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Preface

Visualization is critical to data analysis. It provides a front line of 
attack, revealing intricate structure in data that cannot be absorbed in 
any other way. We discover unimagined effects, and we challenge 
imagined ones.

Tools

Tools matter. There are exceptionally powerful visualization tools, 
and there are others, some well known, that rarely outperform the best 
ones. The data analyst needs to be hard-boiled in evaluating the efficacy 
of a visualization tool. It is easy to be dazzled by a display of data, 
especially if it is rendered with color or depth. Our tendency is to be 
mislead into thinking we are absorbing relevant information when we 
see a lot. But the success of a visualization tool should be based solely on 
the amount we learn about the phenomenon under study. Some tools in 
the book are new and some are old, but all have a proven record of 
success in the analysis of common types of statistical data that arise in 
science and technology.

Graphing and Fitting

There are two components to visualizing the structure of statistical 
data — graphing and fitting. Graphs are needed, of course, because 
visualization implies a process in which information is encoded on 
visual displays. Fitting mathematical functions to data is needed too. 
Just graphing raw data, without fitting them and without graphing the 
fits and residuals, often leaves important aspects of data undiscovered. 
The visualization tools in this book consist of methods for graphing and 
methods for fitting.
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Applications

The book is organized around applications of the visualization tools 
to data sets from scientific studies. This shows the role each tool plays in 
data analysis, and the class of problems it solves. It also demonstrates 
the power of visualization; for many of the data sets, the tools reveal that 
effects were missed in the original analyses or incorrect assumptions 
were made about the behavior of the data. And the applications convey 
the excitement of discovery that visualization brings to data analysis.

The Legacy of the Past

The visualization of statistical data has always existed in one form or 
another in science and technology. For example, diagrams are the first 
methods presented in R. A. Fisher's Statistical Methods for Research 
Workers, the 1925 book that brought statistics to many in the scientific 
and technical community [38]. But with the appearance of John Tukey's 
pioneering 1977 book. Exploratory Data Analysis, visualization became 
far more concrete and effective [76]. Since 1977, changes in computer 
systems have changed how we carry out visualization, but not its goals.

Display Methods

When a graph is made, quantitative and categorical information is 
encoded by a display method. Then the information is visually decoded. 
This visual perception is a vital link. No matter how clever the choice of 
the information, and no matter how technologically impressive the 
encoding, a visualization fails if the decoding fails. Some display 
methods lead to efficient, accurate decoding, and others lead to 
inefficient, inaccurate decoding. It is only through scientific study of 
visual perception that informed judgments can be made about display 
methods. Display methods are the main topic of The Elements of 
Graphing Data [20]. The visualization methods described here make 
heavy use of the results of Elements and other work in graphical 
perception.
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Prerequisites

The reader should be familiar with basic statistics and the 
least-squares method of fitting equations to data. For example, an 
introductory course in statistics that included the fundamentals of 
regression analysis would be sufficient.

How to Read the Book

For most purposes, the chapters need to be read in order. Material in 
later chapters uses tools and ideas introduced in earlier chapters. There 
are two exceptions to this general rule. Chapter 6, which is about 
multiway data, does not use material beyond Section 4.6 in Chapter 4. 
Also, sections of the book labeled "For the Record" contain details that 
are not necessary for understanding and using the visualization tools. 
The details are meant for those who want to experiment with alterations 
of the methods, or want to implement the methods, or simply like to 
take in all of the detail.
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1 Introduction

Visualization is an approach to data analysis that stresses a 
penetrating look at the structure of data. No other approach conveys as 
much information. As W. Edwards Doming puts it, visualization 
"retains the information in the data" [33]. Conclusions spring from data 
when this information is combined with the prior knowledge of the 
subject under investigation. An important discovery springs from 
Figure 1.1. It attests to the power of visualization.

In the early 1930s, agronomists in Minnesota ran a field trial to study 
the crop barley [55]. At six sites in Minnesota, ten varieties of barley were 
grown in each of two years. The data are the yields for all combinations 
of site, variety, and year, so there are 6 x 1 0 x 2  = 120 observations. In 
Figure 1.1, each panel displays the 20 yields at a single site.

The barley data have been analyzed and re-analyzed for decades. 
Their first analysis appeared in a 1934 report published by the 
experimenters. The statistician and geneticist R. A. Fisher, who 
established the modern foundations of statistics, presented the data for 
five of the sites in his book. The Design of Experiments [39]. Francis J. 
Anscombe [3,4] and Cuthbert Daniel [29], pioneers of diagnostic 
methods for determining when statistical models fit data, also analyzed 
them.

Now, the visualization of Figure 1.1 reveals an anomaly that was 
missed in these previous analyses. It occurs at Morris. For all other sites,
1931 produced a significantly higher overall yield than 1932. The reverse 
is true at Morris. But most importantly, the amount by which 1932 
exceeds 1931 at Morris is similar to the amounts by which 1931 exceeds
1932 at the other sites. Thus we have a mystery. Either an extraordinary 
natural event, such as disease or a local weather anomaly, produced a 
strange coincidence, or the years for Morris were inadvertently reversed. 
The mystery is investigated at the end of the book; the conclusion will be 
revealed there, not here, to retain the suspense of the full story, which is 
complicated.
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1.1 Tools and Data Types

Tools matter. The Morris anomaly is revealed in Figure 1.1 because 
the tool used to display the data, a multiway dot plot, is an effective one. 
In the analyses of the past, the methods were insufficient. Even the most 
adroit data analyst cannot divine effects in data. The critical revelation 
in Figure 1.1 is not simply that the year effects at Morris are reversed — 
that was noted in the past. The revelation is that at Morris, the 1932 
yields minus the 1931 yields have about the same overall level as the 
1931 yields minus the 1932 yields at the other sites. This observation 
triggers the thought that the years might have been reversed. As 
Chapter 6 will show, important aspects of the display method of the 
multiway dot plot contribute to this revelation and other revelations of 
importance in solving the mystery. Tools matter indeed.

The tools of this book are organized by type of data. Each chapter 
treats a different data type: univariate, bivariate, trivariate, 
hypervariate, and multiway.

Univariate Data

Figure 1.2 uses histograms to graph heights of singers in the New 
York Choral Society [16]. The singers are divided into eight voice parts, 
shown by the panel labels in the figure. Starting from the lower left 
panel of the display, and then going from left to right and from bottom 
to top, the pitch intervals of the voice parts increase. For example, the 
second basses sing lower pitches than the first basses, who in turn sing 
lower pitches than the second tenors. The goal of the analysis of the 
singer data is to determine if the heights tend to decrease as the pitch 
interval increases. The heights are univariate data: measurements of a 
single quantitative variable. In this case the variable is broken up into 
groups by the categorical variable, voice part. The visualization of 
univariate data is treated in Chapter 2.
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1.2 Histograms graph the singer 
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interval width is one inch.
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The histogram is a widely used graphical method that is at least a 
century old. But maturity and ubiquity do not guarantee the efficacy of 
a tool. The histogram is a poor method for comparing groups of 
univariate measurements. In Figure 1.2, it does not clearly reveal the 
relationship of height and voice range. True, we see that the heights in 
the bottom four panels tend to be greater than the heights in the top four 
panels. But the bottom heights are all men and the top are all women, so 
we have merely seen the obvious. The visualization tools in Chapter 2 
show far more of the structure of the singer data. They include quantile 
plots, q-q plots, normal q-q plots, box plots, and fitting methods. The 
venerable histogram, an old favorite, but a weak competitor, will not be 
encountered again.

Bivariate Data

Figure 1.3 is a scatterplot of data from an experiment on the 
scattering of sunhght in the atmosphere [7]. The vertical scale is the 
Babinet point, the scattering angle at which the polarization of sunhght 
vanishes. The horizontal scale is the atmospheric concentration of soHd 
particles in the air. The goal is to determine the dependence of the 
Babinet point on concentration, so the Babinet point is a response and 
the concentration is a factor. The polarization data are bivariate data; 
paired measurements of two quantitative variables. The visuahzation of 
bivariate data is treated in Chapter 3.

The polarization data have two components of variation. One 
component is a smooth underlying pattern — a decrease in the overall 
level of the Babinet point as concentration increases. Fitting such 
bivariate data means determining a smooth curve that describes the 
underl)ang pattern. The second component is residual variation about 
this underlying pattern — the vertical deviations of the points from the 
smooth curve.

The scatterplot is a useful exploratory method for providing a first 
look at bivariate data to see how they are distributed throughout the 
plane, for example, to see clusters of points, outliers, and so forth.
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1.3 An exploratory scatterplot 
graphs the Babinet point against 
particulate concentration.

But for factor-response data such as the polarization data in Figure 1.3, 
we should be prepared to move almost immediately to fitting the data 
and visualizing the fit and residuals. It is part of the folklore of data 
display that a good method for putting a smooth curve through 
bivariate data is to stare at an unfitted scatterplot and fair a smooth 
curve through the data by the mind's eye. In fact, the residual variation 
often interferes with the visual smoothing. For example. Figure 1.3 
suggests that the underlying pattern is linear in the middle with a hint of 
curvature at the ends, but it is not possible to assess this nonlinearity 
with precision, or to even determine if it exists. In Chapter 3, a curve is 
fitted to the polarization data using the fitting method loess, and a 
pattern not readily apparent from the scatterplot emerges. Conversely, 
when the underlying smooth pattern is a major component of the data, 
with steep slopes, the pattern interferes with our assessment of the 
residual variation. In Chapter 3, residual variation is visualized by many 
methods; for the polarization data, interesting patterns emerge.
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Trivariate and Hypervariate Data

Oxides of nitrogen, NOx, are one of the major pollutants in 
automobile exhaust. An experiment was run to study how the 
concentration of NOx depends on two engine factors: E, the equivalence 
ratio, a measure of the richness of the air and fuel mixture, and C, the 
compression ratio of the engine [12]. The observations, which consist of 
88 measurements of the three quantitative variables, are trivariate data. 
Measurements of four or more quantitative variables are hypervariate 
data. The visualization of trivariate data is discussed in Chapter 4, and 
the visualization of hypervariate data is discussed in Chapter 5.

Figures 1.4 and 1.5 graph NOx against the factors. The scatterplot of 
NO x against E reveals a strong nonlinear pattern. The scatterplot of N O x  
against C shows Uttle apparent relationship between the two variables. 
Should we conclude that concentration does not depend on C? There is a 
precedent for doing this [17]. StiU, we will withhold judgment. The data 
hve in three dimensions, but each scatterplot is a projection onto only 
two dimensions. It is possible for 2-D projections not to reveal 3-D 
structure. As we go from one point to the next on the scatterplot of NO x  
against C, the value of E changes, so the graph is not providing a proper 
view of how NOx depends on C for E held fixed. It would be imprudent 
to conclude at this point that NOx does not depend on C. For example, a 
strong dependence of concentration on E could mask a subtler 
dependence on C.

We need a way of seeing the dependence of NOx on C without the 
interference from E. Visualization tools discussed m Chapters 4 will do 
this for us. For example, the coplot is a particularly incisive method for 
studying conditional dependence. And, of course, we will fit the data.
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1.4 Oxides of nitrogen are graphed 
against equivalence ratio.

1.5 Oxides of nitrogen are graphed 
against compression ratio.
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Multiway Data

The barley data discussed at the beginning of the chapter are graphed 
in Figure 1.6 by a multiway dot plot with a format different from that of 
the display of the data in Figure 1.1. The barley measurements are 
multiway data: a quantitative variable is measured for each combination 
of the levels of two or more categorical variables. The quantitative 
variable in this case is yield and the categorical variables are variety, site, 
and year. The visualization of multiway data is discussed in Chapter 6. 
The chief visualization tool is the multiway dot plot.

1.2 Visualization and Probabilistic Inference

Probabilistic inference is the classical paradigm for data analysis in 
science and technology. It rests on a foundation of randomness; 
variation in data is ascribed to a random process in which nature 
generates data according to a probability distribution. This leads to a 
codification of uncertainly by confidence intervals and hypothesis tests. 
Pascal, Fermat, and Huygens laid the foundations of probability theory 
in the second half of the 17th century, and by the beginning of the 18th 
century, the variation in scientific data was being described by 
probability models [47]. But the modern foundations of probabilistic 
inference as we practice it today were laid in the early part of the 20th 
century by R. A. Fisher [38,39, 40].

Visualization — with its two components, graphing and fitting — is a 
different paradigm for learning from data. It stresses a penetrating look 
at the structure of data. What is learned from the look is guided by 
knowledge of the subject under study. Sometimes visualization can fuUy 
replace the need for probabilistic inference. We visualize the data 
effectively and suddenly, there is what Joseph Berkson called interocular 
traumatic impact: a conclusion that hits us between the eyes. In other 
cases, visualization is not enough and probabilistic inference is needed 
to help calibrate the uncertainty of a less certain issue. When this is so, 
visualization has yet another role to play — checking assumptions. The 
validity of methods of probabilistic inference rest on assumptions about 
the structure of the population from which the data came. But if 
assumptions are false, results are not valid. Despite its flippancy, the 
aphorism, "garbage in, garbage out", is an excellent characterization.
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on two panels, one for 1931 and one for 1932.
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Without a careful checking of assumptions, validity is replaced by large 
leaps of faith; one can only hope that the probabilistic assertions of 
confidence intervals and hypothesis tests are valid. Visualization 
reduces leaps of faith by providing a framework for studying 
assumptions.

Carrying out probabilistic inference without checking assumptions 
deserves an unflattering name. Rote data analysis achieves this and 
describes its character well. Ample examples in the book attest to its 
dangers.

1.3 Direct Manipulation

Imagine us at the University of Leiden in 1637, trying to understand 
new data: measurements of the heights and weights of 25 adult males in 
Leiden. A colleague comes into the office and says, in Dutch, of course:

I just met a Frenchman named Rene Descartes and he has an 
interesting idea for representing mathematical functions of a 
single variable. Associated with each point in the plane are two 
numbers: the distances of the point from two perpendicular lines.
If the function is / ,  then the function value f { x )  is represented 
geometrically by showing the point associated with x and f { x ) .
This can be done for many values of x,  and the result is a 
geometric representation of the function that gives you much 
insight into its behavior. I wonder if we could use this idea to 
study our height and weight data.

The colleague then reveals Descartes' La Geometrie [34].

Cartesian coordinates provide a visual medium within which data 
can be visually displayed. Most graphical methods use this medium. In 
1637 in Leiden, had we been sufficiently creative, we might have 
exploited Cartesian coordinates and graphed the weights and heights by 
a scatterplot. This would have made us way ahead of our time. The 
scientific community only slowly exploited the medium, first on a 
limited basis in the 1600s and early to middle 1700s, and then with much 
more energy toward the end of the 1700s [28, 45].
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In the 1960s, over three centuries after Descartes' La Geometrie, 
computer scientists created a new visual medium that would be as 
revolutionary for data display as Cartesian coordinates. Direct 
manipulation graphics appeared on computer screens. The user visually 
addresses a display using an input device such as a mouse, and causes 
the display to change in realtime. Direct manipulation would become a 
standard medium not only for data display but also for user interfaces, 
affecting the basic way that people interface with computer software.
But unlike three centuries earlier, scientists were quick off the mark to 
exploit this new medium for data display. For example,
Edward Fowlkes, a statistician, saw the possibilities for graphing data 
and quickly invented several new methods [2,43]. As the medium 
became widely available, the invention of direct manipulation graphical 
methods grew and intensified [6,24,41, 62, 73].

This book presents several direct manipulation methods. This is no 
small challenge to do on the static pages of a book. But the ideas manage 
to get through, if not the excitement. The excitement must await the 
video version of the book.
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2 Univariate Data

Figure 2.1 graphs data introduced in Chapter 1 — heights of singers 
in the New York Choral Society [16]. The vertical scale on the panels is 
height; the horizontal scale, which will be explained shortly, ranges from 
0 to 1. The singers are divided into eight voice parts, shown by the panel 
labels in the figure. The altos and sopranos are women and the tenors 
and basses are men. The pitch intervals of the voice parts are different. 
Starting from the lower left panel in Figure 2.1, the pitch interval 
increases as we progress through the panels from left to right and from 
bottom to top. For example, the second basses must sing lower pitches 
than the first basses, who in turn sing lower pitches than the second 
tenors.

The singer heights are univariate data: measurements of a single 
quantitative variable. The measurements are broken up into groups by 
the categorical variable, voice part. The goal in analyzing the singer data 
is to determine whether voice part is related to height. One might expect 
this because taller people tend to be larger overall, and larger vocal tracts 
would have lower resonance frequencies, and thus produce lower tones.

2.1 Quantile Plots

The singer heights for each voice part occupy positions along the 
measurement scale. The collection of positions is the distribution of the 
data. Thus the goal in analyzing the data is to compare the eight height 
distributions.

Quantiles

Quantiles are essential to visualizing distributions. The /  quantile, 
q{f),  of a set of data is a value along the measurement scale of the data 
with the property that approximately a fraction /  of the data are less
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than or equal to q{f).  The property has to be approximate because there 
might not be a value with exactly a fraction /  of the data less than or 
equal to it. The 0.25 quantile is the lower quartile, the 0.5 quantile is the 
median, and the 0.75 quantile is the upper quartile.

The graphical methods in this chapter are largely visualizations of 
quantile information. Quantiles provide a powerful mechanism for 
comparing distributions because f-values provide a standard for 
comparison. To compare distributions we can compare quantiles with 
the same f-values. For example, for the singer heights, the median of the 
second basses is 72 inches, 4 inches greater than the median of the first 
tenors. This is a meaningful and informative comparison.

An explicit rule is needed for computing q{f).  Consider the first 
tenor heights. Let X(j), for f =  1 to n, be the data ordered from smallest 
to largest; thus is the smallest observation and is the largest.
For the first tenors, n =  21, =  64 inches, and X(2\) =  76 inches. Let

fi =
0.5

n

These numbers increase in equal steps o i l / n  beginning with 1 /2n, 
which is slightly above zero, and ending with 1 — 1 / in , which is slightly 
below one. For the first tenors, the values go from 1/42 to 41/42 in steps 
of 1/21. We will take to be q{fi). For the first tenors the values are

/ X / X / X

0.02 64 0.36 67 0.69 71
0.07 64 0.40 68 0.74 71
0.12 65 0.45 68 0.79 72
0.17 66 0.50 68 0.83 72
0.21 66 0.55 69 0.88 73
0.26 66 0.60 70 0.93 74
0.31 67 0.64 70 0.98 76

The precise form of fi is not important; we could have used z/(n +  1), or 
even z/n, although this last value would prove inconvenient later for 
visualization methods that employ the quantiles of a normal 
distribution.
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So far, q{f)  has been defined just for f-values that are equal to fi. The 
definition is extended to all values of /  from 0 to 1 by linear 
interpolation and extrapolation based on the values of fi and q{fi). 
Figure 2.2 illustrates the method using the first tenor heights. The 
plotting symbols are the points (/i, the interpolation and 
extrapolation are shown by the line segments.

2.2 The symbols and the line 
segments show the quantile 
function of the first tenor heights.

f-value

Graphing Quantiles

On a quantile plot, is graphed against fi. In other words, we 
visualize the fi quantiles. The panels of Figure 2.1 are quantile plots of 
the singer heights. The interpolated and extrapolated values of q{f)  are 
not shown because they do not appreciably enhance our visual 
assessment of the distribution of the data. Rather, the interpolation or 
extrapolation is used when, for some other purpose, we need a quantile 
whose f-value does not happen to be one of the values of fi.
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Graphing univariate measurements on a quantile plot is a simple and 
effective way to have a first look at their distribution. First, the values of 
all of the data are displayed; we can assess both overall behavior and 
unusual occurrences. And information about quantiles is conveyed.

Figure 2.1 shows several properties of the singer data: the heights are 
rounded to the nearest inch; the values for each voice part have a 
reasonably wide range, about one foot in some cases; there are many 
first soprano heights equal to 65 inches; and the data have no 
particularly unusual values, for example, no exceptionally tall or short 
singers. The height distributions vary substantially with the voice part. 
At one extreme, the median height is 65 inches for first sopranos, 
diminutive women piercing the air with notes as high as two octaves 
above middle C. At the other extreme, the median height is 72 inches for 
the second basses, tall men vibrating the stage with notes as low as two 
octaves below middle C. Shortly, other methods for visualizing quantiles 
will reveal more about the shift in the distributions.

Graphical Order and Visual Reference Grids

Figure 2.1 uses an important convention that will be followed in the 
remainder of the book; when the panels of a multi-panel display are 
associated with an ordered variable, such as pitch interval, the variable 
will increase as we go from left to right and from bottom to top. If the 
ordered variable were graphed in some way along a horizontal scale, it 
would increase in going from left to right; if the variable were graphed 
in some way along a vertical scale, it would increase in going from 
bottom to top. The graphical order of the panels simply follows the 
established convention.

Figure 2.1 has visual reference grids, the vertical and horizontal lines 
in gray. Their purpose is not to enhance scale reading, or table look-up, 
which is the determination of numerical values from the scales; the tick 
marks are sufficient for table look-up. Rather, their purpose is to 
enhance the comparison of patterns, or gestalts, on different panels. By 
providing a common visual reference, the grids enhance our comparison 
of the relative locations of features on different panels [21]. For example, 
in Figure 2.1, the grids make it easy to see that almost all second basses 
are taller than all of the first sopranos.
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2.2 Q-Q Plots

The quantile-quantile plot, or q-q plot, of Wilk and Gnanadesikan is a 
powerful visualization method for comparing the distributions of two or 
more sets of univariate measurements [80]. When distributions are 
compared, the goal is to understand how the distributions shift in going 
from one data set to the next. For the singers, the goal is to understand 
how the height distributions shift with voice part.

The most effective way to investigate the shifts of distributions is to 
compare corresponding quantiles. This was the insightful observation of 
Wilk and Gnanadesikan, and their invention could not be more simple 
or elegant — two distributions are compared by graphing quantiles of 
one distribution against the corresponding quantiles of the other.

Suppose there are just two sets of univariate measurements to be 
compared. Let . . . ,  be the first data set, ordered from smallest 
to largest. Let . . . ,  be the second, also ordered. Suppose 
m < n. It m =  n, then yi and Xi are both (i — 0.5)In quantiles of their 
respective data sets, so on the q-q plot, ?/(j) is graphed against X(j); that 
is, the ordered values for one set of data are graphed against the ordered 
values of the other set. If m < n, then yi is the (f — 0.5) / m  quantile of 
the y data, and we graph yi against the {i — 0.5)/ m  quantile of the x 
data, which typically must be computed by interpolation. With this 
method, there are always m  points on the graph, the number of values 
in the smaller of the two data sets. Of course, if m is a big number say 
10̂ , then we can select fewer quantiles for comparison.

Figure 2.3 graphs quantiles of the 26 second basses against quantiles 
of the 21 first tenors. The size of the smaller data set is 21, so 21 quantiles 
with f-values equal to (i — 0.5)/21 are compared. Because some of the 
plotting symbols overlap, only 18 distinct points appear on the graph. 
Ordinarily, such overlap would require a remedy discussed in Chapter 3 
— jittering, an addition of uniform random noise to coordinates of the 
points. But on a q-q plot, the points portray what is actually an 
increasing continuous curve, one quantile function against another, so 
breaking up the overlap is not necessary. When i =  \, the f-value is 
0.024. The point in the lower left corner of the data region is the 0.024 
quantile for the basses against the 0.024 quantile for the tenors. When 
i =  21, the f-value is 0.976. The point in the upper right corner of the 
data region is the 0.976 quantile for the basses against the 0.976 quantile 
for the tenors.
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2.3  The first tenor and second bass 
height distributions are compared by 
a q-q plot.

Tenor 1 Height (inches)

The line in Figure 2.3 isb =  t, where b stands for bass and t stands for 
tenor. Let {ti, bi) be the coordinates of the points graphed on the panel. 
Our goal in studying the q-q plot is to determine how the points deviate 
from the line b =  t. If the distributions of the tenor and bass heights 
were the same, the points would vary about this line. But they are not 
the same. There is a shift between the distributions; the underlying 
pattern of the points is a line

b =  t +  c.

Before interpreting this pattern, we will make one more graph to 
visualize it in a different way.

Tukey Mean-Difference Plots

A Tukey mean-difference plot, or m-d plot, can add substantially to our 
visual assessment of a shift between two distributions. Figure 2.4 is an 
m-d plot derived from the q-q plot in Figure 2.3. The differences, bi — U,
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are graphed against the means, {hi -Vti)l2. The line b =  ton  the q-q plot 
becomes the zero line on the m-d plot, and a shift is assessed by judging 
deviations from the zero line. This often enhances our perception of 
effects because we can more readily judge deviations from a horizontal 
line than from a line with nonzero slope.

3 - O O o

w0

0oc
0k_
0

- 1  -

— I------------- 1----------------- 1------------------- 1-------------- 1--------------

66 68 70 72 74 76

2.4  The first tenor and second bass 
height distributions are compared by 
a Tukey m-d plot.

Mean (inches)

Figures 2.3 and 2.4 show that the tenor and bass distributions differ in 
an exceedingly simple way: the quantiles of the bass distribution are 
roughly equal to the quantiles of the tenor distribution plus a constant of 
about 2.5 inches. There is an additive shift of about 2.5 inches. The 
comparison of the two distributions can be summarized by the simple 
statement that the distribution of the bass heights is about 2.5 inches 
greater. This is good news; later examples will show that shifts between 
distributions can be complex.
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Pairwise Q-Q Plots

The goal in analyzing the singer data is to compare the distributions 
of all voice parts and determine the shifts. Figure 2.5 shows the q-q plots 
of all possible pairs of voice parts. For example, the second row from the 
bottom has q-q plots of the first basses against all other voice parts. The 
second column from the left also compares the distribution of the first 
basses with all others, but now the first bass quantiles are on the 
horizontal axis instead of the vertical axis. Thus we can scan either the 
second row or column to compare the first basses with all other voice 
parts.

60 70 60 70 60 70 60 70

Height (inches)

2 .5  The height distributions are compared by q-q plots for all pairs of singer voice parts.
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There is a great deal of information in Figure 2.5. Overall, there is a 
suggestion that shifts between pairs of distributions are additive. But we 
need a way to distill the information because there are so many pairs to 
compare. Coming methods help with the distillation.

2 3  Box Plots

One method for distilling the information on q-q plots is Tukey's 
box plot [76]. Instead of comparing many quantiles, as on the q-q plot, a 
limited number of quantities are used to summarize each distribution, 
and these summaries are compared.

5 -

Bo5Q

outside values 

upper adjacent value

upper quartile

median 

lower quartile

lower adjacent value 

outside value
2.6  The diagram defines the box 
plot display method.

The method of summary is illustrated in Figure 2.6. The filled circle 
encodes the median, a measure of the center, or location, of the 
distribution. The upper and lower ends of the box are the upper and 
lower quartiles. The distance between these two values, which is the 
interquartile range, is a measure of the spread of the distribution. The 
middle 50% or so of the data lie between the lower and upper quartiles. 
If the interquartile range is small, the middle data are tightly packed 
around the median. If the interquartile range is large, the middle data 
spread out far from the median. The relative distances of the upper
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and lower quartiles from the median give information about the shape of 
the distribution of the data. If one distance is much bigger than the 
other, the distribution is skewed.

The dashed appendages of the box plot encode the adjacent values.
Let r be the interquartile range. The upper adjacent value is the largest 
observation that is less than or equal to the upper quartile plus 1.5r. The 
lower adjacent value is the smallest observation that is greater than or 
equal to the lower quartile minus 1.5r. Figure 2.7, a quantile plot, 
demonstrates their computation. The adjacent values also provide 
summaries of spread and shape, but do so further in the extremes, or 
tails, of the distribution.

2.7  The diagram illustrates the 
computation of the adjacent values, 
which are used in the box plot 
display method.

Outside values, observations beyond the adjacent values, are graphed 
individually. Sometimes, the upper adjacent value is the maximum of 
the data, so there are no outside values in the upper tail; a similar 
statement holds for the lower tail. Outside values portray behavior in 
the extreme tails of the distribution, providing further information about
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spread and shape. If there happen to be outliers — unusually large or 
small observations — they appear as outside values, so the box plot 
method of summarizing a distribution does not sweep outliers under the 
rug.

Figure 2.8 shows box plots of the singer heights. The visualization 
effectively conveys the relationship of voice part and height. Part of the 
reason is the perceptual effectiveness of the display method. Each 
specific aspect of the distributions that is encoded — medians, upper 
quartiles, lower quartiles, and so forth — can be readily visually 
decoded [21, 77]. For example, it is easy to see the medians as a whole, 
and visually assess the values. Also, the format is horizontal to enhance 
the readability of the labels. Figure 2.8 shows that for the men singers, 
the tenors and basses, height tends to decrease as the pitch interval 
increases; the same is true of the women singers, the sopranos and altos. 
One exception to this pattern is the first sopranos, whose height 
distribution is quite similar to that of the second sopranos. This might be 
due to a bias in the measurements; the collector of the data noticed a 
tendency for the shortest sopranos to round their heights strongly 
upward.

2.8 The eight singer distributions are 
compared by box plots.

Height (inches)
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2.4 Normal Q-Q Plots

The box plots in Figure 2.8 show certain effects that accord with our 
prior knowledge of height and pitch interval, and that we would expect 
to be reproduced if we were to study another set of singer heights. One 
such reproducible effect is the general decrease in the height 
distributions with increasing pitch interval. But the box plots also show 
spurious effects: unreproducible variation, and variation that is an 
artifact of rounding to the nearest inch. This spurious variation does not 
speak to the relationship of height and voice part. For example, for the 
first sopranos, the median is equal to the upper quartile; for the second 
tenors, the median is equal to the lower quartile; and the two tallest 
singers are a first tenor and a second tenor. There is nothing to be 
learned about height and voice part from these properties of the data. In 
this section and the next, we move from the graphical methods of the 
previous sections, which give full vent to the variation in the data, both 
informative and spurious, to methods whose purpose is to impose 
structure on the data in an attempt to help us decide what variation 
appears meaningful and what variation it is better to ignore.

2.9  The plotting symbols and the 
line segments display the quantile 
function of the first altos.

f-value
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Data Quantiles and Normal Quantiles

Figure 2.9 graphs the quantile function, ? (/), of the first alto heights. 
This is the quantile function of a data distribution, a set of real-life 
univariate measurements. Figure 2.10 graphs quantiles of a 
mathematical distribution, the normal distribution, a staple of 
probabilistic inference. It has no reality in the sense that no set of data 
could ever have such a normal distribution or even be construed as 
genuinely being a sample from a normal population of potential 
measurements. It implies, among other things, that measurements range 
from — oc to oc and have infinite accuracy. Yet it is still helpful to check 
if the normal quantile function, however imaginary, serves as a 
reasonable approximation to the real thing, the data distribution.

The normal distribution is a family of distributions. Each normal 
distribution in the family is specified by two numerical values: the 
mean, //, and the standard deviation, a. The mean is a measure of the 
location of the distribution, and the standard deviation is a measure of 
the spread of the distribution about its mean. Given fi and a, we can

2.10 The curve displays the 
quantiles of a normal distribution for 
f-values from 1/70 to 69/70, which 
are the f-values of the minimum and 
maximum heights of the first altos.



30 Univariate Data

compute the quantile function, q^^a{f), of the specified distribution; in 
Figure 2.10, the specified mean is the sample mean of the first alto 
heights.

X

 ̂ 35

= — Xi =  64.9 inches , 
35 

î=\

and the specified standard deviation is the sample standard deviation of 
these heights.

s =
 ̂ 35

— — xY  =  2.8 inches .
Z = 1

Most people think about the normal distribution in terms of random 
variables and probabilities. Suppose nature generates a value, x, of a 
random variable with a normal distribution. Let /  be a probability 
between 0 and 1. Then the probability that x is less than or equal to

is /• That is, a fraction /  of the mass of the normal distribution is 
less than or equal to Notice that the definition of the normal
quantile is analogous to the definition of the quantile, 9 (/) , of a set of 
data; approximately a fraction /  of the mass of the data is less than or 
equal to q{f).

Graphing Data Quantiles and Normal Quantiles

A normal quantile-quantile plot, or normal q-q plot, is a graphical 
method for studying how well the distribution of a set of univariate 
measurements is approximated by the normal. As before, let be the 
data, ordered from smallest to largest, and let fi =  {i — 0,5)/n.  Suppose 
the distribution of the data is well approximated by some normal 
distribution with mean p and standard deviation a. is the fi
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quantile of the data, and is the corresponding normal fi
quantile of the approximating distribution. If is graphed against 

the overall pattern is a line with intercept 0 and slope 1. An 
important property of normal quantiles is that

QfiAf)  =  + 0-90,1 ( /)  ,

where ô,i ( /)  is the quantile function of the unit normal distribution, 
which has fi =  0 and cr =  1. In other words, to go from unit normal 
quantiles to general normal quantiles, we simply multiply by a and add 
fi. Thus, if the distribution of the a;(j) is well approximated by a normal 
distribution, then on a graph of against 90,1 {fi)> the overall pattern 
is a line with intercept fi and slope a.

A graph of against (fi) is a normal q-q plot. To judge the 
normal approximation, we judge the underlying pattern of the points on 
the graph. If the pattern is linear, or nearly so, the data distribution is 
well approximated by the normal. If not, the deviations from linearity 
convey important information about how the data distribution deviates 
from the normal.

Figure 2.11 shows normal q-q plots of the singer data. On each panel, 
a line is superposed to help us judge the straightness of the pattern. The 
line passes through the upper and lower quartiles, (go,i (0-25), q(0.25)) 
and (go,i (0.75), q(0.75)). In each case, the overall pattern appears nearly 
straight; that is, the eight distributions are reasonably well approximated 
by normal distributions. The deviations from the overall pattern are 
inflated by rounding to the nearest inch, which produces strings of 
points positioned at integer values along the vertical scale. Such 
discreteness is a departure from normality, because the normal 
distribution is a continuous one in which any value is possible. But the 
rounding in this case is not so severe that the approximation is seriously 
jeopardized.
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2.11 Normal q-q plots compare 
the eight height distributions with

Unit Normal Quantile
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The Normal Approximation

Many good things happen when data distributions are well 
approximated by the normal. First, the question of whether the shifts 
among the distributions are additive becomes the question of whether 
the distributions have the same standard deviation; if so, the shifts are 
additive. The slope of the pattern of points on a normal q-q plot is an 
indicator of the standard deviation of the approximating normal, so 
judging whether standard deviations are equal from normal q-q plots 
involves judging whether the slopes are equal. For the singer data, the 
slopes in Figure 2.11 do vary, but not by a large amount. Most 
importantly, the variation in the slopes is not related to the means of the 
distributions. If there were a meaningful change in the standard 
deviations of the singer distributions, we would expect it to take the 
form of an increase in the voice-part standard deviations as the 
voice-part means increase. This is not the case.

A second good happening is that methods of fitting and methods of 
probabilistic inference, to be taken up shortly, are typically simple and 
on well understood ground. For example, statistical theory tells us that 
the sample mean, x, provides a good estimate of the location of the 
distribution, and the sample standard deviation, s, provides a good 
estimate of the spread of the distribution.

A third good thing is that the description of the data distribution is 
more parsimonious. A data distribution needs n values to completely 
determine it, the n observations x*. If the distribution is well 
approximated by the normal, these n values can be replaced by two 
values, X and s. The quantiles of the data are then described by the 
quantiles of the normal distribution with a mean equal to x and a 
standard deviation equal to s. For example, with these values, we know 
that the upper quartile of the data is about x -|- 0.67s.
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2.5 Fits and Residuals

Fitting data means finding mathematical descriptions of structure in 
the data. An additive shift is a structural property of univariate data in 
which distributions differ only in location and not in spread or shape. 
For example, the visualization of the singer data has so far suggested 
that the voice-part distributions differ only in location. An additive shift 
is fitted by estimating location — computing a location measure for each 
distribution.

Fitting Additive Shifts by Location Estimates

Two candidates for location estimation are the median and the mean. 
For the singer data, since the normal q-q plots showed that the 
distributions are well approximated by the normal, we will follow the 
imperatives of statistical theory and use means. The voice-part means 
are graphed by a dot plot in Figure 2.12. The mean height decreases with 
increasing pitch interval, except for the means of the first and second 
sopranos, which are very nearly equal. We saw this property earlier in 
the box plots of Figure 2.8, which used medians rather than means as the 
location measure. At that stage of our analysis, which was preliminary 
and exploratory, we used medians because they are not distorted by a 
few outliers, a property not shared by the mean; we will return to this 
issue of distortion in Section 2.8.

Soprano 1 

Soprano 2 

Alto 1 

Alto 2 

Tenor 1 

Tenor 2 

Bass 1 

Bass 2 2.12 A dot plot displays the sample 
means of the height distributions.

64 66 68 70

Mean Height (inches)
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Fitted Values and Residuals

For the pth voice part of the singer data, let hpi be the zth 
measurement of height and let hp be the mean height. In fitting the eight 
voice-part means to describe the additive shifts, each singer height has 
had its voice-part mean fitted to it. The fitted value for hpi is

hpi — hp.

The residuals are the deviations of the heights from the fitted values,

S p i  —  h p i  h p i .

Thus the heights have been decomposed into two parts,

hr hpi Spi.

The fitted values account for the variation in the heights attributable to 
the voice-part variable through the fitting process. The residuals are the 
remaining variation in the data after the variation due to the shifting 
means has been removed. This removal is shown in Figure 2.13, which 
graphs the eight residual distributions. Since the subtraction of means 
has removed the effect of location, the box plots are centered near zero.

Soprano 1

Soprano 2
L -------------

Alto 1 : ------------------------ £

Alto 2
L " L

Tenor 1

Tenor 2
L

Bass 1 [------------------------ {

Bass 2
L

2.13 Box plots compare the 
distributions of the height residuals for 
the fit to the data by voice-part 
means.

- 2  2 6 

Residual Height (Inches)
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Suppose, as our visualization so far suggests, that the underlying 
patterns of the eight singer distributions differ by additive shifts. Then 
the distributions of the eight sets of residuals should be nearly the same 
because subtracting means eliminates the shifts. Our next task is to 
compare the distributions of the residuals to see if they appear to be 
nearly the same; this provides a confirmation of our additive-shift 
observation.

The residual distributions could be compared by all pairwise q-q 
plots, but there are 28 pairs, and we would be back to the problem of the 
pairwise q-q plots of the data in Figure 2.5 — assessing a substantial 
amount of variation. Figure 2.14 uses another method that results in just 
eight q-q plots. On each panel, the quantiles of the residuals for one 
voice part are graphed on the vertical scale against the quantiles of the 
residuals for all voice parts on the horizontal scale. The line on each 
panel has slope one and intercept zero. Since the underlying patterns of 
the points on the eight panels follow these lines, the residual 
distributions are about the same. This adds credence to a conclusion of 
additive shifts.

Homogeneity and Pooling

The process of identifying a structure in data and then fitting the 
structure to produce residuals that have the same distribution lies at the 
heart of statistical analysis [3, 30,35, 76]. Such homogeneous residuals 
can be pooled, which increases the power of the description of the 
variation in the data. For the singer data, we have judged the eight 
residual distributions to be homogeneous, so we can pool them, using 
the variation in the entire collection of residuals to describe the variation 
in the residuals for each voice part. This fitting and pooling leads, as we 
will now show, to a more informative characterization of the variation of 
the height distribution for each of the voice parts.
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2.14 Each panel is a q-q plot 
that compares the distribution of 
the residuals for one voice part 
with the distribution of the pooled 
residuals.

Residual Height (inches)
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Each voice-part distribution can be described by its mean together 
with the pooled residual variation. Figure 2.15 is a quantile plot of all of 
the residuals. The 0.025 quantile of the residuals is —4.6 inches and the 
0.975 quantile is 4.8 inches. Thus 95% of the residuals lie between about 
±4.7 inches. Consider the first sopranos. The mean is 64.3 inches. The 
resulting description of the 95% first soprano variation is 64.3±4.7 
inches, which is 59.6 inches to 69.0 inches. Similarly, the second bass 
variation is 71.4±4.7 inches, which is 66.7 inches to 76.1 inches. We have 
been able to use the richer information source of all of the residuals to 
describe the variation in the second basses and the variation in the first 
sopranos, rather than relying on just the first soprano heights to describe 
their variation, and just the second bass heights to describe their 
variation. Of course, the pooling power has come from imposing 
structure on the data — an additive-shift structure — and the resulting 
description is valid only if the structure is valid, but the visualization of 
the data has made the imposition entirely reasonable.

2.15 The pooled residuals are 
displayed by a quantile plot.



Visualizing Data 39

Fitting the Normal Distribution

Once the homogeneity of a set of residuals has been established, we 
can attempt a fit of the normal distribution to them. Figure 2.16 is a 
normal quantile graph of the singer residuals. There is a hint of 
curvature in the underlying pattern, but the effect is relatively minor, so 
the residual distribution is reasonably well approximated by the normal. 
Thus we can use a fitted normal to characterize the variability in the 
residuals.

2.16 A normal q-q plot compares 
the distribution of the pooled 
residuals with a normal distribution.

Unit Normal Quantile

The sample mean of the residuals is 0 inches because the mean of the 
residuals for each voice part is 0 inches. The sample standard deviation 
of the residuals is

1

n — 8 E E ' pi 2.45 inches
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Thus the fitted normal has a mean of 0 inches and has a standard 
deviation of 2.45 inches. The 95% variation about the mean of a normal 
distribution is ±1.96 times the standard deviation; for the singer 
residuals, this is ±4.8 inches, a value that is very close to the ±4.7 inches 
that arose from the residual quantiles. Thus, using this normal fit, the 
description of the 95% variability in the first soprano heights is 59.5 
inches to 69.1 inches and the 95% variability in the second bass heights is
66.6 inches to 76.2 inches. The description via the normal approximation 
is attractive because it is more parsimonious than the description based 
on the residual quantiles.

The Spreads of Fitted Values and Residuals

It is informative to study how influential the voice-part variable is in 
explaining the variation in the height measurements. The fitted values 
and the residuals are two sets of values each of which has a distribution. 
If the spread of the fitted-value distribution is large compared with the 
spread of the residual distribution, then the voice-part variable is 
influential. If it is small, the voice-part variable is not as influential. 
Figure 2.17 graphs the two distributions by quantile plots; since it is the 
spreads of the distributions that are of interest, the fitted values minus 
their overall mean are graphed instead of the fitted values themselves. 
This residual-fit spread plot, or r-f spread plot, shows that the spreads of 
the residuals and the fitted values are comparable. Thus the voice-part 
variable accounts for a significant portion of the variation in the height 
data, but there is a comparable amount of variation remaining.
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0.0 0.5 1.0

2.17 An r-f spread plot compares the spreads of the residuals and the fitted values 
minus their mean for the fit to the singer data.

Fitting and Graphing

This approach to studying the singer distributions — fitting sample 
means to the data, subtracting them to get residuals, and then graphing 
the fit and residuals — illustrates the visualization paradigm of fitting 
and graphing. For the singer heights, it has led us to a more powerful 
description of the data. The sample means fitted to the data summarize 
the locations of the distributions. The graphs of the residuals make it 
clear that the distributions of the residuals are homogeneous and well 
approximated by the normal distribution. The pooling of the residuals 
to characterize the variation for each voice part and the approximation 
of the pooled residual distribution by the normal increase the 
information in the description of the variation of the data. The final 
result is a convincing, quantified picture of the relationship between 
height and pitch interval.



