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Chapter 1

Introduction

We provide a modern look at introductory biostatistical concepts and associated
computational tools, reflecting the latest developments in computation and vi-
sualization using the R language environment (R Core Team 2016). The idea is
to offer a complete, online, live book that evolves with the newest developments
and is continuously enriched by additional concepts, better examples, and up-
dated R tools. A version of the book will be offered as a hard copy, but, at
the core, this is an online book that is reproducible and continuously updated.
We provide a one-stop platform that combines theoretical, methodological, and
sampling concepts, while simultaneously teaching R and data analysis in real-
istic scenarios. There are many books that accomplish one or more of these
objectives, but we want to cover all of them simultaneously. It is the way we
would have liked to learn biostatistics and data science.

Biostatistics is easy to teach poorly. Too often, books focus on methodology
with no emphasis on programming and practical implementation. In contrast,
books focused on R programming and visualization rarely discuss foundational
topics that provide the infrastructure needed by data analysts to make decisions,
evaluate analytic tools, and get ready for new and unforeseen challenges. Thus,
we are bridging this divide that had no reason to exist in the first place. The
book is unapologetic about its focus on biostatistics, that is statistics with
biological, public health, and medical applications, though we think that it
could be used successfully for large statistical and data science courses.

The book introduces the biostatistical methods necessary for a master’s level bio-
statistician or data analyst. However, it should be accessible to undergraduate
students who have a background in calculus and linear algebra and are pas-
sionate about data analysis. It covers a wide range of topics combined with R
programming and uses a reproducible format that interweaves methodological
concepts, data, software, and results. Modern teaching of biostatistical con-
cepts is much easier using the associated R tools. Indeed, without R it would be

7



8 CHAPTER 1. INTRODUCTION

difficult to truly understand crucial concepts such as Monte Carlo simulations,
bootstrap, permutation testing, coverage probability, central limit theorem, and
probability density functions. The basics of R programming and syntax can be
learned by reading and understanding this book, but additional effort will be
necessary to master R programming.

We have used data from multiple public sources, but we are especially thankful
for the Sleep Heart Health Study (SHHS) (Dean et al. 2016; Quan et al. 1997;
Redline et al. 1998) and the Kirby21 (Landman et al. 2011) datasets, which
are used extensively throughout the book. In particular, we would like to thank
the leaders and researchers of SHHS for conducting this “multi-center cohort
study implemented by the National Heart Lung & Blood Institute NHLBI) to
determine the cardiovascular and other consequences of sleep-disordered breath-
ing.” We would also like to thank the National Sleep Research Resource (NSSR)
and the many researchers who have worked on organizing and publishing ex-
ceptional, publicly available resources for sleep research. The data used in this
book are publicly available and are used under a data user agreement specific for
this book. And we thank Naresh Punjabi, friend and mentor, who introduced
us to the wonderful world of sleep research, and Bennett Landman, who col-
lected, described, and made publicly available the Kirby21 dataset. According
to the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC),
the Kirby21 dataset contains “scan-rescan imaging sessions on 21 healthy volun-
teers (no history of neurological disease). Imaging modalities include MPRAGE,
FLAIR, DTI, resting state fMRI, B0 and B1 field maps, ASL, VASO, quantita-
tive T1 mapping, quantitative T2 mapping, and magnetization transfer imaging.
All data have been converted to NIFTI format.” For the purposes of this book
we use a small subsample of these data. We would like to thank the many par-
ticipants in these studies who donated their time and data for the advancement
of knowledge and science.

The book is the result of a long term collaboration between the three authors
and reflects their combined research and teaching philosophies.

Ciprian Crainiceanu, PhD, received his doctorate in statistics from Cornell Uni-
versity in 2003 and is a professor of biostatistics at Johns Hopkins University.
He has taught the master’s level Methods in Biostatistics course, using and
expanding on materials borrowed from Dr. Caffo, who, in turn, distilled materi-
als developed over many years by other Johns Hopkins University Biostatistics
faculty. Dr. Crainiceanu is a generalist, who works in many different scien-
tific areas. He has specialized in wearable and implantable technology (WIT)
with application to health studies and neuroimaging, especially in structural
magnetic resonance imaging (MRI) and computed tomography (CT) with ap-
plication to clinical studies. Drs. Crainiceanu and Caffo are the co-founders
and co-directors of the Statistical Methods and Applications for Research in
Technology (SMART) research group.

Brian Caffo, PhD, received his doctorate in statistics from the University of
Florida in 2001 before joining the faculty at the Johns Hopkins Department

https://jhuccs1.us/shhs/
https://www.nhlbi.nih.gov/
https://sleepdata.org/
https://www.nitrc.org/projects/multimodal
http://www.smart-stats.org/


1.1. BIOSTATISTICS 9

of Biostatistics, where he became a full professor in 2013. He has pursued
research in statistical computing, generalized linear mixed models, neuroimag-
ing, functional magnetic resonance imaging, image processing, and the analysis
of big data. He created and led a team that won the ADHD-200 prediction
competition and placed twelfth in the large Heritage Health prediction competi-
tion. He was the recipient of the Presidential Early Career Award for Scientists
and Engineers (PECASE), the highest award given by the US government for
early career researchers in Science, Technology, Engineering, and Mathematics
(STEM) fields. He also co-created and co-directs the Data Science Specializa-
tion, a popular massive open online course (MOOC) degree on data analysis
and computing, with over three million enrollments.

John Muschelli, PhD, received his doctorate in biostatistics from the Johns Hop-
kins Bloomberg School of Public Health in 2016 before joining the faculty there
in the same year. He received his master’s degree under Dr. Caffo and his PhD
under Dr. Crainiceanu. He has pursued research in statistical computing, neu-
roimaging, computed tomography in patients with hemorrhagic stroke, image
processing, and interactive graphics. He is a founder of the Neuroconductor
project (https://neuroconductor.org/), which aims at centralizing the biomedi-
cal imaging tools for R. He has created a number of R packages on topics ranging
from biomedical imaging to interfacing with APIs for bibliometric analysis. He
has also created short courses in neuroimaging in R and is passionate about
introducing users to R.

1.1 Biostatistics

We begin with the difficult task of defining the subject that we are attempt-
ing to teach. We start with the definition that our department (Biostatistics
at Johns Hopkins) agreed upon in its 2007 self-study. “Biostatistics is the
theory and methodology for the acquisition and use of quantitative
evidence in biomedical research. Biostatisticians develop innovative
designs and analytic methods targeted at increasing available infor-
mation, improving the relevance and validity of statistical analyses,
making best use of available information and communicating relevant
uncertainties.”

This definition will serve our needs well enough, though additional insights are
necessary, since much has happened in the world of data since 2007. In short
order, a data revolution is happening and biostatistics is a key part of it. If one
wants to take part in this revolution in biological sciences, public health and
medicine, some degree of mastery of biostatistics is key. However, biostatistics
is a challenging subject to master if one is interested in understanding both the
underlying concepts and their appropriate implementation. In this book we try
to achieve these complementary goals.

https://neuroconductor.org/
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As the pace of the data revolution accelerates, it is worth asking whether devot-
ing the amount of space herein to the fundamentals of biostatistics is worthwhile.
It is our opinion that while learning how to push the biostatistical buttons to
conduct a routine analysis is perhaps straightforward, understanding why to
apply a specific technique or what and when to change is often difficult and
requires more insight. Moreover, jobs that require only a cursory understanding
of statistics and routine statistical analyses are the most likely to disappear and
be automated out of existence. Critical thinking, creativity, and understanding
the specifics of scientific problems demand more effort, a higher level of thinking,
and a broader understanding of science. Thus, we believe that jobs requiring
these skills will not be automated anytime soon. The principles of data analysis
are crucial to solving existent and future analytic problems. Indeed, preparing
the student for what may happen in data analysis 10 years from now is daunting,
but learning the basic principles is a step in the right direction, as principles are
changing slower than emerging data challenges. Biostatistics can be viewed as a
powerful and practical philosophy of science, in which the scientific hypothesis,
the experiment, the data, the model, and the associated inference form the basis
of scientific progress. In the end, biostatistics is hard because it is focused on
solving difficult problems using simple approaches and simplicity is difficult to
achieve in complex scenarios.

The class that inspired this book is often taken by students with very different
backgrounds and skill levels. Calculus, linear algebra, and a moderate level of
mathematical literacy are prerequisites for it. However, even if a student has the
prerequisites does not mean they need to take it or that they will perform well.
Indeed, by far the hardest problem for students taking this class has been to
adapt to the different way of thinking required by working with data. Students
with strong engineering or mathematical backgrounds are often puzzled by the
fact that mathematical mastery is not enough to become an expert in the easier,
softer, “dirtier” concepts of biostatistics. Students with strong scientific back-
grounds can also become frustrated by the slower pace of introduction of useful
concepts, mathematical intricacies, and modeling abstractions. Biostatistics is
not hard in the usual sense that it requires either deep mathematical concepts
or committing large books to memory. In fact, the required mathematical level
is reasonable and students are seldom required to memorize concepts. Thus, the
associated biostatistics exams at Johns Hopkins are open everything, including
book, laptop, and internet. The difficulty of biostatistics rests in the different
philosophy, the different way of thinking, and the different set of skills required
to process human communication of scientific problems and their translation
into well-defined problems that can be solved with data. Once a scientific prob-
lem is defined, the biostatistics philosophy is to try to solve it using the simplest
possible approaches that are not too simplistic. Thus, parsimony and inductive
reasoning are fundamental concepts in biostatistics.

In the logical discourse of knowledge biostatistics has a very well-defined place.
Indeed, biostatistics starts with the current accepted state of knowledge (the
collection of null hypotheses) and uses data to inductively refute or reinforce

tandu
Highlight
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1.1. BIOSTATISTICS 11

parts of the knowledge or generate new potential knowledge (new null hypothe-
ses). In the biostatistical philosophy there is no truth, just the state of current
knowledge. In contrast, mathematics starts with a set of axioms (the truth)
and develops knowledge deductively based on logic. These differences lead to
vastly different philosophies, especially when one is interested in solving specific
scientific problems. With the large increase in data availability and complexity,
the importance of biostatistical philosophy and practice will continue to increase
and deeply influence our society and knowledge.

A key goal of this text is to teach the different way of thinking present in
biostatistical applications. This methodology has many similarities to that of
other empirical sciences, such as social sciences and economics. However, a
distinguishing feature of biostatistics is that the elements of biological sciences,
public health, and medical science are key components of the problem. Given
this wide range of scientific applications, of particular importance in our study
will be translating scientific ideas into formal inductive inferential problems cast
in the language of statistics. We emphasize the value of simple methods that do
not cross the line into being simplistic. This process of balancing performance,
parsimony, and interpretability, has elements of art and science.

Probably the most important role of a biostatistician is to bring scientists to-
gether, help bridge the scientific language barriers, and create productive and
truly interdisciplinary research teams. Inter- or trans-disciplinary research is a
hot topic that is extremely easy to talk about and hard to implement. Many
universities have or are launching interdisciplinary programs that often do not
work or under-perform without apparent explanation. The actual reason is that
interdisciplinary research requires a lot of effort and risk taking that remains
under-rewarded in Academia. Moreover, it requires the honest intent of partic-
ipants to be part of a team of equals, the will to listen and learn a different
scientific language and approach, and a continuous application of collaborative
principles dedicated to defining and solving scientific problems.

Biostatistics is used extensively in studies that impact the lives of billions of
people. Below we present a few examples indicating the importance of careful
biostatistical thinking.

1.1.1 Example 1: Cancer screening

The Canadian National Breast Cancer Screening studies (Miller et al. 2002,
2000, 2014) were large landmark clinical trials studying the impact of mam-
mography. The first publication based on this large randomized screening trial
found no benefit of early tumor detection via digital mammography for women
aged 40-49, contradicting standard radiological practice at the time. Many dis-
cussion articles have criticized the study on statistical grounds. For example,
Burhenne and Burhenne (1993) focused on statistical power and the ability to
generalize from the sample. One can see from this study the important role that
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statistics and empiricism plays; standard health practice for a large proportion
of women depends on the findings.

1.1.2 Example 2: Harvard first-borns

From 75 to 80 percent of students at Harvard are first-borns. Do first-born
children work harder academically, and so end up over-represented at top uni-
versities? Yes, claims noted philosopher Michael Sandel (Sandel 2010). But
Millner and Calel (2012) find a simple fault in the statistical reasoning and give
a more plausible explanation: wealthy and well-educated parents tend to have
fewer children.

1.1.3 Example 3: Oscar winners

Redelmeier and Singh (2001) identified all actors and actresses ever nominated
for an Academy Award in a leading or a supporting role up to the time of the
study (n = 762). Among them were 235 Oscar winners. For each nominee,
another cast member of the same sex who was in the same film and was born
in the same era was identified (n = 887) and these were used as controls. The
overall difference in life expectancy was 3.9 years (79.7 years for award winners
vs. 75.8 years for controls; p-value = .003). To avoid the possible selection bias,
an analysis using time-dependent covariates (winners counted as controls until
they won the Oscar) did not find significant differences (Sylvestre, Huszti, and
Hanley 2006). This is called selection or immortal bias.

1.1.4 Example 4: Hormone Replacement Therapy (HRT)

A large clinical trial (the Women’s Health Initiative) published results in 2002
(Rossouw et al. 2002) that contradicted prior evidence on the efficacy of hor-
mone replacement therapy (HRT) for post-menopausal women and suggested
a negative impact of HRT for several key health outcomes. Based on a statis-
tically based protocol, the study was stopped early due to an excess number of
negative events.

1.1.5 Example 5: ExtraCorporeal Membrane Oxygena-
tion (ECMO) treatment

Bartlett et al. (1985) published results of a clinical trial conducted at a major
neonatal intensive care center. The trial compared standard treatment with a
promising new extracorporeal membrane oxygenation treatment (ECMO) for
newborn infants with severe respiratory failure. Ethical considerations led to a
statistical randomization scheme whereby only one infant received the control
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therapy, thereby opening the study to sample-size based criticisms; see Rosen-
berger and Lachin (2015).

1.1.6 Summary

Biostatistics plays a central role in biological sciences, public health, and medical
applications and provides a platform for correct design, analysis, and interpre-
tation of data. Biostatistics requires: (1) a tight coupling of the biostatistical
methods with ethical and scientific goals of research; (2) an emphasis on the
scientific interpretation of statistical evidence to impact policy; and (3) a de-
tailed acknowledgment of assumptions and a comprehensive evaluation of the
robustness of conclusions to these assumptions.

1.2 Mathematical prerequisites

Calculus, linear algebra, and a moderate level of mathematical literacy are
needed to understand this book. In short, you should be able to solve the
following integral ∫ ∞

0
x2 exp(−ax)dx

in 3 minutes and be able to explain how you did it. You should not have any
questions about “what’s the wiggly sign?” and “what’s the funny 8?” and it
should be 100% clear why the integral is finite only when a > 0. Also, you
should be able to explain why

log(3/10a) = log(3) − a log(10)

1.3 R

For this book we will use the statistical software R (@R, https://cran.r-project.
org/) because it is free, flexible, and up-to-date due to the many packages con-
tributed by the community. R contains a variety of packages including paramet-
ric and nonparametric tests, survival analysis, regression, and machine learn-
ing (random forests, support vector machines, neuronal networks, clustering).
Understanding biostatistics at a deeper level is hard because it requires under-
standing a combination of difficult new concepts. For example, it is hard to
understand what a random variable, a probability density function, or weak
convergence is without hands-on experience with a dedicated analytic software,
such as R. Here we will emphasize the close connection between theoretical con-
cepts and practical questions, using dedicated R software. In a world moving
quickly towards more computerization and data intensive decision making it is

https://cran.r-project.org/
https://cran.r-project.org/
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unimaginable to teach a biostatistics course without introducing the basics of
scientific computing.

Moreover, though statistical concepts can be explained using simulations and
other R functions, R is a powerful analytic language. We wish to provide you the
tools to understand biostatistical concepts as well as the ability to analyze data
using the methods we discuss. Of course, R is not the only possible platform
for this purpose. Indeed, SAS and STATA are also widely used by statisticians,
while Python is another powerful platform used extensively in data analysis.
Programs such as SPSS, Minitab and Excel, which can be great for some anal-
yses, are insufficient for the needs of this book.

There are many ways to learn R. There are many introductory tutorials online,
such as Code School and DataCamp. This general R reference card is useful to
see many commonly-used R functions. The next chapter introduces some basic
concepts in R that will be used throughout the book, though every chapter will
contain commented R code interweaved with biostatistical concepts. Several
additional dedicated R chapters are available throughout the book and intro-
duce increasingly more advanced topics in R to complement the introduction of
biostatistical concepts.

1.4 Data

All data located for this course can be downloaded on the leanpub book page
or can be downloaded directly from GitHub.

http://www.codeschool.com/courses/try-r
https://www.datacamp.com/
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://leanpub.com/biostatmethods
https://github.com/muschellij2/biostatmethods


Chapter 2

Introduction to R

This chapter covers the following topics

• R and RStudio
• Reading R code
• R syntax
• Data Classes
• Libraries and packages

2.1 R and RStudio

In this book R (R Core Team 2016) refers to “a language and environment for
statistical computing and graphics” (http://www.r-project.org/). R was built
on the S language, which was developed by Bell laboratories, and S+, which was
an improvement of S. Knowing the history or these languages is unimportant,
but the fact that R was built on other languages can explain some of its quirks.

When you download R from the R-project website, this contains the R language
and a graphical user interface (GUI). This GUI is a set of windows that allow
you to interact with the R console, plotting windows, and script editor, which is
essentially a text editor. If you used R from a command line or a terminal, this
is still R, but only the R console – the thing you interact with and where you
pass R commands.

RStudio is a company that makes software for R, namely the RStudio IDE
(integrated development environment). This IDE is another GUI that allows
users to interact with R with some added benefits. We will refer to this IDE/set
of windows as RStudio; we will specify if we are referring to the company by
stating RStudio Inc. The RStudio software is not exactly written by the R “team,”

15
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but has become the standard IDE used when working in R and we recommend
it.

In the following sections, we will use double quotes (") when introducing any
jargon that may be new to the user.

2.2 Reading R code

We will discuss how to read the R code in these chapters. Code is color labeled
to help readers determine what operations are going on in the code. Let us start
with an easy addition operation:
1 + 5

[1] 6

We see the code is surrounded by a slightly dark box, which shows the user
that it is either code or output. The output of the command is printed directly
after the code, if there is any. When the code is run we say that the statement
1 + 5 was “evaluated” or “executed.” Comments in code are marked by the
pound/hashtag #. Anything after the pound is treated as a comment and is not
run/evaluated by R. If this symbol is at the beginning of a line, then that whole
line is treated as a comment:
# 1 + 5
1 + 5 # the code to the left is run

[1] 6
# I'm just a comment and can use any character I want!

Comments are in italics and have a different text color. There is no opera-
tion/symbol for multi-line comments in R code; a # must be placed in the front
of each line to comment them out. In RStudio, there are shortcuts for this if
you look under the “Code” menu for “Comment/Uncomment Lines”.

In addition to this, when things are placed in quotes, they are treated differently
in R so the code shows them in a different color from numbers.
"hey"

[1] "hey"

We will cover the difference between character strings and numbers later.
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2.3 R syntax and jargon

Below we will briefly cover some topics of R code syntax. Overall, we will discuss
objects, data classes, and subsetting.

2.4 Objects

In R, almost everything is an “object” or “variable.” This setup is different than
other statistical software, such as STATA or SAS. In STATA or SAS, most things
are relevant only with respect to a data set. The fact that R can hold things
that are not relevant to a data set (e.g., the mean age of a group or a linear
model) makes it confusing at first to those coming from those other languages.
After learning how to manipulate these objects, it will become clear that this is
useful to create tables and figures that require these models or numbers.

2.5 Assignment

To make an object you “assign” it to an object name. Assignment basically
means you set something equal to something else. There are two ways to do
this; we call them assignment “operators”, which is to say they operate on things.
One way is to use a single equals sign:
x = 5
x

[1] 5

After running this command, the object x has the value of 5. In most cases,
when you simply execute a command that is just an object, the contents of that
object are printed. We could explicitly do this by running print(x). We would
say that “x was assigned to the value of 5” or “x was set to 5”. The other way
to perform assigment is using the “assignment operator,” which is <-. This is
the less than symbol (<) immediately followed by a hyphen (-) without spaces.
x <- 4
x

[1] 4

We see that x is now reset to the value of 4. Some prefer the equals sign as this
is more common in other programming languages and requires one character
to assign objects. Others prefer the assignment operator because that was the
main assignment operator for R for many years and shows the “direction” of
the assignment. When using =, the object getting assigned is always on the left-
hand side. In R, we will use these assignment operators interchangeably. There
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is also a “forward assignment” operator that exists, but this is rarely used and
we do not recommend using it:
4 -> new_var
new_var

[1] 4

We can assign y to a value and then use that variable in operations:
y = 6
x + y

[1] 10

When creating objects, you can use alpha-numeric characters (upper and lower
case), but a number cannot be the first character. You can also use the un-
derscore (_) and period (.). Many prefer using underscores over periods, as
the period has a different meaning in other languages. For example, these are
acceptable object names:
my_fun_variable
myFunVariable
my.fun.variable
my.fun_variable

but some are not a preferred syntax for all, especially those that include periods
and underscores. You cannot use many special symbols such as the dollar sign
($), quotes (' or "), pound (#), hyphen (-), or spaces in object names. For
example, these are not acceptable variable names:
it's_my_variable
patient age
money_in_$_us
patient-name$

2.5.1 Operations

You can perform the standard operations on vectors, such as addi-
tion/subtraction (+, -), division/multiplication (/, *), and exponents (^
or **). You can also perform most mathematical functions such as absolute
value (abs), square root (sqrt), natural logarithm/exponential (log/exp),
and so on. These operations are performed entrywise. Type ?base::Math
(this notation will be explained in section 2.11.2) to see a list of the standard
operations.
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2.6 Data types

In R, there are different data types, but we will focus here on the three most
fundamental: numeric (numbers), character (strings or “words”), and logicals
(TRUE or FALSE). Above, when we assigned x to 4, we would say x is a numeric
vector. Had we assigned "hey" to an object, let’s say z, so that z = "hey", we
would say z is a character vector. We could create a logical vector w with the
code w = TRUE. Nota Bene: in logical vectors TRUE and FALSE are all capital
letters and are not in quotes. All examples in this section are “vectors of length
1.”

We will also discuss one additional data type: factors. Factors are categorical
data types. The categories of a factor are called the “levels” of that factor.
The levels of factors usually contain human-readable levels (e.g., “Male” and
“Female”). Factors become increasingly useful when we fit models, as one can
define the baseline category by the levels of the factor, which affects the inter-
pretation of coefficients. Some refer to vectors of length 1 as a “scalar”. In other
languages, there is a distinction between scalars and vectors, but not in R. So
you can think of a vector as a 1-dimensional object that can have anywhere from
0 to a large number of elements.

2.6.1 Advanced topic: integer vs. double

In R, numbers are generally represented in 2 ways: as integers and doubles.
Integers are simply round numbers, with no decimals. All other numbers are
doubles. Doubles can be round numbers, but they are stored differently than a
number that is explicitly an integer. Typically, data use doubles, while indexing,
referencing, and subsetting use integers. Overall, though, R will know how to
handle numbers without much work on the part of the user and give warnings
if the user tries to do something unexpected with numbers.

2.7 Data containers

In every example shown above, the value or object is simply one element. R
can contain much more complex pieces of data in different containers. We will
build from a single number, to multiple numbers, to an object with rows and
columns with all numbers, then an object with multiple rows and some columns
with numbers and others that have non-numbers.

2.7.1 More than one number: vectors

In R, anything having one dimension is generally referred to as a “vector.” A
vector has a specified length. Technically, a vector may have length 0, which
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means nothing is in it. But usually vectors have one or multiple objects in
them. Those objects all must have the same data type (e.g., all numbers or
all characters or all logicals).

2.7.2 Creating vectors

There are multiple ways of creating vectors; we will first discuss the most general
way: using the c command/function. Whenever we reference functions in the
text, we will either try to be clear that it is a function (as opposed to an
object/variable) or write the command with parentheses (e.g., c()). The c()
function allows you to combine values into a vector. Here we will assign x to a
new value:
x = c(1, 4)
print(x)

[1] 1 4

We see that x is a numeric vector of length 2 and has the values 1 and 4. In func-
tions, the syntax is function name, followed by an open parenthesis (, then the
arguments, then a close parenthesis ). Anything within those parentheses are
“passed” into that function, which we refer to as “arguments” of that function.
In the code above, R will evaluate/execute/run the c() function, then assign
that output to the value x. There are functions that can access information
about the vector. One commonly used function is length(), which reports how
long a vector is:
length(x)

[1] 2

We can also assign that output to a new variable! Here we will assign the length
of x to the variable length_of_x:
length_of_x = length(x)

Note again, as we assigned the output to a variable, it was not printed.

2.7.3 Sequences

In many cases, you want to create a sequence of numbers. Some examples would
be patient identifiers or an index for a patient visit. We will show you how to
create flexible sequences of numbers with the seq() function below. Many times,
however, we want just numbers incremented by 1. In R, there is a shortcut for
this, called the colon operator (:). You simply write start:end for a sequence
of numbers from start to end, like so:
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1:5

[1] 1 2 3 4 5
2:4

[1] 2 3 4

Note that if you would like a sequence of negative numbers, it needs to be
treated a bit differently:
-5:1

[1] -5 -4 -3 -2 -1 0 1

This is interpreted as a sequence from -5 to 1, not -5 to -1. If you want the
latter sequence, you would write:
-(5:1)

[1] -5 -4 -3 -2 -1

Here we note that parentheses are not only used in functions, they are used to
encapsulate or group a statement or “expression”. The seq() function allows
you to create more flexible sequences, which take arguments from, to, and by.
By default, by = 1, so it creates sequences that increment by 1 unit:
seq(1, 5)

[1] 1 2 3 4 5
seq(1, 7, by = 0.4)

[1] 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0

Note, the code:
seq(1, 7, by = 0.4)

[1] 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0

When we put (by = 0.4) it was the first time we directly assigned an argument
in a function to a value by name. By default, a function will assume the order
of the input into the function in the order of the arguments of the function.
This behavior is common and works well when you are writing code with well-
established functions that will almost never change the arguments or the order
of those arguments. Regardless, you should specify arguments by name in a
function when you can, as this is a safer way of writing code. Also, you do not
need to know the order of the arguments if you know what the argument names
are. For example, we can perform the same operation as above by doing:
seq(by = 0.4, to = 7, from = 1)

[1] 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0



22 CHAPTER 2. INTRODUCTION TO R

even though to is the first argument defined in the function. Moreover, the
RStudio IDE allows you to write the function name and type the left parenthesis
((). Then hit the Tab key to show you the arguments. We will try to assign
arguments by name throughout the book when possible.

In many cases where you can input a highly flexible number of things into an
argument, it may be specified in the help file with “3 dots,” or an ellipsis (...).
This is the case when pasting together strings (paste()), which we will cover
below, or when combining elements in the c() function. Also, if the function
takes one argument, it is commonly named x and usually you do not specify x
=, you simply pass the one argument.

2.7.4 Operations on numeric vectors

You can do all the same operations on numeric vectors as you did when there
was only one element.
x_length_2 = c(1, 2)
x_length_2 * 3

[1] 3 6
sqrt(x_length_2)

[1] 1.000000 1.414214

One major difference is when you are performing operations with two vectors:
x_length_3 = c(10, 20, 30)
x_length_2 + x_length_3

Warning in x_length_2 + x_length_3: longer object length is not a multiple
of shorter object length

[1] 11 22 31

First and foremost, note that this command executed. This may be surprising to
some. You do get a warning here, but this is an important case. We see that the
last number is 31. When trying to add the two vectors, R saw that x_length_2
had one less element than x_length_3. It then padded the x_length_2 object
to the length of x_length_3, by repeating x_length_2 again. This is called a
“wraparound effect”, and can be useful, but very dangerous. Therefore, R made
x_length_2 = c(1, 2, 1) to make the lengths match and added the 1 to the
30.

Note, the warning was not that they were not the same length, but rather the
lengths were not multiples of each other:
x_length_4 = c(10, 20, 30, 40)
x_length_2 + x_length_4
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[1] 11 22 31 42

Here we have a wraparound effect, but no warning! Many times this will not be
what you want to happen. This effect is important to learn when dealing with
vectors. Though this effect is still possible when working with data sets, it is
less common when using columns of the data set to add or manipulate together
because they are constrained to have the same number of elements, which is the
number of rows in the data set.

2.7.5 Some standard operations on vectors

We can determine the number of elements in a vector using the length function:
length(x_length_3)

[1] 3

If we would like to know the unique elements of a vector, we use the unique
function:
x = c(2, 1, 1, 4)
unique(x)

[1] 2 1 4

Coupled with length, this can provide the number of unique elements:
length(unique(x)). This function can be useful for counting the number of
unique patients in a data set, for example. Note, unique does not sort the
unique elements. To sort the elements, you would use sort:
sort(x)

[1] 1 1 2 4
sort(unique(x))

[1] 1 2 4

Although not as commonly used in all cases, we will discuss the sample function
as it will be highly relevant in later chapters on the bootstrap. Without any
other arguments, sample will perform a permutation on a vector x, where all
the elements of x are simply reshuffled randomly:
sample(x)

[1] 1 2 1 4

The help file for sample (accessed by running the ?sample command) provides
two additional useful arguments: size and replace. The size argument indi-
cates how many samples are to be drawn. By default, it will resample as many
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as the length of x. For example, if x is of length 4, then the result from sample
will be of length 4. You can sub-sample x with a size smaller than its length as:
sample(x, size = 2)

[1] 2 1

If you try a size greater than the length of x, by default, you will get an error
because of the replace argument. By default, replace is FALSE, so sampling
is done without replacement. This error occurs because you cannot draw
more samples out of the data than exist in the data without replacement. If
the replace option is TRUE, then sampling will be done with replacement,
indicating that the same element can be repeated multiple times and others
may not be sampled at all.
# sample(x, size = 10) will error
sample(x, size = 10, replace = TRUE)

[1] 1 1 2 4 2 1 4 4 4 1

This will allow us to draw samples of any size with replacement from a vector.
Many times, we are sampling the same length as the vector with replacement,
as in the bootstrap procedure discussed later, so the size argument can be
omitted:
sample(x, replace = TRUE)

[1] 1 1 1 2

2.7.6 Creating logical and character vectors

We can also create character and logical vectors in the same way:
trues_and_falses = c(TRUE, TRUE, FALSE)
print(trues_and_falses)

[1] TRUE TRUE FALSE
our_names = c("Ciprian", "Brian", "John", "You")
print(our_names)

[1] "Ciprian" "Brian" "John" "You"

Note that character vectors, when printed, have quotes around the “elements”.

2.7.7 Data type coercion

If we combine two values of different data types into a vector, R has to change
one of the data types. This, again, is because vectors can only have one data
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type in them. This process is called “coercion”, as R “coerces” one of the types
to another type so that it can be combined with the other values.

Logicals can be coerced to numerics (0 and 1 values) and coerced to characters
("TRUE" and "FALSE", note the quotes). Numerics can be coerced into characters
(5.6 changes to "5.6"). We can see this process as follows:
c(5.2, TRUE, FALSE)

[1] 5.2 1.0 0.0
c("hey", TRUE)

[1] "hey" "TRUE"
c(5.2, "hey")

[1] "5.2" "hey"
c(5.2, TRUE, "hey")

[1] "5.2" "TRUE" "hey"

This is important when doing data manipulation and data input. If you try to
read in data where one of the rows has non-numeric data (such as the letters n/a),
then R may treat that whole column as characters, which can cause problems
in analysis. You can determine the data type of an object with the typeof()
function:
typeof(c(5.2, TRUE, FALSE))

[1] "double"

This function is not used as often as some other functions we will discuss on how
to coerce vectors into different data types. Above, the data are still a vector
(the data class) but the elements of that vector are now changed to numeric
(the data type).

2.7.8 More than one dimension: matrices

Vectors are very useful, but may not be sufficient for all scenarios. A matrix
is like a vector, but it has two dimensions, rows and columns. Like vectors,
matrices can contain only one data type. You can construct a matrix with
the matrix() command:
matrix(1)

[,1]
[1,] 1
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We see that a matrix is printed out differently than a vector. There is a label
above the columns ([,1]) and to the left of the rows ([,2]). These reference
the column and row notation for matrices. Let us construct another matrix
with three columns and two rows, from a vector of values.
matrix(1:6, nrow = 2, ncol = 3)

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Here we see the matrix organized in rows and columns and we specified the
number of rows and columns. If we only specified one, R would try to divide the
length of the vector by the number of rows/columns specified and assign the
other dimension. For example:
matrix(1:6, nrow = 2) # no ncol specified, same result

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

By default, R does many things column-wise, and matrix() fills the matrix
column-wise. We can fill in the data by rows, using the byrow = TRUE option:
matrix(1:6, nrow = 2, byrow = TRUE) # filled by row

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

2.7.9 More than one dimension: data.frames

A data.frame is like a matrix in that it has rows and columns. A data.frame
can have columns of different data types. For example, the first column can
be age, a numeric variable, and the second column can be a three-level cate-
gorical variable of handedness with values of left, right, and ambidextrous. A
data.frame is similar in nature to a spreadsheet of data. Indeed, the most
common data class for data sets is a data.frame.

You can construct a data.frame with the data.frame() command. Note, a
default on the data.frame() function is stringsAsFactors = TRUE, which in-
dicates that all strings should be converted to factors. Many times, you want
to clean these columns and then convert them to factors directly. So we will set
that option to FALSE:
df = data.frame(age = c(25, 30, 32, 42),

handed = c("left", "right", "ambidextrous", "left"),



2.7. DATA CONTAINERS 27

stringsAsFactors = FALSE)
df

age handed
1 25 left
2 30 right
3 32 ambidextrous
4 42 left

The arguments of data.frame do not include age or handed; these are column
names for these variables. Note, although data.frames are like matrices, they
do not have the same printing with the [,1] and [1,] notation.

2.7.10 Dimensions of an object

There are functions that get attributes about a matrix/data.frame that are
useful for analysis. The dim function returns the dimensions (rows and columns,
respectively) of a data set:
dim(df)

[1] 4 2

Each of these can be accessed for the number of rows or columns using the
nrow and ncol functions, respectively:
nrow(df)

[1] 4
ncol(df)

[1] 2

If you pass in a simple integer/number to sample, e.g., nrow(df), it will sample
from 1:nrow(df):
sample(nrow(df))

[1] 2 4 1 3

This may be useful for sampling/subsetting from the rows of a data set, which
will be explained later in section 2.9.3.

2.7.11 Viewing the data

Getting a quick peek at the first few rows of a data.frame is useful for getting
an idea of the data structure, using the head function. This is especially useful
when the dimensions are very large:
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head(df)

age handed
1 25 left
2 30 right
3 32 ambidextrous
4 42 left

In RStudio, the View() function will bring up a spreadsheet-like viewer of your
data sets. This viewer is very useful for exploring your data. Be careful to use
View interactively and not to set View commands inside your R scripts, as this
may cause errors when running them or compiling R Markdown documents.

2.8 Logical operations

We will discuss some operations in R that perform some logical tests that re-
turn logical data. There are some operations in R: greater/less than (>, <),
greater/less than or equal to (>=, <=), equal to (== “double equals”), and not
equal to (!=). These are called “relational operators” or “comparison operators,”
but they are always just referenced by their name (e.g., greater than).
x = c(1, 3, 4, 5)
x < 4

[1] TRUE TRUE FALSE FALSE
x > 3

[1] FALSE FALSE TRUE TRUE
x >= 3

[1] FALSE TRUE TRUE TRUE
x == 3

[1] FALSE TRUE FALSE FALSE
x != 3

[1] TRUE FALSE TRUE TRUE

There are also the standard “logical operators”: not/negate (!), AND (&), and
OR (|). The OR operator is called the “pipe” and it is a straight vertical line.
For example, we can combine some of the previous statements:
x = c(1, 3, 4, 5)
x > 3 | x == 1 # greater than 3 or equal to 1

[1] TRUE FALSE TRUE TRUE

https://rmarkdown.rstudio.com/
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!(x > 3 | x == 1) # negates the statement - turns TRUE to FALSE

[1] FALSE TRUE FALSE FALSE
x != 3 & x != 5

[1] TRUE FALSE TRUE FALSE
x == 3 | x == 4

[1] FALSE TRUE TRUE FALSE

2.8.1 The %in% Operator

The last two statements select on two specific elements from x. Many times, we
want to keep or exclude based on a number of values. The %in% operator is very
useful for that:
x %in% c(3,4)

[1] FALSE TRUE TRUE FALSE

You pass the object on the left hand side, then apply the %in% operator, and
then specify the values to match in the object. The result is a logical indicator
if those values are in the object. This operation is very different than testing
for equality:
y = c(4,3)
y == c(3,4)

[1] FALSE FALSE

R is trying to test if y is equal to the right hand side element-wise (at each
element, lining them up). Therefore, this will return TRUE for the first element
if the first elements in both vectors are the same, FALSE otherwise, for each
element across the vector.

2.9 Subsetting

2.9.1 Subsetting vectors

In vectors, you subset elements of the vector using “square brackets” ([ and ]).
You can subset using the index of the element you want, where the first element
has the index 1.
x = c(1, 3, 4, 5)
x[4] # 4th element = 5
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[1] 5

You can also subset using a logical vector of the same length as the vector:
x > 2 # returns a logical vector

[1] FALSE TRUE TRUE TRUE
x[ x > 2 ] # we can use that to subset

[1] 3 4 5

2.9.2 Subsetting matrices

In matrices, you subset elements of the vector using “square brackets” ([ and ]),
but the syntax is [row subset, column subset]. Again, you can subset using
the index of the element (row/column) you want, but can also subset using a
logical vector. The logical vectors must be the same length as the dimension to
subset (row or column):
mat = matrix(1:6, nrow = 2) # no ncol specified, same result
mat[1:2, 1]

[1] 1 2
mat[1, 1:2]

[1] 1 3
mat[1, c(FALSE, TRUE, FALSE)]

[1] 3

If the column names or the row names of the matrix are set, then these can
be used to subset the matrix. You do not mix-and-match though: if you are
subsetting with indices, logicals, or names, you do only one type of subsetting
at that time. For example, you would not do:
mat[, c(FALSE, 3, TRUE)]

[,1] [,2]
[1,] 5 1
[2,] 6 2

as the subsetting vector would be coerced to a numeric and subset the third and
first columns (in that order). If either subsetting is missing, then all elements
of that dimension are presented.
mat[1:2, ]

[,1] [,2] [,3]
[1,] 1 3 5
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[2,] 2 4 6
mat[, 2:3]

[,1] [,2]
[1,] 3 5
[2,] 4 6
mat[, c(FALSE, TRUE, FALSE)]

[1] 3 4

By default, if you subset a matrix and it returns only one column or one row,
the output is a vector:
class(mat[,1])

[1] "integer"
class(mat[1])

[1] "integer"
class(mat[1,1:2])

[1] "integer"

But if the subset is two-dimensional, then the result is still a matrix:
class(mat[,1:2])

[1] "matrix"
class(mat[1:2,])

[1] "matrix"

You can ensure that the result is a matrix, even if the result is one-dimensional
using the drop = FALSE argument:
mat[,1, drop = FALSE]

[,1]
[1,] 1
[2,] 2
class(mat[,1, drop = FALSE])

[1] "matrix"
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2.9.3 Subsetting data.frames

The bracket syntax for subsetting a matrix can be used for a data.frame as
well. Because data.frame can contain columns of multiple data types, when a
data.frame is subset with only one row, it returns a data.frame, not a vector.
df[1,]

age handed
1 25 left
class(df[1,])

[1] "data.frame"
df[1, c("age", "handed")]

age handed
1 25 left
class(df[1, c("age", "handed")])

[1] "data.frame"

But as each column of a data.frame is of the same data type, when one column
is subset in a data.frame, then a vector is returned:
df[,1]

[1] 25 30 32 42
class(df[,1])

[1] "numeric"
df[1, c("age")] # still only 1 column - age

[1] 25
class(df[, c("age", "handed")]) # 2 columns still

[1] "data.frame"

Again, if you set drop = FALSE, then a data.frame is returned:
class(df[, c("age"), drop = FALSE]) # returns a data.frame

[1] "data.frame"

2.9.3.1 Dollar sign subsetting

Almost always, the columns of a data.frame are named. When this is the case,
you can subset the data.frame as above using brackets, but you can also use
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the dollar sign $:
df[, "age"]

[1] 25 30 32 42
df$age

[1] 25 30 32 42

Note though that the dollar sign only subsets one column at a time, so you
cannot do:
df$c("age", "handed")

Column names should have only letters and numbers and start with a letter.
Other symbols, such as “special characters” slashes (/ or \), dollar signs ($),
pound symbol (#), or dashes (-) need to be changed to a period. Column
names should also not have spaces (but technically can).

2.10 Reassignment

Similar to how we can assign the output of an assignment to a new object:
x4 = x[4]

we can also change or reassign the values subsetted in the object:
x2 = x
x2[4] = 8
x2

[1] 1 3 4 8

The number of elements in the subset on the left-hand side of the assignment
should equal the number of elements on the right hand side. For example, we
can assign two values in x2:
x2[c(1,5)] = c(6, 4)
x2

[1] 6 3 4 8 4

2.11 Libraries and packages

When you download R, it consists of a set of “base” R functions. A collection
of functions in R is called an R package or R library. The strength of R is the
additional packages that are available for download that are written by other
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R users and developers. A large number of these packages are hosted on the
Comprehensive R Archive Network (CRAN, https://cran.r-project.org).

2.11.1 Installing packages

The install.packages function is used to install packages. For example, to
install the dplyr package, the syntax is:
install.packages("dplyr")

This may require you to choose a CRAN mirror from which to download. These
mirrors have copies of packages throughout the world so that downloading can
be quick. You can choose based on which country you are in, or the 0-Cloud
mirror, hosted from RStudio, which is generally fast. This will download a
package to your hard drive in your R “library”.

2.11.2 Help

The help function will pull up the associated help file with a function. For
example, if you would like to see the help file for the filter function, you can
write:
help("filter")

The question mark (?) is also a shorthand function for pulling up the help:
?filter

The double question mark (??) is shorthand for the help.search function,
which will search the help files for a pattern/word in multiple places of all the
help files in all the packages installed.
??"linear model"
help.search("linear model")

Note: if you want to search something with a space using the ?? syntax, you
need to encapsulate it in quotes.

2.11.3 Loading packages

Though install.packages downloads a package to your hard drive, this does
not load the package into the R session. The package must be loaded with the
library command:
library(dplyr)

https://cran.r-project.org
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Now that the dplyr package is loaded, you can use functions from that package,
such as the select function. At any given point you may have tens or hundreds
of packages downloaded/installed on your computer, but only load a handful
when doing an analysis or calling a script.

2.11.4 Function masking

Most packages are loaded without any messages. But in the case above, we
have a message about “masking”. To explain masking, let us say that a package
(package A) is loaded into memory/the R session with a function called fcn and
another package (package B) is loaded with a function called fcn. Now, since
package B was loaded second, if you type fcn, then R will assume you want
fcn from package B. Hence, the order of loading packages may matter, and
the function fcn from package A is “masked”. It is still available to be used,
but you have to explicitly state that you want the package A version. This
can be done using the double colon operator (::). If you write A::fcn, then R
understands that you want to use the function fcn from package A, regardless
if package B is loaded.

Most of the time, this is not an issue due to the fact that many packages do
not have functions with the same name. Also, in many R scripts, only the pack-
ages necessary for the analysis are loaded. When R is started, the base and
stats packages are loaded by default. When loading the dplyr package above,
the filter function from the stats package is masked by the dplyr filter
function. If users want to use the stats filter function, then they can by run-
ning stats::filter. Note, these functions are very different: stats::filter
applies linear filters of time series, whereas the dplyr::filter function is for
subsetting rows of a data.frame. If you use the help function ?filter after
loading in dplyr, it will ask which help file you want to see.

Function masking is different from extending functions from other packages. For
example, if package B depends on package A and extends the fcn function to
do things to a different set of classes, as opposed to being a different function
altogether, then this is a different situation.

2.12 dplyr, ggplot2, and the tidyverse

Most of the basics of R and subsetting have been discussed. For most long-term R
users, the syntax of these processing steps is how they were taught and continue
to use R. In the past few years, a series of additional tools for data manipulation,
analysis, and visualization have been proposed. For data manipulation, the
dplyr function has added a set of “verbs” for data analysis. Wickham (2014)
proposed a framework for data structures of “tidy data”, where:
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each variable is a column, each observation is a row, and each type
of observational unit is a table

The ggplot2 package (Wickham 2016) added a rigorous visualization framework
in R, based on the “Grammar of graphics” (Wilkinson 2006). These packages
alongside an additional set of packages developed with these new principles
make up the “tidyverse” (https://www.tidyverse.org/). The tidyverse pack-
age is an umbrella package that contains these packages so that one can be
installed and loaded if abiding by this philosophy. This package supplements
the base package of R, commonly referred to as “base R”. Though we will use
both base R and the tidyverse, we believe most serious analysts agree that the
recommendation is to use the tools that allow you to quickly explore your data
in a way that is readable to another programmer.

2.12.1 Tibbles

A tbl (“tibble”) is an additional data class/container to the ones mentioned
above, implemented in the tibble package. It is like data.frame above, but
with some very important differences (adapted by the help file for tibble) :

• Never coerces inputs (i.e. strings stay as strings!).
• Never adds row.names.
• Never changes column names.
• Only recycles length 1 inputs. (no wraparound)
• Automatically adds column names.

If you subset a tbl using bracket notation, but only the variable is given, then
that always returns a tbl:
tbl = tibble::as_tibble(df)
class(tbl[, "age"])

[1] "tbl_df" "tbl" "data.frame"

This behavior is different from that of a data.frame, which would have returned
a vector. As of version 1.4.1, tibbles can also use the drop argument :
tbl[, "age", drop = TRUE]

[1] 25 30 32 42

Also, if you accidentally print a large data.frame, it will try to print as many
rows as the default allows and all the columns. This printing can lock your R
console for a while, and is usually not helpful. A tbl will only print out the
first few rows and columns that fill your screen by default. You can construct
a tbl similar to a data.frame above, but using the data_frame function (note
the difference between the period and underscore). If you want to convert a
data.frame, you can use dplyr::as.tbl or tibble::as_tibble. Some data
input functions will be introduced later to show how to read in data as tbls.

https://www.tidyverse.org/
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2.12.2 The pipe (%>%)

One additional tool, which has been incorporated into the tidyverse, is the
“pipe,” which is the %>% operator. The pipe was introduced in the magrittr, in
reference of the painting “The Treachery of Images” from Ren‘e Magritte. Here
we have a simple vector x:
x = c(5, 2, 3, 42, 6)

Let us look at a few ways to calculate the square root of the mean of x and
assign it to y. Let us try one line:
y = sqrt(mean(x))

This operation is clear and not too cluttered. Note, R evaluates using the
“middle-out” process, where you can think of a function as parentheses, in the
order of mathematical operations.

Let us try two lines:
y = mean(x)
y = sqrt(y)

Here we assign y to the mean of x, then reassign y to the square-root of the
mean. This process is clear and follows linearly, but is a bit unnecessary for
such a simple action. Below we can use the pipe:
y = x %>% mean %>% sqrt

You can think of the pipe as reading “then.” So we take x, then perform the mean,
then the square-root. The default in using the pipe is that the object on the left
hand side of the pipe is the first argument of the function you are piping into
on the right hand side. There are ways around this, but the tidyverse package
generally abides by this when designing functions. The pipe, at first, may not
seem as compelling, but code can become more complicated. Many analysis
steps involves taking a data set, subsetting the columns, transforming variables,
sorting the rows, and summarizing the data set into summary statistics. These
operations are usually too complicated to put in one line, but work fine with
reassignment and the pipe.

2.12.3 White space

In R, you can write an expression on multiple lines or on the same line as long
as that function is not a completed function by the end of the line. For example,
the previous piping code could also have been written as:
sqrt(
mean(x)

)
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[1] 3.405877

or
x %>%
mean %>%
sqrt

[1] 3.405877

As the pipe assumes there is something on the right hand side of it, R sees
the pipe at the end of the first line and knows to “keep going.” Similarly, R
knows that the sqrt function must have both an open parenthesis and a closed
parenthesis and it knows to keep looking for more information in the following
lines. If you are working interactively in R and forget to close a parenthesis,
quote, or curly brace or have an unfinished line, R will have a + symbol instead
of the standard prompt symbol >. If you would like to stop the command and
start another, you can break usually using the Esc key (in RStudio) or Cmd+C
or Ctrl+C depending on your operating system.

2.13 Problems

Problem 1. Consider the vector:
num <- c("1.5", "2", "8.4")

a. Convert num into a numeric vector using as.numeric
b. Convert num into a factor using factor, calling it num_fac.
c. Convert num_fac into a numeric using as.numeric.
d. Convert num_fac into a numeric using as.numeric(as.character())

Problem 2. Consider the vector:
num <- c(0, 1, 1, 0)

a. Append TRUE to the num vector using c.
b. Check the class of num using class.
c. Convert num into a logical vector using as.logical.
d. Convert num into a logical vector where the result is TRUE if num is 0, using

the == operator.

Problem 3. Consider the data set data_bmi from above. Perform the following
operations:

a. Extract the column nams of data_bmi using the colnames() function.
b. Subset the AGE column using data_bmi[, "AGE"].
c. Subset the AGE column using data_bmi$AGE.
d. Subset the AGE and BMI columns using brackets and the c() function.
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Problem 4. Here we will work with sequences and lengths:

a. Create a sequence from 1 to 4.5 by 0.24. Call this run_num.
b. What is the length of run_num.

c. Extract the fifth element of run_num using brackets.

Problem 5. Let’s create a tibble called df:
df = dplyr::data_frame(x = rnorm(10), y = rnorm(10), z = rnorm(10))

a. Extract the column x using the $.
b. Extract the column x using the [,] notation.
c. Extract columns x and z.
d. Extract the third and fifth rows of df and columns z and y.

Problem 6. Let’s create a tibble called df:
df = dplyr::data_frame(x = rnorm(10), y = rnorm(10), z = rnorm(10))

a. Get the mean of the column x using the $ operator.
b. Pipe (%>%) the column x into the mean function.
c. Look at the summarize function to look ahead to future chapters and try

to do this in the dplyr framework.

Problem 7. Consider the data set data_bmi using the BMI data, but read in
using readr:
file_name = "bmi_age.txt"
data_bmi = readr::read_table2(file = file_name)

a. What is the class of data_bmi?
b. What is the class of data_bmi[, "AGE"]?
c. What is the class of data_bmi$AGE?
d. What is the class of data_bmi[, "AGE", drop = TRUE]?

Problem 8. Consider the data set data_bmi using the BMI data, but read in
using readr:
file_name = "bmi_age.txt"
data_bmi = readr::read_table2(file = file_name)

Parsed with column specification:
cols(
PID = col_double(),
BMI = col_double(),
SEX = col_double(),
AGE = col_double()

)

a. What is the mean of the AGE column?
b. Set the 3rd element of data_bmi$AGE to be 42?
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c. What is the mean of the AGE column now?

Problem 9. Use data_bmi from the above problem:

a. Remove the X5 column using data_bmi$X5 = NULL
b. Create mat, which is data_bmi as a matrix, using as.matrix.
c. Try to extract AGE from mat using the $. What happened?
d. Extract AGE from mat using the [,] notation.



Chapter 3

Probability, random
variables, distributions

This chapter covers the following topics

• Experiments
• An intuitive introduction to the bootstrap
• Probability and probability calculus
• Sampling in R
• Random variables
• Probability mass function
• Probability density function
• Cumulative distribution function
• Quantiles
• Supplementary R training

3.1 Experiments

An experiment is the process of data collection for a target population according
to a specific sampling protocol that includes rules for what, when, where, and how
to collect data on experimental units (e.g. individuals) from the target population.
For example, in a clinical trial for a diabetes prevention treatment the target
population could be all individuals who are pre-diabetics before the trial starts
and satisfy additional, well-defined, inclusion criteria. Any subject from the
target population who agrees to participate in the trial can be selected up to a
pre-defined maximum sample size. Subjects are then randomized to treatment
with some probability. In many cases, treatment is assigned with a probability
of 0.5.

41
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The primary outcome could be the level of glycated hemoglobin (HbA1C), which
can provide a measure of how much glucose is in the bloodstream, a means of
diagnosing diabetes. One could also collect demographic variables (e.g., age, gen-
der, race) and additional health related outcomes (e.g,. adverse effects, blood
pressure, blood glucose variability). Data are sampled before the trial starts,
at baseline (when the trial starts), at various interim visits (e.g., every three
months), and at the end of the trial. Collecting the data is done during sched-
uled in-hospital visits, but could also entail continuous monitoring (e.g., using
implantable glucose monitors) or ecological momentary assessment (EMA) us-
ing phone or computer apps. Data can be collected by obtaining blood and urine
samples, downloading the data from the implantable monitor, and via the inter-
net or cellular network. Designing such a trial requires intense pre-planning and
a rigorous schedule to obtain high quality data. Of course, not all experiments
are as complex. For example, it would be interesting to take any experiment
that one could think about and parse it into its components. The simplest such
experiment is flipping a coin or waiting for nature to flip the coin of who will
get lung cancer in the next 10 years.

Consider the outcome of an experiment such as:

• a collection of measurements from a sampled population
• measurements from a laboratory experiment
• the result of a clinical trial
• the results of a simulated (computer) experiment
• values from hospital records sampled retrospectively

3.1.1 Notation

To develop these concepts rigorously, we will introduce some notation for the
experiment setup.

• The sample space Ω is the collection of possible outcomes of an experiment
Example: a six-sided die roll = {1; 2; 3; 4; 5; 6}, a coin flip = {heads;
tails}

• An event, say E, is a subset of Ω
Example: die roll is even E = {2; 4; 6}

• An elementary or simple event is a particular result of an experiment
Example: die roll is a four, ω = 4

• ∅ is called the null event or the empty set

The sample space can be extremely complex or very simple. Let us consider the
die roll example. If the die is rolled once, any number between 1 and 6 could
be the outcome for a total of 6 possible outcomes. However, if the experiment
is to roll the die twice, the outcome is the pair of all possible combinations
(1, 1), (1, 2), . . . , (6, 6) for a total of 36 possible outcomes; here we count (1, 2)
and (2, 1) as two different outcomes. If the experiment is to roll the die n times,
the outcomes are all the possible n-tuples with the numbers 1 through 6 in every



3.1. EXPERIMENTS 43

position for a total number of outcomes equal to 6n. To get an idea of just how
big this sample can be, note that the number of possible ordered n-tuples for
n = 130 is larger than 1082, the estimated number of atoms in the known
universe (http://www.universetoday.com/36302/atoms-in-the-universe/).

Thus, it would make little sense to play this game until all possible outcomes
have been obtained, but it would make perfect sense to predict the mean of
the n outcomes or predict how many outcomes will be larger than 5. Biostatis-
tics is concerned with extracting useful, actionable information from complex
outcomes that can result from even the simplest experiments.

While the fair die example may be a little dry, consider the example of a study
of cognitive impairment in older adults. In this case, we could conceptualize
the assignment of health status as a die where three out of the six faces have a
one on it, two faces have a two on it, and one has a three on it. This assigns
to individuals one of the following possible levels of cognitive impairment (none,
moderate, severe). The die is considered unfair because the probabilities of
assigning levels of impairment are likely not to be equal; this is an example when
unfairness is probably good, as most people will be assigned to “non-impaired”.
Nonetheless, alea iacta est (“the die is cast”).

3.1.2 Interpretation of set operations

Data analysis, manipulation, and tabulation are intrinsically related to data sets
and logic operators. Indeed, we often try to understand the structure of the data
and that requires understanding how to subset the data and how to quantify the
various relationships between subsets of the data. To better understand this,
we need to introduce the theoretical set operations and their interpretations.

• ω ∈ E implies that E occurs when ω occurs
• ω /∈ E implies that E does not occur when ω occurs
• E ⊂ F implies that the occurrence of E implies the occurrence of F (E is

a subset of F )
• E ∩ F implies the event that both E and F occur (intersection)
• E ∪ F implies the event that at least one of E or F occur (union)
• E ∩ F = ∅ means that E and F are mutually exclusive/disjoint, or cannot

both occur
• Ec or Ē is the event that E does not occur, also referred to as the com-

plement
• E \ F = E ∩ F c is the event that E occurs and F does not occur

3.1.3 Set theory facts

DeMorgan’s laws.

• (A ∪ B)c = Ac ∩ Bc

http://www.universetoday.com/36302/atoms-in-the-universe/
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Example: If an alligator or a turtle you are not (A ∪ B)c then you are
not an alligator and you are also not a turtle (Ac ∩ Bc)

• (A ∩ B)c = Ac ∪ Bc

Example: If your car is not both hybrid and diesel (A ∩ B)c then your car
is either not hybrid or not diesel (Ac ∪ Bc)

• (Ac)c = A

• (A ∪ B) \ C = (A \ C) ∪ (B \ C) where \ means “set minus”

Proving the equality of two sets, A = B, is done by showing that every
element of A is in B (i.e., A ⊂ B) and every element in B is in A (i.e., B ⊂ A).
For example, let us show that (A∪B)c = Ac ∩Bc. We first show that (A∪B)c ⊂
Ac ∩Bc. Let ω ∈ (A∪B)c, which, by definition, implies that ω /∈ (A∪B). Thus,
ω /∈ A and ω /∈ B, which implies ω ∈ Ac ∩ Bc. Indeed, by reductio ad absurdum,
if ω ∈ A or ω ∈ B, then, by definition, ω ∈ A∪B, which would be contradictory.
The fact that (A ∪ B)c ⊃ (Ac ∩ Bc) can be shown using a similar approach.
Several problems in this chapter can be solved using this general strategy. The
approach is not difficult, but it needs to follow the strict rule of logic.

In general, set operations are based on logical operators: AND (in R &), OR (in
R | ), NOT (in R !). These logical operators can be combined and can produce
complex combinations that are extremely useful in practice. For example, hav-
ing a data set one may want to focus on a subset that contains only African
American men from age 65 to 75 who are non-smokers. This phrase can im-
mediately be translated into logical operators and the data can be extracted
using R programming. This is a routine application of set theory that will be-
come indispensable in practice (below we provide an example of exactly how to
proceed).

We start by reading a small data set. First, let us tell R where the file is:
file_name = file.path("data", "bmi_age.txt")

Here, the variable/object file_name contains the path of the dataset, stored
in a text file bmi_age.txt. In this example, the file is located in the data
sub-folder and the path is relative to the current working directory (e.g., is
a sub-folder). The file.path function is used to create this path, inserting
forward slashes (/) where necessary. If you download and use the data then
change the file path to the correct folder on your computer.

The data are loaded using the read.table function below. We specify ar-
guments/options to read.table that the file contains a header row (header
= TRUE) and we do not want to convert strings/words to a categorical vari-
able/factor when the data are read in (stringsAsFactors = FALSE).
data_bmi = read.table(file = file_name, header = TRUE,

stringsAsFactors = FALSE)
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We can simply write the object name out to show the data (here the entire data
set is displayed because it is small).
data_bmi

PID BMI SEX AGE
1 1 22 1 45
2 2 27 0 57
3 3 31 1 66
4 4 24 1 49
5 5 23 0 33
6 6 18 0 40
7 7 21 0 65
8 8 26 1 59
9 9 34 1 65
10 10 20 0 42

We also display the dimension of the data, which indicates that there are 10
rows and 4 columns:
dim(data_bmi)

[1] 10 4

using the dim function. In general, datasets are much larger and displaying
all data would not be feasible. Displaying only a subset of the dataset would
provide the general structure. This can be done using head(data_bmi) instead
of data_bmi. If data are large with many variables, then one could just look at
the name of the variables (column names):
colnames(data_bmi)

[1] "PID" "BMI" "SEX" "AGE"

We can also do simple data calculations, such as estimate the mean and standard
deviation of the BMI variable:
mean(data_bmi$BMI)

[1] 24.6
sd(data_bmi$BMI)

[1] 4.993329

Again, we use the dollar sign ($) to indicate that we are extracting a single vari-
able from the data_bmi dataset. For simplicity, we will assign all the columns
of the dataset to their own separate variables using the attach function. We
do not recommend this approach in general, especially when multiple datasets
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Figure 3.1: BMI and Age Relationship.

are being used, since variables across records can become de-linked and inde-
pendently sorted. We will do this only for this data set to simplify the code
example.
attach(data_bmi)

We can also show a basic plot (fancier plotting options will be shown later) of
age vs. BMI:
plot(AGE, BMI,type="p",pch=20,cex=2,col="blue")
rect(xleft = 45, xright = 100, ybottom = 0, ytop = 26,

col = scales::alpha("purple", 0.5))
rect(xleft = 45, xright = 100, ybottom = 26, ytop = 100,

col = scales::alpha("red", 0.5))
rect(xleft = 0, xright = 45, ybottom = 0, ytop = 26,

col = scales::alpha("blue", 0.5))
points(AGE, BMI,type="p",pch=20,cex=2,col="blue")
text(x = AGE + 1, y = BMI, labels = PID, col = "black")
abline(h = 26, v = 45, col = "black")

Here the call to abline is for drawing vertical and horizontal lines so that we can
count the numbers in each respective box. We now make the connection between
set theory and operations clearer in the context of the data. In particular,
we emphasize how set operations translate into logic operators that can then
be used for data extraction and operations. Consider the following subsets of
subjects: A subjects with BMI< 26 and B subjects older than 45 (AGE> 45).
Construct a logical indicator for which records fall into A
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index_BMI_less_26 = BMI < 26

which is represented by the points in the purple/blue regions in Figure 3.1, and
B

index_AGE_greater_45 = AGE > 45

which is represented by the points in the purple/red regions in Figure 3.1. Dis-
play the IDs for A and B. Here PID is the unique patient ID, though in many
applications the PID can be more complex than just integer numbers.
PID[index_BMI_less_26]

[1] 1 4 5 6 7 10
PID[index_AGE_greater_45]

[1] 2 3 4 7 8 9

Let us calculate (A ∩ B)c, the complement of the intersection between A and
B, which is shown by the non-purple regions in Figure 3.1. These are subjects
who do not/are (note the c that stands for complement) (have a BMI less than
26) and (older than 45) and
index_A_int_B_compl = !(index_BMI_less_26 & index_AGE_greater_45)
PID[index_A_int_B_compl]

[1] 1 2 3 5 6 8 9 10

The translation of (A∩B)c into R is !(index_BMI_less_26 & index_AGE_greater_45).
Note that ! indicates is not, or complement, and & indicates and, or intersection.
So, the resulting IDs are everybody, except the subject with IDs 4 and 7. It
would be instructive to conduct the same type of analysis for Ac ∪ Bc, (A ∪ B)c,
and Ac. While this dataset is relatively small for educational purposes, similar
subsetting approaches are both essential and impossible to do by hand in large
datasets.

3.2 An intuitive introduction to the bootstrap

A major problem in practice is that, even if we run two identical experiments,
data are never the same. For example, if two large epidemiological studies collect
data on the effects of smoking on developing lung cancer, and have the exact
same sampling protocol and length, then the studies will select different people,
with different demographic information and different times of transition from
being healthy to having lung cancer. However, even though the two samples
will be different, they will have some things in common. Those things are
the target of estimation, the probability and time for conversion from being
healthy to developing lung cancer, and the original target population (e.g., the
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US population). In practice we often have one study and we are interested
in understanding what would happen if multiple studies were conducted. The
reason for that is fundamental and it has to do with the generalizability of
the experiment. Indeed, a study would collect data for a subsample of the
population to make predictions about the rate and expected time of transition
to lung cancer in the overall population.

Bootstrap is a widely used statistical technique based on resampling the data.
The bootstrap is designed to create many potential studies that share the same
characteristics with the study that collected the data and may represent the vari-
ability of running these experiments without actually running the experiments.

The nonparametric bootstrap is the procedure of resampling with
replacement from a dataset, where the number of observations in
each resampled dataset is equal to the number of observations in the
original dataset.

Given a dataset and a function of the data (e.g., mean, standard deviation,
predictor), the bootstrap characterizes the distribution of the function of the
data (a.k.a. estimator) by producing a set of possible values for that function of
the data. This is done by resampling the data with replacement and applying
the function of the data for every sample. The general form of the bootstrap is:

The nonparametric bootstrap algorithm

INPUT: data, D, number of bootstraps, B, function f : S → Rp, where S is
the data space
Repeat for b = 1, . . . , B

• Step 1. Resample the data with replacement and denote it Db

• Step 2. Calculate the statistic Xb = f(Db)

OUTPUT: X1, . . . , XB

The simplicity of the algorithm is exceptional, which is why it has become one of
the standard tools for quantifying the sampling distribution of an estimator. The
bootstrap was introduced by Efron (1979) and is typically taught as an advanced
method after many other concepts are covered. However, the basic mechanics
of the bootstrap are extremely easy to use in practice. The justification, the
interpretation, and the theoretical underpinnings of the bootstrap are more
difficult, but for now we will not concern ourselves with these details.

The easiest way to understand the bootstrap is to apply it to the data and
analyze the format of the data at intermediary steps and results. Below we
introduce some more advanced code to illustrate the bootstrap. An in-depth
introduction of the bootstrap will be done later. The bootstrap is a resampling
technique that is extremely powerful and relatively easy to understand. Let us
conduct B = 3 bootstrap samples of the data and print them. This procedure
is referred to as nonparametric bootstrap of subjects.
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set.seed(4132697)
nboot=3 #number of boostrap samples
nsubj=nrow(data_bmi) #number of subjects
for (i in 1:nboot) #start bootstrapping
{#begin the bootstrap for loop
resampling = sample(nsubj, replace=TRUE) #sample with replacement
bootstrapped_data = data_bmi[resampling,] #resample the data set
print(bootstrapped_data) #print bootstrapped datasets
cat(" \n \n") #add lines between datasets
}#end the bootstrap for loop

PID BMI SEX AGE
6 6 18 0 40
8 8 26 1 59
2 2 27 0 57
10 10 20 0 42
3 3 31 1 66
10.1 10 20 0 42
9 9 34 1 65
3.1 3 31 1 66
1 1 22 1 45
4 4 24 1 49

PID BMI SEX AGE
6 6 18 0 40
6.1 6 18 0 40
10 10 20 0 42
8 8 26 1 59
7 7 21 0 65
8.1 8 26 1 59
1 1 22 1 45
1.1 1 22 1 45
6.2 6 18 0 40
5 5 23 0 33

PID BMI SEX AGE
7 7 21 0 65
9 9 34 1 65
3 3 31 1 66
7.1 7 21 0 65
3.1 3 31 1 66
9.1 9 34 1 65
8 8 26 1 59
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9.2 9 34 1 65
2 2 27 0 57
8.1 8 26 1 59

A close look at these bootstrap samples will indicate what is meant by creating
many potential studies that share the same characteristics. The subjects in
every bootstrap sample are the same as those in the data, though some may not
appear and others may appear multiple times. All information about the subject
is preserved (information across columns is not scrambled), and the number of
subjects in each bootstrap sample is the same as the number in the original
dataset. This was done by using sampling with replacement of the subjects’ IDs
using the same probability. Sampling with replacement can be conceptualized
as follows:

1) consider a lottery machine that contains identical balls that have the name,
or IDs, of n subjects;

2) sample one ball, record the ID and place the ball back into the lottery
machine;

3) repeat the experiment n times.

The reason why this type of sampling is called with replacement is that the
ball is placed back into the lottery machine. If the ball is not placed back into
the lottery machine, the sampling scheme is quite different and the sampling
is called without replacement. The results of sampling with replacement can
contain the same number, or ID, multiple times because the ball is placed back
into the lottery machine and is allowed to be re-sampled. The results of sampling
without replacement cannot contain the same number, or ID, more than once.

In general, B = 100 bootstraps can be sufficient for many applications, but
B = 10000 or more may be needed in others. The processing time for the
bootstrap is linear in B, but the total computation time can be dramatically
reduced by parallel computing (running on multiple computers simultaneously).
This can be especially useful when obtaining f(Db) is time-intensive. Here we set
the seed and the same exact boostrap samples are obtained every time this book
is compiled. However, in practice if you run the code multiple times without the
set.seed() option do not be surprised that every time the 3 bootstrap data sets
change. This happens because of the random nature of the sampling mechanism.
The total number of different nonparametric bootstrap datasets is 1010, or 10
billion. If you want to always obtain the same dataset you can set the seed (this
would need to be done before the sampling code) of the pseudo-random number
(PRN) generator in R
set.seed(4132697)

The set.seed() function resets the PRN for the next simulation and does not
have an effect on the previous simulation. There is nothing special about the
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seed we chose above. You do not have to set a seed, then randomly generate
another seed; one seed is sufficient. One strategy is to use the date of when the
code was created: (e.g. 20180211).

Resampling techniques, like the bootstrap, will be used extensively in practice.
One of the most important applications is to quantify the variability of estima-
tors and produce confidence intervals for specific parameters of interest. Con-
sider, for example, the case when we would like to construct a 95% bootstrap
confidence interval for the difference in the means of BMI of men and women,
given this data set. The concept of a confidence interval has not been formally
introduced. Instead, we simply focus on finding the values of the difference in
the mean that could be obtained if one collected data on five other men and
five other women from the same target population. Because we do not have the
target population, we simply resample with replacement from the five men and
five women from the data we have. First, we calculate the difference in average
BMI between men and women in the original sample
men_bmi<-BMI[SEX==1] #vector of BMI values for men
women_bmi<-BMI[SEX==0] #vector of BMI values for women
n_women<-length(women_bmi) #number of women in the dataset
n_men<-length(men_bmi) #number of men in the dataset

Display the difference in mean BMI between women and men
m_diff <- mean(men_bmi) - mean(women_bmi)
m_diff

[1] 5.6

This is the observed difference in the mean BMI between men and women. In
biostatistics we call this the estimator, which is a function of the data. This
number, 5.6, in itself cannot predict exactly what the mean difference in BMI
will be in an identical study that collected data on five other men and five other
women. It is natural to expect that the numbers observed in other studies should
be close to 5.6, but we would like to know just how close. It is useful to observe
that in this context, the function f(·) introduced in the bootstrap definition is
the mean of the BMI for men minus the mean of the BMI for women. In general,
this function can be much more complicated, as long as it is computable.

Here we conduct a bootstrap with 10000 resamples of the data. The philoso-
phy is quite simple: create bootstrap samples of the data and for each sample
calculate the mean difference between the BMI of men and women.
B_boot<-10000 #number of bootstrap samples
mean_diff=rep(NA,B_boot) #define the vector storing the differences in BMI
for (i in 1:B_boot)
{#Begin bootstrap
mm<-mean(men_bmi[sample(1:n_men,replace=TRUE)]) #calculate the mean for men

mw<-mean(women_bmi[sample(1:n_women,replace=TRUE)]) #calculate the mean for women
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Figure 3.2: Histogram of 10000 bootstrap samples of the difference in mean
between the BMI of women and men.

mean_diff[i]<-mm-mw #calculate and store the difference
}#End bootstrap

The result of the bootstrap sample is a vector of length 10000 that contains
plausible results for differences in the mean of the BMI of men and women.
These results will tend to be close to 5.6 with some results a little farther away.
A good way to visualize just how close these plausible values are to 5.6 is to
plot the histogram of the 10000 bootstrap samples of the mean difference:
hist(mean_diff,breaks=20,col=rgb(0,0,1,1/4), xlim=c(-2,12),

xlab="BMI mean difference (men-women)", cex.lab=1.3,
cex.axis=1.3, col.axis="blue")

abline(v = m_diff,col="red",lwd=3)

Figure 3.2 displays this histogram and indicates that there are more than 1500
(15%) plausible values for the difference in means between 5 and 6 with very few
values below 0 or above 12. While these results cannot pinpoint what will be
the difference in a different study, they can provide information about how close
to 5.6 these results are likely to be. Of course, if the sample size were larger,
the plausible values would be closer to 5.6. This is sometimes referred to as the
sampling variability. All concepts will be rigorously defined in later chapters.

With this distribution, we can calculate the mean, standard deviation, and 95%
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confidence intervals (CIs) based on the Normal approximation or the bootstrap
distribution (more details later once we learn about quantiles of the standard
normal and empirical quantiles of a distribution).
mBoot<-mean(mean_diff) #calculate the mean of the differences
sdBoot<-sd(mean_diff) #calculate the sd of the differences
CI1<-c(mBoot-1.96*sdBoot,mBoot+1.96*sdBoot) #normal approximation to the 95% CI
CI2<-quantile(mean_diff,probs=c(0.025,0.975)) #bootstrap 95% CI

Display and compare the two 95% CIs (normal and bootstrap approximations)
round(CI1, digits = 2) # normal approximation

[1] 0.82 10.35
CI2 # bootstrap approximation

2.5% 97.5%
0.8 10.4

The difference in length of the bootstrap and Normal approximation intervals
as percent of the length of the Normal interval is:

[1] 0.69

which is less than 1% difference. Figure 3.3 displays the bootstrap results to-
gether with the 95% Normal approximation confidence intervals (red) and the
bootstrap quantile approximation (blue):
hist(mean_diff, probability=TRUE, col=rgb(0,0,1,1/4), breaks=20,

xlim=c(-2,12), xlab="BMI mean difference (women-men)", cex.lab=1.3,
cex.axis=1.3, col.axis="blue")

abline(v = CI1,col="red",lwd=3)
abline(v = CI2,col="blue",lwd=3)

3.3 Probability

We have already introduced some concepts (bootstrap, confidence intervals) that
have not been defined, though are very useful and intuitive. To better under-
stand and anchor these concepts in a conceptual framework we need to introduce
the notion of probability. Much of biostatistics uses this concept. For example,
one is often interested in answering questions of the type:

(1) what is the probability that a 56 year-old female who was just diagnosed
with breast cancer will die in 10 years?

(2) how much will the 1-year survival probability increase for a patient who
receives a kidney transplant?

(3) what are the odds of becoming infected with the human papillomavirus
(HPV) from an unprotected sexual contact?
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Figure 3.3: Histogram of 10000 bootstrap samples of the difference in mean
between the BMI of women and men with 95% cofidence intervals.

All of these questions, and many others, rely on the idea that such a thing as
probability exists. Probability has been found to be extraordinarily useful, even
if true randomness is an elusive, undefined, quantity. While there is complete
agreement on the mathematical rules probability must follow, disagreements
about the interpretation of probability persist. For example, the frequentist
interpretation of probability is the proportion of times an event occurs in an
infinite number of identical repetitions of an experiment. The Bayesian inter-
pretation of probability is a subjective degree of belief with the understanding
that for the same event, two separate people could have different probabilities.
Bayesian statistics was named after the 18th century Presbyterian Minister and
mathematician Thomas Bayes (Bayes, Price, and Canton 1763). While philo-
sophical differences can be quite large, the practical differences to data analysis
and inference are negligible.

3.4 Probability calculus

A probability measure, P , is a real valued function defined on the collection of
possible events so that the following hold:

1. For every event E ⊂ Ω, 0 ≤ P (E) ≤ 1
2. P (Ω) = 1
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3. If Ei, for i = 1, . . . , ∞ are mutually exclusive events (Ei ∩Ej = ∅ for every
i ̸= j) then

P

( ∞∪
i=1

Ei

)
=

∞∑
i=1

P (Ei) .

This is called countable additivity. Countable additivity implies finite additivity
as can be seen by setting Ei = ∅ for i ≥ N in the previous equation, where N
is an arbitrary finite number. It is easy to show that P (∅) = 0, which implies:

P

(
N∪

i=1
Ei

)
= P

(
N∪

i=1
Ei ∪ ∅

)
as any E = E ∪ ∅

= P

(
N∪

i=1
Ei ∪

∞∪
i=N+1

∅
)

=
N∑

i=1
P (Ei) + 0 since Ei ∩ ∅ = ∅

=
N∑

i=1
P (Ei) .

Finite additivity does not imply countable additivity and it is not sufficient for
defining probability. There exist probability theories that require only finite
additivity, but they have strange properties. Note that for N = 2 we have

P (A ∪ B) = P (A) + P (B)

if A ∩ B = ∅. The probability function is defined on F , which is a collection
of subsets of the original set Ω. The subsets of Ω that belong in F are called
measurable because they can be assigned a probability. When Ω is finite, things
are clear, as F is the collection of all subsets of Ω and can be obtained by direct
enumeration. For example, when Ω = {1, 2, 3} we have

F = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

The number of possible events is |F| = 23 = 8 when |Ω| = 3. If |Ω| = n
then |F| = 2n. Here |A| denotes the cardinality of the set A and is equal to the
number of elements in that set. While the size of |F| increases very quickly with
n, to completely characterize the probability on F we only need the probability
of the elementary events {1}, {2}, {3}. Indeed, if p1 = P ({1}), p2 = P ({2}) and
p3 = P ({3}) then we can easily calculate the probability of any other event.
For example, P ({1, 2}) = P ({1}) + P ({2}) = p1 + p2. Note that p3 is actually
redundant as p3 = 1 − p1 − p2, so the probability function on F is completely
described by two probabilities, p1 and p2, of elementary events. If |F| = n, the
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probability function is completely defined by n − 1 probabilities of elementary
events.

When Ω is a continuous set, the definition gets much trickier. In this case we
assume that F is sufficiently rich so that any set that we are interested in will be
in it. For example, if Ω = R is the set of real numbers then all intervals on the
real line are Borel-measurable. This sounds fancy, but it basically means that
the probability function assigns a probability to every interval of the form [a, b],
where a and b could be finite or infinite. As we will see in the case of probability
distribution functions, the definition depends on defining probabilities of the
type P{(−∞, a]} for all a ∈ R. Without going into details, if the probability is
defined on all intervals [a, b] then it is also defined over all measurable sets. For
practical purposes we will only deal with probabilities of intervals.

Based simply on the rules of probability and set theory it is relatively easy to
prove

• P (∅) = 0
• P (E) = 1 − P (Ec)
• P (A ∪ B) = P (A) + P (B) − P (A ∩ B)
• If A ⊂ B then P (A) ≤ P (B)
• P (A ∪ B) = 1 − P (Ac ∩ Bc)
• P (A ∩ Bc) = P (A) − P (A ∩ B)
• P (∪n

i=1Ei) ≤
∑n

i=1 P (Ei)
• P (∪n

i=1Ei) ≥ maxi P (Ei)

Let us prove a couple of these results. Note that, by definition, Ω = E ∪ Ec and
E ∩ Ec = ∅. Thus,

1 = P (Ω) = P (E ∪ Ec) = P (E) + P (Ec) ,

which implies that P (E) = 1 − P (Ec). The equality 1 = P (Ω) follows from the
axioms of probability, whereas the equality P (E ∪ Ec) = P (E) + P (Ec) follows
from finite additivity and the fact that E ∩ Ec = ∅. Some of the set theory
results are left unproven and are given as problems at the end of this chapter.
We will prove the following result P (∪n

i=1Ei) ≤
∑n

i=1 P (Ei) to illustrate the
concept of proof by induction. A proof by induction shows that the property
(in this case the inequality) holds for n = 2 and proceeds by assuming that it
holds for n − 1 and showing that it holds for n.

Proof for n = 2:

P (
2∪

i=1
Ei) = P (E1 ∪ E2)

= P (E1) + P (E2) − P (E1 ∩ E2)

and since P (E1 ∩ E2) ≥ 0 it follows that P (E1 ∪ E2) ≤ P (E1) + P (E2) for every
E1 and E2.
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Assumption: Now let us assume that P (∪n−1
i=1 Ei) ≤

∑n−1
i=1 P (Ei) and take

A = ∪n−1
i=1 Ei and B = En.

Induction: Since P (A ∪ B) ≤ P (A) + P (B) and A ∪ B = ∪n−1
i=1 Ei it follows

that:

P (
n∪

i=1
Ei) = P (

n−1∪
i=1

Ei ∪ En)

≤ P (
n−1∪
i=1

Ei) + P (En) since P (En) ≥ 0

≤
n−1∑
i=1

P (Ei) + P (En) by assumption

=
n∑

i=1
P (Ei)

where the second inequality is true by the assumption that the inequality holds
for n − 1. Getting a feel for proving elementary probability results can be done
by trying to prove these results and using Venn diagrams to understand the
symbols from set theory. Indeed, what may look daunting in terms of set theory
symbols may actually be a simple concept to understand visually.

3.4.1 Example: Sleep disorders

The National Sleep Foundation (www.sleepfoundation.org) reports that around
3% of the American population has sleep apnea. They also report that around
10% of the North American and European population has restless leg syndrome
(RLS). Similarly, they report that 58% of adults in the US experience insomnia.
Does this imply that 71% of people will have at least one of these three sleep
problems?

The answer is no because the events are not mutually exclusive. That is, if a
person has sleep apnea it does not mean that they cannot experience insomnia
or suffer from RLS. It is important to translate the words describing the prob-
lem and conceptualize them into statistical formulas that can be used to assist
reasoning. To do this define

• A1 = {Person has sleep apnea}
• A2 = {Person has RLS}
• A3 = {Person has insomnia}

The event {Person has at least one of the three sleep problems} can be written
as A1 ∪ A2 ∪ A3 and we are interested in quantifying P (A1 ∪ A2 ∪ A3), that

http://www.sleepfoundation.org
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is, the probability that a random person chosen from the population will have
at least one of the three sleep problems. We already know that P (A ∪ B) =
P (A) + P (B) − P (A ∩ B). Setting A = A1 ∪ A2 and B = A3 it follows that

P (A1 ∪ A2 ∪ A3) = P (A1 ∪ A2) + P (A3) − P ({A1 ∪ A2} ∩ A3)

Because P (A1 ∪ A2) = P (A1) + P (A2) − P (A1 ∩ A2) and P ({A1 ∪ A2} ∩ A3) =
P ({A1 ∩ A3} ∪ {A1 ∩ A3}) it follows that

P (A1∪A2∪A3) = P (A1)+P (A2)+P (A3)−P (A1∩A2)−P ({A1∩A3}∪{A2∩A3})

By setting A = A1 ∩ A3 and B = A2 ∩ A3 we have P ({A1 ∩ A3} ∪ {A2 ∩ A3}) =
P (A1 ∩ A3) + P (A2 ∩ A3) − P (A1 ∩ A2 ∩ A3). Putting everything together we
have

P (A1 ∪ A2 ∪ A3) =P (A1) + P (A2) + P (A3)
− P (A1 ∩ A2) − P (A1 ∩ A3) − P (A2 ∩ A3)
+ P (A1 ∩ A2 ∩ A3)

So, P (A1 ∪ A2 ∪ A3) = 0.71 − Other stuff, where Other stuff ≥ 0. Of course, we
already knew that, but the formula above explains exactly how we have been
overestimating P (A1 ∪ A2 ∪ A3) by P (A1) + P (A2) + P (A3) = 0.71. More
precisely, what would be left out is the counting of the subjects who have at
least two of the sleep problems and those who have all three sleep problems.
The formula suggests what additional information one would need to calculate
the probability of having at least one of the three sleep problems.

3.4.2 Example: Birthday problem

In a given room what is the probability that at least two people have the same
birthday (not necessarily the same year)? Assume that birthdays occur ran-
domly and with the same probability throughout the year. Let us start by
calculating this probability for a room with n = 2 people and observe that

P (at least two) = 1 − P (none)

We will enumerate the number of possibilities for birthdays to occur such that
no two birthdays fall on the same day. For a pair of two individuals there are
a total of 365 × 365 possibilities for pairs of birthdays. The number of pairs of
birthdays that are not the same is 365 × 364, because the first person can have
any day of the year as a birthday (365) whereas the second person can only have
any day of the year as birthday, except the birthday of the first person (364).
Thus, when n = 2

P (at least two) = 1 − 365
365

× 364
365

.
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Using a similar reasoning for n = 3 we have

P (at least two) = 1 − 365
365

× 364
365

× 363
365

,

and for a general n we have

P (at least two) = 1 − 365
365

× 364
365

× . . . × 365 − n + 1
365

.

There is an assumption that we have glossed over, which was the randomness
assumption. This assumption allowed us to do the calculations by allowing the
second individual to have any of the other days as a birthday irrespective of
the birthday of the first individual. This, of course, would not be true if sub-
jects were not chosen independently from one another. For example, if the two
subjects were chosen to have the same birthday month, the assumption of inde-
pendence would be violated and the probabilities would be very different (higher
or lower?). The other assumption was that each day has an equal probability of
being a birthday and that no particular days are favored to be birthdays in this
population. Calculations would be computationally harder under the no equal
probability assumption, but they are doable. We will discuss these concepts in
detail, but it is important to observe how probability calculations and explicit
assumptions about the sampling mechanisms go together.

We show how to calculate the probability for having two people with the same
birthday in a room. If there are more than 365 people the probability is 1 (here
we conveniently ignore leap years). Thus, we calculate the probability only for
rooms with fewer than n < 365 people.
n=1:364 #Vector of number of people in the room
pn=n #Vector that will contain the probabilities
for (i in 1:364) {
pn[i]<- 1-prod(365:(365-i+1))/365^i

} #Prob. of >= 2 people with same B-day

The function prod() calculates the product of the elements of the argument vec-
tor. In this case we are working with very large numbers, so it may be indicated
to use prod(365:(365-i+1)/365) instead of prod(365:(365-i+1))/365^i,
whereas the first statement takes the product of fractions and the second takes
the products of integers, which can be very large, then divides it to make it a
fraction. Another useful technique when calculating the product of a sequence
of numbers, say l1, . . . , ln is to use

∏
i li = exp{

∑
i log(li)}. Of course, this is

a trivial equality, but it is much easier to numerically calculate
∑

i log(li) and
then take the exponential of this sum when li’s are very large or very small.
This will be the case especially when we will deal with likelihoods.

Also, instead of using the for loop above, we can use the cumprod function
which does a cumulative product:
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Figure 3.4: Probability that at least 2 people will have the same birtday (y-axis)
as a function of the number of people in the room (x-axis.)

pn2 = 1 - cumprod(1:n/365)

Warning in 1:n: numerical expression has 364 elements: only the first used

Display results for the size of the group equal to 23 and 57.
round(pn[c(23,57)], digits = 3)

[1] 0.507 0.990

Note that for a group of 23 people there is a 50% chance that at least two people
will have the same birthday, whereas for a group of 57 people there is a 99%
chance. These results may be a bit surprising, but the probability calculation is
quite straightforward. We now plot the probability of having at least two people
with the same birthday as a function of the number of people in the group. We
will also learn some details about plotting. Note the various options that are
used to make the plot look better. You may want to play with these options to
understand their effects on the final plot.
plot(n[1:100],pn[1:100],type="p",pch=19,col="blue",lwd=3,

xlab="Number of people in the room",ylab="P(at least 2 same-day B-days)",
cex.lab=1.3,cex.axis=1.3,col.axis="blue")

Figure 3.4 displays these probabilities up to the group size n = 100, because
probabilities for n > 100 are extremely close to 1. We show how the probability
can be estimated using simulations (also called the Monte Carlo method). Sup-



3.4. PROBABILITY CALCULUS 61

pose that we are interested in estimating the probability that two individuals
have the same birthday in a group of n individuals. Here it is the corresponding
R code:
set.seed(7654098)
n=23 #number of people in the room
n_sim=10000 #number of Monte Carlo simulated rooms with n people
are_2_birthdays<-rep(NA,n_sim) #vector of indicators for >=2 same B-day
for (i in 1:n_sim)
{#begin simulations
#calculate the number of unique birthdays in a group of n people
n_birthdays<-length(unique(sample(1:365,n,replace = TRUE)))
are_2_birthdays[i]<-(n_birthdays<n)
}#end simulations

mean(are_2_birthdays)

[1] 0.4994

The Monte Carlo simulation result does not provide a perfect calculation of
the probability, but it is extremely close. This could be further improved by
increasing the number of simulations to 100, 000 or more. This provides an
example of how powerful simulations can be; indeed, one could easily adapt the
code to take into account unequal probabilities of birthdays for the different
days of the year or more complicated decision rules. For example, suppose that
we are interested in obtaining the probability that in a room with n people
exactly two girls are born on the same day and one boy is born on the same
day with the two girls but at least three boys are born on the same day, which
could be different from the birthday of the two girls. Of course, this is a highly
artificial example, but it provides an example of a question that could easily be
answered by simulations and with great difficulty using explicit calculations.

We will unpack the simulation process a little bit to better understand how it
works. We start by a little more closely investigating what the following R code
does
x<-sample(1:365,n,replace = TRUE)
x

[1] 85 157 360 155 167 85 274 46 291 32 339 13 263 85 113 319 221
[18] 105 100 1 105 24 325

So, the code produces numbers between 1 and 365 that assign birthdays to
individuals. For example, the first person in this sample was assigned 85 and
the second was assigned 157 indicating that they were born on March 26 and
June 6, respectively (here we deal with non-leap years only). These birthdays
are assigned randomly and the same birthday can be assigned again. Indeed,
in this case there are three individuals who were born on March 26 (day 85)
and two individuals who were born on April 15 (day 105). This happens even
though the probability of somebody being born on March 26 and April 15 is
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the same for every other day of the year. This is ensured by the definition of the
sample function. The reason that the same date can occur is that the sampling
is with replacement, as indicated by replace=TRUE. So, this simple R line does
the following:

(1) assigns a date of birth at random among all possible days of the year to
the first person in the room where every birthday has probability 1/365;

(2) assigns a date of birth at random among all possible days of the year to
the second individual in the room independently of the assignment of the
first person’s birthday;

(3) keeps on applying the same procedure for every person in the room. The
following code:

unique(x)

[1] 85 157 360 155 167 274 46 291 32 339 13 263 113 319 221 105 100
[18] 1 24 325
length(unique(x))

[1] 20

explains how the number of unique birthdays is calculated among the 23 birth-
days in the sample. The function unique(x) is simply a vector transformation
of x that keeps only records that are unique. Indeed, note that unique(x)
contains 85 and 105 only once and the length of the vector is only 20 because
there were 3 subjects with the same March 26 and 2 subjects with the same
April 15 birthday. Therefore, among the 23 birthdays for this sample there
are exactly 20 different samples. The are_2_birthdays[i] vector stores the
True/False flag of whether there is more than one identical birthday in the sam-
ple. This is obtained by comparing length(unique(x))=20 with the number of
people in the group n=23. In this case length(unique(x)) < n indicating that
“there are at least two individuals in the group with the same birthday.” Thus,
the flag will be true indicating that in this random group of 23 subjects there
are at least two individuals with the same birthday. This is repeated n_sim
<- 10000 times indicating that the final vector are_2_birthdays has 10000
entries, where every entry indicates whether or not in one of the 10, 000 groups
of 23 individuals there are individuals who have the same birthday. Thus, the
mean(are_2_birthdays) will provide the proportion of times when groups of
23 individuals contain individuals with the same birthday. In this simulation
the proportion was 0.4994 indicating that in 4994 groups there were individuals
with the same birthday and in 5, 006 groups there were no individuals with the
same birthday. This is close to the true 0.5073 probability of 23 birthdays in
the sample.

Similarly, we will introduce two new functions that may have been used above.
Instead of using length and unique on the sample of birthdays, we could have
done:
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any(duplicated(x))

[1] TRUE

where the duplicated function returns TRUE when it finds a duplicate in the
data. Note, if you have a vector c(1, 1, 3), only the second 1 will return TRUE.
The any function takes in a logical statement and returns back a single logical
if any elements are true. Thus, as with most things in programming in R, there
are many ways to approach the problem.

In this and most examples, translating even human communication of scientific
concepts into explicit and actionable biostatistical concepts needs to be done
carefully and thoughtfully. Indeed, in our experience more than 90% of the
problem is to formulate and understand it. Typically, this part of biostatistics
is not taught or emphasized and the biostatistician is expected to “pick up”
the skills. While we acknowledge that teaching communication and translation
is difficult, we will emphasize throughout the book the need to understand
problems at a deeper level. Indeed, we often encounter cases when researchers
say they understand something without fully understanding it and they are
interested in the tools that will get the job done. This works as long as the data
analyst performs the same protocol over and over again on exactly the same
data structure with the same problems. However, when something changes the
biostatistician who can adapt and understand the problem at the deeper level
will tend to be more appreciated and acknowledged.

3.4.3 Example: The Monty Hall problem

There are three doors with a prize behind one and worthless joke prizes (goats)
behind the other two. The contestant selects a door. Then Monty Hall shows
the contents of one of the remaining two (Monty Hall never opens the door
to the actual prize.) After showing the joke prize behind the open door, the
contestant is asked if he or she would like to switch. Should they? The problem
was originally posed in a letter by Steve Selvin to the American Statistician in
1975 (Selvin 1975) and has puzzled many scientists. For example, according to
Wikipedia, Paul Erdős was only convinced by the results of simulation.

Suppose that you choose door number 1; similar reasoning holds for any other
door choice. Consider all three scenarios in terms of distribution of the prize
and joke prizes (Goat).

Scenario 1 Scenario 2 Scenario 3
Door 1 Prize Goat Goat
Door 2 Goat Prize Goat
Door 3 Goat Goat Prize
Switch Lose Win Win

https://en.wikipedia.org/wiki/Monty_Hall
https://en.wikipedia.org/wiki/Monty_Hall_problem
https://en.wikipedia.org/wiki/Monty_Hall_problem
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The answer is that it is actually better to switch the door because the probability
of success is 1/3 if one does not switch the door and 2/3 if one switches the door.
In Scenario 1 the prize is behind door 1. In this case Monty Hall would open
either of the doors with a joke prize. Switching doors in this case is a losing
strategy. Consider now the second scenario when the prize is behind door 2.
Because you chose door 1 Monty Hall will have to open door 3, which has the
joke prize. In this case switching doors would be a winning strategy. The exact
same scenario happens if the prize is behind door 3. Thus, if the strategy is to
choose 1 and not switch then the probability of winning is 1/3. If the strategy
is to switch then the probability is 2/3, or double the probability of winning
under the no-switch strategy.

We will now simulate the Monty Hall problem and we will provide Monte Carlo
simulations of the game. This should illustrate two things: (1) that probabilities
can be different depending on the strategy for opening the door; and (2) that
Monte Carlo simulations are a powerful strategy to quickly answer complex
questions in games of chance.

Estimate the winning probability with switch and no-switch strategies. Play
the Monty Hall game 10, 000 times with each strategy
n_games=10000 #set the number of games
doors=1:3 #label doors
no_door_switching=rep(NA,n_games) #use storage vectors for successes
door_switching=no_door_switching
for (i in 1:n_games)

{#begin playing
draw_prize=sample(doors,size=1) #randomly assign 1 prize to a door
draw_door=sample(doors,size=1) #randomly choose 1 door
no_door_switching[i]=(draw_prize==draw_door) #win/loose for no switching
if (draw_door==draw_prize) { #if chosen door has prize

show_door=sample(doors[-draw_prize],size=1) #MH opens a no prize door
}else { #if chosen door has no prize

show_door=doors[c(-draw_door,-draw_prize)] #MH opens a no prize door
}
door_switch=doors[c(-draw_door,-show_door)] #identify door to switch
door_switching[i]=(draw_prize==door_switch) #win/loose if switching

}#end playing

Compare the frequency of success of the two strategies
round(c(mean(door_switching),mean(no_door_switching)),digits=3)

[1] 0.657 0.343

This is the probability of winning when one plays the game many times. If
the authors of this book had the choice, they would always switch. However,
there is no guarantee of winning under either strategy, just a large increase in
the probability of winning by using the switching strategy. This is a simple
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game and we provided a way of playing it many times, very fast on a computer.
The lesson here is that much more complicated games and strategies can be
understood and analyzed using similar strategies. As long as the rules of the
game are clear, simulations can be used to understand and quantify the role
of probability. On a more somber note, studying the probability of dying or
becoming unhealthy in a given period of time is not a game. However, there
is a direct connection between the rules of probability and potential strategies
to improve the odds of survival even when not everybody can be saved (win).
Reasoning under uncertainty, especially in cases of life and death, is extremely
hard, but crucial to advancing science. This is the reason why we take a close
look at probability, understanding its rules, and eventually link it to data and
experiments.

3.5 Sampling in R

Sampling and simulations are very important in data analysis. Understanding a
model for data and simulating its real life characteristics are important for model
building and refinement. Moreover, simulation is a powerful tool for computing
quantities that are difficult to calculate mathematically and for characterizing
the uncertainty of estimation procedures. Sampling, probability, and statistics
go hand-in-hand and understanding sampling is one of the fundamental ways of
understanding variability. Here we introduce some basic sampling ideas in R to
facilitate this process.

3.5.1 Sampling without replacement

In this case after each draw the number that is drawn cannot be drawn again
(e.g. lottery)
x1 <- sample (1:6) #a random permutation
x2 <- sample (1:6) #and another
x3 <- sample (1:6) #and another
x1

[1] 4 1 3 6 5 2
x2

[1] 6 4 3 2 5 1
x3

[1] 3 5 1 6 2 4

The sample with replacement without specifying how many samples to draw
will produce a random permutation in R. This happens because the default
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parameters are set to sample with replacement a number of times equal to the
length of the vector and replace=FALSE. In general there are n! permutations for
a vector of length n, so for the vector 1:6 there are 6! = 6×5×4×3×2×1 = 720
distinct permutations. Random permutations are a type of resampling without
replacement. They are extensively used in random permutation testing, for
example, when one is interested in comparing a treatment to a control group.
In this case a test statistic is constructed (e.g. the difference in mean of the two
groups). However, to assign statistical significance to the observed discrepancy
between groups, one would need to know what types of values are consistent
with the observed data. A permutation of treatment labels approach could
provide the null distribution of the test statistic (more about these concepts
later). To see how this works let us consider the simple BMI/SEX example
introduced earlier:
file.name = file.path("data", "bmi_age.txt")
data_bmi = read.table(file = file.name, header = TRUE,

stringsAsFactors = FALSE)
attach(data_bmi)
test_statistic<-mean(BMI[SEX==1])-mean(BMI[SEX==0])
test_statistic

[1] 5.6

The value of the test statistic in this dataset represents the difference in the
average BMI of men and women. We conclude that there is a positive differ-
ence equal to 5.6 between the average BMI of men and women in this sample.
However, if there is no association between BMI and SEX then we expect this
difference to be larger than 0 in 50% of the samples. So, the fact that the differ-
ence is positive is not that surprising. The question is whether a value as large
as 5.6 is a reasonable value if we believe there is no association between BMI
and SEX. Let us have a second look at the BMI/SEX data
data_bmi[,2:3]

BMI SEX
1 22 1
2 27 0
3 31 1
4 24 1
5 23 0
6 18 0
7 21 0
8 26 1
9 34 1
10 20 0

This representation of the data means that the pair of BMI/SEX information
is assigned to a specific individual. Under the assumption that BMI is not
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associated with SEX we could randomly permute the SEX-assignment labels
among the individuals.
data_BMI_perm<-data_bmi
random_perm<-sample(1:length(SEX))
data_BMI_perm[,"SEX"]<-sample(data_BMI_perm[random_perm,"SEX"])
random_perm

[1] 3 6 1 2 7 4 5 9 10 8
data_BMI_perm[random_perm,c("BMI", "SEX")]

BMI SEX
3 31 1
6 18 1
1 22 0
2 27 1
7 21 0
4 24 0
5 23 0
9 34 0
10 20 1
8 26 1

Let us have a closer look at what the random_perm vector contains and what is
its action on the data. The first entry of the vector is 3, which indicates that
the SEX of the third person in the data will be assigned the SEX of the first
person in the data. In this case, both are male (label=1) and the data line for
subject 1 does not change. The second entry of the vector is 6, indicating that
the SEX of the sixth person in the data will be assigned to the second person
in the data. As both are female (label=0) the data line for subject 2 does not
change. The fourth entry of the random_perm vector is 2, indicating that the
SEX of the fourth person in the data (who is a male in the original dataset) will
be assigned the SEX of the second person in the data (who is a female in the
original dataset). This is a case when the gender assignment is switched. The
number of men and women is the same, but the label assignment has changed
for some of the people via the random permutation. Subjects 1 through 3 have
not had their SEX assignment changed, but subject 4 was switched from man to
woman and subject 6 was switched from woman to man. The SEX reassignment
permutation is breaking any associations between SEX and BMI that may have
existed in the original dataset. Thus, an acceptable value of the test statistic
when we know that there is no association between SEX and BMI is:
ind_m_perm<-(data_BMI_perm[,"SEX"]==1)
mean(data_BMI_perm[ind_m_perm,"BMI"])-mean(data_BMI_perm[!ind_m_perm,"BMI"])

[1] -0.4

Of course, there are many such acceptable values when there is no association
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Figure 3.5: Distribution of differences in the mean between the mean BMI of
men and women using 10000 permutations of the SEX variable. This breaks
the association between BMI and SEX if any existed.

between SEX and BMI. In general, we cannot do an exhaustive search over all
possible permutations, so a finite number of permutations is used instead. This
is done below using the following R code:
n_perm=1000
accept_values=rep(NA,n_perm)
for (i in 1:n_perm)
{
data_BMI_perm<-data_bmi
random_perm<-sample(1:length(SEX))
data_BMI_perm[,"SEX"]<-data_BMI_perm[random_perm,"SEX"]
ind_m_perm<-(data_BMI_perm[,"SEX"]==1)
accept_values[i]<- mean(data_BMI_perm[ind_m_perm,"BMI"]) -
mean(data_BMI_perm[!ind_m_perm,"BMI"])

}
hist(accept_values,probability=TRUE,col=rgb(0,0,1,1/4),breaks=20,

xlab="Difference in the mean BMI (men-women)",
main="Histogram of acceptable values",
cex.lab=1.3,cex.axis=1.3,col.axis="blue")

lines(c(test_statistic,test_statistic),c(0,0.05),col="red",lwd=3)
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The histogram in Figure 3.5 provides the distribution of acceptable values for
the test statistic, which, in our case, is the difference in BMI between men
and women. The red line indicates the observed value of this difference in the
original dataset. One question could be just how extreme is the observed value
of the BMI difference for this dataset. One way to calculate that is by obtaining
the frequency of how many times the acceptable values (under the assumption
of no association between BMI and SEX) are more extreme than the observed
value of the test statistic. This is obtained simply as:
p_value=mean(accept_values>test_statistic)
p_value

[1] 0.045

This frequency is 4.5%, which indicates that the observed value of difference
in BMI is quite unlikely under the assumption of no association between BMI
and SEX in our dataset. This probability will be referred to as the p-value for
the observed difference for the permutation test. The p-value will play a very
important role in hypothesis testing. For now, we just use it to illustrate a
principle.

3.5.2 Sampling with replacement.

In this case after each draw the number is placed back in the box and can be
drawn again (e.g. lottery)
x1 <- sample (1:6,10,replace=TRUE) #sampling with replacement
x2 <- sample (1:6,10,replace=TRUE) #again
x3 <- sample (1:6,10,replace=TRUE) #and again
x1

[1] 6 1 3 2 2 1 6 3 4 4
x2

[1] 1 5 2 1 1 3 2 5 2 6
x3

[1] 2 3 3 2 1 2 3 4 1 3

Once the vector is sampled, various operations can be applied to it
sum (x1 == 3) #how many are equal to 3

[1] 2
max (x1) #maximum of x1

[1] 6
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median(x1) #median of x1

[1] 3

The nonparametric boostrap is sampling with replacement of the vector with a
number of draws equal to the length of the vector. Do not underestimate the
importance of simple ideas. Statistics is the science of simplicity.
x <- sample ( 1:10, 10, replace=TRUE ) #nonparametric bootstrap
n=30 #for an arbitrary n
x <- sample ( 1:n, n, replace=TRUE ) #nonparametric bootstrap

For a vector of length n there are nn nonparametric boostrap samples. If n = 10,
there are 1010, or 10 billion, possible bootstrap samples.

3.6 Random variables

A random variable is a numerical outcome of an experiment. The random vari-
ables that we study will come in two varieties, discrete and continuous. Discrete
random variables are random variables that take on only a countable number
of possibilities, whereas continuous random variables can take any value on the
real line or some subset of the real line. Examples of random variables include:

• The 0/1 outcome of the flip of a coin
• The Dead/Alive outcome for a patient with lung cancer after five years
• The hypertension status of a subject randomly drawn from a population
• The outcome from the roll of a die
• The no/mild/severe outcome for a cognition impairment test
• The BMI of a subject four years after a baseline measurement
• The time to death of a person suffering from diabetes

The concept of a random variable can be defined more rigorously, but we be-
lieve that such a definition would not help either with the intuition or with the
practice of biostatistics. Though basic and practical, the concept of a random
variable remains hard to explain and understand. Consider the following exper-
iment: sample, at random, from the US population n = 300 individuals and
ask each one of them whether they support the death penalty. Each person can
respond yes/no and the proportion of people who support the death penalty is
the outcome of the experiment. Of course, if we wait until after the experiment
is finished there is nothing random left; we simply have the data and a pro-
portion of individuals among the 300 sampled who support the death penalty.
However, before the experiment is started there is much uncertainty about what
the result of the experiment will be. Because we do not know the result of the
experiment before the experiment is run, we call the result of the experiment a
random variable.
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Now let us investigate what we really know after the data were collected on 300
individuals and let us assume that exactly 180 people have said they approve
of the death penalty. This says that in this sample of 300 people the death
penalty approval rate was 60%, which would signal that the approval rate in
the population is quite high. But is it exactly 60% or could it be 58% or 61%
or maybe 70%? One solution could be to talk to every person in the US, but
this is practically impossible and a huge waste of resources. Indeed, by the time
such a census would be finished it is likely that the overall proportion of death
penalty supporters has already changed. Another solution could be to replicate
the experiment many times, say 1000, calculate the proportion of supporters in
every sample, and construct a histogram of acceptable values for the proportion
of supporters of the death penalty. The problem is that the study will now cost
1000 times more and will require a completely different level of logistics. Indeed,
one reason that most polling agencies use 500 to 2000 subjects per poll is that
polling more people becomes extremely complicated and costly. What we would
like is to have the cake and eat it, too. That is, we would like to conduct one
poll, not spend the money on more data, and obtain a distribution of acceptable
values for the proportion of people supporting the death penalty. The bootstrap
is offering this solution. Indeed, a nonparametric bootstrap sample can do ex-
actly that: build a large number of experiments with 300 subjects by sampling
the subjects with replacement and calculating the proportion every time. An al-
ternative solution, based on the central limit theorem (CLT) can also be used to
calculate the confidence interval. This indirect way of thinking is very powerful
in data analysis, but it is difficult to master because the concepts of uncertainty
are not intuitive and are beyond simple mathematical logic. This is the reason
why many students who have a very good mathematical background can have a
hard time transitioning into data analysis. Indeed, mathematical concepts are
often perfect and deductive, and proofs thereof are final. Data and real world
are much, much more complicated and require a different way of thinking and
a completely different platform for inference.

A random variable is the outcome of the experiment before the experiment is
run, and the realization of the random variable is the observed outcome of the
experiment. The difference between the two is the time needed to conduct the
experiment. For example, in a prospective study of lung cancer survival the
random variable is whether an individual will develop cancer within 10 years of
when monitoring of that individual had begun. To see the result of the experiment
we would need to wait 10 years and record whether the person developed lung
cancer or not. The reason why random variables are useful is that planning the
experiment, developing the sampling scheme, and implementing the experiment
are conducted 10 years before data are collected. Moreover, the study needs to
be planned such that the results are generalizable to other identical experiments
and to the target population (the population we sample from).
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3.7 Probability mass function

While before running the experiment we cannot know exactly what the outcome
of the experiment will be, we typically know all possible outcomes. For example,
for a particular person with lung cancer we do not know whether they will be
dead or alive in five years. However, we know that they will be either dead (0)
or alive (1). The distribution of such a variable is completely characterized if
we know the probability of being dead, p(0), or alive, p(1) = 1 − p(0), after
five years. For discrete variables there are only a finite or countable number of
possible outcomes and the distribution is completely specified if the probability
of every possible outcome of the experiment is known.

The probability mass function (pmf) of a random variable X is the function
that assigns a probability that X takes a particular value. If K is the set of all
possible outcomes for X, the pmf of X is p(k) = P (X = k) for every k ∈ K. To
be a valid pmf, a function p(·) must satisfy

(1) p(k) ≥ 0 for every k ∈ K
(2)

∑
k∈K p(k) = 1

The sum above is taken over all possible values of the experiment outcome and
can be taken over a finite or infinite number of experimental outcomes. For
example, for a Bernoulli random variable K = {0, 1} and the sum has two
elements, p(0) + p(1) = 1, while for a Poisson random variable K = {0, 1, . . . , }
and the sum is infinite, p(0) + p(1) + . . . = 1.

3.7.1 Example: Bernoulli random variables and sampling

A Bernoulli random variable is the outcome of an experiment with outcomes
success, labeled 1, or failure, labeled 0. There are many such experiments,
including flipping a coin and recording heads or tails, enrolling individuals with
lung cancer in a study and recording who died and did not die after five years, or
using a health intervention (e.g., intensive nutrition counseling) and recording
whether or not it was successful (e.g., the child did not progress to diabetes).

Let the random variable X be the result of a coin flip where X = 0 represents
tails and X = 1 represents heads. If the coin is fair, the pmf for X is given by
p(0) = P (X = 0) = 0.5 and p(1) = P (X = 1) = 0.5. A more compact way of
writing the pmf is

p(x) = 0.5x0.51−x for x = 0, 1 .

We are using X to denote the random variable, which can be thought of as what
is known about the realization of the experiment before the experiment is run,
and x to denote the realization of the random variable, which can be thought of
as what was obtained after the experiment was run. Suppose that the coin being
flipped is the coin that nature uses to decide whether an individual with lung
cancer will die in five years. This is not a fair coin in either a pure statistical
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or human definition, but it is a conceptual coin that nature flips constantly. If
θ is the probability of dying from lung cancer in five years then the pmf of this
experiment is

p(x) = θx(1 − θ)1−x for x = 0, 1 .

This formula is just a compact way of writing p(0) = θ0(1 − θ)1−0 = 1 − θ and
p(1) = θ1(1 − θ)1−1 = θ, where we use some of the least fancy math possible.
Of course, in this case surviving would be labeled as a “success” and “dying”
as a failure, but these labels can be used interchangeably as long as one clearly
states what is 1 and what is 0. While the coin flipping experiment is basic and
quite scientifically uninteresting, one is extremely interested in understanding
the probability of survival of lung cancer patients. From the point of view of
a patient it is important to know whether he or she will survive or not for at
least five years after lung cancer diagnosis. The doctor cannot predict whether
he or she will survive, but can provide the probability of survival. For example,
according to the American Cancer Society the five-year survival rate for people
with stage 2A non-small cell lung cancer (NSCLC) is about 30%. These rates
were obtained by observing survival time of individuals with this type of cancer.
This duality between what is known before the experiment (survival probability
for an individual who was just identified with stage 2A NSCLC) and what is
known after the experiment (whether this particular individual died five years
later) is the cornerstone of statistical thinking. Indeed, biostatistics is focused
on reasoning under uncertainty and providing information before the experiment
is run. In this case the patient does not need to wait five years to know the
probability of survival, but will need to wait, and hope, that they will be alive
five years later. Biostatistical thinking and inference does not have the elegance
of strict mathematical thinking, because nature and life provide problems that
are much harder to solve. Recall that a random variable, X, can be thought
of as what is known about the experiment before the experiment is run, and
the outcome, x, of the experiment is the realization of the experiment after the
experiment is run.

We will now discuss simulation of Bernoulli random variables, which will
facilitate getting used to the randomness associated with Bernoulli experiments
using simulations in R. Basically, every random variable can be derived
from simple Bernoulli draws (more about that later). Below we show how
to: (1) draw 21 samples from independent Bernoulli random variables with
probability of success of 0.5 (21 fair coin flips); and (2) draw 21 samples
from independent Bernoulli random variables with probabilities of success:
0.00, 0.05, 0.10, 0.15, . . . , 0.95, 1.00, respectively.
x1<-rbinom(21,1,0.5)
x2<-rbinom(21,1,seq(0,1,length=21))
x1

[1] 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0

https://www.cancer.org
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x2

[1] 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1

The two vectors are different and they reflect the different coin flipping mech-
anisms. The first vector is more chaotic in terms of changes between 0 and 1,
whereas the second vector tends to have more zeros at the beginning and fewer
zeros towards the end. This happens because the success probabilities for x2
are much higher towards the end of the vector than towards the beginning. Of
course, in practice we would not know anything about the probability of success
or failure, we would only see the outcome of the experiment. The question is
what could data teach us about what we should expect to see in the future. For
this we need to run both experiments again, as follows:
x1<-rbinom(21,1,0.5)
x2<-rbinom(21,1,seq(0,1,length=21))
x1

[1] 1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 0 1
x2

[1] 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1

Let us compare the results of the x1 and x2 experiments. We can see that there
is a lot more uncertainty in the first experiment than in the second. Indeed,
based on the first experiment, x1, it would be harder to predict what the second
experiment x1 will be. Indeed, there seems to be more structure in the outcome
of the experiment x2, as there are more zeros towards the beginning of the
vector and fewer towards the end. We recommend conducting more simulations
of this type and trying to understand what the outcomes mean.

3.7.2 Example: Poisson random variables and sampling

A Poisson random variable is the outcome of an experiment with measurements
that are counts between 0 and ∞ and a specific pmf. There are many experi-
ments that have counts as outcomes, including counting the number of patients
arriving at a clinic on a given day, counting the number of waterborne pathogens
in a water sample, and counting the number of reads in an RNA-seq analysis.
In contrast with the 0/1 outcome case, there are many different distributions
of counts. The Poisson distribution is the most popular distribution of counts
and has the pmf:

P (X = x) = λxe−λ

x!
for x = 0, 1, . . .

