mfrow=c(3,2) would give six plots in three rows of two columns
each. Sometimes, however, you want a non-standard layout, and fig is the function to use
in this case. Suppose we want to have two graphs, one in the bottom left-hand corner
of the screen and one in the top right-hand corner. What you need to know is that fig
considers that the whole plotting region is scaled from (0,0) in the bottom left-hand corner
to (1,1) in the top right-hand corner. So we want our bottom left-hand plot to lie within

CHANGING THE LOOK OF GRAPHICS 859

the space x = c�0� 0�5� and y = �0� 0�5�, while our top right-hand plot is to lie within the
space x = c�0�5� 1� and y = �0�5� 1�. Here is how to plot the two graphs: fig is like a new
plot function and the second use of fig would normally wipe the slate clean, so we need to
specify that new=TRUE in the second par function to stop this from happening:

par(fig=c(0.5,1,0.5,1))
plot(0:10,25*exp(-0.1*(0:10)),type="l",ylab="remaining",xlab="time")
par(fig=c(0,0.5,0,0.5),new=T)
plot(0:100,0.5*(0:100)^0.5,type="l",xlab="amount",ylab="rate")

1
0

2
3

5
4

10
20

25
15

200 40
amount time

ra
te

re
m

ai
ni

ng

60 80 100 20 4 6 8 10

Two graphs with a common x scale but different y scales using fig

The idea here is to draw to graphs with the same x axis, one directly above the other, but
with different scales on the two y axes (see also plot.ts on p. 718). Here are the data:

data<-read.table("c:\\temp\\gales.txt",header=T)
attach(data)
names(data)

[1] "year" "number" "February"

We use fig to split the plotting area into an upper figure (where number will be drawn
first) and a lower figure (for February gales, to be drawn second but on the same page, so
new=T). The whole plotting area scales from (0,0) in the bottom left-hand corner to (1,1)
in the top right-hand corner, so

par(fig=c(0,1,0.5,1))

Now think about the margins for the top graph. We want to label the y axis, and we want
a normal border above the graph and to the right, but we want the plot to sit right on top of
the lower graph, so we set the bottom margin to zero (the first argument):

par(mar=c(0,5,2,2))

Now we plot the top graph, leaving off the x axis label and the x axis tick marks:

plot(year,number,xlab="",xaxt="n",type="b",ylim=c(0,2000),ylab="Population")

Next, we define the lower plotting region and declare that new=T:

par(fig=c(0,1,0,0.5),new=T)

860 THE R BOOK

For this graph we do want a bottom margin, because we want to label the common x axes
(Year), but we want the top of the second graph to be flush with the bottom of the first
graph, so we set the upper margin to zero (argument 3):

par(mar=c(5,5,0,2))
plot(year,February,xlab="Year",type="h",ylab="February gales")

50
0

0
20

15
10

5
10

00
15

00
20

00

1950 1960 1970

Year

1980 1990 2000

F
eb

ru
ar

y
ga

le
s

P
op

ul
at

io
n

Contrast this with the overlaid plots on p. 868.

The layout function

If you do not want to use mfrow (p. 152) or fig (p. 858) to configure your multiple plots,
then layout might be the function you need. This function allows you to alter both the
location and shape of multiple plotting regions independently. The layout function is used
like this:

layout(matrix, widths = ws, heights = hs, respect = FALSE)

where matrix is a matrix object specifying the location of the next n figures on the output
device (see below), ws is a vector of column widths (with length = ncol(matrix)) and hs
is a vector of row heights (with length = nrow(matrix)). Each value in the matrix must be
0 or a positive integer. If n is the largest positive integer in the matrix, then the integers

CHANGING THE LOOK OF GRAPHICS 861

�1�

 � n − 1� must also appear at least once in the matrix. Use 0 to indicate locations
where you do not want to put a graph. The respect argument controls whether a unit column
width is the same physical measurement on the device as a unit row height and is either a
logical value or a matrix object. If it is a matrix, then it must have the same dimensions as
matrix and each value in the matrix must be either 0 or 1. Each figure is allocated a region
composed from a subset of these rows and columns, based on the rows and columns in
which the figure number occurs in matrix. The function layout.show(n) plots the outlines
of the next n figures.

Here is an example of the kind of task for which layout might be used. We want
to produce a scatterplot with histograms on the upper and right-hand axes indicating the
frequency of points within vertical and horizontal strips of the scatterplot (see the result
below). This is example was written by Paul R. Murrell. Here are the data:

x <- pmin(3, pmax(-3, rnorm(50)))
y <- pmin(3, pmax(-3, rnorm(50)))
xhist <- hist(x, breaks=seq(-3,3,0.5), plot=FALSE)
yhist <- hist(y, breaks=seq(-3,3,0.5), plot=FALSE)

We need to find the ranges of values within x and y and the two histograms lie:

top <- max(c(xhist$counts, yhist$counts))
xrange <- c(-3,3)
yrange <- c(-3,3)

Now the layout function defines the location of the three figures: Fig. 1 is the scatterplot
which we want to locate in the lower left of four boxes, Fig. 2 is the top histogram which
is to be in the upper left box, and Fig. 3 is the side histogram which is to be drawn in
the lower right location (the top right location is empty), Thus, the matrix is specified as
matrix(c(2,0,1,3),2,2,byrow=TRUE):

nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
layout.show(nf)

1

2

3

The figures in the first (left) column of the matrix (Figs 1 and 2) are of width 3 while the
figure in the second column (Fig. 3) is of width 1, hence c(3,1) is the second argument.

862 THE R BOOK

The heights of the figures in the first column of the matrix (Figs 2 and 1) are 1 and 3
respectively, hence c(1,3) is the third argument. The missing figure is 1 by 1 (top right).

par(mar=c(3,3,1,1))
plot(x, y, xlim=xrange, ylim=yrange, xlab="", ylab="")
par(mar=c(0,3,1,1))
barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0)
par(mar=c(3,0,1,1))
barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0, horiz=TRUE)

–3 –2 –1 3210

–3
–2

–1
3

2
1

0

Note the way that the margins for the three figures are controlled, and how the horiz=TRUE
option is specified for the histogram on the right-hand margin of the plot.

Creating and controlling multiple screens on a single device

The function split.screen defines a number of regions within the current device which can
be treated as if they were separate graphics devices. It is useful for generating multiple plots
on a single device (see also mfrow and layout). Screens can themselves be split, allowing

CHANGING THE LOOK OF GRAPHICS 863

for quite complex arrangements of plots. The function screen is used to select which screen
to draw in, and erase.screen is used to clear a single screen, which it does by filling
with the background colour, while close.screen removes the specified screen definition(s)
and split-screen mode is exited by close.screen(all = TRUE). You should complete each
graph before moving on to the graph in the next screen (returning to a screen can create
problems).

You can create a matrix in which each row describes a screen with values for the left,
right, bottom, and top of the screen (in that order) in normalized device coordinate (NDC)
units, that is, 0 at the lower left-hand corner of the device surface, and 1 at the upper
right-hand corner (see fig, above)

First, set up the matrix to define the corners of each of the plots. We want a long, narrow
plot on the top of the screen as Fig. 1, then a tall rectangular plot on the bottom left as
Fig. 2 then two small square plots on the bottom right as Figs 3 and 4. The dataframe called
gales is read on p. 859. Here is the matrix:

fig.mat<-c(0,0,.5,.5,1,.5,1,1,.7,0,.35,0,1,.7,.7,.35)
fig.mat<-matrix(fig.mat,nrow=4)
fig.mat

[,1] [,2] [,3] [,4]
[1,] 0.0 1.0 0.70 1.00
[2,] 0.0 0.5 0.00 0.70
[3,] 0.5 1.0 0.35 0.70
[4,] 0.5 1.0 0.00 0.35

Now we can draw the four graphs:

1950 1960 1970 1980 1990 2000

60
0

nu
m

be
r

F
eb

ru
ar

y

20
15

10
5

1950 1970 1990

1.
2

0.
6

20
0

0

ra
te

re
si

du
e

2 4 6
concentration

8 10

2 4 6
time

8 10
year

year

864 THE R BOOK

split.screen(fig.mat)
[1] 1 2 3 4

screen(1)
plot(year,number,type="l")
screen(2)
plot(year,February,type="l")
screen(3)
plot(1:10,0.5*(1:10)ˆ0.5,xlab="concentration",ylab="rate",type="l")
screen(4)
plot(1:10,600*exp(-0.5*(1:10)),xlab="time",ylab="residue",type="l")

Orientation of numbers on the tick marks, las

Many journals require that the numbers used to label the y axis must be horizontal. To
change from the default, use las:

las=0 always parallel to the axis (the default)

las=1 always horizontal (preferred by many journals)

las=2 always perpendicular to the axis

las=3 always vertical.

Note that you cannot use character or string rotation for this. Examples are shown on p. 828.

Shapes for the ends of lines, lend

The default is that the bare ends of lines should be rounded (see also arrows if you want
pointed ends). You can change this to "butt" or "square".

par(mfrow=c(3,1))
plot(1:10,1:10,type="n",axes=F,ann=F)
lines(c(2,9),c(5,5),lwd=8)
text(5,1,"rounded ends")
par(lend="square")
plot(1:10,1:10,type="n",axes=F,ann=F)
lines(c(2,9),c(5,5),lwd=8)
text(5,1,"square ends")
par(lend="butt")
plot(1:10,1:10,type="n",axes=F,ann=F)
lines(c(2,9),c(5,5),lwd=8)
text(5,1,"butt ends")

Line types, lty

Line types (like solid or dashed) are changed with the line-type parameter lty:

lty = 1 solid

lty = 2 dashed

lty = 3 dotted

lty = 4 dot-dash

lty = 5 long-dash

lty = 6 two-dash

CHANGING THE LOOK OF GRAPHICS 865

Invisible lines are drawn if lty=0 (i.e. the line is not drawn). Alternatively, you can use
text to specify the line types with one of the following character strings: “blank”, “solid”,
“dashed”, “dotted”, “dotdash”, “longdash” or “twodash” (see below).

Line widths, lwd

To increase the widths of the plotted lines use lwd = 2 (or greater; the default is lwd=1).
The interpretation is device-specific, and some devices do not implement line widths less
than 1. The function abline is so called because it has two arguments: the first is the
intercept �a� and the second is the slope �b� of a linear relationship y = a + bx (see p. 136
for background):

plot(1:10,1:10,xlim=c(0,10),ylim=c(0,10),xlab="x label",ylab="y label",type="n")
abline(-4,1,lty=1)
abline(-2,1,lty=2)
abline(0,1,lty=3)
abline(2,1,lty=4)
abline(4,1,lty=5)
abline(6,1,lty=6)
abline(8,1,lty=7)
abline(-6,1,lty=1,lwd=4)
abline(-8,1,lty=1,lwd=8)
for(i in 1:5) text(5,2*i-1,as.character(i))

0

0
2

4
6

8
10

2 4
x label

y
la

be
l

6

1

2

3

4

8 10

5

The numerals indicate the line types 1 to 5. In the bottom right-hand corner are two solid
lines lty = 1 of widths 4 and 8.

866 THE R BOOK

Several graphs on the same page, mfrow

Multiple graph panels on the same graphics device are controlled by par(mfrow),
par(mfcol), par(fig), par(split.screen) and par(layout), but par(mfrow) is much the most
frequently used. You specify the number of rows of graphs (first argument) and number of
columns of graphs per row (second argument) like this:

par(mfrow=c(1,1)) the default of one plot per screen

par(mfrow=c(1,2)) one row of two columns of plots

par(mfrow=c(2,1)) two rows of one column of plots

par(mfrow=c(2,2)) four plots in two rows of two columns each

par(mfrow=c(3,2)) six plots in three rows of two columns each

In a layout with exactly two rows and columns the base value of cex is reduced by a
factor of 0.83; if there are three or more of either rows or columns, the reduction factor
is 0.66. Consider the alternatives, layout and split.screen. Remember to set par back to
par(mfrow=c(1,1)) when you have finished with multiple plots. For examples, see the
Index.

Margins around the plotting area, mar

You need to control the size of the margins when you intend to use large symbols or long
labels for your axes. The four margins of the plot are defined by integers 1 to 4 as follows:

1 = bottom (the x axis),

2 = left (the y axis),

3 = top,

4 = right.

The sizes of the margins of the plot are measured in lines of text. The four arguments to
the mar function are given in the sequence bottom, left, top, right. The default is

par(mar=(c(5, 4, 4, 2) + 0.1))

with more spaces on the bottom (5.1) than on the top (4.1) to make room for a subtitle
(if you should want one), and more space on the left (4.1) than on the right (2) on the
assumption that you will not want to label the right-hand axis. Suppose that you do want
to put a label on the right-hand axis, then you would need to increase the size of the fourth
number, for instance like this:

par(mar=(c(5, 4, 4, 4) + 0.1))

Plotting more than one graph on the same axes, new

The new parameter is a logical variable, defaulting to new=FALSE. If it is set to
new=TRUE, the next high-level plotting command (like plot(~x)) does not wipe the slate
clean in the default way. This allows one plot to be placed on top of another.

CHANGING THE LOOK OF GRAPHICS 867

Two graphs on the same plot with different scales for their y axes

gales<-read.table("c:\\temp\\gales.txt",header=T)
attach(gales)
names(gales)

[1] "year" "number" "February"

In this example we want to plot the number of animals in a wild population as a time
series over the years 1950–2000 with the scale of animal numbers on the left-hand axis
(numbers fluctuate between about 600 and 1600). Then, on top of this, we want to overlay
the number of gales in February each year. This number varies between 1 and 22, and
we want to put a scale for this on the right-hand axis (axis = 4). First we need to make
room in the right-hand margin for labelling the axis with the information on February
gales:

par(mar=c(5,4,4,4)+0.1)

Now draw the time series using a thicker-than-usual line (lwd=2) for emphasis:

plot(year,number,type="l",lwd=2,las=1)

Next, we need to indicate that the next graph will be overlaid on the present one:

par(new=T)

Now plot the graph of gales against years. This is to be displayed as vertical (type="h")
dashed lines (lty=2) in blue:

plot(year,February,type="h",axes=F,ylab="",lty=2,col="blue")

and it is drawn with its own scale (with ticks from 5 to 20, as we shall see). The right-hand
axis is ticked and labelled as follows. First use axis(4) to create the tick marks and scaling
information, then use the mtext function to produce the axis label (the name stands for
‘margin text’).

axis(4,las=1)
mtext(side=4,line=2.5,"February gales")

It looks as if unusually severe February gales are associated with the steepest population
crashes (contrast this with the separate plots on p. 860).

Outer margins, oma

There is an area outside the margins of the plotting area called the outer margin. Its default
size is zero, oma=c(0,0,0,0), but if you want to create an outer margin you use the function
oma. Here is the function to produce an outer margin big enough to accommodate two lines
of text on the bottom and left-hand sides of the plotting region:

par(oma=c(2,2,0,0))

Packing graphs closer together

In this example we want to create nine closely spaced plots in a 3 × 3 pattern without any
tick marks, and to label only the outer central plot on the x and y axes. We need to take
care of four things:

868 THE R BOOK

1950

600

800

1000

1200

1400

1600

1960 1970 1980
year

F
eb

ru
ar

y
ga

le
s

nu
m

be
r

1990 2000

5

10

15

20

• mfrow=c(3,3) to get the nine plots in a 3 × 3 pattern;

• mar=c(0.2,0.2,0.2,0.2) to leave a narrow strip (0.2 lines looks best for tightly packed
plots) between each graph;

• oma=c(5,5,0,0) to create an outer margin on the bottom and left for labels;

• outer = T in title to write the titles in the outer margin.

The plots consist of 100 pairs of ranked uniform random numbers sort(runif(100)), and we
shall plot the nine graphs with a for loop:

par(mfrow=c(3,3))
par(mar=c(0.2,0.2,0.2,0.2))
par(oma=c(5,5,0,0))
for (i in 1:9) plot(sort(runif(100)),sort(runif(100)),xaxt="n",yaxt="n")
title(xlab="time",ylab="distance",outer=T,cex.lab=2)

Square plotting region, pty

If you want to have a square plotting region (e.g. when producing a map or a grid with true
squares on it), then use the pty = "s" option. The option pty = "m" generates the maximal
plotting region which is not square on most devices.

CHANGING THE LOOK OF GRAPHICS 869

time

di
st

an
ce

Character rotation, srt

To rotate characters in the plotting plane use srt (which stands for ‘string rotation’). The
argument to the function is in degrees of counter-clockwise rotation:

plot(1:10,1:10,type="n",xlab="",ylab="")
for (i in 1:10) text (i,i,LETTERS[i],srt=(20*i))
for (i in 1:10) text (10-i+1,i,letters[i],srt=(20*i))

Observe how the letters i and I have been turned upside down (srt = 180).

Rotating the axis labels

When you have long text labels (e.g. for bars on a barplot) it is a good idea to rotate them
through 45 degrees so that all the labels are printed, and all are easy to read.

spending<-read.csv("c:\\temp\\spending.csv",header=T)
attach(spending)
names(spending)

[1] "spend" "country"

870 THE R BOOK

A

B

C

D

E

F

G

H

I

J

2
4

6
8

10

42 6 8 10

a

b

c

d

e

f

g

h

i

j

There are three steps involved:

• Make the bottom margin big enough to take the long labels (mar).

• Find the x coordinates of the centres of the bars (xvals) with usr.

• Use text with srt = 45 to rotate the labels.

par(mar = c(7, 4, 4, 2) + 0.1)
xvals<-barplot(spend,ylab="spending")
text(xvals, par("usr")[3] - 0.25, srt = 45, adj = 1,labels = country, xpd = TRUE)

Note the use of xpd = TRUE to allow for text outside the plotting region, and adj = 1
to place the right-hand end of text at the centre of the bars. The vertical location of the
labels is set by par("usr")[3] - 0.25 and you can adjust the value of the offset (here 0.25)
as required to move the axis labels up or down relative to the x axis.

Tick marks on the axes

The functions tck and tcl control the length and location of the tick marks. Negative values
put the tick marks outside the box (tcl = -0.5 is the default setting in R, as you can see
above). tcl gives the length of tick marks as a fraction of the height of a line of text.

The default setting for tck is tck = NA but you can use this for drawing grid lines: tck=0
means no tick marks, while tck = 1 means fill the whole frame (i.e. the tick marks make
a grid). The tick is given as a fraction of the frame width (they are 0.03 in the bottom

CHANGING THE LOOK OF GRAPHICS 871

Arg
en

tin
a

Aus
tra

lia

Aus
tri

a

Bah
ra

in

Bale
ar

ic
Isl

an
ds

Ban
gla

de
sh

Belg
ium

Beli
ze

0
5

10

sp
en

di
ng

15
20

25
30

right-hand graph, so are internal to the plotting region). Note the use of line type = “b”,
which means draw both lines and symbols with the lines not passing through the symbols
(compared with type=”o” where lines do pass through the symbols).

par(mfrow=c(2,2))
plot(1:10,1:10,type="b",xlab="",ylab="")
plot(1:10,1:10,type="b",xlab="",ylab="",tck=1)
plot(1:10,1:10,type="b",xlab="",ylab="",tck=0)
plot(1:10,1:10,type="b",xlab="",ylab="",tck=0.03)

Axis styles

There are three functions that you need to distinguish:

axis select one of the four sides of the plot to work with;

xaxs intervals for the tick marks;

xaxt suppress production of the axis with xaxt="n".

The axis function has been described on pp. 834 and 852.
The xaxs function is used infrequently: style “r” (regular) first extends the data range by

4% and then finds an axis with pretty labels that fits within the range; style “i” (internal)
just finds an axis with pretty labels that fits within the original data range.

872 THE R BOOK

2 4 6 8 10

2
4

6
8

10
2

4
6

8
10

2
4

6
8

10
2

4
6

8
10

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10

Finally xaxt is used when you want to specify your own kind of axes with different
locations for the tick marks and/or different labelling. To suppress the tick marks and value
labels, specify xaxt="n" and/or yaxt="n" (see p. 146).

References and Further Reading

Agresti, A. (1990) Categorical Data Analysis. New York: John Wiley.
Aitkin, M., Anderson, D., Francis, B. and Hinde, J. (1989) Statistical Modelling in GLIM. Oxford:

Clarendon Press.
Atkinson, A.C. (1985) Plots, Transformations, and Regression. Oxford: Clarendon Press.
Bishop, Y.M.M., Fienberg, S.J. and Holland, P.W. (1980) Discrete Multivariate Analysis: Theory and

Practice. New York: John Wiley.
Box, G.E.P. and Cox, D.R. (1964) An analysis of transformations. Journal of the Royal Statistical

Society Series B, 26, 211–246.
Box, G.E.P., Hunter, W.G. and Hunter, J.S. (1978) Statistics for Experimenters: An Introduction to

Design, Data Analysis and Model Building. New York: John Wiley.
Box, G.E.P. and Jenkins, G.M. (1976) Time Series Analysis: Forecasting and Control. Oakland, CA:

Holden-Day.
Breiman, L., Friedman, L.H., Olshen, R.A. and Stone, C.J. (1984) Classification and Regression

Trees. Belmont, CA: Wadsworth International Group.
Caroll, R.J. and Ruppert, D. (1988) Transformation and Weighting in Regression. New York: Chapman

and Hall.
Casella, G. and Berger, R.L. (1990) Statistical Inference. Pacific Grove, CA: Wadsworth and

Brooks/Cole.
Chambers, J.M., Cleveland, W.S., Kleiner, B. and Tukey, P.A. (1983) Graphical Methods for Data

Analysis. Belmont, CA: Wadsworth.
Chambers, J.M. and Hastie, T.J. (1992) Statistical Models in S. Pacific Grove. California: Wadsworth

and Brooks Cole.
Chatfield, C. (1989) The Analysis of Time Series: An Introduction. London: Chapman and Hall.
Clark, P.J. and Evans, F.C. (1954) Distance to nearest neighbour as a measure of spatial relationships

in populations. Ecology, 35, 445–453 .
Cleveland, W.S. (1993) Visualizing Data. Summit, NJ: Hobart Press.
Cochran, W.G. and Cox, G.M. (1957) Experimental Designs. New York: John Wiley.
Collett, D. (1991) Modelling Binary Data. London: Chapman and Hall.
Conover, W.J. (1980) Practical Nonparametric Statistics. New York: John Wiley.
Conover, W.J., Johnson, M.E. & Johnson, M.M. (1981) A comparative study of tests for homogeneity

of variances, with appplications to the outer continental shelf bidding data. Technometrics, 23,
351–361.

Cook, R.D. and Weisberg, S. (1982) Residuals and Influence in Regression. New York: Chapman and
Hall.

Cox, D.R. (1972) Regression models and life-tables (with discussion). Journal of the Royal Statistical
Society B, 34, 187–220?

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

874 REFERENCES AND FURTHER READING

Cox, D.R. and Hinkley, D.V. (1974) Theoretical Statistics. London: Chapman and Hall.
Cox, D.R. and Oakes, D. (1984) Analysis of Survival Data. London: Chapman and Hall.
Cox, D.R. and Snell, E.J. (1989) Analysis of Binary Data. London: Chapman and Hall.
Crawley, M.J. (2002) Statistical Computing: An Introduction to Data Analysis using S-PLUS.

Chichester: John Wiley.
Crawley, M.J., Johnston, A.E., Silvertown, J., Dodd, M., de Mazancourt, C., Heard, M.S., Henman,

D.F. and Edwards, G.R. (2005) Determinants of species richness in the Park Grass Experiment.
American Naturalist, 165, 179–192.