42 Univariate Data

2.6 Log Transformation

In 1960 Bela Julesz sprang an ingenious invention on the scientific 
world of visual perception — the random dot stereogram [56, 57]. An 
example, designed by Julesz, is shown in Figure 2.18. Each of the two 
images has the appearance of a collection of random dots. But when the 
images are looked at in stereo — which means that one image falls on 
the left retina and the other image falls on the right — a 3-D object is 
seen. In this case, the object is a diamond-shaped region floating above 
or below the plane of the page.

2.18 A diamond-shaped region is 
shown in 3-D by a random dot 
stereogram.

One way to fuse the two images in Figure 2.18 — that is, to see the 
3-D effect — is to use a stereo viewer, which channels the left image to 
the left retina and the right image to the right retina. This makes the 
diamond float above the page. Another method requires no equipment 
— fixing on a point between the two images and defocusing the eyes by 
looking through the images, bringing them together in the middle. It is 
helpful to vary the distance of the image from the eyes to find an optimal 
position for fusion. When fusion is accomplished, the visual system 
actually sees three images, with the center one in 3-D, and, again, the 
diamond floats above the page. It is hard to make this method work the 
first time, but after a first success, it is typically easy to do again. A third 
method is crossing the eyes; since this sends the left image to the right 
retina and the right image to the left retina, the diamond floats below the 
page. For those without a stereo viewer, mastering the technique of 
viewing with the unaided eye will have a benefit. A visualization 
method in Chapter 4 uses stereo to display trivariate data.
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The idea of the random dot stereogram is simple and elegant. 
Embedded in the right view is a region, in this case a diamond, that is 
exactly repeated in the left view, but is shifted slightly to the right. Quite 
incredibly, this binocular disparity is enough to enable fusion. Julesz's 
invention demonstrated that the visual system can process local detail to 
construct an object in 3-D, and needs no other information about the 
form of the object.

Typically, a viewer concentrating on a random dot stereogram 
achieves fusion after a few seconds or more. The fusion is not achieved 
by conscious thought, for example, by the processes that allow us to 
reason about the world. But fusing the stereogram once makes it easier 
to do again, so something stored in the brain's memory can decrease 
fusion time. An experiment was run to study the effect of prior 
knowledge of an object's form on fusion time [44]. The experimenters 
measured the time of first fusion for a particular random dot stereogram. 
There were two groups of subjects. The NV subjects received either no 
information or verbal information. The VV subjects received a 
combination of verbal and visual information, either suggestive 
drawings of the object or a model of it. Thus the VV subjects actually 
saw something that depicted the object, but the NV subjects did not. The 
goal in analyzing the fusion times is to determine if there is a shift in the 
distribution of the VV times toward lower values compared with the 
NV times. The experimenters used a classical method of probabilistic 
inference to analyze the data, and concluded that there is no shift. We 
will use visualization methods to re-examine this result.
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Skewness

Figure 2.19 shows quantile plots of the fusion times. The data are 
skewed toward large values. Small values are tightly packed together, and 
the large values stretch out and cover a much wider range of the 
measurement scale. The extreme case is the largest NV time, 47.2 
seconds, which is more than twice the value of the next largest 
observation. The skewing gradually increases as we go from small to 
large values; the result is a strongly convex pattern.

0.0 0.5 1.0

2 .19  Quantile plots display the two distributions of the fusion-time data.

As before, let q{f)  be the /  quantile of the data. Let d{f)  be the 
distance of q{f)  from the median,

d{f)  =  k(0.5) -  q{f)\.

A distribution is symmetric if d{f)  is symmetric about 0.5 as a function 
of / ;  that is, d{f)  =  d(l — /) . The values shown on the quantile plot in 
Figure 2.20 are symmetric. A distribution is skewed toward large values 
if d{f)  is bigger than d(l — / )  for /  in the interval 0.5 to 1, and the 
disparity increases as /  goes from 0.5 to 1, that is, from the center of the 
distribution to the tails. The values shown on the quantile plot of 
Figure 2.21 are skewed toward large values.
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2.20 The graph shows the quantile 
function of data with a symmetric 
distribution.

2.21 The graph shows the quantile 
function of data that are skewed 
toward large values.

f-value
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Figure 2.22 shows normal q-q plots of the fusion times. The skewness 
toward large values creates the same convex pattern as on the quantile 
plot. This deviation from normality occurs because the normal 
distribution is symmetric. This behavior contrasts with that of the 
distributions of the singer heights, which are nearly symmetric and are 
well approximated by the normal distribution.

- 2 - 1 0  1 2

Unit Normal Quantile

2 .22  Normal q-q plots compare the distributions of the fusion-time data with 
the normal distribution.

Data that are skewed toward large values occur commonly. Any set 
of positive measurements is a candidate. Nature just works like that. In 
fact, if data consisting of positive numbers range over several powers of 
ten, it is almost a guarantee that they will be skewed. Skewness creates 
many problems. There are visualization problems. A large fraction of 
the data are squashed into small regions of graphs, and visual 
assessment of the data degrades. There are characterization problems. 
Skewed distributions tend to be more complicated than symmetric ones; 
for example, there is no unique notion of location and the median and 
mean measure different aspects of the distribution. There are problems 
in carrying out probabilistic methods. The distribution of skewed data is 
not well approximated by the normal, so the many probabilistic methods 
based on an assumption of a normal distribution cannot be applied. 
Fortunately, remedies coming in later sections can cure skewness.
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Monotone Spread

In Figure 2.23, box plots of the fusion-time distributions show that 
the median of the NV times is greater than the median of the VV times, 
and the spread of the NV times is greater than the spread of the VV 
times. In other words, the spreads increase with the locations. The same 
phenomenon can also be seen on the normal q-q plots in Figure 2.22.
The slope of the line on each panel is the interquartile range of the data 
divided by the interquartile range of the unit normal distribution. This 
measure of spread is just a rescaling of the interquartile range of the 
data. In Figure 2.22, the slope for the NV times is greater than the slope 
for the VV times.

VV

NV

2.23 The distributions of the fusion 
times are compared by box plots.

Time (seconds)

When the distributions of two or more groups of univariate data are 
skewed, it is common to have the spread increase monotonically with 
location. This behavior is monotone spread. Strictly speaking, monotone 
spread includes the case where the spread decreases monotonically with 
location, but such a decrease is much less common for raw data. 
Monotone spread, as with skewness, adds to the difficulty of data 
analysis. For example, it means that we cannot fit just location estimates 
to produce homogeneous residuals; we must fit spread estimates as well. 
Furthermore, the distributions cannot be compared by a number of 
standard methods of probabilistic inference that are based on an 
assumption of equal spreads; the standard t-test is one example. 
Fortunately, remedies for skewness can cure monotone spread as well.
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Transformation by Logs

For positive univariate measurements, it is often more natural to 
consider multiplicative effects rather than additive ones. The fusion 
times are one example. Consider times of 4 seconds and 6 seconds for 
two individuals. The interesting information is that the second 
individual took 1.5 times as long. The two individuals differ by a lot 
more in their fusion performance than two individuals with times of 20 
seconds and 22 seconds. Even though the absolute difference, 2 seconds, 
is the same in both cases, the poorer performer in the first case took 50% 
longer, whereas the poorer performer in the second set took only 10% 
longer. Taking logs amounts to changing the units of the data — from 
seconds to log seconds for the fusion times — in such a way that equal 
differences now mean equal multiplicative factors. This simplifies the 
interpretation of the measurement scale because, to put it simplistically, 
addition is easier than multiplication.

The logarithm is one of many transformations that we can apply to 
univariate measurements. The square root is another. Transformation is 
a critical tool for visualization or for any other mode of data analysis 
because it can substantially simplify the structure of a set of data. For 
example, transformation can remove skewness toward large values, and 
it can remove monotone increasing spread. And often, it is the logarithm 
that achieves this removal.

Figure 2.24 shows normal q-q plots of the logs of the fusion times.
The data are now much closer to symmetry, although there is a small 
amount of remaining skewness; the points in the lower tail of each 
distribution lie somewhat above the line. In other words, the data 
quantiles in the lower tail are a bit too big, or too close to the median. 
The effect is small, but there is a plausible explanation. There is a 
minimum amount of time that a subject needs to consciously realize that 
the visual system has fused the stereogram, and then to signal that 
fusion has occurred. Effectively, this makes the origin somewhat bigger 
than 0 seconds. We could try to bring the lower tail into line by 
subtracting a small constant such as 0.5 seconds from all of the data, but 
this gets fussier than we need to be.



Visualizing Data 49

- 2  - 1

CO■Dcoo0
CO

C\JO)O
0
E

O)o

Unit Normal Quantile

2.24  Normal q-q plots compare the distributions of the log fusion times with 
the normal distribution.

In graphing the log fusion times, log base 2 has been used. Thus, a 
change of one unit on the transformed scale means a change on the 
original scale by a factor of two. When data range through just a few 
powers of 10, log2 is easier to interpret than loĝ Q because fractional 
powers of 10 are harder to fathom than integer powers of 2 [20].

Except for the outlier, the fusion times range from 1 second to 
22 seconds. On the log2 scale, this range becomes 0 log2 seconds to 4.5 
log2 seconds. On the loĝ Q scale, the range becomes 0 loĝ Q seconds to 1.3 
logio seconds, and we must expend effort fathoming fractional powers 
of 10 to comprehend the multiplicative effects.
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S-L Plots

Monotone spread, when it occurs, can typically be spotted on box 
plots. For example. Figure 2.23 revealed the monotone spread of the 
fusion times. But the box plot is a general-purpose visualization tool for 
exploring many aspects of distributions, not just spread. The 
spread-location plot, or s-l plot, provides a more sensitive look at 
monotone spread because it is a specialized tool whose sole purpose is 
to detect changes in spread. The s-l plot translates looking at spread to 
looking at location. First, medians are fitted to the distributions of the 
data, Xi. Measures of location for the absolute values of the residuals, 
\ii\, are measures of spread for the Xi. For example, the median absolute 
deviations, or mads, of the distributions of the Xi are the medians of the 
distributions of the |£j | [51, 65].

Figure 2.25 is an s-l plot of the fusion times. The circles graph the 
square roots of the \ii \ for the two distributions against the fitted values, 
which take on two values, the medians of the two distributions. To 
prevent undue overlap of the plotting symbols, the locations of the 
symbols are jittered by adding uniform random noise to the fitted 
values. Jittering will discussed further in Chapter 3.

2.25 The s-l plot for the fusion 
times checks for nonuniform spread.

Jittered Median Time (seconds)
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The square root transformation is used because absolute residuals are 
almost always severely skewed toward large values, and the square root 
often removes the asymmetry. Also, the square roots of the two mads 
are graphed against the two medians by connecting the plotting 
locations by a line segment.

The s-1 plot for the fusion times adds to our understanding of the 
monotone spread of the distributions. It shows a convincing upward 
shift in the location of the \/\s i \ for the NV times.

Figure 2.26 is an s-1 plot for the log fusion times. The log 
transformation, in addition to removing most of the skewness, makes 
the spreads nearly equal. It is not unusual for a single transformation to 
do both. Nature is frequently kind enough to allow this.
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Jittered Median Log Time (log2 seconds)

2 .26  The s-1 plot for the log fusion 
times checks for nonuniform spread.
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Multiplicative and Additive Shifts

As we saw for the fusion times, logs can simplify structure by 
changing severe skewness to near symmetry and by changing monotone 
spread to nearly equal spread. It can also simplify structure by changing 
multiplicative shifts among distributions to additive shifts.

Figure 2.27 is a q-q plot of the fusion times on the original scale, 
before taking logs. There is a shift in the two distributions, but unlike 
the singer heights, it is not additive. The underlying pattern is a line 
through the origin with a slope of about 2/3. The shift is multiplicative, 
and quantiles with large f-values differ by more than those with small 
ones. This multiplicative shift is more complicated than an additive one 
because it results in a difference not just in the locations of the 
distributions but in the spreads as well. This produces the monotone 
spread.

2.27 The q-q plot compares the 
distributions of the fusion times.

NV Time (seconds)

Figure 2.28 is a q-q plot of the log fusion times, and Figure 2.29 is a 
corresponding m-d plot. Now, on the log scale, the effect is additive. On 
the average, the log VV times are about 0.6 log2 seconds less than the 
log NV times. Back on the original scale, this is just the multiplicative 
effect with a multiplicative constant of 2 “°'̂  =  0.660 ^2/ 3 .
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2.28 The q-q plot compares the 
distributions of the log fusion times.
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2 .29  The m-d plot provides more 
Information about the shift of the log 
fusion times.
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Fitting and Residuals

Since logs result in an additive shift of the fusion times, the fitting on 
the log scale only needs to account for a shift in location. Since the 
distributions are not far from the normal, means can be used to estimate 
locations. The mean for the log NV times is 2.6 log2 seconds, and the 
mean for the log VV times is 2.0 log2 seconds. Figure 2.30 shows q-q 
plots of the residuals; the quantiles of each residual distribution are 
graphed against the quantiles of the pooled residuals. The patterns lie 
close to the lines, which have intercept 0 and slope 1, so the two residual 
distributions are nearly the same. The residuals are homogeneous and 
can be pooled to characterize the variation in the data.

- 2 - 1 0  1 2

Residual Log Time (logj seconds)

2 .30  Each panel is a q-q plot that compares the distribution of the residuals 
for one group of log times with the distribution of the pooled residuals.

Figure 2.31, a normal q-q plot of the pooled residuals, shows the 
lifting of the lower tail observed earlier. The departure from normality 
begins at a value of —1 on the horizontal axis. This is the 0.16 quantile of 
the unit normal distribution. Thus the upper 84% of the distribution of 
the pooled residuals is well approximated by the normal. Figure 2.32, an 
r-f spread plot, shows that the spread of the residuals is considerably 
greater than the spread of the fitted values. Thus the effect of the 
increased VV information is small compared with other factors that 
affect fusion time.
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2.31 A normal q-q plot compares 
the normal distribution with the 
distribution of the pooled residuals 
for the fit to log fusion time.

Unit Normal Quantile

0.0 0.5 1.0

2.32 An r-f spread plot compares the spreads of the residuals and the fitted values
minus their mean for the fit to log fusion time.
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In the original analysis of the fusion-time data, the experimenters 
concluded that there was no support for the hypothesis that prior 
information about the object reduces fusion time. Yet our analysis here 
does seem to suggest an effect: the VV distribution is shifted toward 
lower values by a factor of 2/3. This apparent conflict between the 
original analysis and the analysis here is discussed in the final section of 
this chapter where it is argued that our visualization of the data has 
yielded valid insight that was missed by the experimenters.

2.7 Power Transformation

We need more than just the logarithm in our arsenal of 
transformation methods. Logs cannot be used for data with zeros unless 
the data are adjusted. And a transformation other than the logarithm is 
often the one that leads to a simple data structure; in many cases the 
logarithm can fail to cure skewness and monotone spread, but another 
transformation does so.

Power transformations are a class of transformations that includes the 
logarithm. Let x be the variable under study. The power transformation 
with parameter r  is defined to be if r  7  ̂0 and log(x) if r  =  0. For 
r  = 1, the transformation is just x, so this leaves the data alone. For 
r  =  1/ 2 , the transformation is the square root, ^fx. For r  =  —1, it is the 
inverse of the data, \ /x.  It might seem artificial to define the power 
transformation for r  =  0 to be the logarithm, but in fact it belongs there 
because for r  close to zero behaves much like the logarithm; for
example, the derivative of log x is x ‘, and the derivative of is 
proportional to x -9^ . The parameter r  can be any number if the data 
are positive, but r  must be greater than 0 if the data have zeros. Of 
course, if the data have negative values, no power transformation is 
possible without some adjustment of the data.

Figure 2.33 shows normal q-q plots of the VV fusion times 
transformed by seven power transformations with values of r  equal to 
—1, — 1 /2, — 1 /4, 0,1 /4 ,1 /  2, and 1. The panels are in graphical order: 
the value of r  increases as we go from left to right and from bottom to 
top through the panels. The figure illustrates a phenomenon that occurs 
for many data sets that are skewed toward large values. As r  decreases 
from 1, the skewness is reduced until the data become nearly
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symmetric, and then as r  is further reduced, the data become more and 
more skewed again. When r  goes from 1 to 1/2, the transformation 
pushes the upper tail closer to the center and pulls the lower tail further 
from the center. This continues as r  decreases, although when r  goes 
negative, the transformation reverses the upper and lower tails, so the 
continued force of the transformation pulls out the upper tail and 
pushes in the lower.

2.33 Seven power transformations 
of the VV times are displayed by 
normal q-q plots.

Unit Normal Quantile
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Figure 2.33 illustrates the method for discovering the power 
transformation that brings a distribution the closest to symmetry — trial 
and error. We simply choose a selection of values of r, graph the 
transformed data for each transformation, and assess the symmetry. The 
seven values of r  in Figure 2.33 are a good starting set because they 
provide a representative collection of power transformations. For the 
VV times, the logarithm and the inverse fourth root do the best job. They 
also do the best job for the NV times. But, of course, a tie goes to the 
logarithm because of the multiplicative interpretation.

Food Webs

The food web for the animal species in an ecosystem is a description 
of who eats whom. A chain is a path through the web. It begins with a 
species that is eaten by no other, moves to a species that the first species 
eats, moves next to a species that the second species eats, and so forth 
until the chain ends at a species that preys on no other. If there are 7 
species in the chain then there are 6 links between species, and the 
length of the chain is 6 . The mean chain length of a web is the mean of 
the lengths of all chains in the web.

A two-dimensional ecosystem lies in a flat environment such as a lake 
bottom or a grassland; movement of species in a third dimension is 
limited. In a three-dimensional ecosystem, there is considerable 
movement in three dimensions. One example is a forest canopy; another 
is a water column in an ocean or lake. A mixed ecosystem is made up of 
a two-dimensional environment and a three-dimensional environment 
with enough links between the two to regard it as a single ecosystem.
An interesting study reports the mean chain lengths for 113 webs [11]. 
Quantile plots display the data in Figure 2.34. Here, we will study how 
the distributions of mean chain lengths vary for the three classes — 
two-dimensional, mixed, and three-dimensional. In doing this, we 
regard the dimensionality of the mixed webs as lying between that of the 
two-dimensional webs and the three-dimensional webs.
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2.34 Quantile plots display the chain length 
measurements for three ecosystem dimensions.

f-value
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Skewness and Monotone Spread

Figure 2.35 is an s-1 plot of the three distributions of chain length. 
There is monotone spread. Normal q-q plots in Figure 2.36 reveal mild 
skewness toward large values. Also, the middle panel shows a 
peculiarity in the upper tail of the webs of mixed dimension. At a length 
of about 3.5, there is a knee in the distribution caused by five webs with 
very nearly identical values.

2.35  The s-1 plot for the chain 
lengths checks for nonuniform 
spread.

Jittered Median Chain Length
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2.36  Normal q-q plots compare the chain length 
distributions with the normal distribution.

Unit Normal Quantile
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The skewness and monotone spread of the food web data are not 
cured by the logarithm, although the transformation does reduce their 
severity. Figure 2.37 is an s-1 plot for the logs. The monotone spread 
remains, although the magnitude has been substantially reduced. 
Figure 2.38 shows normal q-q plots. Skewness remains, particularly for 
dimension two. We need a smaller value of r.

2.37 The s-1 plot for the log chain 
lengths checks for nonuniform 
spread.

Jittered Median Log, Chain Length
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2.38 Normal q-q plots compare the log chain 
length distributions with the normal distribution.

Unit Normal Quantile
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The inverse transformation, which is r  =  —1, does the best job 
although the improvement over the logarithm is small. Figure 2.39 is the 
s-1 plot for the inverse lengths; monotone spread no longer occurs.
Figure 2.40 shows normal q-q plots of the inverses. The peculiar 
behavior for the mixed dimension now occurs in the lower tail because 
the inverse transformation has changed the order of the measurements. 
The other two panels, however, show a small amount of convexity in the 
lower tail of the distribution, so some of the peculiar behavior for the 
mixed dimension appears to be part of a general pattern.

The inverse transformation provides a natural measurement scale for 
the food web data. The measurement scale for chain length is links per 
chain. The measurement scale for inverse chain length is chains per link, 
or the link fraction. There is no reason to prefer links per chain to chains 
per link.

Fitting and Residuals

The normal q-q plots of the distributions in Figure 2.40 suggest that 
the shifts in the link-fraction distributions are additive on the inverse 
scale. Thus we will fit the data by estimating location, using means

2.39 The s-1 plot for the inverse 
chain lengths, or link fractions, 
checks for nonuniform spread.

Jittered Median Link Fraction



Visualizing Data 65

because the distributions are not badly nonnormal. The mean link 
fractions are 0.43, 0.37, and 0.31 for two, mixed, and three. Note that 
these values are very close to 7/16,6/16, and 5/16. Noting this form is 
likely just pure numerology, a taking of pleasure from detecting a simple 
pattern, but without theoretical significance.

-  0.6

0.5

0.4

-  0.3

-  0.2

2.40 Normal q-q plots compare the normal 
distribution with the distributions of link fractions.

Unit Normal Quantile



66 Univariate Data

Figure 2.41 is a q-q plot of the residuals; the quantiles of each residual 
distribution are graphed against the quantiles of all residuals. The 
distributions are reasonably similar, so we can pool them.

-  0.2

0.1

0.0

- - 0.1

2.41 Each panel is a q-q plot that compares the 
distribution of the residuals for one group of link 
fractions with the distribution of the pooled 
residuals.

Residual Link Fraction
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Figure 2.42, an r-f spread plot, shows that the residual spread is 
considerably greater than the fitted-value spread. Thus, while the 
ecosystem dimension does affect the link fraction, it accounts for only a 
modest amount of the variation in the fractions.

0.0 0.5 1.0

2.42 An r-f spread plot compares the spreads of the residuals and the fitted values 
minus their mean for the fit to the link fractions.

The Force of Power Transformation

The amount of pushing and pulling on the tails of a distribution that 
is exerted by power transformations can be roughly measured by the 
ratio of the largest observation to the smallest. Data sets with large ratios 
are more sensitive to power transformation than data sets with small 
ratios. For the stereogram data, the ratio is 27.8 for the NV times and
19.7 for the VV times. For the food web data, it is 2.2 for two dimensions, 
2.6 for mixed, and 3.1 for three. Power transformation clearly affects 
these two sets of data. If the ratio is too close to 1, power 
transformations with r  from —1 to 1 do not have much effect. For the 
eight singer distributions, the ratios range from 1.1 to 1.2, and power 
transformation has little effect on the shape of the distributions.
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2.8 Complex Shifts and Robust Fitting

The visualization of the singer heights showed that the distributions 
differ by additive shifts, a simple structure that allows fitting by 
estimating location to produce homogeneous residuals. And the 
visualization showed that the residuals have a near-normal distribution. 
The discovery of power transformations for the fusion times and food 
web lengths resulted in measurement scales for which the distributions 
of these data sets also have additive shifts and near normality. Nature, 
however, is frequently not so obliging. Shifts between distributions can 
have an incurable complexity that makes them more difficult to 
characterize. And distributions can be severely nonnormal. Still, fitting 
and graphing can yield visualizations that provide a clear picture of the 
complexity and nonnormality.

Bin Packing Data

Bin packing is a computer problem that has challenged 
mathematicians working on the foundations of theoretical computer 
science. Suppose a large number of files of different sizes are to be 
written on floppies. No file can be split between two floppies, but we 
want to waste as little space as possible. Unfortunately, any algorithm 
that guarantees the minimum possible empty space takes an enormous 
amount of computation time unless the number of files is quite small. 
Fortunately, there are heuristic algorithms that run fast and do an 
extremely good job of packing, even though they do not guarantee the 
minimum of empty space. One is first fit decreasing. The files are packed 
from largest to smallest. For each file, the first floppy is tried; if it has 
sufficient empty space, the file is written, and if not, the second floppy is 
tried. If the second file has sufficient space, the file is written and if not, 
the third floppy is tried. The algorithm proceeds in this way until a 
floppy with space, possibly a completely empty one, is found.

To supplement the theory of bin packing with empirical results, 
mathematicians and computer scientists have run simulations, computer 
experiments in which bins are packed with randomly generated 
weights. For one data set from one experiment [8 ], the weights were 
randomly selected from the interval 0 to 0.8 and packed in bins of 
size one. The number of weights, n, for each simulation run took one
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of 11 values: 125,250,500, and so forth by factors of 2 up to 128000. 
There were 25 runs for each of the 11 different numbers of weights, 
which makes 25 x 11 = 275 runs in all. For each run of the experiment, 
the performance of the algorithm was measured by the total amount of 
empty space in the bins that were used. We will study log empty space 
to enhance our understanding of multiplicative effects.

Shifts in Location, Spread, and Shape

Figure 2.43 displays the bin packing data by box plots. The shifts in 
the 11 distributions are complex. The locations tend to increase with n, 
the number of weights. For example, the medians increase with n except 
for the two smallest values of n. The box plots also show that the spreads 
of the distributions tend to decrease as n increases. Both the interquartile 
ranges and the ranges of the adjacent values tend to decrease with n.

2 .43  Box plots compare the 
distributions of the bin packing data.

Logg Empty Space
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Figure 2.44, normal q-q plots of the bin packing data, show that not 
all of the bin packing distributions are well approximated by the normal. 
For n equal to 2000 to 128000, the patterns are reasonably straight, but 
for lesser values of n, there are marked deviations from linear patterns. 
In other words, not only do the distributions differ in location and 
spread, they differ in shape as well. To study this shape in more detail, 
we will fit the data, compute residuals, and study the residual 
distributions. But since both location and spread change, we need to 
estimate both in fitting the data.

Figure 2.44 reveals enough information about shape to have a major 
impact on how we carry out the fitting of location and spread. For 
n =  125, the line follows the middle of the data; if the entire distribution 
were well approximated by the normal, the points in the tails would lie 
near this line. Instead, the points in the upper tail are above the line, and 
the points in the lower tail are below the line. In other words, with 
respect to a normal distribution as determined by the middle of the data, 
the values in the tails are too spread out. Distributions with this 
property occur frequently enough that there is a term to describe their 
shape — leptokurtic. The root "lepto" means slender. For data that are 
leptokurtic, the relative density of the data in the middle of the 
distribution compared with the density in the tails is less (thinner) than 
for a normal distribution. In cases where leptokurtosis affects only the 
extreme tails, the result can be just a few outliers. For n equal to 500 and 
1000, three observations are considerably larger than the others. These 
outliers are likely just a remnant of a leptokurtosis that moves further 
and further into the tails of the distribution as n increases through 1000.

The opposite of leptokurtosis is platykurtosis. With respect to a 
normal distribution as determined by the middle of the data, the values 
in the tails of the data are a bit too close to the middle, that is, not 
sufficiently spread out. The root "platy" means broad. For data that are 
platykurtic, the relative density of the data in the middle of the 
distribution compared with the density in the tails is greater (broader) 
than for a normal distribution. Shortly, we will also see platykurtosis in 
the bin packing data.
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-2

Unit Normal Quantile

2.44  Normal q-q plots compare the distributions of the bin packing data with the normal 
distribution.
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Robust Estimation

For the singer heights, the log fusion times, and the link fractions, the 
distributions of the different groups of measurements are reasonably 
well approximated by the normal. For this reason, in fitting the data, we 
used sample means to estimate the locations of the distributions. Had it 
been necessary to account for changing spread, we would have used 
sample standard deviations to fit spread. Statistical theory tells us that 
sample means and standard deviations are the right thing to use when 
the distributions are close to the normal. And when a distribution is 
mildly platykurtic, sample means and standard deviations are typically 
satisfactory.

But in the presence of leptokurtosis, means and standard deviations 
can perform disastrously. Even just a few outliers can yield a silly 
answer. Suppose we have 20 observations ranging from 10 to 20 with a 
mean of 16.3. Suppose we add one new observation, an outlier equal to 
99. The mean of the new data now becomes

(20 X 16.3 +  99)/21 =  20.2.

This is not a sensible description of the location of the data because it 
exceeds all of the observations except one. The sample standard 
deviation is also sensitive to a small number of outliers.

The median is typically robust: resistant to a few outliers or to more 
extreme leptokurtosis [51, 65]. Suppose that for the 20 observations 
above, the two middle observations — that is, the 10th and 11th largest 
observations — are 14 and 15. Then the median is 14.5. When the outlier 
is added, the median changes to 15, a sensible answer. Similarly, the 
mad, introduced earlier for use on s-1 plots, is a robust estimate of 
spread [51, 65]. Thus we will use medians to fit the locations of the bin 
packing distributions, and mads to fit the spreads.



Visualizing Data 72,

Let bin  be the ith log empty space measurement for the bin packing 
run with n weights. Let £n  be the medians, and let be the mads. The 
fitted values are ^

b in  —  £n  1

the residuals are ^
£ in  ~  ^in bin •,

and the spread-standardized residuals are

E i .

In Figure 2.45, the distributions of the 11 sets of spread-standardized 
residuals are graphed by normal q-q plots. As before, the leptokurtosis 
is clearly revealed, but now we also see that once n is above 1000, the 
distributions turn mildly platykurtic. But a few outliers for distributions 
with n <  1000 squash the spread-standardized residuals for n > 1000 
into a small region of the vertical scale, which interferes with our 
assessment of the platykurtosis. To enhance the assessment, we will 
eliminate the four distributions with n <  1000, and analyze the 
remaining seven residual distributions. Figure 2.46 shows q-q plots of 
each residual distribution against the pooled distribution of the seven 
sets. The departures for the three smaller values of n appear somewhat 
bigger than for the remaining, so there are differences among the 
distributions, but the effect is slight.
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-  6

2.45 Normal q-q plots display spread-standardized residuals from the robust fit to the 
bin packing data.
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-  0 2.46 The q-q plots compare 
distributions of spread-standardized 
residuals for seven values of n with 
the pooled values of the seven 
distributions.
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While Figure 2.46 has suggested some differences among the seven 
distributions with n >  1000, the magnitudes of the differences appear 
small, so we will pool the residuals anyway to further study the 
platykurtosis of the distributions. Figure 2.47, a normal q-q plot of the 
pooled values, shows that the shortening of the tails with respect to the 
normal begins near the quartiles of the data.

2 .47  The normal q-q plot compares 
the normal distribution with the 
distribution of the pooled 
spread-standardized residuals for 
seven values of n.

Figure 2.48 graphs In against log n. Theoretical results suggest that 
when n gets large, £n is linear in log n with a slope of 1/3 [8]. The line in 
Figure 2.48 has as slope of 1/3 and passes through the rightmost point. 
The points for the largest values of log n do indeed appear to be 
increasing with this slope, but for the smaller values of log n, the pattern 
of the points is convex and the slopes are less. In other words, before the 
asymptotics take over, the rate of growth in log empty space is less than 
1/3, and the rate increases as n increases.
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2.48 Median log empty space is graphed 
against log number of weights.

Log2 Number of Weights

To study the behavior of Sn as a function of n. Figure 2.49 graphs log 
Sji against log n. The underlying pattern is linear, and a line with a slope 
of —1/3 would fit the pattern. This triggers an uncomfortable thought.
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2.49 The logs of the mads for log empty 
space are graphed against log number of 
weights.

Log2 Number of Weights
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Since the log medians grow with a slope of 1 /  3 as a function of log n, 
and the log mads grow with a slope of —1/3 as a function of log n, the 
log mads as a function of the log medians should have a slope of —1. 
This is checked in Figure 2.50; each Sn is divided by the minimum of the 
Sjif the log is taken, and the values are graphed against This is simply 
an alternative form of the s-1 plot; instead of graphing square root 
absolute residuals and square root mads against the medians, the log 
relative mads are graphed against the medians. The pattern is indeed 
linear with a slope of —1. In other words, there is monotone spread — a 
decrease in the spread with location. The discomfort is this. If the 
spreads of distributions do not depend on the locations, then taking logs 
can create monotone spread with exactly the pattern observed in 
Figure 2.50. We took the logs of the measurements of empty space at the 
outset to enhance the interpretation of multiplicative effects, but it is 
now likely that the transformation has induced the monotone spread.
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2.50 Log relative mads for log empty space 
are graphed against median log empty 
space.

0.0 0.5 1.0 1.5 2.0

Median Log2 Empty Space

This is checked in Figure 2.51; the alternate s-1 visualization method 
employed in Figure 2.50 is also used, but for empty space without 
transformation. Quite clearly, there is no monotone spread.
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Backing Up

By taking logs at the outset to enhance the interpretation of 
multiplicative effects, we have induced some of the variation in the 
spreads of the distributions of empty space. With the benefit of 
visualization hindsight, it appears that we would be better off fitting 
empty space rather than log empty space. Then, we can always take logs 
of fits to study multiplicative properties. Thus, we should go back to the 
beginning and analyze the data again without transformation. We will 
not do so in this account since the data have been treated enough. Such 
backing up is common. It speaks to the power of visualization to show 
us mistaken actions that we have no way of judging until we visualize 
the results.
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2.9 Direct Manipulation: Outlier Deletion

Outliers not only force us to use robust fitting, they ruin the 
resolution of graphical displays. A single large outlier that expands the 
range of the data by a factor of, say 2, squashes all of the remaining data 
into 50% of the scale on a graph. The normal q-q plot of the 
spread-standardized residuals in Figure 2.45 was the victim of such 
squashing. The range of all spread-standardized residuals is —3.59 to 
7.17. But 97% of them lie between ±2.75, so 3% of the 
spread-standardized residuals take up about 50% of the vertical scale. 
The result is a reduction in our ability to assess the nonnormality of the 
distributions aside from the outlier behavior. For example, the 
platykurtosis for n greater than 1000 is barely noticeable on the display. 
The remedy was to continue the visualization for the distributions with 
n >  1000. This removed the outliers. Another sensible procedure would 
have been to make Figure 2.45 again, but deleting the points whose 
vertical scale values lie beyond ±2.75. The result of this outlier deletion 
is shown in Figure 2.52.

Direct manipulation provides an effective way to delete outliers.
Since we identify outliers through the visualization process, it is natural 
to visually designate points for deletion by touching them with an input 
device. By their nature, outliers are typically few in number, so the 
process can be carried out quickly. By contrast, in computing 
environments that allow only static graphics, outlier deletion must be 
carried out by a less natural process. Scales must be read to determine 
cutoffs such as the ±2.75 used for Figure 2.52, then commands must be 
issued to determine those observations that do not survive the cutoff, 
then more commands must be issued to delete them from the data given 
to the graphical routine, and finally the graph must be redrawn.

Outlier deletion by direct manipulation is so attractive that in 1969 
Edward Fowlkes made it one of the first tools in the arsenal of direct 
manipulation methods discussed in Chapter 1. And outlier deletion was 
among the first operations of brushing, a direct manipulation tool that 
will be described in Chapter 3.
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2.52 The outliers in the spread-standardized residuals have been removed. Direct 
manipulation provides a convenient environment for such point deletion.
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2.10 Visualization and Probabilistic Inference

Visualization can serve as a stand-alone framework for making 
inferences from data. Or, it can be used to support probabilistic 
inferences such as hypothesis tests and confidence intervals. The fusion 
times provide a good example of this interplay between visualization 
and probabilistic inference.

The Julesz Hypothesis

Fusing a complicated random dot stereogram requires movements of 
the eyes to the correct viewing angle to align the two images. These 
movements happen very quickly in viewing a real scene; they bring 
focus to the scene as we shift our attention among objects at different 
distances. A more complex series of movements is needed to fuse a 
complicated random dot stereogram for the first time. But viewers can 
typically drastically reduce the time needed to fuse it by repeated 
viewing. Practice makes perfect because the eyes learn how to carry out 
the movements.

From informal observation, Bela Julesz noted that prior information 
about the visual form of an object shown in a random dot stereogram 
seemed to reduce the fusion time of a first look [57]. It certainly makes 
sense that if repeated viewing can reduce the fusion time, then seeing a 
3-D model of the object would also give the viewer some information 
useful to the eye movements. This Julesz observation led to the 
experiment on fusion time, a rough pilot experiment to see if strong 
effects exist.
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Reproducibility

Our visualization of the fusion times showed an effect; the 
distribution shifts toward longer times for reduced prior information. 
But the r-f plot showed the effect is small compared with the overall 
variation in fusion time. This makes it less convincing. Perhaps the 
better performance of increased information is spurious. Another 
experiment run in the same way might yield data in which decreased 
prior information produced shorter times. Once we begin thinking like 
this, it is time for probabilistic inference, not that we expect a definitive 
answer, but just simply to extract further information to help us judge 
the reproducibility of the results.

Statistical Modeling

But we must make the big intellectual leap required in probabilistic 
inference. We imagine that the subjects in the experiment are a random 
sample of individuals who can use a stereogram to see in depth. (A 
small fraction of individuals get no depth perception from stereo 
viewing.) Thus the log times for each group, NV and VV, are a random 
sample of the population of times for all of our specified individuals. Let 
Py be the population mean of the log VV times and let //„ be the 
population mean of the log NV times.
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Validating Assumptions

The normal q-q plots in our analysis showed that the two 
distributions of log times are reasonably well approximated by normal 
distributions. The lower tails are slightly elevated, but the departures 
are small. Thus it is reasonable to suppose that our two populations of 
log fusion times are well approximated by the normal distribution. The 
q-q plots and the fitting for viewing showed that it is reasonable to 
suppose the two population distributions have an additive shift. In 
particular, this means the standard deviations of the two populations are 
the same. With this checking of assumptions through visualization, we 
have earned the right to use the standard t-method to form a confidence 
interval for the difference in the two population means. Also, the 
visualization has revealed that it would be improper to use this method 
on the original data, which are severely nonnormal and do not differ by 
an additive shift.

Confidence Intervals

The sample mean of the 35 log VV times is Xy =  2.00 log2 seconds. 
The sample mean of the 43 log NV times is Xn =  2.63 log2 seconds. The 
estimate of the sample standard deviation from the residuals, Si, is

s =
\

1 ^— ^   ̂=  1.18 log2 seconds
i= \

A 95% confidence interval for the difference in population means,
Mn Mi;/ is

M 1
( X n  — X y )  it 1.99s \ l ---- 1---- ,
 ̂ ’ V 43 35

where 1.99 is the 0.975 quantile of a t-distribution with 76 degrees of 
freedom. The lower and upper values of the 95% interval are 0.09 and 
1.15. Furthermore, the interval (0,1.24) is a 97.7% interval. In other 
words, there is reasonable evidence that the results of the experiment are 
reproducible because a value of 0, which means no effect, does not enter 
a confidence interval until the confidence level is 97.7%.
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Rote Data Analysis

The fusion-time experimenters based their conclusions on rote data 
analysis; probabilistic inference unguided by the insight that 
visualization brings. They put their data into an hypothesis test, 
reducing the information in the 78 measurements to one numerical 
value, the significance level of the test. The level was not small enough, 
so they concluded that the experiment did not support the hypothesis 
that prior information reduces fusion time. Without a full visualization, 
they did not discover taking logs, the additive shift, and the near 
normality of the distributions. Such rote analysis guarantees frequent 
failure. We cannot learn efficiently about nature by routinely taking the 
rich information in data and reducing it to a single number. Information 
will be lost. By contrast, visualization retains the information in the data.
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3.1 A scatterplot displays bivariate data: 
measurements of retinal area and CP ratio 
for 14 cat fetuses.
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3 Bivariate Data

Figure 3.1 is a scatterplot of two variables from a study in animal 
physiology [60]. For species with highly developed visual systems, such 
as cats and man, the distribution of ganglion cells across the surface of 
the retina is not uniform. For example, cats at birth have a much greater 
density of cells in the central portion of the retina than on the periphery. 
But in the early stages of fetal development, the distribution of ganglion 
cells is uniform. The nonuniformity develops in later stages. Figure 3.1 
is a scatterplot of data for 14 cat fetuses ranging in age from 35 to 62 days 
of gestation. The vertical scale is the ratio of the central ganglion cell 
density to the peripheral density. The horizontal scale is the retinal area; 
this variable is nearly monotonically increasing with age, so age tends to 
increase from left to right along the scale. The scatterplot shows that the 
ratio increases as the retinal area increases.

The ratios and areas in Figure 3.1 are bivariate data: paired 
measurements of two quantitative variables. The goal in this case is to 
study how the ratios depend on the areas. Ratio is the response and area 
is the factor. In other examples of this chapter, neither variable is a factor 
or response, and the goal is to study the distribution of the observations 
in the plane and to determine how the variables are related.

3.1 Smooth Curves and Banking

The scatterplot is an excellent first exploratory graph to study the 
dependence of a response on a factor. An important second exploratory 
graph adds a smooth curve to the scatterplot to help us better perceive 
the pattern of the dependence.
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Loess Curves

Figure 3.2 adds a loess curve to the ganglion data; loess is a fitting 
tool that will be described in the next section [19,22,23]. The fitted 
curve has a convex pattern, which means that the rate of change of CP 
ratio with area increases as area increases. In this example, the existence 
of the curvature is apparent from the unadorned scatterplot in 
Figure 3.1, but the graphing of the curve provides a more incisive 
description. In examples coming later, even the broad nature of the 
curvature is not revealed until a curve is added.

3.2  A loess curve has been added to the 
scatterplot of the ganglion data. The aspect 
ratio of the graph has been chosen to bank 
the curve to 45°.

Visual Perception: Banking

The data rectangle of a graph just encloses the data on the graph. In 
Figure 3.2, the upper right corner of the data rectangle is at the data 
point in the upper right corner, and the lower left corner of the rectangle 
is at the data point in the lower left corner. The aspect ratio of a graph is 
the height of the data rectangle divided by the width. In Figure 3.2, the 
aspect ratio is 1.08.
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The fitted curve in Figure 3.2 is made up of a collection of connected 
line segments. First, the fit was evaluated at 100 equally spaced values 
of the factor, which results in 100 points in the plane; then the curve was 
drawn by connecting the 100 points by line segments.

Our perception of a curve is based on judgment of the relative 
orientations of the line segments that make up the curve. Suppose we 
measure orientation in degrees. A line segment with slope 1 has an 
orientation of 45°, and a line segment with slope —1 has an orientation 
of —45°. Typically, the judgments of a curve are optimized when the 
absolute values of the orientations are centered on 45°, that is, when the 
location of the distribution of absolute orientations is 45° [21, 25]. 
Chapter 4 contains an analysis of the data from the perceptual 
experiment that led to the discovery of this 45° principle.

It is the aspect ratio that controls the orientations of line segments on a 
graph. This is illustrated in Figure 3.3, which draws the same curve with 
three aspect ratios: 0.5 in the upper left panel, 0.05 in the lower panel, 
and 5 in the upper right panel. The absolute orientations are centered on 
45° in the upper left, on 5.7° in the lower, and on 84° in the upper right. 
The upper left panel provides the best perception of the properties of the 
curve; the left half of the curve is convex and the right half is linear. 
Choosing the aspect ratio of a graph to enhance the perception of the 
orientations of line segments is hanking, a display method whose name 
suggests the banking of a road to affect its slope. Choosing the aspect 
ratio to center the absolute orientations on 45° is banking to 45°. In 
Figure 3.2, the aspect ratio has been chosen by banking the segments of 
the loess curve to 45°. At the end of this section, a method will be given 
for finding the aspect ratio that banks a collection of segments to 45°.