Here λ ∈ (0, ∞) is the average number of counts for the experiment. We will
now learn how to simulate Poisson random variables. We start by simulating
independently two periods of 15 days with an average number of patients per
day λ = 20
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Figure 3.6: Probability mass function for a Poisson with mean 20.

rpois(15,20)

[1] 18 24 17 15 14 20 11 17 27 17 14 19 17 21 26
rpois(15,20)

[1] 20 17 22 17 18 16 17 19 19 21 20 15 26 19 24

These two realizations correspond to a reasonable scenario, when the number of
patients varies by day, can be either larger or smaller than the average λ = 20,
and can be any integer number between 0 and ∞. Even though the two 15-
day intervals have a different pattern of number of patients, they do share
something in common. Indeed, the number of patients hovers around the mean
of the distribution. The mean of the Poisson distribution does not need to be an
integer (e.g. λ = 20.6 is perfectly acceptable) but the realizations of the Poisson
variable are always integers.

Consider a random variable, X, which has a Poisson(λ) distribution; this is
often represented in biostatistics as X ∼ Poisson(λ). Figure 3.6 displays the
pmf of a Poisson(λ) random variable for λ = 20
x=1:100
lambda=20
plot(x,dpois(x,lambda),type="p",pch=19,col="blue",lwd=3,

xlab="Number of patients",ylab="Probability",cex.lab=1.3,
cex.axis=1.3,col.axis="blue",ylim=c(0,0.1))

For every value taken by the random variable there is an assigned probability.
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For example, if the mean number of patients per day is 20, the largest probability
corresponds to 19 and 20 subjects, each with a probability of 0.089. The fact
that the largest probability is assigned to 19 and 20 subjects is not surprising,
but the pmf implies that only 17.8% of the days will have either 19 or 20 patients.
This means there will be many other days with a different number of subjects.
For example, the probability of seeing 18 or 21 subjects on a given day is 0.084,
smaller than the probability of seeing either 19 or 20, but close. On the graph
these probabilities are visualized as the two blue dots immediately beneath the
two blue dots indicating the maximum of the pmf. Using the rules of probability,
if a random variable, X, has a Poisson(20) distribution then

P (X ∈ {18, 19, 20, 21}) = P (X = 18)+P (X = 19)+P (X = 20)+P (X = 21) = 0.346

Suppose we would like to predict how many patients will show up tomorrow.
We cannot predict exactly how many patients will show up, but we know that
the average number of patients is 20. We know that 19 and 20 are the most
likely numbers of patients, but the probability of either 19 or 20 patients is just
0.178. Moreover, a number of 18 or 21 subjects is less likely than 19 or 20,
but not by much. The four possible outcomes 18, 19, 20, and 21 provide the
most likely combination of four numbers of subjects that are likely to come to
the clinic on a given day, but the probability of having any of 18, 19, 20, or 21
subjects is only 34.6%. It makes sense to continue this process and incorporate
less likely outcomes. It is easy to obtain (use R to convince yourself) that

P (X ∈ {12, 13, . . . , 28}) = 0.944

indicating that ≈ 95% of the days will have a number of patients between 12
and 28. This is called a prediction interval and is based on what we know about
the experiment before the experiment is run, that is, what we know today
about the number of patients that will show up tomorrow. Today we know
that the outcome is the number of patients, and the number of patients, X, is
distributed X ∼ Poisson(20). Of course at the end of the day tomorrow we will
have the outcome of the experiment, x, which is how many subjects did show
up. Once the experiment is run and the number of subjects is recorded there is
no uncertainty left about how many subjects have shown up. But uncertainty
remains about the day after tomorrow and so on.

Philosophical discussions about the difference between the random variable, X,
and the outcome of the random variable, x, can obscure the simple ideas we
discuss here. We find such discussions relatively unproductive and impractical.
For example, students often get stuck on the idea that, in fact, the outcome of a
coin flip is the result of well-known laws of physics including the force applied to
the coin, the location, spin angle, etc. This is true, and thoroughly unuseful as
we do not know these values, there are millions of other things that could affect
the outcome, and it is ultimately impractical to measure all possible effects.
For these reasons, randomness is an exceptionally useful concept that allows us
to make inference about the future or design other similar experiments. The
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deterministic view of the world, especially in the biological, social and medical
sciences, is impractical and needs to be replaced with the stochastic view. The
sooner the student accepts this the faster he or she will understand the deeper
concepts of biostatistics.

Of course, in practice we do not know that the number of patients on a given day
follows a Poisson(20) distribution, or any other distribution. We only see the
data, the number of patients over many days. Thus, it makes sense to use the
data and try to infer the underlying mechanism (distribution) that generates
the number of patients per day. To see how this works, we will simulate 1000
days (approximately 3 years of data) from a Poisson(20) and then simply plot
the frequency of seeing a particular number of patients. For example, for 20
patients we will calculate how many days had exactly 20 patients and we will
divide the number by 1000. This will reconstruct the pmf from observed data
y<-rpois(1000,20) #simulate 1000 independent Poisson(20)
py=rep(0,100) #storage vector of Poisson probabilities
for (i in 1:length(py)) #for every possible outcome between 1 and 100

{py[i]<-mean(y==i)} #calculate the frequency of observing i subjects

The table function works quite well here also to compute a frequency table of
the elements of y:
tab = table(y)
tab

y
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
2 1 3 11 20 37 45 50 55 101 96 81 102 83 66 66 64 34
26 27 28 29 30 31 32 33 34 36 37
19 21 19 8 4 4 2 2 2 1 1

We see the frequency counts for the observed values of y. Now, we can get the
probability by dividing by 1000 or simply using prop.table:
prop.table(tab)

y
8 9 10 11 12 13 14 15 16 17 18 19

0.002 0.001 0.003 0.011 0.020 0.037 0.045 0.050 0.055 0.101 0.096 0.081
20 21 22 23 24 25 26 27 28 29 30 31

0.102 0.083 0.066 0.066 0.064 0.034 0.019 0.021 0.019 0.008 0.004 0.004
32 33 34 36 37

0.002 0.002 0.002 0.001 0.001

Figure 3.7 displays the theoretical and empirical (reconstructed from observa-
tions) Poisson distributions
x=1:100 #Set the x-axis, where the Poisson pdf is evaluated
lambda=20 #Set the Poisson success rate
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Figure 3.7: Probability mass function for a Poisson with mean 20 together with
the frequency of observing a number of subjects per day out of 1000 days.

plot(x,dpois(x,lambda),type="p",pch=19,col="blue",lwd=3,
xlab="Number of patients",ylab="Probability",cex.lab=1.3,
cex.axis=1.3,col.axis="blue",ylim=c(0,0.1))

lines(1:100,py,col="red",lwd=3) #here, lwd controls the thickness of the line

There is a good agreement between the theoretical (blue dots) and empirical (red
line) distributions, though there are some discrepancies. Indeed, the theoretical
frequencies of 18, 19, and 20 are 8.5%, 8.8% and 8.8%, respectively, whereas the
observed frequencies were 9.4%, 8.1% and 10.1%, respectively. Such differences
are due to sampling variability and they occur even when we know precisely
what the underlying theoretical mechanism is. In practice, what we would see
is just the red line describing the empirical distribution. One of the targets of
inference is to try to guess (or estimate, or guesstimate) what could have been
the true underlying theoretical mechanism that generated the data. This is an
example of an inverse problem when we know the data and try to infer the data
generating mechanisms. This is one of the most prevalent practical problems in
science.

3.8 Probability density function

So far, we have discussed discrete variables (Bernoulli, Poisson) that have a
finite or countable number of possible outcomes. However, there are many
experiments that have a continuous (uncountable number) of outcomes. For ex-
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ample, for a particular person with lung cancer, who is alive, the survival time is
a continuous variable. While survival time could be discretized into a countable
number of outcomes by, for example, counting the number of minutes between
today and the person’s death, this discretization is not practical. Instead, we
use continuous variables and introduce the probability density function (pdf).

A probability density function (pdf) is a function, say f(·), associated with
a continuous random variable, X, such that areas under pdfs correspond to
probabilities for that random variable

P (X ∈ I) =
∫

I

f(x)dx for every interval I

To be a valid pdf, the function f(·) must satisfy

(1) f(x) ≥ 0 for all x
(2)

∫∞
−∞ f(x)dx = 1

There are many similarities between pmfs and pdfs, but an important difference
is that continuous variables assign zero probability to any particular outcome,
P (X = x) = 0 for any x, and can only assign positive probability to intervals.
For example, the probability that a person will survive a lung cancer diagnosis
for exactly five years is zero, but the probability that he or she will survive five
years plus or minus one minute is small, but positive. This makes sense, as
pinpointing the exact time of death with below millisecond accuracy is both
impractical and unuseful. A continuous variable can be discretized in many
different ways. For example, if X is the survival time we can easily dichotomize
it using the transformation Y = I(X > 5), which is a Bernoulli random variable
indicating whether or not the person will survive for more than five years. The
probability of surviving for more than five years can then be written as

P (Y = 1) = P (X > 5) =
∫ ∞

5
f(x)dx .

Other finer discretizations can be obtained by separating the survival time into
smaller intervals, say I0 = [0, 1), I1 = [1, 2), I2 = [2, 3), I3 = [3, 4), I4 = [4, 5),
I5 = [5, ∞). Then we can define the random variable Y =

∑5
k=0 kI(X ∈ Ik),

which assigns the outcome Y = k if and only if X ∈ Ik. Here I(X ∈ Ik) denotes
the indicator that the survival time will be in the interval Ik. The discrete
random variable Y takes values 0, 1, . . . , 5 with the pmf

p(k) = P (Y = k) = P (X ∈ Ik) =
∫

Ik

f(x)dx .

Of course, one can make these approximations finer and finer until there is no
practical difference between f(x) evaluated in Ik and p(k)/|Ik|. Here |Ik| denotes
the length of the interval Ik. Thus, there is a strong connection between the
pmf and pdf, where the pdf can be interpreted as the probability of being in a
small interval divided by the length of the interval.
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3.8.1 Example: Exponential random variables and sam-
pling

Assume that the time in years from diagnosis until death of persons with lung
cancer follows a density like

f(x) =
{ 1

5 e−x/5 for x > 0 ;
0 for x ≤ 0 .

First, we want to check that this is a valid pdf. Obviously, f(x) ≥ 0 for all x
because e raised to any power is strictly positive. Moreover,∫ ∞

−∞
f(x)dx =

∫ 0

−∞
0dx +

∫ ∞

0

1
5

e−x/5dx = −e−x/5
∣∣∣∣∞
0

= 1 .

If X denotes the survival time with the pdf described above then we say that
X has an exponential distribution with mean survival time θ = 5 years and
denote X ∼ exp(5). The pdf allows us to compute various quantities of interest.
Suppose that we would like to know what is the probability that a randomly
selected person with a exp(5) distribution survives for more than six years? This
can be obtained as

P (X ≥ 6) =
∫ ∞

6

1
5

e−x/5dx = −e−x/5
∣∣∣∣∞
6

= e−6/5 ≈ 0.301 .

This can also be obtained directly in R without conducting the integral calcula-
tions.
surv_prob=pexp(6, 1/5, lower.tail = FALSE)
round(surv_prob,digits=3)

[1] 0.301

We would like to visualize this probability as the area under the pdf and also
learn how to add arrows and text to a plot. The R code below and Figure 3.8
are designed to do that.
exp_pdf_eval<-seq(0,20,by=0.1)
exp_pdf<-dexp(exp_pdf_eval,1/5)

#plot the exponential pdf as a blue thicker line (lwd=3)
plot(exp_pdf_eval,exp_pdf,type="l",col="blue",lwd=3,

xlab="Survival time (years)",ylab="Density",
cex.lab=1.3,cex.axis=1.3,col.axis="blue")

#build the shaded area under the curve
#the shaded area is a polygon (note how vertexes are constructed)
surv_pdf_eval<-c(seq(6,20,by=0.1),seq(20,6,by=-0.1))
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Figure 3.8: Probability density function (pdf) for an exponential random vari-
able with mean 5 years and the interpretation of probability as area under the
pdf.

poly_surv<-c(rep(0,length(seq(6,20,by=0.1))),dexp(seq(20,6,by=-0.1),1/5))

#plot the shaded area, note that it is transparent to give it a better look
polygon(surv_pdf_eval, poly_surv, col=rgb(0, 0, 1, 0.4),border=rgb(0, 0, 1, 0.4))

#add arrows and text
arrows(15,0.1,10,0.03,col="red",lwd=2,length = 0.15, angle = 20)
text(15,0.13, "Survival probability for 6+ years")
text(15,0.11,"0.301 = area under the pdf for x>6")

Figure 3.8 illustrates the general idea about the interpretation of probability
given a pdf. The shaded area is equal to the area under the curve and is equal
to P (X > 6) = P (X ≥ 6) =

∫∞
6

1
5 e−x/5dx (x-axis values over 20 are omitted for

presentation purposes). The pdf completely characterizes the distribution of the
random variable X. However, just as in the case of discrete random variables, it
cannot be used to predict exactly what the outcome of a particular experiment
will be.

The same exact principles can be applied to answer other questions before the
experiment is run. For example, we would like to calculate the probability that
a randomly selected person with an exp(5) distribution survives strictly more
than five and strictly less than six years. This can be obtained using direct
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integration

P (5 < X < 6) =
∫ 6

5

1
5

e−x/5dx = −e−x/5
∣∣∣∣6
5

= e−1 − e−6/5 ≈ 0.067

indicating that approximately 6.7% of individuals from this population will have
a survival time between 5 and 6 years. The same calculation can be done directly
in R avoiding manual integration as follows
surv_prob=pexp(6, 1/5)-pexp(5, 1/5)
round(surv_prob,digits=3)

[1] 0.067

As an exercise, plot the area under the curve corresponding to this probability
using the tools shown earlier. As survival probability is a continuous variable,
it assigns no probability to individual points and P (5 < X < 6) = P (5 ≤ X ≤
6) =

∫ 6
5 0.2e−x/5dx.

3.8.2 Example: Double exponential random variables

Consider the case when one repeatedly measures the systolic blood pressure
(SBP) of a person and for every measurement we calculate the difference (or
residual) between the measurement and the long-term average blood pressure
of the individual. Of course, some of these differences are positive and some are
negative and it may be reasonable to assume that errors are symmetric around
zero. A potential distribution that could characterize these differences is the
double exponential distribution with the pdf

f(x) = 0.5e−|x| for x ∈ R ,

where |x| denotes the absolute value of x, that is |x| = x if x ≥ 0 and |x| = −x
if x < 0. Let us show that this is a valid density. Obviously, f(x) > 0 for every
x ∈ R because e raised to any power is strictly positive. Moreover∫ ∞

−∞
0.5e−|x|dx =

∫ 0

−∞
0.5exdx+

∫ ∞

0
0.5e−xdx = 2

∫ ∞

0
0.5e−xdx = −e−x

∣∣∣∣∞
0

= 1 .

The equality
∫ 0

−∞ 0.5exdx =
∫∞

0 0.5e−xdx is due to the symmetry of the pdf
around zero and can be shown doing the change of variable y = −x. The follow-
ing plot provides the visual representation of the standard double exponential
distribution
x=seq(-5,5,length=101) #set the grid where the evaluate the pdf
fx=exp(-abs(x))/2 #calculate the pdf on the grid
plot(x,fx,type="l",col="blue",lwd=3,xlab="error",ylab="PDF",

cex.lab=1.3,cex.axis=1.3,col.axis="blue")
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Figure 3.9: Probability density function of the standard double exponential
distribution.

Figure 3.9 displyas the pdf of the standard double exponential distribution in-
dicating that it is symmetric around zero and has a singularity at zero (the pdf
is not differentiable at 0). This distribution is sometimes used in practice as an
alternative to the Normal distribution to represent the distribution of errors and
is referred to as the Laplace distribution. It is also the implicit choice of distri-
bution of residuals in least absolute deviations regression (Portnoy and Koenker
1997) and as the LASSO prior (Tibshirani 1996). A more general version of the
double exponential distribution depends on two parameters, µ and σ, and has
the form

f(x) = 1
2σ

exp
{

−|x − µ|
σ

}
for x ∈ R.

It is easy to show that this is a valid density. To better understand the effect of
the parameters on the distribution we show the changes in the pdf as a function
of µ and σ. We first analyze changes in µ by keeping the scale parameter σ
fixed. Figure 3.10 the pdfs corresponding to µ = 1, 2, 5 and σ = 1.
library(VGAM)
mu=c(0,1,5)
sigma=1
x=seq(-7,12,length=1001)
y=matrix(rep(NA,length(mu)*length(x)),ncol=length(x))
for (i in 1:3)
y[i,]<-dlaplace(x, location = mu[i], scale = sigma)

plot(x,y[1,], type="l",col="blue", lwd=3,
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Figure 3.10: Probability density function of the double exponential distribution
with different means (location parameters.)

xlab="error", ylab="PDF",
cex.lab=1.3, cex.axis=1.3 ,col.axis="blue")

lines(x,y[2,],type="l",col="orange",lwd=3)
lines(x,y[3,],type="l",col="red",lwd=3)
legend(7,0.5,

c(expression(paste(mu,"=0")),expression(paste(mu,"=1")),
expression(paste(mu,"=5"))),lwd=c(3,3,3),

col=c("blue","orange","red"),bty = "n")

Figure 3.10 indicates that the double exponential pdfs are symmetric around
their mean, µ, and that only the location of the distribution changes when µ
changes. For this reason the parameter µ is often referred to as the location
parameter. We now analyze changes in σ by keeping the mean parameter µ
fixed. Figure 3.11 displays the pdfs corresponding to σ = 1, 2, 5 and µ = 0.
mu=0
sigma=c(1,2,4)
x=seq(-7,7,length=1001)
y=matrix(rep(NA,length(sigma)*length(x)),ncol=length(x))
for (i in 1:3)
{y[i,]<-dlaplace(x, location = mu, scale = sigma[i])}
plot(x,y[1,],type="l",col="blue",lwd=3,xlab="error",ylab="PDF",cex.lab=1.3,cex.axis=1.3,col.axis="blue")
lines(x,y[2,],type="l",col="orange",lwd=3)
lines(x,y[3,],type="l",col="red",lwd=3)
legend(3,0.5,c(expression(paste(sigma,"=1")),expression(paste(sigma,"=2")),
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Figure 3.11: Probability density function of the double exponential distribution
with different sigmas (scale parameters.)

expression(paste(sigma,"=4"))),lwd=c(3,3,3),
col=c("blue","orange","red"),bty = "n")

This time the pdfs are all centered at µ = 0, but as σ increases there is less
probability around zero and more probability away from zero (in the tails of the
distribution). The implication is that a larger σ corresponds to larger errors
of measurement. For this reason the parameter σ is called the scale parameter.
What we have seen for the double exponential distribution is a common charac-
teristic of many other distributions. Starting with a standard distribution (in
this case the standard double exponential) and introducing location and scale
parameters is a general technique for building flexible families of distributions.
Such families are called, quite boringly, location-scale families of distributions.
The Normal, or Gaussian, distribution is the best known location-scale family
of distributions and it will play an essential role in this book.

We now investigate the agreement between the theoretical distribution and the
empirical distribution of a double exponential distribution. Below we construct
the empirical pdf of 100 simulated observations from a double exponential dis-
tribution with mean 2 and scale parameter 2.
#mean parameter
mu=2
#scale parameter
sigma=2
#generate 100 independent samples
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Figure 3.12: Theoretical standard double exponential distribution versus the
histogram of a sample of size 100 from the same distribution.

y=rlaplace(100,mu,sigma)

#construct the empirical pdf of y
#plot the histogram of observations (empirical pdf)
hist(y,breaks=20,probability=TRUE,col=rgb(0,0,1,1/4),

xlab="error",main="",cex.lab=1.3,cex.axis=1.3,
col.axis="blue",ylim=c(0,.25))

#construct the theoretical pdf
#grid around the true mean
x=seq(mu-7,mu+7,length=101)
#true pdf of the double exponential
fx=dlaplace(x, location = mu, scale = sigma)
#plot true pdf
lines(x,fx,col="orange",lwd=3)

Figure 3.12 indicates that the histogram of the 100 random samples resembles
the true pdf, but there are also discrepancies due to random sampling variation.
This is not surprising, but it provides a good lesson: even when we know pre-
cisely the sampling mechanisms, there are differences between the observed and
theoretical distributions. The size of these differences depends on the number
of samples collected (amount of information). Try, for example, to redo the plot
with 1000 or 10000 samples.
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3.9 Cumulative distribution function

The cumulative distribution function (cdf) of a random variable X is defined as
the function

F (x) = P (X ≤ x) .

The survival function of a random variable X is

S(x) = P (X > x) = 1 − F (x) ,

indicating that the survival function is 1 minus the cdf of the random variable.
Note the inequality in the cdf is less than or equal to, which is relevant in discrete
data because P (X = x) ≥ 0, but not in continuous variables as P (X = x) =
0. Thus, be careful with these definitions when calculating a cdf or survival
function. For continuous random variables the pdf, f(x), is the derivative of
the cdf, F (x), that is f(x) = F ′(x) for all x. This provides an excellent tool to
work with the pdf and cdf interchangeably, as F (x) =

∫ x

−∞ f(u)du.

3.9.1 Example: The exponential cdf

Consider again the example of survival time for a patient with lung cancer, X,
and assume that X ∼ exp(5). We would like to calculate the cdf and survival
function for X. The survival function is

S(x) =
∫ ∞

x

1
5

e−t/5dt = −e−t/5
∣∣∣∣∞
x

= e−x/5 ,

and the cdf is F (x) = 1 − e−x/5. Using the chain rule for differentiation we
obtain

∂

∂x
F (x) = − ∂

∂x
e−x/5 = −

{
∂

∂x

(
−x

5

)}
e−x/5 = 1

5
e−x/5 = f(x) ,

which indicates that the pdf, f(x), can be recovered from the derivative of the
cdf, F (x).

3.9.2 Example: The double exponential cdf

While there is a one-to-one relationship between the pdf and cdf of a distribution,
the plots corresponding to the two functions have different appearance and
interpretation. Consider the same example of a double exponential distribution
and plot the cdfs (instead of the pdfs) corresponding to µ = 1, 2, 5 and σ = 1.

The cdfs in Figure 3.13 increase over the entire range and are bounded between
0 and 1, with both 0 and 1 being acceptable values. The steepness of the curve
does not change with µ, while the location of probability accumulation is shifted
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Figure 3.13: Cumulative distribution function of the double exponential distri-
bution with different means (location parameters.)

(to the right for increased µ). These cdfs are characteristics of a location change
in a distribution, with the cdfs translated to the right for increased µ. Let us
investigate what happens with the cdfs when σ = 1, 2, 5 and µ = 0.

Figure 3.14 displays the cdfs for the double exponential distribution with mean
0 and σ = 1, 2, 5. In this case the cdf curves are not simply translated and,
indeed, they cross-over at µ = 0 (why?). Distributions that are more dispersed
(higher peak, thicker tails of the pdf) tend to have shallower slopes of the cdf.
This indicates slower accumulation of probability (compare, for example, the
cdfs corresponding to σ = 1 and σ = 4).

3.10 Quantiles

For a probability value α ∈ [0, 1] the αth quantile of the distribution with cdf
F (·) is the point xα such that

F (xα) = α .

The αth percentile is simply the αth quantile with α expressed as a percent
instead of probability. The median is the 0.5 quantile (or 50th percentile). You
may also hear about tertiles (quantiles corresponding to α = 1/3 and α = 2/3),
quartiles (quantiles corresponding to α = 1/4, 2/4, 3/4), quintiles (quantiles
corresponding to α = 1/5, 2/5, 3/5, 4/5), and deciles (quantiles corresponding
to α = 1/10, 2/10, . . . , 9/10).
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Figure 3.14: Cumulative distribution function of the double exponential distri-
bution with different sigmas (scale parameters.)

Let us calculate the 0.25 quantile (a.k.a. first quartile) of an exponential distri-
bution with mean survival time of five years. This can be obtained by solving
for x

.25 = F (x.25) = 1 − e−x.25/5 =⇒ x.25 = − log(.75) ≈ 1.44 .

Here we have just used the direct definition of the quantile and solved the
equation α = F (xα). In general, xα = F −1(α), where F −1(·) represents the
functional inverse of the cdf. As an interesting aside, the inverse of cdf functions
are often used as link functions for probability distributions. For example, the
inverse cdf of a Normal distribution provides the probit link and the inverse of
the logistic function provides the logit link. Quantiles of the distribution can
also be obtained directly from R (no need for books with tables of distributions).
surv_time=qexp(.25, 1/5)
round(surv_time,digits=3)

[1] 1.438

This can be interpreted as 25% of a population with an exponential survival
distribution of five years will die during the first 1.44 years. We can calculate a
much wider range of quantiles as follows.
tq<-qexp(seq(0.01,0.99,length=100), 1/5)
round(tq,digits=2)

[1] 0.05 0.10 0.15 0.20 0.25 0.31 0.36 0.41 0.47 0.52 0.58
[12] 0.63 0.69 0.75 0.80 0.86 0.92 0.98 1.04 1.10 1.17 1.23
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[23] 1.29 1.36 1.42 1.49 1.56 1.62 1.69 1.76 1.83 1.91 1.98
[34] 2.05 2.13 2.20 2.28 2.36 2.44 2.52 2.60 2.69 2.77 2.86
[45] 2.95 3.04 3.13 3.22 3.32 3.42 3.52 3.62 3.72 3.82 3.93
[56] 4.04 4.15 4.27 4.39 4.51 4.63 4.76 4.89 5.02 5.16 5.30
[67] 5.44 5.59 5.75 5.91 6.07 6.24 6.41 6.60 6.78 6.98 7.18
[78] 7.40 7.62 7.85 8.10 8.35 8.62 8.91 9.21 9.53 9.88 10.25
[89] 10.65 11.08 11.56 12.08 12.67 13.34 14.11 15.02 16.13 17.57 19.59

[100] 23.03

3.10.1 Quantile-Quantile plots or QQ-plots

QQ-plots provide a fast way of comparing two distributions. Indeed, two equal
distributions should have identical quantiles. One thing that can be done is to
compare the theoretical and empirical quantiles from three different simulations.
We simply generate three independent exponential random samples of size 30
and then calculate their empirical quantiles
x1<-rexp(30, 1/5)
x2<-rexp(30, 1/5)
x3<-rexp(30, 1/5)
eq1<-quantile(x1,seq(0.01,0.99,length=100))
eq2<-quantile(x2,seq(0.01,0.99,length=100))
eq3<-quantile(x3,seq(0.01,0.99,length=100))

The theoretical quantiles for the exp(5) distribution are stored in the vector tq
and the empirical quantiles are stored in the vectors eq1, eq2, eq3. Figure 3.15
display these QQ-plots

Even though data were generated from the theoretical distribution, we can see
sizeable differences between the theoretical and empirical distributions, espe-
cially in the upper quantiles (larger quantiles corresponding to higher proba-
bilities). Moreover, the empirical distributions do not agree with each other.
For example, in the first sample (blue dots) the first 20 subjects died in 6.3
years, whereas in sample 2 (orange dots) the first 20 subjects died in 4.14 years.
In contrast, the theoretical distribution predicts that the first 2/3 of the pop-
ulation would die in 5.49 years. Such discrepancies should not be surprising
as they are a manifestation of sampling variability and characterize what we
would see in practice if three independent studies collected data on 30 subjects
each. The data will not be the same, though they will share certain characteris-
tics. Biostatistics provides a quantitative way of characterizing what differences
are expected and what differences may be due to other causes. Variability is
especially pronounced for the higher quantiles, because there is less certainty
when estimating smaller probabilities. In this case there is no uncertainty for
small quantiles because all data are bounded at zero. However, large variability
should be expected in the lower tail of the distribution when the support of the
distribution is unbounded.
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Figure 3.15: Quantile-Quantile plots for three samples from an exponential
with mean 5 versus the quantiles of three samples of size 30 from the same
distribution.

Now, let us investigate what happens when n = 100

and n = 500

Figures 3.16 and 3.17 indicate that the amount of uncertainty in the empirical
quantiles decreases and they are closer and closer to the theoretical ones. It is
important to remember that: (1) QQ-plots exhibit increased variability in the
tails; (2) variability decreases with increased sample size; and (3) inspecting a
QQ-plot provides a qualitative assessment of agreement between two distribu-
tions.

As a take-home message, we introduced four concepts that will be important
throughout the book: pdf (pmf), cdf (integrated pdf function), quantiles (in-
verse cdf function), and random sampling from a distribution. In R for every
one of these concepts there is a corresponding function. For example, for the
exponential distribution the pdf function is dexp, the cdf function is pexp, the
quantile function is qexp, and the random sampling function is rexp. The same
convention applies to other distributions. For example, for the Normal (Gaus-
sian) distribution the corresponding functions are dnorm, pnorm, qnorm, and
rnorm. Thus, having a computer and R removes the need for books of statisti-
cal tables, but does not remove the need to understand what it is that we are
computing.
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Figure 3.16: Quantile-Quantile plots for three samples from an exponential
with mean 5 versus the quantiles of three samples of size 100 from the same
distribution.
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Figure 3.17: Quantile-Quantile plots for three samples from an exponential
with mean 5 versus the quantiles of three samples of size 500 from the same
distribution.
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3.11 Problems

Problem 1. Assume that A, B, C are subsets of Ω. Show that

a. (A ∪ B) ∪ C = A ∪ (B ∪ C) and (A ∩ B) ∩ C = A ∩ (B ∩ C).
b. A ∪ B = B ∪ A and A ∩ B = B ∩ A.
c. (A ∪ B) ∩ C = (A ∩ B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
d. A ∪ Ac = Ω and A ∩ Ac = ∅.
e. (A ∪ B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc.
f. A \ B = A ∩ Bc.
g. (Ac)c = A.
h. Ωc = ∅ and ∅c = Ω.
i. A ⊂ B =⇒ Bc ⊂ Ac.
j. (A ∪ B ∪ C)c = Ac ∩ Bc ∩ Cc and (A ∩ B ∩ C)c = Ac ∪ Bc ∪ Cc.

Problem 2. Show the following

a. P (∅) = 0.
b. P (A) = 1 − P (Ac).
c. If A ⊂ B then P (A) ≤ P (B).
d. For any A and B, P (A ∪ B) = P (A) + P (B) − P (A ∩ B).
e. P (A ∪ B) = 1 − P (Ac ∩ Bc).
f. P (A ∩ Bc) = P (A) − P (A ∩ B).
g. P (∪n

i=1Ai) ≤
∑n

i=1 P (Ai).
h. P (∪n

i=1Ai) ≥ maxi P (Ai).

Problem 3. Cryptosporidium is a pathogen that can cause gastrointestinal
illness with diarrhea; infections can lead to death in individuals with a weakened
immune system. During a recent outbreak of cryptosporidiosis in 21% of two-
parent families at least one of the parents contracted the disease. In 9% of the
families the father contracted cryptosporidiosis, while in 5% of the families both
the mother and father contracted cryptosporidiosis.

a. What event does the probability “one minus the probability that both
parents have contracted cryptosporidiosis” represent?

b. What’s the probability that either the mother or the father has contracted
cryptosporidiosis?

c. What’s the probability that the mother has contracted cryptosporidiosis
but the father has not?

d. What’s the probability that the mother has contracted cryptosporidiosis?
e. What’s the probability that neither the mother nor the father has con-

tracted cryptosporidiosis?
f. What’s the probability that the father has contracted cryptosporidiosis

but the mother has not?

Problem 4. Consider the data set data_bmi using the BMI data:
file_name = "bmi_age.txt"
data_bmi = read.table(file = file_name, header = TRUE,
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stringsAsFactors = FALSE)

and the sets: (1) A subjects with BMI< 22 or male (labeled SEX=1); (2) B
subjects with AGE< 65 and female (labeled SEX=0); and (3) C subjects with
BMI> 20 or (male strictly older 50).

a. Obtain A, B, and C directly from the data.
b. Check that the results from Problem 1 hold for these set.
c. Use R to extract the sets from the data and conduct the various operations

necessary to solve b.

Problem 5. Consider the vector
our_names <- c("John","Ciprian","Brian")

a. List all possible boostrap samples of our_names.
b. How many boostrap samples of our_names are there? Explain.
c. Conduct 12 bootstrap samples of our_names, print and describe your re-

sults.

Problem 6. Consider the vector
letter <- c("J","o","h","n","C","i","p","r","i","a","n","B","r","i","a","n")

a. Conduct several bootstrap samples of the vector letter.
b. Sample 3 times with replacement 7 letters from the vector letter.
c. Describe all differences and similarities between the bootstrap of

our_names and letters.
d. Explain, intuitively, what happens in a bootstrap of the two vectors with

the letters i and a.

Problem 7. Suppose h(x) is such that h(x) > 0 for x = 1, 2, . . . , I. Argue that
p(x) = h(x)/

∑I
i=1 h(i) is a valid pmf.

Problem 8. Suppose a function h(·) is such that h(x) > 0 for every x ∈ R and
c =

∫∞
−∞ h(x)dx < ∞. Show that f(x) = h(x)/c is a valid density.

Problem 9. Suppose that, for a randomly drawn subject from a particular
population, the proportion of his or her skin covered in freckles follows a density
that is constant on [0, 1]. This is called the uniform density on [0, 1]. That is,
f(x) = k for 0 ≤ x ≤ 1.

a. Draw this density. What must k be?
b. Suppose a random variable, X, follows a uniform distribution between 0

and 1. What is the probability that X is between 0.1 and 0.7? Interpret
this probability in the context of the problem.

c. Verify the previous calculation in R. What’s the probability that a < X < b
for generic values 0 < a < b < 1?

d. What is the cumulative distribution function associated with this proba-
bility density function? Plot it in R.
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e. What is the median of this density? Interpret the median in the context
of the problem.

f. What is the 95th percentile? Interpret this percentile in the context of the
problem.

g. Do you believe that the proportion of freckles on subjects in a given pop-
ulation could feasibly follow this distribution? Why or why not?

Problem 10. Let U be a continuous random variable with a uniform density
on [0, 1] and F (·) be any strictly increasing cdf

a. Show that F −1(U) is a random variable with cdf equal to F .
b. Describe a simulation procedure in R that can simulate a sample from

a distribution with a given cdf F (·) using just samples from a uniform
distribution.

c. Simulate 100 Normal random variables using only simulations from a uni-
form distribution and the normal inverse cdf function in R.

Problem 11. Let 0 ≤ π ≤ 1 and f1(·) and f2(·) be two continuous probability
density functions (pdf) with associated cumulative distribution functions (cdf)
F1(·) and F2(·) and survival functions S1(·) and S2(·), respectively. Let g(x) =
πf1(x) + (1 − π)f2(x)

a. Show that g(·) is a valid density.
b. Write the cdf associated with g in terms of F1(·) and F2(·).
c. Write the survival function associated with g in the terms of S1(·) and

S2(·).

Problem 12. Radiologists have created a cancer risk summary that, for a given
population of subjects, follows the logistic probability density function

f(x) = e−x

(1 + e−x)2 for − ∞ < x < ∞

a. Show that this is a valid density.
b. Calculate the cdf associated with this pdf.
c. What value do you get when you plug 0 into the cdf? Interpret this result

in the context of the problem.
d. Define the odds of an event with probability p as p/(1 − p). Prove that

the pth quantile of this distribution is log{p/(1 − p)}, which is the natural
log of the odds of an event with probability p.

Problem 13. Epidemiologists consider that the time (in years) until a specific
organ of the body stops functioning normally follows the Pareto cdf

F (x) =
{

1 −
(

x0
x

)α for x ≥ x0
0 for x < x0

The parameter x0 is called the scale parameter, while α is the shape or tail
index parameter. The distribution is often denoted by Pa(x0, α).

a. Derive the density of the Pareto distribution.
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b. Plot the density and the cdf for x0 = 1, 2, 5 and α = 0.1, 1, 10; interpret
these plots and explain the effects of α and x0.

c. Generate Pareto random variables using simulated uniform random vari-
ables in R.

d. What is the survival function associated with this density?
e. Interpret in the context of the problem the survival function value for

x = 10 years when the parameters are α = 1 and x0 = 2.
f. Find the pth quantile for this density. For p = .8 interpret this value in

the context of the problem.

Problem 14. Suppose that a probability density function is of the form cxk

for some constant k > 1 and 0 < x < 1.

a. Find c.
b. Find the cdf.
c. Derive a formula for the pth quantile of the distribution.
d. Let 0 ≤ a < b ≤ 1. Derive a formula for P (a < X < b).

Problem 15. Suppose that the time in days until hospital discharge
for a certain patient population follows a probability density function
f(x) = c exp(−x/2.5) for x > 0.

a. What value of c makes this a valid density?
b. Find the cumulative distribution function for this density.
c. Find the survival function.
d. Calculate the probability that a person takes longer than 11 days to be

discharged.
e. What is the median number of days until discharge?

Problem 16. The (lower) incomplete gamma function is defined as Γ(k, c) =∫ c

0 xk−1 exp(−x)dx. By convention Γ(k, ∞), the complete gamma function, is
written Γ(k). Consider a density

1
Γ(α)

xα−1 exp(−x) for x > 0,

where α > 0 is a known number.

a. Argue that this is a valid density.
b. Write out the survival function associated with this density using gamma

functions.
c. Let β be a known number; argue that

1
βαΓ(α)

xα−1 exp(−x/β) for x > 0

is a valid density. This is known as the gamma density and is denoted
Γ(α, β).

d. Plot the Gamma density for different values of α and β.
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Problem 17. The Weibull density is useful in survival analysis. Its form is
given by

γ

β
xγ−1 exp (−xγ/β) for x > 0,

where γ > 0 and β > 0 are fixed known numbers.

a. Demonstrate that the Weibull density is a valid density.
b. Calculate the survival function associated with the Weibull density.
c. Calculate the median and third quintile of the Weibull density.
d. Plot the Weibull density for different values of γ and β.

Problem 18. The Beta function is given by B(α, β) =
∫ 1

0 xα−1(1 − x)β−1 for
α > 0 and β > 0 . It can be shown that

B(α, β) = Γ(α)Γ(β)/Γ(α + β).

The Beta density is given by 1
B(α,β) xα−1(1 − x)β−1 for fixed α > 0 and β >

0. This density is useful for modeling random variables with values in (0, 1)
(e.g. proportions or probabilities).

a. Argue that the Beta density is a valid density.
b. Argue that the uniform density is a special case of the Beta density.
c. Plot the Beta density for different values of α and β.

Problem 19. A famous formula is eλ =
∑∞

x=0
λx

x! for any value of λ. Assume
that the count of the number of people infected with a particular virus per year
follows a probability mass function (pmf) given by

P (X = x) = e−λλx

x!
for x = 0, 1, 2, . . .

where λ > 0 is a fixed known number. This is known as the Poisson mass
function and is typically denoted by P (λ).

a. Argue that
∑∞

x=0 P (X = x) = 1.

Problem 20. Let X be the number of sexual contacts a person has until
contracting HIV. Let p be the probability p of contracting HIV from one sexual
contact. The mass function for this process is given by P (X = x) = p(1−p)x−1

for x = 1, 2, . . .. This is called the geometric probability mass function.

a. Argue mathematically that this is a valid probability mass function. Hint:
the geometric series is given by 1

1−r =
∑∞

k=0 rk for |r| < 1.
b. Calculate and interpret in the context of the problem the survival distri-

bution P (X > x) for the geometric distribution.

Problem 21. We say that a random variable X is stochastically less than a
random variable Y if P (X > x) ≤ P (Y > x) for every x ∈ R.

a. Show that if X is stochastically less than Y , FX(x) ≥ FY (x) for every
x ∈ R, where FX(·) and FY (·) are the cdfs of the X and Y random
variables, respectively.
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b. Show that X is stochastically less than a + X for every a > 0.
c. Show that X is not stochastically less than aX for every a > 0.
d. Show that if X > 0 is a positive random variable, aX is stochastically less

than X for every a < 0.

Problem 22. Consider the bmi_age.txt dataset. Construct a QQ plot for the
variables AGE and BMI versus the theoretical Normal distribution. Bootstrap
both vectors three times and display the QQ plots for every sample.

Problem 23. We would like to know whether there is an association between
AGE and BMI in the bmi_age.txt. Bootstrap the data 10000 times and for
every bootstrap sample calculate the correlation between the BMI and AGE.
This can be obtained in R as
cor_BMI_AGE<-cor(BMI,AGE)

a. Plot a histogram of these correlations.
b. What percent of these correlations is below 0?

Problem 24. For problems 1a, 1b, 1c, identify nontrivial subsets A, B, and C
of subjects from the bmi_age.txt dataset and illustrate the operations using the
rules of logic. Identify and describe the logical indexes in R that extract these
subsets and illustrate the connection between the theoretical set operators and
logical operators in R.

3.12 Supplementary R training

This part of the book can be used as laboratory material or as additional mate-
rial for learning R. Let us start with data collected during a class survey asking
which of 16 homework problems students would like to get help with during lab.
There were 13 students who answered the questionnaire and each indicated one
or more problems.

We will plot the results of the survey and learn a few new plotting skills. We
start by creating the data vectors
questions <- 1:16
n_students<-13
votes <- c(5,0,3,5,2,9,2,3,6,2,2,4,4,3,2,3)
votes.pct <- round((votes/n_students)*100,1)

Reorder questions and number of votes by descending number of votes
o <- order(votes, decreasing=TRUE)
o

[1] 6 9 1 4 12 13 3 8 14 16 5 7 10 11 15 2
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Figure 3.18: Percent students by question number.

Once votes are re-ordered in decreasing order, we re-arrange all data vectors
according to the same index. This will help make a nicer plot.
questions.sort <- questions[o]
votes.sort <- votes[o]
votes.pct.sort <- votes.pct[o]

We will use the ggplot2 package by (Wickham 2016). Many biostatisticians
prefer to use ggplot2 over plot, but there is no agreement with respect to
what to use. The authors of this book are split in their preferences and we
prefer to work with both functions.
library(ggplot2)

First make a bar plot of question numbers versus votes using the function ggplot
function in the ggplot2 package. We build a data frame first
data_questions <- data.frame(

Question_number = factor(questions.sort, levels=questions.sort),
Percent_students = votes.pct.sort)

Create matrices in R
my.matrix.rows <- matrix(c(1:9), nrow = 3, ncol = 3)
my.matrix.cols <- matrix(c(1:9), nrow = 3, ncol = 3, byrow = TRUE)
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my.matrix.rows

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
my.matrix.cols

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

and show how R handles matrix calculations. This is how to do entry-wise
calculations
my.matrix.rows*my.matrix.cols

[,1] [,2] [,3]
[1,] 1 8 21
[2,] 8 25 48
[3,] 21 48 81
my.matrix.rows+my.matrix.cols

[,1] [,2] [,3]
[1,] 2 6 10
[2,] 6 10 14
[3,] 10 14 18

and true matrix multiplication
my.matrix<-my.matrix.rows %*% my.matrix.cols
my.matrix

[,1] [,2] [,3]
[1,] 66 78 90
[2,] 78 93 108
[3,] 90 108 126

You may want to do these operations by hand and check them against the results
in R. Here is how to access the first row and the entry (2, 3) of my.matrix
my.matrix[1,]

[1] 66 78 90
my.matrix[2,3]

[1] 108
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Simulate data from a Normal distribution and plot a histogram of the simula-
tions. To understand the structure of the function used for random sampling
you can simply use the help command in R
#the help command (most important r command!)
?rnorm
#equivalent to previous line
help(rnorm)

Here eval=FALSE is used to illustrate the R code in Rmarkdown without evaluat-
ing it.
#simulate two independent random samples of length 100 from N(0,1)
random.sample.1 <- rnorm(100, mean = 0, sd = 1)
random.sample.2 <- rnorm(100, mean = 2, sd = 1)

#plot a histogram of the 100 observations
hist(random.sample.1, col = rgb(1,0,0,0.5),breaks=20,xlim=c(-3,5),

cex.lab=1.3,cex.axis=1.3,col.axis="blue",
main="Two transparent histograms",
xlab = "Random samples")

#add the histogram of the second 100 samples
hist(random.sample.2,col = rgb(0,0,1,0.5),add =T,breaks=20)

Alternative ways to plot the simulated data using boxplot
#boxplot
boxplot(random.sample.1, random.sample.2, col = c('blue', 'red'))

and qqplot
#qqplot
qqplot(random.sample.1, random.sample.2,

main = 'Random Sample 1 versus Random Sample 2')

Evaluate statistics of the sample including the mean, standard deviation, min
and max
#calculate the mean of each of the random samples
mean(random.sample.1)

[1] 0.08342127
mean(random.sample.2)

[1] 1.899799
#calculate the standard deviation
sd(random.sample.1)

[1] 0.8879839
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Figure 3.19: Plotting two histograms of two different samples in the same figure.
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Figure 3.20: Plotting the boxplots of two different samples in the same figure.
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Figure 3.21: Plotting the QQ plots of two different samples in the same figure.

sd(random.sample.2)

[1] 0.9459916
##calculate the min and max
min(random.sample.1)

[1] -2.136947
max(random.sample.2)

[1] 4.195687

Simulate data from other distributions
#simulate 100 samples from the exponential distribution
random.exponential <- rexp(100, rate = 1)

#simulate 1000 samples from the exponential distribution
random.uniform <- runif(1000, min = 0, max = 1)
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Chapter 4

Mean and variance

This chapter covers the following topics

• Mean or expected value
• Sample mean and bias
• Variance, standard deviation, coefficient of variation
• Variance interpretation: Chebyshev’s inequality
• Supplementary R training

4.1 Mean or expected value

The expected value or mean of a random variable is the center of mass of its
distribution. Below we will discuss the mean of discrete and continuous random
variables separately.

4.1.1 Mean of a discrete random variable

For a discrete random variable X with pmf p(x), the mean is defined as follows

E[X] =
∑

x

xp(x) =
∑

possible values of X

xp(x) ,

where the sum is taken over all possible values x of X. The expected value
is the center of mass of the locations x with weights (probability) p(x). This
definition applies to x ∈ R, but can be used for x ∈ Rk with k ≥ 1. The
interpretation remains the same irrespective of the dimension of x. The mean
is the simplest and most important thing to understand in biostatistics. Indeed,
most of biostatistics deals with how and why to calculate means.

105
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Consider first the case of a random variable, X, that can take four values,
x ∈ {−4, −3, 3, 4} with the same probability, p(x) = 0.25. The mechanics of
calculating the mean of this random variable is simple and require just plugging
in values into the mean formula

E(X) = (−4) × 0.25 + (−3) × 0.25 + 3 × 0.25 + 4 × 0.25 = 0 .

The left-top panel in Figure 4.1 provides the intuition behind this calculation.
The orange triangle points to the mean, or center of mass, of the distribution.
One could imagine a playground seesaw, where four children of exactly the same
weight sat at the locations indicated by {−4, −3, 3, 4}. If the seesaw rested on
the mean E(X) = 0 then the four children would be perfectly balanced and
nothing would happen. Of course, as every parent knows, this is a gross mis-
representation of reality as there has been no reported case of four kids on a
playground in perfect balance. The idea, though, should be the same: the mean
has the property that in the absence of external forces the system would be in
perfect balance if suspended on or by the mean.

Consider now the case when the random variable X takes four other values
x ∈ {−4, 1, 3, 4} with the same probability, p(x) = 0.25. The mean of X in this
case is:

E(X) = (−4) × 0.25 + 1 × 0.25 + 3 × 0.25 + 4 × 0.25 = 1 .

The right-top panel in Figure 4.1 below provides a representation of this random
variable distribution and its mean, E(X) = 1. In this case we can imagine that
three of the children are now on one side of the seesaw and the child who was
at −3 moved to 1. The mean, or center of mass, has shifted towards the right
side of the seesaw and is, in fact, under the child at 1. The system would be
in balance if the seesaw rested on the mean E(X) = 1. If the seesaw rested to
the left of the mean, it would tilt to the right and if it rested to the right of the
mean, it would tilt to the left.

As children never weigh the same or adults may be forced into the pleasure of
seesaw play, let us consider the case when we have a random variable X that
takes the same four values x ∈ {−4, 1, 2, 3}, but with probabilities p(X = −4) =
0.6, P (X = 1) = 0.2, P (X = 3) = 0.15, P (X = 4) = 0.05. The mean of X in
this case is

E(X) = (−4) × 0.60 + 1 × 0.20 + 3 × 0.15 + 4 × 0.05 = −1.55 .

A representation of the distribution of this random variable and its mean is
shown in the left-bottom panel of Figure 4.1. Note that the mean has shifted to
the left in the direction of the person who weighs the most. Similarly, the right-
bottom panel displays the mean for the case of a random variable X that takes
the same four values x ∈ {−4, 1, 3, 4}, but with probabilities p(X = −4) = 0.05,
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Figure 4.1: Examples of discrete random variables and their means.

P (X = 1) = 0.15, P (X = 3) = 0.20, P (X = 4) = 0.60. The mean of X in this
case is

E(X) = (−4) × 0.05 + 1 × 0.15 + 3 × 0.20 + 4 × 0.60 = 2.95 .

The mean has a few important properties. For example, min(X) ≤ E(X) ≤
max(X). This is indicated in the panels in Figure 4.1 by the tip of the orange
triangle always being between the largest and smallest value possible for the
random variable X. Moreover, the mean E(X) is not necessarily one of the
values that the random variable takes. Indeed, in three of the examples discussed
above the mean was 0, −1.55, and 2.95, respectively, and none of these values
was among the possible values for X. The mean is often a good descriptor of
the central tendency of the distribution, though it can be heavily influenced by
exceptionally large or small values.

4.1.1.1 Example: Bernoulli random variables

Consider the example in which the outcome of an experiment is whether a
person survives for more than five years after a lung cancer diagnosis, and let
us assume that the probability of survival is P (X = 1) = 0.5. We would like to
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know the expected value of survival and we simply need to apply the formula

E(X) = 0 × P (X = 0) + 1 × P (X = 1) = 0 × 0.5 + 1 × 0.5 = 0.5 .

If we use the same geometric intuition from the seesaw example this answer is
obvious: if two equal weights are placed at 0 and 1, the center of mass is at 0.5.
In practice the probability of survival is not 0.5, and could even be unknown.
Suppose that P (X = 1) = p, which implies that P (X = 0) = 1 − p, as the
person will either survive or die in five years. In this case the expected value of
the survival variable is

E(X) = 0 × P (X = 0) + 1 × P (X = 1) = 0 × (1 − p) + 1 × p = p ,

indicating that for a Bernoulli random variable, X, with probability of success
p the mean (or expected value) is E(X) = p. The interpretation of this result is
that if one selects at random a group of people from a population of individuals
with cancer with five-year survival probability of p, the expected proportion of
individuals who survive after five years is 100p%.

4.1.1.2 Example: Die roll random variables

Let us consider the experiment of rolling a fair die and denote by X the asso-
ciated random variable. The variable X can take only the values {1, 2, . . . , 6}
and, because the die is fair, P (X = x) = 1/6 for all x ∈ {1, 2, . . . , 6}. Here, and
throughout the book, we will use upper case X to denote the random variable
(what we know about the experiment before the experiment is run) and the
lower case x to denote the outcome of the random variable (what we observe as
a result of the experiment).

We would like to calculate the mean, or expected value, of X

E(X) =
6∑

x=1
xP (X = x) = 1 × 1

6
+ . . . + 6 × 1

6
= 21

6
= 3.5 .

Again, the geometric argument makes this answer obvious without calculation.
Just as in many other examples, the mean is not the most likely value the
random variable takes. In fact, P{X = E(X)} = P (X = 3.5) = 0. Now, we
would like to investigate how to obtain the mean of X2. First, observe that X2

takes only the values {12, 22, . . . , 62} and takes each of these values with the
same probability, 1/6. Thus,

E(X2) =
6∑

x=1
x2P (X2 = x2) = 12 × 1

6
+ . . . + 62 × 1

6
= 91

6
≈ 15.167 .

Observe that Var(X) = E(X2) − {E(X)}2 = 15.167 − 12.25 = 2.917 > 0
indicating that, in this case, E(X2) ≥ {E(X)}2. This is a particular example of
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Jensen’s inequality (more about this later) and holds for every random variable.
The quantity Var(X) = E(X2)−{E(X)}2 will be referred to as the variance of
X and will play an important role in this book. We could also use R to conduct
these calculations as follows
x=1:6 #Vector of possible values for a 1-die roll
ex2=sum(x^2*rep(1/6,6)) #Expected value of X^2
ex=sum(x*rep(1/6,6)) #Expected value of X
varx=ex2-ex^2 #Variance of X
round(varx,digits=3)

[1] 2.917

Similarly, we can obtain the expected value of the random variable
√

X as

E(
√

X) =
6∑

x=1

√
xP (

√
X =

√
x) =

√
11

6
+ . . . +

√
61

6
≈ 1.805 .

In contrast to the case when we took the square transformation, E(
√

X) −√
E(X) = 1.805 −

√
3.5 ≈ −0.066 < 0. For this case E(

√
X) ≤

√
E(X), which

also happens to be a particular case of the Jensen’s inequality. The reason that
E(X2) ≥ {E(X)}2 is that the function h(x) = x2 is convex (its graph “holds
water”) while the reason for having the inequality E(

√
X) ≤

√
E(X) is that

the function h(x) =
√

x is concave (its graph “does not hold water”).

4.1.1.3 Example: categorical distribution

The Bernoulli random variable is very useful to represent Yes/No, dis-
ease/healthy outcomes, but we may want to do more than that in practice. For
example, consider the outcome of an experiment where the mental health of
individuals is assessed in a prospective cohort study. For each individual the
degree of impairment is assigned to “healthy”, “mild”, or “serious”. A natural
reaction for this would be to say that this is a random variable, X, with three
possible outcomes, but it would make no sense to define the mean of this
random variable as

E(X) = healthy×p(X = healthy)+mild×P (X = mild)+serious×P (X = serious) ,

as we cannot assign numbers to labels. Of course, we can assign, for example,
the number 1 to healthy, 2 to mild, and 3 to serious, which would provide a
number for the formula above. However, such assignments are arbitrary and
lead to different values for different label assignments. Thus, an alternative
strategy needs to be found. The idea is to consider that the random variable
is a vector with three 0/1 entries, where all entries are zero with the exception
of the one corresponding to the particular mental health status. More precisely,
X = (X1, X2, X3), where Xi ∈ {0, 1} for i = 1, 2, 3 and

∑3
i=1 Xi = 1. For

example, if the health of the person is mildly impaired, the realization of the
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random variable is (0, 1, 0), while if the health of the person is seriously impaired,
the realization is (0, 0, 1). The mean for multivariate vectors is defined entrywise,
that is

E(X) = {E(X1), E(X2), E(X3)} ,

where E(Xi) is the proportion of persons who belong to category i. For exam-
ple, E(X1) is the proportion of persons whose mental health is not impaired,
while E(X2) is the proportion of persons with mild mental impairment. In this
case we need to have E(X1) + E(X2) + E(X3) = 1 because these are mutually
exclusive categories and they cover the entire population. This definition is a
generalization of the Bernoulli distribution, which would only have two cate-
gories and can easily be extended to an arbitrary number of categories. In this
book we do not emphasize multivariate distributions, but such data are quite
common in health studies.

4.1.2 Mean of a continuous random variable

For a continuous random variable, X, with pdf f(x) the mean or expected value
is defined as follows

E(X) =
∫ ∞

−∞
xf(x)dx .

Geometrically, if we have a continuous body with the density of mass distributed
according to f(x), E(X) is the center of mass of that body. We now consider
a few examples of continuous distributions that will be used extensively in this
book.

4.1.2.1 Example: continuous distributions

Consider that the random variable X with a uniform distribution between 0
and 1, and we denote X ∼ U[0, 1]. The pdf for this distribution is f(x) = 1 if
x ∈ [0, 1] and 0 otherwise. The plot for this density is shown in Figure 4.2.

This is a valid density because f(x) ≥ 0 for every x and∫ ∞

−∞
f(x)dx =

∫ 0

−∞
0dx +

∫ 1

0
1dx +

∫ ∞

1
0dx = x

∣∣∣∣1
0

= 1 .

We would like to calculate the expected value of a variable X with a Uniform
distribution between zero and one. We apply the rules of integration and obtain

E(X) =
∫ ∞

−∞
xf(x)dx =

∫ 0

−∞
x×0dx+

∫ 1

0
x×1dx+

∫ ∞

1
x×0dx = x2

2

∣∣∣∣1
0

= 1
2

.

This is the mean of the standard Uniform distribution. In general, if a < b we
say that the variable X has a uniform distribution on [a, b] and we denote X ∼
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Figure 4.2: The pdf of the Uniform density on [0,1].

U[a, b] if the pdf of X is f(x) = 1/(b−a) for x ∈ [a, b] and 0 everywhere else. The
Uniform distribution is often used to characterize the lack of information about
a probability. For example, if we are just starting a study on the probability of
death from a new type of infection, we could reasonably assume that we do not
know anything about it and that its prior distribution is U[0, 1]. The distribution
is also useful to generate Monte Carlo samples from other distributions. Drawing
random samples from the Uniform distribution is easy in R
y1<-runif(10000) #random samples from a U[0,1]
y2<-runif(10000,-2,15) #random samples from a U[-2,15]

We now introduce the following four additional continuous distributions: Nor-
mal (or Gaussian), Exponential, Gamma, and Beta. A random variable is said
to follow a standard Normal distribution and is denoted as X ∼ N(0, 1) if its
pdf is

f(x) = 1√
2π

e− x2
2 , for x ∈ R .

This is a pdf because f(x) > 0 for every x ∈ R and
∫∞

−∞ e−x2/2dx =
√

2π. We
do not prove this result, as it is just above the limit of what is necessary to
know from calculus. However, it is easy to show that

E(X) =
∫ ∞

∞
xe− x2

2 dx =
∫ 0

−∞
xe−x2/2dx +

∫ ∞

0
xe−x2/2dx .

In the first integral we apply the change of variable y = −x and we obtain∫ 0

−∞
xe−x2/2dx =

∫ 0

∞
(−y)e−y2/2d(−y) =

∫ 0

∞
ye−y2/2dy = −

∫ ∞

0
ye−y2/2dy ,
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which shows that the mean of a random variable X ∼ N(0, 1) is E(X) = 0. The
top-left panel in Figure 4.3 displays the pdf of a standard normal distribution
(blue) together with the location of its mean (red vertical line). The pdf is
symmetric around zero and has the famous “bell shape” with the tails of the
distribution decreasing rapidly to zero as one is at least 2 or 3 away for the
mean. It is easy to show, using exactly the same trick, that if a distribution
is symmetric around µ then the mean of the distribution is µ. The Normal
distribution is often used to characterize the distribution of errors and will play
a crucial role in the Central Limit Theorem (CLT) and the construction of
confidence intervals.

A random variable is said to follow an exponential distribution with mean θ > 0
and is denoted as X ∼ exp(θ) if its pdf is f(x; θ) = θe−θx for x ≥ 0 and
0 otherwise. This distribution is often used in survival analysis to model the
time until a certain event happens (e.g. death, cure, release from the hospital).
Because time is positive, the support of the exponential distribution is the set
of positive real numbers, R+. It is relatively easy to show that f(x; θ) is a pdf
and that

E(X) =
∫ ∞

0
θxe−θxdx =

∫ ∞

0
−x

∂

∂x
{e−θx}dx = −xe−θx

∣∣∣∣∞
0

+
∫ ∞

0
e−θxdx = 1

θ
.

The third equality follows from the integration by parts formula (please refresh
your calculus memory, if necessary), while the last inequality holds because
limx→∞ xe−θx = 0 and

∫∞
0 e−θxdx = − 1

θ

∫∞
0

∂
∂x {e−θx}dx. The top-right panel

in Figure 4.3 displays the pdf of the exponential distribution (blue line) with
θ = 1/5 and the mean of the distribution E(X) = 1/θ = 5 (red vertical line).

A random variable is said to follow a Gamma distribution with parameters α > 0
and β > 0 and is denoted as X ∼ Gamma(α, β) or X ∼ Γ(α, β) if its pdf is

f(x; α, β) = βα

Γ(α)
xα−1e−xβ for x > 0

and 0 otherwise. Here Γ(α) =
∫∞

0 xα−1e−xdx is the Gamma function. The
exponential distribution exp(θ) is a particular case of the Gamma family of
distributions because it corresponds to α = 1 and β = 1/θ. The Gamma
distribution is also used in survival analysis, but has applications in other ar-
eas, including modeling annual healthcare expenditures, pathogen or toxicant
concentrations in water, daily calorie intake, knee reaction time in a medical
experiment, and the kidney glomerular filtration rate. We now show that this
is indeed a legitimate pdf. Obviously, f(x; α, β) ≥ 0 for every x ∈ R and, by
making the change of variable y = xβ∫ ∞

0

βα

Γ(α)
xα−1e−xβdx = βα

Γ(α)

∫ ∞

0

{
y

β

}α−1

e−yd

(
y

β

)
= βα

βαΓ(α)

∫ ∞

0
yα−1e−ydy = 1 .

The last equality holds by the definition of the Γ(α) function and the result
implies that

∫∞
0 xα−1e−xβdx = Γ(α)/βα for any α > 0 and β > 0. Let us
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calculate the mean of the Gamma distribution

E(X) = βα

Γ(α)

∫ ∞

0
xxα−1e−βxdx = βα

Γ(α)

∫ ∞

0
x(α+1)−1e−βxdx = βα

Γ(α)
Γ(α + 1)

βα+1 = Γ(α + 1)
Γ(α)β

.

We show that Γ(α + 1) = αΓ(α), which proves that E(X) = α/β. Note that

Γ(α+1) =
∫ ∞

0
xαe−xdx =

∫ ∞

0
xα ∂

∂x
{−e−x}dx = −xαe−x

∣∣∣∣∞
0

+
∫ ∞

0

∂

∂x
{xα}e−xdx = αΓ(α) .

For the third equality we applied again the integration by parts formula and
the last equality follows from the definition of the Γ(α) function and the
fact that ∂

∂x {xα} = αxα−1. The bottom-left panel in Figure 4.3 displays the
Gamma(2, 1/5) density (blue) and its mean E(X) = α/β = 2/(1/5) = 10
(red vertical line). To avoid confusion, in R the Gamma distribution is
parameterized in terms of the shape parameter α and the scale parameter
1/β. Whenever working with the Gamma distribution it is important to know
which exact parameterization is used. An easy way to remember is that in the
parameterization in this book E(X) = α/β, whereas in R and other sources
E(X) = αγ, where γ = 1/β.

A random variable is said to follow a Beta distribution with parameters α > 0
and β > 0 and is denoted as X ∼ Beta(α, β) if its pdf is

f(x; α, β) = 1
B(α, β)

xα−1(1 − x)β−1 for x ∈ (0, 1)

and 0 otherwise, where B(α, β) =
∫ 1

0 xα−1(1 − x)β−1dx. It is easy to show that
this is a pdf and the mean is

E(X) = 1
B(α, β)

∫ 1

0
xxα−1(1 − x)β−1dx = B(α + 1, β)

B(α, β)
.

It can be shown that B(α, β) = Γ(α)Γ(β)
Γ(α+β) (proof omitted here), which implies

that

B(α + 1, β) = Γ(α + 1)Γ(β)
Γ(α + β + 1)

= αΓ(α)Γ(β)
(α + β)Γ(α + β)

= α

α + β
B(α, β) .

Therefore, the mean of the Beta distribution with parameters α and β is α/(α+
β). The domain of the Beta distribution is (0, 1), which makes it particularly
well suited for modeling probability and risk. The bottom-right panel in Figure
4.3 displays the Beta distribution (blue) with parameters α = 10 and β = 2 and
its mean E(X) = α/(α + β) = 10/12 ≈ 0.833 (red vertical line).

Truthfully, this is the point where most students are yawning the hardest and
we are fully aware of that. But, we did not promise that this would be a math-
free book and in the first chapter we provided fair warnings about the level of
calculus we expect. More importantly, this is about the highest level of calculus
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required and we will use it only when it is truly necessary. Probably one of the
most important skills of a biostatistician is to know what is not necessary to
solve a particular problem. Difficult math is seldom the answer in data analysis,
though intuition and experience can go a long way.

4.1.2.2 Example: distribution plots

We now show how to make the panels in Figure 4.3 for the four different dis-
tributions: N(0, 1) (top-left panel), exp(1/5) (top-right panel), Gamma(2, 1/5)
(bottom-left panel), and Beta(10, 2) (bottom-right panel). The corresponding
pdfs are shown as blue lines and the means are indicated as vertical red lines.
par(mfrow = c(2,2),

oma = c(1,1,1,1) + 0.1,
mar = c(4,4,0,0) + 0.1)

x1=seq(-3.5,3.5,length=101)
y1<-dnorm(x1)
plot(x1,y1,type="l",col="blue",lwd=3,xlab="N(0,1)",ylab="Density",

main="",cex.lab=1.3,cex.axis=1.3,col.axis="blue")
lines(c(0,0),c(0,0.4),col="red",lwd=3)

x2=seq(0,15,length=101)
y2<-dexp(x2,1/5)
plot(x2,y2,type="l",col="blue",lwd=3,xlab="exp(1/5)",ylab="",

cex.lab=1.3,cex.axis=1.3,col.axis="blue")
lines(c(5,5),c(0,0.2),col="red",lwd=3)

x3=seq(0,40,length=101)
y3<-dgamma(x3,shape=2,scale=5)
plot(x3,y3,type="l",col="blue",lwd=3,

xlab="Gamma(2,1/5)",ylab="Density",
cex.lab=1.3,cex.axis=1.3,col.axis="blue")

lines(c(10,10),c(0,0.073),col="red",lwd=3)

x4=seq(0,1,length=101)
y4<-dbeta(x4,shape1=10,shape2=2)
plot(x4,y4,type="l",col="blue",lwd=3,xlab="Beta(10,2)",ylab="",

cex.lab=1.3,cex.axis=1.3,col.axis="blue")
lines(c(0.83,0.83),c(0,4.2),col="red",lwd=3)

The mean is the center of mass both for discrete and continuous distributions,
though the mean is not required to be a possible outcome of the experiment.
These plots indicate that the mean does not need to be the middle of the variable
domain or the point of maximum probability (likelihood). However, the mean
is the point of maximum likelihood for symmetric unimodal distributions, such
as the Gaussian (normal) or Laplace (double-exponential) distributions. The
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Figure 4.3: The pdfs of four continuous distributions.

mean is not typically the median. However, for symmetric distributions, often
used as error distributions in statistical models, the mean and the median are
equal. The mean can be heavily affected by the skewness of the distribution and
may have different interpretations depending on the shape of the distribution.

4.1.3 Rules about expected values

The expected value is a linear operator. This means that if a and b are not
random and X and Y are two random variables then

• E(aX + b) = aE(X) + b
• E(X + Y ) = E(X) + E(Y ).

We will prove the first result, while the second result will be proved when we
discuss the pdf of a vector of random variables. Let fX(·) and fY (·) be the pdf
of the distribution of the X and Y variables, respectively. By definition

E(aX + b) =
∫

(ax + b)fX(x)dx = a

∫
xfX(x) + b

∫
fX(x)dx = aE(X) + b ,

because E(X) =
∫

xfX(x)dx and
∫

fX(x)dx = 1, as fX(·) is a pdf. This result
shows that the expected value is a linear operator. That is, if h(·) is a linear
function, then E{h(X)} = h{E(X)}. If h(·) is not linear, then E{h(X)} ̸=
h{E(X)}. For example, E(X2) ̸= E2(X) and E{log(X)} ̸= log{E(X)}.
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We now show that E(X2) ≥ {E(X)}2 for any random variable with the ex-
ception of the trivial case when X = E(X). As {X − E(X)}2 ≥ 0 it follows
that

0 ≤ E{X − E(X)}2

= E{X2 − 2XE(X) + E2(X)}
= E(X2) − 2E(X)E(X) + E2(X)
= E(X2) − E2(X) ,

where the second equality follows from the linearity of the mean operator and
the fact that E(X) and E2(X) are constants.

4.1.4 Example: two stage survival

Consider the following hypothetical example of a lung cancer study in which all
patients start in phase 1, transition into phase 2, and die at the end of phase
2. Unfortunately, but inevitably, all people die. Biostatistics is often concerned
with studying approaches that could prolong or improve life. We assume the
length of phase 1 is random and is well modeled by an exponential distribution
with mean of five years. Similarly, the length of phase 2 is random and can be
modeled by a Gamma distribution with parameters α = 5 and β = 4. Suppose
that a new drug that can be administered at the beginning of phase 1 increases
3 times the length of phase 1 and 1.5 times the length of phase 2. Consider a
person who today is healthy, is diagnosed with phase 1 lung cancer in 2 years,
and is immediately administered the new treatment. We would like to calculate
the expected value of the survival time for this person. Denote by X the time
from entering in phase 1 to entering phase 2 and by Y the time from entering
phase 2 to death without taking treatment. Thus, the total survival time is
2 + 3X + 1.5Y and the expected total survival time, in years, is

E(2 + 3X + 1.5Y ) = 2 + 3E(X) + 1.5E(Y ) = 2 + 3 × 3 + 1.5 × 5/4 = 12.875 .

We emphasize here, and throughout the book, that the hardest thing about
Biostatistics is to understand the specific scientific language associated with the
problem and to translate it into precise statements that can be coded, modeled,
and addressed. Human language is often not precise, which requires the bio-
statistician to think carefully about what is said, what is not said, what pieces
of information are useful, what can be discarded, and what additional informa-
tion is needed. All of this requires thinking and understanding, which is the
hardest component of biostatistical work. Probably the best way of learning
these skills is to work on multiple projects that raise different types of chal-
lenges, contain different data types, and require answering different scientific
problems.
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4.2 Sample mean and bias

We have discussed the theoretical mean of a theoretical distribution and how to
do the necessary calculations. However, in practice we do not know either the
true mean or the true distribution from which observations are drawn. Indeed,
consider the example of a study in which 10 individuals with myocardial infarc-
tion (MI) are followed until death and the time from MI diagnosis to death is
recorded for each one of them in years. Suppose that data look like this

5, 4.5, 3.3, 7, 2, 1.7, 4.1, 6.2, 2.4, 8.3 .

The average (or sample mean) is 4.45 years, which seems to provide a good
description of the observed data, or at least its central tendency. This is called
the sample mean, which is easy to calculate for the observed data and provides
a simple one-number summary of the collected data. So, why do biostatisticians
insist on talking about the true mean, an arbitrary unknown theoretical quan-
tity? There are many reasons, but here we only discuss three: generalizability,
sampling assumptions, and exchangeability. Because these are fundamental and
deeply complementary concepts in biostatistics, we will take the time to talk
about them in some detail. These concepts should underpin the foundation of
any self-respecting data analysis discipline and will show just how inevitable the
biostatistical approach is.

After collecting the data, calculating the empirical mean, 4.45, was almost in-
stinctive. But, the biostatistician needs to think about how to interpret the
number and especially why the mean was calculated. Indeed, if another study
is run and data are collected for another 10 subjects then, almost surely, the
sample mean will be different. Actually, any biostatistician would take a 100 to
1 bet that the sample mean will not be identical. Make that 1000 to 1 while you
are at it. Since the sample mean in this new sample will be different, is there
any value in collecting the above sample and calculating 4.45? We instinctively
think so and expect that the average survival time in the new sample will be
close to 4.45. Of course, we do not know how close and might be tempted to
say that the new observed mean will be between, say 4.25 and 4.65. Any self-
respecting researcher should, however, be able to put his or her money down
and bet on his or her prediction about future results. Generalizability is the
property of the scientific approach to produce generalizable knowledge (e.g., the
empirical mean in a new study will be close to 4.45). We have already seen that
the empirical mean is not generalizable because its inherent randomness makes
it irreproducible in the exact sense of the word. However, we will see that the
information contained in the sample mean is reproducible in the context of bio-
statistical modeling when we assume that there exists a theoretical mean and a
theoretical distribution.

Sampling assumptions are inherently connected to generalizability of results.
Assume, for example, that we are now told that the 10 individuals who had
MI are all female from 30 to 35 years old. Thus, we would expect that the
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sample mean 4.45 would contain a lot more information about young female MI
survivors than old male MI survivors. Thus, the population one samples from
and the way sampling is conducted (e.g., at random, clustered, convenience)
can have a fundamental effect on the generalizability of the findings. Defining a
theoretical distribution in simple but precise terms provides the framework for
conducting and conceptualizing experiments.

Exchangeability is one of the least recognized and most pervasive assumptions
in data analysis. Intuitively, exchangeability is the property that, up to certain
characteristics, experimental units are equivalent. For example, in the MI sur-
vivors example, exchangeability requires that future MI survival times behave
like the ones already observed. Exchangeability is, thus, strongly related to gen-
eralizability and sampling assumptions. In the next Chapter we will introduce
the concept of independent and identically distributed (iid) random variables,
which is the simplest theoretical framework for generalizability, sampling as-
sumptions, and exchangeability.

Let Xi for i = 1, . . . , n be a collection of random variables, each from a distri-
bution with mean µ. The sample mean is defined as

Xn = 1
n

n∑
i=1

Xi.

Using the rules of expectation, it follows immediately that

E(Xn) = 1
n

E

{
n∑

i=1
Xi

}
= 1

n

n∑
i=1

E(Xi) = nµ

n
= µ.

Therefore, the expected value of the sample mean is the population mean that it
is trying to estimate for any sequence of random variables with the same mean.
Any function of the data is called an estimator and any unknown quantity µ is
called a parameter or estimand. For example, both X3 and Xn are estimators
and µ is a parameter. We say that a function of the data U(X1, . . . , Xn) is an
unbiased estimator of the parameter µ if

E{U(X1, . . . , Xn)} = µ.

For any estimator U(X1, . . . , Xn) and parameter µ the bias is defined as

b(U, µ) = E{U(X1, . . . , Xn)} − µ .

By definition, the estimator U(X1, . . . , Xn) is called unbiased for µ if b(U, µ) = 0.
Given the result above we conclude that the sample mean, Xn, is an unbiased
estimator of the true mean µ. Recall that after running the experiment we can
calculate the sample mean, which will contain information about the true mean.
However, the true mean is not available to us, just the observations from the
experiment. Being unbiased is a good thing for an estimator. Consider the case
when one is interested in measuring somebody’s weight. If the scale consistently
shows two additional kilograms to every person who steps on the scale, the scale
is biased for the true weight of the person, µ.
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4.2.1 Using R to understand the empirical mean

Let us play some games and see whether we can uncover some order from ran-
domness. We start by simulating the mean of n die rolls, where n can be 5,
10, 20, or 100. Each experiment is repeated 1000 times; for example, for n = 5
we roll the die 5 times, record the outcome of each die roll, take the average
of the 5 die rolls, store the average, and then repeat the same experiment 1000
times. The result of this experiment will be a vector of length 1000 with each
entry representing the average of 5 die rolls. Similar experiments are run for
the average of 10 die rolls, and so on. Note that the experiments will require a
different number of die rolls, but the results of all experiments will be a vector
of length 1000. For example, for the experiment with the average of n = 5 die
rolls a total of 5000 rolls will be required, whereas for n = 20 a total of 20000
rolls will be required. Such experiments would be impractical, but are basically
instantaneous using a computer, as we describe below
set.seed(7654098)
mx5 <- rep(0, 1000) #means of n= 5 die rolls
mx10=mx5 #means of n= 10 die rolls
mx20=mx5 #means of n= 20 die rolls
mx100=mx5 #means of n=100 die rolls
for ( i in 1:1000 )

{#begin rolling the die
#roll the die n=5 times, take the mean
mx5[i] <- mean(sample(1:6,5,replace=T))
mx10[i] <- mean(sample(1:6,10,replace=T))
mx20[i] <- mean(sample(1:6,20,replace=T))
#roll the die n=100 times, take the mean
mx100[i] <- mean(sample(1:6,100,replace=T))
}#end rolling the die

Figure 4.4 displays the histograms of the sample means of n die rolls. Each panel
contains the histogram of 1000 realizations of the mean of n die rolls, where n
is 5, 10, 20, 100. Each histogram can be viewed as the empirical distribution of
the mean over a fixed number of samples, n.

This is a case when we know that the mean is 3.5, which is roughly the center of
each of the four histograms. The spread of the empirical means around the true
theoretical mean for all numbers of rolls indicates that the empirical means are
seldom equal to the theoretical means. As the number of rolls that are averaged
increases (from 5 to 100), the distribution of the means becomes tighter and
tighter around the true mean. In this case the histograms of the empirical
means are symmetric and relatively bell-shaped. The four panels in Figure
4.4 illustrate the manifestation of two very powerful concepts in biostatistics:
the law of large numbers and the central limit theorem. We will discuss these
results in detail later, but the ever tighter distribution around the true mean
is the law of large numbers, while the bell-shape of the distribution of the
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Figure 4.4: Histograms of the sample means for different number of experiments.

average for larger numbers of rolls is the central limit theorem. Teaching these
concepts is extremely difficult, though a thorough understanding of the sampling
mechanisms described in this section should provide the much needed intuition.

4.2.2 Example: BMI and RDI

We consider now an example from the Sleep Heart Health Study (SHHS).
The SHHS is a multicenter study on sleep-disordered breathing, hyper-
tension, and cardiovascular disease (Quan et al. 1997). The data in
this book were downloaded from the National Sleep Research Resource
https://sleepdata.org/datasets and were approved for the use in this book.
The SHHS drew on the resources of existing, well-characterized, epidemiologic
cohorts, and conducted further data collection, including measurements of
sleep and breathing. In this book we will analyze a subset of the SHHS visit 1
data, which contain 5804 participants and included 52.4% women and 47.6%
men. We start by downloading the data
file.name = file.path("data", "shhs1.txt")
data.cv<-read.table(file=file.name,header = TRUE,na.strings="NA")
attach(data.cv)
dim(data.cv)

https://sleepdata.org/datasets
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Figure 4.5: Scatter plot of BMI versus RDI in the SHHS.

[1] 5804 30

The dataset contains 5804 rows, where each row corresponds to a person enrolled
in the SHHS, and 30 columns, where each column, except pptid, which is used
as an identifier, corresponds to a person-specific variable. For now we will focus
on the Body Mass Index (BMI) and Respiratory Disturbance Index (RDI). More
precisely, we will work with the variables bmi_s1 and rdi4p, the overall RDI
at 4% oxygen desaturation. This is the ratio of the count of all apneas and
hypopneas associated with at least a 4% oxygen desaturation to the total sleep
time expressed in hours (https://sleepdata.org/). The 4% oxygen desaturation
refers to blood’s oxygen level drop by 4% from baseline. This variable is often
used to characterize the severity of sleep apnea, with larger values corresponding
to worse outcomes.

Figure 4.5 provides the scatter plot of BMI versus RDI, though, for presentation
purposes, we only show RDI less than 50. Probably one of the best things to
do when looking at a new dataset is to plot the data and identify some of their
characteristics. This plot indicates that RDI≥ 0 (by definition), that there is
a higher density of observations for small RDI (note the deeper shades of blue
close to the x-axis) and that most people in the SHHS sample have a BMI≥ 20.
The casual observer should note the large amount of variability in this plot, as
for any BMI level there is a large range of observed RDI values.

We also calculate the mean BMI and RDI
round(mean(bmi_s1,na.rm=TRUE),digits=2)

[1] 28.16

https://sleepdata.org/
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Figure 4.6: Marginal distributions of BMI and RDI in the SHHS.

round(mean(rdi4p,na.rm=TRUE),digits=2)

[1] 8.66

The center of the red circle has the x-axis coordinate equal to the empirical
mean BMI (28.16) and y-axis coordinate equal to the empirical mean RDI (8.66).
This is the mean of the two dimensional vector of observations (BMIi, RDIi) for
i = 1, . . . , 5804. We can look more closely at each variable separately.

The two panels in Figure 4.6 provide the histograms of the two observed variables
and the means indicated by orange triangles. The BMI histogram is slightly
skewed with a heavier right tail, which pulls the mean closer to the upper range
of the BMI range relative to the mode of the distribution (point of highest
density of BMI values). The RDI plot is much more skewed and is, in fact,
very hard to represent well. The reason is that it contains some very large RDI
values. Indeed, there are 119 individuals with RDI> 50 (2.1%) and 4 individuals
with RDI> 100 (0.07%). Moreover, there are 1264 individuals with an RDI< 1
(21.8%), which accounts for the mode of the distribution being close to 0. It is
a good exercise to calculate these numbers from the data directly using R. The
distribution shown in Figure 4.5 is called the joint empirical distribution of BMI
and RDI, whereas the two distributions in Figure 4.6 are the marginal empirical
distributions of of BMI and RDI, respectively.

The parallel between these examples and the seesaw example (Figure 4.1) for
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discrete distributions should not be lost. Indeed, one can imagine that we assign
a weight to every bin of the histogram proportional to the number of subjects
in that particular bin. Then the seesaw would be in perfect balance if it rested
on the tip of the orange triangle.

This example indicates just how easy and intuitive it is to work with the data,
calculate the mean, and produce histograms or other summaries. However, as
before, we are interested in understanding what information from these figures
is generalizable. For example, is the average BMI of 28.16 in the sample equal
to the average BMI of the US population? As before, we are 100% sure that this
is not the case. Moreover, we know that the SHHS sample is not representative
of the U.S. population. For example, participants less than 65 years of age
were over-sampled on self-reported snoring to augment the prevalence of Sleep
Disrupted Breathing (SDB). Implicitly, this sampling procedure over-sampled
individuals with higher BMI, which might have induce bias. Indeed, according to
the NHANES study study, which took place in the US for a period comparable
to the SHHS enrollment, the average adult man has a BMI of 26.6 and the
average adult woman has a BMI of 26.5. However, even if we obtained two
independent SHHS samples from the US population using identical protocols,
the mean BMI would not be identical. They would be close, but not identical.
Biostatistical philosophy postulates that the observed mean is an approximation
of the unknown mean and that different samples can have different observed (or
empirical) means. An important art associated with this philosophy is how
to make inference about this unknown mean without collecting one or more
additional samples. More precisely, can we make predictions about what the
mean could be in a different sample collected with the same protocol without
the cost and time associated with the process? This is one of the most practical
problems in data analysis that humans have been able to address after several
millennia of thinking about data, experiments, and science.

4.2.3 Example: brain

Let us consider another example, this time in three dimensions. The data are
a T1-weighted magnetic resonance image (MRI) of a healthy brain from the
Kirby21 dataset (Landman et al. 2011). We would like to plot the data and find
the center of gravity (cog), or mean, of the image. First we need to understand
a little bit about the structure of the data. We use the R package oro.nifti
(Whitcher, Schmid, and Thornton 2011) from Neuroconductor (Muschelli et al.
2019).
library(oro.nifti)
file.name = file.path("data/NIfTI", "T1.nii.gz")
nii_T1=nii_T2=readNIfTI(file.name,reorient=FALSE)
dim(nii_T1)

[1] 512 512 22

https://www.cdc.gov/nchs/data/nhanes/databriefs/adultweight.pdf
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This indicates that the data are stored in a three dimensional array and the
total number of entries is 512 × 512 × 22 ≈ 5.8 million. For every entry in the
matrix an intensity value is assigned. Many of the entries (3D pixels, or voxels)
do not correspond to human tissue and simply contain the T1-weighted value
of air, which, in this case is assigned to 0. There are about 2.5 million voxels
with an intensity equal to 0 and we would like to identify and mask out these
voxels from the data. Indeed, if we do not do that, the mean of the image
will be the mean of the bounding box around the brain image, which could be
very different from the brain cog. Below we define the image mask, and take
the column means of the voxel locations for those voxels that do not have a
T1-weighted intensity equal to 0.
mask = nii_T1 > 0
inds = which(mask > 0, arr.ind = TRUE)
cog = colMeans(inds[, 1:3])
cog = floor(cog)
nii_T1[ nii_T1 > 500] = 500 # remove
nii_T1 = calibrateImage(nii_T1)
orthographic(nii_T1, xyz = c(cog))

This approach does not consider the intensities of the voxels; instead it takes
the average of the x, y, z coordinates of those voxels that do not correspond
to air. The cross-hair in the orthographic image indicates this mean in the
coronal (top-left panel), saggittal (top-right panel), and axial (bottom-left panel)
planes, respectively. As the dimension of the data increases from one to three
dimensions, we are still able to show the empirical mean. However, as the
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number of dimensions increases further, and increase it will, visualizing the
data in all dimensions simultaneously becomes problematic. This is why in
practice a good first step is to use all possible two-dimensional plots to explore
the data. One could ask, of course, why is the cross-hair an empirical mean and
what is the theoretical mean? Ideally, we would like the theoretical mean to be
a well defined quantity, for example, the center of mass of the brain. However,
we do not have the brain, just a pretty blurry image of the head that contains
the brain, the skull, and some additional tissues (have you noticed the nose?).
Moreover, if we replicate the experiment and we image the brain again, many
things would change, including the alignment of voxels, the definition of air,
the orientation of the image, the strength of the signal, and the amount of non-
brain tissues. All these, and many other changes, lead to a different estimated
mean of the brain. Simply acknowledging that the process of identifying (or
in biostatistics speak, estimating) the mean is subject to error can help the
researcher identify the sources of errors, incorporate them into the inference
about the true underlying mean, and help build better processing and analytic
pipelines that could address some of the problems noted above.

4.3 Variance, standard deviation, coefficient of
variation

The variance of a random variable is a measure of spread of the distribution of
that random variable. If X is a random variable with mean µ, the variance of
X is defined as

Var(X) = E(X − µ)2 ,

which is the expected squared distance from the mean. If X is a discrete random
variable with pmf p(x) = P (X = x), then

Var(X) =
∑

x

(x − µ)2p(x) .

If X is a continuous random variable with pdf f(x), then

Var(X) =
∫ ∞

−∞
(x − µ)2f(x)dx .

A convenient computational form for the variance is Var(X) = E(X2) −
{E(X)}2, which was proved earlier in this chapter. If a is a constant, then
Var(aX) = a2Var(X). Indeed, we already know that E(aX) = aE(X) and

Var(aX) = E{aX − E(aX)}2 = E[a2{X − E(X)}2] = a2Var(X) .

The standard deviation of a random variable X is defined as the square root of
the variance. More precisely,

sd(X) = {E(X − µ)2}1/2 .
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Standard deviation is sometimes preferred in practice because it is expressed in
units on the original scale of the data, just like the mean, whereas the variance is
expressed in squared units. Moreover, if a is a constant, then sd(aX) = asd(X).

The coefficient of variation of a random variable with mean E(X) ̸= 0 is defined
as

cv(X) = sd(X)
|E(X)|

= {E(X − µ)2}1/2

|µ|
,

where |a| is the absolute value of a. The coefficient of variation is a unitless
measure of the amount of variability (as described by the standard deviation)
relative to the mean. If a is a constant, then cv(aX) = cv(X), indicating that
the coefficient of variation is invariant to the scaling of the random variable.
The coefficient of variation is the inverse of the signal-to-noise ratio used in
engineering. It has a strong link to Cohen’s d and the effect size used in sample
size calculations. The coefficient of variation is not defined for µ = 0.

4.3.1 Example: effect of the mean and variance on distri-
butions

Figure 4.7 displays the effect of mean and variance on the shape of the Normal
and Gamma distributions. The top-left panel displays the pdfs of the Normal
distributions centered at 0 with variance 1 (blue), 4 (orange), and 8 (red), re-
spectively. When the mean is fixed for the Normal distribution and the variance
increases, the maximum of the pdf decreases and more probability is allowed to
shift into the tails of the distribution. In practice this happens when there is
more noise or uncertainty in measurements. The top-right panel displays the
pdfs of the Normal distributions with mean 0 and variance 8 (red), with mean
2 and variance 4 (orange), and with mean 4 and variance 1 (blue). The pdfs
indicate that the mean affects the location of the distribution and the variance
affects the spread. The bottom-left plot displays the Gamma distributions with
mean 20 and variance 40 (blue), 80 (orange), and 200 (red), respectively. Com-
pared to the Normal distributions the Gamma distributions are not symmetric
and do not remain centered around the mode (location of largest value of the
pdf). The variance increase is manifested in a lower peak of the pdf, a shift
of the peak to the left (smaller values), and a much heavier tail to the right.
This indicates that, indeed, for a fixed mean, the variance continues to charac-
terize the spread of the distribution, though in a less intuitive way than in the
case of the Normal distribution. The bottom-right plot displays three Gamma
distributions with variance 100 and means 31.6 (blue), 22.4 (orange), and 14
(blue); this has the effect of keeping the variance fixed and changing the mean
of the Gamma distribution. Just as in the case of the Normal distribution, as
the mean decreases, the mode of the distribution shifts to the left. However, in
contrast to the Normal distribution, there are also pronounced changes in the
shape of the pdf. This happens because the mean and variance parameters in
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the Gamma distribution are linked, whereas they are not for the Normal distri-
bution. One should remember that the intuition about the mean and variance
as location and spread of the distribution works especially well for symmetric
distributions. The intuition holds for other distributions, but the link is more
nuanced.
x=seq(-10,10,length=201)
par(mfrow = c(2,2),

oma = c(1,1,1,1) + 0.1,
mar = c(5,5,0,0) + 0.1)

y1<-dnorm(x)
y2<-dnorm(x,0,2)
y3<-dnorm(x,0,4)
plot(x,y1,type="l",col="blue",lwd=3,

xlab="Same mean Normal",ylab="Density",
cex.lab=1.3,cex.axis=1.3,col.axis="blue")

lines(x,y2,col="orange",lwd=3)
lines(x,y3,col="red",lwd=3)

y1<-dnorm(x,4,1)
y2<-dnorm(x,2,2)
y3<-dnorm(x,0,4)
plot(x,y1,type="l",col="blue",lwd=3,

xlab="Different mean/Var Normal",ylab="",
cex.lab=1.3,cex.axis=1.3,col.axis="blue",main="")

lines(x,y2,col="orange",lwd=3)
lines(x,y3,col="red",lwd=3)

x=seq(0,80,length=101)
y1<-dgamma(x,shape=10,scale=2)
y2<-dgamma(x,shape=5,scale=4)
y3<-dgamma(x,shape=2,scale=10)
plot(x,y1,type="l",col="blue",lwd=3,

xlab="Same mean Gamma",ylab="Density",
cex.lab=1.3,cex.axis=1.3,col.axis="blue")

lines(x,y2,col="orange",lwd=3)
lines(x,y3,col="red",lwd=3)

x=seq(0,80,length=101)
y1<-dgamma(x,shape=10,scale=sqrt(10))
y2<-dgamma(x,shape=5,scale=sqrt(20))
y3<-dgamma(x ,shape=2,scale=sqrt(50))
plot(x,y1,type="l",col="blue",lwd=3,

ylim=c(0,0.06),xlab="Same Var Gamma",ylab="",
cex.lab=1.3,cex.axis=1.3,col.axis="blue")

lines(x,y2,col="orange",lwd=3)
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Figure 4.7: Effect of parameters on the shape and location of the Normal and
Gamma distributions.

lines(x,y3,col="red",lwd=3)

4.3.2 Example: to be

Consider the case of the Bernoulli random variable, the most Shakespearean of
random variables. Indeed, no other Biostatistical concept represents better the
“To be, or not to be” phrase of Prince Hamlet. In this example, assume that the
probability of being alive (to be) five years after stage IA lung cancer diagnosis is
p. We denote by X the “to be/not to be” outcome of the experiment of waiting
for five years to see whether the person survives. In this case X ∼ Bernoulli(p).
We know that E(X) = p and we obtain the variance as

Var(X) = E(X2) − {E(X)}2 = E(X) − p2 = p − p2 = p(1 − p) .

The second equality holds because the random variable X takes only the values
0 and 1, which implies that X2 = X. The coefficient of variation for a Bernoulli
random variable is cv(X) =

√
(1 − p)/p.

Consider the case of a random variable Y that takes values 0 ≤ Y ≤ 1 and has
the mean E(X) = p. Because Y 2 ≤ Y it follows that E(Y 2) ≤ E(Y ) = p, which
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implies that

Var(Y ) = E(X2) − {E(X)}2 ≤ p − p2 = p(1 − p) .

Therefore, for any variable with mean p the variance of the Bernoulli random
variable is the largest among random variables bounded by 0 and 1. For example,
for every Beta random variable there exists a Bernoulli random variable with
the same mean and larger variance Moreover, for p = 1/2 the variance of the
Bernoulli random variable is 1/2 − 1/4 = 1/4. Since (p − 1/2)2 ≥ 0 it follows
that p2 − p + 1/4 ≥ 0, which is equivalent to p(1 − p) ≤ 1

4 . Thus, the largest
variance for a random variable Y that takes values in [0, 1] is 1/4 and is achieved
for a Bernoulli(1/2) random variable.

4.4 Variance interpretation: Chebyshev’s in-
equality

The mean and the variance of the distribution are extremely important in prac-
tice as they provide a simple two-number characterization of very complex ob-
jects, such as distributions. Here we will start to lay the foundations for using
these quantities to conduct inference about the unknown mean. For this, we
will introduce and prove Chebyshev’s inequality. This will help us prove the
law of large numbers (which, essentially, states that the empirical mean does
not change much after a practical number of observations) and it will provide
a way of constructing confidence intervals for the true, unknown, mean based
on one sample. Chebyshev’s inequality states that for any random variable X
with mean µ and variance σ2

P (|X − µ| ≥ kσ) ≤ 1
k2 .

We first prove this result and then discuss the intuition and its uses. If f(x) is
the pdf of X, by definition,

P (|X − µ| ≥ kσ) =
∫

{x:|x−µ|>kσ}
1 × f(x)dx .

Since for every {x : |x − µ| > kσ} we have (x − µ)2/k2σ2 ≥ 1 it follows that∫
{x:|x−µ|>kσ}

1 × f(x)dx ≤
∫

{x:|x−µ|>kσ}

(x − µ)2

k2σ2 × f(x)dx .

Because the function being integrated is positive it follows that integrating over
all x will further increase the integral, that is∫

{x:|x−µ|>kσ}

(x − µ)2

k2σ2 × f(x)dx ≤
∫

(x − µ)2

k2σ2 × f(x)dx ,
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where the lack of indication over what domain the integration is done means
that it is done over the entire domain. Because k and σ are constants it follows
that∫

(x − µ)2

k2σ2 × f(x)dx = 1
k2σ2

∫
(x − µ)2f(x)dx = Var(X)

k2σ2 = σ2

k2σ2 = 1
k2 .

This type of inequality is very useful in biostatistics as it provides the link
between the observation X, the unknown mean µ, and the standard deviation
σ. When read carefully, Chebyshev’s inequality states that the probability that
the observed value is more than kσ away from its mean is small and rapidly
decreasing with k. The inequality can be re-written as

P (X − kσ < µ < X + kσ) > 1 − 1
k2 ,

which indicates that the the true mean of the variable X is at most kσ away
from the observation X with probability at least 1 − 1/k2. This is in line with
the philosophy we have outlined. While the observation does not tell us exactly
what the true mean is or what the empirical mean will be in a future experiment,
it does provide a lot of useful information. More precisely, it allows us to build
confidence intervals for the mean of a random variable. For example, for k = 4.47
there is at least a 95% chance that the interval (X − 4.47σ, X + 4.47σ) covers
the true mean µ. Assuming for a moment that σ is known (it typically is not
and will be estimated in practice) this interval can be calculated from the data.

4.4.1 Chebyshev versus parametric assumptions

The confidence interval derived from Chebyshev’s inequality is typically conser-
vative (too long, it covers the true value with more probability than the stated
probability). This happens because its derivation makes no assumption about
the distribution of X. If some knowledge is available about the distribution of
X, then the length of the confidence interval can be substantially reduced. For
example, if we know that the distribution of X is Normal, then there is a 95%
chance that the interval (X − 1.96σ, X + 1.96σ) covers the true mean µ. This
interval has a length that is 43% of the length of the Chebyshev confidence inter-
val for the same level of confidence (95%). Thus, having information about the
shape of the distribution can dramatically reduce the length of the confidence
intervals (and p-values; more about this later.)

We are interested in calculating the P (|X − µ| ≥ kσ) for different values of
k (number of sigmas away from the mean). We consider several values for
kσ ∈ {2, 3, 4, 5}. If we make no assumption about the distribution then the
Chebyshev’s inequality leads to the following upper limits
k=2:5 #Multiples of SD
round(1/k^2,digits=3) #Chebyshev upper limit
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[1] 0.250 0.111 0.062 0.040

For a Normal random variable N(µ, σ) it is easy to show that P (|X − µ|/σ >
k) = 2{1 − Φ(k)}, where Φ(k) is the cdf of a N(0, 1) random variable. Thus,
the probability of exceeding kσ is
2*(1-pnorm(k)) #Probability for a Normal distribution

[1] 4.550026e-02 2.699796e-03 6.334248e-05 5.733031e-07

Consider now a t distribution with 3 degrees of freedom, denoted as t(3). This
distribution has not been introduced, but we will work with it nonetheless. The
standard deviation of the t(3) distribution is

√
3 and the probability of exceeding

k
√

3 by a variable distributed as t(3) is 2{1 − Ft(3)(k
√

3)}, where Ft(3)(·) is the
cdf of the t(3) distribution. This can be calculated as
sdt3=sqrt(3) #SD of a t(3) distribution
round(2*(1-pt(k*sdt3,df=3)),digits=3) #Probability for a t(3) distribution

[1] 0.041 0.014 0.006 0.003

For the Gamma(2, 1/2) distribution the mean is µ = 2 ∗ 2 = 4 and the standard
deviation is σ =

√
2 ∗ 22 ≈ 2.83. We can write

P (|X−µ| ≥ kσ) = P (X ≤ µ−kσ)+P (X ≥ µ+kσ) = FΓ(2,2)(µ−kσ)+1−FΓ(2,2)(µ+kσ),

where FΓ(2,2)(·) is the cdf of the Gamma distribution with parameters (2, 1/2).
sh=2 #Shape parameter of Gamma(sh,sc)
sc=2 #Scale parameter of Gamma(sh,sc)
m=sh*sc #Mean of Gamma(sh,sc)
sdg = sqrt(sh*sc^2) #SD of Gamma(sh,sc)
pgam=pgamma(m-k*sdg,shape=sh,scale=sc)+1-pgamma(m+k*sdg,shape=sh,scale=sc)
round(pgam,digits=3) #Probability for a Gamma(2,2) distribution

[1] 0.047 0.014 0.004 0.001

For convenience we collect these results in the table below. This table provides
the probability of being at least kσ away from the mean in a particular exper-
iment as a function of the type of assumption about the distribution (by row)
and by the size of the deviation (by column).

kσ 2 3 4 5
Chebyshev 0.250 0.111 0.063 0.040
t(3) 0.041 0.014 0.006 0.003
Gamma(2,1/2) 0.046 0.014 0.004 0.001
Normal 0.046 0.003 6.3e-5 5.7e-7

The probability of exceeding a certain threshold kσ is much larger using the
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Chebyshev upper bound, as the inequality holds for any random variable, in-
cluding random variables with very heavy tails and heavy skew. While the t(3)
distribution is heavy-tailed, there are other distributions that have even heavier
tails. The Normal distribution tends to have the smaller probabilities of ex-
ceeding a particular multiple of the standard deviation, though for 2 standard
deviations it does not seem to very much matter whether one uses the Normal,
Gamma(2,2) or t(3) distribution. Differences become much more pronounced
for higher values of the multiplier, k. This is due to the much thinner tail of the
Normal (the tail is dominated by exp(−x2/2)), which converges very quickly to
zero. Distributions with slower tail decays than the Normal, such as t(3) and
Gamma(2,2), are called heavy-tail distributions.

4.4.2 Example: IQ

IQs are often said to be distributed with a mean of 100 and a standard deviation
of 15. We are interested in quantifying the probability that a random person has
an IQ higher than 160 or below 40. Thus, we want to know the probability of a
person being more than 4 standard deviations from the mean. Chebyshev’s in-
equality suggests that this will be no larger than 6% (see table above). However,
IQ distributions are often cited as being bell shaped, in which case this bound
is very conservative. Indeed, the probability of a random draw from a Normal
distribution being 4 standard deviations from the mean is 6.3 × 10−5 (6 one
thousandth of one percent). These differences in probability are extreme and
show just how much is being gained by having some idea about the underlying
distribution of the random variable.

4.5 Supplementary R training

This part of the book can be used as laboratory material or as additional mate-
rial for learning R. We start by looking in more detail at the Normal distribution.
We will also learn how to write simple functions. We start by generating a ran-
dom sample of size n = 1000 and plot it as a function of observation number.
## set the seed
set.seed(33)
## Generate 1000 observations from a Normal with mean 2 and variance 1
x <- rnorm(1000, mean = 2, sd = 1)
## plot observations as a function of observation number
plot(x,col="blue",pch=20,lwd=3,xlab="Observation number",

ylab="Random sample from N(2,1)",cex.lab=1.3,cex.axis=1.3,col.axis="blue")

Figure 4.8 is what we expect from a random sample from a Normal distribution
and it looks like symmetric white noise around the theoretical mean µ = 2 with
a range roughly between −1 and 5, about 3 standard deviations away from the
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Figure 4.8: Illustration of the scatter plot for a N(2,1) by the index number of
the sample.

mean in either direction. In general, an inspection of the data as a function
of observation number could provide quick insights into the distribution of the
data, possible structure, or unusual observations. There are many ways to
visually explore the data. For example, histograms and QQ-plots provide visual
displays of the distribution and their comparison with hypothetical theoretical
distributions. Figure 4.9 displays the same data as Figure 4.8, but in the form
of a histogram. The histogram is reasonably symmetric and could be thought
of as a having a quasi bell-shape, though even for n = 1000 the match is not
perfect. This is due to sampling variability, which is biostatistics speak for
the differences between theoretical distribution and observed data and between
observed data in two different samples.
## make a histogram of the observations
hist(x,probability=T,col=rgb(0,0,1,1/4),breaks=30,xlab="Sample N(2,1)",

cex.lab=1.3,cex.axis=1.3,col.axis="blue",main="")

Figure 4.10 displays the quantile-quantile (QQ) plot for the same sample used
in Figures 4.8 and 4.9. The QQ plot displays the empirical quantiles of the
observed data relative to the theoretical quantiles of a N(0, 1) random variable.
Because the quantiles of any Normal random variable are linear transformations
of those of a standard Normal, one would expect the plot of empirical versus
theoretical quantiles to be a line. The line is not the line of identity, except
when the samples are drawn from the N(0, 1) distribution. In general QQ-plots
can be obtained between any two distributions. However, when only the first
argument of the function is given, qqnorm(x), then quantiles are shown versus
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Figure 4.9: Histogram of 1000 samples from a N(2,1) distribution.

the N(0, 1) quantiles. The plot shows that there is very good agreement be-
tween the theoretical and empirical quantiles, with some exception for the lower
quantiles of the distribution. These quantiles are harder to estimate in finite
samples, which means that they are more variable. While empirical quantiles
have not been yet introduced, we think that it is important to start using the
concepts early on. Fear not for we will introduce these concepts in due time.
## compare the quantiles of our sample to that of a Normal distribution
qqnorm(x,cex.lab=1.3,cex.axis=1.3,col.axis="blue",pch=20,lwd=3,col="blue")

We focus now on the theoretical Normal distribution. Figures 4.11 and 4.12
display the pdf and cdf of a N(0, 1) distribution, respectively.
# create a sequence from -5 to -5
y <- seq(-5, 5, by = .01)
## plot the pdf of a standard Normal with dnorm
plot(y, dnorm(y, mean = 0, sd = 1), type = 'l',lwd=3,col="blue",ylab="",

xlab="pdf of N(0,1)",cex.lab=1.3,cex.axis=1.3,col.axis="blue")

##plot the cdf of a standard normal with pnorm
plot(y, pnorm(y, mean = 0, sd = 1), type = 'l',lwd=3,col="blue",ylab="",

xlab="cdf of N(0,1)",cex.lab=1.3,cex.axis=1.3,col.axis="blue")

The quantiles of the Normal distribution can be obtained in R as
##the qnorm function is the inverse of the pnorm function
round(qnorm(c(0.25,.5,0.75)),digits=4)
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Figure 4.10: Quantile-quantile plot for a sample of size 1000 from a N(2,1)
distribution.
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Figure 4.11: Theoretical pdf of a N(0,1) distribution.
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Figure 4.12: Theoretical cdf of a N(0,1) distribution.

[1] -0.6745 0.0000 0.6745

We now show how to calculate and plot the likelihood for the Normal distribu-
tion. To do this we will start discussing functions in R, which are created for
specific tasks. Below we show how to create a function that takes as input a
vector of data, in this case x, the 1000 dimensional vector of simulated inde-
pendent N(1, 2) random variables, and mu, a scalar where the log-likelihood is
evaluated. The output is the value of the log likelihood and is returned using
return(results). A function can return vectors, matrices, data frames and
lists when the output is more complex.
#create the log likelihood function
logL <- function(data, mu){

vec <- -1*(data-mu)^2/(2*1)
result <- sum(vec)
return(result)}

#compute log likelihood of values of mu ranging from -10 to 10
mu.vals <- seq(-10,10,0.1)
logL.vals <- vector(length=length(mu.vals))
for(i in 1:length(mu.vals))
{logL.vals[i] <- logL(data=x, mu=mu.vals[i])}

The likelihood was calculated on an equally spaced grid of potential values of the
parameter and is stored in the vector logL.vals where each entry corresponds



4.5. SUPPLEMENTARY R TRAINING 137

−60000

−40000

−20000

0

−10 −5 0 5 10
mu.vals

lo
gL

.v
al

s

Figure 4.13: Log-likelihood for a sample of 1000 observations from a N(2,1)
distribution.

to a grid point between −10 and 10. The next step is to plot the log-likelihood
#plot log likelihood
library(ggplot2)
qplot(x=mu.vals, y=logL.vals, geom="line")

This log-likelihood function displayed in 4.13 is an inverted parabola, is concave
(does not hold water), has a maximum, and is symmetric around the maximum.
We would like to know exactly where the maximum of the likelihood is attained
and compare it with the mean(x).
#which value maximizes the likelihood?
MLE.mu <- mu.vals[which.max(logL.vals)]
#the analytic MLE
MLE.mu2 <- mean(x)
MLE.mu

[1] 2
round(MLE.mu2,digits=3)

[1] 2.02

The two values obtained here numerically are very close, but do not appear



138 CHAPTER 4. MEAN AND VARIANCE

exactly identical. We will show later that, in fact, they are exactly identical.
The reason for the discrepancy is that here we are using a grid of points to
evaluate the likelihood that is just not fine enough.

We now show that log-likelihoods are numerically much better behaved than
likelihoods. The reason is that the value of the likelihood is usually too small to
compute. To see this we simply conduct the same exact calculations using the
likelihood instead of the log-likelihood functions. We first define the likelihood
function L as follows
L <- function(data, mu){
vec <- dnorm(x=data, mean = mu, sd = 1)
result <- prod(vec)
return(result)}

We evaluate the likelihood function at its maximum for 3 values and for 1000
values, respectively. The likelihood function is positive, but very small. Indeed,
even when using the first 3 observations the maximum likelihood (evaluated at
the true mean function) is 0.038. When n = 1000 R cannot distinguish between
the maximum likelihood and 0. Of course, these are numerical, not theoretical,
problems and they can be addressed.
round(L(data=x[1:3], mu=2),digits=4)

[1] 0.0377
L(data=x, mu=2)

[1] 0

The take home message here is that in biostatistics one often has to carefully
understand the numerical implications of the various operations.

4.6 Problems

Problem 1. Using the rules of expectations prove that Var(X) = E[X2] −
E[X]2 where Var(X) = E[(X − µ)2] for discrete random variables.

Problem 2. Let g(x) = π1f1(x) + π2f2(x) + π3f3(x) where f1 and f2 are
densities with associated means and variances µ1,σ2

1 , µ2, σ2
2 , µ3, σ2

3 , respectively.
Here π1, π2, π3 ≥ 0 and

∑3
i=1 πi = 1. Show that g is a valid density. What is

its associated mean and variance?

Problem 3. Suppose that a density is of the form (k + 1)xk for some constant
k > 1 and 0 < x < 1.

a. What is the mean of this distribution?
b. What is the variance?
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Problem 4. Suppose that the time in days until hospital discharge for a certain
patient population follows a density f(x) = 1

3.3 exp(−x/3.3) for x > 0.

a. Find the mean and variance of this distribution.
b. The general form of this density (the exponential density) is f(x) =

1
β exp(−x/β) for x > 0 for a fixed value of β. Calculate the mean and
variance of this density.

c. Plot the exponential pdf for β = 0.1, 1, 10.

Problem 5. The Gamma density is given by

1
βαΓ(α)

xα−1 exp(−x/β) for x > 0

for fixed values of α and β.

a. Derive the variance of the gamma density. You can assume the fact that
the density integrates to 1 for any α > 0 and β > 0.

b. The Chi-squared density is the special case of the Gamma density where
β = 2 and α = p/2 for some fixed value of p (called the “degrees of
freedom”). Calculate the mean and variance of the Chi-squared density.

Problem 6. The Beta density is given by

1
B(α, β)

xα−1(1 − x)β−1 for 0 < x < 1

and
B(α, β) = Γ(α)Γ(β)/Γ(α + β).

a. Derive the mean of the beta density. Note: the following is useful for
simplifying results: Γ(c + 1) = cΓ(c) for c > 0.

b. Derive the variance of the beta density.

Problem 7. The Poisson probability mass function is given by

P (X = x) = e−λλx

x!
for x = 0, 1, 2, 3, . . .

a. Derive the mean of this mass function.
b. Derive the variance of this mass function. Hint, consider E[X(X − 1)]

Problem 8. Suppose that, for a randomly drawn subject from a particular
population, the proportion of their skin that is covered in freckles follows a
uniform density (constant between 0 and 1).

a. What is the expected percentage of a (randomly selected) person’s body
that is covered in freckles? (Show your work.)

b. What is the variance?

Problem 9. You have an MP3 player with a total of 1000 songs stored on
it. Suppose that songs are played randomly with replacement. Let X be the
number of songs played until you hear a repeated song.
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a. What values can X take, and with what probabilities?
b. What is the expected value for X?
c. What is the variance for X?

Problem 10. Consider the SHHS data. Provide the bivariate scatter plots
and means for all pairs of variables: BMI (bmi_s1), Age (age_s1), time in bed
(time_bed), RDI (rdi4p), and waist circumference (waist).

Problem 11. For the variables in the previous problem display the histograms
and produce QQ-plots. Describe each plot and explain what information they
provide. Provide and interpret the empirical deciles of the distributions. Which
density do you think would fit each of the observed data best?

Problem 12. Produce three bootstrap samples of the SHHS data and repeat
the QQ-plots in the previous problem for each of the bootstrap samples. Also,
produce the QQ-plots for the bootstrap samples versus each other. Interpret
your results.

Problem 13. Produce the 95% confidence interval for the mean and median
of each of the variables using the bootstrap. Are the intervals based on the
percentiles of the bootstrap samples symmetric? Why or why not?

Problem 14. Produce a report written in Rmarkdown that would provide an
initial data exploration analysis that you would be proud to share with your
scientific collaborators. The first page should be the executive summary of your
findings. Each plot or table should describe an important characteristic of the
data and the text should provide a good flow of the story that you have learned
from exploring the data.

Problem 15. Consider the brain image data and find the center of mass of the
left side of the brain in the T1-weighted and T2-weighted brain images.



Chapter 5

Random vectors,
independence, covariance,
and sample mean

This chapter covers the following topics

• Random vectors
• Independent events and variables
• iid random variables
• Covariance and correlation
• Variance of sums of variables
• Sample variance
• Mixture of distributions

5.1 Random vectors

Random vectors are random variables collected into a vector.

• If X and Y are random variables, then (X, Y ) is a random vector
• If X1, . . . , Xn are random variables, then (X1, . . . , Xn) is a random vector
• The columns of most common data structures are realizations of a random

vector. Each column is a realization of one random variable

Consider the Sleep Heart Health Study (SHHS) data example
file.name = file.path("data", "shhs1.txt")
data.cv<-read.table(file=file.name,header = TRUE,na.strings="NA")
attach(data.cv)
dim(data.cv)

141
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[1] 5804 30

Recall that there are 5804 subjects in the dataset (the number of rows) and
29 variables (the number of columns minus 1). The reason is that the first
column contains the patient IDs in the SHHS. We extract a set of 6 realizations
of random variables together with the corresponding subject ID and show the
header of the table.
variable.index<- c("pptid", "waist", "rdi4p", "gender",

"age_s1", "smokstat_s1", "bmi_s1")

head(data.cv[variable.index])

pptid waist rdi4p gender age_s1 smokstat_s1 bmi_s1
1 1 86 1.4380826 1 55 2 21.77755
2 2 107 17.8021978 1 78 0 32.95068
3 3 82 4.8535565 0 77 0 24.11415
4 4 85 0.7973422 1 48 0 20.18519
5 5 76 2.7567568 0 66 2 23.30905
6 6 95 3.7209302 1 63 0 27.15271

The first column contains the SHHS-specific subject IDs, while each of the other
columns contains the realization of the random variable for that particular sub-
ject. For example, the second subject in the SHHS has the ID 2 (pptid=2),
has a waist circumference of 107 centimeters (waist=107), has a respiratory
disruption index at 4% oxygen desaturation of 17.8 (rdi4p=17.8), is a male
(gender=1), is 78 year old (age_s1=78), was never a smoker (smokstat_s1=0),
and has a body mass index (BMI) equal to 32.95 (bmi=32.95). The vector
(rdi4p, age_s1, bmi_s1) is a random vector of length 3 and its realizations for
5804 subjects are stored in data.cv.