Cressie, N.A.C. (1991) Statistics for Spatial Data. New York: John Wiley.
Crowder, M.J. and Hand, D.J. (1990) Analysis of Repeated Measures. London: Chapman and Hall.
Dalgaard, P. (2002) Introductory Statistics with R. New York: Springer-Verlag.
Davidian, M. and Giltinan, D.M. (1995) Nonlinear Models for Repeated Measurement Data. London:

Chapman and Hall.
Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their Application. Cambridge

University Press.
Diggle, P.J. (1983) Statistical Analysis of Spatial Point Patterns. London: Academic Press.
Diggle, P.J., Liang, K.-Y. and Zeger, S.L. (1994) Analysis of Longitudinal Data. Oxford: Clarendon

Press.
Dobson, A.J. (1990) An Introduction to Generalized Linear Models. London: Chapman and Hall.
Draper, N.R. and Smith, H. (1981) Applied Regression Analysis. New York: John Wiley.
Edwards, A.W.F. (1972) Likelihood. Cambridge: Cambridge University Press.
Efron, B. and Tibshirani, R.J. (1993) An Introduction to the Bootstrap. San Francisco: Chapman and

Hall.
Eisenhart, C. (1947) The assumptions underlying the analysis of variance. Biometrics, 3, 1–21.
Everitt, B.S. (1994) Handbook of Statistical Analyses Using S-PLUS. New York: Chapman and Hall /

CRC Statistics and Mathematics.
Ferguson, T.S. (1996) A Course in Large Sample Theory. London: Chapman and Hall.
Fisher, L.D. and Van Belle, G. (1993) Biostatistics. New York: John Wiley.
Fisher, R.A. (1954) Design of Experiments. Edinburgh: Oliver and Boyd.
Fleming, T. and Harrington, D. (1991) Counting Processes and Survival Analysis. New York: John

Wiley.
Fox, J. (2002) An R and S-Plus Companion to Applied Regression. Thousand Oaks, CA: Sage.
Gordon, A.E. (1981) Classification: Methods for the Exploratory Analysis of Multivariate Data. New

York: Chapman and Hall.
Gosset, W.S. (1908) writing under the pseudonym "Student". The probable error of a mean. Biometrika,

6(1), 1–25.
Grimmett, G.R. and Stirzaker, D.R. (1992) Probability and Random Processes. Oxford: Clarendon

Press.
Hairston, N.G. (1989) Ecological Experiments: Purpose, Design and Execution. Cambridge:

Cambridge University Press.
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. (1986) Robust Statistics: The

Approach Based on Influence Functions. New York: John Wiley.
Harman, H.H. (1976) Modern Factor Analysis. Chicago: University of Chicago Press.
Hastie, T. and Tibshirani, R. (1990) Generalized Additive Models. London: Chapman and Hall.
Hicks, C.R. (1973) Fundamental Concepts in the Design of Experiments. New York, Holt: Rinehart

and Winston.
Hoaglin, D.C., Mosteller, F. and Tukey, J.W. (1983) Understanding Robust and Exploratory Data

Analysis. New York: John Wiley.
Hochberg, Y. and Tamhane, A.C. (1987) Multiple Comparison Procedures. New York: John Wiley.
Hosmer, D.W. and Lemeshow, S. (2000) Applied Logistic Regression. 2nd Edition. New York: John

Wiley.
Hsu, J.C. (1996) Multiple Comparisons: Theory and Methods. London: Chapman and Hall.

REFERENCES AND FURTHER READING 875

Huber, P.J. (1981) Robust Statistics. New York: John Wiley.
Huitema, B.E. (1980) The Analysis of Covariance and Alternatives. New York: John Wiley.
Hurlbert, S.H. (1984) Pseudoreplication and the design of ecological field experiments. Ecological

Monographs, 54, 187–211.
Johnson, N.L. and Kotz, S. (1970) Continuous Univariate Distributions. Volume 2. New York: John

Wiley.
Kalbfleisch, J. and Prentice, R.L. (1980) The Statistical Analysis of Failure Time Data. New York:

John Wiley.
Kaluzny, S.P., Vega, S.C., Cardoso, T.P. and Shelly, A.A. (1998) S+ Spatial Stats. New York,

Springer-Verlag:
Kendall, M.G. and Stewart, A. (1979) The Advanced Theory of Statistics. Oxford: Oxford University

Press.
Keppel, G. (1991) Design and Analysis: A Researcher’s Handbook. Upper Saddle River, N.J: Prentice

Hall.
Khuri, A.I., Mathew, T. and Sinha, B.K. (1998) Statistical Tests for Mixed Linear Models. New York:

John Wiley.
Krause, A. and Olson, M. (2000) The Basics of S and S-PLUS. New York: Springer-Verlag.
Lee, P.M. (1997) Bayesian Statistics: An Introduction. London: Arnold.
Lehmann, E.L. (1986) Testing Statistical Hypotheses. New York: John Wiley.
Mandelbrot, B.B. (1977) Fractals, Form, Chance and Dimension. San Francisco: Freeman.
Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979) Multivariate Statistics. London: Academic Press.
May, R.M. (1976) Simple mathematical models with very complicated dynamics. Nature, 261,

459–467.
McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models. 2nd Edition. London: Chapman

and Hall.
McCulloch, C.E. and Searle, S.R. (2001) Generalized, Linear and Mixed Models. New York: John

Wiley.
Michelson, A.A. (1880) Experimental determination of the velocity of light made at the U.S. Naval

Academy, Annapolis. Astronomical Papers, 1: 109–145.
Millard, S.P. and Krause, A. (2001) Using S-PLUS in the Pharmaceutical Industry. New York:

Springer-Verlag.
Miller, R.G. (1981) Survival Analysis. New York: John Wiley.
Miller, R.G. (1997) Beyond ANOVA: Basics of Applied Statistics. London: Chapman and Hall.
Mosteller, F. and Tukey, J.W. (1977) Data Analysis and Regression. Reading, MA: Addison-Wesley.
Nelder, J.A. and Wedderburn, R.W.M. (1972) Generalized linear models. Journal of the Royal Sta-

tistical Society, Series A, 135, 37–384.
Neter, J., Kutner, M., Nachstheim, C. and Wasserman, W. (1996) Applied Linear Statistical Models.

New York: McGraw-Hill.
Neter, J., Wasserman, W. and Kutner, M.H. (1985) Applied Linear Regression Models. Homewood,

IL: Irwin.
OED (2004) Oxford English Dictionary. Oxford: Oxford University Press.
O’Hagen, A. (1988) Probability: Methods and Measurement. London: Chapman and Hall.
Pinheiro, J.C. and Bates, D.M. (2000) Mixed-effects Models in S and S-PLUS. New York:

Springer-Verlag.
Platt, J.R. (1964) Strong inference. Science, 146: 347–353.
Priestley, M.B. (1981) Spectral Analysis and Time Series. London: Academic Press.
Rao, P.S.R.S. (1997) Variance Components Estimation: Mixed Models, Methodologies and Applica-

tions. London: Chapman and Hall.
Riordan, J. (1978) An Introduction to Combinatorial Analysis. Princeton, NJ: Princeton University

Press.
Ripley, B.D. (1996) Pattern Recognition and Neural Networks. Cambridge: Cambridge University

Press.

876 REFERENCES AND FURTHER READING

Robert, C.P. and Casella, G. (1999) Monte Carlo Statistical Methods. New York: Springer-Verlag.
Rosner, B. (1990) Fundamentals of Biostatistics. Boston: PWS-Kent.
Ross, G.J.S. (1990) Nonlinear Estimation-. New York: Springer-Verlag.
Santer, T.J. and Duffy, D.E. (1990) The Statistical Analysis of Discrete Data. New York:

Springer-Verlag.
Scott, D.W. (1992) Multivariate Density Estimation. Theory, Practice and Visualization. New York:

John Wiley & Sons, Inc.
Searle, S.R., Casella, G. and McCulloch, C.E. (1992) Variance Components. New York: John Wiley.
Shao, J. and Tu, D. (1995) The Jacknife and Bootstrap. New York: Springer-Verlag.
Shumway, R.H. (1988) Applied Statistical Time Series Analysis. Englewood Cliffs, NJ: Prentice Hall.
Silverman, B.W. (1986) Density Estimation. London: Chapman & Hall.
Silvey, S.D. (1970) Statistical Inference. London: Chapman and Hall.
Snedecor, G.W. and Cochran, W.G. (1980) Statistical Methods. Ames, IA: Iowa State University

Press.
Sokal, R.R. and Rohlf, F.J. (1995) Biometry: The Principles and Practice of Statistics in Biological

Research. San Francisco, W.H. Freeman and Company.
Sprent, P. (1989) Applied Nonparametric Statistical Methods. London: Chapman and Hall.
Taylor, L.R. (1961) Aggregation, variance and the mean. Nature, 189, 732–735.
Upton, G. and Fingleton, B. (1985) Spatial Data Analysis by Example. Chichester: John Wiley.
Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S-PLUS. 4th Edition. New

York: Springer-Verlag.
Venables, W.N., Smith, D.M. and the R Development Core Team (1999) An Introduction to R. Bristol:

Network Theory Limited.
Wedderburn, R.W.M. (1974) Quasi-likelihood functions, generalized linear models and the

Gauss–Newton method. Biometrika, 61, 439–447.
Weisberg, S. (1985) Applied Linear Regression. New York: John Wiley.
Wetherill, G.B., Duncombe, P., Kenward, M., Kollerstrom, J., Paul, S.R. and Vowden, B.J. (1986)

Regression Analysis with Applications. London: Chapman and Hall.
Winer, B.J., Brown, D.R. and Michels, K.M. (1991) Statistical Principles in Experimental Design.

New York: McGraw-Hill.
Wood, S.N. (2000) Modelling and smoothing parameter estimation with multiple quadratic penalties.

Journal of the Royal Statistical Society B, 62, 413–428.
Wood, S.N. (2003) Thin plate regression splines. Journal of the Royal Statistical Society B, 65,

95–114.
Wood, S.N. (2004) Stable and efficient multiple smoothing parameter estimation for generalized

additive models. Journal of the American Statistical Association, 99, 673–686.
Zar, J.H. (1999) Biostatistical Analysis. Englewood Cliffs, NJ: Prentice Hall.

Index

Entries in bold are R functions

-1 remove the intercept from a model, 333
remove the intercept in model.matrix, 193

- deletion of an explanatory variable, 331
* inclusion of main effects plus interactions

between explanatory variables, 331
/ nesting of an explanatory variable, 331
: inclusion of interactions between explanatory

variables, 331
\\ double backslash in file path definitions, 98
� given nested explanatory variables, 331
+ inclusion of an explanatory variable, 331
= = double equals for logical equals, 27
== testing for equality of real numbers, 77
3:1 Mendel’s peas, 552
I (upper case i) include “as is” in the model

formula, 332
! factorial definition, 242
! factorial, 11
! (not) drop rows from a dataframe, 118

not operator, 15
! factorial introduction, 206
! the not operator,

testing types, 88
!= logical not equals function, 27
!duplicated same as unique, 125
!is.na not missing values, 84
!is.numeric testing, 88
#RRGGBB string specification of colour

(red,green,blue), 855
$, 16

component selection, 341
dataframe name and variable name, 100, 166
extracting information from model objects,

359
last character searching, 80

$ element name operator for indexing lists, 15
trailing blanks, 86

%% in calculating medians, 48
%*% matrix multiplication, 260
%a abbreviated weekday name, 92
%A full weekday name, 92
%b abbreviated month name, 92
%B full month name, 92
%c date and time, locale-specific, 92
%d day of the month as decimal number

(01-31), 92
%H hours as decimal number (00-23) on the

24-hour clock, 92
%I hours as decimal number (01-12) on the

12-hour clock, 92
%in% comparing sets, 78

introduction, 84
nesting in model formulae, 332

%j day of year as decimal number (001-366),
92

%M minute as decimal number (00-59), 92
%m month as decimal number (01-12), 92
%p am/pm indicator in the locale, 92
%S second as decimal number (00-61)

allowing for two “leap seconds”, 92
%U week of the year (00-53) using the first

Sunday as day 1 of week 1, 92
%W week of the year (00-53) using the first

Monday as day 1 of week 1, 92
%w weekday as decimal number (0-6, Sunday

is 0), 92
%x date, locale-specific, 92
%X time, locale-specific, 92
%Y year with century, 92
%Z time zone as a character string (output

only), 92
& logical and operator, 15
&& logical and with if, 27
() functions, 147

The R Book Michael J. Crawley
© 2007 John Wiley & Sons, Ltd

878 INDEX

() prints an evaluated allocation on the screen,
68

* multiplication operator, 15
. (dot) the “anything” character in searches, 81
.Call compiled C code to manipulate R objects,

8
.External compiled C code to manipulate R

objects, 8
.Internal call C code, 8
.packages with data, 19
.Primative call C code, 8
: create a sequence, 15

sequence generation, 29
; multiple expressions on one line, 10
; field separators in the input file read.csv2,

100
? help, 2
[,3] all the rows in column 3 of a dataframe,

112
[] subscripts, 14

subscripts on dataframes, 111
subscripts and indices introduced, 20

[[]] lists, 65
[4,] all the columns in row 4 of a dataframe,

112
[C-E] groups of characters in searches, 80
\a bell, 101
\b backspace, 101
\f form feed, 101
\n new line in printed output, 101, 55
\r carriage return, 101
\t removal with strsplit, 106

tab character, 101
\v vertical tab, 101
^ calculating roots, 49

first character search, 79
to the power operator, 15

{ } curly brackets, 47
{,5} up to five, 81
{5,} five or more, 82
{5} repeat number in pattern searches, 81
� conditioning operator, 171

given operator, 15
logical or operator, 15

� “given” conditional scatterplot, 836
� (logical OR) testing for the margins in a

random walk, 815
�� logical or with if, 27
∼ tilde operator, 15

model formulae, 329
∼ . - (tilde dot minus) log-linear models,

554
in model simplification, 334

<- assignment, 15
> prompt, 2
… triple dot arguments, 65
1 (parameter 1) the intercept in R, 333

10 year cycles lynx, 727
spectral analysis, 718

1st quartile data summary, 281
25th percentile box and whisker plot, 155

using summary, 110
3-D plots in gam example, 625
3-dimensional plots akima, 843

aspect, 845
contour, 843
distance, 845
filled.contour, 845
globe by wireframe, 847
image, 843
interp, 843
introduction, 842
light.source, 845
persp, 845
screen, 845
shade, 845
shade.colors, 845
volcano, 845
wireframe, 845

3-parameter logistic, 203
equation, 662

3rd quartile data summary, 281
4.5i complex numbers, 11
4-parameter logistic, 203

equation, 662
50th percentile using summary, 110
75th percentile box and whisker plot, 155

using summary, 110
9:3:3:1 Mendel’s peas, 550
� infinity, 195

a regression intercept, 387
a posteriori contrasts, 368
a priori contrasts, 368

competition, 371
abline in analysis of covariance, 491

influence, 345
for a linear model, 136
panel.abline, 837

abline(“h”=) draw horizontal lines, 819
abline(“v”=) draw vertical lines, 819
abs absolute value function, 23

absolute values of the exponent, 210
absolute value

absolute value function abs, 23
instead of squares in parameter

estimation, 72
accuracy

53 binary digits default in R, 77
ACF plot the autocorrelation structure of a

mixed effects model, 646
acf autocorrelation function, 705

multiple time series, 719
random walk, 725

INDEX 879

SilwoodWeather, 712
simulated time series, 722

acf(type=“p”) multiple time series, 719
partial autocorrelation function, 705
SilwoodWeather, 712

acknowledgements, viii
acos inverse cosine function, 11
acosh inverse hyperbolic cos function, 11
actuaries

survival analysis, 791
add columns to an object

cbind, 37
add rows to an object

rbind, 37
adding points to a graph

with points, 136
adding shapes to a graph, 146
additivity

model mis-specification, 356
scale of measurement, 327

adj text justification, 851
adjoint matrix, 263
adjusted p values

multcomp, 486
pairwise.t.test, 483
TukeyHSD, 483

adjusted r squared
definition, 399
extracting from a model summary, 362

age at death
censoring, 801
exponential distribution, 231
survival analysis, 324

age-at-death data
Gamma errors, 512
introduction, 787

age dependent
risk of death, 792

age effects
longitudinal data, 474

age-specific hazard models
introduction, 794

age-specific mortality
survival analysis, 791

aggregate groups of row sums, 36
summarizing the contents of a dataframe, 132

aggregated
point processes, 749

aggregated patterns
quadrat based counts, 760

aggregating data over explanatory variables
dangers with contingency tables, 553

aggregation
negative binomial distribution, 252
Ripley’s K, 754
runs test on binary data, 75
variance mean ratio, 538

AIC Akaike’s information criterion, 353
in analysis of covariance, 499
binary response variable, 601
calculation, 354
complex analysis of covariance, 501
coxph, 808
in gls models, 782
time series models, 728

Akaike’s information criterion
introduction, 353

akima installing the library, 5
package for interpolation, 843

aliased parameters
piecewise regression, 428

aliasing
introduction, 380

all, 25
all.effects effect sizes, 178
all=T merge all the rows of two dataframes,

129
along to remove missing values, 14

in sequence generation, 30
alpha

multiple comparisons, 482
Type I error rate, 305

alphabetical order
over-riding this for ordered factor levels, 382

am/pm indicator in the locale
%p, 92

analysis of covariance
both continuous and categorical explanatory

variables, 323
common x values, 508
compared with mixed models, 654
and experimental design, 500
introduction, 489
with proportion data, 581
separate regressions, 505
y~age*sex, 330

analysis of deviance
count data, 529

analysis of variance
categorical explanatory variable, 323
interpreting the summary.lm table, 366
introduction, 449

ancova
binary response variable, 598
both continuous and categorical explanatory

variables, 323
ancovacontrasts

dataframe, 505
and

with if is &&, 27
angle for viewing perspective plots, 845
anisotropy

introduction, 775
ann annotation of graphs, 851

880 INDEX

annotation of graphs
ann, 851

Anolis lizards
complex contingency tables, 560
sorting and shortening the lizards dataframe,

585
anonymous function

in apply, 69
introduction, 67
standard errors with tapply, 184

anova categorical explanatory variable, 323
comparing linear and quadratic models,

406
comparing mixed effects models, 635
comparing two nonlinear regressions, 663
factor-level reduction, 503
L argument to anova in gls models, 785
log-linear models, 555
mixed models with different fixed effects,

653
model simplification in contingency table

analysis, 559
for piecewise regression, 428
regression with pure error, 416
survival data, 803
y~factor, 330

anova, one-way
plot with TukeyHSD, 160

anova table
in analysis of covariance, 495
one-way anova, 456
regression, 396

anova with no intercept
y~factor-1, 330

anova(model1,model2) compare two or more
models, 350

anova(test=“Chi”) binary response variable,
601

simplifying contingency tables, 561
antilogs

geometric mean from the average of the
logarithms, 49

any, 25
any logical test, 607
anything

the . (dot) character in searches, 81
aov analyzing the rats data the correct way,

477
with Error, 470
multiple error terms, 333
one-way anova, 457
summary of the statistical model, 349

aov and lme compared, 636, 644
aperm transpose an array by permuting its

dimensions, 565
appearance

R is like S, vii

apply anonymous function, 69
calculate row or column means, 36
counting the NA cases in each variable of a

dataframe, 120
ifelse, 817
introduction, 68
for row or column totals, 69
with sample, 37
shuffling the rows with sample, 69
for square roots, 69
standard deviations of columns, 191
using sweep, 39

apropos find function names, 2
AR(1)

simulated time series, 722
time-series analysis, 726

arcsine transformation
percentage data, 570

argument list
to a function, 47
with switch, 63

argument matching
introduction, 64

arguments
lazy evaluation, 67
optional, 64
order in a function call, 76

Arial font
material on the command line, 10

arima autoregressive operator, 726
differences, 726
moving average, 726
time series models, 726

arithmetic
command line calculations, 9
with infinity, 13

arithmetic mean
function, 48

ARMA
time-series analysis, 726

array
convert a vector of counts to an array,

558
using dim, 558
introduction, 40
subscripts, 20
type, 87

arrows add an arrow to a plot, 146
on a distribution function, 208
introduction, 147
keyboard for editing, 9
to make error bars, 57
on phase planes, 834
square ends for error bars, 147

as is, in a model formula
I (upper case i), 332

as.array coercing an object to an array, 87

INDEX 881

as.character adding text to a map, 144
in barplot, 57
coercing an object to a character string, 87
with grep, 79
names for barplot, 244
to sort on dates, 126

as.complex coercing an object to a complex
number, 87

as.data.frame coercing an object to a
dataframe, 87

introduction, 124
table objects, 190

as.data.frame.table convert a table to a
dataframe, 559

shortened dataframes, 187
as.difftime to create POSIXlt dates and times,

93
formatting dates and times, 91

as.double coercing an object to a double
precision number, 87

as.factor coercing an object to a factor, 87
as.is to prevent text being coerced to factors

with read.table, 100
as.list coercing an object to a list, 87
as.logical coercing an object to a logical

variable, 87
as.matrix coercing an object to a matrix, 87

contingency tables, 309
as.numeric with characters, 87

coercing an object to numeric, 87
coercion, 43
with dataframes, 103
for different coloured points, 491
difftime, 91
identifying individual points, 141
introducing unwanted NA, 106
plot for complex analysis of covariance,

504
as.raw coercing an object to a raw number, 87
as.ts coercing an object to a time series, 87
as.vector in barplot, 57

coerce an object to a vector, 17
coercing an object to a vector, 87
with grep, 79
from tapply, 463

asin inverse sin function, 11
asinh inverse hyperbolic sin function, 11
ask control of next graphic, 7

delay the next graph, 851
aspect 3-dimensional plots, 845
assigning to variable names

good practice, 101
assignment operators

in R using gets <-, 15
assocplot contingency table plots, 564
assumptions

linear regression, 389

asymptotic exponential, 202
compared with Michaelis Menten, 664
equation, 662

asymptotic regression model
self-starting nonlinear functions, 674

asymptotic regression model through the origin
self-starting nonlinear functions, 674

asymptotic regression model with an offset
self-starting nonlinear functions, 674

asymptotic relationship
introduction, 201
Michaelis Menten, 200

asymptotic value
behaviour at the limits, 662

at location of tic marks using axis, 834
atan inverse tan function, 11
atanh inverse hyperbolic tan function, 11
attach as an alternative to with, 18

dataframe, 109
duplication warning, 100
protocol for this book, 20

attr lengths of strings with regexpr, 87
attributes introduction, 34
attributes of a model summary object

attr, 361
augPred nonlinear time series models, 672

plot families of nonlinear functions, 669
auto.key legend, 842
autocorrelation

introduction, 702
autocorrelation, spatial

variogram, 774
autoregressive (AR) models

time-series analysis, 726
autoregressive moving average (ARMA)

models
time-series analysis, 726

autoregressive operator
order in arima, 726

average
of proportion data, 580

average proportions
subscripts on vectors, 556

averaging away pseudoreplication in time
series, 716

avoiding using loops
introduction, 61

axes
limits of the current axes from par(“usr”),

847
suppress tic marks and labels on the axes,

146
xaxt=“n” no x axis to be drawn, 819
yaxt=“n” no y axis to be drawn, 819

axes only, no points or lines
type=“n”, 68

axes=FALSE do not draw the axes, 851

882 INDEX

axis 1 = bottom, 834
2 = y (left), 834
3 = top, 834
4 = right, 834
location of tic marks using at, 834
multiple graphs on top of each other, 867
non-standard labels, 834
non-standard tic marks and labels, 832
tick mark locations and labels, 852

axis labels
with subscripts and superscripts, 831

axis labels in functions
deparse(substitute), 179

axis numbers
1 = bottom, 851
2 = left, 851
3 = top, 851
4 = right, 851

azimuthal direction
theta, 845

b maximum likelihood estimate, 393
regression slope, 387

b.boot function, 419
back-transform the predictions from glm

type=“response”, 535
back-transformation

logits to proportions, 579
background

screen colour, 6
background colour for plots

bg, 852
backspace

\b, 101
bacteria

dataframe, 604
dataframe in MASS, 19
MASS library, 604

balls in urns
hypergeometric distribution, 247

bandwidth
for density estimation, 164

barchart as lattice plots, 175
panel barplots, 838

barplot analysis of deviance with count data,
533

beside=T, 466
binomial distribution, 243
competition experiment, 158
complex plot layouts, 862
dpois, 537
with error bars, 56, 462
frequency distribution data, 537
histogram of the hypergeometric distribution,

248
histogram of the multinomial distribution,

249

locations of bars on the x axis, 257
names using as.character, 244
negative binomial distribution, 252
observed and expected frequencies from a

negative binomial pattern, 761
with two or more classes of bars, 256

barplots for observed and expected frequencies,
538

Bartlett test
constancy of variance, 291

bartlett.test constancy of variance, 291
market garden ozone, 293

base of logarithms, 196
base package

libraries, 4
BCa

bias-corrected accelerated intervals, 420
myboot, 322

behaviour at the limits
nonlinear regression, 661
values of y when x is zero and infinity,

195
bell

\a, 101
bell-shaped curves, 210

equation, 662
Bernoulli distribution

binary response variable, 594
introduction, 242

best
prune.tree, 692

best-fit of the model
maximum likelihood, 324

best linear unbiased predictors
BLUP, 631

beta beta distribution, 208
beta distribution

introduction, 231
bg background colour for plots, 852
BH p value adjustment, 485
bias-corrected accelerated intervals