3.3 The same curve is graphed with three 
different aspect ratios: 0.5 in the upper left panel, 
5 in the upper right panel, and 0.05 in the bottom 
panel. The aspect ratio of 0.5 banks the curve to 
45°.
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Banking is a vital aspect of visualizing curves, and will be widely 
invoked in this and later chapters. It is not always practical to bank to 
45° because the aspect ratio that produces it can be too small or too large 
for the resolution of the physical display device. In some cases, as we 
will see later in this chapter, a display can be redesigned to enable the 
optimal value. In other cases we will simply take the aspect ratio to be as 
close to the optimal value as possible.

For the Record: A Method for Banking to 45°

Let V  be the length in physical units of a vertical side of the data 
rectangle of a graph. In Figure 3.2, the scatterplot of the ganglion data 
with the loess curve, the value of v is 5.5 cm. Let i) be the length of the 
vertical side in data units. In Figure 3.2, the value of v is 15.7 units of CP 
ratio, or 15.7 cpr. Similarly, let h be the length in physical units of a 
horizontal side of the data rectangle, and let h be the length in data units.

Consider the length in data units of any interval on the measurement 
scale of a variable. For example, suppose for the CP ratio scale that the 
length is 5 cpr. Then v / v i s  the conversion factor that takes the length in 
the units of the data and changes it to a length in physical units on the 
graph. For example, for Figure 3.2, 5 cpr becomes

5.5 cm
5 cpr ----------=  1.8 cm .^ 15.7 cpr

Similarly, h/his  the conversion factor for the horizontal scale.

The aspect ratio of the data on the graph is

a(/i, v) =  v /h  .

Suppose the units of the data are fixed so that v and h are fixed values. 
The values of v and h are under our control in graphing the data. The 
aspect ratio is determined by our choice of v and h, which is why in the 
notation we show the dependence of a on u and h.

Consider a collection of n line segments inside the data region. Let 
be the change in data units of the zth line segment along the vertical 
scale, and let Vi{v)'be the change in physical units when the vertical
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length of the data rectangle is v. Define hi and hi{h) similarly. Let

Vi =  Vi/v

and
hi =  hi/h .

The orientation of the zth segment is

'Vi{v)
di{h, v) =  arctan = arctan {a{h, v)vi/hi) .

.hi{v).

The physical length of the zth segment is

£i(/i, -y) =  h]{h) +  v]{v) =  h^J^ +  a^{h,v)vl .

One method for banking the n segments to 45° is to choose a{h,v) so 
that the mean of the absolute orientations weighted by the line segment 
lengths is 45°. Thus

E r= i ^i(h, v ) ^ h ,  v) _  E ”=i arctan (a(h , v)vi/hi) ^ J h ] ^ a \ h , v ) v }

E ”= i \lh] + o?{h,v)v}

is equal to 45°. Notice that the right side of this formula depends on v 
and h only through a(h,v).  As is intuitively clear, if we multiply v and 
h by the same factor, the orientations of the segments do not change. 
Only their ratio matters. Thus it is the aspect ratio that controls banking.

There is no closed-form solution for the aspect ratio that makes the 
above weighted mean absolute orientation equal to 45°. The value of a 
needs to be found by iterative approximation. But the approximation 
can be fast because the weighted mean is a monotone function of a.

3.2 Fitting: Parametric and Loess

Figure 3.2 has shown clearly that the underlying pattern in the 
ganglion data is convex. Astonishingly, the three experimenters who
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gathered and analyzed the data, fitted a line. Figure 3.4 shows the fit. As 
expected, there is lack of fit. Figure 3.5 shows the fit of a quadratic. The 
fitted function now describes the underlying pattern in the data. The 
lack of fit has been eliminated.

3.4  The least-squares line has been added 
to the scatterplot of the ganglion data.

3 .5  The least-squares fit of a quadratic 
polynomial has been added to the scatterplot 
of the ganglion data. The curve is banked to 
45°.
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Parametric Families of Functions

Fitting a line to data is an example of parametric fitting. Lines, or 
linear polynomials,

y =  a +  bx ,

are a parametric family of functions that depend on two parameters, a 
and b. Fitting the linear family to data means selecting, or estimating, a 
and b so that the resulting line best describes the underlying dependence 
of y on a:. Quadratic polynomials,

y =  a +  bx +  cx  ̂ ,

are a parametric family with three parameters: a, b, and c.

The classical method for fitting parametric families is least-squares. 
The parameters are estimated by finding the member of the family that 
minimizes the sum of the squares of the vertical deviations of the data 
from the fitted function. For example, for linear polynomials, the 
least-squares estimates of a and b are the values that minimize

n -  a -  bxif  ,
i= l

where the X{ are the measurements of the factor, and the yi are the 
measurements of the response. Least-squares was used for the linear 
and quadratic fits to the ganglion data. The linear fit is

y =  0.0140 -F 0.107X ,

and the quadratic fit is

y =  2.87 -  0.0120a; -F 0.000839a;  ̂ .

Least-squares is a good method to use provided the data have certain 
properties; checking to see if the data have these properties will be taken 
up in the next section.

Flexible Fitting

Parametric fitting is very useful but not nearly enough. When the 
underlying pattern in a set of data is simple — for example, the quadratic
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pattern in the ganglion data — we can expect to find a parametric family 
that will provide a good fit. But nature is frequently not so obliging. The 
patterns in many bivariate data sets are too complex to be described by a 
simple parametric family. For visualization, we need a method of fitting 
that will handle these complex cases. Loess fitting does just this.
Figure 3.6 shows an example. The loess curve on the graph follows a 
pattern that defies fitting by a simple parametric function.

3.6 The data are fitted by loess. 
The curve is banked to 45°.

The name loess — pronounced {Id' is) and from the German loss — is 
short for local regression. The name also has semantic substance. In 
Chapter 4, loess is used to fit surfaces to data in three dimensions, and 
geologists and hikers know well that a loess is a surface of sorts — a 
deposit of silt, or fine clay, typically found in valleys. Loess is just one of 
many curve-fitting methods that are often referred to as nonparametric 
regression [49]. But loess has some highly desirable statistical 
properties [36, 48], is easy to compute [23], and, as we will see, is easy to 
use.

A Graphical Look at How Loess Works

Two parameters need to be chosen to fit a loess curve. The first 
parameter, a, is a smoothing parameter; it can be any positive number 
but typical values are 1 /4 to 1. As a  increases, the curve becomes 
smoother. The second parameter. A, is the degree of certain polynomials 
that are fitted by the method; A can be 1 or 2 . Guidance on the choices of 
a  and A will be given later.
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Figure 3.7 shows how the loess fit, g{x), is computed at x =  8 for data 
that are graphed by the circles in the upper left panel. The values of the 
loess parameters are A = 1 and a =  0.5. The number of observations, 
n =  20, is multiplied by a, which gives the value 10. A vertical strip, 
depicted by the dashed vertical lines in the upper left panel of Figure 3.7, 
is defined by centering the strip on x and putting one boundary at the 
10th closest X i  to X .

The observations (x ,̂ yi) are assigned neighborhood weights, Wi{x), 
using the weight function shown in the upper right panel. The function 
has a maximum at 8, decreases as we move away from this value in 
either direction, and becomes zero at the boundaries of the strip. The 
observations whose Xi lie closest to x receive the largest weight, and 
observations further away receive less.
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3.7  The display shows how the loess fit is computed aXx = S.
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A line is fitted to the data using weighted least-squares with weight 
Wi{x) at {xi,yi). The fit is shown in the lower left panel. The Wi{x) 
determine the influence that each (xi, yi) has on the fitting of the line. 
The influence decreases as X{ increases in distance from x, and finally 
becomes zero. The loess fit, g{x), is the value of the line at x, depicted by 
the filled circle.

Thus the computations illustrated in Figure 3.7 result in one value of 
the loess fit, g{S). This value is shown by the filled circle in the lower 
right panel.

The same operations can be carried out for any other value of x. 
Figure 3.8 shows them at a: =  27, which happens to be the value of the 
largest Xi. The right boundary of the strip does not appear in the top 
panels because it is beyond the right extreme of the horizontal scale line.

Since A = 1, a linear polynomial has been fitted in Figures 3.7 and 3.8. 
This is locally linear fitting. If A = 2, a quadratic polynomial is used, 
which is locally quadratic fitting.

A loess fit is displayed by evaluating it at a grid of equally spaced 
values from the minimum value of the Xi to the maximum, and then 
connecting these evaluated curve points by line segments. The number 
of evaluations is typically in the range 50 to 200.

The Two Loess Parameters

In any specific application of loess, the choice of the two parameters 
a  and A must be based on a combination of judgment and of trial and 
error. There is no substitute for the latter. As the chapter progresses, 
many examples will illustrate how residual plots allow us to judge a 
particular choice. But the following description of the influence of 
changing the parameters, together with experience in using loess, can 
help to provide educated first guesses.
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Step 2

Step 3 Result
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3.8 The display shows how the loess fit is computed at x =  27.
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As a  increases, a loess fit becomes smoother. This is illustrated in 
Figure 3.9. In all panels, A = 2, so the fitting is locally quadratic. In the 
top panel, a =  0.6. The fitted function is very smooth, but there is lack 
of fit; both the peak and the valley are missed because a  is too large. In 
the middle panel, a  has been reduced to 0.3. Now the curve is less 
smooth, but it follows the pattern of the data. In the bottom panel, cr has 
been reduced still further to 0.1. The underlying pattern is tracked, but 
there is surplus of fit; the local wiggles do not appear to be supported by 
the data. The goal in choosing a  is to produce a fit that is as smooth as 
possible without unduly distorting the underlying pattern in the data.
In this example, o: = 0.3 is a good choice that follows the pattern 
without undue wiggles.

If the underlying pattern of the data has gentle curvature with no 
local maxima and minima, then locally linear fitting is usually sufficient. 
But if there are local maxima or minima, then locally quadratic fitting 
typically does a better job of following the pattern of the data and 
maintaining local smoothness. This is illustrated in Figure 3.10. The top 
panel shows the fit from the middle panel of Figure 3.9, which has A = 2 
and a =  0.3. The substantial curvature, in particular the peak and 
valley, are adequately tracked by the curve. In the middle panel of 
Figure 3 .10, A has been changed to 1, with a  remaining at 0.3. The fit 
does poorly. Because of the curvature in the data, locally linear fitting is 
not able to accommodate the peak and valley; the curve lies below the 
peak and above the valley. In the bottom panel, A = 1, and a  has been 
reduced to 0.1 in an attempt to follow the pattern. The curve tracks the 
data, but it has surplus of fit because a  is small. But if we increase a  by 
more than just a very small amount, still using locally linear fitting, the 
curve becomes smoother but no longer tracks the data. Locally linear 
fitting is not capable of providing an adequate fit in this example.
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3.9  The three loess curves have three 
different values of the smoothing 
parameter, a. From the bottom panel to 
the top the values are 0.1,0.3, and 0.6. 
The value of A is 2.
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3.10  Three loess fits are shown. From 
the bottom panel to the top the two 
parameters, a  and A, are the following: 
0.1 and 1: 0.3 and 1; 0.3 and 2.

For the Record: The Mathematical Details of Loess

The following describes in detail the loess fit, g(x), at x. Suppose 
first that a  < 1. Let q be an  truncated to an integer. We will assume that 
a  is large enough so that q is at least 1, although in most applications, q 
will be much larger than 1.
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Let Aj(rc) =  \xi — x\ be the distance from x to the Xi, and let 
be these distances ordered from smallest to largest. Let T{u) be the 
tricuhe weight function:

T(u) =  I (1 — for |u| < 1
0 otherwise.

Then the neighborhood weight given to the observation (xi,yi) for the 
fit at X  is

. f  \
W i { x )

For Xi such that Aj(a;) < A(^)(x), the weights are positive and decrease 
as Ai{x) increases. For Aj(a:) > A(g)(a:), the weights are zero. If a  > 1, 
the Wi{x) are defined in the same manner, but A(g)(a:) is replaced by
A(„)(o:)q!.

If A =  1, a line is fitted to the data using weighted least-squares with 
weight Wi{x) at (xi, yi); values of a and b are found that minimize

n
Y^Wi{x)  ( y i - a -  bxi f  .
i=\

Let a and b be the minimizing values, then the fit at x is

g(x) = a  +  bx.

If A = 2 , a quadratic is fitted to the data using weighted least-squares; 
values of a, b, and c are found that minimize

n
Wi(x) ( y i - a -  bxi -  c x ] f  .

Z = 1

Let o, b, and c be the minimizing values, then the fit at x is

g(x) = a  +  bx +  cx  ̂ .
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3.3 Visualizing Residuals

In Chapter 2, one method for fitting univariate data was to estimate 
the locations of the distributions. An example is the singer heights; let 
hpi be the ith height for the pth voice part. Locations were estimated by 
the voice-part means, hp. Each height has a fitted value.

hpi — hp ,

and a residual.
—  hpi hpi

The fitted values account for the variation in the heights attributable to 
the voice-part variable through the fitting process. The residuals are the 
remaining variation in the data.

The fitting in this chapter has so far followed a parallel course: 
estimating location. Whether we use parametric fitting or loess, the 
result is a function, y =  g{x), that describes the location of the 
measurements of the response, y, when the value of the factor is x. This 
is illustrated by the loess fit, g{x), in Figure 3.11. The vertical strip 
contains observations whose x values are nearly the same. The loess fit 
in the strip, which is nearly constant, describes the location of the

3.11 The display illustrates the 
purpose of curve fitting —  
describing the location of the 
distribution of the response given 
the factor.



Visualizing Data 103

distribution of the y values of observations in the strip. Furthermore, for 
each observation, (xi,yi), there is a fitted value

and a residual

yi =  g {x i ) ,

Si =  V i - V i -

The yi are the variation in the response, y, attributable to the factor, x, 
through the fitting process. The are the remaining variation. Thus the 
yi are decomposed into fitted values and residuals,

yi =  m +  ei-

And as with univariate data, an important part of visualizing bivariate 
data is the graphing of residuals from fits.

Residual Dependence Plots

If a fitted function suffers from lack of fit, the aspect of the 
underlying pattern not accounted for by the fit comes out in the 
residuals. A line did not fit the ganglion data. Figure 3.12 graphs the 
residuals against area together with a loess curve. This residual 
dependence plot shows a remaining dependence of the residuals on area. 
The location of the distribution of the residuals still varies with area.

3.12 On this residual dependence plot, the 
residuals from the linear fit to CP ratio are 
graphed against area. The parameters of the 
loess curve on the plot are a  =  1 and A =  1.
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If a fit is adequate, the location of the residual distribution at each x 
should be zero. A quadratic appeared to adequately fit the ganglion 
data. Figure 3.13 is a residual dependence plot. The location of the 
residual distribution no longer depends on area.

03OC
Q.O
■g
030CC -0.6 -

3.13 On this residual dependence plot, the 
residuals from the quadratic fit to CP ratio are 
graphed against area. The parameters of the 
loess curve on the plot are a  =  1 and A =  1.

Area (mm"̂

A residual dependence plot is an excellent diagnostic for detecting 
lack of fit when it exists. Of course, for the linear fit to the ganglion data, 
lack of fit is so blatant that it is obvious just from Figure 3.4, the 
scatterplot of the data with the fit superposed. But in other cases, lack of 
fit can be more subtle, and we must rely on the residual dependence plot 
to make a reliable judgment.

S-L Plots

The quadratic fit to the ganglion data has resulted in residuals whose 
location does not depend on area. Still, the residuals might not be 
homogeneous. Aspects of the residual distribution other than location 
might depend on area. As with univariate data, one type of 
nonhomogeniety is monotone spread: the spread of the residuals 
increases or decreases as the fitted values increase. And as with 
univariate data, we can check for monotone spread by an s-1 plot.
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Figure 3.14 is an s-1 plot for the quadratic fit to the ganglion data. The 
square roots of the absolute residuals, are graphed against the
fitted values, yi, and a loess curve is added. There is monotone spread. 
Thus the residuals are not homogeneous, which makes the 
characterization of the dependence of the response on the factor more 
complicated. When the residuals are homogeneous, the residual 
variation at any x can be described by the distribution of all of the 
residuals. In other words, the power of pooling, discussed in Chapter 2, 
can be brought to bear. But if the residual variation changes, we must 
take the change into account in characterizing the variation.

3.14  On this s-l plot, the square root 
absolute residuals from the quadratic fit to CP 
ratio are graphed against the fitted values to 
check for monotone spread. The parameters 
of the loess curve are a  =  2 and A =  1.

Fitted CP Ratio
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As with univariate data, transformation — in this case, of the 
response — can cure monotone spread. Figure 3.15 graphs log CP ratio 
against area with a loess curve superposed. Something fortuitous has 
occurred; the overall pattern now appears nearly linear, which is simpler 
than the curved pattern before transformation. Figure 3.16 shows a line

3.15 Log CP ratio is graphed against area. 
The curve is a loess fit with a  =  2 /3  and 
A =  1.

3 .16 Log CP ratio is graphed against area. 
The line is the least-squares fit.
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fitted by least-squares, and Figure 3.17 is a residual dependence plot. 
There is no dependence of the location of the residuals on area.
Figure 3.18 is an s-1 plot. There is no longer any dependence of spread 
on location; the log transformation has removed the monotone spread 
and, along the way, the nonlinearity of the underlying pattern.

3.17 On this residual dependence plot, the 
residuals from the linear fit to log CP ratio are 
graphed against area. The parameters of the 
loess curve on the plot are a = I and A =  1.

3 .18  An s-l plot for the linear fit to log CP 
ratio checks for monotone spread. The 
parameters of the loess curve are n =  2 and
A =  1.
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R-F Spread Plots

As with univariate data, an r-f spread plot consists of quantile plots 
that compare the spreads of the residuals and the fitted values minus 
their mean. This shows how much variation in the data is explained by 
the fit and how much remains in the residuals. Figure 3.19 is an r-f 
spread plot for the fit to log CP ratio. The spread of the residual 
distribution is considerably smaller than that of the fitted values; the fit 
explains most of the variation in the data.
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3.19 An r-f spread plot compares the 
spreads of the residuals and the fitted 
values minus their mean for the linear fit 
to log CP ratio.

0.0 0.5 1.0

f-value

Fitting the Normal Distribution

Figure 3.20, a normal quantile plot of the residuals, shows that the 
residual distribution is well approximated by the normal. This justifies 
our use of least-squares to fit the data. The theory of statistics tells us 
that least-squares is appropriate for bivariate fitting when the 
distribution of the random variation of the response about the 
underlying pattern is well approximated by the normal, just as it tells us 
that means are appropriate for univariate fitting when the variation of 
univariate data is well approximated by the normal. When outliers or
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other forms of leptokurtosis are present in the residuals, robust methods 
of fitting are needed, just as they are for univariate data. This is taken up 
in Section 3.4.

3.20  A normal q-q plot compares the normal 
distribution with the distribution of the 
residuals for the linear fit to log CP ratio.

Unit Normal Quantile

The Dependence of Ratio on Area

The final result of the visualization of the ganglion data is a simple 
description of how CP ratio depends on area. The simplicity arises 
because log CP ratio is linear in area, the residuals are homogeneous, 
and the normal distribution provides a good approximation to the 
residual distribution. Let y be the log2 ratio and let x be area. The 
least-squares fit is

y =  1.11 + 0 .022X .

If area changes by 1 /0.022 mm^ = 45 mm^, the log2 CP ratio changes by 
1, which means the CP ratio doubles. The areas of the ganglion data set 
vary by 130 mm^, so log2 CP ratio changes by about 2.8 overall, and the 
CP ratio changes by a factor of 2^^ =  7.0. The sample standard 
deviation of the residuals is 0.13. Thus, using the normal approximation 
to the residuals, about 95% of the residual distribution lies between 
±1.96 X 0.13 =  ±0.25, which on the CP ratio scale are factors of 0.84 
and 1.19.
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Log Transformation

The tortuous path to the logarithm in the analysis of the ganglion 
data might have been avoided at the outset. The scatterplot of the data 
with the loess fit in Figure 3.2, which showed a convex pattern, might 
have inspired us to take logs to attempt a straightening of the pattern, 
rather than moving to a quadratic fit. But even more fundamentally, we 
might have taken the logs of the ratios before visualizing the data. A 
ratio, which has a numerator and denominator, is a strong candidate for 
a log transformation. When the numerator is bigger, the ratio can go 
from 1 all the way to infinity, but when the denominator is bigger, the 
ratio is squeezed into the interval 0 to 1. The logarithm symmetrizes the 
scale of measurement; when the numerator is bigger, the log ratio is 
positive, and when the denominator is bigger, the log ratio is negative. 
The symmetry often produces simpler structure.

3.4 Robust Fitting

Ages of many ancient objects, such as archeological artifacts and 
fossils, are determined by carbon dating. Organic material absorbs '̂*C, 
which then decays at a known rate through time. Carbon dating, which 
consists of measuring the remaining is not a fully accurate timepiece 
because the amount of in the environment available for absorption 
by organic material has fluctuated through time. Tree-ring dating was at 
first used to calibrate carbon dating, but this method of calibration 
works only back to about 9 kyr BP (kiloyears before present).

A second dating method, first reported in 1990, provides calibration 
back to at least 30 kyr BP by measuring the decay of uranium to thorium
[5]. The group that invented the method took core samples in coral off 
the coast of Barbados and dated the material back to nearly 30 kyr BP 
using both the carbon and thorium methods. The thorium results were 
used to study the accuracy of the carbon method. Of course, this is valid 
only if the thorium method is itself accurate, but the consensus appears 
to be that it is [64].
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Figure 3.21 shows the results of dating 19 coral samples by both 
methods; thorium age minus carbon age is graphed against carbon age. 
The display shows that carbon dating using the old method of 
calibration underestimates the true age. The scatterplot suggests a linear 
pattern, but there are two outliers, deviant observations that do not 
conform to the pattern of the remaining observations. Both lie well 
below the linear pattern suggested by the other observations.
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o 3.21 The differences of carbon age and 
thorium age for 19 coral samples are graphed 
against the carbon ages.
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Carbon Age (kyr BP)
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Figure 3.22 shows the least-squares fit of a line to the dating data. The 
fit does not follow the underlying linear pattern; the slope is too small 
because the line has been pulled down by the outliers. Figure 3.23 is a 
residual dependence plot; there is a pronounced remaining dependence 
on carbon age.

In Chapter 2, the distortion of the mean by outliers was discussed. 
Like the mean, least-squares estimates are not robust. If fact, the mean of 
univariate data is a least-squares estimate; it is the value of a that 
minimizes

S  iVi -  •
i =l

Least-squares is appropriate for bivariate fitting when the distribution of 
the random variation of the response about the underlying pattern is 
well approximated by the normal. And its performance is satisfactory if 
the distribution is moderately platykurtic. But in the presence of 
leptokurtosis, even in the form of just a few outliers, least-squares can be 
a disaster. And because loess is based on least-squares fitting of many 
polynomials locally, it too is not robust.

Bisquare

In Chapter 2, when a distribution appeared leptokurtic, we moved to 
the median, a robust estimate of location that is not adversely affected by 
leptokurtosis. For bivariate data, we will use the robust estimation 
method bisquare [51, 65]. Bisquare is added to the least-squares method 
for fitting a parametric family and is added to loess to turn these 
nonrobust methods into robust ones.
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osz 3.22  The least-squares fit of a line has been 
added to the scatterplot of the dating data.
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3.23 The residuals from the least-squares fit 
to the dating data are graphed against 
carbon age.

Carbon Age (kyr BP)
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Figure 3.24 illustrates bisquare fitting of a line with the dating data. 
The first step is to fit by least-squares; this is shown in the upper right 
panel. The two outliers are graphed by the plotting symbols. The 
second step is to assign a robustness weight, r*, to each observation 
(xj, yi), based on the size of the residual for that observation. The 
weights are assigned by the value of a weight function called bisquare, 
from which the fitting procedure gets its name. The residuals and the 
weight function are graphed in the middle left panel of Figure 3.24. 
Residuals close to 0 have a weight close to 1. As the absolute values of 
the residuals increase, the weights decrease; for example, the largest and 
smallest residuals have weights of about 0 .6 . In the next step, the 
parameters are re-estimated using weighted least-squares with the 
weights Tj. In our example, we are fitting the parametric family

y =  a-\-hx .

Thus, the weighted least-squares estimates are the values of a and h that 
minimize

n
^  ri{yi -  a -  bxi f  .

The new fit is shown in the middle right panel of Figure 3.24. Next, new 
weights are computed, and a line is fitted using weighted least-squares 
with the new weights. This iterative procedure is continued until the fit 
converges. The bottom left panel of Figure 3.24 shows the weights for 
the final fit, and the bottom right panel shows the fit; the outliers receive 
zero weight in this final fit.

In a similar way, loess can be altered by the bisquare method to make 
it robust. The details of how bisquare iterations are added to 
least-squares parametric fitting and how the iterations are added to loess 
curve fitting are given at the end of this section.
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C Age (kyr BP)

3.24 The figure illustrates the fitting of a line to the dating data by the bIsquare 
method of robust estimation.
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A Robust Analysis of the Dating Data

The bisquare line is graphed again in Figure 3.25. A residual 
dependence plot is shown in Figure 3.26. There is no remaining 
dependence in the residuals; the fit describes the overall pattern of the 
majority of the data. Figure 3.27 is a normal quantile plot of the 
residuals. Except for the outliers, the points have a linear pattern.

3.25 The bisquare fit of a line has been 
added to the scatterplot of the dating data.
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graphed against carbon age.
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3.27 A normal q-q plot displays the residuals 
from the bisquare fit to the dating data.

Unit Normal Quantile

The equation of the fitted bisquare line is

y =  —1.3 ”1“ 0.30x .

The response y is zero when x is 4.3 kyr BP. Thus the fitted line suggests 
that a departure between carbon and thorium ages begins near 4.3 kyr 
BP. After that time point, the underestimation of age by carbon dating 
grows at a rate of 0.3 kyr for each kyr of carbon age. Thus for a carbon 
age of 15 kyr BP, the underestimation is about

0.3(15 -  4.3) kyr BP = 3.2 kyr BP .

The underestimation of age by traditional carbon dating is substantial. 
Carbon dating specialists had been aware that the method was biased, 
but the magnitude of the bias came as a surprise [64].

The Scope of Bisquare

Bisquare has been introduced in this chapter for use with bivariate 
data. It will also be used in coming chapters because it extends in a 
straightforward way to trivariate, hypervariate, and multiway data. For 
univariate data, the median was used in Chapter 1 for robust estimation
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because it is simple, widely known, and almost always performs well 
when robustness to outliers is needed. But we can also use bisquare for 
univariate data; the initial estimate is the mean, and subsequent 
estimates in the iterations are weighted means with bisquare weights 
computed from the residuals [51,65]. Thus bisquare is attractive because 
a single method can be used for all the data types in the book to produce 
robust estimates.

For the Record: The Details of Bisquare

For fitting a parametric family, the only detail of bisquare that 
remains is the formula for the robustness weights, r*. Let s be the 
median absolute deviation for the least-squares fit or any subsequent 
weighted fit. Thus

s =  median |£j|,
where the are the residuals from the fit. Let B{u) be the bisquare 
weight function.

B{u) =  I
2\2_ /

0
for |u| < 1 
otherwise.

The robustness weight for the observation (a;*, j/j) is

n  =  B [ ^
,6s

As discussed in Chapter 2, s is a measure of the spread of the residuals. 
If a residual is small compared with 6s, the robustness weight will be 
close to 1; if a residual is greater than 6s, the weight is 0. Large residuals 
tend to be associated with outliers, so unusual observations are given 
reduced weight. The constant 6 has been chosen so that if the random 
variation of the response about the underlying pattern has a distribution 
that is well approximated by the normal, then bisquare does nearly as 
well as least-squares.

For loess, an initial fit is carried out with no robustness weights. The 
fit is evaluated at the Xi to get the fitted values, yi, and the residuals.

£i =  y i - y i .
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Bisquare weights, rj, are computed from the residuals using the bisquare 
weight function exactly as described for fitting a parametric function. 
Thus each observation (xi,yi) has a robustness weight, r ,̂ whose value 
depends on the magnitude of €{. Weighted local fitting is again carried 
out, but now the weight for (xi,yi) for the fit at a; is Thus,
( x i , y i )  is given reduced weight if Xi is far from x  or if i i  is large in 
absolute value. The second fit is used to define new residuals which are 
used to define new robustness weights, and the local fitting is carried 
out again. This process is repeated until the loess curve converges.

3.5 Transformation of a Factor and Jittering

Figure 3.28 is a scatterplot of 355 observations from an experiment at 
the University of Seville on the scattering of sunlight in the atmosphere 
[7]. The response is the Babinet point, the scattering angle at which the 
polarization of sunlight vanishes. The factor is the concentration of 
particulates, which are solid particles in the air. These data were briefly 
discussed in Chapter 1.

3.28 The scatterplot displays the 
polarization data.
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Transformation

Transformation was first introduced in Chapter 2 as a tool for 
simplifying the structure of data. Power transformation cured skewness 
toward large values and monotone spread. For bivariate data, 
transformation of the response can also cure these ills. The ganglion 
data are one example.

For bivariate data, power transformation of the factor can also 
simplify structure. This is especially true of a factor whose 
measurements are observational and not specified by an experimenter. 
The particulate concentrations are one example; they are at the mercy of 
atmospheric conditions and the amount of air pollution.

Unit Normal Quantile

3 .29  Normal q-q plots display four power transformations of the particulate 
concentrations.
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Figure 3.28 suggests that the particulate concentrations, as a 
univariate data set, are somewhat skewed toward large values. One 
result is a few observations in the lower right corner that straggle 
somewhat from the remaining. If a power transformation can remove 
the skewness, it might simplify the dependence of the Babinet point on 
concentration. Figure 3.29 shows normal q-q plots for four power 
transformations of the concentrations. The cube roots appear to 
symmetrize the distribution of the data. Figure 3.30 graphs the Babinet 
point against cube root concentration. The effect is not dramatic, but we 
have pulled the lower right stragglers into line.

3.30 The measurements of the 
Babinet point are graphed against 
the cube root concentrations.

Cube Root Concentration (pg''^ /̂m)

Visual Perception: Jittering

There is still a problem to be cured on the scatterplot in Figure 3.30; 
observations are obscured because the data on each scale are rounded, 
which results in a multiplicity of points at many of the plotting locations. 
One solution to the overlap problem, a particularly simple one, is 
jittering [20]. A small amount of uniform random noise is added to the 
data before graphing. It can be added to the measurements of just one of 
the variables or to the measurements of both.
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Jittering is used in Figure 3.31 to display the polarization data. Noise 
has been added to the measurements of both variables; for each variable 
the noise was generated from a uniform distribution on an interval that 
is centered on zero and that is small compared with the range of the 
measurements. Now, most of the plotting symbols can be visually 
detected.

3.31 The measurements of the 
Babinet point are graphed again 
against the cube root 
concentrations, but this time the 
locations of the plotting symbols 
have been jittered.

Jittered Cube Root Concentration (pg’'̂ /̂m)

3.6 The Iterative Process o f Fitting

Fitting mathematical structures to data must be relentlessly iterative. 
The analysis of the ganglion data provides one illustration. The first fit, a 
line fitted to CP ratio, was quite obviously inadequate. On the second 
pass, a loess fit showed a pattern that appeared simple enough to be 
fitted by a quadratic function. On the third pass, a quadratic polynomial 
was fitted; there was no lack of fit, but an s-1 plot detected monotone 
spread. On the fourth pass, logs were taken and the loess fit showed a 
linear pattern. On the fifth pass, log CP ratio was fitted by a line. The fit 
passed the visualization tests for lack of fit, and the residuals proved to 
be homogeneous with a distribution well approximated by the normal.
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The single task of fitting a loess curve typically needs to be iterative as 
well. It is often possible to make an initial correct guess of A and of 
whether bisquare is needed or not, but the choice of a  usually requires a 
few trial values, with the final choice based on the visualization of fits 
and residuals. The polarization data provide one example.

Interestingly, without a smooth curve superposed. Figure 3.31 
appears to have an underlying pattern that is linear; loess fits will show 
that this is not the case. However, the scatterplot does indicate that A 
should be one, for even if we do not fully trust our unaided eyes, we can 
trust them enough to conclude that whatever curvature might be present 
is not likely to have peaks and valleys in need of locally quadratic fitting. 
Figure 3.31 also suggests that we should use bisquare iterations to make 
the loess fitting robust. There are a number of observations that deviate 
substantially in the vertical direction from the underlying pattern. For 
example, at a cube root concentration of c =  3 ^ /^ /m , and a Babinet 
point of 6 =  18°, there is a small cluster of deviant observations. Finally, 
we will use a  =  3/4 as a trial value.

Figure 3.32 graphs a robust loess fit with q =  3/4 and A =  1. The 
pattern suggested by the curve is two straight lines with a break point 
near 3 m. Figure 3.33 is a residual dependence plot. There appears 
to be a remaining dependence of the residuals on the factor. There is lack 
of fit because a  is too large. Figure 3.34 graphs a robust loess fit with a 
reduced to 1 / 6, and Figure 3.35 is a residual dependence plot. There is 
no remaining residual dependence, but the fitted curve in Figure 3.34 
has undue wiggles that do not appear to be supported by the data.
There is surplus of fit because a  is now too small. In choosing a, we 
want a curve that is as smooth as possible without introducing lack of 
fit. Figure 3.36 graphs a robust loess fit with a  increased to 1/3, and 
Figure 3.37 is a residual dependence plot. No residual dependence 
appears to be present, yet the fitted curve is smooth — the unnecessary 
wiggles are gone. These loess parameters appear to be a good choice. 
Figure 3.38 is a normal quantile plot of the residuals from the final fit. 
The residual distribution is strongly leptokurtic; the robust loess fitting 
is needed in this example. Figure 3.39 is an r-f spread plot. The amounts 
of variation in the two distributions are roughly commensurate. Most 
residuals lie between ±3°, but a small fraction deviate by much more, 
some getting as large as ± 6°. The range of the fitted values is about 9°.
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3.32 The curve is a robust loess fit to 
the polarization data with a = ?>jA 
and A =  1. The aspect ratio has been 
chosen to bank the curve to 45°.

Jittered Cube Root Concentration (pg'^^/m)
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3.33 The residuals from the robust 
loess fit are graphed against cube 
root concentration. The parameters 
of the robust loess curve on the plot
are a  =  1/3 and A =  1.

Jittered Cube Root Concentration (pg^^ /̂m)
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3.34 The curve is a robust loess fit to the 
polarization data with a = \/6  and A =  1. 
The curve is banked to 45°.

Jittered Cube Root Concentration (|ig'^7m)

3.35 The residuals from the second 
robust loess fit are graphed against 
cube root concentration. The 
parameters of the robust loess curve 
on the plot are a — \/?> and A =  1.

Jittered Cube Root Concentration (pg'̂ ^̂ /m)
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3.36 The curve is a robust loess fit to the 
polarization data with a  =  1/3 and A =  1. 
The curve is banked to 45°.

Jittered Cube Root Concentration (pg'^^/m)

3.37 The residuals from the third 
robust loess fit are graphed against 
cube root concentration. The 
parameters of the robust loess curve 
on the plot are a  =  1 /3  and A =  1.

Jittered Cube Root Concentration (pg'^Vm)
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3.38 A normal q-q plot displays the 
distribution of the residuals from the 
final robust loess fit to the 
polarization data.

0.0 0.5 1.0

3.39 An r-f spread plot compares the spreads of the residuals and the 
fitted values minus their mean for the final robust loess fit to the polarization 
data.
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3.7 Slicing

The full purpose in analyzing factor-response data is to visualize the 
change in the distribution of the measurements of the response as the 
factor changes. This is illustrated in Figure 3.40 by the polarization data. 
The vertical slice contains observations whose values of c, the cube root 
particulate concentration, lie in a small interval. For these observations, 
the values of b, the Babinet point, are a set of univariate data with a 
distribution. We can pick many such slices and compare the resulting 
distributions to see how the distribution of b changes as c changes. The 
robust loess curve fitted to these data in Section 3.5 shows the change in 
the location of b with c, but there are other aspects of the distribution to 
consider.

3 .40  The display illustrates slicing, a 
method for studying the conditional 
distribution of the response given the factor.

Cube Root Concentration (pg’̂ ^̂ /m)

Stated in this way, the goal of the analysis of the polarization data 
becomes that for univariate data, studied in Chapter 2. For example, 
distributions of singer heights for different voice parts were compared to 
study how height depends on voice part. For the polarization data, we 
will compare distributions of values of b for different slices to study how 
b depends on c.
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Visualizing Residual Distributions

In Chapter 2, distributions were visualized by a number of tools such 
as box plots and q-q plots. We could apply these directly to distributions 
of b formed from slices on c. But there is a problem that is illustrated by 
Figure 3.41, which displays the polarization data and the final robust 
loess fit of Section 3.6. Within the slice, the location of the distribution of 
b given c is not constant. Thus, the values of 6 within the slice are not 
homogeneous. Were we to compare with another slice where the 
location is constant but the spread is the same, say around 
c =  2.5.^/JIg/m, the distribution for the first slice might look as if it had 
greater spread simply because the location is changing. The change in 
location interferes with a study of other aspects of the distribution of b 
given c.

3.41 The robust loess curve describes how 
the location of the distribution of the 
response changes with the factor.

Cube Root Concentration (pg''^7m)

One remedy to the problem of a changing location would be to 
condition on very small intervals so that the change within each slice is 
small. But the result would be many groups of measurements and only a
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few measurements within each group. There is a better solution; 
carrying out the analysis with residuals from the robust loess fit. This is 
illustrated with Figure 3.42. With the fit removed, the location is now 
constant, not just within the slice but overall since we have determined 
from the residual dependence plot in Figure 3.37 that there is no 
remaining dependence of the location of b on c. In removing the change 
in the location, the hope is that the remaining aspects of the distribution 
change less precipitously so that we can use wider slices.

Just from Figure 3.42 itself there is a suggestion that aspects of the 
distribution of b given c other than location might be changing. For 
example, in the interval of values of c from about 3.5 m to
4.5 ,^/JIg/m, the upper tail of the residual distribution appears stretched 
out. Slicing will provide more information about this effect.

3.42  The display illustrates slicing the 
residuals to study how aspects of the 
distribution of the response other than 
location change with the factor.

Cube Root Concentration (pg '̂ /̂m)
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Slicing Intervals

Figure 3.43, a given plot, shows intervals of c that we will use for 
slicing. The intervals are output from the equal-count algorithm. The 
input is the number of intervals and the target fraction of values shared 
by successive intervals. For Figure 3.43, the number of intervals is 15 
and the target fraction is 1/2. The algorithm takes the input and selects 
intervals to make the numbers of values in the intervals as nearly 
constant as possible, and to make the fraction of values shared by each 
pair of successive intervals as nearly equal to the target fraction as 
possible. The lower boundary of the lowest interval is the minimum 
value of the measurements of c, and the upper boundary of the highest 
interval is the maximum value of the measurements. The algorithm, 
which is described at the end of this section, does its best, but achieving 
equality is typically not possible. For example, for the intervals in 
Figure 3.43, the number of values of c ranges from 45 to 61. This 
variation occurs in large part because there are many ties among the 
measurements of c; this can be seen in Figure 3.42.

3.43 The given plot shows 15 intervals 
selected by the equal-count method. The 
target fraction of overlap is 1/2.

Cube Root Concentration (pg '̂ /̂m)
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Sliced Distribution Plots

Figure 3.44 shows box plots of the 15 sets of residuals formed by the 
slicing intervals of the given plot in Figure 3.43. As we go from bottom 
to top through the box plots, the corresponding intervals go from bottom 
to top on the given plot. The box plots reveal a change in the 
distribution of the residuals. As the intervals of c increase, there is a 
migration from a stretching out of the lower tail to a stretching out of the 
upper tail. Thus there is substantial nonhomogeneity in the distribution 
of the residuals. The ideal case, as in Chapter 2, is a location fit that 
produces homogeneous residuals; then we can pool them to produce a 
more powerful description of variation about the fit. For example, for 
the singer heights in Chapter 2, once the means of the voice parts are 
subtracted, the residual distribution no longer depends on voice part; 
the eight residual distributions are homogeneous and can be pooled. For 
the analysis of the ganglion data in previous sections of this chapter, the 
residuals for the quadratic fit to CP ratio produced nonhomogeneous 
residuals; their spread increased with the location. But a log 
transformation resulted in a fit with homogeneous residuals. For the
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3 .44  Fifteen conditional distributions of 
residual Babinet point are compared by bo> 
plots.
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polarization data, the residuals are not homogeneous, but in this case, 
there is no simple remedy such as transformation to make them so. Thus 
we cannot pool all of the residuals to characterize the behavior of the 
distribution at each value of c. The distribution at c must be 
characterized by residuals corresponding to cube root concentrations 
close to c, for example, by the box plots in Figure 3.44. Sometimes the 
results of a data analysis are unavoidably complicated.

Choosing the Slicing Intervals

The two parameters of the equal-count algorithm used in slicing 
typically need to be chosen by trial and error. There is no one correct 
solution; different choices can show different properties. Still, there are 
considerations that affect the choice.

Suppose the number of observations is n, the number of intervals is k, 
and the target fraction of overlap is / .  As shown in a coming section that 
is for the record, the target value for the number of observations in each 
interval is nr —

The value of r, which is not necessarily an integer, increases as k 
decreases or as /  increases.

The numbers of values in the intervals must be controlled to be 
neither too small nor too large. If they are too small, there is no basis for 
comparison. If they are too large, there is a risk that within an interval 
there is a significant change in the distribution that is masked by too 
much pooling.

Unless there is an enormous amount of data, it is preferable to have 
the intervals overlap. The slicing intervals then move gradually along 
the scale of the factor, which provides greater sensitivity in detecting 
nonhomogeniety than would be provided by intervals that do not 
overlap and thus change less gradually. This same principle is used in 
loess fitting. For the fit at a single value of x, a vertical slice contains the 
observations that receive positive weight in the fitting; since the loess fit 
is evaluated typically at a grid of x values with far smaller spacing than
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the widths of the slices, the fit is determined by a sequence of slices that 
slide along the factor scale. In loess fitting, the widths of the slices are 
controlled by the choice of the smoothing parameter, a. In slicing to 
compare residual distributions, the widths of the slices are controlled by 
the choices of the parameters k and / .

For the Record: The Equal-Count Algorithm

Let Xi be the values of the factor, ordered from smallest to largest, so 
X \  is the smallest and X n  is the largest. The equal-count algorithm finds 
intervals whose endpoints are values of Xi. Let ĵ be the lower endpoint 
of the jth  interval, and let uj be the upper.