Just as with random variables, the best way to think about random vectors is
that they are the outcome of an experiment measuring multiple characteristics
before the experiment is conducted. What is shown here are the realizations of
these random vectors after the experiment was run. Of course, once the exper-
iment is run (e.g. measurements are obtained) the realizations of the random
vectors are vectors of numbers. We will use upper case bold fonts to denote
random vectors and lower case bold fonts to denote realizations of random vec-
tors. For example X = (X1, X2, X3) could denote the random vector of rdi4p,
age, and bmi before the information is collected, and x = (x1, x2, x3) after the
information is collected. Here for the second subject x1 = 17.8, x2 = 78 and
x3 = 32.95, indicating that there is no uncertainty left once measurement is
conducted. To make things a little complicated, this assumes that the measure-
ment mechanism is perfect. While this could reasonably be assumed for age,
things are less clear for rdi4p and bmi; however, for now we will assume that
measurement is perfect and we later will revisit measurement error.

Just as in the case of scalar random variables, random vectors with continuous
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random variable entries are completely characterized by their probability density
function (pdf). Of course, the pdf will have the same dimension as the dimension
of the vector. For a vector of two continuous random variables X = (X1, X2)
the joint probability density function is fX(x1, x2), which satisfies f(x1, x2) ≥ 0
for every x1 and x2 and ∫ ∫

fX(x1, x2)dx1dx2 = 1 .

Once the joint pdf is available, the pdf of the individual random variables (a.k.a.
the marginal pdf) can be obtained as

fX1(x1) =
∫

fX(x1, x2)dx2 and fX2(x2) =
∫

fX(x1, x2)dx1 .

It is easy to show that both fX1(·) and fX2(x2) are proper pdfs. A natural
question to ask is Why should we care about multivariate random variables and
why should we deal with double or multidimensional integrals? The answer is
very simple: because data are multivariate (we often collect more than one
measurement for each subject) and we are interested both in each individual
measurement (marginal distributions) and in the mutual relationships between
these variables (joint patterns of covariability). We did not say that it was
going to be easy; but all these structures are natural representations of practical
datasets. The faster one opens one’s mind to these concepts the easier it will
be to understand biostatistics at a deeper level.

Consider just two variables, rdi4p and age_s1, from the SHHS dataset. Figure
5.1 displays the bivariate plot, or scatter plot, of these realizations, with the
y-axis cut at 50 for improved visuals. In the context of the observed SHHS
data, the joint density fX(x1, x2) is a theoretical concept that we will never
know precisely. Instead, we have just samples (empirical realizations) of the
random variable (X1, X2)=(rdi4p,age_s1). The reason we make such plots is
to understand the joint covariability of the variables and to uncover potential re-
lationships between them. One could, for example, wonder whether the average
rdi4p changes with age. One possible way to investigate such an association is
to calculate the average rdi4p in 10-year intervals and plot it. Figure 5.2 pro-
vides the same information as Figure 5.1, but it also adds the means of rdi4p
in 10-year increments in age.

The plot in Figure 5.2 looks slightly different from the one in Figure 5.1 because
we changed the y-axis to only show values of the rdi4p up to 20. This was
done to ensure that the changes in rdi4p with age can be better visualized. We
see that there seems to be an increase in average rdi4p as a function of age
from 40 to 80 years with, maybe, a small decrease after 80 years. Also, in this
population, the largest increases in the average rdi4p are between the groups
with age< 50 and age> 50 and between the groups age< 60 and age> 60. This
type of relationship can only be investigated if we consider the bivariate (or
multivariate) nature of the data.
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Figure 5.1: Scatter plot of age versus respiratory disruptance index at 4% satu-
ration expressed in counts per hour in the SHHS.
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Figure 5.2: Scatter plot of age versus respiratory disruptance index at 4% satu-
ration expressed in counts per hour together with the locals means of rdi4p in
the SHHS.
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Figure 5.3: Marginal distribution of age and respiratory disruptance index at
4% saturation expressed in counts per hour in the SHHS.

The distribution displayed in Figures 5.1 and 5.2 are referred to as the bivari-
ate, or joint, empirical distribution of age_s1 and rdi4p. In contrast, Figure
5.3 provides the individual, or marginal, empirical distributions of age_s1 and
rdi4p. The marginal empirical distributions displayed in Figure 5.3 provide a
different perspective on the information available in Figures 5.1 and 5.2. For
example, the distribution of age_s1 is relatively uniform between 55 and 75,
where most of the sampled population’s age is. This is probably due to the
SHHS sampling design. In contrast, the distribution of rdi4p is highly skewed
with a large probability mass close to zero. Indeed, 22% of the SHHS sample
population has an rdi4p less than 1. The proportion of individuals with higher
rdi4p (more affected by sleep disturbance) decreases fast, but there are a few
individuals with very large rdi4p. For example, there are 2.1% individuals who
have an rdi4p larger than 50. These characteristics of the observed data provide
the highly skewed aspect of the rdi4p histogram.

However, as informative as these two histograms are, they do not provide infor-
mation about the mutual associations shown in the bivariate plot. The reason is
that once we separate the two columns we lose the mutual information provided
by the joint pairs of age_s1 and rdi4p at the individual level. In biostatistics
the marginal distributions can be viewed as the joint distributions averaged (or
integrated) over the other variable. This is the reason why data are actually
forcing us to think about multidimensional data and pdfs.
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For discrete random variables X = (X1, X2) the joint probability mass function
is fX(x1, x2), which satisfies f(x1, x2) ≥ 0 for every x1 and x2 and∑

x1

∑
x2

fX(x1, x2) = 1 ,

where the sum is taken over all possible values of the random variables. To
illustrate, consider the random variables gender (gender) and hypertension
(HTNDerv_s1), which are both binary. To obtain the marginal empirical dis-
tributions of these variables we simply need to calculate what proportion of
men and hypertensive individuals are in the sample. This can be obtained as
round(mean(gender==1,na.rm=TRUE),digits=3)

[1] 0.476
round(mean(HTNDerv_s1==1,na.rm=TRUE),digits=3)

[1] 0.427

Thus, there are 47.6% men in the sample and 42.7% individuals who are hy-
pertensive. Just as in the continuous case this is simple to obtain and highly
informative, but does not contain the joint information encapsulated in the
vector (gender,HTNDerv_s1). There are 5804 pairs of observations because no
individuals have missing gender or HTN information. To obtain the joint dis-
tribution we simply count how many subjects are male and have hypertension,
how many subjects are female and have hypertension, how many subjects are
male and do not have hypertension, and how many subjects are female and do
not have hypertension. Results are shown below in a two by two table.

male female
HTN 1213 1265
non-HTN 1552 1774

These results illustrate the joint empirical distribution of gender and
HTNDerv_s1 in the SHHS visit 1. One can easily obtain the marginal distribu-
tions from the joint distribution, but not the other way around. Indeed, the
proportion of men in the sample is

1213 + 1552/(1213 + 1552 + 1265 + 1774) = 0.476

and the proportion of individuals who are hypertensive is

(1213 + 1265)/(1213 + 1552 + 1265 + 1774) = 0.427 .

The empirical joint distribution of gender and HTNDerv_s1 in the SHHS is
obtained by dividing each cell in the previous two by two table by 5804, the
number of subjects in the sample. We obtain

male female
HTN 0.209 0.218
non-HTN 0.267 0.306
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The estimated probability of being a female and having hypertension in SHHS is
0.218, which is close to the probability of being a man and having hypertension,
0.209. Thus, it makes sense to ask whether these observations are consistent
with a true difference in the population between men and women or whether
the difference is due to sampling variability. We will learn more about how to
test for such differences, but this is a good example of how the testing problem
appears naturally from the data.

We say that two random variables X1 and X2 are independent if and only if

fX(x1, x2) = f1(x1)f2(x2) ,

where f1(x1) and f2(x2) are the marginal pdfs of the random variables X1
and X2, respectively. To be more explicit, we could have used the notation
fX1(x1) and fX2(x2) instead of f1(x1) and f2(x2), respectively, but this notation
becomes more cumbersome. We will use the following fact extensively in this
book: If the random variables X = (X1, . . . Xn) are independent, then their
joint density or mass function is the product of their individual densities or
mass functions. That is, if fi(·) is the pdf of the random variable Xi then

fX(x1, . . . , xn) =
n∏

i=1
fi(xi) .

In this definition we do not require the random variables to have the same
distribution. Let us try to build the intuition about independence by focusing
on the gender and HTNDerv_s1 example. In this context, we would like to
know what it would mean that the two variables are independent. If they
are independent the interpretation could be that hypertension is “assigned” to
individuals independent of their gender. Denote by πs = P (sex = 1) and ph =
P (HTN = 1) and recall that these variables are called gender and HTNDerv_s1
in the SHHS dataset. Independence would require

P (sex = 1, HTN = 1) = P (sex = 1)P (HTN = 1) = π1p1 .

We do not know exactly what the values of π1 and p1 are but we have the
estimators π̂1 = 0.476 and p̂1 = 0.427. Thus, a good estimator of P (sex =
1, HTN = 1) is π̂1 × p̂1 = 0.203. Similarly, P (sex = 1, HTN = 0) = π1(1 − p1),
P (sex = 0, HTN = 1) = (1−π1)p1, and P (sex = 0, HTN = 0) = (1−π1)(1−p1)
and each of them can be estimated by simply plugging the π̂1 and p̂1 values
instead of π1 and p1, respectively. Thus, if independence holds, we would expect
the two by two matrix of probabilities to be

male female
HTN 0.203 0.224
non-HTN 0.273 0.300

This matrix was obtained by estimating the marginal probabilities (π1 and p1)
and using the independence assumption. The entries of this matrix are very
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close to the corresponding entries of the previous matrix, which was obtained
by estimating the joint distribution of the data without using the independence
assumption. This may indicate that the independence assumption may be rea-
sonable in this example, that is, that HTN assignment was done by nature
independently of sex in this population. However, in future chapters we will
provide rigorous ways of testing such a hypothesis.

5.2 Independent events and variables

Two events E and F are independent if

P (E ∩ F ) = P (E)P (F ) .

It is easy to show that if A is independent of B, then

• Ac is independent of B
• A is independent of Bc

• Ac is independent of Bc

Two random variables, X and Y are independent if for any two sets A and B

P{(X ∈ A) ∩ (Y ∈ B)} = P (X ∈ A)P (X ∈ B) .

5.2.1 Example: five-year lung cancer mortality

Consider two individuals who have just been diagnosed with stage IB NSCLC
and we know that the five-year survival rate is 45%. Assuming that the survival
of one individual does not depend on the survival of the other individual, we can
calculate the probability that both of them will be alive in five years. Consider
the events

• A={First individual dies in five years}, P (A) = 0.45
• B={Second individual dies in five years}, P (B) = 0.45
• A ∩ B={Both the first and second individual die in five years}

Then, by assuming independence

P (A ∩ B) = P (A)P (B = 0.45 × 0.45 = 0.2025 .

Independence is a very strong assumption in biostatistics and is often used to
simplify calculations. While independence may not hold exactly, conditional
independence (of which we will learn more later) is an extremely useful and
practical assumption.
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5.2.2 Example: Sudden Infant Death Syndrome

Unfortunately, independence is not easy to understand and incorrect assump-
tions can have real life consequences. Consider, for example, the case of Dr. Roy
Meadow, a pediatrician who testified in the murder trial of Sally Clark, whose
two sons died at the age of 11 weeks in December 1996, and 8 weeks in January
1998, respectively. Based on an estimated prevalence of sudden infant death
syndrome (SIDS) of 1 out of 8543, Dr. Meadow testified that the probability
of a mother having two children with SIDS was 1/85432, or less than 1 in 72
million. The mother on trial was convicted of murder in 1999, as reported by
the British Medical Journal. Her conviction was overturned after her second ap-
peal in 2003 after serving more than 3 years of her sentence. Clark’s experience
caused her to develop psychiatric problems and she died at age 42 from alcohol
poisoning Wikipedia. More information about SIDS can be found, for example,
on the US CDC website.

Let us investigate and see what assumptions were made by Dr. Meadow and
what were his likely mistakes. For the purposes of this book, the principal
mistake was to assume that the events of having SIDS within a family are inde-
pendent. That is, P (A1 ∩A2) is not necessarily equal to P (A1)P (A2), where A1
and A2 are the events that the first and second sibling die of SIDS, respectively.
The reason is that biological processes that have a believed genetic or familial
environmental component tend to be dependent within families. Moreover, the
estimated prevalence was obtained from reports on single cases, which provide
no information about recurrence of SIDS within families.

5.2.3 Example: Monte Carlo simulations

Monte Carlo simulations can be used to calculate probabilities that are harder
to calculate directly or provide an empirical alternative for confirming results
obtained theoretically. Consider, for example, the case when X1, X2 are inde-
pendent random variables with a N(0, 1) distribution. We would like to calcu-
late P (X1 > 1.5, X2 > 1) = P (X1 > 1.5)P (X2 > 1). Of course, this can be
calculated numerically, as shown below
probt=(1-pnorm(1.5))*(1-pnorm(1))

We can also use Monte Carlo simulations to estimate the same probability and
compare it with the theoretical one
#Set the seed for fully reproducible simulation results
set.seed(234901)

#Set the number of independent random samples to 100000
nsim=100000

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1117305/
https://en.wikipedia.org/wiki/Sally_Clark
https://www.cdc.gov/sids/
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#Simulate independently two random variables from a N(0,1)
x1=rnorm(nsim)
x2=rnorm(nsim)

#Calculate the frequency of jointly exceeding 1.5 and 1, respectively
probs=mean((x1>1.5) & (x2>1))

#Theoretical value
round(probt,digits=4)

[1] 0.0106
#MC-based simulation value
round(probs,digits=4)

[1] 0.0108
#Percent difference between theoretical and MC values
round(100*abs(probs-probt)/probt,digits=3)

[1] 2.176

In this case because we estimate a small probability we used more MC simula-
tions and the difference even for such a small probability is less than 3%.

5.3 iid random variables

Consider a set of n independent random variables X1, . . . , Xn and let fi(·) for
i ∈ {1, . . . , n} be the pdf (or pmf) of the ith random variable. We say that these
variables are independent and identically distributed (iid) if they are indepen-
dent and all fi(·) are equal. More precisely, f1(·) = . . . = fn(·) = f(·) and the
joint distribution of the vector X = (X1, . . . , Xn) can be written as

fX(x1, . . . , xn) =
n∏

i=1
f(xi) .

The main difference from the definition of independence is that there is no in-
dex on the pdfs in the right side of the equation. This is due to the assumption
of identical distribution. The iid assumption on random variables is the de-
fault assumption for random samples and many of the important theories of
biostatistics are founded on assuming that variables are iid.

5.3.1 Example: five-year lung cancer mortality

Suppose that we know that the probability of survival for five years for a particu-
lar type of cancer is p. Four individuals with this type of cancer are followed for
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five years and the second individual died, while the other three survived. Thus,
the outcome of the experiment can be coded as (1, 0, 1, 1) and we would like to
calculate the joint probability mass function of this collection of outcomes. We
denote by Xi the random variable of survival for the ith individual and we can
calculate the joint probability of obtaining this collection of outcomes (before
the experiment is run) as

P (X1 = 1, X2 = 0, X3 = 1, X4 = 1) = P (X1 = 1)P (X2 = 0)P (X3 = 1)P (X4 = 1)
= p(1 − p)pp = p3(1 − p) .

This calculation was possible because we assumed independence, while the re-
sult depends only on the information that one of the four people died, not on
the information that the second person died. In other words, to calculate the
probability it is sufficient to know that one individual died and not who that
individual is. Mathematically, this is expressed by the commutativity of the
product and indicates that exactly three other events have the same probability.
These events are (0, 1, 1, 1), (1, 1, 0, 1) and (1, 1, 1, 0).

Consider now the case when we have n individuals who have been diagnosed with
this type of cancer and let x = (x1, . . . , xn) be the collection of outcomes after
five years for these individuals. Here xi ∈ {0, 1} indicates whether the ith person
is dead (0) or alive (1) five years later. Just as in the previous scenario, the
vector x contains a sequence of zero and ones of length n, the number of people
in the sample. It is convenient to observe that P (Xi = xi) = pxi(1 − pxi

)1−xi .
This, of course, is trivial, as for xi = 0 we have P (Xi = 0) = p0(1−p)1−0 = 1−p
and for xi = 1 we have P (Xi = 1) = p1(1 − p)1−1 = p. In this case we obtain

P (X = x) =
n∏

i=1
P (Xi = xi) =

n∏
i=1

pxi(1 − pxi
)1−xi = p

∑
xi(1 − p)n−

∑
xi .

For n = 4 and x1 = 1, x2 = 0, x3 = 1, x4 = 1 we obtain that the probability
is p3(1 − p), as before. The probability of the event depends only on

∑n
i=1 xi,

the number of individuals who survived after 5 years, and not on who survived.
From the point of view of calculating the probability it is enough to know the
outcome of the sufficient statistic

∑n
i=1 Xi. The sufficient statistic plays an

important role in biostatistics, as, conditional on the model, it contains all the
necessary information expressed in the experiment. The reason is that it is
much simpler to work with several simpler summaries of highly complex data
than with the original data. Of course, the idea here is to find the simplest
such sufficient statistic, as there are many sufficient statistics. Indeed, the data
themselves are sufficient, but are not particularly useful without assumptions,
explicit or implicit.

In an apocryphal story, one of the authors was approached by a collaborator
who wanted to make no assumptions about the data. The author asked for the
data on a memory stick, inserted it into the computer, made a copy, and handed
the data back to his collaborator without any results. The only way to do what



152CHAPTER 5. RANDOM VECTORS, INDEPENDENCE, COVARIANCE, AND SAMPLE MEAN

the collaborator had asked was to simply return the data without touching or
analyzing them.

5.3.2 Example: standard Normal

Consider the case when we have n iid samples X1, . . . , Xn from the N(0, 1)
distribution, which has mean 0 and variance 1. The standard Normal density is

f(x) = 1√
2π

e− x2
2 .

We would like to derive the joint pdf for the vector X = (X1, . . . , Xn). By
independence we have

fX(x) =
n∏

i=1
f(xi) =

n∏
i=1

1√
2π

e−
x2

i
2 = 1

(2π)n/2 e−

∑
x2

i
2 .

Here we used the fact that eaeb = ea+b. Just as in the case of the Bernoulli
distribution for cancer survival the joint distribution of the standard Normal
depends only on

∑
x2

i , a much simpler summary of the data. It is easy to show
that (

∑
xi,
∑

x2
i ) is a sufficient statistic for the N(µ, σ2) distribution.

5.3.3 Simulating independent discrete variables

Independence is a fundamental concept and assumption in biostatistics. The
standard simulation tools in R are set up to produce pseudo-independent random
variables. Here we provide some examples of how to simulate random variables
and how to interpret the results.

5.3.3.1 Independent Bernoulli draws

We start by simulating 10 independent Bernoulli random variables with the
probability of success equal to p = 0.3.
set.seed(7840256)
#Draw 10 Bernoulli RV realizations with probability 0.3
x<-rbinom(10,1,prob=0.3)
x

[1] 0 1 0 0 1 0 1 1 1 0

Interestingly, we would expect to obtain 0.3×10 = 3 successes in the simulation.
Instead, we obtained 5. This does not happen because the random number
generator is broken, but because it is possible to obtain any number of successes
between 0 and 10, though the probability of obtaining each different number of
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successes is different. Suppose we now want to obtain 3 independent draws
from a Bernoulli(p) distribution for each p ∈ {0, 0.1, . . . , 1}. This can be done
in R because it allows drawing independent samples from Bernoulli distributions
with different probabilities. Below we illustrate this.
#construct a vector of equally spaced probabilities
bernm<-seq(0,1,by=0.1)

#Simulate a vector of size 3 times the length of the prob. vector
#Because the number of draws exceeds the length of the prob. vector
#the probability vector is recycled
#these are independent, not iid variables
x<-rbinom(3*length(bernm),1,prob=bernm)

#Store into a matrix with 3 rows, each row corresponds to one repetition
#do not forget to check that the matrix format contains what you want
#on the row and columns, respectively
mx=matrix(x,ncol=length(bernm),byrow=TRUE)

#Each column corresponds to a success probability (0, 0.1, ..., 1)
mx

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
[1,] 0 0 1 0 1 0 0 1 1 1 1
[2,] 0 0 0 0 0 1 1 1 1 1 1
[3,] 0 0 0 0 1 1 1 0 1 1 1

5.3.3.2 Independent Poisson draws

We now simulate 10000 independent draws from a Poisson(20) distribution
#Simulate 10000 iid Poisson realizations
x<-rpois(10000,20)

We also simulate 24 independent draws from the Poisson(λ) distribution, where
λ ∈ {1, 2.5, 5, 7.5, 10, 1000}. Because the number of means is smaller than the
number of samples we will use the same recycling trick used for the Bernoulli
random variable
#Set the Poisson means
poism<-c(1,2.5,5,7.5,10,1000)

#Simulate 24 independent Poisson; the Poisson mean is recycled 4 times
#These are independent, not iid variables
x<-rpois(24,poism)
x

[1] 0 2 7 11 10 951 3 6 7 6 11 1000 2 6
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[15] 6 10 9 967 0 2 4 9 8 957

5.3.3.3 Independent Normal draws

We also simulate 1000 realizations from a N(2, 92) random variable and calculate
their mean
#Simulate 1000 independent N(2,9)
x<-rnorm(1000,mean=2,sd=9)
round(mean(x),digits=2)

[1] 1.85

In some instances one might be interested in simulating more complex scenarios.
Below we show such an example, not because it is practical, but to emphasize the
flexibility of the simulation approaches. In particular, we would like to simulate
150 independent observations from N(µ, µ2/9) for every µ ∈ {1, 2, . . . , 100}. All
these random variables have the same coefficient of variation of 1/3.
#Define the mean vector of length 100
normm<-1:100

#Set a standard deviation vector
sdm<-normm/3

#Simulate independently 150 observations from N(normm,sdm)
#Note the use of recycling
x<-rnorm(150*length(normm),mean=normm,sd=sdm)

#Store simulations in a 150 by 100 dimensional matrix
#Each row corresponds to one of the 150 independent samples
#Each column corresponds to one of the means
#Samples are iid by column and independent (non iid) by row
mx=matrix(x,ncol=length(normm),byrow=TRUE)

After conducting simulations it is always a good idea to inspect the results and
make sure they were correctly conducted and stored. Below we show such a
quality control approach. Since column j should correspond to mean j, the
empirical mean on column j should be close to j. Again, none of the empirical
means is exactly equal to the theoretical mean, but they should be close.
dim(mx)

[1] 150 100
round(colMeans(mx),digits=3)

[1] 0.996 2.072 3.034 3.914 5.212 6.040 6.817 7.693 8.966 9.822
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[11] 11.174 11.803 13.004 14.221 14.815 16.652 17.238 17.627 19.447 19.606
[21] 21.364 22.772 22.232 23.244 23.894 24.364 27.297 28.810 28.730 29.451
[31] 30.523 31.534 32.850 34.340 33.857 37.367 36.568 37.529 40.604 41.563
[41] 42.043 40.322 42.696 44.869 44.282 45.778 47.674 46.073 48.923 49.678
[51] 51.072 50.290 52.386 53.652 54.845 55.787 57.536 58.090 56.108 61.341
[61] 61.211 64.421 62.147 65.877 65.108 63.107 66.345 67.722 70.611 70.195
[71] 74.193 72.407 72.003 72.219 75.286 80.614 78.597 79.007 77.080 78.088
[81] 79.846 79.849 83.296 83.168 87.170 88.475 84.565 87.530 86.772 92.242
[91] 90.892 91.435 91.446 93.640 98.246 92.785 95.826 95.182 98.649 97.429

5.3.4 Product of independent variables

We show that if X1 and X2 are independent random variables, then
E(X1X2) = E(X1)E(X2). We prove this for the case when the variables
are continuous and have pdfs equal to f1(x1) and f2(x2), respectively. By
independence fX(x1, x2) = f1(x1)f2(x2) and

E(X1X2) =
∫ ∫

x1x2fX(x1, x2)dx1dx2 =
∫ ∫

{x1f1(x1)}{x2f2(x2)}dx1dx2 .

If we first integrate with respect to x2 then x1f1(x1) is just a constant and can
be placed in front of the integral. More precisely∫ ∫

{x1f1(x1)}{x2f2(x2)}dx1dx2 =
∫

[{x1f1(x1)}
∫

x2f2(x2)dx2]dx1 .

The integral
∫

x2f2(x2)dx2 is, by definition, equal to E(X2), which is a number
that does not depend on x1 and we obtain

E(X1X2) =
∫

[{x1f1(x1)}dx1 × E(X2) = E(X1)E(X2) .

5.4 Covariance and correlation

The covariance between two random variables X1 and X2 is defined as

Cov(X1, X2) = E{[X1 − E(X1)][X2 − E(X2)]} .

Since

[X1 − E(X1)][X2 − E(X2)] = X1X2 − X1E(X2) − E(X1)X2 + E(X1)E(X2)

and E[X1E(X2)] = E(X1)E(X2), E[E(X1)X2] = E(X1)E(X2) and
E[E(X1)E(X2)] = E(X1)E(X2) it follows that

Cov(X1, X2) = E(X1X2) − E(X1)E(X2) ,
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which is a convenient computational formula for the covariance. It is important
to understand that the covariance between two random variables is a measure of
association between them. The first formula provides the interpretation. Indeed,
if the variables X1 and X2 tend to be above (or below) their mean at the same
time, then the product [X1 − E(X1)][X2 − E(X2)] > 0 and the covariance will
be positive. The tendency variables to be above or below their respective means
at the same time indicates that the two variables covary positively. Conversely,
if one variable is above the mean of the variable when the other is below the
mean, then [X1 −E(X1)][X2 −E(X2)] < 0 and the two variables tend to covary
negatively. This explanation is still quite opaque as we are dealing with theo-
retical quantities. But, let us consider the case when we have n pairs of random
vectors (X1i, X2i), i = 1, . . . , n, from the joint distribution of (X1, X2) and have
a closer look at the sample covariance (or estimator of the true covariance):

Ĉov(X1, X2) = 1
n

n∑
i=1

(X1i − X1·)(X2i − X2·) ,

where X1· =
∑n

i=1 X1i/n and X2· =
∑n

i=1 X2i/n are the sample averages of
the two random variables, respectively. To better understand the formula, we
consider the association between age_s1 and rdi4p in the SHHS. In this case
the variable indexed 1 is age_s1, the variable indexed 2 is rdi4p, n = 5804,
the mean age_s1 is x1· = 63.1 years, and the mean rdi4p is 8.66 events per
hour. We have switched to the lower case notation to indicate that these are
realizations of random variables. Below we calculate the necessary quantities
for obtaining the empirical covariance
cov_data<-cbind(age_s1,rdi4p)
cov_data<-cbind(cov_data,age_s1-mean(age_s1,na.rm=TRUE))
cov_data<-cbind(cov_data,rdi4p-mean(rdi4p,na.rm=TRUE))
cov_data<-cbind(cov_data,cov_data[,3]*cov_data[,4])
colnames(cov_data)<-c("age","rdi4p","centered_age",

"centered_rdip4","residual_prod")
round(head(cov_data),digits=2)

age rdi4p centered_age centered_rdip4 residual_prod
[1,] 55 1.44 -8.13 -7.22 58.71
[2,] 78 17.80 14.87 9.15 135.97
[3,] 77 4.85 13.87 -3.80 -52.72
[4,] 48 0.80 -15.13 -7.86 118.93
[5,] 66 2.76 2.87 -5.90 -16.91
[6,] 63 3.72 -0.13 -4.93 0.66

Note, for example, that the first individual is 55 years old, which is below the
average age in the population, 63.1, and has an rdi4p equal to 1.44, which
is also below the mean rdi4p, 8.66. The third and fourth columns contain
the centered age and rdi4p variables, or r1i = x1i − x1· and r2i = x2i −
x2·, respectively. We call these centered variables residuals and denote the
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corresponding variables as centered_age and centered_rdi4p. For the first
subject r11 = 55 − 62.9 = −8.13 (the slight inconsistency is due to rounding
error) years and r21 = 1.44 − 8.66 = −7.22 events per hour. The product
r11 × r21 = −8.13 × (−7.22) = 58.7 is positive (because both age_s1 and rdi4p
are below their corresponding means). This product is expressed in years times
events per hour, probably not the most intuitive unit of measurement. The
fifth column labeled res_prod contains this value and refers to the product of
residuals r1i and r2i. The second person is 78 years old and has an rdi4p of 17.80
events per hour, which are both above their corresponding means, resulting in a
positive product of residuals r12 × r22 = 135.97. The third person is older than
the average, but has an rdi4p below the average, resulting in a negative product
of residuals r13 × r23 = −52.72. This should explain that, in general, not all
products of residuals will be either positive or negative, but that the covariance
will measure the general tendency of variables to covary. The sample covariance
is obtained by taking the average of the residual_prod column, which is the
last entry of the vector below
round(colMeans(cov_data,na.rm=TRUE),digits=2)

age rdi4p centered_age centered_rdip4 residual_prod
63.13 8.66 0.00 0.00 14.45

Thus, the sample covariance is equal to 14.45, which is positive and expressed
in years times number of events per hour. In R this can be obtained directly
using
round(cov(age_s1,rdi4p,use="pairwise.complete.obs"),digits=3)

[1] 14.451

It is worth revisiting the residual products r1ir2i and think of each such subject-
specific product as an estimator of the covariance between the random variables
based solely on the information from subject 1. Thus, the population level
estimator is obtained by averaging the subject-specific estimators. This is a
general strategy that is used over and over again in biostatistics to obtain more
precise estimators of the target parameters. Let us evaluate the bias of r1ir2i.
Note that

(Xi1 − X1·)(Xi2 − X2·) = {(Xi1 − µ1) + (µ1 − X1·)}{(Xi2 − µ2) + (µ2 − X2·)} ,

where µ1 = E(Xi1) and µ2 = E(Xi2). The right side of the equality can be
further expanded to

(Xi1−µ1)(Xi2−µ2)+(Xi1−µ1)(µ2−X2·)+(µ1−X1·)(Xi2−µ2)+(µ1−X1·)(µ2−X2·)

Thus, to calculate the expected value of (Xi1 − X1·)(Xi2 − X2·) we need to
calculate the expected value of each one of these four terms separately. For
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the first term, by definition, E{(Xi1 − µ1)(Xi2 − µ2)} = Cov(X1, X2). For the
second term, we observe first that

(µ2 − X2·) = µ2 − 1
n

n∑
k=1

Xk2 = − 1
n

n∑
k=1

(Xk2 − µ2) .

Plugging this back into the expectation formula for the second term we obtain

E{(Xi1 − µ1)(µ2 − X2·)} = − 1
n

n∑
k=1

E{(Xi1 − µ1)(Xk2 − µ2)} .

Because for every k ̸= i Xi1 and Xk2 are independent we have

E{(Xi1 − µ1)(Xk2 − µ2)} = E(Xi1 − µ1)E(Xk2 − µ2) = 0 ,

which implies that

E{(Xi1 − µ1)(µ2 − X2·)} = − 1
n

E{(Xi1 − µ1)E(Xi2 − µ2)} = −Cov(X1, X2)
n

.

Similarly we obtain that

E{(µ1 − X1·)(Xi2 − µ2)} = −Cov(X1, X2)
n

.

For the last term we need to calculate

E{(µ1 − X1·)((µ2 − X2·))} = 1
n2 E{

n∑
k=1

n∑
l=1

(Xk1 − µ1)(Xl2 − µ2)} .

As before, for every k ̸= l we have E{(Xk1 − µ1)(Xl2 − µ2)} = 0 indicating that

E
{

(µ1 − X1·)((µ2 − X2·))
}

= 1
n2

n∑
k=1

E {(Xk1 − µ1)(Xk2 − µ2)}

= nCov(X1, X2)
n2

= Cov(X1, X2)
n

.

Thus, putting all these results together it follows that

E{(X1i − X1·)(X2i − X2·)} = n − 1
n

Cov(X1, X2) ,

which indicates that the subject-specific covariance estimator is biased with the
bias equal to

n − 1
n

Cov(X1, X2) − Cov(X1, X2) = −Cov(X1, X2)
n

.
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Thus, an unbiased estimator of the covariance based only on the subject-level
data is

n

n − 1
(X1i − X1·)(X2i − X2·) .

From this, it is easy to show that the sample covariance is a biased estimator of
the covariance and that

E{Ĉov(X1, X2)} = Cov(X1, X2) − Cov(X1, X2)
n

.

An easy way to obtain an unbiased estimator of the covariance is to use

1
n − 1

n∑
i=1

(Xi1 − X1·)(Xi2 − X2·) .

When n is moderate or large the distinction between dividing by n or n − 1 is
irrelevant, though sometimes, when n is small, some differences exist.

If X1 and X2 are two independent random variables, then Cov(X1, X2) = 0; this
means that independent random variables have a zero covariance. This result is
easy to prove, as Cov(X1, X2) = E(X1X2) − E(X1)E(X2) and we have already
shown that if X1 and X2 are independent, then E(X1X2) = E(X1)E(X2). It
is easy to show that Cov(X1, X2) = Cov(X2, X1) and that Cov(X1, X2) can be
positive or negative. An important result (that will not be proved here) is the
Cauchy-Schwarz inequality

|Cov(X1, X2)| ≤
√

Var(X1)Var(X2) ,

where |a| is the absolute value of a. One of the problems with covariances is
that they are expressed in units that combine the units of both variables and
cannot be compared across pairs of variables that have different units and are
hard to transport from one study to another. To circumvent this problem the
correlation of two random variables is defined as

Cor(X1, X2) = Cov(X1, X2)√
Var(X1)Var(X2)

,

which is a unitless value between −1 and 1. A value of 0 of the correlation
corresponds to no linear association between the two random variables, while
a value of 1 or −1 can be obtained if and only if X2 can be expressed as
X2 = α + βX1, that is, there is a perfect linear association between the two
variables. Just as in the case of the covariance, the correlation is a purely
theoretical concept, but it can be estimated from the data by

Ĉor(X1, X2) =
∑n

i=1(X1i − X1·)(X2i − X2·)√∑n
i=1(X1i − X1·)2∑n

i=1(X2i − X2·)2
,

where there is no division by n because it cancels out between the numerator
and denominator. This can be calculated directly from the matrix we have built
earlier.
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numerator=sum(cov_data[,5],na.rm=TRUE)
denominator1<-sum(cov_data[,3]^2,na.rm=TRUE)
denominator2<-sum(cov_data[,4]^2,na.rm=TRUE)
cor_age_rdi4p<-numerator/sqrt(denominator1*denominator2)
round(cor_age_rdi4p,digits=3)

[1] 0.104

It can also be calculated directly from the data without going through the data
transformations
round(cor(age_s1,rdi4p,use="pairwise.complete.obs"),digits=3)

[1] 0.104

This small value of the correlation should not be surprising given the scatter plot
of age_s1 versus rdi4p, which indicates that there is a weak positive association
between the two variables. This association is exhibited by the increase in the
mean rdi4p as a function of age. Of course, we would like to know whether
this small positive association is due to the particular sample we collected, or
whether the evidence that it is a true association is statistically strong. One
possibility is to obtain a confidence interval based on nonparametric bootstrap
for the correlation coefficient. This can be calculated below
#Set the number of bootstrap samples
n.boot=1000

#Set the vector that records observed correlations
corr_vec=rep(NA,n.boot)

#Conduct the boostrap sampling for the correlation
for (i in 1:n.boot) {

sample.vector<-sample(1:length(age_s1),replace=TRUE)
corr_vec[i]=cor(age_s1[sample.vector],rdi4p[sample.vector],

use="pairwise.complete.obs")
}

#Obtain the mean, standard deviation and
# 95% confidence intervals for correlation
mean_corr<-mean(corr_vec)
sd_corr<-sd(corr_vec)
CI<-c(mean_corr-2*sd_corr,mean_corr+2*sd_corr)
CI_r<-round(CI,digits=3)

The 95% is (0.077, 0.13), which does not cover zero, indicating that there is
enough statistical evidence against the hypothesis that there is no association
between age_s1 and rdi4p. We can obtain the covariance and correlation ma-
trix estimators of a collection of variables in R as follows
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subset.data.cv<-data.cv[,c("age_s1","rdi4p","bmi_s1")]
round(cov(subset.data.cv,use="pairwise.complete.obs"),digits=3)

age_s1 rdi4p bmi_s1
age_s1 125.962 14.451 -4.679
rdi4p 14.451 154.575 20.142
bmi_s1 -4.679 20.142 25.887
round(cor(subset.data.cv,use="pairwise.complete.obs"),digits=3)

age_s1 rdi4p bmi_s1
age_s1 1.000 0.104 -0.082
rdi4p 0.104 1.000 0.318
bmi_s1 -0.082 0.318 1.000

The covariance matrix contains the variance estimators on the main diagonal.
For example, the estimated variances of age_s1 and rdi4p are 125.962 and
154.575, respectively. The off-diagonal terms provide the covariances between
pairs of variables. For example, the estimated covariance between rdi4p and
age is 14.451 and the covariance between rdi4p and bmi is 20.142. The covari-
ance matrix is symmetric because of the symmetry of the covariance formula.
The correlation matrix contains 1 on the main diagonal because the correlation
between any variable and itself is 1. The off-diagonal entries of the matrix are
the estimated correlations between pairs of variables. For example, the esti-
mated correlation between age_s1 and rdi4p is 0.104 and between rdi4p and
bmi is 0.318.

5.4.1 No correlation does not imply independence

Consider a random variable X ∼ N(0, 1) and note that X and X2 are not
independent. Indeed,
P (X > 1, X2 > 1) = P (X > 1) ̸= P (X > 1)P (X2 > 1) = P (X > 1)P (X < −1 or X > 1)

because P (X > 1) = 0.159 and P (X < −1 or X > 1) = 0.317. In fact, one
could say that there is a perfect association between X and X2, as one is the
square of the other. Let us show that the correlation between these variables is
0. We know that E(X) = 0 and E(X2) = 1. Therefore

Cov(X, X2) = E(X3) − E(X)E(X2) = E(X3) .

However,

E(X3) = 1√
2π

∫ ∞

−∞
x3e− x2

2 dx = 1√
2π

∫ 0

−∞
x3e− x2

2 dx + 1√
2π

∫ ∞

0
x3e− x2

2 dx .

If in the first integral we make the change of variable y = −x, then we obtain
1√
2π

∫ 0

−∞
x3e− x2

2 dx = 1√
2π

∫ 0

∞
(−y)3e− (−y)2

2 d(−y) = − 1√
2π

∫ ∞

0
y3e− y2

2 dy ,
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which shows that E(X3) = 0 and Cov(X, X2) = 0. Note that this is true for
any symmetric variable, not just the Normal. However, if a random vector has
a multivariate Normal distribution and the correlation is 0 between two of the
random variables, then they are independent. Thus, it is practical to think about
the correlation as a measure of linear association between variables.

5.5 Variance of sums of variables

If Xi for i = 1, . . . , n is a collection of random variables, then

Var(
n∑

i=1
aiXi + b) =

n∑
i=1

a2
i Var(Xi) + 2

∑
i<j

aiajCov(Xi, Xj) .

Note that E(
∑n

i=1 aiXi + b) =
∑n

i=1 aiµi + b, where µi = E(Xi). Thus,

Var(
n∑

i=1
aiXi+b) = E{

n∑
i=1

ai(Xi−µi)}2 = E{
n∑

i=1
a2

i (Xi−µi)2+
∑
i̸=j

aiaj(Xi−µi)(Xj−µj)} .

Since E{a2
i (Xi − µi)2} = a2

i var(Xi), E{aiaj(Xi − µi)(Xj − µj)} =
aiajCov(Xi, Xj), and Cov(Xi, Xj) = Cov(Xj , Xi) the result follows.

5.5.1 Variance properties

If the variables are not correlated then Cov(Xi, Xj) = 0 for every i ̸= j and

Var(
n∑

i=1
aiXi + b) =

n∑
i=1

a2
i Var(Xi) .

A commonly used implication of these properties is that if a collection of random
variables Xi are uncorrelated then the variance of the sum is the sum of the
variances. More precisely, if Xi are uncorrelated then

Var(
n∑

i=1
Xi) =

n∑
i=1

Var(Xi) .

This follows directly by setting b = 0 and a1 = . . . = an = 1. Therefore, it is
sums of variances that tend to be useful, not the sums of standard deviations.
That is, the standard deviation of the sum of a bunch of independent random
variables is the square root of the sum of the variances, not the sum of the
standard deviations. The calculation of the variances provides us with the
formula for the standard deviation of a sum of independent random variables.
More precisely,

SD(
n∑

i=1
Xi) =

√√√√ n∑
i=1

Var(Xi) .
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This formula looks similar to the sum of standard deviations, though

SD(
n∑

i=1
Xi) =

√√√√ n∑
i=1

Var(Xi) ̸=
n∑

i=1

√
Var(Xi) =

n∑
i=1

SD(Xi) .

In general
∑n

i=1 SD(Xi) is much larger than SD(
∑n

i=1 Xi). Consider, for
example, the case when Xi are independent with variance 1. In this case
SD(

∑n
i=1 Xi) =

√
n and

∑n
i=1 SD(Xi) = n. When the number of observations

is 100 the difference between the sum of standard deviations and the standard
deviation of the sum is of an order of magnitude. These differences have
very important practical consequences in terms of calculating the length of
confidence intervals and when investigating the statistical significance of the
observed data.

5.5.2 Standard error of the empirical mean

Using the results in the previous section it follows that Xi for i = 1, . . . , n
are independent identically distributed random variables with variance σ2 =
Var(Xi), then the variance of the sample mean Xn =

∑n
i=1 Xi/n is

Var(Xn) =
n∑

i=1

1
n2 Var(Xi) = n

n2 Var(X1) = σ2

n
.

This result was simply obtained by replacing ai = 1
n in the previous equation and

summing over n equal variances. This is an important result that indicates how
information is being accumulated. Remember that according to Chebyshev’s
inequality applied to Xn we have

P{|Xn − µ| ≤ k

√
Var(Xn)} ≥ 1 − 1

k2 .

As Var(Xn) = σ2/n we obtain that, irrespective of the distribution of the
random variables Xi

P (Xn − k
σ√
n

≤ µ ≤ Xn + k
σ√
n

) ≥ 1 − 1
k2 .

Let us unpack this result and provide a little bit of intuition. Recall that µ is
a theoretical parameter of interest that will never be known exactly. Instead,
we use data to calculate the empirical mean Xn that we hope is close to the
theoretical mean that we are trying to estimate. This formula explains exactly
what is meant by “close.” Indeed, assume for a moment that the standard
deviation, σ, is known and we choose a particular small probability 1/k2. In
this case, the interval between Xn −kσ/

√
n and Xn +kσ/

√
n will cover the true

value of the parameter µ with high probability. The length of this (confidence)
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interval is 2kσ/
√

n, which decreases at the rate of the square root of the number
of observations, n. That is, if we need an interval that is twice as short, then we
need four times as many independent observations. There is no guarantee that
the true mean will be in the interval after the experiment is run, just that the
mean will be in the interval with a certain probability before the experiment is
run. In other words, if the experiment is run many times, then the true mean
will be covered by the realized confidence interval (the one calculated based on
data) at least 100(1 − 1/k2)% of the time.

Students and scientists working on data analysis complain that this interpreta-
tion of closeness and confidence intervals is too complicated, hard to understand,
and non-intuitive. We agree that the interpretation requires quite a bit of rumi-
nating and lacks the satisfying quality of final statements about exactly where
the true mean is. However, given the complexity of new technology, the enor-
mous costs in time and resources dedicated to science and its applications, and
the vast computational tools dedicated to algorithmic implementation, it is a
small price to pay to take a minute to think about what it all means. So, our
answer is simple: get over it, ruminate, and try to understand.

To better understand the difference between the variance of the observation and
the variance of the mean of observations consider the case when 9 independent
observations X1, . . . , X9 are obtained from a N(2, 9) distribution and let X9
be the empirical mean of these observations. We know that E(X9) = 2 and
Var(X9) = 9/9. It can be shown that X9 ∼ N(2, 1). Figure 5.4 displays and
compares the theoretical and empirical (sampling) distributions of Xi and X9,
respectively. For the empirical distributions we used samples of size 100 from
the theoretical distributions.

The left panel in Figure 5.4 represents the distribution of individual variables,
which have a N(2, 9) distribution. The spread of this distribution can be in-
terpreted as our knowledge (or lack thereof) about where a future observation
from the same distribution is likely to fall. The larger spread corresponds to less
knowledge about the position of a future observation. The right panel displays
the theoretical and empirical distributions for the mean of 9 observations N(2, 9).
Note that the mean of the 9 observations has a tighter (narrower) distribution.
In biostatistics we say that this is the effect of accumulating information about
the mean of the variables. These differences imply that observing additional
data does not provide any additional information about future realizations, but
it provides a lot of information about the future mean of those observations.
This information is represented as reduction of variability and can be visualized
as the narrowing of the distribution.

When Xi, i = 1, . . . , n are iid random variables Var(Xn) = σ2

n , where σ2 =
Var(Xi) is the variance of a single observation. In biostatistics the standard
deviation of the mean σ/

√
n is called the standard error of the sample mean.

An easy way to remember is that the sample mean has to be less variable
(or more precise) than a single observation, therefore its standard deviation is
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Figure 5.4: Left panel: theoretical and empirical distribution obtained from
a sample of size 100 for the N(2,9). Right panel: theoretical and empirical
distribution obtained from a sample of size 100 for the N(2,1).

divided by
√

n, where n is the number of independent variables contributing to
the mean.

5.6 Sample variance

If Xi i = 1, . . . , n are random variables with variance σ2 the sample variance is
defined as

S2 =
∑n

i=1(Xi − Xn)2

n − 1
.

This formula deserves a closer look, as well. Each variable Xi − Xn is the de-
viation between the observed variable from one experiment and the mean of all
observations. Thus, taken together, all variables Xi − Xn provide information
about the spread of observations around their empirical mean. One could also
think of ri = Xi − Xn as the residual information contained in the ith observa-
tion, Xi, after incorporating its information into the empirical mean Xn. Thus,
the square of this residual r2

i = (Xi − Xn)2 is an estimator of the variability of
the data. Because we have n such estimators it makes sense to take the average
of all of them. Note that we are summing the estimators of the variance, just as
in the theoretical case where we have shown that the variance of the sum is the
sum of the variances. The only small detail is why we divide by n − 1 instead of
n. This, of course makes absolutely no difference when n is moderate or large,
but can have quite an effect when n ≤ 20. For now, we should remember that
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sample (or empirical) variance is (nearly) the mean of the squared deviations
from the mean.

5.6.1 Example: sample variance in the SHHS

We are using the age_s1 and rdi4p data to illustrate the step-by-step calcula-
tions of the sample (or empirical) variance. Below we show the realizations of
the variables age and rdi4p in the first two columns. Recall that the mean age
is 63.13 and the mean rdi4p is 8.66.
var_data<-cbind(age_s1,rdi4p)
var_data<-cbind(var_data,(age_s1-mean(age_s1,na.rm=TRUE))^2)
var_data<-cbind(var_data,(rdi4p-mean(rdi4p,na.rm=TRUE))^2)
colnames(var_data)<-c("age","rdi4p","squared_res_age","squared_res_rdip4")
round(head(var_data),digits=2)

age rdi4p squared_res_age squared_res_rdip4
[1,] 55 1.44 66.16 52.09
[2,] 78 17.80 221.00 83.66
[3,] 77 4.85 192.26 14.45
[4,] 48 0.80 229.04 61.75
[5,] 66 2.76 8.21 34.80
[6,] 63 3.72 0.02 24.35

The third and fourth columns contain the squared centered age_s1 and rdi4p
variables, or r2

1i = (x1i − x1·)2 and r2
2i = (x2i − x2·)2, respectively. Note that

we have switched from capital letters for random variables to lower case letters
for the realization of these random variables. We call these squared residu-
als squared_res_age and squared_res_rdip4. For the first subject r2

11 =
(55 − 63.134)2 = 66.16 years squared and r2

21 = (1.438 − 8.6555)2 = 52.09
events per hour squared. To better follow the steps, we have used more dec-
imals for the calculations, though we only provided results up to the second
decimal. The sample variances are obtained by summing up the values of the
vectors squared_res_age and squared_res_rdip4 and dividing by the num-
ber of terms contributing to the sum. When we have missing data, as happens
in most studies, one needs to be careful about the denominator. First, let us
calculate and display the column sums
#Calculate the column sums for all variables
#Remove NA data from calculating the sums
column_sums<-colSums(var_data,na.rm=TRUE)
names(column_sums)<-c("Sum of age","Sum of rdi4p",

"SS of age res.","SS of rdi4p res.")
round(column_sums,digits=3)

Sum of age Sum of rdi4p SS of age res. SS of rdi4p res.
366430.00 50236.62 730957.71 897000.34
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#Find out how many subjects contribute data for the age and rdi4p variance
non_na_age<-sum(!is.na(age_s1))
non_na_rdi4p<-sum(!is.na(rdi4p))
non_na_age

[1] 5804
non_na_rdi4p

[1] 5804

This indicates that both the age_s1 and rdi4p information is complete (there
are no missing data entries). Thus, we obtain the sample variance estimators
as follows
var_age<-column_sums[3]/(non_na_age-1)
names(var_age)<-"Age variance"
var_rdi4p<-column_sums[4]/(non_na_rdi4p-1)
names(var_rdi4p)<-"rdi4p variance"

Display the variance for age_s1 and rdi4p, respectively
round(var_age,digits=2)

Age variance
125.96

round(var_rdi4p,digits=2)

rdi4p variance
154.58

Of course, these variances can be calculated directly in R by avoiding all the
steps we have unpacked here by simply doing.
round(var(age_s1,na.rm=TRUE),digits=2)

[1] 125.96
round(var(rdi4p,na.rm=TRUE),digits=2)

[1] 154.58

So, what have we learned from the fact that the sample mean rdi4p is 8.66
and the sample variance is 154.58 based on 5804 observations? Well, we know
that the true mean rdi4p in the population is probably pretty close to 8.66.
Using Chebychev’s inequality we know that with at least 1 − 1/k2 probability
the interval

(Xn − k
σ√
n

, Xn + k
σ√
n

)
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covers the true mean. Choosing, for example, k = 5, we obtain that the interval

(Xn − 5 σ√
5804

, Xn + 5 σ√
5804

)

covers the true mean with probability at least equal to 0.96. To conduct the
explicit calculations we pretend for now that we can replace the true σ with the
sample one σ ≈

√
154.58 = 12.43; more about the estimated σ in Chapter 11

where we discuss t-based confidence intervals. After the experiment is run (data
are collected) the realized confidence interval is (8.66 − 5 × 12.43/

√
5804, 8.66 +

5 × 12.43/
√

5804), which is
(7.84, 9.48) .

Disappointingly, we have no idea whether the true mean is in this interval. It
either is or it is not. What we do know is that before the experiment was
run there was at least a 96% chance that what we will obtain will contain the
true mean. We would just want to remind the reader that, while this may be
perceived as disappointing, it does represent the reality of data collection and
of the observed variability among results of experiments even when experiments
are designed to be identical. The philosophy and interpretation behind the
numbers is a little complicated, but makes perfect sense.

5.6.2 The sample variance is unbiased

We are now calculating the bias of the sample variance and we show that
n−1

n (Xi − Xn)2 is an unbiased estimator of the variance. Consider indepen-
dent (or uncorrelated) random variables Xi, i = 1, . . . , n with E(Xi) = µ and
Var(Xi) = σ2. It follows that

E(Xi − Xn)2 = E{(Xi − µ) − (Xn − µ)}2 ,

which becomes

E(Xi − µ)2 − 2E{(Xi − µ)(Xn − µ)} + E(Xn − µ)2 .

The first term is by definition σ2 = E(Xi − µ)2 and the third term is equal
to Var(Xn) = σ2/n because E(Xn) = µ. To evaluate the second term observe
that

Xn − µ = 1
n

n∑
j=1

(Xj − µ) ,

which implies that

E{(Xi − µ)(Xn − µ)} = 1
n

n∑
j=1

E{(Xi − µ)(Xj − µ)} .
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For every i ̸= j we have E{(Xi − µ)(Xj − µ)} = Cov(Xi, Xj) = 0 because the
variables are assumed to be independent. For i = j we have E{(Xi − µ)(Xj −
µ)} = E(Xi − µ)2 = Var(Xi) = σ2. Thus,

E{(Xi − µ)(Xn − µ)} = σ2

n
.

Putting everything together we obtain that

E(Xi − Xn)2 = σ2 − 2σ2

n
+ σ2

n
= σ2 n − 1

n
.

This shows that n(Xi − Xn)2/(n − 1) is an unbiased estimator of σ2. Therefore,
the average of n such unbiased estimators is an unbiased estimator of σ2. But
the average of n(Xi − Xn)2/(n − 1) is the sample variance. Note that we have
shown that every properly re-scaled squared residual is an unbiased estimator
of the true variance. This result was used to show that the empirical variance
is unbiased, but it is important in and of itself.

5.7 Mixture of distributions

So far, we have discussed individual distributions, though in practice we often
deal with distributions that are combinations (mixtures) of multiple distribu-
tions. For example, the observed rdi4p distribution in the SHHS is likely a
combination of rdi4p distributions for groups of individuals who are healthy,
mildly affected, and strongly affected by sleep disrupted breathing (SDB). An-
other example can be found in genomic association studies where individual
single-nucleotide polymorphism (SNP) are tested for association with a partic-
ular disease. The distribution of p-values (a measure of the strength of asso-
ciation between SNPs and disease) across SNPs is likely to have a mixture of
at least two distributions, one corresponding to truly associated SNPs and one
corresponding to truly non-associated SNPs. Thus, it makes sense to provide
the theoretical definition of a mixture of distributions and the intuition behind
sampling from such a mixture.

5.7.1 Definition and examples

If f1(·) and f2(·) are two pdfs and π ∈ [0, 1] is a probability we say that a
variable X follows a mixture distribution with mixture probability π if the pdf
of X is

f(x) = πf1(x) + (1 − π)f2(x) .

It is relatively easy to show that f(·) is, indeed, a pdf. Let us calculate its mean
and variance.

E(X) =
∫

xf(x)dx =
∫

x{πf1(x) + (1 − π)f2(x)}dx .
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Therefore,

E(X) =
∫

xf(x)dx =
∫

x{πf1(x) + (1 − π)f2(x)}dx

= π

∫
xf1(x)dx + (1 − π)

∫
xf2(x)dx

= πµ1 + (1 − π)µ2 ,

where µ1 =
∫

xf1(x)dx and µ2 =
∫

xf2(x)dx are the means of the first and
second distributions, respectively. This indicates that the mean of a mixture of
distributions is the mixture of the means with the same mixing weights. Using
similar calculations we obtain that

E(X2) = π(σ2
1 + µ2

1) + (1 − π)(σ2
2 + µ2

2) ,

where σ2
1 and σ2

2 are the variances of the distributions with pdfs f1(·) and f2(·),
respectively. Therefore,

Var(X) = π(σ2
1 + µ2

1) + (1 − π)(σ2
2 + µ2

2) − {πµ1 + (1 − π)µ2}2 .

This last formula is neither particularly informative nor worth remembering, but
we thought that it would be a nice exercise to flex a few brain muscles. Also,
these formulas can be useful if we want to estimate the mixture distribution
parameters using a method of moments approach (admittedly, not yet discussed).
Here we have discussed the mixture of two distributions, but this can be easily
generalized to more than two distributions.

5.7.2 Simulating a mixture distribution

To better understand how a mixture can be obtained, below we discuss a mixture
of two Normal distributions and plot both the theoretical pdf and the histogram
of simulated data in Figure 5.5.
#Set a reasonable grid of values for the distribution
x=seq(-3,10,length=201)

#Obtain the pdf of the mixture of two Normals
dx=.7*dnorm(x)+.3*dnorm(x,m=5,sd=2)

#Simulate data from a mixture
#This starts by simulating from each distribution individually
X1<-rnorm(1000)
X2<-rnorm(1000,m=5,sd=2)

#And then mix them
#Here the U variable is choosing which distribution data will be simulated from
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Figure 5.5: Theoretical and empirical distribution obtained from a sample of
size 1000 for a mixture distribution between a N(0, 1) with probability 0.7 and
a N(5, 4) with probability 0.3.

U<-rbinom(1000,1,p=.7)

#Here U can be only 0 or 1.
#If U=1 then simulate from the first distribution
#If U=0 then simulate from the second distribution
#This formula basically shows the mixing of the ingredients
#0.7 (the Bernoulli probability) controls the proportion from each ingredient
X=U*X1+(1-U)*X2

#Plot the histogram of realizations and the theoretical distribution
hist(X,breaks=30,probability=TRUE,xlim=c(-3,10),ylim=c(0,0.3),

xlab="Population values",cex.lab=1.3,cex.axis=1.3,
col.axis="blue",main="")

lines(x,dx,type="l",col="blue",lwd=3)

The way we built the simulation goes to the very core of how mixtures are
being thought of. Indeed, the Bernoulli variable U is the variable that chooses
from which population to sample at a particular time. The probability that
governs the distribution of U (in this case 0.7) controls the proportion of samples
from each population. In the case when we have a mixture of more than two
populations the multinomial distribution can be used to select which population
is being selected. For example, if we have three distributions and we want to
mix them with probabilities 0.2, 0.5, and 0.3 then we would sample
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U<-rmultinom(1, 1, c(0.2,0.5,0.3))
U

[,1]
[1,] 1
[2,] 0
[3,] 0

In this particular instance this indicates that the sample from population 1
should be chosen.

Figure 5.5 indicates clearly the two distributions (note the two local maxima)
and the result of the mixing. The first peak of the pdf is taller because the first
distribution has a higher probability and has a smaller variance. Here we are
giving a canonical example of mixture distribution plot and not all mixtures of
distributions need to look like this one. Indeed, the second peak does not need
to be apparent and the two distributions do not need to be symmetric. Take,
for example, the distribution of rdi4p displayed in the right panel of Figure 5.3,
which does not exhibit additional peaks, it is highly skewed and bounded by
zero (because nobody can have a negative number of breathing-related events).
However, it makes perfect sense to expect that there are sub-populations with
distinct rdi4p distributions. Whether this should have any consequence in
practice is debatable, as we are interested in simple parametric distributions
that describe observed phenomena. Having the option to explore mixtures of
distributions adds another tool to the biostatistical toolbox.

5.8 Problems

Problem 1. When at the free-throw line for two shots, a basketball player
makes at least one free throw 90% of the time. 80% of the time, the player
makes the first shot and 70% of the time she makes both shots.

a. Does it appear that the player’s second shot success is independent of the
first?

b. What is the conditional probability that the player makes the second shot
given that she made the first?

c. What is the conditional probability that the player makes the second shot
given that she missed the first?

Problem 2. Assume that an act of intercourse between an HIV infected per-
son and a non-infected person results in a 1/500 probability of spreading the
infection. How many acts of intercourse would an non-infected person have to
have with an infected person to have a 10% probability of becoming infected?
State the assumptions of your calculations.

Problem 3. You meet a person at the bus stop and strike up a conversation.
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In the conversation, it is revealed that the person is a parent of two children and
that one of the two children is a girl. However, you do not know the gender of
the other child, nor whether the daughter she mentioned is the older or younger
sibling.

a. What is the probability that the other sibling is a girl? What assumptions
are you making to perform this calculation?

b. Later in the conversation, it becomes apparent that she was discussing the
older sibling. Does this change your probability that the other sibling is
a girl?

Problem 4. A particularly sadistic warden has three prisoners, A, B, and C. He
tells prisoner C that the sentences are such that two prisoners will be executed
and one let free, though he will not say who has what sentence. Prisoner C
convinces the warden to tell him the identity of one of the prisoners to be
executed. The warden has the following strategy, which prisoner C is aware of.
If C is sentenced to be let free, the warden flips a coin to pick between A and
B and tells prisoner C that person’s sentence. If C is sentenced to be executed
he gives the identity of whichever of A or B is also sentenced to be executed.

a. Does this new information about one of the other prisoners give prisoner
C any more information about his sentence?

b. The warden offers to let prisoner C switch sentences with the other prisoner
whose sentence he has not identified. Should he switch?

Problem 5. Given below are the sexes of the children of 7745 families of four
children recorded in the archives of the Genealogical Society of the Church of
Jesus Christ of Latter Day Saints in Salt Lake City, Utah. M indicates a male
child and F indicates a female child.

Sequence Number Sequence Number
MMMM 537 MFFM 526
MMMF 549 FMFM 498
MMFM 514 FFMM 490
MFMM 523 MFFF 429
FMMM 467 FMFF 451
MMFF 497 FFMF 456
MFMF 486 FFFM 441
FMMF 473 FFFF 408

a. Estimate the probability distribution of the number of male children, say
X, in these families using these data by calculating proportions.

b. Find the expected value of X.
c. Find the variance of X.
d. Find the probability distribution of p̂, where p̂ is the proportion of children

in each family who are male. Find the expected value of p̂ and the variance
of p̂
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Problem 6. Quality control experts estimate that the time (in years) until a
specific electronic part from an assembly line fails follows (a specific instance of)
the Pareto density

f(x) =


3

x4 for 1 < x < ∞

0 for x ≤ 1

a. What is the average failure time for components with this pdf?
b. What is the variance?
c. The general form of the Pareto density is given by

βαβ

xβ+1

for 0 < α < x and β > 0 (for fixed α and β). Calculate the mean and variance
of the general Pareto density.

Problem 7. You are playing a game with a friend where you flip a coin and if
it comes up heads you give her a dollar and if it comes up tails she gives you a
dollar. You play the game ten times.

a. What is the expected total earnings for you? (Show your work; state your
assumptions.)

b. What is the variance of your total earnings? (Show your work; state your
assumptions.)

c. Suppose that the coin is biased and you have a .4 chance of winning for
each flip. Repeat the calculations in parts a and b.

Problem 8. Note that the R code
temp <- matrix(sample(1 : 6, 1000 * 10, replace = TRUE), 1000)
xBar <- apply(temp, 1, mean)

produces 1, 000 averages of 10 die rolls. That is, it is like taking ten dice, rolling
them, averaging the results and repeating this 1, 000 times.

a. Do this in R. Plot histograms of the averages.
b. Take the mean of xBar. What should this value be close to? (Explain

your reasoning.)
c. Take the standard deviation of xBar. What should this value be close to?

(Explain your reasoning.)

Problem 9. Note that the R code
xBar <- apply(matrix(runif(1000 * 10), 1000), 1, mean)

produces 1, 000 averages of 10 uniforms.

a. Do this in R. Plot histograms of the averages.
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b. Take the mean of xBar. What should this value be close to? (Explain
your reasoning.)

c. Take the standard deviation of xBar. What should this value be close to?
(Explain your reasoning.)

Problem 10. Consider two binary random variables X1 and X2 and let n11
be the number of times in a sample when both X1 and X2 are equal to zero,
n12 the number of times when X1 is equal to 0 and X2 is equal to 1, n21 the
number of times X1 is equal to 1 and X2 is equal to zero, and n22 the number
of times when both X1 and X2 are equal to 1.

a. Derive the estimated covariance and correlation formulas for X1 and X2.
b. Calculate these quantities using the obtained formulas for the CHD, CVD,

and sex variables in the SHHS.
c. Compare these results with those obtained directly from using R com-

mands
d. Obtain bootstrap-based confidence intervals for the covariance and corre-

lation.

Problem 11. Make scatterplots of the variables Waist, rdi4p, StOnsetP, age,
bmi using the pairs function in R using the code
pairs(~waist+rdi4p+StOnsetP+age_s1+bmi_s1,pch=".",col=rgb(0,0,1,.2),

cex=3,main="Two by two scatterplots")

Problem 12. For the variables waist and bmi_s1 calculate the correlation
between the transformed variables
waist_T<-waist*(waist>Tw)
bmi_T<-bmi_s1*(bmi_s1>Tb)

where Tw and Tb are the empirical quantiles of the distributions of waist and
bmi_s1 corresponding to the same probability. Plot this correlation as a function
of the probability for a grid of probabilities between 0 and 1. Provide a similar
plot for the variables
waist_S<-waist[(waist>Tw) & (bmi_s1>Tb)]
bmi_S<-bmi_s1[(waist>Tw) & (bmi_s1>Tb)]

and compare it with the plot for the previous variables. Explain the differences
between the first two variables, labeled _T, and the second two variables, labeled
_S. Compare and explain the differences between the two correlation plots.

Problem 13. Using the variables waist, rdi4p, StOnsetP, age_s1, bmi_s1 in
SHHS:

a. For every pair of variables calculate separately the mean of the product
and the product of the means.

b. For every variable calculate the mean of the square of the variable and the
square of the mean.
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c. Produce estimators of the standard deviation of the mean and the mean
of the standard deviations.

d. Produce confidence intervals for all these quantities using the nonparamet-
ric bootstrap.

Problem 14. Let Xi be iid random variables with variance σ2 and let Vi <
−a(Xi − Xn)2 be a class of estimators of σ2 that depends on the scalar a. The
Mean Square Error (MSE) of the estimator Vi is defined as

MSE(Vi) = E(Vi − σ2)2.

a. Show that MSE(Vi) = Bias2(Vi) + Var(Vi), where Bias(Vi) = E(Vi) − σ2

b. Find the value of a that minimizes the MSE(Vi)
c. What is the ratio between the optimal MSE and the MSE of the unbiased

estimator?

In general, we are interested in estimators that have low MSE, which is a com-
bination of bias and variance. It is sometimes acceptable to replace an unbiased
estimator with an estimator that has lower MSE. An important area of Biostatis-
tics is concerned with finding the lowest variance estimators among the class of
unbiased estimators. These estimators are called Uniform Minimum Variance
Unbiased Estimators (UMVUE). Given the lack of imagination Biostatisticians
have at naming extremely important quantities, it should not be surprising to
find the same concept under many other, sexier, names.

Problem 15. Consider the mixture of n distributions

f(x) =
n∑

i=1
πifi(x) ,

where fi(·) are pdfs. Let X be a random variable with the pdf f(·), µ = E(X)
and µi =

∫
xfi(x)dx.

a. Show that for any function of M(·) of X we have E{M(X)} =∑n
i=1 πi

∫
M(x)fi(x)dx. If M(X) = Xk then we call E{M(X)} = E(Xk)

the kth moment of the X random variable.
b. If µi =

∫
xfi(x)dx is the mean of the ith component show that

E(X − µ)k =
n∑

i=1

k∑
j=0

(
k

j

)
πj(µi − µ)k−j

∫
(x − µi)jfi(x)dx.

c. Use the previous result to re-derive the variance formula for a mixture of
two variables.

Problem 16. We would like to fit a mixture of two Gamma distributions to
the rdi4p data from SHHS. To do that we will use a method called moments-
matching, or methods of moments (MoM). More precisely, we will obtain the
theoretical moments and we will set them equal to the observed moments. De-
note by X the random variable that led to the realizations of rdi4p.
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a. Show that a mixture of two Gamma distributions depends on five param-
eters and write down explicitly those parameters. Denote the vector of
these parameters θ.

b. Calculate the first five empirical moments of the distribution

M̂k = 1
n

n∑
i=1

Xk
i

and the first five expected values of Xk as functions of θ.
c. Set the empirical moments equal to the theoretical moments and solve for

θ.
d. Plot the estimated mixture using MoM versus the histogram of the rdi4p

data.
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Chapter 6

Conditional distribution,
Bayes rule, ROC

This chapter covers the following topics

• Conditional probabilities
• Bayes rule
• ROC and AUC

6.1 Conditional probabilities

Conditional probabilities are extremely important to understand, as they repre-
sent many phenomena that are observed in practice. They are relatively difficult
to understand and operate with, but they occur naturally in applications. Below
we provide a few motivating examples.

6.1.1 Motivation of conditional probabilities

A simple example of conditional probability can be given using the die rolling
experiment. Note that the probability of getting a one when rolling a (standard,
unbiased) die, without additional information, can be assumed to be one-sixth.
However, if the additional information that the die roll was an odd number
(hence 1, 3 or 5) is available, the probability of a one is now one-third, while the
probability of getting a two is zero. Even though rolling the die is not an explicit
health research experiment, per se, there are many research experiments that
can be modeled by a biased K-faced die. Indeed, consider the case when one
collects mental health data on individuals in a population and each individual’s
mental health status is characterized as either healthy (1) or affected. For those
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with a mental health disorder the severity is characterized as mild (2), moderate
(3), severe (4), or very severe (5).

Consider now the case when we are interested in the probability that a 30-year-
old woman will develop breast cancer in the next 10 years. This can be rephrased
as the probability of developing breast cancer in the next 10 years for a person,
conditional on the fact that she is a woman and her current age is 30. Intuitively,
we know that conditioning on the age of the person is important and it should
be obvious that conditioning on sex is probably even more important. Indeed,
according to www.cancer.org the probability for a 30-year-old woman to develop
breast cancer in the next 10 years is 0.44% (or 1 in 227) while for a 50-year-old
woman it is 2.38% (or 1 in 28). The probability at age 50 is 5.4 times larger
than at age 30, indicating that conditioning on age of the woman really matters.
The effect of conditioning on sex is far more dramatic. Indeed, according to
www.cancer.org, breast cancer in men is about 100 times less common than in
women. While data are not available for men in as much detail as for women,
it is reasonable to assume that the difference between sexes in the probability
of contracting breast cancer holds, at least approximately, across age groups.

To start modeling these words statistically, let us denote by X the random vari-
able “a person develops breast cancer in the next 10 years.” Then the probability
we are interested in can be written as

P (X = 1| sex = 1, age = 30) .

Here X = 1 encodes that the result of the experiment will be “develop breast
cancer in 10 years,” sex=1 encodes sex female, and age=30 is self-explanatory.
The vertical bar between X=1 and sex=1 is the conditioning statement. The
event to the left of the bar is the event whose probability we are interested
in, whereas what is to the right of the bar is what we condition on. What
we condition on is restricting the event of interest to a particular subset of
the population and helps define exactly what type of event we are trying to
define. The take home message here is that language can be quite imperfect,
but communication can be improved by insisting on using well defined formulas.

Another example is when we try to evaluate the probability of surviving more
than one year for a man who is 50 years old and has an estimated glomerular
filtration rate (eGFR) equal to 20. eGFR is a measure of kidney function based
on the result of blood creatinine test, age, body size and sex www.kidney.org.
If X is the random variable survival, then we are interested in calculating prob-
abilities of the type

P (X > 1| sex = 0, age = 50, eGFR = 20) .

6.1.2 Definition of conditional probabilities

To understand and quantify such probabilities we need a formal definition of
conditional probability as well as a deeper understanding of the conditioning

https://www.cancer.gov/types/breast/risk-fact-sheet
https://www.cancer.org/cancer/breast-cancer-in-men/about/key-statistics.html
https://www.kidney.org/atoz/content/gfr
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operation on data. Consider B to be an event of non-zero probability, that is
P (B) > 0. Then the conditional probability of an event A given that B has
occurred is

P (A|B) = P (A ∩ B)
P (B)

.

If A and B are independent then

P (A|B) = P (A ∩ B)
P (B)

= P (A)P (B)
P (B)

= P (A) ,

indicating that if events are independent, then conditioning on one of them
does not change (add information to) the probability of the other event. To
be specific, consider the die roll example. In this case the event of interest is
A = {1} and the event we are conditioning on is B = {1, 3, 5}. Therefore the
probability of obtaining a one given that the roll is odd is

P (A|B) = P (A ∩ B)
P (B)

= P (A)
P (B)

= 1/6
3/6

= 1
3

.

Here we used that A ∩ B = {1} ∩ {1, 3, 5} = {1} = A.

While such simple examples are useful, let us consider one more directly con-
nected to health research. Consider the rdi4p and age variables in the SHHS
dataset. Suppose we are interested in the probability that a random individual
from SHHS has an rdi4p between 5 and 10 events per hour conditional on his
or her age being from 70 and 80. We denote by A the event that a random
individual from SHHS has an rdi4p between 5 and 10 and by B the event that
a random individual from SHHS has an age between 70 and 80. Statistically,
we are interested in the P (A|B) = P (A ∩ B)/P (B).

Just as in the case of the die experiment, the calculation is straightforward, but
we want to build up the intuition behind the conditioning. We first plot the
data in Figure 6.1, shown only up to an rdi4p value of 20, for plotting purposes.

The blue shaded area in Figure 6.1, from age_s1 70 to 80 is the event we
condition on, B, which is that the individual is from 70 to 80 years old. In this
dataset there are subjects who are in this age range, more precisely there are
exactly 1543 individuals in this age range, out of a total of 5804 individuals who
had their age recorded. Thus, the frequency of subjects from 70 to 80 years
of age in the SHHS is P (B) = 1543/5804 = .266. Here we use the estimated
probability and the theoretical probability interchangeably to build up intuition,
though one should remember that these are estimates of the true probabilities
and not theoretical probabilities. Now, let us visualize the conditioning action
on the data. Recall that we are interested in those subjects who have an rdi4p
from 5 to 10, conditional (or given that) individuals are from 70 to 80 years old.
Figure 6.2 provides a visualization of this set of individuals

The red band in Figure 6.2 indicates all subjects whose rdi4p is from 5 to
10 events per hour, while the intersection between the red and the blue bands
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Figure 6.1: Respiratory Disturbance Index at 4% oxygen desaturation versus age
in the SHHS. The y-axis is cut at 20 events per hour for presentation purposes.
The blue shaded area indicates individuals from 70 to 80 years old.
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Figure 6.2: Respiratory Disturbance Index at 4% oxygen desaturation versus
age in the SHHS. The blue shaded area indicates individuals from age 70 to 80.
The red shaded area indicates individuals with an rdi4p from 5 to 10 events
per hour.
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represents those subjects who are from 70 to 80 years of age and have an rdi4p
from 5 to 10 events per hour. Note that if we were interested in the probability
that a random subject is both from 70 to 80 years of age and has an rdi4p from
5 to 10 then we need to count all subjects in the intersection between the red
and the blue bands and divide by the number of subjects in the entire dataset.
To do that, we build indices, as we have described before
index_age7080_rdip4p510<-((age_s1>=70) & (age_s1<=80) & (rdi4p>=5) & (rdi4p<=10))
n_int=sum(index_age7080_rdip4p510)

and we obtain that there are 316 individuals in this set. Thus,

P (A ∩ B) = 316
5804

= 0.054 .

The conditioning statement says to not divide by the total number of subjects
in the data set, but restrict the calculation only to individuals who are from 70
to 80 years old. More precisely, count how many subjects are in the intersection
and divide by the number of subjects in the blue shaded area. Of course, the
number of subjects in the blue shaded area, 1543, is much smaller than the
number of subjects in the SHHS data set. Thus, we get

P (A|B) = 316
1543

= 0.205 >> 0.054 .

Necesarily, P (A|B) > P (A ∩ B) because P (B), the probability of the event we
condition on is smaller than 1. It is guaranteed to be much larger if P (B) is
small. Note, however, that P (A) can be either higher or lower than P (A|B).

Let us see how the same probability could have been obtained by literally fol-
lowing the definition of conditional probability

P (A|B) = P (A ∩ B)
P (B)

= 316/5804
1543/5804

= 316
1543

= 0.205 ,

where the number of subjects in the SHHS population is getting canceled out.

In biostatistics we often refer to P (A) as the marginal (or unconditional) prob-
ability of the event A, to P (A ∩ B) as the joint probability of the A and B
events, and to P (A|B) as the conditional probability of the event A given B.
These are fundamental concepts that will re-occur frequently. Understanding
the conditional probability will be essential to understanding complex models
that can be represented by simple conditional distributions. But, more about
this later.

This example makes a few intuitive points:

• when estimating conditional probabilities, the and operation (the intersec-
tion) reduces the sample size we are focusing on;

• the conditional probability is always higher than the probability of the
intersection of two events;
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• the difference between conditioning and taking the intersection of the two
events is that we restrict the space to the event we condition on (e.g., the
subjects from 70 to 80 years old);

• more complex conditional probabilities are harder to represent visually,
but the principles remain the same;

• plotting the data and thinking through concepts can help make verbal
statements precise.

6.1.3 Conditional probabilities and mass functions

Let us continue with the empirical intuition behind conditional events built
in the previous section. We would like to imagine the case when the event
we are conditioning on shrinks (think a one-year instead of the 10-year age
interval). In this case, the number of individuals in that interval (blue shaded
area) can be reduced dramatically, while the intersection between the red and
blue shaded area is also reduced. In the example below, both vanish relatively
quickly. Thus, for realistic cases, such as the SHHS, there is a real problem
estimating conditional probabilities when the events we condition on become
very small. However, we would still like to define, interpret, and compute the
distribution of rdi4p for a specific age, say 70 years. This is the limit of empirical
thinking and the reason to introduce theoretical conditional probabilities.

Consider the case when we have two random variables, X and Y , and want to
introduce the theoretical definition of conditional probabilities. Let fX,Y (x, y)
be a bivariate density or mass function for random variables X and Y . Let fX(x)
and fY (y) be the associated marginal mass function or densities disregarding
the other variables

fY (y) =
∫

fX,Y (x, y)dx or fY (y) =
∑

x

fX,Y (x, y)dx ,

where the integral is used if X is continuous and the sum is used if X is discrete.
Then the conditional density or mass function of X given that Y = y is

fX|Y (x|y) = fX,Y (x, y)/fY (y)

Here we have used indices to indicate exactly what distribution the density refers
to. In cases when there is no danger of misinterpretation of densities, indices
could be dropped, while remembering that the function f(·) may refer to com-
pletely different distributions. Bayesians, have a particularly simple notation,
where fX|Y (x|y) = [x|y], fX,Y (x, y) = [x, y] and fY (y) = [y]. Thus, in this
decluttered notation the same expression can be written as

[x|y] = [x, y]/[y]

or, equivalently,
[x, y] = [x|y][y] = [y|x][x] .
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This notation is especially clean and useful when the number and complexity
of conditional distributions increases. For pedagogical reasons, we will be using
the indexing notation, whenever necessary.

When both random variables are discrete, the definition of conditional proba-
bility is exactly the definition for conditional events where A is the event that
X = x0 and B is the event that Y = y0. However, the continuous definition
is harder to motivate, since the events X = x0 and Y = y0 have probability 0
(recall the SHHS example). However, a useful motivation can be provided by tak-
ing the appropriate limits by defining A = {X ≤ x0} and B = {Y ∈ [y0, y0 +ϵ]}.
In the SHHS, A could be the event that rdi4p is less than x0, where x0 could
be, for example, 5, 10, or 15 events per hour. The event B could be the event
that age is between y0 and a small increment in age y0 + ϵ. Here ϵ is the width
of the blue shaded area in Figures 6.1 and 6.2.

Because the event Y ∈ [y0, y0 + ϵ] has a non-zero probability we can write the
probability of the conditional event {X ≤ x0|Y ∈ [y0, y0 + ϵ]} as

P (X ≤ x0|Y ∈ [y0, y0 + ϵ]) = P (A|B) = P (A ∩ B)
P (B)

= P (X ≤ x0, Y ∈ [y0, y0 + ϵ])
P (Y ∈ [y0, y0 + ϵ])

=
∫ y0+ϵ

y0

∫ x0
−∞ fX,Y (x, y)dxdy∫ y0+ϵ

y0
fY (y)dy

=
∫ y0+ϵ

y0

∫ x0
−∞ f(x, y)dxdy/ϵ∫ y0+ϵ

y0
f(y)dy/ϵ

.

The first line of equalities is simply the definition of conditional probabilities.
The equality on the second line is just the explicit form of the conditional
probability for these two particular events, A and B. The third line equality
is the hardest one to explain, but recall that the probability of joint events
for X and Y is governed by the joint pdf fX,Y (x, y). To obtain the P (X ≤
x0, Y ∈ [y0, y0 + ϵ]) we need to integrate fX,Y (x, y) over the domain D =
(−∞, x0] × [y0, y0 + ϵ]. Therefore,

P (X ≤ x0, Y ∈ [y0, y0+ϵ]) =
∫ ∫

D

fX,Y (x, y)dxdy =
∫ y0+ϵ

y0

∫ x0

−∞
fX,Y (x, y)dxdy.

A similar argument holds for the equality P (Y ∈ [y0, y0 + ϵ]) =
∫ y0+ϵ

y0
fY (y)dy.

The last equality was obtained by dividing both the numerator and the denomi-
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nator by ϵ. We will investigate what happens to the numerator and denominator
when we let ϵ → 0. The numerator can be written as

∫ y0+ϵ

−∞
∫ x0

∞ fX,Y (x, y)dxdy −
∫ y0

−∞
∫ x0

−∞ fX,Y (x, y)dxdy

ϵ
= g1(y0 + ϵ) − g1(y0)

ϵ
,

where g1(y0) =
∫ y0

−∞
∫ x0

−∞ fX,Y (x, y)dxdy.

Thus, when we let ϵ → 0 we obtain the limit g′
1(y0) =

∫ x0
−∞ fX,Y (x, y0)dx. This

last equality follows from the so called fundamental theorem of calculus; for any
integrable function h(·)

∂

∂y

∫ y

−∞
h(t)dt = h(y) .

Similarly, for the denominator we have

∫ y0+ϵ

−∞ fY (y)dxdy −
∫ y0

−∞ fY (y)dxdy

ϵ
= g2(y0 + ϵ) − g2(y0)

ϵ
,

where g2(y0) =
∫ y0

−∞ fY (y)dy. When we let let ϵ → 0 we obtain the limit
g′

2(y0) = fY (y0), or the marginal pdf of Y evaluated at y0. Putting all these
results together we obtain that

lim
ϵ→∞

P (X ≤ x0|Y ∈ [y0, y0 + ϵ]) =
∫ x0

−∞

fX,Y (x, y0)
fY (y0)

dx =
∫ x0

−∞
fX|Y =y0(x)dx ,

where fX|Y =y0 = fX,Y (x, y0)/fY (y0) is, by definition the conditional pdf of X
given Y = y0. These results indicate that the cumulative distribution function
of the variable X conditional on the ever shrinking event Y ∈ [y0, y0 + ϵ] can
be obtained by integrating the conditional pdf fX|Y =y0(x). Another way of
thinking about this equality is that

P (X ≤ x0|Y = y0) =
∫ x0

−∞

fX,Y (x, y0)
fY (y0)

dx

and taking the derivative with respect to x0 we obtain

fX|Y (x0, y0) = fX,Y (x0, y0)
fY (y0)

.

This indicates that the definition of the conditional pdf makes sense and that
it has a practical interpretation. As we mentioned, this is a case when the
intuition built on empirical evidence can break down. However, the intuition
built up from the theory above gives us a way to estimate continuous conditional
probabilities from observed data: simply take a small ϵ (and hopefully there are
enough data to actually estimate the probabilities).
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In practice, the recipe for obtaining conditional pdfs is extremely simple if the
joint pdf is known. More precisely

fX|Y =y(x) = fX,Y (x, y)
fY (y)

= fX,Y (x, y)∫
fX,Y (x, y)dx

.

Geometrically, the conditional density is obtained from the joint density by
taking the relevant slice of the joint density and appropriately renormalizing it.
The reason renormalization is necessary is to ensure that the conditional density
is a pdf that integrates to 1. Indeed, it is easy to check that∫

fX|Y =y(x)dx =
∫

fX,Y (x, y)
fY (y)

dx = 1
fY (y)

∫
fX,Y (x, y)dx = fY (y)

fY (y)
= 1 ,

and this equality holds for every value y of Y we condition on. This is an almost
trivial set of equalities, but they explain the normalizing constant idea, where
the normalizing constant is the marginal pdf of the variable we condition on.

In this case, the normalizing constant is the marginal pdf of Y , fY (y). Some-
times, for simplicity we can write fX|Y =y(x) ∝ fX,Y (x, y) to indicate that the
conditional pdf is proportional to the joint pdf up to the normalizing constant
fY (y).

6.1.3.1 Example: Gamma conditionals

Consider the bivariate pdf

fX,Y (x, y) = ye−xy−y,

where x ≥ 0, y ≥ 0. We would first like to plot this pdf using 3D plotting tools
available in R
#Set an equally spaced grid between 0 and 4
#Do the same for y
x=seq(0,4,length=40)
y=x
#Store the pdf values in a matrix
matxy=matrix(rep(0,1600),ncol=40)
#Calculate and store the pdf at every location in the bivariate grid
for (i in 1:40)
{for (j in 1:40){matxy[i,j]=y[j]*exp(-x[i]*y[j]-y[j])}}

Recall that the bivariate pdf represents the concentration of probability for the
bivariate random vector (X, Y ). In this example, the two random variables are
not independent because f(x, y) ̸= g(x)h(y) for any g(·) or h(·). That is, the
bivariate pdf cannot be separated as a product between a function that depends
only on x and a function that depends only on y. Plotting 3D objects in R can
be done in different ways. Here we first explore the persp function, though we
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Figure 6.3: Three dimensional plot representing the joint pdf fX,Y (x, y) =
ye−xy−y.

will also explore heat and contour maps. Recall that we are really plotting are
points {x, y, fX,Y (x, y)} in three dimensional space, where the third dimension
fX,Y (x, y) is the value of the pdf at location (x, y). The plot is done on a mesh
of points in the interesting part of the function, that is, where it is not zero or
very close to zero.
persp(x, y, matxy, theta = 30, phi = 30, col = c("green3"),

ltheta = 120, shade = 0.9, expand="0.75",zlab="f(x,y)",
ticktype = "detailed",border=NA)

We can also create an interactive 3D plot using the function plot_ly in the R
package plotly. (This only shows up in the HTML version but not the PDF.
If you are viewing the pdf, try running the code yourself!)
library(plotly)
plot_ly(x = x, y = y, z = matxy) %>% add_surface()

The pdf displayed in Figures 6.3 and 6.4 (if you are viewing this in the HTML
version) indicates that areas of high probability are close to x = 0 and y = 1
with a shallower slope from (0, 1) to (4, 1) (x-direction from the maximum) and
a steeper slope from (0, 1) to (0, 4). The distribution is not symmetric and is
bounded by 0 both in the x and y direction. This indicates that both the X
and Y random variables do not take negative values.

Figure 6.5 displays the same plot using a heat map, as implemented in the R
package fields. The package allows for the color bar representing the values



6.1. CONDITIONAL PROBABILITIES 189

0
0.1
0.2
0.3

WebGL	is	not
supported	by
your	browser	-
visit
https://get.webgl.org
for	more	info

Figure 6.4: Three dimensional interactive plot representing the joint pdf
fX,Y (x, y) = ye−xy−y. Not available in PDF version.

of fX,Y (x, y) to be attached to the plot. Other functions in R that render 3D
objects include plot3D, surface3d, contour and rgl.
library(fields)
image.plot(x,y,matxy)

So far, we have rendered the joint pdf of two variables. Let us consider the
case when we are interested in the conditional pdf of the X variable given that
Y = 2. To do that we simply write down the formula

fX|Y =2(x) = fX,Y (x, 2)
fY (2)

= 2e−2x−2

fY (2)
.

Here

fY (2) =
∫ ∞

0
fX,Y (x, 2)dx =

∫ ∞

0
(2e−2x−2)dx = 2e−2 × {−0.5e−2x}

∣∣∣∣∞
0

= e−2 .

This indicates that
fX|Y =2(x) = 2e−2x ,

for x ≥ 0 and 0 otherwise. This can be recognized as the exponential distribution
with mean 1/2.

We have mentioned that the conditional density is obtained from the joint den-
sity by taking the relevant slice of the joint density and appropriately renor-
malizing it. Let us visualize this process for the calculations that we have just
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Figure 6.5: Heat map plot representing the joint pdf fX,Y (x, y) = ye−xy−y.

conducted. Recall that we conditioned on Y = 2, which is indicated on the
bivariate plot as a black dashed line. Figure 6.6 displays the same information
as Figure 6.5, but it adds the line (or slice) at the value Y = 2 on which we are
conditioning.

Once Y = 2, we can imagine taking a slice of the bivariate heat map along the
dashed line and making a plot of the values along the line. These values are
shown as the dashed black line in Figure 6.7 and represent the unnormalized
conditional density. Indeed, the density does not integrate to 1; and, in fact,
we know that it integrates to e−2 ≈ 0.135. To obtain a proper conditional pdf
this function needs to be divided by e−2 and the resulting function is shown in
Figure 6.7 as a solid blue line. This is the conditional density of X given Y = 2.
plot(x,2*exp(-2*x-2),lwd=3,type="l",lty=2,ylim=c(0,2),ylab="",

bty="n",cex.lab=1.3,cex.axis=1.3, col.axis="blue")
lines(x,2*exp(-2*x),lwd=3,col="blue")

In general, for Y = y0, we have

fY (y0) =
∫ ∞

0
fX,Y (x, y0)dx = e−y0

∫ ∞

0
y0e−xy0dx = −e−y0

∫ ∞

0

∂

∂x
(e−xy0)dx ,

which implies that

fY (y0) = −e−y0(e−xy0)
∣∣∣∣∞
0

= e−y0 .
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Figure 6.6: Heat map plot of the joint pdf fX,Y (x, y) = ye−xy−y and slice at
Y = 2.
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Figure 6.7: Unnormalized (dashed black line) and normalized (solid blue line)
conditional pdf for X|Y = 2 when the joint pdf is fX,Y (x, y) = ye−xy−y.
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Therefore, for any y0 > 0 we have

fX|Y =y0(x) = fX,Y (x, y0)
fY (y0)

= y0e−xy0−y0

e−y0
= y0e−xy0 ,

indicating that the conditional distribution of X|Y = y0 is an exponential dis-
tribution with mean 1/y0.

6.1.3.2 Example: uniform disk

Consider now the case when

fX,Y (x, y) = 1
πr2 for {(x, y) : x2 + y2 ≤ r} ,

and 0 otherwise. This joint pdf is uniform (has the same value) at every point
in the disk centered at 0 with radius r. We would like to know what is the
conditional density for X given that Y = 0. When Y = 0 X can take any value
between −r and r. Because the density is uniform on the disk, geometrically it
makes sense for the conditional density to also be uniform on its domain, [−r, r].
We write this as fX|Y =0 ∝ 1, meaning that fX|Y =0(x) = c for x ∈ [−r, r], where
c is a constant. Because the conditional pdf has to integrate to 1 it follows that

fX|Y =0(x) = 1
2r

for {x : −r ≤ x ≤ r} .

The same result can be obtained following the definition of the conditional pdf.

6.2 Bayes rule

Bayes rule is a fundamental rule of probability that allows the calculation of
the conditional probability P (A|B) when it is easy to obtain information about
P (B|A). (As an aside, there is a fair amount of deeply entrenched warfare
over whether it should be Bayes, Bayes’ or Bayes’s rule. We guess that Bayes’s
is probably correct as there was only one Bayes in question and it is his rule.
However, many in the field have taken the universally-known-to-be-wrong step
of dropping the apostrophe altogether, a convention we adopt; good thing we
are statisticians and not grammarians.)

In some sense, Bayes rule reverses the order of conditioning and provides the
formulas for conducting the calculations. In a more general context, Bayes rule
relates the conditional density fY |X=x(y) to the conditional density fX|Y =y(x)
and the marginal density fY (y). For continuous random variables the Bayes
rule is

fY |X=x(y) =
fX|Y =y(x)fY (y)∫
fX|Y =t(x)fY (t)dt

.
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This result is an immediate consequence of the definition of the conditional pdf,
which indicates

fY |X=x(y)fX(x) = fX,Y (x, y) = fX|Y =y(x)fY (y) .

By recalling that the marginal density of X is fX(x) =
∫

fX,Y (x, t)dt =∫
fX|Y =t(x)f(t)dt, one could ask why the integral is with respect to t and not

with respect to y. The reason is that we need to integrate relative to a general
variable, as x and y are fixed for the purpose of this calculation. If the variable
Y is discrete then the Bayes formula can be written as

fY |X=x(y) =
fX|Y =y(x)fY (y)∑

t fX|Y =t(x)fY (t)
.

A particular case of the Bayes rule or formula is when we have two sets A and
B. In this case the formula becomes

P (B|A) = P (A|B)P (B)
P (A)

= P (A|B)P (B)
P (A|B)P (B) + P (A|Bc)P (Bc)

.

The last equality can be easily obtained from the formulas

P (A) = P (A ∩ B) + P (A ∩ Bc) = P (A|B)P (B) + P (A|Bc)P (Bc) .

The first equality is true because A = A∩(B∪Bc) and B∩Bc = ∅, while the sec-
ond equality follows directly from the definition of the conditional probabilities.
The proof of this result could also be provided using the discrete version of the
Bayes rule on the variables X and Y , which are the indicators that the events
A and B occur, respectively. This formula indicates that in order to calculate
the conditional probability P (B|A) we need P (A|B), and the marginal (prior)
probabilities, P (B) and P (A). Or, if P (A) is not readily available we would
need P (A|Bc) instead.

6.2.1 Example: diagnostic tests

Diagnostic tests are widely used in medical practice to identify individuals, who
are at higher risk of having a disease, and are often used for determining the
appropriate treatment. For example, according to the National Institute of
Diabetes and Digestive and Kidney Diseases “the hemoglobin A1C (HbA1c)
test is a blood test that provides information about a person’s average levels of
blood glucose over the past 3 months.” A person is diagnosed with diabetes if the
result of the HbA1c test is above 6.5%. Another example is the routine Systolic
Blood Pressure (SBP) test, which indicates hypertension if SBP is greater than
140 millimeters of mercury (mm Hg).

Diagnostic tests have common features: (1) they are applied to individuals in
a population, (2) they are designed to partition the population in individuals

https://www.niddk.nih.gov/health-information/diabetes/overview/tests-diagnosis/a1c-test
https://www.niddk.nih.gov/health-information/diabetes/overview/tests-diagnosis/a1c-test
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who test positive and individuals who test negative, and (3) they can lead to
further medical actions for individuals who test positive (e.g., exceed a particular
threshold).

Consider the case when the test is applied to n individuals sampled from a
population. The diagram in Figure 6.8 provides a depiction of both the disease
state and the four possible combinations between test outcomes and the true
state of disease. If the person has the disease and the test is positive (indicating
that the person has the disease), then this is called a true positive. We denote
by a the number of true positive tests in the population. If the person does not
have the disease and the test is negative, then the result is called a true negative
and we denote by d the number of true negatives. Both true positives and true
negatives are desired results of a diagnostic test. Unfortunately, diagnostic
tests can also lead to two types of errors. First, individuals who do not have
the disease may have a positive test result indicating that they actually have
the disease. This is called a false positive (a false alarm) and may lead to
further testing and unnecessary treatment for an individual who is healthy. We
denote by b the number of individuals who have been falsely identified as having
the disease when they actually do not have it. Second, individuals who have
the disease may have a negative test result indicating that they do not have
the disease. This is called a false negative and may lead to lack of necessary
treatment and unnecessary complications later on. We denote by c the number
of individuals who have been incorrectly classified as not having the disease when
they actually have it. Of course, better diagnostic tests would have a smaller
rate of false negative and false positive results in the population. In general,
we would like both the number of false positive and false negative findings to
be 0. The number of false positives could easily be reduced to 0 by declaring
that nobody has the disease. Of course, this would have a negative effect on the
number of false negatives, which would be equal to the number of individuals
in the population that have the disease. Similarly, and just as unhelpful, the
number of false negatives could be reduced to zero by declaring that everybody
has the disease. Of course, this would inflate the number of false positives,
which would become equal to the number of people in the population who do
not have the disease.

For convenience, denote by T+ and T− the events that the result of a diagnostic
test is positive or negative, respectively. Let D+ and D− be the event that the
subject of the test has or does not have the disease, respectively. The sensitivity
of the test is defined as P (T + |D+), the probability that the test is positive
conditional on the fact that the subject actually has the disease. The specificity
of the test is defined as P (T − |D−), the probability that the test is negative
conditional on the fact that the subject does not have the disease. In the example
shown in the diagram above a reasonable estimator of the sensitivity of the test
is

P̂ (T + |D+) = a

a + c
,

the proportion of individuals who tested positive among those who have the
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Figure 6.8: Diagram of a diagnostic test showing the possible outcomes: true
positives, false negatives, false positives, and true negatives.

disease. There are a individuals who have tested positive among those who
have the disease and there are a + c individuals who have the disease. Similarly,
a reasonable estimator of the specificity of the test is

P̂ (T − |D−) = d

b + d
,

the proportion of individuals who test negative among those who do not have the
disease. There are b individuals who have tested negative among the individuals
who do not have the disease and there are b + d individuals who do not have
the disease.

The positive predictive value (PPV) of the test is P (D + |T+), the probability
that the subject has the disease conditional on testing positive. The negative
predictive value (NPV) of the test is P (D−|T−), the probability that the subject
does not have the disease conditional on testing negative. The prevalence of the
disease is P (D+), the marginal probability of the disease. An estimator of PPV
is

P̂ (D + |T+) = a

a + b
,

where a is the number of subjects who have the disease among those who tested
positive and there are a + b individuals who tested positive. Similarly, an esti-
mator of NPV is

P̂ (D − |T−) = d

c + d
,

where d is the number of subjects who do not have the disease among those who
tested negative and c + d is the number of subjects who tested negative. An
estimator of the prevalence of the disease is

P̂ (D+) = a + c

a + b + c + d
,
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Figure 6.9: Two by two table showing the summary of results from a diagnostic
test procedure combined with its characteristics: sensitivity, specificity, PPV,
and NPV.

where a+c is the number of individuals who have the disease and n = a+b+c+d
is the number of individuals in the study.

All these definitions can be collected in one concise two by two table, as shown
in Figure 6.9. To make things more interpretable we provide now two examples.

6.2.1.1 Example: testing for HIV

A study comparing the efficacy of HIV tests concluded that HIV antibody tests
have a sensitivity of 99.7% and a specificity of 98.5%. Suppose that a subject,
from a population with a 0.1% prevalence of HIV, receives a positive test re-
sult. We are interested in calculating the probability that this subject has HIV.
Mathematically, we would like to calculate P (D + |T+), the probability of be-
ing HIV positive (D+) given that one test was positive T+. What is known
is the sensitivity of the test, P (T + |D+) = 0.997, the specificity of the test,
P (T − |D−) = 0.985 and the prevalence of the disease in the target population,
P (D+) = 0.001. Using Bayes formula we can calculate the quantity that we
are interested in
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P (D + |T+) = P (T + |D+)P (D+)
P (T + |D+)P (D+) + P (T + |D−)P (D−)

= P (T + |D+)P (D+)
P (T + |D+)P (D+) + {1 − P (T − |D−)}{1 − P (D+)}

= .997 × .001
.997 × .001 + .015 × .999

= .062

Thus, in this population, a positive test result corresponds to only a 6% probabil-
ity that the subject is actually HIV positive. This is the positive predictive value
of the test (PPV). The low positive predictive value is due to low prevalence of
the disease and the somewhat modest specificity relative to the prevalence of
the disease. Suppose now that it was known that the subject was an intravenous
drug user and routinely had intercourse with an HIV infected partner. In this
situation the sensitivity and specificity of the test remain unchanged, though
the disease prevalence would change quite dramatically. Indeed, let us assume
that the prevalence of the disease in the population of individuals who are intra-
venous drug users and routinely have intercourse with an HIV infected partner
is P (D+) = 0.04, that is, 40 times the prevalence in the overall population. For
this person the probability of being HIV positive is

P (D + |T+) = P (T + |D+)P (D+)
P (T + |D+)P (D+) + P (T + |D−)P (D−)

= P (T + |D+)P (D+)
P (T + |D+)P (D+) + {1 − P (T − |D−)}{1 − P (D+)}

= .997 × .04
.997 × .04 + .015 × .96

= .73

This is a much higher probability of being infected than for a person at random
from the general population. This happens because of the prior knowledge that
the disease prevalence in this population is much higher than in the general
population. It is important to note that the evidence implied by a positive test
result does not change with the prevalence of disease in the subject’s population.
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Indeed, the data are the same: an individual tested positive for an HIV test.
However, what does change is our interpretation of that evidence due to the
prior knowledge about the disease prevalence.

6.2.1.2 Example: effect of prevalence on the performance of diag-
nostic tests

Consider the example in Figure 6.10, which indicates that 1000 subjects were
tested, 50 who had the disease and 950 who did not, with a disease prevalence
P̂ (D+) = 50/1000 = 0.05. Out of 50 individuals who had the disease 48
tested positive and 2 tested negative, while out of the 950 individuals who did
not have the disease 47 tested positive and 903 tested negative. The (estimated)
sensitivity of this test is P̂ (T +|D+) = 48/50 = 0.96 and the specificity is P̂ (T −
|D−) = 903/950 = 0.95, which are both relatively good for a test. However,
the PPV is P̂ (D + |T+) = 48/95 = 0.51, which can be considered relatively low.
This is due to the relatively low prevalence, P̂ (D+) = 0.05. Indeed, PPV is
estimated by 48/(48 + 47), where 48 is the number of subjects who test positive
and have the disease and 47 is the number of subjects who test positive and do
not have the disease. Because the prevalence is small the number of subjects
who both test positive and have the disease cannot be too large; indeed, even
if the sensitivity were perfect that number would be 50 and the PPV would
barely change to 0.52. This should provide us with the intuition about the
limitation of an excellent, or even perfect, sensitivity, in low prevalence diseases.
We conclude that PPV is substantially adversely affected by the number of
subjects who test positive and do not have the disease (in our case 47). First,
the number of individuals who do not have the disease is much larger than the
number of subjects who have the disease when the disease is rare (in our case
950 >> 50). The test has a good specificity (0.95), but even a small percent
of errors for those without the disease can lead to 47 false positive tests. This
number of false positives becomes comparable with the number of true positives,
which reduces the PPV of the test.

Consider now a test with almost identical sensitivity and specificity, but in
a population where the disease is more prevalent. These data are shown in
Figure 6.11 and indicates that the size of the total population is still 1000,
though this time 200 have the disease and 800 do not; the disease prevalence
in this population is P̂ (D+) = 200/1000 = 0.20. Out of 200 individuals who
have the disease 190 tested positive and 10 tested negative, while out of the
800 individuals who did not have the disease 40 tested positive and 760 tested
negative. The (estimated) sensitivity of this test is P̂ (T + |D+) = 190/200 =
0.95 and the specificity is P̂ (T −|D−) = 760/800 = 0.95. The PPV for this test
is P̂ (D + |T+) = 190/230 = 0.83, which is much higher than in the previous
example. This is primarily due to the higher prevalence of the disease, P̂ (D+) =
0.20. Indeed, PPV is estimated by 190/(190 + 40), where 190 is the number
of subjects who test positive and have the disease and 40 is the number of
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Figure 6.10: Two by two table showing the summary of results from a diagnostic
test procedure combined with its characteristics: sensitivity, specificity, PPV,
and NPV. Disease prevalence is P(D)=0.05.

subjects who test positive and do not have the disease. Because the prevalence
is larger the number of subjects who both test positive and have the disease is
larger. PPV is less affected by the number of subjects who test positive and
do not have the disease (in our case 40) because this is compensated by the
larger number of true positive tests (190). First, the number of individuals who
do not have the disease is much larger than the number of subjects who have
the disease when the disease is rare (in our case 950 >> 50). The test has
a good specificity (0.95), but even a small percent of errors for those without
the disease can lead to 47 false positive tests. This number of false positives
becomes comparable with the number of true positives, which reduces the PPV
of the test.

The PPV and NPV are extremely important quantities in prediction. Indeed,
an individual patient is interested in his or her probability of having the disease
given that he or she tested positive or negative. However, it is important to
remember that these quantities are a combination of the properties of the test
(sensitivity and specificity) and the prior prevalence in the population. A criti-
cism of PPV and NPV is that for an individual it is often hard to know from
what population he or she is drawn. Indeed, if the individual is taken at random
and tested we could use the known prevalence of the disease in the population.
However, this is rarely the case and NPV and PPV depend on the unknown
(latent) status of the population the patient belongs too. We have added this
discussion to emphasize that PPV and NPV should not be used without refer-
ence to the prevalence of the disease population the individual was drawn from
and that this information may not be available in realistic scenarios.
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Figure 6.11: Two by two table showing the summary of results from a diagnostic
test procedure combined with its characteristics: sensitivity, specificity, PPV,
and NPV. Disease prevalence is P(D)=0.20.

6.2.1.3 Likelihood ratios of diagnostic tests

The diagnostic likelihood ratio of a positive test is

DLR+ = P (T + |D+)
P (T + |D−)

= sensitivity
1 − specificity .

For a test to have any value we expect that DLR+ > 1, indicating that the
probability of having a positive test is higher for a person who has the disease
relative to one who does not. In general, we expect DLR+ >> 1. An estimator
of DLR+ is

D̂LR+ = a/a + c

1 − d/(b + d)
= a

b

b + d

a + c
.

Note that D̂LR+ > 1 if and only if ad > bc, where a and d are the number of
subjects correctly classified and b and c are the numbers of subjects incorrectly
classified, respectively.

The diagnostic likelihood ratio of a negative test is

DLR− = P (T − |D+)
P (T − |D−)

= 1 − sensitivity
specificity .

For a test to have any value we expect that DLR− < 1, indicating that the
probability of having a negative test result for a person who has the disease is
smaller than for one person who does not. In general, we expect DLR− << 1.
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An estimator of DLR+ is

D̂LR− = 1 − (a/a + c)
d/(b + d)

= c

d

b + d

a + c
.

Just as in the case of D̂LR+ we have D̂LR+ < 1 if and only if ad > bc, the exact
same inequality.

Using the Bayes rule we have

P (D + |T+) = P (T + |D+)P (D+)
P (T + |D+)P (D+) + P (T + |D−)P (D−)

and
P (D − |T+) = P (T + |D−)P (D−)

P (T + |D−)P (D−) + P (T + |D+)P (D+)
,

where the denominators in both formulas are the same and are equal to P (T+),
the marginal probability of a positive test. By taking the ratio we obtain that

P (D + |T+)
1 − P (D + |T+)

= P (T + |D+)
P (T + |D−)

× P (D+)
1 − P (D+)

For any probability p of an event we define the odds of that event to be

Odds(p) = p

1 − p
.

There clearly is no information gained or lost from going from the absolute
probability p to the Odds(p) or back, though the interpretation can change
quite a bit. For example, an odds of 1 corresponds to equal chances of an event
to happen or not happen p = 1 − p = 0.5, while an odds of 3 corresponds to
a probability twice as large for an event to happen than to not (p = 0.75 and
1 − p = 0.25). Odds are always positive and they simply change the scale on
which we discuss probability. With this definition, the previous results imply
that

post test odds(D+) = DLR+ × prior test odds(D+) ,

where DLR+ = P (T + |D+)/P (T + |D−) is the diagnostic likelihood ratio of a
positive test. Indeed, before (or prior to) conducting the test the odds of having
the disease, for a person taken at random from the population, are P (D+)/{1−
P (D+)}. However, for a person drawn at random from the population, who
tests positive, the odds are P (D + |T+)/{1 − P (D + |T+)}. The formula is
the product between the prior odds of having the disease and the diagnostic
likelihood ratio of a positive test. Here, DLR+ contains the information about
the experiment, which came up positive, and the prior odds contain the prior
information about the prevalence of the disease in the population. In the HIV
example, the prior test odds of the disease are 0.001/0.999 ≈ 0.001 and are very
small. The DLR+ = P (T +|D+)/{1−P (T −|D−)} = 0.997/(1−0.985) = 66.5,
indicating the positive test made the odds of disease 66 times the pretest odds.
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Equivalently, the hypothesis of disease is 66 times more supported by the data
than the hypothesis of no disease after running the test. The odds remain very
small despite the strong multiplying effect of the DLR+ simply because the prior
odds were just so small to start with.

Similarly, if a subject has a negative test result, it can be shown that

post test odds(D−) = DLR− × prior test odds(D−) .

For the HIV test example DLR− = (1−0.997)/0.985 = 0.003 indicating that the
post-test odds of disease are now 0.3% of the pretest odds given the negative test.
Or, the hypothesis of disease is supported 0.003 times that of the hypothesis of
absence of disease given the negative test result.

In practice we may actually have two different independent diagnostic tests
that are applied or the same test could be repeated. We would like to see what
happens with the accumulation of evidence and compare the evidence from
multiple tests. Let us assume that we have a both a positive first and second
test. After applying the first test the post-test odds of having the disease are

P (D + |T1+)
P (D − |T1+)

= DLR+(T1)P (D+)
P (D−)

,

where for precision of notation we denoted by DLR+(T1) the diagnostic likeli-
hood ratio of a positive test when using test T1. Once the second test is applied
and is positive we have

P (D + |T1+, T2+)
P (D − |T1+, T2+)

= DLR+(T2)P (D + |T1+)
P (D − |T1+)

= DLR+(T2) × DLR+(T1) × P (D+)
P (D−)

.

Thus, if the two tests are independent we have the diagnostic likelihood ratios of
the two tests simply multiply the prior odds of the disease. This is particularly
useful when we would like to repeat the test to “obtain confirmation of the
original findings.” Note, in particular, how before the first test P (D+)/P (D−)
is the prior odds of having the disease and P (D + |T1+)/P (D − |T1+) is the
posterior odds of having the disease. However, after the experiment is run this
posterior odds of having the disease becomes the prior odds of having the disease
before the second test is run.

Let us see what happens if we apply the HIV test twice and it comes back
positive both times. In this situation P (D+)/P (D−) = 0.001, but DLR+(T ) ×
DLR+(T ) = 66.52 = 4422.3 indicating that the posterior odds of being HIV
positive is

P (D + |T1+, T2+)
P (D − |T1+, T2+)

= 4422.3 ∗ 0.001 = 4.42 ,

making it more than four times more likely to have the disease than to not have
the disease. This would correspond to a conditional probability of having the
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disease of
P (D + |T1+, T2+) = 4.42

1 + 4.42
= 0.815 .

One more independent positive test would result in a posterior odds of the
disease of

P (D + |T1+, T2+, T3+)
P (D − |T1+, T2+, T3+)

= 66.53 ∗ 0.001 = 294.08 ,

which would correspond to a probability of having the disease of

P (D + |T1+, T2+, T3+) = 294.08
1 + 294.08

= 0.997 .

This shows that repeated positive tests dramatically increase the probability
that the person has, indeed, the disease.

6.2.2 A bit of house cleaning

We emphasize that in the examples above, we are estimating hypothesized true
probabilities with data. To be good statisticians, we should quantify the uncer-
tainty in those estimates. Do not worry, we will give the tools for doing that
later in the text.

A second, somewhat philosophical issue always arises when discussing diagnostic
testing. Under a frequency definition of probability, either a subject has the
disease or not. So his or her person-specific PPV and NPV are technically either
one or zero. This line of thinking, while theoretically true, is not very useful,
other than perhaps suggesting the need to be careful with language. Better
language for PPV, for example, is that we are considering the probability that a
random person has the disease when drawn from a relevant population of people
with positive tests.

6.3 ROC and AUC

Sensitivity and specificity are widely used in practice to characterize the perfor-
mance of classifiers. More precisely, in practice one often has a binary outcome
(e.g., dead/alive, healthy/disease, failure/success) using covariates or predictors.

6.3.1 Prediction of binary outcomes

Consider the case when the outcome is binary and we have one continuous
predictor, or risk score. This can happen in a large number of applications
including measuring a biomarker used to predict disease status (biomarker-based
diagnosis test), constructing a univariate risk score from multivariate covariates,
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and using clinical scores based on a combination of objective and subjective
patient assessments. From a notational perspective, let D be the binary outcome
variable, which can be either 0 or 1 and let R be a scalar random variable, which
will be used as predictor for D. Here we make the convention that larger values
of R correspond to higher predicted risk. Let R be the range of possible values
for the variable R; for convenience we can always make this range [0, 1] using a
suitable transformation. For every threshold r ∈ [[0, 1] we can predict D̂ = 1 if
R > r. This is now a diagnostic test and its theoretical sensitivity is

Sensitivity(r) = P (R > r|D = 1) ,

while its theoretical specificity is

Specificity(r) = P (R ≤ r|D = 0) .

The theoretical receiver operating characteristic (ROC) curve is defined as

{Sensitivity(r), 1 − Specificity(r) : r ∈ [0, 1]} .

The area under the ROC is denoted by AUC and is one of the main criteria for
assessing discrimination accuracy. We will prove that the AUC is the probability
that the model will assign a higher probability of an event to the subject who will
experience the event than to the one who will not experience the event. Note
first that

Sensitivity(t) = S(t) = P (X > r|D = 1) =
∫ 1

r

f(x|D = 1)dx

and that
1 − Specificity(r) = P (r) = P (X > r|D = 0) .

Therefore

AUC =
∫ 0

1
S(r) d

dr
P (r) =

∫ 1

0
S(r)f(r|D = 0)dr =

∫ 1

0

∫ 1

r

f(s|D = 1)f(r|D = 0)dsdr .

The first equality holds because we integrate with respect to P (r) from the
smallest values of P (r) to the largest value of P (r). The smallest value of the
specificity is 0 and is attained at r = 1, while the largest value of P (r) is 1 and is
attained at r = 0. The second equality holds because the derivative with respect
to r of P (r) is equal to −f(r|D = 0), which changes the limits of integration.
The last equality comes simply from the definition of the double integral and
by placing f(r|D = 0) as a term under the integral with respect to s (because
it does not depend on s). An equivalent way of writing the double integral is

AUC =
∫

{(r,s):0≤r<s≤1}
f(s|D = 1)f(r|D = 0)dsdr .

Upon close inspection one can observe that if Ri and Rj are two scores for the
i and j individuals then

AUC = P (Ri > Rj |Di = 1, Dj = 0) .
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Indeed, the joint pdf of (Ri, Rj |Di = 1, Dj = 0) is f(ri|D = 1)f(rj |D = 0)
because Ri and Rj are assumed to be independent given their disease status.
Therefore

P (Ri > Rj |Di = 1, Dj = 0) =
∫

{(ri,rj):0≤rj<ri≤1}
f(ri|D = 1)f(rj |D = 0)dridrj ,

which is the same formula as the one for AUC with the exception that the
arguments of the conditional distributions were changed as follows s → ri and
r → rj . Of course, the AUC has no value in terms of helping the prediction
after the disease status is observed. Instead, the AUC can be used to evaluate
the probability that a person who will develop the disease was assigned a larger
risk score than one who will not develop the disease before the experiment is
run. In practice, an estimate of AUC can be obtained after data are collected
and one assumes that the discriminating characteristics of the associated risk
score are generalizable to the population. We now provide examples of how the
AUC and ROC are used in practice.

