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PREFACE

This book is about graphing data in science and technology. It
contains graphical methods and principles that are powerful tools for
showing the structure of data. The material is relevant for data analysis,
when the analyst wants to study data, and for data communication, when
the analyst wants to communicate data to others.

Many of the methods and principles in the book are new; many
others are old, but not widely known. The first few decades of the 20th
century were an exceptionally fertile time for the invention of numerical
statistical procedures. Statistical scientists invented methods and
approaches to data analysis that eventually permeated all of science and
technology. The period since about 1960 has been an exceptionally
fertile time in statistical science for the invention of graphical procedures
for data analysis. An infusion of this graphical methodology into
science and technology will raise the effectiveness of data analysis just
as confidence intervals and hypothesis tests did decades ago.

The prerequisites for understanding the book are minimal. A few
topics require a knowledge of the elementary concepts of probability
and statistical science, but these topics can be skipped without affecting
comprehension of the remainder of the book.

The book was meant to be read from the beginning and to be
enjoyed. However, it is possible to read here and there. Winding its
way through the book is a summary of the material: the figures and
their legends. Reading this summary can help readers direct themselves
to specific items.



2 PREFACE

Except for one small section, there is nothing in this book about
computer graphics. The basic ideas, the methods, and the principles of
the book transcend the medium used to implement them, but the reality
is that the computer looms behind the book content because it is the
medium of the present for many and of the future for almost all. The
graphs of the book that are not copies of other people’s graphs were
computer generated. The software used was the S system for data
analysis and graphics [9] developed by Richard Becker and John
Chambers of AT&T Bell Laboratories, and GRAP [13], a very recent
system developed by Jon Bentley and Brian Kernighan, also of Bell Labs.

Many graphical methods are missing from this book. I included
only those that had promise for application to the most commonly
occurring types of data and that would be relevant for all areas of
science and technology. Many specialized methods, important as they
are, are omitted.

The graphs in this book are communicating information about
fascinating subjects, and I have not hesitated to describe the subjects in
some detail when needed. In many cases some knowledge of the
subject is required to understand the purpose of a graphical analysis or
why a graph is not doing what was intended or what a new graphical
method can show us about data. I hope the reader will share with me
the excitement of experiencing the increased insight that graphical data
display brings us about these subjects.



INTRODUCTION

1.1 THE CONTENTS OF THE BOOK

Chapter 2: Principles of Graph Construction

Figure 1.1 graphs an estimate of average temperature in the
. Northern Hemisphere following a nuclear war involving 60% of the
world’s arsenal of nuclear weapons. The data are from a Science article,
“Nuclear Winter: Global Consequences of Multiple Nuclear
Explosions,” by Turco, Toon, Ackerman, Pollack, and Sagan [127]. The
temperatures are computed from a series of physical models that
describe a script for the nuclear war, for the creation of particles, for
radiation production, and for convection. Figure 1.1 shows that the
predicted temperature drops to about —25°C and then slowly increases
toward the current average ambient temperature in the Northern
Hemisphere, which is shown by the dotted line on the graph.

In Figure 1.1 the data region is enclosed by a rectangle, the tick
marks are outside of the rectangle, the size of the rectangle is set so that
no values of the data are graphed on top of it, and there are tick marks
on all four sides of the graph. Principles of graph construction such as
these are the topic of Chapter 2. The focus is on the basic elements:
tick marks, scales, legends, plotting symbols, reference lines, keys,
labels, and markers. These details of graph construction are critical~
controlling factors whose proper use can greatly increase the
information gotten from a graph.
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Chapter 3: Graphical Methods

Figure 1.2 is a graphical method called a dot chart, which was
invented in 1981 to display data in which each value has a label
associated with it that we want to show on the graph [28]. The large
dots convey the values and the dotted lines enable us to visually
connect each value with its label. The dot chart has several different
forms depending on the nature of the data and the structure of the
labels.

. The data in Figure 1.2 are the number of speakers for 21 of the
world’s languages [138, p. 245]. Only languages spoken by at least 50
million people are shown. The data are graphed on a log base 2 scale,
so values double in moving left to right from one tick mark to the next.
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Figure 1.1 PRINCIPLES OF GRAPH CONSTRUCTION. The graph shows
model predictions of average temperature in the Northern Hemisphere
following a 10,000 megaton nuclear exchange. On the graph, the data
region is enclosed by a rectangle, the tick marks are outside of the
rectangle, the size of the rectangle is set so that no values of the data are
graphed on top of it, and there are tick marks on all four sides of the graph.
Chapter 2 is about principles of graph construction such as these.
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Figure 1.3 is a graph of ozone against wind speed for 111 days in
New York City from May 1 to September 30 of 1973. The graph shows
that ozone tends to decrease as wind speed increases due to the
increased ventilation of air pollution that higher wind speeds bring.
However, because the pattern is embedded in a lot of noise, it is difficult
to see more precise aspects of the pattern, for example, whether there is
a linear or nonlinear decrease. In Figure 1.4 a smooth curve has been
added to the graph of ozone and wind speed. The curve was computed
by a method called robust locally weighted regression, often abbreviated to
lowess, that was invented in 1977 [26]. Lowess provides a graphical
summary that helps our assessment of the dependence; now we can see
that the dependence of ozone on wind speed is nonlinear. One
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Figure 1.2 GRAPHICAL METHODS. The figure shows a graphical method
called a dot chart, which can be used to show data where each value has a
label. The data are the number of speakers for the world’s 21 most spoken
languages. The data are graphed on a log base 2 scale, so values double in
moving left to right from one tick mark to the next.



6 INTRODUCTION

important property of lowess is that it is quite flexible and can do a
good job of following a very wide variety of patterns.

Chapter 3 is about graphical methods such as the dot chart, lowess,
and graphing on a log base 2 scale. Some of the graphs are methods by
virtue of the design of the visual vehicle used to convey the data; the
dot chart is an example. Other methods use the standard Cartesian
graph as the visual vehicle, but are methods by virtue of the
quantitative information that is shown on the graph; graphing a lowess

curve is an example of such a method.
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Figure 1.3 GRAPHICAL METHODS. An air poliutant, ozone, is graphed
against wind speed. From the graph we can see ozone tends to decrease
as wind speed increases, but judging whether the pattern is linear or

nonlinear is difficuit.
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Chapter 4: Graphical Perception

When a graph is constructed, quantitative and categorical
information is encoded, chiefly through position, size, symbols, and
color. When a person looks at a graph, the information is visually
decoded by the person’s visual system. A graphical method is successful
only if the decoding process is effective. No matter how clever and how
technologically impressive the encoding, it is a failure if the decoding

150 = -

100

OZONE (PPB)

50

WIND SPEED MPH)

Figure 1.4 GRAPHICAL METHODS. A method of smoothing data called
lowess was used to compute a curve summarizing the dependence of ozone
on wind speed. With the curve superposed, we can now see that the
dependence of ozone on wind speed is nonlinear. Chapter 3 is about

graphical methods such as lowess, dot charts, and graphing on a log base 2
scale.
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process is a failure. Informed decisions about how to encode data can
be achieved only through an understanding of the visual decoding
process, which is called graphical perception.

Consider the top panel of Figure 1.5 which graphs the values of
imports and exports between England and the East Indies. The data
were first shown in 1786 on a graph of William Playfair [108] that will
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Figure 1.5 GRAPHICAL PERCEPTION. The top panel is a graph of
exports and imports between the East Indies and England. The data are
from a graph published by William Playfair in 1786. It is difficult to visually
decode imports minus exports, which are encoded by the vertical distances
between the curves. Imports minus exports are graphed directly in the
bottom panel, and now we can see that their behavior just after 1760 is quite
different from what we visually decode in the top panel. Chapter 4 deals
with issues of graphical perception such as this.
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be discussed in Chapter 4. To visually decode the import data we can
make judgments of positions along the vertical scale; the same is true of
exports. Another important set of quantitative values on this graph is
the amounts by which imports exceed exports; to decode these values
we must judge the vertical distances between the two curves.

There is a problem with the top panel of Figure 1.5. It is
exceedingly difficult for our visual system to judge vertical distances
between two curves when there is a large change in the slopes; we tend
to judge minimum distances, which lie along perpendiculars to the
tangents of the curves. For example, from the top panel of Figure 1.5
the visual impression is that imports minus exports do not change by
much during the period just after 1760 when both series are rapidly
increasing. This visual impression is quite incorrect. Imports minus
exports are graphed directly in the bottom panel of Figure 1.5 so that
the values can be decoded visually by judgments of position along a

common scale, and now we can see there is a rapid rise and fall just
after 1760.

Chapter 4 is about issues of graphical perception such as this. A
paradigm for graphical perception is presented. (““Paradigm” is used
here in the sense of Thomas S. Kuhn to mean a framework that
organizes information [84].) Elementary graphical-perception tasks that
people perform in visually decoding quantitative information from
graphs are identified. Then, using both the theory of visual perception
and experiments in graphical perception, the tasks are ordered based on
how accurately people perform them. Also, the roles of detection and
distance in graphical perception are investigated. The paradigm has an
important application: data should be encoded on graphs so that the
visual decoding involves tasks as high in the ordering as possible. This
is illustrated by many examples. One result is that new methods are
developed and some of the most-used graphical forms are set aside.

1.2 THE POWER OF GRAPHICAL DATA DISPLAY

The premise of this book is that infusing the new knowledge about
graphical data display into science and technology will lead to a deeper
understanding of the data that arise in scientific studies. Graphs are
exceptionally powerful tools for data analysis. The reason is nicely
encapsulated in a sentence from a 1982 letter written to me by
W. Edwards Deming: “Graphical methods can retain the information in
the data.”” Numerical data analytic procedures — such as means,
standard deviations, correlation coefficients, and t-tests — are essentially
data reduction techniques. Graphical methods complement such
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numerical techniques. Graphical methods tend to show data sets as a
whole, allowing us to summarize the general behavior and to study
detail. This leads to much more thorough data analyses.

One reason why graphical displays can retain the information in
the data is that a large amount of quantitative information can be
displayed and absorbed. This is illustrated in Figure 1.6. Panel 1 (the
top panel) is a graph of monthly average atmospheric carbon dioxide
concentrations measured at the Mauna Loa Observatory in Hawaii [75].
The panel shows two striking phenomena. One is the persistent long-
term rise in CO,; concentrations due to the burning of fossil fuels. This
rise, if continued unabated, will produce the famous greenhouse effect:
global temperatures will rise, the polar ice caps will melt, the coastal
areas of the continents will be put under water, and the climates of
different regions of the earth will change radically [57, 85].

The second phenomenon is the yearly rise and fall of the CO,
concentrations. This is due largely to vegetation in the Northern
Hemisphere. When the foliage grows in the spring, plant tissue absorbs
CO, from the atmosphere, and atmospheric concentrations decline.
When the foliage decreases at the end of the summer, CO, returns to
the atmosphere, and the atmospheric concentrations increase.

We can get substantial insight into the variation in the CO, data by
a combination of numerical and graphical procedures. Panels 2 and 3 in
Figure 1.6 show numerical descriptions of the long-term trend in the
concentrations and of the seasonal oscillations. These trend and
seasonal components were computed by a complicated algorithm called
SABL [29]. Panel 4 of Figure 1.6 is the variation in the CO, that is
neither seasonal nor trend; this remainder is just the CO, data minus the
trend component and minus the seasonal component. On the vertical
scales of the four panels of Figure 1.6 the number of units per cm varies.
The bars on the right help to show the relative scaling by portraying
changes of the same magnitude on the four panels.

Panel 1 of Figure 1.6 allows us to see the overall behavior of the
CO, data; the bottom three panels allow us to see more detailed
behavior. The trend panel shows that the rate of the CO, increase is
increasing since the slope of the trend curve increases through time; the
global CO; increase is worsening.

The seasonal panel shows that the seasonal oscillations are getting
slightly bigger. For a long time it was thought that these seasonal
oscillations were stable and not changing through time, but then around
1980 three groups — one at CSIRO in Australia [106]; a second at
Scripps Institution of Oceanography in California [6]; and a third at
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Figure 1.6  THE POWER OF GRAPHICAL DATA DISPLAY. Panel 1 (the top
panel) shows monthly average 002 concentrations from Mauna Loa, Hawaii.
Panel 2 shows a numerical description of the long-term trend in the
concentrations, caused by the burning of fossil fuels. Panel 3 shows a
numerical description of the seasonal oscillations, which are caused by the
increase and decrease of foliage on the earth during the year. Panel 4
displays the CO2 concentrations minus the trend component and minus the
seasonal oscillations. The bars on the right portray changes of the same
magnitude on the four panels. A graph like this enabled one group to
discover that the amplitudes of the CO, seasonal fluctuations are increasing.
This visual display shows 2112 numbers. No vehicle other than a graph is
capable of conveying so much quantitative information so readily.



12 INTRODUCTION

AT&T Bell Laboratories in New Jersey [30] — independently discovered
the small, but persistent change in the Mauna Loa seasonal oscillations.
No one yet has a good understanding of what is causing the change, but
a number of scientists are working to determine if it is due to a slow
change in the seasonal rise and fall of foliage on the earth or some other
mechanism. This small change could well be the harbinger of an
important change in the way the earth is working.

Panel 4 of Figure 1.6 shows the effect of another global
phenomenon. The values of the remainder show slow oscillations of
several years in length; this is revealed by stretches in which the
remainder is predominantly above or below zero. These changes in the
CO, concentrations are correlated with changes in the Southern
Oscillation index, which is a measurement of the difference in
atmospheric pressure between Easter Island in the South Pacific and
Darwin, Australia [5]. Changes in the index are also associated with
changes in climate. For example, when the index drops sharply, the
trade winds are reduced and the temperature of the equatorial Pacific
increases. This warming, which has important consequences for South

America, often occurs at Christmas time and is called El Nino — the
child [77].

Figure 1.6 conveys a large amount of information about the CO,
concentrations. We have been able to summarize overall behavior and
to see very detailed information. It may come as a surprise just how
much quantitative information is shown; there are 1104 data points on
this graph and each data point specifies a concentration and a time; thus
2208 numbers are displayed. No vehicle other than a graph could
convey so much quantitative information so readily.

1.3 THE CHALLENGE OF GRAPHICAL DATA DISPLAY

Graphical data display is surprisingly difficult. Even the most
simple matters can easily go wrong. This will be illustrated by two
examples where seemingly straightforward graphical tasks ran into
trouble.

Aerosol Concentrations

Figure 1.7 is a graphical method called a percentile comparison graph
which will be discussed in detail in Chapter 3; the figure shows the
graph as it originally appeared in 1974 in a Science report written by
T. E. Graedel, Beat Kleiner, Jack Warner, and me [31]. (As with almost
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all of the reproduced graphs in this book, the size of the graph is the
same as that of the source.) The display compares Sunday and workday
concentrations of aerosols, or particles in the air. First, the graph has a
construction error: the 0.0 label on the horizontal scale should be 0.6.
Unfortunately, the error makes it appear that the left corner is the
origin; many readers probably wondered why the line y = x, which is
drawn on the graph, does not go through the origin. A second problem
is that the scales on the graph are poorly chosen; comparison of the
Sunday and workday values would have been enhanced by making the
horizontal and vertical scales the same. (Scale issues such as these are
discussed in Chapter 2.) Finally, because in 1974 many of the principles
of graphical perception that are discussed in Chapter 4 had not yet been
formulated, it did not occur to us then that it is not easy to compare the
vertical distances of the points from the line y = x; the solution to this
problem is a graphical method called the Tukey sum-difference graph,
which will be discussed in Chapters 3 and 4.

Brain Masses and Body Masses of Animal Species

Figure 1.8 is a graph from Carl Sagan’s intriguing book, The Dragons
of Eden [113]. The graph shows the brain masses and body masses, both
on a log scale, of a collection of animal species. We can see that log
brain mass and log body mass are correlated, but this was not the main
reason for making the graph.

'.
an

Sundays

Aerosols
04rt . )
Elizabeth

(ruds) 1

0.0 1.2 20 28

Workdays

Figure 1.7 THE CHALLENGE OF GRAPHICAL DATA DISPLAY. This graph,
made in 1974, compares Sunday and workday concentrations of aerosols.
The line shown is y = x. The graph has problems. There is a construction
error: the 0.0 label on the horizontal scale is wrong and should be 0.6. The
horizontal and vertical scales should be the same but are not. Furthermore,
it is hard to judge the deviations of the points from the line y = x.

Figure republished from [31]. Copyright 1974 by the AAAS.
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What Sagan wanted to describe was an intelligence scale that has
been investigated extensively by Harry J. Jerison [68]. Sagan writes that
this measure of intelligence is ““the ratio of the mass of the brain to the
total mass of the organism.” Later he adds, referring the reader to the
graph, “of all the organisms shown, the beast with the largest brain
mass for its body weight is a creature called Homo sapiens. Next in such
a ranking are dolphins.”

The first problem is that Sagan has made a mistake in describing the
intelligence measure; it is not the ratio of brain to body mass but rather
is (brain mass)/(body mass)?. If we study a group of related species,
such as all mammals, brain mass tends to increase as a function of body
mass. The general pattern of the data is reasonably well described by
the equation

10,000 T iiwvlﬂ] T itrunl LA
3,000 Dolphin Elephant
Modern man o » Blue whale
1,000 Homo habilis e / Maj{e gorilla
500 Gracile Australopithecus e yrd::;o“m""
Chimpanzee — 7 ® Lion i
£ 100 Hubsoon * W:)lf Brachiosauruse
;;Ec 50 Saurornithoid Ostrich ® Diplodocus e
= ®
2 Alligator e Stegosaurus
2 100 e Crow Ao &
= 5.0 ® Opossum
%  Rat e Coelacanth
= 1.0 @ Vampire bat
®
05F iole ©Coldfish Eel
s
0.1 ® Hummingbird
0.05
0.01 ' .
0.001 0.01 0.1 1 10 100 1,000 10,600 100.000
Body mass in kilograms

Figure 1.8 THE CHALLENGE OF GRAPHICAL DATA DISPLAY. This graph
shows brain and body masses of animal species. The intent was for viewers
to judge an intelligence measure; this requires comparing values of y — 2/3 x

for the graphed points, which is difficuilt to do.

Figure republished from The Dragons of Eden: Speculations on the Evolution of Human
Intelligence, by Carl Sagan, p. 39. Copyright ®© 1977 by Carl Sagan. Reprinted by
permission of Random House, Inc.
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brain mass = ¢ (body mass)®? .

Since the densities of different species do not vary radically, we may
think of the masses as being surrogate measures for volume, and volume
to the 2/3 power behaves like a surface area. Thus the empirical
relationship says that brain mass depends on the surface area of the
body; Stephen Jay Gould conjectures that this is so because body
surfaces serve as end points for so many nerve channels [53, pp. 182-
183]. Now suppose a given species has a greater brain mass than other
species with the same body mass; what this means is that
(brain mass)/(body mass)?® is greater. We might expect that the big-
brained species would be more intelligent since it has an excess of brain
capacity given its body surface. This idea leads to measuring
intelligence by (brain mass)/(body mass)*3 .

Let us now return to Figure 1.8 and consider the graphical problem,
which is a serious one. How do we judge the intelligence measure from
the graph? Suppose two species have the same intelligence measure;
then both have the same value of

(brain mass)
(body mass)?/3

Thus

log(brain mass) = 2/3 log(body mass) + log (7)

for both species. This means that in Figure 1.8, the two equally
intelligent species lie on a line with slope 2/3. Suppose one species has
a greater value of r than another; then the smarter one lies on a line
with slope 2/3 that is to the northwest of the line on which the less
intelligent one lies. In other words, to judge the intelligence measure
from Figure 1.8 we must mentally superpose a set of parallel lines with
slope 2/3. (If we attempt to judge Sagan’s mistaken ratios, we must
superpose lines with slope 1.) This mental-visual task is simply too
hard.

Figure 1.8 can be greatly improved, at least for the purpose of
showing the intelligence measure, by graphing the measure directly on
a log scale, as is done in the dot chart of Figure 1.9. Now we can see
strikingly many things not so apparent from Figure 1.8. Happily,
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modern man is at the top. Dolphins are next; interestingly, they are
ahead of our ancestor homo habilis. We can also see that this intelligence
measure should be regarded as a rough one since it suggests that a
goldfish is smarter than a wolf.

It should be emphasized that for some purposes, Figure 1.8 is a
useful graph. For example, it shows the values of the brain and body
masses and gives us information about their relationship. The point is
that it does a poor job of showing the intelligence measure.
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Figure 1.9 DOT CHART. The intelligence measure, log (brain mass) — 2/3
log (body mass), is shown directly by a dot chart. (Both masses are
expressed in grams for this computation.) The values of the measure can be
judged far more readily than in Figure 1.8. For example, we can see modern
man is at the top, even ahead of our very clever fellow mammals, the
dolphins.
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1.4 SOURCES AND GOALS

Principles of Graph Construction

In 1980 I began a study of graphs in scientific publications. Many
people were working hard to develop graphical methods for data
analysis, and it seemed reasonable to suppose that buried in the
geophysics literature or in the electrical engineering literature or in the
literature of many other subjects were clever ideas for displaying data.
Indeed, some good ideas were uncovered, but they were a few bright
lights standing out in what was mostly a dark picture. In the main,
instead of inventiveness, there were errors, poorly explained graphs,
graphs where the data could not be seen, graphs where different
elements could not be visually disentangled, graphs where the method
of display was poorly selected, and graphs that seemed to beg for more
or different quantitative information to be shown [79].

In one study, I read the articles and reports of the 1980 Volume 207
of Science; there were 249 articles and reports and 67% of them had
graphs. 1 analyzed the 377 graphs, and recorded types, problems,
purposes, unconventional practice, possible methods of improvement,
and a number of other variables [27]. 30% of the graphs in the volume
had at least one of four types of specific problems:

(1) Explanation (15.4%) — Something on the graph was not
explained.

(2) Discrimination (10.1%) — Items on the graph, such as different
symbol types, could not be easily distinguished due to the
design or size of the graph.

(3) Construction (6.4%) — A mistake was made in the construction
of the graph such as tick marks incorrectly spaced,
mislabeling, items omitted, and wrong scales.

(4) Degraded Image (6.4%) — Some aspect of the graph was missing
or partially missing due to poor reproduction.

If the only problems uncovered in these studies were those just
described, the response could be a few simple guidelines that would
eliminate them. But there were deeper problems. First, in many cases
the basic graphical form showing the data was poorly chosen. Second,
and even more fundamentally, the quantitative information shown on
many graphs was poorly chosen. The response to the problems of
construction, both superficial and deep, is the principles of graph
construction of Chapter 2.
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In developing the principles of Chapter 2, I attempted to focus on
the basics, to avoid being arbitrary, and to eliminate any principle that
was just a matter of style or personal preference. It is a continual
challenge in developing principles for graphs not to degenerate into
simply expressing personal preferences. William Strunk Jr., prophet of
generations of writers and co-author of The Elements of Style [120], knew
well the tension between freedom and rules. E. B. White writes [120,
p. xv]: “Style rules of this sort are, of course, somewhat a matter of
individual preference, and even the established rules of grammar are
open to challenge. Professor Strunk, although one of the most
inflexible and choosy of men, was quick to acknowledge the fallacy of
inflexibility and the danger of doctrine.” I have tried hard to avoid
inflexibility and doctrine in Chapter 2.

Graphical Methods

In the 1960s John Tukey, a renowned statistical scientist and
Renaissance man of science, turned his attention to graphical data
analysis [126]. Tukey invented a multitude of graphical methods and
employed graphs heavily in his book Exploratory Data Analysis [125],
demonstrating clearly the important role graphs can play in data
analysis. This, and the computer graphics revolution, spawned a
graphics movement in the field of statistical science, and interest in
developing new graphical methods grew rapidly in the 1970s and 1980s
[21, 123].

Chapter 3 of this book contains graphical methods that arose in this
recent research movement in statistical science, methods from other
areas of science and technology, and new methods. The methods
selected for discussion in the chapter are useful for all of science and
technology and have wide scope in terms of the types of data to which
they can be applied. Many specialized methods, useful only in specific
fields or only for specialized types of data, are not included. For
example, there is a vast methodology for making statistical maps [14,
112] — showing how data vary as a function of geographical location —
that is not treated here. Missing also are a number of graphical
methods that serve as diagnostic tools for specialized numerical
statistical methods [21].

Graphical Perception

In 1981 Robert McGill and I began a series of experiments to probe
basic, elementary aspects of graphical perception. The experimentation,
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together with reasoning from the theory of visual perception, led to the
formulation of initial paradigms in a paper in the Journal of the American
Statistical Association [33] and in an article in Science [35]. The material in
Chapter 4 draws heavily on these two sources.

Despite the importance of the visual decoding process in graphical
data display, graphical perception received very little formal, scientific
study in the past. Many have studied the process informally, but
informal study is not good enough. Without controlled experiments
and measurements there can be no science. Informal study, however,
has its value. Intuition flowing from experience is a powerful tool in all
areas of science, including graphical perception. We can profitably
study graphical perception just by making a graph and looking at it,
provided the look is genuinely critical. Certain aspects of the paradigm
in Chapter 4 have been derived by researchers in graphical methods —
for example, John Tukey [125], Edward R. Tufte [123], Jacques
Bertin [14], and Karl G. Karsten [74] — using just such a process of
making a graph and studying it.

But intuition and one-subject experiments where researchers study
their own graphs can take us just so far. Different researchers will be
led to different opinions, some issues are too subtle to submit to just
looking, and some phenomena are different from what they seem once
you have measured them. To understand graphical perception we need
objective numerical measures of people’s accuracy in performing
graphical-perception tasks, just as measurements are needed in other
areas of science. Such a process is behind the paradigm of Chapter 4.

Much of the small amount of experimentation in graphical
perception that has been carried out in the past [82, 83] has not led very
far because the focus has tended to be the direct comparison of two
different types of graphs rather than the probing of basic, elementary
aspects. When we visually decode data from a graph, a very complex set
of perceptual and cognitive tasks are carried out. Thus, if the basic
experimental units are different types of graphs, there is too much
complexity and variation to make much progress. In the paradigm of
Chapter 4, the complex tasks are broken up into simpler, elementary
tasks that then become the focus of the experimentation and theory.
Thus the paradigm is an attempt to identify the elementary particles of
graphical perception and to describe their interactions and properties.

The more general topic of visual perception has been studied, of
course, in great depth. Theories of vision, such as the textons of Bela
Julesz [72] and the computational theory of David Marr [94], and the
results of experiments in visual perception [8] are important for
understanding graphical perception, but the general studies are by no
means sufficient for a good understanding of the more specialized topic.
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In the past, lack of attention to issues of graphical perception has
resulted in the use of data displays that convey quantitative information
poorly and in graphical inventions that do not work. Here is one
example. In the graphics movement that began in the 1960s in
statistical science, much energy was devoted to inventing methods for
displaying measurements of three or more variables. An example of
such data is daily averages of seven variables — temperature, humidity,
barometric pressure, rainfall, solar radiation, wind speed, and wind
direction — at one site for 100 days; the data consist of 100 points in a
seven-dimensional space. There were many inventions: Chernoff
faces [24], Anderson metroglyphs [3], Cleveland-Kleiner weathervane
plots [18], Diaconis-Friedman M and N plots[45], Tukey-Tukey
dodecahedral views [124], Kleiner-Hartigan trees [78], Andrews
curves [4], Tufte rug plots [123, pp. 135-136], and the scatterplot matrix,
which is described in Section 6 of Chapter 3. All of the methods in the
list, with the exception of the scatterplot matrix, failed in the sense that
they almost never showed anyone anything about data that could not be
seen more easily by other means. Peter Huber writes [61, p. 674): “The
mere multiplicity of the attempts to deal with more than three
continuous dimensions by encoding additional variables into glyphs,
Chernoff faces, stars, Kleiner-Hartigan trees, and 'so on indicates that
each of them has met only with rather limited success.”

Why did so many methods in the domain of multidimensional data
display fail? The answer is that not enough attention was paid to
graphical perception. Inventors generated ideas for encoding
multidimensional data and did not worry about whether it was easy or
hard to visually decode the quantitative information using the methods.
Consider Chernoff faces. The values of one point in the space (e.g., the
seven values of the meteorological variables mentioned above for one
day) are shown by one face. Each variable is encoded by an aspect of
the faces (e.g., nose length encodes temperature, the curvature of the
mouth encodes humidity, and so forth). The encoding is enormously
clever, but the method is of very limited usefulness. Visually decoding
the quantitative information is just too difficult.

Chapter 4 is radical insofar as it calls upon us to approach graphs
with a new concept: In using graphs and in inventing new graphical
methods we should make explicit, conscious use of principles of
graphical perception to guide what is used and what is invented.
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PRINCIPLES OF
GRAPH CONSTRUCTION

This chapter is about the basic elements of graph construction —
scales, legends, plotting symbols, reference lines, keys, labels, panels,
markers, and tick marks. Principles of graph construction are given that
can enhance the ability of a graph to show the structure of the data.
The principles are relevant both for data analysis, when the analyst
wants to study the data, and for data communication, when the analyst
wants to present quantitative information to others.

In this chapter there are many examples of graphs from science and
technology that have problems. Such problems are pervasive because
graphing data is a complex task. (See Sections 3 and 4 of Chapter 1.)
The principles are applied to the examples to show how the problems
can be solved.

Section 2.1 defines terms. Section 2.2 gives principles that make the
elements of a graph visually clear, and Section 2.3 gives principles that
contribute to a clear understanding of what is graphed. Section 2.4 is
about scales, and Section 2.5 discusses principles that are general
strategies for graphing data. Finally, Section 2.6 lists the principles of
graph construction given in the previous sections.

2.1 TERMINOLOGY

Terminology for graphical displays is unfortunately not fully
developed and usage is not consistent. Thus, in some cases we will
have to invent a few terms and in some other cases we will pick one of

several possible terms now in use. Terminology is defined in Figures
N1 aeed N9 c-Lhiskh Alcaalasry tlha cammna Aatas in bvarn Aiffarant wraxrer tha
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words in boldface convey the terminology. For the most part, the terms
are self-explanatory, but a few comments are in order.

In Figures 2.1 and 2.2 the data are the percent changes from 1950 in
death rates in the United States due to cardiovascular disease and due to
all other diseases [87]. In Figure 2.1 the two data sets are superposed and
in Figure 2.2 they are juxtaposed. The marker aiong the horizontal scale
on each graph shows the time of the first specialized cardiovascular care
unit in a hospital in the United States. In Figure 2.1 the data labels are
part of the key, but in Figure 2.2 they are in the data regions.
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Figure 19, AGE-ADJUSTED DEATH RATE. The data are the percent
changes from 1950 in death rate in the United States due to cardiovascular
disease and due to other diseases.

LEGEND

Figure 2.1 TERMINOLOGY. This figure and the next define terminology.
The two sets of data — death rates due to cardiovascular disease and

death rates due to all other diseases — are superposed. The data labels
are in the key on this graph.
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Scale has two meanings in graphical data display. One is the ruler
aloong which we graph the data; this is the meaning indicated in
Figure 2.1. But scale is also used by some to mean the number of data
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Figure 19. AGE-ADJUSTED DEATH RATE. The data are the percent
changes from 1950 in death rate in the United States due to cardiovascular
disease and due to other diseases.

Figure 2.2 TERMINOLOGY. This figure also defines the meaning of terms.

The two sets of data are juxtaposed by using two panels. Each panel on
this graph has a data label.
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units per cm. This meaning will not be used in this book. Instead, the
phrase, number of units per cm, will be used. Not every concept needs a
single-word definition.

2.2 CLEAR VISION

Clear vision is a vital aspect of graphs. The viewer must be able to
visually disentangle the many different items that appear on a graph.
In this section elementary principles of graph construction are given to
help achieve clear vision.

Make the data stand out. Avoid superfiuity.

Make the data stand out and avoid superfluity are two broad strategies
that serve as an overall guide to the specific principles that follow in
this section.

The data — the quantitative and qualitative information in the data
region — are the reason for the existence of the graph. The data should
stand out. It is too easy to forget this. One of the major problems
uncovered in the studies of graphs in scientific publications described in
Section 4 of Chapter 1 was the data not standing out. There are many
ways to obscure the data, such as allowing other elements of the graph
to interfere with the data or not making the graphical elements
encoding the data visually prominent. Sometimes different values of
the data can obscure each other.

We should eliminate superfluity in graphs. Unnecessary parts of a
graph add to the clutter and increase the difficulty of making the
necessary elements — the data — stand out. Edward R. Tufte puts it
aptly; he calls superfluous elements on a graph chartjunk [123].

Let us look at one example of implementing these two general
principles where the result is increased understanding of the data.
Figure 2.3 shows data on a !Kung woman and her baby [80]. The !Kung
are an African tribe of hunter-gatherers from Botswana and Namibia
whose present culture provides a glimpse into the history of man. One
interesting feature of their procreation is that there is a long interval
between births; a mother will typically go three years after the birth of
a child before having the next one. This was puzzling since abortion or
other forms of birth control are not used.
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In 1980 two Harvard anthropologists, Melvin Konner and
Carol Worthman, put forward a likely solution to the puzzle [80]. They
argued that it was the very frequent nursing of infants by their mothers
during the first one to two years of life that produces the long inter-
birth interval. The nursing results in the secretion of the hormone
prolactin into the mother’s blood, which in turn reduces the functions
of the gonads. This acts as a birth control mechanism.

Konner and Worthman used the graph in Figure 2.3 to show the
frequency of nursing and other activities of one !Kung woman and her
baby. The open bars and tall vertical lines are nursing times; the closedq
bars show times when the baby is sleeping; F means fretting; and
slashed lines represent the time held by the mother with arrows for
picking up and setting down. A major problem with Figure 2.3 is that
the data do not stand out. It is hard to get a visual summary of the
extent and variability of each activity and it is difficult to remember
which symbol goes with which activity, so that constant referring to the
legend is necessary. A minor problem with Figure 2.3 is that the arrows
for picking up and setting down are superfluous.

0 10 20 30 40 50 60

0800

1200

Figure 2.3 SUPERFLUITY AND STANDING OUT. The graph shows the
activities of a IKung woman and her baby. The open bars and tall vertica|
lines are nursing times; the closed bars show times when the baby s
sleeping; F means fretting; and slashed lines are intervals when the baby is
held by the mother, with arrows for picking up and setting down. The data
do not stand out on this graph.

Figure republished from [80]. Copyright 1980 by the AAAS.
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Figure 2.4 is an improved graph of Figure 2.3. The data stand out
and there are no superfluous elements. The constant referring to the
legend is not necessary and we get a much better idea of the extent of
the activities and their interactions. Figure 2.4 shows clearly the
frequency and duration of the nursing bouts for this two-week-old boy.
To Western eyes the frequency of the bouts is astonishing. It turns out
that this high frequency is needed to make the prolactin birth control
mechanism work, since the hormone has a half-life in the blood stream
of only 10 to 30 minutes. The figure also shows clearly that nursing and

holding infrequently occur together; presumably feeding is done in
some prone position.

The specific principles that follow in this section will allow us to
achieve the two general goals of making the data stand out and
avoiding superfluity.

Use visually prominent graphical elements to show the data.

On the graph in Figure 2.5 [25] the data do not stand out. The
plotting symbols are not visually prominent, and in the bottom panel
we cannot tell how many data values make up the black blob in the
lower left corner.

A good way to help the data to stand out is to show them with a
graphical element that is visually prominent. This is illustrated in
Figure 2.6; the data from Figure 2.5 are regraphed. The symbols
showing the data stand out, and now the data can be seen. The symbols
that look like the spokes of a wheel represent multiple points; each
spoke is one point. For example, the spoked symbol in the Lorne Lavas
panel represents four data values.

There are other problems with Figure 2.5 that have been corrected
in Figure 2.6. First, in the top panel of Figure 2.5, two tick mark labels,
0.725 and 0.735, have been interchanged. Also, it is hard to compare
data on the three graphs in Figure 2.5 because the scales are different;
scales issues such as these will be discussed in Section 2.4.
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Figure 2.5
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CENTRAL STARAV L

I 1 L 1 T
0 5 10 15 20 25

B8 ¢ H0gr

MEALL OHDAR

; 1 1 ¥ T
0 5 10 15 20 25 -

] ] T T T

0 5 1D 15 20 25

87Rb / BF g

Figure 2.6 VISUAL PROMINENCE. Use visually prominent graphical
elements to show the data. Now the data from Figure 2.5 can be seen. The
symbols that look like the spokes of a wheel represent multiple points; each
spoke is one observation.
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When plotting symbols are connected by lines, the symbols should
be prominent enough to prevent being obscured by the lines. In
Figure 2.7 the data and their standard errors are inconspicuous, in part
because of the connecting lines [17]. In Figure 2.8 visually prominent
filled circles show the data. These large, bold plotting symbols make
the data amply visible and ensure that the connecting of one datum to
the next by a straight line does not obscure the data. The connection is

useful since it helps us to track visually the movement of the values
through time.

The data in Figure 2.8 are from observations of nesting sites of bald
eagles in northwestern Ontario [56]. The graph shows good news:
After the ban on the use of DDT, the average number of young per site
began increasing. |
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Figure 2.7 VISUAL PROMINENCE. The data on this graph do not stand
out because the graphical elements showing the observations and their

standard errors are not prominent enough to prevent being obscured by the
connecting lines.