Consider, first, a special case with three properties: (1) there are no 
ties among the Xi) (2) there are intervals for which the actual fractions of 
values shared by successive intervals are all equal to / ;  (3) the numbers 
of values in these intervals are equal to a constant, r. The total number 
of values in all of the intervals collectively is the number of conditioning 
intervals, k, times the number of values, r, in each interval. But also, 
since two successive intervals share f r  values, and since there are 
(A; — l) separate sets of such shared values, the total number of values is 
n {k — l ) / r .  Thus

rk =  n -\- {k — l ) / r
and nr =

Now we can compute the interval endpoints. For the first interval,

=  X]

and
U \  —  X r  ■
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For the second interval.

and
^2 ^l  +  (l —/) r

U2 .
The formulas for the endpoints of the jith interval are

and

£ j  —  +

U j  —  0 ; r + ( _ ; - i ) ( i - / ) r  •

In the general case, we cannot necessarily make the actual fractions 
exactly equal to / ,  or make the numbers of points in the intervals 
constant, because the indices that define £j and uj in the above formulas 
are not necessarily integers. In the general case, we simply compute the 
values 1 + (j — l)(l — f ) r  and r  +  (j — 1)(1 — / ) r ,  and round them to 
the nearest integer to get indices. In all cases, £\ =  X\ and Un =  Xn, so 
the first interval has a left endpoint of x\ and the last interval has a right 
endpoint of Xn-
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3.8 Discrete Values o f a Factor

In 1924, a journal article reported 823 observations from a genetics 
experiment on flies' eyes [50]. Stocks of the ubiquitous species 
Drosophila melanogaster Meig were hatched in nine incubators whose 
temperatures varied from 15°C to 31°C in equal steps of 2°C. The 
number of facets of the eyes of each hatched fly were reported in units 
that essentially make the measurement scale logarithmic. The goal of the 
experiment was to see how facet number depends on temperature.

In Figure 3.45, the facet numbers are graphed against the 
temperatures; most plotting symbols are visually lost because of the 
repeat measuring at each temperature and the rounding of the facet 
numbers. In Figure 3.46, the data are graphed with temperature and 
facet number jittered to alleviate the overlap.
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3.45 Facet number is graphed 
against temperature.

Temperature (°C)
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3.46 Facet number is 
graphed against 
temperature.

Jittered Temperature (°C)

In the fly experiment, the measurements of the factor are discrete; 
there are many measurements of the response for each unique value of 
the factor. The data at the outset are ready for slicing. The facet numbers 
at each temperature serve as a single slice. Since there is no variation of 
the factor within each slice, there is no problem of a changing location 
within a slice, and we can begin the data analysis with slicing rather 
than waiting until we have residuals from a location fit.
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Figure 3.47 graphs the nine distributions of facet number by box 
plots. The overall impression is that the shifts in the distributions are 
additive, varying exclusively in location, and that the distributions are 
symmetric. Furthermore, the shifts are large compared with the spreads 
of the distributions, which means that temperature is an important 
factor in determining facet number.

Figure 3.48 shows normal q-q plots, not of the facet numbers 
themselves, but of the residuals from the means because this provides a 
better look at the normal approximation. If we graph the facet numbers, 
the large change in location forces the data on each panel into a narrow 
interval along the vertical scale, which interferes with our ability to 
assess the shape of the underlying pattern of the points. The nine 
residual distributions appear well approximated by the normal. The 
biggest deviation, that for the largest temperature, is mild skewness.

3.47 The conditional distributions 
of facet number given temperature 
are compared by box plots.
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For 15°C, the underlying pattern is linear but the quartile line does not 
follow the pattern because facet number at 15°C takes on only eight 
distinct values and about half of the data are equal to the two central 
values. The slopes of the underlying patterns for the nine temperatures 
are quite similar. The normality together with the similar slopes appears 
to confirm the impression from the box plots that the distributions differ 
by additive shifts.

- 2

-10

3.48 The conditional distributions of facet number given temperature are com
pared with the normal distribution by normal q-q plots of the residuals from the 
means.
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Our goal now is to determine how the locations of the distributions of 
facet number vary with temperature. The box plots in Figure 3.47 
suggest that the overall effect is linear. But there is anomalous behavior 
at 23°C and 25°C; the distribution at 25°C is shifted upward compared 
to the distribution at 23°C, which runs counter to the trend. The overall 
trend and the anomaly are probed further by the visualizations in 
Figures 3.49 and 3.50. The first figure displays both the least-squares fit 
of a line to the data and the means of the nine distributions. The second 
figure displays the residuals of the nine means from the least-squares 
line. Clearly the means at 23°C and 25°C vary by large amounts from 
the overall pattern.

3.49  The plotting symbols graph the means of the 
nine conditional distributions of facet number given 
temperature. The line is the least-squares fit to the 
823 measurements of facet number and temperature.

Temperature (°C)
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least-squares line are graphed against temperature.
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The scientific question is this. Should we conclude that there is a 
reproducible anomaly in the dependence of facet number on 
temperature? Or, is the effect linear, and some aspect of the experiment 
has caused a result that would not appear in a more carefully controlled 
experiment? Two pieces of information are important for making the 
decision. First, a linear decrease of facet number measured on a log scale 
is expected based on zoological reasoning and other data. The 
experimenters state:

Seyster (T9) and Krafka ('20) showed that the number of facets 
decreases with the increase in temperature in bar and ultra-bar 
races of Drosophila. The rate of decrease is proportional to the 
number of facets within any given stock, so that we are dealing 
with an instance of 'the compound interest law'.

Second, the values of the factor are nominal values and not necessarily 
what was achieved. The average temperature of an incubator fluctuates 
with time, and the temperature at a point in time is not constant 
throughout the incubator. Here is what the experimenters write about 
the control of temperature in the experiment:

Errors in the study may arise from fluctuating temperatures. The 
fluctuations are not the same in all cases; 15°, 17°, 25°, and 27° 
showed a variation of ±0.5°. 23° varied as much as 3°. The 
record of 29° showed a variation from 28.0° to 29.5°. Temperature 
readings taken of the food by a thermometer graded in tenths of 
degrees, showed a total variation of 1.4° in the 31° aquarium, and 
of 1.3° in the 21° aquarium. The 19° aquarium was more 
unsatisfactory and varied sometimes as much as 5°. In every case, 
however, an attempt was made to have the proper temperature 
during the facet reaction period, though this may not have been 
accomplished because the period may not be the same for the 
heterozygotes as for the homozygotes for which it has been 
determined. Nominal temperatures in accompanying tables and 
figures are to be considered with these remarks in mind.

Note, in particular, the large uncertainty in the temperature at 23°C. The 
visualization of the data, the zoological reasoning, and the information
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about the experimental protocol suggest the conclusion that there is no 
meaningful temperature anomaly and that the dependence of facet 
number on temperature is linear.

Using probablistic methods to enhance our inductive inference on this 
matter would require incorporating the uncertainty of the temperature 
measurements into the analysis, which would be complicated. And 
attempting to carry out probabilistic methods without accounting for the 
uncertainty would be uninformative or worse yet, misleading. 
Surprisingly, R. A. Fisher, the founder of modern statistical theory, made 
such an attempt. This will be discussed in the final section of the chapter.

3.9 Transforming Factor and Response

In 1801, William Playfair published his Statistical Breviary [67], which 
contains many displays of economic and demographic data. One 
display, beautifully reproduced by Tufte [74], graphs the populations of 
22 cities by the areas of circles. The graph also contains a table of the 
populations, so we can compare the data and the areas of the circles.

Figure 3.51 graphs the data by circles whose areas are proportional to 
those of Playfair. Using area to encode quantitative information is a poor 
graphical method. Effects that can be readily perceived in other 
visualizations are often lost in an encoding by area [20]. For example. 
Figure 3.52 is a dot plot of the populations that conveys the distribution 
of the data more effectively than the areas of Figure 3.51.

3.51 Circle areas encode the 
populations of cities at the end of 
the 1700s.
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3.52 A dot plot displays the 
population data.

250 500 750 1000

Population (thousands)

Still, for historical purposes, it is interesting to study Playfair's areas 
to see how accurately the circles have been drawn. Such study is 
inspired by the observation that the circle area for Turin is slightly less 
than that for Genoa, even though the population values recorded on 
Playfair's graph for these cities are equal. Thus the goal is to study how 
the areas depend on the populations, so area is a response and 
population is a factor.

Instead of studying population and area directly, we will work on a 
square root scale. In place of area, we will use diameter. In place of 
population, we will use square root population. There are two reasons. 
First, drawn circles are typically rendered by specifying a linear measure 
such as a radius or a diameter. Thus we might expect that for the 
diameters, measurement error would be roughly constant. Second, the 
distributions of the populations and the areas are substantially skewed 
toward large values, and taking square roots removes much of the 
asymmetry. Thus we are transforming both the factor and the response 
to simplify the analysis.
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Let di be the diameters of the circles in Tufte's reproduction, and let Si 
be the square root populations. In Figure 3.53, di is graphed against Sj.
If the encoding by circle area were exact, the circle areas would be 
proportional to the populations, and the transformed data would lie 
along a line of the form

di — î Si .

This is a linear parametric family with a single parameter b, and an 
intercept of zero.

3.53 Circle diameter is graphed against 
square root population.

Figure 3.54 graphs the data and the least-squares fit of the linear 
parametric family with zero intercept; the display shows how close the 
data come to an exact encoding. There is a consistent departure from 
linearity — an undulation back and forth for those observations with 
diameters of about 10 mm to 20 mm. Flowever, the magnitude of this 
undulation is very small compared with the overall variation in the data, 
so the graph gives us little information about its properties.



Visualizing Data 145

3.54  A line has been fitted to the Playfair 
data by least-squares.

Figure 3.55 is a residual dependence plot. By removing the gross 
linear effect, the plot magnifies the deviations from a perfect encoding. 
Now we can perceive the properties of the deviations far more incisively. 
Their total variation is about ±1 mm. Furthermore, there is clearly a 
dependence of the residuals on square root population. This suggests 
that the deviations are not simply the usual measurement error that 
would result from laying down a length with a measuring device. Such 
measurement error should produce a random pattern with no 
dependence. The true cause of the deviations is likely to remain a 
mystery without more information about the production of the original 
graph.
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3.55 The residuals from the linear 
fit to the Playfair data are graphed 
against square root population.
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3.10 Bivariate Distributions

For the examples encountered so far in this chapter, the bivariate data 
consist of a response variable and a factor variable. In other words, the 
goal of each analysis has been to determine how one variable depends 
on the other. For many bivariate data sets, however, the goal is simply to 
determine the bivariate distribution of the data in the two-dimensional 
space of the measurements, rather than determining how the variation 
in one variable explains the variation in the other. Figure 3.56 shows an 
example. The bivariate data are 111 measurements of wind speed and 
temperature on 111 days from May to September of 1973 in the New 
York City metropolitan region [13]. The temperature measurement is the 
daily maximum. The wind speed measurement is the average of values 
at 0700 and 1000. The goal is not to determine how the variation in one 
explains the variation in the other, but rather to see how wind speed and 
temperature vary together.

3.56 A scatterplot displays the wind 
speed and temperature data.

Jittered Temperature (°F)

One aspect of a bivariate distribution is the two univariate 
distributions of the two separate sets of measurements. Figures 3.57 and 
3.58 are normal q-q plots of the temperatures and wind speeds. The 
temperatures are slightly platykurtic. The wind speeds are slightly
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skewed toward large values; one result of the univariate skewness for 
the bivariate distribution of the data is several stragglers at the top of the 
scatterplot of Figure 3.56.

3.57 The univariate distribution of the 
temperatures is compared with the 
normal distribution by a normal q-q plot.

3 .58  The univariate distribution of the 
wind speeds is compared with the 
normal distribution by a normal q-q plot.
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Because temperature and wind speed are not designated as factor and 
response, it is no more informative to see a loess fit to wind speed as a 
function of temperature than it is to see a loess fit to temperature as a 
function of wind speed. For this reason. Figure 3.59 graphs both loess 
fits. The curve with the lesser overall slope is the fit to wind speed, and 
the curve with the greater overall slope is the fit to temperature.

In Figure 3.59 the fit to wind speed is nearly linear, but the fit to 
temperature has more curvature. The visualization shows that wind 
speed and temperature vary together; a decrease in wind speed tends to 
be associated with an increase in temperature.

3.59  Two loess curves have been 
added to the scatterplot of wind speed 
and temperature. The loess parameters 
are a  =  3 /4  and A =  1.

Jittered Temperature (°F)

Bivariate Data with the Same Units

It is common to encounter bivariate distributions where both 
variables have the same units. Most often, this arises because 
experimental units, or samples, are measured twice, for example, in two 
different locations or at two times or by two different measurement 
techniques. Figure 3.60 shows an example. The data are daily maximum 
ozone concentrations at ground level on 132 days from May 1,1974 to 
September 30,1974 at two sites in the U.S.A. — Yonkers, New York and
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Stamford, Connecticut — which are approximately 30 km from one 
another [16]. The sample for each measurement is the air mass on a 
particular day, and the bivariate data arise from two measurements at 
the two sites.

3.60  The scatterplot displays 
measurements of ground-level 
ozone concentration at two sites.

Yonkers Ozone (ppb)

Tukey Mean-Difference Plots

Whenever the two axes of a graph of two variables have the same 
units, a Tukey mean-difference plot, or m-d plot, is a candidate for 
visualization. For example, m-d plots served as an adjunct display for 
q-q plots in Chapter 2 . Figure 3.61 is an m-d plot of the points of 
Figure 3.60; the difference in the concentrations at the two sites on each 
day is graphed against the mean for the two sites. A loess curve has 
been added to aid our judgment of how the differences change with the 
mean level.

Figures 3.60 and 3.61 show that ozone concentrations at the two sites 
are correlated. This is to be expected since both are subject to the same 
weather systems, and the variation in these systems account in large part 
for the variation in the concentrations through time. It is also clear that
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3.61 The Tukey mean-difference plot graphs 
ozone differences against ozone means. The 
parameters of the loess curve are a  =  1 and 
A =  1. The curve is banked to 45°.

Mean (ppb)

concentrations at Stamford are higher than those at Yonkers; on all but 
10 days, Stamford values exceed Yonkers values. Stamford tends to have 
higher concentrations because it lies downwind of the New York City 
metropolitan region; the chemical reactions that produce ozone are able 
to more effectively create the air pollutant once the air mass moves away 
from the heaviest concentrations of primary pollutants. The amount by 
which Stamford exceeds Yonkers tends to increase as the levels at the 
two sites increase. The loess curve in Figure 3.61 shows that the 
differences increase from about 0 ppb on the cleanest days to about 
100 ppb on the dirtiest days.

The m-d plot shows the concentration differences have a complex 
behavior. But it may be that concentration ratios have a simpler 
behavior. We can check this by taking logs and making the scatterplot 
and m-d plot again. This is done in Figures 3.62 and 3.63. The loess 
curve still increases showing there is an increase in the percentage 
difference between Stamford and Yonkers as the overall level of ozone 
increases. But the effect on the log scale is less dramatic. At low 
concentrations, Stamford exceeds Yonkers by 0.5 log2 ppb, which is a 
factor of 2°^ =  1.4. At high concentrations, the difference is 0.9 log2 ppb, 
which is a factor of 2°^ =  1 .9.
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3.62 The scatterplot displays the 
logs of the ozone measurements.

Log Yonkers Ozone (log 2 ppb)

3 .63 The m-d plot graphs log ozone differences 
against log ozone means. The parameters of the 
loess curve on the plot are a  =  1 and A =  1. The 
curve is banked by an aspect ratio of 1.5. Banking 
to 45° results in an aspect ratio that is too large.
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3.11 Time Series

Figure 3.64 displays yearly incidences of melanoma, the deadly form 
of skin cancer [53]. The units are age-adjusted cases per 10̂  population. 
The data are from the state of Connecticut in the U.S.A. A principal 
cause of melanoma is exposure to solar radiation. For white 
populations, incidence tends to increase as latitude decreases because of 
increased exposure to radiation, and incidence is higher at skin sites 
with more exposure to the sun, such as the face.

3 .64  A time series —  yearly age-adjusted melanoma cases per 10* 
population in Connecticut, U.S.A. —  is graphed with 45° banking of the 
local segments, the line segments connecting successive observations.

The melanoma data are a time series: measurements of a quantitative 
variable through time. Melanoma incidence is the response and time is 
the factor; the goal is to see how incidence varies through time. While 
the data type is still bivariate data, the special character of the time 
variable changes the strategy and methods of analysis.

Time Components

Figure 3.64 shows a steady upward trend in the data. Superposed on 
this trend are oscillations that appear to rise and fall with periods of 
about 10 years. Figure 3.65 graphs a loess curve fitted to the data to 
describe the upward trend; the rise is very nearly linear. Figure 3.66 
graphs the residuals from the loess fit against time. The oscillations are 
contained in the residuals since they are not fitted by the trend curve.
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Figure 3.67 graphs a loess curve that was fitted to the residuals to 
describe the oscillations. There are approximately three complete 
oscillations; since the data cover 36 years, the average period is about 12 
years.

3.65 The display graphs a loess trend fit to melanoma 
incidence. The local segments are banked to 45°.

3 .66  The display graphs the residuals from the loess trend fit to melanoma incidence. 
The local segments are banked to 45°.

3 .67  The display graphs an oscillatory component fitted by loess to the residuals from 
the trend fit. The local segments are banked to 45°.
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This initial visualization of the melanoma data illustrates the principal 
consequence of having time as a factor. Instead of fitting a single curve 
to describe dependence — as we did for the previous bivariate data sets 
in the chapter — we often fit multiple curves to the data to describe 
multiple time components. For the melanoma data, one component is the 
trend component and another is the oscillatory component. Separate 
descriptions of different time components of a time series are necessary 
because different components often have different causes.

Loess Fitting for Time Series

Loess will be our principal tool for fitting time components, which 
are often complicated functions that defy description by simple 
parametric functions. We will suppose that the time series under 
analysis has been measured at equally spaced points in time; this is the 
case for many series in practice.

Consider the method for computing the loess fit, g{x), at a time point 
X .  The first step is to multiply the number of observations, n, times the 
smoothing parameter, a, and then truncate the result to an integer, q. 
Then we find the q observation times closest to x and carry out the local 
fitting using data at these times. For time series applications, we will 
always take a  to be of the form £/n, where £ is an integer; thus q =  £, 
and we will quote £ rather than a  because it is typically more natural to 
think in terms of £ for a time series. For the trend fit to the melanoma 
data, £ =  30 and A = 1. For the fit to the residuals from the trend fit,
£ =  9 and A = 2 . Locally linear fitting is used for the trend fit because 
the trend has little or no curvature. Locally quadratic fitting is used for 
the oscillatory fit because the oscillations have peaks and valleys. The 
values of £ arose from experimenting with several values.

For a times series, we will typically evaluate a loess fit at the times at 
which the series is measured. This was done to display the loess fits in 
Figures 3.65 and 3.67.
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Repeated Loess Fitting

The above fitting of two curves to the melanoma data is just the first 
step, or pass, of repeated loess fitting, a method for fitting two or more 
time components. For the first pass, the component with the largest 
value of £ is fitted by loess. For the melanoma data, this is the trend 
component graphed in Figure 3.65. Then the component is subtracted 
from the data to form residuals. The component with the second largest 
i  is fitted to the residuals. For the melanoma data, this is the oscillatory 
component graphed in Figure 3.67. If there are more than two time 
components to be fitted, new residuals are computed by subtracting the 
two fitted components, the next component is fitted, and so forth.

In the next pass, each component is fitted again by subtracting all 
other fitted components and fitting a loess curve. For example, in a 
second pass through the melanoma data, we subtract the oscillatory 
component from the first pass and fit the trend component to the 
residuals. Then we subtract this new trend component from the data 
and fit the oscillatory component to the residuals.

Several passes can be made through all components until the results 
stabilize, which typically happens after a small number of passes. The 
reason for multiple passes is that in some cases, different components 
can compete for the same variation in the data. The potential for 
competition increases as any two values of i  get closer. The multiple 
passes are needed for the components to settle down and decide which 
component gets what variation. For the melanoma data, additional 
passes beyond the first produce fits nearly identical to those from the 
first pass, so there is virtually no competition at all, and Figures 3.65 and
3.67 show what amount to the final fits.
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Visualizing the Final Residuals

Figure 3.68 graphs the residuals from the two components of the 
fitting to the melanoma data. No major effect appears. One minor 
peculiarity is that the three largest residuals are preceded by the three 
smallest residuals. Figure 3.69 is a normal q-q plot of the residuals. The 
distribution of the data appears well approximated by the normal. For 
example, there are no outliers or more pervasive leptokurtosis. This is 
comforting because the loess fitting did not employ the bisquare 
robustness feature. Were such robustness needed, we would compute 
bisquare weights at the end of each pass and use them in each fitting of 
the next pass.

3 .68  The display graphs the residuals from the fitting of two time components to 
melanoma incidence. The local segments are banked to 45°.

3 .69  A normal q-q plot displays the 
incidence residuals.

Unit Normal Quantile
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For the visualizations of the data earlier in the chapter, r-f spread 
plots showed the relative amounts of variation in fitted values and 
residuals. For a time series fitting with multiple components, we want to 
compare the amount of variation not only in the overall fit and the 
residuals, but also in the different components as well. This can be done 
simply by graphing the components and the residuals against time as 
shown in the r-f spread plot of Figure 3.70 for the melanoma fits. The 
trend panel shows the yearly trend values minus their mean; the 
resulting values are centered on zero as are the values of the other two 
components. The trend component accounts for a large amount of the 
variation in the data. The oscillatory has less variation, and the residual 
component has the least.

1940 1955 1970

Year

3.70 An r-f spread plot compares the variation in the three time components of 
melanoma —  the trend component, the oscillatory component, and the residuals.
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Causal Factors for the Melanoma Data

The trend component in the melanoma data has a number of possible 
causes. One, of course, is simply more exposure — for example, people 
spending more time at the beach. A second is more widespread and 
accurate diagnosis. A third is a population with greater susceptibility. 
No firm explanation of the cause is known at this time.

The oscillatory component has a firm explanation. The cycles have 
periods of about 12 years. Given that solar radiation is a cause of 
melanoma, given that the sunspots have an 11-year cycle, and given 
that solar activity increases with increasing sunspot number, it seems 
quite likely that the oscillatory component and the sunspot numbers are 
related. Figure 3.71 graphs both the oscillatory component and the 
sunspot numbers on juxtaposed panels. There is an obvious association 
between the two series in which the peaks and troughs of the sunspots 
occur somewhat earlier. This time delay, or lag, is not surprising. An 
increase in radiation would not necessarily trigger melanoma cases 
instantaneously but rather would trigger them at some point in the 
future. And diagnosis once symptoms appeared would not occur 
immediately.

3.71 The oscillatory component fitted to melanoma incidence is compared with the 
sunspot numbers.
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3,12 Seasonal Components in Time Series

Figure 3.72 displays monthly average CO2 concentrations at the 
Mauna Loa observatory in Hawaii [10, 58]. One time component 
revealed by the graph is a persistent upward trend. This is the result of 
man's emissions of CO2 into the atmosphere. The rise, if continued 
unabated, will cause atmospheric temperatures to rise, the polar ice caps 
to melt, the coastal areas of the continents to flood, and the climates of 
different regions of the earth to change radically [70].

3 .72  The display shows a time series, monthly CO2 concentrations at Mauna Loa. 
The local segments are banked to 45°.

The aspect ratio in Figure 3.72 has been chosen by 45° banking of the 
local segments, the line segments connecting successive monthly 
observations. This gives an opportunity to study local behavior, but it 
does not serve our assessment of the trend particularly well. If the 
segments of a trend curve were banked to 45°, the aspect ratio of the 
graph would be close to one.
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Figure 3.73 graphs the data again with an aspect ratio of one to 
provide a better visualization of the trend component. The graph 
suggests there is convexity in the trend; the rate of increase of CO2 is 
itself increasing through time.

3.73  The CO2 time series is 
graphed again with an aspect ratio 
equal to 1 to approximately bank the 
underlying trend to 45°.

A second time component in the CO2 data is oscillations with a 
period of one year. The cause is foliage in the Northern Hemisphere. 
When the amount of foliage begins to increase in the spring, CO2 is 
absorbed from the atmosphere, and when the amount of foliage begins 
to decrease in the fall, CO2 is returned to the atmosphere. This 
component has a special property. It operates like a good clock; it is a 
seasonal component. The driving mechanism, the change in foliage 
throughout the year in the Northern Hemisphere, is tied to the 
revolution of the earth around the sun. As time has marched along, 
peaks have occurred in late spring and troughs have occurred in the fall. 
Unless man's activities disrupt the mechanism, we can count on this 
behavior for the future, and we could accurately predict the occurrences 
of peaks in 100 years. Oscillations in a time series do not always keep 
good time. For example, the cycles in the sunspot series, a few of which 
are graphed in Figure 3.71, are not a particularly good clock. Over short 
time intervals of a few cycles, peaks can be predicted, but it is not 
possible to accurately predict peaks many decades into the future.
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Figures 3.72 and 3.73 provide helpful visualizations of the CO2 time 
components, but we can expect to see considerably more by fitting. We 
could proceed as we did with the melanoma data — fit the trend with a 
large value of (. and with A =  1, and then fit the seasonal oscillations 
with a small value of i  and with A = 2 . But the excellent clock in the 
seasonal component gives an opportunity to take another tack that 
produces a better fit.

Seasonal Loess

Seasonal loess is a procedure for fitting a seasonal component. The 
procedure is iterative in the same way that repeated loess fitting is 
iterative, with several passes and with the fitting of components on each 
pass [18]. For seasonal loess, each pass consists of fitting two 
components. One is the seasonal component; seasonal loess has a special 
method for fitting this component. The other is a component whose sole 
purpose is to enable an uncontaminated fitting of the seasonal 
component; it captures long-period variations, which are trends and 
oscillations whose periods are longer than that of the seasonal period, 
which is 12 months for the CO2 data. First, the seasonal component is 
fitted. Then the long-period component is fitted to the residuals. This is 
the first pass. In subsequent passes, each component is fitted to residuals 
from the other component. Usually, three passes are quite sufficient. If 
robustness is needed, bisquare weights can be computed at the end of 
each pass and used in each fitting of the next pass.

To fit the seasonal component, loess is applied separately to each cycle 
subseries of the residuals from the current long-period component. A 
cycle subseries consists of all data at one position of the cycle. For 
example, for the CO2 data there are 12 subseries: the January values, the 
February values, and so forth. So to fit the seasonal component for CO2 
there are 12 separate loess smoothings, one for each subseries; the 12 fits 
are then combined to form the complete seasonal component. The 
details of the fitting for seasonal loess are given at the end of this section.

To carry out seasonal loess, values of I and A for the loess fits to the 
subseries must be chosen. For the CO2 data, some experimentation 
showed that £ =  25 and A = 1 resulted in a seasonal component that 
was smooth and that adequately tracked the seasonal pattern in the data.
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Cut-and-Stack Plots

The seasonal fit to the CO2 data is displayed in Figure 3.74. A 
cut-and-stack display method is used to enable banking to 45°. Suppose 
we attempted to graph the CO2 seasonal component on a single panel 
with 45° banking of the local segments. The resulting aspect ratio would 
be 0.017; and a single-panel graph with this aspect ratio that was 2 cm 
high would be 1.18 meters wide, too big for either a book page or a 
computer monitor. The solution is to take the single long panel, cut it 
into pieces, and stack the pieces up as in Figure 3.74. The seasonal 
component consists of 384 values, one value for each month. If the 
component were graphed on a single panel, the data would be displayed 
by 383 line segments connecting successive values. The cut-and-stack 
method also uses 383 segments because each cut occurs where one line 
segment joins the next one.

Figure 3.74 shows the seasonal cycles are all quite similar, but one 
change is apparent; the sizes, or amplitudes, of the seasonal oscillations 
increase slightly though time. The next visualization method provides a 
more sensitive look at this behavior.
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Cycle Plots

Figure 3.75 is a cycle plot, another method for graphing a seasonal 
component [27]. The cycle subseries are graphed separately. First, at the 
left of the data region, the January values are graphed for successive 
years, then the February values are graphed, and so forth. For each cycle 
subseries, the mean of the values is portrayed by a horizontal line 
segment. The graph shows the overall pattern of the seasonal cycles — 
for example, as portrayed by the horizontal mean lines — and also 
shows the behavior of each monthly subseries. Thus we can readily see

M M

3 .75  The monthly 
subseries of the CO2 
seasonal component are 
displayed by a cycle plot. 
The segments that make 
up the 12 curves are 
banked to 45°.
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whether the change in any subseries is large or small compared with the 
overall pattern of the seasonal component.

Figure 3.75 shows interesting features. The first is the overall seasonal 
pattern, with a May maximum and an October minimum. The second 
feature is the patterns in the individual monthly subseries. For months 
near the yearly maximum, the subseries tend to be increasing rapidly 
although the overall increases are small compared with the seasonal 
amplitude; the biggest increases occur for April and May. Near the 
yearly minimum, cycle subseries tend to be decreasing; the biggest 
decreases are for September and October. The net effect is the increase in 
the amplitudes of the seasonal oscillations observed earlier. At present, 
no one knows if this has been caused by human activity or whether it is 
part of a natural cycle.

Fitting the Residuals from a Seasonal Component

Once a seasonal component has been fitted, other time components 
can be studied by fitting the residuals from the seasonal component. The 
CO2 residuals, which still contain the trend component, are graphed in 
Figure 3.76.

3 .76  The residuals from the 
seasonal component are displayed.
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Figure 3.77 graphs a loess trend fit to the residuals with £ =  101 and 
A = 1. Figure 3.78 graphs the residuals from the trend fit. There are 
oscillations in the data — a rising and falling of the general level with 
periods of about 2 to 5 years. Figure 3.79 shows a loess fit to these 
residuals with  ̂=  35 and A = 2 . Since we have fitted two time 
components to the residuals from the seasonal component, several 
passes of repeated loess fitting are in order. But as with the melanoma 
data, the final fits are very close to the initial.

3.77 The display graphs a loess trend fit to 
the residuals from the seasonal component. 
The local segments are banked to 45°.

3 .78 The residuals from the loess trend fit are displayed. The aspect ratio is 1/3 to 
enhance the perception of the oscillations in the data.
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3.79 The curve is an oscillatory component fitted to the residuals from the trend fit. 
The local segments are banked to 45°.

The trend component in Figure 3.77 is convex; the rate of increase of 
CO2 is increasing. The oscillatory component in Figure 3.79 has about 9 
complete cycles over 32 years, so the average period is about 3.5 years. 
This variation is associated with changes in the southern oscillation 
index, a measure of the difference in atmospheric pressure between 
Easter Island in the South Pacific and Darwin, Australia. Changes in the 
index are also associated with changes in climate. For example, when 
the index drops sharply, the trade winds are reduced and the 
temperature of the equatorial Pacific increases. Many regions, including 
South America, can be drastically affected. In years when such an event 
occurs, the ocean warming normally begins in December, so the event 
has become known as El Nino, the child [591.



168 Bivariate Data

The final residuals from the three components fitted to the CO2 data 
— trend, 3.5-year, and seasonal — are graphed in Figure 3.80. No 
striking time effect remains.
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3.80 The residuals from the trend, 3.5-year, and seasonal components are displayed. 
The aspect ratio is 0.1. Banking local segments to 45° results in an aspect ratio that is 
too small.

Figure 3.81, a normal q-q plot, shows that the distribution of the 
residuals is well approximated by the normal. Thus we need not fear 
that outliers or more pervasive leptokurtosis is damaging our fits.

3.81 The CO2 residuals are displayed by a 
normal q-q plot.

Unit Normal Quantile
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Finally, Figure 3.82 graphs the 3 .5-year, seasonal, and residual 
components by an r-f spread plot. The trend component has been 
omitted since, ominously, its variation is so much greater than that of the 
other three. Its overall variation is 39.4 ppm, while the largest overall 
variation of the other three, that of the seasonal, is only 6.6 ppm.

0 -

Residual

- - 3

3.82 An r-f spread plot compares the variation in the 3.5-year component, the 
seasonal component, and the residuals.
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For the Record: The Details of Seasonal Loess

In seasonal loess, the long-period component is fitted to prevent 
variation with periods greater than that of the seasonal from leaking into 
the seasonal. The long-period component is not thought of as an output 
of the procedure; its purpose is just to facilitate the production of the 
seasonal component.

Let the time series be Yt for times f = 1 to n. Suppose the number of 
observations in each period, or cycle, of the seasonal component is p. For 
example, if the series is monthly with a yearly periodicity, then p =  12. 
Suppose also that the choices of the parameters for the seasonal fitting 
are  ̂ and A =  A(g). As we will see, all other loess parameters
used in seasonal loess are chosen automatically.

As stated earlier, seasonal loess is an iterative procedure, with several 
passes. On each pass, the seasonal component and the long-period 
component are fitted. Suppose St̂ k are the seasonal and
long-period components at the end of the /sth pass.

The result of the first stage of pass -|- 1 is an updated seasonal 
component. First, residuals, Yt — Lt̂ kf are computed. (On the first pass, 
no long-period component is available, so no subtraction is carried out.) 
Each cycle subseries of the residual series is fitted by loess with i  = 
and A =  A(g). Each loess fit is evaluated at all time points of the 
subseries and at two additional points: one time step ahead and one 
time step behind. For example, suppose that the series is monthly, that 
p =  12, and that the January subseries ranges from January 1943 to 
January 1997. Then the loess fit for January is evaluated at all time 
points from January 1942 to January 1998. The collection of fitted values 
for all of the subseries is a series, Ct fc+i/ consisting of n -|- 2p values that 
range from t =  —p -|- 1 to n -|- p. Next, Ct^k+\ is filtered by a moving 
average of length p, followed by another moving average of length p, 
followed by a moving average of length 3, followed by a loess fit with 
A = 1 and £ equal to the smallest odd integer greater than or equal to p. 
The output, Ft^k+\r is defined at time positions  ̂ =  1 to n because the 
three moving averages cannot extend to the ends, so in all, p positions 
are lost at each end. The fitted seasonal component from this pass is 
St,k+t =  Ct,k+t -  Ft^k+\ for f =  1 to n. Ft,k+\ is subtracted to help 
prevent long-period variation from entering the seasonal component.
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The result of the second stage of pass +  1 is an updated long-period 
component. First, residuals, Yt — St^k+\f computed. Then the 
residuals are fitted by loess with A = 1 and

e
1.5p

I -

rounded to an integer. The fitted long-period component from this step
fc+i, is the loess fit evaluated at the time points i =  1 to n.

As with repeated loess fitting, bisquare can be used in seasonal loess 
by computing bisquare weights at the end of each pass and using them 
in the next pass. The weights after pass k are computed using the 
residuals, Yt — St̂ k ~  Bisquare was not used for the CO2 data 
because the residuals have a distribution that is well approximated by 
the normal.

In some cases, the change in the level of each subseries can be nearly 
flat through time but not quite constant. In other words, the seasonal 
component changes, but only very gradually. In such a case, it can make 
sense to take A(g) =  0, a value of A not yet encountered in our account of 
loess fitting. This means a constant in time is fitted locally rather than a 
linear or quadratic function of time. While such a value of A can make 
sense for time series applications, it almost never makes sense for the 
applications in which the factor is not time.

Other loess smoothing parameters in the above description of 
seasonal loess have been given values that work quite well in most 
applications. But aficionados of fitting seasonal components can 
experiment with these parameters as well.
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3.13 Direct Manipulation: Labeling by Brushing

For some bivariate data sets, each observation has a label. Figure 3.83 
is a scatterplot of log brain weight against log body weight for a 
collection of animal types. In this case, the label for each bivariate 
observation is an animal name.

3.83 Log brain weight is graphed against log 
body weight for various animal types. The 
rectangle on the graph is the brush.

Log^o Body Weight (log grams)

In the course of visualizing labeled data, it is often helpful to 
selectively label points identified as interesting from their location on a 
scatterplot. This typically cannot be achieved simply by labeling all 
points because the labels overlap and obscure one another. Because our 
selection of points to be labeled is based on visual identification, direct 
manipulation is ideal for labeling.
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Brushing is a basic tool of direct manipulation that can be used for 
labeling and, as we shall see in later chapters, for other direct 
manipulation methods as well [6]. The rectangle at the top of the data 
region in Figure 3.83 is the brush, the central object in brushing. There 
are two important aspects of the control that the data analyst has of the 
brush. One is that it is moved around the screen by moving a mouse. 
The second is that it can be made any size or shape; in Figure 3.83, it has 
been made small and square.

The problem of labeling points on a scatterplot is solved quite nicely 
by brushing. When the brush covers one or more points, the label for 
each covered point appears. This is illustrated by Figure 3.84; we can 
now see that the animal with the largest brain weight is the blue whale.

3.84 Brushing with the labeling 
operation in the transient mode shows 
one label.

Log.|Q Body Weight (log grams)
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There are three modes in which the labeling operation can be carried 
out — transient, lasting, and erase. If the mode is transient, the label for a 
covered point disappears when the brush no longer covers it. This is 
illustrated by Figure 3.85. The brush has been moved from the 
blue-whale point to the point of an animal type with a slightly bigger 
body than the blue whale, but with a much smaller brain, clearly a dumb 
animal compared with the whale. As soon as the brush leaves the 
blue-whale point, the blue-whale label disappears. As soon as the brush 
touches the new point, the new label appears showing it is the genus 
Brachiosaurus.

3 .85  Brushing in the transient 
mode shows another label.

Log.Q Body Weight (log grams)

If the mode is lasting, the label remains even after the brush is 
removed from the point. This is illustrated by Figure 3.86. The brush has 
touched two points, and the labels remain even after the brush is moved 
from the points.

If the mode is erase, a lasting label is removed when the brush touches 
it. This is illustrated by Figure 3.87; the lasting Brachiosaurus label 
created in Figure 3.86 has been removed by covering the genus' point.
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3.86 Brushing in the lasting mode 
has resulted in two lasting labels.

Log.|Q Body Weight (log grams)

3.87 Brushing in the erase mode has 
removed one of the lasting labels.

Log.|Q Body Weight (log grams)
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Finally, in Figure 3.88, brushing in the lasting mode has been applied 
to all points on the scatterplot. The result, a mess, shows why the simple 
procedure of drawing all labels at the outset does not work.
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3.88 Brushing in the lasting 
mode has been used to draw the 
names of all animal types.
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3.14 Visualization and Probabilistic Inference

Rote Data Analysis

The experimenters who collected the ganglion data that were 
analyzed at the beginning of this chapter related CP ratio to area by 
fitting a least-squares line [60]. Probabilistic inference was carried out 
using a standard t-interval method that is based on an assumption that 
the deviations of the response from the line are a homogeneous random 
sample from a normal population distribution. Suppose this assumption 
is true. If we subtract the population slope from the slope estimate and 
then divide by a standard estimate of the population standard deviation 
of the slope estimate, the result has a t-distribution. This t-statistic can be 
used to form confidence intervals and to test the null hypothesis that the 
slope is zero. The experimenters quote the results of the hypothesis test 
in their account:

The linear relation between the C/P ratio and retinal area is 
highly significant (slope = 0.107 ± 0 .010; P < 0 .001). . .

Such a quotation of a p-value is part of the ritual of science, a sprinkling 
of the holy waters in an effort to sanctify the data analysis and turn 
consumers of the results into true believers.

The rote data analysis of the experimenters has produced nonsense. 
The visualizations earlier in the chapter showed that a line does not fit 
the data. That ends matters right there. The standard t-interval method 
is not valid. The sampling variability that it prescribes for the estimate is 
not the actual variability. Once the lack of fit is appreciated, it is possible 
to make correct statements about variability, but in this example it makes 
no sense to characterize the probabilistic properties of a function 
estimate that does not fit the data.

The visualizations of the chapter also showed that a quadratic 
polynomial fits CP ratio without lack of fit, but there is monotone 
spread. So even with the right function, the t-interval method is 
inapplicable because the residuals are not homogeneous.
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Finally, the visualizations showed that by taking the logarithm of CP 
ratio, the underlying pattern is linear, the spread no longer depends on 
location, and the distribution of the residuals is well approximated by 
the normal distribution. For this analysis, we can venture the standard 
methods to make probabilistic inferences.

Combining Prior Information and Data

Visualization is an effective framework for drawing inferences from 
data because its revelation of the structure of data can be readily 
combined with prior knowledge to draw conclusions. By contrast, 
because of the formalism of probablistic methods, it is typically 
impossible to incorporate into them the full body of prior information.

Even when we have checked all assumptions that underlie a 
probabilistic inference, we must be prepared to ignore its results if 
knowledge not accounted for in the inferences appears to provide a 
better explanation of the behavior of the data. The fly data analyzed in 
Section 3.8 are one example. The actual temperatures of the incubators 
in the fly experiment are the causal factor, not the nominal temperatures. 
Fortunately, the experimenters report much information about the actual 
temperatures, and they wisely encourage us to incorporate this 
knowledge into our conclusions from the experiment:

Errors in this study may arise from fluctuating temperatures. . . .  
Nominal temperatures in accompanying tables and figures are to 
be considered with these remarks in mind.

The visualization suggested a temperature anomaly at 23°C and 25°C — 
a deviation from the overall linear pattern. But the information that the 
actual temperatures varied by substantial amounts, particularly the 
large variation at 23°C, combined with the information from the 
visualization, makes it quite clear that the deviations in the actual 
temperatures could easily account for the anomaly at 23°C and 25°C. In 
other words, combining the results of the visualization with the 
knowledge of the actual temperature variation leads to a conclusion that 
the dependence of facet number on actual temperature is likely linear.
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R. A. Fisher analyzed these data with probabilistic methods [38]. In 
an exceedingly uncharacteristic moment of poor insight, he used the 
nominal temperatures and ignored the information about actual 
temperature variation offered up by the experimenters. He tested the 
null hypothesis that the underlying pattern in facet number is linear in 
nominal temperature. To do so, he chose a method of analysis — the 
analysis of variance — that is based on an assumption of normal 
distributions with the same standard deviation. Our visualization 
shows that this is a reasonable assumption fol^he nominal temperature 
distributions. Fisher concluded that the null hypothesis of a linear 
dependence of facet number on temperature is rejected because the 
p-value of the test is small. He reports:

The deviations from linear regression are evidently larger than 
what would be expected, if the regression were really linear . . .
There can therefore be no question of the statistical significance of 
the deviations from the straight line, although the latter accounts 
for the greater part of the variation.

It is certainly true that a small p-value would be expected if the 
underlying pattern were not linear. But a small p-value could also result 
from other causes. One of them is a fluctuation in actual temperature, 
the likely cause [9].
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4.1 A scatterplot matrix displays trivariate data: measurements of abrasion 
loss, hardness, and tensile strength for 30 rubber specimens.
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4 Trivariate Data

Figure 4.1, a scatterplot matrix, shows data from an industrial 
experiment in which thirty rubber specimens were rubbed by an 
abrasive material [31]. Measurements of three variables — abrasion loss, 
hardness, and tensile strength — were made for each specimen. 
Abrasion loss is the amount of material abraded from a specimen per 
unit of energy expended in the rubbing; tensile strength is the force per 
unit of cross-sectional area required to break a specimen; and hardness is 
the rebound height of a steel indenter dropped onto a specimen. The 
goal is to determine the dependence of abrasion loss on tensile strength 
and hardness; thus abrasion loss is a response, and hardness and tensile 
strength are factors. Each panel of the scatterplot matrix in Figure 4.1 is a 
scatterplot of one variable against another. For example, the upper left 
panel is a scatterplot of abrasion loss on the vertical scale against 
hardness on the horizontal scale. This scatterplot also appears in the 
lower right panel, but with the axes reversed.