BCa, 420
biexponential model

equation, 662
introduction, 205
self-starting nonlinear functions, 674

bin widths
for generating a smooth overlay on a

histogram, 214
binary

53 binary digits default in R, 77
binary data

binomial errors, 512
runs test on binary data, 75

binary distribution of R, 1
binary numbers

using while, 60

INDEX 883

binary recursive partitioning
tree models, 686

binary response variable, 594
ancova, 598
box-and-whisker plot, 599
introduction, 593
lmer, 605
logistic regression, 324

binom binomial distribution, 208
binom.test 2-class table, 549

one versus two argument versions, 549
sign test, 300
two-argument version, 550

binomial
as a limiting case of the hypergeometric, 248
mean and variance, 243

binomial coefficients
choose, 11, 207

binomial denominator
introduction, 569

binomial distribution
dice games, 215
introduction, 242
plot of the variance against the mean, 571

binomial errors
analysis of covariance, 582
binary response variable, 595
deviance, 516
generalized linear mixed models, 590
overdispersion, 522
Schoener’s lizards re-analysed, 586
standardized residuals, 520

binomial variance
definition from expectations, 242

bins
definition in histograms, 162
integer bins in panel histogram, 841
using the cut function, 241

bioassay
dataframe, 576
dose.p, 577
test in glm, 576

biodiversity
effects on invertebrates, 298

biomass
competition, 370

biplot
prcomp, 733

births
Leslie matrix, 265

blank
in factor level names, 98
remove trailing blanks with $, 87
searching character strings, 80
in variable names, 98

blank spaces
prohibited in variable names, 30

blank subscripts
on dataframes, 112
to mean “all of”, 20

blocking
advantages of paired samples, 299

blocks
split-plot experiments, 470

bloodcells
dataframe, 556

blowflies
time series analysis, 701

blowfly
dataframe, 701

BLUP
best linear unbiased predictors, 547, 631
effect size, 644

body mass
gamma distribution, 230

bold
font, 857

bold italic
font, 857

bonferroni p value adjustment, 485
boot background, 322

bootstrap for nonlinear regression, 683
with a glm, 523
introduction, 320
library, 320
library function, 420

boot.ci bootstrap for nonlinear regression,
684

bootstrapped confidence intervals, 420
with a glm, 525
myboot$t, 322

bootstrap
confidence interval, 319
data selection with replacement, 681
introduction, 284
with regression, 418
shuffling residuals, 681
slope, 419

bootstrap for nonlinear regression
sample(replace=T), 682

bootstrapped regression
nonlinear regression, 681
resampling data points, 420
shuffling residuals, 420

bootstrapping a glm, 523
bottom axis

axis 1, 834
bound symbols, 64
bounded

proportion data, 569
bowens

dataframe, 143
box

dataframe, 159

884 INDEX

box occupancy map, 817
box-and-whisker plot

binary response variable, 599
box data, 159
competition experiment, 156
data summary, 280
introduction, 155
market garden ozone, 295
with notches to show significance, 156
one-way anova, 461
Silwood Weather, 156
simulation experiment on age at failure,

789
box around the plot

bty, 852
Box-Cox transformation

introduction, 336
boxcox MASS library, 336
boxplot competition experiment, 157

data summary, 280
market garden ozone, 295
with notch=T, 159
using with, 19

brackets
incomplete lines, 2

BrBG palette in RColorBrewer, 856
break leaving a repeat loop, 59

at the margin in a random walk, 815
break points for histogram bins, 162
breaks bin widths for hist, 215

to get integer bins for count data, 251
overlay on a histogram, 220
panel histograms, 841

Brewer
RColorBrewer package, 856

Brownian motion
Cauchy distribution, 233

browse file names for input
file.choose, 99
use file.exists to check location,

101
bty box around the plot, 852
bty=“]” all but left, 852
bty=“7” top and right, 852
bty=“c” all but right, 852
bty=“l” left, 852
bty=“n” no box, 852
bty=“o” all, 852
bty=“u” all but top, 852
bubble function, 180
bubble plots

introduction, 179
bubble.plot function, 179
bubbles

points with different cex, 853
built-in data files

data(), 102

built-in dataframes
HairEyeColor, 564
UCBAdmissions, 565

built-in functions, 10
bwplot box and whisker trellis plots,

175
of the Daphnia data, 176
as lattice plots, 175
panel boxplots, 837

by summarizing the contents of a dataframe,
132

like tapply for applying a function like mean
over the levels of a named factor for a
whole dataframe, 110

BY p value adjustment, 485
by eye

regression, 388
by.x and by.y when the same variable has

different names in two dataframes to be
merged, 130

byrow=T in defining matrices, 34

c concatenate character strings (see also paste),
44

concatenation, 15
C cubic contrast in contr.poly, 382
C++ linking to, 7
calculations from the normal distribution, 211
calculations with dates and times, 90
calculator

the prompt line, 9
calculus

introduction, 274
cancer

dataframe, 802
canonical link functions

generalized linear models, 514
capitalization, 86

using gsub, 82
car package on CRAN, 424
car.test.frame

dataframe, 689
carriage return

\r, 101
case independent searches, 81
case sensitivity in R, 30
cases

dataframe, 536
rows in a dataframe, 107

cat printed output, 55
categorical explanatory variables

classification tree, 693
analysis of variance, 449

categorical variables
choosing the right test, 323
plots introduced, 154

cauchy cauchy distribution, 208

INDEX 885

Cauchy distribution
introduction, 232

cbind add columns to an object, 37
adding columns to a dataframe, 126, 131
contrasts, 371
cross correlations of time series, 718
in matrix notation, 271
response matrix for manova, 487
response matrix for proportion data, 569
Schoener’s lizards re-analysed, 586

ceiling, 12
in calculating medians, 48
smallest integer > x, 11
Tukey’s five numbers, 281

cells
dataframe, 529

censoring
introduction, 801

censoring indicator
introduction, 795, 801

central
function, 63

central limit theorem
introduction, 213

central tendency
function using switch, 63

cex character expansion for plotting symbols
(relative to 1), 853

character size for text on a plot, 142
size of plotting characters, 827

cex.axis size on numbers on axes tic marks,
827

cex.lab size of text labels on axes, 827
Chambers, John

the design of S, viii
changing the look of graphics, 827
chaos

simulation models, 811
character

in lists, 73
object definition, 45
result of applying a numeric function, 74
type, 87

character expansion for plotting symbols
(relative to 1)

cex, 853
character rotation

srt, 869
character sizes in plots

cex, 827
character sizes in plots

cex.axis, 827
cex.lab, 827

character strings
extracting part of a string, 45
introduction, 43
remove the quotes with noquote, 44

splitting with strsplit, 46
substituting text, 82

characteristic equation, 264
characters

as.numeric, 87
charmatch searches a vector of strings for

exact character matches, 83
checking values, 13
chi-squared

confidence interval for sample estimates,
223

critical value, 304
chi-squared contingency tables

count data, 301
degrees of freedom, 304
introduction, 549

chi-squared distribution
critical values, 221
introduction, 222
special case of gamma distribution, 229

chicks
dataframe, 678

children
numbers of boys and girls, 550

chisq chi-squared distribution, 208
chisq.test 2-class table, 549

chi-squared contingency tables, 305
matrix form, 552
rescale.p=T, 551
with table, 307

chisq.test(correct=F) do not use Yates’
continuity correction, 306

choose binomial coefficients, 11, 207
binomial distribution, 243

choosing the best model
introduction, 324

choosing the right test
introduction, 323

chron installing the library, 5
chull convex hull, 829
ci.lines function, 414
circles, drawing

bubble, 180
citation, 1
citing R in publication, 1
Clark and Evans

test for complete spatial randomness, 754
class, 44

of dataframe rows and columns, 112
introduction, 34
using lapply, 74
in lists, 73
locator, 147
scan creates a list not a dataframe, 103
ts for time series data, 167

class of neighbour object in spdep
nb, 769

886 INDEX

classical tests
introduction, 279

classification tree
categorical explanatory variables, 693
tree models, 688

click
using the locator function, 138

click.arrows function to position an arrow
using locator, 147

clipboard
pasting from R into a spreadsheet, 77

clipping
competition, 370

close to significance
caution, 328

close.screen remove a screen definition, 863
closest values

using which, 23
cloud as lattice plots, 175
clumping

point processes, 749
cluster

dataframe, 528
cluster analysis

background, 738
introduction, 731

coef lmList, 651
parameters for families on non-linear

functions, 670
coef(model) coefficients of the model, 350

regression, 360
coefficients for orthogonal polynomials, 384
coefficients of the model

coef(model), 350
coercing an object to an array

as.array, 87
coercing an object to a character string

as.character, 87
coercing an object to a complex number

as.complex, 87
coercing an object to a dataframe

as.data.frame, 87
coercing an object to a double precision

number
as.double, 87

coercing an object to a factor
as.factor, 87

coercing an object to a list
as.list, 87

coercing an object to a logical variable
as.logical, 87

coercing an object to a matrix
as.matrix, 87

coercing an object to numeric
as.numeric, 87

coercing an object to a raw number
as.raw, 87

coercing an object to a time series
as.ts, 87

coercing an object to a vector
as.vector, 87

coercion
as.vector, 17
of logical variables, 25
NaN to NA, 13
result of applying a numeric function,

74
and testing, 87

coexistence
simulation models, 818

cohort effects
longitudinal data, 474

col.axis colour for axis notation, 856
col.lab colour for x and y labels, 856
col.main colour for main title of graph,

856
col.names using write.table, 76
col= argument to plot, 136

with as.numeric, 141
col=“red”, 855
colatitude

phi, 845
cold spots

spatial autocorrelation, 774
collapsing over the margins

dangers with contingency tables, 553
colMeans, 36

adding columns to a dataframe, 131
column means of a matrix, 17

colnames, 37
for a matrix, 35

colon
separator for times, 91

colon :
sequence generation, 29

color.pics function, 856
colors() function providing the names of 657

colours, 854
colour

different points in different colours,
142

different points on a graph, 491
fill in a shape using polygon, 146
hexadecimal string, 854
input and output lines, 6
introduction, 854
names of 657 colours, 854
with polygon, 148
polygon, 830
rainbow palette, 466
for selected points, 348
string of the form #RRGGBB, 855
by subscript from a palette, 854
symbols on a scatterplot, 136

INDEX 887

colour Brewer
RColorBrewer package, 856

colour for axis notation
col.axis, 856

colour for main title of graph
col.main, 856

colour for subtitle of graph
sol.sub, 856

colour for x and y labels
col.lab, 856

colour in barplots with observed and expected
frequencies, 538

colour with histograms, 858
colouring part of an object

with polygon, 148
colours

different points on a graph, 650
colours by number

plotting symbols, 139
colSums, 36

column sums of a matrix, 17
prop.table, 191

columbus
spdep dataframe, 773

column means of a matrix, 36
colMeans, 18

column order
changing the order of columns in a

dataframe, 115
column subscripts

the second of two subscripts, 20
column sums of a matrix

colSums, 18
columns

[3,] for all columns of row 3, 21
proportions, 191
using scale so columns sum to zero, 191
variables in a dataframe, 107

columns from a dataframe, 112
using subset, 127

columnwise data entry in matrices, 41, 258
combinations

binomial coefficients with choose, 11
combinatorial formula

binomial distribution, 207, 242
command line, 5

calculations, 9
common factors

factor analysis, 735
common slope

in analysis of covariance, 495
common x values

analysis of covariance, 508
compare two or more models

anova(model1,model2), 350
comparing fixed effects

method=“ML” in lme, 635

comparing observed and expected frequencies,
256

comparing two means
introduction, 293
Student’s t test, 294

comparing two proportions
prop.test, 301

comparing two sets
%in%, 79
setequal, 78

comparing two variances
Fisher’s F test, 224

compartment models, 205
competition

dataframe, 56, 370, 461
competitive exclusion

simulation models, 818
compexpt

dataframe, 156
compiled code, 8
complete spatial randomness, 749

Clark and Evans test, 754
from ppp object, 766
Ripley’s K, 754

complex
type, 87

complex contingency tables
Schoener’s lizards, 560

complex numbers
notation, 11

complex plot layouts, 862
component selection

$, 341
Comprehensive R Archive Network see CRAN
computationally intensive methods

tree models, 685
concatenation

c, 15
for data input, 97
for growing vectors is very slow, 63
of variables, 450

conditional scatterplot
xyplot, 836

conditioning plots
coplot, 171
layout, 838

conditioning variable
in trellis graphics, 173
xyplot, 174

confidence interval
exact binomial test, 549
introduction, 54
market garden ozone, 296
parametric and bootstrap compared, 320
for predicted values in regression, 413
sample variances, 223
t and normal compared, 228

888 INDEX

confidence intervals for parameter estimates
confint(model), 399
different kinds of bars contrasted, 463

configuration editor
RGui, 6

confint(model) linear regression, 399
constancy of variance

assumptions of linear regression, 389
Bartlett test, 291
Fligner-Killeen test, 291
homoscedasticity, 291
model mis-specification, 356
scale of measurement, 327

contingency
introduction, 301
loss of 1 degree of freedom, 258

contingency table or binary response variable,
594

contingency table plots
aperm, 565
assocplot, 564
fourfoldplot, 567
mosaicplot, 565

contingency tables
conversion to proportion data, 584
degrees of freedom, 304
G test, 306
generate levels using gl, 567
interaction terms, 553
introduction, 302, 549
margin.table, 564
plot methods, 564
Schoener’s lizards, 560

contingency tables displayed
ftable, 558

contingency tables with low (<5) expected
frequencies

Fisher’s exact test, 309
continuation

long calculations, 9
to next line with +, 2

continuity correction
chi-squared contingency tables, 305
Wilcoxon signed rank test, 284

continuous explanatory variables
interactions, 331

continuous probability distributions, 207
continuous response variable

linear models, 324
continuous variables

choosing the right test, 323
cut function to convert from continuous to

categorical variable, 62
split, 581

continuous variables as random effects, 652
contour overlay on image, 843
contourplot as lattice plots, 175

contr.poly compared with polynomial
regression, 383

orthogonal polynomial contrasts, 381
contrast coefficients

introduction, 369
orthogonal, 369
sum to zero, 368

contrast sum of squares
formula, 370

contrasts analysis of variance, 366
coefficients for orthogonal polynomials, 384
complex analysis of covariance, 504
differences between means, 366
introduction, 368
L argument to anova in gls models, 785
a priori contrasts, 371
two-way anova, 468

contrasts=c(“contr.helmert”,”contr.poly”),
378

contrasts=c(“contr.sum”,”contr.poly”), 380
contrasts=c(“contr.treatment”,”contr.poly”),

374, 377
convert a table to a dataframe

as.data.frame.table, 559
convex hull

chull, 829
Cook’s distance

example, 359
influence testing function, 347
in regression, 401

coordinates
nearest neighbours, 750
set up data from the spatial library, 757

coplot introduction, 171
NOX example, 621

copy and paste from Excel
with scan, 98

cor correlation between two vectors, 17
covariance, 239

cor(x,y) correlation coefficient, 311
cor.test Pearson’s product-moment correlation,

313
Spearman’s rank correlation, 315

corAR1 nonlinear time series models, 671
update, 647

corARMA autocorrelation structure of a mixed
effects model, 646

update, 647
core team

R developers, viii
coxph spatial covariance, 781
corGauss spatial covariance, 781
corners function to position a rectangle using

locator, 147
corRatio spatial covariance, 781
corrected sums of squares and products

regression, 391

INDEX 889

corrected sums of squares in one-way anova,
452

correction term
in hierarchical designs, 477

correlated errors
mixed effects models, 627, 645

correlated explanatory variables
non-orthogonal data, 328

correlated random numbers
multivariate normal distribution, 237

correlation
paired samples, 298
between powers of x, 383
scale dependence, 314
serial, 279
the variance of a difference, 312

correlation and covariance
introduction, 310

correlation between time series, 718
correlation between two vectors

cor, 17
correlation coefficient

and covariance, 239
definition, 310
and r squared, 395
in terms of variance of the difference, 313

correlation of explanatory variables
multiple regression, 434, 448

correlation, partial, 312
correlogram ragwort data, 776
correlogram

spatial autocorrelation, 775
corSpher spatial covariance, 781
corStruct classes, 646
corSymm spatial covariance, 781
cos, 10

drawing circles, 180
SilwoodWeather, 710

cos(x) polynomial approximation, 403
cosine

graph of, 197
cost-complexity measure

model simplification with tree models, 690
count characters in strings

nchar, 44
count data

analysis of deviance, 529
bounded below, 527
chi-squared contingency tables, 301, 549
conversion to proportion data, 584
export data from R, 77
family=poisson, 527
introduction, 527
link=log, 527
non-constant variance, 527
non-normal errors, 527
Poisson errors, 515

square root transformation, 206
zero a common value of the response,

527
count data as response variable

log linear models, 324
count data on proportions

introduction, 570
counting

using table, 17
counting cases

with sum of a logical variable, 753
counting characters in a vector of strings

gregexpr, 83
counting words

using table with strsplit, 46
counts

maps of quadrat based counts, 759
in quadrats, 750

coupled differential equations
odesolve, 275

coupled map lattice
host-parasite interaction, 823

Courier New font
output lines on the screen, 10

covariance
and the correlation coefficient, 239

covariance and correlation
introduction, 310

covariates
choosing the right test, 323

covariogram
spatial autocorrelation, 775

coxph compared with survreg, 807
function in survival analysis, 799
survival data, 807

Cox’s proportional hazards model
example, 799
introduction, 796

CRAN, 1
craps

game with two dice, 215
create a sequence

the : operator (colon), 15
create a table of dummy variables

model.matrix, 192
creating factor levels, 28

rep, 187
critical value

chi-squared, 223, 304
Fisher’s F, 225
Fisher’s F test, 289
Student’s t, 222

cross correlation between time series, 718
crossdist

spatstat function, 767
CSR

complete spatial randomness, 749

890 INDEX

Ctrl R
to execute code from the script editor, 5

cube root transformation
timber data, 338

cubic contrast in contr.poly
C, 382

cubic polynomial
plot for the jaws data, 152

cummax cumulative maximum of the values in
a vector, 17

cummin cumulative minimum of the values in
a vector, 17

cumprod cumulative product of the values in a
vector, 17

for factorials, 60
cumsum cumulative sum of the values in a

vector, 17
cumulative maximum of the values in a vector

cummax, 17
cumulative minimum of the values in a vector

cummin, 17
cumulative product of the values in a vector

cumprod, 17
cumulative sum of the values in a vector

cumsum, 17
curly brackets { }

in function definition, 47
in loops, 58

current model
introduction, 325

cursor in graphics
using the locator function, 138

curvature
dangers of extrapolation, 412
multiple regression, 434
residual plots, 340

curve density, cumulative probability, quantiles
and random numbers from the normal
distribution, 218

distribution function of the standard normal,
208

drawing mathematical functions, 144
probability density of the standard normal

distribution, 208
curved relationships

inverse polynomials, 200
polynomial functions, 199

curves
nonlinear regression, 661

cut creating error bars for binary data, 597
function to convert from continuous to

categorical variable, 62
to generate maps of quadrat based counts,

759, 760
testing the random number generator, 241

cycles
lynx, 727

mixed effects models, 645
Nicholson’s blowflies, 702
seasonal data, 709

D calculus in R, 274
d.f. see degrees of freedom
damped oscillations

lines, 277
dangers with contingency tables

example, 553
Daphnia

bwplot, 837
dataframe, 175, 183, 479, 837
using tapply for groups of means, 18

das
dataframe, 166, 279

dashed lines see lty
lty, 167, 864

data function to see all available data sets, 19
HairEyeColor, 564
use a specified dataframe, 350

data dredging, 311
data editor, 5
data entry into matrices is columnwise, 41
data files

input using read.table, 98
data input

introduction, 97
R manual, 3

data objects
for spatial statistics, 763
for spdep library, 768

data selection with replacement
bootstrap, 681

data summary
introduction, 279

data visualization
trellis graphics, 174

data() list the names of the built-in data files,
102

data.ellipse from car package, 425
data.frame for boot, 524

converting vectors into a dataframe, 186
houses data, 31
introduction, 124
sorting and shortening the dataframe, 585
with strsplit, 105

data= in model definitions, 18
rather than attach, 18

dataframe
adding margins, 130
ancovacontrasts, 505
bacteria, 604
bioassay, 576
bloodcells, 556
blowfly, 701
bowens, 143

INDEX 891

box, 159
cancer, 802
car.test.frame, 689
cases, 536
cells, 529
changing variable names in a dataframe, 187,

559
chicks, 678
cluster, 528
combine using merge, 129
competition, 56, 370, 461
compexpt, 156
creation from other objects, 123
daphnia, 175, 479
Daphnia, 183, 837
das, 166, 279
decay, 357, 407
diminish, 404
epilobium, 693
ethanol, 621
f.test.data, 290
faithful, 164
farms, 650
fertilizer, 642, 836
fisher, 309
fishes, 220, 230, 241
flowering, 581
fltimes, 129
fungi, 483
gain, 500
gales, 859, 867
gardens, 292
germination, 577
growth, 466
HairEyeColor, 564
handling dates and times, 126
herbicides, 127
houses, 31
hre, 638
hump, 666
induced, 554
infection, 599
input using read.table, 98
insects, 590
introduction, 107
ipomopsis, 350, 490
isolation, 595, 623
jaws, 151, 661, 676
kmeansdata, 738
lackoffit, 415
lifeforms, 129
light, 282
lizards, 584
logplots, 830
longdata, 180
lynx, 717
manova, 487

map.places, 143
mm, 674
naydf, 770
new.lizards, 586
nonlinear, 671
occupation, 597
OrchardSprays, 169, 842
ovary, 645
ozone.data, 170, 434, 614
paired, 312
panels, 174
parasites, 192
pgfull, 732, 742
pgr, 142, 179, 829, 843
piedata, 168
plotfit, 149
pollute, 311, 685
poly, 381
power, 409
productivity, 314
quine, 540
ragwortmap2006, 763, 776
rats, 475
reaction, 667
refuge, 291
regdat, 418
regression, 359, 388, 412
roaches, 804
robreg, 430
sapdecay, 70
sasilwood, 425
scatter1, 136
scatter2, 136
seedlings, 797
seedwts, 130
sexratio, 574
SilwoodWeather, 154, 710, 840
skewdata, 286, 319
sleep, 141
soaysheep, 612
sorting and shortening, 584
spatialdata, 778
species, 534
spending, 869
splitcounts, 547
splityield, 173, 470, 632
as a spreadsheet, 107
sslogistic, 676
streams, 298
subscripts, 732
sulphur.dioxide, 443
summarizing the contents with summary, by

and aggregate, 132
sunspots, 167
sweepdata, 38
t.test.data, 295
tabledata, 188

892 INDEX

dataframe (Continued)
tannin, 267
taxon, 740
taxonomy, 695
temp, 709
timber, 336, 518
trees, 760
twosample, 310
twoseries, 718
type, 87
UCBAdmissions, 565
UKLungDeaths, 167
using match to mimic a relational database,

127
weibull.growth, 679
wings, 316
worldfloras, 79
worms, 109
yields, 449

dataframe converted to table, 189
dataframes

characters as factors, 44
detach, 8
potential danger of the sort function, 31
reduced lengths of factors, 186
from summary statistics produced by tapply,