Figure republished from [17]. Copyright 1983 by the AAAS.
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Use a pair of scale lines for each variable. Make the data region the
interior of the rectangle formed by the scale lines. Put tick marks
outside of the data region.

Data are frequently obscured by graphing them on top of scale
lines. One example is Figure 2.9 where points are graphed on top of
the vertical scale line. The graph and data of Figure 2.9 are from an
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Figure 2.8 VISUAL PROMINENCE. The plotting symbols on this graph are
prominent enough to prevent being obscured by the connecting lines.
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interesting experiment run by four Harvard anatomists — Charles
Lyman, Regina O’Brien, G. Cliett Greene, and Elaine Papafrangos [89].
In the experiment, the researchers observed the lifetimes of 144 Turkish
hamsters (Mesocricetus brandti) and the percentages of their lifetimes that
the hamsters spent hibernating. The goal of the experiment was to
determine whether there is an association between the amount of
hibernation and the length of life; the hypothesis is that increased
hibernation causes increased life. Hamsters were chosen for the
experiment since they can be raised in the laboratory and since they
hibernate for long periods when exposed to the cold. Certain species of
bats also hibernate for long periods in the cold but, as the experimenters

put it, “their long life-span challenges the middle-aged investigator to
see the end of the experiment.”

The graph in Figure 2.9 suggests that hibernation and lifetime are
associated; while this does not prove causality it does support the
hypothesis. The graph also shows one deviant hamster that spent a
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Figure 2.9 SCALE LINES AND THE DATA REGION. The data for zero
hibernation are obscured by the left vertical scale line.
Figure republished from [89]. Copyright 1981 by the AAAS.



CLEAR VISION 33

large fraction of its life hibernating but nevertheless died at a young
age. Hibernation cannot save a hamster from all of the perils of life.

One unfortunate aspect of Figure 2.9 is that the data for hamsters
with zero hibernation are graphed on top of the vertical scale line. This
obscures the data to the point where it is hard to perceive just how
many points there are. No data should be so obscured. One way to
avoid this is shown in Figure 2.10. The data region — the place where
the symbols representing the data are allowed to be — is in the interior
of the rectangle formed by the scale lines. Now the values with zero
hibernation can be seen clearly.
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Figure 2.10 SCALE LINES AND THE DATA REGION. Use a pair of scale
lines for each variable. Make the data region the interior of the rectangle
formed by the scale lines. Put tick marks outside of the data region. This
format prevents data from being obscured. Using two scale lines for each of
the two variables on this graph, instead of the more usual one, allows easier
judgment of the values of data on the top or on the right of the graph.
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Ticks are put outside the data region in Figure 2.10 because ticks
can obscure data, as is illustrated in the upper panels of Figure 2.11 [64].

Four scale lines are used in Figure 2.10 rather than the two of
Figure 2.9. Judging the value of a point by judging its position along a
scale line is easier as the distance of the point from the scale line
decreases. The consequence of one vertical scale line on the left is that
the vertical scale values of data to the right are harder to assess than
those of data to the left because the rightmost values are further from
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Figure 2.11
obscure data.
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SCALE LINES AND THE DATA REGION. Tick marks can

Figure republished from [64]. Copyright 1980 by the AAAS.
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the line; similarly, when there is just one horizontal scale line, the
horizontal scale values of data at the top are harder to assess than those
at the bottom. By using four scale lines, the graph treats the data in a
more nearly equitable fashion.

The four scale lines also provide a clearly defined region where our
eyes can search for data. With just two, data can be camouflaged by
virtue of where they lie. This is true for the data in Figure 2.12 [139]; it
is easy to overlook the three points hidden in the upper left corner. In
Figure 2.13 the graph has four scale lines and the three points are more

prominent.

Making the data region the entire interior of the rectangle formed
by the scale lines means the plotting symbol for a data point could just
touch a scale line. But just touching has the potential to camouflage
points. So it is probably best to interpret “interior” as a rectangle
slightly inside the scale line rectangle.

Do not clutter the data region.

Another way to obscure data is to graph too much. It is always
tempting to show everything that comes to mind on a single graph, but
graphing too much can result in less being seen and understood. This
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Figure 2.12 SCALE LINES AND THE DATA REGION. The three points in

the upper left are camouflaged.
Figure republished from [139]. Copyright 1980 by the AAAS.
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is illustrated in Figure 2.14 [122]. The data are particle counts from an
exciting scientific exploration: the passage of the Pioneer Il spacecraft
by Saturn. Inside the data region we have reference lines, a label,
arrows, a key, symbols showing the data, tick marks, error bars, and
smooth curves. The graph is cluttered, with the result that it is hard to
visually disentangle what is graphed. It is unfortunate to have any of
these valuable data obscured.
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Figure 2.13 SCALE LINES AND THE DATA REGION. The four scale lines
provide a clearly defined region for our eyes to look for data. Now, none of
the data from Figure 2.12 are in danger of being overlooked.
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The data are shown again in Figure 2.15. The clutter in the data
region has been alleviated, in part, by removing the error bars. It
would be prudent to convey accuracy for these data numerically rather
than graphically; on a log scale the error bars decrease radically and
disappear from sight as the counts increase. (It is possible that accuracy
is nearly constant on a scale of (counts/sec)” since count data of this
sort tend to have a Poisson distribution. Thus accuracy might be
conveyed more readily on the square root scale rather than on the log
scale.) Other removals have taken place. The plethora of tick marks on
the vertical scale has been reduced, as well as the number of tick mark
labels on the top horizontal scale line. Also, the top horizontal scale
line is labeled in Figure 2.15, but not in Figure 2.14.
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Figure 2.14 CLUTTER. This graph is cluttered. The result is that different
graphical elements in the data region obscure one another.
Figure republished from [122]. Copyright 1980 by the AAAS.
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The clutter in the data region also has been reduced by some
alterations. The key is outside the data region, the label for rings is
outside the data region, the arrows showing values below 0.01
counts/sec in Figure 2.14 have been replaced by a separate panel, and
the wandering curves have been replaced by straight lines connecting
successive data points. These changes have reduced interference
between different elements of the graph and thus have reduced the
clutter.

Figure 2.16 [81] is also cluttered; the error bars interfere with one
another so much that it is hard to see the values they portray. One
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Figure 2.15 CLUTTER. Do not clutter the data region. The clutter of
Figure 2.14 has been removed by alteration and excision. For example, the
number of tick marks has been reduced.
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solution is shown in Figure 2.17. In the top three panels the three data
sets are juxtaposed and in the bottom panel they are superposed, but
without the error bars. The juxtaposition allows us to see clearly each
set of data and its error bars; the superposition allows us to compare the
three sets of data more effectively.

Do not overdo the number of tick marks.

A large number of tick marks is usually superfluous. From 3 to 10
tick marks are generally sufficient; this is just enough to give a broad
sense of the measurement scale. Copious tick marks date back to a time
when numerical values were communicated on graphs more than they
are today. In our high-tech age we have photocopies of tables,
computer tapes, disk packs, and telecommunications networks to
transfer data. Every aspect of a graph should serve an important
purpose. Any superfluous aspects, such as unneeded tick marks, should
be eliminated to decrease visual clutter and thus increase the visual
prominence of the most important element — the data.

Figure 2.18 [113] has too many tick marks. The filled circles show
the number of bits of information (horizontal scale) in the DNA of
various species when they emerged and the time of their emergence
(vertical scale). The open circles show, in the same way, the bits of
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Figure 2.16 CLUTTER. This graph is also cluttered.
Figure republished from [81]. Copyright 1980 by the AAAS.
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Figure 2.17

CHOOSING BLUE OVER RED OO

PRINCIPLES OF GRAPH CONSTRUCTION
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CLUTTER. The clutter of Figure 2.16 has been eliminated by

graphing the data on juxtaposed panels. The bottom panel is included so
that the values of the three data sets can be more effectively compared.
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information in the brains of various species. On a first look at this
graph, the bottom scale line makes it easy to think there are two
horizontal scales. This is not so. The labels of the form 3 x 10* are
showing, approximately, the values of the midpoints of the numbers of
the form 10¥. For example, midway between 10”7 and 10® on a log scale
is 107% = 10%5 107 = 3 x 10’. The large number of tick marks and labels

needlessly clutters the graph, and the approximation can easily lead to
confusion.

In Figure 2.19 the brain and DNA data are graphed again with
fewer tick marks and labels; the horizontal and vertical scales have been
interchanged so that time is now on the horizontal scale with earlier
times on the left and later times on the right.
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Figure 2.18 TICK MARKS. There are too many tick marks and tick mark
labels on this graph. Using tick mark labels of the form 3x 10X as an
approximation of 10%¥*9-5 js confusing.

Figure republished from The Dragons of Eden: Speculations on the Evolution of Human

Intelligence, by Carl Sagan, p. 26. Copyright © 1977 by Carl Sagan. Reprinted by
permission of Random House, Inc.
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Use a reference line when there is an important value that must be

seen across the entire graph, but do not let the line interfere with the
data.

Reference lines are used in Figure 2.20. The data are the weights of
the Hershey Bar, the famous American candy bar. (These data, and

O BRAIN ® [NA
L | | | | | |
T Humans —
2
1[]1 1 |
Mammals
f'\
l—LE 10
— 10 == Raptiles @ -
(a4 Mammals Humans
g
Reptiles
Z = 3 3 -
Q Amphibians
: Protozoa Coelentarataes
gt 8
E 107 — Unicallular algae —
(.
L
z ] e
B
10 ] Bacteria —
O Amphibians
Virusas
4“ ' f——
ID 1 - l T ! T ! 1
9 8 7
10 10 10

(Toward the Present —=)

TIME OF ORIGIN (YEARS AGDD

Figure 2.19 TICK MARKS. Do not overdo the number of tick marks. The
vertical axis of this graph, previously the horizontal axis of Figure 2.18, has
a sensible number of tick marks and labels.
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Stephen Jay Gould’s analysis of them [54], are discussed 1in detai.l in
Section 4 of Chapter 3.) The vertical reference lines, which show times
of price increases, cross the entire graph and let us see what happened
to weight exactly at the times of the price increases. Except for the
change from 30¢ to 35¢, all price increases were accompanied by a size
increase.

In Figure 2.21 only a marker is used to show the time of the first
cardiovascular care unit since the high precision of a reference line is
not needed. We can see the position clearly enough to perc:eiw? that
somewhere after that point, the death rate for cardiovascular disease
decreased more rapidly; a reference line is avoided since we want, as
always, to reduce the visual burden in the data region.
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Figure 2.20 REFERENCE LINES. Use a reference line when there is an
important value that must be seen across the entire graph, but do not let the
line interfere with the data. The weight of the Hershey Bar is graphed
against time. The vertical reference lines divide time up into price epochs;
prices are shown just below the top vertical scale. The precision of the
reference lines is needed to show us exactly where the price increases
occur.
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Do not allow data labels in the data region to interfere with the
quantitative data or to clutter the graph.

Figure 2.22 shows the relationship between the average number of
bad teeth in 11 and 12 year old children and the per capita sugar
consumption per year for 18 countries and the state of Hawaii [101].
When it is important to convey the names for the individual values of a
data set, data labels in the data region are generally unavoidable. In so
doing we should attempt to reduce the visual prominence of the labels
so that they interfere as little as possible with our ability to assess the
overall pattern of the quantitative data. This has been done in
Figure 2.22 through the use of several methods: the plotting symbol is
visually very different from the letters of the labels, the letters of the
labels are small, and when possible a label has been placed outside of
the region formed by the point cloud rather than inside.

FIRST
® CARDIODVASCULAR CARDIDVASCULAR
o OTHER CARE UNIT

| 1 l ‘ i !

PERCENT CHANGE IN DEATH RATE FROM 1850

1950 1860 1970 13980
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Figure 2.21 REFERENCE LINES. Only a marker is used to show the time
of the first cardiovascular care unit since the high precision of a reference
line is not needed. |
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In Figure 2.23 [113] the plotting symbols are not sufﬁciel}tly visuall’y
distinguishable from the labels. The result is that the point cloud is

camouflaged by the labels.

Figures 2.22 and 2.23 show one type of data label; each valu.e in the
data set has its own name. Sometimes the quantitative information on a
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Figure 2.22

DATA LABELS. Do not allow data labels in the data region to

interfere with the quantitative data or to clutter the graph. The data labels on
this graph are needed to convey the names. The visual impact of the labels
has been lessened so that they interfere as little as possible with our
assessment of the overall pattern of the quantitative data.



46 PRINCIPLES OF GRAPH CONSTRUCTION

graph consists of different data sets where each data set has a name that
we want to convey. This is illustrated in Figure 2.24, which shows life
expectancies for four groups of people: black females, black males,
white females and white males [129, p. 71]. Four data labels in the data
region convey the data set names without obscuring the data or
cluttering the data region.

Sometimes a key with the data labels is needed to identify data sets,
either because data labels in the data region would add too much clutter
or because the values for each data set cannot be identified without
using different plotting symbols for the different data sets. A key is
used in Figure 2.25 for both reasons. On this graph the data labels are
long and the data region is already host to many things. Furthermore, a
key is needed because there is no other convenient way to allow
identification of the values below -2 log10 (counts/sec), which are
shown at the bottom of the graph.
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DATA LABELS.

The data

labeis

interfere with our

assessment of the overall pattern of the quantitative data.
Figure republished from The Dragons of Eden: Speculations on the Evolution of Human

Intelligence, by Carl Sagan, p. 39. Copyright © 1977 by Carl Sagan.

permission of Random House, Inc.

Reprinted by
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Avoid putting notes, keys, and markers in the data region. Put keys

and markers just outside the data region and put notes in the legend
or in the text.

We should approach the data region with a strong spirit of
minimalism and try to keep as much out as possible. Not doing so can
jeopardize our relentless pursuit of making the data stand out. There is

no reason why markers, keys, and notes need to appear in the data
region.
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Figure 2.24 DATA LABELS. Groups of data values often can be identified
by data labels in the data region. The labels are abbreviations in which
B = black, W = white, M = male, and F = female.
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Keys and markers can go outside the data region and notes can go
in the text or the legend. This has not been done in Figure 2.26 [133]
and the result is needless clutter and a confusing graph. The main
graph (not including the inset) shows release rates of xenon-133 from
the Three Mile Island nuclear reactor accident in 1979 and
concentrations of xenon in the air of Albany, N.Y. during the same time
period. The purpose of the graph is to show that in Albany, about
500 km from Three Mile Island and downwind during the period of the
accident, xenon concentrations rose after the accident.
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Figure 2.25 DATA LABELS. Groups of data values also can be identified
by a key. One disadvantage, compared with data labels in the data region,
is that identification is slightly harder because we must look back and forth
between the key and the quantitative data. One advantage over data labels
in the data region, an important one in this example, is that clutter in the
data region is reduced. Furthermore, a key is needed in this example
because there is no other convenient way to allow identification of the values
below —2 log s (counts/sec), which are shown at the bottom of the graph.
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Figure 2.26 has a number of problems arising from some unusual
and unexplained conventions and from putting too much in the data
region. The writing in the data region is really two scale labels,
complete with units. The top label describes two types of Albany air
concentration measurements. The bottom label describes the Three Mile
Island release rates. Part of the difficulty in comprehending this graph
is that three Albany air samples are below the label for release rates,
which gives an initial incorrect impression that they are air samples
measuring the release rates. The ambient air measurements are shown
in a somewhat unconventional way. The two solid rectangles are
averages over two intervals; the width shows the averaging interval and
a good guess is that the height, which is not explained, shows an
average *2 sample standard deviations. The triangles with “LT” above
them indicate other ambient air measurements which are “less than” the
values indicated. The inset, which impinges on the data region, has
very little additional information; it shows two averages and repeats 5 of

104 s b 104
- Xe in Albany, N.Y. air (pCi m 7) E
= § /\ Air samples
B B Ambient air b
I g 103 = Average for
- = air samples
- LT bty g -
. - -
e e i B
2 b= 2 |
107 £ Estimated release rates of 133xe (Ci sec”l) 109 F
'_ e —
L A i
L /// @
10! = / 10! b : ‘ e
= A\ 30 1 3
u / March April
i i | i £ 4 | ) = L 1 1 L
24 28 1 5 9
March April

Fig. 1. Xenon-133 activity (picocuries per cubic meter of air) in Albany, New Yotk, for the end
of March and early April 1979. The lower trace shows the time-averaged estimatgs of releases
(cunes per second) from the Three Mile Island reactor (2). The inset shows detafi&d values for
air samples (gas counting) and concurrent average values for ambient air (Ge dl@ﬂ&} Abbrevi-

ation: LT, less than.

Figure 2.26 NOTES, KEYS, AND MARKERS. Everything — m uﬂlng the
scale labels, a key, ‘LT’ (meaning less than), and an inset —
thrown into the data region of this graph. The result is confusing
Figure republished from [133]. Copyright 1980 by the AAAS.
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the air sample measurements. There is an inaccuracy somewhere; for
the three largest air sample values, the times shown on the inset do not
agree with the times shown on the main graph. The two averages in
the inset do not convey any important information.

These data deserve two panels and deserve less in the data region to
make completely clear what has been graphed. This has been done in
Figure 2.27; the writing, key, and LT’s have been removed from the data
region and the inset has been deleted. The bottom panel shows the
release rates of xenon from Three Mile Island; the horizontal line
segments show averages over various time intervals. The top panel
shows the Albany measurements; the horizontal line segments show
intervals over which some measurements were averaged, the error bars
show plus and minus two sample standard deviations (if the guess about
Figure 2.26 was correct), and an arrow indicates the actual value was less
than or equal to the graphed value. Furthermore, the labels for the two
types of measurements have been corrected. Both are ambient air
measurements and both are from air samples. The terms “continuous
monitor” and “grab samples” correctly convey the nature of the two

types.

Overlapping plotting symbols must be visually distinguishable.

Unless special care is taken, overlapping plotting symbols can make
it impossible to distinguish individual data points. This happens in
several places in Figure 2.28 [23]. The data are from an experiment on
the production of mutagens in drinking water. For each category of
observation (free chlorine, chloramine, and unchlorinated) there are two
observations for each value of water volume. That is, duplicate
measurements were made. But two values do not always appear because
of exact or near overlap. For example, for the unchlorinated data only
one observation appears for water volume just above 0.5 liters.

This problem of visual clarity is a surprisingly tough one. Several
solutions are given in Section 4 of Chapter 3.

Superposed data sets must be readily visually discriminated.

It is very common for graphs to have two or more data sets
superposed within the same data region. We already have encountered
‘many such graphs in Chapters 1 and 2. The studies reported in
Section 4 of Chapter 1 revealed that one of the most serious
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Figure 2.27 NOTES, KEYS, AND MARKERS. Avoid putting notes, keys,
and markers in the data region. Put keys and markers just outside the data
region and put notes in the legend or in the text. The graph in Figure 2.26
has been improved by the following actions: removing the writing, the key,
and the inset from the data region; showing the two data sets on separate
panels; removing the idiosyncrasies; correcting the labels describing the two
types of measurement.
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shortcomings in graphs in science and technology was poor visual
discrimination of the different data sets on graphs employing
superposition.

In Figure 2.29 [95] it is difficult to visually disentangle the solid
squares, circles, and triangles; such plotting symbols are in general
visually similar, but in Figure 2.29 the problem is exacerbated by the
symbols not being crisply drawn. In Figure 2.30 [50] the different
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Figure 2.28 OVERLAPPING PLOTTING SYMBOLS. Overlapping plotting
symbols must be visually distinguishable. On this graph, because of exact
and near overlap, some of the data cannot be seen. Methods for combatting

overlap are given in Chapter 3.
Figure republished from [23]. Copyright 1980 by the AAAS.
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curves are hard to disentangle in many places and impossible in others.
For example, on the left of the graph between 8 and 16 hours, curves El
and E3 merge and then join CDC in a triple junction; a little later one
curve splits off, but it is impossible to tell which it is. More copious
labeling might help but it still would require a concentrated and highly
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Figure 2.29 SUPERPOSED DATA SETS. Superposed data sets must be
readily visually discriminated. One of the pervasive problems of graphs in
science and technology is the lack of visual discrimination of different data
sets superposed in the same data region. On this graph we cannot easily

visually discriminate the circles, squares, and triangles.
Figure republished from [95]. Copyright 1980 by the AAAS.
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cognitive mental effort to follow each curve visually, rather than the
rapid, easy discrimination that we should strive for when data sets are
superposed. We do not want to have to visually follow a curve on a
graph the way we have to visually follow a twisting secondary road on
a detailed map; rather, we want to be able to see a single curve as a

PRINCIPLES OF GRAPH CONSTRUCTION

whole, mentally filtering out the other curves.

Graphs that fail to allow effective visual discrimination are
pervasive because the problem is a difficult one to solve. Solutions will

be given in Section 5 of Chapter 3.
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Visual clarity must be preserved under reduction and reproduction

Graphs that communicate data to others often must undergo
reduction and reproduction; these processes, if not done with care, can
interfere with visual clarity. In Figure 2.31 [60] the ghostly image in the
background should be a shaded area representing immunoreactivity, but
the shading is barely visible due to poor reproduction. Figure 2.31 .has
other problems. The scales are poorly constructed. The right vertical
scale shows a break; in fact it is not a break in the usual sense of a gap
in the scale, but rather the number of units per cm suddenly changes.
The same type of change occurs on the left vertical scale, but the
authors have chosen not to flag this one. The graphed data move
through the data region as if nothing is happening to the scales.
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Figure 2.31 REDUCTION AND REPRODUCTION. Visual clarity must be
preserved under reduction and reproduction. This did not happen on this
graph. The ghostly image in the background was supposed to represent
immunoreactivity. |

Figure republished from [60]. Copyright 1980 by the AAAS.
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In Figure 2.32 [98] the lines that are supposed to connect the labels
with the curves are washed out. Lines, curves, and lettering must be

heavy enough and symbols must be large enough to withstand
reduction and reproduction.

One good test to check the ability of a graph original to stand up to
both reduction and reproduction is to put it through a reducing
photocopier. If a reduction to 2/3 is available, copy the original and
then copy the copy. If the second copy, which is a reduction to
(2/3)% = 4/9, is still visually clear, then it is likely that the original will
withstand most reduction and reproduction processes. Clearly other
strategies, depending on the photocopy equipment available and on the
way the graph original will be utilized, can be tailored to each situation.

2.3 CLEAR UNDERSTANDING

Graphs are powerful tools for communicating quantitative
information in, for example, technical reports and journal articles. The
principles of this section, which are oriented toward the task of
communication, contribute to a clear understanding of what is graphed.

Put major conclusions into graphical form. Make legends
comprehensive and informative.

Communication of the results of scientific and technological studies,
when the results involve quantitative issues, can be greatly enhanced by
graphs that speak to the essence of the results. Graphs and their
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Figure 2.32 REDUCTION AND REPRODUCTION. The lines from the curves
to their labels are washed out.
Figure republished from [98]. © 1983 IEEE.
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legends can incisively communicate important data and important
conclusions drawn from the data. One good approach is to make the
sequence of graphs and their legends as nearly independent as possible
and to have them summarize evidence and conclusions. This book has
been constructed in this way; the graphs and their legends summarize
the ideas, and the text has been written around the sequence of graphs.
This is to be expected of a book on graphs, but it is also an effective
device for other writings in science and technology.

For a graph to be understood clearly, there must be a clear, direct
explanation of the data that are graphed and of the inferences drawn
from the data. Here is a framework for figure legends that can
contribute to such a clear explanation:

1. Describe everything that is graphed.
2. Draw attention to the important features of the data.

3. Describe the conclusions that are drawn from the data on the
graph.

The framework is illustrated in the legend of Figure 2.33. The data
are involved in an astounding discovery that sounds more like science
fiction than a highly supportable scientific hypothesis. Sixty-five
million years ago extraordinary mass extinctions of a wide variety of
animal species occurred, marking the end of the Cretaceous period and
the beginning of the Tertiary. The dinosaurs died out along with the
marine reptiles and the flying reptiles such as the ichthysaur. Many
marine invertebrates also became extinct; ocean plankton almost
disappeared completely.

What could have caused such a calamity? In 1980 Luis Alvarez,
Walter Alvarez, Frank Asaro, and Helen Michel at Berkeley discovered
unusually high levels of iridium right at the K-T (Cretaceous-Tertiary)
boundary in sediments from Italy, Denmark, and New Zealand [2]. It is
likely that the high iridium levels have an extraterrestrial cause;
asteroids and meteors are rich in iridium while the earth’s crust is not
because this heavy element sank to the core during the earth’s molten
years. From these data and other information, the four hypothesized
that an asteroid, 10 *+ 4 km in diameter, struck the earth and sent a dust
cloud into the atmosphere that blocked sunlight for a period of several
months or even years. The loss of light interfered with food chains and
led to the mass extinctions. As the dust from the asteroid settled it
deposited an iridium-rich layer on the surface of the earth.

The asteroid hypothesis has been supported by subsequent
measurements. Among them are measurements of pollen, fern spores,
and iridium in New Mexico [104]. These data are shown in Figure 2.33.
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Figure 2.33 EXPLANATION. Put major conclusions into graphical form.
Make legends comprehensive and informative. Describe everything that is
graphed and convey the conclusion drawn from the data. The following is a
legend, including the title, that might accompany this graph in its original
subject matter context:

ANGIOSPERM-FERN RATIO AND IRIDIUM NEAR THE K—T BOUNDARY. The
graph shows measurements of a core from northeastern New Mexico. The
horizontal scale is in meters from the boundary between the Cretaceous and
the Tertiary periods; negative values are below the K—T boundary so time
goes from earlier to later in going from left to right. The widths of the three
rectangles at the top of the graph show the same number of meters on the
horizontal scales of the three panels. The upper panel shows the ratio of
angiosperm pollen to fern spores on a log base 10 scale; the K—T boundary
is taken to be the time point at which these values begin to decrease. The
bottom panel shows concentrations of iridium, also on a log base 10 scale;
the concentrations begin a dramatic rise and fall at the boundary. Since the
principal source of iridium is extraterrestrial, its rise and fall supports the
hypothesis that an asteroid struck the earth causing a cloud of dust in the
upper atmosphere; this is argued to have darkened the earth for months or
years, leading to the large number of extinctions, including the dinosaurs,
that occurred at the beginning of the Tertiary period.
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The horizontal scale is distance in the sediment from the K-T boundary.
Distance, of course, is just a surrogate for time, which goes from earlier
to later as we go from left to right. The point at which the ratio of
pollen to fern spores begins to decrease is taken to be the K-T boundary
because at the beginning of the Tertiary period angiosperms declined
relative to ferns. At this boundary there is a corresponding peak in the
iridium concentrations, shown in the bottom panel.

The legend of Figure 2.33 follows the three-step guidelines
presented earlier. The graph and its legend can nearly stand alone as a
document that conveys the basic idea of the asteroid-impact hypothesis
and the quantitative information that gives it credence.

The interplay between graph, legend, and text is a delicate one that
requires substantial judgment. No complete prescription can be
designed to allow us to proceed mechanically and to relieve us of
thinking hard. However, a viewer is usually well served by a legend
that makes a graph as self-contained as possible. If there are several
graphs, the legends collectively can be an independent piece; for
example, a detailed description of a data set described in one graph
legend does not need to be repeated in a subsequent graph legend.

It is possible, though, to overdo a comprehensive legend. Putting a
description of the experimental procedure in the legend — conventional
in medical and biological writings and mandatory in some circles —
seems to go too far. It burdens the graph and makes what should be a
concise summary into a tome. Figure 2.34 [139] is an example. The ratio
of legend area to graph area is 2.8; this is tooO much detail. The details
of an experimental procedure must be communicated, but surely there is
a better place than a figure legend, which is a summary.

Too little detail, however, occurs more frequently in graphs in
science and technology than too much detail. The studies of graphs in
scientific publications described in Section 4 of Chapter 1 revealed an
alarming percentage of graphs containing elements not explained either
in the text or in the legend. Figure 2.35 [39] is an example. The bars
and error bars are not explained anywhere. One good guess is that they
are sample means and estimates of the standard errors of the means;
guessing should not be necessary.
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Error bars should be clearly explained.

Error bars are a convenient way to convey variability in data.
Unfortunately, terminology is so inconsistent in science and technology
that it is easy for an author to say one thing and a viewer to understand
something else.

Error bars can convey one of several possibilities:
(1) The sample standard deviation of the data.

(2) An estimate of the standard deviation (also called the standard
error) of a statistical quantity.

(3) A confidence interval for a statistical quantity.

Fig. 2. Tension and the intensity of the 42.9- 3r-a
nm layer line during l-second tetanus at the
sarcomere length of 2.2 um. (a) Tension rec-
ord averaged over the 40 tetanic contractions
required for obtaining the time course of the
layer-line intensity. A sartorius muscle was
dissected from Rana catesbeiana and teta-
nized for 1 second at 2-minute intervals. The
horizontal line represents the period of stimu-
lation. Tension was recorded with an iso-
metric tension transducer (Shinkoh, type
UL). (b) Intensity of the first-order myosin
layer line at 42.9 nm. The x-ray source was a
rotating-anode generator (Rigaku FR) with
a fine focus (1.0 by 0.1 mm) on a copper tar-
get. This was operated at 50 kV with a tube
current of 70 mA; such a high power was
possible with an anode of a large diameter
(30 cm) rotating at a high speed (9000 rev/
min). A bent-crystal monochromator was
used at a source-to-crystal distance of 25
cm with a viewing angle of 6°. The intensity
of the myosin layer line was measured with
a scintillation counter combined with a mask;
the mask had apertures at the positions of
the off-meridional parts of the first-order
layer line. The meridional reflection at 14.3 nm is known to be slightly displaced during con-
traction, suggesting a minute change in the myosin periodicity (/, 3). It is, therefore, possible
that the 42.9-nm layer line is also slightly displaced. However, the possible displacement (14 um
at the position of the mask) would be insignificant compared with the width of each aperture
(0.8 mm). The intensity measured at the resting state was 1400 count/sec. The intensities during
and after tetanus were expressed as percentages of the resting intensity and plotted against time
after the first stimulus of each set of stimuli. Each point represents the intensity averaged over
a 100-msec period. The first three points represent the measurements made before stimulation.
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Figure 2.34 EXPLANATION. It is possible to overdo the explanation in a
legend. The complete description of the experimental procedure in this
legend is too much detail. The ratio of the legend area to the graph area

is 2.8.
Figure republished from [139]. Copyright 1980 by the AAAS.
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As an example, let us consider a particular case, also the most frequent

one. Suppose the data are xi, .., x, and the statistical quantity being
graphed is the sample mean,

- 1
c R e I
n i§1 1
The sample standard deviation of the data is
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An estimate of the standard error of the mean 1s

s/n” .

If the data are from a normal distribution then a 9?/5% confidenc:e interval
for the population mean is (x — k s/n”, ¥+ k s/n’?), Whel:e k is a value
that depends on n; if n is larger than about 60, k is approximately 1.96.

Error bars are used in Figure 2.36 [66]. In the last sentence of the

figure legend we are told that the graphed values “‘represent means of
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Fig. |. Inhibitory effect of morphine hydrochloride (A) and B-endorphin (B) on wet-shake behavior In. rass. i:;z‘r‘:;s;;r:ﬁrge:v»f(ie?}y ”?‘:::ltﬁ?n{t‘i:;
cerebroside sulfate (A5). A volume of 2 ul was delivered into the PAG in 1-ul increments with 2 1-rj1\tnutie it Ty indicated‘ -
consisted of saline (Sa/). Morphine HCI (M-HC!) and B-endorphin were preceded by saline. AS. or naloxo e ‘hine HCI s ;:re N signiﬁ—
morphine HCl and naloxone refers to the chioride salt. Each point is the datum for one animal. The AS £m Ag + 0.0375 ug of ﬁ-endurbhin P
cantly different (1-test, P < .005) from the corresponding morphine HC) groups alone (A). The grouP receiving ST '
also signiicantly different (P < .005) from the group receiving 0.0375 ug of B-endorphin (B).

Figure 2.35 EXPLANATION. The more common problem of scientific data
display is too little explanation, rather than too much. The bars and error
bars on this graph are not explained in the text or in the legend.

Figure republished from [39]. Copyright 1980 by the AAAS.
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three to four mice =+ the standard deviation.” What are we being
shown? Is it (1) or (2) above? It is probably (1), but we should not have
to deal with probability in understanding what is graphed.

Error bars should be unambiguously described. For the three cases
cited above, the following is some terminology that can prevent
ambiguity:

Fig. 1. Time course of NMOR biosynthesis in
mice. Groups of three to four male ICR mice
were gavaged with freshly prepared solutions
of 2 mg of MOR (Aldrich Chemical) in 0.2 ml
of distilled water and immediately placed in
exposure chambers (Nalge desiccators, modi-
fied for gas inflow from the bottom and ex-
haust from the top). Mice were then exposed
to S0 ppm of NO: (three to four mice per
chamber, 5 cubic feet per hour, 20 volume
50 ppm NO; plus changes per hour) at intervals of from 0.5 to 4
2 mg morpholine hours. The required concentrations of NO,

were produced by mixing stock NO; (custom
os |- grade, Union Carbide) with air at an appropri-
ate flow rate, prior to introduction into the
chambers; we checked the accuracy of the ex-
posure mixtures by periodically monitoring
and analyzing the NO; in the exhaust from the
chambers, using the Griess-Saltzman reaction
(/9). Concurrent controls consisted of two
mice exposed in separate chambers to NO. alone for 4 hours, additional controls were gavaged
with 2 mg of MOR or 0.2 ml of distilled water and exposed to air for identical periods in separate
chambers. After exposure to NO;, the mice were killed by freezing in liquid nitrogen and blend-
ed to a fine powder (20). Two or three aliquots (approximately 8 g each) were taken from each
mouse powder and blended with 75 ml of ice-cold 35 percent aqueous methanol in a Waring
Blendor (5 minutes, medium speed); a known amount of a nitrosamine standard [152 ng of di-n-
propylnitrosamine (DPN), Aldrich] was then added, and blending continued for 1 to 2 minutes.
Homogenates were divided in half and centrifuged (5000g, 25 minutes, 5°C; swinging bucket),
supernatant was removed, and the pellets were extracted again with cold 35 percent methanol.
The pooled supernates were extracted (twice) with an equal volume (total, 150 ml) of dichlo-
romethane [(DCM), Burdick and Jackson] (2/), and the organic layer was dried by passage
through a cotton gauze (Ex-tube, Analytichem International) and concentrated to 2 ml in a
Kuderna Danish concentrator (Kontes, 250 ml) kept in a 65°C bath. Aliquots (20 ul) of the
concentrates from each of two or three powder samples were injected into the thermal energy
analyzer-gas chromatograph (Thermo Electron modified model TEA-502) (22) for NMOR anal-
ysis. Peaks were identified and quantitated by comparison with the retention time and response
of reference nitrosamines (23). The plotted values are corrected for any background control
NMOR levels and for the DPN standard recoveries and represent means of three to four mice *
the standard deviation.
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Figure 2.36 ERROR BARS. Error bars should be clearly explained. It is
important to distinguish between the sample standard deviation and an
estimate of the standard deviation of the sample mean (the standard error of
the mean). It is not clear from the explanation of this graph which of these
two statistics the error bars portray.

Figure republished from [66]. Copyright 1980 by the AAAS.
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(1) The error bars show plus and minus one sample standard
deviation of the data.

(2) The error bars show plus and minus an estimate of the
standard deviation (or one standard error) of the statistic that
is graphed.

(3) The error bars show a confidence interval for the statistic that
is graphed.

Unambiguous description is only one issue with which we need to
concern ourselves in showing error bars on graphs. A second important
issue is whether they convey anything meaningful. This statistical issue
is discussed in Section 7 of Chapter 3.

When logarithms of a variable are graphed, the scale label should
correspond to the tick mark labels.

The dot chart in Figure 2.37 shows death rates for the leading
causes of death of people in the age group 15 to 24 years in the United
States [99]. The logarithms of the data are graphed; that is, equal
increments on the horizontal scale indicate equal increments of the
logarithm of death rate. On the top horizontal scale line the tick mark
labels show the values of the data on the original scale. The scale label
describes the variable and its units on the original scale, to correspond
to the tick mark labels. The bottom horizontal scale line uses another
method for labeling; the tick mark labels and the scale labels
correspond, but both are describing the variable on the log scale.

Proofread graphs.

Graphs should be proofread and carefully checked for errors. In the
study of the graphs in the journal Science described in Section 4 of
Chapter 1, construction errors were uncovered in 6.4% of the graphs.
Any of them could have been detected by careful proofreading.
Figure 2.38 [115] shows such an error for a graph of measurements of
Saturn’s magnetic field made by the Pioneer II spacecraft; the exponents
for the tick mark labels on the vertical scale line are missing. This is
quite unfortunate since the magnitude of the magnetic field is of much
interest. The authors write about the graph: “This is shown in
Figure 1.1, which presents an overview of the encounter as evident in
the magnitude of the ambient magnetic field.” It is unfortunate to have
a graph error degrade the communication of such exciting, high-quality
scientific work.
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Strive for clarity.