The rubber data are trivariate data: measurements of three 
quantitative variables. Geometrically, the 30 values of abrasion loss, 
hardness, and tensile strength are 30 points in a three-dimensional 
space. Visualization, whether on a computer screen or on paper, uses a 
two-dimensional physical medium. The tools in this chapter enable us 
to visualize the three-dimensional structure within this two-dimensional 
medium.

A Coordinate System for Panels

Each panel of a scatterplot matrix, or any other multi-panel display, 
will be referenced by its column and row numbers; the left column is 
column one and the bottom row is row one. In Figure 4.1, the upper left 
panel is (1,3) and the lower right panel is (3,1). This convention amounts 
to a coordinate system for the panels where the column number is the 
horizontal coordinate and the row number is the vertical coordinate.
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4.1 Coplots o f Data

The hardnesses of the rubber specimens range from 45 °Shore to 
89 °Shore. Consider those specimens whose hardnesses lie in the range 
45 °Shore to 62 “Shore. There are nine such specimens; their data are 
displayed in Figure 4.2 by the "+" plotting symbols. Geometrically, we 
have sliced through the three-dimensional space of the data with two 
planes that intersect the h axis perpendicularly at 45 “Shore and 
62 “Shore, and have selected the specimens that lie between the two 
planes. On the (2,3) panel of Figure 4.2, the symbols show how 
abrasion loss depends on tensile strength conditional on hardness lying 
between 45 “Shore to 62 “Shore. There is a nonlinear conditional 
dependence.

The concept of conditioning illustrated in Figure 4.2 is a fundamental 
one that forms the basis of a number of graphical methods developed in 
the past [71, 78,81]. And it forms the basis for the conditioning plot, or 
coplot, a particularly powerful visualization tool for studying how a 
response depends on two or more factors.
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4.2 The plotting symbols encode the data for those specimens with hardness 
less than 62 ° Shore.
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The Coplot Display Method

The display method of the coplot presents conditional dependence in 
a visually efficient way. Figure 4.3 illustrates the method using the 
rubber data. The panel at the top is the given panel; the panels below are 
the dependence panels. Each rectangle on the given panel specifies an 
interval of values of hardness. On a corresponding dependence panel, 
abrasion loss is graphed against tensile strength for those observations 
whose values of hardness lie in the interval. If we start at the (1,1) 
dependence panel and move in graphical order — that is, from left to 
right in the bottom row, then from left to right in the next row, and so 
forth — the corresponding intervals of the given panel proceed from left 
to right and from bottom to top in the same fashion. The intervals were 
determined by the equal-count algorithm that was used for slicing in 
Chapter 3. The use of the algorithm for conditioning will be discussed 
shortly.

In Figure 4.3, a loess curve has been added to each dependence panel. 
Bisquare is used in the fitting to protect against outliers that might be 
present in the data. At this early stage of the analysis, outliers cannot be 
ruled out, so we take the conservative route of using robust fitting just in 
case they are there.

The aspect ratio of the dependence panels is critical. In Chapter 3, the 
aspect ratio was chosen on many displays to bank curves to 45°. In those 
examples, there was just a single panel. On coplots there are many 
panels, but they all have the same scales, so we simply apply 45° 
banking to the entire collection of segments. Suppose all of the symbols 
and line segments on the dependence panels of Figure 4.3 were graphed 
on a single panel. The aspect ratio that would result from applying 45° 
banking to the line segments is the aspect ratio used in Figure 4.3. In 
other words, the method of 45° banking does not depend on whether we 
happen to juxtapose subsets of the data on different panels or graph 
everything on the same panel. And as with single-panel displays, if 45° 
banking results in an aspect ratio that is too large or too small to 
maintain the resolution of labels and plotting symbols, we simple use 
the closest aspect ratio that allows sufficient resolution.
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4.3  A coplot graphs abrasion loss against 
tensile strength given hardness. The 
parameters of the six robust loess curves are 
a  =  3 /4  and A =  1. The aspect ratio of the 
data rectangle of the dependence panels has 
been chosen to produce 45° banking of the 
collection of line segments that make up the 
curves.

Tensile Strength (kg/cm^)

Figure 4.3 shows a wealth of information about the dependence of 
abrasion loss on tensile strength. Except for panel (3,2), each 
conditioning on hardness has a nonlinear pattern: a broken-line, or 
hockey-stick, function. Below 180 kg/cm^, the pattern is linear; above 
this value, it is also linear, but with a different slope. On the five panels, 
the slopes below the breakpoint are negative and nearly equal. Above 
the breakpoint, the five slopes are nearly equal to zero. In other words, 
the patterns shift up and down, but do not appear to change otherwise 
by a significant amount. This suggests that for the most part there is no 
interaction between the two factors; the effect of tensile strength on 
abrasion loss is the same for most values of hardness. But Panel (3,2) 
shows a major departure from the hockey-stick pattern. As tensile 
strength decreases, the handle of the stick begins to form but then, 
suddenly, for the lowest three values of tensile strength, the pattern 
turns precipitously downward.
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Coplots intervals must be chosen to compromise between two 
competing criteria — number of points and resolution. On the one side, 
their lengths must be sufficiently great that the dependence panels have 
enough points for effects to be seen; if there are too few points on a 
dependence panel, noise in the data typically prevents points from 
coalescing into a meaningful pattern. On the other side, the lengths 
must be small enough to maintain reasonable resolution; if a 
conditioning interval is too big, there is a risk of a distorted view if the 
nature of the dependence changes dramatically as the value of the 
conditioning factor changes within the interval. The intervals in 
Figure 4.3 were selected by the equal-count algorithm. The inputs to the 
algorithm are the number of intervals and the target fraction of values to 
be shared by successive intervals. In Figure 4.3, the number of intervals 
is 6 and the target fraction is 3/4. These two values were the result of 
experimentation with a variety of values in an attempt to steer a middle 
course between resolution and number of points.

Figure 4.4 conditions on tensile strength; abrasion loss is graphed 
against hardness for six intervals of tensile strength chosen, again, by the 
equal-count algorithm with a target fraction of overlap equal to 3/4. For 
each conditioning on tensile strength, the dependence of abrasion loss 
on hardness has, for the most part, a linear pattern. Furthermore, the 
patterns have roughly the same slope and change only in the intercepts. 
This supports the observation in Figure 4.3 that, for the most part, there 
is little or no interaction between hardness and tensile strength. And 
again, there is a departure from the overall pattern for a small number of 
points. In panel (1,1), the observations with the three or so largest values 
of hardness drop well below the linear pattern established by the other 
observations. The scatterplot matrix in Figure 4.1 shows that the three 
observations with the smallest values of tensile strength take on the 
three largest values of hardness. Thus the aberrant behavior on the two 
coplots is caused by the same three observations, which sit by 
themselves in a corner of the factor space.
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4 .4  Abrasion loss is graphed 
against hardness given 
tensile strength. The 
parameters of the robust 
loess curves are a  =  3 /4  and 
A =  1 . The curves are 
banked to 45°.
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Ethanol Data

Figure 4.5 is a scatterplot matrix of data from an experiment that 
studied exhaust from an experimental one-cylinder engine fueled by 
ethanol [12]. The response, which will be denoted by N O x , is the 
concentration of nitric oxide, NO, plus the concentration of nitrogen 
dioxide, NO2, normalized by the amount of work of the engine. The 
units are /xg of NOx per joule. One factor is the equivalence ratio, E, at 
which the engine was run. £ is a measure of the richness of the air and 
fuel mixture; as E increases there is more fuel in the mixture. Another 
factor is C, the compression ratio to which the engine is set. C is the 
volume inside the cylinder when the piston is retracted, divided by the 
volume when the piston is at its maximum point of penetration into the 
cylinder. There were 88 runs of the experiment.

0.6 0.8 1.0 1.2

4.5  A scatterplot matrix displays the ethanol data.
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The (3,2) panel in Figure 4.5 shows that C and E are nearly 
uncorrelated and that C takes on one of five values. The (3,1) panel 
shows a strong nonlinear dependence of N O x  on E with a peak near 
E -  0.9. The (2,1) panel does not reveal a relationship between N O x  and 
C, but it is possible that a dependence is being masked by the strong 
effect of E.

Figure 4.6 is a coplot of N O x  against C given E, The equal-count 
method has been used to select the intervals; the target fraction of 
overlap is 1 /4. The coplot shows that N O x  does, in fact, depend on C; 
for low values of E, N O x  increases with C, and for medium and high 
values of E, N O x  is constant as a function of C. In all cases, the 
underlying pattern appears linear; for low values of E, the slope is 
positive and for high values, it is zero.

Equivalence Ratio

0.6 0.8 1.0 1.2

8 18 8 18

4.6  A coplot graphs NOx 
against compression ratio 
given equivalence ratio. The 
parameters of the robust 
loess curves are a  =  1 and 
A =  1. The curves are 
banked by an aspect ratio of 
2.5; banking to 45° results in 
an aspect ratio that is too 
large.

Compression Ratio
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Figure 4.7 is a coplot of N O x  against E given C; since C takes on only 
one of five distinct values, each dependence panel corresponds to one of 
these distinct values. The coplot shows that the peak concentration of 
N O x  occurs near E = 0.9 for all five values of C. But the value of N O x  at 
the peak increases slightly as C increases. This coplot and the previous 
one in Figure 4.6 show that the effect of C on N O x  depends on the value 
of E, and vice versa, so there is an interaction between the factors. This 
contrasts with the rubber data where no major interaction was detected.

Compression Ratio

10 12 14 16 18

0.6 0.8 1.0 1.2

Equivalence Ratio

4.7  A coplot graphs NOx against equivalence ratio given compression ratio. The 
parameters of the robust loess curves are n =  3 /4  and A == 2. The curves are 
banked to 45°.

Figure 4.7 shows that the amount of residual variation about the 
underlying pattern is small. But several observations appear to wander 
from the underlying pattern by considerably more than the majority of 
the points. For example, on panel (3,1), two points lie well below the 
curve. Thus, on the scale of this residual variation, there appear to be 
outliers, or more pervasive leptokurtosis.
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4.2 Direct Manipulation: Conditioning by Brushing

Conditioning analyses can also be carried out by brushing, the direct 
manipulation tool introduced in Chapter 3. Brushing has a number of 
operations that are applied either in the transient, lasting, or erasing 
modes. One operation, described in Chapter 3, is labeling. Another, 
enhanced linking, can be used to condition.

Figure 4.8 is a scatterplot matrix of the rubber data. The brush is in 
the (1,2) panel, and is small and square. First, we turn on the enhanced 
linking operation of brushing by a menu selection. Next, we change the 
size and shape of the brush and cover a set of points as shown in
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4.8  A scatterplot matrix displays 
the rubber data. A brush is sitting 
in the (1,2) panel waiting for 
instructions to carry out 
conditioning.
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Figure 4.9. The points inside the brush are highlighted as well as all 
points on the other scatterplots that correspond to these points. The 
shape and positioning of the brush is vital to producing a conditioning 
analysis. Its vertical extent spans the range of values of tensile strength, 
and its horizontal extent spans an interval of low values of hardness. 
The highlighted points on the (2,3) panel are a scatterplot of abrasion 
loss against tensile strength conditional on low values of hardness.
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70 4 .9  Brushing with the enhanced
linking operation in the transient 
mode produces a conditioning 
on low values of hardness.

We can move the brush to the right on the (1,2) panel to condition on 
other intervals. This is illustrated in Figure 4.10. The mode is transient 
in this application, so the old highlighting disappears when the brush is 
moved, and a new set of points is selected for highlighting. Moving the 
brush left and right on the (1,2) panel provides conditioning on a 
continuum of hardness intervals. Furthermore, we can quickly change 
the width of the brush, making it smaller to increase the resolution of the 
conditioning, or making it larger to decrease the resolution, and then 
resume the brushing left and right with the new width. Also, moving 
the brush to the (2,1) panel allows conditioning on tensile strength. This 
is illustrated in Figure 4.11; the highlighted points on the (1,3) panel 
show the dependence of abrasion loss on hardness for tensile strength in 
an interval of low values.
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50 70 90 50 150 250 350

4 .10  The brush has been 
moved to the right to condition 
on a different interval of 
hardness.

50 70 90 50 150 250 350

4.11 The brush has been 
moved to the (2,1) panel to 
condition on tensile strength.
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The term "enhanced linking" is used for the brushing operation just 
shown because the scatterplot matrix by itself provides some visual 
linking of effects on different panels just through visual scanning along 
rows and along columns. This issue of visual perception is taken up in 
more detail in Chapter 5.

4.3 Coplots o f Fitted Surfaces

In Chapter 3, fitting was introduced to aid the visualization of the 
dependence of a response, y, on a single factor, x. The two methods 
were least-squares fitting of parametric families and loess curve fitting. 
And bisquare iterations were added to these two methods when outliers 
or more pervasive leptokurtosis was present.

The same approach can be used to study the dependence of y on two 
factors, u and v. Suppose the data are Ui, Vi, and yi for f =  1 to n. The 
fitted function is now a surface, g{u  ̂v), a function of two variables. To 
visualize the data, we graph both the fitted function and the residuals,

€i =  y i -  g{ui,Vi) .

If the underlying pattern in the data is simple, parametric fitting might 
be satisfactory. If the underlying pattern is too complex for a parametric 
fit, then loess can be used.

Parametric Fitting

Least-squares fitting for trivariate data is a simple extension of the 
method for bivariate data. Suppose the underlying pattern of the 
dependence of y on u and v is linear. To fit a linear parametric family by 
least-squares, we find values of a, b, and c that minimize

Y^iyi - a - b u i -  cv if
2 = 1

This minimizes the sum of squares of the residuals.

Bisquare fitting is also a simple extension. The first step is to fit by 
least-squares. Then, residuals and bisquare robustness weights, r ,̂ are
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computed, and the function is fitted again using weighted least-squares 
with weights r .̂ For a linear parametric family, the weighted 
least-squares fit minimizes

n
'^ r i{y i  - a - b u i -  c v if  .

This weighted fitting is then iterated until the fit converges.

Loess

For two factors, loess fitting is similar to the one-factor case; details 
are given at the end of this section. The loess parameter a  controls the 
amount of smoothness of the fitted surface; as a  increases, the 
smoothness of the surface increases. The loess parameter A controls the 
degree of the local fitting. If A = 1, the fitting is locally linear, so linear 
polynomials,

a -\-hu -\- cv ,

are fitted. If A = 2, the fitting is locally quadratic, so quadratic 
polynomials,

a -[-hu +  cv -\- duv  +  eu^ +  fv^  ,

are fitted. And bisquare iterations can be added when robustness is 
needed.

Distance, however, must be given additional consideration for two 
factors. For the case of one factor, x, the neighborhood weight, Wi{x) 
given to (x ,̂ i/i) for the fit at x is based on the distance of Xj from x. 
Since x and X{ are points lying on a line, it is natural to use |x — x |̂ as 
the distance between them. For two factors, the value at which the fit is 
computed is now a point (u, x) in the plane, and the measurements of 
the factors are other points Vi) in this plane. We could simply take 
distance from (u^v) to (ui^Vi) to he Euclidean,

^J{u-  +  {v -  ViY .

This might be sensible in cases where u and v describe geographical 
location and thus have the same units. But in most applications of loess, 
the units of the factors are different. For example, for the rubber data.
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the units of the factors are kg/cm^ for tensile strength and °Shore for 
hardness. Euclidean distance depends on the choice of these units. If we 
changed from kg/cm^ to g/cm^, all values of tensile strength would be 
multiplied by 10̂ , and relative values of the Euclidean distances would 
change drastically. We can remove the dependence on units by dividing 
each factor by a measure of spread, then using Euclidean distance for the 
standardized variables. One way to standardize would be to divide each 
factor by its sample standard deviation. But as we saw in Chapter 2, the 
sample standard deviation is not robust; it can be badly distorted by just 
a few outliers that are much smaller or much larger than the majority of 
the data. To protect against this, we will use a trimmed sample standard 
deviation. The values of the factor are sorted from smallest to largest, the 
smallest 10% and the largest 10% are dropped, and the sample standard 
deviation is computed from the remaining 80% of the values.

Coplots of a Fit to the Ethanol Data

For the ethanol data, the coplots in Figures 4.6 and 4.7 showed that 
the dependence of NO\ on C and E is too complex to be adequately 
fitted by a simple parametric family. Thus we will use a loess fit, g{C, E), 
to describe how NOx depends on C and E. Figure 4.7 showed that 
bisquare is needed in the fitting because some observations deviate 
substantially from the underlying pattern compared with the deviations 
of the majority of the observations. Figure 4.7 also showed that 
conditional on C, NO\ as a function of E has a large amount of curvature 
with a peak near E = 0.9. Because of the curvature, we must take A = 2 . 
But Figure 4.6 showed that given E, the underlying pattern in the data is 
linear in C. By using a feature of loess called conditionally linear fitting, 
we can produce a fitted surface that is linear in C given E. As E changes, 
the slope and intercept of the fit change, but it is always linear in C given 
E. The details of conditionally linear fitting are given at the end of this 
section. Finally, a value of o; equal to 1 /3 resulted from trying different 
values to find one that produced no lack or surplus of fit; this will be 
discussed further in Section 4.4.

Coplots can also be used to visualize fitted surfaces. Figure 4.12 is a 
coplot of the robust loess fit, g{C, E), to the ethanol data. As with coplots 
of data, the given panel is at the top and the dependence panels are 
below. Consider the (1,1) dependence panel. E has been set to a specific 
conditioning value, 0.535. Then g{C, 0.535) has been evaluated for
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equally spaced values of C ranging from the minimum value of C in the 
data to the maximum. On the panel, the values of g are graphed against 
the equally spaced values of C. The same method is used on the other 
dependence panels, but for different conditioning values of E, There are 
16 equally spaced conditioning values ranging from the minimum value 
of E in the data to the maximum; the given panel shows the 16 values.

Equivalence Ratio

0.6 0.8 1.0 1.2

4 -

i  0 4

8 18 
L  I ■ 1, rJ -

8 18 8 18 8 18
I I_____L,J__ _ i I, r-L ■ -__I I,, I 1 l,J_____1 , I,

Compression Ratio

4.12 A coplot graphs the robust loess fit against compression ratio given equivalence ratio. 
The curves are banked by an aspect ratio of 2. Banking to 45° results in an aspect ratio that is 
too large.

Figure 4.12 shows that given E, g is linear in C, the result of specifying 
the loess fit to be conditionally linear in C. As the conditioning values of 
E increase from the lowest values, the slopes of the lines first increase 
until E is about 0.8, and then decrease to zero. Thus, as we saw in the 
coplots of the data, there is a strong interaction between C and E.
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Figure 4.13 is a coplot of the robust loess fit against £ for 16 
conditioning values of C. Figure 4.13 shows that g varies in a highly 
nonlinear way as a function of E given C. The maximum of g increases 
by about 1 /^g/J as the conditioning values of C go from the minimum to 
the maximum; the value of E at which this maximum occurs is always 
close to 0.9.

10
__ I__

Compression Ratio

1412_I_ 16 18

0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2
__l_______I_______I_______l_ , ___I_______I_______I_______L_ ___I_______I_______I_______L_ _ _ l _______I_______I_______L

4

-  2 

-  0

0.6 0.8 1.0 1.2

Equivalence Ratio

0.6 0.8 1.0 1.2

4.13 A coplot graphs the robust loess fit against equivalence ratio given compression 
ratio. The curves are banked to 45°.



Visualizing Data 199

Figure 4.14 illustrates further how the coplots of the fit, ^(C, £), have 
been constructed. The circles are the observed values of C and E. The fit 
is a surface lying above this plane of (C, E) values. Figure 4.14 shows 16 
horizontal line segments drawn at the 16 conditioning values of E; each 
of these segments ranges in the horizontal direction from the minimum 
value of C in the data to the maximum. For the coplot of Figure 4.12, the 
surface is graphed along the 16 horizontal segments. Figure 4.14 also has 
16 vertical segments, drawn in the same manner, but showing the 
conditioning on C. For the coplot of Figure 4.13, the surface is graphed 
along the 16 vertical line segments.

03CC
0)oc_0)
03>
O"

LJJ

10 12 14 16

4.14 The coplots of the robust loess surface 
display the surface along the 16 horizontal 
and 16 vertical line segments shown here.

18

Compression Ratio

The coplots have provided an effective visualization of the loess 
surface fitted to the ethanol data. But we must reserve judgment about 
whether this has shed light on the structure of the data. We must 
validate the fit by visualizations of the residuals, making sure that the fit 
has been true to the data. In other words, we must convince ourselves 
that the coplots have not provided a thorough understanding of 
nonsense. Validation of the fit will be discussed in Section 4.4.
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Coplots of a Fit to the Rubber Data and Cropping

There are only 30 observations of the rubber-specimen variables and 
three of them are aberrant. Because there is so little data, we will begin 
the fitting with a parametric family that is as simple as is reasonable. 
And we will use bisquare fitting in the hope that it will prevent the 
aberrant observations from distorting the fit to the remaining.

The coplots of the rubber data in Figures 4.3 and 4.4 showed a 
dependence on tensile strength that has a hockey-stick pattern with a 
break at 180 kg/cm^, and a dependence on hardness that is linear. 
Furthermore, there appeared to be little or no interaction between the 
factors. We need a mathematical description of this dependence. Let t 
denote tensile strength. Let

[f -  180]'
{

t -  180 for t <  180 
0 otherwise.

Similarly, let

[f -  180]+ t -  180 for t >  180 
0 otherwise.

The hockey-stick pattern is

7 [f  -  180]“ -F«5[f -  180]+ .

7  is the slope for f < 180 and 6 is the slope for t > 180. Let h denote 
hardness. The observed dependence of abrasion loss on hardness and 
tensile strength is described by the function

Q{hi f) =  p, -\- j3h "F 'y\t — 180] 8\t — 180]+ .

We will begin by forcing 6 to be zero since it appeared to be zero on the 
coplots. Thus the parametric family has three free parameters: p, (5, and 
7 . The bisquare fit of the family is

g{h, t) =  602 -  6.74/1 -  3.37[t -  180]“ .
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Great care must be exercised in selecting the region of the factor space 
over which we study a fitted surface. For the ethanol data, the fit was 
visualized over the smallest box that contains the observations of the 
two factors, the data rectangle. This was reasonable because most of the 
rectangle is populated with observations. The rubber data are quite a 
different case. Figure 4.15 graphs the observations of hardness and 
tensile strength. The data rectangle has regions not populated with data. 
Visualizing the fit over the data rectangle would show behavior not 
supported by the data.

Figure 4.15 has two pairs of parallel lines. We will study the fit only 
over the intersection of the two regions between the two pairs of lines. 
This cropping of the data rectangle, which will be discussed in detail in 
Chapter 5, was carried out visually to produce a region well populated 
throughout with data. The cropped region does not include the upper 
left corner of the data rectangle. Because the data there are isolated and 
aberrant, we cannot expect to determine the dependence of the response 
on the factors in that corner with much precision. Note that the cropping 
does not imply that data are discarded outside of the cropped region; we 
still use all of the data in the bisquare fitting.

9 0 -

oJCCO

80
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S 60 H
CD
X
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120 160 200 240

Tensile Strength (kg/cm^)

4 .15  The rectangle formed by the 
intersection of the region between the two 
vertical lines and the region between the two 
horizontal lines is the cropped region for 
evaluating the bisquare fit to the rubber data.
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Figures 4.16 and 4.17 are coplots of the fit for values of hardness and 
tensile strength within the cropped region. In Figure 4.16, the four 
conditioning values of hardness span the full range of the cropped 
region, but the values of tensile strength are cut off at 190 kg/cm^ 
because the fit on each panel is constant above 180 kg/cm^. In 
Figure 4.17, the largest conditioning value of tensile strength is 180 
kg/cm^, because for any larger value the fit as a function of hardness is 
the same as that for tensile strength equal to 180 kg/cm^. The four 
hockey-stick curves in Figure 4.16 are parallel and move up or down as 
we move from one dependence panel to another. This is also true of the 
three lines in Figure 4.17. These parallel patterns occur, of course, 
because the parametric function fitted to the data contains no term that 
allows for an interaction. The residuals for this fit will be visualized in 
Section 4.4 to determine whether the fit accurately reflects patterns in the 
data.
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54j_

Hardness (“Shore)
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4 .16  A coplot graphs the fitted 
abrasion loss surface against 
tensile strength given hardness. 
The segments of the fits below 
180 kg/cm^, the breakpoint, are 
banked to 45°.

Tensile Strength (kg/cm^)

Tensile Strength (kg/cm^)

150 160 170

54 64 74 84

180

4.17  A coplot graphs the fitted 
abrasion loss surface against 
hardness given tensile strength. 
The lines are banked to 45°.



204 Trivariate Data

For the Record: The Details of Loess Fitting

Let the measurements of the two factors be denoted by Xj = (uj, vi). 
If standardization is carried out as described above, then the Xj are the 
standardized values. Let x =  (u, v) be a point in the space of the factors 
at which the loess surface is to be computed. Again, if the measurements 
of the factors are standardized, x lies in the standardized space of the 
factors.

Suppose first that a  < 1. As with one factor, q is cm truncated to an 
integer, and the neighborhood weight given to the observation (xj, yi) 
for the fit at x is

/ \ r r (  Aj(x) ^

where Aj(x) is the distance from Xj to x. For o; > 1, the w f x )  are 
defined in the same manner, but A(^)(x) is replaced by

After the neighborhood weights are computed, the local fitting is 
carried out. If locally linear fitting is used, a linear surface is fitted to the 
data using weighted least squares. This means that we find values of a, 
b, and c that minimize

'^Wi{x){yi
Z = 1

a — bui — cvi)^

Let a, b, and c be the values that achieve the minimization. Then the 
loess fit at X = («, v) is

d +  bu +  cv .

If locally quadratic fitting is used, a quadratic surface is fitted to the data 
in a similar manner using weighted least-squares. In other words, the 
terms l ,u , v ,  uv, û , and are fitted locally.

If bisquare is added to loess fitting, an initial loess estimate is 
computed using the above procedure. Then bisquare iterations are 
carried out using bisquare weights, Xj, until the surface converges. For 
the local fit at x ,  the weight for ( x j ,  yi) is r iwfx) ,  the bisquare weight 
times the neighborhood weight.
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If a loess fit, g{u,v),  has been specified to be conditionally linear in u, 
then given any value of v, say v =  ■, g{u,-) is a linear function of u. 
Similarly, if the fit is conditionally quadratic in w, ^(u, •) is a quadratic 
function of u. Suppose first that A = 1. To make the fit conditionally 
linear in u, we simply ignore the measurements of u in computing the 
distances, Ai (m, ), from x =  {u,v) to X{ =  (ui,Vi). In other words, only 
the measurements of v are used in the computation of distance. Given 
V =  ■, the distances Aj(w, •) are the same for all u, so the function fitted 
locally at («, •), which is linear, remains the same as u changes, and thus 
this linear fit is equal to g{u, •). Suppose now that A = 2 . The same 
method makes it conditionally quadratic in « — the Ui are ignored in 
computing the distances. For A = 2, the fit can be made conditionally 
linear in u by dropping the term in the local fitting. In other words, 
the terms 1, u, v, uv, and are fitted instead of 1, u, v, uv, û , and v̂ . 
Again, of course, the U{ are ignored in computing distance.

In later chapters, loess will be used to fit data with more than two 
factors. Except for one issue, the above discussion holds with obvious 
modifications. The exception is the definition of Wi{x) for a  > 1. For p 
factors, A(q) (x) is replaced by A(„) (x) - /̂a.

4.4 Graphing Residuals

The overall strategy for graphing residuals for trivariate data is the 
same as that for bivariate data. First, residual dependence plots are 
made to check for lack or surplus of fit. If a problem is detected, we can 
either alter the fit or simply use the visualization of the residuals as part 
of the characterization of how the response depends on the factors. 
Other residual displays explore the distribution of the residuals. An s-1 
plot can detect monotone spread; if it occurs, we can attempt to remove 
it by a power transformation of the response. A normal q-q plot of the 
residuals compares the distribution of the residuals with the normal 
distribution. An r-f spread plot shows how much of the variation in the 
response is explained by the fit, and how much remains in the residuals.
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Searching for Lack of Fit with Residual Dependence Plots

A good first step to probe lack of fit is to graph the residuals against 
each of the factors. This is done in Figures 4.18 and 4.19 for the fit to the 
rubber data. The three negative outlying residuals correspond to the 
three aberrant observations. Their abrasion losses are lower than 
expected based on the pattern of the other data, so their residuals are 
negative. But otherwise no lack of fit is revealed by these residual 
dependence plots.

4.18  The residual dependence plot graphs 
the abrasion loss residuals against tensile 
strength. The parameters of the robust loess 
curve on the graph are a  =  1 and A =  1.
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4.19  The residual dependence plot graphs 
the abrasion loss residuals against hardness. 
The parameters of the robust loess curve are 
a = I and A =  1.
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Figure 4.20 is a coplot of the residuals against tensile strength given 
hardness. The intervals of hardness are the same as those used in the 
coplot of the data. Figure 4.3. The coplot reveals a remaining 
dependence in the residuals, which signals lack of fit. The underlying 
pattern on panels (1,1), (2,1), (3,1), and (1,2) has a negative slope that 
results largely from positive residuals at tensile strengths below 180 
kg/cm^, the breakpoint of the hockey-stick fit. This means the slope of 
the fit below the breakpoint is not sufficiently negative. Despite the 
bisquare fitting, the three outliers have caused lack of fit by forcing a 
reduction in the steepness of the fitted slope below the breakpoint. This 
is disappointing since bisquare is normally impervious to a small 
fraction of outliers. But in this example, the three outliers have 
conspired together at a location that exerts substantial leverage on the 
fit. It is a good lesson. No fitting method is perfect. This is one reason 
why we must subject residuals to intensive visualization.
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4.20 The abrasion loss residuals are 
graphed against tensile strength given 
hardness. The parameters of the robust 
loess curves are a = 1 and A =  1. The 
aspect ratio of the dependence panels is 2 
to accommodate the outlying negative 
residual.
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Figure 4.21 is a coplot of the residuals against hardness given tensile 
strength. Again, the intervals are the same as those used in the coplot of 
the data. Figure 4.4. More lack of fit is revealed — an interaction 
between hardness and tensile strength. As tensile strength increases, the 
underlying pattern has an increase in slope. The effect is convincing, 
though small compared to the overall variation in abrasion loss, which is 
why we did not detect it on the original coplots of the data. This 
represents another example of the magnifying effect of residual plots, 
which was discussed in connection with the Playfair data in Chapter 3. 
There is another quite interesting aspect to the pattern of the interaction 
— the three aberrant observations appear to be conforming to it, but in a 
more extreme way.
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4.21 The abrasion loss residuals are 
graphed against hardness given tensile 
strength. The parameters of the robust 
loess curves are a  =  1 and A =  1. The 
aspect ratio of the dependence panels is 2 
to accommodate the outlying negative 
residual.
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The visualization has given us substantial qualitative insight into the 
behavior of the rubber data. There is a hockey-stick pattern of 
dependence on tensile strength and a linear dependence on hardness. 
For most of the data, there appears to be a mild interaction between 
hardness and tensile strength in which the hardness slope increases 
somewhat as tensile strength increases. Three observations in one comer 
of the factor space show aberrant behavior that might represent a 
conforming to the interaction pattern. For some purposes, this 
qualitative description might be enough, for example, if the 30 mns that 
generated the rubber data were just a pilot experiment to plan a more 
thorough one.

Suppose, however, that we want a quantitative description of the 
dependence of abrasion loss on hardness and tensile strength. Then we 
must continue the fitting. It is unrealistic to suppose that we could 
account with much accuracy for the dependence in the region of the 
factor space occupied by the three aberrant observations. We will drop 
them. Since the residual coplot in Figure 4.21 showed an interaction, we 
must add an interaction term to the parametric family that we fit to the 
data. One possibility is the product term ht. But the residual coplot in 
Figure 4.20 showed the fit was adequate above the tensile strength 
breakpoint of 180 kg/cm^, and the product term would affect the fit at 
all values of tensile strength. Instead, we will add /i[f — 180]~, which 
has no effect above the breakpoint, but allows for an interaction below it. 
With this term, the effect of h given t is still linear, as the residual coplot 
in Figure 4.21 suggests it should be, but with a changing slope. The 
bisquare fit to the reduced data with the added term is

g{h, t) =  531 -  5.78h -  7.76[t -  180]" +  0.055h[t -  180]" .

For this fit, the slope of g{h,t) as a function of h increases as t increases 
up to 180 kg/cm^, and then remains constant.
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Figures 4.22 and 4.23 are coplots of the residuals for this new fit. No 
convincing dependence is revealed; the new fit appears adequate.
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4.22  The residuals for the interaction 
fit to the reduced rubber data are 
graphed against tensile strength given 
hardness. The parameters of the robust 
loess curves are a  =  1 and A =  1, and 
the target fraction of overlap of the 
Intervals is 3/4.
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4.23  The residuals for the interaction 
fit to the reduced rubber data are 
graphed against hardness given tensile 
strength. The parameters of the robust 
loess curves are a  =  1 and A =  1, and 
the target fraction of overlap of the 
intervals is 3/4.
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Figures 4.24 and 4.25 are coplots of the new fit with the same 
conditioning values as the coplots of the first fit in Figures 4.16 and 4.17. 
The interaction is visible, although small, as expected.

Hardness (“Shore)
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4.24  A coplot graphs the fitted 
abrasion loss surface against 
tensile strength given hardness. 
The segments of the broken 
lines below 180 kg/cm^, the 
breakpoint, are banked to 45°.
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4.25  A coplot graphs the fitted 
abrasion loss surface against 
hardness given tensile strength. 
The lines are banked to 45°.
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The Distribution of the Residuals

Figure 4.26 is an s-1 plot for the fit to the reduced rubber data. The 
loess curve has a slight negative slope, but in view of the small number 
of observations, the magnitude of the effect is too small for us to believe 
there is significant monotone spread. Figure 4.27 is a normal quantile 
plot of the residuals; there is mild skewness toward large values.
Figure 4.28 is an r-f spread plot. Despite the difficulties with the data, 
the response has been closely fitted for the reduced data.

4 .26  An s-l plot checks for monotone spread 
in the abrasion loss residuals. The 
parameters of the robust loess curve on the 
plot are Q =  2 and A =  1.

Fitted Abrasion Loss (g/hp-hour)
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4 .27  The distribution of the abrasion loss 
residuals Is displayed by a normal q-q plot.

Unit Normal Quantile
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4.28  An r-f spread plot compares the 
spreads of the residuals and the fitted 
values minus their mean for the 
interaction fit to the reduced rubber 
data.
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Ethanol Residuals

Fumblings every bit as extensive as those for the rubber data 
produced the ethanol fit graphed in the coplots of Figures 4.12 and 4.13. 
The tortuous path will not be described here. The robust fit, whose loess 
parameters are a  =  1/3 and A = 2, appears to be adequate. Four 
residual dependence plots were used to check for lack of fit — two 
scatterplots of the residuals against the two factors, a coplot of the 
residuals against C given E, and a coplot of the residuals against E given 
C. No lack of fit was revealed. Increasing the value of a  introduces lack 
of fit. This is illustrated in Figure 4.29. The residuals are graphed against 
E for a fit with a  increased to 1 /2. There is a slight positive bump at 
E = 0.9, the approximate location of the ridge in the NOx surface. Thus 
the fit is not reaching the top of the ridge. While the lack of fit is small, 
there is no reason to introduce it because, as the coplots in Figures 4.12 
and 4.13 showed, the surface with a  =  1/3 is quite smooth.

Figure 4.30 is an s-1 plot. No monotone spread is revealed. Figure 4.31 
is a normal quantile plot of the residuals. There is leptokurtosis, but in 
this case bisquare has done its job. Figure 4.32 is an r-f spread plot. The 
fit accounts for much of the variation in the NOx concentrations.
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4.29  The residuals from a smoother robust 
loess fit to NOx are graphed against 
equivalence ratio. The parameters of the 
robust loess curve on the graph are a  =  1/2  
and A =  1.

4 .30  An s-l plot checks for monotone spread 
in the residuals for the robust loess fit to 
NOx- The parameters of the robust loess 
curve on the plot are a  =  2 and A =  1.
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4.31 A normal q-q plot compares the normal 
distribution with the distribution of the 
residuals for the robust loess fit to NOx-

Unit Normal Quantile

0.0 0.5 1.0

4.32  An r-f spread plot compares the 
spread of the residuals and the fitted 
values minus their mean for the robust 
loess fit to NOx-
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In the original analysis of these data, the experimenter fitted log 
concentration by a high-order polynomial and used least-squares [12]. 
The leptokurtosis in the residuals makes it clear that least-squares is 
inappropriate. And Figure 4.33 shows that taking logs induces 
monotone spread; the figure is an s-1 plot for a loess fit to log 
concentration using the same parameters as the fit to concentration, and 
using bisquare. The spread of the residuals decreases with increasing 
location, exactly what one would expect when logs are taken in a case 
where there is uniform spread for a fit to the data without 
transformation. The mistreatment of these data by the experimenter and 
others who analyzed them will be taken up at the end of this chapter.

4 .33  An s-l plot checks for monotone spread 
for a robust loess fit to log NOx- The 
parameters of the robust loess curve on the 
plot are a  =  2 and A =  1.

Fitted Log NO^ (log2 pg/J)
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4.5 More on Coplots and Fitting

Judging the slopes of line segments on a graph is a critical visual task 
of graphical perception that yields information about the rate of change 
of one variable as a function of another [20]. The purpose of banking to 
45° is to maximize the efficiency of such slope judgments. An 
experiment, whose data we will now analyze, led to the first formulation 
of the 45° principle [25, 26].

The left panel of Figure 4.34 has two line segments. Suppose we must 
judge the ratio of the slopes of the segments; more specifically, suppose 
we judge the ratio of the slope of the lower right segment to the slope of 
the upper left segment as a percent. Suppose the guess from a quick 
visual assessment is 40%. The true value is 50%, so our absolute error is 
|40% — 50% I = 10%. What might determine the accuracy with which we 
make such a judgment?

4.34  The figure illustrates the judgment of 
slopes of line segments, an important task in the 
visual decoding of information from graphical 
displays.

Experiment

In the experiment, 16 subjects judged the relative slopes of 44 
line-segment pairs. All slopes were positive, and the subjects judged 
what percent one slope was of another, just as we did for the segments 
on the left panel of Figure 4.34. The true percents ranged from 50% to 
100%. Subjects judged this complete set 12 times, and the order of the 
line-segment pairs was randomized separately within each of the 12 
replications. For each subject's judgment,

I true percent — judged percent |

was computed; then, for each line-segment pair, these absolute values 
were averaged across subjects and replications. The resulting 44 values 
of this response variable, a, measure the absolute error of judging the 
relative slopes of the line segments.
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There are three factors in the experiment, all of which measure 
geometric aspects of the segments. To describe them, we need the 
notation in the right panel of Figure 4.34; 9-[ and 62 are the orientations of 
the two line segments. The first factor is p, the actual value of the 
percent being judged. The second factor is

d =  |45° -  {0, +  02)/2| ,

the distance of the mid-orientation, (^1 -|- ^2) /2, of the two segments 
from 45°. Values of p and d determine the orientations of the segments; 
that is, if we specify both d and p, we specify the orientations of the 
segments, and therefore the ratio of the slopes. In the experiment, d and 
p were systematically varied. Another factor is the resolution, 
r =  — $2, of the two orientations, which is related to p and d by

arcsm 100 — p 
1 0 0 -Fp

cos(2d)

The important variable in the experiment is d. When d =  0, the 
segments are banked to 45°. And in making a graph, we control d by the 
aspect ratio. The hypothesis of the experiment was that for fixed p, the 
absolute error, a, increases as d increases; in other words, a increases as 
the segments get further from the position prescribed by 45° banking.
As d increases for a fixed p, r decreases. The hypothesis is based on the 
notion that it is harder to judge a slope ratio p as the visual separation of 
the segments decreases.
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Exploring the Data

For the 44 line-segment pairs in the experiment, there are 44 values of 
a, d, p, and r. Figure 4.35 is a scatterplot matrix of the data; the values of 
p have been jittered to cure a problem of exact overlap. The (3,2) panel 
shows the 44 combinations of p and d that were used in the experiment. 
There are 11 distinct values of p and each one is repeated four times, 
although this cannot be appreciated from the figure because of the 
jittering. The values of d range from 0° to 37°.
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4.35 A scatterplot matrix displays the data from the experiment on judging 
slopes.
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Figures 4.36 is a coplot of a against d given p. Because there are so few 
points on each dependence panel, loess curves have not been added. The 
conditioning values of p are the 11 distinct values of the measurements 
of p. Most panels have patterns with positive slopes, and for the smaller 
values of p, the patterns are slightly curved. Thus the hypothesis of the 
experiment — an increase of a as d increases — appears to be true. As p 
gets larger, the slope of the underlying pattern approaches the 
horizontal. (Note how we are making slope judgments in studying these 
data.) This means there is an interaction between p and d; the effect on a 
of increasing d is greater when p is low than when it is high.
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4 .36  A coplot graphs absolute error against distance from 45° given 
percent. The aspect ratio has been chosen to bank the line segments 
between successive observations (not drawn) to 45°.
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Figure 4.37 graphs a against r given p. The patterns are linear with no 
apparent curvature, and the slopes of the patterns, which are negative, 
do not appear to change, which means there is no interaction between p 
and r in explaining a. To probe the linearity and lack of interaction 
further, the coplot in Figure 4.38 graphs a against p given r. The 
equal-count method has been used to select the conditioning intervals; 
the number of intervals is 8 and the fraction of overlap is 1 /4. Again, the 
patterns appear linear and there is no interaction, confirming the effect 
seen in Figure 4.37.
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4 .37  A coplot graphs absolute error against resolution given percent. The line segments 
between successive observations (not drawn) are banked to 45°.
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4 .38 A coplot graphs absolute error against percent given resolution. The underlying 
patterns on the panels are banked by an aspect ratio of one.

As discussed earlier, the orientations of the line segments in the 
experiment are determined by p and d. They are also determined by p 
and r; in other words, we can fit a to p and d, or to p and r. The coplots 
suggest that we should use r because the dependence has a simpler 
structure: a function linear in p and r. By contrast, an equation relating 
a to p and d would be more complicated, in part, because there is both 
curvature and an interaction between p and d. Once we have 
determined the dependence of a on p and r, we can use the equation 
that relates r to p and d to determine the dependence of a on p and d, 
and thus understand the interesting factor, d.
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Fitting

The coplot of a against r  given p in Figure 4.37 shows that the 
residual variation about the underlying pattern is small. But as in 
previous data sets in this chapter, there appear to be a few observations 
that deviate by substantially more than the others, which suggests 
outliers among the residuals. Thus we will use bisquare to fit a linear 
function of p and r to a. The resulting fit is

o = 53 -  1 .2r  -  0.48p .