186
date date and time in reader-friendly form, 89

extracting from Sys.time, 89
date and time, locale-specific

%c, 92
date, locale-specific

%x, 92
dates

calculation with, 90
in Excel spreadsheets, 92
introduction, 89

dates and time
in a dataframe, 126

day number in month
mday, 89

day of the month as decimal number (01-31)
%d, 92

day of the week
wday, 89

day of the year
yday, 89

day of year as decimal number (001-366)
%j, 92

daylight saving time in operation
isdst, 89

dbeta densities of the beta distribution, 208
plots of, 232

dbinom
barplot for a histogram, 244
densities of the binomial distribution, 208

dcauchy densities of the cauchy distribution,
208

dchisq densities of the chi-squared distribution,
208

dead or alive
binary response variable, 593

death-time data
introduction, 787

decay
dataframe, 357, 407
log-logistic distribution, 236

decay constant
estimation, 70

decelerating relationships, 198
decibels

spectral analysis, 718
decompositions

time series analysis, 715
default values of graphics parameters, 848, 851
degree of scatter

r squared, 394
degrees

to radians, 197
degrees of freedom

analysed with lmer, 650
in analysis of covariance, 495
chi-squared contingency tables, 304
chi-squared distribution, 221
for comparing observed and expected

frequencies, 258
contingency tables, 304, 549
contrasts, 370
estimated for smooth functions in gam, 622
Fisher’s F, 224
Fisher’s F test, 289
generalized additive models, 667
interaction terms in multiple regression, 447
introduction, 52
linear regression, 396
marginal totals, 305
mixed effects models, 636, 644
in model simplification, 326
observed and expected frequencies from a

negative binomial pattern, 762
one-way anova, 451
overdispersion, 573
paired samples or differences, 299
pseudoreplication in the rats data, 476
robust regression, 432
Student’s t test, 294
subset, 402
variance, 218

degrees of freedom from a model summary
model$df, 363

delay the next graph
ask, 851

deletion of an explanatory variable, 331

INDEX 893

deletion of influential points, 355
deletion test

introduction, 325
demo function for demonstrations, 4
demography

survival analysis, 791
demonstrations

the demo function, 4
density function for estimating probability

density, 164
density dependence

coexistence, 818
Leslie matrix, 264
partial autocorrelation function, 706
quadratic map, 811
test in glm, 574

density estimation
introduction, 164

density function
exponential distribution, 792
negative binomial distribution, 251
survival analysis, 791
Weibull distribution, 237

density.ppp
ppp object, 765
spatstat function, 767

densityplot as lattice plots, 175
deparse with substitute axis labels in

functions, 56, 179
xlab, 698

derivatives
calculus in R, 274

derived variable analysis
removing pseudoreplication, 475

design plots
introduction, 176

det determinant of a matrix, 262
detach dataframes after using them, 101

to detach a dataframe, 8
determinant of a matrix, 261
detrending a time series

predict, 707
development of R, vii
deviance

contingency tables, 552
cost-complexity measure, 692
G test of contingency, 306
introduction, 516
logLik, 354

deviance(model) SSY and SSE, 395
deviations

quantiles of the standard normal distribution,
211

dexp densities of the exponential distribution,
208

df densities of the Fisher’s F distribution, 208

dgamma densities of the gamma distribution,
208

plot of, 229
dgeom densities of the geometric distribution,

208
geometric distribution, 246

dhyper, 247
densities of the hypergeometric distribution,

208
diag function to give the diagonal of a matrix,

260
diagonal

of a matrix, 260
variance covariance matrix, 261

dice
random number generation, 240

dice games, 215
difference

number in arima, 726
one sample t-test, 299
Student’s t test, 294

differences between means
contrasts, 366
from the summary.lm table, 366

differences between slopes
interactions between continuous and

categorical explanatory variables, 331
from the summary.lm table, 365

differences in times between rows of a
dataframe, 94

differencing
time series, 719
time series analysis, 701

different numbers of numbers per input line
using readLines, 106
using scan, 104

different y axes, 859
gales data, 867

differential equations
library odesolve, 275

difftime introduction, 91
digits specify number of decimal places

displayed, 11
dim, 40

contingency tables, 309
convert a vector of counts to an array,

558
dimensions of a vector, 34

dimensions
drop=FALSE, 38
using sweep, 39

diminish
dataframe, 404

dimnames contingency tables, 558, 565
naming rows and columns, 35

disc
saving data from R, 76

894 INDEX

discontinuities
in tan(x), 197

discrete probability distributions
introduction, 242

discriminant analysis
background, 744
introduction, 731

dispersal
host-parasite interaction, 822
metapopulation dynamics, 816

dissimilarity matrix
dist, 742

dist dissimilarity matrix, 742
distance 3-dimensional plots, 845

function, 751
distance

pattern measure with Ripley’s K, 754
distance measures

pattern analysis, 750
Pythagoras, 751

distances to neighbours
distance, 755

distmap
ppp object, 767
spatstat function, 767

divisive clustering
cluster analysis, 738

dlnorm densities of the log-normal distribution,
208

plot of, 234
dlogis densities of the logistic distribution, 208

plot of, 235
dnbinom aggregated patterns, 761

densities of the negative binomial
distribution, 208

expected frequencies, 538
overlaying a smooth density function on a

histogram, 163
waiting time to success in Bernoulli

trial, 253
dnorm compared with t distribution, 228

curves plotted, 218
densities of the normal distribution, 208
for generating a smooth overlay on a

histogram, 214, 216
overlay on a histogram, 220

do loops see for loop
dominant eigenvalue, 266
dose.p

MASS library, 577
dotplot as lattice plots, 175
dotted line see lty

lty, 167, 864
double

type, 87
double square brackets [[]]

extract elements of a list, 73

doubling
use of logarithms, 50

downloading R, 1
downstream

effects on invertebrates, 298
dpois

barplot, 537
densities of the Poisson distribution, 208

drawing circles
bubble, 180

drawing mathematical functions
using curve, 144
plot with type=“l”, 144

drop duplicate rows in a dataframe, 125
drop rows from a dataframe

with na.omit, 119
drop rows from a dataframe using negative

subscripts, 118
drop=FALSE to prevent dimension reduction,

38
with subscripts, 42

dsignrank densities of the Wilcoxon’s signed
rank statistic, 208

dt densities of the Student’s t distribution, 208
graph of, 228

dummy variables
generalized additive models, 620
model.matrix, 192
polynomial regression, 382

dunif densities of the uniform distribution,
208

duplicate rows in a dataframe, 125
duplicate variable names

warning following attach, 100
duplicated rows in a dataframe, 125
durbin.watson serial correlation in residuals,

424
dweibull densities of the Weibull distribution,

208
dwilcox densities of the Wilcoxon rank sum

distribution, 208, 258
dyn.load linking C or Fortran code, 7

e-017 approximate numeric zero (means times e
to the power -17), 10

exact mean for random numbers, 219
numbers with exponents, 11
roughly zero, 78
zero residuals, 355

each option in rep, 28
eastings, 143
ecdf the empirical cumulative distribution

function, 241
edge correction

Ripley’s K, 755
edges

nearest neighbours, 752

INDEX 895

edges in a simulation model
matrix, 819

edit data
with the fix function, 5

editing
with keyboard arrows, 9

editing outliers
using which, 166

editor
for writing code within R, 5

effect sizes
effects package, 178
in factorial anova, 480
mixed effects models, 644
model.tables, 458
one-way anova, 458
plot.design, 176, 458
summary.lm table, 365

effects library, 178
effects(model) regression, 360
eigen function for eigenvalues and

eigenvectors, 266
eigenvalue and eigenvector, 264
else competing species, 821
emergent patterns

simulation models, 811, 825
empirical cumulative distribution

ecdf, 241
empty or occupied

binary response variable, 593
encryption

random number generation, 240
end-of-line

the hard return key, 58
Enter key

with scan, 97
environment

definition using with, 19
epilobium

dataframe, 693
equal.count convert to a shingle, 839
equality

testing for equality of real numbers, 77
equals =

conventions in R, 15
equations

nonlinear regression, 661
equilibrium behaviour

metapopulation dynamics, 816
simulation models, 811

erase.screen clear a screen, 863
Error analyzing the rats data the correct way, 477

in aov, 470
error bars

both x and y, 57
different kinds of bars contrasted, 463
function, 56

error bars for binary data
using cut to create groups, 597

error bars on logistic curves, 598
error checking plots

in gls models, 783
mixed effects models, 636, 657

error distribution in survival models
exponential, 796
extreme value, 796
Gamma errors, 796
log-logistic, 796
lognormal, 796
piecewise exponential, 796
Weibull, 796

error families
generalized linear mixed models, 655

error structure
generalized linear models, 512
mis-specified, 521
negative binomial errors, 543

error sum of squares
linear regression, 397
SSE, 451

error terms
multiple, 333

error trapping with try, 102
error variance

multiple error terms, 469
pure error, 415
summary.aov table, 365

error.bars function, 56, 462
errors

the Esc key, 2
spatial autocorrelation, 778

Esc key
escaping from errors, 2

estimates
unbiased, variance-minimizing estimators,

324
ethanol

conditioning plots, 839
dataframe, 621, 698
library(SemiPar), 621

evaluating functions
introduction, 68
in plot, 71

evaluation environment
introduction, 64

even numbers
testing using modulo, 12

exact binomial test
binom.test, 300

exact matching on tags, 64
exact mean for random numbers, 219
exactdt

spatstat function, 767
example function to give worked examples, 3

896 INDEX

Excel
copy and paste into scan, 98
dates in spreadsheets, 92
pasting from R into a spreadsheet, 77
reading a spreadsheet using read.table, 98
saving data using tab-delimited text files, 98

Excel spreadsheet
as a dataframe, 107

exp antilog function, 10
exponential distribution, 208
geometric mean as the antilog of the average

of the logarithms, 49
introduction, 196

exp(x) polynomial approximation, 403
expand a dataframe

repeat rows according to a specified count, 124
expand.grid generate factorial combinations of

levels, 192
expanding dataframes

using lapply, 189
expectation of the vector product

covariance, 310
expectations

definition of variance, 242
expected and observed frequencies

introduction, 549
expected counts

from a negative binomial distribution, 761
from a Poisson distribution, 760

expected frequencies
check for low values, 258
chisq.test(correct=F)$expected, 306
introduction, 303
negative binomial distribution, 256, 538
Pearson’s chi-squared, 303

expected frequencies < 5
factor levels, 539
Fisher’s exact test, 309
frequencies from a negative binomial pattern,

761
expected mean distance to nearest neighbour,

754
experimental design

in analysis of covariance, 500
explanatory power of different models, 326
explanatory variable

choosing the right test, 323
model formulae, 330
the x axis of the plot, 136

explanatory variable measured without error
assumptions of linear regression, 389

exponent, 195
exponential

error distribution in survival models, 796
exponential decay

estimation, 70
regression model, 407

exponential distribution
introduction, 231, 792
special case of gamma distribution,

229
special case of Weibull distribution, 237

exponential errors
cancer, 802

exponential function, 196
normal distribution, 210

exponential increase
Leslie matrix, 265

exponents
scientific notation, 11

export data from R
using write or write.table, 76

expression calculus in R, 274
frac to print fractions with text, 834
separation by, 10
subscripts, 831
superscripts, 831

expression(substitute) values of variables in
text on plots, 831

extinction
metapopulation dynamics, 816
spatial simulation, 822

extracting parameter values from a model
summary

model$coef, 363
extracting parameters from a model summary,

361
extracting parts of character strings, 45
extracting the degrees of freedom from a model

summary
model$df, 363

extracting the fitted values from a model
summary

model$fitted, 363
extracting the residuals from a model

summary
model$resid, 363

extrapolation
dangers of, 412

extreme cases
contingency tables with low (<5) expected

frequencies, 308
extreme sensitivity to initial conditions

chaos, 812
extreme value

age-specific hazard models, 794
error distribution in survival models, 796

extrinsic aliasing
introduction, 380

eye colour
chi-squared contingency tables, 302

eyeball
regression, 388

INDEX 897

f Fisher’s F distribution, 208
F introduction, 224
F distribution, 224
F ratio

extracting from a model summary, 362
linear regression, 396
one-way anova, 456

F test
comparing two variances, 289

f.test.data
dataframe, 290

factanal factor analysis, 735
factor in a boxplot, 154

function to turn a vector into a factor, 26
numerical factor levels, 476
one-way anova, 450
ordered, 382
ordered factor levels, 185
type, 87

factor analysis
background, 735
introduction, 731

factor level generation, 450
expand.grid, 192
gl, 28
rep, 187

factor-level reduction
bacteria, 609
complex analysis of covariance, 503
lmer, 606
model simplification, 375, 468
using logical arithmetic, 26
Schoener’s lizards, 563
Schoener’s lizards re-analysed, 589
survival data, 803

factor levels
calculating contrasts, 372
character strings as factors, 44
dimnames, 558
expected frequencies > 5, 539
generation, 556
generation using gl, 28
informative, 627
as labels in barplot, 463
labels rather than numbers, 29
by logical arithmetic, 193
using model.matrix, 193
model simplification in variance components

analysis, 641
shortened dataframes, 186
summary tables, 183
uninformative, 627

factorial definition, 242
Fisher’s exact test, 309
function for ! in R, 11
from the gamma function, 201
using several different functions for repeats, 59

factorial anova
effect sizes, 480
model.tables, 480
summary.aov, 480
summary.lm, 480
y~N*P*K, 330

factorial experiments
introduction, 466

factorial function, 242
introduction, 206

factorials
multinomial distribution, 249

factors
choosing the right test, 323
fisher.test, 309
generate levels using gl, 567
interaction.plot, 173
levels for naming factor levels, 186

failure
binomial response, 570

failure handling
try, 102

failure-time data
introduction, 787

faithful
dataframe, 164

FALSE
coercion to numeric 0, 21
combinations of T and F, 26

families of nonlinear functions
nonlinear regression, 667

family fonts for text, 831
family=binomial generalized linear models,

513
family=Gamma generalized linear models, 513
family=inverse.gaussian generalized linear

models, 513
family=Poisson generalized linear models, 513
family=quasi generalized linear models, 513
family=quasibinomial generalized linear

models, 513
family=quasipoisson generalized linear

models, 513
famous five

in analysis of covariance, 493
introduction, 390
by matrix algebra, 270

farms
dataframe, 650

fat arrows
introduction, 835

fat lines
lwd=8, 865

fat tails
Cauchy distribution, 233
logistic distribution, 235
Student’s t distribution, 228, 233

898 INDEX

fat.arrow function, 835
locator, 857

fdr p value adjustment, 485
fecundity

Leslie matrix, 265
fertilizer

dataframe, 642, 836
Festuca, 142, 829

3-dimensional plots, 843
dataframe, 179

fg foreground colour, 857
Fibonacci series

function, 61
fig locating multiple graphs in the plotting

region, 858
rather than par(mfrow=c(2,2)), 859
same x axis different y axes, 859

file names for input
file.choose, 99

file.choose browse file names for input, 99
file.exists check that a file of that name exists

on that path, 101
filled.contour 3-dimensional plots, 843
find what package contains the specified

function, 2
first character search

using ^, 79
first-order compartment model, 205

equation, 662
self-starting nonlinear functions, 674
SSfol, 680

first-order neighbours
definition, 819

fisher
dataframe, 309

fisher.test contingency tables with low (<5)
expected frequencies, 309

two-by-two contingency tables, 551
Fisher’s exact test

contingency tables with low (<5) expected
frequencies, 308

Fisher’s F test
introduction, 224
built-in function var.test, 53
comparing two variances, 224, 289
var.test, 290
variance ratio test, 53

fishes
dataframe, 220, 230, 241

fit
of different models, 326
trade-off with number of parameters,

353
fitted values from a model summary

model$fitted, 363
fitted values of the model

fitted(model), 350

fitted(model) fitted values of the model, 350
regression, 360

fitting models to data
(not the other way round), 324

fivenum Tukey’s five numbers, 281
fix function for data editing, 5
fixed effects, 479

hierarchical sampling, 656
in mixed effects models use method=“ML”,

653
introduction, 627
on means, 472
mixed effects models, 644
model formula, 630
REML, 639

fixed or random effects, 473
flat tables

simplifying contingency tables, 563
using ftable, 185

fligner.test constancy of variance, 292
heteroscedasticity, 450
market garden ozone, 293

Fligner-Killeen test
constancy of variance, 291

floating point numbers
testing for equality of real numbers, 77

floor, 12
for multiples of a number, 25
greatest integer < x, 11
Tukey’s five numbers, 281

flowering
dataframe, 581

fltimes
dataframe, 129

font
bold, 857
bold italic, 857
changing the font for text on a plot, 831
for input and output, 10
italic, 857
plain text, 857
screen defaults, 6

font.axis font for axis number, 857
font.lab font for axes labels, 857
font.main font for main graph title, 857
font.sub font for graph subtitle, 857
fonts for text

mono, 831
sans, 831
serif, 831
symbol, 831

for loop
bootstrap for nonlinear regression, 682
break at the margin in a random walk,

815
competing species, 821
demonstrating the central limit theorem, 213

INDEX 899

histogram of the hypergeometric distribution,
248

histogram of the multinomial distribution,
249

host-parasite interaction, 823
introduction, 58
metapopulation dynamics, 817
nearest neighbours, 752
population dynamics, 812
simulating a two-dimensional random walk,

815
foreground colour

fg, 857
form in gls models, 782

modelling the spatial variance, 777
form feed

\f, 101
formatting dates and times, 92

as.difftime, 91
formulae for statistical models

introduction, 329
paste, 332

formulas in text on plots, 833
Fortran

linking to, 7
four graphs in two rows of two columns

par(mfrow=c(2,2)), 152
four-parameter logistic, 203

example, 678
self-starting nonlinear functions, 674

fourfoldplot contingency table plots, 567
fourth moment

kurtosis, 288
frac function to create fractions in expression,

834
fractional powers

roots, 196
frequencies

comparing observed and expected, 256
count data, 527
spectral analysis, 717

frequency of a time series, 714
frequency distribution data, 536
ftable displaying complex contingency tables,

558
function to produce flat tables, 185
quine, 541
Schoener’s lizards, 563

fully specified model
offsets, 520

function
arithmetic mean, 48
b.boot, 419
bubble, 180
bubble.plot, 179
central, 63
ci.lines, 414

color.pics, 856
confidence interval, 55
distance, 751
error bars, 56
error.bars, 462
fat.arrow, 835
Fibonacci series, 61
finding closest values in an array, 24
geometric mean, 49
harmonic mean, 51
host, 823
hump, 698
kurtosis, 289
leverage, 354
ma3, 708
many.means, 65
margins, 819
mcheck, 341
median, 48
model.boot, 523
nhood, 820
numbers, 813
panel, 836
parasite, 823
reg.boot, 420
residual.boot, 421
for rounding, 12
se.lines, 414
sign.test, 300
skew, 285
standard error of a mean, 54
variance, 52
variance ratio test, 53
writing R functions, 47

functions
anonymous, 67
asymptotic, 202
built-in, 10
evaluating with apply, sapply or

lapply, 68
order of the arguments, 76
self-starting nonlinear functions, 674
S-shaped, 203
table of mathematical functions in R, 11
testing arguments, 88
on vectors, 17

fungi
dataframe, 483
multiple comparisons, 483

G test, 306
contingency tables, 552

gain
dataframe, 500

gales
dataframe, 859, 867
two graphs with same x axis, 859

900 INDEX

gam 3-D plots using vis.gam, 625
binary response variable, 602
with binomial errors, 623
degrees of freedom estimated for smooth

functions, 622
first steps in multiple regression, 435
generalized additive models, 518, 611
humped data, 666
introduction, 611
library(mgcv), 611
non-parametric smoothers, 151
ozone.data, 615
parametric explanatory variable, 602
summary of the statistical model, 349

gamma demonstration in the red colours, 855
Gamma

error family in glm, 515
function, 11
gamma distribution, 208
negative binomial distribution, 252

gamma distribution
introduction, 229

Gamma errors
curved relationships, 201
demonstration plot, 342
deviance, 516
error distribution in survival models, 796
simulation experiment on age at failure, 789
standardized residuals, 520

gamma function
for factorials, 60
introduction, 201

gardens
dataframe, 292

GCV
generalized cross validation, 617

Geary’s C
spdep function, 771

gender bias
promotion, 301

generalized additive models
alternative to nonlinear regression, 665
with binary response data, 623
gam, 435
introduction, 518, 611
isolation, 623
model selection, 619
ozone.data, 614
technical background, 617

generalized cross validation, 617
generalized least squares

introduction, 778
generalized linear mixed models

family=binomial, 513
family=Gamma, 513
family=inverse.gaussian, 513
family=Poisson, 513

family=quasi, 513
family=quasibinomial, 513
family=quasipoisson, 513
introduction, 511, 655
lmer, 630
proportion data, 590

generating factor levels, 556
generating sequences of numbers, 29
geom geometric distribution, 208
geometric distribution

introduction, 246
as a limiting case of the negative binomial,

253
geometric mean

function, 49
testing arguments, 88

geostatistical data
introduction, 774

germination
dataframe, 577

gets
<-, 15

getwd check the working directory, 101
ginv generalized inverse of a matrix, 347

MASS function to compute generalized
inverse of a matrix, 263

statistical models in matrix notation, 273
given nested explanatory variables

�, 331
gl function to generate levels for a factor, 28

generate levels in creating new factors, 567
glim

generalized linear models, 511
glm analysis of codeviance with count data, 534

analysis of covariance with binomial errors,
582

analysis of deviance with count data, 529
binary response variable, 594
bootstrapping, 523
cbind with proportion data, 569
contingency tables, 552
Gamma errors, 789, 795
generalized linear models, 511, 512
proportion data, 569
regression with count data, 528
summary of the statistical model, 349

glm.nb compared with quasipoisson, 545
MASS library, 543, 557

glmmPQL generalized linear mixed models, 655
globe

drawn by wireframe, 847
gls error checking plots, 783

introduction, 778
model checking plots, 783
in nlme library, 778
ragwort data, 777
yield data, 780

INDEX 901

glycogen
rats, 476

Gompertz
age-specific hazard models, 794
equation, 662

Gompertz growth model
self-starting nonlinear functions, 674
S-shaped functions, 204

goodness of fit
deviance, 516

Gossett, W.S.
Student, 226
Student’s t test, 294

gradient see slope
grand mean

contrasts, 366
proportions, 191

graph delay
ask, 851

graph title
removing the title with main=““, 213

graph without axes
axes=FALSE, 851

graphics
all the plotting symbols displayed, 140
ask = T to step through graphs, 7
demonstration, 4
introduction, 135, 827

graphics parameters
introduction, 847
summary overview, 848

graphs touching
mar=0, 859

gray palettes, 855
grazing

ipomopsis, 490
Greek symbols in text

expression, 832
Greens palette in RColorBrewer, 856
gregexpr counting characters in a vector of

strings, 83
grep introduction, 79

pattern recognition in objects, 4
to select columns from a dataframe, 122

grep compared with regexpr, 83
grid generate a grid on a plot, 760
grid lines

tck=1, 871
group membership

kmeans, 738
grouped means

contrasts, 369
groupedData families of nonlinear functions,

668
fertilizer, 642
in gls models, 780
nonlinear time series models, 671

ovary, 645
trellis plots, 836

grouping
random effects, 473
values from a matrix using tapply, 18

grouping factor
in trellis graphics, 174

groups panel barplots, 838
groups of bars

beside=T, 466
groups of characters in searches

[C-E], 80
groups of plots

labels in the outer margin, 868
growing vectors by concatenation, 63
growth

dataframe, 466
log-logistic distribution, 236
regression, 388

growth experiments
mixed effects models, 641

growth rate data
introduction, 570

growth rates
logistic distribution, 235

gsub in stripping text, 86
substituting text in character strings (all

occurrences), 82

H hat matrix, 347
hair colour

chi-squared contingency tables, 302
HairEyeColor

dataframe, 564
hard return

the Enter key for indicating end-of-line,
58

with scan, 97
harmonic mean

function, 51
hat matrix

introduction, 347
hazard

age-dependent, 802
coxph, 809
lognormal distribution, 234
as reciprocal of mean lifetime, 787
simulation experiment, 787
Weibull distribution, 237

hazard function
exponential distribution, 793
risk of death, 792

hclust dissimilarity matrix, 742
header=T the first row of the dataframe

contains variable names, 98
heading for a graph

main, 206

902 INDEX

heat.colors palettes, 855
Helmert contrasts

analysis of covariance, 506
complex analysis of covariance, 503
introduction, 378

help
library contents, 4
manuals, 3
online, 3
using ?, 2

help.search find function names, 2
herbicides

dataframe, 127
Hershey demonstration, 4
heteroscedasticity

fligner.test, 450
introduction, 340
multiple regression, 439
non-constancy of variance, 291
residual plots, 340

hierarchical clustering
cluster analysis, 738

hierarchical designs
analysed with lmer, 648

hierarchical designs and split plots compared,
478

hierarchical sampling
model simplification, 640
variance components analysis, 638

hierarchical structure
with Error, 470
mixed effects models, 627
random effects, 472

hinges
Tukey’s five numbers, 281

hist bootstrapped Michelson’s light data, 284
bootstrapped slopes, 419
colour with histograms, 858
counts from a Poisson distribution, 251
data summary, 280
function to create and draw histograms, 162
gamma distribution, 230
jackknife regression slopes, 422
Michelson’s light data, 283
negative binomial random numbers, 163
skew data, 220, 286
specifying the break points for the bins, 162
throws of a die, 240
uniform distribution, 213

histogram bin widths, 214
data summary, 280
introduction, 162
as lattice plots, 175
panel histograms, 840
smooth density functions overlain, 214

hochberg p value adjustment, 485
Holling’s disc equation, 201

holm p value adjustment, 485
hommel p value adjustment, 485
homoscedasticity

constancy of variance, 291
horiz=TRUE plots at right angles, 862
horizontal lines

abline(“h”=), 819
host

function, 823
host-parasite interaction

pattern generation, 822
hot spots

spatial autocorrelation, 774
hour hours, 89
hours

hour, 89
hours as decimal number (01-12) on the

12-hour clock
%I, 92

hours as decimal number (00-23) on the
24-hour clock

%H, 92
houses

dataframe, 31
hre

dataframe, 638
hsv hue saturation value function, 855
hue

of colours, 855
hump

dataframe, 666
exploratory plots using gam, 603

hump function, 698
humped data

generalized additive models, 620, 666
humped relationships

biexponential, 205
inverse polynomials, 200
quadratic terms, 199

humps
testing for existence, 698

hyper hypergeometric distribution, 208
hypergeometric distribution

introduction, 247
hyphen

separator for dates, 91
hypotenuse

Pythagoras, 751
hypothesis testing

chi-squared, F and t distributions, 221
introduction, 282

i complex numbers, 11
I the unit matrix, 264
I (as is) piecewise regression, 603

to plot quadratic and cubic terms, 152
quadratic terms in multiple regression, 436