Strive for clarity is really a summation of the principles presented so
far; in Section 2.2 the principles contribute to making a graph visually
clear and in Section 2.3 the principles contribute to a clear
understanding of what is graphed. Striving for clarity should be done
consciously. We should ask of every graph, “Are the data portrayed
clearly?” and “Are the elements of the graph clearly explained?” Let us
consider one example.

DEATH RATES FOR PEOPLE
AGES 15 — 24

RATE (DEATHS/MILLION)

MOTOR VEHICLE ACCIDENTS
OTHER ACCIDENTS
HOMICIDE

SUICIDE

CANCERS

HEART DISEASES

BIRTH DEFECTS

STROKES

PNEUMONIA & INFLUENZA
CHRONIC LUNG DISEASES
KIDNEY DISEASES

LIVER DISEASES
DIABETES

BLOOD POISONING

LOG BASE 2 RATE (LOG DEATHS/MILLION)

Figure 2.37 LABELS FOR LOGS. When logarithms of a variable are
graphed, the scale label should correspond to the tick mark labels. The
logarithms of the data are graphed on this dot chart. On the top horizontal
scale line the tick mark labels are in the units of the data on the original
scale, so the scale labels describe the data on the original scale. On the
lower scale line the tick mark labels are expressed in log units of the data,
so the scale label describes the logarithms of the data.



CLEAR UNDERSTANDING 65

The data in Figure 2.39 [132] are percentages of degrees awarded to
women in several areas of science and technology during three time
periods. The elements of the graph are not fully explained; little is said
in the text, so we must rely on the labeling and the legend to
understand what is graphed. At first glance the labels suggest the graph
is a standard divided bar chart with the length of the bottom division of
each bar showing the percentage for doctorates, the length of the
middle division showing the percentage for master’s, and the top
division showing the bachelor’s. This is not so. (It would imply that in
most cases the percentage of bachelor’s degrees given to women is
generally lower than the percentage of doctorates.) A little detective
work makes it clear that the total distance from the zero baseline to the
top encodes the percentage for bachelor’s, the total distance from the
baseline to the top of the middle division encodes the percentage for
master’s, and the length of the bottom division encodes doctorate’s.
This type of graph works only because the percentages decrease in
going from bachelor’s degrees to master’s degrees to doctorates for every
category.
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Figure 2.38 PROOFREAD. Proofread graphs. Graphs should be
proofread, just as we do text. On this graph, lack of careful proofreading

resulted in missing exponents on the tick mark labels of the vertical scale.
Figure republished from [115]. Copyright 1980 by the AAAS.
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There are other problems with this graph. Only two bars are
shown for computer science, with no explanation. One can only
assume, since majoring in computer science is a new phenomenon, that
the 1959-1960 time period is missing. There is a construction error; the
horizontal line for doctorates in all science and engineering in 1969-
1970 is missing. Another difficulty with the graph is visual; the bar
chart format makes it hard to visually connect the three values of a
particular degree for a particular subject.

In Figure 2.40 the data from Figure 2.39 are regraphed. There has
been a striving for clarity. It is clear how the data are represented, and
the design allows us to see easily the values of a particular degree for a

particular subject through time. Finally, the figure legend explains the
graph in a comprehensive and clear way.
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Fig. 1. Proportion of degrees in science and engineering earned by women in 1959 to 1960. 1969

to 1970. and 1976 to 1977 (6). Included in the social science degrees are anthropology. sociolo-
gy. economics. and political science.

Figure 2.39 CLARITY. This graph fails both in clarity of vision and clarity
of explanation.

Figure republished from [132]). Copyright 1980 by the AAAS.
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2.4 SCALES

Scales are fundamental. A graph is a graph, in part, because it has
one or more scales. Graphing data would be far simpler if these basic,
defining elements of graphs were straightforward, but they are not;
scale issues are subtle and difficult. This section is about constructing
scale lines, comparing scales, including zero, taking logarithms, and
breaking a scale.
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Figure 2.41 RANGES. Choose the range of the tick marks to include or
nearly include the range of the data. The range of the values on the vertical
scale are nearly contained within the range of the tick marks. On the
horizontal scale the values are completely contained within the range of the
tick marks. |
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Choose the range of the tick marks to include or nearly include the
range of the data.

The interval from the minimum to the maximum of a set of values
is the range of the values. It is a good idea to have the range of the
data on a graph be included or nearly included in the range of the tick
marks to allow an effective assessment of all of the data. In Figure 2.41
the range of the data on the horizontal scale is included in the range of
the tick marks, and the data on the vertical scale are nearly included in
the range.

Subject to the constraints that scales have, choose the scales so that
the data fill up as much of the data region as possible.

There are a number of constraints that affect the choice of scales on
graphs. One, just discussed, is that the range of the tick marks should
encompass or nearly encompass the range of the data. Another is that
we do not want data to be graphed on scale lines. Also, in some cases
we want a particular value to be included in the scale; the most common
example is showing a zero value. (More will be said later about
including zero.) Finally, when different panels of a graph are
compared, we will often want the scales to be the same on all panels.

But subject to these constraints, we should attempt to use as much
of the data region as possible. This is not done in Figure 2.42 [121].
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Figure 2.42 FILLING THE DATA REGION. Only 26% of the vertical scale

is used by the data.
Figure republished from [121]. Copyright 1980 by the AAAS.
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Only 26% of the vertical scale is taken up by the data. Space is wasted
on this graph. In contrast, Figure 2.43 utilizes the data region more
efficiently. The data span most of the range of the scales without
getting too close to the frame. The data are the number of cigarettes
consumed daily by a smoker in a 28-day program to quit smoking; after
the 28 days the smoker quit altogether. A ““day” is defined as starting at
6:00 a.m. and ending 24 hours later. The open circles are the days
Monday to Friday and the closed circles are Saturdays and Sundays.

It is sometimes helpful to use the pair of scale lines for a variable to
show two different scales.

The two scale lines for a variable on a graph provide an
opportunity to show two different scales for the variable; the additional
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Figure 2.43 FILLING THE DATA REGION. Subject to the constraints that

scales have, choose the scales so that the data fill up as much of the data
region as possible.
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information of a second scale often can be helpful. One example is
Figure 2.44. The data, which are from the 1980 census [130], are the
number of people in the United States in 1980 for each age from O to 84.
The bottom horizontal scale line shows the age and the top horizontal
scale line shows the year of birth.

When the logarithms of data are graphed there is an opportunity to
use two scales. In Figure 2.45 the death rates for people 15 to 24 years
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Figure 2.44 TWO SCALES. It is sometimes helpful to use the Qair of
scale lines for a variable to show two different scales. The bottom hOf_'ZO'“a‘
scale line shows age and the top horizontal scale line shows year of birth.
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old are graphed on a log scale. The bottom horizontal scale line shows
log death rate in log deaths/million. The tick mark labels on this scale
line allow us to see quickly by how much two values of the data differ
in multiples of two. For example, the death rate due to automobile
accidents is four times larger than that for suicide. The top scale line
shows death rate on the original scale in deaths/million. This scale is
added to allow an assessment of the magnitudes of the death rates
without having to take powers of two in our heads.

When magnitudes are shown on a graph we can use two scales to
show the data in their units of measurement and to show percent
change from some baseline value. Figure 2.46 is a graph of averages of
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Figure 2.45 TWO SCALES. The bottom horizontal scale line shows log
death rate in log deaths/million and the top horizontal scale line shows
death rate in deaths/million.
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the mathematics Scholastic Aptitude Test scores for selected years from
1967 to 1982 [131, p. 158]. The left vertical scale line shows the scores
and the right vertical scale line shows percent change from 1967.
Without the right scale it takes some mental arithmetic to determine the
percent changes, for example, to see that the change from 1967 to 1982
was about 5%.

Choose appropriate scales when graphs are compared.

Figure 2.47 shows data from an experiment on graphical
perception [33] that will be discussed in Section 3 of Chapter 4. A
group of 51 subjects judged 40 pairs of values on bar charts and the
same 40 pairs on pie charts; each judgment consisted of studying the
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Figure 2.46 TWO SCALES. The left vertical scale line shows SAT score
and the right vertical scale line shows percent change from 1967.
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two values and visually judging what percent the smaller was of the
larger. The left panel of Figure 2.47 shows the 40 average judgment
errors (averaged across subjects) graphed against the true percents for
the 40 pie chart judgments. The right panel shows the same variables
for the bar chart judgments. The two smooth curves were computed
using the lowess procedure that will be described in Section 4 of
Chapter 3. To enhance the comparison of the bar chart and pie chart
values, the scales on the two panels are the same; this allows us to see
very clearly that the pie chart judgments are less accurate than the bar
chart judgments. One result of the common scale is that the data do not
fill either panel; we should always be prepared to forego the fill
principle to achieve an effective comparison. But note that if all of the
data were put on one of the panels, the data would fill the data region.

Unfortunately, scales cannot always be made the same; we must
forego equal scales when the result is poor resolution. The next best
thing is to have the same number of units per cm; this is illustrated in
Figure 2.48. The data are the winning times of four track races at the
Olympics from 1900 to 1984 [22, 138, p. 833]. The four lines have the
same slopes but different intercepts and were fit to the data using least
squares. If the vertical scales had been the same, the wide variation in
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Figure 2.47 COMPARISON. Choose appropriate scales when graphs are
compared. Scales on different panels should be made as commensurate as
possible when the data on the different panels are compared. On this graph
the scales on the left panel are the same as those on the right.
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Figure 2.48 COMPARISON. Sometimes making scales identical ruins the
resolution of one or more panels. The next best thing is illustrated on this
graph — the number of units per cm is the same on the four vertical scales.
The four lines on the panels have the same slope.
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the times for the different races would have ruined the resolution.
Instead, the number of log seconds per cm is the same. This allows us
to compare changes in the data on different panels. For example, we
can see that the overall rate of decrease through time for the four sets of
data is about the same. Since logs are graphed, this means that the
percent reduction in the running times for the four distances has been
the same. Our ability to see this easily comes from having the same
number of log units per cm on the vertical scales of the four panels.

Sometimes even the number of units per cm cannot be the same
without ruining the resolution. In Figure 2.49 the data in the top panel
are the monthly measurements of atmospheric CO, concentrations that
were discussed in Section 2 of Chapter 1. The remaining panels are
statistical descriptions of the trend in the data, the seasonal variation in
the data, and all other variation. The range of the data and of the trend
are very similar, so the vertical scales of the top two panels are the
same. The variation of the data in the bottom two panels is much less
than that in the top panels; if the number of units per cm were the same
on the vertical scales of all panels, the resolution in the bottom two
panels would be degraded. One way to appreciate how the scales
change on the four panels is to study the tick mark labels and the
distances between them, but this is a difficult mental-visual task. To
make appreciation of the scale change easier in Figure 2.49, rectangles
have been put to the right of the panels. The vertical lengths of the

rectangles represent equal changes in parts per million on the four
panels.

Do not insist that zero always be included on a scale showing
magnitude.

When the data are magnitudes, it is helpful to have zero included
in the scale so we can see its value relative to the value of the data. But
the need for zero is not so compelling that we should allow its inclusion
to ruin the resolution of the data on the graph.

There has been much polemical writing about including zero when
graphs are used to communicate quantitative information to others. Too
frequently zero has been endowed with an importance it does not have.
Darrell Huff in his book How to Lie with Statistics [62, pp. 64-65] goes so
far as to say that a graph of magnitudes without a zero line is dishonest.
Referring to Figure 2.50 he writes:
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An editorial writer in Dun’s Review in 1938
reproduced a chart from an advertisement advocating
advertising in Washington, D.C., the argument being
nicely expressed in the headline over the chart:
GOVERNMENT PAY ROLLS UP! The line in the graph
went along with the exclamation point even though the
figures behind it did not. What they showed was an
increase from about $19,500,00 to $20,000,000. But the
red line shot from near the bottom of the graph clear to
the top, making an increase of under four percent look
like more than 400. The magazine gave its own graphic
version of the same figures alongside — an honest red

line that rose just four percent, under this caption:
GOVERNMENT PAY ROLLS STABLE.

Huff’s presumption is that viewers will not look at scale labels and
apply the most trivial of quantitative reasoning. The result, the graph
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Figure 2.50 ZERO. The compulsion to include zero on a scale has ruined
many graphs. Darrell Huff in How to Lie With Statistics argues the left graph
is misleading, but the right graph is a waste of space that shows very little

quantitative information beyond what could be conveyed in one sentence.

Figure republished by permission of W. W. Norton & Company, Inc. [62, p. 65].
Copyright 1954 and renewed 1982 by Darrell Huff and Irving Geis.
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on the right in Figure 2.50, is a waste of space because the resolution is
so poor; the simple statement, “government payrolls were 10.5 million
dollars in June and rose by about 4% from June to December” is much
more incisive and efficient. The graph on the left in Figure 2.50
conveys more quantitative information; for example, we can determine
from the left graph that the rise is roughly 4%, but not from the right.

For graphical communication in science and technology assume the
viewer will look at the tick mark labels and understand them. Were we not
able to make this assumption, graphical communication would be far
less useful. If zero can be included on a scale without wasting undue
space, then it is reasonable to include it, but never at the expense of
resolution.

The data in Figure 2.51 [69] are emission signals in the A\; channel
from Saturn and were measured by the Pioneer II spacecraft. Including
zero on the vertical scale in Figure 2.51 has degraded the visual
resolution of the data. It is quite unlikely that a graph of these data
with the vertical scale going from 4.0 to 5.5, which includes the range of
the data, would lead space physicists to think the percent variation in
the emission signals is larger than it really is.

Resolution has been ruined in Figure 2.52; including zero is
ludicrous. The graph shows the CO, data and trend curve that were
graphed in Figure 2.49. Figure 2.53 shows the data in the sensible way;
now the changes in CO, through time can be seen far more clearly.
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Figure 2.51 ZERO. The resolution of this graph is degraded by including

zero.
Figure republished from [69]). Copyright 1980 by the AAAS.
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Use a logarithmic scale when it is important to understand percent
change or multiplicative factors.

There are some who feel that including a zero line on a graph helps
us to better understand percent change and multiplicative factors.
Darrell Huff [62, pp. 61-62] states that a graph with a zero baseline is
beneficial “because the whole graph is in proportion and there is a zero
line at the bottom for comparison. Your ten percent looks like ten
percent.”

It may well be that a zero line contributes a little to such
judgments, but our ability to judge percents and factors is at best
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Figure 2.52 ZERO. Including zero here is ludicrous. It is reasonable to
include zero if, unlike this graph, it does not ruin the resolution.
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extremely poor. If we want to make such judgments it is far better to
take logarithms. Suppose a, b, ¢, and d are all positive numbers with

LI
b d

and b a few times bigger than d. Then on a graph of the four numbers
it is quite hard to judge that the ratios are equal because on the graph, b
is further from a than c¢ is from d. This is illustrated in Figure 2.54.
The data are the number of telephones in the U.S. from 1935 to 1970
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Figure 2.53 ZERO. Do not insist that zero always be included on a scale
showing magnitude. This graph conveys much more quantitative information
than Figure 2.52.
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[128, p. 783]. The zero line is there, but it is very difficult to judge
percents. Consider the following basic question: How is the percent
increase in phones changing through time? For example, how does the
percent change from 1935 to 1953, the middle of the time period,
compare with the percent change from 1953 to 1970? It is very difficult
to judge from Figure 2.54 without reading off values from the vertical
scale and doing arithmetic.

When magnitudes are graphed on a logarithmic scale, percents and
factors are easier to judge since equal multiplicative factors and percents
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Figure 2.54 LOGS FOR FACTORS. The data are the number of
telephones in the United States each year from 1935 to 1970. It is nearly

impossible to judge whether the percentage increase is constant,
decreasing, or increasing.
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. . . four
result in equal distances throughout the entire scale. For ouf
numbers above,

log(b) — log(a) = log(c) — log(d) .

So log(b) is the same distance along the log scale from log(a ) as 19g(c361§
from log(d). This is illustrated in Figure 2.55. A log base 2 scale 1-115 tuthe
on the vertical axis for the telephone data. Now we can S€€ t atable
percent increase in telephones through time has been roughly 8 e
since the trend in the data is roughly linear. Now we can S€€ ef?asztl y
that telephones increased from 1935 to 1953 by about the same tactor
(21° = 2.8) as they did from 1953 to 1970.
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Showing data on a logarithmic scale can improve resolution.

It is common for positive data to be skewed to the right: some values
bunch together at the low end of the scale and others trail off to the
high end with increasing gaps between the values as they get higher.
Such data can cause severe resolution problems on graphs, and the
common remedy is to take logarithms. Indeed, it is the frequent success
of this remedy that partly accounts for the large use of logarithms in
graphical data display.

An example of skewed data is given in Figure 2.56. The graph
shows the 14 most abundant elements in stone meteorites [48]; the data
are the average percent of each of the elements. The resolution on the
graph is poor because the ten smallest percents vary over a very small
range. Figure 2.57 shows the data on a log scale; now the distribution is
much more nearly uniform and the resolution is greatly improved.
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Figure 2.56 LOGS FOR RESOLUTION. Because the data on this graph
are skewed to the right, the resolution of the majority of the values on the
horizontal scale is poor. |
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Use a scale break only when necessary. If a break cannot be
avoided, use a full scale break. Do not connect numerical values on

two sides of a break.

Figure 2.58 shows the iridium data discussed earlier in Figure 2.33.
Two full scale breaks are used to signal changes on the horizontal scale.
The middle panel has a much smaller number of data units (meters)
per cm; the widths of the rectangles at the top of the graph portray the
same number of horizontal scale units (meters) on the panels. A full
break shows a change or gap in a scale about as forcefully as possible.

In science and technology today the convention for indicating a
change or gap in the scale of a graph is a partial scale break: two short
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Figure 2.57 LOGS FOR RESOLUTION. Showing data on a logarithmic
scale can improve resolution. The logs of the data in Figure 2.56 are
graphed and the resolution has improved substantially.
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Figure 2.58 SCALE BREAKS. Use a scale break only when necessary. If
a break cannot be avoided, use a full scale break. Do not connect numerical
values on two sides of a break. This graph uses full scale breaks on the
horizontal scale to signal changes in the number of units per cm. The full
breaks show the scale breaks forcefully. Without the breaks, the data in the
center panel would lie very nearly on a vertical line and there would be no
time resolution. The rectangles at the top of the graph portray the same
number of horizontal scale units on each panel. |
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Figure 2.59 SCALE BREAKS. The partial scale break on the horizontal
scale of the left panel does not give a forceful indication of a break. The
connection of numerical values across the break gives the misleading

impression that the data are roughly linear.
Figure republished from [105]. Copyright 1984 by the AAAS.
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wavy parallel curves or two short parallel line segments breaking a scale
line. This is illustrated on the horizontal scale line of the left panel in
Figure 2.59 [105]. But the partial scale break is a weak indicator that the
reader can fail to appreciate fully; visually, the graph is still a single
panel that invites the viewer to see patterns between the two scales.

Numerical values should not be connected across a break. In the
left panel of Figure 2.59, the connection across the break gives the
misleading impression that the data are roughly linear across the entire
horizontal scale; in fact the slope of the values decreases as the variable
on the horizontal scale increases, as shown by Figure 2.60, which graphs

the data with no scale break.
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Figure 2.60 SCALE BREAKS. The data from the left panel of Figure 2.59
are graphed without a scale break. Now it is clear that the data are not
roughly linear and that the slope decreases as the variable on the horizontal

axis increases.
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The problem in Figure 2.59 is not rare. The studies of graphs in
scientific publications discussed in Section 4 of Chapter 1 revealed
widespread problems caused by scale breaks. Figures 2.61 and 2.62 are
other examples. Figure 2.61 [92] gives a misleading impression because
the continuation of the lines across the break has no meaning. The tick
marks on the horizontal scale are labeled 3, 10, and 30; since the
logarithms of these values are nearly equally spaced, the authors
presumably intended a horizontal log scale. The three lines give the
impression that the pattern of each data set is linear through the origin.
But a value of zero U/ml of interferon is off at minus infinity on the
horizontal log scale, so the three lines could not possibly go through the
origin. In Figure 2.62 [116] bars and error bars are allowed to barge
right through two scale breaks. This renders meaningless the bar
lengths and areas, important and prominent visual aspects of the graph.

Full scale breaks should be used only when necessary. Figure 2.60
shows the break of Figure 2.59 is not needed. Taking logarithms of the
data can often relieve the need for a scale break. Figure 2.63 shows data

"™

N-Protein

Transcriptase

Inhibition (Log;q)

Virus
,_/'1 1 | 1
0 3 10 30

Interferon (U/ml)

Figure 2.61 SCALE BREAKS. Scale breaks are a major cause of
problems for graphs in science and technology. On this graph the lines
drawn through the partial scale break have no meaning and give the
misleading impression that the pattern of the data goes linearly through the
origin. Since the horizontal scale is logarithmic, zero is actually at minus
infinity. |

Figure republished from [92]. Copyright 1980 by the AAAS.
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blished in 1801. The

£ 17 s 7 o 1 , u
rom William Playfair’s Statistical Breviary [109], P Lout a break, most of

data are the populations of 22 European cities. Wit : '
the data would be forced into a small region of the scale, which wou
degrade the resolution. (The dotted lines are allowed to f:rOSS the breﬁk
because they carry no quantitative information that 1is d;stortefl by ; e
break.) The log scale in Figure 2.64 also improves the resolution. gr
most purposes a log scale is preferable to a broken one; éll data can le
readily compared with the log scale, whereas values on dlfft?r.ent pane 5‘;
of a broken scale can only be compared by the highly cognitive task. o
looking at the tick mark labels, reading off the values, and comparing
them by doing mental arithmetic.

2.5 GENERAL STRATEGY

Graphing is much like writing. Our Written. language ha;
grammatical and syntactical rules that govern the detal.ls of word Bl
sentence construction; most of the graphical principles 11t the previous
sections — Clear Vision, Clear Understanding, and Scal.es — are
analogous to these rules. But there are also more general guidelines l_
that is, overall strategies — for writing; these are more€ HEbulous’ll'll:l es
aimed at producing clear, interesting prose. For examp!e, Wi Ulam
Strunk Jr. and E. B. White [120, p. 21, p. 72] encourage c{larlty EY Use
definite, specific, concrete language,” and encourage brevity by “Do not
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Figure 2.62 SCALE BREAKS. The lengths of the bars that barge right

through the scale breaks have no meaning.
Figure republished from [116]. Copyright 1982 by the AAAS.
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r’

overwrite.” The first two principles of this chapter — make the data
stand out and avoid superfluity — are general strategies for graphs.
(Note the similarity between the two Strunk and White principles and
these two general graphical principles. Edward R. Tufte once made the
insightful remark that Strunk and White’s book on the elements of
writing is one of the best treatises on graphing data.) In this section
several general strategies for graphing data are discussed.

A large amount of quantitative information can be packed into a small
region.

In the past, the number of values that could be put on a graph was
limited by the graph having to be made by hand. Computer graphics
has removed these shackles. Now the number of values is limited only

by the resolution of graphics devices and the perceptual ability of our
visual system.

EDINBURGH
STOCKHOLM
FLORENCE
GENOA

TURIN
WARSAW
COPENHAGEN

LISBON
PALERMO
MADRID
BERLIN

ROME
PETERSBURGH
VENICE
DUBLIN
AMSTERDAM
MOSCOW
VIENNA
NAPLES

PARIS
CONSTANTINOPLE
LONDON

POPULATION (THOUSANDS)

Figure 2.63 SCALE BREAKS. Without the scale break used on this

graph, most of the data would be forced into a small region of the graph,
which would degrade the resolution.
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Previous principles in this chapter have stipulated that graPhS
should not be cluttered and should not have superfluous elements, but

this does not preclude a large amount of quantitative information being
shown on a graph, even a small graph. It is possible to put a 1arge€
dataset on a graph in an uncluttered way. Figure 2.65, the graph of the
CO, data and its three components that we have seen before, iS am
example. There are 276 monthly data points on each of the panels of
this graph, which is 1104 points altogether. Each data point consists of
two numbers, a value on the horizontal scale and a value on the vertical
scale. Thus 2208 numbers are shown on this graph.
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Figure 2.64 SCALE BREAK. The data from Figure 2.63 are graphed on @
log scale, which relieves the need for a scale break.
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Figure 2.65 PACKING DATA. A large amount of quantitative information
can be packed into a small region. The computer graphics revolution has
given us the capability to graph a large amount of quantitative information in
a small space. There are 1104 data points on this graph; each portrays two
numerical values, so 2208 numbers are shown.
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Graphing data should be an iterative, experimental process.

Iteration and experimentation are important for all of data analysis,
including graphical data display. In many cases when we make a graph
it is immediately clear that some aspect is inadequate and we regraph
the data. In many other cases we make a graph, and all is well, but we
get an idea for studying the data in a different way with a different
graph; one successful graph often suggests another.

In part, graphing data needs to be iterative because we often do not
know what to expect of the data; a graph can help discover unknown
aspects of the data, and once the unknown is known, we frequently find
ourselves formulating a new question about the data. Even when we
understand the data and are graphing them for presentation, a graph
will look different from what we had expected; our mind’s eye
frequently does not do a good job of predicting what our actual eyes
will see.

Figure 2.66 is a simulation of an actual graph session and its
iteration of graph making as it might have occurred in real life. The
data are the number of doctorates in the physical sciences and in the
mathematical sciences in the United States each year from 1960 to
1981 [100].

The first try, Graph 1, is a reasonable one and shows each data set
graphed against time. We can see similar trends in both series; there is
a rise to a peak just after 1970 and then a decline. The rise and decline
for the physical sciences is greater, but the number of doctorates in the
physical sciences is greater. This prompts asking how the percent
changes in the two series compare; the response is Graph 2, where the
logarithms of the data are shown. The graph suggests that in the early
years the percent increases in the mathematical science degrees are
greater, but that starting in the late 1960s the percent changes are
similar.

Graph 2 allows us to study percent change between any two values.
However, if we want to see just year-to-year percent change, graphing
these values directly can give us a more incisive look. This has been
done in Graph 3. The values confirm our impression of the overall
trend in yearly percent change shown in Graph 2, but they also show
more precise quantitative values — for example, we can see that the
yearly increases in physical science doctorates oscillated around 10% in
the early years.
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One problem with Graph 3 is a large amount of year-to-year
fluctuation that interferes somewhat with our ability to judge the overall
trends. One solution is to smooth the data. Graph 4 shows the data
after smoothing by a numerical procedure called lowess that will be
described in Section 4 of Chapter 3. The distracting fluctuations have
been removed and now we can see that in 1960 the percent increase in
mathematical science doctorates was about double that for the physical
sciences, but that the trends in the two sets of rates grew closer and
became virtually identical after about 1975.

This depiction in Figure 2.66 of graph iterations is actually
oversimplified. It is likely that in a real-life graphing of these data the
choice of plotting symbols, the placement of the data labels, and the
choice of the amount of smoothing would require several more
iterations. (In fact, the real-life graphing that produced Figure 2.66 did
require more iterations.)

Graph data two or more times when it is needed.

A corollary of the previous principle on iteration is that, whether
we are in the mode of analyzing data or presenting data to others, we
should not hesitate to make two or more graphs of the same data. Two
different ways of graphing data sometimes bring out aspects that only
one way cannot. For example, in a presentation of the doctorate degree
data of Figure 2.66, it would be entirely sensible to use Graph 2 and
Graph 4; both show interesting aspects of the data. Figure 2.67 is
another example. Each of the three sets of data is shown twice.
Graphing each data set separately in the top three panels allows the
error bars to be perceived without interfering with one another.
Graphing the three data sets together in the bottom panel allows them
to be more effectively compared.

Many useful graphs require careful, detailed study.

There are some who argue that a graph is a success only if the
important information in the data can be seen within a few seconds.
While there is a place for rapidly-understood graphs, it is too limiting to
make speed a requirement in science and technology, where the use of
graphs ranges from detailed, in-depth data analysis to quick
presentation. The next two graphs illustrate these extremes.

Cyril Burt was a giant in psychology until his world began to
crumble in 1974, three years after his death. Burt was one of the
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leading proponents of the theory that intelligence, as measured by IQ
scores, is largely inherited. Burt’s data strongly supported this view —
too strongly, as it turns out. In 1974 suspicions were raised about the
authenticity of some of Burt’s data and his analyses [73]. For five years
doubts about Burt’s integrity grew, culminating in a biography by
Hearnshaw who concluded, as others already had, that Burt faked much
of his data, invented collaborators, and sent letters to journals from
fictitious people who supported his work [58].
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should be an iterative,

experimental process. The four graphs in this figure are four successive
looks at the data; each of the last three is inspired by its predecessor.
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Figure 2.67 REGRAPHING. Graph data two or more times when it is
needed. Each data set is graphed twice, once in one of the three top panels
to allow an unobstructed view of the error bars and once in the bottom panel
to allow an effective comparison of the data sets.



GENERAL STRATEGY 97

Table 2.1 shows data that Burt published in 1961 in the British
Journal of Statistical Psychology [20]. The numbers are part of a larger data
set that were widely quoted in subsequent scientific work until
D. D. Dorfman, a psychologist at the University of Iowa, gave a
convincing argument in 1978 that the numbers were made-up, either in
whole or in part [46]. The values in Table 2.1 were purported to be
mean IQ scores of 40,000 father-child pairs divided into six social
classes.

Table 2.1 CYRIL BURT DATA. The data are means of adult I1Q scores and
means of child IQ scores for six social classes. The means were computed

from 1Q scores for 40,000 father-child pairs.

Adult Mean IQ Child Mean IQ

Higher Professional 139.7 120.8
Lower Professional 130.6 114.7
Clerical 1156.9 107.8
Skilled 108.2 104.6
Semiskilled 97.8 98.9
Unskilled 84.9 92.6

The data in Table 2.1 look innocent enough until they are graphed.
Figure 2.68 is a graph of the mean scores for the children against the

corresponding values for adults. The impugnment of these data is
based, in part, on the notion that the mean scores are simply too good to

be true. In 1959, J. Conway [38] had put forward the equation

child score —100 = -%* (adult score —100)

as a method for predicting the mean IQ score of children in a given
class from the mean IQ score of the fathers in the class; this predictive
line is shown in Figure 2.68. The line lies extraordinarily close to the
data. Thus for Burt’s data, Conway’s predictive method, with its
mathematically elegant coefficient of 0.5, makes nearly perfect
predictions.

Figure 2.68 requires only a quick look to absorb the important
quantitative information. The main message — that the mean scores are
very close to the line — can be absorbed almost instantaneously.

Some graphs, however, require long and detailed scrutinizing. This
1s entirely reasonable. The important criterion for a graph is not simply
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how fast we can see a result; rather, it is whether through the use of the
graph we can see something that would have been harder to see
otherwise or that could not have been seen at all. If a graphical display
requires hours of study to make a discovery that would have gone
undetected without the graph, then the display is a success.

Figure 2.69 is a graph that requires detailed study. The graphical
method used in the figure, an exceedingly useful one called a scatterplot
matrix, will be discussed in Section 6 of Chapter 3. The data in
Figure 2.69 are measurements of four variables: wind speed,
temperature, solar radiation at ground level, and concentrations of the

air pollutant, ozone [18]. There is one measurement of each variable on
each of 111 days.
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Figure 2.68 DETAILED STUDY. The important information on this graph,
that Cyril Burt's fictitious data lie very close to the line, can be extracted
with just a quick look.
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Each panel of Figure 2.69 is a scatterplot of one variable against
another. For the three panels in the second row, the vertical scale is
ozone, and the three horizontal scales are solar radiation, temperature,
and wind speed. So the graph in position (2,1) in the matrix — that is,
the second row and first column — is a scatterplot of ozone against solar
radiation; position (2,3) is a scatterplot of ozone against temperature;
position (2,4) is a scatterplot of ozone against wind speed.

The scatterplot matrix reveals much about the four variables. A
discussion of what is seen, since it is long and detailed, will be
postponed to the full discussion of scatterplot matrices in Chapter 3; it
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Figure 2.69 DETAILED STUDY. Many useful graphs require careful,
detailed study. Compared with that needed for Figure 2.68, this scatterplot
matrix of ozone and meteorological measurements requires lengthy study to
extract the information. But the lengthy study reveals information that would
be very difficult or impossible to get by other means.
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suffices to say here that the revelations come only after careful, detailed
study of the graph. It might well be expected that a graph with 1332
points on it, each encoding two numbers for a total of 2664 numbers,
would require careful study.

2.6 A LISTING OF THE PRINCIPLES OF GRAPH
CONSTRUCTION

Clear Vision

Make the data stand out. Avoid superfluity.

Use visually prominent graphical elements to show the data.

Use a pair of scale lines for each variable. Make the data region the
interior of the rectangle formed by the scale lines. Put tick marks
outside of the data region.

Do not clutter the data region.

Do not overdo the number of tick marks.

Use a reference line when there is an important value that must be seen
across the entire graph, but do not let the line interfere with the data.

Do not allow data labels in the data region to interfere with the
quantitative data or to clutter the graph.

Avoid putting notes, keys, and markers in the data region. Put keys and
markers just outside the data region and put notes in the legend or in
the text.

Overlapping plotting symbols must be visually distinguishable.

Superposed data sets must be readily visually discriminated.

Visual clarity must be preserved under reduction and reproduction.

Clear Understanding

Put major conclusions into graphical form. Make legends
comprehensive and informative.
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When logarithms of a variable are graphed, the scale label should
correspond to the tick mark labels.

Proofread graphs.

Strive for clarity.

Scales
Choose the range of the tick marks to include or nearly include the

range of data.

Subject to the constraints that scales have, choose the scales so that the
data fill up as much of the data region as possible.

It is sometimes helpful to use the pair of scale lines for a variable to

show two different scales.

Choose appropriate scales when graphs are compared.

Do not insist that zero always be included on a scale showing

magnitude.

Use a logarithmic scale when it is important to understand percent

change or multiplicative factors.

Showing data on a logarithmic scale can improve resolution.

Use a scale break only when necessary. If a break cannot be a\{oided,
use a full scale break. Do not connect numerical values on two sides of

a break.

General Strategy

A large amount of quantitative information can be packed into a small

region.
Graphing data should be an iterative, experimental process.
Graph data two or more times when it is needed.

Many useful graphs require careful, detailed study.






3

GRAPHICAL METHODS

This chapter is about graphical methods: types of graphs and ways
of encoding quantitative information on graphs. The methods .allow us
to analyze both the overall structure of the data and the detail of the
data.

residuals. These

Section 3.1 discusses two methods, logarithms and
f graphical data

are general purpose tcols that are useful in all areas O
analysis.

one or more sets, Or categories, of

Section 3.2 is about graphing h
Suppose we have

measurements of one quantitative variable. ; :
measurements of the brain weights of three groups of animals: gorillas,
orangoutangs, and chimpanzees. In this example We have one
quantitative variable, brain weight, and a categorical variable, animal
species. The graphical methods of the section let us study and compare
the data distributions: where the sets of data lie along the measurement
scale.

Section 3.3 is about dot charts, which are used to show
measurements of a quantitative variable in which each measurement has
a label associated with it that we want to display on the graph. An
example is the distances of the planets from the sun, each measured
object, a planet, has a distance and a name. Several different forms of
the dot chart are described; the different forms accommodate different
measurement scales and different structures of the measurement labels.

e variables to study

Section 3.4 is about graphing two quantitativ
e used to study how

their relationship; for example, the methods could b
hrain waichtec Af cnnillan Asmn vwnlatad +tn thEir bOdV weights.
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In Section 3.5 the setting is similar to Section 3.4, but now there are
two or more categories of measurements of two quantitative variables.
For example, we might have measurements of brain weights and body
weights of gorillas, orangoutangs, and chimpanzees. The section
presents methods of superposition and juxtaposition of the different
categories of data that allow us to study the relationship of the two
variables and to identify the categories.

Section 3.6 deals with measurements of three or more quantitative
variables; an example is measurements of blood pressure, heart rate,
weight, height, age, and sodium intake for a group of people.
Understanding such multidimensional data is difficult, but the use of
graphical methods in the section can often increase our understanding.

Section 3.7 is about statistical wvariation. There is a general
discussion of the empirical variation in data and the sample-to-sample
variation of a statistic computed from data. Two-tiered error bars are
introduced for showing sample-to-sample variation.

3.1 GENERAL METHODS: LOGARITHMS AND RESIDUALS

Logarithms

Logarithms are one of man’s most useful inventions. They are
indispensable in science and technology and are a vital part of graphical
methods. Their usefulness has been amply illustrated earlier in the

book — for improving resolution and for showing data where percents
and factors are important.

In Figure 3.1, logarithms of the maximum amounts of solar
radiation penetrating ocean water at various ocean depths are graphed
against depth [88]. Until 1984 it was presumed that living things did
not exist in the ocean below about 200 meters because of low light
intensity. In 1984 scientists at the Smithsonian Institution in
Washington, D.C. and the Harbor Branch Foundation in Florida
discovered an alga at a depth of 268 meters in waters off the coast of San
Salvador Island in the Bahamas. The filled circles in Figure 3.1 are
measurements of radiation that the discoverers presented in their paper
and the open circles are values that they extrapolated from the
measured values. The line on the graph is the least squares line fitted to
the measured values.