For this fit, an increase of 1% in p results in a decrease of 0.48% in a, and 
an increase of 1° in r results in a decrease of 1.2 %.

Graphing Residuals

Figures 4.39 and 4.40 are residual dependence plots that graph the 
residuals against the factors. Figure 4.40 shows there is lack of fit, a 
convincing undulation that produces nearly all positive residuals for 
values of r between about 3° and 4°, and a preponderance of negative 
residuals between 5° and 10°. The graphs also reveal outliers for two 
observations with small values of p and values of r  near 5°. Figure 4.41 
is an r-f spread plot. Despite the lack of fit, the fitted function explains 
much of the variation in the absolute errors.

4 .39  A residual dependence plot graphs 
residual absolute error against percent. The 
parameters of the robust loess curve on the plot
are a  =  1 /2  and A =  1.
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4.40 A residual dependence plot graphs 
residual absolute error against resolution. The 
parameters of the robust loess curve on the plot
are a =  1/2 and A =  1.

Resolution (degrees)

0.0 0.5 1.0

4.41 An r-f spread plot compares the 
spreads of the residuals and the fitted 
values minus their mean for the bisquare 
fit to absolute error.

f-value
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We will ignore the lack of fit in this case. The r-f spread plot has 
shown that the residual variation is exceedingly small, so any resulting 
improvement would not have an appreciable effect on the fitted surface. 
It is likely that we would need loess to remove the lack of fit; thus the 
cost of a negligible change in the surface would be the loss of the 
extreme simplicity of the linear fit. For this scientific application, the 
nonlinear surface is not worth the cost.

Visualizing the Dependence on Distance

The response, a, has been fitted by a function of p and r, 

a =  53 -  1.2r -  0.48p .

But it is d, the distance from 45°, that is of chief interest. However, r is 
related to p and d by

arcsm 100- p  
100+  p

cos(2d)

Substituting for r  in the fitted equation, we have

a = g{d,p) =53 — 1.2 arcsin 1 0 0 - p  
.100 +  p

cos(2d) -  0.48p

Figure 4.42 graphs this fitted function by a coplot of a against d given p. 
For all values of p, a does not change by much as d increases from 0° to 
about 10°. In other words, small deviations from 45° banking do not 
appreciably degrade the judgment of orientation. But once d gets above 
10°, the error increases rapidly for some percents, particularly those 
close to 50%. However, for percents close to 100%, the absolute error is 
very small and d has little influence. Percents near 100% are judged very 
accurately because it is easy for our visual system to recognize that the 
segments lie on nearly parallel lines.
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4 .42  The surface fitted to absolute error 
by bisquare is graphed against distance 
given percent. The curves are banked to 
45^
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4.6 Level Plots o f Data

NGC 7531 is a spiral galaxy in the Southern Hemisphere. When 
looked at from the earth, the galaxy fills a very small area on the celestial 
sphere. If the only motion of NGC 7531 relative to the earth were the 
rapid recession due to the big bang, then over the entire region, the 
velocity relative to the earth would be constant and equal to about 1600 
km/sec. But the actual motion is complex. The galaxy appears to be 
spinning, and there are other motions that are not well understood. The 
velocity at different points of the galaxy varies by more than 350 km/sec.

Figure 4.43 shows locations where 323 measurements were made of 
the galaxy velocity [15]. The values have been jittered to reduce overlap. 
The two scales, whose units are arc seconds, are east-west and 
south-north positions, which form a coordinate system for the celestial 
sphere based on the earth's standard coordinate system. Note that east 
and west are reversed because we are looking at the celestial sphere 
from the inside. The measurement locations lie along one of seven lines, 
or slits, that intersect in the center of the measurement region; of course, 
this does not appear to be exactly the case in Figure 4.43 because the 
points are jittered.

The goal in analyzing the galaxy data is to determine how the velocity 
measurements vary over the measurement region; thus velocity is a 
response and the two coordinate variables are factors. We want to 
determine regions in the plane where velocity is low, regions where it is 
high, and regions where it is approximately equal to any one of the 
values between the two extremes of 1409 km/sec and 1775 km/sec. 
There is no compelling need to study the data by conditioning on one 
coordinate and graphing against the other. This would endow the 
coordinates with an importance they do not have. The geocentric 
coordinate system imposed on the sky by man is clearly of no 
importance to the energy arriving now from the galaxy, which began its 
transit about 50 million years ago. Any other set of perpendicular axes 
could equally well serve as a coordinate system.
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4.43 The plotting symbols show the 
locations of 323 measurements of the 
velocity of NGC 7531 relative to the 
earth. The aspect ratio has been 
chosen to make the number of data 
units per cm the same on both scales.

Jittered East-West Coordinate (arcsec)
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Level Regions

Figure 4.44 is a level plot, a visualization that shows regions with 
different levels of velocity. The format is that of a coplot, but instead of 
conditioning on a factor, as in a coplot, the conditioning is on the 
response. Velocity is broken up into different levels, the intervals shown 
in the level panel at the top of the figure. The intervals have been chosen 
using the equal-count method with the fraction of overlap equal to 1/4. 
The 5 X 3 array of panels below shows level regions; each region is made 
up of those measurement locations where velocity is within one of the 
levels. The velocity levels increase as we move in graphical order 
through the level-region panels.

The (1,1) panel of Figure 4.44 shows that the region for the lowest 
velocity level lies in the northeast. As the levels increase, the regions 
move to the south and west, first as long narrow regions that are convex 
upward, then nearly straight regions, and then convex downward 
regions. Finally, the region for the highest level lies in the southwest.
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4 .44  A level plot displays level regions of galaxy velocity. The aspect ratio of the level-region 
panels has been chosen to make the number of data units per cm the same on both scales.
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4.7 Improvisation

One aspect of the structure of the galaxy data provides a special 
opportunity for further visualization. The measurements, as we have 
seen, lie along seven slits that intersect at the origin; for each slit 
separately, we can graph velocity against position along the slit. This, of 
course, is not a general method, but an improvisation, a visualization 
that is possible because of the special structure of this trivariate data set. 
Data analysis is difficult. Serendipity should be exploited.

Each slit can be described by the angle of a clockwise rotation to the 
horizontal; the seven angles are 12.5°, 43°, 63.5°, 92.5°, 102.5°, 111°, and 
133°. Each location of a velocity measurement has a slit angle, the angle 
of the slit on which it lies. And each location has a radial position along 
the slit, which we will take to be distance of the location from the origin, 
multiplied by —1 if the east-west coordinate is negative and by 1 if it is 
nonnegative.

Figure 4.45 graphs velocity against radial position for each slit; this is 
achieved by a coplot in which slit angle is the conditioning variable. The 
underlying patterns of the seven sets of data in Figure 4.45 are varied 
and highly nonlinear. The overall amount of deviation of the data from 
the patterns is not large, but a number of observations deviate by 
considerably more than the others, which suggests leptokurtosis.
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4 .45  A coplot graphs galaxy velocity against radial position given slit angle. The parameters of the 
robust loess curves are a  =  1 /2  and A =  2. The curves are banked to 45°.
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Fitting and Graphing Residuals

The next step in analyzing the galaxy data is to fit a surface. The level 
plot in Figure 4.44 and the coplot in Figure 4.45 show a complicated 
pattern with substantial curvature. We cannot expect a parametric 
surface to adequately track such a pattern. Loess fitting is needed. 
Because of the substantial curvature, A must be two. Extensive 
experimentation led to a choice of 1 /  4 for a; this value struck a 
reasonable balance between lack and surplus of fit. Graphs of the fit and 
the residuals, to be shown shortly, will demonstrate this. As suggested 
by the coplot in Figure 4.45, the residual variation is leptokurtic, so 
bisquare is needed. Finally, to preserve the actual distance in the 
coordinate system of the celestial sphere, the loess fitting omits the 
standardization of the measurements of the two factors by their 10% 
trimmed standard deviations.

The slit structure of the galaxy data can also be used to see how well 
the loess surface fits the data. Figure 4.46 is a coplot of the data; the 
curves are the fitted surface evaluated along the slits. The fit is excellent 
and does almost as well as the robust loess curves fitted separately to the 
data of each panel in Figure 4.45.
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4 .46  The coplot of the data graphs velocity against radial position given slit angle. The curves are 
the robust loess surface evaluated along the slits. The curves are banked by taking the aspect ratio 
of the dependence panels to be the same as that of Figure 4.45.
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Figure 4.47 is a coplot of the residuals. There is lack of fit, a remaining 
dependence of the location of the residuals on radial position. In panel 
(4,1), there is a slight downward slope, and in panel (3,2), most of the 
residuals for radial positions less than zero are positive and most for 
radial positions greater than zero are negative. While we have detected 
lack of fit, its magnitude is quite small; we will endure it rather than 
endure the decrease in the smoothness of the surface that would result 
from curing it. Figure 4.47 also suggests there is nonhomogeneous 
spread; for example, in panel (4,1), there is a sudden change in the 
spread of the residuals at the origin.
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4 .47  The velocity residuals are graphed against radial position given slit angle. The parameters of 
the robust loess curves are a  =  1 and A =  2.
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Figure 4.48, a normal quantile plot of the residuals, reveals significant 
leptokurtosis. Figure 4.49 is an r-f spread plot; the surface explains a 
major portion of the variation in the velocities. In the next three sections 
we will show further visualizations of the fit.

4.48 A normal q-q plot compares the 
distribution of the velocity residuals with the 
normal distribution.

Unit Normal Quantile

0.0 0.5 1.0

4.49  An r-f spread plot 
compares the spread of the 
residuals and the fitted values 
minus their mean for the robust 
loess fit to the galaxy velocities.

f-value
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4.8 Contour Plots o f Surfaces

For decades, the contour plot has been a workhorse display for 
rendering surfaces [54], Figure 4.50 is a contour plot of the loess fit to the 
galaxy velocities. The levels of the black contours range from 
1440 km/sec to 1760 km/sec in steps of 20 km/sec; for the black and 
gray contours combined, the step size is 5 km/sec and the range is 
1435 km/sec to 1760 km/sec. The two curve types enhance the 
perception of properties of the surface. The complete collection of curves 
conveys local properties, and the black curves by themselves convey 
global properties.

The contouring in Figure 4.50 is based on an evaluation of the surface 
on a grid whose east-west coordinates are 101 equally spaced values 
from —25 " to 25 " and whose south-north coordinates are 181 equally 
spaced values from —45 " to 45 ". Thus there are 101 x 181 = 18281 grid 
points that move in steps of 0.5 " along each coordinate axis. The grid 
lies slightly inside the rectangle that just contains the measurement 
locations of the data; such cropping for displaying a fit to data is 
discussed in Chapter 5.

The contours in Figure 4.50 are roughly symmetric about a line that 
runs from the region in the northeast where the velocities are lowest to 
the region in the southwest where the velocities are highest. From north 
to south along this line, the intersecting contours increase monotonically. 
The contours for the lowest velocities have a convex upward shape; as 
velocity increases, the convexity decreases until, for velocities around 
1580 km/sec the contours are nearly linear. Then, as velocity increases 
further, the contours turn convex downward.

Suppose the only motions of NGC 7531 relative to the earth were a 
rotation and a recession. Then the velocity surface would be linear, and 
the contours in Figure 4.50 would be linear, parallel, equally spaced, and 
perpendicular to the projection of the axis of rotation onto our viewing 
plane. The actual contours bend and are not equally spaced. But in a 
small region centered near (0 "  ̂0 "), with a diameter of about 10 ", they 
do appear to be linear, parallel, and equally spaced. This suggests that at 
the core of the galaxy the dominant motion is a rotation.
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East-West Coordinate (arcsec)

4.50  A contour plot displays the robust loess fit to the galaxy velocities. The 
aspect ratio has been chosen to make the number of data units per cm the same 
on both scales.
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An Algorithm for Drawing Contours

There are many procedures for drawing the contours of a function 
but most of them proceed in the same basic way [32,46,63, 72,83]. The 
function is evaluated at a collection of points in the plane, usually a 
rectangular grid, and then approximate contours are computed by 
interpolation using this evaluation.

One algorithm for computing contours is illustrated in Figure 4.51, 
which shows the computation of the 0.5 contour of the function

g{u, v) =  +  uv .

The actual contour is an ellipse centered at (0,0).

The first step in the algorithm is to evaluate g for a rectangular grid of 
points covering the region of study. A grid is shown in the top left panel 
of Figure 4.51; there are 10 rows of points and 10 columns, so altogether 
there are 100 points. The grid gives rise to a collection of horizontal and 
vertical line segments that connect the grid points. These segments are 
drawn in the top right panel of Figure 4.51. Consider all grid segments 
for which the function value at one endpoint is greater than 0.5, and the 
function value at the other endpoint is less than 0.5. Since our function is 
continuous, the contour for g{u,v)  =  0.5 must cross each of these 
segments somewhere in the interior of the segment. If the function is 0.5 
at an endpoint, then, of course, the contour also crosses the segment, but 
at the endpoint. In the top right panel of Figure 4.51, the crossed 
segments for g{u, v) =  0.5 are marked with dots.

The next step is to determine locations on crossed segments where the 
function is 0.5, or approximately so. If the function is equal to 0.5 at an 
endpoint, then the endpoint is such a location. If the function is greater 
than 0.5 at one endpoint and less at the other, we use linear interpolation 
to determine a location. A line is put through the two function values at 
the endpoints; the location is the position where the line is equal to 0.5. 
On the top right panel of Figure 4.51, the dots show the 0.5 locations that 
arise from this method.
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4.51 The figure 
illustrates one 
method for 
computing contours.

First Factor

The final step in the contour algorithm is to connect the 0.5 locations 
of the crossed segments. A connection is illustrated in the bottom left 
panel of Figure 4.51. Doing the connection by computer might seem 
trivial, but it can be tricky because certain ambiguities can occur. One 
connection algorithm is given at the end of this section.

For most contour procedures, the only choice that needs to be made is 
the density of the grid. Greater density is typically better than less. If the 
grid is too coarse, more ambiguities can occur and the connection 
method can become confused. Also, contours that should be smooth can 
look jagged. For example, the contour in the bottom left panel of 
Figure 4.51 suggests the elliptical shape of the contour, but because the 
grid is coarse, there are unpleasant corners. A more sophisticated 
algorithm could round corners, but in this example, and in many others 
like it in practice, the simple solution is to increase the density of the 
grid. The same contour for a 50 x 50 grid is shown in the bottom right 
panel of Figure 4.51; the result is a curve that now appears smooth.
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For the Record: A Connection Algorithm

One approach to connection is local in the sense that the connection 
of dots on a rectangle of the grid is not based on the locations of any 
other dots. Suppose the contour value is c = 0. Consider a rectangle 
with no dot at an endpoint of a segment. There are four possibilities, 
which are illustrated in Figure 4.52 — no dots, two dots on opposite 
sides, two dots on adjacent sides, and four dots. The figure shows the 
connection method for no dots and two dots. The four-dot case is 
ambiguous because there are several possibilities: two line segments 
with positive slopes connecting points on adjacent sides, two line 
segments with negative slopes connecting points on opposite sides, and 
so forth. And ambiguities can occur when dots are at endpoints.

4 .52  The figure illustrates the four possibilities for crossings 
when the contour level is zero and when the function is not 
zero at an endpoint. The connection method is shown except 
in the lower right panel, which is an ambiguous case.

Grosse developed an elegant method for resolving the ambiguous 
cases [46]. Consider first, the four-dot case in the lower right panel of 
Figure 4.52. Let

g{u  ̂v) =  a +  bu +  cv +  duv

be the bilinear function put through the values of the function at the 
endpoints. The fit is exact since there are four parameters and four 
values being fitted. Suppose we used this bilinear function as the 
interpolant to determine the positions of the dots. The results would be 
the same as the method described above. In other words, as an 
interpolant, the bilinear function does linear interpolation along the 
segments of each rectangle.
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But the bilinear is defined inside the rectangle. This means it has 
contours. And these contours, which are hyperbolas, have a special 
property: they cross the rectangle either as in the upper left panel of 
Figure 4.53 or as in the lower left. In Grosse's method, the bilinear 
contours are used to determine the connection. If they cross as in the 
upper left, the dots are connected as shown in the upper right. If they 
cross as in the lower left, the dots are connected as shown in the lower 
right. But here is the best part. The bilinear function does not need to be 
fitted to determine the connection. There is a very simple rule: the dots 
with the two smallest horizontal coordinates are connected, and the dots 
with the two largest horizontal coordinates are connected.

4.53 The figure shows how the connection is determined by 
Grosse’s method for the ambiguous case of Figure 4.52.
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Grosse's method of bilinear approximation can also be applied when 
one or more values at the endpoints are zero. The possibilities, and the 
connections to which the method leads, are shown in Figure 4.54.

4.54  The figure shows how the connection is 
determined by Grosse’s method when the 
function is zero at one or more endpoints.
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4.9 Level Plots o f Surfaces

Contour plots can succeed. The contour plot of the velocity surface in 
Figure 4.50 is one example. But there are two problems. The first is 
fundamental to the method. If a surface is very nearly flat in some 
region of the factor space compared with the steepness in other regions, 
the definition of a contour as a curve becomes unstable. If the surface is 
flat in a region — that is, equal to a constant over a region with positive 
planar area — the contour for the constant value is no longer a curve. 
Consider the bottom panel of Figure 4.54. The function is zero at all four 
endpoints. The connection method gives an answer, a rectangle, but if 
the function is zero on and inside the rectangle, the ideal visualization 
would show a contour containing both the rectangle and its interior. 
Sophisticated contouring methods solve the problem by ignoring it; 
contours do not enter flat or nearly flat regions.

A second problem is one of visual perception. On a contour plot we 
cannot effortlessly perceive the order of the contours from smallest to 
largest. We must resort to the slow process of reading the contour labels. 
For a simple surface such as the velocity surface this suffices. But for 
more complicated surfaces with many peaks and valleys, it does not.

Another method solves both problems — a level plot. This method 
was introduced in Section 4.6 for displaying data, but it can also be used 
for displaying fitted surfaces. For functions, there are two versions of the 
plot. One, described in this section, renders the level regions by 
juxtaposing them in black and white; this is the same display method 
used for level plots of data. The second version, described later in 
Section 4.12, uses color and superposes the level regions.
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A level plot in Figure 4.55 displays the loess fit to the galaxy data. 
First, the surface was evaluated on the same 101 x 181 grid used for the 
contour plot of the surface in Figure 4.50. The grid points and the values 
of the loess surface on the grid form a trivariate data set. The level plot 
of the surface is simply a level plot of these data, constructed as 
described in Section 4.6, but with one difference: instead of using levels 
from the equal-count method, the 48 levels are of equal length. The 
levels range from 1431 km/sec, the minimum value of the surface over 
the grid, to 1763 km/sec, the maximum surface value. The levels overlap 
only at their endpoints, but in other applications it can make sense to 
have greater overlap or to have no overlap and gaps between the levels.

Figure 4.55 shows the same behavior of the individual contours as the 
contour plot in Figure 4.50 — a change from upward convexity to 
downward convexity as velocity increases. But in Figure 4.55 we can 
also detect erratic behavior over small areas. As velocity increases 
through panels (3,2) to (6,2), the level regions in the vicinity of 
(—20 "  ̂20 ") shift rapidly and become disconnected; this is an indication 
of a rapid local fluctuation. In panels (7,5) and (8,5) there is another 
rapid fluctuation near (20 "  ̂—20 "), but not as pronounced as the first. 
Figure 4.43, the graph of the measurement locations, shows that these 
two locations are at the ends of the 133° slit. The display of the data 
along the slits in Figure 4.45, and the display of the residuals along the 
slits in Figure 4.47, do not indicate any peculiar behavior on the 133° slit 
or any lack of fit. But the ends of the 133° slit do lie in regions with little 
other data, so the fluctuations are most probably simply the artifacts that 
result from applying loess to regions that are sparse in data.
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4 .55  A level plot displays the loess fit to the galaxy velocities. The aspect 
ratio of the level-region panels has been chosen to make the number of data 
units per cm the same on both scales.
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On a level plot of a function, each level region is rendered by placing 
a dot at a grid point if the function value at the point lies in the level 
corresponding to that region. The grid needs to be sufficiently dense to 
produce level regions that characterize the actual level regions of the 
function; thus greater density is better than less until the limit of 
resolution of the display device is reached.

One important aspect of a level plot is that when there are contours 
that are well defined curves, we see them as the boundaries of the level 
regions. But when curves do not adequately describe the behavior of the 
function, we can still perceive the behavior. For example, if a function is 
constant over a region, the region appears as part of the level region for 
the level that contains the constant. A second important aspect of a level 
plot is that the arrangement of the panels in graphical order provides a 
mechanism for perceiving order that does not require table look-up. 
However, the drawback of rendering level regions on juxtaposed panels 
is a reduction in our ability to perceive the relative locations of level 
regions. In Section 4.12, superposition will be used.
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4.10 3-D Wireframe Plots o f Surfaces

A 3-D plot of a fitted surface shows the surface as if it were an object 
in real 3-D space. Aspects of the display method allow us to see the 
surface-object in depth. Figures 4.56 to 4.59 are four 3-D plots of the 
velocity surface fitted to the galaxy data The rendering in this case is a 
simple although effective method — a wireframe with hidden line 
removal [42, 79]. In Section 4.13 we will discuss more sophisticated 
schemes.

To carry out the wireframe rendering, the surface is first evaluated on 
a grid. The grid values together with the values of the surface form a set 
of points in three-dimensional space. The 3-D plot renders line segments 
that connect these points. Two aspects of the rendering, perspective and 
occlusion of features in the background by features in the foreground, 
provide the 3-D effect [68]. And the box drawn around the surface not 
only shows axes but contributes to our perception of depth; this is the 
reason for drawing all visible line segments of the box rather than just 
three to indicate axes.

In Figures 4.56 to 4.59, the scale lines have arrows to indicate 
increasing values of the variables. There are no tick marks because scale 
reading, or table look-up, of numerical values from 3-D plots is often 
poor. To carry out table look-up for features detected on a 3-D plot, it is 
typically far more satisfactory to also display the surface by a level plot 
or by a contour plot, locate the detected features on the adjunct display, 
and use the scales of the adjunct display to carry out the table look-up.



250 Trivariate Data

Velocity

4.56 A 3-D wireframe plot 
displays the robust loess surface 
fitted to the galaxy velocities.

Velocity

4 .57  The surface in 
Figure 4.56 is shown 
again after a rotation 
of 90° about the 
velocity axis.
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Velocity

4.58  The surface in 
Figure 4.56 is shown again 
after a rotation of 180° about 
the velocity axis.

Velocity

4.59 The surface in 
Figure 4.56 is shown 
again after a rotation of 
270° about the velocity 
axis.
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Rendering Choices

There are a surprisingly large number of choices to make in 
wireframe rendering. We must choose the grid density. We must choose 
the different orientations of the surface. We must decide whether to 
render the surface in perspective, or by an orthogonal view, a rendering 
of the surface as it would look if it were far away and studied by a 
powerful telescope. If we choose perspective, we must specify the 
viewing distance; as we move closer to the box, the effect of perspective 
increases. We must choose the ratios of the lengths of the three box 
dimensions, and the overall size of the display. None of the choices can 
be fully automated; they typically must be made iteratively based on 
successive trial renderings. The following discussion defines the issues 
and in some cases gives rough guidelines that can provide reasonable 
first attempts.

If the grid density is too small, surface features are lost; if it is too 
large, the white space of patches closes up, and depth perception is lost. 
Thus the goal is to choose the density just large enough to reflect 
important features and no larger. It can happen that there is no good 
choice. If the surface has fine structure that requires a grid so dense that, 
given the resolution of the display device, the patches are obscured, then 
we need to move to the more ambitious 3-D rendering described in the 
Section 4.13. For the 3-D plots of the velocity surface in Figures 4.56 to 
4.59, the grid is 26 x 46. This is less dense than the 101 x 181 grid used 
for the level plot of the velocity surface in Figure 4.55 and the contour 
plot of the surface in Figure 4.50; the denser grid is too dense for the 3-D 
plot.

Choosing several orientations is necessary in the common situation 
where no one view shows all features well; a single orientation that 
allows good perception of certain features can occlude other important 
features. But typically it is best to coordinate the different views by 
pointing the function axis in the same direction. This has been done in 
Figures 4.56 to 4.59. The result is views that form a revolution of the 
surface about the function axis. In addition, our perception is often 
enhanced by making the orientations of this revolution cover 360° in 
equal steps. In Figures 4.56 to 4.59, there are four orientations in steps of 
90°. The coordination and the equal steps help us maintain our 
understanding of which axis is which on the 3-D plots.
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The relative lengths of the three box dimensions are important to 
perceiving the properties of the displayed surface. If the two factor 
variables have difference units of measurement, then the ratio of the two 
box lengths for the factors can simply be one. If, however, the units are 
the same — in particular, if the factors are spatial coordinates — then it is 
typically best to choose the factor lengths so that the number of data 
units per cm along each factor scale is the same. This has been done in 
Figures 4.56 to 4.59 because the factors are position on the celestial 
sphere. The relative length of the function, or response, box length needs 
to be chosen by trial and error; the choice determines a banking of 
surface slopes just as the aspect ratio of a two-variable graph banks the 
slopes of a curve. It is possible that there is a 45° principle, but the 
necessary research in visual perception has not yet been carried out to 
determine this.

A requisite amount of perspective is helpful for maintaining stable 
depth perception. Perspective creates foreshortening, a convergence of 
parallel lines that recede into the background. This foreshortening needs 
to be treated with great caution because, as a coming example will show, 
it is a distortion of the quantitative information. And the greater the 
amount of perspective, the greater the distortion.

Orthogonal views eliminate the distortion of perspective; parallel 
lines moving from the foreground to the background stay a constant 
distance apart, and constant-size objects have a constant image size. But 
orthogonal views often result in other distortions. For wireframe 
renderings, it is often impossible without very focused attention on 
small regions of the display to determine front and back, so 
disconcerting reversals of foreground and background are common. For 
the more sophisticated renderings discussed in Section 4.13, where other 
visual cues such as shading convey depth, an orthogonal view provides 
conflicting information, and the algorithms of our visual system often 
respond by contorting the rendered object; for example, a rectangular 
box around the surface can appear nonrectangular. But an orthogonal 
view is needed for one visualization task that will be described in the 
next example.
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Figure 4.60 is a perspective view of the loess surface fitted to the 
ethanol data. The surface appears to be a tunnel with arches of constant 
size. Figure 4.61 is another perspective view. The tunnel now appears to 
have arches whose size increases as C increases. Thus the two views 
convey conflicting conclusions about quantitative aspects of the surface. 
We know from the coplot of the fitted surface in Figure 4.13 that the arch 
sizes do in fact change, so we are fooled in Figure 4.60. For this figure, 
the arches expand in size from the foreground to the background. But 
the foreshortening due to perspective makes the actual image size of 
these arches decrease from front to back, and the decrease in size just 
matches the actual increase, so all arches are nearly visually coincident. 
To understand this phenomenon, it helps to consider that when we look 
into a tunnel with constant arch size, foreshortening makes the actual 
image size of the opening at the opposite end smaller than that of the 
opening at the near end.

An orthogonal view is needed for looking along a direction parallel to 
one of the three axes to see the relative locations of the orthogonal 
projections of features onto the plane formed by the other two axes. A 
perspective view does not give orthogonal projections as Figure 4.60 has 
illustrated. Figure 4.62 shows an orthogonal view of the NOx surface. 
The view is parallel to the C axis. Because there is no perspective 
distortion, we can trust what we see; for low values of E, the surface is 
nearly constant as a function of C, and for middle and large values of E, 
there is a change with C.

4 .60  A 3-D plot displays the NOx 
surface.
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NOx

NOx

4.61 Another 3-D plot displays 
the NOx surface.

4 .62  This 3-D plot of the NOx 
surface uses an orthogonal view.
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4.11 3-D Plots o f Data: Stereo

The visual impression of depth that we get from occlusion and 
perspective foreshortening in 3-D plots of functions does not extend 
readily to data. If the number of observations is small, we can endow 
plotting symbols with depth cues such as changing symbol size and 
occlusion, but for even moderate amounts of data, the result is not 
reliable and too often results in an inscrutable mess despite our best 
efforts.

Stereo viewing is a far more satisfactory method for 3-D rendering of 
data. Stereopsis is a powerful mechanism for depth perception.
Figure 4.63 shows a stereogram of the galaxy data. For those without a 
stereo viewer. Chapter 2 has instructions on how to trick the eyes into 
fusing the two images. The method is not easy to master, but practice 
helps. The overall behavior of the galaxy velocities — an increase in 
going from the northeast corner to the southwest — is lucidly conveyed.

Motion is another powerful cue for depth perception. For trivariate 
data, a rotating point cloud on a computer screen provides excellent 
depth perception [41]. Furthermore, methods of direct manipulation 
allow us to control the orientation of the point cloud in a natural, 
perceptual way. Sadly, we cannot even approximate rotation in the static 
environment of a book because the animation is critical to the 
perception.

4.63 A stereogram displays the galaxy velocities.



Visualizing Data 257

4.12 Level Plots o f Surfaces with Superposed Color

The visual displays so far presented in the book have been images 
created by line segments and symbols rendered in black and gray. But 
computer graphics allows more sophisticated rendering [42, 79]. Among 
the capabilities is color, which can be used to good purpose to produce 
level plots.

Soil Data

How things get measured is a fascinating topic. And a critical one, of 
course. In many domains of science, brilliance and great ingenuity 
abound in measurement techniques. This intellectual effort is crucial 
because measurement is the foundation of scientific enquiry.

Suppose we had to measure the electrical resistivity of soil. Would we 
simply insert two electrodes in the ground and measure the current 
flowing between them? That would work, but suppose now that we had 
to survey the resistivity at ten thousand locations over a region of one 
square kilometer. Just to make the problem a little more difficult, 
suppose we had to run a business doing this and make a profit. 
Resistivity measurements can be used to infer soil salinity, a vital matter 
for irrigated farm land. It is unlikely that we could economically stick 
electrodes in the ground ten thousand times.

A solution was found by the Salinity Surveys division of TESLA-10, a 
company in Western Australia where irrigation is necessary for farming. 
Their instrument, the EM31, has a transmitter coil that induces a current 
in the earth. The current generates a magnetic field whose intensity is 
measured by the EM31. The instrument is put on a trailer and towed 
around by a jeep, which stops at regular intervals and takes a 
measurement. Thus soil resistivity is measured economically by an 
instrument that never touches the ground.
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Figure 4.64 shows the locations of 8641 measurements made by the 
EM31. Each measurement location is graphed by a dot, but the density 
of the dots is so great that they merge to form curves, the measurement 
tracks. The vertical scale is labeled "northing" and the horizontal is 
labeled "easting". These are just names for a local coordinate system set 
up for convenience; they have nothing to do with compass directions. 
For the most part, the vehicle towing the EM31 tracked along the easting 
axis, but it also made a few runs along the northing axis.

4.64 The display shows the measurement tracks for the 
soil data. The aspect ratio has been chosen to make the 
number of data units per cm the same on both scales.
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Spatial Data

The soil data are spatial data; the factors are geographical location. 
Spatial data, like time series, often have different components of 
variation. Time series have time components, and spatial data have 
spatial components. The spatial components can be trends, or 
long-distance variation; they can be slow oscillations, or middle-distance 
variation; or they can be rapid ups and downs, or short-distance 
variation. The galaxy measurements analyzed in previous sections are 
also spatial data: velocities at spatial locations on the celestial sphere. 
The visualizations showed that the variation in velocity consists of a 
broad trend plus nearly random variation about the trend. Shortly, the 
visualization of the soil data will show many spatial components, from 
long-distance to short-distance variation.

Improvisation

We can improvise, exploiting the measurement tracks to visualize the 
raw data. In Figure 4.65, resistivity is graphed against the northing 
coordinate for the eight tracks that run along the northing axis. On the 
display, convention has been ignored, and the factor, the northing 
coordinate, is graphed on the vertical axis as it is in Figure 4.64. This 
makes it easier to match the panels of Figure 4.65 with the tracks in 
Figure 4.64. As the numbers at the tops of the panels increase, the tracks 
move from left to right along the easting axis. In Figure 4.66, resistivity 
is graphed against the easting coordinate for the 40 tracks that run along 
the easting axis. The easting coordinate is on the horizontal scale, also to 
conform with Figure 4.64; as the panel numbers increase, the tracks 
move from bottom to top in Figure 4.64.

Figures 4.65 and 4.66 show that the soil data have many spatial 
components of variation. Rapid local variations and slow oscillations are 
quite evident. There are also broad trends; for example, panels 29 to 36 
of Figure 4.66 reveal an incline running along the entire easting axis.
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Fitting

For the soil data, one important goal is to understand trends in the 
data to determine the broad areas where the overall level of salinity is 
high. We will do this with a loess trend fit with parameters a  =  1 /4 and 
A = 2 . To preserve the natural metric of the spatial factors, the easting 
and northing coordinates will not be standardized by dividing by the 
10% trimmed standard deviations. Also, bisquare will not be added 
because the visualization of the measurements in Figures 4.65 and 4.66 
does not suggest outliers or other destructive behavior.

Figure 4.67 is a level plot of the loess fit evaluated on an 85 x 234 grid 
with 15m spacing ranging from 150m to 1410m along the easting axis 
and from 150m to 3645m along the northing axis. The grid is set slightly 
inside the rectangle formed from the extremes of the measurement 
locations. Such cropping is discussed in Chapter 5. The level plot has 28 
equal intervals of resistivity that range from the minimum of the 
function values over the grid to the maximum; the only overlap of the 
intervals occurs at the endpoints.

Figure 4.67 shows that the lowest levels of resistivity occur near the 
upper right corner of the measurement region. From this depression, the 
level regions spread out to the extremes of the region, and then move 
inward to form two peaks, the highest one very near the center of the 
region.
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4 .67  A level plot displays the 
loess fit to the soil data. The 
aspect ratio of the level-region 
panels has been chosen to make 
the number of data units per cm 
the same on both scales.
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Superposed Level Regions in Color

The level plot in Figure 4.67 shows the level regions by juxtaposing 
them on different panels with the same scales. Using color, the level 
regions can be superposed. This is illustrated in Figure 4.68. In this case 
there are only 10 intervals, ranging from the minimum to the maximum 
function value. The wide use of level plots in color might suggest that 
the method is easy, but it is easy only if one is satisfied with a poor 
choice of colors such as a rainbow encoding. As Tufte puts it [75], "the 
mind's eye does not readily give an order to ROYGBIV."

There are two desiderata in choosing a color encoding of the 
quantitative values of a function. First, we typically want effortless 
perception of the order of the values. For example, effortless perception 
means we do not have to constantly refer to a key. Second, we want 
clearly perceived boundaries between adjacent levels. Achieving these 
two desiderata is difficult because they play against one another; it is 
easy to achieve one or the other, but hard to achieve both simultaneously.

The color encoding in Figure 4.68, which we will call THVL (two hues, 
varying lightness), represents a good compromise [54, 75]. First, there 
are two hues. Because the end product in this case is on a book page, the 
hues are cyan and magenta, which are two of the four colors standardly 
used in printing on paper — cyan, yellow, magenta, and black. The 
lightness of the colors decreases as the encoded values move away from 
a central value. From the middle to the extremes, the cyan ranges from 
20% cyan to 100% cyan in steps of 20% cyan, and the magenta ranges 
from 20% magenta to 100% magenta in steps of 20% magenta. Using two 
hues and changing just their lightness provides the effortless perception 
of order. But there is a bound on the number of intervals that can be used 
if the desideratum of distinct boundaries is to be achieved. Because of 
the delicacy of color reproduction, only 10 have been used in Figure 4.68. 
At a computer screen it is possible to drive the number up to 15 or so, 
but using a significantly greater number typically results in a perceptual 
merging of some of the adjacent colors. Actually, more than 10 colors are 
used in Figure 4.68, but the additional ones occur just at boundaries of 
level regions and are only barely perceptible. This anti-aliasing, which is 
described later in a section for the record, gives the boundaries a smooth 
look. The smoothing was necessary because the display started out as an 
image on a computer screen; the low resolution of screens results in 
jagged boundaries unless anti-aliasing methods are used.
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4 .68 The fitted resistivity surface is displayed by a level plot with ten level regions superposed in 
color. An anti-aliasing method based on approximate area sampling gives the boundaries of the 
level regions a smooth appearance. The aspect ratio of the level-region panels has been chosen to 
make the number of data units per cm the same on both scales.
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Superposing level regions in color rather than juxtaposing them in 
black and white has one benefit. We are better able to perceive the 
relative locations of the level regions, and this often conveys the overall 
gestalt of the surface more effectively. But the disadvantage is the limit 
to the number of colors and therefore the resolution of the display. A 
level plot with juxtaposed regions in black and white provides both a 
clear visual delineation of each level region and a clear perception of 
order even for a large number of intervals. For example. Figure 4.67 has 
28 intervals, almost three times the number for Figure 4.68.

For the Record: Anti-Aliasing

In the anti-aliasing method of Figure 4.68, the surface is computed 
over a rectangular grid. In Figure 4.68, the grid is 85 by 234, the same 
grid used in Figure 4.67. Then, the surface is interpolated to a much 
denser grid, set up so that each pixel contains four grid points. For each 
pixel, we could average its four function values, find the interval among 
the 10 that contains the average, and color the pixel with the color for the 
interval. This would produce jagged boundaries on an output device, 
such as a computer screen, that does not have sufficient resolution.

One method for anti-aliasing jagged boundaries is area sampling [42]. 
The rendering in Figure 4.68 uses an approximate area sampling scheme. 
Let c(y) be a function that takes values of a surface, y, into a 
color-description space, which is normally three-dimensional [42, 79]. 
Suppose that c{y) takes on only the 10 colors of the color bar on the right 
in Figure 4.68. In the approximate area sampling method, the four colors 
of c(y) for a pixel are averaged in the color space, and the pixel is filled 
with the average color. In other words, instead of averaging the four 
function values and applying c, we apply c to the four function values 
and average the colors. If the space is RBG, we simply average the 
intensities of the four reds, the four blues, and the four greens. 
Sometimes, though, the averages can produce colors that contrast with 
their neighbors, in which case we must alter the colors of the averages to 
maintain a smooth transition; an example will be given shortly. For most 
pixels, the four colors are the same, so the average is one of the 10 values 
of c{y). But if a pixel is at a boundary between level regions, the colors
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are not the same, and the pixel receives, typically, a color that is not one 
of the 10. In Figure 4.68 the overall gestalt appears to have only the 10 
colors of c{y) because there is so little filling with other colors, but the 
small amount of additional coloring produces smooth boundaries by 
providing a smooth perceptual transition from one region to the next.

The c{y) for the 10 colors of the bar in Figure 4.68 can be defined in a 
particularly simple way on a one-dimensional scale. Let c{y) range from 
— 100 to 100. A positive number describes a percentage of cyan and a 
negative number describes a percentage of magenta. The colors of the 
bar range from —100 to 100 in steps of 20, except there is no zero. The 
average of any four colors on the scale is one of the numbers —100 to 100 
in steps of 5, except for the values ±5 and ±15. The averages work quite 
well in this case except for the transition from magenta to cyan; the 
values —10,0 (white), and 10 are too light. The following alteration was 
used in Figure 4.68: —10 is 13% magenta and 7% cyan; 0 is 10% magenta 
and 10% cyan; and 10 is 13% cyan and 7% magenta.

4.13 Direct Manipulation and Shading for 3-D Plots o f  
Surfaces

Our visual system is a marvelous device. It provides a perception of 
depth by processing visual information with extraordinary 
algorithms [61, 68]. There is the information in the disparity of the two 
views provided by the two eyes. There is pictorial information, the 
information in a photograph that allows depth perception; this includes 
perspective foreshortening and occlusion. Another pictorial cue is the 
shading of a surface that results from the light sources that illuminate it. 
And there is the information in motion, both the motion of viewed 
objects and the motion of the head.
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The wireframe renderings presented in Section 4.10 provide depth 
perception through perspective foreshortening and occlusion. For 
relatively simple surfaces — for example, the galaxy surface that was 
displayed in Section 4.10 — wireframe rendering provides an adequate 
perception of depth. But for more complicated surfaces, a graphics 
environment that provides both direct manipulation and shading can 
increase our perception of effects. Figure 4.69 shows a rendering of the 
resistivity surface with foreshortening, occlusion, and shading; the view 
was chosen by initial exploration of the surface in a direct manipulation 
environment.

Shading can provide a substantial increase in our perception of depth. 
But shading requires many decisions [42, 79]. There is the reflective 
properties of the surface. It can have a dull matte finish or a shiny finish. 
The latter results in specular reflection, or shiny areas on the surface. 
There is the color of the surface. There is the number, color, intensity, 
and location of point light sources. There is the color and intensity of 
ambient light. Figure 4.69 has ambient light and three point sources. The 
color of the lighting is white, and the surface is gray and shiny. The 
lengths of the northing and easting box lengths have been chosen to 
make the number of data units per cm the same on both scales.

The chief benefit of direct manipulation is an ability to control the 
orientation of a surface in a natural way, moving it around as we might a 
real object held in our hands. This nicely replaces the static method 
described in Section 4.10 of showing multiple views that form a rotation 
about the function axis of 360°. Furthermore, motion can strengthen our 
perception of depth.

Figure 4.69 provides a vivid portrayal of properties of the resistivity 
surface. The two principal features are the depression and rise to a 
plateau in the background, and the two peaks in the foreground and 
midground.
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Easting (km)

4 .69 The fitted resistivity surface is rendered with perspective foreshortening, occlusion, and 
shading. No tick marks and tick mark labels are drawn since table look-up from this display would be 
ineffective. (The units are nevertheless shown to remind us of the definitions of the variables.) But 
the orientation of the surface matches the positioning of the color level plot in Figure 4.68, so as 
discussed in Section 4.10, the level plot can be used for table look-up. We simply match features 
found here with those of the level plot, and then use the level plot for the table look-up.
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4.14 Coplots vs. Factor-Plane Methods

The visualization tools in this chapter can be divided into two 
groups: conditioning methods and factor-plane methods. The first 
group — coplots and brushing — employed conditioning on a factor.
For the second group — level plots, contour plots, and 3-D plots — the 
plane of the two factors appeared in the visualization with the factors as 
coordinate axes.

Conditioning methods are particularly informative when it is natural 
to study conditional dependence, and when the behavior of the 
information is characterized in a straightforward way by conditional 
statements. This was the case for the rubber data, the ethanol data, and 
the perception data. Factor-plane methods are not nearly as informative 
in such cases. For example, for the ethanol data, it is informative to 
understand the effect of compression ratio with equivalence ratio held 
constant, and to understand the effect of equivalence ratio with 
compression ratio held constant.

But if conditional behavior is neither particularly interesting nor 
simple, then factor-plane methods can do better. One test is to ask 
whether it is just as interesting to see the surface along line segments that 
are oblique to the coordinate axes of the factors as it is to see the surface 
along segments parallel to the axes. If the answer is "yes", factor-plane 
methods are likely to be more useful. This is frequently the case for 
spatial data. If the answer is "no," coplots are likely to be more useful. 
The galaxy and soil data are two examples where the answer is "yes", so 
factor-plane methods were used to visualize the data, although special 
structure in both data sets was exploited by conditioning methods.