INDEX 903

identical(TRUE,x) the same as isTRUE(x), 27
identifying individual points on plots, 753
identity link

generalized linear models, 514
if competing species, 821

in loops, 61
if … else in calculating medians, 48
ifelse adjusting northings, 144

apply, 817
introduction, 62
labelling a partition tree, 697
with regexpr, 83
to remove missing values, 14

ill-conditioning
multiple regression, 448

image 3-dimensional plots, 843
competing species, 820
host-parasite interaction, 823
occupancy map, 817

implementation
R is like Scheme, vii

importance of components
prcomp, 733

incidence functions
binary response variable, 595

inclusion of an explanatory variable, 331
inclusion of interactions between explanatory

variables, 331
inclusion of main effects plus interactions

between explanatory variables, 331
independence

hair colour and eye colour, 302
random patterns, 749

independence of errors
mixed effects models, 627
random effects, 473

index
$ element name operator for indexing lists,

15
index plot

data summary, 280
for error checking, 165
leverage, 355
moving average, 709
SilwoodWeather, 710

index.cond trellis plots, 836
indices

on dataframes, 111
introduction, 20

induced
dataframe, 554

induced defences
dangers with contingency tables, 554

Inf replacing with NA, 62
value in R, 13

infection
dataframe, 599

proportion data, 569
spatial scale, 638

infinite population
binomial as a limiting case of the

hypergeometric, 248
infinity, 195

conventions in R, 13
l’Hospital’s Rule, 202

inflection point
polynomial functions, 199

influence
introduction, 344
jackknife regression slopes, 422

influence testing function
lm.influence, 346

influence.measures influence testing function,
347

informative factor levels, 479
fixed effects, 473, 627

initial measurements
in analysis of covariance, 500

input
keyboard using scan, 16

input files
check the working directory using getwd,

101
set the working directory using setwd, 101

input from file
different numbers of numbers per input line,

104
input line, 6
input non-standard file types using scan, 102
input of data from the keyboard using scan, 16
insects

dataframe, 590
install.packages

akima, 843
RColorBrewer, 856
SemiPar, 621
for spatial statistics, 763
from the web, 5

installing R, 1
manual, 3

integer part
%/%, 11

integers
rounding functions, 11

integrals
calculus in R, 275

integrate calculus in R, 275
intentional aliasing, 381
inter-quartile range

box and whisker plot, 155
Michelson’s light data, 283

interaction
aphids and caterpillars, 555
generalized additive models, 616

904 INDEX

interaction (Continued)
generalized linear mixed models, 591
multiple regression, 434
split-plot experiments, 470
two-way anova, 467

interaction plots
introduction, 172

interaction structure
interpreting the output of tree models, 444

interaction terms
log-linear models of contingency tables, 553
model formulae, 330
in model simplification, 326
which to include when they can not all be

included, 445
interaction.plot, 173

split-plot experiments, 471
interactions

model simplification in contingency table
analysis, 559

interactions between continuous and categorical
explanatory variables

differences between slopes, 331
interactions between continuous explanatory

variables, 331
interactions between explanatory variables, 331
interactions in contingency tables

fourfoldplot, 567
intercept

behaviour at the limits, 662
mixed effects models, 656
for one-way anova, 460
in regression, 387
regression, 392
remove from a model, 333
summary.lm table, 365

intercept in models
1 (parameter 1), 333

intercepts
analysis of covariance, 489

interp function to create objects for 3-D plots,
843

interpolation
akima, 843
introduction, 412

intersect function from set theory, 78
intrinsic aliasing

introduction, 380
invasion criterion

simulation models, 812
inverse Gaussian errors

deviance, 516
inverse hyperbolic trig functions, 11
inverse link function, 200
inverse of a matrix, 263
inverse polynomials

curved relationships, 200

inverse trig functions, 11
invisible, 65
ipomopsis

dataframe, 350, 490
is.array testing whether an object is an array,

87
is.character testing whether an object is a

character string, 87
is.complex testing whether an object is a

complex number, 87
is.data.frame testing whether an object is a

dataframe, 87
is.double testing whether an object is a double

precision number, 87
is.factor, 44

character data from read.table, 101
ordered, 381
to select columns from a dataframe, 117
testing whether an object is a factor, 87

is.finite test whether a number is finite, 13
is.infinite test whether a number is infinite, 13
is.list testing whether an object is a list, 87
is.logical testing whether an object is a logical

variable, 87
is.matrix, 34, 40

testing whether an object is a matrix, 87
is.na counting the NA cases in each variable of

a dataframe, 120
with match, 47
not missing values uses !is.na, 84
test whether a value is NA (missing

value), 14
is.nan test whether a value is not a number

NaN, 13
is.numeric to select columns from a dataframe,

117
testing whether an object is numeric, 87

is.ordered ordered, 382
is.raw testing whether an object is a raw

number, 87
is.table, 41
is.ts test for time series class, 168

testing whether an object is a time series, 87
is.vector testing whether an object is a vector,

87
isdst daylight saving time in operation, 89
ISOdate introduction, 91
isolation

dataframe, 595, 623
generalized additive models, 623

isotropic smooth
generalized additive models, 611

isTRUE abbreviation of identical(TRUE,x), 27
italic

font, 857

INDEX 905

jack.after.boot jackknife after bootstrap, 424
jackknife after bootstrap, 423
jackknife with regression

introduction, 421
jaws

dataframe, 151, 661, 676
jitter separate overlapping points, 597
joining the dots

what not to do, 153
judging scores

sign test, 300
Julian date

day of the year after 1 January, 90

k aggregated point processes, 750
clumping parameter (size) of the negative

binomial, 76
function for maximum likelihood estimate,

255
maximum likelihood, 252
negative binomial aggregation parameter, 163
negative binomial aggregation parameter in

glm.nb, 543
negative binomial distribution, 251, 538
negative binomial random numbers, 187

Kaplan-Meier
function, 794
Surv(death,status), 797
survivor distribution, 793
survivorship curves, 809

Kest
ppp object, 766

keyboard data entry
with scan, 97

keys
tree models for writing taxonomic keys, 693

kfit function for maximum likelihood estimate
for k of the negative binomial, 255

Kfn function for Ripley’s K, 757
Ripley’s K, 5

kick samples
effects on invertebrates, 298

kicks from cavalry horses
Poisson distribution, 250

kmeans cluster analysis, 738
group membership, 739
mis-classification, 741
taxonomy, 740

kmeansdata
dataframe, 738

knearneigh for spdep library, 768
knn object for spdep library, 768
knots

thin plate splines, 618
Kolmogorov-Smirnov test, 316
kriging

introduction, 775

ks.test Kolmogorov-Smirnov test, 317
kurtosis function, 289
kurtosis

introduction, 287
lognormal distribution, 234

L linear contrast in contr.poly, 382
label on the right axis

margins around the plotting area, 866
labelling the points on a scatterplot, 141
labels

axis, 834
labels barplots for observed and expected

frequencies, 538
for factor levels in gl, 29
using factor levels as labels, 463

labels for axes in functions
deparse(substitute), 179

labels for the right hand axis, 866
labels in the outer margin of multiple plots, 868
lack of fit

replication in regression designs, 415
sum of squares, 416
visual impression, 417

lackoffit
dataframe, 415

lags
interpreting the lynx model, 729
partial autocorrelation, 702
time series analysis, 702

lambda
mean of the Poisson distribution, 250

language definition, 3
lapply to expand rows of a dataframe, 124

for expanding dataframes, 189
introduction, 73
with length, 104

las 0 = parallel to axis, 864
1 = always horizontal, 864
2 = always perpendicular to axis, 864
3 = always vertical, 864
orientation of axes numbers, 827
orientation of tic mark numbers, 864

last seen alive
censoring, 801

latitude and longitude
in gls models, 778

lattice
libraries in the base package, 4

lattice library for trellis graphics, 174
lattice plots

background, 836
barchart, 175
bwplot, 175
cloud, 175
contourplot, 175
densityplot, 175

906 INDEX

lattice plots (Continued)
dotplot, 175
histogram, 175
levelplot, 175
parallel, 175
qq, 175
qqmath, 175
rfs, 175
splom, 175
stripplot, 175
tmd, 175
wireframe, 175

layout conditioning plots, 838
flexible positioning of multiple plots, 860

layout.show indicate the current layout of
plotting regions, 861

lazy evaluation
introduction, 67

LD50
dose.p, 577
introduction, 576

lda
library(MASS), 744

leaf
tree models, 685

least significant difference
different kinds of bars contrasted, 465
introduction, 464

least squares
regression, 389

left arrow
for editing, 9

left axis
axis 2, 834

legend analysis of deviance with count data,
533

auto.key, 842
explanatory inset for a plot, 138
on a barchart, 467
in barplots with observed and expected

frequencies, 539
on a barplot, 257
survivorship curves, 809

lend line end shapes, 864
length of character strings, 44

in defining sequences, 23
in function for mean, 48
in a function for variance, 52
issues with lags, 702
using lapply in lists, 73
loadings in factor analysis, 737
with negative subscripts, 24
reduced lengths of factors, 186
with regexpr, 83
runs test on binary data, 76
of a vector, 16
vectors of length zero, 15

lengths
problems with attach, 18

lengths of runs
run length encoding, 74

leptokurtosis
introduction, 288

Leslie matrix, 264
lethal dose

introduction, 576
lethal kicks from cavalry horses

Poisson distribution, 250
LETTERS a vector containing the letters of the

alphabet in upper case, 44
letters, 44

vector of lower case letters of the alphabet,
26

levelplot as lattice plots, 175
levels

interaction.plot, 173
as labels in barplot, 463
list of factor levels, 371
for names in barplot, 57
naming factor levels, 186

levels gets
factor-level reduction, 375
Schoener’s lizards re-analysed, 589
survival data, 803

leverage function, 354
introduction, 354

Levin’s model
metapopulation dynamics, 816

lgamma natural log of the gamma
function, 11

l’Hospital’s Rule
ratios of infinity, 202

libraries
search() to list attached libraries, 7
using with, 19

libraries for spatial statistics
introduction, 762

library
boot, 320, 420
contents of, 4
effects, 178
function for loading a library, 4
help, 4
lattice, 174, 836
lme4, 547, 605
mgcv, 602, 611
nlme, 778
spatial, 757
spatstat, 762
spdep, 762
survival, 797
tree, 444, 613

INDEX 907

library(boot) bootstrap for nonlinear
regression, 683

library(lattice) ethanol, 698
mixed effects models, 638, 642
time series in mixed effects models,

645
library(lme4) proportion data, 590

variance components analysis, 640
library(MASS) lda, 744

stormer, 682
library(mgcv) humped data, 666
library(nlme) families of nonlinear functions,

667
mixed effects models, 638, 642
splityield, 632
time series in mixed effects models, 645

library(tree) tree models, 685
lifeforms

dataframe, 129
light

dataframe, 282
light.source 3-dimensional plots, 845
likelihood see maximum likelihood

Cox’s proportional hazards model, 796
likelihood function

normal distribution, 217
limits of the current axes

par(“usr”), 847
line end shapes

lend, 864
line join

panel plots, 842
line over a scatterplot

plot then lines, 71
line types

lty, 864
line types on plots

lty, 167
line widths see lwd
linear combinations

principal components analysis, 731
linear contrast in contr.poly

L, 382
linear equations

solving, 274
linear independence

determinant of a matrix, 263
linear mixed effects

lme, 630
linear model

constancy of variance, 292
continuous response variable, 324
for curved relationships, 334
in regression, 387

linear predictor
back-transformation from logits, 579
for binomial errors, 572

generalized linear models, 513
multiple regression, 434

linearity
model mis-specification, 356

linearizing Michaelis Menten, 202
linearizing the logistic

log odds transformation, 572
lines add line to a scatterplot, 55

adding thresholds to a plot, 614
beta distribution, 232
Cauchy distribution, 233
chi-squared distribution, 223
complete spatial randomness, 756
critical value of Fisher’s F, 225
damped oscillations, 277
drawing circles, 180
error bars, 462
error bars on logistic curves, 598
for piecewise regression, 429
gamma distribution, 229
generalized additive models, 666
glm with different slopes, 535
to illustrate SSY and SSE in anova, 455
joining nearest neighbours, 752
joining the dots, 153
with loess, 613
logistic distribution, 235
to make error bars, 56
moving average, 709
multiple logistic curves, 583
non-linear functions, 150
nonlinear regression, 663
overlay on a histogram, 220, 231
overlaying a smooth density function on a

histogram, 162, 165
plot for complex analysis of covariance, 504
population dynamics, 812
predict(type=“response”), 596
Ripley’s K, 758
to show lack of fit, 417
SilwoodWeather, 711
smooth density functions overlain, 214, 216
smooth line for exponential decay, 409
smoothers compared, 152
SSasymp, 676
SSfol, 681
SSfpl, 678
SSlogistic, 678
SSmicmen, 675
SSweibull, 680
Student’s t, 226
summary of key points, 181
type=“response”, 576
Weibull distribution, 237

lines not points
type=“l”, 67

lines over barplot orthogonal polynomials, 385

908 INDEX

link function
for binomial errors, 572
canonical link functions, 514
generalized linear models, 513
mis-specified, 521

list categorical variables for the by function,
133

to create a list from various objects, 73
double square brackets [[]], 46, 73
extracting information from model objects,

359
using lapply, 73
to make multidimensional tables using

tapply, 184
NULL elements, 35
returning answers from a function, 67
subscripts [[]], 20
in tapply to specify the margins over which

means are to be computed, 18
type, 87
variable numbers of arguments to a

function, 65
list subscripts [[]]

extracting information from model objects,
359, 361

summary.aov table, 364
summary.lm table, 364

lists
$ element name operator for indexing

lists, 15
liver bits

rats, 476
lizards

analysed as proportion data, 584
complex contingency tables, 560
dataframe, 584

llines trellis plots, 836
lm

all.effects, 178
in analysis of covariance, 497
summary of the statistical model, 349
trigonometric model for cycles, 711
using with, 19

lm(y~x) regression, 392
lm.influence influence testing function, 346
lme fixed effects in hierarchical sampling, 656

linear mixed effects, 630
summary of the statistical model, 349

lme and aov compared, 636, 644
lme4 installing the library, 5

library, 547, 605
lmer, 716
proportion data, 590

lmer binary response variable, 605
generalized linear mixed models, 655
generalized mixed models, 630
with poisson errors for nested count data, 546

proportion data, 590
rats data, 648
trends in time series, 716
variance components analysis, 640

lmList fit many linear regressions, 651
lmtest package on CRAN, 417
lnorm log-normal distribution, 208
loadings

factor analysis, 735
principal components analysis, 734

local maximum
polynomial functions, 199

locating multiple graphs using fig, 858
locating patterns within vectors

using regexpr, 83
locations of bars on the x axis of barplot,

257
locator fat arrows, 857

with fat arrows, 835
legend on a barplot, 761
legend placement in barplot, 466
to locate a legend on a barplot, 257
to position a legend on a plot, 138
with rect, 147
text on plots, 831

loess non-parametric smoothers, 151
soaysheep, 612
summary of the statistical model, 349

log base e, 10
introduction, 196
other bases, 10

log for additivity
Poisson errors, 327

log likelihood
normal distribution, 217

log linear models
count data as response variable, 324

log link
generalized linear models, 514

log odds transformation
linearizing the logistic, 572

log of zero
- Inf, 62

log transform both axes
log=“xy”, 831

log transform only the x axis
log=“x”, 831

log transform only the y axis
log=“y”, 831

log transformation
both axes for power laws, 198

log(dose)
bioassay, 576

log(x+1) polynomial approximation, 403
log(y)~sqrt(x) transformation, 330
log=“x” log transform only the x axis, 831
log=“xy” log transform both axes, 831

INDEX 909

log=“y” factorial function, 206
log transform only the y axis, 831
plot with a logarithmic axis for the y

variable, 169
log10 base 10 log function, 10
logarithm, 195
logarithmic axes

introduction, 830
logarithmic function, 196
logarithmic plots

for showing relative variability, 50
logarithms

geometric mean as the antilog of the average
of the logarithms, 49

and variability, 50
logic

involving NA, 27
logical

with dates and times, 90
in lists, 73
result of applying a numeric function, 74
type, 87

logical arithmetic, 25
counting cases, 753
introduction, 25
for piecewise regression, 428
wet?, 840

logical operators, 15
table of, 27

logical subscripts
for avoiding using loops, 61
introduction, 21
selecting rows from a dataframe, 116

logis logistic distribution, 208
logistic

equation, 662
logistic curve

percentage data, 570
logistic distribution

introduction, 234
logistic function, 203
logistic model

formula, 571
model criticism, 583

logistic regression
binary response variable, 324
glm with binomial errors, 574
proportion response variable, 324

logit
linear predictor with binomial errors, 573

logit link
generalized linear models, 514
logistic distribution, 235

logits
transformation to proportions, 579

logLik log-likelihood of a model, 354
log-linear models

complex contingency tables, 559
contingency tables, 549, 552
count data with Poisson errors, 516
induced defences, 554
Schoener’s lizards, 560
university admissions, 567

log-log transformation
power laws, 199

log-logistic
error distribution in survival models, 796

log-logistic distribution
introduction, 236

log-normal data
test of normality, 282

log-odds
logistic distribution, 235

lognormal
error distribution in survival models, 796

lognormal distribution
introduction, 234

logplots
dataframe, 830

logs
log functions in R, 11

longdata
dataframe, 180

longitudinal data
temporal pseudoreplication, 474

loop
histogram of the hypergeometric distribution,

248
slowness, 62

loop avoidance
introduction, 61
using lapply in lists, 73

loops see for loop
all the plotting symbols displayed, 139
demonstrating the central limit theorem, 213
introduction, 58
with substrings, 45

losses from experiments
censoring, 801

lottery
combinations, 242

lottery model
competing species, 820

lower constraint on step, 561
lower case

convert to lower case using tolower, 47
lowess non-parametric smoothers, 151
ls returns a vector of character strings giving

the names of the objects in the specified
environment, 8

lty 0 = invisible, 864
1 = solid, 864
2 = dashed, 864
3 = dotted, 864

910 INDEX

lty (Continued)
4 = dot-dash, 864
5 = long dash, 864
6 = two dash, 864
line types on plots, 167
lines types for survivorship curves, 804

lwd widths of lines, 865
lwd=8 fat lines, 865
lynx

arima, 727
dataframe, 717

ma3 function, 708
Maclaurin series

polynomial approximations to elementary
functions, 403

main heading for a graph, 206
main effects

plot.design, 176
make.sym.nb

spdep function, 771
Makeham

age-specific hazard models, 794
manova

dataframe, 487
manova multivariate analysis of variance, 487
Mantel’s permutation test

spdep function, 772
manuals for R, 3
many.means function, 65
map

adding place names, 144
map.places

dataframe, 143
maps

nearest neighbours, 750
from spdep objects, 773

mar margins of the plotting region, 859
plots close together, 868

margin.table sum of the table entries for a
given index, 564

marginal totals
contingency tables, 553
dangers with contingency tables, 556
degrees of freedom, 305
nuisance variables, 302
Schoener’s lizards, 560

margins
adding rows and columns to a dataframe,

130
with apply, 36
apply with a matrix, 68
calculations on rows and columns of a

matrix, 35
distance from the edges, 752
function, 819
row (1) and column (2) totals, 20

using sweep, 39
wrap-around margins, 815

margins around the plotting area
1 = bottom, 866
2 = left, 866
3 = top, 866
4 = right, 866
label on the right axis, 866
measured in lines of text, 866
par(mar), 866

market garden ozone
bartlett.test, 293
boxplot, 295
comparing two variances, 289
constancy of variance, 292
fligner.test, 293
var.test, 293

MASS
bacteria, 604
boxcox, 336
glmmPQL, 655
glm.nb, 543, 557
libraries in the base package, 4
mvrnorm, 237
truehist, 165
stormer, 682

match in dataframes, 127
introduction, 47
for translating numbers into binary, 61
versus %in%, 84

matching
arguments to functions, 64

matching characters in strings
charmatch, 83

mathematical functions
introduction, 195
table of function names, 11

mathematical symbols on plots
expression, 832

mathematics
introduction, 195

matlines for predicted values in regression, 414
matplot Leslie matrix, 265
matrices

introduction, 33
matrices in statistical modelling, 267
matrix

characteristic equation, 264
matrix using apply, 68

columnwise data entry, 258
coupled map lattice, 823
edges in a simulation model, 819
eigenvalue and eigenvector, 264
introduction, 33
inverse, 263
Leslie matrix, 264
naming rows and columns, 34

INDEX 911

occupancy map, 817
solving systems of linear equations, 274
subscripts, 20
two-by-two contingency tables, 551
type, 87

matrix algebra
introduction, 258

matrix approach to the famous five, 391
matrix multiplication, 259

in statistical modelling, 268
max maximum value in a vector, 17
maximal model

introduction, 325
maximum

with a loop, 62
using summary, 110

maximum likelihood
definition, 324
mixed effects models, 653
normal distribution, 216
unbiased, variance-minimizing estimators, 324

maximum likelihood estimate for k of the
negative binomial, 255

maximum likelihood estimates of regression
parameters, 388

maximum of a function
using optimize, 72

maximum quasi-likelihood, 517
maximum value in a vector

max, 17
mcheck function, 341
mcmc

installing the library, 5
mday day number in month, 89
mean binomial np, 243

comparing two means, 293
exact with random numbers, 219
function for arithmetic mean, 48
gamma distribution, 229
geometric distribution, 246
lifetime = 1/hazard, 787
lognormal distribution, 234
mean of the values in a vector, 17
na.rm=T, 14
Poisson distribution, 250
of proportion data, 580
sapply to a list of variables, 450
using summary, 110
trimmed mean, 185
type=“response”, 804
Weibull distribution, 237

mean age at death
reciprocal of the hazard, 793

mean of the values in a vector
mean, 17

mean squares
linear regression, 396

means
paired samples, 298
plot.design, 176
using tapply for groups of means, 18

means rather than differences between means in
summary.lm, 333

measurement error
longitudinal data, 475

mechanistic models, 326
in regression, 407

median, 17
box and whisker plot, 155
function, 48
median of the values in a vector, 17
plot.design, 176
using summary, 110

median polishing
spatial autocorrelation, 775

medians
using tapply for groups of medians, 18

Mendel’s peas
contingency tables, 550

menu bar, 3
RGui, 5

merge
by.x and by.y, 130
combine dataframes, 129
when the same variable has different names

in the two dataframes, 130
merging dataframes

introduction, 129
Mersenne twister

random number generation, 240
metacharacters, 84
metapopulation dynamics

introduction, 816
simulation models, 811

method of least squares
regression, 389

method=“ML” mixed effects models, 653,
656

method=“PQL” binary response variable,
605

mfcol see mfrow
mfrow multiple graphs per page, 866
mfrow=c(1,1) default of one graph per page,

866
mfrow=c(1,2) one row of two

graphs, 866
mfrow=c(2,1) one column of two graphs, 866
mfrow=c(2,2) four graphs in two rows of two

columns, 866
mfrow=c(3,2) six graphs in three rows of two

columns, 866
mgcv libraries in the base package, 4

library, 602, 611
library function, 435

912 INDEX

Michaelis Menten
asymptotic relationship, 200
compared with asymptotic exponential,

664
equation, 662
families of nonlinear functions, 667
introduction to self-starting function, 674
self-starting nonlinear functions, 674

Michelson’s light data, 282
migration

host-parasite interaction, 823
metapopulation dynamics, 816

min minimum value in a vector, 17
minutes, 89
nearest neighbours, 752

minimal adequate model
analysis of deviance with count data, 533
contrasts and the number of parameters, 374
germination data, 579
introduction, 324, 325
mixed effects models, 636
multiple regression, 441
Schoener’s lizards re-analysed, 589

minimum
using summary, 110

minimum of a function
using optimize, 72

minimum of a vector function
using sapply, 71

minimum value in a vector
min, 17

minute as decimal number (00-59)
%M, 92

minutes
min, 89

mis-classification
discriminant analysis, 746
kmeans, 739, 741

missing arguments in function calls, 67
missing values

NA, 14
split-plot experiments, 472
statistical modelling, 352

mixed effects models, 356
compared with ancova, 654
error checking plots, 636
introduction, 627
library(lme4) and library(nlme), 628
maximum likelihood, 653
multiple error terms, 629
split plot experiments, 632
temporal pseudoreplication, 641
with temporal pseudoreplication, 645

mm
dataframe, 674

model
mis-specification, 356

model-checking
example, 357

model checking plots
corAR1, 647
in gls models, 783
mixed effects models, 636, 657
plot(model), 339

model choice
introduction, 324, 339
nonlinear regression, 665
power law, 411

model criticism
choice of a logistic model, 583
introduction, 339
in regression, 401

model formula
examples, 329
introduction, 329
piecewise regression, 427
regression, 334
tilde ∼ operator, 15

model object
extracting information, 359

model selection
generalized additive models, 619

model simplification
~. - (tilde dot minus) in model simplification,

334
analysis of covariance, 489
in analysis of covariance, 498
analysis of deviance with count data, 531
automated using step, 353
caveats, 328
complex analysis of covariance, 500
dangers with contingency tables, 556
degrees of freedom, 326
generalized additive models, 616
generalized linear mixed models, 591
glm with different slopes, 535
hierarchical sampling, 640
mixed effects models, 635
multiple regression, 433, 438
nonlinear regression, 663
overview, 327
proportion data, 578
quine, 542
stepAIC, 544
stepwise deletion, 374
survival data, 802, 806
time series models, 728
tree models, 690
two-way anova, 468

model$coef extracting parameter values from a
model summary, 363

model$df extracting the degrees of freedom
from a model summary, 363

INDEX 913

model$fitted extracting the fitted values from a
model summary, 363

model$resid extracting the residuals from a
model summary, 363

SilwoodWeather, 711
model.boot function, 523
model.matrix create a table of dummy

variables, 192
model.tables effect sizes, 458

in factorial anova, 480
models

effect sizes, 178
fitting models to data, 324
introduction, 326

modulo %%, 11
in calculating medians, 48
for translating numbers into

binary, 60
moments

mean, variance, skew and kurtosis,
285

mon month, 89
mono fonts for text, 831
Monte Carlo experiment

on age at failure, 787
month

mon, 89
month as decimal number (01-12)