Logarithms are useful here because radiation changes by five
powers of ten from about 10® at sea level to about 1072 at 268 meters.
Also, it is natural to use a log scale because we would expect attenuation



GENERAL METHODS: LOGARITHMS AND RESIDUALS 105

of the solar radiation, if the transmission properties of the ocean water
are relatively constant, to be multiplicative as a function of depth; if s is
the radiation at sea level and f is the fraction of radiation remaining
after passing through one centimeter of ocean water, then the radiation
at a depth of one centimeter is r(l) = fs, at two centimeters is

R/ & . y oy
r (2) = f%s, and at d centimeters is r(d) = f%s. On a log scale, radiation
is

log(r(d)) = d log(f) + log(s)

and is thus a linear_ function of d. Figure 3.1 shows such an attenuation
process is commensurate with the log measurements, which are roughly
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Figure 3.1 LOG BASE 10. Graphing data on a log base 10 scale is
reasonable when the data go through many powers of 10, as on the vertical
scale of this graph.
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linear with depth. The extrapolated radiation value at 210 meters fits
the pattern of the measured values, but the extrapolated value at 268
meters does not; either the ocean water changes its properties or there
has been a faulty extrapolation. |

Log Base 2 and Log Base e

Log base 10 is almost always used in scientific graphs for a log scale.
This is much too limiting. Log base 2 and log base e (natural
logarithms) should always be considered. Using a different base does
not change the pattern of the points but changes only the values at the
tick marks because the logarithm of one base is just a constant times the

logarithm of another base. The relationship between log base b and log
base c is

log.(x) = logy (x)/logy(c) .

Thus

loga(x) = logio(x)/10g10(2)

and

log, (x) = logio(x)/log1o(e) .

The choice of the base depends on the range of the data values that
need to be visually compared. Suppose the data go through many
powers of 10, as the radiation data in Figure 3.1 do. In such a case it is
reasonable to use log base 10. But suppose the data range over two
powers of 10 or less. This is the case in Figure 3.2; the data are the
number of telephones in the United States from 1935 to 1970 [128,
p. 783]. In such a case it is inevitable that equally spaced tick marks for
log base 10 will involve fractional powers of 10, as Figure 3.2 illustrates.
It is difficult to deal with such fractional powers. It is easy enough to
remember 10°% is a little bigger than 3, but to keep many fractional
powers of 10 in our heads and try to use them to study a graph is
cumbersome. In such a situation it makes sense to convert to log base 2
as in Figure 3.3. It is easier to deal with powers of 2 than fractional
powers of 10. For example, we can see that the number of phones
increased by a factor of about 4 from 1935 to 1960.
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On a log base 2 graph it is often helpful to label one scale line on a
log scale and the other scale line in the original units of the data. This
reduces the amount of mental conversion from the log scale to the
original scale. This second scale, however, does not completely
eliminate mental conversion. Suppose there is a datum at 27 and a
datum at 2'3; the second is greater by a factor of 2°. In order to evaluate
this factor, we must know 2% = 64. Remembering powers of 2 up to 210
is easy:
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Figure 3.2 LOG BASE 10. The data, a time series of the number of
telephones in the United States, are graphed on a log base 10 scale. When
the data range through two or fewer powers of 10, the log base 10 scale is
not as informative since we must deal with fractional powers of 10, as oOn
this graph.
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2! = 2 26 = 64
22 = 4 27 = 128
23 = 8 28 = 256
24 = 16 2° = 512
25 = 32 210 — 1024 .

The computer revolution has made it even easier to remember these
powers. We can go even higher by using the computer scientists” trick:
Let k = 1000 and approximate 1024 = 2!° by k so that
214 = 2% x 219 = 16k = 16,000
and
224 = 2% x 220 = 16k? = 16,000,000 .

Also, the following fractional powers of 2 are easy to remember because
they are very close to simple numbers:

203 = 1.231 = 1.25
205 = 1414 = 1.4
206 — 1516 = 1.5
208 — 1741 = 1.75 .

A trick that can be used to keep the exponents on a log base 2 scale
from getting too large — perhaps we can call it the statistical scientist’s
trick — is to take the original units to be in thousands, millions, or
billions. For example, suppose the data range from 10* meters to 10°
meters. The numbers on a log base two scale range from about 13 to 20.
The trick is to think of the original units as kilometers; now the data
range from 10 to 1000 kilometers and the numbers on the log base 2
scale range from about 3 to 10. This trick was employed in Figure 3.3,
where the units of the vertical scale are log millions of telephones.

Logarithms base e are also useful because they have a wonderful
property. Suppose u and v are values of the data. Let d be their
difference on a natural log scale,

d = log.(v) — log.(u) .

Then if d lies between —0.25 to 0.25, the percent change in going from
u to v, which is

0O—u
u

100 [
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is approximately equal to 100d%. In Figure 3.4 this approximation is
illustrated with made-up data. A is larger than B by about 0.1 on the
natural log scale, so A is about 10% larger than B; B is larger than C by
about 0.25, so B is about 25% larger than C.

Let us see why this approximation works. Let
L =14r
u

then the percent change in going from u to v is 100r%. Now

d = log.(v) — log.(u) = log, [-—Z—] = log.(1+7) .
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Figure 3.3 LOG BASE 2. When the data go through a small number of
powers of 10, log base 2 often provides a useful scale. The left vertical
scale line shows the data in log units and the right vertical scale line shows
the original units.
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But if d is small,

and therefore
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Figure 3.4 NATURAL LOGS. Logarithms base e are sometimes a good
choice for a log scale. If two values on a natural log scale differ by d, where
d is between —0.25 and 0.25, the percent difference of the values is to a
good approximation 100d%. On this graph, A is greater than B by about 0.1
log units, so A is about 10% bigger than B.
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Here are several values of r and d:

log,(14+0.05) = 0.049 log,(1-0.05) = —0.051
log,(140.1) = 0.095 log,(1-0.1) = —0.105
log,(14+0.15) = 0.140 log,(1—0.15) = —0.163
log.(1+0.2) = 0.182 log.(1—-0.2) = —0.223
log,.(1+0.25) = 0.223 log,(1—0.25) = —0.288.

When d is greater than 0.25 or less than —0.25, the approximation is less
accurate and is not as useful.

It is, of course, considerably harder to go pack mentally ti the
original scale from a natural log scale than from base 2 il 10. We -
readily what 23 and 10 are, but e3 is harder. For this reason llt is
particularly important to use one scale line to show the original scale, as
illustrated in Figure 3.4.

If all differences of the data on a natural log scale are€ between
+0.25, the approximation can be used, of course, for any FWO gfraphed
values. This is illustrated in Figure 3.5. The conductlw.ty o oc;an
water [88] is graphed against depth. The range of the‘ data is abqtflft .}1)5
natural log units, so no two measurements on the original scale differ by
more than 15%.

Graphing Percent Change

When the maximum percent variation in the data 1S small, there is
another way to graph the data that shows percent change between any
two values. In Figure 3.6 the left vertical scale line shows the original
data units and the right vertical scale shows percent change of
conductivity from the sea-level value. The right scale shows that alt 100
meters there is about a —5% change in conductivity from sea level and
at 250 meters there is about a —15% change. Because these perc:;nt
changes are small, the percent change in going from 100 meter; e 50
meters is approximately (—15%) — ( —5%) = —10%. Thus, from the I‘ight
vertical scale we can judge the percent change between any tW°. SELa
and not just between the baseline and another value; this appro;umatmn
works well provided the percent changes of the twoO values from the
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baseline both lie between plus and minus 15%, which they always do in
Figure 3.6. In general, a baseline value might be a value for some
special condition, such as sea level in this example, or it might be the
maximum value of the data, the minimum value, or a middle value.

Let us take a closer look at this approximation and why it works.
Suppose b is the baseline value. Let (14+s)» and (1+t)b be two other
values shown along the scale. The percent changes of the two values
relative to the baseline are 100s% and 100t%, respectively; depending on
the value of the baseline, s and t might be both positive, both negative,

or have opposite signs. The percent change in going from (1+s)b to
(1+¢t)b is

1+t)b — (1+s)b 1+t
o = 10p AT — A9 1 404 = g ]
(1+s)b 1+s
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Figure 3.5 NATURAL LOGS. Conductivity is graphed on a natural log
scale. Since the range of log conductivity is about 0.15, 100 times the
difference of any two values can be interpreted as percent change.
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If |s|is small, then

1
1+s 1=s
Thus
14+t
T A+t)(1—s) =1+t —s S

If |s| and |t| are both small, then

ts =0
56 ' l 1 n : 1 o
o
L
L= e
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Figure 3.6 PERCENT CHANGE. The right vertical scale line shows
percent change of conductivity from the sea-level value. Since the
deviations from the baseline are all between =+ 15%, the right vertical scale

line can be used to judge, to a good approximation, the percent changé
between any two values.
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Thus

This means that

c = 100t — 100s .

Here is one example of the approximation. Suppose the baseline is
b =200, and u = 180 and v = 230 are two other values. Then the
change in u relative to b is -10% and the change in v relative to b is
15%. Thus the change in going from u to v is approximately 25%. The
actual value, to one decimal place, is 27.8%.

Residuals

Figure 3.7 is a graph published in 1801 by William Playfair in his
Statistical Breviary [109]. On the graph, the populations of 22 cities are
encoded by the areas of the circles. Playfair, who was part statistical
scientist and part political thinker, was the first person to study
graphical data display and to experiment with graphical methods in a
broad and serious way. In several brilliant strokes he invented many
types of graphs that are in use today. His Commercial and Political Atlas
of 1786 [108] and his subsequent publications contain time series graphs,
bar charts, pie charts, and graphs with data encoded by circle areas and
line lengths. However, some of Playfair’s inventions did not work, as
will be demonstrated in Chapter 4.

The graph in Figure 3.8 was made to see how accurately the circle
areas of Playfair’s graph encode the data; the analysis was inspired by
the observation that the circle area for Turin is slightly less than that for
Genoa, even though the population values recorded on the graph for
these cities are equal. Let Y; be the circle areas and let X; be the
populations. If the areas are to encode the data we should have

Y5=KX,' fori=1tq22,
which on a log scale is

loge(yi) - loge(xi) + loge(K)

or

y,-=x,-+k.
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POPULATION (MILLIDNS)

54.6 148. 4 403. 4 1086. 6
3 ] i | 1 g | 1 | 20. 1
(@}
N 2 - - 7.4
o
<
(s}
a ... L. <
—J ul
oz
- <
& ®
o I = (o} ~ 2.7
=
< o0
=
a (o} L
(o}
(e}
0 - - 1.0
0. 16
o OO o
< 4 L
+ O o
e 0. 08 - b
O (o}
— O
)
< . =
= o
- o
E . OO «dssmsvem Ser eyl . T D PR R RRTPERER e
(o]
o
-4 - o fo) =
I (o}
(o}
S —D0.08 - o = -
(8 4
= (@]
w - (s} L
o
~ o
—D.]Ei I = I T T T |
4 5 (o] 7

NATURAL LOG POPULATION (LOG MILLIONS)

Figure 3.8 RESIDUALS. In the top panel, the areas of the circles in
Playfair’'s graph are graphed against the populations, both on a natural log

- scale. The top panel shows that the points lie close to the line, but there is
too little resolution to study the residuals, which are the vertical deviations.
In the bottom panel the residuals are graphed against the populations and an
interesting pattern in the deviations emerges.
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In the top panel of Figure 3.8, y; is graphed against x;. Areas are
relative to the area of the smallest circle in Figure 3.7, which shows the
value for Edinburgh; that is, one unit of area on the vertical scale of the
top panel in Figure 3.8 is equal to the area of the Edinburgh circle in
Figure 3.7. Since

kmy,-—x,-,

k was estimated by the mean of the 22 values of y; — X;; the estimate is
—4.12. The line y = x — 4.12 is graphed in the top panel in Figure 3.8.

If the encoding by circle area were perfect, the points in the top
panel of Figure 3.8 would lie exactly on the line. The vertical
deviations of the points from the line, which are called residuals, tell us
by how much the actual areas deviate from a perfect encoding. The
values of the residuals are

y; — (x;i—4.12) =vy; — x; + 412, for i =1 to 22

But it is difficult to assess the residuals because the points of the graph
lie in a narrow band around the line, which results in poor resolution of
the residuals.

The resolution of the residuals can be greatly improved by graphing
them against x;. This is done in the bottom panel of Figure 3.8. The
residuals are now much more spread out since we have removed the
overall linear effect. We can interpret the residuals as percent
deviations, as discussed earlier in this section, because a log base e scale
is used and because all residuals are between —0.25 and 0.25 log units.
The largest residual is about 0.15, which means the area of the circle
corresponding to the value is about 15% larger than the ideal area of the
fitted line, and the smallest residual is about —0.15; thus the percent
deviations of the actual areas from the ideal ones range between about
—15% and 15%.

The graph of residuals in the bottom panel also shows an
interesting pattern that is only barely discernible in the top panel. The
residuals are not random as a function of the x; but rather drift in a
correlated way above and below zero. The tendency is for residuals
corresponding to small populations to be positive and residuals for the
larger populations to be negative; this means the circle areas for small
populations tend to be too large and the circle areas for large
populations tend to be too small. This drift in the residuals is curious.
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If the deviation of the actual areas from an ideal encoding were a matter
of measurement error, we would not expect, considering most
mechanisms that might produce errors, to see the drift. More
information about the production process and how the paper of the

original graph has changed through time would be needed to solve the
enigma. '

Graphing residuals is an important method that has applications in

all areas of graphical data analysis. We will look at several other
examples.

Residuals can arise from comparing data with visual references
other than fitted lines. The reference might be a curve, as in the top
panel of Figure 3.9, which graphs made-up data. Judging the vertical
deviations of the points from the curve is difficult because of the rapidly
changing slope. (This issue of graphical perception is discussed in
detail in Section 4 of Chapter 4.) The visual impression from the top
panel is that the residuals are smaller on the right than on the left. The

graph of residuals against x in the bottom panel shows that the opposite
is the case.

Graphing residuals is also illustrated in Figure 3.10, again, by
made-up data. Observations are compared to a theoretical value for each
of eight groups. The two-tiered error bars show 50% and 95%
confidence intervals for the observations. The residuals, which in this
case are the data minus the theoretical values, are graphed in the bottom
panel; the result is increased resolution of the deviations of the data
from the theoretical values and a better comparison of where the

theoretical values lie with respect to the confidence intervals for the
data.

The Tukey Sum-Difference Graph

There is another situation where graphing residuals is helpful.
Suppose y; is graphed against x; for i = 1 to n to see how close x; and y;
are to one another. An example is shown in the top panel of
Figure 3.11. The data on the vertical axis, y;, are the logarithms of
abundances of certain elements in rocks brought back from the moon’s
Mare Tranquillitatis by the Apollo 11 astronauts in 1969 [91, p. 27]. The
data on the horizontal axis, x;, are the logarithms of abundances of the
same elements in basalt from the earth. The purpose of the graph is to

see how the composition of the moon rocks compares with that of
basalt.
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GRAPHING RESIDUALS. The visual impression from the top

panel is that the vertical deviations of the points from the curve are greater
for small x values than for large ones. The graph of residuals in the bottom
panel shows the opposite is true.
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GRAPHING RESIDUALS. In the top panel made-up
observations are compared with made-up theoretical values. The two-tiered
error bars represent 50% and 95% confidence intervals. The residuals,
which in this case are the data minus the theoretical values, are graphed in
the bottom panel; the increased resolution allows us to compare more
effectively where the theoretical values lie with respect to the confidence
intervals.
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Figure 3.11 TUKEY SUM-DIFFERENCE GRAPH. In the top panel two sets
of data with the same measurement scale are graphed to see how c'lose the
corresponding values are. The bottom panel is the Tukey sum-dlf.fefe.nce
graph: y; — x; is graphed against y; + x; This graphical method, \.Nhlc::f !fh:
45° clockwise rotation of the top panel followed by an .expansmn o
vertical scale, allows us to study more effectively the deviations of the pol
from the line y = x.
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In studying the composition data we would like to understand the
values of y; — x;, the amounts by which the abundances differ. On the
the top panel of Figure 3.11, y;—x; is equal to the vertical deviation of
the point (x;, y;) from the line y =x, and x; —y; is equal to the
horizontal deviation of (x;, y;) from the line. As with other graphs,
however, it is difficult to assess the values of these deviations, or
residuals, partly because the resolution of the residuals is poor.

In Figure 3.7, where we studied Playfair’s data, our purpose was to
see how the areas, y;, depend on the population measurements, x;. The
variable y is a dependent variable and x is an independent variable.
For the abundance data in the top panel of Figure 3.11 the situation is
different. Neither variable is dependent or independent; we are seeking
simply to see how the two variables are related, and by how much the
abundances differ. We might look at residuals, in analogy with the
Playfair data, by graphing y; — x; against x;. This, however, does not
treat x; and y; equally, and we could just as well graph y; — x; against y;.

One way to graph y;—x; that takes the equivalence of x; and y; into
account is the Tukey sum-difference graph: y; — x; is graphed against
y; + x;, as illustrated in the bottom panel of Figure 3.11. The sum-
difference graph can be thought of as the result of rotating the points in
the top panel by 45° in a clockwise direction and then allowing the

rotated points to expand in the vertical direction to fill the data region.
To see this suppose

yi+x,°
U, =
2
and
Yi—Xi
U; = .
V2

If we graphed v; against ©; and kept the number of data units per cm
the same as on the graph of y; vs. x;, the points on the new graph
would be exactly a 45° clockwise rotation of the points on the old one.
The reader can rotate the book page 45° clockwise to see how the
configuration of points on this new graph would appear. In the Tukey
sum-difference graph there is no V2, which is a constant factor that does
not affect the configuration of points; also, the number of data units per
cm for y; — x; is not forced to be the same as y; + x;, but rather the

vertical scale is chosen so that the y; — x; fill up the data region that is
available.
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In the bottom panel of Figure 3.11 the expansion of the scale for the
y; — x; now lets us assess these residuals far more effectively than in the
top panel. The left vertical scale line shows differences of log base 10
abundances and the right vertical scale line shows differences of log
base 2 abundances; the right vertical scale line helps us appreciate the
factors since the differences vary only by about two powers of 10.

Figure 3.11 shows that titanium, which is one of the most abundant
elements in both rock types, is higher in the moon rocks by about a
factor of 10. Also, sodium is lower by a factor of about 5. This had
already been discovered by the Surveyor spacecraft in 1967, which also
measured composition in Mare Tranquillitatis. Surveyor landed on the
moon, scooped up a lunar sample, measured abundances by alpha
scattering, and sent the measurements back to earth as strings of zeros
and ones. At the time, some doubted the reliability of the Surveyor
results, in particular the high values of titanium and the low values of
sodium. ‘““Many doubting Thomases had to wait for the first Apollo
landing on the Moon in July of 1969 to be convinced,” wrote Anthony
Turkevich, University of Chicago chemist and one of the developers of
the Surveyor measurement methods [91, p. 23]. And convinced they
were since the rock samples brought back by the Apollo missions
showed the Surveyor measurements had been exceedingly accurate.

3.2 ONE OR MORE CATEGORIES OF MEASUREMENTS OF
ONE QUANTITATIVE VARIABLE: GRAPHING
DISTRIBUTIONS

Frequently, the goal of a data analysis is to study the distribution of
one or more categories of measurements of a quantitative variable. That
is, we want to study where the data for each category lie along the
measurement scale.

An example of the study of distributions is shown in Figure 3.12.
The data are from an experiment [51] on a special type of stereogram
called a random dot stereogram, which was invented by Bela Julesz for
studying visual perception [70, 71]. A viewer sees a three-dimensional
object that is formed by a left and a right image, each of which has the
appearance of tightly packed random dots. Typically, a viewer does not
immediately see the object in such a stereogram, but after concentrating
on the images for a while the object suddenly appears. The data in
Figure 3.12 are the times taken by subjects to see a particular stereogram
in which the viewed object was a spiral ramp pointing toward the
viewer. Subjects were given varying types of prior information about
what they were going to see, to determine if prior information can
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reduce appearance times. In Figure 3.12 there are two groups of
measurements, where the grouping is based on the prior information
given. The NV subjects received either no information or wverbal
information. The VV subjects received a combination of verbal and visual
information. The NV group as whole received less prior information
than the VV group, and the goal is to see if the distribution of the
VV times is reduced compared with that for the NV times.

Point Graphs and Histograms

One standard way to show measurements of a variable or to
compare different sets of measurements of a variable is to graph each set
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Figure 3.12 POINT GRAPH. The data are the times that two groups of
people took to see a complex random dot stereogram. The goal is to
compare the distributions of the two sets of data. In this figure two point
graphs are used to make the comparison.



GRAPHING DISTRIBUTIONS 125

of values along a line. Such a point graph is used in Figure 3.12 to show
the stereogram times.

Another standard method for studying distributions is the histogran,
one of the staples of scientific graphics that has a long history going
back at least to the 19th century. In Figure 3.13 the stereogram times
are shown by histograms. The variable on the vertical scales is percent
of counts — 100 times the number of counts in each interval divided by
the total number of observations, which is 43 for the NV times and 35
for the VV times. Since the numbers of observations are different for
the two groups, using the percent of counts in each interval rather than
the counts themselves provides a more effective comparison of the two
distributions.

A point graph is a reasonable display when the number of
observations is not large. In Figure 3.12 we probably have reached the
upper limit of the number of values that can be effectively shown
without offsetting the plotting symbols in the horizontal direction to
avoid overlap. When the number of values is large, or even moderate,
the histogram is the better display to use. This is illustrated in
Figure 3.14; the histogram shows redshifts of quasars from a catalog
compiled by Adelaide Hewitt and Geoffrey Burbidge, two astronomers
at the Kitt Peak National Observatory in Tucson, Arizona [59].

It should be remembered that a histogram reduces the information
in the data. A measured value, such as redshift, is itself usually an
interval of values because there is limited accuracy in measuring devices
and because data are often rounded. When a histogram is made, the
interval width of the histogram is generally greater than the data
inaccuracy interval, so accuracy is lost. As we decrease the interval
width of a histogram, accuracy increases but the appearance becomes
more ragged until finally we have what amounts to a point graph. In
most applications it makes sense to choose the interval width on the
basis of what seems like a tolerable loss in the accuracy of the data; no
general rules are possible because the tolerable loss depends on the
subject matter and the goal of the analysis. (One exception to this
statement is the very small fraction of cases in which the purpose of the
histogram is to estimate a probability density rather than to simply
show the data [44, 114]; this usage will not be treated here.)

Point graphs and histograms certainly do a good job of showing us
individual distributions of data sets, but they generally do not provide
comparisons of distributions that are as incisive as methods that will be
described later in this section. From Figures 3.12 and 3.13 there is a
suggestion that the VV times are less than the NV times — that is, that
the increased prior information given to the VV group reduced viewing
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Figure 3.13 HISTOGRAM. Each histogram shows the percentage of
values in intervals of equal length. The histogram does a good job of

displaying each data set, but is usually not as effective for comparing
distributions as other methods.
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times — but the two graphs give us little quantitative information about
the magnitude of the difference.

Percentile Graphs

Figure 3.15 shows percentile graphs of the two distributions of
stereogram times. A pth percentile of a distribution is a number, g, such
that approximately p percent of the values of the distribution are less
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Figure 3.14 HISTOGRAM. In most applications it makes sense to choose
the interval width on the basis of what seems like a tolerable loss in
accuracy of the data. In this example the width is 0.1 units.
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than or equal to g; p is the p-value of q. Suppose x; is the smallest
observation in a data set, x, is the next to smallest, and so forth up to x,,
which is the largest observation. For example, if the data are

5 1 9 3 14 9 7
then

x1=1 X =23 X3 =15 X4 =17 x5 =9 X =9 xy =14 .

We will take x; to be the p;th percentile of the data where

i—0.5
n
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Figure 3.15 PERCENTILE GRAPH. On each panel, the data are graphed
against their p-values. The p-value for an observation is very nearly the
percentage of the data that is less than or equal to the observation; the
observation is said to be the pth percentile.
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For the above set of seven values
p1=100(1 —05)/7=7.1

pr=100(2 — 0.5) /7 =214
and so forth to

p7 = 100(7 — 0.5) /7 = 929 .

On the percentile graph each x; is graphed against its p-value, p;.

Subtracting 0.5 in the formula for the p-value of x; is a convention
in statistical science [21] and arises from the desire toO make the
definition of the percentile of a set of data as consistent as possible with
the concept of the percentile of a theoretical probability distribution,
such as the normal. One piece of heuristic reasoning that might satisfy
some is the following: Suppose x; is the result of rounding. When we
count how many observations are less than or equal to x;, we count only
1/2 for x; itself, because there is a 50-50 chance that the actual value of
the observation is less than or equal to x;, the recorded value. But. for
percentile graphs the subtraction of 0.5 is a trivial issue that has little
affect on the visual appearance of the display.

Percentile graphs are often more effective for comparing data
distributions than point graphs or histograms because the p; are shown,
which means corresponding percentiles can be compared. For examgle,
in Figure 3.15 we can easily see that the 50th percentile, or the median,
of the NV times is slightly less than 3 log, seconds; this median value
can be compared with that of the VV times, which is about 2 log,
seconds. Comparing percentiles is usually the most informative way to
compare two distributions; we will return to this point later.

Box Graphs

It is sometimes enough, in order to convey the salient features of
the distribution of a set of data, to show just a summary of the data.
One such summary, shown in Figure 3.16, is the Tukey box graph [125].
The five horizontal lines on each box graph portray five percentiles
whose p-values, from bottom to top, are 10, 25, 50, 75, and 90. All
values in the data set above the 90th percentile and below the 10th
percentile are graphed, as on a point graph.
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We need a rule to compute the percentiles that appear on the box
graph. So far, we know only that x; is the p;th percentile. It is not
always the case that the p; will happen to include the numbers needed
for the box graph. For the example introduced earlier, the x; and p; are

'u
2

Pi
1 7.1

3 21.4
5 39.7
7 50

9 64.3
9 78.6
14 029

N &N o WON -

In this example, one of the x; happened to be the 50th g ile,
however, none of the other box graph percentiles appear. We .. 3et
other percentiles by linearly interpolating the x; and p; values.

Here is a simple way to do the linear interpolation. Let p be the p-
value of the percentile. We want a value of v such that

v—0.5

n

100 =p.

Solving for v we get

v 100 0.5.

If v turns out to be an integer then x, is the pth percentile. However, v
will often not be an integer. Let k be the integer part of v and let f be

the fractional part; for example, if v = 10.375 then k = 10 and f = 0.375.
The pth percentile using linear interpolation is

(A=f)xx + fxx+1 .

Let us apply this to the computation of the 25th percentile for the above
set of seven values.
7° 25
100

+ 0.5

= 2.25.
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The 25th percentile is
0.75 x5 + 0.25 x3
=075-3+025-5

=3.5.

The interpolation rule always leads to a simple result for the 50t‘h
percentile; if n is odd, it is the middle observation, X(;+1)/2 and if n 18
even, it is the average of the two middle observations, x, /2 and x,/2+1-

Box graphs have many strengths. One is that the chosen percentiles
can be compared effectively. For example, in Figure 3.17 we can see
easily that the 50th percentiles of the NV times and VV times differ by
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Figure 3.16 TUKEY BOX GRAPH. A box graph shows selected
percentiles of the data, as illustrated in this figure. All values beyond the
10th and 90th percentiles are graphed individually as on a point graph.
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roughly one logs,; second, or a factor of 2. A second strength is that by
graphing the large and small values, unusual values are not swept
under the rug as they often are when the summary of the distribution
consists of a sample mean and a sample standard deviation. (This point
will be discussed further in Section 3.7.) Finally, box graphs can be
used even when the number of distributions is not small.

In Figure 3.18 ten distributions are compared by box graphs. The
data on the vertical axis are the payoffs from 254 runnings of the daily
New Jersey Pick-It Lottery from May 22, 1975 to March 16, 1976 [102],
just after the lottery began. In this game a player picks a three-digit
number from 000 to 999. It costs 50¢ to bet on one number. Players
who selected the winning number share the prize, which is half of the
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Figure 3.17 BOX GRAPH. Box graphs are an excellent way to compare
distributions because they allow us to compare corresponding percentiles.
In this example we see the 50th percentile of the NV times is greater than
that for the VV times by about one log, second, or a factor of 2.
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money bet on that day. Since the drawing of the winning number is
random, so that all numbers are equally likely, the best strategy is to
pick a number that few other people are likely to pick.

The payoffs in Figure 3.18 have been divided into ten groups
according to the winning number. The first group, labeled “0”, is
winning numbers from 000 to 099; the second group is 100 to 199; the
third group is 200 to 299; and so forth. Thus the ten box graphs give a
comparison of the ten distributions of payoffs.
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Figure 3.18 BOX GRAPH. The vertical scale is payoff of the New Jersey
lottery, or numbers game, in which a player picks a three-digit number from
000 to 999. Winners share half of the pot. Each box graph shows the
distribution of payoffs for all numbers with a particular leading digit. A
leading digit of zero has the highest payoffs because fewer people tend to
pick them. As the leading digit increases from one to nine the payoffs
increase in a zigzag fashion, showing odd first digits are preferred to even.
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Figure 3.18 has a clear message: the payoffs for numbers starting
with zero tend to be high, which means bettors avoid them. One
exception to this behavior is a zero-starting number with a payoff
around $100, which is nearly the lowest value of all payoffs; in this case
the winning number was 000, and it is not surprising that it was a
popular one. There is an interesting trend in the remaining nine
groups of numbers. The payoffs tend to increase in going from the
smaller to the larger numbers, but in a zigzag fashion, suggesting that
odd first digits are preferred to even.

If bettors’ choices were uniformly distributed over all the numbers,
the expected payoff would be $250 (not $500 since the state takes half of
the money). However, the graph suggests that by the right choice of a
number with a leading 0 we might be able to push the expected payoff
above $500, the break-even point. Unfortunately, this is no longer true.
Richard Becker and John Chambers showed that as time went along
New Jersey Pick-It players caught on, the distribution of chosen
numbers became more nearly uniform, and the maximum payoffs
declined and rarely exceeded $500 [9].

The details of the box graph given in Figure 3.16 are not meant to
create dogma. Variations are often sensible. Figure 3.16 is already a
variation of the original method, which is called a box plot by its
inventor, John Tukey [125]. In a particular application it might make
sense to choose other percentiles or to eliminate the graphing of the
individual large and small values or to draw the box graphs horizontally
rather than vertically. Also, procedures other than linear interpolation
can be used to compute percentiles. One simple rule is to select the x;
whose p; comes closest to the p-value of the desired percentile. In the
above example the 25th percentile would be 3 using this procedure,
since its p-value, 21.4, is closest to 25. If n is not small, say n is greater
than 50, linear interpolation and this procedure will usually give similar
results.

Percentile Graphs with Summaries

The percentile graph and the box graph can be combined as in
Figure 3.19 to form a percentile graph with summary. The horizontal
reference lines show the five percentiles of the box graph; this allows us
to compare these five percentiles with more visual efficiency than if the
reference lines were not there.
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Percentile Comparison Graphs

The percentile comparison graph was invented in 1966 by Martin Wilk
and Ram Gnanadesikan [135]. It is not widely known in science and
technology, but its use deserves to spread because of its enormous

power for comparing two data distributions.

When distributions are compared, the goal is usually to rank the
categories according to how much each has of the variable being
measured; for the stereogram times we want to know which group took
more time, and for the lottery data we are interested in finding the

leading digits that give the highest payoffs.

The most effective way to investigate which of two distributions has
more is to compare the corresponding percentiles. This was the
insightful observation of Wilk and Gnanadesikan and their invention
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Figure 3.19  PERCENTILE GRAPH WITH SUMMARY. The five percentiles
of the box graph are shown on a percentile graph by horizontal lines.
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could not be more simple or elegant — graph the percentiles of one
distribution against the corresponding percentiles of the other
distribution. For example, we might graph the 50th percentile of the
first data set against the 50th of the second data set, the 75th percentile
of the first against the 75th percentile of the second, and so forth.

The top panel of Figure 3.20 is a percentile comparison graph; the
two data sets are the scores of males and the scores of females on the
verbal SAT test in 1983 [111]. There were 464,733 people in the males’
data set and 497,809 in the females” data set. The highest possible score
on the test is 800 and the lowest is 200. The following are the p-values
of the percentiles of the distributions that are shown on the graph: 1
2 3 4 5 10 20 30 40 50 60 70 80 90 95 96 97 98 99.
The point in the lower left corner of the data region is the 1st percentile
for the males against the 1lst percentile for the females, and the point in
the upper right corner of the data region is the 99th percentile for the
males against the 99th percentile for the females. The bottom panel of
Figure 3.20 uses the Tukey sum-difference graph, discussed in
Section 3.1, to give a clearer picture of the differences of the percentiles.

How do we make the percentile comparison graph? Suppose, first,
that there is a moderate number of observations in the smaller of the
two data sets, say no more than 50. Let x4,...,x, be the first data set,

ordered from smallest to largest, and let y,,...,y,, be the second set of
data, also ordered.

Suppose m = n. Then y; and x; are both 100(i—0.5)/n percentiles of
their respective data sets, so we would make the percentile comparison
graph by graphing y; against x;. Thus in the m = n case the graph is
quite simple — we just graph the ordered values for one group against
the ordered values of the other group.

Suppose m < n. Then y; is the 100(i—0.5)/m percentile of the y
data, so on the percentile comparison graph we graph y; against the
100(i—0.5)/m percentile of the x data, which typically must be computed
by interpolation. Thus in the case of an unequal number of
observations in the two data sets, there are as many points on the graph
as there are values in the smaller of the two data sets.

Figure 3.21 illustrates the unequal case; the display is a percentile
comparison graph of the stereogram data: the 43 NV times and 35
VV times. There are 35 points on the graph. For example, the 9th VV
time is y9 = 1.0 log, seconds; this is a percentile with p-value 24.3, and
it is graphed against the 24.3 percentile of the NV times, which was
computed by interpolating the 10th and 11th NV times, y;9 and y;;; the
interpolated value is 0.06 y;9 + 0.94 y;; = 1.62 log, seconds.
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Figure 3.20 PERCENTILE COMPARISON GRAPH. The percentile
‘comparison graph, illustrated in the top panel, is a simple but powerful tool
for comparing two distributions. Percentiles from one distripytion are
graphed against corresponding percentiles from the other distribytion. The
data in this figure are scores of males and females on the verba| gaAT test.
The percentiles compared are 1, 2,..., 5; 10, 20,.., 90; and 95, gg .. gg.
The bottom panel is a Tukey sum-difference graph of the values 5 the top
panel. The graph shows that throughout most of the range of the
distribution, scores of males are about 10 points higher.
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Figure 3.21 PERCENTILE COMPARISON GRAPH. In the top panel
percentiles of the VV times are graphed against corresponding percentiles of
the NV times. The bottom panel is a Tukey sum-difference graph.
Throughout the entire range of the distribution the NV times are greater than

the VV times; the average increase is about 0.6 Iog2 seconds, which is a
factor of 1.5.
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Suppose the smaller of the two data sets has a large number of
values. For example, for the SAT data the smaller group, the males, has
464,899 values. We do not need, of course, to graph 464,899 points,
because far fewer points can characterize the differences between the
two distributions. In such a case a liberal helping of percentiles, with
p-values ranging from close to 0 to close to 100, can be graphed against
one another. In many cases, as few as 15 to 25 percentiles can
adequately compare the two distributions. This procedure was used for
the percentile comparison graph of the SAT scores in Figure 3.20-

The question of which of two distributions has more and by how
much is a simple one whose answer can be complicated. The percentile
comparison graph, by giving us a detailed comparison of the two
distributions, can show whether the answer is simple or complicated,
and if complicated, just what the complication is. This will be
illustrated by several examples.

Figure 3.20 shows that the way in which the scores of males and
females differ is relatively simple. Throughout most of the range of the
distribution the males’ percentiles are about 10 points higher than the
females’ percentiles, but at the very bottom end the difference tapers off.
Thus a reasonable summary of the pattern of the points is a line parallel
to the line y = x with an equation y = x + 10. The comparison of the
two distributions can be summarized by the simple statement, the males’

scores are about 10 points higher throughout most of the range of the
distributions.

Figure 3.22 is a percentile comparison graph of made-up test scores.
The pattern is a line through the origin with equation y = 0.8x. Now it
is not true that the corresponding percentiles differ by a constant
amount as they did for the verbal SAT scores: now the high percentiles
differ by more than the low ones. But because the general pattern is a
line through the origin with slope 0.8, the percentage decrease of the
males’ scores is a fixed amount. That is, because the males’ scores, ¥, are
approximately related to the females’ scores, x, by y = 0.8x, W€ have
(y—x)/x = —0.2, which means the males’ scores are approximately 20%
lower throughout the range of the distribution.

If we were to take the logarithms of the values in Figure 3.22 the
multiplicative pattern would be transformed into an additive pattern
like Figure 3.20. In Figure 3:21,; logarithms performed such a
multiplicative-to-additive transformation for the stereogram times. The
general pattern of the points in Figure 3.21 is a line, y =x + k, where k
is about 0.6 log, seconds. Had we graphed the points without taking

logarithms the general pattern would have been a line through the
origin with slope 2%¢ = 1 '

L] -



140 GRAPHICAL METHODS

Figure 3.23 compares two other sets of hypothetical scores. The
pattern of the data is a line with a slope less than 1; the line y = x
intersects this pattern at the 50th percentiles of the distributions. The
50th percentiles of the two groups are equal, but the distributions differ
in a major way: the high scores for the females are higher than the
high scores for the males, and the low scores for the males are higher
than the low scores for the females. The two distributions are centered
at the same place but the females’ scores are more spread out.