4.15 Visualization and Probabilistic Inference

Sometimes, when visualization thoroughly reveals the structure of a 
set of data, there is a tendency to underrate the power of the method for 
the application. Little effort is expended in seeing the structure once the 
right visualization method is used, so we are mislead into thinking 
nothing exciting has occurred. The rubber data might be such a case.
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The intensive visualization showed a linearity in hardness, a 
nonlinearity in tensile strength, an interaction between hardness and 
tensile strength, and three aberrant observations in a corner of the factor 
measurement region. It might be thought that anyone analyzing these 
data would uncover these properties. This is not the case. In the original 
treatment, the analysts got it wrong [31]. They operated within a 
paradigm of numerical methods and probabilistic inference for data 
analysis, and not intensive visualization. They missed the nonlinearity. 
They missed the interaction. They missed the outliers. In other words, 
they missed most of the structure in the data.

The ethanol data were treated no better. In the original analysis by the 
experimenter, a high-order polynomial was fitted to log concentration 
by least-squares, and probabilistic inference used standard methods that 
are based on homogeneous errors with a normal distribution [12]. The 
visualization in Section 4.4 makes it clear that such probabilistic 
inferences are clearly not valid; the error distribution is strongly 
leptokurtic and on a log scale, there is monotone spread. In another 
study of these data, the mistake of taking logs was not made, but the 
leptokurtosis of the residuals was missed [23]. In a third study, the 
analyst used numerical statistical methods to find transformations of the 
response and factors that supposedly removed the interaction between 
the factors [69]. But the visualization of the data in this chapter shows 
that it is absurd to try this. When the equivalence ratio is large, 
concentration is constant as a function of compression ratio; for other 
values of equivalence ratio, concentration varies linearly as a function of 
compression ratio with a positive slope. Monotone transformations of 
the three variables, the only transformations that make sense for such 
factor-response data, cannot alter this equality and inequality, and 
therefore cannot remove the interaction. Finally, an analysis with no 
visualization of the data made the biggest error [17]. It was concluded 
that NOx does not depend on C. Our visualization here manifested a 
dependence.
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5.1 A scatterplot matrix graphs hypervariate data: measurements of solar radiation, 
temperature, wind speed, and cube root ozone concentration on 111 days at sites in 
the New York metropolitan region.
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5 Hypervariate Data

Figure 5.1 is a scatterplot matrix of measurements of four 
environmental variables from an air pollution study [13]. The variables, 
all measured at ground level, are wind speed, temperature, solar 
radiation, and cube root ozone concentration. Ozone is one of the nasty 
constituents of photochemical smog, and its concentration is the 
standard indicator of the severity of such smog. If its level is high, a 
smog alert is called. Ozone is not emitted directly into the atmosphere. 
Rather, it is a product of chemical reactions that require solar radiation 
and emissions of primary pollutants from smoke stacks and automobile 
tail pipes. When the ventilation of the atmosphere is low, the chemical 
reactions bring ozone to high levels. Low ventilation tends to occur 
when wind speeds are low and temperatures are high because on hot, 
calm days in the summer the atmosphere cannot cleanse itself. The goal 
in analyzing the environmental data is to determine how ozone depends 
on the other variables, so cube root concentration is the response and the 
other variables are factors.

The environmental data in Figure 5.1 lie in a four-dimensional space. 
In Chapter 2 we visualized univariate data, which lie on a line; in 
Chapter 3 it was bivariate data, which lie in the plane; and in Chapter 4 
it was trivariate data, which lie in three-space. The data in these cases lie 
in spaces with physical reality. We exploit this reality to visualize the 
data. The environmental data are hypervariate; they have too many 
variables for visual reality. We must peer cognitively, not perceptually, 
into hypervariate space by looks at subspaces of dimension three or 
fewer. In classical statistics, the word "multivariate" means two or more 
variables, and was coined because probabilistic methods have a natural 
breakpoint between one dimension and two. For visualization, we need 
the term "hypervariate" to acknowledge the visual breakpoint between 
three and four dimensions.
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The measurements in Figure 5.1 were made on 111 days from May to 
September of 1973 at sites in the New York City metropolitan region; 
there is one measurement of each variable on each day. Solar radiation is 
the amount from 0800 to 1200 in the frequency band 4000-7700A, and 
was measured in Central Park, New York City. Wind speed is the 
average of values at 0700 and 1000, and was measured at LaGuardia 
Airport, which is about 7 km from Central Park. Temperature is the 
daily maximum, and was also measured at LaGuardia. Ozone is the 
cube root of the average of hourly values from 1300 to 1500, and was 
measured at Roosevelt Island, which is about 2 km from Central Park 
and 5 km from LaGuardia. The cube root transformation symmetrizes 
the distribution of the concentrations; on the original scale, they are 
significantly skewed toward large values.

To streamline the discussion we will use the following notation:
O3 = cube root ozone concentration, R = radiation, T = temperature, and 
W = wind speed.

5.1 Scatterplot Matrices

An award should be given for the invention of the scatterplot matrix, 
but the inventor is unknown — an anonymous donor to the world's 
collection of visualization tools. Early drafts of Graphical Methods for 
Data Analysis [16] contain the first written discussion of the idea, but it 
was in use before that. The inventor may not have fully appreciated the 
significance of the method or may have thought the idea too trivial to 
bring it forward, but its simple, elegant solution to a difficult problem is 
one of the best visualization ideas around.

As with other multi-panel displays in this book, we will refer to a 
panel of the scatterplot matrix by column and row number; the left 
column is column one and the bottom row is row one. For example, in 
Figure 5.1, the upper left panel is (1,4) and the lower right is (4,1).

Visual Linking

One way to visualize hypervariate data is to graph each pair of 
variables by a scatterplot. But just making the scatterplots without any
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coordination often results in a confusing collection of graphs that are 
hard to visually integrate.

The important idea of the scatterplot matrix is to arrange the graphs 
in a matrix with shared scales. As a result, we can visually link features 
on one scatterplot with features on another, which greatly increases the 
power of the visualization. Along each row or column of the matrix, one 
variable is graphed against all others with the scales for that one variable 
lined up along the horizontal or the vertical. By scanning a row or 
column we can link effects on different scatterplots.

Visual linking in Figure 5.1 allows us to detect important effects in the 
environmental data. Panel (2,1), a scatterplot of O3 against R, has an 
upper envelope in the form of an inverted "V". There are two interesting 
properties. First, the highest values of O3 occur when R is between 200 
and 300 langleys. Second, for the very highest values of R, O3 stays at 
low levels. Visual linking provides an explanation of both of these 
properties. First, we can focus on the points with the highest O3 values 
in the (2,1) panel, and then scan to the right to panels (3,1) and (4,1). The 
linking shows that the high O3 results when T is high and W is low; these 
are days with low ventilation. Next, we can focus on the points in the 
(2,1) panel with the highest values of radiation and scan up to the (2,3) 
and (2,4) panels. We see that for the very highest values of R, T tends not 
to be high and W tends not to be low, so O3 does not rise to high levels.

Panels (3,1) and (4,1) of Figure 5.1 show there is a strong association 
between T and O3 and between W and O3. The reason, as stated earlier, 
is that W and T are both indicators of ventilation. But the (4,3) panel 
shows that W and T are related and thus are measuring ventilation, to 
some extent, in the same way.

Visual linking is the reason, despite the redundancy, for including 
both the upper and lower triangles in the scatterplot matrix; the upper 
left triangle has all pairs of scatterplots, and so does the lower right 
triangle. Suppose that only the upper left triangle were present in 
Figure 5.1. To see temperature against everything else, we would have 
to scan the first two graphs in row three, turn the corner in the (3,3) 
panel, and go up to row four to see the remaining scatterplot. The three 
temperature scales would not be lined up, which would interfere with 
the linking.
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5 2  Coplots o f Data

The scatterplot matrix of the environmental data shows a strong 
association between O3 and T and between O3 and W. It seems likely 
that each of these factors explains variation in the data not explained by 
the others. There is less evidence that R explains variation in O3 given T 
and W. For example, we saw that the upper envelope on the scatterplot 
of O3 against R was explainable by the behavior of T and W. But the 
photochemistry that results in O3 requires radiation, and the laws of 
chemistry must be obeyed, so we know in principle that radiation is a 
causal factor. But this does not mean that for the environmental data, the 
solar radiation measurements are good predictors of O3. Perhaps only a 
minimum amount of radiation is needed, and beyond that, production is 
not sensitive to the amount. Or it may be that the Central Park 
measurements do a poor job of characterizing the amount of radiation 
that actually falls on the air mass.

We need a way to see the dependence of O3 on radiation given 
temperature and wind speed. A hypervariate coplot, an extension of the 
coplot display method of Chapter 4 to three or more factors, can provide 
such a conditional visualization. Figure 5.2 shows such a coplot. O3 is 
graphed against R given W and T. Each dependence panel is a scatterplot 
of O3 against R for days with both W and T in specified intervals. The 
given panels, which are at the top and right of the graph, show the 
intervals. The four scatterplots in any row of the 4 x 4  array of 
dependence panels have the same conditioning interval of values of W; 
as the rows go from bottom to top, the intervals of W increase. Similarly, 
the four scatterplots in any column have the same conditioning interval 
of values of T; as the columns go from left to right, the intervals of T 
increase.

Each panel in Figure 5.2 has a loess curve to help us visualize the 
dependence pattern. The fitting of the curves uses bisquare; as with 
coplots for two factors, it is prudent to use robust fitting for initial looks 
at the data to protect against distortion that might occur if there happen 
to be outliers.
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The coplot of Figure 5.2 is repeated in Figure 5.3 to enhance the 
following discussion. The conditioning intervals of Figure 5.3 have been 
chosen using the equal-count method with a target fraction of overlap 
equal to 1 / 2 . Thus, the number of values of the conditioning factor in 
each interval is roughly constant. The interval counts for T are 46,51, 51, 
and 51. For W, they are 49,50,47, and 53. However, because the points 
on each dependence panel arise from satisfying two conditionings, one 
for T and one for W, the number of points on the dependence panels 
varies from 11 to 34. Consider the (1,1) panel, a scatterplot of O3 against 
R for observations that satisfy two requirements: the values of T must be 
in the lowest temperature interval and the values of W must be in the 
lowest wind speed interval. There are 49 days with W in the wind 
interval and 46 days with T in the temperature interval. If it happened 
that all days with T in the temperature interval also had W in the wind 
interval, there would be 46 points on the dependence panel. But if it 
happened that no days with T in the temperature interval had W in the 
wind interval, there would be no points on the dependence panel. Any 
number between these two extremes is possible, and the actual value 
depends on how W and T vary with one another. Since low temperature 
and low wind speed tend not to occur together, the number of points on 
panel (1,1) is only 11. But on the (4,1) panel, where T is high and W is 
low, there are 34 points since high temperatures are associated with low 
wind speeds.

Figure 5.3 shows rather convincingly that radiation explains variation 
in the O3 measurements beyond that explained by wind speed and 
temperature. As the theory of photochemistry predicts, O3 increases 
with R. The patterns of dependence are generally concave. Thus, for the 
most part, the marginal effect of R diminishes as R increases. The shapes 
of the patterns vary. For each fixed value of W, the overall change as a 
function of R increases as T increases. This means there is an interaction 
between R and T — as the ventilation drops, the effect of R is greater. 
There is a suggestion of a similar interaction between W and R — a 
greater overall change as a function of as VF decreases, possibly for the 
two largest values of T — but there is too much noise in the data to be 
certain.
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280 Hypervariate Data

For three factors, there are three coplots; each factor appears once on 
the horizontal scale. Figures 5.4 and 5.5 are the remaining two coplots 
for the environmental data. Figure 5.4 shows, as expected, that as W 
increases, O3 decreases. The patterns are mostly convex; the marginal 
effect of W diminishes as W increases. Careful examination of each 
column of panels does not clearly establish any interaction between W 
and T, The assessment must be done with care because the distribution of 
values of W on each panel shifts toward lower values as the conditioning
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value of T increases for fixed R. But an examination of portions of curves 
that overlap in W does not suggest much change in shape. Also, as in the 
previous coplot, there is no clear indication of an interaction between R 
and W, Figure 5.5 shows that O3 increases markedly with increasing T. 
Unlike for R and W, there is no reduction in the marginal effect for large 
values. The interaction between R and T is again apparent. But the 
change in shape of the curves with W for fixed R appears to be due more 
to a changing distribution of values of T on the panels than to a 
meaningful interaction.
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5.3 Coplots o f Hypervariate Surfaces and Cropping

Fitting is essential to visualizing hypervariate data. The structure of 
data in many dimensions can be exceedingly complex. The visualization 
of a fit to hypervariate data, by reducing the amount of noise, can often 
lead to more insight. The fit is a hypervariate surface, a function of three 
or more variables. As with bivariate and trivariate data, our fitting tools 
are loess and parametric fitting by least-squares. And each tool can 
employ bisquare iterations to produce robust estimates when outliers or 
other forms of leptokurtosis are present.

Loess fitting provides a satisfactory fit to the environmental data. The 
fit is a hypervariate surface, ^(/?, W, T), a function of radiation, wind 
speed, and temperature. Extensive experimentation led to this fit, whose 
parameters are a =  \ and A = 2 . Bisquare was not used since, as we 
shall see shortly, the residual distribution is well approximated by the 
normal. In Chapter 4, the ethanol data were fitted by a loess surface that 
was conditionally linear in compression ratio. For the environmental 
data, the loess fit was taken to be conditionally quadratic in W and /?; 
this means that given T, the fit as a function of W and is a quadratic 
polynomial whose coefficients change as the conditioning value of T 
changes. The coplots of the data in Figures 5.3 to 5.5 led to this 
specification; the coplots showed that the patterns of dependence on W 
and R are mildly curved, but the dependence on T is both greater and 
more complex.

Cropping

There is an insidious problem in visualizing a fit to hypervariate data 
— restricting our look at the fit to regions of the factor space that have 
sufficient data. The problem occurs for bivariate data and trivariate data 
as well, but it is easier to assess in these cases and solutions are simpler. 
For hypervariate data, the problem is treacherous because it is easy to 
view a hypervariate fit and not appreciate that certain portions of the fit 
are evaluations over regions with little or no data.

Consider first, the bivariate case. Suppose the environmental data 
had just one factor, wind speed. Figure 5.6 shows a loess fit to the data.
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Something leaps out at us that most would regard as needing explicit 
justification; the curve has been extrapolated well beyond the maximum 
measured value of W. It would take a large leap of faith or substantial 
knowledge of the system under study to believe that the fit can be 
extended so far beyond the measurements of W, In Chapter 3, fits to 
bivariate data were routinely computed over a range that extended from 
the minimum value of the factor to the maximum. And in all cases, there 
were no unduly large observation gaps within the range of the data. 
Thus, visualized fits were supported by the data. If gaps had occurred, 
we would have cropped the visualization, showing the fits at less than 
the full range of the data.

5.6 A portion of the loess fit is evaluated at 
values of the factor where there are no 
measurements. The parameters of the fit are
a =  2 /3  and A =  1.

Wind Speed (mph)

For trivariate data, a scatterplot of the two factors shows clearly 
where the measurements lie in the factor space. For the ethanol data and 
the perception data, the fits were evaluated over the data rectangle, the 
rectangle which just encloses the data. In these examples, the data 
populated the data rectangles in all regions. But for the rubber data, the 
galaxy data, and the soil data, the data rectangles were cropped; in each 
of these examples, the fit was evaluated over a rectangle that lay inside 
the data rectangle. Note that cropping does not imply that data are 
discarded outside of the cropped region, but simply that we do not 
study the fit outside of the region, although dropping isolated data can 
also be prudent, as the rubber data illustrated.



284 Hypervariate Data

For hypervariate data, it is a greater challenge to determine when and 
how to crop because the factors lie in spaces of dimension three or 
higher, which are harder to visualize.

For the loess O3 fit, g{R  ̂IF, T), it is at least clear that cropping is 
needed. The scatterplot matrix of the data in Figure 5.1 shows that the 
three-dimensional box that just contains the values of the three factors 
has regions that are far from the measurements. In part, the problem is 
caused by the correlation between W and T. We could crop with a box 
that lies inside the data box and whose sides are parallel to those of the 
data box, but this parallel cropping would also eliminate regions with 
sufficient data. Instead, we will use the cropping shown in Figure 5.7. 
The two scatterplots have four pairs of parallel lines that are projections 
of parallel planes in the three-dimensional space of the factors. The 
cropped region is the intersection of the four regions between the four 
pairs of planes. W is cropped by moving toward the center of the data 
from the extremes, and T is cropped in a similar fashion. W and T are 
also simultaneously cropped as shown by the two oblique lines. R is not 
cropped. The cross section of the cropped region perpendicular to the R 
axis is the six-sided polygon that is formed in the interior of the right 
panel of Figure 5.7 by the six lines. This cropping was done visually, just 
as a photographer visually crops a photo for better effect.
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5.7 The four pairs of parallel lines indicate the cropped evaluation region for the loess fit to 
the environmental data.
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Figure 5.8 is a scatterplot matrix of the factor measurements that lie 
inside the cropped region. No unduly large gaps appear; the (1,2) panel 
does show some small regions that are empty, but we can tolerate this. 
Of course, the scatterplots of the scatterplot matrix are projections, and 
thus could mask gaps in the three-dimensional cropped region, but 
rotation of the 3-D point cloud, a direct manipulation method discussed 
in Chapter 4, showed that the cropped region is populated throughout 
with data.
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5.8 The scatterplot matrix displays those measurements of the 
environmental factors that lie inside the cropped region.

Displaying Hypervariate Surfaces

The strategy for displaying a fitted hypervariate surface, g, is to use 
conditioning. Suppose u is one of the factors. We can assign values to all 
other factors, and graph g against u given these assigned, or 
conditioning, values. The result is a curve that can be displayed by a 
bivariate graph of g against u. We must vary the conditioning values in 
a systematic way to visualize the surface. This can be done using the 
format of the hypervariate coplots of the environmental data in
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Figures 5.3 to 5.5, except that the conditioning intervals are replaced by 
single conditioning values. The result is a hypervariate coplot of a 
hypervariate surface, an extension of the coplot method for displaying 
surfaces that was introduced in Chapter 4.

We can also graph against two factors given the others. Suppose is a 
second factor. We can condition on all factors except u and v, and graph 
^ as a function of u and v by one of the factor-plane methods of 
Chapter 4, for example, by a level plot. Again, the conditioning values 
must be systematically varied to produce a hypervariate factor-plane 
display [74].

Figure 5.9 is a hypervariate coplot that displays the loess O3 surface, 
g{R, VF, T), over the cropped region displayed in Figure 5.7. g is graphed 
against R conditional on W and T. For each panel with a curve, T and W 
have been set to specific values and the curve on the panel is a graph of 
the fit against R. The fixed value of T for a panel is shown above the 
column to which the panel belongs. The fixed value of W is shown to the 
right of the row to which the panel belongs. For example, for the (1,5) 
panel, T is 61 °F and W is 16 mph. The five conditioning values of W are 
equally spaced from 4 mph to 16 mph, the two cropping values for W. 
Similarly, the five conditioning values of T range from 61 °F to 92°F, the 
two cropping values for T. The curves have been evaluated at 50 equally 
spaced values of R from 7 langleys, the minimum observed value of R in 
the data, to 334 langleys, the maximum observed value. The minimum 
and the maximum are the boundaries of the cropped region in the R 
direction. On some panels, no curves occur because the combinations of 
T and W put them outside the cropped region.

Figure 5.10 is a coplot of the O3 fit against W given R and T.
Figure 5.11 is a coplot of the O3 fit against T given R and W. For these 
two displays, the cropping results in curves on all panels, but with 
varying evaluation intervals.

The three cropped coplots show general patterns that are similar to 
those revealed by the coplots of the data, but now the patterns are 
conveyed more incisively since the noise of the data has been removed. 
Figure 5.9 shows a nonlinear dependence of O3 on R with a decreasing 
marginal effect of R. There is an interaction between R and T; as T 
increases for fixed W, the overall change in O3 increases. There does not
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appear to be an interaction between R and W. Figure 5.10 reveals a 
nonlinear dependence of O3 on W with a decreasing marginal effect of W. 
There are no convincing interactions. The change in shape of the curves 
along each column appears to be due to the change in the evaluation 
interval; where there is overlap in evaluation, the curves appear to have 
the same shape. Figure 5.11 reveals both a strong dependence of O3 on T 
and the interaction between T and R that we saw in Figure 5.9.
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5.9 A coplot graphs fitted O3 
against R given T and W. The 
curves are banked by an aspect 
ratio of 2.

0 300 0 300 0 300

Solar Radiation (langleys)



288 Hypervariate Data
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Graphing Residuals

The loess O3 surface appears to fit the data because six displays (not 
shown here) did not reveal lack of fit — three scatterplots of the 
residuals against the factors and three coplots of the residuals.

The analysis of the environmental data began with a transformation; 
taking cube roots of the ozone concentrations symmetrized their 
distribution. Good fortune was with us because the cube root 
transformation also cures monotone spread. Figure 5.12 is an s-1 plot for 
a loess fit to concentration without transformation; the parameters are 
the same as those for the fit to the cube roots. There is monotone spread, 
an increase in the spread with the fitted values. Logs do not cure the 
monotone spread. Figure 5.13 is an s-1 plot for a loess fit to log 
concentration with the same parameters as the other fits. The spread 
decreases as the fitted values increase. Figure 5.14 is an s-1 plot for the fit 
to the cube roots. The spread of the residuals is uniform. The cube root 
has struck the proper balance.

OJ
■g'(/)0)cc ^  
^ -9
S s

8 (§QC O03
k_
03DCT(/)

5.12 An s-l plot checks for monotone spread 
for the loess fit to concentration. The 
parameters of the loess curve on the graph 
are a  =  1 and A =  1.

Fitted Ozone (ppb)
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5.13 An s-l plot checks for monotone spread 
for the loess fit to log concentration. The 
parameters of the loess curve on the graph 
are a  =  1 and A =  1.

Fitted Log Ozone (log 2 ppb)

5 .14  An s-l plot checks for monotone spread 
for the loess fit to cube root concentration. 
The parameters of the loess curve on the 
graph are a  =  1 and A =  1.

Fitted Cube Root Ozone (ppb'^ )̂
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Figure 5.15 is a normal q-q plot for the fit to the cube roots; the 
distribution of the residuals appears to be well approximated by the 
normal distribution. Because of this, bisquare was not used in the loess 
fit. Figure 5.16 is an r-f spread plot. The loess fit has accounted for a 
sizeable amount of the variation in the data.

5.15 The normal q-q plot compares the 
normal distribution with the distribution of the 
residuals from the loess fit to O3.

Unit Normal Quantile

0.0 0.5 1.0

5.16 The r-f spread plot 
compares the spreads of the 
residuals and the fitted values 
minus their mean for the loess fit 
to O3.

f-value
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5.4 Multivariate Distributions

The environmental measurements are factor-response data; the goal 
is to determine how one variable, O3, depends on the other three. But 
for many bivariate, trivariate, and hypervariate data sets, the goal is 
simply to determine the multivariate distribution of the data in the 
multi-dimensional space of the measurements, rather than determining 
how the variation in one variable depends on the variation in the others. 
Methods for visualizing bivariate distributions were given in Chapter 3. 
One example presented there is the wind speed and temperature 
measurements that form part of the environmental data. Another 
example, which we will analyze now, is data with six variables — 
measurements of the weights of six organs for 73 hamsters from a strain 
with a congenital heart problem [66]. These hypervariate data consist of 
73 points in six-dimensional space.

Visualizing Univariate Distributions

One aspect of any multivariate distribution is the univariate 
distributions of the individual variables. Figure 5.17 uses box plots to 
visualize the univariate distributions of the logarithms of the hamster 
organ weights. Logs are taken because it is more informative to consider 
ratios of weights. The distributions for lung, heart, kidney, and testes 
have similar medians, but the liver median is much larger and the spleen 
median is much smaller. The spreads vary, but they do not increase or 
decrease with the medians. For the untransformed weights, the spreads 
increase with the medians, so the log transformation has removed 
monotone spread.

Log Organ Weight (log2 grams)

5 .17 Box plots display the univariate distributions of the log organ weights.
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Visualizing Bivariate and Higher-Dimensional Distributions

Another aspect of a multivariate distribution is the bivariate 
distributions of all pairs of variables. Figure 5.18, a scatterplot matrix of 
the log organ weights, provides much information about the bivariate 
distributions. Lung, heart, liver, spleen, and kidney weights are 
correlated to varying degrees; for example, the liver and spleen weights 
are highly correlated. The testes weights, however, are not correlated 
with any of the other organ weights. That is, the testes sizes of hamsters 
are not related to the sizes of other body organs.

Because the scatterplot matrix allows linking by visual scanning from 
one panel to the next, we have the opportunity to detect aspects of 
multivariate distributions that involve more than just the individual 
bivariate distributions. But the effectiveness of linking can often be 
substantially increased by the enhanced linking operation of brushing, 
which was introduced in Chapter 4. This is the case for the log organ 
weights, as shown in the next section.

5.5 Direct Manipulation: Enhanced Linking by Brushing

The (3,4) panel of Figure 5.18, a scatterplot of log spleen weight 
against log liver weight, shows an outlier: the point to the northwest of 
the main cloud. The hamster that produced the outlier had either an 
enlarged spleen and a normal liver, or a small liver and a normal spleen, 
or perhaps even both a small liver and an enlarged spleen. The hamster 
has one observation on each panel of the matrix. We need to see all of 
these observations to help us determine if the hamster had a spleen or 
liver problem. Scanning to other panels from the outlying point on the 
(3,4) panel does not readily provide the linking because the density of the 
data does not let us unambiguously determine the hamster's data on the 
other panels. But a brush lurking in the (1,1) panel is ready to do its job.
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5.18 A scatterplot matrix displays the log organ weights. A brush is resting in the (1,1) panel 
ready to carry out enhanced linking.
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In Figure 5.19, the brush is in the (3,4) panel and covers the outlier. 
The enhanced linking operation of brushing causes all of the data for the 
unusual hamster to be graphed by a Row four from the bottom 
shows the hamster's log spleen weight is large given each of its other log 
organ weights; for example, its spleen is large compared with the 
spleens of hamsters that have about the same lung weight. But the 
panels of row three show that its liver weight is unusual only on the 
spleen plot. The hamster had an enlarged spleen.

5.6 Improvisation

Many of the applications of visualization in this book give the 
impression that data analysis consists of an orderly progression of 
exploratory graphs, fitting, and visualization of fits and residuals. 
Coherence of discussion and limited space necessitate a presentation 
that appears to imply this. Real life is usually quite different. There are 
blind alleys. There are mistaken actions. There are effects missed until 
the very end when some visualization saves the day. And worse, there is 
the possibility of the nearly unmentionable: missed effects.

One important aspect of reality is improvisation; as a result of special 
structure in a set of data, or the finding of a visualization method, we 
stray from the standard methods for the data type to exploit the 
structure or the finding [3, 30, 76]. A few examples have been given in 
earlier chapters. Here we present another.
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® ô ^  o 
° ® ft ftO •O® ® o®

D O ^

%O ® ?oo ft oo O
o*-” > ° ® O 0^

OrtO o®^* <j)8̂ o® \  +
o

o,®° o
0 O O ®

» | o 8 ° > ° °O O oo O ^
0 ® o O Q o
0 ® °"t? ®̂  ®

VoO oOft 0 O oO
° o° o O %

T e s t e s

0 o
OO Q__________

■ .

8
0 •  ®ft o

a f
o o

ft_o__fi________

S 0

oo
g>Q Q__________

o8“ “

<̂ 00̂ 0 
o o 

0 0(D

K i d n e y

O 0
°o  ®

BoOftoO ^J^ aO  0
®°«fi° ® loo 
o ®o®oo

0 ft O*̂  ® ®® ® 0^0
o o 

0__fi__fi_fi______

1 o °

O °  
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5.19 The enhanced linking operation of brushing shows all observations for one hamster.
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Figure 5.20 graphs measurements of four variables — sepal length, 
sepal width, petal length, and petal width — for a collection of 150 irises 
[11. The iris petals are the colorful parts of the flowers that we enjoy 
when they bloom. The sepals are the leaf-like coverings that protect the 
petals and other flower parts before blooming. The data, which have 
been jittered because of exact overlap, consist of 50 irises from each of 
three varieties: Iris setosa, Iris versicolor, and Iris virginica. Variety
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5.20 A scatterplot matrix displays the iris data.
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is a categorical variable and its levels are encoded by texture symbols, 
which enhance our ability to visually separate the three sets of data [21].

Despite the jittering and the use of the texture symbols, not every 
plotting symbol appears with clarity because so many symbols are 
shown, 1800 in all. The most severe problems occur in panels (3,4) and
(4.3) . We cannot identify every symbol in the tight cluster that appears 
to contain only setosa. But linking provides a solution. Starting at panel
(3.4) and scanning to both of the panels to the left, we can see that the 
observations are indeed setosa.

Panel (2,3) reveals an outlier: one iris in the setosa category with an 
unusually small sepal width. In this case, we can scan to find the 
corresponding observations on the other panels; unlike for the hamster 
data, we do not need the enhanced linking of brushing. First, if we scan 
up and down in column 2 , we clearly see the observations for the 
unusual iris on all panels. Similarly, we can see them clearly on all 
panels of row 2. The positions on all other panels can be determined by 
scanning from both row 2 and column 2 , forming cross hairs of sorts.
For example, we can fix the position on panel (1,3) by scanning up from 
panel (1,2) and scanning to the left from panel (2,3). The scanning 
reveals that the sepal width is the only aspect of the iris that is unusual.

Classification

The goal in analyzing the iris data is to develop a rule based on the 
widths and lengths of petals and sepals that would assist in determining 
the variety of an iris. Panel (4,3) of Figure 5.20 shows interesting 
behavior that suggests there might be a simple rule. The three varieties 
are well separated along an axis that runs from the lower left corner to 
the upper right. Along this axis, setosa is completely separated from the 
others, and the amount of overlap of versicolor and virginica is small. 
From the lower left to the upper right along this axis, both the petal 
length and the petal width increase, so the axis is a measure of petal size. 
The petals of setosa are smaller than those of versicolor, which in turn 
tend to be smaller than those of virginica.
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A simple measure of petal size is the product of length and width. 
Also, the ratio of length to width is a measure of petal elongation. This 
triggers an idea, an improvisation that arises from observing the size 
effect. If we take the logs of both petal length and width, the mean of the 
two values for each flower is another size measure: the log of the square 
root of the above product. And the difference of the logs is another 
elongation measure: the log of the above ratio. It makes sense to graph 
one measure against the other. But this is just a Tukey m-d plot of the log 
width and log length.

The m-d plot is shown in Figure 5 .21 . The graph reveals several 
interesting patterns. First, the elongation tends to decrease as the size 
increases; in other words, as the petals become bigger they also become

< Iris setosa o Iris versicolor + Iris virginica

Size (Io92  cm)

5.21 A measure of petal elongation is graphed against a measure 
of petal size.
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less elongated. Interestingly, the pattern occurs both within and between 
varieties. Second, size completely separates setosa from the other two 
varieties, and it nearly separates versicolor and virginica. A classification 
rule is shown by the two vertical lines in Figure 5.21, which are drawn at

Cl =  0 .4 1 o g 2  c m

and at
C2 = 1.46 log2 cm .

The variety setosa is chosen if size is less than Ci; versicolor is chosen if 
size is between Ci and C2; and virginica is chosen if size is above C2.
These two values minimize the errors of classification for the 150 irises in 
the data set. Only four of the irises are misclassified by the rule, so the 
petal size measure provides good assistance in variety identification, at 
least for this set of data.

5.7 Visualization and Probabilistic Inference

The iris data have a long and interesting history. They were 
originally collected by a botanist who reported them in 1935 [11. In 1936, 
R. A. Fisher used the data to illustrate his mathematical method of 
classification [37]. After Fisher's treatment, the iris measurements 
became canonical data that have been used by a multitude of people as 
an example to illustrate other mathematical methods for analyzing 
multivariate data.

The irony is that visualization of the iris data reveals more about their 
structure than the previous long list of analyses by numerical statistical 
methods. For example, the reliable classification into variety simply by 
petal size, and the existence of an outlier, are two insights missed by 
these purely numerical methods of probabilistic inference. One wonders 
if the iris data would have become a canonical data set had they been 
visualized in 1936, revealing so thoroughly to all the structure of the 
data.
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6 Multiway Data

Figure 6.1 graphs the logarithms of livestock counts from a 1987 
census of farm animals in 26 countries [14]. Logs are taken at the outset 
because the counts vary by about 4.5 powers of 10; if the data were 
graphed on the original scale, only the variability in a few large 
observations would be visible. Russia et al. is the European part of 
Russia and the European countries that were formerly part of the Soviet 
Union.

The census has a purpose that would be hard to guess — to study air 
pollution. The feces and urine of livestock produce ammonia, an air 
pollutant. The livestock counts are combined with estimates of the 
amounts of ammonia emitted by the wastes of different animals to 
provide a release rate of ammonia into the atmosphere of Europe. The 
counts in Figure 6.1 lead to an estimate of 5.2 megatons per year; this 
accounts for 81% of all ammonia emissions.

The log counts in Figure 6.1 are multiway data. There is one 
quantitative variable, log count, and two categorical variables, country 
and livestock type. The quantitative variable is a response, and the goal 
is to study how it depends on the categorical variables, which are 
factors. What distinguishes multiway data is the cross-classification of 
the categorical variables; there is a value of the response for each 
combination of levels of the two categorical variables. In this case, there 
is one log count for each combination of country and livestock type.

6.1 Multiway Dot Plots

The visualization method of Figure 6.1 is a multiway dot plot. There 
are panels, the individual dot plots of the display, and there are levels, 
the rows of each panel. In Figure 6.1, the livestock variable is encoded 
by the panels and the country variable is encoded by the levels.
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The countries are assigned to the levels so that the country medians 
increase from bottom to top. The median of the five observations for 
Albania is the smallest country median. Norway has the next smallest 
country median, and Russia et al. has the largest. The panels are ordered 
so that the livestock medians increase in graphical order: from left to 
right and from bottom to top. The median for horses is the smallest, and 
the median for poultry is the largest.

Figure 6.1 shows that the amount of variation in the log counts for 
sheep is greater than that of the other livestock types; in other words, the 
ordering of the sheep data agrees the least well with the ordering of the 
country medians. The log pig counts show interesting behavior. There is 
an unusually low number of pigs in Turkey. Even though it is near the 
top in log counts overall, it has the fewest pigs. Albania has a small 
number of pigs as well, but its value is not nearly as deviant as that of 
Turkey because overall, Albania is at the bottom in log counts. And 
Ireland also has a small number of pigs in the sense that other countries 
nearby in the median ordering have more pigs.

Figure 6.2 displays the data by a second multiway dot plot, but this 
time the livestock variable has been assigned to the levels, and the 
country variable has been assigned to the panels. The display shows 
that for Turkey and Albania, sheep are the most abundant animal; this 
makes up for the lack of pigs. But for all other countries, poultry are the 
most abundant. The log count for pigs in Turkey is so small that it is 
exceeded by the log count of horses, whereas in all other countries, 
horses are the least abundant category.

Visual Perception

As with all display methods in this book, the display method of the 
multiway dot plot is based on a careful consideration of visual 
perception.

One visual issue is an asymmetry in the perception of the effects of 
the categorical variables. We can more effectively compare values within 
a panel than values between panels. Consider Figure 6.1 where the 
levels encode the country and the panels encode the livestock type.
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6.2 The log counts are graphed again with the livestock variable assigned to
the levels and the country variable assigned to the panels.
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The country values for each livestock type can be perceived as a gestalt 
because they are graphed along a single scale line. For example, this 
contributes to our ability to perceive the greater variation in the sheep 
data. We can, of course, readily compare these gestalts from one panel to 
the next; this allows us to assess how the distribution of values changes 
as the panel category changes. But in Figure 6.1 we cannot compare the 
five values for a given country as effectively. This is done far better in 
Figure 6.2, where the livestock type is assigned to the levels. For 
example, we can readily perceive that in Finland, poultry have the 
largest log count and horses have the smallest; this cannot be as readily 
perceived in Figure 6 .1. Because of this asymmetry, it is often important 
to explore multiway data by as many multiway dot plots as there are 
categorical variables, with each variable assigned once to the levels.

Another visual issue is the orderings of the levels and panels by a 
measure of the category locations, in this case, the median. The 
orderings are crucial to the perception of effects. The ordering of the 
levels by country median in Figure 6.1 establishes gestalts on each panel 
that are easier to compare from one panel to the next. For example, this 
allows us to see that the sheep behave differently from the other 
livestock types. Also, the level ordering provides a benchmark for the 
log count for each livestock type — the values of the nearby log counts. 
For example. Figure 6.1 shows that the small log cattle count in Albania 
is not unusually small given the overall rank of Albania, but the number 
of pigs in Ireland is unusually small given the overall rank of Ireland.

In Figure 6.3, the log counts are displayed again with the levels 
ordered alphabetically and the panels ordered arbitrarily. Many of the 
effects readily seen in Figure 6.1 are not revealed. The sheep data no 
longer stand out as particularly unusual, and we cannot see that the log 
pig count in Ireland is low or that the log sheep count in Greece is high.
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6.3 The levels and panels on this multiway dot plot of the log counts are not ordered by category 
median. The levels are ordered alphabetically and the panels are ordered arbitrarily.
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6.2 Additive Fits

There are many mathematical functions that can be fitted to multiway 
data [52], The simplest is an additive function.

An Additive Parametric Function

Let ŷ c denote the log count for the £th livestock category and the cth 
country category. The additive function for the log livestock counts is a 
parametric function of I and c ,

y  OLi d c  ■

The parameter y  measures the overall value of the response. We will 
constrain the remaining parameters, which are the main effects, by

5 26

c—\

The parameters are the livestock main effects, and the parameters (5c 
are the country main effects.

The additive function does not provide for an interaction between 
country and livestock. The change in the function in going from 
livestock type i to livestock type j ,  a j  — ai ,  is the same for all countries. 
Similarly, the change in the function in going from country i to country 
j, Pj — Pi, is the same for all livestock types. If the additive function 
provided a good fit to the data, the underlying patterns of the log counts 
on the panels of either Figure 6.1 or 6.2 would have the same overall 
shape but simply shift left and right. There would be no interaction 
between country and livestock type. This is clearly not the case for the 
log livestock counts; for example, the sheep pattern is quite different 
from the others. But even when an interaction is present in multiway 
data, fitting an additive function can be useful; the interaction becomes 
part of the residuals, and visualization of the residuals can give a clearer 
picture of the properties of the interaction than we get in exploratory 
graphs of the unfitted data.
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Least-Squares and Bisquare

Least-squares can be used to fit an additive function to multiway 
data. For the log livestock counts, ŷ c, least-squares determines values of 

and (3c that minimize

5 26

!^cf ■
C=1

The minimizing values, which are the estimates of the parameters, have 
a simple form. The estimate of fi is the overall mean of the data,

 ̂ 5 26

^ 130 *
f c l  c= \

The estimate of is the mean across countries for livestock type 
minus the overall mean.

j  26

=  ^ Y y ^ c - f i -
 ̂C=1

The estimate of Pc is the mean across livestock types for country c, 
minus the overall mean,

1 ^
0c =  - Y y ^ c - f i  ■

 ̂ e=\

The fitted values are

and the residuals are
Vic — +  a e  +  Pc

^£c —  Vic y tc  ■

If the initial visualization of multiway data by dot plots suggests 
aberrant behavior in the data, bisquare fitting can be used to fit the 
additive function. The robustness iterations are the same as those for the 
data types discussed in earlier chapters. First, the function is fitted by 
least-squares; in succeeding steps, robustness weights are computed and 
the function is re-fitted using weighted least-squares. Quite clearly, the 
log livestock counts contain aberrant behavior, for example, the 
exceptionally low log pig count in Turkey, so we will use bisquare.
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Figure 6.4 graphs the bisquare estimates of the main effects. Russia et 
al. have the largest country main effect, and Albania has the smallest. 
Poultry have the largest livestock main effect and horses have the 
smallest. It seems likely that the country main effects are related to the 
populations and areas of the countries, but we will not check this further 
here. The country main effects vary by about 1.5 on the log scale, which 
is a factor of 10̂  '̂  ~  30. The livestock main effects vary by about 2.5, 
which is a factor of 10 greater. The country main effects are spread out 
uniformly across their range, but the livestock main effects have one 
large value, one small value, and three similar values somewhat above 
the middle of the range.
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6.4  The dot plot displays the bisquare estimates of the country and livestock main 
effects.
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The display method of the multiway dot plot, as discussed in detail 
earlier, orders the levels and panels by category medians. For the log 
livestock counts, each country median is a location measure of the five 
log counts for the country, and each livestock median is a location 
measure of the 26 log counts for the livestock type. The bisquare fitting 
has provided new location measures. The livestock locations are

'jl +  ae

and the country locations are

jx-\- !3c ■

Figures 6.5 and 6.6 are dot plots with the panels and levels ordered by 
the new location measures, which, of course, is the same as ordering by 
the estimates of the main effects. No substantially new insight is gained, 
in part because the new and old orderings are similar. But the new 
ordering will be used for subsequent visualization of the residuals and 
fitted values, and having Figures 6.5 and 6.6 will be important when we 
are stimulated by patterns in the subsequent graphs to look back at the 
data.
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6.5 On this multiway dot plot of the log counts, the levels and panels are ordered by the bisquare
estimates of the main effects.
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6.6 On this multiway dot plot of the log counts, the levels and panels are
ordered by the bisquare estimates of the main effects.
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Graphing Fitted Values and Residuals

Figures 6.7 and 6.8 graph the fitted values of the log counts. For each 
dot plot, the shapes of the patterns of the points on the panels are the
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6.7 The multiway dot plot shows the additive fit to the log counts.
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same, and the patterns simply shift left and right according to the main 
effects. As explained earlier, this is a feature of the additivity of the fitted 
function, which results in no interaction between the two categorical 
variables.
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6.8 The multiway dot plot shows the additive fit to the log counts.
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The residuals are graphed in Figures 6.9 and 6.10. The scale of the 
residuals is log base 2 because most of them vary only by about 1 on a 
log base 10 scale. The residual for pigs in Turkey has been omitted 
because it ruins the resolution of the display; including it requires an 
expansion of the horizontal scale by about 70%.