%m, 92
month name, abbreviated

%b, 92
month name in full

%B, 92
month.abb function providing names of

months in abbreviated form, 840
month.name function providing names of

months, 840
Moran’s I

spdep function, 771
mortality

proportion data, 569
survival analysis, 791

mosaicplot contingency table plots, 565
mouse-click

cursor in graphics, 138
moving average

introduction, 708
order in arima, 726

moving average models
time-series analysis, 726

mtext for naming bars in barplot, 257
text in the margins of a plot, 867

mu mean in the negative binomial, 76
multcomp package on CRAN, 485
multi function, 249
multi-collinearity

multiple regression, 448

multi-dimensional tables
producing flat tables with ftable, 185

multi-line functions
in loops, 58
using curly brackets { }, 47

multinomial distribution
introduction, 249

multiple comparisons
introduction, 482
pairwise.t.test, 483
TukeyHSD, 483
Tukey’s Honest Significant Difference, 160

multiple error terms
aov, 470
in aov, 333
mixed effects models, 629
split-plot experiments, 469

multiple expressions on one line using, 10
multiple graphs on same screen

location with fig, 858
fig, 858
layout, 860
mfcol, 849, 866
mfrow, 866
new=T, 866

multiple K-functions
spatstat function, 767

multiple plots
labels in the outer margin, 868

multiple regression
introduction, 433
parameter proliferation, 445
quadratic terms, 436
selecting which interaction terms to include,

445
step, 441
y~x+w+z, 330

multiple returns from a function, 67
multiple screens on a single device

split.screen, 862
multiples

testing using modulo, 12
multiplication of matrices, 259
multivariate analysis of variance

introduction, 487
multivariate normal distribution, 237
multivariate statistics

introduction, 731
murder data

with readLines, 105
mvrnorm correlated random numbers, 237

n power analysis, 317
replications, 482
sample size, 52
small sample problems in multiple

regression, 443

914 INDEX

NA counting the NA cases in each variable of a
dataframe, 120

drop rows from a dataframe, 119
in logical tests, 27
missing values, 14
produced by match, 47
replacing -Inf, 62
with tapply, 186

na.action introduction, 352
NULL for time series, 352
what to do about missing values, 350

na.exclude like na.omit but the residuals and
predictions are padded to the correct length
by inserting NAs for cases omitted, 120

na.fail
na.action, 352

na.omit leave out rows from a dataframe
containing one or more NA, 119

take out NA introduced by as.numeric, 106
na.rm with tapply, 186
na.rm=T remove missing values, 14
names in barplot, 56

changing variable names in a dataframe, 187,
559

elements of a vector, 17
problems with attach, 18
shortening a dataframe, 585
variables within a dataframe, 109

names components
extracting information from model objects,

359
names for barplot

as.character, 244
names of 657 colours, 854
names=levels orthogonal polynomials, 386
naming columns in a dataframe, 190
naming factor levels, 186
naming the rows and columns of a matrix, 34
NaN not a number in R, 13
National Lottery

combinations, 242
naydf

dataframe, 770
nb class of neighbour object in spdep, 769
nb2listw

spdep function, 771
nbinom negative binomial distribution,

208
nchar count the numbers of characters in a

vector of strings, 44
ncol number of columns in a matrix, 258
NDC

normalized device coordinates, 863
nearest neighbours

edges, 752
expected mean distance to, 754
introduction, 750

negative binomial
pattern analysis, 750

negative binomial data
export data from R, 76
introduction, 251
variance mean ratio, 538

negative binomial errors
compared with quasipoisson errors, 556
demonstration plot, 342
introduction, 543

negative binomial random numbers
histogram, 163

negative loadings
principal components analysis, 734

negative powers
reciprocals, 196

negative sigmoid, 204
negative subscripts, 24

in character searches, 81
nearest neighbours, 751
removing columns from a dataframe, 189
zero length vector, 15

negbin function, 252
neighbour relations

plot, 771
simulation models, 811
spatially-explicit models, 816, 818

neighbours
count the occupied neighbouring cells, 820

nested analysis
y~a/b/c, 330

nested count data
lmer, 546

nested designs, 472
analysed with lmer, 648

nesting
with Error, 470
mixed effects models, 627
model formulae, 332

nesting of an explanatory variable
/, 331

nesting structure
block/irrigation/density, 632

neural networks, 747
introduction, 731

new line
\n, 55, 100, 101

new.lizards
dataframe, 586

new=T multiple graphs on top of each other,
866

a second graph is to be plotted, 859
nhood function, 820
niche analysis

Schoener’s lizards, 560
Nicholson-Bailey model

host-parasite interaction, 823

INDEX 915

Nicholson’s blowflies
time series analysis, 701

nlme families of nonlinear functions, 669
libraries in the base package, 4
library, 778
nonlinear time series models, 671
summary of the statistical model, 349

nls non-linear functions, 150
nonlinear regression, 663
SSmicmen, 674
summary of the statistical model, 349
viscosity data, 682

nlsList families of nonlinear functions, 668
nlsList compared with nlme shrinkage, 671
nndist

spatstat function, 767
nnet libraries in the base package, 4
nnwhich

spatstat function, 767
node

tree models, 697
node numbers

tree models, 688
nodes

tree models, 687
non-centrality

chi-squared distribution, 222
non-constancy of variance

generalized linear models, 512
heteroscedasticity, 291
model criticism, 339
proportion data, 569

non-equilibrium behaviour
random walk, 815

non-independence of errors
pseudoreplication, 629

non-linear functions
drawing curves, 149
summary, 662

non-linear least squares
sapply, 70

non-linear terms
model formulae, 331
in model simplification, 326

non-linearity
model mis-specification, 357

non-normal errors
generalized linear models, 512
introduction, 285, 340
Michelson’s light data, 283
model criticism, 339
multiple regression, 439
plot to test for, 220
proportion data, 569
residual plots, 340

non-orthogonal data
order matters, 328

non-parametric smoothers
coplot, 171
GAM, 518
generalized additive models, 611
generalized additive models, gam, 435
lines through scatterplots, 151
pairs, 170

non-parametric tests
Wilcoxon rank-sum test, 297

non-parametric tests compared to parametric,
301

nonlinear
dataframe, 671

nonlinear mixed effects model
nlme, 671

nonlinear regression
fitting groups of curves, 667
introduction, 661

nonlinear time series models
temporal pseudoreplication, 671

noquote remove the quotes from
characters, 44

norm normal distribution, 208
normal curve

colouring parts using polygon, 148
normal distribution

introduction, 210
maximum likelihood, 216

normal equations
in matrix notation, 272

normal errors
demonstration plot, 341
deviance, 516
model mis-specification, 356
scale of measurement, 327

normality
tests of, 281

normalized device coordinates
defining a screen, 863

normally distributed errors
classical tests, 279

northings, 143
not missing values

!is.na, 84
notation

numbers with exponents, 11
scientific notation with signif, 11

notch plot
box data, 159

notch=T market garden ozone, 295
to show significance in boxplot, 156

nrow number of rows in a matrix, 258
nrow= in defining matrices, 33
n-shaped function beta distribution, 232
nugget

variogram parameters, 775
nugget=T in gls models, 782

916 INDEX

nuisance variables
contingency tables, 553
conversion of count data to proportion data,

584
dangers with contingency tables, 556
marginal totals, 302
Schoener’s lizards, 560

NULL in a list, 35
null hypothesis

Type I and Type II error rates, 305
null model

introduction, 325
y~1, 330, 333

number, not
NaN, not a number in R, 13

numbers function, 813
numbers with exponents, 11
numeric creating an object, 55

in lists, 73
type, 87

numeric functions
on character or logical objects, 74

object structure of an object using str, 768
objects names of the objects in the specified

environment, 4
objects() to see the variables in the current

session, 7
observed and expected frequencies

assocplot, 564
introduction, 549
mosaicplot, 565

observed frequencies
negative binomial distribution, 256
Pearson’s chi-squared, 303

Occam’s razor
applied to tests, 279
principle of parsimony, 325

occupancy map
matrix, 817

occupation
dataframe, 597

occupation of patches
metapopulation dynamics, 816

odd numbers
testing using modulo, 12

odds
introduction, 571
logistic distribution, 235

odesolve installing the library, 5
library for ordinary differential equation

solutions, 275
offset explain some of the variation in a

specified way, 350
introduction, 518
in linear models, 352
of text on a plot, 142

offsets
timber volume, 518

Old Faithful
data in MASS, 164

oma outer margins of a plot, 867
omission of explanatory variables

dangers with contingency tables, 553
one sample t-test

on differences, 299
one-way anova

effect sizes, 458
introduction, 449
plot with TukeyHSD, 160
power.anova.test, 318

optimize searches for the minimum or
maximum of a function, 72

optional arguments, 64
options contrasts=c(“contr.treatment”,

“contr.poly”), 374
control of significance stars, 7

or
with if is ��, 27

OR (� for logical OR)
in string matching, 85
testing for the margins in a random walk, 815

OrchardSprays
dataframe, 169, 842
dataframe in base package, 19

order on dates or times, 126
introduction, 31
is.ordered, 382
order the values in a vector, 17
points in ordered sequence, 153
for sorting dataframes, 113
sorting a dataframe, 584
time-series analysis, 726
with unique to remove pseudoreplication,

121
order dependence

in setdiff, 78
order matters

introduction, 328
multiple regression, 433
summary.aov, 507

order of deletion
introduction, 328

order the values in a vector
order, 17

order(a,b,c) sequence of AR order, degree of
differencing and order of moving average,
727

ordered convert a factor to an ordered factor,
382

tables of ordered factor levels, 185
ordered boxplots, 159
Orobanche

data, 578

INDEX 917

orthogonal contrasts
introduction, 368
testing for orthogonality, 372

orthogonal polynomial contrasts
introduction, 381
coefficients, 384

orthogonal variables
introduction, 328

outer combinations of T and F, 27
trellis plots, 642

outer margins of a plot
par(oma), 867

outer=T to write in the outer margin, 868
outliers

box and whisker plot, 155
classical tests, 279
influence, 345
Michelson’s light data, 283

output line, 6
ovary

dataframe, 645
over-interpretation

tree models, 688
overdispersion

count data, 540
dangers with contingency tables, 553
example, 576
generalized linear mixed models, 590
introduction, 522
model criticism, 339
with proportion data, 573
proportion data, 578
quasibinomial, 573
regression with count data, 528

overlap between shingles in coplot, 172
overlap

setdiff, 78
overlapping points

jitter, 597
sunflowerplot, 180

overlaying a smooth density function on a
histogram, 162

overlays
new=T, 859

over-parameterization
ancova compared with mixed models, 654
multiple regression, 434, 446

ozone in gardens
comparing two variances, 289
constancy of variance, 292

ozone.data
dataframe, 170, 434, 614

p probability of success in a binomial trail, 242,
570

p value
extracting from a model summary, 363

Fisher’s F test, 290
introduction, 282
linear regression, 399
one-way anova, 457

packages
available from CRAN, 5

pair correlation
from ppp object, 766

pairdist
spatstat function, 767

paired
dataframe, 312

paired randomization
in analysis of covariance, 500

paired samples
Student’s t test, 298

pairs multiple scatterplots in a matrix, 170
ozone.data, 615
panel=panel.smooth, 434
pollution example, 443
taxa, 740

pairwise.t.test multiple comparisons,
483

palette
groups of colours, 854

palette(“default”) return to the default palette,
856

palettes
gray, 855
heat.colors, 855
rainbow, 855
terrain.colors, 855

panel function, 836
panel barplots

barchart, 838
panel boxplots

bwplot, 837
panel histograms

histogram, 840
panel labels

strip, 841
panel plots

background, 836
xyplot, 174

panel scatterplots
x�z “given”, 836

panel.abline ethanol, 839
trellis plots, 837

panel.grid ethanol, 839
panel.groups panel plots, 842
panel.smooth sulphur.dioxide, 443
panel.superpose panel plots, 842
panel.xyplot ethanol, 839

trellis plots, 837
panel=panel.smooth in pairs, 434

option for coplot, 171
option for pairs plots, 170

918 INDEX

panels
dataframe, 174

par in trellis graphics, 175
introduction to graphics parameters, 847

par(family) fonts for text, 831
par(fig), 858
par(mar), 859

margins around the plotting area, 866
par(mfrow=c(1,1)) introduction, 152

revert to one graph per page, 220
par(mfrow=c(1,2)) Cauchy distribution, 233

chi-squared distribution, 223
curved linear models, 334
frequency distribution data, 537
logistic distribution, 235
simulated time series, 722
two graphs in one row, 68, 157, 165

par(mfrow=c(2,2)) bell-shaped curves, 210
beta distribution, 232
contrasting graph styles, 827
correlations at lags, 703
data summary, 280
density, cumulative probability, quantiles and

random numbers from the normal
distribution, 218

different tck options, 871
four graphs in two rows of two columns, 152
gamma distribution, 229
generating the central limit theorem, 215
group membership, 738
polynomial functions, 200
population dynamics, 812

par(oma) outer margins of a plot, 867
par(plt) shape of the plot region, 858
par(“usr”) current coordinates for the plotting

surface, 835
limits of the current axes, 847

parallel as lattice plots, 175
parallel maxima and minima, 20

function, 66
parallel maxima of the values in a set of vectors

pmax, 17
parallel minima of the values in a set of vectors

pmin, 18
parameter estimation

for sapply, 70
parameter proliferation

multiple regression, 443
parameter reduction

model simplification, 469
parameter values

non-linear functions, 150
parameter values from a model summary

model$coef, 363
parameters

analysis of variance, 366
complex analysis of covariance, 504

and degrees of freedom, 52
of different models, 326
extracting from a model

summary, 361
interactions between explanatory variables,

331
linear models, 334
nonlinear regression, 661
for one-way anova, 460
from the summary.lm table, 365
trade-off with fit, 353

parameters and variables
in regression, 387

parameters for families on non-linear functions
coef, 670

parametric term or non-parametric smoother,
625

parametric tests compared to non-parametric,
301

parasite function, 823
parasites

dataframe, 192
parentheses

continuation + symbol, 9
parsimony

applied to tests, 279
of different models, 326
Occam’s razor, 325

partial autocorrelation
introduction, 702

partial correlation
introduction, 312

partial matching on tags, 64
partition.tree classification tree, 697
partitioning

kmeans, 738
paste to create POSIXlt dates and

times, 93
creating formula objects, 332
with expression in xlab, 832
function to create dimnames, 35
homemade function for reading dataframes,

99
for joining character strings, 44

path name
for reading files, 98

pattern analysis
distance measures, 750
point processes, 749
quadrat based counts, 758

pattern generation
simulation models, 811
spatial simulation, 822

pattern in the residuals
model criticism, 339

pattern matching
introduction, 79

INDEX 919

pattern matching in vectors
special characters, 85
using regexpr, 83

pattern recognition
stripping out text, 86

patterns
weather data, 713

pause for a specified number of seconds using
Sys.sleep, 102

pbeta cumulative probabilities (distribution
function) of the beta distribution, 208

pbinom
barplot for a histogram, 244
cumulative probabilities (distribution

function) of the binomial distribution,
208

PC1
first principal component, 733

PCA
principal components analysis, 731

pcauchy cumulative probabilities (distribution
function) of the cauchy distribution, 208

pcf pair correlation function, 767
pch

as.numeric, 491
with as.numeric, 141
symbols explained, 141
with subscripts, 534

pch=16 plotting with solid circles, 55
regression, 388

pchisq confidence interval for sample
estimates, 223

contingency tables, 551
cumulative probabilities (distribution

function) of the chi-squared distribution,
208

plots, 223
Type I error, 221

PCRE library
perl regular expressions, 86

Pearson’s chi-squared
calculation, 551
chisq.test, 305
comparing observed and expected

frequencies, 258, 303
contingency tables, 549
negative binomial distribution, 539
observed and expected frequencies from a

negative binomial pattern, 761
Pearson’s product-moment correlation

cor.test, 313
penalized log-likelihood

Akaike’s information criterion, 353
penalized quasi likelihood

generalized linear mixed models, 655
percent symbols

%% modulo, 11

%/% integer quotient, 11
percentage data

introduction, 570
perfect fit

orthogonal polynomials, 385
period doubling route to chaos, 812
periodogram

spectral analysis, 717
perl regular expressions

introduction, 86
text searching conventions, 82

perm.cond trellis plots, 836
persp demonstration, 4

3-dimensional plots, 843
perspective plots

viewing angle, 845
petals for each data point

sunflowerplot, 180
pexp cumulative probabilities (distribution

function) of the exponential distribution,
208

pf cumulative probabilities (distribution
function) of the Fisher’s F distribution, 208

Type I error, 222
pgamma cumulative probabilities (distribution

function) of the gamma distribution, 208
pgd

dataframe, 732
pgeom cumulative probabilities (distribution

function) of the geometric distribution, 208
pgfull

dataframe, 732, 742
pgr

dataframe, 142, 179, 829, 843
phase planes

drawing arrows, 833
phi colatitude, 845
phyper cumulative probabilities (distribution

function) of the hypergeometric
distribution, 208

pi R function to give the value of pi
(3.141593), 10

pie function to draw a pie chart, 169
pie charts

with different palettes, 855
introduction, 168

piecewise exponential
error distribution in survival models, 796

piecewise regression
introduction, 425
model formula, 427
optimal break point, 427
threshold, 603

piedata
dataframe, 168

Pivot Table in Excel, 108
summary tables, 183

920 INDEX

place names
adding text to a map, 144

plain text
font, 857

plant-herbivore interaction
odesolve, 277

platykurtosis
introduction, 288

plnorm cumulative probabilities (distribution
function) of the log-normal distribution,
208

plogis cumulative probabilities (distribution
function) of the logistic distribution, 208

plot
all.effects, 178
both x and y with error bars, 58
with a categorical explanatory variable, 154
changing the font for text, 831
clears the screen unless new=T, 866
with coloured symbols, 136
complex analysis of covariance, 504
complex plot layouts, 862
for data of class ts (time series), 167
decompositions of time series, 715
differences in time series, 719
different points in different colours, 142
drawing mathematical functions, 144
the empirical cumulative distribution

function, 241
families of nonlinear functions, 668
group membership, 738
groupedData, 642, 668
incidence functions, 596
introduction, 135
maps from coordinates, 750
methods for contingency tables, 564
mixed effects models, 647
nearest neighbours joined, 769
neighbour relations, 771
PC1 against explanatory variables, 735
prcomp, 733
using sapply, 71
standard error against sample size, 55
survivorship curves, 809
a time series object, 702
time series object, 714
tree models, 686
TukeyHSD, 160
type=“l”, 710
using with, 19
Variogram, 783

plot families of nonlinear functions
augPred, 669

plot region
changing shape with plt, 858

plot sizes
split-plot experiments, 469

plot(model) constancy of variance, 292
generalized additive models, 617
introduction, 357
mixed effects models, 657
mixed effects models error checking,

636
model checking, 339
multiple regression, 439
one-way anova, 457
in regression, 401
statistical modelling, 349

plot(y) index plot, 280
plot(y∼x), 196

summary of key points, 181
plot.design design plots, 176

effect sizes, 458
effects in designed experiments, 176

plot.gam NOX example, 621
plot.ts plot as a time series, 717

simulated time series, 722
two time series, 718

plotfit
dataframe, 149

plotmath demonstration, 4
plots

3-dimensional plots, 842
log plots for indicating relative

variability, 50
mixed effects models error checking, 636
for multiple comparisons, 158
removing the title with main=““, 213
for single samples, 280
summary of key points, 181
sunflowerplot, 180

plots close together
use small mar, 868

plots for one-way anova, 461
plots for single samples, 161
plots of ordered factor levels, 291
plots of time series, 167
plotting

introduction to graphics parameters, 847
plotting points in ordered sequence, 153

plotting margins
distance from the edges, 752

plotting nonlinear time series
augPred, 672

plotting regions
layout.show, 861

plotting symbols
all the symbols displayed, 139
colours by number, 139

plus +
line continuation, 2

pmax introduction, 20
parallel maxima of the values in a set of

vectors, 17

INDEX 921

pmin distance from the edges, 753
introduction, 20
parallel minima of the values in a set of

vectors, 17
pnbinom cumulative probabilities (distribution

function) of the negative binomial
distribution, 208

pnorm cumulative probabilities (distribution
function) of the normal distribution, 208

curves plotted, 218
probability calculations from the normal

distribution, 212
point process models

ppm, 768
point processes

introduction, 749
point products

matrix multiplication, 259
points to add new points to a graph, 136

all the plotting symbols displayed, 139
with colour, 348
coloured in a random walk, 815
creating bubbles with cex, 853
of different colours, 137
different colours, 753
different colours on a graph, 650
different points in different colours, 142
identifying individuals, 753
period doubling route to chaos, 813
with split, 581
summary of key points, 181

points and lines
type=“b”, 68

points not lines
type=“p”, 68

points overlapping
sunflowerplot, 180

points within a region
Ripley’s K, 754

pois Poisson distribution, 208
Poisson

random numbers from a Poisson
distribution, 35

Poisson distribution
introduction, 250

Poisson errors
contingency tables, 552
deviance, 516
log for additivity, 327
overdispersion, 522
square root for constancy of variance, 327
standardized residuals, 520
two-thirds power for normality of errors, 327

pollute
dataframe, 311, 685

poly
dataframe, 381

poly polynomial terms, 332
poly2nb

spdep function, 773
polygon add a polygon to a plot, 146

for defining curved objects, 148
shading, 829
to draw fat arrows, 835
using locator to position the corners, 147

polygon lists
spdep function, 773

polylist
spdep function, 773

polynomial approximations to elementary
functions, 403

polynomial contrasts
coefficients, 384
introduction, 381

polynomial functions
shapes plotted, 199

polynomial regression
compared with contr.poly, 383
correlation between powers of x, 383
introduction, 404

polynomial terms
model formulae, 332

polynomials
model formulae, 331

pooled error variance
contrasts, 367
one-way anova, 456

population dynamics
solving ordinary differential equations, 275
survival analysis, 791

pos to locate text in relation to coordinates, 771
of text on a plot, 142

positional matching, 64
positions within character strings

using regexpr, 83
positive loadings

principal components analysis, 734
POSIX

metacharacters, 84
POSIXlt

class for representing calendar dates and
times, 89

power
dataframe, 409
Gamma errors, 790
sample size for a binomial test, 550
sample sizes for estimating presence absence

status, 245
power analysis

introduction, 317
power functions, 195
power law

linear regression, 409
introduction, 197

922 INDEX

power zero, 195
power.anova.test power analysis for a balanced

one-way analysis of variance, 318
power.prop.test power analysis for a test of

two proportions, 318
power.t.test power analysis for a 2-sample t

test, 318
powers

exponential function, 210
model formulae, 331

powers and indices, 195
powers in model formulae, 331
ppinit set up data from the spatial library, 757
ppm point process models, 768
ppois cumulative probabilities (distribution

function) of the Poisson distribution, 208
ppp data setup for spatstat, 764
PQL penalized quasi likelihood, 546, 605
prcomp introduction, 732
predict back-transformation from logits, 580

for detrending a time series, 707
fitted values from a non-linear model, 150
glm with different slopes, 535
instead of augPred, 672
with loess, 612
nonlinear regression, 663
orthogonal polynomials, 385
smooth line for exponential decay, 409
smoothers compared, 152
SSlogistic, 678

predict from the model
predict(model), 350

predict(model) introduction, 400
predict from the model, 350

predict(type=“response”)
glm with binomial errors, 576
incidence functions, 596

prediction
nonlinear regression, 665

prediction with the fitted model
introduction, 400

presence absence
runs test on binary data, 75

pretty
scaling for graph axes, 137

primary covariate
in trellis graphics, 173

principal components analysis
biplot, 733
introduction, 731

principle of parsimony
Occam’s razor, 325

print classification tree, 696
in a loop, 58
tree models, 688

print the results of an evaluation
(), 68

prior weights
standardized residuals, 521

prob is k/�u + k� for the negative binomial
random numbers, 187

probability of success in the negative
binomial, 76

prob= weighted sampling, 33
probabilities

chisq.test with varying probabilities,
307

probabilities in contingency tables
rescale.p=T, 551

probability
independent events, 302

probability calculations from the normal
distribution, 211

probability density
introduction, 164, 209
overlay on a histogram, 162, 214

probability distributions
continuous, 207

probability functions
introduction, 206

probit transformation
percentage data, 570

problems
multiple regression, 448

proc.time for timing R execution, 62
productivity

dataframe, 314
products

point products in matrix multiplication, 259
profile likelihood

nls, 676
projections of models

multcomp, 487
promotion

gender bias, 301
prompt, 9

>, 2
prop.table tables of proportions, 191
prop.test pseudoreplication, 607

two proportions compared, 301
propagules

metapopulation dynamics, 816
proportion data

binomial denominator, 569
binomial errors, 514
cbind, 569
generalized linear mixed models, 590
introduction, 569
lmer, 590
overdispersion, 573

proportion dead
subjectivity, 790

proportion response variable
logistic regression, 324

INDEX 923

proportions
back-transformation from logits, 579
power.prop.test, 318
in tables, 190

prune.tree model simplification with tree
models, 691

pruning
model simplification with tree models, 691

pseudo-random number generation
Mersenne twister, 240

pseudoreplication
in analysis of variance, 469
analyzing the rats data the wrong way, 476
bacteria, 606
binary response variable, 604
with count data, 546
dealing with it using lme, 644
elimination from a dataframe, 121
introduction, 629
mixed effects models, 627
multiple regression, 448
removal of, 474
split-plot experiments, 469
trends in time series, 716

psignrank cumulative probabilities
(distribution function) of the Wilcoxon’s
signed rank statistic, 208

pt cumulative probabilities (distribution
function) of the Student’s t distribution,
208

market garden ozone, 296
pty=“s” set up data from the spatial library, 757

square plotting region, 750, 868
publication

citing R, 1
punif cumulative probabilities (distribution

function) of the uniform distribution, 208
pure error variance

lack of fit, 415
p-value, 279

Fisher’s F test, 53
pweibull cumulative probabilities (distribution

function) of the Weibull distribution, 208
pwilcox cumulative probabilities (distribution

function) of the Wilcoxon rank sum
distribution, 208

Pythagoras
nearest neighbours, 751

Q quadratic contrast in contr.poly, 382
qbeta quantiles of the beta distribution, 208
qbinom quantiles of the binomial, 244

quantiles of the binomial distribution, 208
qcauchy quantiles of the cauchy distribution,