Figure 3.24 also compares hypothetical scores. Throughout most of
the range of the distribution, males and females are the same, but at the
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Figure 3.22 PERCENTILE COMPARISON GRAPH. The data are
hypothetical test scores. Since the points lie close to a line through the
origin with slope 0.8, scores of males are about 20% lower throughout most
of the range of the distribution.
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Figure 3.23 PERCENTILE COMPARISON GRAPH. The points lie close.to
a line that has slope less than one, and the 50th percentiles li¢ on the line
y = x. Thus the 50th percentiles, or middles, of the two distributions are the
same but the female scores are more spread out.
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points. The way in which the scores of males and females differ is
considerably more complicated than the simple linear patterns in some
of the previous percentile comparison graphs.

Means are often used to characterize how two distributions differ,
but this often misses important information or worse yet, misleads. The
mean scores for the math test are 445 for the females and 493 for the
males, a difference of 48. Using just the means misses the important fact
that high scorers, middle scorers, and low scorers differ by different
amounts. Data distributions can be complicated, and when they are, the
percentile comparison graph can reveal the complication to us.
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Figure 3.24 PERCENTILE COMPARISON GRAPH. Throughout most of the
range of the distribution, male and female scores are nearly the same, but
for the very highest percentiles, female scores are higher.
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Figure 3.25 PERCENTILE COMPARISON GRAPH. The top panel is a
percentile comparison graph of scores of males and females on the math
SAT test. The same percentiles graphed in Figure 3.20 are graphed here.
The bottom panel is a Tukey sum-difference graph of the values in the top
panel. The graph shows that for the top half of the distributions, scores of
males are typically 55 to 60 points higher, and that for the bottom half the
difference ranges from 10 to 55 in going from the lowest percentiles to the
50th. The average scores, 445 for the females and 493 for the males, do
not convey nearly as much information about how the two distributions differ.
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3.3 ONE QUANTITATIVE VARIABLE WITH LABELS: DOT
CHARTS

Ordinary Dot Charts

We often need to display measurements of a quantitative variable in
which each value has a label associated with it. Figure 3.26 shows an
example. The data are from a survey on the amount of use of graphs in
57 scientific publications [27]. For each journal, 50 articles from the
period 1980-1981 were sampled. The variable graphed in Figure 3.26 is
the fraction of space of the 50 articles devoted to graphs (not including
legends) and the labels are the journal names. Figure 3.26 is a dot chart,
a graphical method that was invented [28] in response to the standard
ways of displaying labeled data — bar charts, divided bar charts, and
pie charts — which usually convey quantitative information less well to
the viewer than dot charts. (This is demonstrated in Section 4 of
Chapter 4.)

When there are many values in the data set, as in Figure 3.26, the
light dotted lines on the dot chart enable us to visually connect a
graphed point with its label. When the number of values is small, as in
Figure 3.27, the dotted lines can be omitted, since the visual connection
can be performed without them.

The data in Figure 3.27 are the ratios of extragalactic to galactic
energy in seven frequency bands [93], where energy is measured per
unit volume. The frequencies in the seven bands increase in going
from the top of the graph to the bottom. In five of the seven bands the
galaxies have much higher intensities than the space between galaxies.
One of these five bands is visible light; this should come as no surprise
since on a clear night on the earth we can see galactic matter in the
form of stars (or light reflected from a star by our moon) and only
blackness in between. For microwaves and x-rays there is much more
energy coming from outside the galaxies. The extragalactic microwave
radiation, discovered by Nobel prize winners Arno Penzias and Robert
Wilson of AT&T Bell Laboratories in 1965 [107], has an explanation: it is
the remnant of the big bang that gave our universe its start. But the
extragalactic x-ray radiation remains a mystery whose solution might
also tell us something fundamental about the structure of the universe.

When they appear, the dotted lines on the dot chart are made light
to keep them from being visually imposing and obscuring the large dots
that portray the data. When we visually summarize the distribution of
the data, the data dots stand out and the graph is a percentile graph,
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Figure 3.26 DOT CHART. A dot chart shows the fraction of space
devoted to graphs for 57 scientific journals. The dot chart is a graphical
method for data where each numerical value has a label. The dotted lines,
which enable us to connect each value with its label, end at the data dots

because the baseline is zero.
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provided the data are ordered from smallest to largest. When we want
to emphasize this distribution, a p-value scale can be put on the right
vertical scale line as in Figure 3.28.

The data in Figure 3.28 are the per capita state taxes (sales, income,
and fees for state services) in the 50 states of the U.S. during the fiscal
year 1980 [137, p. 116]. The graph shows that state taxes vary by a factor
of about 3. New Hampshire, the state where so many presidential
candidates have gotten their start, or their finish, is clearly a state ready
to listen to candidates who advocate lower taxes.
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Figure 3.27 DOT CHART. The dotted lines are omitted because the
labels and the numerical values can be visually connected without them.
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DOT CHART. When the data are ordered from smallesr: ;3
largest, the dot chart provides a percentile graph; the p-values are shov; i
the right vertical scale line. The dotted lines go all of the way aC'O:ed at
graph. The baseline is a number near 275, and if the dotted lines en75 oo
the data dots, line length would encode taxes minus a number near 2

has no significant meaning.
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When there is a zero on the scale of a dot chart, or some other
meaningful baseline value from which the dotted lines emanate, then
the dotted lines can end at the data dots, as in Figure 3.26. The dotted
lines should go across the graph when the baseline value has no
particular meaning, as in Figure 3.28. Here is the reason. When the
dotted lines stop at the data dots, there are two aspects of the graphical
symbols that encode the quantitative information — the lengths of the
dotted lines and the relative positions of the data dots along the
common scale. The lengths of the dotted lines encode the magnitudes
of the deviations from the baseline. In Figure 3.26 the baseline is zero,
so line length encodes the fractional graph areas, which is perfectly
reasonable. However, if the baseline value has no important meaning,
the deviations have no meaning. Suppose that in Figure 3.28 the dotted
lines ended at the data dots. Then line length would encode taxes
minus a number around 275. Since this number has no significant
meaning in this application, line length would be encoding meaningless
values; changing line length would be wasted energy and might even
have the potential to mislead. By making the dotted lines go across the
graph in Figure 3.28, the portions between the left vertical scale line
and the data dots are visually de-emphasized.

The dotted lines also should go across the graph when there is a
scale break, as in Figure 3.29, which graphs speeds of animals [136]. If
we stopped the dotted lines at the data dots in this figure, those that
were broken by the scale break would not have any meaning, even
though the baseline is meaningful.

Two different methods can be used to put scale breaks on dot
charts. One, shown in Figure 3.29, is to use a vertical full scale break.
A second method, shown in Figure 3.30, can be used when better
resolution is needed on one or both sections of the scale; for example,
the resolution of the scale for the slowest four animals is considerably
better in Figure 3.30 than in Figure 3.29.
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Figure 3.30 DOT CHART. This method can be used to break the scale of
a dot chart when better resolution is needed on one or both panels formed
by a vertical full scale break.
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Two-Way, Grouped, and Multi-Valued Dot Charts

Figure 3.31 is a two-way dot chart, a method for showing labeled data
that form a two-way classification. In this case the two-way data are the
percentages of U.S. immigrants from six groups of nationalities duxilng
four time periods [76]. (The percentages add to 100% for each time
period.) An observation is classified by the time period and the
nationality group. Each column of the graph shows the values for one
time period and each row shows one nationality. The graph portrays
clearly the data’s main event: The proportions for Europeans ax}d
Canadians have decreased through time and those for Asians and Latin
Americans have increased.

Another way to show two-way data is by a grouped dot chart. In
Figure 3.32 the immigration data are grouped by nationality group and
in Figure 3.33 they are grouped by time period. The first grOuPed ,dOt
chart emphasizes the changes through time and the second emphasizes
the mixture of nationality groups for each time period.
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Figure 3.31 TWO-WAY DOT CHART. The two-way dot chart can be used
to show data classified by two factors. In this example the data are the
percentages of immigrants in six nationality categories for four time perlods.
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A final way to show two-way data, provided O'neZOfd :i}:)f CZ":;
groupings has a small number of categories, is the multi-va -ufe e Thas
in Figure 3.34. The data are the immigration percentages for ]
first and last time periods.

1931 - 1960

N & W EUROPE
S & E EUROPE
CANADA

ASIA

LATIN AMERICA
OTHER

1961 - 1970

N & W EUROPE
S & E EUROPE
CANADA

ASIA

LATIN AMERICA
OTHER

1971 - 1976

N & W EUROPE
S & E EUROPE
CANADA

ASIA

LATIN AMERICA
OTHER

1977 - 1979

N & W EUROPE
S & E EUROPE
CANADA

ASIA

LATIN AMERICA
OTHER

......................................

..........

. ..
...............
......................................

......................................

........
.............
.......................................

PERCENT

. : ed by
Figure 3.33 GROUPED DOT CHART. The immigration data :,et?n:oeugeriod.
time. This emphasizes the mixture of nationality groups for ea



154 GRAPHICAL METHODS

3.4 TWO QUANTITATIVE VARIABLES

Many scientific investigations are aimed at discovering how two
quantitative variables are related. An example is measurements of
caloric intake and blood sugar levels for a group of people, where the
purpose is to discover how the two variables are related. In a two-
variable study we often want to find out how one, the dependent variable,
depends on the other, the independent variable. For example, we might
want to know how blood sugar depends on caloric intake. This section
is about graphing two quantitative variables.

Overlap: Logarithms, Residuals, Moving, Sunflowers, Jittering, and
Circles

In Section 2 of Chapter 2 it was pointed out that a recurring
problem of graphing two variables is overlapping plotting symbols,
which is caused by graph locations of different values being identical or
very close. When overlap occurs, different plotting symbols can obscure

o 1931 — 1960 ® 1977 — 1979
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Figure 3.34 MULTI-VALUED DOT CHART. The dot chart is muiti-valued
because there is more than one value on each line.
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one another and we can lose an appreciation of the Va}l}les o.f the data.
Methods that help avoid a loss of visual distinguishability will now be

described.

When both scales of a two-variable graph have poor resolution,
severe overlap can occur. This is illustrated in Figure 3.35, which shows
brain weights and body weights of 27 animal species [113, p. 39]. The
values of each variable are skewed to the right, that is, most of the data
are squashed together near the origin and a few V.alues stretch out
toward the high end of the scale. In Section 1 of this chaRter and in
Section 4 of Chapter 2 we have seen that taking logarithms an.d
graphing residuals are two methods that can improve resolution; for this
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Figure 3.35 OVERLAP. Overlapping plotting symbols must be visually
distinguishable. If the resolution along both scales of a two-variable graph is
poor because the measurements are skewed, overlap can cause problems,

as on this graph.
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reason these two methods can reduce or eliminate overlap. For
Figure 3.35, logarithms solve the problem; in Figure 3.36 logarithms are
graphed and now there is no overlap.

The top panel of Figure 3.37 shows data on magnetic moments and
beta decays of mirror nuclei [19]. Theory suggests that the variable on
the vertical scale is linearly related to the variable on the horizontal
scale, and the data support the theory since the points lie close to the
line on the graph, which was fitted using least squares on all but three
of the points. Plotting symbols on the graph overlap because the data
are squashed together along the line. Graphing residuals in the bottom
panel of 3.37 improves the resolution and nearly eliminates the overlap.
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Figure 3.36 LOGARITHMS. The logarithms of the data in Figure 3.35 are
graphed and now there is no overlap. Taking logs will often alleviate the
overlap caused by skewed positive data.
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Figure 3.38 MOVING. If the number of overlapping plotting symbols is
small, the graph locations of the points can be altered slightly to reduce the

overlap. On this graph, symbols that just touch one another have been
moved vertically.
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Information now can be added to the graph; the numbers by the points
are mass numbers and points graphed with unfilled circles are those
omitted in the least squares fit. The two panels of Figure 3.37 show far
more about the data than the top panel alone.

Another method for fighting overlap that works well if the number
of overlapping symbols is small, is to move slightly the graph locations
of certain points. This has been done in Figure 3.38; the data are from
an experiment on the production of mutagens in drinking water [23].
Any symbol that touches another has had its actual location altered
slightly. It is, of course, important to mention this movement if the
graph is used to communicate quantitative information to others.

Sunflowers are a graphical method that can relieve exact and partial
overlap [34]. They are illustrated with geological data in Figure 3.39 [25]
and with data on graphical perception in Figure 3.40 [35]. A dot by
itself means one point. A dot with line segments (petals) means more
than one point; the number of petals indicates the number of points.
The method is helpful when there is exact overlap or when many points
are crowded into a small region. For the data in Figure 3.40 there is
exact overlap; for Figure 3.39 the overlap is not exact, but points are
very close to one another. When there are a large number of points on
the graph there is a need for a sunflower algorithm: partition the data
region into squares, count the number of points in each square, use
sunflowers to show the counts, and position them in the centers of the
squares.

The data in Figure 3.40 are from a perceptual experiment that will
be discussed in detail in Section 3 of Chapter 4 [35]). Subjects judged the
distances of four points — A, B, C, and D — from a line and recorded
the percents that the B, C, and D distances were of the A distance. The
true percents for B, C, and D were 52.5%, 47.5%, and 57.5% respectively.
Figure 3.40 graphs the judged percents for D against the percents for B
for 126 subjects. The graph was made to see if the judgments are
correlated, an important issue whose answer affected the way the data
were analyzed. The graph shows clearly that there is a large amount of
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Figure 3.39 SUNFLOWERS. Each symbol with lines emanating from a dot
is a sunflower. The number of petals (lines) is the number of data points at
or near the center of the sunflower; sunflowers can be used to solve the
overlap problem.
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correlation. There is substantial overlap of the graph locations because
answers tended to be multiples of 5. Figure 3.41 shows a scatterploF of
the judgments with the overlap problem ignored, and only 51 points

appear; not showing the multiplicity is misleading.

Another solution for exact overlap of graph locations is jittering:
adding a small amount of random noise to the data before graphing [,21]'
This is illustrated in Figure 3.42 for the perception data. Jittering 1S a
simpler remedy than sunflowers, but does not help, as sunflowers can,
when resolution is degraded by a large number of partially overlapping
symbols.
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Figure 3.40 SUNFLOWERS. The sunflowers in this example alleviate
exact overlap in the data.
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If there is only partial overlap and no exact overlap, using an
unfilled circle as the plotting symbol can improve the distinguishability
of individual points [34]. This is illustrated in Figure 3.43. Circles can
tolerate substantial partial overlap and still maintain their individuality.
(Examples outside the graph domain are the symbol of the Olympics
and the three-ring sign for Ballantine beer.) The reason is that distinct
circles intersect in regions that are visually very different from circles.:

Squares, rectangles, and triangles do not share this property and
degrade more rapidly.
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Figure 3.41 OVERLAP. This graph shows the resuit of graphing the data

in Figure 3.40 and ignoring the overlap. Not indicating the multiplicity is
misleading.
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Box Graphs for Summarizing Distributions of Repeat Measurements of
a Dependent Variable

Suppose the data consist of many repeat measurements of a
dependent variable, y, for each of several different levels of an
independent variable, x. One way to graph such data is illustrated in
Figure 3.44. Each box graph portrays 25 values of the dependent
variable for each of 11 distinct values of the independent variable; the
center of the box graph is positioned horizontally at the value of the
independent variable. In a sense we are back to the setting of
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Figure 3.42  JITTERING. Another way to fight exact overlap is to add a
small amount of random noise to the data. Now all of the data from
Figure 3.41 can be seen.
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Section 3.2 on graphing distributions, since the goal is to see how the

distribution of the measurements of the dependent variable changes as
the independent variable changes.

The data in Figure 3.44 are from an interesting experiment in bin
packing [11]}: k numbers, called weights, are randomly picked from the
interval zero to u, where u is a positive number less than or equal
to one; for the data in Figure 3.44, u was 0.8. There are bins of size one
and the object is to pack the weights into those bins; no overflowing is
allowed, and we can use as many bins as necessary, but the goal is to
use as few as possible. Unfortunately, to do this in an optimal manner
is an NP-complete problem, which means that for anything but very
small values of k the computation time is enormous. Fortunately, there
are heuristic algorithms which, while not optimal, do an extremely good
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Figure 3.43 CIRCLES. Unfilled circles are good plotting symbols since
they tend to maintain their individuality when there is partial overlap.
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job of packing. Mathematicians and computer scientists had st.udled the
worst-case behavior of bin packing [37] but there came a point where
many appreciated that average behavior was an important issu€ as well;
algorithms can be studied profitably by probing them with 11.1P1.1t8,
sometimes randomly generated, and wusing graphs and statistical
methods to study the results [11].

In Figure 3.44 the horizontal scale shows the number of weights, k,
on a log base 10 scale. k varies from 125 to 128,000 by steps of a
factor 2; that is, the first number is 125, the second is 250, al.’ld so forth
up to 125 x 219 = 128,000. There were 25 runs of the bin packing
procedure for each value of k; for each run, k weights were chosen
randomly from the interval 0 to 0.8 and a packing carried out. The
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Figure 3.44 BOX GRAPHS FOR REPEAT MEASUREMENTS OF A
DEPENDENT VARIABLE. The purpose of the graph is to see how the
dependent variable, the variable on the vertical axis, depends on the
independent variable, the variable on the horizontal axis. For each value of
the independent variable there are 25 measurements of the dependent
variable; the distribution of these 25 values is summarized by a box graph.
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algorithm used to do the packing was first fit decreasing: The weights are
ordered from largest to smallest and are packed in that order. For each
weight the first bin is tried; if it has room, the weight is inserted and if
not the second bin is tried; if the second bin has room, the weight is
inserted and if not, the third bin is tried; the algorithm proceeds in this
way until a bin with room, possibly a completely empty one, is found.
The vertical scale in Figure 3.44 is the logarithm base 2 of the amount of
empty space in the bins that have at least one weight. Since the bin
size is one, this amount of empty space is equal to the number of bins
used minus the sum of the weights. In this example, empty space is the
dependent variable and number of weights is the independent variable.

What does Figure 3.44 show us about bin packing? One thing is
that the first-fit-decreasing algorithm is very efficient. The amount of
empty space is never greater than 8 in these runs. For runs of size
128,000 the performance is superlative; the median empty space is
about 4 even though the sum of the weights in this case averages
128,000 x 0.8/2 = 51,200. The figure also shows that median log empty
space grows nonlinearly with log number of weights, although the
pattern becomes linear for large numbers of weights. This latter result
is predicted by a theorem about the asymptotic behavior of empty
space [12]. Figure 3.44 also shows that for the smaller numbers of
weights there are outliers: values that are large compared to the
majority of the values.

Strip Summaries Using Box Graphs

Box graphs can be used even when there are no repeat
measurements of the dependent variable by grouping the data according
to the values of the independent variable. This grouping is illustrated
in Figure 3.45. The data have been divided into five groups by vertical
strips with as nearly an equal number of observations in each strip as
possible. In Figure 3.46 box graphs summarize the distributions of the y
values for the five strips. Each box graph is centered, horizontally, at
the median of the x values for its strip.

The data in this example, which were also graphed in Section 2 of
Chapter 2, are from an experiment on 144 hamsters in which their
lifetimes and the fractions of their lifetimes they spent hibernating were
measured [89]. The objective of the experiment was to see how lifetime
depends on hibernation. Figure 3.46 shows that as fraction of lifetime
spent hibernating increases, the distribution of lifetime increases.
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Smoothing: Lowess

One hypothesis suggested by Figure 346 is that hamster Dr:f‘
parcels out a fixed amount of nonhibernation hours; a hamster gets Othy
so much awake time, and if it hibernates longer, it lives longer by the
same amount, but otherwise there is no effect on lifetime. 51;?131(}’1512
¢ = lifetime and p = fraction of lifetime spent hiber.natlng- L not
hypothesis is true then (1—p)¢, the amount of time .SPG‘H g
hibernating does not depend on p¢, the amount of time SP
hibernating.
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Figure 3.45 DEPENDENT-INDEPENDENT VARIABLE DATA. Age at dfa‘:
is graphed against fraction of lifetime spent hibernating for 144 hams ero;
The data have been divided into five strips with nearly equal numbers
points, in preparation for the graph in Figure 3.46.
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Figure 3.47 is a graph of time spent not hibernating against time
spent hibernating. It shows that, overall, the hypothesis is false;
increased hibernation time results in increased nonhibernation time.
But how would we describe the dependence? Is there a linear or

nonlinear dependence? With a graph of just the (x;, y;) values it is hard
to answer these questions.

We could study the dependence by strip summaries with box
graphs, but Figure 3.48 shows another method: a smooth curve put
through the points. For each point, (x;, y;), on the graph there is a
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Figure 3.46 STRIP SUMMARIES USING BOX GRAPHS. The distribution of
the y values of the points in each of the five vertical strips of Figure 3.45 is

shown by a box graph. Each box graph is centered, along the horizontal
scale, at the median of the x values of the points in the strip.
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smoothed value, (xi, Ji)- Vi is the fitted value at x;. The curve js graphed
by connecting successive smoothed values, moving from left to right, by
lines. The purpose of the curve is to summarize the miggj, of Tl
distribution of y for each value of x. Thus the curve is performing the
same task as the medians of the box graphs in strip summarijes; if we
took a narrow vertical strip, the curve should describe the middle of the
distribution of the y values in the strip. Statistical scientists ¢al] this a
regression curve, a misnomer since there is nothing regressive apout it at

all. The method used to compute the smoothed values will be discussed
later.
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Figure 3.47 DEPENDENT-INDEPENDENT VARIABLE DATA. The total time
spent not hibernating is graphed against the time spent hibernating for the
144 hamsters. There appears to be a dependence of y On x but it is difficult
to assess the nature of the dependence from the graph.
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The smooth curve shows that there is some truth to the hypothesis
stated earlier. While there is, overall, an increase in nonhibernation
lifetime as hibernation increases, the response is in fact constant until
the amount of hibernation is above 100 days. From 100 days and above,
the effect is nearly linear and the slope is about 1, so each minute spent
hibernating beyond 100 days produces on the average about one extra
minute of nonhibernation lifetime. We have been assuming that there

is a causal mechanism, but this is reasonable in view of current
biological information [89].

The curve in Figure 3.48 was produced by a data smoothing
procedure called robust locally weighted regression [26]; the name of the
procedure is often shortened to lowess (locally-weighted scatterplot
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Figure 3.48 LOWESS. The smooth curve, which was computed by a
procedure called lowess, summarizes how y depends on x. For each point,
(x;, yi), on the graph, lowess produces a smoothed value, (x;, ¥;). The curve
is graphed by connecting successive smoothed values, moving from left to
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smoother). The user must choose a smoothness parameter f, which is a
number between 0 and 1. As f increases, the smooth curve becomes

smoother. In Figure 3.48 the value of f is 0.5 and in Figure 3.49 it
is 0.25. Lowess is very computing intensive, but there is a fast, efficient

computer program that carries it out [110].

- Choosing f requires some judgment for each application. In most
applications an f that works well is usually between 0.5 and 0.8. The
goal is to try to choose f to be as large as possible to get as much
smoothness as possible without distorting the underlying pattern in the

data.
Residuals, useful in so many situations, can help in choosing f.

This will be illustrated with an example. Figure 3.50 is a graph of the
air pollutant ozone against wind speed for 111 days in New York City
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Figure 3.49 LOWESS. The smoothness of the lowess curve depends on a
smoothness parameter, f, which varies between O and 1. As f increases the
curve becomes smoother. In Figure 3.48, f = 0.5 and in this figure, f = 0.25.
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from May 1 to September 30 of 1973. From this graph we can see that
the general pattern is for ozone to decrease as wind speed increases
because of the increased ventilation of air pollution that higher wind
speeds bring. However, it is difficult to see more precise aspects of the
pattern, for example, whether there is a linear or nonlinear decrease.

The top panel of Figure 3.51, which has a lowess curve with
f = 0.8, suggests the decrease is nonlinear. How do we know the
lowess curve is not distorting the pattern? Since we cannot discern
easily the pattern when a lowess curve is absent we cannot expect to
assess easily how well lowess is doing. The solution is to graph y; — ¥;
against x;, add a lowess smoothing to this graph of residuals, and see if
there is an effect. This is illustrated in the bottom panel of Figure 3.51.
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Figure 3.50 DEPENDENT-INDEPENDENT VARIABLE DATA. The data are

daily measurements of ozone and wind speed for 111 days.

It is difficult to

see the nature of the dependence of ozone on wind speed.
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Figure 3.51 CHECKING LOWESS. On the top panel the graph from
Figure 3.50 now has a lowess curve with f = 0.8. It is difficult to assess
visually whether lowess is correctly depicting the dependence. On the
bottom panel the residuals, y; — y;, are graphed against x;, and a lowess
curve is superposed: the curve suggests there is a small dependence of the
residuals on x,, which means 7 is too large in the smoothing of the top

panel.
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The lowess curve suggests that there is some dependence of the
residuals on x;. This should not happen; the curve should be nearly a
horizontal line since the residuals should be variation in y; not
explainable by x;. The problem is that the lowess smoothing in the top
panel has missed part of the pattern because f is too large, and this
missed part has gone into the residuals.

In Figure 3.52, f has been reduced to 0.5. The curve on the graph
of the residuals is now reasonably close to a horizontal line, so the
amount of smoothing for the curve in the top panel is not too great.

This method of graphing and smoothing residuals is a one-sided
test: it can show us when f is too large but sets off no alarm when f is
too small. One way to keep f from being too small is to increase it to
the point where the residual graph just begins to show a pattern, and
then use a slightly smaller value of f.

Lowess is quite detailed and mathematical, and a full discussion of
how it works would sidetrack us too much. In the remainder of this
section a brief description will be given; the details can be found in the
source [26] or in [21]. Suppose the x; are ordered from smallest to
largest so that x; is the smallest and x, is the largest. For each pair of
values, (x;,y;), lowess produces a fitted value, ;. Figure 3.53 shows how
the fitted value is computed at one x;. Look at the upper left panel.
The data, which are made up, are shown by the unfilled circles; the
value of x; at which the fitted value is to be computed is x4, which is
marked by the vertical dotted line. The value of f is 0.5 in this
example; it is multiplied by 20, the number of observations, which gives
the number 10. We now pick from among the x; the 10th closest x; to
Xe¢, Which is x;. (x¢ itself is included in this count.) A vertical strip,
depicted by the solid vertical lines, is defined by putting the left
boundary of the strip at x; and the right boundary on the other side of
x¢ at the same distance from xg4 as x;.

Look at the lower left panel. A weight function, w(x), is defined.
The points, (x;, y;) for i = 1 to n, are assigned weights w(x;). Notice that
(x6,¥6) has the largest weight; moving away from x4 the weight function
decreases and becomes zero at the boundaries of the strip.

Look at the upper right panel. A line is fitted to the points of the
graph using weighted least squares with weight w(x;) at (x;, y;). This
means that (x¢,y6) plays the largest role in determining the line and the
role played by other points decreases as their x values increase in
distance from x¢. Points on and outside the strip boundary play no role
at all. The fitted value, ¢4, is the y-value of the line at x = x4. The
point (x¢,76) is depicted by the filled circle.
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Figure 3.52 CHECKING LOWESS. On the top panel the value of f for
lowess has been reduced to 0.5 since Figure 3.51 suggests f= 0.8 is too
large. The bottom panel shows no dependence of the residuals on x, which
suggests the lowess curve with f= 0.5 is not distorting the pattern of the

dependence of ozone on wind speed.
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Look at the lower right panel. The result of the previous operations
is the one lowess smoothed value, (x¢, J¢), shown by the filled circle.
The same operations are carried out for each point, (x;,y;), on the graph.
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Figure 3.53 HOW LOWESS WORKS. The graphs show how the fitted
value at xg is computed. (Top Left) f, which is 0.5, is multiplied by 20, the
number of points, which gives 10. A vertical strip is defined around xg so
that the boundary is at the 10th nearest neighbor. (Bottom Left) Weights are
defined for the points using the weight function. (Top right) A line is fitted
using weighted least squares. The value of the line at xg is the lowess fitted
value, yg. (Bottom right) The result is one value of lowess, shown by the
filled circle. The computation is repeated for each point on the graph.
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Figure 3.54 shows the sequence of operations for the rightmost point,
(x20,¥20).- The right boundary of the strip does not appear in the two left
panels because it is beyond the right extreme of the horizontal scale
line.

There is another piece to the lowess algorithm. What has been
described is the locally weighted regression part of robust locally
weighted regression. There is also a robustness part. Suppose the data
contain one or more outliers; an outlier is a point, (x;,y;), with an
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Figure 3.54
value at X0 is illustrated.

HOW LOWESS WORKS.

The computation of the lowess fitted
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unusually large or small value of y; compared with other points in a
vertical strip around x;. The upper panel of Figure 3.55 shows an
example. The unfilled circles are the data and one point, (x11,¥1;), has a
y value that is much larger than the y values of points whose x values
are close to x;;. Carrying out lowess as described above yields the filled
circles; the outlier has distorted the fitted values in the neighborhood of
x11 so that the general pattern of the data is no longer described.

Lowess has a robustness feature in which, after a first smoothing as
described above, outliers are identified and downweighted in a second
smoothing. This identification, downweighting, and resmoothing can
be done any number of times, although two times is almost always
sufficient. The result of the full lowess algorithm, including the
robustness part, is shown in the lower panel of Figure 3.55. Now the
smoothed values describe the behavior of the majority of the data.

Time Series: Connected, Symbol, Connected Symbol, and Vertical Line
Graphs

A time series is a set of measurements of a variable through time.
Figure 3.56 shows an example. The data are yearly values, from 1868 to
1967, of the aa index [96], which measures the magnitude of fluctuations
in the earth’s magnetic field. The index is the average of measurements
of geomagnetic fluctuations at observatories in Australia and England
that are roughly antipodal: at opposite ends of an earth diameter.
Figure 3.56 shows there has been an increase in the overall level of the
aa index from 1900 to 1967. The solar wind causes fluctuations in the
earth’s magnetic field, so the increase in the index suggests that the
solar wind has increased during this century [49]. Figure 3.56 also
shows the aa index has a cycle of about 11 years. This is the same as the
sunspot cycle; increased sunspots are associated with increased solar
activity and therefore an increased solar wind, but interestingly, the

sunspots do not show an increase in their overall level, as the aa index
does.

A time series is a special case of the broader dependent-
independent variable category. Time is the independent variable. One
important property of most time series is that for each time point of the
data there is only a single value of the dependent variable; there are no
repeat measurements. Furthermore, most time series are measured at
equally-spaced or nearly equally-spaced points in time. These special
properties invite special graphical methods which, as will be illustrated
at the end of this section, are relevant for any situation with a single-
valued dependent variable and an equally-spaced independent variable.
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HOW LOWESS WORKS. Lowess has a robustness feature

that prevents outliers from distorting the smoothed values. (Top panel) The

open circles are the points of the graph; there is one outlier between x = 15
and x = 20. The smoothed values for lowess without the robustness feature,

which are shown by the filled circles,

have been distorted

in the

neighborhood of the outlier. (Bottom panel) The filled circles are from
lowess with the robustness feature; now the smoothed values follow the

general pattern of the data.
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There are many ways to graph a time series. Figure 3.56 is a
connected symbol graph since symbols together with lines connecting
successive points in time are used. Figure 3.57 is a symbol graph because
just the symbols are used, and Figure 3.58 is a connected graph because
just the lines are used. Figure 3.59 is called a vertical line graph for the
obvious reason.

Each of these four methods of graphing a time series has its data
sets for which it provides the best portrayal. For the aa data the best
one is the connected symbol graph. The symbol graph does not give a

AA INDEX
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1870 1890 1810 1830 1850 1970
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Figure 3.56 CONNECTED SYMBOL GRAPH. The time series shown on
the graph is the yearly average of the aa index: measurements of the
magnitudes of fluctuations in the earth’s magnetic field. A connected symbol
graph, which allows us to see the individual data points and the ordering
through time, reveals an 11-year cycle and a trend from 1900 to 1967.
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clear portrayal of the cyclic behavior, because we cannot pez:celve Lhe
order of the series over short time periods of several years, which makes
seeing the 11-year cycle difficult. In the words of spectrum analysis, wie
cannot appreciate the high and middle frequency behavior of the series
on the symbol graph.

On the connected graph in Figure 3.58 the individual data points
are not unambiguously portrayed. For example, it is clear th.at thege 18
an unusual peak in the observations around 1930, but it is hard to
decide if the peak is a single outlier for one year or is supported byha
rise and fall of a few values. On the connected symbol graph, and the
other graphs, it is clear that the peak consists of one value.
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Figure 3.57 SYMBOL GRAPH. A symbol graph of the aa data does not
reveal the 11-year cycle.
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On the vertical line graph in Figure 3.59 there is an unfortunate
asymmetry: The peaks of the 11-year cycle stand out more clearly than
the troughs. There is also a disconcerting visual phenomenon: Our
visual system cannot simultaneously perceive the peaks and the troughs.
This is what psychophysicists call a figure-ground effect [55, pp. 10-11];
for example, there is a famous black and white drawing where if you
focus on the black, you see profiles of two faces looking at one another
and if you focus on the white, you see a vase, but both cannot be
simultaneously perceived [55, p. 11].

There is, however, a place for vertical line, connected, and symbol
graphs. A symbol graph of a time series is appropriate if what we want
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Figure 3.58 CONNECTED GRAPH. The connected graph does not reveal

the positions of the aa measurements. It is not possible to determine if the
peak around 1930 consists of one or many values.
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to convey is the long-term trend, that is, the low frequency behavior.
In such a case it is not necessary to perceive the exact time order over
short time intervals. Figure 3.60 is an example. The data are the daily
ozone measurements we have seen before. One very low ozone value,
an outlier on the log scale, has been omitted in Figure 3.60. In this
example the day-to-day movement of ozone is less interesting than the
trend, so the symbol graph is used. A lowess curve with f = 0.5 is
superposed to help us see the trend.

A connected graph is appropriate when the time series is smooth, so
that perceiving individual values is not important. A vertical line graph
is appropriate when it is important to see individual values, when we
need to see short-term fluctuations, and when the time series has a large
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Figure 3.59 VERTICAL LINE GRAPH. On this graph the peaks stand out
more clearly than the troughs.
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number of values; the use of vertical lines allows us to pack the series
tightly along the horizontal axis. The vertical line graph, however,
usually works best when the vertical lines emanate from a horizontal

line through the center of the data and when there are no long-term
trends in the data.

Figure 3.61 is the graph of CO, and its components that was
discussed in detail in Section 2 of Chapter 1. A connected graph is used
for the two top panels because the data are smooth and seeing
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Figure 3.60 SYMBOL GRAPH. A symbol graph is appropriate for a time
series when the goal is to show the long-term trend in the series, but not

high frequency behavior. On this symbol graph a lowess curve is
superposed to help assess the trend.
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'Figure 3.61 CONNECTED AND VERTICAL LINE GRAPHS. The gra:h
shows the monthly average CO, concentrations from Mauna Loa an t e
three components. Connected graphs are used in the top two panels S it
is not important to see individual values. Vertical line graphs are used in the
bottom two panels since it is important to see individual v?lues and to
assess behavior over short periods of time and since each series has many
values.
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individual values was not judged important. A wvertical line graph,
emanating from zero, is used for the two bottom panels because it is
important in this application to see the individual monthly values and

to assess behavior over short time periods and because the time series is
long.

Time Series: Seasonal Subseries Graphs

Figure 3.62 shows a seasonal subseries graph, a graphical method that
was invented in 1980 to study the behavior of a seasonal time series or
the seasonal component of a seasonal time series [36]. The data in
Figure 3.62 are the seasonal component of the CO, series in Figure 3.61.
In this example it is important to study how the individual monthly
subseries are changing through time; for example, we want to analyze
the behavior of the January values through time. We cannot make a
graphical assessment from Figure 3.61 since it is not possible to focus on

the values for a particular month; the graphical method in Figure 3.62
makes it possible.

In the seasonal subseries graph, the January values of the seasonal
component are graphed for successive years, then the February values
are graphed, and so forth. For each monthly subseries the mean of the
values is portrayed by a horizontal line. The individual values of the
subseries are portrayed by the vertical lines emanating from the
horizontal line. In Figure 3.62 the January subseries is the first group of
values on the left, the February subseries is the next group of values,
and so forth. The graph allows an assessment of the overall pattern of
the seasonal, as portrayed by the horizontal mean lines, and also of the
behavior of each monthly subseries. Since all of the monthly subseries
are on the same graph we can readily see whether the change in any

subseries is large or small compared with the overall pattern of the
seasonal component.