6.3.2 Example: building up the intuition using the SHHS

Consider the SHHS and let us try to predict who has moderate to severe sleep
apnea from other covariates. Moderate to severe sleep apnea is defined as an
rdi4p at or above 15 events per hour. There are
MtS_SA=rdi4p>=15
n_positive =sum(MtS_SA)
n_positive

[1] 1004

1004 individuals in the SHHS who have moderate to severe sleep apnea among
the 5804 individuals in SHHS for a prevalence of P̂ (D+) = 0.178, or 17.8%
of the SHHS population. Individuals in SHHS were oversampled for increased
likelihood of having sleep apnea and this prevalence is not representative for
the overall US population. Indeed, the prevalence of obstructive sleep apnea
associated with accompanying daytime sleepiness is approximately 3 to 7% for
adult men and 2 to 5% for adult women in the general population ( Punjabi
2008). We would like to predict the outcome using a few covariates including
gender, age_s1, bmi_s1, and HTNDerv_s1. The last variable is hypertension
status. To do this, we fit a generalized linear model (GLM) regression of the
variable MtS_SA, moderate to severe sleep apnea, on these covariates. We have
not yet covered regression and we will not cover it for some time, but this is
not a serious reason not to use it, especially in its push-button form. Thus, the
regression is done in R as
fit<-glm(MtS_SA~gender+age_s1+bmi_s1+HTNDerv_s1,family="binomial")
summary(fit)
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Call:
glm(formula = MtS_SA ~ gender + age_s1 + bmi_s1 + HTNDerv_s1,

family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max

-2.0350 -0.6558 -0.4447 -0.2672 2.8334

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.478417 0.374489 -22.640 <2e-16 ***
gender 1.160011 0.079171 14.652 <2e-16 ***
age_s1 0.032785 0.003695 8.873 <2e-16 ***
bmi_s1 0.139142 0.007386 18.839 <2e-16 ***
HTNDerv_s1 0.186753 0.077047 2.424 0.0154 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 5314.5 on 5760 degrees of freedom
Residual deviance: 4660.6 on 5756 degrees of freedom
(43 observations deleted due to missingness)

AIC: 4670.6

Number of Fisher Scoring iterations: 5

The results of the regression indicate that all covariates are signifcant if a
p-value < 0.05 is used as a criterion (again we are using an undefined concept,
but we encourage you to follow along). Male gender (here gender= 1 indicates
male), older age_s1, higher bmi_s1, and being HTNDerv_s1 positive all increase
the probability of having moderate to severe sleep apnea. The summary also
indicates that there were 43 observations due to missingness in bmi_s1. Beyond
the information about what covariates are significantly associated with the out-
come, we also obtain a prediction equation. More precisely, using the point
estimators of the effects we can build the following predictor, or risk score, for
moderate to severe sleep apnea for any subject i in SHHS

Ri = 1.16genderi + 0.033agei + 0.14BMIi + 0.19HTNi .

Here we ignore the intercept, whose role is primarily to scale the predictor Ri to
agree with the observed prevalence of the disease. For now, we are just building
the intuition of how these predictors are built from the data. Below we present
a relevant subset of the information necessary to understand the process
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predictor_rdi4p<-1.16*gender+0.033*age_s1+0.14*bmi_s1+0.19*HTNDerv_s1
intuition<-cbind(gender,age_s1,bmi_s1,HTNDerv_s1,rdi4p,MtS_SA,predictor_rdi4p)
round(head(intuition),digits=2)

gender age_s1 bmi_s1 HTNDerv_s1 rdi4p MtS_SA predictor_rdi4p
[1,] 1 55 21.78 1 1.44 0 6.21
[2,] 1 78 32.95 1 17.80 1 8.54
[3,] 0 77 24.11 0 4.85 0 5.92
[4,] 1 48 20.19 1 0.80 0 5.76
[5,] 0 66 23.31 1 2.76 0 5.63
[6,] 1 63 27.15 1 3.72 0 7.23

Among the first six subjects in the dataset, only the second one has moderate to
severe sleep apnea (rdi4p is 17.8 events per hour). Interestingly, this individual
had all the indicators that increase the probability of having sleep apnea: he is
a man, is older (78), has a high BMI (32.95 indicates that the person is obese),
and is hypertensive. Thus, his risk score was

R2 = 1.16 × 1 + 0.033 × 78 + 0.14 × 32.95 + 0.19 × 1 = 8.54 ,

which happens to be the largest value of the risk score among the first 6 subjects.
In contrast, the third individual is a female, of about the same age (77), whose
BMI is 24.11 (considered normal), and who does not have hypertension. The
risk score for this woman was

R3 = 1.16 × 0 + 0.033 × 77 + 0.14 × 24.11 + 0.19 × 0 = 5.92 ,

a smaller value than for the second individual. Of course, in general, we will
encounter individuals with high risk scores who do not have moderate to severe
sleep apnea and we will encounter individuals with low risk scores who do have
it. To better understand this we will plot the risk score versus rdi4p and
identify exactly how good the prediction equation is. But first, we would like
to understand the marginal distribution of the linear predictor.
hist(predictor_rdi4p,probability=T,col=rgb(0,0,1,1/4),breaks=30,

xlab="Risk score",
main="",cex.lab=1.3,cex.axis=1.3,col.axis="blue")

lines(c(8.54,8.54),c(0,0.4),col="red",lwd=3)
lines(c(5.92,5.92),c(0,0.4),col="red",lwd=3)

Figure 6.12 displays the histogram of the risk scores, Ri, for every subject in the
SHHS. This histogram indicates that most individuals in the SHHS will have
a risk score between 4 and 9, with few exceptions, and that the distribution
of scores has a reasonably symmetric distribution that could be unsuccessfully
argued to be Normal. We have also indicated the two individuals discussed
above in terms of risk score (the left vertical red line is for the woman and right
vertical red line is for the man). This should provide additional intuition about
how complex information about individuals is incorporated into the risk score.
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Figure 6.12: Risk score for moderate to severe sleep apnea estimated from a
logistic regression with gender, age, BMI, and hypertension as predictors.

Individuals in the left tail will tend to be younger, have a lower BMI, and more
likely to be women and not have hypertension. The individuals in the upper
tail will tend to be older, have a higher BMI, and more likely to be men and
have hypertension. This type of graph provides a lot of insight into what could
happen and it is always interesting to explore the reasons why individuals end
up in the extreme tails of the distribution.

Figure 6.13 displays the risk score versus rdi4p indicating that, on average,
higher risk scores correspond to higher observed rdi4p. Here we have cut the
plot at rdi4p less than 40 events per hour for visualization purposes, but one
should remember that many subjects have an rdi4p higher than 40. To better
visualize the connection between the risk score and rdi4p, we calculate the
average rdi4p stratified by the risk score. A good stratification of the risk score
could be: < 5, [5, 6), [6, 7), [7, 8), [8, 9), and ≥ 9.

Once we stratify the risk score, Figure 6.14 displays the means of rdi4p variable
in every risk score stratum. The plot indicates that there is a clear increase in
average rdi4p as a function of strata and the increase actually accelerates for
risk scores above 6. This should not be surprising as the risk score was designed
to help predict individuals who will have an rdi4p above 15 and not designed
specifically to predict rdi4p. However, it is reassuring that the risk score seems
to be associated with rdi4p even below 15.

A threshold on the scores can be used to predict who has the disease and who
does not have it. What we are trying to do is predict which individuals will
have an rdi4p above 15 using the risk scores. A simple solution is to consider
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Figure 6.13: Scatter plot of the estimated subject-specific risk score and the
observed respiratory disturbance index at 4% oxygen desaturation.
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Figure 6.14: Scatter plot of the estimated subject-specific risk score and the
observed respiratory disturbance index at 4% oxygen desaturation together with
its means in strata defined by the risk scors.
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Figure 6.15: Same scatter plot as in the previous two Figures. Red horizontal
line at 15 events per hour is the demarcation line between having and not having
the disease. Blue horizontal line at 8.54 is the demarcation line between being
predicted to have or not have the disease.

a threshold on the risk scores and predict that everybody above that particular
threshold will have an rdi4p above 15 and everybody below that threshold will
have an rdi4p below 15. However, there are many thresholds that can be used.
Indeed, consider, for example, the threshold R = 8.54, which corresponds to the
risk score of the second subject in our dataset. The procedure is to predict that
every person with a risk score Ri ≥ 8.54 has the disease and every person with
Ri ≤ 8.54 does not. Figure 6.15 provides the color coding for understanding the
procedure. The horizontal red line in Figure 6.15 displays the value of observed
rdi4p of 15, the limit between having and not having moderate to severe sleep
apnea. All subjects on or above the red line have the disease. The vertical blue
line in Figure 6.15 displays the value of the risk score of 8.54. All subjects to
the right of the vertical blue line are predicted to have the disease, while all
subjects on or to the left of the line are predicted not to have it.

Figure 6.15 also provides color coding for the type of correct and incorrect
predictions that can be made. The red dots indicate the true positive tests,
that is, those predictions that are correct for individuals who have the disease.
In this dataset there are 81 true positive tests (not all shown in the plot due
to cutting of the y-axis). The green dots indicate the false positive tests, that
is, those predictions that indicated that the subjects will have the disease when
they do not. There are 59 false positive tests. The black dots indicate the
number of true negative tests, that is, those predictions that indicated that
the subjects do not have the disease when they do not. There are 4703 true
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negative tests. The orange dots represent the false negative tests, that is, those
predictions that indicated that the subjects do not have the disease when they
do have it. There are 918 false negative tests.

The plot is slightly misleading due to the amount of overplotting of black dots,
especially in the low rdi4p range, corresponding to healthy individuals. Using
the same definition for diagnostic tests we can define the estimated sensitivity,
specificity, PPV, and NPV for the risk score and a corresponding threshold of
risk, say T = 8.54. Indeed, the estimated sensitivity of the test is 81/(81+918) ≈
0.08, which is the number of true positive tests (red dots) divided by the number
of subjects who have the disease (red and orange dots). The specificity of the
test is 4703/(4703 + 59) = 0.988, which is the number of true negative tests
(black dots) divided by the number of individuals who do not have the disease
(black and green dots). Results indicate that, at this threshold, the test is not
very sensitive but is highly specific. The PPV is 81/(81+59) = 0.58, the number
of true positive tests (red dots) divided by the number of positive predictions
(red dots and green dots). This indicates that more than half of the positive
predictions are accurate. The NPV is 4703/(4703 + 918) = 0.84, the number of
true negative tests (black dots) divided by the number of negative predictions
(black and orange dots). This indicates that ≈ 85% of the negative predictions
are accurate.

Of course, the threshold that we chose was arbitrary. Indeed, any other thresh-
old could be used. For example, we could use the threshold R = 5.92, the risk
score of the third individual in the dataset. Figure 6.16 is similar to Figure 6.15,
except that the prediction threshold for having the disease (blue vertical line)
is moved substantially to the left. This results in a much larger number of true
positives (red dots) and a substantial reduction in the number of false negatives
(orange dots), though it comes at the price of a much smaller number of true
negatives (black dots) and a substantial increase in the number of false positives
(green dots). The sensitivity, specificity, PPV, and NPV for this threshold are
0.94, 0.29, 0.22, and 0.96. Thus, lowering the threshold leads to much improved
sensitivity and NPV, but much reduced specificity and PPV.

6.3.3 Visualization of risk distributions

So far we have seen the distribution of risk in the population, but it is interest-
ing to compare the distributions of risk by disease status. Figure 6.17 displays
the risk distribution for individuals without moderate to severe sleep apnea
(red histogram) and for individuals with moderate to severe sleep apnea (blue
histogram). The distribution of risk scores of individuals with the disease is
clearly shifted to the right, but there is no complete separation between those
with disease and without disease. This is rather common in health applications,
where clustering is not necessarily obvious and disease populations risk predic-
tors can be masked among the risk predictors of healthy individuals. The red
histogram is much higher than the blue histogram because here we used the
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Figure 6.16: Same scatter plot as in the previous two Figures. Red horizontal
line at 15 events per hour is the demarcation line between having and not having
the disease. Blue horizontal line at 5.92 is the demarcation line between being
predicted to have or not have the disease.

frequency on the y-axis. Since the number of individuals without the disease is
much higher than the number of individuals with the disease, it is natural for
the red histogram to visually dominate the blue histogram.
ll<-min(predictor_rdi4p,na.rm=TRUE)
ul<-max(predictor_rdi4p,na.rm=TRUE)
#plot the histogram of risk scores for individuals
#without moderate to severe sleep apnea
hist(predictor_rdi4p[MtS_SA==0], col = rgb(1,0,0,0.25),

breaks=40,xlim=c(ll,ul),
xlab="Moderate to severe sleep apnea predictor",
cex.axis=1.5,col.axis="blue",main=NULL,cex.lab=1.3)

#add the histogram of risks for individuals
#with moderate to severe sleep apnea
hist(predictor_rdi4p[MtS_SA==1],col = rgb(0,0,1,0.25),add =T,breaks=30)
lines(c(8.54,8.54),c(0,400),col="red",lwd=3)
lines(c(5.92,5.92),c(0,400),col="red",lwd=3)

We also illustrate the same two risk thresholds that correspond to the second
and third individuals in the SHHS using the vertical red lines. We discuss only
the right threshold at R2 = 8.54, which is indicated by the red line to the right.
The estimated sensitivity of the test is P̂ (T + |D+), which is the number of
individuals to the right of the red line in the blue distribution divided by the
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Figure 6.17: Histogram of risk scores stratified by healthy (red) and individuals
with moderate to severe sleep apnea (blue).

number of individuals in the blue distribution. The specificity is P̂ (T −|D−), the
number of individuals to the left of the red line in the red distribution divided
by the number of individuals in the red distribution. The positive predictive
value, P̂ (D + |T+), is the number of subjects to the right of the red line in
the blue distribution divided by the number of subjects to the right of the red
line in the red and blue distributions. A similar definition holds for specificity
and we leave this as an exercise. Note that the same plot could be made using
probability distributions, instead.

Figure 6.18 displays the same information as Figure 6.17, though the y-axis is
expresssed in the ratio of subjects relative to the size of their group and not in
absolute number of individuals per bin. The two distributions look remarkably
different in this representation because they are both rescaled to integrate to
1. What is lost in Figure 6.18 is the number of subjects, the prevalence of the
disease in the population, and the PPV and NPV, which cannot be calculated
from the graph. However, the sensitivity can still be estimated as the area under
the blue curve to the right of the red line, and the specificity can be estimated as
the area under the red distribution to the left of the red line. Both these plots are
complementary to Figures 6.15 and 6.16 and provide a different interpretation
of the various quantities associated with the prediction performance of the risk
score in the context of binary prediction. Which one is more helpful is in the
eye of the beholder.
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Figure 6.18: Histogram of risk scores stratified by healthy (red) and individuals
with moderate to severe sleep apnea (blue).

6.3.4 Definition of the empirical ROC and AUC

The type of trade-off between sensitivity and specificity of a risk score is char-
acteristic to a wide variety of problems. In practice, one may not have a good
way of choosing a threshold or one may be interested in presenting the perfor-
mance of the prediction performance of the risk score in one plot. In the SHHS
example above, both the sensitivity and specificity of the risk score depend on
the threshold.

The function {Sensitivity(R), 1−Specificity(R)} is called the receiver operating
characteristic (ROC) function and characterizes the risk score at any possible
threshold, R. The area under the ROC is called the area under the receiver
operating characteristic curve (AUC). In the SHHS example, both the sensitivity
and specificity values are estimated from the data, which is why we refer to these
functions as the empirical ROC and AUC, respectively. These functions, and
not the theoretical ROC or AUC, are the ones used in practice. Thus, it is
important to remember that both the empirical ROC and AUC depend on the
data and will contain sampling variability, like any other statistic. We now show
how to estimate both these quantities from scratch.
#Set the range of thresholds as the range of the predictor
thresh= seq(min(predictor_rdi4p,na.rm=TRUE),

max(predictor_rdi4p,na.rm=TRUE),
length=100)

#Sensitivity and specificity vectors



6.3. ROC AND AUC 215

sensy=rep(NA,100)
specy=sensy

#PPV and NPV vectors
ppv=sensy
npv=sensy

#Proportion of positive tests
P_positive_tests=sensy

#Number of false positives
N_false_positives=sensy

#Number of false negatives
N_false_negatives=sensy

for (i in 1:length(thresh))
{#begin iterating over thresholds
R=thresh[i]
#True positives

red.points=(predictor_rdi4p>R) & (rdi4p>=15)
#False positives
green.points=(predictor_rdi4p>R) & (rdi4p<15)
#False negatives
orange.points=(predictor_rdi4p<=R) & (rdi4p>=15)
#True negatives
black.points=(predictor_rdi4p<=R) & (rdi4p<15)

#Sensitivity and specificity at threshold R
sensy[i] = sum(red.points, na.rm = TRUE) /
(sum(red.points, na.rm = TRUE) + sum(orange.points, na.rm = TRUE))

specy[i] = sum(black.points, na.rm = TRUE) /
(sum(black.points, na.rm = TRUE) + sum(green.points, na.rm = TRUE))

#PPV and NPV at threshold R
ppv[i] = sum(red.points, na.rm = TRUE) /
(sum(red.points,na.rm=TRUE) + sum(green.points, na.rm = TRUE))

npv[i] = sum(black.points,na.rm = TRUE) /
(sum(black.points,na.rm=TRUE) + sum(orange.points, na.rm = TRUE))

#Number of positive tests
P_positive_tests[i] =
(sum(red.points,na.rm=TRUE) + sum(green.points,na.rm=TRUE)) /
sum(!is.na(predictor_rdi4p))
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Figure 6.19: Sensitivity (blue line) and specificity (red line) as a function of the
decision threshold.

#Number of false positive tests
N_false_positives[i] = sum(green.points, na.rm = TRUE)

#Number of false negative tests
N_false_negatives[i] = sum(orange.points, na.rm = TRUE)

}#end iterating over thresholds

Figure 6.19 displays the sensitivity and specificity curves (blue and red lines,
respectively) as a function of the threshold. Sensitivity is decreasing, while
specificity is increasing as a function of the threshold. The maximum sensitivity
is attained when the threshold R = 3.91, which is the minimum value of the risk
score. At this threshold all subjects in the population are predicted to have the
disease. The specificity at this threshold is 0 because there are no individuals
who are predicted not to have the disease. Similarly, as the threshold approaches
T = 10.47, the maximum value for the risk score, the sensitivity becomes 0 and
the specificity becomes 1. It is interesting to observe the trade-off between
sensitivity and specificity as a continuous function of the threshold.

The next step is to plot the ROC curve, which displays 1 − specificity(R) versus
sensitivity(R). Both these functions are decreasing functions of the threshold R
and the estimated ROC curve is shown in Figure 6.20 as a solid red line. The
black line is the 45 degrees line and the fact that the ROC is above the black
line indicates that the risk score has some prognostic value that is better than
chance alone. While a little counterintuitive, the points on the red line that
are closer to (0, 0) correspond to higher thresholds, while those closer to (1, 1)
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Figure 6.20: Receiver operating characteristic (ROC) curve displaying 1− speci-
ficity versus sensitivity. Points closer to (0, 0) correspond to higher thresholds,
while points closer to (1, 1) correspond to lower thresholds.

correspond to lower thresholds. In some sense we could think that the red line
is drawn from right to left as the threshold increases and spans the entire range
of thresholds.

We would also like to calculate the area under the curve and we do this using
the trapeizoidal rule for numerical approximations of the integral. The only
small problem here is that the x-axis is not a standard axis, but the increments
are in terms of differences in 1 − Specificity(R) and not in terms of increments
of R. This makes our job only slightly more difficult as we need to calculate

AUC =
∫

Sens(R)d{1 − Spec(R)} .

Thus, we have the following numerical approximation to the integral

AUC ≈
n−1∑
k=1

Sens(Rk) + Sens(Rk+1)
2

{Spec(Rk+1) − Spec(Rk)} .

Here Rk, k ∈ 1, . . . , n = 100 are the thresholds. The second term, Spec(Rk+1)−
Spec(Rk), is positive because the specificity function is increasing as a function
of Rk and is equal to

{1 − Spec(Rk)} − {1 − Spec(Rk+1)} .

This can be implemented in R as follows
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#number of thresholds
n=length(specy)
#Calculate AUC, which is the integral of the ROC
ll=1-specy

#Difference between specificity values
uu=ll[1:(n-1)]-ll[2:n]
#Average between two neighboring sensitivity values
vv=(sensy[1:(n-1)]+sensy[2:n])/2

#Approximate AUC using trapezoidal rule
auc=sum(uu*vv)
round(auc,digits=3)

[1] 0.745

This indicates that the estimated AUC for this particular risk score is 0.745,
a value considered reasonably good for this type of problem. A perfect AUC
would be equal to 1, indicating both perfect sensitivity and specificity, though
such an ROC would not be realistic in most applications. A value of AUC above
0.5 indicates that the predictor is doing better than chance, though below we
will provide a more precise definition of the interpretation of AUC and of what
we mean by “chance.”

6.3.5 Choosing the threshold for the risk score

In practice we often want to make a decision or prediction based on the risk
score and not just present a risk score. How exactly do we do that? The answer,
as often is the case in biostatistics, will depend on the particular problem. Here
we present five choices that are reasonable and the pros and cons associated
with them.

One choice is to select the threshold such that the percent of individuals who
are predicted to have the disease is equal to the percent of individuals who
actually have the disease. In our SHHS example, 1004 individuals have the
disease among the 5804 individuals in SHHS for a prevalence of P̂ (D+) =
0.173. Thus, we could choose a threshold to ensure that P (T+) ≈ 0.173. The
proportion of individuals who test positive for the disease is stored in the vector
P_positive_tests. To obtain this particular threshold of interest the following
code can be used
index_thresh_1=which.min(abs(P_positive_tests-0.173))
thresh_1<-round(thresh[index_thresh_1],digits=2)
sensy_1<-round(sensy[index_thresh_1],digits=2)
specy_1<-round(specy[index_thresh_1],digits=2)

This threshold is 7.62 and corresponds to a relatively low sensitivity of 0.4 and
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reasonable specificity of 0.87.

Another choice would be to maximize the sum between sensitivity and speci-
ficity. This is a popular choice, though not always particularly easy to defend
in practice. In our case this can be done as follows
index_thresh_2 = which.max(sensy + specy)
thresh_2<-round(thresh[index_thresh_2],digits=2)
sensy_2<-round(sensy[index_thresh_2],digits=2)
specy_2<-round(specy[index_thresh_2],digits=2)
n.green.points=N_false_positives[index_thresh_2]

This threshold is 6.82 and corresponds to a sensitivity of 0.76 and specificity of
0.61. In the SHHS such a low specificity is probably not reasonable, as it would
lead to 1871 false positive tests.

A third choice that is rarely used in practice, but seems to make sense, is to
maximize the product between sensitivity and specificity. This can be done as
follows
index_thresh_3=which.max(sensy*specy)
thresh_3<-round(thresh[index_thresh_3],digits=2)
sensy_3<-round(sensy[index_thresh_3],digits=2)
specy_3<-round(specy[index_thresh_3],digits=2)
n.green.points=N_false_positives[index_thresh_3]

This threshold is 6.96 and corresponds to a sensitivity of 0.72 and specificity of
0.66. These results are close to the results obtained by maximizing the sum of
sensitivity and specificity and, in this case, lead to slightly lower sensitivity and
slightly higher specificity.

Yet, another strategy could be to minimize the sum of false positive and false
negative tests, which is equivalent to minimizing the misclassification rate, where
either a positive or a negative misclassification is weighted equally. This can be
done as follows
index_thresh_4=which.min(N_false_positives+N_false_negatives)
thresh_4<-round(thresh[index_thresh_4],digits=2)
sensy_4<-round(sensy[index_thresh_4],digits=2)
specy_4<-round(specy[index_thresh_4],digits=2)

This threshold is 8.55 and corresponds to a sensitivity of 0.08 and specificity of
0.99. This test is almost identical to the one using the threshold 8.54, the risk
score of the second subject in the SHHS. This score can actually be adapted
to the case when the cost for making a false positive and false negative error
is known. For example, if it was twice as expensive to make a false positive
error than a false negative one, then we would simply change the criterion to
2*N_false_positives+N_false_negatives, which now has a cost interpreta-
tion. Of course, more complex cost structures can be used and this type of
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analysis is the basis for a risk/cost study of risk prediction.

Probably the most popular approach is to simply inspect the trade-off between
sensitivity and specificity and choose a threshold that is reasonable for the
particular study. For example, we would like to have at least 90% specificity
because we know that the disease is relatively rare in the population and do not
want to make too many false positive mistakes. This is equivalent to setting a
maximum limit on the false negative errors. A similar approach can be used
for sensitivity, but in our example the lower prevalence seems to be the driving
force behind the choice of the threshold.
index_thresh_5=which.min(abs(specy-0.9))
thresh_5<-round(thresh[index_thresh_5],digits=2)
sensy_5<-round(sensy[index_thresh_5],digits=2)
specy_5<-round(specy[index_thresh_5],digits=2)

This threshold is 7.75 and corresponds to a sensitivity of 0.33 and specificity of
0.9.

We conclude that there are different approaches to choosing the threshold and
that none of them is absolutely better than the other. The ROC curve char-
acterizes the prediction performance of the risk score for the entire range of
decision thresholds. However, the specific requirements of the problem may re-
quire different choices of strategy for choosing the specific threshold. We tend
to prefer cost-based thresholds or fixing a high specificity threshold in cases
when the disease is relatively rare. The later approach imposes a limit on the
number (or cost) of false negative tests, which can be very large especially in
low or moderate prevalence problems. Choosing a threshold to ensure that the
proportion of individuals predicted to have the disease is equal to the proportion
of disease who actually have the disease is, at first, appealing. However, for low
to moderate AUCs and low to moderate disease prevalence, this seems to lead
to a large number of false negatives. Thus, even if the number of test positives
is equal to the number of disease positive individuals, this is not very helpful
if the two do not overlap that much. Thus, it seems more reasonable to focus
directly on the amount of overlap, or lack thereof.

6.3.6 Sampling variability of ROC and AUC

As we have emphasized, the empirical ROC and AUC are random variables and
are affected by sampling variability. To see and quantify this, we can redo all
calculations using a bootstrap of subjects and plot both the distribution of ROC
curves as well as the distribution of AUC among the bootstrap samples.
#Sensitivity is a 100 by 100 matrix
#One row per boostrap sample
sensy=matrix(rep(NA,10000),nrow=100)
specy=sensy
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ppv=sensy
npv=sensy

#AUc is a 100 dimensional vector
#One entry per boostrap sample
auc=rep(NA,100)

We will simulate 100 using bootstrap with replacement from the data. For every
dataset we rerun the regression and obtain the risk score. Based on the new
risk score we calculate the characteristics of the test.
set.seed(193618)
n.boot=100
for (k in 1:n.boot)
{#Sample the index of subjects with replacement
index_resample<-sample(1:length(age_s1),replace=TRUE)
data.temp<-data.cv[index_resample,

c("gender", "age_s1", "bmi_s1", "HTNDerv_s1")]
rdi4p_temp<-rdi4p[index_resample]
outcome.temp<-MtS_SA[index_resample]
fit<-glm(outcome.temp~gender+age_s1+bmi_s1+HTNDerv_s1,

family="binomial",data=data.temp)

#Obtain the linear predictors for every outcome
#Note that we subtract the intercept because it does not matter
#and because we want the predictors to be on the same scale with the original ones
coefs = coef(fit)
coef_names = names(coefs)
var_names = intersect(colnames(data.temp), coef_names)
data.temp = as.matrix(data.temp[, var_names])
predictor_rdi4p<- data.temp %*% as.vector(coefs[var_names])
thresh=seq( min(predictor_rdi4p,na.rm=TRUE),

max(predictor_rdi4p,na.rm=TRUE),length=100)

for (i in 1:length(thresh))
{#begin calculating relevant functions for every threshold
threshold = thresh[i]
#True positives
red.points = (predictor_rdi4p > threshold) & (rdi4p_temp >= 15)
#False positives
green.points = (predictor_rdi4p > threshold) & (rdi4p_temp < 15)
#False negatives
orange.points = (predictor_rdi4p <= threshold) & (rdi4p_temp >= 15)
#True negatives
black.points = (predictor_rdi4p <= threshold) & (rdi4p_temp < 15)
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#Sensitivity and specificity at threshold T
sensy[k, i] = sum(red.points, na.rm = TRUE) /
(sum(red.points, na.rm = TRUE) + sum(orange.points, na.rm = TRUE))

specy[k, i] = sum(black.points, na.rm = TRUE) /
(sum(black.points, na.rm = TRUE) + sum(green.points, na.rm = TRUE))

#PPV and NPV at threshold T
ppv[k, i] = sum(red.points, na.rm = TRUE) /
(sum(red.points, na.rm = TRUE) + sum(green.points, na.rm = TRUE))

npv[k, i] = sum(black.points, na.rm = TRUE) /
(sum(black.points, na.rm = TRUE) + sum(orange.points, na.rm = TRUE))
}#end iterations over thresholds for the kth bootstrap sample

#number of thresholds
n=dim(specy)[2]
#Calculate AUC, which is the integral of the ROC
ll=1-specy[k,]

#Difference between specificity values
uu=ll[1:(n-1)]-ll[2:n]
#Average between two neighboring sensitivity values
vv=(sensy[k,1:(n-1)]+sensy[k,2:n])/2

#Estimate AUC for the kth dataset
auc[k]=sum(uu*vv)

}#End bootstrap iterations

An investigation of the code indicates that we are incorporating the variability
of the estimation the risk score in the procedure in addition to the variability
induced by nonparametric bootstrap sampling. This is a more realistic repre-
sentation of the variability, though we could have kept the risk score fixed, as
well. We now plot the first ROC curves to understand their variability and the
source of uncertainty in AUCs. Note that even for a relatively large sample size
(n = 5804) and a reasonably large prevalence (P̂ (D+) = 0.173) there is quite
a bit of variability in estimated ROCs. This variability is often overlooked and
rarely reported in applications. This is especially problematic in cases where
one compares the improvement in prediction using an additional covariate or
biomarker to a pre-existent risk score. Indeed, in many situations the observed
improvement in one sample can be well within the confidence bands of the ROC
curves.
plot(1-specy[1,],sensy[1,],xlab="1-Specificity",ylab="Sensitivity",

type="l",lty=2,lwd=2,col="red",axes=FALSE,cex.lab=1.3)
lines(c(0,1),c(0,1),lwd=3)
axis(1,at=seq(0,1,length=5),cex.axis=1.3,col.axis="blue")
axis(2,at=seq(0,1,length=5),cex.axis=1.3,col.axis="blue")
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Figure 6.21: Variability of the receiver operating characteristic (ROC) bootstrap
resampling of the SHHS (results shown for 20 resamples). For each bootstrap
sample the model is refit and a different set of coefficients is used to calculate
the ROC.

for (i in 2:20)
{lines(1-specy[i,],sensy[i,],lty=2,lwd=2,col="red")}

To quantify visually the variability in estimated ROCs, Figure 6.22 displays
the histogram of the 100 estimated AUCs using the nonparametric bootstrap.
While on the original data we estimated an AUC of 0.745, we see that in repeated
bootstrap samples the range of possible AUCs can vary quite a bit from around
0.72 to 0.77. This heterogeneity is due to sampling variability.
hist(auc,probability=TRUE,col=rgb(0,0,1,1/4),breaks=20,xlab="AUC",

cex.lab=1.3,cex.axis=1.3,col.axis="blue")

6.3.7 Calibration of risk scores

So far we have focused on the prediction (or discrimination performance), but
in prediction we also need to assess calibration. Calibration of the risk score is
the ability to accurately predict the absolute risk level (Crowson, Atkinson, and
Therneau 2016). To assess calibration we use the Hosmer-Lemeshow test (Hos-
mer and Lemeshow 2013). More precisely, the study population is partitioned
in several subgroups and in each subgroup the expected number of events is
compared to the observed number of events. The expected number of events
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Figure 6.22: Histogram of the ROC obtained from bootstrap resampling of
the SHHS. For each bootstrap sample the model is refit and a different set of
coefficients is used to calculate the ROC.

is computed as the sum of the predicted probabilities for the patients in that
group.
library(ResourceSelection)
fit<-glm(MtS_SA~gender+age_s1+bmi_s1+HTNDerv_s1,family="binomial",data=data.cv)

#Identify subjects who do not have missing observations
#these are the subjects for which predictions can be calculated
is.not.missing<-!is.na(age_s1) & !is.na(bmi_s1) & !is.na(HTNDerv_s1)

#Predicted probabilities
pred.prob<-fitted(fit)

#Just outcomes who have no missing covariates
outcome_not_missing<-MtS_SA[is.not.missing]

#Apply the Hosmer-Lemeshow test
hoslem.test(outcome_not_missing, pred.prob,g=10)

Hosmer and Lemeshow goodness of fit (GOF) test
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data: outcome_not_missing, pred.prob
X-squared = 2.0199, df = 8, p-value = 0.9804

The p-value of the test is 0.98 indicating that there is no evidence against the
null hypothesis that the observed number of events is inconsistent with the pre-
dicted number of events. The Hosmer-Lemeshow test for calibration on the
same dataset is a χ2 test with g − 2 degrees of freedom, where g is the num-
ber of groups. However, we would like to dig a little deeper and provide a
visual representation of what exactly is calculated and fed into the test. Note
that pred.prob contains the predicted probabilities for all complete case sub-
jects (individuals who have no missing data). This vector is then split into 10
subvectors organized by increasing risk and then the number of events in each
subgroup is calculated. More precisely
#Define the number of groups
g=10

#Observed number of events
n.observed<-rep(NA,g)

#Expected number of events
n.expected<-n.observed

#Number subjects per group
n.subjects<-n.observed

#Prediction interval
pred.interval<-cbind(n.observed,n.expected)

#Identify the quantiles of risk
risk_thr<-c(0,quantile(pred.prob,seq(0.1,1,0.1)))

for (i in 1:g)
{
#identify all subjects whose predicted risk score is in the ith bin
index_risk_set<-(pred.prob>=risk_thr[i]) & (pred.prob<risk_thr[i+1])
#Number of observed events
n.observed[i]=sum(outcome_not_missing[index_risk_set])
#Number of expected events
n.expected[i]=sum(pred.prob[index_risk_set])
#Number of subjects per group
n.subjects[i]=sum(index_risk_set)
#Prediction interval for the number of observed events
pred.interval[i,]<-qpois(c(0.025,0.975),n.expected[i])

}
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results<-round(cbind(n.expected,pred.interval,n.observed),digits=2)
colnames(results)<-c("Expected number","Lower limit",

"Upper limit","Observed number")
rownames(results)=rep("",dim(results)[1])
results

Expected number Lower limit Upper limit Observed number
16.12 9 24 15
28.12 18 39 27
40.40 28 53 43
54.84 41 70 52
71.72 56 89 71
91.22 73 110 89

114.80 94 136 124
140.95 118 165 145
177.86 152 204 174
262.10 231 294 259

We have listed the number of expected and observed events together with the
95% prediction interval for observed number of events given the expected num-
ber of events. This confidence interval is based on the assumption that the
number of events have a Poisson distribution with the mean equal to the num-
ber of expected events in that particular group. The Hosmer-Lemeshow test
simply compares the observed and expected number of events in each group.
Figure 6.23 provides a visual representation of these results
require(ggplot2)
df <- data.frame(x =n.expected,

y =n.observed,
L =pred.interval[,1],
U =pred.interval[,2])

p<-ggplot(df, aes(x = x, y = y)) +
geom_point(size = 4) +
geom_errorbar(aes(ymax = U, ymin = L))

p + geom_abline(intercept = 0, slope = 1,col="blue") +
labs(x = "Expected number of events",

y="Observed number of events")+
theme(axis.text=element_text(size=12,color="blue"),

axis.title=element_text(size=14,face="bold",color="blue"))

We can make the same plot, but on the probability scale, or the risk of suffering
from sleep apnea. Figure 6.24 provides similar information with Figure 6.23, but
on the probability, not on the counts scale. The probability scale calibration plot
is sometimes preferred in practice because the x- and y- scales remain consistent
across applications and provide information about absolute risk as a function of



6.3. ROC AND AUC 227

0

100

200

300

0 100 200
Expected number of events

O
bs

er
ve

d 
nu

m
be

r 
of

 e
ve

nt
s

Figure 6.23: The observed versus the predicted number of events together with
the 95% prediction interval for the observed given the expected number of events
assuming a Poisson distribution of counts. The blue line is the 45 degrees line.
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Figure 6.24: The observed versus the predicted risk of sleep apnea together
with the 95% prediction interval for the observed given the expected number of
events assuming a Poisson distribution of counts. The blue line is the 45 degrees
line.

risk bin number. In contrast, the plot based on the number of events depends on
the size of the population at risk, which may vary from study to study. In both
plots the 45 degree (blue line) passes through the confidence intervals indicating
that the prediction equation is well calibrated.
df <- data.frame(x =n.expected/n.subjects,

y =n.observed/n.subjects,
L =pred.interval[,1]/n.subjects,
U =pred.interval[,2]/n.subjects)

p<-ggplot(df, aes(x = x, y = y)) +
geom_point(size = 4) +
geom_errorbar(aes(ymax = U, ymin = L))

p + geom_abline(intercept = 0, slope = 1,col="blue") +
labs(x = "Predicted risk of Sleep Apnea",

y="Observed risk of sleep apnea")+
theme(axis.text=element_text(size=12,color="blue"),

axis.title=element_text(size=14,face="bold",color="blue"))

The confidence intervals on the probability plot could also be obtained using a
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Binomial approach. For example, in the first bin there are 576 subjects with an
expected probability of an event 0.028, because the number of expected events is
16.12. Since this is a Binomial(576, 0.028) we need to predict how many events
we could have observed given this distribution. This can be obtained as follows
L1<-qbinom(0.025,n.subjects[1],n.expected[1]/n.subjects[1])
U1<-qbinom(0.975,n.subjects[1],n.expected[1]/n.subjects[1])
c(L1,U1)

[1] 9 24

This is the same interval we obtained with the Poisson distribution because this
Binomial distribution is well approximated by the Poisson(576 × 0.028). To
obtain the probability interval we need to divide by the number of subjects at
risk
round(c(L1,U1)/n.subjects[1],digits=3)

[1] 0.016 0.042

Both the Binomial and Poisson distributions could be approximated by a Normal
distribution with mean and variance equal to n.expected[1] = 16.12 ≈ 576 ×
0.028, where the rounding error in the probability estimation is responsible for
the approximate sign. Thus, in general, the 95% calibration confidence interval
could be obtained as

NE ± 2
√

NE ,

where NE is the expected number of events for a bin. The corresponding prob-
ability confidence interval could be obtained as

NE ± 2
√

NE

NB
,

where NB is the number of subjects per bin. In the case of our first bin
NE = 16.12 and NB = 576. This approximation assumes that the number
of subjects per bin is relatively large and that the expected number of events
per bin is also relatively large. When this is not the case we suggest using the
Binomial approach. When the expected number of events is small the Binomial
approximation will not provide an exact confidence interval because it is a dis-
crete variable and the exact tail probabilities may not match the nominal ones.
While we have not yet discussed confidence intervals, we will discuss them in
depth in later chapters. Here the confidence interval is an interval of possible
number of events given an expected number of events. To obtain that we used
basic probability distribution results.

6.4 Problems

Problem 1. Three tennis players, Serena, Maria, and Simona, are playing
in a tournament according to the following rules: two of them are chosen at
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random and play against each other. The winner of the match plays against
the remaining player and the winner of the second match wins the tournament.
Because players have met before there is historic information about probability
of winning: Serena has a 4 to 1 odds of winning against Maria and a 9 to 2 odds
of winning against Simona. Maria has a 3 to 2 odds of winning against Simona.

a. What is the probability that Simona will win the tournament if the first
match is Serena versus Maria?

b. What is the probability that Simona will win the tournament if the first
match is Simona versus Maria?

c. What is the probability that Simona will win the tournament?

Problem 2. The survival probability for a particular type of cancer depends
on whether or not the individual has a particular genetic mutation. If the
individual has the mutation, then the individual survival time is distributed
exponentially with mean 2 years. If the individual does not have the mutation,
then the survival time is a Gamma distribution with mean 5 years and variance
4 years. Also, it is known that only 2% of the population have this particular
genetic mutation.

a. Knowing that a person survived for t = 4 years, what is the probability
that he or she had the genetic mutation?

b. What is the variance of the conditional distribution of having the genetic
mutation conditional on a surviving time t?

Problem 3. For a set of n random variables Xi, i = 1, . . . , n show that

[X1, . . . , Xn] = [X1|X2, . . . , Xn][X2|X3, . . . , Xn] . . . [Xn−1|Xn][Xn] ,

where [·] and [·|·] are notations for joint and conditional distributions, respec-
tively.

Problem 4. Assume that in a particular population the survival time and the
frequency of mutations at the baseline visit are independent conditional on age
at the baseline visit. Also assume that the survival time has an exponential
distribution with mean 60 − age, that the percent of mutations has a Beta
distribution with mean 0.002age and variance 0.005, and that the distribution
of age at baseline is uniform from 1 to 50.

a. Write down the joint distribution of survival time, frequency of mutations,
and age at baseline.

b. Simulate the marginal distribution of the mutation rate in the population.

Note: we say that two random variables, X1 and X2, are independent condi-
tional on a third random variable, X3, if [X1, X2|X3] = [X1|X3][X2|X3]

Problem 5. The Chinese Mini-Mental Status Test (CMMS) is a test consist-
ing of 114 items intended to identify Alzheimer’s disease (AD) and dementia
among people in China. An extensive clinical evaluation was performed of this
instrument, whereby participants were interviewed by psychiatrists and nurses
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and a definitive (clinical) diagnosis of AD was made. The table below shows the
counts obtained on the subgroup of people with at least some formal education.
Suppose a cutoff value of ≤ 20 on the test is used to identify people with AD.

CMMS score AD- AD+
0-5 0 2
6-10 0 1
11-15 3 4
16-20 9 5
21-25 16 3
26-30 18 1

a. What is the sensitivity and specificity of the CMMS test using the 20
cutoff?

b. Create a plot of the sensitivity by (1 - specificity), which is the true positive
rate versus the false positive rate for all of the cut-offs from 0 to 30. This
is called an ROC curve.

c. Graph the positive and negative predictive value as a function of the preva-
lence of AD.

Problem 6. A website for home pregnancy tests cites the following: “When the
subjects using the test were women who collected and tested their own samples,
the overall sensitivity was 75%. Specificity was also low, in the range 52% to
75%.”

a. Interpret a positive and negative test result using diagnostic likelihood
ratios using both extremes of the specificity.

b. A woman taking a home pregnancy test has a positive test. Draw a graph
of the positive predictive value by the prior probability (prevalence) that
the woman is pregnant. Assume the specificity is 63.5%.

c. Repeat the previous question for a negative test and the negative predic-
tive value.

Problem 7. A new blood test for chronic kidney disease (CKD) is known to
be correct 70% of the time when the person does not suffer from CKD and 80%
of the time when the person suffers from CKD. She mentions that the test is
only 60% accurate when the test is positive in a particular target population.
What is the CKD prevalence in that target population?

Problem 8. In the SHHS provide evidence that age_s1 and rdi4p may not
be independent by focusing on events A1 = {rdi4p∈ I1} and B1 = {age∈ J1},
where I1 and J1 are intervals.

Problem 9. In the SHHS risk score example we have defined the risk score as

Ri = 1.16 genderi + 0.033 agei + 0.14 BMIi + 0.19 HTNi .

Consider the case when the risk score is defined instead as

Li = −8.48 + 1.16 genderi + 0.033 agei + 0.14 BMIi + 0.19 HTNi ,

http://www.medicine.ox.ac.uk/bandolier/band64/b64-7.html
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or
Pi = eLi

1 + eLi
= 1

1 + e−Li
.

a. Show that all three risk scores provide the same ranking of subjects.
b. Show that every risk score Di = f(Ri), where f(·) is strictly increasing

provides the same ranking of subjects by risk scores.
c. Show that the estimated ROC and AUC do not depend on the choice of

f(·), as defined in the previous point.
d. Show empirically using R that the estimated ROC and AUC are identical

for all three risk scores.

Problem 10. The risk scores Li and Pi defined in the previous problem can
be obtained as follows
L<-fit$linear.predictors
P<-fit$fitted.values

a. Obtain these vectors for the SHHS example and explain why the length
of vectors is shorter than the length of the outcome vector, MtS_SA.

b. Given the vector MtS_SA and the vector P indicate the correspondence
between observed outcomes and their predictors, or fitted.values. Ex-
plain the role of missing data.

c. Check that, indeed, 1/(1 + e−L) = P and log{P/(1 − P )} = L for every
entry of the vector.

d. Discuss the pros and cons of using Ri, Li, and Pi, respectively.

Problem 11. Using the predictor_rdi4p identify the highest and lowest 10
risk scores and list the characteristics of these individuals. Compare and explain
why they ended up at the extreme ends of the risk score distribution. Check
how many of the 10 individuals with the lowest and highest risk scores have
moderate to severe sleep apnea.

Problem 12. Obtain the ROC and AUC for random sub-samples of the SHHS
with data sizes 100, 500, 1000, and 2000. Plot and interpret your results. For
subsamples of 1000 subjects selected with replacement repeat the same process
for 100 subsets of data. This process will be called in this book “downstrapping”,
as it is strongly related to bootstrapping, but it uses a smaller subpopulation
from the original population.

Problem 13. Sample with replacement 100 datasets from the SHHS with a
number of subjects 1.5 × 5804 and obtain the ROC and AUC. Compare these
results with those obtained using random samples with fewer subjects than in
the original data. Draw conclusions about observed differences.

Problem 14. Recall the interpretation of the AUC as

P (Ri > Rj |Di = 1, Dj = 0) .

Estimate this probability using the SHHS data for moderate to severe sleep
apnea as outcome and the predictor discussed in this chapter as risk score. To
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do that, calculate

P̂ (Ri > Rj |Di = 1, Dj = 0) = 1
NP

∑
{i:Di=1}

∑
{j:Dj=0}

I{Ri > Rj} ,

where I{Ri > Rj} = 1 if Ri > Rj and 0 otherwise, NP is the number of pairs
of outcomes Di = 1 and Dj = 0. Compare this result with the estimated ROC
result derived in the Chapter.

Problem 15. Consider the following 10 subjects with their corresponding risk
scores and true disease status

PID risk_score disease_status
1 2.3 1
2 -1.2 0
3 4.4 1
4 2.2 0
5 5.1 0
6 -0.2 0
7 3.7 1
8 1.6 1
9 3.7 1
10 0.8 0

Enumerate all pairs of patient IDs (i, j) such that the risk score for subject
i is larger than the risk score for subject j and the subject i has the disease
while subject j does not have the disease. Calculate NP , the number of pairs
of outcomes Di = 1 and Dj = 0 and obtain the estimator of the AUC based on
the formula in the previous problem.
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Chapter 7

Likelihood

This chapter covers the following topics

• Likelihood definition and interpretation
• Maximum likelihood
• Interpreting likelihood ratios
• Likelihoods for multiple parameters
• Profile likelihood

7.1 Likelihood definition and interpretation

A common approach to statistics is to assume that data arise from a family of
distributions indexed by a parameter (or set of parameters) that represents a
useful summary of the distribution. The likelihood of the data is the joint den-
sity evaluated as a function of the parameters with the data fixed. Likelihood
analysis of data uses the likelihood to perform inference regarding the unknown
parameter. More precisely, given a statistical probability mass function or den-
sity, say f(x, θ), where θ is an unknown parameter, the likelihood is f viewed
as a function of θ for a fixed, observed value of x

L(θ|x) = f(x, θ) .

Here both x and θ are in bold because they could both be vectors.

7.1.1 Example: Normal likelihood

Consider an experiment where three independent observations, X1, X2, X3, are
made from a N(µ, 1) distribution. For the sake of simplicity, we assume that
the variance of the distribution is known and equal to 1. After the experiment

235
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is run the following three values were observed x1 = 5, x2 = 2, and x3 = 3 (note
the use of lower case to indicate values obtained after the experiment is run).
We denote by x = (x1, x2, x3) the vector of observations, where we used bold
font to indicate vectors. The Normal pdf for a single observation, x, is

f(x, µ) = 1√
2π

exp
{

− (x − µ)2

2

}
.

Therefore, the likelihood for the experiment is

L(µ|X1 = 5, X2 = 2, X3 = 3) = f(5, µ)f(2, µ)f(3, µ) .

After some calculations,

L(µ|x) = 1
(2π)3/2 exp

{
− (5 − µ)2 + (2 − µ)2 + (3 − µ)2

2

}
.

This is a function of µ and can be calculated for any given value of this parameter.
For example, for µ = 4 the likelihood is
#Set the parameter where to evaluate the likelihood
mu=4
#Set the observed data
bx=c(5,2,3)
#Calculate the exponent
ebx2=-sum((bx-mu)^2)/2
#Calculate and print the likelihood
like=exp(ebx2)/((2*pi)^(length(bx)/2))
round(like,digits=5)

[1] 0.00316

The values of the likelihood do not have an absolute interpretation, as the
likelihood does not typically integrate to 1. However, the relative size of the
likelihood (aka likelihood ratio) for two different parameters can be interpreted
as the relative evidence in the data about one parameter to another. To better
understand that, we calculate the likelihood on a grid of possible parameters
and plot it in Figure 7.1. This is obtained by doing the same calculations as
above, but at many more possible parameter values (201 to be precise)
#Set a fine enough grid of parameters
mu=seq(0,6,length=201)
#Initialize the vector containing the likelihood
likep=rep(0,201)
for (i in 1:201)
{#begin calculating the likelihood on a grid
ebx2=-sum((bx-mu[i])^2)/2
likep[i]=exp(ebx2)/((2*pi)^(length(bx)/2))

}#end calculating the likelihood at each parameter
plot(mu,likep,type="l",col="blue",lwd=3,xlab="Parameter",ylab="Likelihood")
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Figure 7.1: Normal likelihood for the mean parameter, µ, when three observa-
tions 5, 2, and 3 are available and the standard deviation is known and fixed
σ = 1.

#Obtain the maximum likelihood estimator
mle<-mu[which.max(likep)]
round(mle,digits=3)

[1] 3.33

The point where the likelihood attains its maximum is called the maximum
likelihood estimator (MLE) and plays a crucial role in biostatistics. In our
example the MLE is 3.33 = (5 + 3 + 2)/3, the average of the three observations.
This point depends on the observed data because the likelihood does and will
be different in a different experiment. Thus, the MLE, like all estimators, is a
random variable. In our example the MLE obtained numerically is equal to the
mean of the three observations (5, 2, 3). This happens because the underlying
distribution is the Normal distribution, though other distributions (e.g., Poisson,
Binomial) have the average of the observations as the MLE. However this rule
does not generalize to all distributions; the MLE of the population mean need
not be the average of the observations.

Let us show formally that the mean is the MLE in the case of Normally dis-
tributed data. If X1 = x1, . . . , Xn = xn are realizations of n iid N(µ, 1), then
the likelihood of the observed data is

L(µ|x) = 1
(2π)n/2 exp

{
−
∑n

i (xi − µ)2

2

}
.
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In biostatistics one often uses the log-likelihood or minus twice the log-likelihood
because log-likelihoods tend to be better behaved than likelihoods. For example,
in the case of normal variables we have

−2 log{L(µ|x)} =
n∑
i

(xi − µ)2 + constant ,

where the constant does not depend on the parameter. As an important aside,
biostatisticians do not agree on much, but they do agree on the crucial role of
likelihood in data analysis. The reason is that given a data set and a model
the likelihood contains all the information about the unknown parameter that is
contained in the data.

7.1.2 Likelihood interpretation

The law of likelihood is a rule that helps to interpret likelihoods. It states:

Law of the likelihood: Ratios of likelihood values mea-
sure the relative evidence of one value of the unknown
parameter to another.

In contrast, the likelihood principle is an arguably provable statement about
likelihoods. It states:

Likelihood principle: Given a statistical model and ob-
served data, all of the relevant information contained in
the data regarding the unknown parameter is contained
in the likelihood.

The phrase “arguably provable” is necessary, as there is some discussion on the
validity of the proof of the likelihood principle (Mayo 2014).

A third helpful fact about likelihoods is how they adjust to more data. If Xi,
i = 1, . . . , n are independent random variables, then their likelihoods multiply.
That is, the likelihood of the parameters given all of the Xi is simply the product
of the individual likelihoods. Of course, this means that the log-likelihoods add.

Assume X1 = x1, . . . , Xn = xn are iid with pdf f(x, θ). The likelihood for the
observed data vector x = (x1, . . . , xn) is

L(θ|x) =
n∏

i=1
f(xi, θ) ,

while the log-likelihood is

log{L(θ|x)} =
n∑

i=1
log{f(xi, θ)} .
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Note, again, that individual contributions to the log-likelihoods of independent
observations add up, whereas they multiply on the likelihood scale. Of course,
in practice, it is much easier to add than multiply, especially when numbers
are very small, as is often the case with likelihoods. Indeed, when working with
likelihoods one often has to be on guard for numerical problems due to rounding
errors and very small probabilities.

7.1.3 Example: Bernoulli likelihood

Consider the case when one is interested in whether a person taken at random
from the population has the flu and the true proportion of people with the flu
is θ. If X denotes the random variable “the person has the flu” then the pmf
for X is

f(x, θ) = θx(1 − θ)1−x for θ ∈ [0, 1] ,

where x is either 0 (does not have the flu) or 1 (has the flu). Suppose that the
first individual sampled from the population has the flu. The likelihood for this
data point evaluated at every parameter is

L(θ|1) = θ1(1 − θ)1−1 = θ for θ ∈ [0, 1] .

Suppose that we are interested in the strength of evidence in favor of half the
population being infected versus a quarter of the population being infected. To
determine that we calculate the likelihood ratio L(.5|1)/L(.25|1) = 2, which
indicates that there is twice as much evidence supporting the hypothesis that
θ = .5 compared to the evidence that θ = .25.

Suppose now that we sample four subjects from the population and get the
sequence 1, 0, 1, 1, that is, the first, third, and fourth individuals are infected,
but the second is not. The likelihood is

L(θ|1, 0, 1, 1) = θ1(1 − θ)1−1θ0(1 − θ)1−0θ1(1 − θ)1−1θ1(1 − θ)1−1 = θ3(1 − θ)1 .

This likelihood only depends on the total number of individuals who are in-
fected and the total number of people who are not infected. We might write
L(θ|1, 3) = L(θ|1, 0, 1, 1) to avoid writing really long sequences for data. In this
example, the likelihood depends only on the summary statistic (1, 3), which is
referred to as the sufficient statistic. Sufficient statistics play an important role,
because they can be much simpler than the entire dataset and encapsulate all
the available information about the model parameter given the data and the
model. Now consider L(.5|1, 3)/L(.25|1, 3) = 5.33, indicating that after seeing
three individuals with the flu and one without there is over five times as much
evidence supporting the hypothesis that θ = .5 over the hypothesis that θ = .25.

To plot the likelihood we want to consider all the values of θ from 0 to 1. Figure
7.2 displays the likelihood L(θ|Data) on the y-axis versus a grid of parameters θ
on the x-axis. Dividing the likelihood by its maximum value provides a level of
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Figure 7.2: Bernoulli likelihood for the success probability when we observe
three successes out of four trials.

standardization because its height is 1 (at the maximum likelihood estimator)
and the relative strength of evidence can be read from the plot directly for
any value of the parameter. Because the likelihood measures relative evidence,
dividing it by its maximum value (or any other value for that matter) does not
change its interpretation.
#Set a grid for the likelihood
theta=seq(0,1,by=0.01)
#Calculate the likelihood at every parameter value
like=theta^3*(1-theta)
like=like/max(like)
plot(theta,like,type="l",col="blue",lwd=3,xlab=expression(theta),

ylab="Likelihood",cex.lab=1.3,cex.axis=1.3,col.axis="blue")

The likelihood is tilted to the right, indicating that the evidence favors higher
probabilities of infection in the population. However, the likelihood is still rela-
tively dispersed with reasonable evidence for a wide range of values, anywhere
from around 0.4 to around 0.95. This happens because there are only four
observations from the population. The maximum evidence is attained at
MLE=theta[which.max(like)]
round(MLE,digits=2)

[1] 0.75

which is the maximum likelihood estimator and happens to be equal to 3/4, the
number of individuals who were infected divided by the number of individuals
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Figure 7.3: Bernoulli likelihood for the success probability when we observe
three successes out of four trials (blue line) and thirty successes out of forty
trials (red line).

sampled from the population. Indeed, consider the case when 30 out of 40
individuals are infected instead of 3 out of 4. Then the likelihood is L(θ|10, 30) =
θ30(1 − θ)10 and is dsiplayed in Figure 7.3 as a red line, which can be compared
to the likelihood for three successes out of four trials (blue line).
#Set a grid for the likelihood
theta=seq(0,1,by=0.01)
#Calculate the likelihood at every parameter value
like=theta^3*(1-theta)
like=like/max(like)
plot(theta,like,type="l",col="blue",lwd=3,xlab=expression(theta),

ylab="Likelihood",cex.lab=1.3,cex.axis=1.3,col.axis="blue")
like1<-theta^30*(1-theta)^10
like1<-like1/max(like1)
lines(theta,like1,lwd=3,col="red")

As anticipated, the interval of values of the θ parameter that are consistent with
the observed data is much smaller and the concentration of likelihood is much
more pronounced around the MLE, 0.75. Moreover, the shape of the likelihood
is much better approximated by a Normal when the number of observations
increases. This is a general property of the likelihood for independent obser-
vations, but we neither prove nor use this property of the likelihood in this
book.
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7.1.4 Example: Uniform distribution

Assume now that the three observations (5, 2, 3) are obtained from a Uniform
distribution on [0, θ] (denoted as U [0, θ]), where θ is an unknown scalar param-
eter. The pdf of the distribution is

f(x, θ) =


1
θ if 0 ≤ x ≤ θ ;

0 otherwise .

The likelihood function is

L(θ|x) = 1
θ

I{5 ≤ θ}1
θ

I{2 ≤ θ}1
θ

I{3 ≤ θ} = 1
θ3 I{5 ≤ θ} ,

where I{·} is the indicator function. The last equality holds because θ is larger
than 2, 3, and 5 if and only if θ is larger than 5. Here the likelihood depends on
the parameter and on the data only through the largest observation, 5. This is
the realization of the sufficient statistic, which is max(X1, X2, X3). The support
of the likelihood (the interval where the likelihood is not zero) depends on the
data in the sample, which is different from the Normal distribution discussed
earlier. Figure 7.4 displays the Uniform likelihood for this sample
#Set a grid for the likelihood
theta=seq(1,10,by=0.1)
#Calculate the likelihood at every parameter value
like=1/theta^3*(theta>=5)
#Normalize the likelihood
like=like/max(like)
plot(theta,like,type="l",col="blue",lwd=3,xlab=expression(theta),

ylab="Likelihood",cex.lab=1.3,cex.axis=1.3,col.axis="blue")

The MLE can be obtained numerically, as in the previous example
theta[which.max(like)]

[1] 5

indicating that the MLE is 5. This can also be shown theoretically as the
likelihood at every value of θ < 5 is zero because if the true θ were smaller than
5, then the U [0, θ] could not have produced a 5. For every value of θ > 5 we
have 1/θ3 < 1/53. The likelihood provides more information than just where
the maximum is attained. Indeed, it provides information about how fast the
likelihood (evidence) decreases away from the maximum
#Likelihood ratio for $\theta=6$ versus $\theta=5$
round(like[theta==6]/like[theta==5],digits=3)

[1] 0.579
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Figure 7.4: Uniform likelihood for the upper limit of the Uniform distribution
with three independent observations 5, 2, and 3.

This indicates that there is close to half as much evidence about θ = 6 relative
to θ = 5. However, in the case when comparing θ = 6 with θ = 4
#Likelihood ratio for $\theta=6$ versus $\theta=4$
round(like[theta==6]/like[theta==4],digits=3)

[1] Inf
# maximum likelihood

there is infinitely more evidence in favor of θ = 6 relative to θ = 4 simply
because seeing a realization of 5 from a U(0, θ) distribution rules out θ = 4.

7.1.5 Bayesian interpretation of the likelihood

A density f(x, µ), which can be thought of as the conditional distribution of x
(data) given µ (parameter), is a proper pdf with respect to x. More precisely,∫

f(x, µ)dx = 1 ,

for every µ. However, L(µ|x) is not always a proper pdf with respect to µ. That
is,

K(x) =
∫ ∞

−∞
L(µ|x)dµ ̸= 1 .
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Of course, if K(X) is finite, the likelihood can be turned into a proper pdf by
dividing by the constant K(x), though this constant is often hard to calculate
and does not help with the interpretation of the likelihood.

It is tempting to think about the pdf as the conditional distribution of [x|µ]
and of the likelihood as the conditional distribution [µ|x]. Specifically, we know
from the Bayes rule that

[µ|x] ∝ [x|µ][µ] .

If, a priori, nothing is known about µ then we could assume that [µ] ∝ 1; that
is, the prior distribution of the parameter is uniform. Therefore,

[µ|x] ∝ [x|µ] = L(µ|x) ,

which indicates that the posterior distribution of the parameter µ is equal to the
conditional distribution of [x|µ], up to a normalizing constant. This normalizing
constant is K(x), which is the marginal pdf of the data, after integrating over
the parameters. This provides a useful Bayesian interpretation of the likelihood
as the posterior distribution of the parameter given the observed data
if the prior distribution on the model parameters is uniform. As men-
tioned earlier, K(x) need not be finite, and [µ] ∝ 1 is not a proper prior if µ
is unbounded. However, the uniform distribution places explicit bounds on µ,
thus the prior is proper and typically K(x) will also be finite. Therefore, the
rule holds in these more difficult cases as well, though we may not know the
explicit bounds which µ lies in.

Likelihood ratios are important in every branch of model-based statistics. Fre-
quentists use likelihood ratios to create hypothesis tests. In the Bayesian context
the ratios of posteriors evaluated at two parameter values are likelihood ratios
times ratios of the prior. Therefore, it is on the importance of likelihood ratios
that model based frequentists and Bayesians come closest to agreeing.

Appealing to the likelihood principle and the law of the likelihood, some statis-
ticians directly use the likelihood for inference. Frequentists base their use of
the likelihood on hypothesis tests and confidence intervals based on likelihood
ratios. In the Bayesian context, the likelihood contains the information in the
data for forming the posterior, and is proportional to the posterior if the prior
is flat.

While the interpretations are quite different, the likelihood serves as a funda-
mental component in all three foundational philosophies (frequentist, Bayesian,
likelihood). Therefore, philosophical differences in interpretation aside, if one
has dramatically different inferences depending on which style of inference is
used, it is worth investigating the source of the discrepancy. Since the key
data ingredient in model-based statistics is the likelihood, it is useful to check
if the prior, algorithms or calibration across the methods is the driver of the
discrepancy.
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7.2 Maximum likelihood

As we have already discussed, the value of θ parameter where the likelihood
curve reaches its maximum has a special meaning. It is the value of θ that
is most well supported by the data and is called the maximum likelihood
estimate (or MLE) of θ

θ̂ML(x) = MLE = argmaxθL(θ|x) .

Another interpretation of the MLE is that it is the value of θ that would make the
data that we observed most probable. We have shown explicitly the dependence
of the MLE on the observed data and reiterate that the MLE is a random
variable, which has its own variability and properties.

7.2.1 Example: Bernoulli MLE

We consider again the case when one is interested whether a person taken at
random from the population has the flu and the true proportion of people with
the flu is θ. Consider the general case when we sample n independent individuals
from this population and let Xi be the random variable “the ith person has the
flu” and let x be the number of individuals who have the flu among the n
sampled individuals. We already know that

L(θ|x) = θx(1 − θ)n−x ,

and the log-likelihood is

l(θ, x) = log{L(θ|x)} = x log(θ) + (n − x) log(1 − θ) .

Taking the derivative of the log-likelihood we obtain

d

dθ
l(θ, x) = x

θ
− n − x

1 − θ
,

and setting this equal to zero implies

x

θ
= n − x

1 − θ
⇒ x(1 − θ) = (n − x)θ ⇒ x = nθ ⇒ θ = x

n
.

Thus the log-likelihood has a critical point at x/n (point where the first deriva-
tive is zero). The second derivative of the log-likelihood function is

d2

dθ2 l(θ, x) = − x

θ2 − n − x

(1 − θ)2 < 0 ,

which is strictly negative for every value of θ ∈ (0, 1). This indicates that the
log-likelihood is concave (its graph does not hold water), which completes the
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proof that it has a unique maximum and that its maximum is attained at the
critical point x/n.

When X is not equal to n or 0, we can also check that the likelihood, θx(1−θ)n−x,
is zero when θ is 0 and 1 and is strictly positive for θ ∈ (0, 1). Therefore, we can
say that x/n is the maximum, including the boundaries 0 and 1. When X is 0
or n, the likelihood is either (1−θ)n or θn respectively. Consider the case where
X = 0. The likelihood, (1 − θ)n, is strictly decreasing on [0, 1] and therefore
θ̂ = 0. In contrast, when X = n, the likelihood, θn, is strictly increasing on
[0, 1] and so θ̂ = 1. Thus, no matter the setting, the MLE is θ̂ = x/n.

As an aside, likelihoods that have the property that the log-likelihood is con-
cave are referred to log-concave likelihoods; they tend to be better behaved
numerically and inferentially. However, not all likelihoods are log-concave.

7.2.2 Example: Binomial likelihood

The binomial random variables are obtained as the sum of iid Bernoulli random
variables. Let X1, . . . , Xn be iid Bernoulli(p). Then X =

∑n
i=1 Xi is a Binomial

random variable with a probability mass function

P (X = k) =
(

n
k

)
pk(1 − p)n−k ,

for k = 0, . . . , n, where (
n
k

)
= n!

x!(n − x)!

reads “n choose k” and counts the number of ways of selecting k items out of n
without replacement disregarding the order of the items. In particular cases(

n
0

)
=
(

n
n

)
= 1 ,

because, by convention, 0! = 1. If X is a random variable with a Binomial
distribution with probability p and number of trials n then we denote X ∼
Bernoulli(n, p). Note that if X1, . . . , Xn are independent Bernoulli(p) then

n∑
i=1

Xi = nXn ∼ Binomial(n, p) ,

where Xn =
∑n

i=1 Xi/n is the empirical mean of the n independent Bernoulli
random variables.

There is a very close connection, but important distinction, between the proba-
bility that a set of independent Bernoulli random variables results in a particular
sequence of 0/1 outcomes and the probability that their sum results in exactly
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k ones. Indeed, let us consider the example of how likely or unlikely a string of
birth sexes is in a family (a question that biostatisticians get asked a lot!).

Consider a family who has eight children and that they were born in the following
order

F, F, M, F, F, F, F, F ;

that is, the third is a boy, all other children are girls, and none are twins.
Assume that the probability of having a girl is p and that having a boy or a girl
are independent events. Then, the probability that 8 independent Bernoulli(p)
random variables result in exactly this boy/girl configuration is

p7(1 − p) .

However, if we are interested in the probability of the event “the family has
one boy out of 8 children,” then all other possibilities of when the boy is born
need to be listed. Indeed, the boy could have been born first, second, and so
on and so forth giving a total of 8 possibilities. Each one of these possibilities
has the same probability, p7(1 − p), indicating that the probability of this event
is 8p7(1 − p), or, eight times larger than the probability of seeing the exact
outcome above. The factor 8 is “8 choose 1” from our formula. (This factor
can be quite large, so it is important to notice the difference between the events
“the third child is a boy, the rest were girls,” and “there was exactly 1 boy”.)

Suppose we now know that each sex has an independent 50% probability for
each birth. We would like to know what is the probability of getting 7 or more
girls out of 8 births? If X denotes the number of girls out of n = 8 births, then
we need to calculate

P (X ≥ 7) = P (X = 7)+P (X = 8) =
(

8
7

)
.57(1−.5)1+

(
8
8

)
.58(1−.5)0 ≈ 0.035 .

In R this probability can be obtained directly as
round(1-pbinom(6,8,0.5),digits=3)

[1] 0.035

or, equivalently,
round(pbinom(6, 8, 0.5, lower.tail = FALSE), digits = 3)

[1] 0.035

In both cases, we enter 6 instead of 7, since for upper tail probabilities R is
giving P (X > x) with a strict inequality. Therefore, if we want P (X ≥ 7) we
calculate the equivalent P (X > 6).

This calculation is an example of a p-value, the probability under a null hypoth-
esis (in this case that the probability of having a girl is p = 0.5) of getting a
result as extreme or more extreme than the one actually obtained (7 girls out
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Figure 7.5: Binomial likelihood divided by its maximum for the probability of
having a girl, p, for a family who has 7 girls and 1 boy. Thresholds for the ratio
of the likelihood with respect to the maximum shown at 1/8 (red horizontal
line) and 1/16 (orange horizontal line).

of 8 births). Another interpretation is that if p = 0.5, then 3.5% of the families
with eight children will have at least 7 girls indicating that this is a rather rare
event among families with 8 children.

If we do not know the probability p of having a girl, then the likelihood is

L(p|x) =
(

8
7

)
p7(1 − p) = 8!

7!1!
p7(1 − p) = 8p7(1 − p) .

Figure 7.5 displays this likelihood together with some important thresholds at
1/8 and 1/16. We’ll build up the intuition over setting likelihood thresholds
later on in this chapter.
p=seq(0,1,length=101)
like=8*p^7*(1-p)
plot(p,like/max(like),type="l",col="blue",lwd=3,

xlab="P(having a girl)",ylab="likelihood",cex.lab=1.3,
cex.axis=1.3,col.axis="blue")

lines(p,rep(1/8,101),col="red",lwd=3)
lines(p,rep(1/16,101),col="orange",lwd=3)

We now show a few uses of the Binomial distribution in R. The command below
generates 17 independent identically distributed random variables, X1, . . . , X17,
from the distribution Binomial(10, 0.2). Note that the realizations are relatively
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small due to the total number of trials, 10, and the small probability of success
of each trial, p = 0.2.
set.seed(3467326)
#Simulate 15 independent Binomial(10,.2)
rbinom(17,size=10,prob=0.2)

[1] 3 1 2 1 3 2 2 3 1 1 2 5 2 1 2 1 2

R is quite flexible and allows generation of independent, but not identically
distributed random variables, as well. Below, we have changed the distribution
of the ith random variable to Binomial(10, pi), where pi = 0.1 + 0.05 ∗ (i − 1).
That is, we allow probabilities of success of each individual trial to increase from
a very low 0.1 to a very large 0.9 in small increments. The number of successes
towards the end of the series is much larger than the number of successes at the
beginning of the series. However, the number of successes does not follow the
same strict increasing pattern of the probabilities used to simulate the events.
Here the length of the probability vector needs to be equal to the number of
samples being simulated. Otherwise R recycles the probability vector if its length
is smaller than the number of samples, or uses only the first part of the vector
if the length is shorter.
# Simulate 15 independent Binomial(10,p)\\
rbinom(17,size=10,prob=seq(0.1,0.9,length=17))

[1] 0 1 4 2 3 3 5 3 4 8 6 7 6 7 6 9 9

R also allows us to simulate independent Binomial variables with a different
number of trials and different success probabilities. Below we show how to
simulate independent Xi ∼ Binomial(ni, pi), where ni = i and pi = 0.1 +
0.05 ∗ (i − 1). Both the size (containing the total number of samples) and the
probability vector have to have the same length and the length be equal to the
number of independent samples.
# Simulate 15 independent Binomial(n,p)
# First (n,p)=(1,0.1), last (n,p)=(17,0.9)\\
rbinom(17,size=1:17,prob=seq(0.1,0.9,length=17))

[1] 0 0 0 2 1 1 3 4 4 8 6 8 9 8 10 12 16

7.3 Interpreting likelihood ratios

In this section we relate likelihood ratios to intuition based on basic coin flipping.
This is used by statisticians employing the law of the likelihood to analyze data.
Our treatment follows that of (Royall 2017).

Consider the same experiment, where we sample individuals at random from a
population with the true proportion θ of people having the flu. We entertain



250 CHAPTER 7. LIKELIHOOD

Table 7.1: Relative strength of evidence for three hypotheses depending on the
outcome of an experiment.

Outcome P (X|H1) P (X|H2) P (X|H3) L(H1)
L(H2)

L(H3)
L(H2)

P 0 0.500 1 0 2
N 1 1.000 1 1 1
PP 0 0.250 1 0 4
NP 0 0.500 1 0 2
PN 0 0.500 1 0 2
NN 1 1.000 1 1 1
PPP 0 0.125 1 0 8
NPP 0 0.250 1 0 4
PNP 0 0.250 1 0 4
NNP 0 0.500 1 0 2
PPN 0 0.250 1 0 4
NPN 0 0.500 1 0 2
PNN 0 0.500 1 0 2
NNN 1 1.000 1 1 1

three hypotheses: H1 : θ = 0 (nobody has the flu), H2 : θ = .5 (half of the
population has the flu), and H3 : θ = 1 (everybody has the flu). We will code
by P a person who is positive for flu and by N a person who is negative. Table
7.1 displays the relative strength of evidence for the three hypotheses depending
on the outcome of an experiment that samples one or two or three individuals
from the population.

Warning: `data_frame()` is deprecated, use `tibble()`.
This warning is displayed once per session.

Let us go systematically through the table and the relative strength of evidence
in favor or against the three distinct hypotheses. If only one person is selected
from the population and that person has the flu, then the likelihood P (X =
P |H1) = 0 because the H1 hypothesis is that nobody has the flu. Since the
first person who was selected has the flu, the likelihood for this hypothesis
(θ = 0) is 0. In contrast, P (X = P |H3) = 1 because the H3 hypothesis is that
everybody has the flu (θ = 1) and we observed one case of flu from the first
observation. The likelihood P (X = P |H2) = 0.5 because the hypothesis H2 is
that half of the population has the flu (θ = 0.5). Therefore the relative strength
of evidence for hypothesis H1 versus H2 is 0/0.5 = 0. Similarly, the relative
strength of evidence for hypothesis H3 versus H2 is 1/0.5 = 2, indicating that
after seeing one case of the flu the hypothesis that everybody has the flu is twice
as likely as the hypothesis that half of the population has it. If, instead of a
positive first case one observes a negative first case, then the P (X = N |H1) = 1,
P (X = N |H2) = 0.5, and P (X = N |H3) = 0. Therefore the relative strength
of evidence for hypothesis H1 versus H2 is 1/0.5 = 2 and the relative strength
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of evidence for hypothesis H3 versus H2 is 0/0.5 = 0.

Consider now the case when we sample two subjects instead of one. We can
have only four possible outcomes: PP, PN, NP, and NN. Here PN means that
the first person selected had the flu and the second did not. Consider the
first case in the table, PP, when both individuals selected have the flu. In
this case the likelihood P (X = PP |H1) = 0 because the H1 hypothesis is
that nobody has the flu. In contrast, P (X = P |H3) = 1 because the H3
hypothesis is that everybody has the flu and we observed two cases of the flu
from the first two observations. The likelihood P (X = PP |H2) = 0.25 because
the hypothesis H2 is that half of the population has the flu (θ = 0.5) and
P (X = PP |θ) = θ2. Therefore the relative strength of evidence for hypothesis
H1 versus H2 is 0/0.5 = 0. The relative strength of evidence for hypothesis H3
versus H2 is 1/0.25 = 4, indicating that after seeing two cases of the flu the
hypothesis that everybody has the flu is four times as likely as the hypothesis
that half of the population has it. If the outcome is either NP or PN (one
person has the flu and one does not), then the probability of seeing these data
under either hypothesis H1 or hypothesis H3 is 0, while under hypothesis H2
it is 0.25. Indeed, P (X = NP |θ) = P (X = PN |θ) = θ(1 − θ) and, under
H2, θ = 1 − θ = 0.5. Therefore, in both of these cases the relative strength
of evidence for either hypothesis H1 or H3 versus H2 is zero. However, if we
observe two individuals who do not have the flu, then P (X = NN |H1) = 1,
P (X = NN |H2) = 0.25, and P (X = NN) = 0 indicating that the hypothesis
H1 is four times more likely than hypothesis H2, while the strength of evidence
in favor of hypothesis H3 relative to hypothesis H2 is zero.

The case when we sample three individuals from the population follows the
same logic. If all of them have the flu (PPP), then the strength of evidence for
hypothesis H3 is eight times the strength of evidence in favor of hypothesis H2.
This happens because P (X = PPP |H2) = θ3 and, under H2, θ = 0.5. Moreover
the strength of evidence in favor of H1 versus H2 is zero, because under H1
one should not observe any case of the flu. If among the three individuals at
least one has the flu and at least one does not have the flu (cases PPN, PNP,
NPP, PNN, NPN, NNP) then the probability of seeing these data under either
hypothesis H1 or H3 is 0 because neither of them allows for such outcomes. The
last case, NNN, when we observe three individuals who do not have the flu the
interpretation of the table should be self-explanatory.

7.3.1 Likelihood ratio benchmarks

Using this example as a guide, researchers tend to think of a likelihood ratio
of 8 as being moderate evidence, of 16 as being moderately strong evidence,
and of 32 as being strong evidence. Indeed, 32 would correspond to how much
more likely it is in a population to have everybody infected than have half the
population infected with the flu if the first 5 subjects drawn at random from
the population all have the flu.
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7.4 Likelihood for multiple parameters

So far, we have focused on the case when θ is a scalar, though many distributions
depend on multiple parameters (e.g., Normal, Gamma, Beta, t). Definitions
remain the same for the likelihood and MLE. Indeed, the likelihood is

L(θ|x) =
n∏

i=1
f(xi, θ) ,

while the MLE is
θ̂ML = MLE = argmaxθL(θ|x) .

The only difference is that the likelihood function depends on a vector of param-
eters; visualizing it can be much harder, and obtaining the MLEs may require
more difficult numerical operations.

7.4.1 Example: the Normal distribution

A random variable is said to follow a Normal or Gaussian distribution with
mean µ and variance σ2 if the associated density is

f(x|µ, σ2) = 1√
2πσ2

e− (x−µ)2

2σ2 ,

which depends on two parameters (µ, σ2). If X is a random variable with this
density, then E[X] = µ and Var(X) = σ2 and we write X ∼ N(µ, σ2). When
µ = 0 and σ = 1 the resulting distribution is called the standard normal distri-
bution. The standard normal pdf is labeled ϕ(·) and the standard normal cdf
is labeled Φ(·). By convention, standard normal random variables are often la-
beled Z, while standardizing a random variable is often referred to as the Z-score
transform. More precisely, for any random variable W the Z-score transform is

ZW = W − µW

σW
,

where µW = E(W ) and σ2
W = Var(W ). It is easy to prove that E(ZW ) = 0 and

Var(ZW ) = 1.

7.4.1.1 Properties of the normal distribution

If X ∼ N(µ, σ2), then Z = X−µ
σ is a standard normal random variable. If Z is

standard normal
X = µ + σZ ∼ N(µ, σ2)

and has the pdf equal to
ϕ{(x − µ)/σ}/σ .
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We now show that if Z ∼ N(0, 1) then X = µ + σZ ∼ N(µ, σ2). To prove this,
calculate the cdf of X (denoted as FX) as a cdf of Z (denoted as Φ(·)) and take
the derivatives to obtain the pdf of X, fX(·), as a function of the pdf of Z, ϕ(·).
More precisely, for every t

FX(t) = P (X ≤ t) = P (µ + σZ ≤ t) = P (Z ≤ t − µ

σ
) = FZ

(
t − µ

σ

)
.

Taking the derivatives with respect to t and using the chain rule we obtain

F ′
X(t) = 1

σ
F ′

Z

(
t − µ

σ

)
=⇒ fX(t) = 1

σ
fZ

(
t − µ

σ

)
.

By simply substituting this into the pdf of Z we obtain the result. This approach
is general if we are interested in obtaining the pdf of a transformation of a
random variable with known pdf. As an exercise, try to obtain the pdf of Z2 if
Z ∼ N(0, 1) (this is called the χ2 distribution with one degree of freedom and
will be used later on in the book). Also, if U ∼ Uniform(0, 1) calculate the pdf
of 1 + 2U3.

We show now that if Z ∼ N(0, 1), then E[Z] = 0 and Var[Z] = 1. Recall that

E(Z) =
∫ ∞

−∞

1√
2π

ze− z2
2 dx = 1√

2π

∫ ∞

−∞

∂

∂z
{−e

−z2
2 }dz = − 1√

2π
e

−z2
2

∣∣∣∣∞
−∞

= 0 .

Therefore, Var(Z) = E(Z2) − {E(Z)}2 = E(Z2) because we just proved that
E(Z) = 0. Now we calculate

E(Z2) =
∫ ∞

−∞

1√
2π

z2e− z2
2 dx

= 1√
2π

∫ ∞

−∞
z × ∂

∂z
{−e

−z2
2 }dz

= − 1√
2π

ze
−z2

2

∣∣∣∣∞
∞

+
∫ ∞

−∞

1√
2π

e− z2
2 dx .

The first term in the last equality is zero because the limits at infinity are
zero, while the last term is equal to 1 because it is the integral of the N(0, 1)
distribution. Therefore, E(Z2) = 1. Let X = µ + σZ and using the rules of
expectation we obtain

E(X) = E(µ + σZ) = µ + σE(Z) = µ ,

and
Var(X) = Var(µ + σZ) = σ2Var(Z) = σ2 .

The normal distribution plot can be easily obtained as follows
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Figure 7.6: Normal pdf with mean zero and variance one together with thresh-
olds at 1 and 2 standard deviations away from the mean (red horizontal lines).

x=seq(-5,5,by=0.01)
y=dnorm(x)
plot(x,y,type="l",col="blue",lwd=3,

xlab="x-axis",ylab="Normal(0,1) pdf",cex.lab=1.3,
cex.axis=1.3,col.axis="blue")

lines(c(-2,-2),c(0,dnorm(-2)),col="red",lwd=3)
lines(c(-1,-1),c(0,dnorm(-1)),col="red",lwd=3)
lines(c(0,0),c(0,dnorm(0)),col="red",lwd=3)
lines(c(1,1),c(0,dnorm(1)),col="red",lwd=3)
lines(c(2,2),c(0,dnorm(2)),col="red",lwd=3)
lines(c(-5,5),c(0,0),lwd=2)

The probability of being less than k-sigma away from the mean for a N(µ, σ2)
random variable is equal to

P (µ − kσ ≤ X ≤ µ + kσ) = P (−k ≤ X − µ

σ
≤ k) = P (−k ≤ Z ≤ k),

which is equal to the probability that a standard Normal random variable, Z,
is less than k away from 0. Below we provide a few such calculations (note that
we do not need to keep books with Normal distribution tables)
#Probability of at least 1 standard deviation away from the mean
round(pnorm(1)-pnorm(-1),digits=3)

[1] 0.683
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#Probability of at least 2 standard deviations away from the mean
round(pnorm(2)-pnorm(-2),digits=3)

[1] 0.954
#Probability of at least 3 standard deviations away from the mean
round(pnorm(3)-pnorm(-3),digits=3)

[1] 0.997

Figure 7.6 displays the pdf of the N(0, 1) distribution together with thresholds
at 1 and 2 standard deviations away from the mean (red horizontal lines). The
probabilities we just calculated can be visualized in Figure 7.6 as the areas under
the curve contained between the corresponding red lines. For example, the area
under the curve between the left-most and right-most red vertical line is 0.954,
whereas the area between the second line from the left and the second line from
the right is 0.683. Therefore, approximately 68%, 95% and 99% of the normal
density lies within 1, 2, and 3 standard deviations from the mean, respectively.
The 10th, 5th, 2.5th, and 1st percentiles of the standard normal distribution are
−1.28, −1.645, −1.96, and −2.33. By symmetry, the 90th, 95th, 97.5th, and
99th percentiles of the standard normal distribution are 1.28, 1.645, 1.96, and
2.33, respectively.

Suppose that we are interested in what is the 95th percentile of a N(µ, σ2)
distribution. We want the point x0 so that P (X ≤ x0) = .95.

P (X ≤ x0) = P

(
X − µ

σ
≤ x0 − µ

σ

)
= P

(
Z ≤ x0 − µ

σ

)
= .95 .

Therefore,
x0 − µ

σ
= 1.645

or x0 = µ + σ1.645. In general x0 = µ + σz0 where z0 is the corresponding stan-
dard Normal quantile. It is nice that the quantile of the N(µ, σ2) distribution
can be obtained directly from the quantiles of a N(0, 1) distribution using the
transformation x0 = µ + σz0.

We would like to know what is the probability that a N(µ, σ2) random variable
is 2 standard deviations above the mean. Therefore, we have to calculate

P (X > µ + 2σ) = P

(
X − µ

σ
>

µ + 2σ − µ

σ

)
= P (Z ≥ 2) ≈ 2.5% .

We summarize here some of the properties of Normal random variables. The
Normal distribution is symmetric and peaked about its mean, and its mean,
median, and mode are all equal. A constant times a normally distributed ran-
dom variable is also normally distributed. Sums of normally distributed random
variables are normally distributed even if the variables are dependent. Sample
means of normally distributed random variables are again normally distributed.
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The square of a standard normal random variable follows what is called chi-
squared (denoted as χ2) distribution with one degree of freedom. The exponent
of a normally distributed random variable follows what is called the log-normal
distribution. As we will see later, many random variables, properly normalized,
have an approximate normal distribution.

7.4.2 Likelihood of the Normal distribution

If Xi are iid N(µ, σ2), then the likelihood is a function of the two parameters
(µ, σ2). The joint likelihood is proportional to

L(µ, σ2|x) = exp
{

−
∑n

i=1(xi − µ)2

2σ2 − n

2
log(σ2)

}
,

where we basically ignored the component (2πσ2)−n/2, which contains no infor-
mation about the parameters. The minus twice log-Likelihood has the form

−2l(µ, σ2|x) =
∑n

i=1(xi − µ)2

σ2 + n log(σ2) ,

which is a much nicer form.

7.4.2.1 Maximum likelihood estimation for the Normal distribution

We would like to maximize the likelihood with respect to both µ and σ2, which
is equivalent to minimizing the function −2l(µ, σ2|x). We first show that, for
any value of σ2, µ̂n = 1

n

∑n
i=1 xi = xn minimizes the function −2l(µ, σ2|x).

Note that
∂

∂µ

{
−2l(µ, σ2|x)

}
= − 2

σ2

n∑
i=1

(xi − µ) ,

and
∂2

∂µ2

{
−2l(µ, σ2|x)

}
= 2n

σ2 > 0 ,

indicating that the function is strictly convex. This shows that for every σ2 and
µ

−2l(µ, σ2|x) ≥ −2l(xn, σ2|x) .

Now, consider the following function of σ2

−2l(µ̂n, σ2|x) =
∑n

i=1(xi − xn)2

σ2 + n log(σ2) .

The first derivative of this function relative to σ2 is

∂

∂σ2 {−2l(µ̂n, σ2|x)} = −
∑n

i=1(xi − xn)2

σ4 + n

σ2 = n

σ4 (σ2 − s2
n) ,
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where
s2

n =
∑n

i=1(xi − xn)
n

.

This indicates that ∂
∂σ2 {−2l(µ̂n, σ2|x)} < 0 if σ2 < s2

n and ∂
∂σ2 {−2l(µ̂n, σ2|x)} >

0 if σ2 > s2
n. This indicates that the function is decreasing between (0, s2

n) and
increasing between (s2

n, ∞) and because the function is continuous its minimum
is attained at σ̂2

n = s2
n. Therefore, for every µ and σ2 we have

−2l(µ, σ2|x) ≥ −2l(xn, s2
n|x) ,

which indicates that (Xn, S2
n) is the MLE for (µ, σ2).

The proof for this result is often presented incorrectly by first taking the deriva-
tive with respect to σ2, calculating the critical point and then making an ar-
gument using the second derivative. The argument does not work because the
second derivative is not positive everywhere. Indeed, the function has an inflec-
tion point (changes from convex to concave) at 2s2

n.

7.4.2.2 Plotting the Normal likelihood

We plot the bivariate Normal likelihoods first to get a sense of what they look like.
We will look at the likelihood as a function of (µ, σ), but one could similarly
do the same thing for (µ, σ2). Figure 7.7 displays the normalized bivariate
likelihood for the parameters (µ, σ) of the N(µ, σ2) distribution based on 10
independent random samples drawn from a N(3, 4) distribution (note that the
parameterization of the Normal in R is done relative to the standard deviation
σ and not the variance σ2.)
#Plot the bivariate likelihood for a normal
#Set the sample size for the data
n=10

#Simulate n=10 independent N(3,4) rvs (these are the data)
x=rnorm(n,3,2)

#Set up a grid for the mean and standard deviation
mu=seq(0,5,length=100)
sigma=seq(0.1,5,length=100)

#Set the 100 by 100 matrix that will store the likelihood
like=matrix(rep(0,10000),ncol=100)

#Building a 3D plot of a distribution
#Calculate the likelihood
for (i in 1:100) {
for (j in 1:100) {
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Figure 7.7: Bivariate likelihood for the parameters (µ, σ) of the N(µ, σ2) distri-
bution based on 10 independent random samples drawn from a N(3, 4) theoret-
ical distribution.

like[i,j] = exp(-sum((x-mu[i])^2)/(2*sigma[j]^2) - n*log(sigma[j]))
}

}

#Normalize the likelihood
like=like/max(like)

library(fields)
image.plot(mu,sigma,like,xlab=expression(mu),

ylab=expression(sigma),cex.lab=1.3,cex.axis=1.3)

round(mean(x),digits=2)

[1] 2.26
round(sqrt(9*var(x)/10),digits=2)

[1] 2.36

The MLE for (µ, σ) in this sample is (2.26, 2.36) and this can be seen as the
more intense shades of red around the MLE. The likelihood is not symmetric
around the MLE, especially in the y-axis direction (σ). The likelihood will vary
with the sample and the sample size. To get a better visualization of these
variations Figure 7.8 displays the bivariate likelihood on a 2D grid of values for
(µ, σ) for four iid samples of size 10 from the N(3, 4) distribution.
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Figure 7.8: Bivariate likelihood for the parameters (µ, σ) of the N(µ, σ2) distri-
bution for four different independent samples of size 10 drawn from a N(3, 4)
theoretical distribution.
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Figure 7.9: Bivariate likelihood for the parameters (µ, σ) of the N(µ, σ2) distri-
bution for four different independent samples of size 30 drawn from a N(3, 4)
theoretical distribution.

Even though the four likelihoods correspond to 10 independent samples from
the same theoretical distribution, N(3, 4), the location of their maxima and the
spread of the likelihood around their maxima changes quite substantially. This
is due to the sampling variability of the MLE as well as to the properties of the
likelihood. For example, the right bottom plot has the likelihood much more
concentrated around the MLE because the MLE for σ is quite small. To see the
effects of sample size on the likelihood, Figure 7.9 displays the likelihood for a
sample size equal to n = 30.

When comparing Figures 7.9 and 7.8 we observe that likelihoods look much
more symmetric and concentrated around their MLEs, while the location of the
maximum and the spread of the likelihood around it are more consistent and
predictable from one plot to another. We repeat the process one more time,
increase the sample size to n = 100, and display the results in Figure 7.10. We
notice that the changes in the likelihood continue in the same direction, the
likelihood becomes more symmetric (and bell-shaped) around the MLEs, the
concentration of likelihood around the MLEs continues to increase, while the
location of the maximum and the spread of the likelihood around it are more
consistent and predictable from one plot to another.
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Figure 7.10: Bivariate likelihood for the parameters (µ, σ) of the N(µ, σ2) dis-
tribution for four different independent samples of size 30 drawn from a N(3, 4)
theoretical distribution.
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7.5 Profile likelihood

Consider the case when X1, . . . , Xn are iid with pdf f(x, θ), where θ is a mul-
tivariate vector of parameters that can be partitioned as θ = (µ, η). Typically,
µ is a scalar parameter of interest and η is a scalar of vector of nuisance pa-
rameters. The idea of the profile likelihood is that we would like to isolate and
present the information available in the data about the parameter µ of interest.

The procedure is quite simple and requires the following steps: (1) for each value
of µ maximize the likelihood with respect to the rest of the parameters η; (2)
denote by η̂(µ, x) the maximum likelihood estimator for η; and (3) define the
profile likelihood function with respect to µ as

PL(µ|x) = L{µ, η̂(µ, x)|x} .

The profile likelihood is especially useful when we are interested in one pa-
rameter and there are many other parameters that would make plotting and
interpretation of a multivariate likelihood difficult.

7.5.1 Profile likelihood of the Normal

Let X1 = x1, . . . , Xn = xn be iid N(µ, σ2) with the likelihood

L(µ, σ2|x) = 1
(2πσ2)n/2 exp

{
−
∑n

i (xi − µ)2

2σ2

}
.

We consider that µ is the parameter of interest. Thus, we fix µ and maximize
the log likelihood with respect to σ2. Using techniques already described in this
chapter we obtain that the profile estimator of the variance is

σ̂2(µ, x) = 1
n

n∑
i=1

(xi − µ)2 .

It is easier to work with the profile log likelihood

2 log PL(µ|x) = 2 log L{µ, σ̂2(µ, x)|x} ,

where

2 log L{µ, σ̂2(µ, x)|x} = −
∑n

i (xi − µ)2

σ̂2(µ, x)
− n log{σ̂2(µ, x)} − n log(2π)

= −n log{σ̂2(µ, x)} − n − n log(2π) .

Here n + n log(2π) is a constant that does not depend on the parameter µ and
can be ignored. Therefore minus twice the profile likelihood for µ is

−2 log L{µ, σ̂2(µ, x)|x} = n log{σ̂2(µ, x)} = n log
{∑n

i (xi − µ)2

n

}
.
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Figure 7.11: Profile likelihood for the mean parameter, µ, of a N(µ, σ2) distri-
bution when the observations are 5, 2, 3. The profile likelihood is normalized
by dividing by the maximum likelihood.

7.5.1.1 Example: profile likelihood of a Normal

Consider the example when we have 3 iid observations, (5, 2, 3), from a N(µ, σ2).
As we derived above,

−2 log L{µ, σ̂2(µ, x)|x} = 3 log
{

(5 − µ)2 + (2 − µ)2 + (3 − µ)2

3

}
.

#Data
bx=c(5,2,3)
#Grid where the profile likelihood is evaluated
mu=seq(0,6,length=201)

#Store -2*log profile likelihood
minus_2_p_loglike=rep(0,201)
for (i in 1:201)

{minus_2_p_loglike[i]=3*log(sum((bx-mu[i])^2))}

profile_likelihood<-exp(-0.5*minus_2_p_loglike)
profile_likelihood<-profile_likelihood/max(profile_likelihood)
plot(mu,profile_likelihood,type="l",col="blue",lwd=3,

xlab=expression(mu),ylab="Profile likelihood",
cex.lab=1.3,cex.axis=1.3)
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Figure 7.11 displays the profile likelihood for the mean parameter, µ, of a
N(µ, σ2) distribution. This plot is simpler than the bivariate plots shown ear-
lier and focuses on the parameter of interest, µ, with the parameter σ2 being
profiled out.

7.6 Problems

Problem 1. Imagine that a person, say his name is Flip, has an oddly deformed
coin and tries the following experiment. Flip flips his coin 10 times, 7 of which
are heads. You think maybe Flip’s coin is biased towards having a greater
probability of yielding a head than 50%.

a. What is the maximum likelihood estimate of p, the true probability of
heads associated with this coin?

b. Plot the likelihood associated with this experiment. Renormalize the like-
lihood so that its maximum is one. Does the likelihood suggest that the
coin is fair?

c. What is the probability of seeing 7 or more heads out of 10 coin flips if
the coin was fair? Does this probability suggest that the coin is fair? This
number is called the p-value.

d. Suppose that Flip told you that he did not fix the number of trials at 10.
Instead, he told you that he had flipped the coin until he obtained 3 tails
and it happened to take 10 trials to do so. Therefore, the number 10 was
random while the number 3 was fixed. The probability mass function for
the number of trials, say y, to obtain 3 tails (called the negative binomial
distribution) is (

y − 1
2

)
(1 − p)3py−3

for y = 3, 4, 5, 6, . . .. What is the maximum likelihood estimate of p now
that we’ve changed the underlying pmf?

e. Plot the likelihood under this new mass function. Renormalize the like-
lihood so that its maximum is one. Does the likelihood suggest that the
coin is fair?

f. Calculate the probability of requiring 10 or more flips to obtain 3 tails
if the coin was fair. (Notice that this is the same as the probability of
obtaining 7 or more heads to obtain 3 tails). This is the p-value under the
new mass function.

(Aside) This problem highlights a distinction between the likelihood and the
p-value. The likelihood and the MLE are the same regardless of the experiment.
That is to say, the likelihood only seems to care that you saw 10 coin flips, 7
of which were heads. Flip’s intention about when he stopped flipping the coin,
either at 10 fixed trials or until he obtained 3 tails, is irrelevant as far as the
likelihood is concerned. In contrast, the p-value depends on Flip’s intentions.
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Problem 2. A researcher is studying the number of sexual acts with an infected
person until an uninfected person contracts a sexually transmitted disease. She
assumes that each encounter is an independent Bernoulli trial with probabil-
ity p that the subject becomes infected. This leads to the so-called geometric
distribution

P (Person is infected on contact x) = p(1 − p)x−1

for x = 1, . . ..

a. Suppose that one subject’s number of encounters until infection is
recorded, say x. Symbolically derive the ML estimate of p.

b. Suppose that the subject’s value was 2. Plot and interpret the likelihood
for p.

c. Suppose that it is often assumed the probability of transmission, p, is
.01. The researcher thinks it is perhaps strange to have a subject get
infected after only 2 encounters if the probability of transmission is really
1%. According to the geometric mass function, what is the probability of
a person getting infected in 2 or fewer encounters if p truly is .01?

d. Suppose that she follows n subjects and records the number of sexual
encounters until infection (assume all subjects became infected) x1, . . . , xn.
Symbolically derive the MLE of p.

e. Suppose that she records values x1 = 3, x2 = 5, x3 = 2. Plot and interpret
the likelihood for p.

Problem 3. In a study of aquaporins, six frog eggs received a protein treatment.
If the treatment of the protein is effective, the frog eggs would implode. The
experiment resulted in five frog eggs imploding. Historically, 10 percent of eggs
implode without the treatment. Assuming that the results for each egg are
independent and identically distributed:

a. What is the probability of getting five or more eggs imploding in this
experiment if the true probability of implosion is 10%? Interpret this
number.

b. What is the maximum likelihood estimate for the probability of implosion?
c. Plot and interpret the likelihood for the probability of implosion.

Problem 4. Suppose that IQs in a particular population are normally dis-
tributed with a mean of 110 and a standard deviation of 10.

a. What is the probability that a randomly selected person from this popu-
lation has an IQ between 95 and 115?

b. What is the 65th percentile of this distribution?
c. Suppose that 5 people are sampled from this distribution. What is the

probability 4 (80%) or more have IQs above 130?
d. Suppose that 500 people are sampled from this distribution. What is the

probability 400 (80%) or more have IQs above 130?
e. Consider the average of 100 people drawn from this distribution. What is

the probability that this mean is larger than 112.5?
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Problem 5. Suppose that 400 observations are drawn at random from a distri-
bution with mean 0 and standard deviation 40.

a. What is the approximate probability of getting a sample mean larger than
3.5?

b. Was normality of the underlying distribution required for this calculation?

Problem 6. Suppose that the Diastolic Blood Pressure (DBP) drawn from
a certain population is normally distributed with a mean of 90 mmHg and
standard deviation of 5 mmHg. Suppose that 1, 000 people are drawn from this
population.

a. If you had to guess the number of people having DBPs less than 80 mmHg,
what would you guess?

b. You draw 25 people from this population. What is the probability that
the sample average is larger than 92 mmHg?

c. You select five people from this population. What is the probability that
four or more of them have a DBP larger than 100 mmHg?

Problem 7. Let X1, X2 be independent, identically distributed coin flips
(taking values 0 = failure or 1 = success) having success probability π. Give
and interpret the likelihood ratio comparing the hypothesis that π = .5 (the
coin is fair) versus π = 1 (the coin always gives successes) when both coin flips
result in successes.

Problem 8. Let X be a random variable with a Binomial distribution with
success probability p1 and n1 trials and Y be an independent random variable
with a Binomial distribution with success probability p2 and n2 trials. Let
p̂1 = X/n1 and p̂2 = Y/n2 be the associated sample proportions. What would
be an estimate for the standard error for p̂1 − p̂2?

Problem 9. A sample of 40 United States men contained 25% smokers. Let p
be the true prevalence of smoking amongst males in the United States. Write
out, draw, and interpret the likelihood for p. Is p = .35 or p = .15 better
supported given the data (why, and by how much)? What value of p is best
supported (just give the number, do not derive)?

Problem 10. Consider a sample of n iid draws from an exponential density

1
β

exp(−x/β) for β > 0 .

a. Derive the maximum likelihood estimate for β. b. Suppose that in your
experiment, you obtained five observations

1.590, 0.109, 0.155, 0.281, 0.453

c. Plot the likelihood for β. Put in reference lines at 1/8 and 1/16.

Problem 11. Often infection rates per time at risk are modelled as Poisson
random variables. Let X be the number of infections and let t be the person
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days at risk. Consider the Poisson mass function

P (X = x) = (tλ)x exp(−tλ)
x!

.

The parameter λ is called the population incident rate.

a. Derive the ML estimate for λ.
b. Suppose that five infections are recorded per 1000 person-days at risk.

Plot the likelihood.
c. Suppose that five independent hospitals are monitored and that the infec-

tion rate (λ) is assumed to be the same at all five. Let Xi, ti be the count
of the number of infections and person days at risk for hospital i. Derive
the ML estimate of λ.

Problem 12. Consider n iid draws from a gamma density where α is known

1
Γ(α)βα

xα−1 exp(−x/β) for β > 0, x > 0, α > 0 .

a. Derive the ML estimate of β.
b. Suppose that n = 5 observations were obtained: 0.015, 0.962, 0.613, 0.061,

0.617. Draw the likelihood plot for β (assume that α = 1).

Problem 13. Let Y1, . . . , YN be iid random variables from a Lognormal distri-
bution with parameters µ and σ2. Note Y ∼ Lognormal(µ, σ2) if and only if
log(Y ) ∼ N(µ, σ2). The log-normal density is given by

(2πσ2)−1/2 exp[−{log(y) − µ}2/2σ2]/y for y > 0 .

a. Show that the ML estimate of µ is µ̂ = 1
N

∑N
i=1 log(Yi). (The mean of the

log of the observations. This is called the “geometric mean”.)
b. Show that the ML estimate of σ2 is then the biased variance estimate

based on the log observation

1
N

N∑
i=1

{log(yi) − µ̂}2 .

Problem 14. Consider Xi for i = 1, . . . , n iid N(µ, σ2) random variables.

a. Derive the profile likelihood function for σ2.
b. If n = 3 and the three realizations are 5, 2, and 3 plot the normalized

profile likelihood function for σ2.

Problem 15. A study of blood alcohol levels (mg/100 ml) at post mortem
examination of traffic accident victims involved taking one blood sample from
the leg, A, and another from the heart, B. The results were:
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Case A B Case A B
1 44 44 11 265 277
2 265 269 12 27 39
3 250 256 13 68 84
4 153 154 14 230 228
5 88 83 15 180 187
6 180 185 16 149 155
7 35 36 17 286 290
8 494 502 18 72 80
9 249 249 19 39 50
10 204 208 20 272 271

a. Create a graphical display comparing a case’s blood alcohol level in the
heart to that in the leg. Comment on any interesting patterns from your
graph.

b. Create a graphical display of the distribution of the difference in blood
alcohol levels between the heart and the leg.

c. Do these results indicate that in general blood alcohol levels may differ
between samples taken from the leg and the heart? Obtain confidence
intervals using a bootstrap of subjects.

d. Create a profile likelihood for the true mean difference and interpret.
e. Create a likelihood for the variance of the difference in alcohol levels and

interpret.



Chapter 8

Data visualization

This chapter covers the following topics

• Histograms
• Kernel density estimates (KDEs)
• Scatterplots
• Dotplots
• Boxplots
• Bar plots and stacked bar plots
• QQ-plots
• Heat maps

Visualization of data is a very powerful way to communicate information and
much work has been dedicated in R to improving data visualization. This is an
extremely dynamic area with many packages that create a diverse and thriving
environment. Therefore, this will be one of the chapters that will probably be
most often updated to keep up with the latest developments. Indeed, there are
now monographs dedicated to R visualization; see, for example, (Chang 2013;
Hilfiger 2016; Rahlf 2017; Wickham 2016). In our own book we extensively use
data visualization and various types of plots are introduced progressively. We
have found this to be the best way for teaching visualization because the context
of the problem, knowledge of methods used to manipulate and analyze the data,
and final choice of plot interact naturally when working with data. Below we
go through a list of necessary, but far from exhaustive, graphics that are very
useful in our data practice. We will use several different datasets, including the
SHHS and datasets that already exist in R.

269
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Figure 8.1: Histogram of Wake After Sleep Onset (WASO) in the SHHS. The
y-axis is expressed in number of observations per bin.

8.1 Histograms

Histograms display a sample estimate of the density or mass function by plotting
a bar graph of the frequency or proportion of times that a variable takes specific
values, or a range of values for continuous data, within a sample. Throughout
the book we have seen many histograms and here we focus on the variable WASO
(Wake After Sleep Onset) that has been connected to sleep quality. Figure 8.1
displays the histogram of WASO, a variable expressed in minutes, and indicates
that most individuals have less than 100 minutes of wake after sleep onset with
a mode (point of maximum density) close to 20-30 minutes. To construct a
histogram the range of the variable is divided into bins, which typically are
of equal length, but do not have to be. In every bin one simply counts how
many individuals have values of the variable in the interval defined by the bin.
Figure 8.1 provides the visual representation of this histogram, where the y-axis
represents the number of subjects in each bin. To indicate this scale, the y-axis
is automatically labeled “Frequency” in R.
hist(WASO,col=rgb(0,0,1,1/4),breaks=30,

xlab="Wake after sleep onset (minutes)",
main="Histogram of frequencies",
cex.lab=1.3,cex.axis=1.3,col.axis="blue")
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For example, there are 797 individuals who have a WASO between (20, 30]
minutes and there are 537 individuals who have a WASO score between (50, 60]
minutes. When the histogram plots the intervals versus the counts in each
interval we say that this is a frequency histogram. One drawback of these plots
is that they depend on the total number of individuals in the sample, making
frequency histograms hard to compare across populations. Thus, sometimes it
make sense to transform the numbers in each bin to the proportion of individuals
from the population who fall into that bin. Technically, the number of subjects
in each bin is divided by the total number of subjects in the sample. In this
case, for the bin (20, 30] the associated fraction of subjects is 797/5804 ≈ 0.137
and for the bin (50, 60] the associated fraction is 537/5804 ≈ 0.093. However,
these are not the numbers that are being plotted. Indeed, the area of each bin
needs to be equal to the fraction because we want the total area to be equal to
1. Recall that the area of each bin is equal to the length of the bin on the x-axis
times its length on the y-axis. In our case the length of each bin is 10 and to
obtain the density estimator we need to divide the frequencies we obtained by
10, the length of the bin on the x axis. That makes the height of the bin (20, 30]
equal to 0.0137 and the height of the bin (50, 60] equal to 0.0093. Figure 8.2
displays the histogram of WASO on this transformed scale, which in R can be
obtained directly by using the option probability=TRUE. Note that there is no
change in the shape of the histogram, but the y-axis units change substantially
from the number of individuals in each bin to the number of individuals in each
bin divided by the total number of individuals in the sample times the length
of the bin on the x-axis.
hh<-hist(WASO,probability=TRUE,col=rgb(0,0,1,1/4),breaks=30,

xlab="Wake after sleep onset (minutes)",
main="Histogram of frequencies",
cex.lab=1.3,cex.axis=1.3,col.axis="blue")

The function hist produces by default a histogram of the data, but the numbers
produced by the function can easily be accessed, as well. For example,
names(hh)

[1] "breaks" "counts" "density" "mids" "xname" "equidist"

The first 7 breaks, counts, and density numbers can be accessed as
hh$breaks[1:7]

[1] 0 10 20 30 40 50 60
hh$counts[1:7]

[1] 125 565 797 788 682 537 464
round(hh$density[1:7],digits=4)

[1] 0.0022 0.0097 0.0137 0.0136 0.0118 0.0093 0.0080
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Figure 8.2: Histogram of Wake After Sleep Onset (WASO) in the SHHS. The
y-axis is expressed in proportion of subjects in each bin divided by the total
number of subjects and the length of the bin. The total area of the histogram
(blue shaded area) is equal to 1.
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The hist function is quite flexible and allows us to change the number of bins
using breaks. In our case we used breaks=30 to indicate that we want 30, but
it can also take a vector of breakpoints for added flexibility. Here we provide
an example of how to build a histogram, but the process is customizable and
one can add lines, points, and legend, and change colors. For more information
just type ?hist in R and check out the many innovations that scientists show
online.

8.2 Kernel density estimates (KDEs)

Kernel density estimates (KDEs) are nonparametric estimates of the pdf of a
variable. They are designed to target the same estimand as histograms, but
try to address some of the visual problems associated with the histograms. In
particular KDEs smooth the data instead of binning it into groups. At every
point in the domain of the variable a weighted average of the density of points
is calculated. Figure 8.3 displays one KDE, while the code below indicates how
the plot is constructed R
d<-density(WASO,bw="sj")
plot(d,col="blue",lwd=3,

xlab="Wake after sleep onset (minutes)",
main="Kernel density estimate",
cex.lab=1.3,cex.axis=1.3,col.axis="blue")

Here the option bw="sj" indicates that we asked for the Sheather & Jones
method (Sheather and Jones 1991) for selecting the Kernel bandwidth (bw is
shorthand for bandwidth). By comparing the outline of the KDE estimator with
the histogram estimator that uses probability=TRUE we see that the results are
comparable, with the KDE being smoother. One small problem is that the KDE
assigns some small probability to values below 0 and we know that this is not
possible, as WASO is a positive variable. Correcting this is not immediately clear,
with one solution being to simply cut all values below zero and re-assign the
probability assigned to negative values to positive ones. This type of edge effect
is characteristic of KDEs. To better understand what KDEs are we will look
at the definition. If x1, . . . , xn are realizations of independent random variables
X1, . . . , Xn then the KDE is

f(x; K, h) = 1
nh

n∑
k=1

K

(
x − xi

h

)
,

where K(·) is a function, called Kernel, and h is the bandwidth. It is easy to
show that if K(·) is a pdf then f(x; K, h) is a pdf for any K(·) and h > 0.
In some situations the function K(·) is not required to be positive, but almost
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Figure 8.3: Kernel density estimator of the pdf of WASO in the SHHS. The
y-axis is on the same scale as the histogram on the probability scale.

always it is required to integrate to 1, that is∫ ∞

−∞
K(x)dx = 1 .

The standard choice of Kernel is the pdf of N(0, 1) distribution

K(x) = 1√
2π

e−x2/2 ,

but other Kernels have been used historically. To choose a different kernel
one simply needs to change the option to, say kernel="cosine", while many
other options are available. However, it is known in practice that the shape
of the kernel is not particularly important and what drives the smoothness of
the estimator is the bandwidth h. Let us explore visually the dependence of
the KDEs on the bandwidth. Figure 8.4 displays 3 KDE with three different
bandwidths h = 0.5, 3, 15 (expressed in minutes because WASO is) corresponding
to the blue, red, and orange lines, respectively. The blue KDE (h = 0.5) has
a wiggly appearance because the bandwidth is too small and data tend to be
undersmooth. A larger value of the bandwidth (red, h = 3) seems to look
much more appealing while maintaining the main features of the histogram. At
the other extreme a bandwidth that is too large (orange, h = 15) tends to
oversmooth the data and exacerbate the boundary problems by substantially
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overestimating the probability that WASO is negative. Note that the choice of
what is a small, moderate, and large bandwidth depends on the scale of the
problem, number of observations, and structure of the observed data. Do not
assume that h = 0.5, h = 3, and h = 10 will always be provide this type of
result.