208
qchisq critical value, 305

Pearson’s chi-squared, 258

quantiles of the chi-squared distribution, 208
Type I error, 222

qexp quantiles of the exponential distribution,
208

qf comparing two variances, 289
introduction, 224
quantiles of the Fisher’s F distribution, 208

qgamma, 230
quantiles of the gamma distribution, 208

qgeom quantiles of the geometric distribution,
208

qhyper quantiles of the hypergeometric
distribution, 208

qlnorm quantiles of the log-normal
distribution, 208

qlogis quantiles of the logistic distribution, 208
qnbinom quantiles of the negative binomial

distribution, 208
qnorm curves plotted, 218

quantiles of the normal distribution, 208
qpois quantiles of the Poisson distribution, 208
qq as lattice plots, 175

quantile plots for comparing two
distributions, 175

QQ plot
in regression, 401

qqline non-normality of errors, 341
tests of normality, 281

qqmath as lattice plots, 175
quantile plots against mathematical

distributions, 175
qqnorm mixed effects models, 647, 657

non-normality of errors, 341
random effects, 660
in regression, 401
∼resid, 783
tests of normality, 281

qsignrank quantiles of the Wilcoxon’s signed
rank statistic, 208

qt calculating confidence intervals, 55
critical value of Student’s t, 295
graph of, 227
quantiles of the Student’s t distribution, 208
Type I error, 222

quadrat based pattern analysis, 758
quadrat counts

scale dependence, 750
quadratcount

ppp object, 765
quadratic contrast in contr.poly

Q, 382
quadratic map

population dynamics, 811
quadratic terms

binary response variable, 603
curved relationships, 199
I (upper case i), 332

924 INDEX

quadratic terms (Continued)
in model simplification, 326
multiple regression, 436, 440
in regression, 404

quantile bootstrap, 284
bootstrap for nonlinear regression, 683
bootstrapped confidence interval, 320
bootstrapped slopes, 419
quantiles of the values in a vector, 17
runs test on binary data, 76

quantile-quantile plots
qqnorm and qqline, 281

quantiles of the values in a vector
quantile, 17

quartiles
using summary, 110

quasi errors
overdispersion, 522

quasi-likelihood
introduction, 516

quasibinomial germination data, 578
lmer, 590
Orobanche, 578
overdispersion, 573

quasibinomial errors
overdispersion, 522

quasipoisson analysis of deviance with count
data, 530

compared with negative binomial errors, 556
gender effects on blood cell counts, 557
overdispersion, 522
regression with count data, 528

quiet argument to scan, 103
quine

dataframe, 540
qunif quantiles of the uniform distribution, 208
quotient

integers %/%, 11
qweibull quantiles of the Weibull distribution,

208
qwilcox quantiles of the Wilcoxon rank sum

distribution, 208

R background, vii
core team, viii
editor, 5
help, 2
installation, 1
installation manual, 3
language definition, 3
originators, viii

R extensions, 3
r squared

extracting from a model summary, 362
and model adequacy, 404, 412
SSR/SSY, 394
from the summary.lm table, 395

radians
definition of, 10
to degrees, 197
sin(x), 403

radioactive emissions, 70
ragwortmap2006

dataframe, 763, 776
rainbow palette for barplot, 466

palettes, 855
random

point processes, 749
random effects, 479

analysed with lmer, 648
binary response variable, 605
introduction, 627
lmer with poisson errors, 547
longitudinal data, 475
model formula, 631
slopes in mixed models, 652
split plot experiments, 632
variance components analysis, 638
on variances, 472

random individuals
distance measures, 750

random number generation
Mersenne twister, 240

random numbers
with exact mean and standard deviation, 219

random or fixed effects, 473
random points

distance measures, 750
random settlement

sample, 817
random walk

Cauchy distribution, 233
map from coordinates, 814
non-equilibrium behaviour, 815
simulated time series, 724

randomization
in analysis of covariance, 500

randomness
runs test on binary data, 76

range range (maximum and minimum) of the
values in a vector, 17

to scale the graph axes, 138
range

variogram parameters, 775
range (maximum and minimum) of the values

in a vector
range, 17

rank introduction, 31
negative ranks to reverse sort on factor

levels, 122
rank the elements of a vector, 17

rank test
effect of ties, 298
Wilcoxon rank-sum test, 297

INDEX 925

rank the elements of a vector
rank, 17

rate
gamma distribution, 229

rats
analysed with lmer, 648
dataframe, 475

raw
type, 87

Rayleigh
age-specific hazard models, 794

rbeta example, 232
random numbers from the beta distribution,

208
RBG

red/green/blue components of colour, 855
rbind add rows to an object, 37

adding rows to a dataframe, 131
rbinom random numbers from the binomial

distribution, 208
random samples from a binomial distribution,

246
rcauchy random numbers from the cauchy

distribution, 208
rchisq random numbers from the chi-squared

distribution, 208
RColorBrewer package, 856

BrBG, 856
Greens, 856
Spectral, 856

reaction
dataframe, 667

read each line of a file separately
with readLines, 104

read.csv input comma delimited files, 99
text containing blanks, 143

read.csv2 semicolon field separators in the
input file, 100

read.delim input without header=T argument,
99

read.gwt2nb reading spatial data, 769
read.table, 16

causes of failure, 109
failure from too many variable names, 99
file.choose, 99
Gain, 6
houses, 31
introduction, 98
select a variable to represent row names,

123
set the working directory using setwd, 101
without variable names in top row, 192

reading data from the keyboard using scan, 16
reading spatial data

introduction, 769
readLines compared to scan, 106

read each line of a file separately, 104

real numbers
testing for equality, 77

reciprocal link
generalized linear models, 514

reciprocal transformation, 202
age at death, 231

reciprocals
harmonic mean, 51
negative powers, 196

reciprocals in a model formula
I (upper case i), 332

re-coding continuous variables as
factors, 62

recruitment of patches
metapopulation dynamics, 817

rect add a rectangle to a plot, 146
recursion

simulated time series, 723
reduced lengths of factors

shortened dataframes, 186
redundant parameters

introduction, 366
in model simplification, 326

refuge
dataframe, 291

reg.boot function, 420
regdat

dataframe, 418
regexpr pattern matching in vectors, 83

stripping out text, 87
regexpr compared with grep, 83
regression

anova table, 396
coef(model), 360
continuous explanatory variable, 323
dangers of extrapolation, 412
dataframe, 359, 388, 412
degrees of freedom, 52
effects(model), 360
fitted(model), 360
introduction, 387
jackknife to assess influence, 422
lm(y∼x), 392
mixed effects models, 650
model formulae, 334
resid(model), 360
as a tree model, 689
y∼x, 330

regression and analysis of variance compared,
416

regression design
detecting thresholds, 415
maximizing SSX, 415

regression on a plot
with abline, 136

regression parameters
in matrix notation, 273

926 INDEX

regression tree
tree models, 688

regressions, several
lme, 652
lmList, 651

regular
point processes, 749

regular expressions
pattern matching in vectors, 85

regular spatial pattern
Ripley’s K, 754

relational database
using match, 47
using match with dataframes, 127

relational operators, 15
relative growth rate

introduction, 570
remainder

decompositions of time series, 715
modulo %%, 11

REML
do not change fixed effects in lme, 635
introduction, 639
not used for changes to fixed effects, 653
restricted maximum likelihood, 635

remove duplicate rows in a dataframe, 125
remove missing values

na.rm=T, 14
remove the intercept from a model

-1, 333
removing columns from a dataframe, 189
removing pseudoreplication, 474

proportion data, 608
from the rats data, 476

removing unwanted variables
using rm, 101

removing variables
rm, 8

rep in barplot, 57
creating factor levels, 187
function to generate repeated values, 27
rows in a dataframe, 124

repeat function for loops, 59
repeated measures

mixed effects models, 645
repeats

introduction, 27, 58
repeats in pattern search

{5}, 81
replace=T sample with replacement, 215

sampling with replacement, 33
replacement

sampling with, 32
replication

standard errors of contrasts, 374
replication in regression designs, 415
replications replicates at each factor level, 482

resampling data points
bootstrapped regression, 420

rescale.p=T
chisq.test, 551

resid(model) regression, 360
residuals from the model, 350

residual and fitted value plot
rfs, 175

residual deviance
overdispersion, 573

residual plots
curvature, 340
heteroscedasticity, 340
non-normality, 340
temporal correlation, 340
testing for influence, 344

residual standard error
summary of the statistical model, 362

residual.boot function, 421
residuals

definition, 389
introduction, 520
mixed effects models, 647
model$resid, 711
standardized residuals, 520

residuals from a model summary
model$resid, 363

residuals from the model
resid(model), 350

residuals normally distributed
assumptions of linear regression, 389

resolving names
problems with attach, 18

response matrix for proportion data, 569
response variable

choosing the right test, 323
the y axis of the plot, 136

return values from a function, 59
returning values from a function

introduction, 66
rev(order(y)) put into declining

order, 32
for sorting dataframes, 113

rev(sort(y)) sort into reverse (declining)
order, 22

reverse sort on factor levels
use negative rank, 122

rexp age at death, 231
random numbers from the exponential

distribution, 208
rf random numbers from the Fisher’s F

distribution, 208
rfs as lattice plots, 175

residual and fitted value plot, 175
rgamma random numbers from the gamma

distribution, 208
rgb red green blue function, 855

INDEX 927

rgeom random numbers from the geometric
distribution, 208, 246

RGR
relative growth rate, 570

RGui
menu bar, 5

rhyper, 248
random numbers from the hypergeometric

distribution, 208
Ricker curve

drawing the function, 149
equation, 662

right arrow
for editing, 9

right axis
axis 4, 834

Ripley’s K
introduction, 754
Kfn, 757
from ppp object, 766
spatial library, 5

risk score
Cox’s proportional hazards model, 796

rle run length encoding, 74
rlm in MASS, 432
rlnorm random numbers from the log-normal

distribution, 208
rlogis random numbers from the logistic

distribution, 208
rm function to remove variables, 8

removing unwanted variables, 101
rm(list=ls()) tidying up, 8
rnbinom negative binomial random numbers,

76, 163, 187
random numbers from the negative binomial

distribution, 208, 253
rnorm, 23

with along, 30
confidence interval, 55
curves plotted, 218
exact mean for random numbers, 219
random numbers from the normal

distribution, 208
simulated time series, 722
variance of the random numbers, 53

roaches
dataframe, 804

robreg
dataframe, 430

robust fitting
introduction, 430
rlm, 432

robust regression, 345
root

tree models, 685
root pruning

competition, 370

roots
eigenvalue and eigenvector, 264
fractional powers, 196
geometric mean, 49

rot rotation of axis labels in panel barplot, 838
rotating long axis labels

srt=45, 869
round decimal places for text on a plot, 142

rounding to a specified number of digits, 11
rounding errors

multiple regression, 448
rounding numbers

trunc, 11
row means of a matrix, 36

rowMeans, 18
row names

in a dataframe, 123
row subscripts

the first of two subscripts, 20
row sums of a matrix

rowSums, 18
rowMeans, 36

adding rows and columns to a dataframe,
131

row means of a matrix, 17
row.names using write.table, 76

with read.table, 100
rownames, 37

for a matrix, 35
rowpos

groups=rowpos, 842
rows

[, 4] for all rows of column 4, 21
cases in a dataframe, 107
drop rows from a dataframe, 118
proportions, 191

rows from a dataframe, 112
rowsum groups of row sums, 36
rowSums, 36

row sums of a matrix, 17
rpois, 62

histogram of frequencies, 162
random numbers from a Poisson distribution,

35, 208
run length encoding, 74
table of counts, 124

rsignrank random numbers from the
Wilcoxon’s signed rank statistic, 208

rt homemade function for reading dataframes, 99
random numbers from the Student’s t

distribution, 208
rug location of data on the x axis, 596
rule of thumb

F = 4, 225
n = 8 x variance / squared difference, 622, 667
p< n/3 parameters in a multiple regression, 445
t = 2, 228

928 INDEX

run.and.value function using run length
encoding, 75

Runge-Kutta
solving ordinary differential equations, 275

runif, 26
demonstrating the central limit

theorem, 213
function to generate uniform random

numbers, 11
random numbers from the uniform

distribution, 208
random spatial maps, 750
simulation experiment on age at

failure, 787
testing the random number generator, 241

running R, 1
runs

run length encoding, 74
runs test

function using run length encoding, 75
rweibull random numbers from the Weibull

distribution, 208
rwilcox random numbers from the Wilcoxon

rank sum distribution, 208

S and the development of R, vii
s(x) humped data, 666

non-parametric smoothers in gam, 435
smoothing function in gam, 611

s2 see variance
summary.aov table, 365

sample with apply in matrices, 69
generating a random walk in two dimensions,

814
introduction to shuffling and sampling, 32
random rows from a dataframe, 113
random settlement, 817
randomize by rows or columns, 37
with replacement, 215
runs test on binary data, 76
selecting which interaction terms to include,

446
shuffling residuals, 524

sample size
for a binomial test, 550
Gamma errors, 790
parameter proliferation, 443
power analysis, 317
and standard error, 55

sample sizes for estimating presence absence
status, 245

sample variances
confidence interval, 223

sample(replace=T) bootstrap for nonlinear
regression, 682

bootstrapped confidence interval, 320
bootstrapped Michelson’s light data, 285

sampling rows from a dataframe, 113
sampling with replacement, 32
sampling without replacement

hypergeometric distribution, 248
sans fonts for text, 831
sapdecay

dataframe, 70
sapply with %in%, 84

with array subscripts, 43
augPred, 672
for binary representation, 61
calculating factorials, 59
correlations at lags, 703
distance, 755
introduction, 70
means across variables, 450
negative binomial distribution, 252
with as.numeric, 127
to scan different lines of input,

104
to select columns from a dataframe,

117
with strsplit, 105

sasilwood
dataframe, 425

saturated model
contingency tables, 553
induced defences, 554
introduction, 325
university admissions, 567

saturation
of colours, 855

saving code
Ctrl S, 5

saving data from Excel using tab-delimited text
files, 98

saving data from R to disc, 76
scale columns of a table sum to zero,

191
scale dependence

pattern measure with Ripley’s K, 754
quadrat counts, 750

scale dependent correlations, 314
scale of measurement

additivity, 327
constancy of variance, 327
normal errors, 327

scale parameter
overdispersion, 573
standardized residuals, 521

scale=TRUE
prcomp, 732

scales
different y axes, 867
limits of the current axes from par(“usr”),

847
scales panel barplots, 838

INDEX 929

scan compared to read.table, 103
different numbers of numbers per input line,

104
input from keyboard, 16
introduction, 97
for reading non-standard file types, 102
with sapply, 104

scatter
r squared, 394

scatter1
dataframe, 136

scatter2
dataframe, 136

scatterplot
correlated random numbers, 239
data.ellipse, 425
identifying individual points, 141
introduction, 135
with overlapping points, 180

scatterplot, conditional
xyplot, 836

scatterplot with overlaid line
plot then lines, 71

Scheme
and the development of R, vii

Schoener’s lizards
complex contingency tables, 560
conversion to proportion data, 584
re-analysis with binomial errors, 586

scientific importance versus statistical
significance, 410

scope
introduction, 64

scree plot
prcomp, 733

screen changing default settings, 6
3-dimensional plots, 845

screen prompt, 9
screen(2) screen number two is active, 864
screens

multiple screens on a single device, 862
scripts

for writing code within R, 5
sd exact standard deviation for random

numbers, 219
se.lines function, 413
search text function, 4
search() to see the libraries and dataframes

attached, 7
searching for specified characters, 81
seasonal data

decompositions of time series, 715
time series analysis, 709

sec seconds, 89
second as decimal number (00-61) allowing for

two “leap seconds”
%S, 92

seconds
sec, 89

seed production
competing species, 820

seedlings
dataframe, 797

seedwts
dataframe, 130

segregation
Mendel’s peas, 552

selected values from an array using seq, 23
selecting rows from a dataframe

logical subscripts, 116
selecting values from a line of input

with lapply, 104
self-starting nonlinear functions, 674
sem confirmatory factor analysis, 737
semi-variogram

introduction, 774
semicolon field separators in the input file

read.csv2, 100
sep=, 45

separator in a pasted object, 35
sep=““, 35, 45

separator in input files, 99
sep=“\n“, 104

to count the number of lines of input in a
file, 104

separation
kmeans, 740

seq for drawing smooth functions, 71
introduction, 29
to remove missing values, 14
selected values from a vector, 23
smooth density functions overlain, 216

sequence produces a vector of
sequences, 30

sequence generation
introduction, 29

serial correlation, 279
longitudinal data, 475

serial correlation in residuals
durbin.watson, 424

serial dependence
time series analysis, 701

serif fonts for text, 831
set theory

union, intersect and setdiff, 78
setdiff function from set theory, 78
setequal testing if two sets are equal, 78
setwd set the working directory, 101
sewage

effects on invertebrates, 298
sex ratio

chi-squared contingency tables, 549
proportion data, 569
sample size for a binomial test, 550

930 INDEX

sexratio
dataframe, 574

shade 3-dimensional plots, 845
shade.colors 3-dimensional plots, 845
shading

angle, 829
border, 829
col, 829
density, 828
lty, 829
specify density and angles for shading,

146
shape

gamma distribution, 229
Weibull distribution, 237

shape of the plot region
changing shape with plt, 858

shapiro.test test of normality, 282
Shapiro-Wilk normality tests

shapiro.test, 282
shingle

equal.count, 839
shingles

in conditioning plots, 171
short factor levels

shortened dataframes, 186
shortened dataframes

as.data.frame.table, 187
show.signif.stars control of options, 7
shrinkage

best linear unbiased predictors, 631
lmList compared with lme, 653
nlsList compared with nlme, 671

shuffling
selecting which interaction terms to include,

446
shuffling residuals

bootstrap, 681
bootstrapped regression, 420
bootstrapping, 524

sigma
summation operator, 48

sigmoid functions, 203
sign.test introduction, 300

function, 300
signed rank test with continuity correction, 284
signif scientific notation with signif, 11
significance

close to significance, 328
parametric term or non-parametric smoother,

625
significance of non-linearity

replication in regression designs, 415
significance stars

control of, 6
signrank Wilcoxon’s signed rank statistic,

208

sill
variogram parameters, 775

Silwood students, viii
SilwoodWeather

dataframe, 154, 710
panel histograms, 840

simple tests
introduction, 279

simplest explanation
principle of parsimony, 325

simplicity
Occam’s razor, 325

simplifying models
overview, 327

simulated time series
introduction, 722

simulation experiment
on age at failure, 787

simulation models
introduction, 811

sin, 10
drawing circles, 180
SilwoodWeather, 710

sin(x) polynomial approximation, 403
sine

graph of, 197
single samples

introduction, 279
singularity

piecewise regression, 428
size clumping parameter (k) of the negative

binomial, 76
skew function, 285
skew

gamma distribution, 229
introduction, 285
lognormal distribution, 234
negative binomial distribution, 253
t test for non-normality, 287
Weibull distribution, 237

skew data
hist, 220

skewdata
dataframe, 286, 319

skewness see skew
skip lines in the input file using scan, 102
sleep

dataframe, 141
pause execution with Sys.sleep, 856

slide show
pause between graphics using Sys.sleep, 102
Sys.sleep, 856

slim barplot
type=“h”, 68

slopes
analysis of covariance, 489
extracting from a model summary, 362

INDEX 931

in regression, 387
least-squares derivation, 393
maximum likelihood, 390
normal equations, 272
as random effects, 652
SSXY/SSX, 392
uncertainly of estimated values, 413

smooth curves
introduction, 149
over a histogram, 162

smoothing
technical background, 618

soaysheep
dataframe, 612

sol.sub colour for subtitle of graph, 856
solve solving systems of linear equations,

274
solving ordinary differential equations

odesolve, 276
solving systems of linear equations, 274
sort, 22

in calculating medians, 48
introduction, 31
sort the elements of a vector, 17
in trimming a mean, 24

sort the elements of a vector
sort, 17

sorting dataframes
introduction, 113
some increasing variables and some

decreasing variables, 121
sorting on dates, 126
spacing of individuals, 749
spatial

contents of the library, 4
libraries in the base package, 4
library, 757

spatial autocorrelation
mixed effects models, 627
multiple regression, 448
random effects, 473
variogram, 774

spatial correlation
advantages of paired samples, 299

spatial covariance
corExp, 781
corGauss, 781
corRatio, 781
corSpher, 781
corSymm, 781
in gls models, 781

spatial dynamics
simulation models, 814, 816

spatial models
introduction, 816

spatial pair correlation
from ppp object, 766

spatial pattern
first order estimates, 754
second order estimates: Ripley’s K,

754
spatial pseudoreplication

introduction, 629
spatial scale

variance components analysis, 638
spatial statistics

data objects, 763
distance measures, 750
introduction, 749

spatialdata
dataframe, 778

spatially correlated errors
gls, 778

spatially-explicit models, 816
competitive exclusion, 818

spatstat
installing the library, 5
library, 763

spatstat function crossdist, 767
density.ppp, 767
distmap, 767
exactdt, 767
nndist, 767
nnwhich, 767
pairdist, 767

spdep
installing the library, 5
library, 768

spearman in cor.test, 315
special characters

pattern matching in vectors, 85
species

dataframe, 534
species-area, 425
Spectral palette in RColorBrewer, 856
spectral analysis

time series analysis, 717
spectrum spectral analysis, 717
spending

dataframe, 869
spines

generalized additive models, 612
split divides data in a vector into the

groups defined by the levels of a
factor, 581

separate spatial plots, 764
split criterion

tree models, 697
split.screen multiple screens on a single device,

862
splitcounts

dataframe, 547
split-plot design

y~factor+Error(a/b), 330

932 INDEX

split-plot experiments
introduction, 469
missing values, 472
mixed effects models, 632
multiple error terms, 469

split-plots and hierarchical designs compared,
478

splits
tree models, 685

splityield
dataframe, 173, 470, 632

splom as lattice plots, 175
spores

negative binomial distribution, 254
spreadsheet

as a dataframe, 107
the fix function, 6

spurious significance
pseudoreplication, 630

sqrt square root function, 11
square plotting region

pty=“s”, 868
square root

sqrt, 11
square root for constancy of variance

Poisson errors, 327
srt character rotation, 869
SSA

treatment sum of squares in analysis of
variance, 451

SSasymp asymptotic regression model, 674
introduction, 675

SSasympOff asymptotic regression model with
an offset, 674

SSasympOrig asymptotic regression model
through the origin, 674

SSbiexp biexponential model, 674
SSE

alternative model using sum of absolute
values, 72

in analysis of covariance, 494
error sum of squares in analysis of variance,

451
in matrix notation, 273
minimized, 393
in regression, 394
unexplained variation, 396