Figure 3.62 shows interesting features. The first is the overall
seasonal pattern, with a May maximum and an October minimum. This
pattern has long been recognized and is due to the earth’s vegetation
(See the discussion in Section 2 of Chapter 1.) The second feature is the
patterns in the individual monthly subseries. Subseries near the yearly
maximum tend to be increasing; the biggest year-to-year increases occur
during the months March and April. Subseries near the yearly
minimum tend to be decreasing; the biggest year-to-year decreases occur
during the months September and October. The net effect, of course, is
that the seasonal oscillations are increasing.
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Figure 3.62 SEASONAL SUBSERIES GRAPH. The seasonal component
from Figure 3.61 is graphed. First the January values are graphed for
successive years, then the February values, and so forth. For each monthly
subseries the mean of the values is portrayed by the horizontal line. The
values of each monthly subseries are portrayed by the ends of the vertical
lines. Now we can see the average seasonal change and the behavior of
the individual monthly subseries. Monthly subseries near the yearly
maximum tend to be increasing and those near the minimum tend to be
decreasing.
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An Equally-Spaced Independent Variable with a Single-Valued
Dependent Variable

When two-variable data have a single-valued dependent variable
and equally-spaced values of the independent variable, the methods of
graphing a time series that were just discussed can be considered.
Figure 3.63 shows one example. The dependent variable is an estimate
of the spectrum of the aa index, and the independent variable is
frequency, measured in cycles per year. There are 101 estimates of the
spectrum at 101 frequencies spaced 0.005 cycles/year apart. Since the

spectrum estimate is a smooth function of frequency, a connected graph
was used.
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Figure 3.63 SINGLE-VALUED DEPENDENT VARIABLE WITH EQUALLY-
SPACED INDEPENDENT VARIABLE. Data with a single-valued dependent
variable and an equally spaced independent variable can be graphed using
connected, symbol, connected symbol, and vertical line graphs. In this
example the dependent variable is an estimate of the spectrum of the aa

index and the independent variable is frequency. A connected graph is used
to show the data.
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The rise in the spectrum near zero frequency is just the tre:nd
observed earlier in the graph of the series against time. . Heading
toward higher frequencies, the first peak, whose frequency 18 marked
with a wvertical reference line, provides an estimate of the ajverage
fundamental frequency of the cycles in the aa index; the estlma}'ed
frequency is 0.09 cycles/year, which has a period of 11.1 years. The first
four harmonics (multiples) of this fundamental are also marked by
reference lines. It seems likely that the peaks in the spectrum near the
first three harmonics are also a result of the 11.1 year cycle.

The spectrum in this example was estimated by the following
procedure: subtract the mean; multiply by a full cosine taper [15, lel- Sk
compute the squared modulus of the Fourier transform; smooth with a
boxcar window with five raw spectrum values per estimate.

Step Function Graphs

A step function graph is appropriate when the dependent Varlabl.e is
constant over intervals of the independent variable. Figure 3.64 is a
step-function graph that shows the weight of the Hershey Bar over A
time period of about 20 years. In his essay, “Phyletic Size Decrease in
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Figure 3.64 STEP FUNCTION GRAPH. The weight of the Hershey Bar is
graphed against time. A step function graph is appropriate \fvhen the
dependent variable is constant over intervals of the independent variable.
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Hershey Bars,” Stephen Jay Gould showed that the history from 1965
generally has been one of a decline in size of a bar with a fixed price,
followed by a sudden rise in both price and size, and then followed by
a gradual decline in size [54, pp. 313-319]. This is . illustrated in

Figure 3.64, which includes some additional data not available to Gould
at the time.

With the additional data, we can now see something else quite
striking in Figure 3.64. It appears that one ounce is a reflecting barrier
below which bar weight will not drop. Maybe the barrier is
psychological. Hershey executives might see one ounce as the last line
of defense, and fear that were bar weight to drop below it, there would
be nothing to stop its ultimate extinction. But what will happen when
the United States converts to the metric system? One ounce is 28.35
grams. The human mind puts special emphasis on simple numbers, and
a new psychological barrier of 25 grams may take over.

Figure 3.64 seems to beg for a new graph using just the same data as
the old one, but graphed in a new way. The idea, which arises from the
field of economics, is that what really counts is the cost (price) per unit
of weight. In other words, how much does one bite of a Hershey Bar
cost? Figure 3.65 shows the cost per ounce through time, again using a
step function graph, which reveals the real law of nature: the
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Figure 3.65 STEP FUNCTION GRAPH. The cost per ounce of the Hershey
Bar is graphed against time. There are only two points in time when cost per
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inexorable rise in price per mouthful through time. The changing size
is just a way of helping to obey the law, and we can see a critical fact
not apparent in the first step function graph — every price increase,
except the change from the 25¢ bar to the 30¢, was in fact an increase in
cost per ounce. During the time period of this data there were only two
points in time when cost per ounce decreased — once, when the price
rose to 30¢, and once, in 1975, when the weight increased but the price
stayed constant.

3.5 TWO OR MORE CATEGORIES OF MEASUREMENTS OF
TWO QUANTITATIVE VARIABLES: SUPERPOSITION
AND JUXTAPOSITION

This section is about graphical methods for two or more categories,
or groups, of measurements of two quantitative variables. We saw in
Section 2 of Chapter 2 that graphing different data sets can be a
challenge. If we superpose them in the same data region, we must be
sure that the graphical elements portraying each of the data sets can be
visually discriminated from the graphical elements showing the other
data sets. If we graph them on juxtaposed data regions we want to be
able to compare the different data sets as readily as possible. This
section discusses graphical methods for achieving these goals.

Superposed Plotting Symbols

Figure 3.66 has four superposed data sets. The measurements are
from the survey of graphs in scientific publications discussed in
Section 3.3 [27]. For a large number of scientific journals, measurements
were made of the fraction of space each journal devoted to graphs (not
including legends) and the fraction of space each journal devoted to
graph legends. Figure 3.66 is a graph of log (legend area/graph area)
against log (graph area) for 46 journals. The ratio of legend area to
graph area is a rough measure of the amount of legend explanation
given to graphs. The letters encode four journal categories:

Biological — biology, medicine
Physical — physics, chemistry, engineering, geography
Mathematical — mathematics, statistics, computer science

Social — psychology, economics, sociology, education.

One advantage of the letters is that it is easy to remember the groups,
and looking back and forth between the graph and the key is not
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necessary. But a serious disadvantage of the letters is that they do not
provide high visual discrimination with one another; it is hard,
compared with other encoding schemes, to perceive the points for a

particular group as a whole, mentally filtering out the points of other
groups.

Figures 3.67 and 3.68 present two other methods for encoding the
four categories. To make the ensuing discussion about visual
discrimination more meaningful, look at each of Figures 3.66 to 3.68 and

try to see the points of each category as a unit as if the other points
were not there.
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Figure 3.66 SUPERPOSED SYMBOLS. Four categories of measurements
of two variables are graphed. The letters encoding the four categories do
not provide high visual discrimination of the four sets of points.



SUPERPOSITION AND JUXTAPOSITION 193

The encoding scheme in Figure 3.67, commonly used in scien.ce and
technology, is different geometric shapes; the visual discrimination
appears somewhat greater than for the letters in Figure 3.66. .It is
harder to remember the category associated with a shape than‘ with a
letter, but this is a minor point. In Figure 3.68, four types of c1.rcle fill
are used to encode the categories. Theoretical and experl'mental
evidence from the field of visual perception suggests that different
methods of fill should provide high visual discrimination [34]. In fact,
Figure 3.68 appears to provide better discrimination than the other two
figures.
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Figure 3.67 SUPERPOSED SYMBOLS. The data of Figure 3.66 are
graphed with the categories encoded by differently shaped plotting symbols.
This provides somewhat greater visual discrimination than using the letters.
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Figure 3.68 shows two interesting phenomena: social science
journals and mathematical science journals tend to use graphs less than
the other two categories, and the biological science journals tend to have
more in the figure legends. The second phenomenon is probably due to

the tendency in biological journals to put experimental procedures in
figure legends.
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Figure 3.68 SUPERPOSED SYMBOLS. The data of Figure 3.66 are
graphed with the categories encoded by circles with different methods of fill.

This provides the highest visual discrimination of the methods shown in
Figures 3.66 to 3.68.
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The encoding scheme in Figure 3.68 works well if there is not rnu?h
overlap of the plotting symbols. When there is overlap, the solid
portions of the symbols can form uninterpretable blobs. In such a case
we must attempt to wuse symbols that pI'OVide as much visual
discrimination as possible, subject to the constraint that the symbols
tolerate overlap. The constraint seems to restrict I%S to symbols
consisting of curves and lines, with no solid parts, and Wlth.a minimum
of ink. One encoding scheme that does reasonably well is shown in
Figure 3.69.
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Figure 3.69 SUPERPOSED SYMBOLS. The plotting symbols used on this
graph provide fair visual discrimination and can tolerate overlap.
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Figure 3.70 shows two sets of plotting symbols, one in each row.
The top set is to be used when there is little overlap, and the bottom set
is to be used when overlap causes problems with the top set. For each
set, the suggestion is to use the first two symbols on the left if there are

two categories, the first three symbols on the left if there are three
categories, and so forth.

Superposed Curves in Black and White

Sometimes superposed data sets come in the form of superposed
curves, as in Figure 3.71. The data will be described shortly. Often, we
can make each curve solid and still have the requisite visual
discrimination. If at the intersection of two curves, the slopes of the
curves are very different, our eyes have no trouble visually tracking
each curve. For example, in Figure 3.71, 5 gt airburst and 3 gt are easy to
follow at their crossing between 100 and 150 days. But if two curves
come together with similar slopes, they can lose their identity; 5 gt and
5 gt airburst almost do this at their intersection just after 100 days.

Figure 3.70 PLOTTING SYMBOLS. The top set can be used when there
is little overlap, and the bottom can be used when overlap causes problems
with the top set. The first two symbols on the left are to be used when there

are two categories, the first three symbols are to be used when there are
three categories, and so forth.
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If solid curves lose their identity we can switch to different curve
types, as in Figure 3.72. The goal, as it was for symbols, is to choose
curves that have high visual discrimination. We want to see each curve
effortlessly and as a whole and not have to visually trace it out as we do
a secondary road on an automobile map. Figure 3.73 is a palette of
curve types that shows the variety possible from dots and dashes.
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Figure 3.71 SUPERPOSED CURVES. Superposed curves need to be
visually discriminated. In this case the behavior of the data is simple enough
that each curve is visually distinct.
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Juxtaposition

Sometimes the only solution for visual discrimination of different

data sets is to give up superposition and use juxtaposition of two or
more panels. This is illustrated in Figure 3.74.

Figure 3.74 shows model predictions of temperature in the
Northern Hemisphere following different types of nuclear
exchanges [127]. The temperatures following major exchanges drop
precipitously due to soot from conflagrations of cities and forests and
due to dust from soil and vaporization of earth and rock. The soot and

dust substantially reduce radiation from the sun which, in turn, causes
the temperature to drop.
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Figure 3.72 SUPERPOSED CURVES. Visual

discrimination can be
increased by different curve types.
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The temperatures are computed from physical models that describe
the creation of particles, the production of radiation, convection, and a
script for the nuclear war. The panels in Figure 3.74 are different
exchange scenarios, which are explained in Table 3.1. The total world
nuclear arsenal of strategic weapons is 17 gigatons (gt), which is roughly
equal to 10° Hiroshima bombs.

Table 3.1 NUCLEAR EXCHANGE SCENARIOS.

Code Description
10 gt 10 gt exchange.

5 gt 5 gt exchange.

5 gt air 5 gt airburst in which all weapons are detonated above
ground.

5 gt dust 5 gt exchange with only the effects of dust included, but
not fires.

3 gt 3 gt exchange.

3 gt silo 3 gt exchange aimed only at missile silos.

1 gt 1 gt exchange.

0.1 gt city 0.1 gt exchange aimed only at major cities.
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.................................................................................................

Figure 3.73 CURVE TYPES. Dots, dashes, and combinations provide a
variety of patterns for graphing curves.
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Figure 3.74 JUXTAPOSITION. Each curve shows averaged Northern
Hemisphere temperature following a nuclear war. The scenarios of the war
are different for different panels. On this graph the different data sets are
juxtaposed. Comparisons of the curves are enhanced by the strategically
placed reference lines: the upper horizontal reference line on each panel
shows the current average ambient Northern Hemisphere temperature, the
lower horizontal reference line shows the minimum temperature for the 5 gt

exchange, and the vertical reference line shows the time of the 5 gt
temperature minimum.
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Juxtaposition is needed for this temperature data. Superposition
results in the tangle of Figure 3.75. We could attempt to improve the
graph by using different curve types, but no black and white method
appears to reduce the clutter substantially. Actually, it is not necessary
to settle for one extreme or the other; we might have attempted four
juxtaposed panels, each with two curves superposed.

When it works, superposition is better than juxtaposition because it
allows a more incisive comparison of the values of the different data
sets. For example, in Figure 3.75 we can see very clearly that the
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Figure 3.75 SUPERPOSITION. The curves of Figure 3.74 cannot be easily
visually discriminated when they are superposed.



202 GRAPHICAL METHODS

minimum for each scenario occurs at about the same time and we can
effectively compare the values of the minima; the problem in this

example is that it is not easy to see which curve goes with which
scenario.

In giving up superposition for juxtaposition we decrease our ability
to compare the values of different data sets in order to increase our
ability to discriminate the data sets. However, we can employ a method
that greatly improves our ability to compare the values on different
juxtaposed panels — strategically place the same lines or curves on all panels
to serve as visual references. For example, in Figure 3.74 the lower
horizontal reference line on all panels is the value of the 5 gt minimum;
this line allows us to compare the temperature minima more effectively.
The top horizontal reference line is the Northern Hemisphere average
ambient temperature; this line helps us to judge the progress each curve
makes in getting back to normal conditions. The vertical reference line

shows the time of the 5 gt minimum; this line provides a more effective
comparison of the times of the minima.

Figure 3.74 does a good job of showing the temperature profiles.
The major exchanges result in a rapid drop to around —25°C and then a
slow recovery lasting many months. The 0.1 gt city attack has such a

strong effect because of the tremendous concentration of combustible
materials in urban areas.

Visual references on juxtaposed panels can take many different
forms: lines, curves, or plotting symbols. We will now give two more
examples to show how varied the nature of the visual reference can be.

Figure 3.76 is a graph of brain weights and body weights for four
categories of species [40]. Juxtaposition is necessary because
superposition results in so much overlap that visual resolution of the
four groups is impossible whatever (black and white) method is tried.
The same three lines are drawn on each panel. The top line shows the
major axis of the primate point cloud, the middle line shows the major
axes of the bird and nonprimate mammal point clouds, and the lower
line is for the fish. These three lines help us to compare the relative
positions of the four point clouds. All three lines have slope 2/3,
because brain weights tend to be related to body weights to the 2/3

power; the reason for this relationship is discussed in Section 3 of
Chapter 1.

In Figure 3.77 the four lines have the same slopes but the intercepts
are different. The data are the logarithms of the winning times for four
track events at the Olympics from 1900 to 1984 [22, 138, p. 833]. The
lines were fit to the data using least squares; the slope was held fixed
but the intercept was allowed to vary from one data set to the next.
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Because the number of units per cmm is the same on the four vertical
scales, the lines on the four panels have the same angle with the
horizontal. In this example the lines help us to see that the decrease in
the log running times has been nearly linear and that the slopes for the
four data sets are the same. This means that the overall percent
decrease since 1900 has been about the same for the four races.

NONPRIMATE °
MAMMALS

PRIMATES

LDOG BASE 10 BRAIN WEIGHT (LOG GRAMS)

LDOG BASE 10 BODY WEIGHT (LOG GRAMS)

Figure 3.76 JUXTAPOSITION. Log brain weights are graphed against log
body weights for four categories of species. The same three reference lines
are drawn on the four panels. Each line has slope 2/3; the top line
describes the primates, the middle line describes the birds and nonprimate
mammals, and the bottom line describes the fish. These strategically placed
lines enhance our ability to compare data on different panels.
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Figure 3.77 JUXTAPOSITION. The graph shows the logarithms of the
winning times at the Olympics in four races. The vertical scales on the four
panels have the same number of log seconds per cm. The four lines on the
panels have the same slope, determined by a least squares fit. Since
logarithms are graphed and since the points nearly follow lines with the
same slope, we can conclude that the percent decrease in the running times

is roughly constant through time and the constant is the same for all four
races.
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Figure 3.78 shows curves used as references. The data are from an
experiment on graphical perception [33] that will be discussed in
Section 3 of Chapter 4. A group of 51 subjects judged 40 pairs of values
on bar charts and the same 40 pairs on pie charts; each judgment
consisted of studying the two values and visually judging what percent
the smaller was of the larger. The left panel of Figure 3.78 shows the 40
average judgment errors (averaged across subjects) graphed against the
true percents for the 40 pie chart judgments. The right panel shows the
same variables for the bar chart judgments. Lowess curves, described in
Section 3.4, were fit to each of the two data sets; both curves are
graphed on each panel and serve as visual references to help us compare
the average errors for the two types of charts.

Color

If color is available we do not as frequently need to give up
superposition and use juxtaposition. Owur visual system does a
marvelous job of discriminating different colors. In Figures 3.79 and
3.80 superposition in black and white is used for two sets of data that
we have seen earlier in the chapter. We cannot effectively discriminate
the different data sets. Color is used in Plates 1 and 2, which follow
page 212, and discrimination is considerably enhanced.

12 i 12 =

PIE CHART AVERAGE ABSOLUTE ERROR
BAR CHART AVERAGE ABSDLUTE ERROR

8] 20 40 60 80 100 0 20 40 60 80 100

TRUE PERCENT TRUE FERCENT

Figure 3.78 JUXTAPOSITION. The graph compares pie chart and bar
chart judgment errors of 51 subjects. Two curves show how the bar chart
errors and the pie chart errors depend on the true percent being judged.
Graphing the two curves on both panels helps us to compare the two sets of
data.
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Figure 3.79 COLOR. Color is a good method for providing visual
discrimination. The eight curves are not as easy to discriminate as they are
in the color encoding in Plate 1, which follows page 212.
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Many people will find the colors in Plates 1 and 2 unesthetic,
garish, and clashing. This was done on purpose to maximize the visual
discrimination. Pleasing colors that blend well tend not to provide as
good visual discrimination.
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Figure 3.80 COLOR. The four categories of data cannot be easily

discriminated. Discrimination is greatly enhanced by color encoding in
Plate 2. .
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3.6 THREE OR MORE QUANTITATIVE VARIABLES

Science and technology would be far simpler if data, like the people
of Edwin A. Abbott’s Flatland [1], always stayed in two dimensions.
Unfortunately, data can live in three, four, five or any number of
dimensions. Consider, for example, measurements of temperature,
humidity, barometric pressure, percentage cloud cover, solar radiation
intensity, and wind speed at a particular location at noon on 100
different days. The data on these six variables consist of 100 points in a
six-dimensional space. How are we to graph them to understand the

complex relationships? How are we to peer into this six-dimensional
space and see the configuration of points?

Graphs are two-dimensional. If there are only two variables — for
example, just temperature and humidity in our meteorological data set
— then the data space is two-dimensional, and a Cartesian graph of one
variable against the other shows the configuration of points. As soon as
data move to even three variables and three dimensions we must be
content with attempting to infer the multidimensional structure by a

two-dimensional medium. In this section, some methods for doing this
are described.

Framed-Rectangle Graphs

Figure 3.81 is a framed-rectangle graph [33], which can be used to
show how one variable depends on two others. The data are the per
capita debts in dollars of the 48 continental states of the U.S. in 1980
[137, p. 116]. Each value is portrayed by a solid rectangle inside a frame
that has tick marks halfway up the vertical sides. The frames are the
same size, which helps us judge the relative magnitudes of the values by
providing a common visual reference. For geographical data, such as
those in Figure 3.81, the framed-rectangle graph conveys the values far
more efficiently and accurately to the human viewer than the very
common statistical map [97, pp. 282-288] in which the data are encoded
by shading the geographical units, which in this example are the states.
Issues of graphical perception such as this are the topic of Chapter 4.

The data in Figure 3.81 are three-dimensional; geographical location
needs two dimensions and debt is the third. Furthermore, we are in the
dependent-independent variable case because the goal is to see how
debt depends on geographical location.
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The framed-rectangle graph can be useful in any situation where
we want to see how measured values of one variable, 2z, depend on
values of two others, x and y. However, since the framed rectangles
cannot withstand overlap, the method is helpful only when the number
of observations is small or moderate and when there is not too much
crowding of the (x,y) values in any one region of the plane.

Figure 3.81 shows that the middle Atlantic states and New England
are the regions of the country where the states are least afraid to go into
debt. States in the South and in the West tend to be more restrained in
their indebtedness, although Oregon, with its near $2000 per capita
debt, leads the country and is a striking anomaly.

Scatterplot Matrices

An award should be given for the invention of the scatterplot matrix,
but the inventor (or inventors) is unknown — an anonymous donor to
the world’s collection of graphical methods. Early drafts of Graphical
Methods for Data Analysis [21] contain the first written discussion of the
idea, but it was in use before that. The inventor may not have fully
appreciated the significance of the method or may have thought the
idea too trivial to bring it forward, but its simple, elegant solution to a
difficult problem is one of the best graphical ideas around.

Suppose the multidimensional data consist of k variables, so that
the data points lie in a k-dimensional space. One way to study the data
is to graph each pair of variables; since there are k(k—1)/2 pairs, such an
approach is practical only if k is not too large. But just making the
k(k—1)/2 graphs of each variable against each other, without any
coordination, often results in a confusing collection of graphs that are
hard to integrate, both visually and cognitively.

The important idea of the scatterplot matrix is to arrange the graphs
in a matrix with shared scales. An example is shown in Figure 3.82.
There are four variables: wind speed, temperature, solar radiation, and
concentrations of the air pollutant, ozone. The data, from a study of the
dependence of ozone on meteorological conditions [18], are
measurements of the four variables on 111 days from May to September
of 1973 at sites in the New York City metropolitan region. There is one
measurement of each variable on each day; so the data consist of
111 points in a four-dimensional space. (The details of the
measurements are the following: solar radiation is the amount from
0800 to 1200 in the frequency band 4000-7700A; wind speed is the
average of values at 0700 and 1000; temperature is the daily maximum;
and ozone is the average of values from 0800 to 1200.)
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Each panel of the matrix is a scatterplot of one variable against

another.

vertical scale

is o0zone,

For the three graphs in the second row of Figure 3.82, the
and the three horizontal scales are solar

radiation, temperature, and wind speed. So the graph in position (2,1)
in the matrix — that is, the second row and first column — is a
scatterplot of ozone against solar radiation; position (2,3) is a scatterplot
of ozone against temperature; position (2,4) is a scatterplot of ozone
against wind speed.

The upper right triangle of the scatterplot matrix has all of the
k(k—1)/2 pairs of graphs, and so does the lower right triangle; thus
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Figure 3.82

radiation, ozone, temperature, and wind speed on 111 days.

SCATTERPLOT MATRIX. The data are measurements of solar

Thus the

measurements are 111 points in a four-dimensional space. The graphical
method in this figure is a scatterplot matrix: all pairwise scatterplots of the
- variables are aligned into a matrix with shared scales.
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Plate 1. Color provides good discrimination of the different data sets.

Compare with Figure 3.79.
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altogether there are k(k—1) panels and each pair of variables is graphed
twice. For example, in Figure 3.82 the (1,3) panel is a graph of solar
radiation on the vertical scale against temperature on the horizontal

scale, and the (3,1) panel has the same variables but with the scales
reversed.

The most important feature of the scatterplot matrix is that we can
visually scan a row, or a column, and see one variable graphed against
all others with the three scales for the one variable lined up along the
horizontal, or the vertical. This is the reason, despite the redundancy,
for including both the upper and lower triangles in the matrix.
Suppose that in Figure 3.82 only the lower left triangle were present.
To see temperature against everything else we would have to scan the
first two graphs in the temperature row and then turn the corner to see
wind speed against temperature; the three temperature scales would not
be lined up, which would make visual assessment more difficult.

Space and resolution quickly become a problem with the scatterplot
matrix; the method of construction in Figure 3.82 reduces the problem
somewhat. The labels of the variables are inside the main-diagonal
boxes so that the graph can expand as much as possible. The tick mark
labels for the horizontal scales, as well as for the wvertical scales,
alternate sides so that labels for successive scales do not interfere with
one another. And the panels have been squeezed tightly together,
allowing just enough space to provide visual separation.

The scatterplot matrix in Figure 3.82 reveals much about the ozone
and meteorological data. Ozone is a secondary air pollutant; it is not
emitted directly into the atmosphere but rather is a product of chemical
reactions that require solar radiation and emissions of nitric oxide and
hydrocarbons from smoke stacks and automobiles. For ozone to get to
very high levels, stagnant air conditions are also required.

It is no surprise then to see a relationship between solar radiation
and ozone in panel (2,1), but the nature of the relationship is
enlightening. There is an wupper envelope in the form of an
inverted “V”. For low values of solar radiation, high values of ozone
never occur. The major reason is that the photochemical reactions that
produce ozone need a minimum amount of solar radiation. The (2,1)
panel aiso shows that when solar radiation is between 200 and 300
Langleys, ozone can be either high or low. If we scan across the ozone
row to panels (2,3) and (2,4) it becomes clear that the high ozone days
are those with high temperatures and low wind speeds — stagnant days.
Overall, there is a strong association between wind speed and ozone
and between temperature and ozone. Both wind speed and temperature
are measures of stagnancy; as wind speed decreases or as temperature
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increases, conditions become more stagnant and ozone rises. But the
(3,4) panel shows that wind speed and temperature are related and thus
are measuring stagnancy, to some extent, in the same way.

Panel (2,1) shows that for the very highest levels of solar radiation,
ozone does not get high. Panels (3,1) and (4,1) show why. For the very
highest levels of solar radiation, wind speed tends not to be low and
temperature tends not to be high. In fact, there is a type of feedback
mechanism at work here. The very highest levels of solar radiation at
ground level can occur only on the brisk days with no air pollution,
because when the pollution is present, the sun’s rays are attenuated by
particles in the air that form as part of the photochemistry.

Clearly, the scatterplot matrix has revealed much to us about the
ozone and meteorological data.

A View of the Future: High-Interaction Graphical Methods

The computer graphics revolution has brought us into a new arena
for graphing data. This does not mean simply that the ideas, methods,
and principles of this book can be implemented in powerful, yet easy-
to-use software systems, although that is surely true. It means more.
Modern computer graphics has given us a new type of methodology:
high-interaction methods. A person sitting in front of a computer screen
now can have a high degree of interaction with a graph, changing it,
even in a continuous way in real time, by using a physical device such
as a light pen, a mouse, a graphics tablet, or even a finger. This
capability gives us more than just a fast, convenient way to iterate to a
single graph, just the way we want it. The changing of the graphical
image on the screen can itself give information and be a graphical
method, and we can see in just a few seconds what amounts to dozens
of static graphs. There are many ways to change the graphical image on
the screen, and they are all graphical methods.

Brushing a scatterplot matrix is a high-interaction graphical method
that was invented in 1984 for analyzing multidimensional data [10].
Only a small part of the system will be described here; the reader
should appreciate that it is no small challenge to describe a high-
interaction computer graphical method, with dynamic elements that
change in real time, on the static pages of a book.

Brushing a scatterplot matrix, as the name suggests, is based on the
scatterplot matrix. This is illustrated in Figure 3.83 where three
variables are graphed. The data are from an industrial experiment [43,
p. 155] in which three measurements were made on each of thirty
rubber specimens; the measurements are hardness, tensile strength, and
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Figure 3.83 BRUSHING A SCATTERPLOT MATRIX: A HIGH-INTERACTION
GRAPHICAL METHOD. High-interaction computer graphics is ushering in a
new era in graphical methods for data analysis. This display appears on the
screen of a graphics terminal. The brush is the dashed rectangle on the
(2, 1) panel. Points selected by the brush are highlighted on all panels. The
brush is moved by the user moving a mouse; as the brush moves, different
points are selected and the highlighting changes instantaneously. In this
figure points with low values of hardness are selected. The (3, 2) panel
shows that for hardness held fixed to low values, abrasion loss depends
nonlinearly on tensile strength.



THREE OR MORE QUANTITATIVE VARIABLES 215

abrasion loss, which is the amount of rubber rubbed off by an abrasive
material. The goal of the experiment was to determine how abrasion
loss depends on tensile strength and hardness, and in the original
analysis, abrasion loss was modeled as a linear function of hardness and
tensile strength [43, ch.7]. In a later analysis, using some involved
graphical statistical methods [21], it was discovered that abrasion loss
depends nonlinearly on tensile strength, although it does depend
linearly on hardness. Brushing a scatterplot matrix, however, gives us a
very simple way of seeing the nonlinearity.

The principal high-interaction object in brushing is the brush: a
rectangle on the screen, which is shown by dashed lines on the (2, 1)
panel of Figure 3.83. The user moves the brush around the screen by
moving a mouse, a physical device connected to the display terminal.
The mouse is also used to change the size and shape of the brush.

Figure 3.84 shows one hardware configuration on which the
brushing idea has been implemented. The young man in the front is
holding a three-button mouse; the user moves the mouse on the table,
which causes the brush to move on the screen. The high-interaction
graphics code runs on the terminal, a Teletype 5620, but the preliminary
data structuring is done on a supermicro, an AT&T 3B2 computer, which
is underneath the display terminal.

Figure 3.83 shows the result of brushing when the highlight
operation has been selected by a pop-up menu. The data in this
example consist of 30 points in a three-dimensional space. Each panel
in the figure is a projection of the points onto a plane. When the brush
encloses graphed values on one panel it is in a sense selecting a subset
of the points in three dimensions; the graphed values of these points are
highlighted on all panels by graphing them using filled circles. As the
brush is moved, different values are enclosed and the highlighting
changes instantaneously. For example, in Figure 3.85 the brush has
moved to the right on the (2,3) panel and different points are
highlighted.
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Let us now consider what this highlighting has shown us about the
rubber data. In Figure 3.83 the brush was positioned so that points with
low values of hardness are highlighted. Look at panel (3,2). The
highlighted points are a graph of abrasion loss against tensile strength
for low values of hardness; in other words, we see the dependence of

Figure 3.84 MOUSE, TERMINAL, AND COMPUTER. The young man in the
front is holding the mouse, the device used to control the size and shape of
the brush and to move it around the screen. The high-interaction graphics
code runs on the terminal, a Teletype 5620, but the preliminary data
structuring is done on a supermicro, an AT&T 3B2 computer, which is
underneath the display terminal.
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abrasion loss on tensile strength with hardness held fixed, or nearly so.
The highlighted points show that for hardness held to low values there
is a nonlinear dependence of abrasion loss on tensile strength.

In Figure 3.85 middle values of hardness are selected. On the (3,2)
panel the highlighted points show that for hardness held to middle
levels the dependence of abrasion loss on tensile strength is again
nonlinear and the pattern — a drop followed by a leveling out of the
effect — is similar to that with hardness held to low values. The pattern
emerges, although a little less crisply, in Figure 3.86, where hardness is
held to high values.
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Figure 3.85 BRUSHING. Middle values of hardness have been selected,
The highlighted values on the (3, 2) panel show that for hardness held fixed
to middle levels, the dependence of abrasion loss on tensile strength is
nonlinear. |
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The brushing has let us see easily the nonlinearity in these data.
High-interaction graphical methods are now a reality. Graphical

methods for data analysis have entered a new era.

3.7 STATISTICAL VARIATION

Measurements vary. Even when all controllable variables are kept
constant, measurements vary because of uncontrollable wvariables or
measurement error. One of the important functions of graphs in science
and technology is to show the variation.
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Figure 3.86

The highlighted values on the (3, 2) panel also suggest the nonlinearity.
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BRUSHING. High values of hardness have been selected.
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Empirical Distribution of the Data

There are two very different domains of showing variation. One is
to show the actual variation in the measurements, that is, to show the
values of the data. This is the empirical distribution of the data that was
discussed in Section 3.2. Figure 3.87 is an example from Section 3.4 —
the bin-packing data. For each value of the x wvariable, the empirical
distribution of the 25 values of the y variable is shown by a box graph.

When the goal is to convey just the empirical distribution of the
data and not to make formal statistical inferences about a population
distribution from which the data might have come, we can use the
graphical methods for showing data distributions that were discussed in
Section 3.2. The box graphs in Figure 3.87 are an example.
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Figure 3.87 SHOWING EMPIRICAL VARIATION. For each value of log
number of weights there are 25 measurements of log empty space whose
distribution is summarized by a box graph.
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Another method for showing the variation in the data, one that is
very common in science and technology, is to use a plotting symbol and
error bars to portray the sample mean and the sample standard deviation.
Suppose the values of the data are x4,...,x, then the sample mean is

i 1 Z
x=—;2x,-

{ n ‘__]%

Figure 3.88 uses a filled circle and error bars to show the mean plus and
minus one sample standard deviation for each of the 11 data sets of the
bin packing example. This graph does a poor job of conveying the
variation in the data. The means show the centers of the distributions,
but the standard deviations give us no sense of the upper and lower
limits of the sample and camouflage the outliers: the unusually high
values of empty space that occur for low numbers of weights. The box
graphs in Figure 3.87 do a far better job of conveying the empirical
variation of the data.

This result — the mean and sample standard deviation doing a poor
job of conveying the distribution of the data — is frequently the case,
because without any other information about the data, the sample
standard deviation tells us little about where the data lie. This is
further illustrated in Figure 3.89. The top panel shows four sets of
made-up data. The four sets have the same sample size, the same
sample mean, and the same sample standard deviation, but the behavior
of the four empirical distributions is radically different. The means and
sample standard deviations in the bottom panel do not capture the
variation of the four data sets.

There is an exception to this poor performance of the sample
standard deviation. If the empirical distribution of the data is well
approximated by a normal probability distribution then we know
approximately what percentage of the data lies between the mean plus
and minus a constant times s. For example, approximately 68% lies
between x =+ s, approximately 50% lies between x =+ 0.67 s, and
approximately 95% lies between x + 1.96s. However, empirical
distributions are often not well approximated by the normal. The
normal distribution is symmetric, but real data are often skewed to the
right. The normal distribution does not have wild observations, but real
data often do.
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One approach to showing the empirical variation in the data might
be to check how well the empirical distribution is approximated by a
normal, and then use the mean and sample standard deviation to
summarize the distribution if the approximation is a good one. For
example, one method for checking normality is a normal probability
plot [21]. If the goal were to make inferences about the population
distribution then checking normality is a vital matter and well worth
the effort, as will be discussed shortly. But going through the trouble of
checking normality, when the only goal is to show the empirical
variation in the data, is often needless effort. The direct, easy, and rapid
approach to showing the empirical variation in the data is to show the
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Figure 3.88 MEANS AND SAMPLE STANDARD DEVIATIONS. Showing just
means and sample standard deviations is often a poor way to convey the
variation in the data. This example shows means and sample standard
deviations for the 11 sets of data graphed in Figure 3.87. The outliers in the
data are not conveyed.
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data. This means using graphical methods such as box graphs and
percentile graphs to show the empirical distribution of the data. Thus,
after this long discussion we have been led to the following circular
advice: If the goal is to show the data, then show the data.

Sample-to-Sample Variation of a Statistic

The second domain of variation is the sample-to-sample variation of a
statistic. Let us consider a simple but common sampling situation.
Suppose we have a random sample of measurements, x; for i = 1 to n,
from a population distribution. Suppose we are interested in making
inferences about the mean, u, of the population distribution. The
population mean can be estimated by the sample mean, x, of the data.
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Figure 3.89 FAILURE OF MEANS AND SAMPLE STANDARD DEVIATIONS.
Means and sample standard deviations cannot characterize the wide variety
of distributions that data can have. Four sets of data are graphed in the top
panel and their means and sample standard deviations are graphed in the
bottom panel. The four distributions have the same numbers of observations,

the same means, and the same sample standard deviations, but the
distributions are very different.



STATISTICAL VARIATION 223

The sample mean is a statistic, a numerical value based on the sample,
and if we took a new sample of size n, x would be different; the
variation in x from one sample of size n to the next is the sample-to-
sample variation in x.

x also has a population distribution and the sample-to-sample
variation in x is characterized by it. Suppose o is the standard deviation
of the population distribution of the data, then the standard deviation of
the population distribution of x is o/Nn. As n gets large this standard
deviation gets small, the population distribution of x closes in on u, and
x varies less and less from sample to sample. The standard deviation of
the mean, like u, is unknown but it can be estimated; since s, the sample
standard deviation, is an estimate of ¢, 6/~/n can be estimated by s/n,
which is often called the standard error of the mean, although estimated
standard deviation of the sample mean is a more complete name.

One-Standard-Error Bars

The current convention in science and technology for portraying
sample-to-sample variation of a statistic is to graph error bars to portray
plus and minus one standard error of the statistic, just the way the
sample standard deviation is used to summarize the empirical variation
of the data.

Figure 3.90 shows statistics from experiments on graphical
perception that will be discussed in more detail in the next chapter.
Subjects in the three experiments made graphical judgments that can be
grouped into seven types. The types for each experiment are described
by the labels in Figure 3.90. For each judgment type in each experiment
a statistic was computed that measures the absolute error; the statistic is
averaged across all subjects and across all judgments of that type made
in the experiment. The filled circles in Figure 3.90 graph the statistics.
The subjects in each experiment are thought of as a random sample from
the population of subjects who can understand graphs. If we took new
samples of subjects, the statistics shown in Figure 3.90 would vary. The
error bars in Figure 3.90 show plus and minus one standard error of the
statistics. (The statistics in this example are not means; the standard
errors are computed from a formula that is more complicated than that
for the standard error of the mean [35], however, we do not need to be
concerned with the formula here.)