There is a vast literature on bandwidth choice, though in practice trying mul-
tiple bandwidth parameters and comparing them seems to be the reasonable
and practical thing to do. Cross-validation, a method that removes one obser-
vation at a time and predicts using the remaining observations seems to be the
theoretical winner. However, implementing cross validation for KDEs is still
problematic, at least computationally.
d1<-density(WASO,bw=0.5)
d2<-density(WASO,bw=3)
d3<-density(WASO,bw=15)
plot(d1,col="blue",lwd=3,

xlab="Wake after sleep onset (minutes)",
main="Kernel density estimate (Gaussian)",
cex.lab=1.3,cex.axis=1.3,col.axis="blue")

lines(d2,lwd=3,col="red")
lines(d3,lwd=3,col="orange")
legend(200,0.015,c("Bandwidth = 0.5","Bandwidth = 3","Bandwidth = 15"),

lwd=c(3,3,3), col=c("blue","red","orange"),bty = "n")

Let us unpack the KDE formula to better understand how it is constructed. Note
that, at every point, the KDE receives contributions from every observation in
the sample. Suppose that we are interested in estimating the KDE at x = 100
minutes with a bandwidth h = 3. The individual contribution of an observation
xi is

K

(
x − xi

h

)
= 1√

2πh
e− (100−xi)2

2h2 .

contribution<-round(dnorm(WASO,mean=100,sd=3),digits=5)
values<-cbind(WASO[1:10],contribution[1:10])
colnames(values)<-c("WASO","Kernel contributions")
values

WASO Kernel contributions
[1,] 65.0 0.00000
[2,] 43.0 0.00000
[3,] 73.0 0.00000
[4,] 43.5 0.00000
[5,] 100.5 0.13115
[6,] 82.5 0.00000
[7,] 41.5 0.00000
[8,] 103.0 0.08066
[9,] 52.5 0.00000
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Figure 8.4: Kernel density estimators of the pdf of WASO in the SHHS. The
three KDEs correspond to a small (blue line), moderate (red line), and large
(orange line) bandwidth. The y-axis is on the same scale as the histogram on
the probability scale.
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[10,] 67.5 0.00000

Among the first 10 values of WASO only two, the fifth and the eighth, seem to
have a sizeable relative contribution to the Kernel estimate at x = 100. The
other contributions are not exactly zero, but are very small. The reason is that
the fifth observation is 100.5 and the eighth is 103.0, which are relatively close to
the mean of the Normal kernel, 100. Indeed, one can think about the Kernel as
the pdf of a Normal density N(x, h2), indicating that all values that are farther
than 3h from the mean x will contribute negligibly to the KDE. In our case
the mean is 100 and h = 3, indicating that it is mainly WASO values between 91
minutes and 109 minutes that contribute to the KDE at x = 100. There are, in
fact, 425 values of WASO between (91, 109) minutes and 452 whose contribution
is larger than 0.001. The idea here is that the KDE at the point x = 100 is
a weighted average obtained by giving higher weight to observations closer to
x = 100 and lower weight to observations that are further away. The weight
assignment is done smoothly and the KDE can be estimated at any value x.

8.3 Scatterplots

Histograms and KDEs are used in practice to explore the distribution of in-
dividual variables. We call these distributions the marginal distributions to
distinguish them from joint distributions, which refer to the distribution of mul-
tiple variables, and conditional distributions, which refer to the distribution of
one or several random variables, given the fixed values of one or multiple other
variables. Scatterplots are useful for visually exploring the joint and conditional
distributions for two variables. This is sometimes used for three or more vari-
ables either by going to 3D plotting or by adding colors for the points. With the
exception of textbook examples, we have found these approaches to be quite dis-
tracting and hard to understand both for the biostatistician and for the scientific
researchers. In practice we recommend to do multiple 2-variable scatterplots to
explore possibly unexpected associations between more than 2 variables.

Figure 8.5 displays bmi_s1 versus rdi4p in the SHHS. There are 5761 individu-
als who do not have missing observations, as there are 43 individuals who have
missing bmi_s1 measurements. Also, the plot is cut at rdi4p< 30 for presen-
tation purposes, though there are 349 subjects who have an rdi4p larger than
30 and do not appear in the plot. We have added two smooth fits using the
lowess function in R (Cleveland 1979, 1981) (shown as an orange line) and pe-
nalized splines (O’Sullivan 1986; Eilers and Marx 1996; Ruppert, Wand, and
Carroll 2003; Wood 2017), as implemented in the mgcv package developed and
maintained by Simon Wood (Wood 2004, 2017) (shown as a red line).
plot(bmi_s1,rdi4p,pch=".",col=rgb(0,0,1,.2),cex=3,ylim=c(0,30),

bty="l",cex.axis=1.3,col.axis="blue",main=NULL,xlab="BMI",
cex.lab=1.3,ylab="RDI 4%")
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Figure 8.5: Scatterplot of BMI versus RDI in the SHHS. Two smooth lines are
shown, one obtained from the lowess function (orange line) and one from the
mgcv package (red line).

index_non_na<-!is.na(bmi_s1) & !is.na(rdi4p)
lines(lowess(x = bmi_s1[index_non_na], y= rdi4p[index_non_na]),

col="orange",lwd=3)
library(mgcv)
fit_gam<-gam(rdi4p~s(bmi_s1))
fitted_sm<-fit_gam$fitted.values
table_fitted=cbind(bmi_s1[index_non_na],fitted_sm)
table_ordered<-table_fitted[order(table_fitted[,1]),]
lines(table_ordered[,1],table_ordered[,2],

col="red",lwd=3)

It is quite surprising that the two smooth lines are that far from one another,
which raises questions about which smoother to use in practice. To investigate
this a little further, we calculate the mean of the rdi4p among individuals who
have their bmi_s1 measurements and obtain that it is 8.67 events per hour.
When taking the average of the lowess smooth estimate we obtain 4.93 events
per hour and when taking the mean of the penalized spline smoother we obtain
8.67 events per hour, the exact value we obtained taking the straight average.
This seems to indicate that the lowess estimator is not well calibrated, at least
in this dataset. It is not immediately clear why this should be the case, but it is
clear what can be done to at least check that results make sense. In addition, we
will calculate and plot the means in several bmi_s1 intervals and superimpose
them over the graph.
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Figure 8.6: Scatterplot of BMI versus RDI in the SHHS. Two smooth lines are
shown, one obtained from the lowess function (orange line) and one from the
mgcv package (red line). Local means are shown in light brown to help indicate
which smoother produces a reasonable estimator of the mean.

The light brown (coded burlywood4 in R) colored lines in Figure 8.6 indicate
the mean of all rdi4p values in a particular bin of bmi_s1. For example, the
mean rdi4p for individuals with a bmi_s1 between (25, 30] is 7.54. These local
means show close agreement with the penalized spline smooth and are quite far
from the lowess fit. This problem with lowess may be more general than what
we have seen in this example, but, at the very least, one should be careful about
checking whether the fit passes simple checks, like those described here.

To further investigate why these differences occur we provide the same plot in
Figure 8.7, but we indicate the means in each bin as a light brown (burlywood4)
dot and the medians in each bin as a pink dot. It is now clear that the penalized
spline smoother alligns very well with the local means, whereas the lowess
estimator alligns well with the local medians. The reason for the difference is
that the penalized spline smoother estimates the mean, whereas the lowess
targets the median. Because our data are highly skewed these differences are
more pronounced than what could be seen in other applications. It is likely
that this is not a widely appreciated difference in biostatistics, as the function
lowess has been used extensively in many applications. Figure 8.7 also displays
the smooth estimator of the function loess (confusingly pronounced the same
as lowess); the results are shown as a blue solid line, which closely tracks with
the red line associated with the penalized spline smooth estimator from mgcv.
Warning: functions with similar names may provide completely different results
even if their description indicates that they do the same thing. It is always
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Figure 8.7: Scatterplot of BMI versus RDI in the SHHS. Three smooth lines are
shown, one obtained from the lowess function (orange line), one from the mgcv
package (red line), and one from the loess function (blue line). Local means and
medians are shown as light brown and pink dots, respectively.

helpful to check, go back to basics, and plot some local means.

8.4 Dotplots

Dotplots simply display a dataset, one point per dot. The ordering of the dots
and labeling of the axes can display additional information that can be used to
better understand the data. Dotplots show a complete dataset and have high
information density. However, it may be impossible or difficult to construct
and interpret for datasets with lots of points. Figure 8.8 illustrate this using
the R dataset InsectSprays (Beall 1942; McNeil 1977). The dataset contains
two columns, the first one indicating the number of insects found on a plot
after applying a particular insecticide and the second indicating the type of
insecticide applied. Because the insecticide was applied on multiple plots there
are multiple counts of insects for each insecticide. For example, there are 12
plots where insecticide A was applied.
set.seed(346672)
attach(InsectSprays)
#Setting the plot, the axes, and the labels
plot(c(.5, 6.5), range(count),xlab="Spray type",

ylab="Insect count",bty="l",col="white",xaxt = 'n',
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Figure 8.8: Dotplot of insecticide type by insect count (blue dots) using a slight
jitter along the x-axis to avoid overplotting. Point estimators and 95% confi-
dence of spray-type specific means are also shown (red).

cex.axis=1.3,col.axis="blue",cex.lab=1.3,col.lab="blue")
axis(side=1,at=1:6,

labels=c("A","B","C","D","E","F"),
cex.axis=1.5,col.axis="blue")

#Identify all the unique spray labels, in this case the letters A through F
sprayTypes <- unique(spray)

#Plot the data by spray type
for (i in 1 : length(sprayTypes))
{#begin loop over all insecticide types
#Obtain the counts of insects for each spray type
y <- count[spray == sprayTypes[i]]
#Total number of plots for each spray type
n <- sum(spray == sprayTypes[i])
#Plot the counts, but jitter their x-value (i) to avoid overplotting
points(jitter(rep(i, n), amount = .1), y,col="blue",pch=16)
#Plot the mean count as a short horizontal line
lines(i + c(.12, .28), rep(mean(y), 2), lwd = 3,col="red")
#Plot the Normal 95% CI for the mean insect count
lines(rep(i +.2,2), mean(y)+c(-1.96, 1.96)*sd(y)/sqrt(n),col="red",lwd=3)
}#End loop over all insecticide types
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We consider that, whenever possible, plotting the entire dataset is preferable,
though adding the mean per group together with the confidence intervals for
the mean can add information. The data were jittered slightly along the x-axis
to avoid overplotting. Simply showing the mean and the confidence intervals
for the mean would remove a lot of the information from the plot, especially
about outliers (see data for insecticide C and D) or multimodality (see data for
insecticide F). Boxplots and scatterplots become difficult to use when datasets
grow in size.

8.5 Boxplots

Boxplots were introduced by John Tukey (Tukey 1970). Boxplots are useful
for the same sort of display as the dotplot, but are used in instances when
displaying the whole dataset is cumbersome or not possible. The centerline of
the boxes represents the median while the box edges correspond to the quartiles.
Therefore, 50% of the data is contained within the boxplot box. The whiskers of
the boxplot extend out to a constant times the interquartile range (IQR). Some-
times, potential outliers are identified as points beyond the whiskers. Skewness
of the distribution could be indicated by the centerline being near one of the
box edges. Let us investigate a few ways of producing boxplots.

Consider the SHHS and we will focus on two groups. The first group has a
bmi below 25 and age below 50 and the second group has a bmi above 35 and
age above 70. We would like to compare these groups in terms of respiratory
disturbance index, rdi4p. Because the data are highly skewed in both groups
we choose to take the square root of rdi4p. Figure 8.9 displays the square root
of rdi4p in the two groups.
index_g1<-(bmi_s1<25) & (age_s1<50)
index_g2<-(bmi_s1>35) & (age_s1>70)

sqrt_rdi_g1<-sqrt(rdi4p[index_g1])
sqrt_rdi_g2<-sqrt(rdi4p[index_g2])
data.box<-list(sqrt_rdi_g1,sqrt_rdi_g2)
par(bg="lightcyan")
plot(1.5, 1.5, type="n", ann=FALSE, axes=FALSE)
u <- par("usr") # The coordinates of the plot area
rect(u[1], u[3], u[2], u[4], col="gray95", border=NA)
par(new=TRUE)
boxplot(data.box,col=c(col=rgb(1,0,1,0.5),col = rgb(1,0,0,0.5)),

cex.lab=1.3,cex.axis=1.3,col.axis="blue",col.lab="blue",
names=c("Group 1","Group 2"),ylab="Square root of RDI 4%",
border=c("blue","blue"),
outpch=20,outcex=1,
outcol=c(col=rgb(1,0,1,0.5),col = rgb(1,0,0,0.5)))
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Figure 8.9: Boxplot of the square root of RDI in Group 1 (BMI< 25 and
age< 50) and Group 2 (BMI> 35) and age> 70.

We have used several customizations, most of which are self-explanatory. An
important property is that we can change the colors of the boxes using the option
col, the border of the boxes using the option border, and of the outliers using
outcol. We have also chosen to change the symbol for displaying the outliers
using outpch=20, which provides a filled dot versus the empty circle. Here we
kept the original size of the symbol for the outliers using outcex=1 because we
have few outliers. As we will see below, in cases when there are many outliers,
we may choose to make the symbol smaller to improve appearance.

Figure 8.10 displays the boxplots of rdi4p separated in six groups by bmi_s1
categories. We plot directly the rdi4p and not the square root because this
time we want to retain the original interpretation of the rdi4p. We cut the plot
at 100 events per hour for presentation purposes, which only cuts 4 subjects
from the graph. Because there are many outliers in this plot we display them
as filled points, but reduce the size of the symbol using outcex=0.4.
break_bmi<-c(min(bmi_s1,na.rm=TRUE)-0.01,25,30,35,40,45,

max(bmi_s1,na.rm=TRUE)+0.01)
bmi_cut<-cut(bmi_s1,breaks=break_bmi,

labels=c("[18,25]","(25,30]","(30,35]",
"(35,40]","(40,45]","[45,50]"))
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Figure 8.10: Boxplot of RDI in six groups defined by cutoff points on BMI.

par(bg="lightcyan")
plot(3, 3, type="n", ann=FALSE, axes=FALSE)
u <- par("usr") # The coordinates of the plot area
rect(u[1], u[3], u[2], u[4], col="gray95", border=NA)
par(new=TRUE)
res<-boxplot(rdi4p~bmi_cut,ylim=c(0,100),

col=rgb(1,0,0,seq(0.2,0.8,length=6)),
cex.lab=1.3,cex.axis=1.1,
col.axis="blue",col.lab="blue",
ylab="RDI 4%",xlab="BMI groups",
border=rep("blue",6),
outpch=20,outcex=0.4,
outcol=rgb(1,0,0,seq(0.2,0.8,length=6)))

The color scheme we have chosen for the boxplots is pleasing, but the shad-
ing of the colors may not be the best. Indeed, we have simply increased the
transparency of red linearly as a function of the bmi_s1 group, which may be
interpreted as a linear increase in the median rdi4p. However, the plot suggests
that the median seems to plateau in the last three BMI groups. Thus, it may
make more sense to color the boxplots according to the median rdi4p in that
particular age group. To do this, we assign transparency according to how far
the rdi4p median of the group is from the rdi4p median of groups [18, 25] and
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Figure 8.11: Boxplot of RDI in six groups defined by cutoff points on BMI. The
coloring of the boxplots is refined to more closely reflect the changes in median
RDI.

[45, 50], respectively. Figure 8.11 displays the same information as Figure 8.10,
though the shading of the boxplots is connected to the median RDI in the corre-
sponding group. A comparison of the two plots will indicate that the last three
boxplots are now colored in closer shades of red, indicating that the increase in
median rdi4p is not as strong among the last three groups.
medians<-res$stats[3,]
color_pal<-0.2+(0.8-0.2)/(medians[6]-medians[1])*(medians-medians[1])

par(bg="lightcyan")
plot(3, 3, type="n", ann=FALSE, axes=FALSE)
u <- par("usr") # The coordinates of the plot area
rect(u[1], u[3], u[2], u[4], col="gray95", border=NA)
par(new=TRUE)
boxplot(rdi4p~bmi_cut,ylim=c(0,100),col=rgb(1,0,0,color_pal),

cex.lab=1.5,cex.axis=1.1,col.axis="blue",col.lab="blue",
ylab="RDI 4%",xlab="BMI groups",
border=rep("blue",6),
outpch=20,outcex=0.4,
outcol=rgb(1,0,0,color_pal))
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Suppose that we want to do something more complex, separating the 6 bmi_s1
groups by gender. Because this creates 12 boxplots, labeling becomes an issue.
Thus, we relabel the groups such that F1 stands for female in BMI group 1, that
is, females with BMI between [18, 25]. The label M3 stands for male with BMI
between (30, 35], the third BMI group. Below we display these 12 boxplots and
color the female groups magenta and male groups red to make them easier to
compare. It makes sense to compare male versus female groups within the same
BMI group (e.g. F1 versus M1 and F3 versus M3), compare females across BMI
groups (e.g. F1 versus F4), compare males across BMI groups (e.g. M2 versus
M6), and males versus females across BMI groups (e.g. M2 versus F5). Figure
8.12 displays the boxplots of RDI for these 12 groups, which separate each of
the six groups in Figures 8.10 and 8.11 into two subgroups, one for females and
one for males.
par(bg="lightcyan")
plot(3, 3, type="n", ann=FALSE, axes=FALSE)
u <- par("usr") # The coordinates of the plot area
rect(u[1], u[3], u[2], u[4], col="gray95", border=NA)
par(new=TRUE)
res<-boxplot(rdi4p~gender*bmi_cut,ylim=c(0,100),

col=c(col=rgb(1,0,1,0.5),col = rgb(1,0,0,0.5)),
cex.lab=1.3,cex.axis=1,col.axis="blue",col.lab="blue",
ylab="RDI 4%",xlab="BMI groups",
names=c("F1","M1","F2","M2","F3","M3",

"F4","M4","F5","M5","F6","M6"),
border=rep("blue",6),
outpch=20,outcex=0.4,
outcol=c(col=rgb(1,0,1,0.5),col = rgb(1,0,0,0.5)))

Ignoring the outliers the plot reveals that men tend to have higher median (and
quartiles) rdi4p for every BMI group, that the increase in median rdi4p is
much higher for men in the higher BMI groups, and that the distribution of
rdi4p for women tends to be roughly equivalent to that in men in two groups
lower for BMI (F3 versus M1, F4 versus M2, F5 versus M3, and F6 versus M4).
We might want to have the intensity of the color reflect the size of the median
rdi4p in a particular group. However, things get trickier when we have to deal
with two variables (in our case gender and bmi_s1) that both have a strong
effect on the median rdi4p. Indeed, there are several options that we could
consider. The first could be to choose the color intensity within BMI groups
separated for males and females. This will highlight the within-gender effect,
but may visually reduce the between-gender effects. Indeed, with this choice the
color intensity for F6 and M6 would be the same. An alternative would be to
choose the color intensity by pooling all medians together. A potential problem
with this approach is that the color intensity in M6 may visually dominate the
other intensities, simply because the median for the M6 group is so large. This
second choice is shown in Figure 8.13.
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Figure 8.12: Boxplot of RDI in twelve groups defined by cutoff points on BMI
and gender. We use the same color for all six men groups (light red) and all six
women groups (light magenta).



288 CHAPTER 8. DATA VISUALIZATION

F1 M1 F2 M2 F3 M3 F4 M4 F5 M5 F6 M6

0
20

40
60

80
10

0

BMI groups

R
D

I 4
%

Figure 8.13: Boxplot of RDI in twelve groups defined by cutoff points on BMI
and gender. We use the same color for all six men groups (light red) and all six
women groups (light magenta). However, the color transparency is associated
with the median RDI in each group.

medians<-res$stats[3,]
color_pal<-0.3+(0.8-0.3)/(medians[12]-medians[1])*(medians-medians[1])

par(bg="lightcyan")
plot(3, 3, type="n", ann=FALSE, axes=FALSE)
u <- par("usr") # The coordinates of the plot area
rect(u[1], u[3], u[2], u[4], col="gray95", border=NA)
par(new=TRUE)
res<-boxplot(rdi4p~gender*bmi_cut,ylim=c(0,100),

col=c(col=rgb(1,0,rep(c(1,0),6),color_pal)),
cex.lab=1.3,cex.axis=1,col.axis="blue",col.lab="blue",
ylab="RDI 4%",xlab="BMI groups",
names=c("F1","M1","F2","M2","F3","M3",

"F4","M4","F5","M5","F6","M6"),
border=rep("blue",6),
outpch=20,outcex=0.4,
outcol=c(col=rgb(1,0,rep(c(1,0),6),color_pal)))
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Figure 8.14: Bar plot of the number of subjects by BMI group in the SHHS.

8.6 Bar plots and stacked bar plots

Bar plots can be used in many situations, though they are most useful for indi-
cating the number of observations in particular groups. Suppose, for example,
that we would like to represent the number of subjects that have a BMI in one
of the groups we have defined. Figure 8.14 displays the bar plot indicating the
number of subjects in each BMI group from the SHHS
counts <- table(bmi_cut)
par(bg="lightcyan")
plot(3, 3, type="n", ann=FALSE, axes=FALSE)
u <- par("usr") # The coordinates of the plot area
rect(u[1], u[3], u[2], u[4], col="gray95", border=NA)
par(new=TRUE)

barplot(counts, main="", ylab="Number of individuals",
xlab="BMI groups",col=rgb(1,0,0,0.6),ylim=c(0,2500),
cex.axis=1.3,col.axis="blue",cex.lab=1.3,col.lab="blue")

The plot contains the same information as the table
counts

bmi_cut
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[18,25] (25,30] (30,35] (35,40] (40,45] [45,50]
1608 2428 1190 371 116 48

which shows, for example, that there are 1190 subjects who have a bmi_s1
between (30, 35]. The bar plot is slightly less informative than the table, but
it provides an intuitive representation of the data. Supposed that we would
like to visually separate the number of subjects in each BMI group by smoking
status. The Figure 8.15 displays the stackked bar plot indicating the number of
subjects in every BMI group separated by “Former” (yellow), “Current” (light
green), and “Never” (dark green) smoker.
smokstatus<-factor(smokstat_s1,

levels = c(0,1,2),
labels = c("Never", "Current", "Former"))

counts <- table(smokstatus,bmi_cut)

par(bg="oldlace")
plot(3, 3, type="n", ann=FALSE, axes=FALSE)
u <- par("usr") # The coordinates of the plot area
rect(u[1], u[3], u[2], u[4], col="gray95", border=NA)
par(new=TRUE)
barplot(counts, main="",

ylab="Number of individuals",
xlab="BMI groups",
col=c("darkslategray","darkseagreen3","khaki1"),
ylim=c(0,2500),cex.axis=1.3,col.axis="darkslategray",
cex.lab=1.3,col.lab="darkslategray",
legend = rownames(counts))

The information contained in the plot is the same as in the two by two table
shown below.

bmi_cut
smokstatus [18,25] (25,30] (30,35] (35,40] (40,45] [45,50]

Never 793 1118 541 165 49 22
Current 206 222 95 17 10 5
Former 603 1073 545 185 56 21

For example, there are 222 individuals who are current smokers and have a
BMI between (25, 30], shown as the middle color darkseagreen3 in the second
bar, and 541 individuals who were never smokers and have a BMI between
(30, 35], shown as the top color khaki1 in the third bar. Because there are
fewer individuals who are current smokers and with very high BMI values, it
becomes hard to represent the numbers in the table as color bars. Indeed,
the columns corresponding to BMI values between (40, 45] and [45, 50] are not
particularly useful. To address this problem we transform the data from counts
into fractions and provide stacked bar-plots for the fractions. The resulting plot
is shown in Figure 8.16. If we want the same plots on a scale of proportions
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Figure 8.15: Bar plot of the number of subjects by BMI group in the SHHS
separated by smoking status.

(from [0, 100]%) instead of the scale of fractions (from [0, 1]) we need to multiply
the propto variable below with 100.
counts <- table(smokstatus,bmi_cut)
totalc<-colSums(counts)
propt<-counts
for (i in 1:ncol(counts))
{propt[,i]<-counts[,i]/totalc[i]}

The difference between Figure 8.16 and the stacked bar plot for counts in Figure
8.15 is substantial. Indeed, all bar plots have a total height of 1, irrespective
of how many observations there are per BMI group. However, the plot pro-
vides additional information that was not readily available from the counts plot.
Indeed, it seems that the proportion of never smokers decreases slightly from
around 50% in the BMI category [18, 25] to 42% in the BMI category (40, 45].
For the same BMI categories the proportion of former smokers increases slightly
from around 40% to around 50%, while the proportion of current smokers hov-
ers roughly around 8 − 10%. Because all bars have exactly the same height, we
needed to add space to accommodate the legend to the right of the plot. One
could, of course, relocate the legend, depending on what is in the eye of the
beholder. The color scheme for bar plots is important for illustrative purposes.
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Figure 8.16: Bar plot of the proportion of subjects within BMI group corre-
sponding to each smoking status.

One of the problems with the previous bar plot is that the total number of
observations for each BMI group is lost. This can be recovered and posted on
top of each bar, as we describe below. The corresponding plot is shown in Figure
8.17.
par(bg="oldlace")
plot(3, 3, type="n", ann=FALSE, axes=FALSE)
u <- par("usr") # The coordinates of the plot area
rect(u[1], u[3], u[2], u[4], col="gray95", border=NA)
par(new=TRUE)
stat<-barplot(propt, main="",

ylab="Fraction of individuals",
xlab="BMI groups",
col=c("darkslategray","darkseagreen3","khaki1"),
ylim=c(0,1.1),xlim=c(0,9),cex.axis=1.2,
col.axis="darkslategray",
cex.lab=1.2,col.lab="darkslategray",
legend = rownames(counts))

text(x = stat, y = rep(1.05,6), label = totalc,
col = "darkslategray")

Instead of stacking bar plots we could convey the same information by showing
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Figure 8.17: Bar plot of the proportion of subjects within BMI group correspond-
ing to each smoking status. Adding total counts for each group and legend.

the within-group information as side-by-side bars. Figure 8.18 shows the same
information as Figure 8.17, but arranged side-by-side instead of stacked bars.

Mosaic plots are a version of stacked bar plots that are sometimes used in
practice. They are designed to represent the same information as a stacked bar
plot for fractions. Mosaic plots display the stacked columns slightly differently
with larger stacked rectangles that have less space between them. Some of the
standard information in the stacked plots is suppressed. An example of the
mosaic plot is shown in Figure 8.19.

We show one more mosaic plot on a classic data set published by R.A. Fisher
(Fisher 1940) on the cross-classification of people in Caithness, Scotland, by eye
and hair colour. The data set is a component of the MASS package in R (Venables
and Ripley 2002) and the corresponding mosaic plot is shown in Figure 8.20.

fair red medium dark black
blue 326 38 241 110 3
light 688 116 584 188 4
medium 343 84 909 412 26
dark 98 48 403 681 85
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Figure 8.18: Side-by-side bar plot of the proportion of subjects within BMI
group corresponding to each smoking status.
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Figure 8.19: Mosaic plot, a very close form of plotting to the stacked bar plot.
Displayed is the proportion of subjects within BMI group corresponding to each
smoking status.
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Figure 8.20: Mosaic plot, a very close form of plotting to the stacked bar plot.
Displayed is the proportion of subjects with black, dark, fair, medium, red, and
fair hair among individuals with a particular eye color.

8.7 QQ-plots

QQ-plots (for quantile-quantile) are useful for comparing data to a theoretical
distribution as well as for comparing distributions with each other. The QQ-
plot displays the quantiles of one distribution against the quantiles of the second
distribution. Both distributions can be empirical or theoretical, though the most
common approach is to compare the quantiles of a distribution with those of a
N(0, 1) distribution.

Let zp and xp be the pth quantile from N(0, 1) and N(µ, σ2) distributions,
respectively. If X ∼ N(µ, σ2) is a random variable then

p = P (X ≤ xp) = P

(
X − µ

σ
≤ xp − µ

σ

)
.

Since (X − µ)/σ ∼ N(0, 1) it follows that

xp = µ + zpσ .

This result implies that the quantiles of a N(µ, σ2) distribution are linearly
related to the standard normal quantiles. The intercept of the line is equal to
the mean µ and the slope is equal to the standard deviation, σ. Thus, if we
calculate the quantiles of a sample from a Normal distribution and plot them
against the theoretical quantiles of a standard Normal distribution, then we
expect the resulting graph to approximate a line.
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Figure 8.21: QQ-plot for the empirical quantiles of BMI distribution in SHHS
versus the theoretical quantiles of the N(0,1) distribution.

A normal QQ-plot displays the empirical quantiles against the theoretical stan-
dard normal quantiles. In R the function qqnorm is used for a normal QQ-plot
and the qqplot is used when checking against an arbitrary distribution (Becker,
Chambers, and Wilks 1988). Let us investigate several distributions from the
SHHS versus the Normal distribution. Figure 8.21 provides the QQ-plot for
the empirical quantiles of the BMI (bmi_s1) distribution in SHHS versus the
theoretical quantiles of the N(0, 1) distribution.
qqnorm(bmi_s1,pch=20,cex=0.7,col="coral1",

ylab="Sample quantiles (BMI)",
xlab="Theoretical quantiles of N(0,1)",
cex.axis=1.3,col.axis="darkblue",col.main="darkblue",
cex.lab=1.3,col.lab="darkblue",bty="l")

qqline(bmi_s1,col="darkblue",lwd=3)

We have changed quite a few parameters, especially the type of symbol for the
points, pch=20, as the original empty circles look messier, especially for larger
samples. The qqline function is the line that passes through the first and third
quantiles of the N(0, 1) and of the BMI distribution, respectively. One could
change the quantiles that are matched using the argument prob=c(0.25,0.75)
in the qqline function. The interpretation is that there is some agreement
between the two distributions, especially in the middle of the distribution, but
the agreement is quite poor in both tails of the distribution. The right side of the
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plot shows that the points are moving away and up from the line, indicating that
the quantiles of the empirical distribution are larger than those of a theoretical
Normal. For example, the 0.975 quantile (corresponding to 1.96 on the x-axis)
would require a 0.975 quantile of BMI of about 35.

However, the 0.975 quantile of the bmi_s1 variable is 40.56, which is much
larger. This indicates that the right tail of the bmi_s1 distribution is heavier
than the right tail of a Normal distribution. This means that the probability
of observing more extreme BMI values is higher than one would expect under a
Normal distribution. We now show how to obtain the exact numbers, not just
approximations, using plot inspection. The qqline intercept and slope can be
calculated below
# Find the 1st and 3rd empirical quartiles
y <- quantile(bmi_s1,c(0.25, 0.75),na.rm=TRUE)
# Find the 1st and 3rd N(0,1) quartiles
x <- qnorm( c(0.25, 0.75))
# Compute the line slope
slope <- diff(y) / diff(x)
# Compute the line intercept
intercept <- y[1] - slope * x[1]
expectedq<-round(intercept+slope*qnorm(c(0.025,0.975)),digits=2)

Thus, the expected 0.975 quantile of a Normal matched at the 0.25 and 0.75
quantiles is 36.57, which, indeed, is close to the 35 we obtained by inspecting
the plot, but not identical.

The left side of the plot shows that the points are moving away and up from
the line, indicating that the quantiles of the empirical distribution are, again,
larger than those of a theoretical Normal. This indicates that the left tail of
the distribution is actually lighter than that of a Normal. Indeed, the BMI
quantiles are larger than one would expect from a Normal distribution. For
example, the 0.025 quantile of the matched Normal is 18.87, which is smaller
than 20.13, the 0.025 empirical quantile of BMI. This type of behavior of the
left tail of the distribution is often encountered in practice when dealing with
positive or otherwise bounded random variables. The qq-plot reveals that both
the right and upper tail quantiles of the bmi_s1 distribution exhibit an unusual
behavior as they seem to stabilize at 18 and 50, respectively. This happens
because there are exactly 25 subjects with a bmi_s1 equal to 18 and 12 subjects
with a bmi_s1 equal to 50, and 18 and 50 are the smallest and largest bmi_s1
values in the SHHS, respectively.
qqnorm(age_s1,pch=20,cex=0.7,col="coral1",

ylab="Sample quantiles (age)",
xlab="Theoretical quantiles of N(0,1)",
cex.axis=1.3,col.axis="darkblue",col.main="darkblue",
cex.lab=1.3,col.lab="darkblue",bty="l")

qqline(age_s1,col="darkblue",lwd=3)
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Figure 8.22: QQ-plot for the empirical quantiles of age distribution in SHHS
versus the theoretical quantiles of the N(0,1) distribution.

Figure 8.22 displays the QQ-plot of the empirical distribution of age versus
the quantiles of the theoretical N(0, 1) distribution. The S-shape of the QQ-
plot indicates that the empirical distribution has lighter/shorter left and right
tails than the Normal. This is quite unusual in practice as lighter tails than
those of the Normal are quite uncommon. However, if data follow a Uniform
distribution, then the tails are actually dissappearing beyond the range of the
data. The horizontal lines in the plot are due to the fact that age_s1 is a discrete
variable in the SHHS because age is expressed in integers, without allowance for
fractions of the year.

To check whether there is evidence that age_s1 has a Uniform distribution we
use the qqplot versus the quantiles of the Uniform distribution U [39, 90], where
39 is the minimum and 90 is the maximum age in the SHHS. Figure 8.23 displays
the empirical quantiles of the age distribution in SHHS versus the theoretical
quantiles of the U [39, 90] distribution.
mina=min(age_s1,na.rm=TRUE)
maxa=max(age_s1,na.rm=TRUE)

qqplot(qunif(ppoints(length(age_s1)),mina,maxa), age_s1,
pch=20,cex=0.7,col="coral1",
xlab="Theoretical quantiles for Uniform[39,90]",
ylab="Sample quantiles (Age)",
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Figure 8.23: QQ-plot for the empirical quantiles of age distribution in SHHS
versus the theoretical quantiles of the U [39, 90] distribution.

cex.axis=1.2,col.axis="darkblue",col.main="darkblue",
cex.lab=1.2,col.lab="darkblue",bty="l")

#Obtain the qqline
y <- quantile(age_s1,c(0.25, 0.75),na.rm=TRUE)
x <- qunif(c(0.25, 0.75),min=39,max=90)
slope <- diff(y) / diff(x)
intercept <- y[1]-slope * x[1]
d=39:90
lines(d,intercept+slope*d,col="darkblue",lwd=3)

The shape of the qqplot is now an inverted S, which indicates that the empirical
distribution of age_s1 has thicker tails than a Uniform. This requires a little bit
more explanation, because the Uniform has a constant density and the density of
age_s1 actually decreases towards age 40 and 90. The 0.25 and 0.75 quantiles of
the age_s1 are (55,72). The only Uniform distribution with these quartiles is the
U [46.5, 80.5] distribution, which has 0 probability between [39, 46.5] and between
[80.5, 90]. Because there are many individuals in the sample who are younger
than 46.5 and who are older than 80.5, the tails of the empirical distribution are
actually thicker than those of the particular Uniform distribution that matched
the quartiles of the empirical distribution.

We would like to check what the QQ-plot should look like when we know that
the two distributions are identical. One possibility is to simulate from known
distributions. However, here we choose to use sub-sampling from the empirical
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distributions of the variables we have observed. Figure 8.24 displays the QQ-
plots for the empirical quantiles of three independent subsamples of size 100
from the BMI distribution in SHHS versus the empirical quantiles of the BMI
distribution in SHHS.
set.seed(913)
bb1<-sample(bmi_s1,100)
bb2<-sample(bmi_s1,100)
bb3<-sample(bmi_s1,100)

qb1<-quantile(bb1,prob=seq(0.01,0.99,by=0.01),na.rm=TRUE)
qb2<-quantile(bb2,prob=seq(0.01,0.99,by=0.01),na.rm=TRUE)
qb3<-quantile(bb3,prob=seq(0.01,0.99,by=0.01),na.rm=TRUE)

qb<-quantile(bmi_s1,prob=seq(0.01,0.99,by=0.01),na.rm=TRUE)

plot(qb,qb1,pch=20,cex=0.7,col="coral1",
xlab="Quantiles of BMI",
ylab="Quantiles of BMI subsamples",
xlim=c(18,47),ylim=c(18,50),
cex.axis=1.3,col.axis="darkblue",col.main="darkblue",
cex.lab=1.3,col.lab="darkblue",bty="l")

points(qb,qb2,pch=20,cex=0.7,col="darkgoldenrod3")
points(qb,qb3,pch=20,cex=0.7,col="darkred")

The quantiles of each of the subsamples of size 100 from the BMI distribution
aligns pretty well with the quantiles of the distribution of BMI in the population,
with some extra variability in the high range of BMI values. This happens
because extreme quantiles are harder to estimate and each sample contains only
100 of the original 5761 BMI observations that are not missing. The QQ-plots
do not perfectly align because of the sampling variability.

We can now conduct an experiment where we simulate three independent sam-
ples of size n = 100 from a N(4, 9) distribution. Figure 8.25 displays the empir-
ical quantiles of the three samples versus the theoretical quantiles of a N(0, 1)
distribution. We found it more flexible to just use the quantiles instead of the
qqnorm function. Each of the sample quantiles produces a slightly different
QQ-plot, though they all visually align pretty close to a straight line. The ob-
served variability (small differences between the lines that best approximate the
QQ-plots) is due to sampling variability and closely reflects the variability in
estimating the intercept, 4, and slope, 3.
rr1<-rnorm(100,4,3)
rr2<-rnorm(100,4,3)
rr3<-rnorm(100,4,3)

qr1<-quantile(rr1,prob=seq(0.01,0.99,by=0.01))
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Figure 8.24: QQ-plots for the empirical quantiles of three independent sub-
samples of size 100 from the BMI distribution in SHHS versus the empirical
quantiles of the BMI distribution in SHHS.

qr2<-quantile(rr2,prob=seq(0.01,0.99,by=0.01))
qr3<-quantile(rr3,prob=seq(0.01,0.99,by=0.01))

qn<-qnorm(seq(0.01,0.99,by=0.01))
plot(qn,qr1,pch=20,cex=0.7,col="coral1",

xlab="Theoretical quantiles N(0,1)",
ylab="Empirical quantiles",
ylim=c(-3,12),
cex.axis=1.3,col.axis="darkblue",col.main="darkblue",
cex.lab=1.3,col.lab="darkblue",bty="l")

points(qn,qr2,pch=20,cex=0.7,col="darkgoldenrod3")
points(qn,qr3,pch=20,cex=0.7,col="darkred")

8.8 Heat maps

Heat maps are a type of display of the data in matrix format, where each axis
could represent a vector of variables (e.g., the longitude/latitude), or a pair
of subjects by vector of variables (e.g. subject ID by BMI, age, and gender).
The intensity of the color represents the values taken at that particular pair of
variables (e.g., altitude at the given latitude/longitude or correlation between
BMI and age). We focus first on displaying the correlation matrix between
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Figure 8.25: QQ-plots for the empirical quantiles of three independent samples
of size 100 from the N(4, 9) distribution versus the theoretical quantiles of the
N(4, 9) distribution.

several variables. Probably one of the best functions to do this in R is the
corrplot function (Wei 2013). While this may not be classified by some as a
heat map, we have found it to be particularly versatile and have particularly
strong visualizations. Figure 8.26 displays the correlations for eight variables
from the SHHS.
library(corrplot)
subset.data.cv=data.cv[,c(2,4,10:11,24,26:27,29)]
M=cor(subset.data.cv,use="pairwise.complete.obs")
corrplot(M, method = "square")

The colors on the main diagonal are very dark, indicating that correlations are
equal to 1. The other correlations are all relatively small in absolute value,
with the strongest association between waist and rdi4p at 0.33. The strongest
negative association is between timeremp and WASO at -0.21. This should not
be surprising in the context of observational studies, where many associations
between variables are weak. Having a good representation of the correlation
matrix is often useful in applications. Correlation matrix plots become less
useful as the number of variables increases.

Figure 8.27 produces a similar plot using the image.plot function in the R pack-
age fields (Nychka et al. 2016), even though the function was not originally
developed for correlation plots. The advantage of the image.plot function over
the base R functions image and heatmap is that it produces a legend with the
color key. This is quite useful, though a little bit of manipulation is necessary
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Figure 8.26: Correlation plot for 8 variables in the SHHS.
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Figure 8.27: Correlation plot for 8 variables in the SHHS using the fields pack-
age.

to produce exactly what is needed.
library(fields)
par(oma=c(0,0,0,5))
image(M, zlim=c(-.5,.5), col=tim.colors(),axes=FALSE)
mtext(text=rownames(M), side=2, line=0.3,

at=seq(0,1,length=8), las=1, cex=0.8)
mtext(text=rownames(M), side=1, line=0.3,

at=seq(0,1,length=8), las=2, cex=0.8)
par(oma=c( 0,0,0,0))# reset margin to be much smaller
image.plot(M, col=tim.colors(),legend.only=TRUE, zlim=c(-.5,.5))

In the previous R code we used the R base image function, which allows us to add
the text on the sides of the plot. This is quite useful for labeling the variables and
connecting the pairs of variables to their corresponding correlations. We also
changed the plotting parameters par(oma=c(0,0,0,5)) to allow for more space
to the right of the plot where we add the color key. The function image.plot is
used here only to create the color key using legend.only=TRUE. We have also
used a zlim=c(-0.5,0.5) both for the image and the legend because we want
to avoid the large discrepancy between the autocorrelations on the diagonal,
which are equal to 1 and the other correlations, which, in our case, are quite
small in absolute value. This particular plot of the correlation does not actually
correspond exactly to the corrplot in its orientation. Indeed, the matrix M
needs to be rotated clockwise 90 degrees for the image function to produce the
same orientation. Figure 8.28 does that and also changes the color palette and
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Figure 8.28: Correlation plot for 8 variables in the SHHS using the fields pack-
age.

the placement of the text to more closely resemble the corrplot.
library(fields)
par(oma=c(0,0,0,5))
rotate <- function(x) t(apply(x, 2, rev))
M1=rotate(M)

ColorRamp <- rgb( seq(0,1,length=256), # Red
seq(0,1,length=256), # Green
seq(1,0,length=256)) # Blue

image(M1, zlim=c(-.5,0.5), col=ColorRamp,axes=FALSE)
mtext(text=rev(rownames(M)), side=2, line=0.3,

at=seq(0,1,length=8), las=1, cex=0.8)
mtext(text=rownames(M), side=3, line=0.3,

at=seq(0,1,length=8), las=2, cex=0.8)
par(oma=c( 0,0,0,0))# reset margin to be much smaller
image.plot(M1, zlim=c(-.5,0.5),

col=ColorRamp,legend.only=TRUE, zlim=c(-.5,0.5))

We have found the R base heatmap function to be quite inflexible, especially
when one is interested in adding a color key. The heatmap.2 function in the
gplots package is designed with far more options and with a standard color
key. Figure 8.29 displays the heat map for the correlation using the heatmap.2
function.
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Figure 8.29: Correlation plot for 8 variables in the SHHS using the heatmap.2
function in the gplots package.

library(gplots)
heatmap.2(M,dendogram="none",

Rowv=FALSE,Colv=FALSE,
density.info="none",
trace="none",
col=ColorRamp,
margins = c(8, 8))

The choice of the color key position is slightly different in heatmap.2 from
corrplot, probably because of the choice of variable placement. We find the
layout of the corrplot to be more intuitive, with the close vertical bar to the
right of the plot providing better visuals. Also, the heatmap.2 is designed with
the idea of conducting row and column clustering and plotting the dendrograms,
which could be useful in certain situations.

Below we show how to use heatmaps implemented using the image and
image.plot functions. First, we should recognize that variables are recorded
on many different scales and we would like the visual display to not be
dominated by the variables that have the largest and smallest observations.
To reduce this effect we suggest plotting only the centered and scaled version
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Figure 8.30: Showing the entire SHHS dataset for 14 covariates. Each covariate
is shown on a row and each subject on a column.

of the variables. For example, in SHHS, instead of plotting age_s1 we will
plot (age_s1-63.13)/11.22, where 63.13 is the average age_s1 and 11.22 is
the standard deviation of age_s1. Here we will plot only continuous variables,
as plotting 0/1 and categorical variables as part of a heatmap becomes quite
difficult. Figure 8.30 displays the data for 5804 subjects (columns) from SHHS
using 14 centered and scaled variables. Note that missing in the variable
slp_lat is indicated in white, which readily identifies variables with more
missing observations.
#The reordering of the rows is done so that
#first subjects appear to the left of the plot
subset.data.cv=data.cv[5804:1,c(2,5:14,27,29:30)]
subset_scaled<-scale(subset.data.cv)
d<-dim(subset_scaled)
par(oma=c(0,0,0,5))
image(1:d[1],1:d[2],as.matrix(subset_scaled),

col=ColorRamp,axes=FALSE,
xlab="",ylab="",zlim=c(-5,5))

mtext(text=colnames(subset.data.cv), side=2, line=0.3,
at=1:d[2], las=1, cex=0.7)

par(oma=c(0,0,0,0))
image.plot(1:d[1],1:d[2],as.matrix(subset_scaled),

col=ColorRamp,
legend.only=TRUE,zlim=c(-5,5))

One could prefer to have the subjects on the rows and variables on the column,
which is how they are typically analyzed. For that we need only change the
x- and y-axes, transpose the matrix, write the text on side=3, and change its
orientation from horizontal to vertical to avoid over-writing using las=2. Figure
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Figure 8.31: Showing the entire SHHS dataset for 14 covariates. Each covariate
is shown on a column and each subject on a row.

8.31 displays the same information as Figure 8.30, but the information is now
presented with variables shown on columns.
par(oma=c(0,0,0,5))
image(1:d[2],1:d[1],as.matrix(t(subset_scaled)),

col=ColorRamp,axes=FALSE,
xlab="",ylab="",zlim=c(-5,5))

mtext(text=colnames(subset.data.cv), side=3, line=0.3,
at=1:d[2], las=2, cex=0.7)

par(oma=c(0,0,0,0))
image.plot(1:d[1],1:d[2],as.matrix(subset_scaled),

col=ColorRamp,
legend.only=TRUE,zlim=c(-5,5))

In practice we may want to order the data first according to one or more vari-
ables and then plot it. This can help identify patterns if the variables used for
ordering are particularly well correlated with some of the variables. Below we
order by age_s1 first and by bmi_s1 second, though ordering could be done for
more/fewer variables. Figure 8.32 displays the same information as 8.30 and
8.31, but the rows are reordered first relative to age and then relative to BMI.
ordered_subset<-subset_scaled[
order(subset_scaled[,12],subset_scaled[,14]),]

#This is done to ensure that first subjects in ordered_subset
#appear at the top
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Figure 8.32: Showing the entire SHHS dataset for 14 covariates. Each covariate
is shown on a row and each subject on a column. Data are ordered by age first
and then by BMI.

ordered_subset<-ordered_subset[5804:1,]
par(oma=c(0,0,0,5))
image(1:d[2],1:d[1],as.matrix(t(ordered_subset)),

col=ColorRamp,axes=FALSE,
xlab="",ylab="",zlim=c(-5,5))

mtext(text=colnames(subset.data.cv), side=3, line=0.3,
at=1:d[2], las=2, cex=0.7)

par(oma=c(0,0,0,0))
image.plot(1:d[1],1:d[2],as.matrix(ordered_subset),

col=ColorRamp,
legend.only=TRUE,zlim=c(-5,5))

However, clustering is often hard to identify for variables that are weakly corre-
lated, as is often the case in health studies. Indeed, after ordering by age there
is a clear indication that the corresponding column is now smoothly moving
from low to large values. BMI has more of a streaky pattern because for each
fixed age group bmi_s1 increases and then it is reset to the lowest value within
the next age category.
With this particular choice of ordering we may note that rdi4p follows a simi-
lar pattern with age_s1 with the colors changing slowly from darker (lower) to
lighter (higher). One could also notice an unusually low timeremp for advanced
ages and an increase of WASO with age_s1. These results provide three impor-
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tant take home messages: (1) ordering of variables can provide useful insights
into the association between the variable we order on and the other variables; (2)
ordering by more than one variable at a time may not produce much additional
information; and (3) repeating the procedure with all variables may be helpful,
though we suggest doing that with only up to 3-4 variables, as the number of
plots can become quickly overwhelming.

8.9 Problems

Problem 1. Load the SHHS dataset and create a histogram and a smoothed
histogram of rdi4p and log(rdi4p + 1).

Problem 2. Compare log(rdi4p + 1) between men and women using his-
tograms, smoothed histograms, dotplots, and boxplots. Discuss the advantages
and disadvantages of each.

Problem 3. Create a normal quantile/quantile plot of rdi4p and
log(rdi4p+1). Does the distribution of rdi appear to be normal on ei-
ther scale? Discuss the nature of any deviations from normality. Does the QQ
plot help highlight the discrepancies?

Problem 4. Define healthy sleep as rid4p < 7, moderate sleep apnea as 7
<= rdi4p < 15, sleep apnea as 15 <= rdi4p < 30, and severe sleep apnea as
30 <= rdi4p. Compare counts of sleep apnea status versus sex and the BMI
groupings used in this chapter using bar plots, stacked bar plots, and mosaic
plots.

Problem 5. Consider the ldeaths, mdeaths, and fdeaths data in R. (See
?ldeaths for more detail). Create heat maps with year as the row and month
as the column for all three datasets. Try combining them into a single heat
map with useful annotations. Compare the information from the heat maps
with time series plots overlaying separate lines. What do the heat maps tell you
about these data?



Chapter 9

Approximation results and
confidence intervals

This chapter covers the following topics

• Limits
• Law of Large Numbers (LLN)
• Central Limit Theorem (CLT)
• Confidence intervals

We often discuss why it is so hard to understand the principles and results that
underlie the foundation of confidence intervals and their interpretation. There
are many reasons, but probably the most important ones are: (1) the expecta-
tion that once one understands mathematical concepts the related Biostatistical
concepts should be trivial; and (2) the intuition built on mathematical concepts
do not apply to random variables. Thus, teaching the convergence of random
variables and the subsequent use of this theory requires both the professor and
the student to start from scratch and accept that this is not just mathemat-
ics. Our treatment of stochastic limits attempts to give a deep enough dive so
that students will understand the theoretical foundations, while not venturing
so deeply into the weeds that the sense of applicability is lost.

9.1 Limits

So, why should one be interested in limits? Why are they so widely used in math-
ematics? From a mathematical perspective, it is the beauty of a fundamental
result and knowing that there is some sort of order in a series of numbers. From
a Biostatistical perspective, a limit is an approximation. It simply says that
given a very long series of numbers the series can be approximated by a finite

311
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Figure 9.1: Example of a sequence of numbers that converges quickly to 1.

summary of numbers: the finite first observations, that do not have a defined
behavior, and the last infinitely many numbers, which are all near the limit. In
our view, interpreting limits as approximations is the most useful way to see
them. In contrast, there are other uses of limits, such as for proving optimal
theoretical results. However, we ignore those uses in this text and focus on
limits as approximations, which is their most practical application.

9.1.1 Convergence of number series

Let us revisit the concept of convergent series from calculus. Consider the
following sequence: a1 = 0.9, a2 = 0.99, a3 = 0.999, and so on. Clearly, this
sequence converges to 1, though no value in the series is exactly 1. Figure 9.1
displays the series on the y-axis as a function of the sequence term number (n)
on the x-axis.
n=1:10
c=1-10^(-n )
plot(n,rep(1,10),type="l",lwd=3,xlab="Term number (n)",

ylab=expression(paste(a[n],"=1",-10^n)),
cex.lab=1,cex.axis=1.2,col.axis="blue",ylim=c(0.9,1))

points(n,c,col="blue",cex=2,pch=20)

The first three numbers are visually distinguishable from 1, though the rest of
the series can be approximated by 1 for most practical purposes.

In mathematics the definition of a limit of a sequence is that for any fixed
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Figure 9.2: Example of a sequence of numbers, some that converge to a limit
and one that does not (panel on the second row and column).

distance we can find a point in the sequence so that the sequence is closer to
the limit than that distance from that point on. For our sequence

|an − 1| = 10−n ,

indicating that the distance between an and 1 decreases exponentially fast to
zero. Consider a fixed distance, say ϵ, then for every n > − log10(ϵ) we have
−n < log10(ϵ) and 10−n < ϵ. For example, if ϵ = 0.00123 then − log10(ϵ) = 2.91
indicating that for every n ≥ 3 we have

|an − 1| < 0.00123 .

However, not all series converge so quickly to their limit and some are not even
convergent. Consider, the following three additional series: bn = 1 − 1/(n + 10),
cn = (2n − 3)/(n + 10), and dn = 1 + (−1)n. It can be shown that bn converges
to 1, cn converges to 2 and dn is not convergent. Figure 9.2 displays all four
number sequences as a function of the sequence term number.

The bn series is shown in the top right panel as blue dots together with its limit
shown as a horizontal solid black line at 1. In contrast to an, bn converges much
more slowly to its limit. The reason is that the convergence is polynomial not
exponential. The third series, cn, is shown in the bottom left panel and displays
a similar behavior to bn. The consequence is that to effectively characterize both
bn and cn one needs a lot more numbers than for characterizing an. Indeed, one
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may need 100 or 1000 numbers at the beginning of the series plus the limit to
provide the same level of approximation that four numbers provide for the an

series. The series dn shown in the bottom right panel is not convergent, because
it has two subsequences, each of each converges to a different number (limit).

9.1.2 Convergence in probability of random variables

The problem is much harder for random variables because sequences of random
variables are not sequences of numbers. Consider Xn the sample average of the
first n of a collection of iid observations. It could be the average number of
individuals infected with HIV in a sample of n individuals. We say that Xn

converges in probability to a limit if for any fixed distance the probability of
Xn being closer (further away) than that distance from the limit converges to
one (zero). In more precise terms

P (|Xn − limit| < ϵ) → 1 .

This definition borrows some characteristics from the convergence of series, but
it is fundamentally different. It says that the probability that a random variable
is close to the limit as n goes to infinity goes to 1. It does not say that every
realization of Xn will be between limit ± ϵ starting from a particular value of n.
It also does not say that a particular realization of the sequence of random vari-
ables will behave the same way as another realization of a sequence of random
variables.

So, what does it say and why is this exotic looking definition useful? Imag-
ine a scenario when one is sequentially sampling individuals and testing them
for HIV and consider that the same experiment is conducted by three separate
study groups on the same, high-risk, population. They all conduct tests on 10
individuals and compare their results. The first study group identifies three
(or 30%) individuals with HIV, the second group identifies four individuals (or
40%), whereas the last research group identifies six (or 60%). They do not have
the same subjects, and their data are not identical. However, they all continue
to conduct the experiment and we know intuitively that these experiments must
share something in common if the data are to ever become useful. Thus, we con-
clude that the individual data points are not reproducible from one experiment
to another and the summary statistics (like the number of individuals who are
HIV infected) will not be the same either. However, the research groups con-
tinue to collect data because they think that their studies are reproducible and
their target of inference is the same. Indeed, what stays the same is what is
estimated, the limit, and as more data are collected one should expect that the
percent number of infected individuals will get closer to the limit for all three
research groups. Note that, in contrast to series of numbers, the convergence in
probability of random variables requires one to imagine an infinite number of
experiments and sequences of experimental results all converging to the same
limit. The convergence in probability says that the percent of experiments,
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whose results after collecting n data points is between limit ± ϵ, converges to
100% as the number of observations, n, converges to infinity. At this point, for
a given n (finite sample sizes), we do not know what percentage of experiments
will fall into the interval limit ± ϵ, but the Central Limit Theorem will help us
answer that question, as well.

9.2 Law of Large Numbers (LLN)

Establishing that a random sequence converges to a limit is hard. Fortunately,
we have a theorem that does all the work for us, called the Law of Large Numbers
(LLN). The LLN states that if X1, . . . Xn are iid from a population with mean
µ and variance σ2, then Xn converges in probability to µ. There are many
variations on the LLN; we are using a particularly easy to prove version. Recall
that Chebyshev’s inequality states that the probability that a random variable is
more than k standard deviations away from its mean is less than 1/k2. Therefore
for the sample mean

P
{

|Xn − µ| ≥ k sd(Xn)
}

≤ 1/k2 .

Pick a distance ϵ and let k = ϵ/sd(Xn). It follows that

P (|Xn − µ| ≥ ϵ) ≤ sd2(Xn)
ϵ2 = σ2

nϵ2 ,

where the last equality is true because the variance of the sample mean is
Var(Xn) = σ2/n. This shows that

P (|Xn − µ| ≥ ϵ) → 0 ,

though it shows a lot more than that. Indeed, it shows that the limit is going
slowly to zero (at polynomial rate) and that the probability is governed by the
amount of dispersion, σ, in finite sample sizes.

9.2.1 Example: estimating the proportion of HIV infec-
tions

To further build intuition about the LLN let us revisit the HIV testing exper-
iment and assume that the true infection proportion in the population is 50%.
It is easy to simulate and plot the type of data obtained sequentially by three
independent study groups.

We generate Bernoulli random variables and calculate the averages X̄n for var-
ious values of n. We do this three times to illustrate that X̄n, n ≥ 1 is a series
of random variables, that convergence in probability is different from mathe-
matical convergence of number series, and that convergence in probability is a



316CHAPTER 9. APPROXIMATION RESULTS AND CONFIDENCE INTERVALS

necessary concept. One could think of the three experiments simulated below
as three different experiments run in three different labs. We do not expect
that the labs will get the same results in the same order, but we do expect that
something is reproducible, in this case the average success rate.
suppressWarnings(RNGversion("3.5.0"))
set.seed(14567688)
#Generate the first 100 independent Bernoulli(1,0.5)
x1=rbinom(100,1,0.5)
#Generate the second 100 independent Bernoulli(1,0.5)
x2=rbinom(100,1,0.5)
#Generate the third 100 independent Bernoulli(1,0.5)
x3=rbinom(100,1,0.5)
#Store the sequential means for experiment 1, 2, and 3
xbar1=rep(0,length(x1))
xbar2=xbar1
xbar3=xbar1
#Calculate averages of the observed data
for (i in 1:length(x1))
{xbar1[i]=mean(x1[1:i])

xbar2[i]=mean(x2[1:i])
xbar3[i]=mean(x3[1:i])}

plot(1:100,xbar1-0.5,type="l",col=rgb(1,0,0,alpha=0.5),lwd=3,
xlab="Number of subjects sampled",ylab="Distance to the mean",
cex.lab=1.5,cex.axis=1.5,col.axis="blue",ylim=c(-0.5,0.5))

lines(1:100,xbar2-0.5,col=rgb(0,0,1,alpha=0.5),lwd=3)
lines(1:100,xbar3-0.5,col=rgb(1,0,1,alpha=0.5),lwd=3)
lines(1:100,rep(0,100),lwd=3)

Figure 9.3 displays Xn − 0.5 for n = 1, . . . , 100 for each experiment separately
(shown in different colors). The first experiment is shown in red and X11 = 1
because the first individual was HIV positive. Because we plot X11 − 0.5 = 0.5
the value shown in the plot is 0.5. We use the notation Xnk, where n indicates
over how many subjects the average is calculated and k indicates which of the
three experiments we are referring to. The second individual was HIV negative,
so X21 = (1 + 0)/2 = 0.5 and because we are plotting X21 − 0.5 this value is
represented as 0 in the plot. The third subject was identified as HIV positive,
so X31 = (1 + 0 + 1)/3 = 0.66 and on the plot we display X31 − 0.5 = 0.16.
Every time the red line goes up it does so because a new HIV case was identified.
Every time the line goes down corresponds to an HIV negative individual. Let
us investigate the second experiment (shown as the blue solid line). In this
experiment the first individual was HIV negative and X21 = 0 and because we
display X21−0.5 = −0.5 the first y-value for the second experiment is −0.5. The
second individual was also HIV negative, so X22 = (0 + 0)/2 = 0 and the value
shown is X22 − 0.5 = −0.5, while the third individual was HIV positive, which
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Figure 9.3: Examples of the percent number of infections obtained by three
different studies when data are collected sequentially and the probability of
infection for every individual in the population is 50%.

resulted in X23 = (0 + 0 + 1)/3 = 0.33 and a plotted value of X23 − 0.5 = −0.17
and so on.

These experiments show the characteristics of what happens if multiple exper-
iments are run in parallel: (1) the observed data are not the same; (2) the
observed means are not the same; (3) as the number of observations increases,
the variability between the observed means decreases; (4) all means get closer
to the target; and (5) the means are not equal to the target of inference.

Though in this case data were simulated, this type of behavior is intended
to closely mimic what is seen in practical experiments. Thus, this raises the
question about what exactly is meant by reproducibility and generalizability
of an experiment. Indeed, all three experiments were run in exactly the same
way, but resulted in different data and different summary statistics. However,
the level of organization of the means of experiments as the number of subjects
increases seems to suggest that something is reproducible. That something is the
underlying true probability of infection, which remains unchanged, irrespective
of the experiment number, and the observed sampling variability. Under the
definition of convergence in probability, the fact that the means converge could
be interpreted as “for a large enough sample size, if we run many experiments
about the same target of inference most of them will produce estimates of the
target of inference that are close to it.”

The law of large numbers will establish that as n increases the averages are
close to the target, while the central limit theorem will say how close and with
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what probability the results of the experiment are to the true target. Of course,
in practice one usually conducts only one experiment and we do not have the
luxury of even two let alone an infinite number of experiments. So, the secret
sauce is to make all these inferences from one experiment, generalize the results
to a population of interest, and provide reasonable estimates for what other
experiments would produce if they were conducted. Stated like this, it should
become apparent that the problem we are trying to solve is truly daunting.
Luckily the practical solution is simple and very easy to implement.

9.2.2 Convergence of transformed data

If X1, . . . , Xn are iid random variables so that E{f(X)} exists then under mild
conditions (e.g. E{f2(X)}) exists and is finite) then

1
n

n∑
i=1

f(Xi) → E{f(X)} .

For example,
1
n

n∑
i=1

X2
i −→

n
E[X2] ,

1
n

n∑
i=1

exp(Xi) −→
n

E{exp(X)} ,

and
1
n

n∑
i=1

log(Xi) −→
n

E{log(X)} ,

where the last result is for positive random variables. Moreover, functions of
convergent random sequences converge to the function evaluated at the limit.
These include sums, products, and differences. For example, X

2
n converges to µ2.

Note that this is different from (
∑

X2
i )/n, which converges to E(X2

i ) = σ2 +µ2.

9.2.3 Convergence of the sample variance

Recall that the sample variance is

S2
n =

∑n
i=1(Xi − Xn)2

n − 1
=
∑n

i=1(X2
i − 2XiXn + X

2
n)

n − 1
.

Because
n∑

i=1
XiXn = Xn

n∑
i=1

Xi = nX
2
n ,
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where the last equality holds from the definition of Xn, it follows that

S2
n =

∑n
i=1 X2

i − 2nX
2
n + nX

2
n

n − 1
= n

n − 1

{
1
n

n∑
i=1

X2
i − X

2
n

}
.

Obviously, n/(n − 1) → 1 when n converges to infinity,
∑n

i=1 X2
i /n → σ2 + µ2,

and X
2
n → µ2. Therefore

S2
n → 1 × (σ2 + µ2 − µ2) = σ2 .

It follows that Sn → σ, that is, the empirical standard deviation converges to
the theoretical standard deviation.

9.2.4 Unbiased and convergent estimators

It is important to understand the difference between unbiased and convergent
estimators. Both are desirable properties, but they represent different charac-
teristics of statistics. We have seen both definitions before, but it is useful to see
them again, side by side. First, recall that every function of the data is called
a statistic, or an estimator. If X are the data and θ is a parameter of interest,
then we say that an estimator θ̂(X) is unbiased for θ if E{θ̂(X)} = θ. Note
that for unbiased estimators we do not need a sequence of estimators, we just
need the data. In contrast, if Xn is a vector of data that increases with n and
θ̂n(X) is a sequence of estimators that depend on n, then we say that θ̂n(X)
converges to θ if it converges in probability to θ. In practice, many sequences of
estimators are both unbiased and convergent to the true target. For example,
the sample mean is unbiased for the mean, E(Xn) = µ, and converges to the
target, Xn → µ in probability. However, this is not the case for all sequences.

Indeed, consider the sequence of iid random variables X1, . . . , Xn with mean µ.
Then Xn is unbiased for µ, E(Xn) = µ, but it does not converge in probability
to µ because Xn is a random variable. This provides a sequence of estimators
that are unbiased but not convergent. However, Xn + 1/n is a biased estimator
for the mean, E(Xn + 1/n) = µ + 1/n, with a bias equal to 1/n, but converges
in probability to µ. This is an example of a sequence of estimators that are
biased but convergent.

The LLN basically states that the sample mean is consistent and we also showed
that the sample variance and the sample standard deviation are consistent, as
well. Recall that the sample mean and the sample variance are unbiased, though
the sample standard deviation is biased.

9.3 Central Limit Theorem (CLT)

The Central Limit Theorem (CLT) is one of the most important theorems
in statistics. For our purposes, the CLT states that the distribution of averages
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of iid variables, properly normalized, becomes that of a standard Normal as
the sample size increases. Just like any other limit results, the applicability of
this result is that for a large enough sample size a potentially very complicated
distribution can be very well approximated by a Normal. The CLT applies in
an endless variety of settings.

9.3.1 Convergence in distribution of random variables

Consider a sequence of rvs Xn, n ≥ 1. We say that Xn converges in distribution
to X if

P (Xn ≤ x) = Fn(x) −→
n

F (x) = P (X ≤ x) ,

for every x. This is sometimes referred to as the weak convergence of random
variables. This is useful in practice because cdfs are used to calculate proba-
bilities, the cdfs Fn(x) may be intractable or difficult to work with, and F (x)
is simple and provides a good approximation for Fn(x) starting from a large
enough n. The weak convergence of random variables is, in fact, the pointwise
convergence of functions from calculus, where the functions are the cdfs of the
random variables. That is why biostatisticians call it “weak.” Consider, again,
a sequence of iid variables X1, . . . , Xn and note that, by definition the cdfs of
this random variables are all equal FX1(x) = . . . = FXn(x) for every x and for
every n. Thus, the sequence converges weakly to either random variable in the
sequence, say X1. However, the sequence is not convergent in probability. It
can be shown that convergence in probability of a series of random variables
implies convergence in distribution, but we won’t be providing the proof here,
as it is fairly technical. (Students who are interested can build on this text with
more advanced work in probability theory.)

9.3.2 CLT formulation

Given X1, X2, . . . a sequence of iid random variables with mean µ and variance
σ2 then

lim
n→∞

P

(
X̄n − µ

σ/
√

n
≤ z

)
= Φ(z) ,

for every real z, where Φ(z) is the cdf of a N(0, 1) distribution. This approxi-
mation is called the Central Limit Theorem (CLT) and it is often used to ap-
proximate the distribution of X̄n when the number of samples, n, is relatively
large and the distribution of X̄n is complicated. The random variable

Zn = X̄n − µ

σ/
√

n
=

√
n(X̄n − µ)

σ

is referred to as the z-score of the mean random variable X̄n.
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The random variable Zn = X̄n−µ
σ/

√
n

is a transformation of the sample average
X̄n that has mean zero (centered) and variance one (standardized). This type
of transformation is widely spread in science to transform measurements to
the same scale (note that Zn is unitless) where they can be compared. The
transformation is sometimes referred to as z-scoring. The CLT states that Zn

converges in distribution to Z ∼ N(0, 1). The CLT essentially says that, as n
increases, the distribution of the z-score Zn becomes indistinguishable from the
N(0, 1) distribution. This can be used to construct confidence intervals for the
true mean of the distribution.

In general, z-scoring means that we subtract the mean and divide by the stan-
dard deviation of the random variable. In this case the random variable is Xn

whose mean is µ and standard deviation is σ/
√

n. In practice, z-scoring is not
limited to means and it can be applied to any random variable.

9.3.3 Example: the exponential distribution

We conduct some simulations in R to provide a better idea about exactly how
CLT is working. Consider an independent random sample X1, X2, . . . from an
exp(1) distribution. The mean of this distribution is µ = 1 and the variance
is also σ2 = 1. Thus the standardized mean is Zn = (X̄n − 1)/(1/

√
n) =√

n(X̄n −1). We would like to see how the distribution of the mean of three and
thirty realizations from such a distribution behave. Below we simulate 1000
times independent random variables from an exp(1). For each simulation we
simulate two vectors of mutually independent random variables, one of length
3 and one of length 30. For each vector we calculate its mean, resulting in
two vectors of length 1000: one of means of three and one of means of thirty
independent random variables with exp(1) distribution.
#Set a grid to evaluate the exp(1) distribution
xh=seq(0,5,length=101)
#Calculate the pdf of the exp(1) distribution
he=dexp(xh,rate=1)

#Set the two sample sizes, $n=3$ and $n=30$
n=c(3,30)
#Matrix for storing the 1000 means for each n
mx=matrix(rep(0,2000),ncol=2)
for (i in 1:1000)

{#begin simulations
#Calculate the mean of 3 independent exp(1)
mx[i,1]=mean(rexp(n[1], rate = 1))
#Calculate the mean of 30 independent exp(1)
mx[i,2]=mean(rexp(n[2], rate = 1))
}#end simulations
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Figure 9.4: Histograms of 1000 means of three (light blue) and thirty (light red)
independent random variables with exp(1) distribution. The original pdf of the
exp(1) distribution is shown as a solid blue line.

Figure 9.4 displays the histograms of these two 1000-dimensional vectors. The
histohram corresponding to the mean of three random variables with an exp(1)
distribution is shown in light blue, while the one corresponding to the mean
of thirty random variables with an exp(1) distribution is shown in light blue.
Here we used transparent colors to overplot histograms and add=T to add new
features to existent plots. The original pdf of the exp(1) distribution is shown
as a solid blue line.
plot(xh,he,type="l",col="blue",lwd=3,ylim=c(0,2.5),

xlab="Survival time",ylab="Density")
hist(mx[,1],prob=T,add=T,col=rgb(0,0,1,1/4),breaks=25)
hist(mx[,2],prob=T,add=T,col=rgb(1,0,0,1/4),breaks=25)

The distribution of the mean looks closer to being bell-shaped than the shape of
the original exp(1) distribution (shown as blue line), which is highly skewed. For
n = 3 the distribution of the means starts to have a shape closer to the Normal
than to the original exponential and for n = 30 the distribution of the means is
quite symmetric and relatively bell-shaped. This illustrates that convergence in
this case is quite rapid, even though the shape of the original distribution was
relatively far from a Normal.

Instead of the means we could have plotted the z-scores directly. Below we show
the distribution of the z-scores relative to the theoretical density of a N(0, 1)
distribution. Figure 9.5 displays these two histograms together with the pdf of
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Figure 9.5: Histograms of 1000 z-scored means of three (light blue) and thirty
(light red) independent random variables with exp(1) distribution. The N(0, 1)
distribution is shown as a solid blue line.

the N(0, 1) distribution indicating just how close these distributions are even
after taking the mean of a few iid variables. Again, just like limits are used to
approximate series of numbers the Normal distribution (solid blue line) is used
to approximate the distribution of means of random variables (the light red and
blue histograms).
#Set a grid to evaluate the N(0,1) distribution
xx=seq(-3,3,length=101)
#Evaluate the pdf of the N(0,1) distribution
yx=dnorm(xx)

#Matrix to store the z-scores
zx=mx
for (j in 1:2)

#Calculate the z-scores for the means
{zx[,j]<-sqrt(n[j])*(mx[,j]-1)}

plot(xx,yx,type="l",col="blue",lwd=3,ylim=c(0,0.6),
xlab="Survival time",ylab="Density")

hist(zx[,1],prob=T,add=T,col=rgb(0,0,1,1/4),breaks=50)
hist(zx[,2],prob=T,add=T,col=rgb(1,0,0,1/4),breaks=50)



324CHAPTER 9. APPROXIMATION RESULTS AND CONFIDENCE INTERVALS

9.3.4 Example: Bernoulli distribution

We now show the CLT for coin flipping using different types of coins and numbers
of flips. Assume that we have n independent Bernoulli(p) trials X1, . . . , Xn. The
estimated probability of success p̂n = X̄n can take values 0/n, 1/n, . . . , n/n with
probability

P

(
p̂n = k

n

)
=
(

n

k

)
pk(1 − p)n−k .

This is true because

P

(
p̂n = k

n

)
= P (np̂n = k) = P

(
n∑

i=1
Xi = k

)
,

and
∑n

i=1 Xi is a Binomial random variable with probability of success p out of
n trials. Since E[p̂n] = p and Var[p̂n] = p(1−p)

n it follows that the z-score for p̂n

is
Zn = p̂n − p√

p(1 − p)/n
=

√
n(p̂n − p)√
p(1 − p)

.

Given the values that can be taken by p̂n, Zn takes the values
√

n(k/n−p)√
p(1−p)

with

probability
(

n
k

)
pk(1 − p)n−k. The values that Zn can take cover the entire real

line with a dense grid as n → ∞. This case is particularly interesting, because
the Zn is a discrete variable that can take n + 1 values. The CLT indicates that
the discrete distribution of Zn is well approximated by the continuous N(0, 1)
distribution.

Figure 9.6 displays the exact distribution of the Zn random variable for different
values of n and p. Clockwise, panels show the distribution for n = 5, 10,
20, and 50. In each panel we display four distributions, one corresponding to
the N(0, 1) distribution (blue), and three corresponding to the z-score of the
Binomial distribution with different values of p: p = 0.5 (red), p = 0.3 (orange),
and p = 0.1 (violet). The panels indicate just how fast the distribution of Zn is
approximated by a N(0, 1). Indeed, even for n = 10 and p = 0.5 or 0.3 the pmfs
of Zn are hard to distinguish from the N(0, 1). It takes a little longer for the
approximation to work very well for p = 0.1 because the distribution of Zn is
more skewed and it takes longer for the variable to even take values below −2.
However, by n = 50 all approximations are excellent. This is one of the possible
illustrations of the CLT and should provide a clear idea about the quality of the
approximation of the Binomial distribution by the Normal. A reasonable rule
of thumb for the approximation to work well is that np ≥ 10, though these plots
indicate that for the range of values considered here the rule of thumb could be
relaxed to np ≥ 5.
#Set the value of the number of samples
nv=c(5,10,20,50)
#Set the parameters for plotting multiple panels
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par(mfrow = c(2, 2),mai = c(0.4, 0.7, 0.2, 0.2))
#Set the grid for the Normal distribution
xx=seq(-3,3,length=101)
yx=dnorm(xx)

for (l in 1:length(nv))
{#begin loop over sample sizes
n=nv[l]
#Set the value of the sample size
plot(xx,yx,type="l",col="blue",lwd=3,xlab="Z-score",

ylab=paste("n=",n),cex.lab=1.5,cex.axis=1.5,
col.axis="blue",ylim=c(0,0.45))

#Values taken by the sum of independent Bernoulli random variables
k=0:n
#Set the probability vector
p=c(0.5,0.3,0.1)
#Matrix of values that can be taken by the z-scores
values=matrix(rep(0,(n+1)*3),ncol=3)
#Matrix of probabilities for the z-scores
pr=values
for (i in 1:length(p))

{#begin looping over probabilities
#Calculate the z-store values
values[,i]=sqrt(n)*(k/n-p[i])/sqrt(p[i]*(1-p[i]))
#Calculate the z-score probabilities
pr[,i]=dbinom(k,n,prob=p[i])/(values[2,i]-values[1,i])

}#end looping over probabilities

lines(values[,1],pr[,1],lwd=3,col="red")
lines(values[,2],pr[,2],lwd=3,col="orange")
lines(values[,3],pr[,3],lwd=3,col="violet")

}#end loop over sample sizes

9.4 Confidence intervals

One of the most important applications of the CLT in practice is to construct
confidence intervals. Indeed,

P

(
Xn − µ

σ/
√

n
≤ z

)
≈ Φ(z) .
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Figure 9.6: Exact distributions of the z-scored Binomial(n, p) for different values
of the success probability, p: p = 0.5 (red), p = 0.3 (orange), and p = 0.1
(violet). Each panel corresponds to a different number of trials, n, corresponding
clockwise to n = 5, 10, 20, and 50. The pdf of the N(0, 1) distribution is shown
in blue.
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Recall that 1.96 is a good approximation to the 0.975 quantile of the standard
Normal indicating that

.95 ≈ P

(
−1.96 ≤ Xn − µ

σ/
√

n
≤ 1.96

)
= P

(
Xn − 1.96 σ√

n
≤ µ ≤ Xn + 1.96 σ√

n

)
.

The last equality indicates that the random interval Xn ± 1.96σ/
√

n contains
the true parameter µ, with probability close to 0.95. This is called the 95% con-
fidence interval for the true value of the parameter, µ. The approximation holds
for any distribution of the original data and it is better with increased sample
size. In terms of interpretation, recall that we interpret a random variable as
the outcome of the experiment before the experiment is being run. Therefore,
the interpretation of the confidence interval is that in repeated experiments 95%
of the confidence intervals constructed from the observed data will contain the
true parameter. For any individual experiment there is no guarantee whether
or not the calculated confidence interval covers the true parameter. In fact, it
makes no sense to calculate the confidence interval based on the data and assign
a probability of covering the true value of the parameter. Indeed, after running
the experiment the realization of the confidence interval is purely deterministic
and it either covers or does not cover the true value of the parameter, which is
also fixed.

Both in Statistics and sciences there is criticism of the frequentist interpretation
of confidence intervals. It is worth mentioning that both alternatives, Bayesian
and likelihood/evidence based, produce practically the same results and they
differ only in their interpretation of these identical results. We consider that the
criticism is unwarranted as the interpretation simply requires one to understand
the difference between a random variable and its realization in an experiment.
If one is not comfortable with that we suggest revisiting earlier chapters of
the book or switching to a book that does not require understanding of the
fundamental principles in biostatistics. We repeat that we did not promise this
would be easy, just that we would do our best to explain hard to understand
concepts.

9.4.1 Slutsky’s theorem

While this confidence interval is extremely useful, its utility is quite limited by
the fact that, in practice, we do not know what σ is. Therefore, we would like
to replace σ by the empirical standard deviation, Sn. The reason is that once
the data are collected we can replace σ by the realization of Sn, sn. Slutsky’s
theorem allows us to do that.

Slutsky’s theorem states that if Xn and Yn are random sequences, such that Xn

converges in distribution to X and Yn converges in probability to a constant c
then

a. Xn + Yn converges in distribution to X + c
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b. XnYn converges in distribution to Xc
c. Xn/Yn converges in probability to X/c

We know already that Zn =
√

n(Xn − µ)/σ converges in distribution to Z ∼
N(0, 1) and that Sn/σ converges in probability to 1. It follows that Zn/(Sn/σ) =
σZn/Sn converges in distribution to Z. Therefore,

σZn/Sn = Xn − µ

Sn/
√

n

converges weakly to Z. Using the same exact technique used above it follows
that Xn ±1.96Sn/

√
n is an approximate 95% confidence interval for the mean µ.

This interval is more practical than the one obtained directly from CLT because
it does not contain unknown parameters.

9.4.2 Example: sample proportions

In the event that each Xi is 0 or 1 with common success probability p, then
σ2 = p(1 − p). The 100(1 − α)% confidence interval for the true mean p takes
the form

p̂ ± z1−α/2

√
p(1 − p)

n
.

However, since p is unknown this confidence interval cannot be calculated once
data are collected. Replacing p by p̂ in the standard error results in what is
called a Wald confidence interval for p

p̂ ± z1−α/2

√
p̂(1 − p̂)

n
.

It can also be shown that p(1 − p) ≤ 1/4 for 0 ≤ p ≤ 1, which shows that

p̂ ±
z1−α/2

2
√

n
,

is an asymptotically conservative 100(1 − α)% confidence interval. Here asymp-
totically conservative means that for large enough n the probability that this
interval contains the true mean is at least 1 − α. In the case when α = 0.05
z1−α/2 = 1.96 and z1−α/2/2 ≈ 1 the interval becomes

p̂ ± 1√
n

.

Now, let us revisit our HIV testing example and inspect what happens with the
confidence intervals as a function of number of subjects sampled. Figure 9.7
displays a realization of X̄n − 0.5 (red solid line), where X̄n is the mean of the
first n independent Bernoulli(0.5) random variables. The shaded area around
the red solid line are the 95% Wald confidence intervals for µ − 0.5 instead of µ
to keep the plotting consistent.
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Figure 9.7: A realization of X̄n − 0.5 (red solid line), where X̄n is the mean of
the first n independent Bernoulli(0.5) random variables together with the 95%
confidence intervals as a function of the number of individuals sampled, n.

plot(1:100,xbar1-0.5,type="l",col=rgb(1,0,0,alpha=0.5),lwd=3,
xlab="Number of subjects sampled",ylab="Distance to the mean",
cex.lab=1.5,cex.axis=1.5,col.axis="blue",ylim=c(-1,1))

n=1:100
lower_limit=pmax(xbar1-0.5-1.96*sqrt(xbar1*(1-xbar1)/n),-1)
upper_limit=pmin(xbar1-0.5+1.96*sqrt(xbar1*(1-xbar1)/n),1)
lines(1:100,rep(0,100),lwd=3)
xn<-c(n,n[100:1])
yn<-c(lower_limit,upper_limit[100:1])
polygon(xn,yn,col=rgb(1,0,0,0.2),border=NA)

It is worth noting that the Wald confidence interval has a very strange behavior
for n = 1 because p̂1(1 − p̂1) = 0. Indeed, in this case the length of the
confidence interval is 0. The interval p̂ ± 1/

√
n does not behave much better,

as the interval is always [0, 1]. Indeed, there is not much that one can do in
this situation, though an interval of the form p̂ ±

√
0.5(1 − 0.5) = p̂ ± 0.5 will

not have the exact coverage probability, but at least it will be less silly than
the previous two confidence intervals. For n = 1 we suggest not to construct
confidence intervals. For n > 1 the confidence intervals make more sense and
they tend to cover 0 (recall that we are focusing on p̂−0.5, which is an estimator
of 0). We would like to know exactly what confidence intervals do not cover 0.
This can only happen if the lower_limit vector is above 0 or the upper_limit
is below 0. The R code below identifies the exact sample sizes for which the



330CHAPTER 9. APPROXIMATION RESULTS AND CONFIDENCE INTERVALS

confidence intervals do not cover 0.
index_no_covering<-((lower_limit>0) | (upper_limit<0))
n[index_no_covering]

[1] 1 6 59 61 62 64 66

Clearly n = 1 should not be a surprise, as the confidence interval has length 0
and the case can simply be excluded. When n = 6 the confidence interval also
does not cover zero, which is visible in the plot. This happened because the first
6 observations were
x1[1:6]

[1] 1 0 1 1 1 1

indicating that 5 out of the first 6 individuals tested for HIV were HIV positive.
This number is unusualy high if the true proportion of individuals who are HIV
positive in the target high risk population is 0.5. As the number of samples
continues to increase, the estimated proportion converges to the target, though
the convergence is a little slow. There is an additional cluster of sample sizes, 59,
61, 62, 64, and 66, for which the confidence interval does not cover 0, though the
lower limit is very close to 0 for all these intervals. Again, this happened due to
an unusually long run of HIV positive patients who were sequentially identified.
The fact that 6 out of 99 confidence intervals do not cover 0 should not be
surprising, as these are 95% confidence intervals. However, this interpretation is
not perfect here, as the confidence intervals are highly correlated. Indeed, if the
confidence interval for one n does not contain 0 then the confidence intervals for
its neighbors are more likely not to contain 0. This is precisely what happened
with the cluster of sample sizes that produced confidence intervals that do not
cover 0. The correct interpretation is that at n = 59 this study was one of the
unlucky ones, but if we continue to conduct additional studies then 95% of these
studies will produce confidence intervals that cover 0 at n = 59.

Another important characteristic is that the confidence intervals decrease in
length as the sample size increase. This should not be surprising, as the length
of the confidence intervals is ≈ 4

√
p̂n(1 − p̂n)/n, which decreases at the rate

of
√

n. As we discussed earlier, the CLT, which provides the basis for calculat-
ing the confidence intervals, controls how far the realization of the estimators
should be from the true target. This is a general characteristic of confidence
intervals, indicating that the length of confidence intervals decreases slowly with
the sample size. For example, one needs four times as much data to obtain a
confidence interval that has half the length.

Yet another important characteristic of confidence intervals is that they are
random, that is, they depend on the specific data that one acquires. Figure 9.8
presents results for another experiment with the same exact characteristics as
the one used in Figure 9.7. The confidence intervals for the second study look
quite different from the ones from the first experiment.
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Figure 9.8: A realization of X̄n − 0.5 (blue solid line), where X̄n is the mean of
the first n independent Bernoulli(0.5) random variables together with the 95%
confidence intervals as a function of the number of individuals sampled, n.

This happens because the data are different, the point estimators are different,
and the length of the confidence intervals is different, though the last is not
obvious by visual inspection of the plots. Note that in this study both for n = 6
and n = 59 the confidence intervals cover 0.

Biostatisticians have not invented confidence intervals and their interpretation
to make students suffer. Instead, they were built to: (1) capture the natural
variability that appears in data collected by different studies even when the
study protocols and data collection protocols are identical; (2) provide gener-
alizable information to the population and about other studies that could be
conducted by only conducting one study; and (3) quantify how close or far from
the target of estimation one can be in finite samples, which are the norm in
realistic scenarios.

In this chapter we have learned about LLN and CLT, which, in spite of the
assumptions, have withstood the test of time, billions of simulation scenarios,
and scientific applications. One still has to be careful with the implied properties
in finite, small samples, but the power of these results is truly enormous. We
would like to finish with a simple example about the power of these results.

Consider that you have a truly large dataset with billions of subjects and tens of
thousands of variables. Even storing such a dataset is daunting, not to mention
analyzing it in any depth. The results here suggest a simple workaround. Define
a parameter of interest, subsample 100000 subjects from the population, run a
quick analysis, and adjust the length of the confidence intervals from n = 100000
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to the true N in the population. This simple trick can save enormous amounts
of time, resources, and debate about best algorithms for handling big data.
Beating subsampling in the era of big data is hard.

9.5 Problems

Problem 1. Suppose that 400 observations are drawn at random from a distri-
bution with mean 0 and standard deviation 40.

a. What is the approximate probability of getting a sample mean larger than
3.5?

b. Was normality of the underlying distribution required for this calculation?

Problem 2. Recall that R function runif generates (by default) random uni-
form variables that have means 1/2 and variance 1/12.

a. Sample 1000 observations from this distribution. Take the sample mean
and sample variance. What numbers should these estimate and why?

b. Retain the same 1000 observations from part a. Plot the sequential sam-
ple means by observation number. Hint: if x is a vector containing the
simulated uniforms, then the code

y <- cumsum(x) / (1 : length(x))

will create a vector of the sequential sample means. Explain the resulting plot.

c. Plot a histogram of the 1000 numbers. Does it look like a uniform density?
d. Now sample 1000 sample means from this distribution, each calculated for

100 observations. What numbers should the average and variance of these
1000 numbers be equal to and why? Hint: the command

x <- matrix(runif(1000 * 100), nrow = 1000)

creates a matrix of size 1000 × 100 filled with random uniforms. The command
y<-apply(x,1,mean)

takes the sample mean of each row.

e. Plot a histogram of the 1000 sample means appropriately normalized.
What does it look like and why?

f. Now obtain 1000 sample variances from this distribution, each based on
100 observations. Take the average of these 1000 variances. What property
does this illustrate and why?

Problem 3. Note that R function rexp generates random exponential variables.
The exponential distribution with rate 1 (the default) has a theoretical mean of
1 and variance of 1.
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a. Sample 1000 observations from this distribution. Take the sample mean
and sample variance. What numbers should these estimate and why?

b. Retain the same 1000 observations from part a. Plot the sequential sample
means by observation number. Explain the resulting plot.

c. Plot a histogram of the 1000 numbers. Does it look like an exponential
density?

d. Now sample 1000 sample means from this distribution, each based on
100 samples from the exponential distribution. What numbers should the
average and variance of these 1000 numbers approximate and why?

e. Plot a histogram of the 1000 sample means appropriately normalized.
What does it look like and why?

f. Now sample 1000 sample variances from this distribution, each comprised
of 100 observations. Take the average of these 1000 variances. What
property does this illustrate and why?

Problem 4. Consider the distribution of a fair coin flip (i.e. a random variable
that takes the values 0 and 1 with probability 1/2 each.

a. Sample 1000 observations from this distribution. Take the sample mean
and sample variance. What numbers should these estimate and why?

b. Retain the same 1000 observations from part a. Plot the sequential sample
means by observation number. Explain the resulting plot.

c. Plot a histogram of the 1000 numbers. Does it look like it places equal
probability on 0 and 1?

d. Now sample 1000 sample means from this distribution, each based on 100
observations. What numbers should the average and variance of these
1000 numbers be equal to and why?

e. Plot a histogram of the 1000 sample means appropriately normalized.
What does it look like and why?

f. Now sample 1000 sample variances from this distribution, each based on
100 observations. Take the average of these 1000 variances. What property
does this illustrate and why?

Problem 5. Consider a density for the proportion of a person’s body that is
covered in freckles, X, given by f(x) = cx for 0 ≤ x ≤ 1 and some constant c.

a. What value of c makes this function a valid density?
b. What is the mean and variance of this density?
c. You simulated 100000 sample means, each based on 100 draws from this

density. You then took the variance of those 100000 numbers. Approxi-
mately what number did you obtain?

Problem 6. You need to calculate the probability that a standard Normal is
larger than 2.20, but have nothing available other than a regular coin. Describe
how you could estimate this probability using only your coin. (Do not actually
carry out the experiment, just describe how you would do it.)

Problem 7. The density for the population of increases in wages for assistant
professors being promoted to associates (1 = no increase, 2 = salary has doubled)
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is uniform on the range from 1 to 2.

a. What is the mean and variance of this density?
b. Suppose that the sample variance of 10 observations from this density was

sampled, say 10000 times. What number would we expect the average
value from these 10000 variances to be near? Briefly explain your answer
briefly.

Problem 8. Suppose that the US intelligence quotients (IQs) are normally
distributed with mean 100 and standard deviation 16.

a. What IQ score represents the 5th percentile? Explain your calculation.
b. Consider the previous question. Note that 116 is the 84th percentile from

this distribution. Suppose now that 1000 subjects are drawn at random
from this population. Use the central limit theorem to write the probabil-
ity that less than 82% of the sample has an IQ below 116 as a standard
Normal probability. Note, you do not need to solve for the final number.
Show your work.

c. Consider the previous two questions. Suppose now that a sample of 100
subjects is drawn from a new population and that 60 of the sampled
subjects had an IQ below 116. Give a 95% confidence interval estimate of
the true probability of drawing a subject from this population with an IQ
below 116. Does this proportion appear to be different than the 84% for
the population from questions 1 and 2?

Problem 9. You desperately need to simulate standard Normal random vari-
ables yet do not have a computer available. You do, however, have 10 standard
six-sided dice. Knowing that the mean of a single die roll is 3.5 and the standard
deviation is 1.71, describe how you could use the dice to approximately simulate
standard Normal random variables. Be precise.

Problem 10. Consider three sample variances, S2
1 , S2

2 and S2
3 . Suppose that

the sample variances obtained from iid samples of size n1, n2 and n3 from
Normal populations N(µ1, σ2), N(µ2, σ2) and N(µ3, σ2), respectively. Argue
that

(n1 − 1)S2
1 + (n2 − 1)S2

2 + (n3 − 1)S2
3

n1 + n2 + n3 − 3

is an unbiased estimate of σ2.

Problem 11. You need to calculate the probability that a normally distributed
random variable is less than 1.25 standard deviations below the mean. However,
you only have an oddly shaped coin with a known probability of heads of 0.6. De-
scribe how you could estimate this probability using this coin. (Do not actually
carry out the experiment, just describe how you would do it.)

Problem 12. The next three questions (a., b., c.) deal with the following
setting. Forced expiratory volume, FEV1, is a measure of lung function that
is often expressed as a proportion of lung capacity called forced vital capacity,
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FVC. Suppose that the population distribution of FEV1/FV C of asthmatic
adults in the US has mean of 0.55 and standard deviation of 0.10.

a. Suppose that a random sample of 100 people is drawn from this population.
What is the probability that their average FEV1/FV C is larger than
0.565?

b. Suppose that the population of non-asthmatic adults in the US have a
mean FEV1/FV C of 0.8 and a standard deviation of 0.05. You sample
100 people from the asthmatic population and 100 people from the non-
asthmatic population and take the difference in sample means. You re-
peat this process 10000 times to obtain 10000 differences in sample means.
What would you guess the mean and standard deviation of these 10000
numbers would be?

c. Moderate or severe lung dysfunction is defined as FEV1/FV C ≤ 0.40. A
colleague tells you that 60% of asthmatics in the US have moderate or
severe lung dysfunction. To verify this you take a random sample of five
subjects, only one of which has moderate or severe lung dysfunction. What
is the probability of obtaining only one or fewer if your friend’s assertion
is correct? What does your result suggest about your friend’s assertion?

Problem 13. A special study is conducted to test the hypothesis that persons
with glaucoma have higher blood pressure than average. Two hundred subjects
with glaucoma are recruited with a sample mean systolic blood pressure of
140mm and a sample standard deviation of 25mm. (Do not use a computer for
this problem.)

a. Construct a 95% confidence interval for the mean systolic blood pressure
among persons with glaucoma. Do you need to assume normality? Ex-
plain.

b. If the average systolic blood pressure for persons without glaucoma of
comparable age is 130mm. Is there statistical evidence that the blood
pressure is elevated?

Problem 14. Consider the previous question. Make a probabilistic argument
that the interval [

X̄ − z.95
s√
n

, ∞
]

is a 95% lower bound for µ.

Problem 15. Suppose that we wish to estimate the concentration µg/ml of
a specific dose of ampicillin in urine. We recruit 25 volunteers and find that
they have a sample mean concentration of 7.0 µg/ml with sample standard
deviation 3.0 µg/ml. Let us assume that the underlying population distribution
of concentrations is normally distributed.

a. Find a 90% confidence interval for the population mean concentration.
b. How large a sample would be needed to insure that the length of the

confidence interval is 0.5 µg/ml if it is assumed that the sample standard
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deviation remains at 3.0 µg/ml?



Chapter 10

The χ2 and t distributions

This chapter covers the following topics

• The χ2 distribution
• Confidence intervals for the variance of a Normal
• Student’s t distribution
• Confidence intervals for Normal means

Previously, we discussed creating a confidence interval using the CLT. That
confidence interval ended up using the empirical standard deviation instead of
the often unknown true standard deviation. Slutsky’s theorem allowed us to do
this replacement, though the price paid is that the approximation holds only
asymptotically. In many applications, the number of samples is small to moder-
ate, which may raise questions about how good this asymptotic approximation
actually is. Now we discuss the creation of better confidence intervals for small
samples using Gosset’s t distribution, which is the finite sample distribution for
the t-statistic when the observations are independent Normal. For completeness,
if X1, . . . , Xn are iid random variables then the t-statistic is defined as

tn = Xn − µ

Sn/
√

n
.

Here Xn and S2
n are the empirical mean and variance of the observations, re-

spectively.

To discuss the t distribution we must discuss the χ2 (Chi-squared or, phoneti-
cally, kai-squared) distribution. Throughout we use the following general proce-
dure for creating confidence intervals: (a) create a pivot: a function of data and
parameters whose distribution does not depend on the parameter of interest; (b)
calculate the probability that the pivot lies in a particular interval; and (c) re-
express the confidence interval in terms of (random) bounds on the parameter
of interest.

337
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10.1 The χ2 distribution

If X1, . . . , Xn are independent N(0, 1) random variables then

Vn =
n∑

i=1
X2

i

has a Chi-squared distribution with n degrees of freedom and we denote Vn ∼ χ2
n.

The Chi-squared distribution is skewed and has support (0, ∞). We will show
that the mean of the Chi-squared is its degrees of freedom and its variance is
twice the degrees of freedom. That is, E(Vn) = n and Var(Vn) = 2n.

We first derive the distribution of a χ2
1 random variable. If X ∼ N(0, 1) then

V = X2 ∼ χ2
1 .

Denote by Φ(x) = P (X ≤ x) the cdf of the standard Normal distribution. If
FV (v) = P (V ≤ v) denotes the cdf of the χ2

1 random variable, then we have

FV (v) = P (X2 ≤ v) = P (−
√

v ≤ X ≤
√

v) = Φ(
√

v) − Φ(−
√

v) = 2Φ(
√

v) − 1 .

The second equality holds because X2 ≤ v if and only if −
√

v ≤ X ≤
√

v,
the third equality holds because [−∞,

√
v] = (−∞, −

√
v) ∪ [−

√
v,

√
v] and

(−∞, −
√

v) ∩ [−
√

v,
√

v] = ∅, and the fourth inequality holds because of the
symmetry of the Normal distribution, which ensures that Φ(−

√
v) = 1−Φ(

√
v).

Recall that the pdf of a N(0, 1) is

ϕ(x) = Φ′(x) = 1√
2π

e− x2
2 .

Therefore, the pdf of the χ2
1 distribution is

fV (v) = F ′
V (v) = ∂

∂v
{2Φ(

√
v) − 1} = 2 ∂

∂v
(
√

v)Φ′(
√

v) .

Because ∂/∂v(
√

v) = 1/(2
√

v) and

Φ′(
√

v) = 1√
2π

e− v
2

it follows that

fV (v) = 2 1
2
√

v

1√
2π

e− v
2 = 1√

2π
v1/2−1e− v

2 .

Recall that a Gamma(α, β) distribution has the pdf

fΓ(x) = βα

Γ(α)
xα−1e−xβ ,
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where Γ(α) =
∫∞

0 xα−1e−xdx for every α > 0. Inspecting the two distributions
we can see that the χ2

1 distribution is a Gamma(1/2, 1/2) distribution. Indeed,
both pdfs have to integrate to 1, which should make the two Normalizing con-
stants equal, as well. That is

1/21/2

Γ(1/2)
= 1√

2π

indicating that Γ(1/2) =
√

π. This result can be obtained directly by com-
putations, as well, but here we show a particularly simple solution. We know
that the mean of a Gamma(α, β) distribution is α/β and the variance is α/β2.
Therefore E(V ) = 0.5/0.5 = 1 and Var(V ) = 0.5/0.52 = 2. Hence, for Vn ∼ χ2

n

we have

E(Vn) =
n∑

i=1
E(X2

i ) = n

and

E(Vn) =
n∑

i=1
Var(X2

i ) = 2n .

It can be shown that
Vn ∼ Gamma

(
n

2
,

1
2

)
,

though the proof exceeds the level of detail and does not meet the importance
criteria we set for proofs in this book. This result can be shown as a particular
case of the result that if X1, . . . , Xn are independent Gamma(α, β) random
variables then

n∑
i=1

Xi ∼ Gamma(nα, β) .

10.1.1 Pdfs of χ2 distributions

Figure 10.1 displays the pdf for four different χ2 distributions. The χ2
1 pdf is

displayed as a blue solid line indicating that the distribution is heavily skewed
with limv↓0 fV (v) = ∞. While the pdf has an infinite limit at 0 it does integrate
to 1. The pdf of the χ2

2 is fV (v) = 0.5 exp −x/2, which is the exponential
distribution with mean equal to 2. This distribution is shown in red, has a limit
limv↓0 fV (v) = 0.5 and, just like all other distributions, has a limit equal to 0
at infinity. The pdfs both for the χ2

1 and χ2
2 distributions are decreasing on the

domain (0, ∞). The pdfs of the χ2
3 (violet) and χ2

4 (orange) distributions have
the property fV (v) = 0, which holds true for any value of the number of degrees
of freedom larger than 2. Both the χ2

3 and χ2
4 distributions are heavily skewed

with heavy right tails (tails that decrease slower than the tails of a Normal
distribution).
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Figure 10.1: Pdfs of the χ2
1 (blue), χ2

2 (red), χ2
3 (violet) and χ2

4 (orange) distri-
butions.

As the number of degrees of freedom, n, of the χ2
n distribution increases, the

distribution becomes more symmetric and can be very well approximated by
a Normal(n, 2n). This result follows immediately from the CLT applied to
the variables X2

1 , . . . , X2
n, which are iid because X1, . . . , Xn are iid. With this

notation
Vn

n
=
∑n

i=1 X2
i

n
,

and, according to the CLT, the distribution of

Zn = Vn/n − µ

σ/
√

n

can be approximated by the N(0, 1) distribution for large enough n, where
µ = E(X2

1 ) = 1 and σ2 = Var(X2
1 ) = 2. Replacing these values in the formula

above we obtain that the distribution of

Zn = Vn/n − 1√
2/n

= Vn − n√
2n

can be approximated by a N(0, 1). From the properties of the Normal distribu-
tion it follows that the distribution of Vn can be approximated by a N(n.2n)
distribution. Because we know the exact distribution of Vn we can obtain the
distribution of Zn and compare it to that of a N(0, 1). Indeed if FZn

(·) and
FVn

(·) are the cdfs of the Zn and Vn random variables, respectively, then we
have

FZn(z) = P

(
Vn − n√

2n
≤ z

)
= P (Vn ≤ n + z

√
2n) = FVn

(n + z
√

2n) .
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Figure 10.2: Pdfs of the Z-scores for the χ2
10 (red), χ2

25 (violet), and χ2
100 (orange)

compared with the pdf of a N(0, 1) (blue).

Similarly, if fZn
(·) and fVn

(·) are the pdfs of the random variables Zn and Vn,
respectively, then

fZn
(z) = F ′

Zn
(z) = ∂

∂z
FVn

(n + z
√

2n) =
√

2nfVn
(n + z

√
2n) .

Of course, we could obtain an explicit formula for fZn(z) by plugging the corre-
sponding values into the function fVn

(·), which is the Gamma(n/2, 1/2) density.
Instead, we simply use this formula to calculate numerically the pdf of Zn and
plot it against the N(0, 1) density.

Figure 10.1 displays the N(0, 1) pdf in blue and the pdfs of the Zn random
variables for n = 10 (red), n = 25 (violet), and n = 100 (orange) indicating
the improved approximation by the N(0, 1) random variable as n increases. By
n = 100 the distribution of Zn is almost indistinguishable from the N(0, 1),
though it is interesting to observe the tilt of the Zn distributions. They all have
their mode to the left of 0 due to the skew of the Gamma distributions. In the R
code above we hard coded the exact pdfs of the Zn random variables obtained
from the location-scale transformations of the Gamma distribution.

10.1.2 The χ2 distribution in R

The day of the books of statistical tables is over. They have been replaced by
computers, which can provide the information faster, with fewer errors, and al-
low us to avoid carrying two-pound books containing tables of numbers. That’s
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the good news. However, in order to obtain what is needed in practice we need
to understand exactly what we are looking for and how to obtain it. Suppose,
for example, that we are interested in obtaining an interval that contains 95%
of the probability for the χ2

4 distribution. There are many such intervals, but
here we will focus on the one interval that leaves out equal-tail probabilities. In
R this is simple:
#Set the number of degrees of freedom
df=4
#Set the probability that will be left out
alpha=0.05
#Specify that we need the interval with equal tail probability
interval<-c(alpha/2,1-alpha/2)
#Obtain the equal-tail probability interval
round(qchisq(interval,df),digits=2)

[1] 0.48 11.14

10.2 Confidence intervals for the variance of a
Normal

Suppose that S2
n is the sample variance from a collection of iid N(µ, σ2) data.

We will show that

(n − 1)S2
n

σ2 ∼ χ2
n−1 ,

and we will use this result to construct confidence intervals for the true variance
of N(µ, σ2) distribution. Note that (Xi − µ)/σ ∼ N(0, 1) and are independent
indicating that

n

σ2

n∑
i=1

(Xi − µ)2

n
∼ χ2

n ,

where
∑n

i=1(Xi − µ)2/n is used instead of S2
n. The often used intuition for

explaining the distribution of the S2
n variable is that “one degree of freedom is

lost because µ is replaced by Xn in the formula for the variance.” This is true,
but it does not explain the technical underpinnings of the result. We first use
the result to show how to construct confidence intervals for the variance and
then we provide a detailed proof of the result.
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10.2.1 Deriving and using the confidence intervals for the
variance of a Normal sample

Since (n − 1)S2
n/σ2χ2

n−1, it follows that if χ2
n−1,α is the α quantile of the Chi-

squared distribution, then

1−α = P

(
χ2

n−1,α/2 ≤ (n − 1)S2
n

σ2 ≤ χ2
n−1,1−α/2

)
= P

{
(n − 1)S2

n

χ2
n−1,1−α/2

≤ σ2 ≤ (n − 1)S2
n

χ2
n−1,α/2

}
.

We say that the random interval[
(n − 1)S2

n

χ2
n−1,1−α/2

,
(n − 1)S2

n

χ2
n−1,α/2

]

is a 100(1 − α)% confidence interval for σ2.

Consider an example, where the brain volume for 513 organo-lead manufacturing
workers was measured with an average total brain volume of 1150.315cm3 and
a standard deviation of 105.977cm3. Assuming normality of the underlying
measurements, we would like to calculate a confidence interval for the population
standard deviation in total brain volume. Below we provide the R code to obtain
this result based on the previous results:
#Observed variance
s2 <- 105.977 ^ 2
#Number of subjects
n <- 513
#alpha level
alpha <- .05
#Obtain the quantiles of the chi-square(n-1) distribution
qtiles <- qchisq(c(1 - alpha/2,alpha/2), n - 1)
ival <- (n - 1) * s2 / qtiles
##interval for the sd
round(sqrt(ival),digits=2)

[1] 99.86 112.89

Thus, [99.87, 112.89] is the realization of the confidence interval based on data.
Its interpretation is that in repeated samples of 513 workers the realized confi-
dence intervals will cover the true value of the standard deviation 95% of the
time. The actual interval either covers or does not cover the true value of the
parameter. This interval relies heavily on the assumed normality of the obser-
vations. Also, we obtained the 95% confidence interval by square-rooting the
endpoints of the confidence interval for σ2.
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10.2.2 Likelihood of the σ2 parameter

We know that (n − 1)S2
n/σ2 ∼ Gamma{(n − 1)/2, 1/2} which implies that

S2
n ∼ Gamma

(
n − 1

2
,

n − 1
2σ2

)
.

This can be obtained because if X is a random variable with a Gamma(α, β)
distribution, then Y = aX has a Gamma(α, β/a) distribution. By taking a =
σ2/(n − 1) we obtain the result. Let us prove this result. The cdf of Y is
FY (y) = P (aX ≤ y) = P (X ≤ y/a) = FX(y/a), where FX(·) is the cdf of X.
Therefore the pdf of Y is fY (y) = 1

a fX(y/a), where fX(·) is the pdf of X. By
plugging into the pdf of the Gamma(α, β) distribution we obtain

fY (y) = 1
a

βα

Γ(α)

(y

a

)α−1
e− β

α y = (β/a)α

Γ(α)
yα−1e− β

α y ,

which is the pdf of the Gamma(α, β/a) distribution. The result is useful because
it allows us to plot the likelihood of σ2. We do this for the organo-lead worker
example:
sigmaVals <- seq(90, 120, length = 1000)
likeVals <- dgamma(s2,shape=(n-1)/2,rate=(n-1)/(2*sigmaVals^2))
likeVals <- likeVals / max(likeVals)
plot(sigmaVals, likeVals, type = "l",lwd=3,col="blue",

xlab=expression(paste(sigma^2," parameter")),
ylab="Likelihood",cex.lab=1.3,cex.axis=1.3,
col.axis="blue")

lines(range(sigmaVals[likeVals >= 1 / 8]),
c(1 / 8, 1 / 8),col="red",lwd=3)

lines(range(sigmaVals[likeVals >= 1 / 16]),
c(1 / 16, 1 / 16),col="orange",lwd="3")

Figure 10.3 displays the normalized likelihood (likelihood divided by its maxi-
mum) of σ2 in blue and thresholds at 1/8 (red horizontal line) and 1/16 (orange
horizontal line). The likelihood looks very close to the Normal distribution be-
cause we have 513 organo-lead workers and we already know that for n > 100
the approximation of the associated Gamma distribution by a Normal is ex-
cellent. In this case the results would be indistinguishable from results using
a Normal approximation, though in cases when the number of observations is
small to moderate some differences might actually become visible.

10.2.3 Distribution of the empirical variance of a Normal
sample distribution

At the risk of becoming technical, we outline the proof of the result, the intuition
behind it, and the interesting results obtained along the way. The sketch of the
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Figure 10.3: Normalized likelihood (to ensure that 1 is the maximum likelihood)
of σ2 (blue) when we assume that the n = 513 organo-lead workers brain volume
measurements form an iid N(µ, σ2) random sample. Also shown are thresholds
at 1/8 (red horizontal line) and 1/16 (orange horizontal line).

proof has four important steps, some of which we are proving in detail and some
of which we are skipping. Warning: technical details ahead.

A. The following decomposition holds
n∑

i=1

(Xi − µ)2

σ2 =
n∑

i=1

(Xi − Xn)2

σ2 + n(Xn − µ)2

σ2 = (n − 1)S2
n

σ2 + n(Xn − µ)2

σ2 .

B. We have
∑n

i=1(Xi − µ)2/σ2 ∼ χ2
n and n(X̄n − µ)2/σ2 ∼ χ2

1.

C. The random variables (n − 1)S2
n/σ2 and n(X̄n − µ)2/σ2 are independent.

D. If a variable with a χ2
n distribution can be written as the sum of two indepen-

dent variables, one of which is distributed as a χ2
1 distribution, then the second

variable in the sum has a χ2
n−1 distribution.

Proving “D” is above the technical target of this book and will not be done.
However, the intuition of the proof should be unmistakable. Indeed, the formula
in “A” shows exactly how a random variable with a χ2

n distribution is written
as the sum of two random variables, one of which has a χ2

1 distribution. This
is what is referred in the literature as “losing one degree of freedom.” The
point “C” is a necessary technical point that allows us to subtract the number of
degrees of freedom to obtain n − 1, where n is the number of degrees of freedom
of the variable on the left hand side of the equation and 1 is the number of
degrees of freedom in one of the variables on the right hand side of the equation.
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Independence also allows us to determine that the distribution of (n − 1)S2
n/σ2

is χ2.

We start by proving “A” and observe that we can simply ignore σ2 everywhere.
The idea is to write

Xi − µ = (Xi − Xn) + (Xn − µ) ,

which is obvious by simply adding and subtracting Xn and regrouping. There-
fore,

(Xi − µ)2 = (Xi − Xn)2 + 2(Xi − Xn)(Xn − µ) + (Xn − µ)2 ,

where we simply used the result (a + b)2 = a2 + 2ab + b2 for any a and b.
Therefore,

n∑
i=1

(Xi − µ)2 =
n∑

i=1
(Xi − Xn)2 + 2

n∑
i=1

(Xi − Xn)(Xn − µ) +
n∑

i=1
(Xn − µ)2 .

The first term on the right hand side is, by definition, equal to (n − 1)S2
n, while

the last term is equal to n(Xn − µ)2 because (Xn − µ)2 does not depend on i
and the sum is over n terms. Therefore to prove “A” we need to show only that
the middle term is equal to zero. Again, because (Xn − µ) does not depend on
i we have

n∑
i=1

(Xi−Xn)(Xn−µ) = (Xn−µ)
n∑

i=1
(Xi−Xn) = (Xn−µ){

n∑
i=1

Xi−nXn} = 0 .

The last equality holds by the definition of Xn.

Proving “B” is relatively easy. The first part was already proved in the beginning
of the section. For the second part we will use the following useful result that
we do not prove, but use throughout the book.

Result. If (X1, . . . , Xn) is a multivariate Normal vector, then scalar or vector
linear combinations of the entries of the vector are also Normal. In particular, if
X1, . . . , Xn are iid N(µ, σ2) then (X1, . . . , Xn) is a multivariate Normal random
vector and Xn =

∑n
i=1 Xi/n is a linear combination of the entries of the vector.

Therefore, Xn has a Normal distribution. Because E(Xn) = µ and Var(Xn) =
σ2/n it follows that

Xn ∼ N

(
µ,

σ2

n

)
,

which, by the properties of the Normal distribution, implies that

Xn − µ

σ/
√

n
=

√
n(Xn − µ)

σ
∼ N(0, 1) .

In turn, this implies that
n(Xn − µ)2

σ2 ∼ χ2
1 .
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To prove “C” we apply again the result discussed above. Since (X1, . . . , Xn) is
a multivariate normal random vector then

(Xn, X1 − Xn, . . . , Xn − Xn)

is also a multivariate normal random vector because it is a linear transformation
of the vector (X1, . . . , Xn). Because of this property, in order to prove that Xn

is independent of the vector (X1 − Xn, . . . , Xn − Xn) it is enough to show that
Xn is uncorrelated to any of the entries of the vector. This is a general property
of multivariate Normal random vectors that will not be proved here. While
zero correlation among the entries of a Normal multivariate distribution implies
independence of those entries this is not true in general, as zero correlation does
not imply independence.

Thus, it is enough to show that

Cov(Xn, X1 − Xn) = 0 ,

as the proof for all other entries will be identical. If we prove this result, then
it follows that X̄n is independent of any function of (X1 − X̄n, . . . , Xn − X̄n),
including S2

n and (n − 1)S2
n/σ2. Recall that

Cov(Xn, X1−Xn) = E{Xn(X1−Xn)}−E(Xn)E(X1−Xn) = E{Xn(X1−Xn)} .

The last equality holds because E(X1 − Xn) = E(X1) − E(Xn) = 0. It follows
that the covariance is equal to

E(XnX1)−E{X
2
n} = E(XnX1)−[Var(Xn)+{E(Xn)}2] = E(XnX1)−(σ2/n+µ2) .

Thus, all we need to show is that E(XnX1) = σ2/n + µ2. To obtain this result
we follow the simple rules of algebra:

E(XnX1) = 1
n

n∑
i=1

E(X1Xi) = 1
n

{E(X2
1 )+

n∑
i=2

E(X1Xi)} = 1
n

{E(X2
1 )+

n∑
i=2

E(X1)E(Xi)} .

The first equality holds from the definition of the empirical mean and the basic
rules of expectation, while the second equality is simply splitting the expec-
tations of products to acknowledge that X1 plays a special role. Indeed, the
E(X1Xi) = E(X1)E(Xi) because X1 is independent of Xi for every i = 2, . . . , n.
Because E(Xi) = µ for every i = 1, . . . , n it follows that

E(XnX1) = 1
n

{E(X2
1 ) + (n − 1)µ2} = 1

n
[Var(X1) + {E(X1)}2 + (n − 1)µ2] ,

where, for the last equality we used the equality E(X2
1 ) = Var(X1) + {E(X1)}2.