A large residual indicates an over-population of the livestock type in 
the country, and a small residual indicates an under-population. For 
example, Poland has the largest horse residual, 2.7 log2 count. Given the 
main effect for Poland and the main effect for horses, there are more 
horses in Poland than one would expect by a factor of 2^^ =  6.5. In 
other words, Poland is horse country. Turkey and Albania have the 
smallest pig residuals. For both countries, the under-population of pigs 
is due to religious dietary laws. Turkey and Greece have the greatest 
over-population of sheep; anyone who has been to a Turkish or Greek 
restaurant knows why. Denmark has the greatest under-population of 
sheep, but perhaps to make up for it, the greatest over-population of 
pigs.
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6.9 The multiway dot plot displays the residuals from the additive fit to the log counts.
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6.10 The multiway dot plot displays the residuals from the additive fit to the log counts.
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The residuals are clearly not homogeneous. Sheep have greater 
residual variation than the other livestock types. For many countries, 
the sheep residual is either the largest or the smallest of the five residuals 
for the country. Careful study of the multiway dot plots of the residuals 
suggests a geographic influence. This is investigated in Figure 6.11; the 
residuals are displayed by a level plot. The equal-count method has 
been used to select the three intervals, whose fraction of overlap is 0.25.

Geography does appear to account for a part of the sheep variation. 
Countries in a contiguous region covering central Europe and most of 
Scandinavia have the smallest residuals; that is, they have fewer sheep 
than predicted by the fitted function. As we move outward from this 
region, the residuals tend to increase and are largest at the boundaries of 
the region to the south and northwest. We could fit the dependence on 
geographical location with loess, but we will not do so, since we have 
treated the data sufficiently for our purposes.

Residual Log2 Sheep Count

-4 .5
—I____
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—I____
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6.11 The level plot shows the dependence of the sheep residuals on geographical 
location.
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6.3 Superposition and Differences

Sorting data from smallest to largest is one of the fundamental tasks 
of software systems. Through the decades, as computers developed, so 
did sorting algorithms, with ever increasing advances in efficiency. By 
1992, one might have thought that the practical limits in efficiency had 
been nearly reached, and that any further work would yield only small 
gains.

But in 1992, Jon Bentley and Douglas Mclllroy became interested in 
qsort, a sort program in UNIX®, because of reports of disastrously poor 
performance for several highly structured examples. For example, qsort 
was utterly undone by the triangular sequence

1,2,  . . . ,  n — 1, n, n, n — 1, . . . ,  2, 1 .

Bentley and Mclllroy promptly invented a new algorithm that solved 
the problems. And while they were at it, they set new speed records for 
general sequences, beating the old ones by a wide margin.

As part of their investigation of run-time performance, Bentley and 
Mclllroy generated random sequences of length 10̂ , and sorted them 
with three algorithms: their new one, the qsort program in the Berkeley 
version of UNIX, and the qsort program in the Seventh Edition version. 
They tested on two machines: a VAX 8550 and a MIPS R3000. There 
were six input types for the sequences: integer, float, double, pointer, 
record, and string. For each combination of algorithm, machine, and 
input type they generated and sorted 10 sequences and computed the 
average run time. The times are multiway data with 3 x 2 x 6 =  36 
observations. It makes sense to take logs at the outset since 
multiplicative factors are important, not absolute run times.

Figure 6.12 graphs the log run times. The algorithm factor has been 
assigned to the panel levels. The panels are arranged in a rectangular 
array with the machine factor assigned to the columns and the input 
factor assigned to the rows. The ordering of the levels and panels 
depends on the category medians as it did for the exploratory dot plots 
of the livestock data. The algorithm medians increase as the levels 
increase from bottom to top, the input medians increase from bottom to 
top through the rows of the panels, and the machine medians increase 
from left to right through the columns.
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6.12 The multiway dot plot graphs log run times for 
three algorithms, two machines, and six input types.
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Superposition

In Figure 6.12, the assignment of the algorithm factor to the panel 
levels allows us to readily assess its effect on log run time. The pattern of 
the three log run times on each panel can be readily perceived, and the 
12 patterns can be compared. To enhance the assessment of the effect of



322 Multiway Data

the machine factor, we could assign it to the panel levels, but Figure 6.13 
uses another method: superposition. The machine factor is encoded by 
the symbol type. Now its effect can be assessed for each combination of 
algorithm and input by comparing the two symbols on each panel level. 
The symbol encoding succeeds because there are only two machine 
categories. Superposition is used again in Figure 6.14, where the input 
factor is assigned to the panel levels, which allows better assessment of 
the effect of input.

The decrease in run time of the Bentley-Mclllroy algorithm is 
impressive. Figure 6.12 shows that it beats Seventh Edition and Berkeley 
in every case. The improvement gets as large as 3.8 log2 sec, a factor of 
14. The figure also shows that the size of the improvement depends on 
the machine and the input. The size is greater for the Mips than for the 
Vax. Pointers stand out as a special case; on each machine, the log run 
times for pointers are less spread out than for any other input.
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6.13 The log run times are graphed by a multiway 
dot plot with superposition.
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Figure 6.13 shows that the effect of the machine factor for the new 
algorithm is much greater than for the other two. Furthermore, the 
machine effect for the new algorithm is stable; the log run time for the 
new algorithm on the Vax minus the log run time on the Mips, is always 
close to about 1.75 log2 sec. For the other two algorithms, the machine 
effect depends on the input type; it is close to zero for record, string, and 
double, but is larger for other inputs.

Figure 6.14 shows the patterns for Seventh Edition and Berkeley have 
similar shapes that appear to be separated by an additive shift of 
Berkeley toward smaller log times. In other words. Seventh Edition and 
Berkeley behave very similarly except that Berkeley is somewhat faster 
by a constant number of log2 sec.
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6.14  The log run times are graphed by a multiway dot 
plot with superposition and with the input type encoded 
by the panel levels.
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Differences

For the log run-time data, the categorical variable of chief interest is 
the algorithm. The experiment was not carried out to compare the speed 
of sorting on Vax and Mips machines or by input type. Machine and 
input enter only because the relative performance of the different 
algorithms depends on them. Furthermore, we are primarily interested, 
not in the comparison of Berkeley and Seventh edition, but rather in the 
magnitude of the improvement provided by the new algorithm. We can 
focus on this improvement by visualizing a new data set derived from 
the old — differences of log run times. The differences are graphed in 
Figure 6.15. The circles display the Berkeley log times minus the new log 
run times for all combinations of machine and input. Similarly, the plus 
signs display the Seventh Edition log times minus the new log times.
The levels and panels have been ordered by the category means of the 
differences. Means have been used instead of medians since the 
exploratory visualization showed the data to be well behaved.

o ucb d-7th

vax mips

...................................................r \ ............... i................................................... v j ............... - r ................

O -h o +
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pointer

Improvement (log2 seconds)

6 .15  Each value graphed on this multiway dot plot is a Vax or Mips log run time minus 
the log run time of the new algorithm for the same input and machine.

On each panel of Figure 6.15, the overall patterns of the two sets of 
points are about the same, but simply shifted. In other words, for each 
machine, the data are additive. But we do not have such additivity 
across machines; the patterns for the Vax are quite different from those 
for the Mips, although the order of the values for each of the four cases 
— Vax-7th, Vax-Berkeley, Mips-7th, Mips-Berkeley — is nearly the same.
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Figure 6.15 suggests that we fit a function that is additive in input and 
algorithm for each machine separately. In other words, in the fitting, we 
treat the data for each machine separately and fit an additive function in 
each case. Let m  index the two machines, let i index the six input types, 
and let a index the two algorithms. The form of the function is

l̂ ( m ) + o fr'+/?<“>.
For each of the two machines, the input main effects

OL
( m )

sum to zero and the algorithm main effects,

/,(m)

sum to zero. Since the data appear to be well behaved, we will not 
employ bisquare in the fitting.

Figure 6.16 graphs the residuals; no strong effect of the variables 
appears to remain. In other words, there is no discernible lack of fit, so 
the function fits the data.
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6.16 The multiway dot plot graphs the 
residuals from the fit to the differences.
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Figure 6.17 is an r-f spread plot. The residuals are contained within 
±0.15 log2 sec, which means that on the original scale, the fitted function 
predicts run-time improvement to within factors of

2 ± o .15 = I ±0.1 .

Thus the fitted function accounts for most of the variation in the data.
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6.17 The r-f spread plot compares the 
spreads of the residuals and the fitted values 
minus their mean for the fit to the log run-time 
differences.

1.0

f-value

The additivity for each machine allows a simpler characterization of 
the improvement. For the Mips, the algorithm main effects are 
—0.38 log2 sec for Berkeley and 0.38 log2 sec for Seventh Edition. Thus 
the change in the Mips fit for any input type in going from Seventh 
Edition to Berkeley is —0.76 log2 sec, which is a factor of =  0.6. In 
other words, on the Mips, the improvements over Berkeley are 0.6 times 
the improvements over Seventh Edition. A similar statement holds for 
the Vax with a factor of 0.7. Thus we need only consider in detail the 
improvement of the new algorithm over either Berkeley or Seventh 
Edition to understand the effect of machine and input. This is done in 
Figure 6.18, which displays the fit for the improvement over Seventh 
Edition on the log2 scale, and in Figure 6.19, which displays the fit as a 
factor on the original scale.
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6.18 The fitted values for Seventh Edition are displayed.

Fitted Improvement Factor

6.19  The fitted values for Seventh Edition are displayed as Improvement factors.
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6.4 The Case o f the Anomalous Barley Site

The book ends as it began, with the barley data. There is a mystery — 
anomalous data at the Morris site. Its unraveling, to come next, provides 
strong testimony to the themes stressed in the book.

The Barley Data

Let us review the facts of the data. Ten varieties of barley were grown 
at six sites in Minnesota in each of two years, 1931 and 1932. Thus there 
are 1 0 x 6 x 2  = 120 yields. The data first appeared in 1934 in the 
Journal of Agronomy [55].

The story of the data actually begins earlier, in the 1920s in England, 
where R. A. Fisher was establishing the foundations of statistical 
experimental design and modern statistical inference [38, 39]. Fisher was 
a brilliant scientist who also was a pioneer of mathematical genetics. His 
work in statistics would go on to permeate all of science and have a 
profound effect on the everyday lives of scientists.

Fisher's work in statistical experimental design began at the 
Rothamsted Agricultural Experiment Station, where he was employed 
for over a decade before he took the post of Galton Professor at 
University College London in 1933. Fisher revolutionized how people 
approached experiments. When he began his work, the prevailing 
wisdom was that only one factor should be varied at a time in a single 
experiment to keep investigations simple. Fisher demolished this 
notion. He showed by a combination of empirical and mathematical 
work that simultaneous variation of the levels of several factors in 
certain systematic ways in single experiments is far more efficient. Even 
more, Fisher showed how to assess the precision of estimates of factor 
effects. His method, now a mainstay of science, is called the analysis of 
variance, or AN OVA. Yates and Mather wrote in 1963 [82]:

. . .  the new ideas on experimental design and analysis soon 
came to be accepted by practical research workers, and the 
methods have now been almost universally adopted, not only in 
agriculture but in all subjects which require investigation of 
highly variable material. The recent spectacular advances in 
agricultural production in many parts of the world owe much to 
their consistent use.
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The barley experiment was significant because it was one of the first 
uses of Fisher's ideas. Fisher later reported the data from five sites, 
including Morris, in The Design of Experiments [39], which became the 
classic in experimental design, setting out the foundations of the subject. 
The fame of the book made the data famous, and they were re-analyzed 
by others, serving as an example for new methods of statistical science.

Exploratory Dot Plots

Figure 6.20 graphs the barley data by a multiway dot plot. The 
variety variable is assigned to the panel levels, the growing site is 
assigned to the panel rows, and the year is assigned to the columns. The 
order of the levels and panels is by category median. The variety 
medians increase from bottom to top through the levels, the year 
medians increase from left to right through the panel columns, and the 
site medians increase from bottom to top through the panel rows.

Figure 6.20 clearly shows the Morris anomaly: a reversal of the yearly 
effects. But the display also conveys a pattern that is crucial to 
understanding the reversal. As we proceed from bottom to top through 
either column of site panels, the overall levels of the sites increase, 
except for Morris. Furthermore, the two patterns without Morris are 
roughly the same except that 1931 is shifted toward higher values. 
Finally, and most importantly, the visual impression is that if the years 
for Morris were interchanged, the Morris data would then fit the pattern.

The data are shown with the interchange in Figure 6.21. Now Morris 
does indeed fit the pattern. In other words, given the overall median of 
Morris, its 1932 values fit into the 1931 pattern of the other sites, and its 
1931 values fit into the 1932 pattern. The interchange has produced 
greater harmony in the data. But this is a serious step, not to be taken 
lightly. We will persist in analyzing the altered data, assessing the effect 
of the alteration and studying further whether it is justified.



330 Multiway Data

Trebi
Wisconsin No. 38 

No. 457 
Glabron 

Peatland 
Velvet 

No. 475 
Manchuria 

No. 462 
Svansota

Trebi
Wisconsin No. 38 

No. 457 
Glabron 

Peatland 
Velvet 

No. 475 
Manchuria 

No. 462 
Svansota

Trebi
Wisconsin No. 38 

No. 457 
Glabron 

Peatland 
Velvet 

No. 475 
Manchuria 

No. 462 
Svansota

Trebi
Wisconsin No. 38 

No. 457 
Glabron 

Peatland 
Velvet 

No. 475 
Manchuria 

No. 462 
Svansota

Trebi
Wisconsin No. 38 

No. 457 
Glabron 

Peatland 
Velvet 

No. 475 
Manchuria 

No. 462 
Svansota

Trebi
Wisconsin No. 38 

No. 457 
Glabron 

Peatland 
Velvet 

No. 475 
Manchuria 

No. 462 
Svansota

1932 Waseca

1932 Crookston

1932 Morris

1932 University Farm

1932 Duluth

1932 Grand Rapids

— I—

30
— I—

45
— I—

60

30 45 60

1931 Waseca

1931 Crookston

....<

1931 Morris

1931 University Farm

1931 Duluth

1931 Grand Rapids

Barley Yield (bushels/acre)

6 .20  The multiway dot plot graphs barley yield at six sites for two years and ten varieties.
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6.21 The barley data are displayed again with the 1931 and 1932 yields at Morris 
interchanged.
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Visualizing the Altered Data

The chief issue at the moment is the year effect. The situation is 
similar to that of the previous section where the categorical variable 
targeted for study was the algorithm factor. Here, as there, we will take 
differences to focus on the targeted variable.

Figure 6.22 displays the 1931 yield minus the 1932 yield for each 
combination of site and variety. The order of the sites and varieties 
remains as in previous displays, so as we go from bottom to top through 
the panels, the median site yield increases, and as we go from bottom to 
top through the levels on each panel, the median variety yield increases. 
This allows us to assess whether there is a relationship between the 
differences and the site medians or between the differences and the 
variety medians. One noticeable effect on the display is that from 
bottom to top, the overall level of the differences at each site tends to 
increase. In other words, the effect of year at the different sites tends to 
increase as the overall site level increases. There is an interaction 
between site and year. The only site that appears to deviate from this 
pattern is Grand Rapids, not Morris. A similar interaction between 
variety and year does not appear to be present; no panel shows any 
tendency for the differences to increase.

An increase in the effect of one factor as the overall level of another 
factor increases is an exceedingly common form of interaction. Thus the 
interaction between site and year uncovered by Figure 6.22 is not 
surprising. Morris fits right into the pattern of this interaction. Thus the 
interchange of the years appears to be striking an even more harmonious 
chord than we previously expected.

But Figure 6.22 reveals new aberrant behavior. There is an unusually 
low value for Velvet at Grand Rapids, about —9 bushels/acre. In other 
words, the 1932 Velvet yield exceeds by a large margin the 1931 Velvet 
yield. We will resist the temptation to interchange the years, but the 
behavior of the two values makes it clear that for our fitting, coming 
next, we will need bisquare.
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6.22 The multiway dot plot displays the 1931 
yields minus the 1932 yields for the altered 
data.

- 1 0 10 20

Differences of Barley Yield (bushels/acre)



334 Multiway Data

Fitting the Altered Data

The fit to the altered yields must account for the interaction between 
year and site. This is done by the function

^vys 12 +  a y  +  (3̂ys  7

where v indexes the variety, y indexes the year, and s indexes the site. 
The 10 variety main effects, ay, sum to zero and the 12 year-site 
interaction effects, jSys, also sum to zero. Again, we will use bisquare to 
do the fitting. Figure 6.23 is an r-f spread plot; the fitted function 
accounts for much of the variation in the data.

0.0 0.5 1.0

6.23 The r-f spread plot 
compares the spreads of the 
residuals and the fitted values 
minus their mean for the bisquare 
fit to the altered data.

f-value
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The bisquare estimates of the year-site effects are shown in 
Figure 6.24. The pattern of the interaction between year and site, spotted 
in the data, is also evident here; as the mean of the two interaction effects 
for each location increases, the difference tends to increase. Figure 6.25 
graphs the estimates of the variety effects. Amidst our interest in the 
Morris anomaly, it should not be forgotten that the original goal of the 
experiment was to investigate the performance of the different barley 
varieties. Trebi and Wisconsin No. 38 are the clear winners. Svansota is 
the loser. The range of the variety main effects, —3.4 bushels/acre to 4.5 
bushels/acre, covers 7.9 bushels/acre. The range of the year-site 
interaction effects is considerably greater and covers 34.5 bushels/acre, 
which is a factor of about 4.5 greater. Thus, while selection of the best 
variety can improve yield, the changes in growing conditions that occur 
with changes in geography and time are clearly far more influential.
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6.24 The dot plot graphs the bisquare 
estimates of the year-site interaction 
effects for the altered data.
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6 .25  The dot plot graphs the bisquare 
estimates of the variety main effects for 
the altered data.
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Figures 6.26 and 6.27 graph the residuals. We have not bothered to 
re-order the panels by the estimated effects, maintaining the 
category-median ordering of the exploratory visualization of the data. 
The reason is that no consistent pattern appears. The relatively simple 
fitted function appears to fit the data satisfactorily.
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6 .26  The multiway dot plot displays the residuals from the bIsquare fit to the altered 
barley data.
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Verdict

A simple function fits the altered data. No discordance has resulted 
from the Morris interchange. The harmony and simplicity that result 
from the alteration force us to entertain the possibility that the data are 
in error. The alternative is that an extraordinary natural phenomenon 
occurred — the yields at Morris happened to be reversed by nature in 
such a way that the negative of the Morris year effect just fits into the 
pattern of the year-site interaction at other sites. On the basis of the 
evidence, the mistake hypothesis would appear to be the more likely.

But there is other evidence, from the agronomists' report, that adds to 
the likelihood of the mistake hypothesis. This clue was discovered by 
Francis J. Anscombe [3]:

There is one puzzle in the paper, namely that the crops are first 
described as having been grown in 1930 and 1931, but thereafter 
in all tables and discussion the years are referred to as 1931 and 
1932. The same discrepancy occurs in Fisher's book. Presumably 
the later dates are correct. Barley in Minnesota is apparently 
always sown in the spring, so that the whole growing process 
occurs in one calendar year.

The incorrect specification of the years in the report evidences a 
carelessness that could easily infect other aspects of the specification of 
years.

What we need now is something akin to a motive. How could three 
agronomists analyzing data from the very state in which they lived 
overlook a blunder of this magnitude? The answer is provided by two 
sentences in their report:

This paper is essentially a methodology study and illustrates the 
application of the analysis of variance to an endeavor to obtain 
answers to the above questions [statistically significant differences 
in the effects of the three categorical variables]. The statistical 
method used, known as the "analysis of variance," was developed 
by R. A. Fisher (1,2).
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In other words, the agronomists were less interested in the 
agricultural conclusions of the paper than in brandishing the new 
method of analysis. Their allegiance was to the method, not to the data, 
providing fertile ground for overlooking a mistake, especially since they 
did not have the benefit of the powerful visualization methods now 
available.

The cumulative evidence, all of it circumstantial, is nevertheless 
convincing. The agronomists appear to be guilty of a missed finding.

6.5 Visualization and Probabilistic Inference

The barley example speaks forcefully to the importance of 
visualization as part of the process of data analysis. Data analysis 
without visualization, even with methods as brilliant as Fisher's, risks 
missing important happenings in data, and risks missing ways of 
simplifying the structure of data, and risks the use of probabilistic 
methods whose assumptions are not supported by the data. The 
agronomists, using rote data analysis, missed an important happening 
in the data — a mistake.

The barley data also teach us that tools matter. Two data analysts of 
exceptional acuity — Francis J. Anscombe [3,4] and Cuthbert Daniel [29] 
— analyzed the data. In the 1960s and 1970s, both contributed 
pioneering methods for diagnosing the performance of fits to data and 
for judging how well data satisfy assumptions of probabilistic inference. 
Both were strong advocates of visualization well before it was 
fashionable, and established a legacy that continues into this book. Both 
had deep intuition for the processes of data analysis. Both missed the 
significance of the Morris reversal in their analyses. Tools matter, and 
many of the powerful visualization tools available to us today were not 
available at the time of their analyses, either as software or even as ideas.

Anscombe treated the years and sites as a single categorical variable 
with 6 X 2 =  12 categories — Waseca-1931, Waseca-1932, Morris-1931, 
Morris-1932, and so forth — giving up on distinguishing years since it 
appeared to him that year and site were less interesting than variety.
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It also reduced the number of factors from three to two, which made the 
data more conducive to visualization given the tools Anscombe had 
available at the time. But this merging made it nearly impossible for the 
Morris anomaly to appear.

Daniel analyzed the barley data using tables but no graphs. He 
discovered the aberrant data for Velvet at Grand Rapids and suspected 
an error; "These facts suggest that the two entries [the 1931 and 1932 
Velvet yields at Grand Rapids] have been interchanged in error." The 
immediate suspicion came from a vast experience in analyzing 
experimental data that had taught him blunders are common. But for 
Morris he missed the information that triggers suspicion. He did see 
that the 1932 year effect exceeded the 1931 year effect. But he failed to 
discover that the negative of the Morris year effect fits neatly into the 
pattern of the year-site interaction at the other sites. So his suspicious 
nature was not aroused, and he wrote simply, "The yearly differences 
were consistent for four locations but were reversed for location 2 
[Morris]." The poverty of tabular presentation did not allow even an 
exceptional data analyst to see the pattern in the reversal that triggers 
suspicion.

Visualization is a necessary part of data analysis. Tools matter.
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Index

abrasion loss (see data, rubber) 
absolute error (see data, slope) 
adjacent value 25-26 
Andrews, D. F. 15 
animal data (see data, animal)
Anscombe, F. J. 5, 36, 296, 338, 339 
anti-aliasing boundary of level region 264-267 
aspect ratio (see banking)
Babinet point (see data, polarization) 
banking 87-91,159-160,162-163, 218-227, 253 
barley data (see data, barley)
Becker, R. A. 15,173,359 
Bentley,]. 320 
Berkson, J. 12,179
bin packing data (see data, bin packing) 
bisquare fitting (see fitting, bisquare) 
bivariate data 8-9, 86-87 
bivariate distribution 146-147, 294-295 
body weight (see data, animal) 
book design and production 359-360 
box plot 25-27
box plot, bin packing data 69
box plot, fly data 138
box plot, fusion-time data 47
box plot, hamster data 293
box plot, polarization data 132-133
box plot, singer data 27, 35
brain weight (see data, animal)
brushing (see direct manipulation, brushing)
carbon age (see data, dating)
carbon dioxide time series (see data, carbon dioxide) 
chain length (see data, food web)
Chambers, J. M. 274, 359 
circle diameter (see data, Playfair)
Cleveland, R. B. 161
Cleveland, W. S. 2,15, 20, 27,49, 88, 89, 94,121,142, 

161,164,173, 218, 274, 299
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color encoding of level plot, ROYGBIV 264
color encoding of level plot, THVL 264-267, 360
compression ratio (see data, ethanol)
conditioning plot (see coplot)
contour plot 238-245, 270
contour plot, galaxy data 238-239
contour plot, Grosse's connection algorithm 242-244
coplot of data 182-186,270, 276-281
coplot of data, environmental data 276-281
coplot of data, ethanol data 189-190
coplot of data, galaxy data 232-233
coplot of data, rubber data 185-187
coplot of data, slope data 221-223
coplot of data, soil data 259-261
coplot of surface 196-199, 270, 285-286
coplot of surface, environmental data 286-289
coplot of surface, ethanol data 196-198
coplot of surface, galaxy data 234-235
coplot of surface, rubber data 202-203, 211
coplot of surface, slope data 226-227
Costigan-Eaves, P. 14
country (see data, livestock)
CP ratio (see data, ganglion)
cropping 201, 282-285
cropping plot, environmental data 284-285
cropping plot, rubber data 201
cut-and-stack plot 162-163
cut-and-stack plot, carbon dioxide data 162-163
cycle plot 164-165
cycle plot, carbon dioxide data 164-165
Daniel, C. 5,36,296,339
data, animal 172-176
data, barley 4-6,12-13, 328-340
data, bin packing 68-81
data, carbon dioxide 159-169
data, dating 110-113,116-117
data, environmental 146-148, 272-292
data, ethanol 10-11,188-190,196-198,214-217,254-255,271
data, fly 136-142,178-180
data, food web 58-67
data, fusion time 42-56, 82-85
data, galaxy 228-239,246-253,256
data, ganglion 86-87,91-92,103-110,177-178
data, hamster 293-297
data, iris 298-301
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data, livestock 303-319
data, melanoma 152-158
data, ozone 148-151
data, Playfair 142-145
data, polarization 8-9,119-133
data, rubber 180-187, 200-203, 206-213, 270-271
data, run time 320-327
data, singer 6-8,16-17, 20-25, 27, 31-32, 34-41
data, slope 218-227
data, soil 257-265, 268-269
data, sunspot 158
data rectangle 88, 201
dating data (see data, dating)
Davis, J. C. 240 
Deming, W. E. 5 
dependence panel 184
depth perception (see visual perception, depth)
Descartes, R. 14
Devlin, S. J. 88
direct manipulation 14-15
direct manipulation, animal data 172-176
direct manipulation, bin packing data 80-81
direct manipulation, brushing 172-176,191-194,270, 294-297
direct manipulation, conditioning 191-194
direct manipulation, enhanced linking 191-194, 294-297
direct manipulation, hamster data 294-297
direct manipulation, labeling 172-176
direct manipulation, motion 256, 267-268, 270, 359
direct manipulation, outlier detection 80-81
direct manipulation, rubber data 191-193
discrete data 31,136-137,139
distance from 45° (see data, slope)
dot plot, livestock data 310
dot plot, Playfair data 142-143
dot plot, singer data 34
Draper, D. 36
easting coordinate (see data, soil) 
east-west coordinate (see data, galaxy) 
ecosystem dimension (see data, food web) 
empty space (see data, bin packing) 
environmental data (see data, environmental) 
equal-count algorithm 131,133-135,184,186 
equivalence ratio (see data, ethanol) 
erase mode of brushing 174-175 
ethanol data (see data, ethanol)
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facet number (see data, fly) 
factor-plane plot 270, 285-286 
Fan,J. 94
Feiner, S. K. 249, 257, 266, 268
Fisher, R. A. 2, 5,12,142,179, 301, 328, 329
Fisherkeller, M. A. 15, 256
fitted values 34-41,102-103
fitting, bisquare 112-119,156,161,171,194-195,204, 282, 309 
fitting, bisquare parametric fit to barley data 334-335 
fitting, bisquare parametric fit to dating data 114-116 
fitting, bisquare parametric fit to livestock data 309-315 
fitting, bisquare parametric fit to rubber data 200-203, 209, 211 
fitting, bisquare parametric fit to slope data 224,226-227 
fitting, conditionally linear 196, 205 
fitting, conditionally quadratic 205, 282 
fitting, least-squares 93,108-109,112-113,194-195, 282, 309 
fitting, least-squares parametric fit to dating data 112-113 
fitting, least-squares parametric fit to fly data 140,178-179 
fitting, least-squares parametric fit to ganglion data 91-92, 

106-107,177-178
fitting, least-squares parametric fit to Playfair data 144-145 
fitting, least-squares parametric fit to run-time data 325-327 
fitting, location 34-41.102-103,112 
fitting, loess 8-9, 87-88, 93-101,114,118-119,154-155,161, 

170-171,195-196,204-205, 282 
fitting, loess fit to carbon dioxide data 161-167 
fitting, loess fit to environmental data 282-289 
fitting, loess fit to melanoma data 152-154,158 
fitting, loess fit to soil data 262-265, 268-269 
fitting, loess robust fit to ethanol data 196-198 
fitting, loess robust fit to galaxy data 234-235,238-239,

246-247, 249-251
fitting, loess robust fit to polarization data 123-126
fitting, mad fit to bin packing data 72-73, 76-77
fitting, mean fit to food-web data 64-65
fitting, mean fit to fusion-time data 54, 84
fitting, mean fit to singer data 34
fitting, median fit to bin packing data 72-73, 76-77
fitting, normal distribution 29-30, 33, 39-41,108-109
fitting, parametric 93,194-195, 308
fitting, repeated loess 155
fitting, robust 72-73,108-109,112,156,161,171,

194-195, 282, 309
fitting, seasonal loess 161,170-171 
fitting, spread 70, 72-73
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fitting, standard deviation fit to fusion-time data 84 
fitting, standard deviation fit to singer data 39-40 
fly data (see data, fly)
Foley, J. D. 249, 257, 266, 268 
food-web data (see data, food web)
Fowlkes, E. B. 15, 80 
Friedman, J. H. 15, 256 
Funkhouser, H. G. 14 
fusion-time data (see data, fusion time) 
galaxy data (see data, galaxy) 
ganglion data (see data, ganglion)
Geomview 359 
given panel 184 
given plot 131
given plot, polarization data 131 
Gnanadesikan, R. 21 
graphical order of panels 20 
Grosse, E. 88, 94, 240, 242 
Hald,A. 12
hamster data (see data, hamster) 
hardness (see data, rubber)
Hastie, T. 94
height (see data, singer)
histogram 6-8
Hoaglin, D. C. 50, 72,112,118, 308 
Hodges, J. S. 36 
homogeniety (see pooling)
Hughes, J. F. 249, 257, 266, 268
hypervariate data 10, 272-273
Imhof, E. 238, 264
improvisation 232, 259, 296
input (see data, run time)
interaction 185,190, 308
interquartile range 25
iris data (see data, iris)
jittering (see visual perception, jittering)
Julesz, B. 42, 82
Kleiner, B. 274
lack of fit 92,98-100
lasting mode of brushing 174-175
least-squares fitting (see fitting, least-squares)
leptokurtosis 70
level of multiway dot plot 303-307
level panel 230
level plot of data 230-231,270
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level plot of data, galaxy data 230-231 
level plot of surface 245-248, 264-267,270 
level plot of surface, galaxy data 246-247 
level plot of surface, soil data 262-265 
level region 230 
Levy, S. 359
linking panels (see visual perception, linking panels) 
livestock data (see data, livestock)
Loader, C. 94
location 25, 29,102-103
loess (see fitting, loess)
log transformation (see transformation, log)
machine (see data, run time)
mad 50
main effect 308-309
Mallows, C. L. 36
Marr, D. 267
Mather, K. 328
McDonald, J. A. 15
McGill, M.E. 15,89,218,360
McGill, R. 89,218,359
Mclllroy, D. 320
McLain, D. H. 240
McRae, J.E. 161
m-d plot 22-23,149
m-d plot, fusion-time data 52-53
m-d plot, iris data 300-301
m-d plot, ozone data 149-151
m-d plot, singer data 22-23
mean 29-30
median 18
median absolute deviation (see mad)
melanoma time series (see data, melanoma)
monotone spread 47, 50,104
Mosteller, R 50, 72,112,118, 308
motion (see visual perception, motion)
multivariate distribution 293-294
multiway data 12-13, 302-303
multiway dot plot 4-6, 302-307
multiway dot plot, barley data 4-6,12-13, 329-333
multiway dot plot, differences 324
multiway dot plot, livestock data 302-307, 311-313
multiway dot plot, livestock fit 314-315
multiway dot plot, run-time data 320-324
multiway dot plot, run-time fit 326-327
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multiway dot plot, superposition 321-323 
Munzner, T. 359
neighborhood weight 95,101,118-119,195, 204-205
normal distribution 29-30
normal q-q plot 28-33,108-109, 205
normal q-q plot, bin packing data 70-71, 73-74, 76, 80-81
normal q-q plot, carbon dioxide data 168
normal q-q plot, dating data 116-117
normal q-q plot, environmental data 146-147, 292
normal q-q plot, ethanol data 214, 216
normal q-q plot, fly data 138-139
normal q-q plot, food-web data 60-65
normal q-q plot, fusion-time data 48-49, 54-57
normal q-q plot, galaxy data 237
normal q-q plot, ganglion data 108-109
normal q-q plot, melanoma data 156
normal q-q plot, polarization data 120-121,123,127
normal q-q plot, rubber data 212-213
normal q-q plot, singer data 31-32,39
normal quantile function 29-31
normal quantile-quantile plot (see normal q-q plot)
number of runs (see data, bin packing)
NV and VV subjects (see data, fusion time)
organ weight (see data, hamster)
orthogonal view 252-255
outside value 25-27
oxides of nitrogen (see data, ethanol)
ozone concentration (see data, environmental)
ozone data (see data, ozone)
panels, coordinate system 181
panels, graphical order 20
panels, order for multiway dot plot 304-306
parametric fitting (see fitting, parametric)
particulate concentration (see data, polarization)
petal length and width (see data, iris)
percent (see data, slope)
perspective view 252-256,267-269
Phillips, M. 359
platykurtosis 70
Playfair data (see data, Playfair)
Playfair, W. 142
polarization data (see data, polarization) 
pooling 36-38,104-105,132-133 
population of cities (see data, Playfair)
PostScript® 360
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power transformation (see transformation, power)
Pregibon, D. 36
probabilistic inference 12-14,33, 82-85,142,177-179,270-271, 

301, 339-340 
q-qplot 21-25
q-q plot, bin packing data 73, 75
q-q plot, food-web data 66
q-q plot, fusion-time data 52-54
q-q plot, singer data 21-22, 24, 36-37
quantile 16-19, 29-31
quantile plot 16-20
quantile plot, food-web data 58-59, 66
quantile plot, fusion-time data 44
quantile plot, singer data 16-17,20, 38
quantile-quantile plot (see q-q plot)
QuarkXPress® 360 
quartile 18
radial position (see data, galaxy) 
random dot stereogram 42-43 
Renderman® 360
repeated loess (see fitting, repeated loess)
residual dependence coplot 205,207-208
residual dependence coplot, ethanol data 214
residual dependence coplot, galaxy data 236
residual dependence coplot, rubber data 207-208,210
residual dependence level plot, livestock data 319
residual dependence multiway dot plot, barley data 336-337
residual dependence multiway dot plot, livestock data 316-318
residual dependence multiway dot plot, run-time data 325
residual dependence scatterplot 103-104, 205
residual dependence scatterplot, dating data 112-113,116
residual dependence scatterplot, ethanol data 214-215
residual dependence scatterplot, fly data 140
residual dependence scatterplot, ganglion data 103-104,107
residual dependence scatterplot, Playfair data 145
residual dependence scatterplot, polarization data 123-126
residual dependence scatterplot, rubber data 206
residual dependence scatterplot, slope data 224-226
residual-fit spread plot (see r-f spread plot)
residuals 35,102-103
resistivity (see data, soil)
resolution (see data, slope)
retinal area (see data, ganglion)
r-f spread plot 40-41,108, 205
r-f spread plot, barley data 334
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r-f spread plot, carbon dioxide data 169
r-f spread plot, environmental data 292
r-f spread plot, ethanol data 214, 216
r-f spread plot, food-web data 66
r-f spread plot, fusion-time data 54-55
r-f spread plot, galaxy data 237
r-f spread plot, ganglion data 108
r-f spread plot, melanoma data 157
r-f spread plot, polarization data 123,127
r-f spread plot, rubber data 212-213
r-f spread plot, run-time data 326
r-f spread plot, singer data 40-41
r-f spread plot, slope data 224-226
robust fitting (see fitting, robust)
robustness weight 118-119,194-195,204
Rock,I. 249,267
rotation (see 3-D plot, motion)
rote data analysis 14, 85,177-179,270-271, 339
rubber data (see data, rubber)
run-time data (see data, run time)
S 359
scatterplot 8-11
scatterplot, bin packing data 77
scatterplot, dating data 111
scatterplot, environmental data 146
scatterplot, ethanol data 10-11
scatterplot, fly data 136-137
scatterplot, galaxy data 228-229
scatterplot, ganglion data 86-88
scatterplot, ozone data 148-151
scatterplot, Playfair data 144
scatterplot, polarization data 8-9,119-122
scatterplot, soil data 258
scatterplot and fit, dating data 112-113,115-116
scatterplot and fit, environmental data 148
scatterplot and fit, fly data 140
scatterplot and fit, ganglion data 88, 91-92,106-107
scatterplot and fit, Playfair data 145
scatterplot and fit, polarization data 123-126
scatterplot matrix 180-181, 274-275
scatterplot matrix, environmental data 272-275
scatterplot matrix, ethanol data 188-189
scatterplot matrix, hamster data 294-295
scatterplot matrix, iris data 298-299
scatterplot matrix, rubber data 180-181
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scatterplot matrix, slope data 220
seasonal loess (see fitting, seasonal loess)
sepal length and width (see data, iris)
shading (see 3-D plot, shading)
shape of distribution 26, 69-71
shift of distribution 21-23
Shyu, W. M. 88, 94
singer data (see data, singer)
site (see data, barley)
skewness 25-26,44-46
slicing 128-134,137-140
slit angle (see data, galaxy)
slope data (see data, slope)
s-lplot 50-51,104-105,205
s-1 plot, bin packing data 78-79
s-1 plot, environmental data 290-291
s-1 plot, ethanol data 214-215,217
s-1 plot, food-web data 60-64
s-1 plot, fusion-time data 50-51
s-1 plot, ganglion data 105,107
s-1 plot, rubber data 212
Snee, R. D. 182
Snyder, W. V. 240
software 359-360
soil data (see data, soil)
solar radiation (see data, environmental)
sort algorithm (see data, run time)
south-north coordinate (see data, galaxy)
spatial-data component 259
spread 25
spread-location plot (see s-1 plot) 
standard deviation 29-30 
stereo view 42-43, 256 
Stuetzle, W. 15
sunspot time series (see data, sunspot) 
surplus of fit 98-100
table look-up (see visual perception, table look-up) 
temperature of air (see data, environmental) 
temperature of incubator (see data, fly) 
tensile strength (see data, rubber)
Terpenning, I. 161,164
texture symbols (see visual perception, texture symbols) 
thorium age (see data, dating)
3-D plot 249-256,267-270 
3-D plot, ethanol data 254-255
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3-D plot, galaxy data 249-253,256
3-D plot, motion 256, 267-268
3-D plot, shading 267-270,360
3-D plot, soil data 268-269
3-D plot, stereo 256
3-D plot, wireframe 249-255
Tibshirani, R. 94
time series component 154,160
time series plot, carbon dioxide data 159-160
time series plot, carbon dioxide fit 162-163,164,166-167
time series plot, carbon dioxide residuals 165-166,168
time series plot, melanoma data 152
time series plot, melanoma fit 152-153,158
time series plot, melanoma residuals 152-153,156
time series plot, sunspot data 158
transformation, log 48-49, 51,56, 78-79,110, 217
transformation, power 56-58, 67,120-121,143
transient mode of brushing 173-174
trimmed sample standard deviation 196
trivariate data 10-11,180-181
Tufte,E. R. 142,264,286
Tukey, J. W. 2,15, 22, 25, 27,36, 50, 72,112,118,182, 256,296, 308 
Tukey mean-difference plot (see m-d plot)
Tukey, R A. 15,182,274 
univariate data 6-7,16-17 
van Dam, A. 249, 257, 266, 268 
variety (see data, barley) 
velocity (see data, galaxy) 
visualization, fitting and graphing 1,41,122 
visualization, philosophy 1, 5,12-14, 82-85,177-179, 270-271, 301, 

339-340
visualization, tools matter 1, 6, 339-340 
visual perception 2
visual perception, banking 87-91,159-160,162-163,184,218-227,253
visual perception, box plot 27
visual perception, circle area and dot plot 142-143
visual perception, color 264-266
visual perception, contour and level order 245
visual perception, depth 249-256, 267-269
visual perception, jittering 121-122
visual perception, linking panels 274-275, 294-296,298-299
visual perception, magnifying effect of residuals 138-139,144-145, 208
visual perception, m-d plot 23
visual perception, motion 256, 267-268
visual perception, multiway dot plot 304-307
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visual perception, table look-up 249, 269 
visual perception, texture symbols 298-299 
visual perception, unfitted scatterplot 8-9,123 
visual perception, visual reference grid 20 
voice part (see data, singer)
Watt, A. 249, 257, 266, 268 
Wilk, M. B. 21 
Wilks, A. R. 359
wind speed (see data, environmental)
wireframe plot (see 3-D plot, wireframe)
Wood,F. 36,296
Yates, F. 182,328
year (see data, barley)
yield (see data, barley)
Zyda, M. J. 240
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Text and Graphics Layout

The layout of the book is unusual. There are two criteria that 
override everything else. First, a block of text discussing a graphical 
display needs to be as close as possible to the display, preferably on the 
same page or on a facing page. Second, it is vital to make content the 
master of design and not vice versa. Some approach text-display layout 
by writing to the design. This typically interferes with the coherence of 
the discussion. Throwing in a thought because space needs to be filled is 
not a good way to communicate. The design here solves the layout 
problem by giving up on filling and balancing pages, a convention 
thought to be inviolate by some. The spacing between paragraphs and 
the ragged-right text is meant to lessen the sense of visual order so that 
the lack of balance and fill is less salient.

Visualization Software Credits

The workhorse software of the book is S, the powerful system 
developed by Richard Becker, John Chambers, and Allan Wilks. The 
original visualizations of data that formed the basis of the writing were 
done in S. The only excursions out of S in the data analysis were to 
Geomview, the well designed software of Stuart Levy, Tamara Munzner, 
and Mark Phillips for direct manipulation 3-D graphics.

The final rendering of the displays for publication, however, used a 
number of systems. Except for the 3-D plots and the color level plot, all 
final rendering was done by proprietary software of MEM Research, 
Inc., written by Robert McGill. The software, which is based on S, 
enables very delicate control of the details of graphs so that graphical 
elements — such as labels, tick marks, and the positioning of the panels 
of multi-panel displays — can be placed precisely where they best serve
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the visualization. The placement was carried out by Marylyn McGill of 
MEM with enormous attention to detail. The final product was 
PostScript® files.

The color level plot and the 3-D plot with shading traveled through a 
maze of software systems. Both started out in S as trivariate data sets. 
The color level plot was drawn by S and then moved to Abobe 
Photoshop for the assignment of CMYK colors to the levels. The 
information about the 3-D plot went to Geomview where rendering 
assignments were made — the lighting, the surface characteristics, and 
the orientation. Then it moved on to Renderman® to improve the
quality of the image, and finally, went to Quark XPress 
labels were added.

® where the

Production

This book was typeset in LJTgX. The main text is set in palatino, figure 
legends in helvetica, italics in times, and mathematical symbols in 
computer modern. Camera-ready copy was produced at AT&T Bell 
Laboratories on a Linotronic 200 P with a resolution of 1270 dpi.

Edwards Brothers, Inc., of Ann Arbor, Michigan, U.S.A., printed the 
book. The paper is 70 pound Sterling Satin, the pages are Smythe sewn, 
and the book is covered with Arrestox®linen.