Now the critical point is the following: A standard error of a
statistic has value only insofar as it conveys information about confidence
intervals. The standard error by itself conveys little. It is confidence
intervals that convey the sample-to-sample variation of a statistic.
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In some cases confidence intervals are formed by taking plus and
minus a multiple of the standard error. For example, suppose the x; are
a sample from a normal population distribution, suppose the statistic is
x, and suppose our purpose is to estimate the mean, u, of the population
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Figure 3.90 ONE-STANDARD-ERROR BARS TO SHOW SAMPLE-TO-
SAMPLE VARIATION. The filled circles show statistics from experiments on
graphical perception. Each error bar, conforming to the convention in
science and technology, shows plus and minus one standard error. The
interval formed by the error bars is a 68% confidence interval, which is not a
particularly interesting interval. One standard error bars are probably a

naive translation of the convention for numerical reporting of sample-to-
sample variation.
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distribution. Let t;(a) be a number such that the probability between
—t;(a) and t;(a) for a t-distribution with d degrees of freedom is .
Then the interval

X — th—i(@)s/~n  to X+ t,_1(a)s/n

is a 100a% confidence interval for the mean. In other words, u is in the
above interval for 100a% of the samples of size n drawn from the
population distribution. This confidence interval is just the sample
mean plus and minus a constant times the standard error of the mean.
If n is about 60 or above, the t distribution is very nearly a normal
distribution. This means

t,_1(0.5) = 0.68 t,_1(0.67) = 1 t,_1(0.95) = 1.96 ,

so in this case x * s/v/n is approximately a 68% confidence interval,

X + 0.67 s/\/n is approximately a 50% interval, and x * 1.96 s/~n is
approximately a 95% interval.

There are other sampling situations, however, where confidence
intervals are not based on standard errors. For example, if the x; are
from an exponential distribution, then confidence intervals for the
population mean are based on the sample mean, but they do not involve
the standard error of the mean [86, p. 103].

How did it happen that the solidly entrenched convention in
science and technology is to show one standard error on graphs? In
some cases plus and minus one standard error has no useful, easy
interpretation. True, in many cases plus and minus one standard error
is a 68% confidence interval; Figure 3.90 is one example. Is a 68%
confidence interval interesting? Are confidence intervals thought about
at all when error bars are put on graphs?

It seems likely that the one-standard-error bar of graphical
communication in science and technology is a result of the convention
for numerical communication. If we want to communicate sample-to-
sample variation numerically in cases where confidence intervals are
based on standard errors, then it is reasonable to communicate the
standard error and let the reader do some arithmetic, either mentally or
otherwise, to get confidence intervals. A reasonable conjecture is that
this numerical convention was simply brought to graphs. But the
difficulty with this translation is that we are visually locked into what is
shown by the error bars; it is hard to multiply the bars visually by some
constant to get a desired visual confidence interval on the graph.
Another difficulty, of course, is that confidence intervals are not always
based on standard errors.
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Two-Tiered Error Bars

Figure 3.91 uses two-tiered error bars to convey sample-to-sample
variation. For each statistic the ends of the inner error bars, which are
marked by the short vertical lines, are a 50% confidence interval; the
ends of the outer error bars a 95% confidence interval. When
confidence intervals are quoted numerically in scientific writings the
level is almost always a high one such as 90%, 95%, or 99%; the outer
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Figure 3.91 TWO-TIERED ERROR BARS. The outer error bars are 95%
confidence intervals and the inner error bars are 50% confidence intervals.
The goal in this method is to show confidence intervals and not standard
“errors, although for some statistics, confidence intervals happen to be
formed from multiples of standard errors.
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interval in the two-tiered system simply reflects this practice. The inner
interval of 50% gives a middle range for the sample-to-sample variation
of the statistic that is analogous to the box of a box graph.

Two-tiered error bars are suggested as a replacement for one-
standard-error bars. The most important aspect is that the goal is to
show confidence intervals and not standard errors. Even when
confidence intervals are based on standard errors, the two-tiered error
bars are more sensible since they convey more cogent confidence
interval information. The details of the two-tiered system are not meant
to create dogma, but rather to encourage thought about what is shown.
Variations should occur; for example, if an interval of very high
confidence is desired, the ends of the outer bars could represent a 99.9%
interval.
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GRAPHICAL PERCEPTION

When a graph is constructed, quantitative and categorical
information is encoded by symbols, geometry, and color. Graphical
perception is the visual decoding of this encoded information. Graphical
perception is the vital link, the raison d’étre, of the graph. No matter
how intelligent the choice of information, no matter how ingenious the
encoding of the information, and no matter how technologically
impressive the production, a graph is a failure if the visual decoding
fails. To have a scientific basis for graphing data, graphical perception
must be understood. Informed decisions about how to encode data must
be based on knowledge of the visual decoding process.

The chapter sets out a paradigm of graphical perception. “Paradigm”
is used here in the sense of Thomas S. Kuhn [84] — a model or pattern
that organizes knowledge about a subject, explains phenomena, and
serves as a basis for what measurements to take. The paradigm arises, as
many do, from meshing two disciplines: statistical graphics and visual
perception. It has been built from intuition about graphical issues that
has developed in the field of statistical graphics [21, ch. 8], from theory
and experimental results from the field of visual perception [8], and
from experiments in graphical perception [33, 35]. There are three basic
elements of the current paradigm:

(1) A specification of elementary graphical-perception tasks, which are
the tasks we perform in visually decoding quantitative
information from graphs, and an ordering of the tasks based
on how accurately we perform them.
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(2) A statement on the role of distance in graphical perception.

(3) A statement on the role of detection in graphical perception.

The paradigm leads to principles of data display. These principles
are utilized to alter and enhance many conventional methods for
graphing data and to invent new methods; the result is a more accurate
and efficient visual decoding of quantitative information. In fact,
aspects of the paradigm have been involved in earlier chapters to make
and improve graphs.

Section 4.1 discusses the mental-visual tasks that are performed
when a graph is studied. Section 4.2 describes the three basic elements
of the paradigm: elementary graphical-perception tasks, distance, and
detection. Section 4.3 uses the theory of visual perception and
experiments in graphical perception to develop the paradigm; this
section is the most technical and on a first reading many will want to
skip to the summary and discussion at the end of the section. In
Section 4.4 principles that arise from the paradigm are applied to
graphical data display to improve many conventional ways of displaying
data and to develop new methods.

4.1 COGNITIVE TASKS AND PERCEPTUAL TASKS

When we study a graph, there are a variety of mental-visual tasks
that are performed to extract the quantitative information. Figure 4.1
will be used to discuss them. The figure shows the United States
divorce rate — measured in divorces per 1000 married women 15 to 44
years old — for 16 three-year periods beginning in 1930-1932 and
ending in 1975-1977 [129, p. 82]. The value on the horizontal scale for a
graphed point is the middle year of the interval; for example, the first
divorce rate, which is for the years 1930 to 1932, is graphed at 1931.

Once the variables being graphed are understood, we can extract
quantitative information from Figure 4.1 at a very elementary mental-
visual level. We derive this information by scanning the plotting
symbols, the connecting lines, and the scale lines, and without
consciously looking at the tick mark labels. For example, we can judge
the relative positions of the points along the horizontal scale to get
information about the rates; this allows us to see that the rates for the
later years are considerably higher than those for the earlier years, that
there is a peak in the middle of the data, and that the rate at the peak is
roughly midway between the rates at the beginning and end of the data
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record. We can also judge the slopes of the lines connecting the
plotting symbols; this allows us to see, for example, that the last four
rates increase more rapidly than the first four rates.

These visual judgments of quantitative information that were just
described can be made effortlessly and almost instantaneously. We
perform them by judging geometrical aspects of the graphical elements
such as position and size. They involve what Julesz calls pre-attentive
vision [72], but here, because of the context, they will be referred to as
graphical-perception tasks.
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Figure 4.1 COGNITION AND PERCEPTION. When we study a graph, the
quantitative information is visually decoded by elementary graphical-
perception tasks, such as judging position along a common scale and judging
slope, and by cognitive tasks, such as reading values off the scale and doing
rapid mental calculation.
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We also can extract quantitative information from Figure 4.1 at a
different mental-visual level. We can scan horizontally or vertically and
read off values of the points using the scale lines and tick mark labels,
and do rapid mental calculation and perform quantitative reasoning in a
conscious way. For example, we can see that the peak in the middle of
the data occurs in the second half of the 1940s, just after the midpoint of
the decade (and, of course, just after the end of World War II). We can
see that the divorce rate for the 1931 period is close to 10 and that the
divorce rate for the 1976 period is slightly above 35, and conclude that
the rate increased by a factor of about 3.5 from 1931 to 1976. These
graphical-cognition tasks can be performed easily but require more
conscious thought than the more basic perceptual tasks.

It is the graphical-perception tasks with which the paradigm of this
chapter deals, but a few comments will be made about cognition.

Figure 4.2
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POSITION ALONG A COMMON SCALE. The data on this graph

can be decoded visually by making judgments of positions along the common

horizontal scale.
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4.2 THE ELEMENTS OF THE PARADIGM

Elementary Graphical-Perception Tasks

Table 4.1 shows ten elementary graphical-perception tasks that we
perform to decode information from graphs. They apply to quantitative
information such as viscosity, gross national product, time, bits of
information, and divorce rate and not to categorical information such as
blood type, country of birth, and type of metal. We will now illustrate
the tasks with several examples, all using made-up data.

To visually compare the values of the data in Figure 4.2 we can
make judgments of positions along a common scale, in this case the
horizontal scale. In Figure 4.3 the graph has three panels and the
horizontal scale lines for the three are the same. To compare values that
are on the same panel we can judge positions along a common scale, but

CASE 1 CASE 2 CASE 3
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Figure 4.3 POSITION ALONG IDENTICAL, NONALIGNED SCALES. Values

on different panels of this graph can be compared by making 1udgments of
positions along identical, nonaligned scales.
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to compare values on separate panels we must make judgments of
positions on identical, but nonaligned scales.

The vertical scale in Figure 4.4 shows statistics and two-tiered error
bars portraying 50% and 95% confidence intervals for the statistics. To
compare the values of the statistics and the ends of the intervals we can
make judgments of positions along the vertical scale. The lengths of the
confidence intervals of one level of confidence, for example the 95%
intervals, are measures of the precisions of the statistics; a longer

interval means less precision. To decode the precisions visually we can
make length judgments.

In Figure 4.5 the relative values of the y measurements can be
extracted by judgments of positions along the vertical scale, and the x
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Figure 4.4 LENGTH. The lengths of the 95% confidence intervals, or of
the 50% intervals, serve as measures of precision of the graphed statistics.
To compare the magnitudes of either set of precision measures, we can
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Table 4.1 ELEMENTARY GRAPHICAL-PERCEPTION TASKS. The list
below shows ten elementary graphical-perception tasks: basic perceptual
judgments that we perform to visually decode quantitative information
encoded on graphs.

Angle

Area

Color hue

Color saturation

Density (Amount of black)

Length (Distance)

Position along a common scale

Position along identical, nonaligned scales
Slope

Volume

COLI®NOOSOLON
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Figure 4.5 SLOPE. The local rate of change of y as a function of x can
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measurements can be extracted by judgments along the horizontal scale.
But we also can judge the local rate of change of y as a function of x by
judging the relative values of the slopes of the connecting lines; the
overall visual impression is an increasing trend in the local rate of
change as x increases.

Figure 4.6 is a pie-chart. To extract the percentages visually we can
make angle comparisons. Figure 4.7 is a graph that shows three
variables: x, y, and z. The first two, x and y, are shown in the usual
way by positions along the two scales, and z is portrayed by the areas of

the circles. Thus to visually decode the values of z we must make area
judgments.

Figure 4.8 is a scatterplot of two variables. One aspect of the data
that we can judge from the graph is the relative number of points per
unit area in different regions of the plane. To extract this information
we must judge the visual density of the points; for example, the density
of the point cloud appears to be greater in the middle than in the
extremes in the upper right and lower left.

B

E

Figure 4.6 ANGLE. The values encoded by this pie chart can be decoded
by angle judgments.
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The remaining three elementary tasks in Table 4.1 — volume, color
saturation, and color hue — are not widely required for visually
decoding quantitative information from graphs in science and
technology. An example that would require volume judgments is
portraying the sizes of the planets by perspective drawings of spheres
whose volumes are proportional to the planet volumes. Color hue
refers to the spectral quality of a color; blue, red, green and yellow are
all different hues. We have seen in Section 5 of Chapter 3 that hue can
be used successfully to encode the values of a categorical variable.
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Figure 4.7 AREA. This graph shows three variables. Two are portrayed
by the centers of the circles and a third is portrayed by the circle areas.
The values of the third can be decoded by area judgments.
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Various schemes also exist for using hue to encode a quantitative
variable [14]. Color saturation refers to the intensity of a color; for
example, saturation decreases as we go from a deep red to a pink and
finally to a grey. Measurements of a quantitative variable can be
graphed by defining a quantitative scale of saturation and then

encoding by saturations whose values are proportlonal to the values of
the data [14].

Distance

The elementary graphical-perception tasks are only one factor that
we must consider in addressing graphical perception. Another factor is
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Figure 4.8 DENSITY. The relative number of points per unit area in
different regions of the graph can be decoded by density judgments.
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distance. In Figure 4.9 we can extract the values of the data by making
judgments of position along the horizontal scale. However, along an
axis perpendicular to the horizontal scale, point B is closer to point A
than point I, and point E is equidistant from A and I. The ways in
which we judge these values is affected by the distances among them:.
The role of distance will be investigated in Section 4.3 and illustrated
with examples in Section 4.4.

Detection

Detection is in a sense the most fundamental perceptual issue. If an
aspect of a graphical element encodes a datum, then we must first be
able to detect the aspect before we can perform any elementary
graphical-perception tasks. In Figure 4.10, 25 points are graphed, but
because of overlap we cannot visually distinguish all of the points; there

| | |

0 10 20 30 40
VALUE

Figure 4.9 DISTANCE. Distance is an important factor in graphical
perception. Our visual comparison of the value of A and the value of B will
differ from our visual comparison of the value of E and the value of | since A
and B are closer in the vertical direction than E and |.
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are many elementary graphical-perception tasks that we cannot perform
at all because we cannot detect the requisite aspects of the graphical
elements. This issue of detection in this example is so obvious that it is
conceptually trivial, although it is not at all trivial to deal with the
problem in practice as we have seen in Section 4 of Chapter 3; but there
are much more subtle issues of detection with which we will deal in
Section 4.4.
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Figure 4.10 DETECTION. Detection is an important factor in graphical
perception. We must first detect graphical elements before we can perform
elementary graphical-perception tasks. This graph shows one trivial
example. The values of many of the points in the cluster in the lower left
cannot be judged by any elementary graphical-perception task since many
individual points cannot be detected.
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4.3 THEORY AND EXPERIMENTATION

This section uses theory and experimental results of visual
perception and uses experiments in graphical perception to investigate
the paradigm described in the previous section. The material here is the
most technical and detailed of the chapter; those who want to move
directly to the application of the paradigm to data display can skip to
the summary and discussion at the end of this section.

Weber’s Law

Weber’s Law, formulated by the 19th century psychophysicist
E. H. Weber, is one of the fundamental and most-discussed laws of
human perception [134, pp. 481-588]. Suppose x is the magnitude of a
physical attribute; to be specific let it be the length of a line segment.
Let w,(x) be a positive number such that a line of length x + w,(x) is
detected with probability p to be longer than the line of length x.
Weber’s Law states that for fixed p,

wy(x) = k,x ,

where k, does not depend on x. The law appears to describe reality
extremely well for many perceptual judgments including position,
length, and area [7].

One implication of Weber’s Law is that we need a fixed percentage
increase in line length to achieve detection. For example, it is easy to
detect a difference between two lines of lengths 2 cm and 2.5 cm,
because the percentage increase of the second over the first is 25%;
however, it is much harder to detect a difference between two lines that
are 50 cm and 50.5 cm, even though the difference is also 0.5 cm,
‘because the percentage increase is only 1%.

Weber’s Law suggests that judgments of positions along nonaligned,
identical scales are more accurate than length judgments. When we
make a pure length comparison, we have only the two physical
quantities to help make the judgment. When we compare two positions
along identical but nonaligned scales we have many visual cues, and
therefore many length judgments that can help us judge the encoded
numbers; because of Weber's Law, some lengths will be easier to
compare than others. Figure 4.11 provides an example. In the top panel
there are two solid rectangles with unequal vertical lengths. It is not
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easy for our visual systems to detect a difference; all that can be used is
judgments of the two lengths. In the bottom panel, the two solid
rectangles are embedded in two frames that have equal heights and that
have ticks halfway up the sides of the frames; these graphical elements

I B
A

i B
A

Figure 4.11 BARS, FRAMED RECTANGLES, AND WEBER’'S LAW. The
bars in the top panel are of unequal vertical length, but it is difficult to judge
which is longer. In the bottom panel the bars are embedded in frames that
form a scale, and now it is clear that B is longer. This is explained by
Weber’'s Law, which says that discrimination of magnitudes depends on the
percent difference of the magnitudes.




THEORY AND EXPERIMENTATION 243

are the framed rectangles of the framed-rectangle graph that was
discussed in Section 6 of Chapter 3. Now we can visually compare the
two encoded quantities by the following: (1) comparing the vertical
lengths of the solid rectangles; (2) comparing the distances of the tops
of the solid rectangles from the ticks; (3) comparing the distances of the
tops of the solid rectangles from the tops of the frames. The judgments
in (3) let us see clearly that quantity B is bigger than quantity A; all
three pairs of lengths differ by the same number of centimeters, but the
percentage difference of the lengths in (3) is the greatest, and by
Weber’s Law it is this difference that we can detect most easily.

Stevens’ Law

Suppose we display objects and ask a person to judge the
magnitudes of some attribute of the objects; for example we might show
circles and ask the person to judge the areas. Stevens’ Law, formulated
and extensively investigated by S. S. Stevens [119], says that the person’s
perceived scale is

p(x) = cxf,

where x is the magnitude of the attribute. The perceived scale is the
actual scale to a power, so Stevens” Law is often called Stevens” Power
Law.

Stevens’ Law is an excellent descriptor of perceived scales for a
wide variety of attributes, including length, area, and volume. Many
experiments have been run to estimate 8 [7]. Average values of 3 across
subjects in a particular experiment depend, of course, on the attribute,
but also on the nature of the experiment. For length judgments an
average ( is usually in the range 0.9 to 1.1; for area, most are in the
range 0.6 to 0.9; for volume, most are in the range 0.5 to 0.8 [7, p. 64].

Since @ is usually nearly one for length judgments, the perceived
scale is nearly proportional to the actual scale, so that there is little bias
in length judgments. For area judgments there is usually bias. Consider
a situation where @ = 0.7, a value reported by S. S. Stevens [119, p. 15].
Suppose areas of 2, 4, and 8 are judged. The perceived ratio of the first
to the second is (2/4)°7 = 0.62, which is greater than the actual ratio
of 0.5; the perceived ratio of the third to the second is (8/4)%7 = 1.62,
which is less than the actual ratio of 2. This means there is a
conservativism in which small areas appear bigger than they actually are
and large areas appear smaller. The situation is even worse for volume
judgments because the values of @ are even less than for area.
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Let x; for j = 1 to n be repeated judgments of the magnitude of a
physical attribute, let a be the true value being judged, and let x be the
mean of the judgments,

= 1 2
X'-njglx}'.

One numerical measure of the judgment errors is the average mean-
square-error,

1 & 2
mse = — 2 (x;—a)”.
j=1

Now
1 = =y
mse = -’-1- > (—a+—x )
j=1
1 n - —_ i
- o 2l )? + 2(x;—x)(x—a) + (x—a)?]
o
— (r—a2 4+ L S (y.—7)2
(x—a)* + ” j?l(x, x)
=b + v,
where
b = (x—a)?
and

1 e
g = R (X=X ) .

The value b is a measure of the bias in the judgments and the value v is
the variance of the judgments. Both contribute to the mean-square-error.

As the bias of judgments increases, the mean-square-error increases
if the wvariance is constant. Stevens’ Law has shown that length
judgments are unbiased, that area judgments are biased, and that volume
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judgments are even more biased. This suggests that we can expect
length judgments to be the most accurate of the three, area judgments to
be next, and volume judgments to be the least accurate, provided the
variances of the three tasks do not differ in a way that alters the
ordering.

- Angle Judgments

Like area and volume judgments, angle judgments are subject to
bias. Scientists studying visual perception as far back as the 19th
century established that acute angles are underestimated and obtuse
angles are overestimated [67]. More recent experiments have shown
another type of angle-judgment bias: angles whose bisectors are
horizontal tend to be seen as larger than those whose bisectors are
vertical [90]. In view of these biases in angle judgments, we might
expect angle judgments to be less accurate than position and length
judgments.

The Angle Contamination of Slope Judgments

The left panel of Figure 4.12 has two line segments with slopes a/c
and b/c. The ratio of the slope of line segment BC to the slope of line
segment AB is r = b/a. Let r’' be the corresponding slope ratio in the
right panel. The visual impression from Figure 4.12 is that » > r'. This
is not the case; r is equal to r'.

The angles of line segments contaminate our judgment of slopes,
which causes bias. In the left panel of Figure 4.12 the angles of the line
segments with the horizontal are a and 8. The difference of these
angles is greater than the difference of the corresponding angles in the
right panel; this makes the line segments in the right panel appear to
have slopes that are closer than those in the left panel. David Marr [94,
p- 27] and Kent A. Stevens [118] have demonstrated that when people
judge the slants and tilts of surfaces of three-dimensional objects it is
angles that are judged. After spending millennia judging angles, it is
not surprising that our visual system has a predilection for judging
angles of line segments on graphs.

A little mathematics shows why, if we are geared to angle
judgments, there is a problem in judging slopes. Consider a line
segment such as AB in the left panel of Figure 4.12. The slope of the
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line segment is tan(a). Suppose the angle of the line segment is
changed by a small amount, . Then the new slope is tan(a+e). The
change in the slope is

tan(a + €¢) — tan(a)

and for e small this change is approximately es(a) where

' 1
s(a) = tan'(a) eios
The function s(«) is a sensitivity function that tells us about the change
in slope when we change « by a small amount. As a approaches w/2
radians, s(a) goes to infinity. Thus, when « is near #n/2 a very small
change in the angle of the segment results in a prodigious change in the
slope. This means, of course, that the judgments of slopes of line
segments whose angles are close to /2 will have poor accuracy.

Since the slope goes to infinity as a goes to w/2, we might argue
that it is not surprising that the accuracy of slope judgments becomes
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Figure 4.12 ANGLE CONTAMINATION OF SCOPE JUDGMENTS. In the left
panel, the ratio of the slope of line segment BC to the slope of AB appears
larger than in the right panel. Actually, the slope ratio is the same in both
panels. The reason for the incorrect graphical perception is that in the right

panel the angles of the segments with the horizontal are more nearly equal
than in the left panel.
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poor because we can expect that the absolute error of magnitude
judgments will increase as the magnitude increases. It might be that the
relative error of slope judgments — that is, the error divided by the true
slope — is stable. For example, in Figure 4.12 it was the ratio of the
slopes in which we were interested and not the difference. If we
change the angle a by ¢, the relative change in the slope is

tan(a+e) — tan(a)
tan(a)

and for € small this value is approximately et (o) where

tan'(a) _ 2
tan(«) sin(2a)

t(a) =

But f(a) also goes to infinity as a goes to n/2, so the relative accuracy of
slope judgments also degrades. The relative accuracy also degrades as «
tends to 0, but it is to be expected that the relative accuracy of the
judgment of very small magnitudes be low.

Suppose a person is asked to judge the ratio, b/a, of the slopes in
the left panel of Figure 4.12. Suppose the ratio, 8/a, of the angles, were
judged instead, then the bias in the judgment would be

b
arctan | —
B _ b _ FJ B
o a ’a\ a
arctan | —
L

Later, we will compare this theoretical bias, based on an assumption of
contamination by angles, with the actual bias that occurred in one of the
experiments in graphical perception that will now be described.

Experiments in Graphical Perceptioh

Until now, the discussion in this section has been based on the
theory of visual perception and some armchair reasoning. The theory
and reasoning are helpful, but can take us just so far. The critical
information about the paradigm comes from direct experimentation. We
will now discuss three experiments that probed the accuracies of
elementary graphical-perception tasks and the role of distance [33, 35].
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In one of the three experiments, which we will call experiment
three [35] since it was the last to be run, subjects studied the seven types
of displays of graphical objects shown in Figure 4.13. Table 4.2
describes the judgment that the subjects made for each of the seven
types of display and the elementary graphical-perception task that was
involved. The blobs in the seventh display are irregular regions whose
boundaries are specified by trigonometric polynomials. The displays
used in the experiment were larger than is shown in Figure 4.13; in the
experiment each display filled an 8.5" x 11" page.

On each display in Figure 4.13 the graphical object to the left is a
standard; subjects were told to judge what percent the attribute of each
of the other objects was of the standard. For example, for the angle
display, subjects were asked to judge what percent each of the three
angles was of the standard. Subjects were told that in all cases the
attributes of the three objects to the right were less than the attribute for
the standard, so the true percents being judged were between 0 and 100.
There were ten occurrences of each type of display in Figure 4.13; thus
subjects made 210 = 7X3X10 judgments — three judgments per display,
seven types of displays, and ten displays of each type. The number of
subjects that participated in the experiment was 127.

Table 4.2 SUBJECT JUDGMENTS IN EXPERIMENT THREE. The table
shows the judgment that the subjects made for each of the seven types of
displays in Figure 4.13 and the elementary graphical-perception task
involved in the judgment.

Panel Number What Subjects Elementary Graphical-
in Figure 4.13 Judged Perception Task
1 Vertical distances of dots Position along a common
above the common bottom scale
baseline
2 Vertical distances of dots Position along identical,
above the bottom nonaligned scales
baselines
3 Lengths of the lines Length
4 Slopes of the lines Slope
5 Sizes of the angles Angle
6 Areas of the circles Area
7 Areas of the blobs Area
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Figure 4.13 DISPLAYS FROM EXPERIMENT THREE. Subjects in
experiment three were shown the seven types of displays in this figure. In
each case subjects judged what percents the attributes of the three
graphical objects to the right were of the attribute of the standard, the
object to the left. |
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The error of each judgment of each subject was computed where
error = |judged percent — true percent|.

There are three factors in the experiment upon which these errors
depend — the size of the standard, the true percent being judged, and
the distance of the judged object from the standard. A statistical model
was fit to the data that related the errors to the three factors; standard
statistical procedures were used to estimate unknown parameters in the
model, to verify that the model did indeed provide a reasonable fit to
the data, and to adjust the area judgment errors for a gentle upward
drift that occurred during the experiment.

The bottom section of Figure 4.14 shows measures of error for each
type of judgment in experiment three; the error measures are for one
particular standard size and for one particular distance from the

standard. The two-tiered error bars show 50% and 95% confidence
intervals.

As we saw from the displays in Figure 4.13, the judged objects were
three different distances from the standard; we found no significant
difference between the two positions closest to the standard, so we
merged the effects for these two, but the increased distance of the third
position did cause a significant increase in the errors. The accuracy
measures in Figure 4.14 are for the close, merged positions. This choice,
and the choice of the standard size, matched the aspects of accuracy
measures computed from the other two experiments [33]; the accuracy
measures for the two other experiments are also shown in Figure 4.14.
The displays that subjects judged in experiments one and two were
different from those in experiment three, but the task — judging what
percent the attribute of one object was of another — was the same.

Hence, the comparison of the three experiments in Figure 4.14 is
reasonable.

The error measures in Figure 4.14 are consistent with the theoretical
discussion given earlier in this section. As suggested by Stevens’ Law,
length judgments are more accurate than area judgments, and as
suggested by Weber’'s Law, judgments of position along identical,
nonaligned scales are more accurate than length judgments. We saw
earlier that angle and slope judgments are biased; thus it is not
surprising that their error measures are greater than those for the length
and position judgments, which are not biased.
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Figure 4.15 shows the distance effect in experiment three. The
filled circles show the error measure from Figure 4.14; recall that this
measure combines the two closest positions. The open circles show the
error measure at the third position minus the error measure at the two
closest positions. In all cases the differences are positive, so the error
increases in going from the two closest positions to the third position.
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Figure 4.14 ERRORS. Measures of the errors of the elementary tasks for
experiments one, two, and three are shown. The two-tiered error bars are
50% and 95% confidence intervals for the measures.
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Thus increasing the distance between judged graphical elements can
increase the error of the judgment, and as Figure 4.15 shows, by
amounts that are nontrivial.

Earlier in this section, a formula was given for the bias that would
occur in the judging of slope ratios if angles were being judged instead.
In experiment three, subjects made 30 judgments of ratios of slopes.

;: | I ! il !
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Figure 4.15 EFFECT OF DISTANCE. The filled circles are the error
measures for experiment three, which are also shown in Figure 4.14. The
unfilled circles are the increases in the measures resulting from an increased
distance of the judged objects from the standard. The two-tiered error bars
are 50% and 95% confidence intervals.
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Figure 4.16 graphs estimates of the bias for the 30 judgments in the
experiment against the theoretically derived biases; each of the thirty
estimates is an average across subjects. The magnitudes of the actual
biases are not as large as those derived theoretically, but this is to be
expected because the derivation is based on an assumption that the
slope judgments are purely angle judgments. What we expect is that
slope judgments are only influenced by the angles; this is strongly
supported by the high correlation of 0.66 that exists between the actual
and theoretical biases.
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Figure 4.16 THEORETICAL AND ACTUAL BIAS OF SLOPE JUDGMENTS.
The measures of biases of the 30 slope judgments from experiment three are
graphed against the theoretical biases computed from assuming angles with
the horizontal are judged instead of slopes. The high correlation suggests
that angles do contaminate slope judgments.
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Summary and Discussion

Graphical perception has been investigated by applying the theory
of visual perception and by experiments in graphical perception. The
theory and experimentation gave us information about the accuracies
with which we perform the elementary graphical-perception tasks. The
experimentation showed that accuracy decreases as the distance between
judged graphical elements increases.

Table 4.3 presents an ordering of the elementary tasks from most
accurate to least accurate. The ordering applies to the visual decoding
of a quantitative variable, such as the frequency of radio waves, and not
to a categorical variable, such as radio manufacturer. Some aspects of
the ordering are based on informal experimentation with graphical data
display; these aspects will be discussed shortly. There are several ties in
the ordering, such as slope and angle; there is not enough information
at this time to distinguish the accuracies of these tied tasks.

Table 4.3 ORDERING OF THE ELEMENTARY TASKS. The elementary
graphical-perception tasks are ordered from most accurate to least
accurate. The ordering is based on the theory of visual perception, on
experiments in graphical perception, and on informal experimentation. An
important principle of data display is that we should encode data on a graph

so that the visual decoding involves tasks as high in the ordering as
possible.

1. Position along a common scale

2. Position along identical, nonaligned scales
3. Length

4. Angle — Slope

5. Area

6. Volume

T

Color hue — Color saturation — Density

Several qualifications need to be made about the ordering. One
involves slope judgments. We saw that as the angle of a line segment
with the horizontal approaches 7/2 radians, the error of slope judgments
becomes extremely poor. Thus the position of slope judgments in the
ordering is for slopes of segments whose angles with the horizontal are
not too close to n/2; for example, the angles of the slopes did not exceed
1.34 radians (76.5°) in the third experiment in graphical perception
described in this section, and slope judgments had about the same
accuracy as angle judgments.
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Another qualification involves the two types of position judgments,
which are the most accurate tasks in Table 4.3. In the third experiment,
the position judgments had nearly identical error measures.
Nevertheless, position along a common scale is ranked ahead of position
along identical, nonaligned scales for two reasons: The error measure
for position along a common scale is considerably lower in experiments
one and two (see [35] for a full discussion), and informal
experimentation in which the same data are graphed in two ways
suggests that position along a common scale is more accurate (see the
next section). However, the ranking of the two position tasks should be
regarded as needing more experimental verification.

Color hue, color saturation, and density have been put in last place
in the ordering. This is based solely on informal experimentation with
these methods. Color hue does not even have an unambiguous natural
measure that we can use to encode data. As we saw in Section 5 of
Chapter 3, using different colors or different densities can be very
effective for showing a categorical variable, but they do a poor job of
conveying the relative magnitudes of the values of a quantitative
variable.

4.4 APPLICATION OF THE PARADIGM TO DATA DISPLAY

The basic principle of data display that arises from the ordering of
graphical-perception tasks in Table 4.3 is the following: encode data on a
graph so that the visual decoding involves tasks as high as possible in the
ordering. Two qualifications must immediately be made. First, the
principle does not provide a complete prescription for making a graph
but rather provides only a rough guide. Second, detection and distance
are mitigating factors that must be balanced with the goal of moving as
high as possible in the ordering. The application of these ideas to
graphing data will be illustrated in this section by many examples.

Slope Judgments: Graphing Rate of Change

The top panel of Figure 4.17 shows smoothed yearly average
atmospheric CO, concentrations from Mauna Loa, Hawaii [75]. The raw
data were smoothed by the lowess procedure described in Section 4 of
Chapter 3. To visually compare the levels of two CO, concentrations at
two times we can make judgments of positions along a common scale,
the vertical scale.
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In addition to decoding the values of the concentrations in this
example, we want to decode the rate of change of the concentrations; we
want to know if the amount of increase through time is itself increasing
and by how much. Suppose the CO; concentration in year i is c(i), then
the rate of change from year i to a later year j is

c(j) —c(i)
j—i

This number can be decoded visually by judging the slope of a line
through the points for years i and j. For the year-to-year changes in
CO,, that is, when j =i + 1, we can judge the slopes of the line
segments that are drawn on the graph; this provides an assessment of
very local rate of change. For changes over time periods greater than a
year we must judge mentally superposed lines, or virtual lines as David
Marr [94, pp. 81-86] and Kent A. Stevens [117] call them.

In the top panel of Figure 4.17 the visual impression is that the
slopes of the connecting lines are nearly constant from 1959 to about
1964 and are also constant but higher from about 1966 to 1980. This
would mean that the local rate of increase is constant during the first
time interval and constant but higher during the second time interval.

Judgment of slope is in fourth position in the order of graphical-
perception tasks; we cannot expeci to make slope judgments with as
much accuracy as judgments of position along a common scale. In the
bottom panel of Figure 4.17, local rate of change is graphed directly.
The vertical scale is the yearly change in CO,; for example, the value for
1966 is the 1967 CO, concentration minus the 1966 concentration. Now
the yearly changes can be decoded by making judgments of position
along a common scale. Now we can see that our assessment of local rate
of change from judgments of slope in the top panel was not particularly
accurate; local rate of change is indeed nearly constant from 1959 to
1964, but from 1966 to 1980 it fluctuates and increases overall by
about 35%. The judgments of positions along a common scale have

provided a more accurate assessment of the pattern than the slope
judgments.

The ordering of elementary graphical-perception tasks and our
explicit thinking about graphical perception have led to an important
data-display principle: If the local rate of change of graphed values is
of importance, then graph local rate of change directly on a juxtaposed
panel, as in Figure 4.17. This allows the values to be decoded by the
more accurate judgments of position along a common scale instead of
slope judgments.
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Figure 4.17  SLOPE AND POSITION JUDGMENTS. The top panel graphs
smoothed yearly average CO concentrations from Mauna Loa, Hawail.
visually decode the rate of change of CO we must make slope ;udgm&ﬁ
the visual impression is that local rate of change is constant from 1966
1980. In the bottom panel the yearly changes are graphed. Now local
of change can be decoded by judgments of position along a common Q ;
which are more accurate than slope judgments, and now we can see rite
change is not constant from 1966 to 1980 but rather increases hy
about 35%.
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Figure 4.18 LENGTH JUDGMENTS. A divided bar chart is used to show
the percentage of the vote for three candidates in the 1984 New York
Democratic primary election. Because the Mondale values have a common
baseline we can compare them visually by judging positions along a common
scale. The Hart values, or the Jackson values, must be decoded by length
indaments. which are not as accurate. It is difficult, for example, to see the
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Length Judgments: Divided Bar Charts

Length judgments play a fundamental role in Figure 4.18. The data
are the percentages of the vote for each of three candidates — Mondale,
Hart, and Jackson — in a sample of 2016 voters leaving polling places in
the 1984 New York State Democratic primary [103]. Figure 4.18 is a
divided bar chart that shows the percentages for four age groups and six
categories of voters. The percentages for the three candidates do not
add to 100 in all cases because of rounding of the reported data, voting
for others, or omitted answers.

The Mondale bars in Figure 4.18 all have a common baseline at the
left of the graph, so both the lengths of the Mondale bars and the
positions of the right ends of the bars encode the Mondale vote. This
means we can utilize the most accurate elementary task — judgment of
position along a common scale — to visually compare the different
values of the Mondale data. We cannot do this for the Hart or the
Jackson values; neither has a fixed baseline and so we must rely on just
length judgments.
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Figure 4.19 POSITION JUDGMENTS. The data from Figure 4.18 are
graphed by a two-way dot chart. Now the Hart values, or the Jackson
values, can be decoded by judgments of positions along a common scale.
Now we can see that the 30-44 age group is Hart’s strongest for several of
the voter groups. To compare the values of different candidates we make
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To compare the three percentages for the three candidates in a
particular age-voter group in Figure 4.18, we also must make judgments
of length. For example, we can see that the Jewish vote in the 18-29 age
group is highest for Mondale, next highest for Hart, and lowest for
Jackson.