Since Var(X1) = σ2 and {E(X1)}2 = µ2 we obtain

E(XnX1) = 1
n

[σ2 + µ2 + (n − 1)µ2] = σ2

n
+ µ2 .
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10.2.4 Some implications of the proof

The proof is quite technical, but it also offers a few interesting points. First, the
mean Xn is uncorrelated to the residuals Xi−Xn irrespective to the distribution
of the independent random variables X1, . . . , Xn. This can be used in practice.
Consider, for example, the case when we conduct a replication study to measure
a particular biomarker. Denote by Wij the measurement for subject i = 1, . . . , n
at time j = 1, 2 and let Xi be the true value of the biomarker for subject i. Then
a classical measurement error for replication studies can be written as

Wij = Xi + Uij ,

where Xi and Uij are independent for every i and j and Uij is the measurement
error for subject i at visit j. Then an estimator of the true long term mean of the
biomarker is X̂i = (Wi1+Wi2)/2 and the residuals are Wi1−X̂i = (Wi1−Wi2)/2
and Wi2 − X̂i = (Wi2 − Wi1)/2. Our results show that X̂i and Wi1 − Wi2 are
uncorrelated. Thus, plotting one versus the other should show no obvious sign
of association. This plot is called the Bland-Altman plot (Bland and Altman
1986) and the associated paper is one of the most widely used and cited papers
in the entire scientific literature. For more details on Statistical methods for
measurement error models there are at least three monographs (Buonaccorsi
2010; Carroll et al. 2006; Fuller 1987).

10.3 Student’s t distribution

This distribution was invented by William Gosset (under the pseudonym “Stu-
dent”) in 1908 (Gosset 1908). The practical need probably came about from
some of the work that William Gosset did at the Guinness brewery, where he
was employed, and where he dealt with small sample sizes. The distribution
is indexed by degrees of freedom, resembles the N(0, 1) distribution, is very
well approximated by a N(0, 1) for a moderate and large number of degrees of
freedom, and has thicker tails than the Normal.

A random variable T is said to follow a t distribution with n degrees of freedom
if

T = Z√
W/n

,

where Z ∼ N(0, 1) and W ∼ χ2
n are independent random variables. We will not

derive here the pdf of the distribution and we will use R instead to obtain all
the necessary characteristics of the distribution.
xx=seq(-5,5,length=201)
yx1=dt(xx, 1)
yx2=dt(xx, 2)
yx3=dt(xx, 10)



10.3. STUDENT’S T DISTRIBUTION 349

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Domain of the distributions

D
en

si
ty

N(0,1)
t1
t2
t10

Figure 10.4: Pdfs of the t1 (red), t2 (violet), t10 (orange) distributions together
with the pdf of the N(0, 1) distribution.

yx5=dnorm(xx)
plot(xx,yx5,type="l",lwd=3,

xlab=expression(paste("Domain of the distributions")),
ylab="Density",cex.lab=1.3,cex.axis=1.3,col.axis="blue",
ylim=c(0,0.4),col="blue")

lines(xx,yx1,lwd=3,col="red")
lines(xx,yx2,lwd=3,col="violet")
lines(xx,yx3,lwd=3,col="orange")
legend(2, 0.4, c("N(0,1)",

expression(paste("t"["1"])),
expression(paste("t"["2"])),
expression(paste("t"["10"]))
),

col = c("blue","red","violet","orange"),
lty = c(1,1, 1, 1),lwd=c(3,3,3,3),bty="n")

Figure 10.4 displays the N(0, 1) pdf in blue and the pdfs of the tn distributions
for n = 1 (red), n = 2 (violet), and n = 10 (orange) indicating the improved
approximation by the N(0, 1) distribution as n increases. All distributions are
symmetric and the thicker tails of the tn distributions get thinner as n increases.
It is interesting to follow how the probability towards the center of the distri-
bution is re-assigned to the tails as n decreases. By n = 10 the distribution of
Zn is very close to the N(0, 1) indicating that for more than 10-20 degrees of
freedom there is not much difference between the Normal and the t.
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In practice the most important difference between the Normal and the t distribu-
tion is in terms of the quantiles, especially those corresponding to probabilities
0.025 and 0.975. Let us compare these quantiles for a range of degrees of free-
dom.
#Set a range of degrees of freedom
n=c(1,2,5,10,20,50)
alpha <- .05
round(c(qt(1-alpha/2,n),qnorm(1-alpha/2)),digits=2)

[1] 12.71 4.30 2.57 2.23 2.09 2.01 1.96

The 0.975 quantile for the t1 distribution is 12.71 much larger than 1.96, the
corresponding quantile for the Normal distribution. For t2 the quantile becomes
smaller at 4.30, which is more than twice the corresponding N(0, 1) quantile.
However, as n increases there is less and less difference between the t and Normal
quantiles. Indeed, for t = 50 the 0.975 quantile is 2.01, which is very close to 1.96.
The conclusion is that when the number of degrees of freedom is larger than
∼ 50 there really is no difference between the N(0, 1) and tn quantiles. This will
become especially useful when we are thinking about constructing confidence
intervals using the t versus the Normal approximation based on the CLT. In
practice, the CLT always holds for moderate to large n, the t distribution is
exact for Normal observations, and the t always provides more conservative
approximations to the distribution of the z-score statistic. This is most likely
the reason why the t distribution is often used instead of the Normal as it adds
a layer of robustness by slightly increasing the length of the confidence intervals.

10.4 Confidence intervals for Normal means

Suppose that (X1, . . . , Xn) are iid N(µ, σ2). We have shown already that

Xn − µ

σ/
√

n
∼ N(0, 1) ,

that

(n − 1)S2
n

σ2 ∼ χ2
n−1 ,

and that (Xn − µ)/(σ/
√

n) and (n − 1)S2
n/σ2 are independent. In fact, for the

last point we have shown a lot more, that (Xn − µ)/(σ/
√

n) is independent of
Xi − Xn for every i. As S2

n is a function of the vector (X1 − Xn, . . . , Xn − Xn)
it follows that the empirical mean, Xn, and variance, S2

n, are independent of
each other. Therefore

Xn−µ
σ/

√
n√

(n−1)S2
n

(n−1)σ2

= Xn − µ

Sn/
√

n
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follows Student’s t distribution with n − 1 degrees of freedom, or

Tn = Xn − µ

Sn/
√

n
∼ tn−1 .

The main idea behind taking this rather exotic ratio between a N(0, 1) and the
square root of a random variable with a χ2 distribution divided by its number
of degrees of freedom was to get rid of the unknown standard deviation that
appears in the denominator of the z-statistic. Slutsky’s theorem allowed us
to replace σ by Sn in large samples for any distribution of the random vari-
ables X1, . . . , Xn. The tn−1 is exact in finite samples and asymptotically when
the random variables are Normally distributed. When the variables are not
Normally distributed, the t approximation still provides a more conservative
approximation to the true distribution of random variables. After billions of
simulations and millions of applications we now know that the t distribution
and its associated confidence intervals are extremely hard to beat in practice.

Just as in the case of the confidence intervals built on the CLT, note that the t
statistic Tn is a pivot that can be used to construct confidence intervals for the
mean. If tn−1,α denotes the αth quantile of the t distribution with n − 1 degrees
of freedom, then

1−α = P

(
−tn−1,1−α/2 ≤ Xn − µ

Sn/
√

n
≤ tn−1,1−α/2

)
= P

(
Xn − tn−1,1−α/2Sn/

√
n ≤ µ ≤ Xn + tn−1,1−α/2Sn/

√
n
)

,

indicating that Xn ± tn−1,1−α/2Sn/
√

n is an exact 100(1 − α)% confidence in-
terval for the mean of the Normal distribution. The only practical difference
between this confidence interval and the one based on the CLT plus Slutsky’s
approach is that it uses the tn−1,1−α/2 quantile instead of the z1−α/2 quantile
of a Normal. Therefore, for n > 50 there is basically no difference between
these intervals irrespective of the assumptions on which they are derived. For
n ≤ 50 the confidence intervals based on the t distribution are slightly longer
than those based on the Normal asymptotic approximation.

The length of the confidence interval is 2tn−1,1−α/2Sn/
√

n based on the tn−1
distribution and
2z1−α/2Sn/

√
n based on the CLT Normal approximation. Thus, the ratio of

lengths is
tn−1,1−α/2

z1−α
,

because all other factors cancel out. These ratios can be calculated in R for a
given number of degrees of freedom as follows:
#Set a range of degrees of freedom
n=c(1,2,5,10,20,50)
alpha <- .05
round(qt(1-alpha/2,n)/qnorm(1-alpha/2),digits=2)
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[1] 6.48 2.20 1.31 1.14 1.06 1.02

For n = 50 the lengths of the t20 and t50 intervals are only 6% and 2% larger
than the one based on the Normal, respectively. A difference of 31% and 14%
can be observed for t5 and t10, respectively, with much larger differences for t1
and t2. These results are, of course, identical to the earlier results when we
compared quantiles, but the interpretation is now done in terms of length of the
confidence intervals.

10.4.1 Properties of the t confidence interval

The t interval technically assumes that the data are iid normal, though it is
robust to this assumption. It works well whenever the distribution of the data
is roughly symmetric and mound shaped. For large degrees of freedom, t quan-
tiles become the same as standard Normal quantiles and the corresponding con-
fidence interval becomes indistinguishable from the confidence interval based on
the CLT.

For skewed distributions, the spirit of the t interval assumptions is violated,
though the t confidence interval often continues to perform very well for distri-
butions that have small to moderate skew. For heavily skewed distributions it
may not make a lot of sense to center the interval at the mean. In this case,
consider taking logs, applying a Box-Cox transformation, or using a different
summary, such as the median. For highly discrete data, including binary, other
intervals are available and will be discussed in subsequent chapters. Since we
mentioned data transformations, the family of Box-Cox transformations (Box
and Cox 1964) depends on a parameter λ. More precisely, if the observed data
are x1, . . . , xn then the Box-Cox transformation is of the type

xi,λ = xλ
i − 1
λ

.

One of the particular cases for this type of transformation is the log transfor-
mation, which corresponds to λ = 0. In practice, only one other transformation
is used consistently, that being the square root transformation xi,1/2 = √

xi,
where the flourish with the minus 1 and division by λ = 1/2 are often ignored.
These transformations are typically designed for positive observations, as pow-
ers of negative observations or mixtures of positive and negative observations
need to be treated very carefully. Probably the one other data transformation
that is worth mentioning is log-one-plus transformation

yi = log(1 + xi) ,

which is especially useful when the observations xi have 0 values and/or many
very small values. This transformation will leave 0 values unchanged, will tend
not to induce skewness in the left tail of the distribution due to extreme small
positive values, and will tend to substantially reduce the skewness in the right
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tail of the distribution. In the end all transformations of the data come at the
price of changing the scale on which results are interpreted. Sometimes the
benefits outweigh the cost. But often they do not.

10.4.2 Example: sleep data

In R typing data(sleep) brings up the sleep data originally analyzed in Gosset’s
Biometrika paper (Gosset 1908), which shows the increase in hours of sleep for
10 patients on two soporific drugs. R treats the data as two groups rather than
paired.
#Load the data
data(sleep)
print(sleep,row.names=FALSE)

extra group ID
0.7 1 1
-1.6 1 2
-0.2 1 3
-1.2 1 4
-0.1 1 5
3.4 1 6
3.7 1 7
0.8 1 8
0.0 1 9
2.0 1 10
1.9 2 1
0.8 2 2
1.1 2 3
0.1 2 4
-0.1 2 5
4.4 2 6
5.5 2 7
1.6 2 8
4.6 2 9
3.4 2 10

This is not the most compact way the data could be formatted, but having this
structure makes a lot of sense from a data analytic perspective. The first column,
labeled extra, indicates the amount of extra sleep (in hours) when taking one
of the treatments, the second column indicates the treatment group (1 or 2,
corresponding to first or second treatment), and the third column indicates the
individual ID. There are 10 individuals in the study and each one of them had
both the first and second treatment. This type of data is called matched pair
data because there are two nights on different treatments for each subject. To
better visualize and understand the data we reformat it a little.
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extra_T1=sleep$extra[sleep$group==1]
extra_T2=sleep$extra[sleep$group==2]
diff_T2_minus_T1=extra_T2-extra_T1
sleep_new<-data.frame(extra_T1,extra_T2,diff_T2_minus_T1)
print(sleep_new,row.names = FALSE)

extra_T1 extra_T2 diff_T2_minus_T1
0.7 1.9 1.2

-1.6 0.8 2.4
-0.2 1.1 1.3
-1.2 0.1 1.3
-0.1 -0.1 0.0
3.4 4.4 1.0
3.7 5.5 1.8
0.8 1.6 0.8
0.0 4.6 4.6
2.0 3.4 1.4

We would like to construct a confidence interval for the mean of the difference
between the two treatment groups under the assumptions that differences in the
observations are normally distributed.
n <- length(diff_T2_minus_T1)
#calculate the empirical mean of observed difference
mn <- mean(diff_T2_minus_T1)
s <- sd(diff_T2_minus_T1)
#return the estimated mean and standard of the difference vector
round(c(mn,s),digits=2)

[1] 1.58 1.23
#Obtain the confidence interval based on explicit calculations
round(mn + c(-1, 1) * qt(.975, n-1) * s / sqrt(n),digits=2)

[1] 0.70 2.46
#Obtain the same confidence intervals using the built-in R function
round(t.test(diff_T2_minus_T1)$conf.int[1:2],digits=2)

[1] 0.70 2.46

In contrast the CLT confidence interval is
#Obtain the confidence interval based on explicit calculations
round(mn + c(-1, 1) * qnorm(.975) * s / sqrt(n),digits=2)

[1] 0.82 2.34

which is a bit shorter. It is a good idea to check and see how the bootstrap
confidence intervals compare.
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set.seed(236791)
n.boot<-100000
bootstraps<-rep(NA,n.boot)
for (i in 1:n.boot)
{ #Bootstrap the data
bootstraps[i]<-mean(diff_T2_minus_T1[sample(1:10,replace=TRUE)])

}
quantile(bootstraps,probs=c(0.025,0.975))

2.5% 97.5%
0.95 2.38

Interestingly, the bootstrap-based confidence interval is 6% shorter than the
CLT, which, in turn, is 14% shorter than the t confidence interval. This is
likely due to the fact that both the bootstrap and the CLT confidence intervals
have a lower than nominal probability (95%) of covering the true value of the
parameter. This is a recognized problem of the bootstrap in small sample sizes
and many corrections have been proposed. Probably one of the best solutions is
to estimate the mean and standard deviation of the bootstrap means and then
use the quantiles of the tn−1 distribution to construct the confidence interval.
This is done below:
mb<-mean(bootstraps)
sdb<-sd(bootstraps)
#Obtain the confidence interval based on explicit calculations
round(mb + c(-1, 1) * qt(.975, n-1) * sdb ,digits=2)

[1] 0.74 2.42

This interval is much closer to the t interval, though it is still about 5% shorter.
There is no theoretical justification for the bootstrap in small samples or for the
approximations that we are showing here. However, in repeated simulations it
has been shown that the t confidence interval performs very well, that the CLT
based confidence interval tends to have lower than nominal coverage probability,
and that the bootstrap does not perform very well in small samples. Here we
provide a simple, albeit not theoretically justified, approach that replaces the
use of the quantiles of the bootstrapped sample with a studentized approach
where the standard deviation of the mean is multiplied by the corresponding t
quantile.

10.4.3 The non-central t distribution

If X is a N(0, 1) random variable and W is a Chi-squared random variable with
n degrees of freedom, then

X + µ√
W/n
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is called the non-central t random variable with n degrees of freedom and non-
centrality parameter µ/σ. We denote its distribution tn,µ and note that tn =
tn,0, that is, the tn distribution is a particular case of the non-central tn,µ

distribution for µ = 0.

Recall that if X1, . . . , Xn are iid N(µ, σ2) then
√

n(Xn/σ − µ/σ) has a N(0, 1)
distribution and (n − 1)S2

n/σ2 has a Chi-square distribution with n − 1 degrees
of freedom. Therefore

√
n(Xn/σ − µ/σ) +

√
nµ/σ√

(n−1)S2
n

(n−1)σ2

=
√

nXn

Sn

is a non-central t distribution with n − 1 degrees of freedom and noncentrality
parameter

√
nµ/σ, tn−1,

√
nµ/σ. The ratio µ/σ is the signal to noise ratio in

engineering or the effect size in Biostatistics. The result above allows us to
calculate and plot the likelihood of the µ/σ. Figure 10.5 displays this likelihood
using the density of the non-central t distribution implemented in R. Indeed, the
expression, dt(x,n,np) provides the pdf of a t distribution with n degrees of
freedom and non-centrality parameter np at x.
tStat <- sqrt(n) * mn / s
esVals <- seq(0, 3, length = 1001)
likVals <- dt(tStat, n - 1, ncp = sqrt(n) * esVals)
likVals <- likVals / max(likVals)
plot(esVals, likVals,type="l",col="blue",lwd=3,

xlab=expression(paste("Parameter = ", mu,"/",sigma)),
ylab="Likelihood",cex.lab=1.3,cex.axis=1.3,
col.axis="blue")

lines(range(esVals[likVals>1/8]), c(1/8,1/8),
col="red",lwd=3)

lines(range(esVals[likVals>1/16]), c(1/16,1/16),
col="orange",lwd=3)

The MLE of the effect size µ/σ is
MLE<-esVals[which.max(likVals)]
round(MLE,digits=2)

[1] 1.3

and the 1/8 likelihood confidence interval for µ/σ is
round(range(esVals[likVals>1/8]),digits=2)

[1] 0.44 2.21

The likelihood looks symmetric and bell-shaped, but we know that, in fact,
its tails are heavier than the tails of the Normal, as we are dealing with a t
distribution with n − 1 degrees of freedom.
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Figure 10.5: Normalized likelihood (to ensure that 1 is the maximum likelihood)
of µ/σ (blue) where the differences between the sleep durations in the two
treatment groups is assumed to be independent N(µ, σ2) random variables. Also
shown are thresholds at 1/8 (red horizontal line) and 1/16 (orange horizontal
line).

10.5 Problems

Problem 1. Here we will verify that standardized means of iid normal data
follow Gossett’s t distribution. Randomly generate 1000×20 normals with mean
5 and variance 2. Place these results in a matrix with 1000 rows. Using two
apply statements on the matrix, create two vectors, one of the sample mean
from each row and one of the sample standard deviation from each row. From
these 1000 means and standard deviations, create 1000 t statistics. Now use
R’s rt function to directly generate 1000 t random variables with 19 df. Use
R’s qqplot function to plot the quantiles of the constructed t random variables
versus R’s t random variables. Do the quantiles agree? Describe why they
should. Repeat the same procedure using the theoretical quantiles of the t19
distribution.

Problem 2. Here we will verify the chi-squared result. Simulate 1000 sam-
ple variances of 20 observations from a Normal distribution with mean 5 and
variance 2. Convert these sample variances so that they should be chi-squared
random variables with 19 degrees of freedom. Now simulate 1000 random chi-
squared variables with 19 degrees of freedom using R’s rchisq function. Use
R’s qqplot function to plot the quantiles of the constructed chi-squared random
variables versus those of R’s random chi-squared variables. Do the quantiles
agree? Describe why they should. Repeat the same procedure using the theo-
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retical quantiles of the χ2
19 distribution.

Problem 3. If X1, . . . , Xn are iid N(µ, σ2) we know that (n − 1)S2/σ2 is chi-
squared with n−1 degrees of freedom. You were told that the expected value of
a chi-squared is its degrees of freedom. Use this fact to verify the (already known
fact) that E[S2] = σ2. (Note that S2 is unbiased holds regardless of whether
or not the data are Normally distributed. Here we are just showing that the
chi-squared result for Normal data is not a contradiction of unbiasedness.)

Problem 4. A random sample was taken of 20 patients admitted to a hospital
with a certain diagnosis. The lengths of stays in days for the 20 patients were

4, 2, 4, 7, 1, 5, 3, 2, 2, 4, 5, 2, 5, 3, 1, 4, 3, 1, 1, 3

a. Calculate a 95% t confidence interval for the mean length of hospital stay.
Is your answer reasonable? What underlying assumptions were required
for this method and are they reasonable?

b. Calculate a 95% percentile bootstrap interval and interpret.

Problem 5. Refer to the previous problem. Take logs of the data (base e)

a. Calculate a 95% confidence interval for the mean of the log length of stay.
b. Take inverse logs (exponential) of the endpoints of the confidence interval

found in part a. Explain why that is a 95% confidence interval for the
median length of stay if the data are lognormally distributed (lognormally
distributed is when the logarithm of the data points has a normal distri-
bution). Technically, under the lognormal assumption, is the confidence
interval that you found in this equation also a confidence interval for the
mean length of stay?

Problem 6. Forced expiratory volume FEV is a standard measure of pulmonary
function. We would expect that any reasonable measure of pulmonary function
would reflect the fact that a person’s pulmonary function declines with age after
age 20. Suppose we test this hypothesis by looking at 10 nonsmoking males, ages
35-39 and heights 68-72 inches, and measure their FEV initially and then once
again two years later. We obtain the following data (expressed in liters)

Person Year 0 Year 2 Person Year 0 Year 2
1 3.22 2.95 6 3.25 3.20
2 4.06 3.75 7 4.20 3.90
3 3.85 4.00 8 3.05 2.76
4 3.50 3.42 9 2.86 2.75
5 2.80 2.77 10 3.50 3.32

a. Create the relevant confidence interval and interpret.
b. Create the relevant profile likelihood and interpret.
c. Create a likelihood function for the variance of the change in FEV.
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Problem 7. In the SHHS consider the rdi4p of all subjects who are 40 and 45
years of age, who never smoked, and who have a BMI less than 25.

a. Create the confidence intervals based on the CLT, t, and bootstrap for the
mean rdi4p for these study participants.

b. Create the confidence intervals for the standard deviation of the rdi4p for
these study participants.

c. Plot and interpret the likelihood of σ and µ/σ.

Problem 8. Conduct the same analysis, but with the additional restriction that
BMI is less than 22. Compare the results with the results from the previous
problem and discuss similarities and discrepancies.

Problem 9. Produce Table 1 based on the data in the SHHS, where columns
are age groups in 10-year increments and rows are the variables sex, bmi, waist,
COPD15, ASTHMA15, rdi4p, StOnsetP, HTN, CVD, CHD, smokstatus. What confi-
dence intervals can be constructed for each cell?

Problem 10. Consider the variable time_bed and construct a confidence inter-
val for the standard deviation of the σ2. Compare the confidence interval with
the one obtained using a bootstrap of subjects. Under what conditions is the
distribution of S2

n well approximated by a Normal distribution? Compare the
distribution of the time_bed variable with the Normal distribution using the
qqplot function in R.

Problem 11. We would like to compare whether the variances of StOnsetP
(time from going to bed until falling asleep) for study participants who are 40
to 45 years of age versus subjects who are 60 to 65 years of age. Consider the
test-statistic Tn = S2

n,1/S2
n,2, where S2

n,1 and S2
n,2 are the variances of the first

and second group, respectively, and conduct a bootstrap of subjects in both
groups separately to build a confidence interval for σ2

1/σ2
2 .

Problem 12. Calculate the mean of rdi4p and bmi in the entire SHHS dataset.
We will try to estimate these true means from subsamples of the data. For
a range of sample sizes n = 5, 10, . . . , 100 conduct the following experiments.
Sample 10000 times with replacement n observations from SHHS.

a. For each sample construct the CLT, t, and bootstrap 95% confidence in-
tervals for the mean and calculate the proportion of times the true sample
mean is covered by the resulting confidence intervals.

b. Plot the coverage probability as a function of the sample size, n.
c. Interpret your results.

Problem 13. Calculate the standard deviation of rdi4p and bmi in the entire
SHHS dataset. We will try to estimate these true means from subsamples of
the data. For a range of sample sizes n = 5, 10, . . . , 100 conduct the following
experiments. Sample 10000 times with replacement n observations from SHHS.

a. For each sample construct the χ2 and bootstrap 95% confidence intervals
for the standard deviation and calculate the proportion of times the true
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sample mean is covered by the resulting confidence intervals.
b. Plot the coverage probability as a function of the sample size, n.
c. Interpret your results.

Problem 14. We are interested in estimating and providing a confidence in-
terval for the effect size µ/σ for the proportion of time spent in Rapid Eye
Movement in SHHS. The variable containing this information is timeremp.

a. What would be a reasonable estimator for µ/σ?
b. Plot the histogram of timeremp and the qqplot versus a standard Normal

distribution. What do you conclude?
c. Under the normality assumption derive and plot the likelihood of µ/σ.
d. Obtain the confidence interval for µ/σ using 1/8 the likelihood and the

bootstrap of subjects approach.

Problem 15. Calculate the mean and standard deviation of timeremp in the
entire SHHS dataset. We will try to estimate the ratio between the SHHS mean
and standard deviation of timeremp from subsamples of the data. For a range
of sample sizes n = 5, 10, . . . , 100 conduct the following experiments. Sample
10000 times with replacement n observations from SHHS.

a. For each sample construct the 1/8 likelihood and bootstrap 95% confidence
intervals for the effect size and calculate the proportion of times the effect
size for timeremp in SHHS is covered by the resulting confidence intervals.

b. Plot the coverage probability as a function of the sample size, n.
c. Interpret your results.



Chapter 11

t and F tests

This chapter covers the following topics

• Independent group t confidence intervals
• t intervals for unequal variances
• t-tests and confidence intervals in R
• The F distribution
• Confidence intervals and testing for variance ratios of Normal distributions

The previous chapter focused on cases when we are interested in analyzing a
single sample or comparing the means of two groups where observations are
paired. A typical example is when the same subject is under two conditions
(e.g,. treatment 1 versus treatment 2 or before and after treatment). In this
case observations are paired and a typical solution is to construct a confidence
interval based on the differences between the two paired measurements. How-
ever, in many situations observations are not paired and even the number of
observations in each group may be different. Consider, for example, the case
when we want to compare the mean blood pressure in two groups in a random-
ized trial: those who received the treatment and those who received a placebo.
We cannot use the paired t confidence interval because the groups are indepen-
dent and may have different sample sizes. This is why in this chapter we focus
on methods for comparing independent groups.

11.1 Independent group t confidence intervals

Consider the case when

a. X1, . . . , Xnx
are iid N(µx, σ2) ;

b. Y1, . . . , Yny
are iid N(µy, σ2) ,

361
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and they are also mutually independent. In this case we assume that the vari-
ances of the individual observations, σ2, is the same (note the lack of indexing
on the variances of the samples). Denote by Xn, Y n the means and Sn,x, Sn,y

the standard deviations of the two samples, respectively. Using the fact that
linear combinations of entries of Normal vectors are Normal, it follows that

Y n − Xn ∼ N

{
µy − µx, σ2

(
1

nx
+ 1

ny

)}
from the use of convolutions or characteristic functions.

Indeed, E(Y n − Xn) = E(Y n) − E(Xn) = µy − µx and

Var(Y n − Xn) = Var(Y n) + Var(Xn) = σ2

ny
+ σ2

nx
= σ2

(
1

nx
+ 1

ny

)
.

The pooled variance estimator

S2
n,pooled = {(nx − 1)S2

n,x + (ny − 1)S2
n,y}/(nx + ny − 2)

is a good estimator of σ2 because it combines all the available information about
σ2 and because it is unbiased for σ2. Indeed,

E(S2
n,pooled) = 1

nx + ny − 2
{(nx − 1)E(S2

n,x) + (ny − 1)E(S2
n,y)} ,

and since both S2
n,x and S2

n,y are unbiased for σ2 it follows that

E(S2
n,pooled) = 1

nx + ny − 2
{(nx − 1)σ2 + (ny − 1)σ2)} = σ2 .

S2
n,pooled is a sufficient statistics for σ2, that is, it contains all the information

contained in the data that is pertinent to estimating σ2. We will not prove
this latest result, though it is nice to know that there is no unused residual
information for estimating σ2. The pooled variance estimator, S2

n,pooled, is a
mixture of the group-specific variances, with greater weight on whichever group
has a larger sample size. If the sample sizes are the same, then the pooled
variance estimate is the average of the group-specific variances. Moreover, the
pooled variance estimator, S2

n,pooled, is independent of Y n − Xn because S2
n,x

is independent of Xn and S2
n,y is independent of Y n and the two groups of

observations are independent.

It can be shown that

(nx + ny − 2)S2
n,pooled

σ2 ∼ χ2
nx+ny−2 .

Indeed,

(nx + ny − 2)S2
n,pooled/σ2 = (nx − 1)S2

n,x/σ2 + (ny − 1)S2
n,y/σ2 ,
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and (nx − 1)S2
x/σ2 ∼ χ2

nx−1 and (ny − 1)S2
n,y/σ2 ∼ χ2

ny−1 are independent.
The result follows because the sum of two independent χ2 distributions with
nx − 1 and ny − 1 degrees of freedom, respectively, is a random variable with a
χ2

nx+ny−2 distribution. The reason that 2 degrees of freedom are lost is that we
needed to estimate both µx and µy and use the empirical means, Xn and Y n,
in the corresponding formulas for S2

n,x and S2
n,y, respectively.

Putting this all together forms the statistic

Y n−Xn−(µy−µx)√
σ2(1/nx+1/ny)√

(nx+ny−2)S2
n,pooled

(nx+ny−2)σ2

= Y n − Xn − (µy − µx)
Sn,pooled

√
(1/nx + 1/ny)

∼ tnx+ny−2

because it is a standard Normal divided by an independent χ2
nx+ny−2 distribu-

tion divided by nx + ny − 2, its number of degrees of freedom. Just as in the
case of one sample t-statistic, the form of the expression is of the type

estimator − true value
SE ,

where, in this case estimator = Y n − Xn, true value = µy − µx and

SE = Sn,pooled

√
(1/nx + 1/ny) .

Using this expression as a pivot around µy − µx we can obtain a 100(1 − α)%
confidence interval as

Y n − Xn ± tnx+ny−2,1−α/2Sn,pooled

(
1

nx
+ 1

ny

)1/2

.

This interval assumes that the two samples have the same variance. Also note
that the variance is the same if the measure we care about is Y n − Xn or
Xn − Y n, though the intervals are different. If there is some doubt, we can
assume a different variance per group, which we will be discussed later. We will
also discuss tests for equal variance to gain insight into when it is reasonable to
assume equal variance.

11.1.1 Example: age of smokers versus non-smokers

A common use for two-sample t-tests is to create a table comparing two groups
of interest on a nuisance variable that is not of interest. This is done to see how
alike the two groups are for subsequent comparisons. The paper by (Zhang et al.
2006) is focused on comparing current smokers to never smokers with respect to
sleep characteristics. They first compare the ages of the two groups. The mean
(sd) age (in years) for current smokers was 59.6 (9.5) while it was 63.5 (11.5)
for never smokers. Even though the sample sizes are different in the paper, for
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didactical reasons we assume that these data were observed for 10 smokers and
10 never smokers. We are interested in constructing a confidence interval for
the difference in average age between the two groups.

The empirical pooled standard deviation is

sn,pooled =
√

9.52(10 − 1) + 11.52(10 − 1)
20 − 2

= 10.55 ,

where, as usual, we use lower case sn,pooled to denote the realization of the
pooled standard deviation random variable, Sn,pooled. The 0.975 quantile of a
t18 distribution is
round(qt(.975,18),digits=2)

[1] 2.1

Therefore the realization of the 95% confidence interval is

59.6 − 63.5 ± 2.1 × 10.55
√

1
10

+ 1
10

[1] -13.81 6.01

This interval contains 0 indicating that there is not enough evidence to exclude
a value of zero as a potential value of the true difference in means µy − µx.
Equivalently, there is not enough evidence against the assumption that the two
group means are equal, µx = µy.

11.1.2 Example: time in bed and percent REM

Consider the SHHS and we will focus on two groups. The first group has a
bmi below 25 and age below 50 and the second group has a bmi above 35 and
age above 70. We would like to compare these groups in terms of time in bed,
time_bed, and respiratory disturbance index, rdi4p. First, we download the
data.
file.name = file.path("data", "shhs1.txt")
data.cv<-read.table(file=file.name,header = TRUE,na.strings="NA")

Second, we use the pipe operator to create the two subgroups.
library(tidyverse)
file.name = file.path("data", "shhs1.txt")
data_cv <- read.table(file=file.name,header = TRUE,na.strings="NA")

data_cv = data_cv %>%
mutate(group = case_when(

(bmi_s1 < 25 & age_s1 < 50) ~ "Group 1",
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Figure 11.1: Boxplots for time in bed for Group 1, which contains all study
participants with BMI less than 25 and age less than 50, and Group 2, which
contains all study participants with BMI greater than 35 and age greater than
70.

(bmi_s1 > 35 & age_s1 > 70) ~ "Group 2"))
time_in_bed = data_cv %>%
filter(!is.na(group)) %>%
mutate(time_bed = time_bed / 60)

time_in_bed_g1 = time_in_bed$time_bed[ time_in_bed$group == "Group 1"]
time_in_bed_g2 = time_in_bed$time_bed[ time_in_bed$group == "Group 2"]

# this is bad - gives same plot
data.box<-list(time_in_bed_g1,time_in_bed_g2)

Let us first plot the distributions of time_bed for the two groups to get a better
idea about potential differences between the distributions.
time_in_bed %>%
ggplot(aes(x = group, y = time_bed)) +
geom_boxplot() +
ylab("Time in bed (hours)") +
xlab("")

Figure 11.1 indicates that the median number of hours in bed for both groups is
around 7.5 hours, though the distributions are quite variable and include some
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extreme outliers in both groups with less than 5 hours in bed. Even though the
groups are quite different both in terms of age and bmi, the distributions of the
time in bed seem to be remarkably similar. We would like to apply a t-test for
the difference in the mean time in bed between the two groups. We will not
perform any tests for Normality in this analysis.

The mean (standard deviation) of time in bed in hours is 7.29 (1.01) for group
1, which contains 248 subjects, and 7.2 (0.97) for group 2, which contains 97
subjects. In this case the empirical pooled standard deviation is

sn,pooled =
√

1.012(248 − 1) + 0.972(97 − 1)
248 + 97 − 2

= 1.00 .

The 0.975 quantile of a t248+97−2 = t351 distribution is
round(qt(.975,343),digits=2)

[1] 1.97

Note that this is very close to the Z0.975 = 1.96 as the t distribution is approxi-
mately Normal when the degrees of freedom are large. Therefore the realization
of the 95% confidence interval is

7.29 − 7.20 ± 1.97 × 1.00
√

1
248

+ 1
97

,

which results in an observed confidence interval of [−0.15, 0.33] hours. The
confidence interval covers 0 indicating there is not enough evidence against
the assumption that the two true means of the two groups are equal. This
information is something we may be able to get a feel for in the plot, but this
approach gives us a quantifiable result to evaluate that visual assessment.

Now we will investigate whether there are differences in terms of rdi4p between
the same two groups. Figure 11.2 displays the boxplots of rdi4p across the two
groups:
time_in_bed %>%
ggplot(aes(x = group, y = rdi4p)) +
geom_boxplot() +
ylab("RDI") +
xlab("")

Because data in both groups are heavily skewed we choose to transform the
rdi4p first by taking the square root transformation. This transforms 0 rdi4p
into 0 for the square root, keeps the ordering of the quantiles, and makes both
distributions less skewed. Other options could be performing a log transfor-
mation, such as log(rdi4p + 1) (adding 1 because log(0) = -\infty and
log(0+1) = 0). In practice, one could argue that a test on the original scale
would make more scientific sense, but one should also recognize that in that sit-
uation one may want to use a test for difference in medians or other quantiles.
Figure 11.3 displays the boxplots for the square root of rdi4p:
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Figure 11.2: Boxplots for rdi for Group 1, which contains all study participants
with BMI less than 25 and age less than 50, and Group 2, which contains all
study participants with BMI greater than 35 and age greater than 70.
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Figure 11.3: Boxplots for the square root of rdi for Group 1, which contains all
study participants with BMI less than 25 and age less than 50, and Group 2,
which contains all study participants with BMI greater than 35 and age greater
than 70.

sqrt_rdi_g1 = sqrt(time_in_bed$rdi4p[ time_in_bed$group == "Group 1"])
sqrt_rdi_g2 = sqrt(time_in_bed$rdi4p[ time_in_bed$group == "Group 2"])
data.box<-list(sqrt_rdi_g1,sqrt_rdi_g2)
par(bg="lightcyan")
plot(1.5, 1.5, type="n", ann=FALSE, axes=FALSE)
u <- par("usr") # The coordinates of the plot area
rect(u[1], u[3], u[2], u[4], col="gray95", border=NA)
par(new=TRUE)
boxplot(data.box,col=c("bisque",col = rgb(1,0,0,0.5)),

cex.lab=1.3,cex.axis=1.3,col.axis="blue",col.lab="blue",
names=c("Group 1","Group 2"),ylab="Square root of RDI",
border=c("blue","blue"))

dev.off()

null device
1

Figure 11.4 is the same as Figure 11.3, but done using the ggplot function.
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Figure 11.4: Boxplots for the square root of rdi for Group 1, which contains all
study participants with BMI less than 25 and age less than 50, and Group 2,
which contains all study participants with BMI greater than 35 and age greater
than 70.

time_in_bed %>%
mutate(sqrt_rdi = sqrt(rdi4p)) %>%
ggplot(aes(x = group, y = sqrt_rdi)) +
geom_boxplot() +
ylab("Square Root of RDI") +
xlab("")

The distribution of the square root of rdi4p is still skewed for Group 1, but less
skewed than the original rdi4p data.

The mean (standard deviation) of the square root of rdi4p (in square root of
events per hour) is 1.11 (1.23) for group 1, which contains 248 subjects, and
3.65 (2.31) for group 2, which contains 97 subjects. In this case the empirical
pooled standard deviation is

sn,pooled =
√

1.232(248 − 1) + 2.312(97 − 1)
248 + 97 − 2

= 1.61 .

Therefore the realization of the 95% confidence interval is

1.11 − 3.65 ± 1.97 × 1.61
√

1
248

+ 1
97

,
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which results in an observed confidence interval of [−2.92, −2.16] square root of
number of events per hour. The confidence interval does not cover 0 indicating
that there is strong evidence against the assumption that the means of the two
groups are equal. One could argue that the variance in the two groups may
not be equal, that the distribution of the square root of rdi4p remains skewed,
especially in Group 1, and that the scientific interpretation on the square root
scale of the rdi4p is tenuous.

Therefore, one could be interested in approaches for calculating confidence inter-
vals without the assumptions of Normality or equal variances. For example, we
could be interested in the confidence interval for the difference in the mean or
medians of the two groups. One could conduct a bootstrap approach to obtain
these confidence intervals. To do that we bootstrap subjects with replacement
in every group and calculate the statistics of interest for every sample:
#Setting the seed
set.seed(3566551)

#Extract the rdi for each group and remove the NAs
rdi_g1<-rdi4p[index_g1]
rdi_g1_non_NA<-rdi_g1[!is.na(rdi_g1)]
rdi_g2<-rdi4p[index_g2]
rdi_g2_non_NA<-rdi_g2[!is.na(rdi_g2)]

#Set the vectors that will store the mean and median differences
n_boot=10000
mean_diff_boot=rep(NA,n_boot)
median_diff_boot=rep(NA,n_boot)

v1<-1:length(rdi_g1_non_NA)
v2<-1:length(rdi_g2_non_NA)
#Start the bootstrap
for (i in 1:n_boot)
{
ind1<-sample(v1,replace=TRUE)
ind2<-sample(v2,replace=TRUE)
mean_diff_boot[i]=mean(rdi_g2_non_NA[ind2])-mean(rdi_g1_non_NA[ind1])
median_diff_boot[i]=median(rdi_g2_non_NA[ind2])-median(rdi_g1_non_NA[ind1])

}

#Setting the seed
set.seed(3566551)

samp = time_in_bed %>%
group_by(group)

samp = samp %>%
summarize(mean = mean(rdi4p),



11.1. INDEPENDENT GROUP T CONFIDENCE INTERVALS 371

med = median(rdi4p))
orig_est = samp %>%
summarize(mean = diff(mean),

med = diff(med))
orig_est = orig_est %>% tidyr::gather(type, diff)

original_mean_diff = samp$mean[2] - samp$mean[1]
original_median_diff = samp$med[2] - samp$med[1]

#Set the vectors that will store the mean and median differences
n_boot=10000
mean_diff_boot = rep(NA,n_boot)
median_diff_boot = rep(NA,n_boot)

#Start the bootstrap
for (i in 1:n_boot)
{
samp = time_in_bed %>%
group_by(group) %>%
sample_frac(replace = TRUE)

samp = samp %>%
summarize(mean = mean(rdi4p),

med = median(rdi4p))
mean_diff_boot[i] = samp$mean[2] - samp$mean[1]
median_diff_boot[i] = samp$med[2] - samp$med[1]

}
diff_df = bind_rows(
data_frame(
diff = mean_diff_boot,
type = "mean"),
data_frame(
diff = median_diff_boot,
type = "median") )

head(diff_df)

# A tibble: 6 x 2
diff type
<dbl> <chr>

1 18.3 mean
2 11.5 mean
3 11.3 mean
4 15.1 mean
5 16.4 mean
6 15.0 mean

Figure 11.5 displays the histograms of the bootstrap samples for the mean (red)
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Figure 11.5: Histograms of the differences in the mean (red) and median (blue)
rdi between Group 2 and Group 1.

and median (blue) difference between the RDI in group 2 and group 1. The
distribution of bootstrap sample for the mean difference is more symmetric,
almost normally distributed, whereas the distribution for the median difference
is bi-modal with the first local maximum around 7 events per hour and the
second one around 10 events per hour. The difference in the median number of
events tends to be smaller than the difference in the mean number of events (the
blue histogram is shifted to the left of the red histogram), while the variability
of the difference in mean distribution is larger. This should not be surprising
because the RDI distributions in both groups are highly skewed with many
outliers. Figure 11.6 is the same as Figure 11.5, but done using the ggplot
function instead of base R.

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
cis = diff_df %>%
group_by(type) %>%
summarize(
q25 = round(quantile(diff, probs = 0.25), 2),
q75 = round(quantile(diff, probs = 0.75), 2)

)

A 95% bootstrap confidence interval for the mean is (11.35,20.95) and for the
median is (6.64,12.83). An alternative for this example would be to test for the
difference in medians using nonparametric tests, such as the Wilcoxon Rank-
sum test. But again, the bootstrap can show you how to make few assumptions
about the distribution of the data and get results. The tradeoff is that the
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Figure 11.6: Histograms of the differences in the mean (red) and median (blue)
rdi between Group 2 and Group 1.

sample needs to be similar to the population and that coverage of confidence
intervals may have bad propoerties in small sample sizes.

11.2 t intervals for unequal variances

Consider now the case when

a. X1, . . . , Xnx
are iid N(µx, σ2

x)
b. Y1, . . . , Yny

are iid N(µy, σ2
y)

and they are also mutually independent. In this case we assume that the vari-
ances in the two groups are different (note different indices on the sample vari-
ances). In this case it can be shown that

Y n − Xn ∼ N

(
µy − µx,

σ2
x

nx
+

σ2
y

ny

)

The statistic
Y n − Xn − (µy − µx)(
S2

n,x/nx + S2
n,y/ny

)1/2



374 CHAPTER 11. T AND F TESTS

approximately follows Gosset’s td distribution with degrees of freedom equal to

d =
(
S2

n,x/nx + S2
n,y/ny

)2

S2
n,x/{n2

x(nx − 1)} + S2
y/{n2

y(ny − 1)}
.

The exact distribution of the test statistic is not exactly this distribution. This
approximation is due to Welch (Welch 1938), who provided the approximated
distribution for the test statistic. In statistics this is the famous Behrens-Fisher
(Behrens 1929; Fisher 1935) problem. The confidence intervals for µy − µx

are then obtained similarly to the case of the pooled variance with the only
difference that the number of degrees of freedom, d, of the td distribution is
estimated from the data, as above, and the standard error has the formula

SE =
(
S2

n,x/nx + S2
n,y/ny

)1/2
.

The bootstrap procedure still works here for the mean and will give the same re-
sult as above. Bootstrapping other statistics such as the t value will be different
depending on the variance estimate.

11.3 t-tests and confidence intervals in R

The function in R to construct confidence intervals based on the t-statistic is
t.test and has a variety of options that make it applicable in a wide range of
situations. The general form of the function in R is
t.test(x, y = NULL,

alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

where x is the data from group 1 and y is the data from group 2. Other
times we may use the t.test function with the syntax t.test(formula, data),
where the formula = y ~ group where y is the variable to test and group is a
grouping variable (with 2 levels).

11.3.1 One sample t-tests and paired data

Let us see how the function works for the sleep data example first. The data
are paired, so 10 individuals were given two different drugs:
#Load the data
data(sleep)
sleep = sleep %>%
arrange(ID)

head(sleep)
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extra group ID
1 0.7 1 1
2 1.9 2 1
3 -1.6 1 2
4 0.8 2 2
5 -0.2 1 3
6 1.1 2 3

We can take the difference when the individuals are in each group:
x_sleep <- with(sleep, extra[group == 2] - extra[ group==1])

where the with functions allows us to work similar to dplyr functions where we
do not need dollar signs or references. It knows we are referencing the sleep
data set. We then pass this vector into a t-test:
#Conduct the t test
ttest_results <- t.test(x_sleep)
ttest_results

One Sample t-test

data: x_sleep
t = 4.0621, df = 9, p-value = 0.002833
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.7001142 2.4598858

sample estimates:
mean of x

1.58

The broom package allows us to “tidy” up this result into a data.frame-type
object:
library(broom)
tidy_results = tidy(ttest_results)
tidy_results

# A tibble: 1 x 8
estimate statistic p.value parameter conf.low conf.high method

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 1.58 4.06 0.00283 9 0.700 2.46 One S~
# ... with 1 more variable: alternative <chr>

The results indicate that this is a one-sample t-test (on the differences), which
will be covered later, and the defaults are that the alternative is two.sided
and the confidence intervals are at a confidence level conf.level = 0.95. The
t-statistic is 4.06 and the number of degrees of freedom used to calculate the
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null distribution of the test is a t9, where 9 = 10 − 1. The p-value for testing
the null hypothesis H0 : µ = 0 versus the alternative HA : µ ̸= 0 is equal to
0.0028, indicating that there is strong evidence against the hypothesis that the
groups have equal means. Alas, we have not yet learned about testing, and for
now we are only interested in the confidence intervals. The output contains the
95% confidence interval, which, for this data, was realized as [0.70, 2.46], which
does not include 0. The output also displays the mean of the variable x_sleep.
If we want to only obtain the confidence intervals we could use the code:
ttest_results$conf.int

[1] 0.7001142 2.4598858
attr(,"conf.level")
[1] 0.95

which produces the confidence interval together with the level of confidence. The
level of confidence can be adjusted in the t.test function using, for example,
conf.level=0.90. We could obtain only the confidence interval if we used the
expression
round(ttest_results$conf.int[1:2],digits=2)

[1] 0.70 2.46

To obtain all other objects produced by the t.test we can type:
names(ttest_results)

[1] "statistic" "parameter" "p.value" "conf.int" "estimate"
[6] "null.value" "stderr" "alternative" "method" "data.name"

which gives output that can be referenced with a dollar sign ($). We can also
use our tidy_results if that is more intuitive.

The same results can be obtained by creating the difference
ttest_results <- t.test(extra~group, paired = TRUE, data=sleep)

In this case we specify that the test is done on the variable extra and will
compare group means when observations are paired. The pairing here is done
in order, that is, the first observation from group 1 is paired with the first
observation from group 2 and so on. The variable ID is not used for pairing,
and so one should be careful to organize the data accordingly.

11.3.2 Using an unpaired t-test

If we do not specify paired=TRUE, the default is to run a non-paired t-test as
below:
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ttest_results<-t.test(extra~group, data=sleep)
ttest_results

Welch Two Sample t-test

data: extra by group
t = -1.8608, df = 17.776, p-value = 0.07939
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.3654832 0.2054832

sample estimates:
mean in group 1 mean in group 2

0.75 2.33

The results are quantitatively and qualitatively different, indicating that, in this
case, the 95% confidence interval for the difference in means between groups 1
and 2 is [−3.36, 0.21], which contains 0 and indicates that there is no evidence
against a difference between the two groups. This happens because we ignored
the fact that observations were truly paired and the estimator of the variance of
the difference in means is inflated. Indeed, the length of the confidence interval
is 3.57 versus 3.16 when data are correctly treated as paired.

For the SHHS we have already shown how to derive the 95% confidence intervals
for the difference in the mean time in bed between groups 1 and 2. The same
results can be obtained directly using the t.test function in R. If we assume
equal variances, the t-test with pooled variance estimator can be derived
ttest_results <- t.test(time_bed ~ group,

data = time_in_bed,
paired = FALSE, var.equal=TRUE)

conf_int<-round(ttest_results$conf.int[1:2],digits=2)
ttest_results

Two Sample t-test

data: time_bed by group
t = 0.77135, df = 343, p-value = 0.441
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.1428636 0.3272091

sample estimates:
mean in group Group 1 mean in group Group 2

7.287534 7.195361

The results are identical to those obtained from scratch and the 95% confidence
interval is [-0.14, 0.33]. In this expression we did not need to specify that the test
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is not paired, paired=FALSE, as this is the default option. However, specifying
that the variances are equal, var.equal=TRUE is necessary, as the default is to
assume they are not. Note the test being done is a Two Sample t-test. Let us
compare these results with results based on the assumption that the variances
are unequal. Recall that, in this case, the two variances were 1.012 = 1.02 and
0.972 = 0.94, making them very close.
ttest_results <- t.test(time_bed ~ group,

data = time_in_bed,
paired = FALSE, var.equal=FALSE)

conf_int<-round(ttest_results$conf.int[1:2],digits=2)
ttest_results

Welch Two Sample t-test

data: time_bed by group
t = 0.78326, df = 181.04, p-value = 0.4345
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.1400248 0.3243704
sample estimates:
mean in group Group 1 mean in group Group 2

7.287534 7.195361

Note here the results are from a Welch Two Sample t-test indicating the de-
grees of freedom are adjusted using the unequal variance assumption.

When the variances are not assumed to be equal the number of degrees of
freedom is smaller, changing from 343 to 181.04. The standard deviation of the
empirical mean difference under the equal variance assumption is

sen,equal = sn, pooled

√
1

nx
+ 1

ny

and under the unequal variance assumption is

sen,unequal =

√
s2

n,x

nx
+

s2
n,y

ny
,

where, again, we used the lower case s2
n,x and s2

n,y to indicate the realization of
S2

n,x and S2
n,y, respectively. This can be calculated in R as

overall_var = var(c(time_in_bed_g1, time_in_bed_g2), na.rm = TRUE)
#Number of observations in each group
nx=sum(!is.na(time_in_bed_g1))
ny=sum(!is.na(time_in_bed_g2))
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#Estimated variance of the mean in each group
var_x_mean=var(time_in_bed_g1,na.rm=TRUE)/nx
var_y_mean=var(time_in_bed_g2,na.rm=TRUE)/ny

se_n_equal=round(overall_var*sqrt(1/nx+1/ny),digits=3)
se_n_unequal=round(sqrt(var_x_mean+var_y_mean),digits=3)

or in dplyr:
time_in_bed %>%
# get overall variance
mutate(overall_var = var(time_bed)) %>%
group_by(group) %>%
# get nx, sx^2/nx and 1/n_x
summarize(n = n(),

var = var(time_bed)/n,
n_inverse = 1/n,
overall_var = first(overall_var)) %>%

# sqrt(sx^2/nx + sy^2/nx) and sqrt( s^2(1/nx + 1/ny))
summarize(unequal = sqrt(sum(var)),

equal = sqrt(sum(n_inverse * overall_var)))

# A tibble: 1 x 2
unequal equal
<dbl> <dbl>

1 0.118 0.119

Thus, the estimated standard deviation of the mean difference is 0.119 under the
equal variance assumption and is 0.118 under the unequal variance assumption.
The difference in the t quantiles used is minimal and so is the difference between
standard deviations, which results in an almost identical confidence interval [-
0.14, 0.32] in the case when variances are not assumed equal.

Consider now the case when we test for the difference in square root of rdi4p
between the same two groups. The visual inspection of the boxplots for the two
distributions seems to indicate that the variability is larger in group 2 (estimated
standard deviation 2.31) versus group 1 (estimated standard deviation 1.23).
We obtain confidence intervals under the assumption of equal variances (which
seems to be violated) and under unequal variances and compare the results.
#Calculate confidence intervals under the assumption of equal variance
ttest_equal = time_in_bed %>%
mutate(sqrt_rdi = sqrt(rdi4p)) %>%
t.test(sqrt_rdi ~ group, data = .,

paired=FALSE,var.equal=TRUE
)

tidy(ttest_equal)
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# A tibble: 1 x 9
estimate1 estimate2 statistic p.value parameter conf.low conf.high

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1.11 3.65 -13.2 2.24e-32 343 -2.92 -2.16
# ... with 2 more variables: method <chr>, alternative <chr>
#Calculate confidence intervals under the assumption of unequal variance
ttest_unequal = time_in_bed %>%
mutate(sqrt_rdi = sqrt(rdi4p)) %>%
t.test(sqrt_rdi ~ group, data = .,

paired=FALSE,var.equal=FALSE)
tidy(ttest_unequal)

# A tibble: 1 x 10
estimate estimate1 estimate2 statistic p.value parameter conf.low

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 -2.54 1.11 3.65 -10.3 4.60e-18 118. -3.03
# ... with 3 more variables: conf.high <dbl>, method <chr>,
# alternative <chr>

The 95% confidence interval using equal variances is [-2.92, -2.16] and using
unequal variances is [-3.03, -2.05], indicating that the interval based on equal
variances is approximately 22% shorter than the interval based on the more real-
istic assumption that they are not. The effects can be much more pronounced in
cases when the imbalance between the group 1 and 2 variances is even larger. In
some cases, there may be a strong amount of knowledge outside of the data that
the variances should be equal (e.g. they come from the exact same population).
Otherewise, let us look at tests on the variances themselves.

11.4 The F distribution

One of the sticky points when constructing confidence intervals for the difference
in the means of two populations is whether or not we can assume equal variance
and use the pooled variance estimator. Thus, we would need a reasonable
approach to decide whether the empirical variances of the two populations are
sufficiently different to provide evidence against the assumption that the true
variances are equal. To do this we need to obtain the distribution of the ratio
of variances in group 1 and 2:

Consider the sample variances S2
n,x and Sn,y for a collection of iid random

variables X1, . . . , Xnx ∼ N(µx, σ2
x) and Y1, . . . , Yny ∼ N(µy, σ2

y). We know that

(nx − 1)S2
n,x

σ2
x

∼ χ2
nx−1 and

(nx − 1)S2
n,y

σ2
y

∼ χ2
ny−1 .

If we take ratio of the variances, the distribution of this ratio can be obtained
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using the so-called F distribution.

If Vn ∼ χ2
n and Um ∼ χ2

m are independent random variables,

Wn,m = Vn/n

Um/m

has an F distribution with (n, m) degrees of freedom and we denote Wn,m ∼
Fn,m. Recall the mean of a χ2

df is the degrees of freedom. Because both Vn/n

and Um/m are averages of independent χ2
1 random variables with mean n and m,

respectively, by the law of large numbers limn→∞
Vn

n = 1 and limm→∞ Umm = 1.
It is then easy to observe that Wn,m is well approximated by 1 as both the
number of degrees of freedom of the numerator and denominator, n and m,
increase.

11.4.1 Pdfs of F distributions

Let us have a look at the shapes of the Fn,m distributions. Figure 11.7 displays
the F5,2 pdf as a blue solid line. The distribution is heavily skewed with a pdf
equal to 0 at 0 and a heavy right tail. The pdf of the F2,5 is shown as a solid
red line, which is equal to 1 at 0 and is decreasing throughout the range of the
distribution. While the distribution is similar to an exponential, it is actually
not an exponential pdf. The pdf of the F20,10 distribution is shown in violet
and it continues to be skewed, though its skew is less heavy than for F5,2. Once
the number of degrees of freedom starts to increase both in the numerator and
denominator the F distribution looks increasingly Normal with a mode that
converges to 1. Indeed, most of the probability for the F50,50 distribution is in
a tight range close to 1.

Let us say we want some rules of thumb for creating confidence intervals for
the ratio of variances. For large m we can approximate the denominator by
1 and the distribution of the numerator Vn/n is that of a χ2

n random variable
divided by the number of degrees of freedom. As the distribution of Vn can be
approximated by a N(n, 2n) it follows that, for large m,

Fn,m ≈ N

(
1,

2
n

)
.

This indicates that 95% of the variability of Fn,m is within 1 ± 2
√

2/
√

n. This
approximation is very good for moderate n and m.

11.4.2 The F distribution in R

Suppose, for example, that we are interested in obtaining an interval that con-
tains 95% of the probability for the F5,2 distribution. There are many such
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Figure 11.7: Pdfs of the distributions F5,2 (blue), F2,5 (red), F20,10 (violet), and
F50,50 (orange).

intervals, but here we will focus on the one interval that leaves out equal-tail
probabilities. In R this is simple:
#Set the number of degrees of freedom for the
#numerator and denominator
df1=5
df2=2
#Set the probability that will be left out
alpha=0.05
#Specify that we need the interval with equal tail probability
interval<-c(alpha/2,0.5,1-alpha/2)
#Obtain the equal-tail probability interval
round(qf(interval,df1,df2),digits=2)

[1] 0.12 1.25 39.30

The 95% confidence interval [0.12, 39.30] is very wide. In the next section, if
this was a distribution for a ratio of variances, then 1 would be contained in the
interval (not much evidence of a difference). The 50 percentile is 1.25, which
is close to 1. Below we provide the table of some representative quantiles. We
do not do that because we believe that distributions should be published in
textbooks. We just want to show a few examples, some more extreme than
others, and what one should expect in practice. Note, for example, how quickly
the median converges to 1 and how quickly the 100α% quantiles tighten around
1. In fact, they go to 1 at the rate 1/

√
n, where n is the number of degrees

of freedom of the numerator. For each example, think of the numerator and
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denominator as the sample size of two different groups you are comparing:

Distribution q0.025 q0.5 q0.975

F2,5 0.03 0.80 8.43
F5,2 0.12 1.25 39.20
F20,10 0.36 1.03 3.42
F50,50 0.57 1.00 1.75

11.5 Confidence intervals for variance ratios of
Normal distributions

Again, consider the sample variances S2
n,x and Sn,y for a collection of iid random

variables X1, . . . , Xnx
∼ N(µx, σ2

x) and Y1, . . . , Yny
∼ N(µy, σ2

y). We know that

(nx − 1)S2
n,x

σ2
x

∼ χ2
nx−1 and

(nx − 1)S2
n,y

σ2
y

∼ χ2
ny−1 .

Because S2
n,x and S2

n,y are independent

{(nx − 1)S2
n,x}/{(nx − 1)σ2

x}
{(ny − 1)S2

n,y}/{(ny − 1)σ2
y}

=
σ2

y

σ2
x

S2
n,x

S2
n,y

∼ Fnx−1,ny−1 ,

as this is the ratio between two independent χ2 distributions with the corre-
sponding number of degrees of freedom. If fnx−1,ny−2,α is the α quantile of the
Fnx−1,ny−1 distribution then

1−α = P

(
fnx−1,ny−1,α ≤

σ2
y

σ2
x

S2
n,x

S2
n,y

≤ fnx−1,ny−1,1−α

)
= P

{
1

fnx−1,ny−1,1−α

S2
n,y

S2
n,x

≤ σ2 ≤ 1
fnx−1,ny−1,α

S2
n,y

S2
n,x

}
.

We say that the random interval[
1

fnx−1,ny−1,1−α

S2
n,y

S2
n,x

,
1

fnx−1,ny−1,α

S2
n,y

S2
n,x

]

is a 100(1 − α)% confidence interval for σ2
y/σ2

x. Note that the inverse of
the quantiles multiply the ratio of the observed variances. This is why the
interpretation of the quantiles of the F distribution is important. For example,
if nx = ny = 51 and α = 0.5 then 1/fnx−1,ny−1,1−α = 1/1.75 = 0.57 and
1/fnx−1,ny−1,α = 1/0.57 = 1.75. This indicates that the confidence interval is[

0.57
S2

n,y

S2
n,x

, 1.75
S2

n,y

S2
n,x

]
.



384 CHAPTER 11. T AND F TESTS

This interval includes 1 if and only if

0.57S2
n,x ≤ S2

n,y ≤ 1.75S2
n,x ,

that is, if one of the observed variances is within 75% of the other one. This
exact numbers hold for the case when nx = ny = 51, but similar interpretations
can be obtained for other values. As the number of observations increases the
confidence interval will contain 1 under increasingly stringent conditions on
the proportion difference between the two empirical variances. The confidence
intervals for the ratio of variances are often used for testing the equality of
variances of two distributions. In biostatistics this is called analysis of variance
(ANOVA).

11.5.1 Examples: comparing variances in the SHHS

We revisit the two examples from the SHHS and construct 95% confidence
intervals for the variance ratio for time_bed and rdi4p in the two groups.
group_vars = time_in_bed %>%
group_by(group) %>%
summarize(n = n(),

variance = var(time_bed))
group_vars

# A tibble: 2 x 3
group n variance
<chr> <int> <dbl>

1 Group 1 248 1.01
2 Group 2 97 0.946
var_ratio = group_vars$variance[2]/group_vars$variance[1]
var_ratio

[1] 0.9325382

The variance for time_bed for group 1 is 1.01 and for group 2 is 0.95. Because
nx = 248 and ny = 97 we are interested in the 0.025 and 0.975 quantiles of an
F96,247 distribution. These values are
round(qf(c(0.025,0.975),96,247),digits=2)

[1] 0.71 1.38

Therefore the realized 95% confidence interval for σ2
y/σ2

x is[
1

1.38
× 0.95

1.01
,

1
0.71

× 0.95
1.01

]
= [0.68, 1.32] ,

which includes 1 indicating that the equal variances hypothesis cannot be re-
jected for the time_bed for the two groups considered here.
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In R confidence intervals can be computed and F tests can be conducted directly
without going through every individual derivation using the var.test function.
Specifically,
results_f_test<-var.test(time_bed ~ group, data = time_in_bed)
results_f_test

F test to compare two variances

data: time_bed by group
F = 1.0723, num df = 247, denom df = 96, p-value = 0.7018
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.7576116 1.4803826

sample estimates:
ratio of variances

1.072342

The results of the F test are identical to the ones derived by hand. The F-
statistic (ratio of the two variances) is 1.0723 with the number of degrees of
freedom of the numerator equal to 247 and of the denominator equal to 96. The
F test also produces the 95% confidence interval [0.76, 1.48]. We can again tidy
the data using broom:
tidy(results_f_test)

Multiple parameters; naming those columns num.df, denom.df

# A tibble: 1 x 9
estimate `num df` `denom df` statistic p.value conf.low conf.high method

<dbl> <int> <int> <dbl> <dbl> <dbl> <dbl> <chr>
1 1.07 247 96 1.07 0.702 0.758 1.48 F tes~
# ... with 1 more variable: alternative <chr>

We now focus on the square root of rdi4p because we have tested the difference
in means of these values in the two groups and the distributions are closer to
being Normal.
group_vars = time_in_bed %>%
group_by(group) %>%
summarize(n = n(),

variance = var(sqrt(rdi4p)))
group_vars

# A tibble: 2 x 3
group n variance
<chr> <int> <dbl>

1 Group 1 248 1.52
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2 Group 2 97 5.34
var_ratio = group_vars$variance[2]/group_vars$variance[1]
var_ratio

[1] 3.511078

The variance for rdi4p for group 1 is 1.52 and for group 2 is 5.34. Because
nx = 248 and ny = 97 we use the same 0.025 and 0.975 quantiles of an F96,247
distribution. The realized 95% confidence interval for σ2

y/σ2
x is[

1
1.38

× 5.34
1.52

,
1

0.71
× 5.34

1.52

]
= [2.55, 5.45] ,

which does not include 1 indicating that the equal variances hypothesis can be
rejected at the α = 0.05 level for the square root of the rdi4p variable for the
two groups. A similar result can be obtained for rdi4p instead of the square
root of the rdi4p. We leave this as an exercise.

Similarly, results can be obtained for the square root of rdi4p using the
var.test function. Specifically,
results_f_test <- var.test(sqrt(rdi4p) ~ group, data = time_in_bed)
results_f_test

F test to compare two variances

data: sqrt(rdi4p) by group
F = 0.28481, num df = 247, denom df = 96, p-value = 3.109e-15
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.2012208 0.3931879
sample estimates:
ratio of variances

0.2848128

Thus, we see the confidence interval does not overlap 1, so we conclude that the
groups likely have different variances.

11.6 Problems

Problem 1. In a trial to compare a stannous fluoride dentifrice A, with a
commercially available fluoride free dentifrice D, 260 children received A and
289 received D for a three-year period. The mean DMFS increments (the num-
ber of new Decayed Missing and Filled tooth Surfaces) were 9.78 with standard
deviation 7.51 for A and 12.83 with standard deviation 8.31 for D. Is this good
evidence that, in general, one of these dentifrices is better than the other at
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reducing tooth decay? If so, within what limits would the average annual dif-
ference in DMFS increment be expected to be?

Problem 2. Suppose that 18 obese subjects were randomized, 9 each, to a new
diet pill and a placebo. Subjects’ body mass indices (BMIs) were measured at a
baseline and again after having received the treatment or placebo for four weeks.
The average difference from follow-up to the baseline (followup - baseline) was
−3 kg/m2 for the treated group and 1 kg/m2 for the placebo group. The corre-
sponding standard deviations of the differences was 1.5 kg/m2 for the treatment
group and 1.8 kg/m2 for the placebo group. Does the change in BMI over the
two-year period appear to differ between the treated and placebo groups? Show
your work and interpret results. Assume Normality and a common variance.

Problem 3. Suppose that systolic blood pressures were taken on 16 oral con-
traceptive (OC) users and 16 controls at baseline and again two years later. The
average difference from follow-up SBP to the baseline (followup - baseline) was
11 mmHg for oral contraceptive users and 4 mmHg for controls. The corre-
sponding standard deviations of the differences were 20 mmHg for OC users
and 28 mmHg for controls.

a. Calculate and interpret a 95% confidence interval for the change in systolic
blood pressure for oral contraceptive users; assume Normality.

b. Does the change in SBP over the two-year period appear to differ between
oral contraceptive users and controls? Create the relevant 95% confidence
interval and interpret. Assume Normality and a common variance.

Problem 4. In the previous problems does it make sense to assume equal
variances? Construct the same confidence intervals without assuming equal
variances and compare. Provide R code built from scratch and using built-in R
functions for testing.

Problem 5. Will a Student’s t or Z hypothesis test for a mean with the data
recorded in pounds always agree with the same test conducted on the same data
recorded in kilograms? (explain)

Problem 6. In the SHHS consider the square root of rdi4p for two groups:
(1) individuals who are 40 to 45 years old, never smoked (smokstat_s1==0) and
have a BMI below 25; and (2) individuals who are 70 to 80 years old, never
smoked, and have a BMI above 35.

a. Calculate the 90% confidence interval for the difference in mean of the
square root of rdi4p between the two groups under the equal variance
assumption.

b. Calculate the 95% confidence interval for the ratio of variances of the
square root of rdi4p between the two groups

c. Calculate the 90% confidence interval for the difference in mean of the
square root of rdi4p between the two groups without assuming equal
variance.

d. Discuss and interpret the differences.
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Problem 7. We consider the same problem as above, where the second group
is the same, while the first group comprises individuals who are 70 to 80 years
old, are former smokers, and have a BMI above 35.

Problem 8. We consider the same problem as above, where the first group
comprises women (gender=0) who are 70 to 80 years old, have never smoked,
and have a BMI above 35, while the second group comprises men 70 to 80 years
old, who have never smoked, and have a BMI above 35.

Problem 9. Compare the confidence intervals obtained in the previous 3 prob-
lems with the confidence intervals based on the bootstrap of subjects (using
quantiles and mean plus/minus Normal quantiles times the standard deviation
of the statistic.)

Problem 10. We would like to compare the performance of confidence inter-
vals for ratio of variances. Simulate 10000 times N1 random variables from a
N(3, 52) and N2 random variables from a N(1, 72). For every sample calculate
the 95% confidence interval based on the FN1−1,N2−1 distribution as well as on
the bootstrap (use 100000 bootstrap samples for every pair of samples). Con-
sider the following pairs of (N1, N2): (5, 10), (10, 5), (10, 10), (10, 20), (20, 10),
(20, 50), (50, 10), (50, 50), (100, 200), and (200, 100).

a. Calculate the percentage of times the confidence intervals cover the true
value of the variance ratio 72/52

b. Calculate and compare the average length of the confidence intervals for
the F and bootstrap approximations

c. What are your conclusions?

Problem 11. Repeat the same experiment, but replace the N(3, 52) distri-
bution with the distribution of a 3 + t2.08 random variable (variance=26) and
the N(1, 72) distribution with 1 + t2.04 (variance=51). Here we chose the t-
distributions to have close variances to the Normals from the previous example,
but they are not identical. In general, the variance of the distribution of a tn

random variable is n/(n − 2) if n > 2 and is infinity if n ≤ 2.

Problem 12. Show that fn,m,α = 1/fm,n,1−α, that is, the α-quantile of the
F distribution with (n, m) degrees of freedom is the reciprocal of the (1 − α)
quantile of the F distribution with (m, n) degrees of freedom.

a. Where in this chapter can this result be observed?
b. What is the practical interpretation of this result?

Problem 13. Write an R function from scratch to calculate 100(1 − α)% confi-
dence intervals for the difference in mean, ratio of variances, and a recommenda-
tion of what type of interval to use (pooled versus un-pooled variance). Produce
output that is as neat and intuitive as possible.

Problem 14. We would like to investigate whether the percent of time spent
in stages 3 and 4 of sleep varies with age. The variable that contains this
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information is times34p. Partition the age range into deciles. This can be done
using the following R code:
q_age<-quantile(age_s1,probs=seq(0,1,length=11),na.rm=TRUE)

We would like to compare the average times34p across the 10 groups; this is
often called stratification by a variable, in this case, age_s1. To do this we
will set the first decile of age_s1 as the reference category and we will compare
every category against the reference category.

a. Conduct the t-test for the mean times34p for each age group versus the
mean age group of times34p in the reference category

b. Verify whether the confidence interval for the variance ratio in each case
contains 1

c. Suppose that we knew that there is no difference in average times34p as
a function of age. Provide an expected number of tests for the difference
in mean among the 9 conducted that would not include 0. Also, provide
a confidence interval for the number of tests that would not include 0.
Interpret.

Problem 15. Conduct the same type of analysis using bmi_s1 as the stratifi-
cation variable and the square root of the rdi4p as the variable on which we
conduct t-testing for equality in the mean. In addition:

a. Calculate the variance of the means of the square root of the rdi4p in the
10 groups and the variance of the square root of rdi4p around the group
means, and denote by F0 the ratio of these two variances.

b. Repeat the same procedure 10000 times when every time the vector rdi4p
is randomly permuted and collect the vector F1, . . . , F10000 of F ratios
obtained after each permutation.

c. What is the interpretation of the proportion of times Fi > F0?



390 CHAPTER 11. T AND F TESTS



Chapter 12

Data resampling techniques

This chapter covers the following topics

• Jackknife and cross validation
• Bootstrap

In this chapter we focus on data resampling techniques. People will use these
techniques to perform inference, assess bias or quantify uncertainty. Their pop-
ularity stems from their being easy to interpret and close to the data. We’ll
focus on the colorfully named jackknife and bootstrap procedures in this chap-
ter. In another chapter, we’ll focus on permutation testing, another resampling
technique.

The jackknife and bootstrap were popularized by two of the most impactful
modern statisticans: John Tukey for the jackknife (Tukey 1958) and Bradley
Efron for the bootstrap (Efron and Tibshirani 1993; Efron 1979). The boot-
strap, in particular, has become a revolutionary procedure underlying the basis
of much of modern inference and machine learning. The names of the proce-
dures underlie their utility. The jackknife, like its physical counterpart (think
of a Swiss-army knife), is a handy and practical tool. The bootstrap is named
after the impossible task of “pulling oneself up by their own bootstraps”. (The
phrase is often attributed to the accounts of the fictional Baron Munchausen.
Though, the character, equally impossibly, pulled themselves up by their hair,
not bootstraps.)

12.1 Jackknife and cross validation

The jackknife is, as was mentioned, a handy tool for statistical analysis. The
technique was officially introduced by Quenouille (Quenouille 1949, 1956), but
was popularized and expanded on by Tukey. The technique involves deleting

391



392 CHAPTER 12. DATA RESAMPLING TECHNIQUES

observations one at a time and calculating a statistic in turn. Imagine that we
have a target to estimate (an estimand) and a procedure based on data that
produces estimators given a particular size of a data set. Estimators can come
from a parametric or nonparametric statistical model, any black-box algorithm,
simulations or a large system of partial differential equations. The fundamental
beauty of the idea is that it essentially says: “if you can produce an estimator
based on a data set of size n then you can produce an estimator based on a data
set of size n − 1 by simply witholding one observation.” This procedure can be
repeated then by removing, one-at-a-time, the other observations from the data.
The “leave-one-out” concept is probably one of the most important concepts in
data analysis and the inspiration for the widely used cross-validation concept.

This is a rather strange concept, though new it is not. Indeed, why would
anybody even think about using less data to obtain an estimator and then
spending the time to do this seemingly sub-optimal procedure many times?
The reasons are that: 1) the distribution of estimators obtained by removing
one observation at a time provides a sense of the variability of the estimator
when the data is just a little smaller; 2) the required time for running the
procedure increases only n times (because there are n data sets of size n − 1);
3) the procedure does not rely on the method used for estimation or prediction;
4) using a technical argument this approach can be used to numerically remove
the bias of a large class of estimators (e.g. maximum likelihood estimators);
and 5) the flavor, though not the intent, of the approach has deep connections
to the widely used bootstrap (for estimating variability) and cross validation
(for controlling over-fitting in machine learning). However, as interesting and
connected as the jackknife is, it has not become one of the standard techniques
in statistical practice. Keeping this in perspective, we focus now on the jackknife
estimator of the bias and variance in finite samples.

12.1.1 Estimating bias

To go into details, let X1, . . . , Xn be a collection of of univariate observations
to estimate parameter θ. Let θ̂n be the estimate based on the full data and let
θ̂i,n be the estimate of θ obtained by deleting observation i.

For example, if θ is the popuation mean and θ̂n is the sample mean
(

1
n

n∑
i=1

xi

)
,

θ̂i,n would be the mean of the n − 1 observations omitting observation i(
1

n−1
∑
j ̸=i

xj

)
. Let θ̄n = 1

n

∑n
i=1 θ̂i,n be the average of these leave one out

estimators. We might think of the n leave one out estimators as an estimate of
the population distribution of the sample statistic (based on n−1 observations).
Then θn is the estimated population mean of this distribution.

Ideally, θ̂n and θ̄n would be close. In fact, their difference plays a fundamental
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role in the jackknife bias estimate:

(n − 1)
(

θ̄n − θ̂n

)
.

Consider the sample mean, where θ̄n is equal to θ̂n suggesting that there is no
bias. This is encouraging, since we know that the sample mean is unbiased,
E[X̄] = µ and the estimator of the bias is also b̂n = 0.

Why does this work? Consider the case where there is an additive bias of order
n. That is, E[θ̂n] = θ + b/n. Then:

E[θ̄n] = 1
n

n∑
i=1

E[θ̂i,n] = 1
n

n∑
i=1

{
θ + b

n − 1

}
= θ + b

n − 1
.

Note then that our bias estimate is then itself unbiased:

E[(n − 1)(θ̄n − θ̂n)] = (n − 1){E(θ̄n) − E(θ̂n)} = (n − 1)
{

b

n − 1
− b

n

}
= b

n
.

The idea of constructing estimates with observations left out led to the key in-
sight that (particular forms of) bias can be estimated using the data in hand.
This style of thinking foreshadowed major future developments in data resam-
pling strategies for bias and standard error estimation.

Since we have estimated the bias, it seems clear that we might want to correct
for it. The jackknife estimate of θ is:

θ̂n − (n − 1)(θ̄n − θ̂n) ,

which is simply the estimate θ̂n minus the estimated bias (n − 1)(θ̄n − θ̂n). It is
easy to see that the jackknife estimator is unbiased in finite samples:

E
[
θ̂n − (n − 1)(θ̄n − θ̂n)

]
= θ + b

n
− b

n
= θ

One motivation for the jackknife is that the leave one out estimators are a
sample from the distribution of estimators (using n − 1 observations instead
of n). Thus, the sample mean from this distribution estimates the population
mean of this statistic, leading to an ability to estimate bias.

Once students are exposed to the jackknife idea they often have a simple and
reasonable question: “why do we assume that the bias is of the form b/n and
what type of estimators have this form?” Indeed, we have just discussed that the
mean is unbiased and the jackknife estimator of the zero bias is zero. It turns
out that the mean is one of the very few estimators that is unbiased in finite
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samples. The other very important example are the least square estimators
of the regression parameters in a linear regression. But, almost every other
reasonable estimator we can think of, can be shown to have a bias, which is
typically of order n. Indeed, all Maximum Likelihood Estimators (MLE) have a
bias of order n including the variance for a Normal distribution, the maximum
for a Uniform on the interval (0, θ) distribution, the shape and scale of a Gamma
distribution, etc. Indeed, while most estimators are asymptotically unbiased,
that is, the bias goes to zero as the number of observations is going to infinity,
they are biased in finite samples. The jackknife is a simple method to correct
the finite samples bias.

The jackknife is designed to correct only for bias of the type b/n. In the case
when the bias has additional, higher order components, the method does not
eliminate the bias in finite samples. For example, consider the case when

E(θ̂n) = θ + b

n
+ c

n2

then

E(θ̄n) = 1
n

n∑
i=1

E[θ̂i,n] = 1
n

n∑
i=1

{
θ + b

n − 1
+ c

(n − 1)2

}
= θ+ b

n − 1
+ c

(n − 1)2 ,

which shows that

E[(n − 1)(θ̄n − θ̂n)] = b

n
+ (2n − 1)c

n2(n − 1)
.

Thus, the expected value of the jackknife estimator in this case is

θ + b

n
+ c

n2 − b

n
− (2n − 1)c

n2(n − 1)
= θ − c

n(n − 1)
,

indicating that the jackknife estimator has bias −c/(n2 − n). The linear part of
the bias is removed and one could argue that the bias is reduced even though
it is not eliminated.

12.1.2 Jackknife motivation using pseudo observations

Alternatively, one can motivate the jackknife using pseudo observations (pseudo
meaning “fake”). Define the ith pseudo observation as:

psi,n = θ̂n − (n − 1)(θ̄i,n − θ̂n) = nθ̂n − (n − 1)θ̂i,n .

Each of the pseudo observations is unbiased to the original target parameters
even if the original observations are not. Indeed,

E(psi,n) = E(θ̂n)−(n−1){E(θ̄i,n)−E(θ̂n)} = θ+ b

n
−(n−1)

{
θ + b

n − 1
− θ − b

n

}
= θ .
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So, in some sense, the pseudo observations are trying to play the same role
as the original observations. Indeed, pseudo observations replace the actual
observations, Xi, with another set of n observations, psi,n, with the property
that the new, pseudo, observations are unbiased to the true estimand, θ; that
is E(psi,n) = θ. In the case of the sample mean, pseudo observations are equal
to the original observations as we show below, but this is not the case with all
estimators. Surprisingly, this pseudo observation procedure can be done to any
type of estimator with this type of finite sample bias and only requires running
the algorithm n more times than usual. It is easy to show that the jackknife
estimator of θ is the average of the pseudo observations.

Think of these values as what observation i contributes to the estimate. In the
case where the estimate is the sample mean, the pseudo observations work out
to be the observations themselves. Indeed, nθ̂n =

∑n
k=1 Xk and (n − 1)θ̂i,n =∑n

k=1 Xk − Xi, which makes the pseudo observations for the mean equal to

psi,n =
n∑

k=1

Xk −

(
n∑

k=1

Xk − Xi

)
= Xi .

In the general case, the mean of the pseudo observations is the bias corrected
estimate. Indeed,

1
n

n∑
i=1

{nθ̂n − (n − 1)θ̂i,n} = n2θ̂n

n
− (n − 1)

{
1
n

n∑
i=1

θ̂i,n

}
= nθ̂n − (n − 1)θ̄n

= θ̂n − (n − 1)
(

θ̄n − θ̂n

)
.

12.1.3 Estimating standard errors using the jackknife

The jackknife is useful for estimating the standard error of a statistic as well.
Thinking along the lines of the sample of leave-one out observations as be-
ing a sample of the statistic of interest (having n − 1 observations instead
of n), their standard deviation must yield information about the standard
deviation of the statistic. More specifically, if we can assume that the vari-
ance approximately scales with 1/n, i.e. V ar(θ̂n)/V ar(θ̂i,n) = (n − 1)/n, then
V ar(θ̂n) = n−1

n V ar(θ̂i,m). But, note we can estimate the variance of V ar(θ̂i,m),
since we have n of them (obtained by leaving out each observation). Thus, an
estimate of the standard deviation is:

[
n − 1

n

n∑
i=1

(θ̂i,n − θ̄n)2

]1/2

,

the estimated variance from the leave one out estimates. This also works out to
be the standard deviation of the psuedo observations mentioned earlier!
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12.1.3.1 Example: RDI

Let us go over an example of using the jackknife in practice using the SHHS
data. We will investigate the respiratory disturbance index (RDI). Because it is
highly skewed we take the log transformation. However, because it has 0 values,
a constant (1 in this case) is added to transform zeros into zeros.
## read in the data
dat = read.table(file = "data/shhs1.txt",

header = TRUE, na.strings = "NA")
logp1rdi = log(dat$rdi4p + 1)

Let us use the biased version of the variance as a statistic
(

σ̂2 = 1
n

n∑
i=1

(xi − x̄)2
)

.

First we will create our leave-one-out estimates and then plot their histogram.
n = length(logp1rdi)
bivar = function(x) {
n = length(x)
(n - 1) * var(x) / n

}
jk = sapply(1 : n, function(i) bivar(logp1rdi[-i]))
hist(jk,main="Jackknife distribution",

xlab="Leave-one-out estimates of variance of rdi4p",
probability=TRUE,col=rgb(0,0,1,1/4),breaks=20,
cex.lab=1.5,cex.axis=1.5,col.axis="blue")

Jackknife distribution

Leave−one−out estimates of variance of rdi4p

D
en
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00
30

00

The distribution of the jackknife estimators of the variance of the log of rdi4p
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is highly skewed and concentrated. Indeed, the minimum and maximum of the
distribution are 1.1187 and 1.1206 indicating that no particular observation has
a large effect on the variance estimator.

Let us perform the jackknife and estimate the bias.
theta = bivar(logp1rdi) # the biased estimate
theta

[1] 1.12039
thetaBar = mean(jk) # the mean of the jackknife estimates
biasEst = (n - 1) * (thetaBar - theta) # the estimate of the bias
biasEst

[1] -0.0001930709

Now let’s calculate the bias corrected version of the statistic.
theta - biasEst ## the bias corrected version

[1] 1.120583
var(logp1rdi) ## using the unibiased variance estimate

[1] 1.120583

So, interestingly, the jackknife bias corrected version of the variance is exactly
the unbiased variance formula. This is always the case, but it does show that our
jackknife is doing exactly what it is trying to do, converts the biased estimate
into an unbiased one. It does not always work this well. We will see that it fails
particularly for sample quantiles.

Let us also calculate the jackknife estimated standard error of the variance:
sqrt((n - 1) * mean((jk - thetaBar)^2))

[1] 0.01668013

You do not have to program the jackkife, as it is included in the bootstrap
package. The arguments are the vector of interest and a function that performs
the estimation. The function outputs a list with the bias and standard error
estimates.
library(bootstrap)

Attaching package: 'bootstrap'

The following object is masked from 'package:broom':

bootstrap

The following object is masked from 'package:VGAM':
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hormone
out = jackknife(logp1rdi, bivar)
out$jack.bias

[1] -0.0001930709
out$jack.se

[1] 0.01668013

12.1.4 The jackknife and leave-one-out cross validation

So far, we have discussed the jackknife as a method for reducing bias and esti-
mating the variance of an estimator. A related method that is often called the
jackknife is used to assess the generalization performance of regression (Abdi
and Williams 2010). Consider the case when we see pairs of random variables
(Xi, Yi) and we try to predict Yi from Xi. For example, we would like to predict
rdi4p from bmi_s1 in the SHHS. A possible strategy is to do a linear regression
(not yet covered) of the type

Yk = an + bnXk + ϵk , for k = 1, . . . , n ,

where ϵk ∼ N(0, σ2
ϵ ) are errors. A predictor of Yk based on Xk can be ob-

tained by fitting this model, obtaining the estimates ân and b̂n of an and bn,
respectively, and then calculating the prediction

Ŷi = ân + b̂nXi ,

where we used k as the generic index and i as a specific index that we are trying
to emphasize. At first pass, this seems to be an excellent idea, but it is actually
cheating. Indeed, both ân and b̂n contain information about Yi because Yi was
used to calculate the coefficients to start with. This does not seem like a very
good idea, as, if we are allowed to use Yi in its own prediction then a much
better predictor of Yi is Yi; also, perfectly non-generalizable to a new predictor
observation, Xi. The jackknife procedure fits instead the model

Yk = ai,n + bi,nXk + ϵk , for k = 1, . . . i − 1, i + 1, . . . n ,

and produces the estimators âi,n and b̂i,n of ai,n and bi,n, respectively and then
produces the jackknife predictors

Ŷi,jack = âi,n + b̂i,nXi .

It is standard to calculate the squared error loss for the jackknife predictors as
n∑

i=1
(Yi − Ŷi,jack)2 ,
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though other losses can be considered, as well. Note that there is a strong con-
nection between the two jackknife methods, but they are not the same. Indeed,
it is the latter procedure that has been used extensively in machine learning
(called leave one out cross-validation (LOOCV)), as ideas are widely generaliz-
able. In the jackknife, we would get the bias-corrected versions of α̂n and β̂n and
getting Ŷ and the loss from these estimates. In the second jackknife procedure,
we calculate Ŷi,jack for each i and then get the losses from these predicted val-
ues. Also, the jackknife is computationally cheap for certain types of estimators
where we can do algebraic tricks where we do not need to recompute estimates
for each i.

Indeed, there is no need to use a linear regression or a regression. The method
can be used with any algorithm that based on a set of predictors produces predic-
tions about a variable of interest. Moreover, models can be compared, selected,
or combined using the jackknife sum of square loss or any other loss function.
In modern Biostatistics and Machine Learning few would call this procedure the
jackknife; instead, the term leave-one-out cross validation is preferred. Versions
of this approach include leave-k-out and k-fold cross validation, which may be
more robust and also require fewer computations. Knowing that these ideas
originated in the now little known works of Quenoullie and Tukey is one of the
roles of this book.

12.1.4.1 Example: jacknifing in regression

Let us investigate a little closer the association between rdi4p and bmi_s1 in
SHHS. We have seen the scatter plot many times before and we know that
the association is not particularly linear, but the purpose of this example this
imperfect assumption will do. Below we display the points indicating the (Xi, Yi)
pairs, where Xi stands for the ith observed bmi_s1 value and Yi stands for the
ith observed rdi4p value. A few observations are skipped because they miss
the bmi_s1 value, but this is just a small problem we need to take care off when
doing the accounting. We also fit a linear regression and display the best linear
regression line as a red solid line. Not the most central curve to the data, but
certainly the line that minimizes the sum of squares for errors.
fit_df = dat %>%
filter(!is.na(rdi4p) & !is.na(bmi_s1))

fit_df %>%
ggplot(aes(x = bmi_s1, y= rdi4p)) +
geom_point() +
geom_smooth(se = FALSE, method = "lm") +
ylim(c(0, 30))

Warning: Removed 347 rows containing non-finite values (stat_smooth).

Warning: Removed 347 rows containing missing values (geom_point).
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plot(dat$bmi_s1,dat$rdi4p,pch=".",col=rgb(0,0,1,.2),cex=3,ylim=c(0,30),
bty="l",cex.axis=1.5,col.axis="blue",main=NULL,xlab="BMI",
ylab="Respiratory Disturbance Index (4%)")

fit<-lm(rdi4p~bmi_s1,data=dat)
fitt<-fit$fitted.values
bmi_non_na<-dat$bmi_s1[!is.na(dat$bmi_s1)]
rdi_non_na<-dat$rdi4p[!is.na(dat$bmi_s1)]
index_min<-which.min(bmi_non_na)
index_max<-which.max(bmi_non_na)
lines(c(bmi_non_na[index_min],bmi_non_na[index_max]),

c(fitt[index_min],fitt[index_max]),
col="red",lwd=3)
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We would like to produce the jackknife, or leave-one-out, predictors and compare
them to the predictors based on the entire data set . We will do this only for the
first 5 observations, though this could be done the same way for all observations
in the data (N = 5761). We do not do this here because it is relatively slow and
there are very fast approaches for doing this much better; alas, they exceed the
scope of the current book.
#Build the matrix of results that will be displayed
full_mod = lm(rdi4p ~ bmi_s1, data = fit_df)
results = fit_df %>%
select(bmi_s1, rdi4p) %>%
dplyr::slice(1:5)

results$pred = predict(full_mod, newdata = results)
results$pred_jack = NA

#Conduct the jackknife prediction, or leave one-out cross validation
for (i in 1:5){
#Identify the point where prediction is made
run_df = fit_df[-i, ]
mod = lm(rdi4p ~ bmi_s1, data = run_df)
results$pred_jack[i] = predict(mod, newdata = fit_df[i,])

}
colnames(results) = c("BMI", "rdi4p", "Complete case prediction", "Jackknife prediction")
round(results, digits = 4)

BMI rdi4p Complete case prediction Jackknife prediction
1 21.7776 1.4381 3.7030 3.7040
2 32.9507 17.8022 12.3963 12.3945
3 24.1141 4.8536 5.5210 5.5212
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4 20.1852 0.7973 2.4641 2.4651
5 23.3091 2.7568 4.8946 4.8953

The first and second columns contain the first 5 observations of bmi_s1 and
rdi4p, respectively, while the third column contains the prediction of rdi4p
based on bmi_s1 when all observations are considered in the regression equa-
tion. The last column contains the same prediction but obtained after removing
the corresponding observation from the regression. For example, for the third
observation the value 24.11 for bmi_s1 and 4.85 for rdi4p were removed from
the data before conducting the regression. In this case the two predictions are
very close to each other, but not identical. Observations that would have a large
effect on the linear regression if it were removed are called high leverage points.
The reason why the two predictions are close for all cases is that none of the
first 5 observations are a high leverage points. This is partially due to the fact
that the data set is relatively large and there is nothing particularly peculiar
about these 5 observations. Things are different in smaller data sets or when
values in the predictors or outcomes are different from the rest of the points,
which can make them highly influential.

12.2 Bootstrap

The bootstrap is a tremendously useful tool for calculating bias, constructing
confidence intervals and calculating standard errors for difficult statistics. It is
difficult to overstate the impact that the bootstrap has had on modern statistics.
As a simple example, how would one create a confidence interval for the median?
Note, asymptotic results and special cases exist to do exactly this. However, the
bootstrap solves the problem generally without resorting to the mathematical
difficulties of asymptotic statistics or specific models.

The bootstrap works on the so-called bootstrap principle, also often called the
plug-in principle. Let us consider the task of finding the standard deviation of
a statistic, let’s say θ̂(x), that is trying to estimate a parameter, θ. Here, x is
our data and we write θ̂(x) to denote that our estimator depends on our data.
Imagine, if we could simulate from the distribution of the data. Then, as we
have done countless times in the text, we could get the standard error of the
statistic via simulation.

As an example, imagine if our data of 100 observations are drawn from a N(µ, σ2)
and we want to estimate the standard error of the median. Let us do an example
where µ = 0 and σ2 = 1.
set.seed(32456)
n = 100
nosim = 1000
# make a matrix of 1000 samples of size 100
mat = matrix(rnorm(nosim * n), nosim, n)
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# calculate the median of each sample
medns = matrixStats::rowMedians(mat)
# now we have a 1,000 medians
length(medns)

[1] 1000
# the standard deviation of the medians
sd(medns)

[1] 0.1245937

Here we just did 1000 simulations of the data, then calculated the median in
each simulation. Our estimates are more accurate as we increase the number
of simulations. Of course, this process isn’t very useful in practice as we don’t
usually know the exact data-generating process. If we could simulate from the
data generating distribution, we would not need our statistic at all! This is
where the bootstrap principal comes in. Instead of simulating from the data
generating distribution, we simulate from our best estimate of it. This is the so-
called plug-in rule; we plug in the empirical distribution for the real distribution.

So, if we have a dataset of size 100, we simulate a lot of samples of size 100
from the empirical distribution. Of course, there are many ways to estimate
the empirical distribution to simulate from it. The easiest way is to use a
distribution that puts probability 1/n on every observed data point. This is the
classic (non-parametric) bootstrap.

Steps for bootstrap standard error estimation given a data set of size n:

1. Simulate lots of samples of size n by drawing from the observed data with
replacement.

2. Calculate the statistic value for each resample.
3. Calculate the standard error of the simulated statistics.

Let us calculate the median RDI for the SHHS data set. Recall, we read it in
when discussing the jackknife. First, let us define our data
x = dat$rdi4p
any(is.na(x)) # Note there are no missing

[1] FALSE
n = length(x)
nosim = 1000
thetaHat = median(x)

We perform the bootstrap resampling and plot a histogram of the simulated
data across all samples and compare it to the histogram of the original data.
## sample nosim resamples of size n with replacement
## and put them in a matrix with nosim rows and n columns
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## so that each row is a resampled data set
bsResamples = matrix(sample(x, n * nosim, replace = TRUE),

nosim, n)

par(mfcol = c(1, 2))
## plot the histogram of the data
hist(x, probability=TRUE,col=rgb(0,0,1,1/4),breaks=10,

cex.lab=1.5,cex.axis=1.5,col.axis="blue",
xlab="rdi4p",main="")

## plot a histogram of the resampled data
hist(bsResamples, probability=TRUE,col=rgb(0,0,1,1/4),breaks=10,

cex.lab=1.5,cex.axis=1.5,col.axis="blue",
xlab="rdi4p",main="")
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They look similar, as they should, because the right histogram was effectively
created by simulating from the left histogram. To perform the bootstrap, we
calculate the statistic (median) of each resample. Now let us plot a histogram of
our 1000 bootstrap resamples. We place a red line where the observed statistic
(full data median) is located
## calculate the median for each
bsStat = rowMedians(bsResamples)
## plot a histogram of our resampled statistics
hist(bsStat,probability=TRUE,col=rgb(0,0,1,1/4),

cex.lab=1.5,cex.axis=1.5,col.axis="blue",
xlab="Median of rdi4p",main="")

abline(v = thetaHat, col = "red", lwd = 2)
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By comparing the range of the X axis with that of the previous histograms it
shows that the median is a lot less variable than the population. This because
the variance of a statistic is going to be less than that of the population! (Just
like the variance of X̄ is σ2/n.) This estimated distribution of the statistic is
then used as if we had simulated from the real distribution. So, for example,
the estimated standard error of the statistic is just the standard deviation of
our bootstrap resampled medians.
sd(bsStat)

[1] 0.1156307

Technically, the bootstrap does not require simulation. The exact distribution
simply equally weights all possible resamples of the data. This set is too un-
wieldy to handle exactly, so all bootstrap applications use simulation. Instead
of programming this simulation ourselves, as above, we can use the bootstrap
package for this calcuation.
out = bootstrap(x, 1000, median)
sd(out$thetastar)

[1] 0.1149204
hist(out$thetastar,probability=TRUE,col=rgb(0,0,1,1/4),

cex.lab=1.5,cex.axis=1.5,col.axis="blue",
xlab="Median of rdi4p",main="")
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The bootstrap uses the logic of the plugin principle to estimate population
quantities without onerous mathematics. The bootstrap relies on a theoretical
foundation that shows that this style of analysis works, provided your n is
large enough. This latter point is important, as the bootstrap does not have
finite sample guarantees. Many students ask “how many bootstrap samples are
enough?”, which there is a definite, but unsatisfying answer. For each finite
data set, there are nn enumerable bootstrap samples, but this means there are
a billion bootstrap samples when n = 10! The answer generally given is to take
as many bootstrap samples as you can, but commonly people take anywhere
from 10,000 to 100,000 samples depending on the complexity of calculation of
the statistic. These numbers vary greatly also depending on the problem so
you should see how the variability of your statistic changes with the number of
bootstrap samples.

12.2.1 Bootstrap confidence intervals

The bootstrap not only gives us a way to estimate the standard error of a
statistic, we can form confidence intervals. There are several procedures, but
the easiest is to take percentiles of the bootstrapped distribution of the statistic.
We show a picture of this below for the RDI data.
hist(bsStat,probability=TRUE,col=rgb(0,0,1,1/4),

cex.lab=1.5,cex.axis=1.5,col.axis="blue",
xlab="Median of rdi4p",main="")

abline(v = quantile(bsStat, c(.025, .975)), lwd = 3)
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The interval is given below:
quantile(bsStat, c(.025, .975))

2.5% 97.5%
3.938171 4.413793

Such bootstrap percentile intervals have the correct coverage asymptotically,
under assumptions. However, a better interval can be constructed using a bias
corrected confidence interval in the package boot. Let us try a bootstrapped
interval for the standard deviation, since the correction does not help for the
median we have been discussing so far. The bcanon function will perform non-
parametric bias-corrected confiedence intervals:
sd(x)

[1] 12.43283
out = bcanon(x = x, nboot = 1000, theta = sd, alpha = c(.025, .975))
out$confpoints

alpha bca point
[1,] 0.025 11.84043
[2,] 0.975 13.15082

12.2.2 Summary

The bootstrap is an incredibly useful tool for approximating the distribution of a
statistic. We have also seen that it is extremely easy to apply, which lends itself
to potential abuse. Remember, it is an asymptotic distribution. For example,
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in our study, we investigated RDI, which has a strange distribution including
many 0s (so called zero inflation). As such, the asymptotics of the bootstrap
may apply as well.

12.3 Problems

Problem 1. Consider the case when X1, . . . , Xn are iid N(µ, σ2). We know
that the MLE of σ2 is

S2
n = 1

n

n∑
i=1

(Xi − Xn)2 .

a. Show that
E(S2

n) = σ2 + b

n

and obtain b in closed form
b. Obtain the jackknife estimator of σ2 based on the biased estimator S2

n

c. Obtain the jackknife estimator for the standard deviation of the jackknife
estimator

Problem 2. Consider the case when X1, . . . , Xn are iid U(0, θ). We know that
the MLE of θ is

Wn = max
i=1,...,n

Xi.

a. Show that
E(Wn) = θ + b

n

and obtain b in closed form
b. Obtain the jackknife estimator of θ based on the biased estimator Wn

c. Obtain the jackknife estimator for the standard deviation of the jackknife
estimator

Problem 3. List all possible bootstrap realizations of the vector (1, 2, 3). How
many of these realizations are unique up to a permutation? We say that (1, 2, 3)
and (3, 2, 1) are the same up to a permutation.

a. What is the probability of obtaining (2, 2, 2) in the first sample?
b. Suppose that we are running 6 bootstrap samples. What is the probability

that at least two vectors are identical?

Problem 4. For a vector of sample size n how many bootstrap realizations are
possible? How many of these realizations are unique up to a permutation?

a. What is the probability of obatining (2, 2, . . . , 2) in the 10-th bootstrap
sample?

b. Suppose that we are running 6 bootstrap samples. What is the probability
that at least two vectors are identical?
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Problem 5. We would like to study the properties of the bootstrap confidence
intervals in small samples.

a. Simulate a sample of size 10 from a N(2, 9) distribution and construct the
95% confidence intervals for µ based on the t-statistic and using 10000
bootstrap samples. Repeat the experiment 100000 times and compare the
frequency with which each confidence interval covers the true value µ = 2.

b. Simulate a sample of size 10 from a N(2, 9) distribution and construct the
95% confidence intervals for σ2 based on the χ2-statistic and using 10000
bootstrap samples. Repeat the experiment 100000 times and compare
the frequency with which each confidence interval covers the true value
σ2 = 9.

c. Repeat the same simulation experiments by varying the sample size from
10, 50, to 100.

Problem 6. Provide a jackknife estimator that is unbiased in the case when
the estimator has the following form of the bias

E(θ̂n) = θ + b

n
+ c

n2 .

Problem 7. Conduct jackknife for prediction of rdi4p from bmi_s1 using only
the first 10 observations in the SHHS and compare your results with the ones
obtained using the entire data set.

Problem 8. Show that the jackknife estimator is equal to the mean of the
pseudo observations and that jackknife estimator of the standard deviation is
the standard deviation of the psuedo observations.

Problem 9. Consider the regression where the outcome is moderate to severe
sleep apnea defined as rdi4p greater or equal to 15 events per hour.
MtS_SA=dat$rdi4p>=15

Consider the regression where gender, age, hypertension, BMI, and the interac-
tion between hypertension and BMI are predictors.
summary(glm(MtS_SA~gender+age_s1+bmi_s1+HTNDerv_s1+bmi_s1*HTNDerv_s1,

data=dat,family="binomial"))

Call:
glm(formula = MtS_SA ~ gender + age_s1 + bmi_s1 + HTNDerv_s1 +

bmi_s1 * HTNDerv_s1, family = "binomial", data = dat)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.1134 -0.6559 -0.4437 -0.2633 2.8573
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.741853 0.434147 -20.136 <2e-16 ***
gender 1.155232 0.079212 14.584 <2e-16 ***
age_s1 0.032565 0.003702 8.797 <2e-16 ***
bmi_s1 0.148589 0.010730 13.848 <2e-16 ***
HTNDerv_s1 0.704645 0.431328 1.634 0.102
bmi_s1:HTNDerv_s1 -0.017233 0.014119 -1.221 0.222
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 5314.5 on 5760 degrees of freedom
Residual deviance: 4659.1 on 5755 degrees of freedom
(43 observations deleted due to missingness)

AIC: 4671.1

Number of Fisher Scoring iterations: 5

Note that in this model neither hypertension nor the interaction between hy-
pertension and BMI are significant at the level α = 0.05. We would like to
know what sample size would be necessary to obtain significant results for the
interaction effect with high probability, say 1−β = 0.90. Conduct the following
analysis

a. Consider a sequence of sample sizes Nup(p) = (1 + p)N , where N =
5804 − 43, the number of observations without missing covariates and
p = 0, 0.01, . . . , 0.5.

b. For every value of p sample with replacement from the data Nup(p) ob-
servations, run the regression, and record whether the interaction effect is
significant or not at α = 0.05

c. Repeat the experiment 10000 times for each value of p and record the
proportion of times, S(p), the interaction effect is significant at α = 0.05

d. Plot p versus S(p) and obtain the smallest p that ensures S(p) ≥ 0.9
e. Interpret S(p) and explain what would happen if instead of 10000 simula-

tions for each p we would do only 100 simulations

Problem 10. Consider a slightly different regression with the same outcome
and covariates gender, age, hypertension, BMI.
summary(glm(MtS_SA~gender+age_s1+bmi_s1+HTNDerv_s1,

data=dat,family="binomial"))

Call:
glm(formula = MtS_SA ~ gender + age_s1 + bmi_s1 + HTNDerv_s1,
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family = "binomial", data = dat)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.0350 -0.6558 -0.4447 -0.2672 2.8334

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.478417 0.374489 -22.640 <2e-16 ***
gender 1.160011 0.079171 14.652 <2e-16 ***
age_s1 0.032785 0.003695 8.873 <2e-16 ***
bmi_s1 0.139142 0.007386 18.839 <2e-16 ***
HTNDerv_s1 0.186753 0.077047 2.424 0.0154 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 5314.5 on 5760 degrees of freedom
Residual deviance: 4660.6 on 5756 degrees of freedom
(43 observations deleted due to missingness)

AIC: 4670.6

Number of Fisher Scoring iterations: 5

Note that in this model hypertension is significant at the level α = 0.05 with
a p-value=0.05. We would like to know at what sample size the hypertension
would stop being significant with high probability, say 1 − β = 0.9. We will
repeat the same experiment as before, though instead of Nup(p) we will consider
Ndown(p) = (1 − p)N , where p = 0, 0.01, . . . , 0.5.

The two problems show a very useful, though never used idea for sample size
calculations when preliminary data are available. The idea is exactly the same
as that of the bootstrap, but instead of sampling with replacement a data set of
the same size we sample a data set of larger or smaller size to see what would
happen with the significance of the test. Indeed, there is nothing set in stone
about the size of the sample with replacment.
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Chapter 13

Taking logs of data

This chapter covers the following topics

• Brief review
• Taking logs of data
• Interpret logged data
• Interpretation of inferences for logged data

13.1 Brief review

In this chapter, we discuss the issue of taking the logarithm, shortened to just
log, of outcome data. Throughout, when we write log we are always referring
to a logarithm base e. To briefly review, log(x) is the number y so that ey = x
where e is Euler’s number, 2.718... In other words, log(x) is the inverse of the
function ey. For each (or any) different base, say 10, we write log10(x) as the
number so that 10y = x. Thus, log10(100) = 2. The primary bases of use in
statistics are: 10, 2 and e. Base 10 is useful as it gives us orders of magnitude
from the number system that we are most used to (e.g., cost data in thousands of
dollars). Base 2 is less used, but is perhaps more useful, being the smallest whole
number for which we can define log and powers of 2 being easy to remember.
Also, in genomics, base 2 is used to see two-fold changes in expression. Base e
has many mathematical properties that make it attractive. For example, ey is
the only function that is its own derivative, has a simple Taylor expansion, and
e is the limit of (1 + 1/n)n, a useful expression used in calculating compound
interest.

Recall, log(1) = 0 and log(x) approaches −∞ as x approaches 0. Notice, if
log(x) = a and log(y) = b, xy = ea+b and so log(x) + log(y) = log(xy). Also
notice, if x = ea then 1/x = e−a so that log(1/x) = − log(x) and log(x/y) =
log(x) − log(y). Similarly, log(xy) = y log(x), since if eb = x then eyb = xy.

413
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Figure 13.1: Histogram of rdi4p.

13.2 Taking logs of data

Typically, one takes logs of data to correct for skewness. Figure 13.1 provides the
specific example of the histogram of the respiratory disturbance index, rdi4p,
in the SHHS.
dat = read.table(file = "data/shhs1.txt",

header = TRUE, na.strings=".")
library(tidyverse)
dat %>% ggplot(aes(rdi4p)) + geom_histogram(bins = 50)

Consider now the distribution of log(r + 1) where r is RDI. Here the plus 1 is
useful as RDI is often 0 and log(0 + 1) = log(1) = 0. Figure 13.2 displays the
transformed rdi4p data.
dat = dat %>% mutate(logp1rdi = log(dat$rdi4p + 1))
dat %>% ggplot(aes(logp1rdi)) + geom_histogram(bins = 50)

Notice the impact on the data. Taking the log spreads out the data and makes
them more symmetric. In this case, it is clearly not perfectly symmetric or
Gaussian-like. In addition, there is a zero inflation issue from the instances
where subjects have a zero value of RDI. Nonetheless, the logged data can be
preferable to work with for many reasons. For example, the long tails of subjects
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Figure 13.2: Histogram of log(1+rdi4p}.

with very high RDIs tend to squash the data together when plotting.

13.3 Interpreting logged data

A useful starting point for discussing methods of interpreting logged data is
to discuss the geometric mean. The (sample) geometric mean of a dataset
X1, . . . , Xn is (

n∏
i=1

Xi

)1/n

.

This is in contrast to the typical (arithmetic) mean. Notice that the log of the
geometric mean is

1
n

n∑
i=1

log(Xi) = 1
n

n∑
i=1

Yi = Ȳ

where Yi = log(Xi). Thus, the geometric mean is the exponent of the arithmetic
mean of the logged data.

The geometric mean is the more natural quantity to use when considering mul-
tiplicative quantities, like percentages. As an example, suppose that in a pop-
ulation of interest, the prevalence of a disease rose 2% one year, then fell 1%
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the next, then rose 2%, then rose 1%; since these factors act multiplicatively it
makes sense to consider the geometric mean

(1.02 × .99 × 1.02 × 1.01)1/4 = 1.01

for a 1% geometric mean increase in disease prevalence. This estimate is a more
useful definition of average, since a 1% increase per year for four years is equal to
the overall percentage increase in those four years: (1.01)4 = 1.02 × .99 × 1.02 ×
1.01. The arithmetic mean, when added to itself four times, would match the
sum of the numbers, a less useful summary in this case. The similarity between
the arithmetic and geometric means is that if we multiply the arithmetic mean
by n we get the sum of the values, whereas if we raise the geometric mean to
the power n we get the product of the values.

13.3.1 Convergence

Via the law of large numbers, we know that (under iid sampling assumptions)
the logged geometric mean converges to E[log(X)] and so the geometric mean
converges to:

θ = exp{E[log(X)]} .

We might call this quantity the population geometric mean. Since exp is not
linear we know generally exp(E[log(X)]) ̸= E[exp(log(X))], so that we can see
this is not equal to the population mean on the natural scale, E[X]:

E[X] = E[exp(log(X))]
exp(E[log(X)]) ̸= E[exp(log(X))]
exp(E[log(X)]) ̸= E[X]

Note, however, if data are symmetric the mean is equal to the median. Also,
the log is a monotonic function, which implies that the median on the log scale
is equal to the log of the median on the original scale.

If the data are symmetric on the log scale (called log-symmetric), then the mean
is the median on the log scale (by symmetry), such that:

P{log(X) ≤ E[log(X)]} = 0.5 .

We can use this identity to find that

P{X ≤ θ} = 0.5 .

Thus we arrive at the result that the population geometric mean is the median
if the population is log-symmetric. One example of a log-symmetric distribution
is the log-Normal distribution.
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Figure 13.3: Pdf of the Lognormal(0, 1).

13.4 Interpretation of inferences for logged data

All of the inferences that we have studied for arithmetic means apply to the
geometric mean, since we can simply analyze the logged data. For confidence
intervals, we need only to exponentiate the endpoints as the final step. We
can use either the CLT or small sample t intervals on the log scale. If we
assume that log(X) is Normally distributed to make t intervals, then X is said
to be log Normally distributed. To be specific, we say X ∼ Lognormal(µ, σ2) if
log(X) ∼ N(µ, σ2). It should be emphasized that the log normal distribution
is not the log of a Normal distribution. One cannot take the log of a Normally
distributed random variable, since it is negative with positive probability.

Figure 13.3 provides a plot of the Lognormal(0, 1) density:
t = data.frame(x = seq(0, 10, length = 1000)) %>%
mutate(y = dlnorm(x))

ggplot(t, aes(x, y)) + geom_line()

Figure 13.4 provides the boxplots of rdi4p by COPD (chronic obstructive pul-
monary disease) status.
ggplot(dat,aes(x = COPD15, y = rdi4p)) + geom_boxplot()

The 8 and NA categories are for unknown status. Also, notice the boxplots are
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Figure 13.4: Boxplots of rdi4p by COPD status.

all squished up and skewed. So, let us both restrict our attention to the 0 and
1 categories and look at the logged data. Figure 13.5 provides the boxplots for
the transformed data in these two categories.
subdat = filter(dat, COPD15 %in% c(0, 1))
ggplot(subdat,aes(x = COPD15, y = logp1rdi)) + geom_boxplot()

Surprisingly, the COPD positive group seems to have a slightly lower respiratory
disturbance index. Now let’s do a confidence interval on the log scale. Since
there are so many observations, it is irrelevant whether we do a t or CLT based
interval (so we will just use the CLT version). There are no missing observations
from either logp1rdi or COPD15 and we summarize the means and standard
deviations within the groups.
summaryDat = group_by(subdat, COPD15) %>%
summarise(mean = mean(logp1rdi), sd = sd(logp1rdi), n = n())

summaryDat

# A tibble: 2 x 4
COPD15 mean sd n
<fct> <dbl> <dbl> <int>

1 0 1.69 1.06 5641
2 1 1.47 1.07 62
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Figure 13.5: Boxplots of log of 1+ rdi4p by COPD status for categories 0 and
1.

Now let’s construct our interval. We will do it manually.
ival = summaryDat %>%
summarize(
difference = diff(mean),
sd = sqrt(sum(sd^2/n)))

ival = ival$difference + qnorm(c(0.5, .025, .975)) * ival$sd
out = rbind(ival, exp(ival))
rownames(out) = c("Log scale", "Exponentiated")
colnames(out) = c("Estimate", "Lower", "Upper")
round(out, 3)

Estimate Lower Upper
Log scale -0.216 -0.485 0.052
Exponentiated 0.805 0.616 1.054

Here, the raw interval considers the difference in the log geometric mean of
RDI+1 between the groups. To compare groups, consider whether 0 is in the
interval. In this case, the interval (narrowly) contains 0. In contrast, the ex-
ponentiated interval shows the ratio of the geometric means of RDI+1 between
the groups. Those who answered yes to having been diagnosed with COPD have
an estimated geometric mean RDI+1 that is 80.5% that of those who answered
no. The 95% interval for this ratio is from 61.6% to 105.4%. If we were willing
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to assume that the population is log-symmetric, which is clearly not the case
for these data, the interval could also be said to be an estimate for the ratio of
the medians.

13.4.1 Summary

To summarize, if you log your raw data, then study the empirical mean, then
your estimation is for logged population geometric means. When subtracting
means across groups, one is studying the log of the ratio of geometric means.
Furthermore, if you are willing to assume that the population level data are
log-symmetric, then one can discuss medians and ratios of medians.

13.5 Problems

Problem 1. A random sample was taken of 20 patients admitted to a hospital.
The lengths of stays in days for the 20 patients were:
los = c(4, 2, 4, 7, 1, 5, 3, 2, 2, 4,

5, 2, 5, 3, 1, 4, 3, 1, 1, 3)

Calculate a 95% confidence interval for the mean length of stay.