SSfol example, 680
first-order compartment model, 674

SSfpl example, 678
four-parameter logistic, 674

SSgompertz Gompertz growth model, 674
S-shaped functions

introduction, 203
negative slopes, 204

sslogistic
dataframe, 676

SSlogistic self-starting logistic, 678
SSmicmen introduction, 674

Michaelis Menten, 674
SSR

in analysis of covariance, 494
explained variation, 396
in matrix notation, 273

SSweibull example, 679
Weibull growth model, 674

SSX
in analysis of covariance, 494
corrected sums of squares, 391
leverage, 354
in matrix notation, 272
in regression standard errors, 398

SSXY
in analysis of covariance, 494
corrected sums of products, 391

SSY
in analysis of covariance, 494
in matrix notation, 273
total sum of squares, 391
total sum of squares in analysis of variance,

451
total variation, 396

stability
simulated time series, 723

stack stacked bars in panel barplot, 838
standard deviation

exact with random numbers, 219
plot.design, 176
quantiles of the standard normal

distribution, 211
standard deviations of columns using scale, 191
standard error

contrasts, 373
kurtosis, 288
skew, 285

standard error of a difference between two
means, 294

contrasts, 367
standard error of a mean

introduction, 54
one-way anova, 462

standard error of a predicted value, 400
standard error of a slope, 398
standard error of an intercept, 398
standard error of the difference between two

means, 460
standard errors

in analysis of covariance, 496
different kinds of bars contrasted, 463
extracting from a model summary, 361
Helmert contrasts, 379
non-linear functions, 150
summary.lm table, 365
tables using tapply, 184

INDEX 933

standard errors of effects
for one-way anova, 460
model.tables, 459

standard normal distribution, 55
introduction, 211

standardized residuals
introduction, 520

stars
control of significance stars, 6

start beginning of a time series, 714
start=list starting values in non-linear

regression, 663
starting values in non-linear regression

start=list, 663
stationarity

time series analysis, 701
time series models, 726
white noise, 722

statistical modelling
aov, 349
gam, 349
glm, 349
introduction, 323
lm, 349
lme, 349
loess, 349
nlme, 349
nls, 349
parsimony, 279
tree, 349

statistical models in matrix notation, 270
statistical significance versus scientific

importance, 410
status censoring indicator, 797
step in analysis of covariance, 499

automated model simplification, 353
binary response variable, 600
complex analysis of covariance, 501
coxph, 808
limited value when there are few data points,

448
lower and upper bounds on model terms

included, 561
multiple regression, 441
Schoener’s lizards re-analysed, 586
simplifying contingency tables, 561
survival data, 806

step function not smooth line
type=“s”, 68

step functions
exponential function, 210
factorial function, 206
waiting time to success in Bernoulli trial,

253
stepAIC quine, 544
stepwise deletion

model simplification, 374

stepwise simplification
multiple regression, 434

stl decompositions of time series, 715
stop testing types, 88
stormer

MASS dataframe, 682
str structure of an object, 768
strata Cox’s proportional hazards model, 800
streams

dataframe, 298
string positions of every matching pattern

gregexpr, 83
string rotation

srt, 869
strip panel labels, 841
strip.custom panel labels, 841
stripchart function to draw strip charts, 169
stripping out a date or time

strptime, 92
stripping patterned text out of complex strings,

86
stripplot as lattice plots, 175
strptime, 93

introduction, 92
to order dates or times, 126

strsplit function for splitting strings, 45
with readLines, 105

structural non-linearity
model mis-specification, 357

structure in data
multivariate statistics, 731

Student’s t
extracting from a model summary, 363

Student’s t distribution
compared with the normal, 228
introduction, 226

Student’s t test
critical value, 294
degrees of freedom, 294
introduction, 294
paired samples, 298
worked example, 295

sub substituting text in character strings (first
occurrence only), 82

subscripted data frames, 103
subscripts

for avoiding using loops, 61
in axis labels using expression, 831
for colouring part of an object, 148
data selection, 316
on dataframes, 111
double square brackets [[]], 73
edges in a simulation model, 819
to extract the minimum from a vector, 71
introduction, 20
using logical conditions, 21
nearest neighbours, 751

934 INDEX

subscripts (Continued)
negative [-1] to drop elements from a vector,

24
using the order function, 31
for pch, 534
pgfull, 732
produced by match, 47
to remove missing values, 14
series of, 22
subset, 350
in three-dimensional arrays, 42
zero length vector, 15

subscripts on vectors
average proportions, 556
time lags, 812

subset binary response variable, 607
compared to robust regression, 430
for influence testing, 348
influence testing, 402
to leave out selected data points, 356
to select columns from a dataframe, 127
use only some of the data, 350

substitute numbers and symbols in text,
832

substitute with deparse axis labels in
functions, 56, 179

substituting text in character strings, 82
substr function for substrings, 45
substring

introduction, 45
stripping out text, 87

subtrees
subscripts, 693

success
binomial response, 570

sulphur.dioxide
dataframe, 443
interpretation, 448

sum, 48
sum of the values in a vector, 17
using logical conditions, 21
variance of a, 238

sum contrasts
analysis of covariance, 507
introduction, 380

sum of squares
likelihood function, 217
regression, 390

sum of the table entries for a given index
margin.table, 564

sum of the values in a vector
sum, 17

summary of the contents of a dataframe, 110
with data=, 19
data summary, 281
Michelson’s light data, 283
ppp object, 764

summarizing the contents of a dataframe, 132
using sweep, 38

summary tables
using tapply, 183

summary(model) statistical modelling, 349
summary.aov in analysis of covariance, 497

compared with summary.lm table, 364
extracting the components, 364
in factorial anova, 480
linear regression, 397
order matters, 507

summary.gam model simplification, 620
summary.lm in analysis of covariance, 497

compared with summary.aov in regression,
399

competition, 371
in factorial anova, 480
linear regression, 399
means rather than differences between means

in, 333
for one-way anova, 459
for piecewise regression, 428

summary.lm and summary.aov compared for
analysis of variance, 479

summary.lm table compared with
summary.aov table, 364

extracting the components, 364
sums of products

by matrix algebra, 268
sums of squares

in hierarchical designs, 477
introduction, 52
by matrix algebra, 267

sunflowerplot introduction, 180
sunspots

dataframe, 167
superscripts

in axis labels using expression, 831
surf.ls function in spatial library, 776
Surv(death,status) cancer, 802

the response in survival analysis, 797
survfit cancer, 802

function in survival analysis, 797
proportion data, 804

survival
libraries in the base package, 4
library, 797

survival analysis
age at death data, 324
introduction, 787

survival function
Weibull distribution, 237

survival of patches
metapopulation dynamics, 817

survivor function
exponential distribution, 792
introduction, 791

INDEX 935

survivors
matrix, 820

survivorship
censoring, 801
Leslie matrix, 265

survivorship curves
introduction, 790

survreg cancer, 802
compared with coxph, 804
function in survival analysis, 797

swap
in computer programming, 61

sweep function for summaries of matrices or
dataframes, 38

subtracting the grand mean, 132
sweepdata

dataframe, 38
switch for alternative paths within a function,

63
switching to R, vii
symbol fonts for text, 831
symbols

all the plotting symbols displayed, 139
symbols expression in text, 833
Sys.sleep in palette slideshow, 856

pause for a specified number of seconds,
102

Sys.time introduction, 89
system.time for timing R execution, 63

t Student’s t distribution, 208
t the function to transpose a matrix, 34

transpose a matrix, 268, 347
using sweep, 39

t test
least significant difference, 464
power.t.test, 318
of skew, 286

t.test ipomopsis, 492
market garden ozone, 296
wing lengths, 316

t.test.data
dataframe, 295

t.test(paired=T) effects on invertebrates, 299
tab character

\t, 101
tab delimited text files

suffix *.txt, 98
table applied to a dataframe, 189

checking for attributes using is.table, 41
counting parts of strings, 46
counts from a Poisson distribution, 251
expand into a dataframe, 124
frequency distribution data, 536
function for counting, 17
generate two-dimensional tables of

counts, 187

murder by regions, 100
with negative binomial data, 76
quadrat based counts, 759, 760
using the cut function, 241

table to dataframe
as.data.frame.table, 559

tabledata
dataframe, 188

tables
chisq.test, 307
chi-squared contingency tables, 549
for data summary, 183
2-dimensional using tapply, 184
of means using tapply, 18
producing flat tables with ftable, 185
of proportions, 190

tables of counts, 187
tables of ordered factor levels, 185
tables of proportions

prop.table, 191
tables to dataframes

introduction, 188
tags

exact matching, 64
tails

Cauchy distribution, 233
fatter tails of the t distribution, 228

tan function for tangent in radians, 11
tangent

graph of, 197
tannin

dataframe, 267
regression, 388

tapply in barplot, 57
for barplot, 463
with difftime objects, 94
function for calculating means, 18
groups of row sums, 36
introduction, 183
with list to specify the margins over

which means are to be
computed, 18

with missing values, 186
multidimensional tables using list, 184
summing the ranks, 297
using with, 19

taxon
dataframe, 740

taxonomic keys
tree models, 693

taxonomy
dataframe, 695
kmeans, 740

Taylor’s Power Law
log variance and log mean, 198
quasi-likelihood, 517

tck tick mark locations and labels, 870

936 INDEX

tcl tick mark locations and labels, 870
te tensor product smooths, 612
temp

dataframe, 709
temporal autocorrelation

mixed effects models, 627, 645
multiple regression, 448
random effects, 473

temporal correlation
residual plots, 340

temporal dynamics
simulation models, 814

temporal pseudoreplication
introduction, 629
mixed effects models, 641
nonlinear time series models, 671
trends in time series, 716

tensor product smooths
te, 611

terrain.colors palettes, 855
test=“F”

quasibinomial, 579
testing

and coercion, 87
testing whether an object is a character string

is.character, 87
testing whether an object is a complex number

is.complex, 87
testing whether an object is a dataframe

is.data.frame, 87
testing whether an object is a double precision

number
is.double, 87

testing whether an object is a factor
is.factor, 87

testing whether an object is a list
is.list, 87

testing whether an object is a logical variable
is.logical, 87

testing whether an object is a matrix
is.matrix, 87

testing whether an object is a raw number
is.raw, 87

testing whether an object is a time series
is.ts, 87

testing whether an object is a vector
is.vector, 87

testing whether an object is an array
is.array, 87

testing whether an object is numeric
is.numeric, 87

tests
choosing the right test,

323
classical tests, 279

tests for normality
plots, 281

text adding text to a plot, 142
changing the font, 831
formula, 833
introduction, 143
labels in the plot region, 153
in a map, 819
pos to locate text in relation to coordinates,

771
substitute, 832
tree models, 686

text allowed outside the plotting region
xpd=T, 870

text editor
in R, 5

text in the margins of a plot
mtext, 867

text justification
adj, 851

text on plots
expression(sunstitute), 831

theta azimuthal direction, 845
thin plate splines

generalized additive models, 612
technical background, 618

third moment
skew, 285

third variable
to label a scatterplot, 141

three-dimensional plots
introduction, 842

three-factor
contingency tables, 558

three-parameter logistic, 203
thresholds

exploratory plots using gam,
603

detection using tree models, 613
tree models, 686, 690

throwing a die
random number generation, 240

tick mark numbers
las, 864

tick mark locations and labels
axis, 852

tick mark locations and labels, 870
tidying up

rm, 8
ties

effect on rank tests, 298
with the rank function, 31

tilde
∼ in model formulae, 329

timber
dataframe, 336, 518

timber shape
bootstrapping, 526
offsets, 519

INDEX 937

time
extracting from Sys.time, 89

time lags
subscripts on vectors, 812

time, locale-specific
%X, 92

time series
mixed effects models, 645
type, 87

time series analysis
built-in functions, 714
decompositions, 715
introduction, 701
spectral analysis, 717
trigonometric model for cycles, 710

time series models
arima, 726
background, 726
stationarity, 726

time series plots, 167
time-to-failure data

introduction, 787
time zone as a character string (output only)

%Z, 92
times

calculation with, 90
introduction, 89

times option in rep, 28
time-series generation

subscripts on vectors, 812
times in dataframes, 94
timing R execution

using proc.time, 62
tmd as lattice plots, 175

Tukey mean-difference plot, 175
tolower convert to lower case, 47
top axis

axis 3, 834
total sum of squares in analysis of variance

SSY, 451
touching graphs

mar=1, 859
toupper convert to upper case, 46
training set

model simplification with tree models, 691
transform the y axis

log=“y”, 169
transformation

to create linear models, 335
linear regression, 409
log(y)~sqrt(x), 330
logits to proportions, 579
logs of both axes, 198
model formulae, 331
reciprocal, 203
summary, 205
timber data, 336

transformation of the response variable
multiple regression, 440

transient dynamics
simulation models, 811

transpose
in statistical modelling, 268

transpose a matrix
the t function, 34

transpose an array by permuting its dimensions
aperm, 565

treatment contrasts
analysis of covariance, 506
analysis of variance, 366
introduction, 377
significance testing, 371
two-way anova, 468

treatment sum of squares in analysis of variance
SSA, 451

treatment totals
one-way anova, 452

tree installing the library, 5
library, 444, 613
library function, 435
pollution example, 444
summary of the statistical model, 349
tree models for writing taxonomic keys,

694
tree model

compared with clustering, 744
detecting thresholds, 613
first steps in multiple regression, 435
interpretation, 689
interpreting the output, 444
introduction, 685
plot, 688
pollute, 685
print, 688
as a regression, 689
subtrees, 693
sulphur.dioxide, 444
taxonomic keys, 693
testing for existence of humped relationships,

698
text, 688

trees
dataframe, 760
induced defences, 554

trellis graphics
introduction, 173

trellis plots
background, 836
groupedData, 642

trellis.device, 836
trellis.par.set white background, 176
trend

decompositions of time series, 715
test with a linear model, 706

938 INDEX

trend (Continued)
tests in time series, 715
time series analysis, 701

trigonometric functions, 10
introduction, 197

trim trimmed mean, 185
trim.mean function, 24
triple dot …

introduction, 65
TRUE

coercion to numeric 1, 21
combinations of T and F, 26

truehist MASS, 165
trunc round to the nearest integer, 11
try run an expression that might fail and allow

the user’s code to handle error-recovery,
102

ts create a time series object, 701
time series object, 714

ts.plot plots of time series, 167
t-test

introduction, 294
TukeyHSD Tukey’s Honest Significant

Differences, 160, 483
Tukey’s Honest Significant Difference

multiple comparisons, 160, 483
Tukey mean-difference plot

tmd, 175
two graphs in one row

par(mfrow=c(1,2)), 68, 157, 165
two graphs with same x axis, 859
two proportions compared

prop.test, 301
two sample tests

introduction, 289
two-by-two-by-two

contingency tables, 558
two-by-two contingency tables

matrix form, 551
two-class table

chi-squared contingency tables, 549
two-dimensional tables

using tapply, 184
two-sample Kolmogorov-Smirnov test

ks.test, 317
twosample

dataframe, 310
twoseries

dataframe, 718
two-tailed test

one-way anova, 461
two-thirds power for normality of errors

Poisson errors, 327
two-way anova

introduction, 467
type

testing and coercion, 87

Type I error, 221
contingency tables, 305
multiple comparisons, 482
power analysis, 317

Type I survivorship curves, 791
Type II error

contingency tables, 305
type=“b” points and lines, 68
type=“h” slim barplot, 68
type=“l” bell-shaped curves, 210

drawing mathematical functions, 144
lines not points, 67
polynomial approximations to elementary

functions, 404
polynomial functions, 200
using sapply, 71
SilwoodWeather, 710
S-shaped functions, 204
summary of key points, 181
with trig functions, 197

type=“n” axes only, no points or lines, 68
blank axes for a map, 815
non-linear functions, 149
no points to be plotted, 819
plot the axes only, 137

type=“p” points not lines, 68
type=“response” back-transform the

predictions from glm, 535
back-transformation from logits, 580
glm with binomial errors, 576
survival data, 804

type=“s” binomial coefficients, 207
factorial function, 206
step function not smooth line, 68
waiting time to success in Bernoulli trial,

253
types of lines on plots using lty, 167
types of statistical models

introduction, 325

UBRE unbiased risk estimator, 617
UCBAdmissions

dataframe, 565
UKLungDeaths

dataframe, 167
unbiased risk estimator, 617
unbiased, variance-minimizing estimators

maximum likelihood, 324
unbound symbols, 64
unclass date, 90

function for table data, 77
returns a copy of its argument with its class

attribute removed, 90
Sys.time, 89

underscore symbol, 30
unequal probabilities

contingency tables, 551

INDEX 939

unif uniform distribution, 208
uniform distribution

central limit theorem, 213
introduction, 240

uniform errors
demonstration plot, 342

uninformative factor levels, 479
random effects, 473, 627

uninstalling R, 1
union function from set theory, 78
unique remove duplicate rows in a dataframe,

125
to remove pseudoreplication, 121

uniqueness
factor analysis, 735

unit matrix
I, 264

university admissions
log-linear models, 567

unlist date, 90
lapply object, 83
with lapply, 104
with locator, 147
to prevent separate means for each column,

132
simplifies a list to produce a vector

containing all its atomic components, 90
unreliability estimates

linear regression, 397
up arrow

for editing, 9
update adding a term to a model, 447

complex contingency tables, 559
in model simplification, 327
introduction, 333
log-linear models, 554
multiple regression, 438
proportion data, 578

update the model
update(model), 350

upper constraint on step, 561
upper case

convert to upper case using toupper, 46
using gsub, 82

upstream
effects on invertebrates, 298

urns and balls
hypergeometric distribution, 247

u-shaped functions beta distribution, 232
biexponential, 205

u-shaped residuals, 425
usr current coordinates for the plotting surface,

835
limits of the current axes from par(“usr”),

847
rotating long axis labels, 870

value
of colours, 855

var built-in function for variance, 52
market garden ozone, 290
variance of the values in a

vector, 17
var(x,y) covariance, 311
var.test Fisher’s F test, 53

market garden ozone, 290, 293
wing lengths, 317

variability
graphs to show, 50

variable names
case sensitivity, 30
in different dataframes, 352
failure of read.table, 99
good practice, 101

variable numbers of arguments, 65
variables

columns in a dataframe, 107
objects() to list the current variables, 7

variables and parameters
in regression, 387

variables with the same name
problems with attach, 18

variance
binomial npq, 243
comparing two variances, 289
confidence interval for sample estimates,

223
and covariance, 239
definition from expectations, 242
of a difference, 239, 294
exact with random numbers, 219
function, 52
gamma distribution, 229
geometric distribution, 246
introduction, 51
likelihood function, 218
lognormal distribution, 234
as a measure of unreliability, 54
plot.design, 176
Poisson distribution, 250
square of the mean, 789
of a sum, 238
summary.aov table, 365
Weibull distribution, 237

variance components analysis
analysed with lmer, 650
hierarchical sampling, 638
introduction, 475
model simplification, 640

variance covariance matrix
diagonal, 261
vcov(model), 360

variance function
standardized residuals, 521

940 INDEX

variance mean ratio
is 1 for the Poisson distribution, 250
aggregation, 538
binomial, 243
Gamma errors, 789
negative binomial distribution,

252, 255
quadrat based counts, 761

variance mean relationship
plot for the binomial distribution, 571
quasi-likelihood, 516
Taylor’s Power Law, 198

variance of a difference
correlation, 312
paired samples, 298

variance of the values in a vector
var, 17

variance ratio test
function, 53

variance-stabilizing transformations, 205
variances

in principal components analysis, 732
Variogram function in the nlme library,

776
in gls models, 781
ragwort data, 777

variogram
introduction, 774

variogram function in the spatial library,
776

ragwort data, 776
VCA

variance components analysis, 475
vcov(model) variance covariance matrix,

360
vector

by concatenation, 15
creating a vector, 15
from a list using unlist, 90
length, 16
type, 87

vector functions, 17
for avoiding using loops, 61

vector of sequences
sequence, 30

vectors
generation with repeated values, 28
trimming using negative subscripts, 24

vertical lines drawn
abline(“v”=), 819

vertical tab
\v, 101

vertical=T option in stripchart, 169
viewing angle for perspective plots, 845
vis.gam 3-D plots using gam, 625
viscosity data

nls, 682

volcano 3-dimensional plots, 845
volume

timber data, 336
von Neuman, J.

random number generation, 240
voting

proportion data, 569

waiting time to first success in Bernoulli trial,
246

waiting time to success in Bernoulli
trial

negative binomial distribution, 253
warming

trends in time series, 716
wday day of the week, 89
weakest link analysis

Weibull distribution, 236
weather data

patterns, 713
week of the year (00-53) using the first Monday

as day 1 of week 1
%W, 92

week of the year (00-53) using the first Sunday
as day 1 of week 1

%U, 92
weekday as decimal number (0-6, Sunday

is 0)
%w, 92

weekday name, abbreviated
%a, 92

weekday name in full
%A, 92

Weibull
age-specific hazard models, 794
equation, 662
error distribution in survival models,

796
weibull Weibull distribution, 208
Weibull distribution

introduction, 236
Weibull errors

cancer, 802
survreg, 804

Weibull growth model
self-starting nonlinear functions, 674

weibull.growth
dataframe, 679

weight list objects
spdep function, 772

weighted sampling
with sample, 33

weights give different weights to different data,
350

introduction, 351
to leave out selected data points, 356
model selection, 339

INDEX 941

Welch two sample t-test
effects on invertebrates, 299
market garden ozone, 296

what to define the variables read from a file by
scan, 103

which data identification, 291
drop rows from a dataframe, 118
finding age at death, 788
finding outliers, 166
identifying individuals, 753
influence testing function, 348
introduction, 23
letters, 44
nearest neighbours, 751
to remove missing values, 14
run length encoding, 75
versus %in%, 84

while for calculating Fibonacci series, 61
function for loops, 59
for translating numbers into binary, 60

white background in trellis plots
trellis.par.set(col.whitebg()), 176

white noise
simulated time series, 722
time series analysis, 701

why switch to R, vii
widths of lines see lwd
wilcox Wilcoxon rank sum distribution,

208
wilcox.test market garden ozone, 297

Michelson’s light data, 283
Wilcoxon rank-sum statistic, 258

market garden ozone, 297
Wilcoxon signed rank test with continuity

correction
Michelson’s light data, 284

wings
dataframe, 316

wireframe complex 3-D plots, 845
as lattice plots, 175

with as an alternative to attach, 18
defining the function for odesolve, 276
instead of attach, 101
OrchardSprays, 169
in plotting and modelling, 19

within group errors
mixed effects models, 628

word count
using table with strsplit, 46

worked examples
the example function, 3

working directory
check using getwd, 101
using setwd, 101

worldfloras
dataframe, 79

worms

dataframe, 109
wrap-around margins

host-parasite interaction, 823
simulating a two-dimensional random walk,

815
spatially-explicit models, 818

write to save a vector of numbers to file from
R, 76

write.table to save a table of numbers to file
from R, 76

writing functions
introduction, 47

wrong analysis
aphids and caterpillars, 555
bacteria, 607
rats, 476
split-plot experiment, 469

x axis
axis 1, 834
two graphs with same x axis, 859

x coordinates in barplot, 386, 870
xaxs intervals for tick marks, 871
xaxt no axis when xaxt=“n”, 872
xaxt=“n” no x axis to be drawn, 819

suppress tic marks and labels on the x axis,
146

xlab in boxplot, 159
deparse(substitute), 698
specify a label for the x axis,

136
xlab=““ no axis labels for a map, 815

no label on the x axis, 819
xlim limits of the current axes from

par(“usr”), 847
summary of key points, 181
user-specified scale for the x axis, 138

xor exclusive or, 27
xpd=T allow text outside the plotting region,

870
xy.error.bars function, 57
xyplot conditional scatterplot, 836

lines and no points, 842
panel plot, 174
scale dependent correlations, 315

y axis
axis 2, 834
same x axis different y axes, 859

y~1 competition, 376
null model, 330, 333

y~a/b/c nested analysis, 330
y~age*sex analysis of covariance, 330
y~factor anova, 330
y~factor+Error(a/b) split plot

design, 330

942 INDEX

y~factor-1 anova with no
intercept, 330

y~N*P*K factorial anova, 330
y~x regression, 330
y~x+w+z multiple regression, 330
Yates’ continuity correction

chi-squared contingency tables, 305
yaxs intervals for tick marks, 872
yaxt no axis when yaxt=“n”, 872
yaxt=“n” no y axis to be drawn, 819

suppress tic marks and labels on the y axis,
146

yday day of the year, 89
year

year, 89
year with century

%Y, 92
yields

dataframe, 449
ylab in boxplot, 159

label for the y axis, 55
specify a label for the y axis, 136

ylab=““ no axis labels for a map, 815

no label on the y axis, 819
ylim control of y axis scaling, 55

on a histogram, 213
limits of the current axes from par(“usr”),

847
summary of key points, 181
user-specified scale for the y axis, 138

Yule-Walker equation
partial autocorrelation, 704

z quantiles of the standard normal distribution,
211

zero
a common value of the response, 527

zero divide
infinity in R, 13

zero length vector, 15
zero powers, 195
zero sum

using scale so columns sum to zero, 191
zero term

negative binomial distribution, 251
Poisson distribution, 250