Problem 2. Exponentiate your endpoints for the interval from Problem 1 and
interpret the resulting interval. What is the interval estimating?

Problem 3. Calculate and interpret a 95% confidence interval for the geometric
mean respiratory disturbance index plus one from the SHHS data. (Note that
the plus one is necessary as RDI can be exactly 0 prohibiting logs. Adding a
constant, typically one, is common in the sleep literature.)

Problem 4. Calculate and interpret a 95% confidence interval for the ratio
of geometric means of the respiratory disturbance index plus one for subjects
above and below the median split for body mass index.

Problem 5. Consider a random variable, X. Let µ = E[X]. Differentiate
between log(µ) and exp(E[log(X)]). Given data, give a method for performing
interval estimation of both.



Chapter 14

Interval estimation for
binomial probabilities

This chapter covers the following topics

• Confidence intervals for a binomial proportion
• The Wald and Agresti-Coull intervals
• Bayesian intervals
• The exact, Clopper-Pearson interval
• Confidence intervals in R

14.1 Confidence intervals for a binomial propor-
tion

In this chapter, we discuss the construction of confidence intervals for the prob-
ability of success, p, from data X ∼ Binomial(n, p). Here X is the number
of successes obtained from n trials, each with probability of success p. This
serves three purposes. First, it provides information about the uncertainty of
the standard estimator, X/n, for the success probability, p. Second, it gives
practical advice on constructing confidence intervals that have improved small
to moderate sample properties. Third, it provides a practical solution to a gen-
eral problem often encountered in practice. Indeed, consider the case when one
is interested in constructing the confidence interval for the proportion of voters
in Maryland for a presidential candidate or for the probability of death from
stage IA Non-Small Cell Lung Cancer (NSCLC IA) in 10 years.

421
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14.2 The Wald and Agresti-Coull intervals

Recall that if X ∼ Binomial(n, p), then the following hold:

1. p̂ = X/n is the maximum likelihood estimate (MLE) for p
2. E[p̂] = p
3. Var(p̂) = p(1 − p)/n
4. For large n

p̂ − p√
p̂(1 − p̂)/n

∼ N(0, 1) .

Point 4 allows us to construct the so-called Wald confidence interval for p

p̂ ± Z1−α/2
√

p̂(1 − p̂)/n .

This interval has several appealing properties. Most notably, it has a familiar
form, is easy to remember, and has the property that

P
(

p̂ − Z1−α/2
√

p̂(1 − p̂)/n ≤ p ≤ p̂ + Z1−α/2
√

p̂(1 − p̂)/n
)

≈ 0.95 .

The interpretation of this formula is that before data are collected there is a 95%
chance that the interval will cover the true, unknown, value of the parameter,
p. An equivalent interpretation is that if a large number of experiments is run
(each experiment consisting of n trials, each trial having success probability p),
then 95% of the confidence intervals will cover the true value of the parameter,
p. After a specific experiment is finished and the corresponding confidence
interval is constructed, we do not know whether the resulting confidence interval
covers the true parameter. Indeed, once the experiment is run, the calculated
confidence interval based on the data from the experiment either does or does
not contain the true value of the parameter.

The Bayesian interpretation of the corresponding 0.95 “credible interval” is more
appealing. Indeed, the credible interval is a fixed (non-random) interval with the
property that the parameter p is in that interval with probability 0.95 (or other
designated probability). While this seemingly more palatable interpretation is
sometimes viewed as a triumph of the Bayesian over frequentist philosophy, it
comes at the price that parameters are random variables, an equally problematic
pedagogical conundrum. Here we will continue to use statistical pragmatism,
acknowledge that both philosophies lead to near identical practice, and point
out the useful connections. When in doubt or when one obtains substantially
different results using Bayesian analysis, check the prior and/or the Bayesian
computations first.

Now, about that approximation sign, “≈”. It is due to the central limit theorem
(CLT) approximation, which holds only asymptotically. This means that the
approximation is better when n is large. Of course, there is the question of “how
large should n be for the approximation to hold?” There is no exact answer to
this question, as the approximation depends both on the number of successes,
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X, the true success probability, p, and the definition of “good approximation.”
In practice after conducting billions of simulations there is good agreement that
the approximation is good if np̂(1 − p̂) ≥ 5. However, this is a rule of thumb
and should be treated as such. In practice, we recommend simulations to check
how good specific approximations are.

The length of the Wald confidence interval is 2Z1−α/2
√

p(1 − p)/n, or twice the
margin of error, Z1−α/2

√
p(1 − p)/n. Since p(1 − p) is maximum when p = 0.5,

this margin of error is at most Z1−α/2/2
√

n. For α = 0.05, Z1−α/2 ≈ 2, so this
is roughly 1/

√
n, which yields the easy, quick, and often conservative interval

estimate p̂ ± 1/
√

n.

Unfortunately, when np̂(1 − p̂) < 5 the Wald interval tends to be too short and
have lower than nominal coverage probability. Remember, the 95% coverage
only holds asymptotically and there are no guarantees in finite, small to mod-
erate, samples. For finite samples the actual coverage of the interval may be
much lower or higher than the desired 95%. Over-coverage can also be a prob-
lem in practice, as it is typically due to unnecessarily wide confidence intervals.
However, in the case of this interval, under-coverage generally occurs, especially
if the true parameter value, p, is close to 0 or 1. A simple simulation can show
this. Below we simulate 10000 confidence intervals for a fine grid of possible
values of p.
set.seed(237610)
## define a sequence of true values for the success probability
pVals = seq(.01, .99, by = .001)
## number of trials; number of simulations
n = 10; noSim = 10000
## loop over sequence of true values
coverageWald1 = sapply(pVals,
function (p) {
## generate nosim proportions
phat = rbinom(noSim, size = n, prob = p) / n
## the margin of error for each one
moe = qnorm(.975) * sqrt(phat * (1 - phat) / n)
## the ll and ul of the confidence intervals
ll = phat - moe; ul = phat + moe
## the estimated coverage
mean( ll < p & p < ul )

}
)

## Obtain the coverage probability at p=0.1, 0.5, 0.9
coverage_at_half<-round(coverageWald1[pVals==0.5],digits=2)
coverage_at_90percent<-round(coverageWald1[pVals==0.9],digits=2)

The black jagged line in Figure 14.1 displays the percentage of times the 95%
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Figure 14.1: Coverage probability for the 95% Wald confidence interval when
the number of trials is n = 10 as a function of the true success probability.

Wald confidence interval covers the true success probability, p, as a function of
p (x-axis). The number of trials is n = 10 and the maximum value of np(1 − p)
is obtained at p = 0.5, where it is equal to 2.5 < 5.
plot(pVals, coverageWald1, type = "l",ylim=c(0.1,1.1),bty="n",

xlab="True success probability (p)",ylab="Coverage: 95% Wald interval",
lwd=3,cex.axis=1.3,cex.lab=1.3,col.axis="blue",
col.lab="blue",main=NULL)

abline(h = .95,lwd=3,col="blue")

The coverage probability is smaller than the nominal 0.95 (blue horizontal line),
though it is closer to nominal when p is close to 0.4 and 0.6. However, it dips
to 0.9 for p = 0.5 and 0.64 for p = 0.9. The low coverage of the Wald interval
is, at least in part, due to the small sample size and is particularly bad for p
close to 0 and 1. We have seen that when np̂(1 − p̂) ≤ 5, the performance of the
Wald interval can be poor. Let us investigate what happens, for example, when
n = 100 and p ∈ [0.06, 0.94], which ensures that np(1 − p) ≥ 5.

The black jagged line in Figure 14.2 displays the percentage of times the 95%
Wald confidence interval covers the true success probability, p, as a function of
p (x-axis). The difference from Figure 14.2, where n = 10, is that now n = 100.
plot(pVals, coverageWald2, type = "l",ylim=c(0.1,1.1),bty="n",

xlab="True Proportion (p)",ylab="Coverage: 95% Wald interval",
lwd=3,cex.axis=1.3,cex.lab=1.3,col.axis="blue",
col.lab="blue",main=NULL)
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Figure 14.2: Coverage probability for the 95% Wald confidence interval when
the number of trials is n = 100 as a function of the true success probability.

abline(h = .95,lwd=3,col="blue")
abline(v = .06,lwd=3,col="orange")
abline(v = .94, lwd=3,col="orange")

The plot shows much improved coverage probability of the Wald confidence
interval, especially between the two orange lines that correspond to 0.06 and
0.94, respectively. Moreover, for most values of p the confidence interval neither
under- nor over-shoots the target coverage probability. The small variations in
coverage probabilities are due to sampling variability and could be reduced by
increasing the number of simulations.

Of course, in practice one cannot always assume that np(1 − p) ≥ 5, and one
sometimes has to deal with smaller sample sizes, such as n = 10 or 20. In this
case, especially for p close to zero or one, obtaining a confidence interval with
the nominal coverage is a surprisingly hard problem. A simple fix is to add two
successes and two failures. That is, let p̃ = (X +2)/(n+4) and ñ = n+4. Then
the so-called Agresti-Coull interval (Agresti and Coull 1998) is:

p̃ ± Z1−α/2
√

p̃(1 − p̃)/ñ .

The interval performs much better while retaining the simplicity and form of
the Wald interval. Let us evaluate its coverage. We perform the exact same
simulation as before, but replace the formula for calculating the confidence
interval.
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n = 10
coverageAC1 = sapply(pVals,
function (p) {
x = rbinom(noSim, size = n, prob = p)
## Use the shrunken estimator
ptilde = (x + 2) / (n + 4)
moe = qnorm(.975) * sqrt(ptilde * (1 - ptilde) / (n + 4))
ll = ptilde - moe; ul = ptilde + moe
mean( ll < p & p < ul )

}
)

Figure 14.3 displays the percentage of times the 95% Agresti-Coull (dark-blue
line) and Wald (black line) cover the true value of the parameter, p, as a function
of p. As before, the horizontal blue line is the nominal coverage level of 0.95.
Notice that the coverage is much better, though it may be a little conservative
(high).
plot(pVals, coverageWald1, type = "l",ylim=c(0.1,1.1),bty="n",

xlab="True Proportion (p)",ylab="Coverage: Wald, Agresti-Coull",
lwd=3,cex.axis=1.3,cex.lab=1.3,col.axis="blue",
col.lab="blue",main = "N = 10")

lines(pVals, coverageAC1, type = "l", lwd=3,col = "darkblue")
abline(h = .95,lwd=3,col="blue")

We also compare the coverage performance of the two intervals when n = 100.
The R code is similar.

Let us see what happens when the sample size increases to n = 100, especially
for p < 0.06 and p > 0.94 when the Wald test does not perform that well.
Figure 14.3 displays the percentage of times the 95% Agresti-Coull (jagged,
dark-blue line) and Wald (jagged, black line) intervals cover the true value of
the parameter, p, as a function of p.
plot(pVals, coverageWald2, type = "l",ylim=c(0.1,1.1),bty="n",

xlab="True Proportion (p)",ylab="Coverage: Wald, Agresti-Coull",
lwd=3,cex.axis=1.3,cex.lab=1.3,col.axis="blue",
col.lab="blue",main= "N = 100")

lines(pVals, coverageAC2, type = "l", lwd=3,col = "darkblue")
abline(h = .95,lwd=3,col="blue")

indices = c(1:51,951:981)
m_not_conforming_Wald<-round(mean(coverageWald2[indices]),

digits=3)
m_not_conforming_AC<-round(mean(coverageAC2[indices]),

digits = 3)
m_not_conforming_simple<-round(mean(coverage_simple[indices]),
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Figure 14.3: Coverage probability for the 95% Agresti-Coull (dark blue) and
Wald (black) confidence intervals when the number of trials is n = 10 as a
function of the true success probability.

digits = 3)

Figure 14.4 indicates that the coverage probability of the two intervals closely
agree for p ∈ [0.1, 0.9] and that the Wald interval has a lower coverage probability
than the Agresti-Coull interval. Moreover, for p < 0.06 and p > 0.94 the Wald
interval has a smaller than nominal coverage probability (it is liberal), while
the Agresti-Coull interval has a larger than nominal coverage probability (it is
conservative). The average coverage probability for the Wald confidence interval
for extreme probability values (p ≤ 0.06 and p ≥ 0.96) is 0.86 and for the Agresti-
Coull confidence interval is 0.972. One could say “0.972 is much closer to 1 than
0.86 and most biostatisticians would agree that, as far as confidence intervals
go, conservative is better than liberal.” However, there are a couple of caveats.
First, once one is conservative there is not much probability between 0.95 and
1 and it is easy to choose very long confidence intervals that have high coverage
probability. For example, the interval [0, 1] has coverage probability equal to 1
for any value of p and its average coverage is closer to 0.95 than 0.84, though
it is not particularly useful in practice. Second, these discrepancies tend to
be negligible when np(1 − p) ≥ 5 and absent when np(1 − p) ≥ 10. As a last
example, let us consider the confidence interval p̂±Z1−α/2/

√
4n, which is known

to be more conservative than the Wald confidence interval. Figure 14.5 displays
the coverage probability for the Agresti-Coull (dark blue), Wald (black), and
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Figure 14.4: Coverage probability for the for the 95% Agresti-Coull (dark blue)
and Wald (black) confidence intervals when the number of trials is n = 100 as
a function of the true success probability.

p̂ ± Z1−α/2/
√

4n (burlywood) confidence intervals when the number of trials
is n = 100 as a function of the true success probability. We will refer to the
p̂ ± Z1−α/2/

√
4n as the simplified confidence interval.

plot(pVals, coverageWald2, type = "l",ylim=c(0.1,1.1),bty="n",
xlab="True Proportion (p)",ylab="Coverage: Wald, AC, simplified",
lwd=3,cex.axis=1.2,cex.lab=1.2,col.axis="blue",
col.lab="blue",main=NULL)

lines(pVals, coverageAC2, type = "l", lwd=3,col = "darkblue")
lines(pVals,coverage_simple,lwd=3,col="burlywood4")
abline(h = .95,lwd=3,col="blue")

Look how the difference between the brown and blue coverage probabilities
appears smaller than the one between the black and the blue, especially in the
extreme probability area. However, the average coverage probability for the
p̂±Z1−α/2/

√
4n interval is estimated to be 1 for p ∈ [0, 0.06]∪ [0.96, 1], the area

of extreme probabilities. This coverage is perfect, but it comes at the expense
of building an interval that is just too long relative to the other two confidence
intervals in this area.

It is appealing that the Agresti-Coull interval tends to perform better than the
Wald interval, especially in smaller sample sizes or when the true probabilities
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Figure 14.5: Coverage probability for the 95% Agresti-Coull (dark blue), Wald
(black), and simplified (burlywood) confidence intervals when the number of
trials is n = 100 as a function of the true success probability.

are quite extreme. However, the take home messages from this section are:

1. The Wald confidence interval works well when there is strong reason to
believe that np(1 − p) ≥ 5

2. When np(1 − p) < 5 it is reasonable to consider alternative intervals and
the Agresti-Coull interval is one such alternative

3. The Agresti-Coull interval tends to be too conservative at extreme proba-
bilities

4. It is a good idea to produce multiple confidence intervals and compare
them. Most of the time these intervals will be in close agreement

5. Exceptions are important to understand, but should not paralyze us into
data analysis inaction

It is a little surprising that making up and adding fake data would actually
improve the performance of a statistical analysis. This happens because of small
samples and extreme probabilities, when borrowing strength (or using statistical
shrinkage) is a good idea. In the next section we provide more insight into how
this is accomplished by deriving the motivation for the Agresti-Coull confidence
interval using Bayesian inference. This will provide a more general strategy
inspired by Bayesian inference for constructing confidence intervals. This is
rather ironic given that Bayesians do not construct confidence intervals and
frequentists do not use priors. But, it is useful and that is good enough for us.
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14.3 Bayesian intervals

The discussion of improving on the Wald interval leads naturally into Bayesian
intervals. In fact, estimating a binomial proportion is an ideal setting to in-
troduce Bayesian analysis. Modern Bayesian analysis is incredibly diverse, and
thus we can only present a subset. Here we discuss “subjective Bayesianism”,
the classical view of Bayes analysis. Henceforth in this chapter, we will not
draw a distinction and simply refer to our analysis as Bayesian, omitting the
“subjective” term.

Bayesian analysis requires three entities: the data, a model linking the data to a
population of interest (likelihood), and a prior. The prior represents our beliefs
regarding parameters of the likelihood that we are interested in (and ones that
we are not, which we do not need to cover here.) We perform Bayesian analysis
by combining these three entities into the so-called posterior distribution. The
prior represents our beliefs in the absence of data, the posterior represents our
beliefs after the evidence presented by the data.

Bayesian analysis treats parameters as random variables. This is because the
probability in Bayesian analysis represents beliefs, not long run frequency be-
havior. In this way, one can think of Bayes analysis as a sort of formal calculus
of beliefs. To illustrate, let our data, X, be assumed to be Binomial(n, p). Let
π(p) be a distribution with support on [0, 1] representing our prior. Assuming
our likelihood is L(p; Y ), then the generalization of Bayes rule is:

π(p | x) = L(p; x)π(p)∫ 1
0 L(p̃; x)π(p̃)dp̃

,

where π(p | x) is our posterior, the distribution of the parameter given the data.
Notice that the denominator does not involve p, so we can write:

π(p | x) ∝ L(p; x)π(p) ,

where ∝ is “proportional to.” We summarize this relationship as:

Posterior ∝ Likelihood × Prior .

Let us go through the binomial example, specifying a prior. To do this, we need
a density defined on the support of the parameter, [0, 1]. The Beta distribution
satisfies this requirement. Specifically, a random variable, p, is said to be Beta
distributed and it is denoted Beta(α, β) if it has the pdf:

Γ(α + β)
Γ(α)Γ(β)

pα−1(1 − p)β−1 for 0 ≤ p ≤ 1 ,
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where Γ is the Gamma function: Γ(α) =
∫∞

0 xα−1e−xdx. When α is a positive
integer, then Γ(α) = (α − 1)!. The mean of the Beta density is α/(α + β) and
the variance is:

αβ

(α + β)2(α + β + 1)
.

Notice that the uniform density is a special case of the Beta(α, β) family when
α = β = 1. It is worth thinking a little bit about the interpretation of the
amount and type of information encapsulated by the Beta(α, β) distribution.
Note its extraordinary likeness with the Binomial distribution with x successes
and n − x failures, whose pmf is(

n

x

)
px(1 − p)n−x .

So, the parameter α − 1 = x can be interpreted as the number of successes and
β − 1 = n − x as the number of failures encapsulated in the prior. Another way
of thinking is that α is the number of successes plus one, x + 1, and β is the
number of failures plus one, n − x + 1. The intuition breaks down for α < 1
and β < 1, but it remains useful. Note that the mean of a Beta distribution is
α/(α + β) = (x + 1)/(n + 2), which is the maximum likelihood estimator (MLE)
if we add one success and one failure to the data.

We will use the notation of likelihoods as above, where p is the parameter of
interest. While we have used the Binomial likelihood and the success probability,
p, as parameter of interest, the Bayesian formalism applies generally to any
type of likelihood and parameter. Let us return to our setting where Y ∼
Binomial(n, p) and let us specify that π(p) is a Beta density with parameters α
(number of prior assumed successes plus one) and β (number of prior assumed
failures plus one). Thus, we choose values of α and β so that the Beta prior
is indicative of our degree of belief regarding p in the absence of data. Using
the rule that the posterior is the likelihood times the prior, and throwing out
anything that does not depend on p, we have that

π(p | x) ∝ px(1 − p)n−x × pα−1(1 − p)β−1 = px+α−1(1 − p)n−x+β−1 .

We recognize that this density is just another Beta density with parameters
α̃ = x + α and β̃ = n − x + β. This was no accident. The Beta density is the
so-called conjugate prior for the binomial, which means that if we have a Beta
prior for the success probability of a Binomial, we get a Beta posterior. Note
that the interpretation still holds. We had α−1 prior successes and β−1 failures
before the data were collected. To that we added x additional successes and
n − x failures from the experiment (likelihood) which led to a Beta distribution
with x + α − 1 successes and n − x + β − 1 failures. The particular case when
α = β = 1 (zero successes and failures added to the data) corresponds to a
uniform prior, which makes the posterior equal to the likelihood.

For the general case when we use a Beta(α, β) the posterior mean is:



432CHAPTER 14. INTERVAL ESTIMATION FOR BINOMIAL PROBABILITIES

E[p | x] = x + α

n + α + β

=x

n
× n

n + α + β
+ α

α + β
× α + β

n + α + β

=MLE × π + Prior Mean × (1 − π), where π = n

n + α + β
.

That is, the posterior mean is a weighted average of the MLE and the prior
mean. The weight on the MLE is n/(n + α + β) so that as n gets larger, it gets
more weight. That is, as we collect more data, we place more weight on it and
less on our prior beliefs. In contrast, if our prior number of observations, i.e.,
α + β, is large then it takes more data to shake us off of our beliefs.

Another interesting aspect to Bayesian analysis is that it is consistent with
information updating as data are collected. For example, consider the case when
X1 ∼ Binomial(n1, p) is collected first and X2 ∼ Binomial(n2, p) is collected
second. You could imagine using the posterior, π(p | x1), as the prior for
analyzing x2. This is allowed because

π(p | x1, x2) ∝ L(p; x2)π(p | x1) ∝ L(p; x2)L(p; x1)π(p) ∝ L(p; x1, x2)π(p) .

In other words, the posterior we get from using our current posterior as the
prior yields the same subsequent posterior as if we had collected all data at
once. You can think of this process as the new data updating the posterior.
Note that the intuition we started with continues to hold in this context. Indeed,
the posterior will encapsulate information from α + x1 + x2 − 1 successes and
β + n1 − x1 + n2 − x2 − 1 failures. This, and many other aspects, of internal
logic and consistency of Bayesian analysis makes it very appealing to many.
Nonetheless, Bayesian analysis is not a panacea. One must specify a prior
(and likelihood) to perform the analysis. Moreover, frequency error rates are
inherently useful quantities. This is why many modern Bayesian statisticians use
the Bayes rule to create statistics, but evaluate those statistics using frequency
error rates. The Agresti-Coull interval could be thought of as such an example.
Thus, it is important for modern statisticians to be well versed in both Bayesian
and frequency statistical approaches.
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14.3.1 Connections with the Agresti-Coull interval

We can use Bayesian analysis to provide the motivation for the Agresti-Coull
interval. Specifically, note that the posterior mean is

p̃ = x + α

n + α + β
,

which is p̃ from the Agresti-Coull interval when α = β = 2. Now, let us consider
the variance.

Var(p | x) = (x + α)(n − x + β)
(n + α + β)2(n + α + β + 1)

,

which, when α = β = 2 and ñ = n + 4 = n + α + β becomes

Var(p | x) = p̃(1 − p̃)
ñ + 1

.

This is almost identical to the Agresti-Coull interval variance, with the exception
of the +1 in the denominator. However, for large n the difference is irrelevant.
To obtain the interval, note that the normal density can approximate a Beta
density as the α and β parameters are large, with the approximation being
better when they are closer to being equal. Our posterior Beta parameters are
y + α and n − y + β. Therefore, as long as we have a large n and do not have
too many successes or failures, the approximation will be accurate. Using this
approximation leads to the Agresti-Coull interval (with the extra +1 in the
variance.)

14.3.2 Conducting Bayesian inference

The Agresti-Coull interval just uses Bayesian calculations to construct a confi-
dence interval. If we want to perform a Bayesian analysis, we use the posterior
directly for inference. In Bayesian inference the first step is plotting the pos-
terior. Since this chapter is discussing interval estimates, if one is desired, a
Bayesian analysis simply finds numbers a and b satisfying:

P (p ∈ [a, b] | x) = 1 − α .

The important distinction here is that p, the true success probability, is a random
variable, not a number, while the bounds of the confidence intervals, a and b,
are fixed numbers. For frequentist confidence intervals p is a fixed, unknow,
parameter and the bounds of the confidence intervals are random variables.

We call these intervals credible intervals, as opposed to confidence intervals,
since they are interpreted differently. The interpretation of the above equation
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is that the probability that the true parameter being in this interval is 1 − α.
Interestingly, Bayesian intervals often have very good frequency performance, so
that they could be interpreted as confidence intervals. However, one still needs
to choose a and b to satisfy the above equation. Two methods for picking a and
b are the equal-tail and the highest posterior density (HPD) interval. The equal-
tail interval simply sets a and b to be the relevant lower and upper quantiles
of the posterior distribution. In contrast, the HPD interval selects a and b to
ensure that b − a (the length of the credible interval) is minimized for the given
coverage probability target. We will demonstrate this via an example below.

14.3.3 Example

Suppose that in a random sample of an at-risk population 13 of 20 subjects had
hypertension. Based on these data we would like to estimate the prevalence of
hypertension in this population. First, let us calculate the Wald and Agresti-
Coull intervals,
n = 20; x = 13; ntilde = n + 4
phat = x / n
ptilde = (x + 2) / ntilde

Here p̂ = 0.65 and p̃ = 0.625. Let us now calculate both intervals:
z = qnorm(c(0.025, 0.975))
# Wald
se_Wald = sqrt(phat * (1 - phat) / n)
ci_Wald = round(phat + z * se_Wald, 3)
ci_Wald

[1] 0.441 0.859
length_Wald <- round(diff(ci_Wald),digits=3)
# Agresti-Coull
se_AC = sqrt(ptilde * (1 - ptilde) / n)
ci_AC = round(ptilde + z * se_AC, 3)
ci_AC

[1] 0.413 0.837
length_AC <- round(diff(ci_AC),digits=3)

Now let us do our Bayesian analysis. First, plot the posterior. Consider setting
α = β = 0.5. This prior has some theoretical benefits, though the interpretation
is a little difficult. Note that smaller α and β are less informative in the sense
that the posterior is closer to the likelihood and α = 0 or β = 0 would correspond
to an improper prior (it is not a pdf and does not integrate to 1.) Note, however,
that the improper Beta(0, 0) is an acceptable prior for the success probability,
p, and leads to a proper posterior.
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Figure 14.6: The prior distribution Beta(0.5,0.5) (dark red), likelihood for 13
out of 20 study participants having hypertension (dark blue), and posterior
distribution (black).

alpha = 0.5; beta = 0.5
## Plot the posterior
plot(pVals, dbeta(pVals, x + alpha, n-x + beta), type = "l",

bty = "n", xlab = "Probability (p)", ylab = "Density",
lwd=3,cex.axis=1.3,cex.lab=1.3,col.axis="blue",
col.lab="blue",main=NULL)

## Add the prior
lines(pVals, dbeta(pVals, alpha, beta), lwd = 3, col = "darkred")
## Show the likelihood
lines(pVals, dbeta(pVals, x + 1, n - x + 1), lwd=3, col = "darkblue")

Figure 14.6 displays the Beta(0.5, 0.5) prior (dark red), the likelihood of the
observed data (dark blue), and the posterior distribution (black). Here we are
using the fact that the likelihood is proportional to a Beta density to avoid
having to write out the function for the likelihood. Note that the likelihood
and the posterior are very close together, even though the prior distribution is
not particularly “flat.” This is due to the fact that non-informative Beta priors
correspond to small α < 1 and β < 1, which do not correspond to flat priors.
Let us obtain an equal-tail confidence interval.
round(qbeta(c(0.025, 0.975), x + alpha, n-x + beta), 3)

[1] 0.432 0.828

The odd U shape of the prior is related to the properties described above, which
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Figure 14.7: The prior distribution Beta(4,10) (dark red), likelihood for 13
out of 20 study participants having hypertension (dark blue), and posterior
distribution (black).

makes the prior minimally informative. Let us look at a case with a more
informative prior (larger α and β, α = 4, β = 10) and see how the posterior
combines our prior beliefs and our data.
alpha = 4; beta = 10
## Plot the posterior
plot(pVals, dbeta(pVals, x + alpha, n-x + beta), type = "l", lwd = 3,

bty= "n", xlab = "Probability (p)", ylab = "Density",
cex.axis=1.3,cex.lab=1.3,col.axis="blue",

col.lab="blue",main=NULL)
## Add the prior
lines(pVals, dbeta(pVals, alpha, beta), lwd = 3, col = "darkred")
## Show the likelihood
lines(pVals, dbeta(pVals, x + 1, n - x + 1), lwd=3, col = "darkblue")

Figure 14.7 is similar to Figure 14.6, except that the prior used is Beta(4, 10)
instead of Beta(0.5, 0.5). Thus, the prior belief or information (dark red) is
that the prevalence of hypertension is quite low with a mean of α/(α + β) =
4/(10 + 4) ≈ 0.29. The likelihood of the data, represented by the dark blue
line, is in disagreement with a mean observed prevalence of 13/20 = 0.65, which
is about twice as large. Moreover, the number of prior successes (α − 1 = 3)
and failures (β − 1 = 9) is of the same order of magnitude with the number of
successes (x = 13) and failures (n−x = 7) observed in the experiment. Because
of that, the prior (dark red) and the likelihood (dark blue) have comparable
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variability, which is why the posterior (black) is heavily influenced by both the
prior and the likelihood. With such a strong prior the resulting interval is quite
different because of the discrepancy between our prior and likelihood.
round(qbeta(c(0.025, 0.975), x + alpha, n-x + beta), 3)

[1] 0.335 0.665

Even in this simple case, HPD intervals require numerical evaluation. Fortu-
nately, the package binom can perform the calculations for us.
library(binom)
out = binom.bayes(13, 20, type = "highest")
l = out$lower; u = out$upper
round(c(l, u), 3)

[1] 0.442 0.836

The default in the binom.bayes for obtaining the HPD interval (option type =
"highest") is the Beta(0.5, 0.5) prior. We can best see what the HPD interval
is doing using graphics.
alpha = 0.5; beta = 0.5
## plot the posterior
plot(pVals, dbeta(pVals, x + alpha, n-x + beta),

type = "l",
lwd = 3,
bty="n", xlab = "Probability (p)", ylab = "Density",
cex.axis=1.3,cex.lab=1.3,col.axis="blue",
col.lab="blue",main=NULL)

pVals2 = seq(l, u, length = 1000)
## plot the area represented by the HPD interval
polygon(c(l, pVals2, u),

c(0, dbeta(pVals2, x + alpha, n - x + beta), 0),
col = "salmon")

## plot the interval as a horizontal line
lines(c(l, u), c(dbeta(l, x + alpha, n - x + beta),

dbeta(u, x + alpha, n - x + beta)),
lwd = 3,
col = "darkblue")

Figure 14.8 displays the posterior distribution for the prior Beta(0.5, 0.5) and
the likelihood of an experiment with 13 (HTN) positive and 7 (HTN) negative
results. The shaded area corresponds to the 95% HPD credible interval, which
is the shortest interval with this property. The light red color shaded area
represents 95% probability under the posterior distribution. Numerically, the
interval is obtained by moving the dark blue horizontal line up and down to
match the 0.95 target probability. The actual interval is given as the horizontal-
axis endpoints of the blue line. HPD credible intervals can be obtained for any
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Figure 14.8: The posterior distribution for the prior Beta(0.5,0.5) and the like-
lihood of an experiment with 13 (HTN) positive and 7 (HTN) negative results.
The shaded area corresponds to the 95% credible interval and the corresponding
interval is the shortest interval with this property.

probability. For example, consider the 60% interval shown in Figure 14.9.
out = binom.bayes(13, 20, type = "highest", conf.level = .6)
l = out$lower; u = out$upper
plot(pVals, dbeta(pVals, x + alpha, n-x + beta), type = "l",

lwd = 3,
bty="n", xlab= "Probability (p)", ylab = "Density",
cex.axis=1.2,cex.lab=1.2,col.axis="blue",
col.lab="blue",main=NULL)

pVals2 = seq(l, u, length = 1000)
polygon(c(l, pVals2, u),

c(0, dbeta(pVals2, x + alpha, n - x + beta), 0),
col = "salmon")

lines(c(l, u), c(dbeta(l, x + alpha, n - x + beta),
dbeta(u, x + alpha, n - x + beta)),

lwd = 3,
col = "darkblue")

Note that the HPD intervals are not symmetric around the estimated p, but
they are shorter and have the same coverage probability, at least in theory.
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Figure 14.9: The posterior distribution for the prior Beta(0.5,0.5) and the like-
lihood of an experiment with 13 (HTN) positive and 7 (HTN) negative results.
The shaded area corresponds to the 60% credible interval and the corresponding
interval is the shortest interval with this property.

14.4 The exact, Clopper-Pearson interval

The Clopper-Pearson confidence interval was introduced very early on (Clopper
and Pearson 1934). The approach is to estimate the probabilities p̂L and p̂U

based on the data such that

P (X ≤ x|p = pU ) =
x∑

k=0

(
n

k

)
pk

U (1 − pU )n−k = α/2

and
P (X ≥ x|p = pL) =

n∑
k=x

(
n

k

)
pk

L(1 − pL)n−k = α/2 .

These formulae look relatively complicated, but are easy to implement, espe-
cially using a computer and R. The rationale for calculating the lower limit,
pL, on the confidence interval is that we have already observed a fraction of
p̂ = 13/20 = 0.65 individuals who have hypertension. Given this observed frac-
tion, we are interested in what small probabilities are not likely to be close to
the true, but unknown, probability p. For example, we know that a probability
p = 0 of having HTN in the population is incompatible with observing 13 cases
out of 20 study participants. Of course, p = 0.01 is not incompatible with 13
out of 20 subjects having HTN. But it would be extremely rare to observe 13 or
more events if the true event probability were 0.01. Thus, it makes sense to con-
tinue to increase p until we find one, say pL, such that P (X ≥ x|p = pL) = α/2.
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This is a very small probability, but not zero. A similar intuition holds for cal-
culating pU . Below we show how to calculate from scratch the Clopper-Pearson
confidence interval for a random sample from an at-risk population where 13
out of 20 subjects had hypertension.
alpha=0.05
exact_prob_U<-pbinom(x,n,pVals)
exact_prob_V<-1-pbinom(x-1,n,pVals)
pU<-pVals[which.min(abs(exact_prob_U-alpha/2))]
pL<-pVals[which.min(abs(exact_prob_V-alpha/2))]
length_PK=pU-pL

Thus, the Clopper-Pearson confidence interval for this example is [0.408,0.846].
This interval has a length of 0.438, making it slightly longer than the Agresti-
Coull (0.424) and Wald intervals (0.418), respectively. Interestingly, this is a
case that is pretty close to the rule of thumb for when the Wald interval is
expected to perform well. Indeed, 20 ∗ (13/20) ∗ (7/20) = 4.55, below 5, but
pretty close.

14.5 Confidence intervals in R

For those frightful days when we want to forget everything we learned about
biostatistics and just need to get some confidence intervals, fear not. We
have a push button approach that will make everything better, the function
binom.confint in the R package binom (Sundar 2014). Here it is a quick way
of getting all 95% confidence intervals discussed in this chapter and even a few
more,
binom.confint(x, n, conf.level = 0.95, methods = "all")

method x n mean lower upper
1 agresti-coull 13 20 0.6500000 0.4315888 0.8200736
2 asymptotic 13 20 0.6500000 0.4409627 0.8590373
3 bayes 13 20 0.6428571 0.4423068 0.8360884
4 cloglog 13 20 0.6500000 0.4030012 0.8153049
5 exact 13 20 0.6500000 0.4078115 0.8460908
6 logit 13 20 0.6500000 0.4256049 0.8231570
7 probit 13 20 0.6500000 0.4289545 0.8288619
8 profile 13 20 0.6500000 0.4320692 0.8316361
9 lrt 13 20 0.6500000 0.4320599 0.8316972
10 prop.test 13 20 0.6500000 0.4094896 0.8369133
11 wilson 13 20 0.6500000 0.4328543 0.8188082

One should recognize the Wald (labeled “asymptotic”), Agresti-Coull (labeled
“agresti-coull”), the Clopper-Pearson (labeled “exact”), and the Bayes (labeled
“bayes”) confidence intervals. Here the Bayes confidence interval is obtained
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using the default Beta(0.5, 0.5) prior and the Agresti-Coull interval would be
closest to the Bayes confidence interval with the Beta(2, 2) prior. A few other
confidence intervals are produced, but we cannot spend an entire book on each
and every single one of them. If one wants to obtain only one specific confidence
interval, simply call
binom.confint(x, n, conf.level = 0.95, methods = "agresti-coull")

while, if a more specific Bayes confidence interval is needed, the function
binom.bayes in the same package can be used. For example,
binom.bayes(x,n,type="highest",conf.level=0.95,

prior.shape1=2,prior.shape2=1)

produces the 95% confidence interval with the highest posterior density (HPD,
type="highest") and a Beta(2, 1) prior. If a symmetric interval is needed
instead of the HPD interval, one should use the option type="central".

Recall that if np(1 − p) ≥ 5, the Wald (a.k.a. asymptotic, textbook) confidence
interval tends to perform very well in practice. The Agresti-Coull and exact
confidence intervals perform better in small samples, though they tend to be a
little conservative. Generally, there should be pretty close agreement between
intervals when there is enough information in the data. However, as a general
rule, one should not run all confidence intervals and choose the one that is most
convenient to support or reject a particular scientific hypothesis. Indeed, in
practice one should decide what interval will be used before the experiment is
run, based on the known properties of confidence intervals described here.

14.6 Problems

Problem 1. Consider the case when we compare the Wald, Agresti-Coull, and
simplified confidence intervals based on the p̂ ± Z1−α/2/

√
4n formula. However,

we are interested in comparing the relative length of these confidence intervals.
Using simulations compute and plot the average and relative lengths for each
confidence interval for n = 10, 20, . . . , 1000 and p = 0.01, 0.02, . . . , 0.99.

Problem 2. Consider the case when the probability of having hypertension
in a population is 13/20. Compare the coverage probabilities and length of
the confidence intervals using the Wald, Agresti-Coull, Bayesian, and Clopper-
Pearson methods. Provide a summary of your findings.

Problem 3. Using a computer, generate 1000 Binomial random variables for
n = 10 and p = 0.3

a. Calculate the percentage of times that

p̂ ± 1.96
√

p̂(1 − p̂)/n
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contains the true value of p. Here p̂ = X/n, where X is each binomial vari-
able. Do the intervals appear to have the coverage that they are supposed
to?

b. Repeat the calculation, only now use the interval

p̃ ± 1.96
√

p̃(1 − p̃)/n

where p̃ = (X + 2)/(n + 4). Does the coverage appear to be closer to 0.95?
c. Repeat this comparison for p = 0.1 and p = 0.5. Which of the two intervals

appears to perform better?

Problem 4. In a random sample of 100 subjects with low back pain, 27 reported
an improvement in symptoms after exercise therapy.

a. Give and interpret an interval estimate for the true proportion of subjects
who respond to exercise therapy.

b. Provide all confidence intervals using the binom.confint function in R.
c. Compare the confidence intervals and discuss.

Problem 5. A laboratory experiment found that in a random sample of 20
frog eggs having aquaporins, 17 imploded when put into water.

a. Plot and interpret the posteriors for p assuming a Beta prior with param-
eters (2, 2), (1, 1), and (0.5, 0.5).

b. Calculate and interpret the credible intervals for each of the Beta prior
parameter settings. Note that the R package binom may be of use.

Problem 6. A study of the effectiveness of streptokinase in the treatment
of patients who have been hospitalized after myocardial infarction involves a
treated and a control group. In the streptokinase group, 20 of 150 patients died
within 12 months. In the control group, 40 of 190 died within 12 months.

a. Construct the 95% confidence intervals that you consider appropriate for
the probability of death in the control and treatment groups, respectively.

b. Do either of these confidence intervals cover 0.3? Interpret the fact that
they do or do not cover 0.3.

c. Do confidence intervals for treatment and control overlap? Can we con-
clude something from this?

Problem 7. We have not discussed yet how to construct confidence intervals
for the relative risk, pT /pC , where pT and pC are the probabilities of death
in the treated and control groups, respectively. For the data in the previous
problem use the bootstrap to construct a 95% confidence interval for pT /pC .

Problem 8. We would like to construct an 80% confidence interval for the
prevalence of moderate to severe sleep disrupted breathing (rdip4≥ 15) in the
SHHS, for men and women, respectively. Compare and contrast the various
confidence intervals described in this chapter for these two prevalences.

Problem 9. Consider the estimated prevalence of moderate to severe sleep
disrupted breathing (rdip4≥ 15) for men and women in the previous problem.
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Follow the procedure below to quantify the small sample properties of the con-
fidence intervals introduced in this chapter.

a. Repeat the following procedure 10000 times: sample 100 men and 100
women at random from the SHHS and calculate various confidence inter-
vals for the prevalence based on these subsamples.

b. Compare the proportion of times the confidence intervals cover the corre-
sponding prevalence estimated based on all SHHS data.

c. Compare the lengths of the confidence intervals.
d. Provide your code, description of the problem and conclusions in an

Rmarkdown document

Problem 10. Same problem as before, but now vary the sample sizes from 10
to 500. Provide plots of relevant quantities (e.g., average coverage probability,
average interval length) as a function of the sub-sample size.

Problem 11. Assume that a new treatment of lung cancer is effective in
a proportion p of individuals and let X be the number of patients who are
prescribed the drug until one patient does not respond to treatment.

a. What is the pmf of the variable X, its expected value, and the maximum
likelihood estimator for p?

b. We would like to create a confidence interval using Bayesian priors for p.
Obtain the posterior distribution of p if the prior is Beta(α, β).

c. Build these confidence intervals if the observed number of patients until
one does not respond to treatment is x = 5 for various α and β parameters.

d. What parameters α and β are likely to be uninformative?
e. Plot the prior, posterior and likelihood in different scenarios.

Problem 12. In the previous problem we would like to obtain and contrast
the performance of Bayesian confidence intervals.

a. For a grid of values of the proportion p between 0 and 1 simulate 10000
realizations of X.

b. For each realization build Bayesian confidence intervals using Beta distri-
butions with parameters (0, 0), (0.5, 0.5), (1, 1), (2, 2), (5, 5).

c. Compare the coverage probability of the confidence intervals of the true
probability and their average length.

Problem 13. We would like to evaluate the confidence intervals for the success
probability using the nonparametric bootstrap. Consider the case when we
conduct n = 10 independent experiments, each with success probability p.

a. For p = 0.5 generate a number of successes, X, out of n = 10 experiments.
For this realization of X resample the successes and failures with replace-
ment B = 10000 times. Obtain a 95% confidence interval using equal tail
probabilities based on the mean number of successes in the B samples

b. Redo the experiment K = 10000 times and check how often the confidence
interval described in a. covers the true value of the parameter, p = 0.5.
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c. Repeat the same experiment for a grid of values of the success probability,
p, between [0, 1] and plot the coverage and average length of the confidence
intervals as a function of p.

Problem 14. Repeat the same simulation experiment from above, but replace
the estimator X/n by (X + 2)/(n + 4). This is the estimator suggested by the
Agresti-Coull confidence interval of adding two successes and two failures to
each experiment. What do you conclude?

Problem 15. Redo the same experiments from the previous two problems, but
vary both the number of experiments, n, and the success probability. Say,
n=seq(10,300,by=5)
p=seq(0,1,by=0.01)

Problem 16. Propose a method for improving the coverage probability of the
bootstrap confidence interval and compare your method with other confidence
interval methods introduced in this chapter. Provide a report of your findings
in Rmarkdown.



Chapter 15

Building a figure in ggplot2

This chapter covers the following topics

• The qplot function
• The ggplot function
• Strategies for improving plots
• Saving figures: devices
• Interactive graphics with one function
• Conclusions

The ggplot2 package (Wickham 2016) adapted the philosophy of the “Grammar
of graphics” (Wilkinson 2006) and implemented these concepts into a rigorous
and versatile plotting framework in R. The main authority of how to do things
on ggplot2 is the ggplot2 book (Wickham 2016); there is additional information
at http://ggplot2.org/. To some, especially those who have extensively used the
base graphics in R, the syntax and process of building plots in ggplot2 are not
intuitive. Another concern is that ggplot2 makes default graphs “nice enough”
so that new users believe these are sufficient for distribution or publication
without customizing of the graph. The base graphics in R can be quite basic
and therefore users are less likely to distribute these without changing default
parameters, except as a first rough draft.

We believe that there is one solid foundation for creating understandable, visu-
ally pleasing figures: planning, investing time, and putting in the required work.
No default in any system is usually sufficient for your needs. Whether you want
to change the size or font of labels, color aspects of the design, or add additional
annotations for readers, these customizations take iterations and revisions like
all aspects of research.

Here, we will discuss how to create a figure in ggplot2 and adapt certain ele-
ments of the design. In no way is this an exhaustive tutorial, but it shows how
to make a simple set of graphs and then customize the output to have a different

445

http://ggplot2.org/
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design.

15.1 The qplot function

We have shown many examples of how to create figures with the plot function
in base R. The qplot function bridges the syntax of R with the functionality of
ggplot2, which allows some users to more easily transition to ggplot2. If you
are new to R and have not extensively used base R graphics, we suggest reading
this section and trying qplot but mainly using the ggplot function in Section
ggplot function. This suggestion is due to some of the limitations of the qplot
function, which is a helpful function, but users prefer more customization.

To illustrate how to simply use ggplot2 initially, we will use the gapminder
dataset (www.gapminder.org), which contains:

Health and income outcomes for 184 countries from 1960 to 2016. It
also includes two character vectors, oecd and opec, with the names
of OECD and OPEC countries from 2016.

We first load four important packages. The package dslabs contains the
gapminder dataset, which will be used extensively in this chapter.
library(dplyr)
library(ggplot2)
library(tidyverse)
library(dslabs)

Let us select only the data from the United States for the first example. Here
we select the columns of the country, year, and life expectancy and then filter
the specific rows for the United States:
usa = gapminder %>%
select(country, year, life_expectancy) %>%
filter(country == "United States")

Next we pass in the data to qplot and map the variables for the x and y axes:
qplot(data = usa, x = year, y = life_expectancy)

In qplot, we put in the dataset and map variables from that dataset into some
aesthetics of the plot. Note that unlike in plot, we do not have to use the $ or
subset the specific vectors we wish to map; qplot knows that they come from
the dataset. Also, when we specify both x and y, qplot assumes we want to do
a scatterplot. If we want to do a line plot, we simply have to change the geom
(for geometry) in qplot.
qplot(data = usa, x = year, y = life_expectancy, geom = "line")

http://www.gapminder.org
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Figure 15.1: Life expectancy from 1960 to 2016 in USA.
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Figure 15.2: Life expectancy from 1960 to 2016 in USA shown as a line instead
of dots.
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Figure 15.3: Histogram of life expectancy from 1960 to 2016 in USA.

When we only specify x in qplot, qplot assumes we want to do a histogram.
qplot(data = usa, x = life_expectancy)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Again, we can change the type of plot by the geom argument, which indicates
what type of geometry we want to add to the plot. Let us do a density plot
instead of a histogram:
qplot(data = usa, x = life_expectancy, geom = "density")

Different from base graphics and the plot function, we can save this output to
an object, let us call it p:
p = qplot(data = usa, x = life_expectancy, geom = "density")

Notice how when we assign the output to an object, nothing is plotted. It is like
when we assigned a vector to an object x, nothing is printed out. Plot objects
of ggplot2 need to be “printed out” the same way as if we want them to be
displayed:
print(p) # or just p

The ability to save this plot into an object will make it highly useful for changing
parts of the plot, adding things to a plot, and making many versions of the same
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Figure 15.4: Probability density function of life expectancy from 1960 to 2016
in USA.
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Figure 15.5: Probability density function of life expectancy from 1960 to 2016
in USA.
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Figure 15.6: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina using qplot.

plot with different aesthetics or different datasets.

15.1.1 Mapping other aesthetics

Here we filter only the United States, United Kingdom, and Argentina from all
the countries to illustrate how to plot over groups:
df = gapminder %>%
select(country, year, life_expectancy, continent) %>%
filter(country %in% c("United States", "United Kingdom", "Argentina"))

If we remake the plot like we did before, we see that the data are not automati-
cally separated by country. Indeed, in Figure 15.6 data are plotted for all three
countries, but dots are not separated by country:
qplot(data = df, x = year, y = life_expectancy)

We have to map the country variable to another aesthetic. Let us map the
countries to different colors:
qplot(data = df, x = year, y = life_expectancy, colour = country)
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Figure 15.7: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina using qplot colored by country.
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Figure 15.8: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina using ggplot, colored by country, but with no geometry.

Note, you can use color or colour to map onto color aesthetics. We see
that we get different colors by countries as well as a legend (also known as
a “guide” in the ggplot2 lingo). We will show later how to manually set the
colors (scale_colour_manual) or define a different palette.

15.2 The ggplot function

The generic function for creating a ggplot2 plot is the ggplot function. As indi-
cated above, it may be useful to get started with qplot, and http://ggplot2.org/
book/qplot.pdf provides a great introduction to qplot. When creating general
plots, however, we believe it’s useful to use the ggplot function.

Let us create a ggplot2 plot object using the ggplot function, passing in the
data. You have to pass any aesthetics that are mapped to variables of your
dataset inside the aes() function. The most common error when starting
creating plots in ggplot2 is not putting variables in aes().
g = ggplot(data = df, mapping = aes(x = year, y = life_expectancy, colour = country))
print(g)

Consider the code that gave rise to the plot in Figure 15.8. Even though we

http://ggplot2.org/book/qplot.pdf
http://ggplot2.org/book/qplot.pdf
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Figure 15.9: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina.

printed the object, nothing was plotted in the figure! That is because the ggplot
function makes no assumptions about what you are plotting; it essentially sets
the canvas, to which you have to add on top layers. Let us add a layer of points
with geom_point():
g + geom_point()

This shows that in ggplot2 one literally “adds” layers using the addition sign
(+). Aside: the ggplot2 package was created before the pipe (%>%) operator
became popular and ggplot2 is not planning on incorporating the pipe (See https:
//github.com/tidyverse/ggplot2/issues/1954 for some options to use ggplot2
and the pipe.

To break down what is going on, here is what R interprets (more or less):

1. Make a container/canvas with the data using the ggplot function.
2. Use the data.frame df : data = df.
3. Map certain “aesthetics” with the aes to three different aesthetics (x, y,

colour) to certain variables from the dataset: year, life_expectancy,
country, respectively.

4. Add a layer of geometric things to display, in this case points
(geom_point).

https://github.com/tidyverse/ggplot2/issues/1954
https://github.com/tidyverse/ggplot2/issues/1954
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Implicitly, ggplot2 notices that the x and y aesthetics are continuous, so maps
them onto the plot using a “continuous” scale. We see that country is a factor
or character column; the plot has a color bar but a “discrete” scale. Thus, the
data types of the columns affect how ggplot2 creates the plot.

15.2.1 Adding multiple geometries

When setting aesthetics in ggplot(aes()), these are global aesthetics for your
plot. If you add a layer and would like to change these aesthetics, you can
add them inside a specific layer/geometry. This will be relevant when there are
multiple layers (points and lines). If you look at the help of a geom (such as
geom_point), you should note that each has the mapping and data arguments,
like the ggplot function, and so we can change these within each geometry if
desired.
og = ggplot(data = df, aes(x = year, y = life_expectancy))

Above we have created the og object, mapping our x and y variables. We will
add some points, colored by country, and lines colored by continent:
g = og +
geom_point(aes(colour = country)) +
geom_line( aes(colour = continent) )

g

Figure 15.10 added a line connecting the dots for United States and Argentina,
both countries belonging to Americas. The plot is not that informative with
respect to the lines, though it illustrates how to map colors to different aspects
of the data for different geometries. Here we will map the color of a point to
the country, as well as the type of line plotted:
og +
geom_point(aes(colour = country)) +
geom_line( aes(linetype = country) )

Here we see that the different countries have different colors and different line
types, but the line types are not colored differently. This would be different if
we had put colour = country in the global ggplot aesthetics.

15.2.2 Passing in multiple datasets

Moreover, you can pass in different datasets to different geometries. For exam-
ple, let us calculate the median life expectancy at each year for all countries.
medians = gapminder %>%
select(year, life_expectancy) %>%
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Figure 15.10: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina.
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Figure 15.11: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina.
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Figure 15.12: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina and median life expectancy for all countries.

group_by(year) %>%
summarise(life_expectancy = median(life_expectancy, na.rm = TRUE))

Let us plot this with our other data from the subset of countries we had:
og +
geom_point(aes(colour = country)) +
geom_line(data = medians, size = 2)

We see that we did not have to specify the x or y variables in the geom_line
argument. This convenience is due to the fact that our median life expectancy
dataset has a year and life_expectancy column, and the ggplot object og
knows to map those to x and y. If we do not have the same column names, then
we will get an error. Let us rename the life_expectancy column to lexp and
rerun the same code with this data set (it should error):
renamed_meds = medians %>%
dplyr::rename(lexp = life_expectancy)

og +
geom_point(aes(colour = country)) +
geom_line(data = renamed_meds, size = 2)
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Error in FUN(X[[i]], ...): object 'life_expectancy' not found

This error does not imply that you need to have the same column names all
the time when passing in multiple datasets, but you would have to re-define the
mapping in those areas. The same code will run if we change the aes for that
geom_line:
og +
geom_point(aes(colour = country)) +
geom_line(data = renamed_meds, aes(y = lexp), size = 2)

Note, you can assign aesthetics within a geom outside of using aes(), but these
are not assigned from a variable. In the above examples, we set size = 2 to
indicate the line width to be size 2 for the overall median life expectancy. This
aesthetic was not mapped to a variable, but directly set for that geometry.

For example, we can have the data colored by different countries for each point,
but have the lines for each country separated, though all of them colored red:
ggplot(data = df, aes(x = year, y = life_expectancy,

colour = country)) +
geom_point() + geom_line(colour = "red")

The assignment of colour = "red" will override the colour aesthetic set in
ggplot for all the points (as it was set in geom_point), but it will still be
inherited when we run geom_line.

Now it is much easier to work with plot as an object. Saving this as an object
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Figure 15.13: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina and median life expectancy for all countries.
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Figure 15.14: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina.
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also makes it less likely for copy/paste errors and reduces the time to fix a plot
if large changes need to be made.

15.3 Strategies for improving plots

In the above plots, there are elements that are required to make this plot more
“production ready”:

1. make the axes/labels bigger
2. use full names for labels
3. maybe add a title
4. change the legend title
5. improve the legend
6. place the legend INSIDE the plot

As such, we go through each step and show how to do implement each operation

15.3.1 Make the axes/labels bigger

First off, let us assign this plot to an object, called g:
g = ggplot(data = df,

aes(x = year, y = life_expectancy, colour = country)) +
geom_point()

Now, you can simply call print(g) to show the plot, but the assignment will
not do that by default. If you simply call g, it will print/show the object (as
other R objects do), and plot the graph.

15.3.2 The theme function - get to know it

One of the most useful ggplot2 functions is theme. Read the documentation
(?theme). There is a slew of options, but we will use a few of them for this and
expand on them in the next sections.

15.3.3 Setting a global text size

We can use the text argument in theme to change ALL the text sizes to a
value. Now this is where users who have never used ggplot2 may be a bit
confused. The text argument (input) in the theme command requires that
text be an object of class element_text. If you look at the theme help for the
text argument, it says “all text elements (element_text)”. This means
you can not just say text = 5, you must specify text = element_text().



462 CHAPTER 15. BUILDING A FIGURE IN GGPLOT2

65

70

75

80

1960 1980 2000
year

lif
e_

ex
pe

ct
an

cy

country
Argentina
United Kingdom
United States

Figure 15.15: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina.

As text can have multiple properties (size, color, etc.), element_text can
take multiple arguments for these properties. One of these arguments is size:
g + theme(text = element_text(size = 20))

Again, note that the text argument/property of theme changes all the text
sizes. Let’s say we want to change the axis tick text (axis.text), legend
header/title (legend.title), legend key text (legend.text), and axis label
text (axis.title) each to a different size:
gbig = g + theme(axis.text = element_text(size = 18),

axis.title = element_text(size = 20),
legend.text = element_text(size = 15),
legend.title = element_text(size = 15))

gbig

Now, we still have the plot g stored, but we make a new version of the graph,
called gbig, with the larger text sizes.
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Figure 15.16: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina.
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Figure 15.17: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina.

15.3.4 Use full names for labels

To change the x or y labels, you can just use the xlab/ylab functions:
gbig = gbig + xlab("Year") + ylab("Life Expectancy (in years)")
gbig

We want to keep these labels for future plots, building on gbig, so we overwrote
gbig.

15.3.5 Maybe add a title

Now, one may assume there is a main() function from ggplot2 to give the title
of the graph (as this is the argument in plot), but that function is ggtitle().
Note, there is a title command in base R, so this was not overridden in
ggplot2. The title can be added in the same way as adding a layer and other
labels:
gbig + ggtitle("Life Expectancy Changes over Time")

Note, the title is smaller than the specified axes label sizes by default. Again if
we wanted to make that title bigger, we can change that using theme:
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Figure 15.18: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina.

gbig +
ggtitle("Life Expectancy Changes over Time") +
theme(title = element_text(size = 20))

I will not reassign this to a new graph, because in some publication-ready figures
the title is placed in the figure legend instead of the graph itself.

15.3.6 Improve the legend

Now let us change the header/title of the legend. We can do this using the
guides function:
gbigleg_orig = gbig +
guides(colour = guide_legend(title = "Country"))

gbigleg_orig

Here, guides takes arguments that are the same as the aesthetics (e.g., color,
linetype) from before in aes. Also note, that color and colour are aliased so
that you can spell it either way (the ggplot2 author is from NZ).

Let us also adjust the horizontal justification, so the legend title is centered:
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Figure 15.19: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina.

gbigleg = gbig +
guides(colour = guide_legend(title = "Country",

title.hjust = 0.5))
gbigleg

That looks better for the legend in our opinion, but we still have a lot of wasted
space.

15.3.6.1 Place the legend INSIDE the plot

In many cases having the legend inside the plot increases the size of actual
figure. To do this, we can use the legend.position from the themes:
gbigleg +
theme(legend.position = c(0.35, 0.3))

Now, there seem to be a few problems in Figure 15.22:

1. There may not be enough space to place the legend
2. The legend may mask out points/data

For problem 1., we can either make the y-axis longer, the legend smaller, or do
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Figure 15.20: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina.

both. In this case, we do not have to change the axes, but you can use ylim to
change the y-axis limits:
gbigleg +
theme(legend.position = c(0.3, 0.35)) +
xlim(c(2000, max(df$year)))

Warning: Removed 120 rows containing missing values (geom_point).

It is best not to do this as a large area without information has been added
to the plot. We show now how to make the legend “transparent” so we can at
least see if any points are masked out and to make the legend look like a more
inclusive part of the plot.

15.3.6.2 Making a transparent legend

There is a helper “function” transparent_legend that will make the box
around the legend (legend.background) transparent and the boxes around
the keys (legend.key) transparent as well. Like text before, we have to
specify boxes/backgrounds as an element type, but these are rectangles
(element_rect) compared to text (element_text).
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Figure 15.21: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina.

transparent_legend = theme(
legend.background = element_rect(fill = "transparent"),
legend.key = element_rect(fill = "transparent",

color = "transparent") )

One nice thing is that we can save this as an object and simply “add” it to any
plot for which we want a transparent legend. Let us add this to what we had
and see the result:
gtrans_leg = gbigleg +
theme(legend.position = c(0.7, 0.35)) +
transparent_legend

gtrans_leg

15.3.6.3 Moving the title of the legend

Now, everything in gtrans_leg looks acceptable (to us) except for the legend
positioning and title. We can move the title of the legend to the left hand side:
gtrans_leg + guides(colour = guide_legend(title.position = "left"))
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Figure 15.22: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina.
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Figure 15.23: Life expectancy from 2000 to 2016 in USA, United Kingdom and
Argentina with a legend.
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Figure 15.24: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina with a transparent legend inside the plot.

We lost our other changes to guides! Note, that if you respecify the guides,
you must make sure you do it all in one shot (easiest way):
gtrans_leg + guides(
colour = guide_legend(title = "Country",

title.hjust = 0.5,
title.position = "left"))

15.3.6.4 A little more advanced

Having to change guides all at once is not entirely accurate, as we could dig
into the ggplot2 object and assign a different title.position property to the
object after the fact.
gtrans_leg$guides$colour$title.position = "left"
gtrans_leg
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Figure 15.25: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina with a transparent legend inside the plot, but the title on the left
side.
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Figure 15.26: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina with a transparent legend with a recoded title.
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Figure 15.27: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina.
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Figure 15.28: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina with a black and white theme.

15.3.7 “I don’t like that theme”

People often like the grammar of ggplot2 but not the default theme. The
ggthemes package has some good extensions of theme from ggplot2, but there
are also many themes included in ggplot2, which should be specified before
changing specific elements of theme as done above. Here we will add the black
and white theme:
g + theme_bw()

the dark theme:
g + theme_dark()

a minimalistic theme:
g + theme_minimal()

and the classic base R theme:
g + theme_classic()

Look at the documentation of the ggthemes package for more options.
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Figure 15.29: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina with a dark theme.
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Figure 15.30: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina with a minimal theme.
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Figure 15.31: Life expectancy from 1960 to 2016 in USA, United Kingdom and
Argentina with a classic theme.
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15.4 Saving figures: devices

By default, R displays plots in a separate panel or in your viewer in RStudio.
From there, you can export the plot to a variety of image file types, or copy it
to the clipboard. However, you should be saving plots using code. The way R
does this as follows:

1. You “open a device”: usually using pdf(), bmp(), jpeg(), png(), or
tiff().

2. You print out a plot, using print(ggplot2 object) or base R plots.
3. You close the device using dev.off().

See the help file using ?png for the arguments. In each device there are different
arguments for how to save the plot. Those include the height/width of the plot
and the image resolution. In the pdf device, you can have multiple plots. For
example:

pdf("filename.pdf", width=8, height=8) # inches -open device
plot() # plot 1
plot() # plot 2
dev.off()

Basically, you are creating a pdf file, and telling R to write any subsequent plots
to that file. Once you are done, you turn the device off. Note that failing to
turn the device off will create a pdf file that is corrupt and cannot be open.

For the other devices, you can only have one plot in that file (it can have multiple
facets, but only one plot call). If you performed the same operation with a png
versus a pdf:

png("filename.png") # inches -open device
plot() # plot 1
plot() # plot 2
dev.off()

Then the resulting png would only have the result of plot 2 in the output file.
If you are using RMarkdown, you simply need to print the plots and these
are embedded/saved in the background. Many times, you need to customize
the output for certain file sizes/resolutions. This customization is possible in
RMarkdown, but can be more intuitive using devices. Also, you may not be us-
ing RMarkdown but simply an R script, which does not have the same document
format, and then you need to use the device open/close methods.

If you forget to close a device (or an error occurs) in an interactive R session
and then do a plot, nothing will come up in your viewer because R still thinks
you want to plot to that device. If this occurs, you can check on which device
you are using dev.cur(), or simply turn off any open devices using dev.off()
until you get to the “null device” (default plotting window).

https://rmarkdown.rstudio.com/
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In ggplot2, there is also a convenient function for saving a plot called ggsave.
Please look at the documentation (using ?ggsave) for more information.

15.5 Interactive graphics with one function

WARNING: this section may shock you.

If the aforementioned aspects of ggplot2 did not convince you it was worth the
effort of a new syntax, especially if you have used base R graphics, this section
may do that. The plotly package (Sievert et al. 2017) in R, created by Carson
Sievert, creates versatile ways to get plots into the plotly.js JavaScript library
framework (https://plot.ly/). The plotly package has its own syntax, slightly
different from ggplot2. One amazing function is the ggplotly function. This
function alone is a reason to learn some ggplot2 even if you are an expert on
base R graphics.

Recall that we have a ggplot2 object named g that was built using ggplot2
syntax. Suppose that we wanted an interactive graphic? You can simply load
plotly and run the ggplotly(g) command and voila! It’s interactive!
plotly::ggplotly(g)
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Note, this interactivity requires a session where a web browser is available (such
as in RStudio), or the output of the dynamic document needs to support HTML
(e.g., PDFs will not work). If you are using the interactive HTML version of the
book, you should be able to select and manipulate the plot above.

https://plot.ly/
https://plot.ly/
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Let us step back and note the magic that just happened. We had a plot in
ggplot2, used the ggplotly function, and out came a plotly graph! Although
that seems straightforward, that task is remarkably difficult and many other
plotting systems require completely different syntax to make things interactive.

15.6 Conclusions

The ggplot2 framework is a powerful plotting tool for visualization and data
exploration. Users switching from base R graphics may want a gentle introduc-
tion using qplot. New users should jump directly into the ggplot functionality
as this method gives more flexibility. That said, ggplot2 can deceive new users
by making graphs that look “good”-ish. This may be a detriment as users may
believe the graphs are good enough, when they truly need to be changed. The
changes are available in base or ggplot2 and the overall goal was to show how
the recommendations can be achieved using ggplot2 commands.

Below, we discuss some other aspects ggplot2 plotting, where you can make
quick-ish exploratory plots. We believe, however, that ggplot2 is not the fastest
framework when you want to simply learn the basic exploratory plots. This
learning curve is not very steep in our opinion. Moreover, we believe that using
ggplot2 when starting will allow users to learn one system for all their types of
plots. When the complexity of the plots increases dramatically, such as multiple
groups and smoothers, the learning curve of the ggplot2 framework pays itself
off by orders of magnitude with respect to the time needed to implement these
graphs.

15.6.1 How to make quick exploratory plots

We think that exploratory plots should be done quickly and with minimal
code.

The base R plot is a great function. However, in some instances one can create
many quick plots using ggplot2, which can be faster than using base plot.
Consider the specific example of a binary y variable and multiple continous x
variables. Let us say that we want to plot jittered points, a fit from a binomial
glm (logistic regression), and one from using the loess smoother. We will use
mtcars dataset and the binary outcome variable, y, is whether or not the car is
American or foreign (am variable).
g = ggplot(aes(y = am), data = mtcars) +
geom_point(position = position_jitter(height = 0.2)) +
geom_smooth(method = "glm",

method.args = list(family = "binomial"), se = FALSE) +
geom_smooth(method = "loess", se = FALSE, col = "red")
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Figure 15.32: Miles per galon versus American (am=0) or foreign (am=1). Dots
are slightly jittered around their 0/1 values. Blue line is the logistic regression
and the red line is loess smoother.

Then we can simply add the x variables as aesthetics to look at the association
between American/foreign (am) and miles per galon (mpg) in Figure 15.32, rear
axle ratio (drat) in Figure 15.33, and number of seconds in the quarter mile
(qsec) in Figure 15.34.
g + aes(x = mpg)

g + aes(x = drat)

g + aes(x = qsec)

We would like to emphasize the simplicity of working with using ggplot2 object
to create this sequence of plots. The same could be done in base R, but it would
require to create a function. Here we do not take sides, just provide the options.

15.7 Problems

Problem 1. Use the gapminder dataset from the dslabs package. Perform
the following operations on the data.

a. Filter the following countries: "Vanuatu", "Zimbabwe", "Tanzania",
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Figure 15.33: Rear axle ratio (drat) versus American (am=0) or foreign (am=1).
Dots are slightly jittered around their 0/1 values. Blue line is the logistic re-
gression and the red line is loess smoother.
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Figure 15.34: Number of seconds in quarter mile versus American (am=0) or
foreign (am=1). Dots are slightly jittered around their 0/1 values. Blue line is
the logistic regression and the red line is loess smoother.
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"Romania" for the years 2000 to 2010.

b. Plot the gdp versus the fertility in a scatterplot and map the
population to the size attribute for the year 2010. Use a different color
for each country.

c. Plot the same information as above for all years, but different panels for
the different years.

Problem 2. Use the gapminder dataset from the dslabs package. Perform
the following operations on the data. Filter the following countries: "Vanuatu",
"Zimbabwe", "Tanzania", "Romania" for the years 2000 to 2010.

a. Plot the gdp over time (over years) in a scatterplot and map the
population to the size attribute with different colors for each country.

b. Add lines to the plot above, with the color to be black for each line.
c. Place the legend inside the plot and make the guide horizontal.
d. Remove the legend from the plot.
e. Add a smoother using the default in geom_smooth for all countries (you

need to make this data yourself).

Problem 3. Use the gapminder dataset from the dslabs package. Perform
the following operations on the data. Filter the years from 2000 to 2010.

a. Plot boxplots of infant_mortality over each year.
b. Plot separate boxplots by continent where each continent is a different

color.
c. Plot separate boxplots by continent where each continent is in a different

panel/facet.
d. Plot the facets with a free y-axis.
e. Instead of boxplots in the first plot, try using geom_violin for each year.

Problem 4. Use the gapminder dataset from the dslabs package. Perform
the following operations on the data. Filter the years from 2000 to 2010.

a. Plot histograms of fertility over all countries, facetted by each separate
year. Save this file as fertility_hists.png that is 4 by 4 inches with a
resolution of 600ppi.

b. Plot a density of fertility over each year, where each year is a different
color (using geom_density).

c. Plot the same as above using geom_line(stat = "density").

Problem 5. Use the gapminder dataset from the dslabs package. Perform
the following operations on the data. Filter the years from 2000 to 2010. Call
this data set df.

a. Keep only data from 2010. Make a bar chart using geom_col, where the
x axis is the continent and y axis is the fertility. Help:

g = df %>%
filter(year == 2010 ) %>%
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ggplot(aes(x = XXX, y = XXX )) +
geom_col()

b. Add coord_flip to the last plot to see how it changes. Is this better for
viewing the labels? If so, why?

Problem 5. Use the admissions data from the dslabs package.

a. Make a stacked bar chart using geom_bar and map the weight aesthetic
to the admitted variable, gender to the x-axis and fill each bar using the
major:

admissions %>%
ggplot(aes(x = major, weight = admitted, fill = gender)) +
geom_bar()
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b. Perform the same operation, but weight the data by the number of appli-
cants.

c. Run the same graph as in a., but switch gender and major.
d. Create a variable called pct_app using mutate and group_by, which cal-

culates the percentage applications by each major. Make sure to ungroup
the data. Create a stacked bar chart similar to c. using pct_app as the
weight

admissions %>%
group_by(major) %>%
mutate(pct_app = applicants / sum(applicants)) %>%
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ungroup() %>%
ggplot(aes( x = major, weight = pct_app, fill = gender)) +
geom_bar()
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e. Look at the same for admitted (creating pct_adm for percent admitted):
admissions %>%
group_by(major) %>%
mutate(pct_adm = admitted / sum(admitted)) %>%
ungroup() %>%
ggplot(aes( x = major, weight = pct_adm, fill = gender)) +
geom_bar()
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Chapter 16

Hypothesis testing

This chapter covers the following topics

• Introduction and general discussion
• General presentation of hypothesis tests
• Hypothesis test connections with confidence intervals
• P-values
• Discussion

16.1 Introduction

Hypothesis testing is one of the most popular and fundamental techniques in
statistics. In hypothesis testing, one evaluates the evidence in favor of and
against two hypotheses and then uses a procedure to control errors (see Neyman
and Pearson 1933 for the origins of hypothesis testing). Consider the following
example. Imagine seeing a funny shaped coin and deciding between whether
it is fair, labeled hypothesis H0 (i.e., hypothesizing that p = 0.5, where p is
the probability of a head), versus biased in a particular way, labeled H1, say
p = 0.75. Suppose that we flip the coin and see three consecutive heads. The
probability of three consecutive heads is 1/8 under H0 and 27/64 under H1.
Thus, the relative support of H1 to H0 is 27/8 = 3.375, indicating that the
evidence supporting H1 is 3.4 times the evidence supporting H0. One could
then plot the relative support of H1 relative to H0 for every value of H1 from 0
to 1.
pSeq = seq(0, 1, length = 1000)
pH1 = pSeq ^ 3; pH0 = 1/8; relativeEvidence = pH1 / pH0
plot(pSeq, relativeEvidence, type = "l", frame = FALSE, lwd = 2,

cex.axis=1.3,col.axis="blue",cex.lab=1.3,
xlab = "H1 value of p", ylab = "P(3 heads|H1)/P(3 heads|H0)")

487
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Figure 16.1: Ratio of probabilities for observing three heads under the alter-
native and null hypotheses (y-axis) as a function of the probability under the
alternative hypothesis.

Figure 16.1 displays p3
1/p3

0, the ratio of probabilities for observing three heads
under the alternative and null hypotheses, where p0 = 1/2 and for every value
of p1 between 0 and 1. Results indicate that the best supported value of p is the
MLE (p = 1), which is 8 times better supported than a fair coin. This strategy,
while based on formal notions of statistical evidence, does not yield a strategy
for deciding between any particular value of H1 and H0. Instead, it displays
the relative evidence to H0 for a collection of H1 values. The prevailing method
for subsequent decision making in this setting is to control probabilistic error
rates. Purely likelihood based methods have error rates that are controlled,
called “misleading evidence.” However, these methods are not popular. Nor are
Bayesian hypothesis testing procedures based on controlling expected posterior-
based error rates.

Instead, we will describe the overwhelmingly most popular variation of hypothe-
sis testing called null hypothesis significance testing (NHST). In this (frequetist)
procedure one declares one of the hypotheses as a default or status quo hypothe-
sis, usually labeled H0 and referred to as the “null hypothesis.” The alternative
hypothesis is the research hypothesis, and is typically labeled Ha or (less often)
H1. For example, in a drug development trial, the null hypothesis would be that
the drug has no therapeutic effect on disease symptoms, whereas the alternative
hypothesis is that it has a positive effect. It is perhaps useful to think in terms
of a criminal court case, an example that we will refer back to frequently. The
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null hypothesis is that the defendant is innocent and evidence is required to
convict.

In NHST, calculations are performed assuming that the null hypothesis is true,
and evidence is required to reject the null hypothesis in favor of the alternative.
Setting up the problem this way has several benefits, but also introduces several
limitations; we will cover both.

When deciding between two hypotheses, there are two kinds of correct decisions
that can be made and two kinds of errors. In NHST there are two types of
correct decisions and two types of error:

• If H0 is true and we conclude H0, then we have correctly accepted the null
• If H0 is true and we conclude Ha, then we have made a Type I error
• If Ha is true and we conclude Ha, then we have correctly rejected the null
• If Ha is true and we conclude H0, then we have made a Type II error

Note that some specific language and concepts, which we will cover shortly, must
be adhered to during the decision process. NHST controls the probabilities of
the errors, the error rates, to make decisions. Specifically, the procedures ensure
that the probability of a Type I error is small. Recall our court case, H0 is that
the defendant is innocent, Ha is that the defendant is guilty. A Type I error is
convicting an innocent defendant. A Type II error is failing to convict a guilty
defendant.

If we require a lot of evidence to convict defendants, then we will let a lot of
guilty criminals go free (commit many Type II errors). In contrast, if we require
very little evidence, then more innocents would be convicted (Type I errors).
Most courts are set up to require a lot of evidence to convict, thus making the
probability of Type I errors small. We adhere to a similar procedure in NHST;
we ensure that the probability of Type I errors is small and thus require a lot
of evidence to reject the null hypothesis.

The probabilities of the various error rates are so often spoken of that we have
given most of them symbols or names as follows (in the same order as before):

• The probability of correctly accepting the null is called 1 − α.
• The probability of a Type I error is called α.
• The probability of correctly rejecting the null is called Power or 1 − β.
• The probability of a Type II error is called β.

NHST forces α to be small; we want to avoid convicting innocent defendants.
Thus, philosophically, we are stating a strong preference for the status quo as
the default. If we meet this standard of evidence, then we say that we “reject
the null hypothesis (in favor of the alternative).” That is, we say that there was
enough evidence to find the defendant guilty. Because of the strong standard
required, we can say that we “conclude Ha” (conclude that the defendant is
actually guilty and lock him or her up).

On the other hand, if we do not meet the standard of evidence, we do not
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conclude that the defendant is innocent, but rather that there was not enough
evidence to convict. To see this, imagine a court that puts a near impossible
standard of evidence for conviction and never convicts any defendants. Both
innocent and guilty defendants will be cleared of charges. Therefore, being
cleared of charges does not imply a great deal of evidence of innocence, rather
only a failure to convict. This is summarized in the famous phrases “Absence of
evidence is not evidence of absence” and “You can’t prove a negative.” Because
of this, we tend to say that we “fail to reject” the null hypothesis, rather than
saying we accept it. We emphasize that this is mostly a byproduct of how we
implement NHST: performing calculations assuming the null hypothesis to be
true and requiring a large amount of evidence to reject it.

How can one have faith that the null is actually true when failing to reject the
null hypothesis? Ultimately, this comes down to having faith that the study
was set up for success and would have rejected the null if an effect was truly
present. Thus, invariably, when a study fails to reject H0, discussion focuses
on the main method for preventing Type II errors: study design. This includes
the power of the study, its design, the sample size, the potential for biases, the
sample being studied, and so on.

Another component of hypothesis testing is choosing a statistic that represents
evidence. Often, this will be a likelihood ratio, though often not. The choice
of statistic is important, as it can impact power. As a simple example, one
could generate a uniform random variable and reject if it is less than 0.05. This
procedure will always control the Type I error rate at 5%! However, it does
not make any use of the data and will always have a power (the probability of
rejecting if Ha if true) of 5%, as well. Of course, this is a terrible procedure,
but it highlights the role that the statistic plays in designing an NHST. There
is some theory that says the likelihood ratio is optimal as a statistic in certain
settings (the Neyman/Pearson lemma). However, this theory is restrictive in
that there are limited settings under which it applies. In general, we will have
to evaluate our statistic using things like Monte Carlo studies or mathematics
if we want to see how they perform over a variety of settings. In the cases we
investigate in this chapter, a good statistic will be sort of obvious, so we will
not discuss the choice of the test statistic very much.

As NHST is a deep topic, we will revisit the ideas frequently. However, for now,
let us build up our intuition with some simple examples.

16.1.1 A simple example

Consider again our coin example. Suppose that we want to set up a rejection
region for our problem. A standard in NHST is to control the error rate at 5%.
Let us also set our null hypothesis to be that the coin is fair: H0 : p = 0.5.
Further, let us consider Ha : p > 0.5, comparing the hypothesis that the coin
is fair to the hypothesis that it is biased towards heads. A reasonable statistic
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results from simply counting the number of heads, with more heads being flipped
pointing toward Ha. Thus, we need a value C so that the probability X ≥ C is
smaller than α where X is the number of heads. That is, we want

PH0(We reject H0) = P (X ≥ C | p = 0.5) ≤ α .

Then we will reject the null hypothesis if we get greater than C heads. Clearly
if a C satisfies this probability statement, then C + 1 does as well, as does
C + 2 and so on. We then want to find the smallest such C that satisfies this
statement. We can do this using R. Let us assume that the number of trials is
N = 10.
out = round(
rbind(0 : 10,
100 * pbinom((0 : 10) - 1, size = 10, prob = 0.5, lower.tail = FALSE))

)
rownames(out) = c("C", "P(X>=C) %")
out

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
C 0 1 2 3 4 5 6 7 8 9 10
P(X>=C) % 100 100 99 95 83 62 38 17 5 1 0

A small technical point on the code; R’s upper tail probability calculation for dis-
crete variables (like pbinom) gives the strict inequality P (X > a). So, you have
to supply a-1 as an argument to include the probability of a. That is, pbinom(4,
size = 10, prob = 0.5, lower.tail = FALSE) yields P (X > 4) = P (X ≥
5). Note pbinom(a, size = 10, prob = 0.5) gives P (X ≤ a).

Thus, if we want an α of 5%, then we need to set C = 8. So, we reject the
null hypothesis if we get 8 or more heads out of 10 flips. This procedure has an
approximate probability of 5% under the null hypothesis. As a second technical
note, the probability for C = 8 is actually over 5% (we rounded above). If you
want strict control at 5% (that is, α < 0.05), you would have to set C = 9. This
is a byproduct of the discreteness of the binomial distribution, which does not
allow to obtain an exact 5% level test. In continuous settings this will not be a
problem.

We should also discuss whether the null is H0 : p = 0.5 or H0 : p ≤ 0.5. It turns
out, it does not matter. The hypothesis H0 : p = 0.5 is the most extreme case
towards the alternative and so if you set your test up for this case, it covers the
more inclusive null H0 : p ≤ 0.5 as well. That is, P (X ≥ C | p = p0) is the
largest for p0 ≤ 0.5 at the boundary p0 = 0.5 (check this yourself!). Thus, in
most one sided testing settings, one typically specifies the boundary case. We
will discuss one sided versus two sided tests more later.
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16.1.2 A second simple example

Imagine studying a population of subjects for sleep apnea using the Respiratory
Disturbance Index (RDI). An RDI of 30 is considered severe sleep apnea. This
is one sleep breathing disturbance every two minutes on average for a night.
(Hopefully, this drives home the importance of studying this disease, as you can
imagine the negative health and well-being effects for being chronically deprived
of oxygen that often while sleeping.)

You would like to know if a particular population has a mean RDI greater than
30. To do this, you sample 100 subjects from the population and measure their
RDI. To make the problem easier for pedagogy, let us assume the standard
deviation is known to be 10 and that RDI is normally distributed. A reasonable
rejection strategy would be to reject if our sample mean is greater than some
number, say C. We will pick C to ensure that our Type I error rate is α.
Specifically, we want:

PH0(We reject H0) = P (X̄ ≥ C | µ = 30) = α

where µ is the population mean RDI. Under H0 : µ = 30 we know that X̄ is
normally distributed with a mean of 30 and a variance of 10/

√
100 = 1. Thus,

C needs to be the upper α quantile of a N(30, 1) distribution.
alpha = c(0.001, 0.01, 0.05, 0.1)
out = rbind(alpha, qnorm(alpha, 30, 1, lower.tail = FALSE))
rownames(out) = c("alpha", "C")
round(out, 3)

[,1] [,2] [,3] [,4]
alpha 0.001 0.010 0.050 0.100
C 33.090 32.326 31.645 31.282

So, for a 5% level test, we would need to see a sample average of 31.645 to reject.

16.1.3 Z scoring our test statistic

We can save ourselves a lot of trouble by taking the null Z-score of our test
statistic. Specifically, note for all tests of the form H0 : µ = µ0 versus Ha : µ >
µ0 we get that the probability that we reject under the null hypothesis is:

P (X̄ ≥ C | µ = µ0) = α = P

(
X̄ − µ0

σ/
√

n
≥ C − µ0

σ/
√

n
| µ = µ0

)
= P (Z ≥ Z1−α) ,

where Z is a N(0, 1) random variable and Z1−α is the 1 − α quantile of the
standard normal. Thus, C = Z1−ασ/

√
n + µ0; the rejection boundary is Z1−α

standard errors above the null mean. Equivalently, the equation above shows
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that we could just standardize our test statistic. The resulting rule is that we
reject if:

X̄ − µ0

σ/
√

n
≥ Z1−α.

You can derive for yourself the one sided case in the other direction. To simply
present the result, if H0 : µ = µ0 versus Ha : µ ≤ µ0 we reject if:

X̄ − µ0

σ/
√

n
≤ Zα.

These rules also apply if σ is estimated and one is applying the CLT, as well.
However, of course, the Type I error only holds approximately in that case.

16.1.4 Two sided hypotheses

Often we are interested in whether the null is a specific value or is different from
it. As an example, imagine if we had two groups of sleep disordered breathing
patients, all with a starting RDI of 30, and we randomized half to a treatment,
say a calorie restricted diet, while the other half serve as controls. A reasonable
hypothesis is H0 : µT − µC = 0 where µT is the mean for the treated and µC is
the mean for the controls. Consider as a statistic, the difference in th eaverage
RDI after six months of treatment: X̄T − X̄C . Given the randomization, it is
reasonable to assume a constant variance, σ2, so that the standard error of our
statistic is

Var(X̄T − X̄c) = 4σ2/n

where there are n/2 subjects in each group. Thus our Z-score standardized
statistic is:

Z =
√

n(X̄T − X̄C)
2σ

.

In general, if H0 : µT − µC = a and there are non-constant variances and
different sample sizes, we would arrive at:

Z = X̄T − X̄C − a√
σ2

T

nT
+ σ2

C

nC

.

We would like to reject if our Z statistic is either too large or too small. We
will distribute our Type I error rate as αp in each tail where p is any number
between 0 and 1:

P (Z ≤ Zpα or Z ≥ Z1−(1−p)α) = pα + (1 − p)α = α.
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Typically, we have no preference for requiring stricter evidence for either a too
large or too small statistic, so we simply set p = 0.5, placing half of our Type I
error rate in either tail.

Thus, we reject if our normalized statistic is smaller than Zα/2 or larger than
Z1−α/2. But, since Z1−α/2 = −Zα/2 we arrive at the rule, reject if |Z| is larger
than Z1−α/2.

We can arrive at this procedure from a different line of thinking. We could set
our starting statistic as Z2 and reject for large values, which would correspond
to either large positive or small negative differences from the mean. However,
if Z is the standard normal, then Z2 is Chi-squared with 1 degree of freedom.
Thus, to force a Type I error rate of α, we would reject if Z2 ≥ χ2

1−α where
χ2

1−α is the upper α quantile of the Chi-squared distribution. Check for yourself
that the square root of χ2

1−α is Z1−α/2 so that this leads to the same rule as
above!

16.2 General hypothesis tests

Consider testing a mean parameter, µ via null hypothesis H0 : µ = µ0. Consider
an estimator of µ, S, which will serve as your statistic. Assume that S has
standard error SD(S), which is consistently estimated by ŜD(S) and that

Z = S − µ0

ŜD(S)

either follows a normal distribution or limits to one via the central limit theorem.
Then you reject under the following rules:

• Ha : µ > µ0 reject if Z ≥ Z1−α

• Ha : µ < µ0 reject if Z ≤ Zα

• Ha : µ ̸= µ0 reject if |Z| ≥ Z1−α/2

Here are some examples of the test statistic and setting:

• Single mean: Z =
√

n(X̄ − µ0)/S

• Difference in two means: Z = X̄1−X̄2−(µ1−µ2)√
S2

1 /n1+S2
2 /n2

• Binomial proportion: Z =
√

n(p̂ − p0)/
√

p̂(1 − p̂)

For data that can reasonably be assumed to be normal, the standardized statistic
will follow a Student’s t distribution, and one simply follows the same rules but
with the normal quantiles replaced by t quantiles.
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16.3 Connection with confidence intervals

There is a direct connection between confidence intervals and hypothesis tests.
Even better, the connection works exactly as one would hope. You can perform
a hypothesis test by simply rejecting if the null parameter value lies outside of
the interval, and you can construct a confidence interval by taking the values of
the null parameter that you fail to reject. We will elaborate.

Consider a 1 − α confidence interval, [CL, CU ], for a parameter, µ. (It does not
have to be a mean parameter.) The fact that the interval is a confidence interval
requires that

P (µ ∈ [CL, CU ]) = 1 − α .

Here note that it is the interval that is random, not µ. So this is the probability
that the random interval encompasses the true value, µ. Therefore, the proba-
bility that it does not contain µ is α. Then, given a null hypothesis value of µ,
say µ0, define a test statistic as the indicator of the interval not containing µ0:

TS = I(µ0 /∈ [CL, CU ]) .

Then the probability that we reject assuming that µ = µ0 is P (TS = 1 | µ =
µ0) = α. We have thus constructed a test that clearly has the desired Type
I error rate. This doesn’t necessarily mean it is a good test; it may have low
power. In this case, low power results if the confidence interval is unnecessarily
wide. This can especially happen in discrete data settings or cases where the
confidence interval is constructed asymptotically.

What about the reverse direction? Given a test, can we construct a confidence
interval with the values of the parameter for which we fail to reject? Absolutely.
Let TS(µ0) be a test statistic, where we write it here as a function of µ0, the null
parameter value. For simplicity’s sake, let us assume our test statistic follows
some distribution under the null, F (µ0), and we reject if our test statistic is
larger than its upper quantile, say Q1−α. Therefore, consider the points for
which we fail to reject:

CI = {µ0 | TS(µ0) ≤ Q1−α} .

Therefore, P (TS(µ0) ≤ Q1−α | µ = µ0) = 1 − α for every point in the CI. In
particular, this holds for the actual value of µ, whatever it is. Let us say that
µ1 is the actual value of µ to help with our notation. Note that µ1 ∈ CI if and
only if TS(µ1) ≤ Q1−α. Thus,

P (µ1 ∈ CI | µ = µ1) = P{TS(µ1) ≤ Q1−α | µ = µ1} = 1 − α .

A couple of points are in order. Technically, this is a confidence set, since there
is no guarantee that it will be an interval. (More on this in a moment.) Secondly,
the test statistic has to actually depend on the null hypothesized values. For
example, if we create a useless hypothesis test that rejects if a uniform random
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variable is less than α (which results in an α level test), then we would have an
infinitely large confidence interval. This interval has coverage larger than 1 − α
(it is 1), but it is also useless.

If the test statistic is a Z-score statistic, then inverting a hypothesis test will
always result in a confidence interval. For example, we fail to reject if

Z2 =

{
S − µ0

ŜD(S)

}2

is smaller than a Chi-squared cutoff. Therefore, we reject if Z2 < χ2
1,1−α =

Z2
1−α/2 or, equivalently, fail to reject if Z ∈ [−Z1−α/2, Z1−α/2]. This is equiva-

lent to saying that the set of values of µ0 for which we fail to reject is:

µ0 ∈ S ± Z1−α/2ŜD(S) .

This is how we arrive at the general form for 95% confidence intervals of

Estimate ± 2 × Standard Error of Estimate ,

where the 2 is an approximation of Z.975 = 1.96.

16.4 Data example

First, let us read in the data.
dat = read.table(file = "data/shhs1.txt",

header = TRUE, na.strings=".")

Now, let us test whether or not different genders have different average RDIs.
We will use the CLT and a mean test to do it. Let us do it manually first.
It is always a good idea to specify your hypotheses first. So, our hypotheses
are H0 : µMen − µW omen = 0 versus Ha : µMen − µW omen ̸= 0. Let’s get the
summary information that we need.
library(tidyverse)
smry = dat %>%
group_by(gender) %>%
summarise(mean = mean(rdi4p), sd = sd(rdi4p), n = n())

smry

# A tibble: 2 x 4
gender mean sd n
<int> <dbl> <dbl> <int>

1 0 6.15 10.2 3039
2 1 11.4 14.0 2765
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The SHHS is a combination of studies and the variable gender was obtained
from the parent study; there is no information to distinguish gender and sex.
For pedagogical purposes, we will ignore the issue, but a more careful study of
the precise questions asked by the parent studies would need to be performed
to thoroughly investigate sex or gender differences in RDI.

The average for men is higher, but is it statistically significantly higher? We
will use the statistic:

X̄men − X̄women√
s2

men

nmen
+ s2

women

nwomen

.

estimate = smry$mean[2] - smry$mean[1]
mu0 = 0
se = sqrt(smry$sd[2]^2 / smry$n[2] + smry$sd[1]^2 / smry$n[1])
ts = (estimate - mu0) / se
ts

[1] 16.20031

Our test statistic of 16.2003059 is much larger than the 0.975 quantile of the
normal distribution (1.96), so, we would reject the null hypothesis. A confidence
interval would be given by
round(
estimate + c(-1, 1) * qnorm(.975) * se,
2

)

[1] 4.62 5.89

Of course, these calculations are kind of tedious. We can just use the function
t.test. Since there are so many subjects, whether it is a T or a Z test is
irrelevant. To agree with our standard error calculation, we will set the variances
to be unequal.
t.test(dat$rdi4p ~ dat$gender, var.equal = FALSE)

Welch Two Sample t-test

data: dat$rdi4p by dat$gender
t = -16.2, df = 5007.2, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-5.886221 -4.615395

sample estimates:
mean in group 0 mean in group 1

6.154055 11.404863
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Notice that the results agree. The T statistic is 16.2 and the confidence interval
is the same (except that they are subtracted in the reverse order). Let us
consider a small sample example. The sleep data included with R are from the
original manuscript on the T test. Oddly, the t.test documentation treats the
data as if the groups are independent, yet they are in fact paired.
levels(sleep$group) = c("Dextro", "Laevo")
sleep2 = sleep %>% spread(group, extra) %>% mutate(Diff = Dextro - Laevo)
sleep2

ID Dextro Laevo Diff
1 1 0.7 1.9 -1.2
2 2 -1.6 0.8 -2.4
3 3 -0.2 1.1 -1.3
4 4 -1.2 0.1 -1.3
5 5 -0.1 -0.1 0.0
6 6 3.4 4.4 -1.0
7 7 3.7 5.5 -1.8
8 8 0.8 1.6 -0.8
9 9 0.0 4.6 -4.6
10 10 2.0 3.4 -1.4

Here the study was of two sleep medications (Dextro and Laevo) and the out-
come is the extra hours of sleep on the medication. Each patient received both
drugs. Let us do a T-test on the difference. Thus, we are testing H0 : µD = 0
versus Ha : µD ̸= 0 where µD is the population mean difference in extra hours
slept. We will do the T-test calculations manually first, then use t.test.
mn = mean(sleep2$Diff); sd = sd(sleep2$Diff); n = 10
ts = abs(sqrt(n) * mn / sd)
ts

[1] 4.062128

Thus we get a test statistic of 4.0621277. We take the absolute value since we
are doing a two sided test. Compare this to the upper 0.975 quantile from a
Student’s T distribution with 9 degrees of freedom
qt(0.975, 9)

[1] 2.262157

Since our test statistic lies in the rejection region of being larger than 2.2621572
or smaller than -2.2621572 we reject the null hypothesis. Let us also calculate
a confidence interval:
round(mn + qt(c(0.025, 0.975), 9) * sd / sqrt(n), 3)

[1] -2.46 -0.70

Of course, there are automated methods for doing this calculation in R.
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t.test(sleep2$Diff)

One Sample t-test

data: sleep2$Diff
t = -4.0621, df = 9, p-value = 0.002833
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-2.4598858 -0.7001142

sample estimates:
mean of x

-1.58

In fact, it is not necessary to even perform the subtraction:
t.test(sleep2$Dextro, sleep2$Laevo, paired = TRUE)

Paired t-test

data: sleep2$Dextro and sleep2$Laevo
t = -4.0621, df = 9, p-value = 0.002833
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.4598858 -0.7001142

sample estimates:
mean of the differences

-1.58

16.5 P-values

In the previous example, we rejected for α = 0.05 for a two sided test, but what
about α = 0.01 or α = 0.001? We could report the smallest Type I error rate
for which we fail to reject, a number called the attained significance level. In
our previous example, the attained significance level is reported to be 0.002833.
The benefit of reporting this number is that the readers can then perform the
test at whatever α level they want. If your attained significance level is smaller
than α then you reject.

The attained significance level is mathematically equivalent to the so-called P-
value. Popuralized by R.A. Fisher (Fisher 1925), the P-value is perhaps the
most famous statistic ever created. The P-value is defined as the probability
under the null hypothesis of obtaining a test statistic the same as the
observed results or more extreme in favor of the alternative.
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Assuming that our statistical model is correct, if a P-value is small, then either
the null is false or we observed an unlikely extreme test statistic in favor of
the alternative. It is relatively easy to see that the P-value is equivalent to the
attained significance level. For ease of discussion, assume a one sided test and
that smaller values of the test statistic favor the alternative hypothesis. Then,
the P-value is defined as

PH0(TS ≤ TSObs) ,

where TSobs is the observed value of the test statistic. In contrast, we reject
if our TS is less than or equal to Qα, where Qα is the α quantile of the null
distribution of our test statistic. Clearly, the smallest value of α, hence the
smallest value of Qα, for which we reject is when Qα = TSobs and the associated
α is the P-value. Because of this, practitioners, and many textbooks, do not
differentiate between the P-value and the attained significance level.

Let us calculate a P-value for a simple example. We hypothesize that a coin is
slightly biased towards tails, H0 : p = 0.5 versus Ha : p < 0.5. Let X count the
number of heads in 10 coin flips. Suppose we got 2 heads. If the null is true,
the probability of getting 2 or fewer heads in 10 coin flips is
pbinom(2, size = 10, prob = 0.5)

[1] 0.0546875

Thus we would (barely) fail to reject at a Type I error rate at 5%, but would
reject at a Type I error rate of 10%.

In our reanalysis of Student’s data, we obtained a T-test statistic of 4.0621277.
Because our test is two sided, we would reject if our test statistic is too large or
small. The easiest way to do this is to double the smaller of the two one sided
P-values.
2 * min(pt(ts, df = 9), pt(-ts, df = 9))

[1] 0.00283289

Of course, we typically do this calculation using software.
t.test(sleep2$Dextro, sleep2$Laevo, paired = TRUE)

Paired t-test

data: sleep2$Dextro and sleep2$Laevo
t = -4.0621, df = 9, p-value = 0.002833
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.4598858 -0.7001142
sample estimates:
mean of the differences
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-1.58

16.6 Discussion

16.6.1 Practical versus statistical significance

Now that we have introduced NHST testing, it is worth discussing some of
the controversy surrounding this technique. First, as you might have noticed,
our calculations are made much simpler via a very constrained null hypothesis.
The highly constrained nature of the null has drawn criticism in that one can
reject the null hypothesis for trivially small effects if the sample size is large
enough. This is often emphasized with the phrase “statistical significance is not
practical significance.” A simple fix is to have confidence intervals accompany
tests, therefore the size of the effect will also be shown along with the result of
the significance test.

However, it is also worth emphasizing that the importance of the size of the
effect is a nuanced topic (Lindquist, Caffo, and Crainiceanu 2013, @confidence-
precision). Small effects in large observational studies can be important, since
often many covariates are included in a model specifically to challenge the effect
and see if it survives the onslaught. Therefore, it is difficult to say anything
about the size of an effect without considering the context including the study
design and conduct of the analysis.

Another point worth discussing for two group testing is the possibility that the
natural null is that the mean for the two groups is different. As an example,
consider the problem of bioequivalence. When testing a new generic drug, it
must be shown that the the observed blood concentrations are equivalent with
those observed for the brand name. In this case, the natural null hypothesis
is to assume that the mean concentration is different and require evidence to
establish equivalence. We will not investigate this sort of testing further and
point interested readers to the literature on “equivalence testing” for further
reading.

Moreover, we disagree that statistical and scientific significance cannot be rec-
onciled. On the contrary, suppose that we look again at the test for RDI in a
treatment and control group. However, instead of worrying about whether or
not treatment and control are indistinguishable, we would like to test whether
the treatment reduces on average the number of events by 1 per hour, which is
viewed as a “scientifically significant improvement”. Then the null hypothesis
H0 : µT − µC = 0 where µT is the mean for the treated and µC is the mean for
the controls would change to

H0 : µT − µC ≥ −1 .
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Thus, scientific significance can be directly translated into statistical significance
by changing the null hypothesis accordingly. Note that, in general, establishing
scientific significance as described above requires more evidence than statistical
significance when testing for equality.

16.6.2 Fishing for significance

A potential problem with significance tests is that one can simply keep per-
forming them until significance is obtained. Such techniques are often called
fishing expeditions, data dredging, P-hacking, multiple testing and multiple
comparisons (see Benjamini and Hochberg 1995 for a modern discussion). The
phenomena can occur explicitly from unscrupulous analyses, or accidentally
through unaccounted for multiple comparison problems. Multiple comparison
issues can be adjusted using Bonferroni or False Discovery Rate (FDR) ap-
proaches Benjamini and Hochberg (1995).

An obvious but unscrupulous use of testing is to perform many hypothesis tests
on a data set, find a significant one, paint a credible story around the significance
and present the results as if this test was the only one considered. Accidental
cases can occur when a researcher considers multiple models or has legitimate
confusion over what collection of tests should be grouped together and adjusted
for multiple comparisons.

Recently, several efforts have been made to combat these and other related
problems seen as a source of lack of scientific reproducibility. For example, the
idea of pre-registering studies has gained momentum. In a pre-registered study,
one lays out the analysis plan prior to collecting the data or performing the
analysis. Such pre-registration already occurs in clinical trials, but would also
help in observational research to increase transparency for analyses.

However, all of these problems are problems of usage, understanding, and imple-
mentation and not fundamental problems with the statistical testing framework
and the associated P-values. Therefore, in practice one should be very careful
about addressing the problem (e.g. unscrupulously fishing for significance) with-
out throwing away a true, tried, and understood scientific technique.

16.6.3 Evidence and hypothesis tests

Consider the issue of a barely significant test. What impact does the size of the
study have on interpreting that result? For a large study, is the fact that it is
barely significant problematic, since one would hope for strong significance for
a large study? Alternatively, for a small study, are we content that significance
was obtained or concerned over the lack of power of the study and the possibility
that this was a Type I error?
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This latter point has received a great deal of attention of late. Specifically,
in a Bayesian context one can discuss the probability of the null hypothesis
(Katherine et al. 2013b):

P (Ha | Significance) ,

which decreases as the sample size decreases. Indeed, using the Bayes rule this
probability is equal to

P (Significance | Ha)P (Ha)
P (Ha)P (Significance | Ha) + P (H0)P (Significance | H0)

= Power × P (Ha)
Power × P (Ha) + α × P (H0)

.

Therefore, holding the other terms constant, as power goes up so does
P (Ha | Significance) and vice versa. Therefore, the evidence associated with a
positive test result has less force if the study was designed with low power.

16.7 Problems

Problem 1. Forced expiratory volume FEV is a standard measure of pulmonary
function. We would expect that any reasonable measure of pulmonary function
would reflect the fact that a person’s pulmonary function declines with age after
age 20. Suppose we test this hypothesis by looking at 10 nonsmoking males, ages
35-39, heights 68-72 inches, and measure their FEV initially and then once again
two years later. We obtain these data (expressed in liters)

Person Year 0 Year 2 Person Year 0 Year 2
1 3.22 2.95 6 3.25 3.20
2 4.06 3.75 7 4.20 3.90
3 3.85 4.00 8 3.05 2.76
4 3.50 3.42 9 2.86 2.75
5 2.80 2.77 10 3.50 3.32

a. Perform and interpret the relevant test. Give the appropriate null and
alternative hypotheses. Interpret your results, state your assumptions,
and give a P-value.

b. We are interested in calculating the sample size for detecting a change in
FEV over two years at least as large as that detected for males, ages 35-39.
Use the data above for any relevant constants that you might need.

Problem 2. Another aspect of the preceding study involves looking at the
effect of smoking on baseline pulmonary function and on change in pulmonary
function over time. We must be careful since FEV depends on many factors,
particularly age and height. Suppose we have a comparable group of 15 men in
the same age and height group who are smokers and we measure their FEV at
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year 0. The data are given (For purposes of this exercise assume equal variance
where appropriate).

Person Year 0 Year 2 Person Year 0 Year 2
1 2.85 2.88 9 2.76 3.02
2 3.32 3.40 10 3.00 3.08
3 3.01 3.02 11 3.26 3.00
4 2.95 2.84 12 2.84 3.40
5 2.78 2.75 13 2.50 2.59
6 2.86 3.20 14 3.59 3.29
7 2.78 2.96 15 3.30 3.32
8 2.90 2.74

Test the hypothesis that the change in FEV is equivalent between non-smokers
and smokers. State relevant assumptions and interpret your result. Give the
relevant P-value.

Problem 3. Perform the following simulation. Randomly simulate 1000 sam-
ple means of size 16 from a normal distribution with mean 5 and variance 1.
Calculate 1000 test statistics for a test of H0 : µ = 5 versus Ha : µ < 5. Using
these test statistics calculate 1000 P-values for this test. Plot a histogram of the
P-values. This exercise demonstrates the interesting fact that the distribution
of P-values is uniform if the null is true for all tests.

Problem 4. In the SHHS, test whether men and women have the same average
rdi4p. For every sample size n = 5, 10, 25, 50, 100 sample at random n men
and n women and conduct the relevant test. Repeat this 10000 times and
plot the histogram of P-values for every n. Compare the histograms among
themselves and with the theoretical probability density function of a uniform
random variable.

Problem 5. Suppose that systolic blood pressure (SBP) was recorded for 16
oral contraceptive (OC) users and 16 controls at baseline and again two years
later. The average difference from follow-up SBP to the baseline (followup -
baseline) was 11 mmHg for oral contraceptive users and 4 mmHg for controls.
The corresponding standard deviations of the differences was 20 mmHg for OC
users and 28 mmHg for controls. Does the change in SBP over the two-year
period appear to differ between oral contraceptive users and controls? Perform
the relevant hypothesis test and interpret. Give a P-value. Assume normality
and a common variance.

Problem 6. Will a Student’s T or Z hypothesis test for a mean with the data
recorded in pounds always agree with the same test conducted on the same data
recorded in kilograms? (explain)

Problem 7. A researcher consulting you is very concerned about falsely re-
jecting her null hypothesis. As a result the researcher decides to increase the
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sample size of her study. Would you have anything to say? (explain)

Problem 8. Researchers studying brain volume found that in a random sample
of 16 65-year-old subjects with Alzheimer’s disease, the average loss in gray mat-
ter volume as a person aged four years was 0.1 mm3 with a standard deviation
of 0.04 mm3. Calculate and interpret a P-value for the hypothesis that there is
no loss in gray matter volumes as people age. Show your work.

Problem 9. A recent Daily Planet article reported on a study of a two-week
weight loss program. The study reported a 95% confidence interval for weight
loss from baseline of [2 lbs, 6 lbs]. There was no control group, all subjects were
on the weight loss program. The exact sample size was not given, though it
was known to be over 200. What can be said of an α = 5% hypothesis test of
whether or not there was any weight change from baseline? Can you determine
the result of an α = 10% test without any additional information? Explain your
answer.

Problem 10. Suppose that 18 obese subjects were randomized, 9 each, to a
new diet pill and a placebo. Subjects’ body mass indices (BMIs) were measured
at a baseline and again after having received the treatment or placebo for four
weeks. The average difference from follow-up to baseline (followup−baseline)
was −3 kg/m2 for the treated group and 1 kg/m2 for the placebo group. The
corresponding standard deviations of the differences was 1.5 kg/m2 for the treat-
ment group and 1.8 kg/m2 for the placebo group. Does the change in BMI over
the two-year period appear to differ between the treated and placebo groups?
Perform the relevant test and interpret. Give a P-value. Assume normality and
a common variance.

Problem 11. In a study of aquaporins, 120 frog eggs were randomized, 60 to
receive a protein treatment and 60 controls. If the treatment of the protein was
effective, the frog eggs would implode. The resulting data were

Imploded Did not Total
Treated 50 10 60
Control 20 40 60
Total 70 50 120

State the appropriate hypotheses and report and interpret the P-value.

Problem 12. Two drugs, A and B, are being investigated in a randomized
trial, with the data given below. Investigators would like to know if the Drug
A has a greater probability of side effects than drug B.

None Side effects N
Drug A 10 30 40
Drug B 30 10 40
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State the relevant null and alternative hypotheses and perform the relevant test.

Problem 13. You are flipping a coin and would like to test if it is fair. You
flip it 10 times and get 8 heads. Specify the relevant hypotheses and report and
interpret an exact P-value.

Problem 14. In the SHHS we want to test whether the mean of rdi4p is 5.
Write down the hypotheses and explain the relevant quantities. Suppose that
you sample at random n = 5, 10, 25, 50, 100 subjects from SHHS and calculate
the relevant P-values. Repeat the process 10000 times and plot the histograms
of P-values for every n. What do you conclude?

Problem 15. The same problem as before, except that we test in subsamples
whether the mean is equal to the observed mean rdi4p in the entire sample.
How many times do you reject the null hypothesis? What do you conclude?



Chapter 17

R Programming in the
Tidyverse

This chapter covers the following topics

• Data objects
• dplyr
• Grouping data
• Merging datasets
• Reshaping datasets
• Cleaning strings: the stringr package

The tidyverse is a collection of packages that work on a tidy data principle. It
contains functions for manipulating datasets, such as dplyr and tidyr, trans-
forming objects into datasets, such as broom, and plotting datasets, such as
ggplot2. The tidyverse package itself is essentially a wrapper that loads this
entire collection of packages. Here we can load the tidyverse package:
library(tidyverse)

As many of the tidyverse packages are created or maintained by many of the
employees of RStudio, they provide many great cheatsheets for new users.

17.1 Data objects in the tidyverse: tibbles

We will mostly use tibbles, as the tibble package is included in the tidyverse.
Another reason we will be using tibbles is that the readr package we will use
for reading data outputs tibbles from its reading functions (Wickham, Hester,
and Francois 2017). Some of the dplyr functions will return a tibble even if a
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data.frame is passed in, thus most work will be on tibble objects. We must
first read in the data.

17.1.1 readr: reading in data

The readr in the tidyverse package can handle many different types of data
input formats. R inherently can read most of these formats, but readr provides
better defaults (for most users) and can be significantly faster than the standard
counterparts in the base R packages.
file.name = file.path("data", "shhs1.txt")
df = read_tsv(file.name)
class(df)

[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"

Here data are tab-delimited, so we use the read_tsv function and see the out-
put is indeed a tibble. The analogous read_csv function is very useful for
spreadsheets that are comma separated. Now that we have the data read into
R, we will show how to manipulate it. Whenever reading in any dataset using
readr, it is good to check that there were no parsing problems. The problems
function allows you to see any of the problems, and the stop_for_problems
function will throw an error if there are any problems in reading your data.
stop_for_problems(df)

17.1.2 Other data formats

The readxl package can read in xlsx/xls files directly into R using the
read_excel function. There are packages that write out xlsx files directly
from R, but we do not condone that workflow directly. Mostly, using CSV file
outputs after manipulation in R is sufficient to get into Excel or other pieces of
software for formatting tables and can be version-controlled much easier than
xlsx files.

The haven package (Wickham and Miller 2017) provides the ability to read data
formats from other statistical software such as SAS, SPSS, and Stata. This pro-
vides the ability to go directly from other software formats to R without going
through an intermediary format such as CSV. This direct reading is useful be-
cause many times you are receiving these formats from a collaborator or online
source and would like a reproducible way to perform an analysis. Creating an in-
termediate CSV is not as reproducible. Moreover, converting to an intermediate
CSV file may lose pieces of information about the data, such as labels.
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17.2 dplyr: pliers for manipulating data

The dplyr package has a multitude of functions, and we will cover the most
fundamental ones here. These can be considered as the dplyr “verbs.” If you
think of R as a language with syntax, the dplyr dialect thinks of datasets as
“nouns” and the actions done to the data as the “verbs.” The dataset “nouns”
we will be using will be things like data.frames, mainly tibbles.

Every function in dplyr that takes in a dataset has that dataset as the first
argument, which is why the dplyr verbs work seamlessly with the pipe operator
(%>%).

17.2.1 Selecting columns from a dataset

The first verb we will introduce is the select function, which subsets the
columns of the data. We work with the SHHS dataset and we would like to
extract only the patient identifier (pptid), age, BMI, and gender of the patient:
df = df %>% select(pptid, age_s1, bmi_s1, gender)

# A tibble: 3 x 4
pptid age_s1 bmi_s1 gender
<dbl> <dbl> <dbl> <dbl>

1 1 55 21.8 1
2 2 78 33.0 1
3 3 77 24.1 0

Note that dplyr verbs, such as select, understand that you are referring to
columns of a dataset when passing in arguments, so you do not have to use other
operators such as the dollar sign ($) or the quote for the column names. There
are several helper functions for select, which can be found in the help file (run-
ning the ?select_helpers command). For example, starts_with/ends_with
functions allow you to select columns which start/end with a string. You can
also use contains/matches to select columns based on a literal string/regular
expression. Lastly, you can reorder the columns of a dataset by using the
everything helper, such as:
df %>% select(col1, col2, everything())

so that the first two columns of the data are now col1 and col2. You can
also remove columns using select by using the hyphen or negative sign. For
example the following code will drop column pptid, but keep all other columns:
df %>% select(-pptid)

# A tibble: 3 x 3
age_s1 bmi_s1 gender
<dbl> <dbl> <dbl>
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1 55 21.8 1
2 78 33.0 1
3 77 24.1 0

In every example above, nothing actually happened to the datasets as we did not
reassign the output of these commands to df; the results were simply printed
out. If we wanted to create another dataset or overwrite df, we would run
something like:
df = df %>% select(-pptid)

This last operation was not actually run and df continues to contain pptid for
the remainder of the chapter.

17.2.2 Renaming columns of a dataset

The next verb we will introduce is the rename function, which renames the
columns of the data. Here, we wish to rename the age_s1 and bmi_s1 columns
to age and bmi, respectively.
df = df %>% rename(age = age_s1, bmi = bmi_s1)

# A tibble: 3 x 4
pptid age bmi gender
<dbl> <dbl> <dbl> <dbl>

1 1 55 21.8 1
2 2 78 33.0 1
3 3 77 24.1 0

Now we see the column names have been changed.

17.2.3 Subsetting rows of a dataset

Many times, we would like to subset our data based on a logical condition. For
example, let us create a dataset named under that has only the individuals
which have a BMI of less than 18.5. We would use the filter command. The
filter command takes in a logical condition and returns only the rows where
that condition is TRUE. If the logical condition returns missing values (such as
NA), these rows will not be returned.
under = df %>% filter(bmi < 18.5)

# A tibble: 3 x 4
pptid age bmi gender
<dbl> <dbl> <dbl> <dbl>

1 44 58 18 0
2 186 50 18 0
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3 261 60 18 1
nrow(under)

[1] 38

If you would like to filter on multiple conditions, you can use additional logical
operations. If we would like to subset data with BMI less than 18.5 and age
above 30 years, we would run:
df %>% filter(bmi < 18.5 & age > 30)

# A tibble: 38 x 4
pptid age bmi gender
<dbl> <dbl> <dbl> <dbl>

1 44 58 18 0
2 186 50 18 0
3 261 60 18 1
4 304 77 18 0
5 397 85 18.4 0
6 644 42 18.4 0
7 652 69 18.1 1
8 653 73 18.0 0
9 717 48 18 0

10 821 41 18 0
# ... with 28 more rows

# A tibble: 3 x 4
pptid age bmi gender
<dbl> <dbl> <dbl> <dbl>

1 44 58 18 0
2 186 50 18 0
3 261 60 18 1

In the filter function, you can pass in multiple logical indices. This implicitly
assumes that you would like the intersection (or AND) of all these conditions. So
the above code is equivalent to:
df %>% filter(bmi < 18.5, age > 30)

# A tibble: 38 x 4
pptid age bmi gender
<dbl> <dbl> <dbl> <dbl>

1 44 58 18 0
2 186 50 18 0
3 261 60 18 1
4 304 77 18 0
5 397 85 18.4 0
6 644 42 18.4 0
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7 652 69 18.1 1
8 653 73 18.0 0
9 717 48 18 0

10 821 41 18 0
# ... with 28 more rows

# A tibble: 3 x 4
pptid age bmi gender
<dbl> <dbl> <dbl> <dbl>

1 44 58 18 0
2 186 50 18 0
3 261 60 18 1

If you would like to use the OR operator (|), you must explicitly do that:
df %>% filter(bmi < 18.5 | age > 30)

# A tibble: 5,804 x 4
pptid age bmi gender
<dbl> <dbl> <dbl> <dbl>

1 1 55 21.8 1
2 2 78 33.0 1
3 3 77 24.1 0
4 4 48 20.2 1
5 5 66 23.3 0
6 6 63 27.2 1
7 7 52 30.0 1
8 8 63 25.2 0
9 9 69 25.8 1
10 10 40 27.8 1
# ... with 5,794 more rows

# A tibble: 3 x 4
pptid age bmi gender
<dbl> <dbl> <dbl> <dbl>

1 1 55 21.8 1
2 2 78 33.0 1
3 3 77 24.1 0

17.2.4 Adding new columns to your data

Although we have shown how to drop columns using select above, we do not
use select to create new columns. The mutate function will allow us to add
and change columns of the data. Here we will add a column of indicators that
BMI is under 18.5.

The action of the mutate function is to create a new variable, low_bmi, where
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each entry corresponds to the indicator of whether or not the BMI of that person
is less than 18.5, and add this variable to the df dataset.

17.2.5 Summarizing data

In most data analyses, you want to summarize variables by some statistic or
measure. For example, let us calculate the average BMI for the entire population.
To do this, we will use the dplyr verb summarize (the summarise is the same
for those who prefer that spelling).
df %>%
summarize(mean(bmi, na.rm = TRUE))

# A tibble: 1 x 1
`mean(bmi, na.rm = TRUE)`

<dbl>
1 28.2

Here we see the result is a tibble with one row and one column. The column
name defaulted to the executed code, which is a bit messy. We can explicitly
set the name of the output similarly to the way we did with mutate:
df %>%
summarize(mean_bmi = mean(bmi, na.rm = TRUE))

# A tibble: 1 x 1
mean_bmi

<dbl>
1 28.2

We can summarize multiple columns and perform multiple summarizations on
the same data:
df %>%
summarize(mean_bmi = mean(bmi, na.rm = TRUE),

mean_age = mean(age, na.rm = TRUE),
sd_bmi = sd(bmi, na.rm = TRUE))

# A tibble: 1 x 3
mean_bmi mean_age sd_bmi

<dbl> <dbl> <dbl>
1 28.2 63.1 5.09

The n() function will allow you to count the number of cases:
df %>%
summarize(mean_bmi = mean(bmi, na.rm = TRUE),

n = n())



514 CHAPTER 17. R PROGRAMMING IN THE TIDYVERSE

# A tibble: 1 x 2
mean_bmi n

<dbl> <int>
1 28.2 5804

Though n() counts the number of records, it does not indicate how many records
had a non-missing BMI:
df %>%
summarize(mean_bmi = mean(bmi, na.rm = TRUE),

n = n(),
n_bmi = sum(!is.na(bmi)))

# A tibble: 1 x 3
mean_bmi n n_bmi

<dbl> <int> <int>
1 28.2 5804 5761

We see that although there were 5804 records, only 5761 had BMI values.

The tally function essentially wraps summarize(n = n()) if you are interested
only in the count:
df %>%
tally()

# A tibble: 1 x 1
n

<int>
1 5804

Also, if you simply want to add a column of the n to the data, you can use the
add_tally:
df %>%
add_tally() %>%
select(pptid, bmi, n) %>%
head()

# A tibble: 6 x 3
pptid bmi n
<dbl> <dbl> <int>

1 1 21.8 5804
2 2 33.0 5804
3 3 24.1 5804
4 4 20.2 5804
5 5 23.3 5804
6 6 27.2 5804

The utility of this functionality will be clearer when we compute these values
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after grouping the data.

17.3 Grouping data

In many instances above, such as with mutate and summarize, we would like
to perform operations separately for different groups. The group_by function
in dplyr allows us to create a grouped data.frame/tibble. Let us group the
data by gender:
class(df)

[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"
df = df %>%
group_by(gender)

class(df)

[1] "grouped_df" "tbl_df" "tbl" "data.frame"

We see that df now has an additional class of grouped_df added to it after
grouping. Let us print out the dataset:
head(df)

# A tibble: 6 x 5
# Groups: gender [2]
pptid age bmi gender low_bmi
<dbl> <dbl> <dbl> <dbl> <lgl>

1 1 55 21.8 1 FALSE
2 2 78 33.0 1 FALSE
3 3 77 24.1 0 FALSE
4 4 48 20.2 1 FALSE
5 5 66 23.3 0 FALSE
6 6 63 27.2 1 FALSE

The printout now contains at the top an indicator of grouping: # Groups:
gender [2]. We can see the groups of a dataset by the groups function:
groups(df)

[[1]]
gender

17.3.1 Ungrouping data

We can remove all the groups of a dataset using the ungroup function:
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head(ungroup(df))

# A tibble: 6 x 5
pptid age bmi gender low_bmi
<dbl> <dbl> <dbl> <dbl> <lgl>

1 1 55 21.8 1 FALSE
2 2 78 33.0 1 FALSE
3 3 77 24.1 0 FALSE
4 4 48 20.2 1 FALSE
5 5 66 23.3 0 FALSE
6 6 63 27.2 1 FALSE

Note that there are no groups printed. Also, as we did not re-assign df, only the
result was printed; the df object is still grouped. Grouping is a very important
procedure because it will dictate the behavior of certain functions. Groups do
not need to be only one variable. For example, you may do group_by(x1, x2),
and so on. In many cases, you may perform an operation/summarization on a
set of grouping variables, ungroup the data, and then compute other metrics on
a different set of grouping variables.

17.3.2 Summarizing grouped data

Now that df is grouped, let us calculate the mean BMI and age as before:
df %>%
summarize(mean_bmi = mean(bmi, na.rm = TRUE),

mean_age = mean(age, na.rm = TRUE)
)

# A tibble: 2 x 3
gender mean_bmi mean_age
<dbl> <dbl> <dbl>

1 0 28.0 63.2
2 1 28.3 63.1

Note that this output has summarization for each separate group.

17.4 Merging datasets

You may have multiple datasets/tables from a study. For example, you may
have baseline demographic data and baseline clinical data. In order to create a
dataset where we look at the demographic and clinical data together, we need
to merge or join the data together. To do this, we need variables that match
up in both datasets, called “key” variables. Many times these key variables are
a patient identifier and are simply one variable.
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We will be using the dplyr package to join datasets as well. To see different
types of joining for dplyr, run ?join. The type of joins we will discuss here
are:

• inner_join(x, y) - only rows that match for x and y are kept
• full_join(x, y) - all rows of x and y are kept
• left_join(x, y) - all rows of x are kept even if not merged with y
• right_join(x, y) - all rows of y are kept even if not merged with x

You can think of the left_join and right_join functions as the same functions
with the x and y datasets switched. They can give the data back using different
ordering for the rows and columns, but the overall data would be the same result.
To be clear, if you used left_joint(x, y) and right_join(y, x), the same
inherent output would be given, but not necessarily if you did left_join(y,
x).

There are great cheatsheets for merging data: the Data Wrangling Cheatsheet
and a more up-to-date Data Transformation Cheatsheet from RStudio and col-
laborators.

We are going to use some toy data in this section to illustrate the different type
of joins. Here we have baseline data on three people, with identifiers 1 to 3 and
their ages at baseline. Suppose that no outcome data were collected of any of
these individuals at the baseline visit.
base = data_frame(
id = 1:3,
age = seq(55,60, length=3))

base

# A tibble: 3 x 2
id age

<int> <dbl>
1 1 55
2 2 57.5
3 3 60

Suppose that we have additional data on a subset of these people at two visits.
Let us say ID 3 did not show up to any of these visits. Also, another person
(ID 4) missed the baseline visit, but showed up at visit 1.
visits = data_frame(
id = c(rep(1:2, 2), 4),
visit = c(rep(1:2, 2), 1),
outcome = rnorm(5))

visits

# A tibble: 5 x 3
id visit outcome

<dbl> <dbl> <dbl>

https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf
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1 1 1 -2.10
2 2 2 0.820
3 1 1 0.107
4 2 2 0.838
5 4 1 -0.866

The baseline data are thus stored in 3 × 2 dimensional tibble called base and
the visit (longitudinal) data are stored in a 5 × 3 dimensional tibble called
visit.

17.4.1 Inner join

We start with an inner join (keep only people with baseline and follow-up visits).
Without specifying the variable to join upon, the join functions will look at the
column names of the x dataset and the column names of the y dataset and join
on all the columns that have the same name.
ij = inner_join(base, visits)

Joining, by = "id"

As you can see, dplyr prints out a message saying Joining, by = "id".
ij

# A tibble: 4 x 4
id age visit outcome

<dbl> <dbl> <dbl> <dbl>
1 1 55 1 -2.10
2 1 55 1 0.107
3 2 57.5 2 0.820
4 2 57.5 2 0.838

The output has only the records with baseline data and follow-up data. The
IDs missing from either of those datasets are removed in the inner_join.
unique(ij$id)

[1] 1 2
nrow(ij)

[1] 4

Note, the joining functions are case sensitive like all other aspects of tibbles
in R (e.g., column ID and id are different). Let us rename the identifier column
to ID in the baseline data but not in the follow-up data:
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base %>%
rename(ID = id) %>%
inner_join( visits)

`by` required, because the data sources have no common variables

We see that dplyr did not find any variables in common (exact same name) and
gave an error. In many cases, we want to be explicit about which variables we
are merging on. Let’s specify by = "id":
inner_join(base, visits, by = "id")

# A tibble: 4 x 4
id age visit outcome

<dbl> <dbl> <dbl> <dbl>
1 1 55 1 -2.10
2 1 55 1 0.107
3 2 57.5 2 0.820
4 2 57.5 2 0.838

We get the same result as ij above, but we do not get any message, as we
explicitly passed in which variables to join upon.

17.4.2 Left join

Suppose that we want to keep any record if it has baseline data, regardless of
whether or not it has follow-up data. We will use a left_join here and must
have base as the x dataset (otherwise it is a different operation):
lj = left_join(base, visits)

Joining, by = "id"
lj

# A tibble: 5 x 4
id age visit outcome

<dbl> <dbl> <dbl> <dbl>
1 1 55 1 -2.10
2 1 55 1 0.107
3 2 57.5 2 0.820
4 2 57.5 2 0.838
5 3 60 NA NA
nrow(lj)

[1] 5
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In this case the follow-up data in the joined dataset for those IDs that had no
follow-up data are set to missing.

17.4.3 Right join

Suppose that we want to keep any record if it has follow-up data, regardless of
whether or not it has baseline data. We will use a right_join here and must
have visits as the y dataset (otherwise it is a different operation):
rj = right_join(base, visits)

Joining, by = "id"
rj

# A tibble: 5 x 4
id age visit outcome

<dbl> <dbl> <dbl> <dbl>
1 1 55 1 -2.10
2 2 57.5 2 0.820
3 1 55 1 0.107
4 2 57.5 2 0.838
5 4 NA 1 -0.866
nrow(rj)

[1] 5

17.4.4 Right join: switching arguments

Here we show that reversing the arguments of x and y and conducting a
right_join provides the same results as a left_join up to a rearrangement.
rj2 = right_join(visits, base)

Joining, by = "id"
rj2

# A tibble: 5 x 4
id visit outcome age

<dbl> <dbl> <dbl> <dbl>
1 1 1 -2.10 55
2 1 1 0.107 55
3 2 2 0.820 57.5
4 2 2 0.838 57.5
5 3 NA NA 60
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nrow(rj2)

[1] 5

This gives the same output as the left_join from before, after rearrangement.
rj2 = arrange(rj2, id, visit) %>% select(id, visit, outcome, age)
lj = arrange(lj, id, visit) %>% select(id, visit, outcome, age)

We can test if the output is identical using the identical() command:
identical(rj2, lj) ## after some rearranging

[1] TRUE

Thus, you can use left_join or right_join and get the same output. Simply
choose the one that makes the most sense conceptually and gives the data
ordered the way you want (you can always rearrange though).

17.4.5 Full join

The full_join will give us all the data, regardless of whether an ID has baseline
or follow-up data:
fj = full_join(base, visits)

Joining, by = "id"
fj

# A tibble: 6 x 4
id age visit outcome

<dbl> <dbl> <dbl> <dbl>
1 1 55 1 -2.10
2 1 55 1 0.107
3 2 57.5 2 0.820
4 2 57.5 2 0.838
5 3 60 NA NA
6 4 NA 1 -0.866
nrow(fj)

[1] 6

Sometimes you msy want to merge on multiple variables at the same time, in
which case the syntax remains the same; you simply pass in multiple key variable
names.

We would like now to join datasets that have a different outcome measure. Let
us call this hr_visits because it contains heart rate measurements.
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hr_visits = data_frame(
id = rep(1:2, 2),
visit = rep(1:2, 2),
hr = rpois(4, lambda = 100))

hr_visits

# A tibble: 4 x 3
id visit hr

<int> <int> <int>
1 1 1 106
2 2 2 100
3 1 1 121
4 2 2 109

The person with ID 4 missed this portion of the visit, however, and has no heart
rate data. We can merge this with the follow-up outcomes:
out = full_join(visits, hr_visits)

Joining, by = c("id", "visit")
out

# A tibble: 9 x 4
id visit outcome hr

<dbl> <dbl> <dbl> <int>
1 1 1 -2.10 106
2 1 1 -2.10 121
3 2 2 0.820 100
4 2 2 0.820 109
5 1 1 0.107 106
6 1 1 0.107 121
7 2 2 0.838 100
8 2 2 0.838 109
9 4 1 -0.866 NA

We see that the data are lined up with the correct heart rate/outcome data for
each visit. We could have also specified this using:
full_join(visits, hr_visits, by = c("id", "visit"))

# A tibble: 9 x 4
id visit outcome hr

<dbl> <dbl> <dbl> <int>
1 1 1 -2.10 106
2 1 1 -2.10 121
3 2 2 0.820 100
4 2 2 0.820 109
5 1 1 0.107 106
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6 1 1 0.107 121
7 2 2 0.838 100
8 2 2 0.838 109
9 4 1 -0.866 NA

17.4.6 Non-joining columns with identical names

What if we messed up and forgot that these datasets should be merged with the
visit as well as the id:
full_join(visits, hr_visits, by = "id")

# A tibble: 9 x 5
id visit.x outcome visit.y hr

<dbl> <dbl> <dbl> <int> <int>
1 1 1 -2.10 1 106
2 1 1 -2.10 1 121
3 2 2 0.820 2 100
4 2 2 0.820 2 109
5 1 1 0.107 1 106
6 1 1 0.107 1 121
7 2 2 0.838 2 100
8 2 2 0.838 2 109
9 4 1 -0.866 NA NA

We see the data now have a visit.x and visit.y variable. In some cases, we
may want R to perform this. For example, let us say we had 2 raters provide
scores to the same individuals, that each rater had spreadsheets with the exact
same individual names, and that we wanted to merge the spreadsheets and have
rater 1 information in 1 column and rater 2 information in another column. Then
we can do:
full_join(rater1, rater2, by = "id", suffix = c("_1", "_2"))

Using this approach the columns that have identical names would have suffixes
on them.

17.5 Reshaping datasets

See http://www.cookbook-r.com/Manipulating_data/Converting_data_
between_wide_and_long_format/ for more tutorials on reshaping data if this
section is not extensive enough.

http://www.cookbook-r.com/Manipulating_data/Converting_data_between_wide_and_long_format/
http://www.cookbook-r.com/Manipulating_data/Converting_data_between_wide_and_long_format/


524 CHAPTER 17. R PROGRAMMING IN THE TIDYVERSE

17.5.1 Data formats: wide versus long

In a “wide” dataset, there are usually multiple columns per observation. For
example for multiple visits, we may have the dataset up as follow:

# A tibble: 2 x 4
id visit1 visit2 visit3

<int> <dbl> <dbl> <dbl>
1 1 10 4 3
2 2 5 6 NA

In the terminology of the tidyverse, this is not tidy data. In a “long” dataset,
there are multiple rows per observation; for example:

# A tibble: 5 x 3
id visit value

<dbl> <chr> <dbl>
1 1 visit_1 10
2 1 visit_2 4
3 1 visit_3 3
4 2 visit_1 5
5 2 visit_2 6

These are the common ways of thinking about wide or long data. More accu-
rately, however, you should think of data that are wide or long with respect
to certain variables.

17.5.2 Reshaping data in R using tidyr

The reshape command exists in base R. It is a confusing function. Do not use
it. The tidyr allows you to “tidy” your data (Wickham and Henry 2018). The
functions we will cover are:

• gather - make multiple columns into variables (wide to long)
• spread - make a variable into multiple columns (long to wide)
• separate - separate one string column into multiple columns
• unite - paste multiple columns into one string column

The gather function takes a set of columns and puts the column names into
the key variable and the column values into the value variable. Here, we take
the example with data in wide format and gather all columns that start with
"visit" using the starts_with helper function. When gathering columns you
can use the select_helpers as before:
gather(ex_wide, key = "visit", value = "outcome", starts_with("visit"))

# A tibble: 6 x 3
id visit outcome
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<int> <chr> <dbl>
1 1 visit1 10
2 2 visit1 5
3 1 visit2 4
4 2 visit2 6
5 1 visit3 3
6 2 visit3 NA

The spread function takes a set of rows, puts the column names from the key
variable and the values from the value variable to fill it in. Here, we take the
example long data and spread the visit column:
spread(ex_long, key = "visit", value = "value")

# A tibble: 2 x 4
id visit_1 visit_2 visit_3

<dbl> <dbl> <dbl> <dbl>
1 1 10 4 3
2 2 5 6 NA

Using separate, we can break up the visit column into a column that just
says “visit” (calling it tmp and we will remove it later) and another column of
the visit_number:
sep = ex_long %>%
separate(visit, into = c("tmp", "visit_num"), sep = "_")

sep

# A tibble: 5 x 4
id tmp visit_num value

<dbl> <chr> <chr> <dbl>
1 1 visit 1 10
2 1 visit 2 4
3 1 visit 3 3
4 2 visit 1 5
5 2 visit 2 6

We could then mutate the visit_num column into a numeric column using
as.numeric. Note that, by default, separate removes the column you sepa-
rated. If you want to keep that variable, set the argument remove = FALSE.
ex_long %>%
separate(visit, into = c("tmp", "visit_num"), sep = "_", remove = FALSE)

# A tibble: 5 x 5
id visit tmp visit_num value

<dbl> <chr> <chr> <chr> <dbl>
1 1 visit_1 visit 1 10
2 1 visit_2 visit 2 4
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3 1 visit_3 visit 3 3
4 2 visit_1 visit 1 5
5 2 visit_2 visit 2 6

If you do not remove the column containing the names of the column you are
separating, make sure to not create a column with the same name. For example,
we are splitting visit, not removing it, but creating a new column named visit
in the into argument, and will therefore override the original visit column:
ex_long %>%
separate(visit, into = c("tmp", "visit"), sep = "_", remove = FALSE)

# A tibble: 5 x 4
id value tmp visit

<dbl> <dbl> <chr> <chr>
1 1 10 visit 1
2 1 4 visit 2
3 1 3 visit 3
4 2 5 visit 1
5 2 6 visit 2

If we wish to perform the opposite operation, pasting columns into one column
with a separator, we can use the unite function:
sep %>%
unite(col = "new_visit_name", tmp, visit_num, sep = ".")

# A tibble: 5 x 3
id new_visit_name value

<dbl> <chr> <dbl>
1 1 visit.1 10
2 1 visit.2 4
3 1 visit.3 3
4 2 visit.1 5
5 2 visit.2 6

17.6 Recoding variables

The recode function from dplyr allows you to recode values of type character
or factor. The recode_factor dplyr function performs the same operation
but matches the order of the replacements when replacing factor levels. The
forcats package was specifically made for categorical variables/factors.

The levels function exists to extract levels from a factor. Do not use the
levels for assignment (e.g. levels(x) = c("level1", "level2")) as this can
completely reset your levels. To change the levels, either use the factor(x,
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levels = c("level1", "level2")) if reordering the whole factor or use the
relevel function to change the reference level.

17.7 Cleaning strings: the stringr package

One of the hardest things in data cleaning is cleaning text fields. These are usu-
ally free text fields where users can input completely unstructured information.
We will use the dslabs reported_heights dataset, where the description of
the data is:

Students were asked to report their height in inches and sex in an
online form. This table includes the results from four courses.

Let us just copy the data over so that we are sure that we do not change anything
in the original data:
library(dslabs)
bad_strings = reported_heights

Similarly, we will make a duplicate height column to compare to if anything
goes wrong during string manipulation:
bad_strings = bad_strings %>%
mutate(original_height = height)

We see that the height column is a character vector:
class(bad_strings[, "height"])

[1] "character"

If we were very hopeful and made the height a numeric variable straight away,
we would not have known whether some of the values are missing values or
are below a certain biological threshold, say 48. Moreover, we would not know
whether 48 refers to inches or centimeters.
bad_strings = bad_strings %>%
mutate(num_height = as.numeric(height))

Warning: NAs introduced by coercion
bad_strings %>%
filter(is.na(num_height) | num_height < 48) %>%
select(height) %>%
head(10)

height
1 6
2 5' 4"
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3 5.3
4 165cm
5 6
6 2
7 5'7
8 >9000
9 5'7"
10 5'3"

We will try to fix some of these heights using informed guesses and the stringr
package. The stringr package:

• Makes string manipulation more intuitive
• Has a standard format for most functions

– the first argument is a string like first argument is a data.frame in
dplyr

• Almost all functions start with str_

Here are some of the functions we will use from stringr:

• str_detect - returns TRUE if pattern is found
• str_subset - returns only the strings whose patterns were detected

– convenient wrapper around x[str_detect(x, pattern)]
• str_extract - returns only strings whose patterns were detected, but

ONLY the pattern, not the whole string
• str_replace - replaces pattern with replacement the first time
• str_replace_all - replaces pattern with replacement as many times

matched

Let us look at records that have quotes in them:
bad_strings %>%
filter(str_detect(height, "'") | str_detect(height, '"')) %>%
head(10)

time_stamp sex height original_height num_height
1 2014-09-02 15:16:28 Male 5' 4" 5' 4" NA
2 2014-09-02 15:16:52 Male 5'7 5'7 NA
3 2014-09-02 15:16:56 Male 5'7" 5'7" NA
4 2014-09-02 15:17:09 Female 5'3" 5'3" NA
5 2014-09-02 15:19:48 Male 5'11 5'11 NA
6 2014-09-04 00:46:45 Male 5'9'' 5'9'' NA
7 2014-09-04 10:29:44 Male 5'10'' 5'10'' NA
8 2014-09-11 01:02:37 Male 6' 6' NA
9 2014-09-18 21:40:23 Male 5' 10 5' 10 NA
10 2014-10-19 13:08:30 Male 5'5" 5'5" NA

We will use some regular expressions to match specific things in the data. The
first str_detect will look for any spaces in the height column and the second

https://en.wikipedia.org/wiki/Regular_expression
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search looks for any alphabetical characters:
# find a space
bad_strings %>%
filter(str_detect(height, "\\s")) %>%
head(10)

time_stamp sex height
1 2014-09-02 15:16:28 Male 5' 4"
2 2014-09-02 15:18:00 Male 5 feet and 8.11 inches
3 2014-09-18 21:40:23 Male 5' 10
4 2014-10-08 19:19:33 Female Five foot eight inches
5 2015-04-21 16:40:25 Female 5' 7.78"
6 2015-05-27 08:03:32 Male 5 feet 7inches
7 2015-08-28 12:27:14 Male 5 .11
8 2015-11-28 16:16:36 Male 5 11
9 2016-01-26 09:55:07 Male 5' 11"
10 2016-01-26 11:55:08 Male 5' 7"

original_height num_height
1 5' 4" NA
2 5 feet and 8.11 inches NA
3 5' 10 NA
4 Five foot eight inches NA
5 5' 7.78" NA
6 5 feet 7inches NA
7 5 .11 NA
8 5 11 NA
9 5' 11" NA
10 5' 7" NA
bad_strings %>%
filter(str_detect(height, "[:alpha:]")) %>%
head(10)

time_stamp sex height original_height
1 2014-09-02 15:16:37 Female 165cm 165cm
2 2014-09-02 15:18:00 Male 5 feet and 8.11 inches 5 feet and 8.11 inches
3 2014-10-08 19:19:33 Female Five foot eight inches Five foot eight inches
4 2015-05-12 19:23:51 Female yyy yyy
5 2015-05-27 08:03:32 Male 5 feet 7inches 5 feet 7inches
6 2016-01-26 15:19:32 Male 5ft 9 inches 5ft 9 inches
7 2016-01-26 15:19:51 Male 5 ft 9 inches 5 ft 9 inches
8 2016-03-18 00:45:39 Male 5 feet 6 inches 5 feet 6 inches
9 2017-06-19 04:20:32 Male 170 cm 170 cm

num_height
1 NA
2 NA
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3 NA
4 NA
5 NA
6 NA
7 NA
8 NA
9 NA

17.7.1 Escape characters

The backslash \ is referred to as an escape character in regular expressions. You
can use that when looking for “special” strings that mean something in regular
expressions. R, however, has special strings that mean something, like \n for a
new line. Therefore, if you want to use it as an escape character, you have to
do a “double escape” \\. For example, if you want to find a dollar sign $ in a
string, you have to escape it first so that R knows you do not mean the regular
expression meaning for $, which is the end of a string:
str_detect(c("$4.29", "5.99"), "$")

[1] TRUE TRUE
str_detect(c("$4.29", "5.99"), "\\$")

[1] TRUE FALSE

The stringr package also has a set of modifiers, which allow you to tell it if
you are looking for a fixed string (do not use regular expressions) or regrex
(use regular expressions). See ?modifiers for other modifiers. For example, we
can use the fixed command to say we want to match exactly the dollar sign:
str_detect(c("$4.29", "5.99"), fixed("$"))

[1] TRUE FALSE

Back to cleaning the height variable. We now will make the height variable
lower case (using tolower()) and remove any white space from the beginning
and end of the string (using trimws() in base or str_trim in stringr):
bad_strings = bad_strings %>%
mutate(height = tolower(height),

height = trimws(height))

For the remainder of the section, we will use the match_replace_string func-
tion below:
match_replace_string = function(pattern, replacement = "", n = 3) {
d = bad_strings %>%
filter(str_detect(height, pattern)) %>%
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select(height, original_height)
if (nrow(d) > 0) {
d = d %>%
mutate(replaced_height = str_replace(height, pattern, replacement))

print(head(d, n = n))
}

}

The purpose of this function is to print out the rows of the data that match
a specific pattern, then show the output when that pattern is replaced. For
example, if we are removing double spaces, we can run:
match_replace_string("\\s\\s+", " ")

where \\s means a space, and then \\s+ means any number of additional spaces
(can be zero spaces). These multiple spaces will be changed to only one space.
This code has done nothing to the bad_strings object. The code we will execute
will reassign the output to bad_strings, as described below:
bad_strings = bad_strings %>%
mutate(height = str_replace_all(height, "\\s\\s+", " "),

height = trimws(height) )

Notice, nothing is printed out here, but the changes have been made as in
standard mutate calls. We will use this match_replace_string to simplify
our code and demonstrate the changes being made to the bad_strings dataset.
We used str_replace_all because we wanted to replace all instances of the
double spacing as opposed to the first instance (which str_replace does). The
difference can be demonstrated using a simple example:
x = " I have many double spaces "
str_replace(x, "\\s\\s+", " ")

[1] " I have many double spaces "

Note that the first double space in between have and many has been removed.
Let us replace all the multiple spaces:
str_replace_all(x, "\\s\\s+", " ")

[1] " I have many double spaces "
x %>% str_replace_all("\\s\\s+", " ") %>% trimws

[1] "I have many double spaces"

We trimmed the whitespace again from the result using trimws. We now
will loop over the numbers from 1 to 12 (as there are 12 inches in 1 foot)
to replace these values with their numeric version. Also, note we must use
as.character(word) in the loop, as str_replace requires the replacement to
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be a character, not a number:
num_words <- c("one" = 1, "two" = 2, "three" = 3, "four" = 4,

"five" = 5, "six" = 6, "seven" = 7, "eight" = 8, "nine" = 9,
"ten" = 10, "eleven" = 11, "twelve" = 12)

for (iword in seq_along(num_words)) {
word = num_words[iword]
match_replace_string(names(word), as.character(word))
bad_strings = bad_strings %>%
mutate(height = str_replace(height, names(word), as.character(word))
)

}

height original_height replaced_height
1 five foot eight inches Five foot eight inches 5 foot eight inches

height original_height replaced_height
1 5 foot eight inches Five foot eight inches 5 foot 8 inches

We will remove inches from the text and replace any demarcation of feet with
an apostrophe/single quote to standardize:
match_replace_string("inches", "")

height original_height replaced_height
1 5 feet and 8.11 inches 5 feet and 8.11 inches 5 feet and 8.11
2 5 foot 8 inches Five foot eight inches 5 foot 8
3 5 feet 7inches 5 feet 7inches 5 feet 7
match_replace_string("and", "")

height original_height replaced_height
1 5 feet and 8.11 inches 5 feet and 8.11 inches 5 feet 8.11 inches
match_replace_string("ft|foot|feet", "'")

height original_height replaced_height
1 5 feet and 8.11 inches 5 feet and 8.11 inches 5 ' and 8.11 inches
2 5 foot 8 inches Five foot eight inches 5 ' 8 inches
3 5 feet 7inches 5 feet 7inches 5 ' 7inches
bad_strings = bad_strings %>%
mutate(height = str_replace(height, "inches", ""),

height = str_replace(height, "and", ""),
height = str_replace(height, "ft|foot|feet", "'"),
height = trimws(height) )

We will remove the spaces from before or after an apostrophe, denoting the
number of feet:
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match_replace_string("' ", "'")

height original_height replaced_height
1 5' 4" 5' 4" 5'4"
2 5 ' 8.11 5 feet and 8.11 inches 5 ' 8.11
3 5' 10 5' 10 5'10
match_replace_string(" '", "'")

height original_height replaced_height
1 5 ' 8.11 5 feet and 8.11 inches 5' 8.11
2 5 ' 8 Five foot eight inches 5' 8
3 5 ' 7 5 feet 7inches 5' 7

Here we replace these spaces with nothing so that we further standardize the
formats:
bad_strings = bad_strings %>%
mutate(
height = str_replace_all(height, " ' ", "'"),
height = str_replace_all(height, "' | '", "'"),
height = trimws(height) )

We also have some records with the double quote (") denoting inches; we will re-
move these. Also, we have some records that use two single quotes/apostrophes
('') to denote inches. We will remove these, making sure they are at the end
of the string using the $ regular expression operator. Note that we can use
the escape operator \ to be able to use a double quote pattern inside a double
quoted string:
match_replace_string('"', "")

height original_height replaced_height
1 5'4" 5' 4" 5'4
2 5'7" 5'7" 5'7
3 5'3" 5'3" 5'3
match_replace_string("''$", "")

height original_height replaced_height
1 5'9'' 5'9'' 5'9
2 5'10'' 5'10'' 5'10
3 5'10'' 5'10'' 5'10
bad_strings = bad_strings %>%
mutate(height = str_replace(height, "(\")|(''$)", ""),

height = trimws(height)
)

We have not made any changes to the num_height variable or made the data
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ready to be turned into a numeric just yet. Let’s try to create a column in-
dicating the units of the data. We will assume that these are all adults, and
will assume that no one is above 7 feet tall (84 inches) and that values over
84 are expressed in centimeters (but must be less than 214 cm ≈ 7 ft). We
will also assume that anyone who has a value for height less than 10 had given
his/her height in feet only. We will create units based on the above rules using
case_when, which takes in logical arguments, then maps them to the replace-
ment when the logical condition is TRUE:
bad_strings = bad_strings %>%
mutate(num_height = as.numeric(height))

Warning: NAs introduced by coercion
bad_strings = bad_strings %>%
mutate(unit = case_when(
str_detect(height, "cm") ~ "cm",
str_detect(height, "'") ~ "feet",
num_height < 1.2 ~ "unknown",
num_height >= 1.2 & num_height <= 3 ~ "check",
num_height > 3 & num_height <= 10 ~ "feet",
num_height > 10 & num_height < 48 ~ "check",
num_height >= 48 & num_height < 84 ~ "in",
num_height > 84 & num_height <= 121.92 ~ "check",
num_height > 121.92 & num_height < 214 ~ "cm",
num_height >= 214 ~ "unknown"
)

)
table(bad_strings$unit, useNA = "ifany")

check cm feet in unknown <NA>
20 94 150 804 12 15

There may be some individuals who recorded a number either under 1.2 for
meters, or under 48 inches, or between 84 and 121.92 centimeters that we can
check later. Likely, we will not be able to infer their height and will need to
drop the data. Let us remove the cm string from the data and them remove
whitespace:
match_replace_string("cm", "")

height original_height replaced_height
1 165cm 165cm 165
2 170 cm 170 cm 170
bad_strings = bad_strings %>%
mutate(height = str_replace(height, "cm", ""),

height = trimws(height)
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)

There are some records that still have spaces in the height data. Here we will
show you the function stopifnot, which takes in a logical statement and will
error if that statement is FALSE. When we checked these data, we saw the cases
that had spaces. If new data come in or the data change in any way that results
in a different number of records with spaces, this will prompt an error message
to alert the analyst that something has changed and to re-check the data.
match_replace_string(" ", "", n = 10)

height original_height replaced_height
1 5 .11 5 .11 5.11
2 5 11 5 11 511
3 6 04 6 04 604
have_space = str_detect(bad_strings$height, " ")
stopifnot(sum(have_space) == 3)

We are assuming that these cases are all in feet, and we can add in the quote
accordingly and update the unit. We will use the if_else function that takes
in a logical statement, and then returns the next argument if that statement is
true or the next argument if that statement is false. Here we will change the
height variable to add in the ' and then change the unit:
bad_strings = bad_strings %>%
mutate(
height = if_else(
str_detect(height, " "),
str_replace(height, " ", "'"),
height),

unit = if_else(is.na(unit) & str_detect(height, "'"), "feet", unit))
table(bad_strings$unit, useNA = "ifany")

check cm feet in unknown <NA>
20 94 153 804 12 12

What about commas? These are some of the oddest of the bunch with respect
to format:
match_replace_string(",", "'", n = 10)

height original_height replaced_height
1 5,3 5,3 5'3
2 6,8 6,8 6'8
3 5,4 5,4 5'4
4 5,8 5,8 5'8
5 1,70 1,70 1'70
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6 708,661 708,661 708'661
7 649,606 649,606 649'606
8 728,346 728,346 728'346
9 7,283,465 7,283,465 7'283,465

The only types that seem to make sense are those that are the cases such as 5,3
which indicate 5 feet, 3 inches, but again this is an assumption. Let us subset
the data with commas and split them based on the comma:
comma_data = bad_strings %>%
filter(str_detect(height, ",") & is.na(unit)) %>%
select(height) %>%
unlist

comma_data = strsplit(comma_data, ",")

Now we have them separated. If there is more than one comma, we cannot infer
what the units are or what the height is. If the first value is between 3 and 10
feet, then we will make the output the “feet” format (e.g. 5,3 becomes 5'3):
comma_data = map_chr(comma_data, function(x) {

x = as.numeric(x)
if (length(x) > 2) {
x = NA

}
if (!is.na(x[1]) & between(x[1], 3, 10)) {
x = paste0(x, collapse = "'")

} else {
x = NA

}
x

})

Now we replace these comma data with the replaced values (even the NA) and
change the units for those we have changed to “feet”:
bad_strings = bad_strings %>%
mutate(comma = str_detect(height, ",") & is.na(unit),

height = ifelse(comma, comma_data, height),
unit = ifelse(comma & !is.na(height), "feet", unit),
unit = ifelse(comma & is.na(height), "unknown", unit)
)

We can now check some of our progress with those missing or unknown units:
bad_strings %>%
filter(is.na(unit) | unit %in% c("check", "unknown")) %>%
head(10)

time_stamp sex height original_height num_height unit
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1 2014-09-02 15:16:41 Male 511 511 511.0 unknown
2 2014-09-02 15:16:50 Female 2 2 2.0 check
3 2014-09-02 15:16:56 Male >9000 >9000 NA <NA>
4 2014-09-03 23:55:37 Male 11111 11111 11111.0 unknown
5 2014-09-04 14:23:19 Male 103.2 103.2 103.2 check
6 2014-09-06 21:32:15 Male 19 19 19.0 check
7 2014-09-07 20:53:43 Male 300 300 300.0 unknown
8 2014-09-09 20:00:38 Male <NA> 5,3 NA unknown
9 2014-09-15 14:38:58 Male <NA> 6,8 NA unknown
10 2014-11-09 15:43:21 Female <NA> 5,4 NA unknown

comma
1 FALSE
2 FALSE
3 FALSE
4 FALSE
5 FALSE
6 FALSE
7 FALSE
8 TRUE
9 TRUE
10 TRUE

We also define a function that converts the feet to inches. This is done by
multiplying the number of feet by 12 and adding the corresponding number of
inches. We are going to take in a vector of heights in x, then split it on the
single quote for the feet/inches delimiter. We will take this list and map it to
a double/numeric using map_dbl. We define a function taking in one of these
split strings, calling it r. If there is no ', then r will have only one element, and
r[2] (the second element) will return NA, so no inches were specified.
feet_to_inches = function(x) {
ss = str_split(x, pattern = "'")
num = map_dbl(ss, function(r) {
if (is.na(r[2])) {
r[2] = 0

}
if (r[2] == "") {

r[2] = 0
}
r = as.numeric(r)
r[1] = r[1] * 12
r = sum(r)
})

num
}
cm_to_inches = function(x) {
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x = as.numeric(x)
x / 2.54

}

we now convert feet to inches using our function from above:
bad_strings = bad_strings %>%
mutate(
feet = unit == "feet",
height = ifelse(feet,

feet_to_inches(height),
height),

unit = ifelse(feet, "in", unit)
) %>%

select(-feet)

Warning in .f(.x[[i]], ...): NAs introduced by coercion

Warning in .f(.x[[i]], ...): NAs introduced by coercion

Warning in .f(.x[[i]], ...): NAs introduced by coercion

We will do the same for centimeters to inches:
bad_strings = bad_strings %>%
mutate(
cm = unit == "cm",
height = ifelse(cm,

cm_to_inches(height),
height),

unit = ifelse(cm, "in", unit)
) %>%

select(-cm)

Figure 17.1 provides the histogram of these numeric heights for quality control
purposes:
bad_strings %>%
ggplot(aes(x = num_height)) +
geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Clearly, there is something wrong with the distribution, most likely because we
include cases that had a numeric value, but unknown unit. Let us plot the
histogram of numeric heights to see the distribution in inches only:
bad_strings %>%
filter(unit %in% "in") %>%
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Figure 17.1: Histogram of numeric heights for quality control purposes.

ggplot(aes(x = num_height)) +
geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

We can check our progress overall for the data:
bad_strings = bad_strings %>%
mutate(num_height = as.numeric(height))

bad_strings %>%
filter(is.na(num_height) | unit == "check") %>%
select(height, original_height, num_height, unit) %>% head(10)

height original_height num_height unit
1 2 2 2.0 check
2 <NA> >9000 NA <NA>
3 103.2 103.2 103.2 check
4 19 19 19.0 check
5 <NA> 5,3 NA unknown
6 <NA> 6,8 NA unknown
7 <NA> 5,4 NA unknown
8 <NA> 5,8 NA unknown
9 87 87 87.0 check
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Figure 17.2: Histogram of numeric heights in inches for quality control purposes.

10 111 111 111.0 check

We can now see the NA values in the height variable corresponding to the bad
comma data in the original_height variable. Let us look at the data that
that did not have commas:
bad_strings %>%
filter(is.na(num_height) | unit == "check") %>%
filter(!is.na(height)) %>%
select(height, original_height) %>%
head(10)

height original_height
1 2 2
2 103.2 103.2
3 19 19
4 87 87
5 111 111
6 12 12
7 89 89
8 34 34
9 25 25
10 22 22
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For most of these data we cannot infer the numeric height and we will have to
keep them as missing. There may be some cases expressed in meters that we
are still missing, but let us look at how many such cases exist:
tab = table(bad_strings$unit, useNA = "ifany")
tab

check in unknown <NA>
20 1055 17 3

ptab = prop.table(tab)
round(ptab,digits=3)

check in unknown <NA>
0.018 0.963 0.016 0.003

We see that we are reasonably sure that 96% of the data are converted to inches.
But to be clear, our cutoffs for the numeric values are somewhat arbitrary. You
may get a different mean height given different assumptions of the cutoffs for
inches or centimeters. Without further information (or more assumptions of
the data), we cannot get to 100% “clean” data. This is common in cleaning
exercises and illustrates the importance of working with a team of people who
collect and manage the data to get additional information instead of excluding
data or making additional assumptions.

17.8 Problems

Problem 1. In the reported_heights dataset from dslabs:

a. Display the records with double spaces in height using filter.
b. Replace the double spaces with single spaces.
c. Remove the first single quotes with a semicolon.
d. Replace all the double quotes with nothing (empty string "").

Problem 2. With the following vector:
vec = c("x^4", "y^5", "J**2", "3.5", "4,200,234")

a. Replace a ^ with **. (Note ^ is a special character)
b. Replace all , with nothing (empty string "").
c. Replace any upper case to the lower case.
d. Extract all numbers from the string.

Problem 3. In the admissions dataset from dslabs:

a. Create a pct_adm variable by dividing the admitted by number of
applicants.
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b. Spread the pct_adm variable where the result has a column for men and
one for women. You may have to select only certain variables.

c. Gather the admitted, applicants, and pct_adm variables into one column
called value with the numbers in there and a column called variable for
the variable name.

Problem 4. In the admissions dataset from dslabs:

a. Filter the data on the gender == "men" and call that dataset men. Do
the same for women. Keep the major and admitted columns.

b. Perform an inner_join on the men and women datasets. Do not specify
on what to join on.

c. Perform an inner_join on the men and women datasets, by major. Call
this joined.

d. Perform an inner_join on the men and women datasets, by major. Re-
place joined with this and create suffixes of c("_men", "_women"), re-
spectively.

Problem 5. Use the us_contagious_diseases dataset from dslabs:

a. Create a data.frame named means, where you summarize each state and
disease by the counts per 100000 of the population (you need to create
variables). Summarize over all years using the mean and median incidence
per 100000 people and count the number of non-missing years.

b. Plot a scatterplot of the mean incidence Measles versus Mumps. You may
need to reshape means before plotting.

c. Plot a histogram of the mean incidence for each disease, colored by the
disease.

Problem 6. In the admissions dataset from dslabs:

a. Subset the columns of gender and admitted using select.
b. Rename the gender column to sex using rename.
c. Make the column log_app which is the log(applicants) using mutate.



Chapter 18

Power

This chapter covers the following topics

• Introduction
• Power calculation for Normal tests
• Power for the t test
• Discussion

18.1 Introduction

In chapter 16 we introduced hypothesis tests and the concept of power. Power
is the probability of rejecting the null hypothesis when it is actually false. Thus,
as its name would suggest, power is a good thing; we want studies with more
power. In fact, we saw in chapter 16 that the (Bayesian) probability that a
rejection of the null hypothesis is correct involved power:

P (Ha | Significance) = Power × P (Ha)
Power × P (Ha) + α × P (H0)

.

Interestingly, if we convert this statement to odds we obtain the following:

Odds(Ha | Significance) = Power
α

× Odds(Ha) ,

That is, the posterior odds of Ha, given that you reject, is the prior odds of
Ha multiplied by the ratio of power to the Type I error rate. For a power of
0.05, it is an even bet (odds of 1) that a significant hypothesis test is actually
significant. A rule of thumb to remember is that your odds that a significant
test is actually significant is 20 times the power times that of the prior odds.
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How can we control power? Power can be related to variability, the value of the
parameter under the alternative, the study design, the sample size, the style of
analysis, the Type I error rate, and other factors. Design considerations and
sample size are the two components that are most under our control. In fact
nearly all National Institutes of Health (NIH) funded studies require a power or
sample size calculation to receive funding.

We will describe the basics of both here. Broadly, in a power calculation, one
fixes the sample size and other aspects of the study and calculates an estimate
of the power. In a sample size calculation, one fixes the power, then determines
the minimum sample size to achieve that power. We will do some examples of
both, but we will also dedicate a complete chapter to sample size calculations.

18.1.1 Simple example

Consider testing in the binomial example from chapter 16. We found that for
testing H0 : p = 0.5 versus Ha : p > 0.5 that rejecting if we got 8 or more heads
on 10 coin flips yielded a Type I error rate of just over 5%. What is the power
of this test? To do this, we need to evaluate power for a value of p under the
alternative. This is probably best done with a plot. Figure 16.1 displays the
probability of getting 8 or more heads on 10 coin flips for various values of p.
p = seq(0.5, .99, by = 0.01)
## recall that we have to subtract 1 to get 8 or more for the upper tail
## probabilities
power = pbinom(7, size = 10, prob = p, lower.tail = FALSE)
plot(p, power, type = "l", frame = FALSE, lwd = 2,

cex.axis=1.3,col.axis="blue",cex.lab=1.3,
xlab = "True success probability", ylab = "Power")

Thus, if we wanted to get 80% power, say, we would need min(p[power >= .8])
which is 0.85. However, the true value of p is not under our control. So now,
let us look at how the power changes as a function of the sample size. First,
we need to find the rejection region for several values of n. Let us calculate
the smallest number of heads for which you reject for several possible coin flips
where we are strict about the 5% error rate (adding the +1 to the quantile).
nVals = seq(5, 100, by = 1)
rejectionRegion = qbinom(.95, size = nVals, prob = 0.5) + 1
plot(nVals, rejectionRegion, type = "l", frame = FALSE, lwd = 2,

cex.axis=1.3,col.axis="blue",cex.lab=1.3,
xlab = "Number of trials (n)",
ylab = "Smallest number to reject")

Now let us calculate the power over both the value of n and the value of p under
Ha.
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Figure 18.1: Power of rejecting the null hypothesis H0 : p = 0.5 as a function of
the true success probability, p, when observing 8 or more heads on 10 coin flips.
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Figure 18.2: Smallest number of successes for which one rejects the null hypoth-
esis H0 : p = 0.5 as a function of the number of trials, n.
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pSeq = seq(0.5, .8, by = 0.01)
power = sapply(pSeq, function(p)
pbinom(rejectionRegion-1, size = nVals, prob = p, lower.tail = FALSE)

)
library(plotly)

plot1 = plot_ly(x = pSeq, y = nVals, z = power) %>% add_surface() %>%
layout(title = "Power as a function of N and P",

scene = list(
xaxis = list(title = "p"),
yaxis = list(title = "n"),
zaxis = list(title = "Power")
)

)

plot1

0.2
0.4
0.6
0.8
1

Power	as	a	function	of	N	and	P

WebGL	is	not
supported	by
your	browser	-
visit
https://get.webgl.org
for	more	info

plot2 = plot_ly(x = pSeq, y = nVals, z = round(power, 3)) %>% add_heatmap()

plot2
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Both Figures @ref(fig:plotly_graphs) and @ref(fig:plotly_graphs_print) are in-
teractive (in HTML), so you can play around with them to find the value of n
for a given value of p that produces a specified power. So, for example, for a
p = 0.7 under Ha we need a sample size of around 42 to achieve 80% power.
Note that this problem is slightly unusual because of the discreteness of the bi-
nomial. For certain sample sizes, we can get closer to the 5% error rate and this
results in a sawtooth looking function for power that is non monotonic. Thus,
we can get higher power for smaller sample sizes. In this case at an n = 42
the power function is permanently above 0.8. Figure 18.3 displays the power to
reject the null hypothesis (y-axis) as a function of the number of trials (x-axis),
n, when the true success probability is p = 0.7.
plot(nVals, pbinom(rejectionRegion-1, size = nVals,

prob = 0.7, lower.tail = FALSE),
type = "l", frame = FALSE, lwd = 2,
cex.axis=1.3,col.axis="blue",cex.lab=1.3,
xlab = "Sample size (n)",
ylab = "Power")

abline(h = .8)
abline(v = 42)

Let us now cover power for continuous variables with Normal distributions.

18.2 Power calculation for Normal tests

Consider our previous example from Chapter 16 involving RDI. We were testing
H0 : µ = 30 versus Ha : µ > 30 where µ was the population mean respiratory
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Figure 18.3: Power to reject the null hypothesis as a function of the number of
trials, n, when the true success probability is p = 0.7.

disturbance index. Our test statistic was

Z = X̄ − 30
σ/

√
n

and we reject if Z ≥ Z1−α. Assume that n is large and that Z is well ap-
proximated by a Normal distribution and σ is known. Let µa be a value of µ
under Ha that we are assuming to be the true value for the calculations. Then
consider:

Power = P

(
X̄ − 30
σ/

√
n

> z1−α | µ = µa

)
= P

(
X̄ − µa + µa − 30

σ/
√

n
> z1−α | µ = µa

)
= P

(
X̄ − µa

σ/
√

n
> z1−α − µa − 30

σ/
√

n
| µ = µa

)
= P

(
Z > z1−α − µa − 30

σ/
√

n
| µ = µa

)
.

Thus, we can relate our power to a standard Normal again. Suppose that we
wanted to detect an increase in mean RDI of at least 2 events / hour (above
30). Assume normality and that the sample in question will have a standard
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deviation of 4. What would the power be if we took a sample size of 16? We have
that Zα = 1.645 and µa−30

σ/
√

n
= 2/(4/

√
16) = 2 and therefore P (Z > 1.645 − 2) =

P (Z > −0.355) = 64%.

Of course, R will do the calculation directly for us. Specifically, our test statistic
has mean E[Z] =

√
n(µa − µ0)/σ and variance 1 (check yourself!) under Ha .

Thus, the probability that we reject is.
mu0 = 30; mua = 32; n = 16; sigma = 4
rprob<-pnorm(1.645,

mean = sqrt(n) * (mua - mu0) / sigma ,
sd = 1,
lower.tail = FALSE)

round(rprob,digits=3)

[1] 0.639

Consider now a sample size calculation. What value of n would yield 80% power?
That is, we want

0.80 = P

(
Z > z1−α − µa − 30

σ/
√

n
| µ = µa

)
.

Therefore, we want to set z1−α − µa−30
σ/

√
n

= z0.20 and solve for n yielding

n = σ2
(

z1−α − z.2

µa − µ0

)2

.

mu0 = 30; mua = 32; sigma = 4
ceiling(sigma^2 * (qnorm(.95) - qnorm(.2))^2 / (mua-mu0)^2)

[1] 25

We take the ceiling function as we want to round up. Thus, we need 25
subjects to get 80% power for these settings.

The general formula is for a one sided alternative of Ha : µ > µ0

n =

⌈
σ2
(

z1−α − zβ

µa − µ0

)2
⌉

where β is the Type II error rate (1 minus the power) and ⌈·⌉ is the ceiling
function. One can use the same formula for a test of Ha : µ < µ0, since the
denominator is squared and the numerator works out to be (zα − z1−β)2 =
(z1−α − zβ)2.

For a two sided alternative, consider that we reject for our RDI example if
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Power = P

(
X̄ − 30
σ/

√
n

> z1−α/2 or X̄ − 30
σ/

√
n

< zα/2 | µ = µa

)
= P

(
X̄ − 30
σ/

√
n

> z1−α/2 | µ = µa

)
+ P

(
X̄ − 30
σ/

√
n

< zα/2 | µ = µa

)
.

Typically, one of these two probabilities is very small for an assumed µa. If µa

is larger than 30, then the probability that we get a test statistic two standard
deviations below 30 is small. The largest the smaller of these two probabilities
can be is α/2 as µa approaches µ0 from one side or the other. Therefore, an
underestimate of power throws out the smaller of the two and just calculates
the one sided power using α/2 instead of α. This underestimates power by a
maximum of α/2, which is typically not a relevant amount. The same strategy
can be used for sample size calculations, since an underestimate of power gives
a conservatively large n.

So, considering our sleep example, we would calculate the two sided sample size
with:
mu0 = 30; mua = 32; sigma = 4
ceiling(sigma^2 * (qnorm(.975) - qnorm(.2))^2 / (mua-mu0)^2)

[1] 32

We will go into more detail in the next chapter, which is dedicated to sample
size calculations.

18.3 Power for the t test

For smaller sample sizes where we would naturally use a t-test, we want to
calculate the exact power. To do this, we would need to discuss the non-central t
distribution, which is perhaps unnecessarily deep in the weeds for our purposes.
Instead, let us demonstrate how the power can be calculated. For our RDI
example, our one sided power based on the t-test would be:



18.3. POWER FOR THE T TEST 551

Power = P

(
X̄ − 30
S/

√
n

> t1−α,n−1 | µ = µa

)
= P

(√
n(X̄ − 30) > t1−α,n−1S | µ = µa

)
= P

(√
n(X̄ − 30)

σ
> t1−α,n−1

S

σ
| µ = µa

)
= P

(√
n(X̄ − µa)

σ
+

√
n(µa − 30)

σ
>

t1−α,n−1√
n − 1

×
√

(n − 1)S2

σ2

)

= P

(
Z +

√
n(µa − 30)

σ
>

t1−α,n−1√
n − 1

√
χ2

n−1

)

where Z and χ2
n−1 are independent standard Normal and chi-squared (df n −

1) random variables. (You will have to trust us on the independence.) An
important point to emphasize is that this calculation only depends on n and
the quantity

(µa − µ0)/σ ,

which is referred to as the effect size. This is extremely beneficial since, as a
unit free quantity, it has some hope of being consistently interpretable across
experiments. One can thus feel more comfortable assuming an effect size over
assuming both µa and σ.

The actual probability calculation above requires the aforementioned non-
central t distribution. Instead let us use Monte Carlo for our RDI example.
nosim = 100000; n = 16; sigma = 4; mu0 = 30; mua <- 32
z = rnorm(nosim)
xsq = rchisq(nosim, df = n-1)
t = qt(.95, n-1)
mcprob<- mean(z + sqrt(n) * (mua - mu0) / sigma >

t / sqrt(n - 1) * sqrt(xsq))
round(mcprob,digits=3)

[1] 0.607

Of course, we do not do this in practice. Instead, we user power.t.test. As
mentioned before, we can just assume σ = 1 and specify the effect size.
power.t.test(n = 16, delta = (mua - mu0)/sigma,

type = "one.sample",
alt = "one.sided")

One-sample t test power calculation
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n = 16
delta = 0.5

sd = 1
sig.level = 0.05

power = 0.6040329
alternative = one.sided

Just to show you that you get the same result,
power.t.test(n = 16, delta = (mua - mu0),

sd = sigma,
type = "one.sample",
alt = "one.sided")

One-sample t test power calculation

n = 16
delta = 2

sd = 4
sig.level = 0.05

power = 0.6040329
alternative = one.sided

18.4 Discussion

Power is dependent on many factors. It is useful to use the Normal calculations
to build our intuition in this regard. For example, power goes up as our Type I
error goes up (it is easier to convict the guilty if we require less evidence). As the
variance goes up, the power goes up (the higher the quality of the evidence, the
more likely that we will convict the guilty). As the size of the effect gets larger,
µa − µ0, power goes up (we are more likely to convict those who are guilty).
Finally, power goes up as the sample size goes up. Control of the sample size
represents our primary method for ensuring that a study is well powered.

In addition, in a given setting one test statistic can be more powerful than
another. For example, a test statistic that randomly throws out some of our
data will be less powerful than one that uses all of the data. Of course, in many
settings, there is no obviously optimal test and hence theoretical and simulation
studies must be done to investigate different approaches.

Finally, it is worth mentioning that calculating power or sample size is depen-
dent on the model being accurate. In extreme cases, one might be testing for
a parameter that does not exist, such as the mean of a very heavy tailed dis-
tribution. In addition, even if the model is accurate, power calculations are
dependent on unknown quantities, like the effect size. If estimates are used, it
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is important to factor the error of estimating these quantities into the power
calculations.

18.5 Problems

Problem 1. Consider the case when we conduct an exact binomial two sided
test for proportions

H0 : p = 0.4 vs. HA : p ̸= 0.4 .

a. For a sequence of sample sizes n = 10, 11, . . . , 100 calculate the rejection
region for the test; consider only tests that have less than 0.05 α levels
and pick the one closest to 0.05.

b. For every rejection region calculate and display the α-level of the test.
c. For each n calculate the power function P (n, pa), where pa ∈

0.01, 0.02, . . . , 0.99.

Problem 2. For the previous problem construct an interactive graph of the
power function as a function of the two variables P (n, pa). Interpret the graph.

Problem 3. Consider the same set up as in the first problem, but consider the
asymptotic test instead of the exact binomial test.

a. Construct the rejection region for the test and explain why, in theory, all
tests are α = 0.05-level.

b. Show that none of these tests is exactly a 0.05-level tests.
c. For each n calculate the power function P (n, pa), where n ∈ 10, 11, . . . , 100

and pa ∈ 0.01, 0.02, . . . , 0.99.

Problem 4. Compare the power and α levels of the exact and asymptotic tests.
What do you conclude?

Problem 5. Consider a two-sided t-test for testing

H0 : µ = µ0 vs. HA : µ ̸= µ0 .

a. Obtain the power to reject the null hypothesis, P (n, f), where f = (µa −
µ0)/σ where n = 10, 11, . . . , 100 and f = 0.1, 0.11, . . . , 1.5. Use the func-
tion power.t.test.

b. Build an interactive plot of P (n, f) in R and interpret it.

Problem 6. Same problem, but use a one-sided alternative instead of the
two-sided alternative.

Problem 7. Consider the square root of rdi4p and estimate the effect size of
gender on rdi4p in the entire SHHS data.

a. Using a nonparametric bootstrap estimate the effect size distribution.
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b. For an α = 0.05-level calculate the distribution of the power by applying
the power.t.test function to the effect sizes obtained via the nonpara-
metric bootstrap in the previous point.

c. Calculate and compare the distribution of power, as obtained in the pre-
vious point, as a function of different α levels.

Problem 8. Consider testing for equality in the mean of square root of rdi4p
between men and women. For a sample of 10 men and 10 women taken at
random from the SHHS population conduct an α = 0.05 t-test for equality of
means against the two-sided alternative.

a. Repeat this experiment 10000 times and record how many times the null
hypothesis was rejected.

b. Calculate the theoretical power in a two-sided t-test of size α = 0.05 to
reject the null hypothesis assuming the effect size observed in the overall
dataset and a sample size of n = 10.

c. At what level α is the observed proportion of rejections equal with the
theoretical power?

Problem 9. The effect size in t-tests is defined as the function

f = µa − µ0

σ
.

a. Calculate the power under the “local alternative”

f = µa − µ0

σ/
√

n
.

b. How do you interpret the “local” versus the “global” power?

Problem 10. Here we would like to compare the theoretical and observed
power using simulations.

a. Simulate 100000 times n = 10 N(0, 1) random variables and n = 10
N(µ, 1) variables, where µ = 0, 0.01, . . . , 1 and calculate the percent of
rejections of a size α = 0.05 two sided t-test; hint, you can simulate
N(µ, 1) simultaneously using

nsim=100000
mu=seq(0,1,by=0.01)
sim_vec=mu+rnorm(nsim)

b. Compare the proportion of rejections with the theoretical probability of
rejection.

Problem 11. Same problem description as Problem 10, but vary the number
of observations per group from n = 10 to 500 in increments of 10. What do
you observe in terms of agreement between the theoretical and observed power
when n increases?
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Problem 12. Same problem description as Problem 10, but change the data
generating distribution from Normal to t with 2, 3, and 5 degrees of freedom,
respectively.

Problem 13. Same problem description as Problem 10, but change the data
generating distribution to a double exponential

f(x) = 1
2

exp(−|x − µ|) .

Problem 14. Consider a two sided t-test for testing

H0 : µ = µ0 vs. HA : µ ̸= µ0

and sample sizes n = 10, 11, . . . , 100, and test sizes α = 0.01, 0.02, . . . , 0.99. For
two effect sizes f = 0.1 and f = 0.5:

a. Obtain the power to reject the null hypothesis, P (n, α, f). Use the func-
tion power.t.test.

b. Build two interactive plots of P (n, α, f) in R and interpret them.
c. Explain the relationship between power, sample size, and test size.

Problem 15. In a discussion with a collaborator you are told: we use a new,
more powerful test because we obtain more statistically significant results.

a. Explain, in detail, to your collaborator why his or her statement is com-
pletely incorrect, but in a way that you keep the door open for future
collaborations.

b. Provide an example of the test that is the most powerful in the world
against any alternative and in any circumstance.

c. How would you propose to proceed with the investigation about compar-
ing the previous test and the new, apparently, more “significant result
producing” test.
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Chapter 19

Sample size calculations

This chapter covers the following topics

• Sample size calculation for continuous data
• Sample size calculation for binary data
• Sample size calculation using exact tests
• Sample size calculation with preliminary data

19.1 Introduction

Sample size calculation is often treated unjustly in Biostatistics textbooks. It is
extremely important, but, inexplicably, considered too “boring” or “standard.”
Moreover, in practice, many Biostatistician positions depend on the mastery of
this subject. Far from being easy, sample size calculation is subject not only to
science, but to cost and policy constraints. To highlight these limitations many
an experienced Biostatistician would state in private that “sample size is the
total budget divided by the cost of the trial per person.” Here we try to provide
Biostatistical insight and examples that both highlight how to calculate sample
sizes based on previous knowledge and what the potential pitfalls might be. We
take the view that in their career most Biostatisticians encounter multiple cases
where sample size calculation is crucial and he or she may be the only authority
to talk about it at their research room table. Imagine, for example, the design of
a clinical trial for stroke where a new treatment is considered versus standard of
care. Suppose that we consider a two-arm randomized clinical trial and that the
follow-up time is three years. After some in-depth cost calculations we know that
it will cost about $50, 000 to enroll, track, and treat each subject in the treatment
arm. Therefore, the difference in cost between 100 subjects and 200 subjects in
the treatment arm is exactly $5, 000, 000. Do we have your attention now? If not
and you care a lot more about methodological problems than hard, cold ca$$,

557
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we would like to say that, with the exception of standard clinical trials, sample
size calculations are often far from standard. Consider, for example, sample
size calculations for testing for a regression coefficient in a linear regression, an
interaction term in a generalized linear model, or a fixed effect parameter in a
longitudinal mixed effects model. Here we will provide enough details to explain
the general area of sample size calculation with emphasis on two-sample tests.
However, this is a large scientific area that requires domain-specific knowledge
and thinking. We have found the monograph by (Chow, Shao, and Wang 2008)
and the comprehensize associated R package TrialSize (Zhang et al. 2013) to
be excellent starting points for learning more about sample size calculation.

19.2 Sample size calculation for continuous data

We have already seen how to obtain confidence intervals and conduct tests for the
mean of two populations. The sample size calculation is turning the hypothesis
testing problem around and asking the question: “given an effect size (not yet
defined) what is the sample size that will be detected with high probability
(power).” Consider the case when we observe n subjects both in the first and
second group for a total sample size of 2n. Denote by X1, . . . , Xn ∼ N(µ1, σ2)
and Y1, . . . , Yn ∼ N(µ2, σ2) the outcomes of the experiment in the first and
second group, respectively. We consider the case of equal and known variances
in the two groups, but similar approaches can be used for unequal variances.
We are interested in testing the null hypothesis

H0 : µ2 − µ1 = 0 versus HA : µ2 − µ1 > 0 .

19.2.1 Sample size calculation based on the Normal ap-
proximation

Here we consider the one-sided alternative because the math is a little easier to
follow, but we will discuss the two-sided alternative, as well. Recall that

Y n − Xn ∼ N(µ2 − µ1, 2σ2/n) .

Here the 2 in front of σ2 appears because the variances of Y n and Xn add
up. The rejection of the null hypothesis happens if Y n − Xn > C, where the
constant C is determined such that the probability of rejecting the null, if the
null is true, is small. This probability is denoted by α and is referred to as the
size of the test. Under the null hypothesis, Y n − Xn ∼ N(0, 2σ2/n) and the
constant C can be obtained from the formula

α = P (Y n − Xn > C|µ1 = µ2) = P

{√
n/2(Y n − Xn)

σ
>

√
n/2C

σ

}
.
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Because
√

n/2(Y n − Xn)/σ ∼ N(0, 1) it follows that√
n/2C

σ
= z1−α ⇒ C = z1−ασ√

n/2
,

where z1−α denotes the 1 − α quantile of the standard Normal distribution.
The idea of the sample size calculation is to find the group sample size, n, that
ensures a large probability of rejecting the null when the alternative is true
µ2 > µ1. This probability is called the power of the test and is denoted by 1−β.
The rejection probability is

1 − β = P

(
Y n − Xn >

z1−ασ√
n/2

|µ2 > µ1

)

= P

(
Y n − Xn − µ2 + µ1 >

z1−ασ√
n/2

− µ2 + µ1|µ2 > µ1

)
.

By dividing both the left and right side of the inequality by σ/
√

n/2 we obtain

1 − β = P

{√
n/2(Y n − Xn − µ2 + µ1)

σ
> z1−α −

√
n/2(µ2 − µ1)

σ
|µ2 > µ1

}
.

Because √
n/2(Y n − Xn − µ2 + µ1)

σ
∼ N(0, 1)

it follows that

z1−α −
√

n/2(µ2 − µ1)
σ

= zβ ⇒
√

n/2 = (z1−α + z1−β) σ

µ2 − µ1
,

where we used the fact that z1−β = −zβ due to the symmetry of the standard
Normal distribution. Thus, the sample size needed for one group is

2(z1−α + z1−β)2 σ2

(µ2 − µ1)2

and the total sample size for the two groups is

4(z1−α + z1−β)2 σ2

(µ2 − µ1)2 .

This formula shows what the ingredients are for conducting the sample size
calculation. First, we need the size of the test, α, and the power of the test,
1 − β. Suppose that we fix the size at α = 0.05 and the power of detecting the
alternative at 1 − β = 0.9. Then the first part of the formula can be calculated
in R as follows:
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#Size
alpha=0.05
#One minus power
beta=0.1
#Corresponding quantiles of the standard N(0,1)
z_1_minus_alpha=qnorm(1-alpha)
z_1_minus_beta=qnorm(1-beta)
#Calculate the multiplier in front of the fraction
multiplier<-4*(z_1_minus_alpha+z_1_minus_beta)^2

This indicates that the constant 4(z1−α + z1−β)2 is equal to 34.255 for these
choices of size and power of the test. The other factor that the sample size
depends on is the effect size

f = µ2 − µ1

σ
= Mean of group 2 − Mean of group 1

Standard deviation .

Thus, the sample size can be written more compactly as

M

f2 ,

where M = 4(z1−α + z1−β)2 and f is the effect size. Note that the square of
the effect size is in the denominator, indicating that smaller effect sizes will
have a much larger effect on sample sizes. Let us consider f = 0.5, which is
considered to be a large effect size in Biostatistics. Then 1/f2 = 4 and the
total sample size is 4 × 34.255 = 137.02, rounded up to 138; that is, 69 subjects
per group. However, if the effect size is f = 0.3, which is considered moderate,
then 1/f2 = 11.111 and we would need 11.111 × 34.255 = 380.61 subjects,
rounded up to 381; that is, 191 subjects per group. Thus, going from a large to
a moderate effect size is associated with a large increase in sample size and cost
of the experiment.

For the single sample design (when we have a single sample and conduct a test
about the mean of the sample), the same derivations can be used. In this case
it is easy to show that the sample size formulas simply use half the sample size
for the corresponding two-sample design.

19.2.2 Sample size calculation based on the t approxima-
tion

If a t-test is used instead of the asymptotic Normal one, there are no explicit
formulas, though the sample size can still be calculated. Let us dive a little
deeper into what needs to be done in the t-test case. Note that we still need to
solve the equation√

n/2 = (t1−α,2n−2 + t1−β,2n−2) σ

µ2 − µ1
,
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where tα,k is the α quantile of the t distribution with k degrees of freedom. The
reason we have k = 2n − 2 degrees of freedom is because we are using a pooled
estimator of the standard deviation. In the Normal case the two quantiles in the
right hand side of the equation do not depend on n and we obtain n by squaring
both sides of the equation. In the case of the t test this cannot be done because
of the slight dependence of the quantiles on n. However, the equation can be
solved numerically. Indeed, consider a grid of sample sizes, n, and check when
the equality above is met. Another approach could be to find the zero of the
function

f(x) =
√

x/2−(t1−α,2x−2+t1−β,2x−2) σ

µ2 − µ1
=
√

x/2− t1−α,2x−2 + t1−β,2x−2

f
,

where f is the effect size. This function is strictly increasing because
√

x/2 is
increasing and t1−α,2x−2 and t1−β,2x−2 are both decreasing. Thus, the function
f(·) crosses 0 only once at the sample size.

When x is large (say above 50) there is very little difference between t1−α,2x−2
and z1−α and z1−β . In general, small effect sizes will require larger samples,
which is exactly when the Normal approximation will work best. Larger effect
sizes will require smaller sample sizes, and some differences between the t and
Normal approximations of the test statistic distribution may provide different
results. Let us visually investigate what happens to the sample size for two
effect sizes, f = 0.3 and 0.5.
#Set the size and power of the test
alpha=0.05
beta=0.1
#Set the effect sizes
f1=0.3
f2=0.5
#
grid=seq(20,1000,by=0.1)
f_grid_1<-sqrt(grid/2)-(qt(1-alpha,2*grid-2)+qt(1-beta,2*grid-2))/f1
f_grid_2<-sqrt(grid/2)-(qt(1-alpha,2*grid-2)+qt(1-beta,2*grid-2))/f2

Figure 19.1 displays the function {x, f(x)}, where x is the sample size and
f(x) was described above. Th ezero of the f(·) function is the sample size for
detecting the corresponding effect size. The blue line corresponds to the effect
size f = 0.3 and the orange line corresponds to f = 0.5.
plot(grid,f_grid_1,type="l",col="blue",lwd=3,ylim=c(-10,15),

xlab="Sample size",ylab="f(x)",
bty="l",cex.axis=1.3,cex.lab=1.3,col.lab="blue",
col.axis="blue",main=NULL)

lines(grid,f_grid_2,col="orange",lwd=3)
abline(h=0,lwd=3)

Going from the plot to obtaining the actual sample size can be done directly
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Figure 19.1: Function f(x) (y-axis) whose zero represents the exact sample size
for a t-test at the sample size (x-axis).

using the following R code:
#Obtain the sample size for the t-test
sample_size_f1<-grid[which.min(abs(f_grid_1))]
sample_size_f2<-grid[which.min(abs(f_grid_2))]

Thus, when using the t-test approach with an effect size f = 0.5 we require n =
69.3, which rounded up is 70 subjects per group, one more than when using
the Normal approximation. Similarly, when using an effect size f = 0.3 we
require n = 69.3, rounded up to 192, again one more subject per group. These
very small differences are why in practice we can simply use the explicit Normal
approximation formula. If we want to get more refined evaluations of the sample
size, then we can increase the density of the grid.

19.2.3 Two-sided alternative hypothesis

We have investigated the case of a one-sided alternative because calculations are
slightly easier to explain. In practice, one often encounters two-sided alternative
hypotheses of the type

H0 : µ2 − µ1 = 0 versus HA : µ2 − µ1 ̸= 0 .

For example, in clinical trials the Food and Drug Administration (FDA) would
typically not accept a one-sided alternative hypothesis (no effect of drug versus
a positive effect) and would insist on a two-sided alternative (no effect of drug
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versus positive or adverse effect of drug). The net effect is that the two-sided
hypotheses are harder to reject and/or require larger sample sizes to reject the
null hypothesis. Using the same example as before in the case of a two-sided
hypothesis we reject when |Y n − Xn| is large compared with the one-sided
hypothesis where we reject if Y n − Xn is large. Using similar reasoning with
the one-sided hypothesis it follows that we reject if

|Y n − Xn| >
z1−α/2σ√

n/2
.

This formula shows that it is harder to reject because z1−α/2 > z1−α. Calculat-
ing the sample size follows a very similar recipe, but it has a small twist. Indeed,
as before,

1 − β = P

(
|Y n − Xn| >

z1−α/2σ√
n/2

|µ2 ̸= µ1

)

= P

(
Y n − Xn >

z1−α/2σ√
n/2

|µ2 ̸= µ1

)
+ P

(
Y n − Xn < −

z1−α/2σ√
n/2

|µ2 ̸= µ1

)
.

This formula throws a monkey wrench into our explicit algebra, as the right
hand side of the equation contains the sum of two probabilities and the sample
size solution cannot be obtained by explicitly solving for n. Instead, the solution
is based on the observation that one of the two terms in the right hand side of
the equation is much smaller than the other. Indeed, consider the case when
µ2 > µ1. In this case the first term is equal to

P

{√
n/2(Y n − Xn − µ2 + µ1)

σ
> z1−α/2 −

√
n/2(µ2 − µ1)

σ
|µ2 > µ1

}
=

1 − Φ

{
z1−α/2 −

√
n/2(µ2 − µ1)

σ
|µ2 > µ1

}
,

where Φ(·) is the cdf of a standard normal distribution. Similarly, the second
term is equal to

P

{√
n/2(Y n − Xn − µ2 + µ1)

σ
> −z1−α/2 −

√
n/2(µ2 − µ1)

σ
|µ2 > µ1

}
=

Φ

{
−z1−α/2 −

√
n/2(µ2 − µ1)

σ
|µ2 > µ1

}
.

When µ2 > µ1 we have
√

n/2(µ2 − µ1)/σ > 0, which indicates that

Φ

{
−z1−α/2 −

√
n/2(µ2 − µ1)

σ
|µ2 > µ1

}
< Φ(−z1−α/2) = α/2 ,
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which is small. In most cases the term is much, much smaller than α/2, and
increases with n and with the effect size. To get a better idea let us calculate
these numbers for a few cases.

For an effect size of 0.3 and a sample size of n = 10 the probability is 0.0043,
while for n = 20 the probability is 0.0018. This is why this term can be ignored
in calculations and we obtain

1 − β = 1 − Φ

{
z1−α/2 −

√
n/2(µ2 − µ1)

σ
|µ2 > µ1

}
,

which, using the same calculations as for the one-sided test, results in a total
sample size for the two groups of

4(z1−α/2 + z1−β)2 σ2

(µ2 − µ1)2 .

The only difference is that the term z1−α/2 replaces z1−α. Thus, for the same
effect size a two-sided test would require

100
(z1−α/2 + z1−β)2 − (z1−α + z1−β)2

(z1−α + z1−β)2 %

larger sample size. For α = 0.05 and β = 0.9 this is a 22.7% increase in the
sample size. A similar reasoning holds for the case when µ2 < µ1, while the
solution for t-tests can be obtained solving similar equations. We skip these
details, though we will show later how to use R to conduct calculations in a
variety of scenarios.

19.2.4 Different group variances

In some situations we may not want to assume that the two variances are equal.
To understand the scenario we consider the one-sided normal test, with the
two-sided Normal and t-tests being treated as described above. Denote by
X1, . . . , Xn ∼ N(µ1, σ2

X) and Y1, . . . , Yn ∼ N(µ2, σ2
Y ) the outcomes of the ex-

periment in the first and second group, respectively. We are interested in testing
the null hypothesis

H0 : µ2 − µ1 = 0 versus HA : µ2 − µ1 > 0 .

Recall that
Y n − Xn ∼ N{µ2 − µ1, (σ2

X + σ2
Y )/n} .

The rejection of the null hypothesis happens if Y n−Xn > C, where the constant
C is determined such that the probability of rejecting the null, if the null is true,
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is small. Under the null hypothesis Y n −Xn ∼ N{0, (σ2
X +σ2

Y )/n} The constant
C can be obtained from the formula

α = P (Y n − Xn > C|µ1 = µ2) = P

{√
n(Y n − Xn)√

σ2
X + σ2

Y

>

√
nC√

σ2
X + σ2

Y

}
.

It follows that √
n/2C

σ
= z1−α ⇒ C =

z1−α

√
σ2

X + σ2
Y√

n
.

Following the exact same calculations as above it follows that the sample size
for one group is

(z1−α + z1−β)2 σ2
X + σ2

Y

(µ2 − µ1)2

and the total sample size for the two groups is

2(z1−α + z1−β)2 σ2
X + σ2

Y

(µ2 − µ1)2 .

The only difference from the equal variance case is that 2σ2 is replaced by
σ2

X +σ2
Y . For the two-sided test z1−α is replaced by z1−α/2 and for the t-test we

need to solve the problem numerically. As we have seen, the t-test calculation
either agrees with the Normal calculation or requires one more subject per group.
This is the reason why some software will add one or two subjects per group to
the formulas above.

19.2.5 Different group sizes

While less common, there are situations when the number of subjects in the
two groups are different. In this case it is common to set the sample size for
group 1, say n, and to say that the group 2 will have rn, where r is the ratio
of sample size in group 2 relative to group 1. Thus, the total sample size in
the two groups will be n(1 + r). We will explain the calculations in the one-
sided hypothesis Normal test with unequal variances and unequal sample sizes.
Denote by X1, . . . , Xn ∼ N(µ1, σ2

X) and Y1, . . . , Yrn ∼ N(µ2, σ2
Y ) the outcomes

of the experiment in the first and second group, respectively. As before,

Y rn − Xn ∼ N(µ2 − µ1, (σ2
X + σ2

Y /r)/n) .

From here on all calculations are the same where σY is replaced by σ2
Y /r, which

leads to a sample size for the first group equal to

(z1−α + z1−β)2 σ2
X + σ2

Y /r

(µ2 − µ1)2
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and a total sample size of

(z1−α + z1−β)2 σ2
X + σ2

Y /r

(µ2 − µ1)2 (1 + r) .

Note how for equal sample sizes, r = 1, we obtain the sample size formulas from
the previous section.

Despite the mathematical formulas lavishly displayed here, sample size calcula-
tion is not a perfect science. Indeed, one needs the effect size, which is typically
obtained from previous study, experience, and negotiation with regulatory agen-
cies. Often, however, the required sample size is driven more by total costs and
feasibility (e.g., one cannot have more than 20 rats in a particular experiment)
than by Biostatistical computations. It is perfectly fair to reverse the sample
calculation system and provide the power expected for a cost-restricted sample
size calculation.

19.2.6 R code

Now that we understand where all the sample size calculations for equality in
mean are coming from, we can forget everything, and focus on R. One function
in R that calculates power in R for a variety of scenarios is power.t.test. To
get more information about the function simply type
?power.t.test

Here it is how to conduct the same calculations described above for the case of
two-sample testing with a one sided alternative
power.t.test(power = .90, sig.level=0.05, delta = 0.3,

sd=1, alternative = "one.sided")

Two-sample t test power calculation

n = 190.9879
delta = 0.3

sd = 1
sig.level = 0.05

power = 0.9
alternative = one.sided

NOTE: n is number in *each* group

The result provides virtually the same result as the one we reported for an
effect size f = 0.3 with the same size and power. The R function uses slightly
different notation than in the previous sections, where delta stands for the
difference in means µ2 − µ1 and sd stands for σ. Here sd is actually redundant
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for those cases when we want to input separately the difference in means and
the standard deviation. If we do not specify sd then it is set to the default of
1 and the parameter delta is the difference in means, µ2 − µ1, and the effect
size, f . The power=0.90 and alternative = "one.sided" statements are self-
explanatory, while the size of the test is specified as sig.level=0.05. Getting
the two-sided hypothesis sample size is as simple as
power.t.test(power = .90, sig.level=0.05, delta = 0.3,

sd=1, alternative = "two.sided")

Two-sample t test power calculation

n = 234.4628
delta = 0.3

sd = 1
sig.level = 0.05

power = 0.9
alternative = two.sided

NOTE: n is number in *each* group

Unfortunately, the power.t.test does not handle unequal variances or sample
sizes in the two groups. However, because we know the meaning of the sample
size formulas, it is straightforward to trick the function to calculate sample size
for the case when the number of subjects is unbalanced and the variances may
be unequal. Consider, for example, the case when σ2

X = 1, σ2
Y = 4 and we want

twice as many subjects in group 2 versus group 1, that is r = 2 and a difference
in means of 0.3. Let us revisit the formula for sample size, which contains the
effect size in the form

µ2 − µ1√
σ2

X + σ2
Y /r

.

Thus, we can treat
√

σ2
X + σ2

Y /r as a “pooled” standard error and proceed with
the calculations as if we have equal variances. This will provide the sample size
for group 1, while the sample size for group 2 will be the sample size for group
1 multiplied by r, which, in our case, is 2.
#Set up the variance parameters
var_1=1
var_2=4
ratio=2
#Calculate the variance for unequal variances and unequal sample sizes
pooled_var=var_1+var_2/ratio

#This ensures that we get the correct effect size
pooled_sd=sqrt(pooled_var)
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#Calculate the sample size of group 1
pwr<-power.t.test(power = 0.90, sig.level=0.05,

delta = 0.3, sd=pooled_sd,
alternative = "two.sided")

#Power size of group 1
n1<-round(pwr$n,digits=2)

#Power size of group 2
n2<-ratio*n1

#Total sample size
n_total<-n1+n2

Thus, the sample size for group 1 is 701.46 and for group 2 is 1402.92 with a
total sample size of 2104.38.

19.3 Sample size calculation for binary data

We now focus on the two-sample problem for binary data with equal group sam-
ple sizes. Denote by X1, . . . , Xn ∼ Bernoulli(p1) and Y1, . . . , Yn ∼ Bernoulli(p2).
We would like to test

H0 : p2 − p1 = 0 versus HA : p2 − p1 > 0 .

There are two approaches for calculating sample size, depending on how the
variance of the difference in means is calculated. In Chow, Shao, and Wang
(2008) these two methods are called conditional and unconditional methods,
respectively. We go through both derivations. We show that the conditional
approach always requires a larger sample size given the true underlying success
probabilities in the two groups, though the differences are small.

19.3.1 Two-sample test for proportion using the condi-
tional approach

Just as in the continuous case, we reject the null if the difference Y n − Xn > C,
where C is a constant that ensures that the α level of the test is preserved.
Denote by p = (p1 + p2)/2. More precisely,

α = P (Y n − Xn > C|p1 = p) .

Since asymptotically

Y n − Xn ∼ N

{
p2 − p1,

p2(1 − p2)
n

+ p1(1 − p1)
n

}
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it follows that under the null distribution Y n − Xn ∼ N(0, 2p(1 − p)/n). There-
fore, the previous equality can be rewritten as

α = P

{√
n(Y n − Xn)√

2p(1 − p)
>

√
nC√

2p1(1 − p1)
|p1 = p

}
,

indicating that
√

nC√
2p(1 − p)

= z1−α ⇒ C = z1−α

√
2p(1 − p)

n
.

Thus, the power to detect p2 > p1 is

1 − β = P

(
Y n − Xn − p2 + p1 > z1−α

√
2p(1 − p)

n
− p2 + p1|p2 > p1

)
.

Under the alternative, the mean of Y n − Xn − p2 + p1 is 0 and the variance is
v(p1, p2)/n, where

v(p1, p2) = p1(1 − p1) + p2(1 − p2) .

Therefore

1−β = P

(√
n(Y n − Xn − p2 + p1)√

v(p1, p2)
> z1−α

√
2p(1 − p)
v(p1, p2)

−
√

n(p2 − p1)√
v(p1, p2)

|p2 > p1

)
.

Because, asymptotically,
√

n(Y n−Xn−p2+p1)/
√

v(p1, p2) ∼ N(0, 1), it follows
that

−z1−β = z1−α

√
2p(1 − p)
v(p1, p2)

−
√

n(p2 − p1)√
v(p1, p2)

,

which leads to the sample size per group

n =

{
z1−α

√
2p(1 − p) + z1−β

√
p1(1 − p1) + p2(1 − p2)

}2

(p2 − p1)2 .

In the case when we test for a two-sided alternative z1−α is replaced by z1−α/2.
The case of unequal group size allocation is treated similar to the continuous
case.

19.3.2 Two-sample test for proportion using the uncondi-
tional approach

In this case we reject the null hypothesis if
√

n(Y n − Xn)√
v(p1, p2)

≥ z1−α ,
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that is, if
√

n(Y n − Xn) ≥ z1−α

√
v(p1, p2). For a fixed p1 and p2 the power to

detect the alternative is

1 − β = P

{√
n(Y n − Xn) −

√
n(p2 − p1)√

v(p1, p2)
≥ z1−α −

√
n(p2 − p1)√
v(p1, p2)

}
.

Solving this for n we obtain that the sample size for one of the groups is

(z1−α + z1−β)2 p1(1 − p1) + p2(1 − p2)
(p2 − p1)2 .

This is the formula most often referenced in practice. For a two-sided test
z1−α is changed to z1−α/2 and for unequal allocation of subjects per group
small changes also need to be made. Note that the conditional approach always
produces larger sample sizes than the unconditional approach because

2p(1 − p) ≥ p1(1 − p1) + p2(1 − p2) ⇔ (p1 − p2)2 ≥ 0 .

To make this more concrete and see how much the sample sizes differ, consider
two examples (p1, p2) = (0.2, 0.4) and (p1, p2) = (0.6, 0.8), where we kept the
difference in probability between the null and alternative hypotheses equal. The
R code below calculates both sample sizes.
p1=0.2
p2=0.4
p=(p1+p2)/2
#Calculate the variance for unconstrained calculations
vp1p2<-p1*(1-p1)+p2*(1-p2)
#Set the size and power of the test
alpha=0.05
beta=0.1
za<-qnorm(1-alpha)
zb<-qnorm(1-beta)
#Calculate the unconstrained sample size
ss_u0<-round((za+zb)^2*vp1p2/(p2-p1)^2,digits=2)

#Calculate the constrained sample size
ss_c0<-round((za*sqrt(2*p*(1-p))+zb*sqrt(vp1p2))^2/(p1-p2)^2,digits=2)

perc_diff0<-round(100*(ss_c0-ss_u0)/ss_u0,digits=2)

The conditional approach requires a sample size of 88.03 compared with the un-
conditional approach which requires 85.64, or 2.79% more samples. We conduct
the same calculations for p1 = 0.6 and p2 = 0.8. In this case the conditional
approach requires a sample size of 88.03 compared with the unconditional ap-
proach which requires a sample size of 85.64, or 2.79% more samples.
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19.4 Sample size calculations using exact tests

Using exact tests is particularly useful when the effect size is larger and the
asymptotic distribution of the test statistic may be far from Normal. In the
case of continuous data, using the t-test instead of the Normal test is quite
reasonable. We have already shown how to obtain sample sizes for the t-test.
Consider now the case when we are trying to obtain the sample size for testing for
a Bernoulli proportion. We are using here a slightly modified example from our
own experience. Suppose that a particular type of lung biopsy intervention has a
historical probability of success p0 = 0.53, and a new, imaging-assisted, surgical
biopsy intervention was successful in 16 out of 20 surgeries. The estimated
success rate in the new treatment arm was p̂ = 16/20 = 0.8. We would like to
find the sample size required to conduct a test of size α = 0.05 with the power
1 − β = 0.9 to detect a true proportion of successful biopsies of p = 0.8. Of
course, we could use the Normal approximation test and obtain the sample size

n = (z1−α + z1−β)2 p(1 − p)
(p − p0)2 ,

where we use a one-sample test. This results in a sample size of 18.8, which is
rounded up to 19.

Now, we can conduct the same calculations using exact distributions. First, for
every sample size n we need to find the number of successes, s(n), that would
be sufficient to reject the null hypothesis at that particular size. Let Xn be
the proportion of successes among n surgeries and nXn the total number of
successes. We know that nXn ∼ Binomial(n, p0) under the null hypothesis.
One of the technical problems with the exact Binomial test is that we cannot
construct an exact α = 0.05 test. Indeed, consider the example when n = 20
and p0 = 0.53. The rejection probability under the null if we see 14 or more
successes is 0.096 and if we see 15 or more successes is 0.038. The reason is that
the Binomial distribution is discrete. Of course, we could add a randomization
rule to reject with some probability if we see 14 successes and always reject if
we see 15 or more successes. This would create a correct α-level test, but would
result in a test that is difficult to explain and we have never seen implemented
in practice. Thus, for this n we choose the critical value to be s(n) = 15, the
first number of successes that would provide a rejection probability less than
0.05. That is, we choose the critical value that ensures that we construct the
least conservative test with a size α < 0.05. This procedure can be repeated for
every value of the sample size n. Figure 19.2 displays the graph of these critical
values, s(n) as a function of n,
#build a grid of points for the sample size
n=10:100
#calculate the critical value for every sample size
sn=qbinom(0.05,n,0.53,lower.tail=FALSE)+1
plot(n,sn,type="l",col="blue",lwd=3,
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Figure 19.2: Critical value (y-axis) versus sample size (x-axis) for rejecting the
null hypothesis H0 : p = 0.53.

xlab="Sample size",ylab="Critical values Binomial(0.53)",
bty="l",cex.axis=1.5,cex.lab=1.4,col.lab="blue",
col.axis="blue",main=NULL)

#Find the alpha level for n=100
alpha_100<-round(sum(dbinom(sn[length(sn)]:100,100,0.53)),digits=4)

The plot in Figure 19.2 is roughly linear with small bumps due to the discrete
nature of the data. As the sample size increases the α level of the test is getting
much closer to 0.05 because the normal approximation due to the Central Limit
Theorem starts to kick in. Indeed, for n = 100 we obtain a value of s(n) equal
to 62 and a corresponding α level of the test equal to 0.0437. Note that this is
still a test that does not have a size of α = 0.05. Once the critical values are
available for each sample size, we need to identify the sample size at which the
power becomes equal to at least 0.9. To do that we calculate the probability
of exceeding the critical values for a Binomial distribution with n samples and
probability of success equal to 0.8.
power_binom<-rep(NA,length(n))
#We need to subtract 1 from sn because pbinom calculates the
#probability of strictly exceeding the critical value
power_binom<-pbinom(sn-1, n, 0.8, lower.tail = FALSE, log.p = FALSE)

Figure 19.3 displays the power for rejecting the null hypothesis H0 : p = 0.53
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Figure 19.3: Power for rejecting the null hypothesis H0 : p = 0.53 when the true
value of the success probability is 0.8 as a function of the sample size.

when the true value of the success probability is 0.8 as a function of the sample
size, n. The critical value is chosen so that the alpha-level of the test is as close
as possible to 0.05.
plot(n,power_binom,type="l",col="blue",lwd=3,

xlab="Sample size",ylab="Binomial test power",
bty="l",cex.axis=1.5,cex.lab=1.4,col.lab="blue",
col.axis="blue",main=NULL)

We are now interested in finding the sample size that will provide 90% power
to detect a true success probability p = 0.8 when testing for the null hypothesis
H0 : p = 0.53 using an α-level as close as possible to 0.05.
#Calculate the first time the power exceeds 0.9
exceed_diff<-power_binom>0.9

#Get the sample size and corresponding critical value
sample_size_finite<-n[which.max(exceed_diff)]
critical_value_finite<-sn[which.max(exceed_diff)]

#Calculate the proportion difference between exact and asymptotic tests
ratio_exact_asymptotic<-round(100*(sample_size_finite-ss_o_c)/ss_o_c,digits=2)

Thus, the sample size is calculated as the first time the power exceeds 0.9 and
that happens for 28 at a critical value of 20. Thus, the exact test would require
47.37% more subjects than the asymptotic test. The sample size is still small,
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but it is much larger than the one required by the asymptotic test. A closer
inspection of the power curve indicates that it has a rather unusual behavior
as it is not strictly increasing. This is also due to the discrete nature of the
Binomial distribution and to the fact that subsequent tests do not have the
same size. Let us be concrete. Consider, for example, the case of n = 15 and
n = 16, which both have a corresponding critical value of 12. The α level for the
Binomial(15, 0.53) test is 0.0303, while for the Binomial(16, 0.53) it is 0.0194.

This happens because the tests are chosen to be conservative and the tests
are discrete. At this threshold the first test is less conservative (rejects easier)
than the second test. Therefore, the power of the first test is 0.648, which is
actually larger than the power of the second test 0.598. We conclude that the
non-monotonic pattern of the power is due to the fact that we are comparing
tests of different sizes. The problem becomes less obvious for larger values of
the sample size n because the size of tests becomes closer to 0.05.

This is a simple example of exact calculation of sample sizes for the simplest
case of testing for a given probability of success against an alternative. While
calculations are more involved and do not follow a clearly prescribed formula,
they are relatively easy to implement and follow in R. The difference between the
sample size based on the asymptotic and exact tests is substantial in this case,
which is very close to the real example encountered in practice. This shows one
more time that truly understanding the concepts can make the Biostatistician
more useful to his or her collaborators, more insightful about what needs to be
done, and more constructive during the planning phase of an experiment.

19.5 Sample size calculation with preliminary
data

So far, we have focused on relatively simple problems (e.g., two-sample t-test)
and the case when the effect size, means, and standard deviations under the null
and alternative hypotheses are known. In practice this is not always the case.
Indeed, in most situations these quantities are unknown and are estimated from
the data. The problem is that estimators of effect size are themselves subject to
sampling variability, which is not typically taken into account. Accounting for
sampling variability leads to larger sample sizes, sometimes much larger. We
provide a couple of examples and a general strategy for dealing with such cases.

19.5.1 One-sample exact Binomial test

Consider, for example, the lung biopsy case. Your collaborator just told you
that the new procedure was successful on 16 out of 20 study participants, for
an estimated success probability of p̂ = 0.8. However, you are a cautious Bio-
statistician and notice that this is the point estimate and, given that only 20
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subjects were used in the preliminary study, it is likely that the true success
probability of the new procedure can be quite a bit larger or smaller. Just how
much smaller or larger? Luckily, we have learned how to obtain a confidence
interval for proportions
library(binom)
x=16
n=20
binom.confint(x, n, conf.level = 0.95, methods = "all")

method x n mean lower upper
1 agresti-coull 16 20 0.8000000 0.5782364 0.9250885
2 asymptotic 16 20 0.8000000 0.6246955 0.9753045
3 bayes 16 20 0.7857143 0.6134811 0.9421974
4 cloglog 16 20 0.8000000 0.5511456 0.9198179
5 exact 16 20 0.8000000 0.5633860 0.9426660
6 logit 16 20 0.8000000 0.5721531 0.9228665
7 probit 16 20 0.8000000 0.5852912 0.9289199
8 profile 16 20 0.8000000 0.5946321 0.9331375
9 lrt 16 20 0.8000000 0.5946356 0.9331592
10 prop.test 16 20 0.8000000 0.5573138 0.9338938
11 wilson 16 20 0.8000000 0.5839826 0.9193423

All these intervals seem to agree that even values of p = 0.6 can actually be
consistent with the observed probability of success among the 20 biopsies. The
sample size calculations will, of course, lead to much larger sample sizes when
testing against the alternative p = 0.6 versus p = 0.8.

For example, the asymptotic Normal test leads to a sample size of 420 for
p = 0.6, which is much larger than the sample size 19 based on the point
estimator p = 0.8. The exact test sample size calculations provides a sample
size of 431, larger than the sample size using the asymptotic approximation,
but of a similar magnitude. Such a large difference should have a sobering
effect on the Biostatistician and scientist and could provide information about
the sample size for the preliminary study, as well. Given the fickleness of the
sample size calculations, it is important to be open and clear about the various
assumptions that go into the calculation. We have found that the variability of
the preliminary data can lead to substantially larger sample sizes.

19.5.2 Two-sample t-tests with preliminary data

Consider the case when we would like to compare the respiratory disruptance
index rdi4p between men and women. Suppose that we have only the data from
the first 10 men and 10 women from the SHHS study; the advantage of having a
large study, such as SHHS, is that we can play all sorts of data games with sub-
samples to highlight real-life scenarios. We extract the data, transform them
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using the square root transform to reduce the skewness of rdi4p, and conduct
a t-test for equality of means between the two samples.
## read in the data
dat = read.table(file = "data/shhs1.txt",

header = TRUE, na.strings="NA")

sqrt_rdi4p_male<-sqrt(dat$rdi4p[dat$gender==1])[1:10]
sqrt_rdi4p_female<-sqrt(dat$rdi4p[dat$gender==0])[1:10]

#Obtain the means of the groups
m_sqrt_rdi4p_male<-round(mean(sqrt_rdi4p_male),digits=2)
m_sqrt_rdi4p_female<-round(mean(sqrt_rdi4p_female),digits=2)

t.test(sqrt_rdi4p_male,sqrt_rdi4p_female,
alternative="two.sided",var.equal = TRUE)

Two Sample t-test

data: sqrt_rdi4p_male and sqrt_rdi4p_female
t = 1.2315, df = 18, p-value = 0.234
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.5021601 1.9246981
sample estimates:
mean of x mean of y
2.626047 1.914778

The mean of the square root rdi4p for the first 10 men is 2.63, which is larger
than the mean of the square root of rdi4p for the first 10 women, 1.91. The
confidence interval covers zero and the p-value for the t-test of equality of means
is p = 0.235, indicating that the null hypothesis cannot be rejected at the level
α = 0.05 by a two-sided t-test. This raises questions about what to do and how
to estimate the sample size. Of course, a solution is to take the point estimators
for the mean and standard deviations in each group, treat them as fixed, and
obtain the sample size.
delta<-m_sqrt_rdi4p_male-m_sqrt_rdi4p_female
pooled_sd<-sd(c(m_sqrt_rdi4p_male,m_sqrt_rdi4p_female))
pwr<-power.t.test(power = .90, sig.level=0.05, delta = delta, sd=pooled_sd,

alternative = "two.sided")
sample_size_group<-ceiling(pwr$n)

After conducting the power calculation we obtain that the sample size per group
is 12, slightly larger than 10, the number of subjects that we have used to
estimate the sample size. Now, the nice thing is that we actually can sample
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the SHHS dataset and obtain pairs of 12 men and 12 women and test whether
the difference is significant. Note that typically we do not have this luxury, but
a large dataset comes with its own perks. One of them is that we can really
investigate the behavior of various statistical concepts in smaller sample sizes.
We do this below,
#Obtain vectors of rdi4p for males and females
sqrt_rdi4p_male<-sqrt(dat$rdi4p[dat$gender==1])
sqrt_rdi4p_female<-sqrt(dat$rdi4p[dat$gender==0])

nsim=10000
rejections<-rep(NA,nsim)

set.seed(256423)
for (i in 1:nsim)
{#begin sampling from the SHHS
#Sample the groups of males and females with replacement
#This could be done with or without replacement
create_male_subsample<-sample(sqrt_rdi4p_male,size=sample_size_group,replace=TRUE)
create_female_subsample<-sample(sqrt_rdi4p_female,size=sample_size_group,replace=TRUE)

ttest_results<-t.test(create_male_subsample,create_female_subsample,
alternative="two.sided",var.equal = TRUE)

rejections[i]<-ttest_results$p.value<0.05
}#end sampling from the SHHS

rejection.rate<-round(mean(rejections),digits=3)

After conducting these simulations we end up with a rejection rate of 0.256,
which is much, much smaller than the nominal power 1 − β = 0.9. This must
be sobering and should raise fundamental questions about what it is that we
are doing. Of course, one of the problems could be that we chose the first
10 observations and that the sample means and standard deviations are quite
variable. Let us compare these values more closely to see what actually happens.
#Find the mean, mean difference, pooled standard deviation
# and effect size at the population level
mean_male<-round(mean(sqrt_rdi4p_male),digits=2)
mean_female<-round(mean(sqrt_rdi4p_female),digits=2)
delta_pop<-mean_male-mean_female
sd_pooled_pop<-round(sd(c(sqrt_rdi4p_male,sqrt_rdi4p_female)),digits=2)
f_pop<-round((mean_male-mean_female)/sd_pooled_pop,digits=2)

#Calculate the percent difference between the population delta
#and delta for the first 10 males and 10 females
percent_delta_diff<-100*(delta_pop-delta)/delta
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#Effect size using only the first 10 males and 10 females
f_first_10<-round(delta/pooled_sd,digits=2)

The mean square root of rdi4p for the entire SHHS male population is 2.87,
which is larger, but relatively close to 2.63, the mean in the first 10 samples of
male rdi4p. Similarly, the mean square root of rdi4p for the entire SHHS female
population is 1.97, which is larger, but relatively close to 1.91, the mean in the
first 10 samples of female rdi4p. Thus, the difference in means at the population
level is 0.9, which is 25 percent larger than the difference in means observed in
the first 10 samples. The real difference, however, comes from the estimator of
the pooled standard error. Indeed, this is equal to 1.71 at the population level
and 0.51 among the first 10 samples, or more than 3 times larger. Therefore,
the effect size at the population level is 0.53 compared with the effect size 1.41
based on the first 10 males and females in the sample. Thus, the true effect
size is roughly 3 times smaller than the one based on the first 10 observations,
which is a major reason why there is a large discrepancy between the observed
and nominal power of detecting the alternative. This is not a problem limited
to the fact that we chose the first 10 observations, but it represents the serious
problems associated with sample size variability when the effect size is estimated
from a small to moderate sample.

19.5.3 Complex scenarios with preliminary data

We have discussed sample size calculations in specific, though relatively simple
scenarios. In practice such scenarios appear regularly, but sometimes more
complex problems occur, as well. Consider the case of a regression problem
that has some interactions and we are interested in the sample size that would
allow us to identify a particular effect with very large probability. For example,
consider the following model using all the SHHS data without missing covariates
(n = 5761),
MtS_SA=dat$rdi4p>=15
fit<-glm(MtS_SA~gender+age_s1+bmi_s1+HTNDerv_s1+age_s1*HTNDerv_s1,

family="binomial",data=dat)
summary(fit)

Call:
glm(formula = MtS_SA ~ gender + age_s1 + bmi_s1 + HTNDerv_s1 +

age_s1 * HTNDerv_s1, family = "binomial", data = dat)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.0443 -0.6559 -0.4441 -0.2671 2.8556
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.710927 0.421770 -20.653 < 2e-16 ***
gender 1.156897 0.079181 14.611 < 2e-16 ***
age_s1 0.036892 0.005000 7.378 1.61e-13 ***
bmi_s1 0.138369 0.007412 18.669 < 2e-16 ***
HTNDerv_s1 0.758377 0.473129 1.603 0.109
age_s1:HTNDerv_s1 -0.008748 0.007146 -1.224 0.221
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 5314.5 on 5760 degrees of freedom
Residual deviance: 4659.1 on 5755 degrees of freedom
(43 observations deleted due to missingness)

AIC: 4671.1

Number of Fisher Scoring iterations: 5

The point estimator of HTNDerv_s1 based on the entire dataset is 0.758 with a
p-value of 0.109. We would like to know at what sample size we would reject the
null hypothesis 100(1 − β)%. To do that we fix a sample size, say 20% larger,
and sample the data with replacement, but with a sample size 20% larger than
the original data. This is exactly like the bootstrap, except that we are not re-
sampling a data set of the same size with the original; we sample more, though
we could also sample less. Surprisingly, it is nearly everyone’s mantra that the
bootstrap should sample the same number of subjects. We agree to disagree and
we have found that sampling with replacement with larger or smaller sample
sizes could actually be extremely helpful. Of course, we can simulate many
datasets that are 20% larger and for each one of them we count how many times
we reject the null that the HTN effect is equal to zero. Below we provide the
necessary code to do that, though we run it separately (eval=FALSE) because
it takes time to run thousands of models.
n_total=dim(dat)[1]
length_upstrap=21
nboot=10000
percent_upstrap=seq(from=1, to=5,length=length_upstrap)
check<-matrix(rep(NA,nboot*length_upstrap),ncol=length_upstrap)

for (j in 1:length_upstrap)
{#Each loop corresponds to an increase in the sample size
print(j)
for (i in 1:nboot)
{#Each loop corresponds to one sample with a specified sample size



580 CHAPTER 19. SAMPLE SIZE CALCULATIONS

temp_index<-sample(1:n_total,n_total*percent_upstrap[j],replace=TRUE)
temp_data<-dat[temp_index,]
MtS_SA=temp_data$rdi4p>=15
fit<-glm(MtS_SA~gender+age_s1+bmi_s1+HTNDerv_s1+age_s1*HTNDerv_s1,

family="binomial",data=temp_data)
#Obtain the p-values for HTN
check[i,j]<-coef(summary(fit))[,4][5]<0.05
}

}

power_check<-colMeans(check)

plot(percent_upstrap,power_check,type="l",col="blue",lwd=3,
xlab="Factor by which the sample size is multiplied",
ylab="Power to detect the HTN effect",
bty="l",cex.axis=1.5,cex.lab=1.4,col.lab="blue",
col.axis="blue",main=NULL)

abline(h=0.8,lwd=3,col="orange")
abline(h=0.9,lwd=3,col="red")

The Figure below provides the frequency with which the test for no HTN effect
is rejected in the model
glm(MtS_SA~gender+age_s1+bmi_s1+HTNDerv_s1+age_s1*HTNDerv_s1,

family="binomial",data=dat)

as a function of the multiplier of the sample size. For example, for the multiplier
2 we produced 10000 samples with replacement from the SHHS with twice the
number of subjects 2n = 11608. For each up-sampled dataset we ran the model
and recorded whether the p-value for HTN was smaller than 0.05. At this value
of the sample size we obtained that the HTN effect was identified in 62% of the
up-samples. We also obtained that the power was equal to 0.794 at the sample
size multiplier 3.0 and 0.817 at multiplier 3.2, indicating that the power 0.8
would be attained at 3.1 ∗ n ≈ 17500.

There are very few methods to estimate the sample size in such examples and we
contend that the upstrap is a powerful and general method to conduct such cal-
culations. Similar approaches could be used in many other situations, including
estimating a fixed effect (e.g., treatment) using longitudinal data in the context
of a clinical trial or the sample size necessary to detect gene by gene and gene
by environment interactions in genomics studies.



19.5. SAMPLE SIZE CALCULATION WITH PRELIMINARY DATA 581

Figure 19.4: Power of detecting the HTN effect in an upstrap (sample with
replacement of the data with a sample size different from the sample size of the
original data) as a function of the multiplier of the original sample size.
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19.6 Problems

Problem 1. Consider the case when we observe a single sample X1, . . . , Xn ∼
N(µ, σ2) and we are interested in testing the null hypothesis H0 : µ = µ0 versus
HA : µ > µ0, where µ0 is a fixed and known constant.

a. Calculate the sample size for the corresponding Normal test of size α to
achieve a power 1 − β at a value µ1 > µ0.

b. What is a reasonable definition of effect size in this context?
c. Calculate the sample size for α = 0.05, β = 0.1 and an effect size f = 0.4.

Problem 2. Solve the same problem in the case of the same null hypothesis
with the two-sided alternative HA : µ ̸= µ0.

Problem 3. Derive the sample size calculation for the two-sample testing prob-
lem with Bernoulli outcomes with unequal group sizes. Calculate the sample
size needed to detect the alternative hypothesis using a one-sided test of size
α = 0.05 with probability 0.9, when the true probabilities in the two groups are
p1 = 0.5 and p2 = 0.65 and there are twice as many subjects in group 1 versus
group 2. Do this both for the conditional and unconditional approach.

Problem 4. For testing the difference in probability between two groups against
a one-sided alternative, use simulations to compare the size and power of the
conditional and unconditional tests.

Problem 5. Derive the sample size calculations for the one-sample problem
when testing for the null hypothesis H0 : p = p1 against the alternative HA :
p > p1. Obtain both the conditional and unconditional sample sizes. Compare
the sample sizes required by the conditional and unconditional approaches and
indicate when the difference is larger.

Problem 6. Set up simulations to compare the power and sample size of the
Normal approximation tests (conditional and unconditional) for the one-sample
test of probability.

Problem 7. Sometimes proving superiority of a new drug may not be possible.
Therefore, in practice one sometimes uses a test for the null hypothesis of non-
inferiority. For the two-sample the non-inferiority hypothesis is

H0 : µ2 − µ1 ≤ −ϵ versus HA : µ2 − µ1 > −ϵ ,

where ϵ is a small positive constant. The idea is that under the null the mean
of group 2, µ2, is inferior to the mean in group 1, µ1, by a margin ϵ. That is
µ2 ≤ µ1 − ϵ. For an α level and power 1 − β derive the sample size necessary to
detect an alternative. Use the Normal test and t-test for equality of means.

Problem 8. Another type of testing is that of equivalence. In this scenario we
still have two groups, say of the same size, n, but we are interested in testing
the equivalence of two treatments/drugs. In this case we are testing

H0 : |µ2 − µ1| ≥ ϵ versus HA : |µ2 − µ1| < ϵ .
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The idea is that under the null the mean of group 2, µ2, is substantially different
from the mean in group 1, µ1, by a margin ϵ. The alternative is that the
difference between the two means is small, that is, the two groups/treatments
are equivalent. For an α level and power 1 − β derive the sample size necessary
to detect an alternative. Use the Normal test and t-test for equality of means.

Problem 9. Describe the non-inferiority and equivalence tests for the two-
sample problem for proportions and derive the sample size for detecting the
alternative at a given size α and power 1 − β.

Problem 10. Consider the case when we want to test

H0 : p = 0.53 versus HA : p > 0.53 ,

and we have n = 20 trials. Construct an exact α = 0.05 test by rejecting with
a probability pr if there are exactly 14 successes and always reject if there are
15 or more successes.

Problem 11. Consider the case when we want to test

H0 : p = 0.53 versus HA : p ̸= 0.53 .

For an α = 0.05 size of the exact test calculate the power to detect an alternative
p ∈ (0, 1) as a function of p and sample size n.

a. Provide a report written in Rmarkdown explaining the findings. Hint:
show power plots for several sample sizes of interest.

b. For a fixed probability difference |p−p0| obtain the sample size that would
ensure a power 1 − β = 0.9.

c. Plot the size of the tests as a function of n and discuss why the size is not
equal to 0.05.

Problem 12. Consider the same example of the lung biopsy, but your collabo-
rator tells you that he or she thinks that the new procedure is truly superior to
the previous procedure. When asked specifically about what is meant by “truly
superior,” your collaborator says that he or she thinks that the new procedure
has a probability of success at least 20% larger than the historical probability
p0 = 0.53. Set up the non-inferiority hypothesis and calculate the sample size
necessary to show superiority (not non-inferiority) if the true probability of suc-
cess of the new procedure is 0.8. Use the exact test with a α = 0.05 size and
power 1 − β = 0.9.

Problem 13. Given that we observe 16 biopsy successes out of 20 surgeries,
what is the probability of observing this many or more successes if the true
value of the success probability is p = 0.7? For p = 0.7 calculate the sample size
based on the asymptotic and exact tests and provide the necessary changes in
your code.

a. Plot the critical values for the Binomial test versus the critical values for
the asymptotic test.
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b. Plot the power of the exact Binomial test as a function of sample size
c. What are the differences from the case when the true value of the success

probability was 0.8?
d. What is the probability of observing this many successes if the true value

of the success probability is p = 0.8?

Problem 14. Using the first 10 rdi4p observations from SHHS from men and
women, calculate the sample size required to detect the observed empirical effect
size using a two-sided t-test with unequal variances, size α = 0.05, and power
1 − β = 0.9. Here the observed empirical effect size is obtained by plugging
in the point estimators of the mean and standard deviations obtained from the
samples.

Problem 15. Calculate the gender-specific means and pooled standard devi-
ation of the square root of rdi4p and calculate the sample size necessary to
detect such a large difference from the data. With the estimated sample size,
subsample groups of males and females and calculate with this estimated sample
size and compare that with the nominal power.

Problem 16. Using a random sample of 10 females and 10 males from the
SHHS, calculate the empirical effect size using plug-in estimators of the means
and pooled standard deviation.

a. For a t-test of equality in means calculate the sample size to detect the
observed effect size (α = 0.05, 1 − β = 0.9).

b. Repeat this procedure 10000 times and plot the histogram of estimated
sample sizes.

c. Interpret and report your findings.

Problem 17. Using the model
MtS_SA=dat$rdi4p>=15
fit<-glm(MtS_SA~gender+age_s1+bmi_s1+HTNDerv_s1+age_s1*HTNDerv_s1,

family="binomial",data=dat)
summary(fit)

Call:
glm(formula = MtS_SA ~ gender + age_s1 + bmi_s1 + HTNDerv_s1 +

age_s1 * HTNDerv_s1, family = "binomial", data = dat)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.0443 -0.6559 -0.4441 -0.2671 2.8556

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.710927 0.421770 -20.653 < 2e-16 ***
gender 1.156897 0.079181 14.611 < 2e-16 ***
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age_s1 0.036892 0.005000 7.378 1.61e-13 ***
bmi_s1 0.138369 0.007412 18.669 < 2e-16 ***
HTNDerv_s1 0.758377 0.473129 1.603 0.109
age_s1:HTNDerv_s1 -0.008748 0.007146 -1.224 0.221
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 5314.5 on 5760 degrees of freedom
Residual deviance: 4659.1 on 5755 degrees of freedom
(43 observations deleted due to missingness)

AIC: 4671.1

Number of Fisher Scoring iterations: 5

a. Find the sample size at which the gender effect would be found in 80% of
the samples.

b. Find the sample size at which the age effect would be found in 80% of the
samples.
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