Figure 4.19 is a two-way dot chart of the voting data. Each panel of
the graph shows all ages and voter groups for one candidate. The three
panels provide common baselines for the data of all candidates, not just
Mondale. Now the data for each candidate can be compared by
judgments of position along a common scale, which is two steps higher
in the ordering than the length judgments that are required in
Figure 4.18. Now the three values for the three candidates for a
particular voter group and age group can be decoded visually by
judgments of position along nonaligned, but identical scales, which is
one step higher in the ordering than length judgments.
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Figure 4.20 LENGTH JUDGMENTS. To visually compare the values of
items in group 1 we must make length judgments. We cannot readily order
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The invocation of more accurate elementary graphical-perception
tasks in Figure 4.19 allows us to see patterns in the data that are not
apparent in Figure 4.18. For example, Figure 4.19 shows there was a
Hart age effect. The 30-44 age group was often Hart’s strongest; when it
was not, the 18-29 age group was usually the highest. This is the yuppy
effect [65] — young, urban professionals identifying with Hart. But in
Figure 4.18 the Hart age effect is not readily apparent and can be missed
easily because of the reduced accuracy of the length judgments.

Figure 4.20 further illustrates, with made-up data, the poor
performance of divided bar charts. The five values in group 1 must be
compared by length judgments. Try to order them from smallest to
largest. It is not a particularly easy task. In Figure 4.21 the data from
Figure 4.20 are graphed by a grouped dot chart. Now all values can be
decoded visually by making judgments of position along a common
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Figure 4.21  POSITION JUDGMENTS. The values from Figure 4.20 are

graphed by a grouped dot chart. Since the values of items in group 1 c#n ba

compared visually by judgments of positions along a common scale it is ﬁ&ggl__,f}'_._ -
to see the order from smallest to largest is A to E. e
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scale, and it is now easy to see that the order in group 1 from smallest
to largest is A to E.

It is never necessary to resort to a divided bar chart and put up with
the less accurate length judgments, because any set of data that can be
shown by a divided bar chart also can be shown by a graphical method
that replaces the length judgments of the bar chart by position
judgments, but does not sacrifice meaning or organization. Figures 4.18
to 4.21 illustrate replacement by a dot chart. The next example
illustrates replacement by a Cartesian graph with superposed data sets.

Figure 4.22 is a divided bar chart that shows yearly issues of three
types of corporate securities from 1950 to 1981 [16, p. 59]. To visually
decode the totals and the values for public bonds, we can make
judgments of position along a common scale. But to study the values for
private bonds and for stocks we must make length judgments.

CORPORATE SECURITY ISSUES

GROSS PROCEEDS
ANNUAL TOTALS

BILLIONS OF DOLLARS

T T T T T T T 1T T T T Ty T T T T T T T I T 17 T Tl 1T 75
TOTAL ISSUES

STOCKS

=

PRIVATELY PLACED BONDS

PUBLICLY PLACED BONDS

1|

I

L
T |

1050 1055 1080 1065 1970 1978 1080 1085

0

Figure 4.22 LENGTH JUDGMENTS. We must make length judgments to
compare the stock values through time or to compare the private bond
values through time or to compare the three values — stocks, private bonds,

and public bonds — at a particular point in time.
Figure republished from [16].
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Furthermore, to compare the three values for a given year we must
make length judgments. Figure 4.23 is a graph that allows all values to
be compared by judgments of position along a common scale.
Logarithms of the data are graphed since it is natural to think about
factors and percents for these data. Now we can study more effectively
the movement of stock issues, the movement of private bond 1ssues, and
the three values of the three series for a particular year.
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Figure 4.23 POSITION JUDGMENTS. The data from Figure 4.22 now can
be decoded by judgments of positions along a common scale. Our
perception of trends through time and of the relative values of stock issues,
private bond issues, and public bond issues is now more accurate than in
Figure 4.22. A divided bar chart always can be replaced by a graphical
method that requires only position judgments.
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Angle Judgments: Pie Charts

Data that can be shown by pie charts always can be shown by a dot
chart. This means that judgments of position along a common scale can
be made instead of the less accurate angle judgments. Fortunately, pie
charts are little used in science and technology [27], but they are a staple
of business and mass media graphics. Figure 4.24 is a pie chart with
made-up data. Try to order the five values from smallest to largest. It is
not easy to do. In Figure 4.25 the same values are graphed with a dot
chart, and now it is easy to see the order is 1 to 5.

Cognition

In Section 4.1 we saw that in studying graphs we also perform
cognitive tasks: reading values off scales and doing mental arithmetic
and quantitative reasoning. It turns out that in converting from length,
angle, and slope judgments to either of the two position judgments, we
enhance our performance of the cognitive tasks because scale reading
becomes easier. For slope judgments there is no scale at all. For length
judgments we must judge two scale values, instead of just one, and do a
mental subtraction. For angle judgments we could employ a polar, or
circular, scale but this would also require two reads and a subtraction.
Thus a beneficial spin-off of changing to position judgments is enhanced
performance of the cognitive tasks.

Figure 4.24 ANGLE JUDGMENTS. It is difficult to order the values
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Distance and Detection

Before continuing any further with the discussion of improving
graphs by moving higher in the ordering of elementary graphical-
perception tasks, it is important that we consider illustrations of the role
of distance and detection. These two factors must be taken into
consideration and balanced with the goal of moving higher in the
ordering.

The experimentation described in Section 4.3 showed that as the
distance of two graphical elements increases, our ability to visually
decode the values encoded by the elements can decrease. This is
illustrated by the Mondale values marked (1), (2), and (3) on Figure 4.26,
which graphs the primary election data again. Owur visual system can
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Figure 4.25 POSITION JUDGMENTS. The data from Figure 4.24 are
shown by a dot chart. The values can be visually decoded by judgments of
position along a common scale, which are more accurate than angle
judgments, and now it is obvious that the order is 1 to 5. A pie chart always
can be replaced by a dot chart, replacing angle judgments by more accurate
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immediately determine that (2) is greater than (1), even though their
difference is small, because the values are graphed next to one another.
Try to judge visually which of (1) and (3) is the bigger. The task is very
difficult. The answer is that (3) is greater than (1); in fact, (3) = (2) so
(2) — (1) =(3) — (1). (1) and (2) are far easier to judge then (1) and (3)
because the first pair are vertically much closer. These values are used
purely for illustration, and it is not suggested that we need to
differentiate such close values in order to understand the data in this
example. The important point is that the distance principle illustrated is
a general one that applies to all judgments.

One might, on the basis of the ordering of graphical-perception
" tasks, suggest the following new design of Figure 4.26: Since any two
values for two different candidates must be compared by judgments of
position along identical but nonaligned scales, arrange the three panels
vertically so they all share a common scale; then all comparisons of
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DISTANCE AND DETECTION.

100

100

As the distance of two

graphical objects increases, the accuracy of a visual comparison decreases.
We can easily see in this figure that (2) is greater than (1); it is difficult to
see that (3) is greater than (1), even though (2) = (3), because of the
greater vertical distance. One of the strengths of this graph is that we can
easily detect — that is, see by nearly effortless scanning — the three vote
percentages of the three candidates for each voter-age combination.
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Figure 4.27 DISTANCE AND DETECTION. The Hart and Mondale data
from Figure 4.26 are graphed on the same scale. While we have replaced
judgments of position on nonaligned, identical scales by judgments of
position along a common scale, the graph is not as effective as Figure 4.26
because we cannot easily detect the candidate percentages for each voter-
age combination.
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Figure 4.28 DETECTION. Detection must be considered carefully in
designing a data display and must be balanced with the goal of moving as
high in the ordering as possible. If we graphed the four groups of data in the
same data region, all brain weights (or all body weights) would be on a
common scale, but it would be impossible to detect each group of points.
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values can be made by judgments of positions on this common scale.
Figure 4.27 shows such an arrangement, but only for Mondale and Hart.
This new display does not convey the data better than Figure 4.26. Let
us see why.

While there is no experimental evidence as yet to back it up, the
following seems like a reasonable conjecture: Once two quantities
graphed along the same scale are sufficiently far apart in the direction
perpendicular to the scale, the visual judging of the two quantities is no
more accurate than judging them on identical, nonaligned scales. Thus
the three-panel design of Figure 4.26, which requires us to make some
judgments along identical but nonaligned scales to compare values of
different candidates, does not reduce substantially the accuracy of our
visual decoding compared with Figure 4.27.

In fact, the design in Figure 4.26 is more effective than the single-
scale one of Figure 4.27 because of detection. In Section 4.2 we defined
the detection of a group of graphical elements to mean that our visual
system can see the elements either simultaneously or by nearly effortless
scanning. In Figure 4.26 we can focus our visual system easily on the
candidate percentages for a particular voter-age combination just by
scanning horizontally. This focusing task is easier than in Figure 4.27
because of the horizontal organization in Figure 4.26.

The most common problem of detection is visual discrimination of
different graphical elements in the data region of a graph; this problem
was treated at length in Sections 4 and 5 of Chapter 3. In Figure 4.28,
brain and body weights are graphed for four groups of animal species
[40] by juxtaposing four panels. The juxtaposition forces us to make
many judgments of positions along identical, nonaligned scales; for
example, we carry out this task to compare brain weights of primates
and birds. It would be advantageous if we could superpose all groups
on the same panel, because then all brain weights, or all body weights,
could be compared by judgments of positions on the same scale.
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However, were we to superpose, at least in black and white, the graph
would be an uninterpretable mess since the extensive overlap would
make it impossible to detect the different groups. (In Section 5 of
Chapter 3 we were able to superpose these data sets when color was
used.)

Thus the important principle of detection is the following: Our
visual system must detect the requisite graphical elements before the
elementary graphical-perception tasks can be performed; thus detection
must be carefully considered in designing a data display and must be
balanced with the goal of moving as high in the ordering as possible.

Let us look at one more example illustrating distance and detection.
Figure 4.29 shows data from WNCN, an FM radio station in New York
City that plays classical music. The data were coilected to resolve a
debate about which composer is played the most on the station; one
advocate was sure it was Beethoven and another was sure it was Johann
Sebastian Bach. To resolve the debate a survey was conducted using the
WNCN monthly program guide, Keynote, for the months of August 1984
and September 1984. The number of performances of pieces for each
composer aired during this time period was counted. (Actually, the
count is only for longer pieces since compositions less than about ten
minutes are not included in the section of the guide that was used.)
Repeat performances of a composition were counted; for example,
Beethoven’s Ninth Symphony was performed three times, so Beethoven
got a count of three. The number of performances for all composers
with more than 10 are shown in Figure 4.29. Almost as if to make both
advocates happy, Bach and Beethoven tied for first place with 165
performances each.

Figure 4.29 shows some interesting information in addition to who
was first. The very most popular composers are way ahead of the rest of
the field. Fifth place Tchaikovsky, whom most would think of as quite a
popular composer, is beaten by Bach and Beethoven by a factor of about
2.25, and tenth place Schumann is beaten by the winning pair by a
factor of about four. Mozart has about 50% more performances than
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Haydn, even though their compositions, to many ears, are similar. It is
surprising to see Aaron Copland with so many performances. As the
list shows, few 20th century composers get much exposure in classical
music circles which, it would seem, makes the word “classical”
appropriate.

Figure 4.30 shows the composer data, but arranged this time with
composers in alphabetical order. As in Figure 4.29, we can compare all
values by judgments of positions along the common horizontal scale.
But for most purposes, Figure 4.29 is more informative than Figure 4.30.
When we study a distribution of values such as the composer
performances, we want to know what is large, what is medium, and
what is small. The organization in Figure 4.29 allows us to easily detect
the large, medium, and small values. We cannot do this nearly as
effectively in Figure 4.30 because each of these sets of values is scattered
throughout the graph. For example, in the above discussion of the data,
we focused on the values of the top five composers and carefully
compared them visually from Figure 4.29. This comparison was made
easier by the five values being grouped together, which allows easy
detection; in Figure 4.30 the five values are vertically spread out over
most of the graph and are harder to detect as a group. Furthermore, the
five values can be compared more accurately in Figure 4.29 because their
distances in the vertical direction are generally smaller than in
Figure 4.30. (Fortuitously, though, Johann Sebastian Bach and
Beethoven are again next to one another in Figure 4.30, so we still can
see easily that they tie for first place.)

Detection: Superposed Curves

There is a special but prevalent problem of detection associated
with curves superposed in the same data region. The problem is
pernicious because it is not one of lack of detection, which we would
notice immediately, but rather one of detecting the wrong information,
which usually goes unnoticed.
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NUMBER OF PERFORMANCES
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Figure 4.29 DETECTION. The graph shows the number of compositions of
45 composers played on WNCN during August and September 1984. The
data can be decoded by judgments of positions along a common scale.
Because the values are ordered on the graph it is easy to detect which are
small, which are medium, and which are large.
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Figure 4.30 The data from Figure 4.29 are now in
alphabetical order by composer. Even though the values still can be
decoded visually by judgments of positions along a common scale, the graph
is not as effective as Figure 4.29 because we cannot as easily detect the
small, medium, and large values.
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Figure 4.31 illustrates the problem; the graph in the figure was
published by William Playfair in 1786 [108]. The data, which were
discussed in Section 1 of Chapter 1, are the values of imports and
exports between England and the East Indies. To visually decode the
import data we can make judgments of positions along a common scale;
the same is true for the export data. Another set of important quantities
on this graph is the amount by which imports exceeds exports; Playfair
shaded the region between the import and export curves to highlight
these values. To decode these values we must make length, or distance,
judgments; we must judge the vertical distances between the two curves.

The problem is that when the slopes of two curves change by large
amounts it is exceedingly difficult for our visual system to decode the
data encoded by the vertical distances between the curves. For example,
in Figure 4.32, which shows made-up data, the wvertical distances
between the curves are equal, but the visual impression is that the
curves become closer in going from left to right. The problem is that
our visual system cannot detect vertical distances; our visual system
tends to detect minimum distances, which in Figure 4.32 lie along
perpendiculars to the tangents of the curves. As the slope increases the

distance along the perpendicular decreases, so the curves look closer as
the slope increases.

This problem of detection very much affects our visual decoding in
Figure 4.31. For example, during the period just after 1760 when both
curves are rapidly increasing, the visual impression is that imports
minus exports is not large and does not change by much. This is not
the case. In Figure 4.33 the two curves are graphed in the top panel,
and in the bottom panel imports minus exports are graphed directly.
From the bottom panel we can decode imports minus exports by much
more accurate judgments of position along a common scale, and it is
clear that the behavior just after 1760 is quite different from how it
appears in the top panel; there is a rapid rise to a peak and then a
decrease, which is not at all apparent in the top panel.

Superposing two or more curves is one of the most common graph
forms in science and technology. If it is important to compare the two
vertical-scale values of two superposed curves for each value on the
horizontal scale, then it is usually very helpful to graph the differences
also, as in Figure 4.33. If many curves are superposed then it is
impractical to graph all pairwise differences, and the only solution is for

graph authors and graph viewers to fully appreciate that judged
differences can be very inaccurate.
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Furthermore, we certainly do not want to create needless judgments
of vertical distances between curves. Unfortunately, this is done in
Figure 4.34 [16, p. 55], a familiar method for graphing time series; the
bottom curve shows the private domestic nonfinancial data, the second
curve shows the sum of the private domestic nonfinancial data and the
commercial bank data, and each successive curve shows the sum of the
previous sum and a new series. Thus the four series whose labels have
arrows emanating from them must be decoded visually by judging
vertical distances between two curves. The previous discussion has
shown that we cannot expect to get even a roughly accurate
appreciation of the behavior of these four series.

100 - i
PG -
Lud
-
|
<
>
>_
By e L
o5 -
l | | 1 | |
3 4 5 6 7 8
X VALUE

Figure 4.32 DETECTION. The vertical distances between the curves are
equal but the visual impression is that the curves become closer in going
from left to right; our visual system tends to judge minimum distances, which
lie along normals to the curves.
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Figure 4.35 uses made-up data to illustrate a minor Yariation of this
same detection problem. The goal in the top pa.nel is to judge the
1 distances of the points from the curve., which is no easier than
judging curve differences. The visual impression from the top panel is
that the points are closer on the right than on the left. ‘ The graph of
residuals — data point values minus curve values — in the bottom

panel shows the opposite is true.
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Figure 4.33 DIFFERENCES OF CURVES If it i's fmportant to compare the
values of two curves with widely varying slopes, it is usually helpful to graph
the differences also. The top panel of this graph‘ shows the Playfair data
from Figure 4.31. In the bottom panel, imports mmus. exp?rts ?re graphed
directly and their behavior, particularly around 1760, is quite different from

the visual impression given by the top panel.
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Area

Figure 4.36 is the graph of William Playfair [109] that was analyzed
in Section 1 of Chapter 3. The populations of European cities around
1800 are encoded by the circle areas. Playfair may have been the first
person to make a graph that directly encoded the data by area.

A common assumption about area judgments is unfortunately not
always true. Darrell Huff [62, p. 69] writes, regarding two money bags
that show two incomes: “Because the second bag is twice as high as the
first, it is also twice as wide. It occupies not twice but four times as
much area on the page. The numbers still say two to one, but the visual
impression, which is the dominating one most of the time, says the ratio
is four to one.” Arthur H. Robinson and Randall D. Sale in a widely-
read cartography textbook argue that map projections preserving areas
are important; they write [112, p. 223]: “The mapping of some types of
data specifically requires that the reader be given a correct visual
impression of the relative sizes of the areas involved.” Huff, Robinson,
Sale and others have assumed that when people study areas, it is area
they perceive and visually decode. We saw in Section 4.3 that this is
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Figure 4.34 CURVE DIFFERENCES. It is virtually impossible to decode

the curve differences on this graph, despite the shading.
Figure republished from [16].
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POINTS AND A CURVE. The same problem of detection

occurs when we try to judge the vertical distances of points from a fitted
curve. On this graph the deviations of the points on the left appear greater
than those on the right. The graph of the residuals in the bottom panel
shows the opposite is true.
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not always so; if people are shown two areas whose magnitudes are #
and a,, and are asked to judge the ratio of a; to a5, then most will judge
on a scale

where 8 < 1. S. S. Stevens reports 0.7 as a typical value for g [1 19]. If
the ratio is 4, as it is for Huff’s example, then the judged area ratio when
B = 0.7 is 497 = 2.64.
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Figure 4.37 POSITION JUDGMENTS. The data from Figure 4.36 are
graphed by a dot chart with a log scale. Now the data can be visually
decoded by judgments of positions along a common scale and we can more
accurately judge the populations than in Figure 4.36.
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One might argue that the solution is to take the areas to be
proportional to the data to the 1/0.7 = 1.43 power, to counteract the bias.
The problem is that there is no universal 3; the value depends on the
person making the judgment and on what is being judged [32].

The sensible solution to the problem of area judgments is to avoid
them. Area is very low in the ordering of elementary tasks. A display
of quantitative information that required area judgments almost always
could be redesigned to replace the area judgments by position or length
judgments and not degrade detection or the organization of the graph.
(Maps are one exception.) Figure 4.37 is a dot chart of the Playfair
population data using a log scale. Now the data can be decoded by
judgments of position along a common scale and our perceptions are far
keener than in Figure 4.36. For example, it is hard from Figure 4.36 to
detect much of a change in the circle areas from Petersburgh to Lisbon,

but Figure 4.37 shows that the populations vary by a factor of about
205 = 1.4,

The difficulty of area perception leads to an intriguing thought
about maps. Maps are excellent graphical tools for conveying the
positions, arrangements, and boundaries of geographical entities.
Figure 4.38 is a map of the 48 contiguous U.S. states; it is an Alber conic
projection, which preserves areas [112]. We can see states that are north
and states that are south, or what is east and what is west, or how far it

Figure 4.38 AREA JUDGMENTS. Judging areas of geographical regions
on maps is inaccurate and gives false impressions. For example, Florida
(FL) appears larger than Georgia (GA) because the former is an elongated
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Figure 4.39 POSITION JUDGMENTS. The areas of the 48 U.S. States on
the map of Figure 4.38 are shown by a dot chart. The graph gives &
considerably more accurate visual decoding of state area. For example, it la
now clear that the area of Florida is actually somewhat less than that of

(Sanrnia
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is from New York to California. But for the isolated task of judging just
the relative areas of the states — and not, for example, how the areas
depend on geographical location — we are no better off than trying to
judge population from Playfair’s circle graph. In fact, we are worse off

because we must judge the areas of regions that are very different in
shape.

Most of us undoubtedly have formed our judgments of the sizes of
states of the U.S. from maps. This means most of us have an inaccurate
concept of state areas. Figure 4.39, which graphs the state areas on a log
scale, can give us a far more accurate impression of state sizes than a
map. On the map of Figure 4.38 the visual impression is that Florida
(FL) is considerably bigger than Georgia (GA). Figure 4.39 shows that
Georgia is actually slightly bigger. Florida looks bigger on a map
because it is a highly elongated state with a perimeter that is
considerably larger than that of Georgia. Other states with appendages,
such as Oklahoma (OK) and Idaho (ID), appear larger in area than they
actually are. For example, Idaho looks much bigger than Kansas (KS),
but Figure 4.39 shows they are very nearly equal in area.

Density and Length: Statistical Maps

Density, or amount of black, is also very low in the ordering of
elementary graphical-perception tasks. Unfortunately, shading is used
extensively on statistical maps to show how quantitative information
varies geographically, which requires density judgments. Figure 4.40 is
an example showing murders per 10° people in 1978 in 48 US.
states [52]. Grids with different spacings encode the data; the spacings
are a complicated function of the data that was chosen in an attempt to

match encoded values with people’s perceived values for this method of
shading.

There are serious problems with statistical maps using shading.
One is the low accuracy of the visual decoding; the best we can hope for
is to perceive the correct order of the values. By referring to the key we
can get a rough idea of numerical values, but the constant looking back
and forth and matching patterns with the key is cumbersome and makes
the graph, in reality, a table, but not a very accurate one. The reader is
invited to judge from Figure 4.40 how much more the murder rate is for
Florida than for New Jersey; it is a difficult task.
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The shading in Figure 4.40 is visually imposing and when W€ study
the graph our visual system sees definite, strong patterns. For example,
the states appear to form geographically contiguous clusters. We should
not mistake this strong stimulus for getting an accurate impression Of the data.
Much of what is visually imposing is misleading. Part of the reason
why the clustering occurs so strongly is the reduction in the accuracy of
the perceived quantitative information; values group together because
we cannot differentiate them visually. Thus the encoding of the data by
shading provides a kind of visual data reduction scheme in which noise
is reduced and a signal comes through. Unfortunately the signal is of
poor quality. For example, the deep South states (Texas, Louisiana,
Mississippi, Alabama, and Georgia) deserve to cluster together as
forcefully as the New England states (Connecticut, Rhode Island,
Massachusetts, Vermont, New Hampshire, and Maine) but do not
because our sensitivity to differences at the high end of the scale
appears to be greater than at the low end of the scale. The rang€ of the
deep South values is 3.2, and the range for New England is 2.7, which is
close to the deep South range. Furthermore the largest deep South
value (Louisiana) is 1.4 units larger than the next largest value in its
cluster, and the smallest New England value (New Hampshire) is 1.3
units less than the next smallest value in its cluster; but Louisiana

appears to stand out in its cluster much more forcefully than New
Hampshire does in its cluster.

The second serious problem with shading is that the states are
treated very unequally because of the changing areas. The total amount
of black inside a state’s borders encodes, approximately,

number of murders
number of people

X area .

The result is that large states are very imposing and some small states
nearly disappear. |

The framed-rectangle graph, discussed in Section 6 of Chapter 3,
can show data on a statistical map with far more accuracy and treats the
states equally. This is illustrated in Figure 4.41, which shows the
murder rates. Now the data can be decoded visually by judging
positions along identical, nonaligned scales, because the frame and tick
marks around each solid rectangle serve as scale lines. Now it is easy to

see that the rate for Florida is about twice that of New Jersey.
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Another method for showing geographical data is the located-bar
chart [97, pp. 216-218]: the lengths of bars encode data at different
geographical locations. This is illustrated in Figure 4.42 for the murder
rate data. The graph does not perform as well as the framed-rectangle
chart; as we saw in the discussion of Weber’'s Law in Section 4.3, the
pure length judgments of bars are not as effective as the judgments of

positions along the identical scales formed by the frames of the framed-
rectangle chart.

Residuals

In Section 1 of Chapter 3 the usefulness of graphing residuals in
various settings was demonstrated. Often, a graph of residuals will
increase the resolution of the deviation of the data from a graphical
reference, such as a curve or a line. But in addition, by graphing
residuals directly, length judgments are replaced by the more accurate

judgments of position along a common scale. An example will now be
given that illustrates this.

Earlier, we discussed data on the number of compositions that were
heard on radio station WNCN in New York City during August and
September of 1984 for each of 45 composers. How reproducible are the
results? For example, were Bach and Beethoven first during October
and November of 1984? To help answer this question the sample was
split; in Figure 4.43 the number of August performances is graphed
against the number of September performances. The graph shows the
points lie surprisingly close to the line y = x, which means the number
of performances from one month to the next is reasonably stable.

From Figure 4.43 we can extract only a limited amount of
information about the magnitude of the change in number of
performances from August to September. Let x; be the number of
September performances and let y; be the number of August
performances. The vertical deviation of (x;, y;) from the line y = x is
y; — xi. (The horizontal deviation is x; — y;.) Thus to visually decode
the differences, y; — x;, we must make length judgments.

Figure 4.44 was made to allow a more effective visual decoding of
the August to September changes. The display is the Tukey sum-
difference graph that was discussed in Section 1 of Chapter 3; the
differences, vy; — x;, are graphed against the total number of
performances, y; + x;. Now the y; — x; can be decoded by judgments of
position along a common scale instead of length judgments.
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Figure 4.44 shows that the composers with more performances tend
to be more variable; for example, Vivaldi had 13 fewer performances in
August than in September. Kurt Weill, a composer with a small number
of performances, has a large positive difference because he had 11
performances in August and none in September. Weill was a featured
composer on WNCN during August; the program guide Keynote ran a
story on his life and many of Weill’s pre-Broadway pieces were played.
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Figure 4.43 COMPARISON WITH Y = X. The numbers of August and
September performances of 45 composers on WNCN are graphed. The
purpose is to see how close the numbers are for each composer; to decode
the August numbers minus the September numbers we can judge the vertical

deviations of the points from the line y = x, which requires making length
judgments.
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Dot Charts and Bar Charts

Dot charts have been used extensively in the book to graph data in
which the values have labels associated with them. Figure 4.45, which
we saw in Section 4.3, is an example. The graphed values are the
measures of accuracy for elementary graphical-perception tasks in three
experiments. The two-tiered error bars show 50% and 95% confidence
intervals.
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Figure 4.44 GRAPHING RESIDUALS. The changes from August to
September in the number of performances can be more effectively studied on
this figure, which is a Tukey sum-difference graph. The differences now can
be decoded visually by judgments of positions along a common scale. In
general, one of the strengths of graphing residuals is that we replace length
judgments by judgments of positions along a common scale.
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Ordinary bar charts, which sometimes can be used to show labeled
data, have not been used so far in this book. (A divided bar chart was
illustrated earlier in the chapter.) Dot charts are used instead because
they are a more flexible display; they do not require a meaningful
baseline on the scale line. Figure 4.46 shows the data of Figure 4.45
graphed by a bar chart with a scale that is the same as in Figure 4.45.
The lengths and areas of the bars encode the data values minus the
baseline value, which is between 3 and 4. Thus the bar lengths and

EXPERIMENT 1

POS;T]ON (COMMON) B | T e e e U

ANGLE D lae S ERENGEE SR VAL EEEEEE B IO ER e —0—+ R R
EXPERIMENT 2
POSITION (COMMON) i O e e e e R R R e T

LENGTH = s sawewm & os@iom sl s TBEE T R €0 G VU OB U G 8 o e s o

EXPERIMENT 3

POSITION (COMMON)  [50ss sn ssms s s s st 10 w3 5 T T——
POSITION (NONALIGNED) |- -vvvvvveviniiniin, sl i SUERERIN 9 RAEAT VRS a8 s e
IENEF @000 lseremess s nom e O G bl 5 R 6 B B B 5 0 4 g e v
ARRBLE =00 L et 5o 48 il o a6 ol S T b B SRy
BUGBE, L s e s s b ol Sy s Biacting s b ol b g0 s

CIRCLE AREA e e e —_——

BLOBARER =000 |evedi sdin@ied v i oo e a il g e roiaibotls showatns bo i 6 o

ERROR

Figure 4.45 DOT CHARTS AND BAR CHARTS. A dot chart is used in this
figure to graph data with a label for each value. Dot charts are more

effective than bar charts since they can be used in a much wider variety of
circumstances.
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areas are meaningless, arbitrary numbers; we could just as well have the
bars emanate from the right side of the graph. With dot charts we
accommodate a meaningless baseline by making the dotted lines go all
of the way across the graph, as in Figure 4.45; this visually
deemphasizes the portion between the data dot and the left baseline.
With the bar chart of Figure 4.46 the only remedy is to move the
baseline to zero so that bar length and area encode the data, but this
would waste space and degrade the resolution of the values.

EXPERIMENT 1

POSITION (COMMON) i

e
-

ANGLE

EXPERIMENT 2

POSITION (COMMON) —ry

LENGTH

EXPERIMENT 3

POSITION (COMMON)

-
L o

POSITION (NONALIGNED) e —
LENGTH T
ANGLE T
SLOPE T
CIRCLE AREA I
BLOB AREA 1
I : I T T T
4 6 8 10 12 14
ERROR

Figure 4.46 DOT CHARTS AND BAR CHARTS. A bar chart shows the
data graphed by a dot chart in Figure 4.45. A bar chart should not be used
in this way; the bar lengths and areas are meaningless since they encode
the data minus an arbitrary number somewhat below four.
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Summation

The paradigm of graphical perception developed in Sections 4.1
to 4.3 arises, in part, from formal, scientific studies: applications of the
theory of visual perception and experiments in graphical perception. In
a sense, the material in this section provides a partial test of the validity
and applicability of the paradigm. The paradigm has been applied to
many graphical methods; some methods are altered, and others are
discarded and replaced by new methods. The reader can compare the
old and new methods to judge the success of the paradigm.

Past studies in graphical perception [82, 83] generally have been
hampered by the lack of a paradigm to explain results and to guide
thinking. Thomas S. Kuhn [84, p. 16] points out that while “‘fact-
collecting has been essential to the origin of many significant sciences,
anyone who examines, for example, Pliny’s encyclopedic writings or the
Baconian natural histories will discover that it produces a morass.”
Much of the experimental work in graphical perception has been aimed
at finding out how two graphical methods compare, rather than
attempting to develop basic principles. Without the basic principles, or
the paradigm, we have no predictive mechanism and every graphical
issue must be resolved by an experiment. This is the curse of a purely
empirical approach. For example, in the 1920s a battle raged on the
pages of the Journal of the American Statistical Association about the
relative merits of pie charts and divided bar charts [41, 42, 47, 63].
There was a pie chart camp and a divided bar chart camp; both camps
ran experiments comparing the two charts using human subjects, both
camps measured accuracy, and both camps claimed victory. The
paradigm introduced in this chapter shows that a tie is not surprising
and shows that both camps lose because other graphs perform far better
than either divided bar charts or pie charts.

The material of this chapter is a first step in the formulation of a
paradigm for graphical perception. As more experimental results are

gathered the paradigm will evolve, as paradigms in science inevitably
do.
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abrasion loss of rubber specimens 214, 217, 218
aerosol concentrations 13

angle contamination of slope judgments 246, 253
angle judgments 236, 246, 253, 264

Apollo rocks, abundances of elements in 121
area judgments 237, 280, 282

areas of U.S. states 282, 283

asteroid hypothesis 58

AT&T 3B2 supermicro computer 216

bald eagles 31

bar chart, poor performance of 293

basalt, abundances of elements in 121

bin packing data 165, 219, 221

body masses of animal species 14, 46, 155, 156, 203, 268
box graph 131, 132, 133, 165, 167, 168

brain information 41, 42

brain masses of animal species 14, 46, 155, 156, 203, 268
brushing a scatterplot matrix 214, 216, 217, 218

Burt, made-up data 98

carbon dioxide concentrations 11, 77, 80, 81, 92, 185, 187, 257
cigarettes, number smoked 70

circle areas from Playfair graph 115, 116, 280, 281

circles as plotting symbols 164

clarity, striving for 67
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clutter removal 37, 38, 39, 40, 49, 51

cognitive judgments of a graph, definition 231
color, encoding a categorical variable 206, 207
composer performances 272, 273, 290, 291
conclusions into graphical form 58
conductivity, ocean 112, 113

confidence interval, conveying graphically 224, 226
connected graph 182, 185

connected symbol graph 180

corporate security issues, values of 262, 263
curves, discrimination 54, 197, 198, 199, 201, 206
curves, types 199

data label 22, 23, 45, 46, 47, 48

data region 22, 32, 33, 34, 35, 36

data standing out 25, 27, 28, 29, 30, 31

death rate 22, 23, 44, 64, 72

debt, per capita of U.S. states 209

degrees to women in science and engineering 66, 67

density judgments 238, 286

dependent variable, repeat measurements 165

dependent variable, single-valued 188

depth, ocean 105, 112, 113

detailed study of a graph 98, 99

detection by horizontal scanning 266, 267

detection of overlapping plotting symbols 52, 155, 156, 157, 158, 160,
161, 162, 163, 164, 240, 268

detection of small, medium, and large values 272, 273

detection of vertical distances between curves 8, 275, 276, 277, 278

detection of vertical distances of points from a curve 279

discrimination of curves 54, 197, 198, 199, 201, 206

discrimination of plotting symbols 53, 192, 193, 194, 195, 196, 207, 268

distance factor in graphical perception 239, 252, 266, 272, 273

divided bar chart, poor performance of 258, 259, 260, 261, 262, 263

divorce rates in U.S. 231 '

DNA information 41, 42

doctorates in physical and mathematical sciences 95

dot chart, grouped 152, 153, 261

dot chart, multi-valued 154

dot chart, ordinary 5, 16, 145, 146, 147, 265, 281, 292

dot chart, scale break 149, 150

dot chart, two-way 151, 259

elementary graphical-perception tasks, error measure 251
emission signals from Saturn by Pioneer II 79
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empirical variation of the data 219, 221, 222

error bars, explaining 62

error bars, one-standard-error 224

error bars, showing empirical variation of data 219, 221, 222

error bars, two-tiered for showing sample-to-sample variation 226
errors of elementary graphical-perception tasks 251

experiments in graphical perception 249, 251, 252, 253
explanation of a graph 58

exports from England to East Indies 8, 275, 277

extragalactic energy 146

filling the data region 69, 70
framed rectangle 242
framed-rectangle graph 209, 287

galactic energy 146

geomagnetic index 180, 181, 182, 183

government payrolls 78

graph areas in scientific journals 145, 192, 193, 194

graphical cognition, cognitive judgments 231

graphical perception, angle 236, 246, 253, 264

graphical perception, angle contamination of slope 246, 253

graphical perception, area 237, 280, 282

graphical perception, areas on maps 282

graphical perception, color 206, 207

graphical perception, density 238, 286

graphical perception, length 234, 242, 258, 260, 262, 289, 290

graphical perception, perceptual tasks defined 231

graphical perception, position along a common scale 232, 257, 258, 259,
260, 261, 262, 263, 265, 266, 267, 277, 278, 281, 283, 291

graphical perception, position along identical but nonaligned scales 233,
242, 259, 266, 287

graphical perception, slope 235, 246, 253, 257

graphing the same data twice 96

hamster hibernation and age at death 32, 33, 167, 168, 169, 170, 171
hardness of rubber specimens 214, 217, 218

Hershey Bar weight and price 43, 189, 190

high-interaction graphical methods 214, 216, 217, 218

histogram 126, 127

immigration to U.S. 151, 152, 153, 154

imports from East Indies to England 8, 275, 277
independent variable, equally-spaced 188
intelligence measure 14, 16

IQ scores of father-child pairs 98
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iridium concentrations 58, 86
iteration of graphs 95

jittering 163
juxtaposition 200, 201, 203, 204, 205, 206, 207

key 22, 48, 49, 51
IKung, activities of woman and child 25, 27

languages, numbers of speakers 5

legend 22, 58

legend areas in scientific journals 192, 193, 194

length judgments 234, 242, 258, 260, 262, 289, 290

life expectancy 47, 68

located-bar chart 289

logarithms 5, 64, 82, 83, 84, 85, 105, 107, 109, 110, 112, 155, 156
lottery payoffs 133

lowess, amount of smoothing 171, 172, 173, 175

lowess, method 7, 169, 170, 176, 177, 179

magnetic field of Saturn measured by Pioneer II 65
maps, area judgments 282

marker 22,44

mathematics SAT scores, males and females 143
mathematics SAT scores, yearly 73

meteorites, abundances of elements in 84, 85
meteorological data 99, 211

mirror nuclei 157

mouse for computer screen 216

moving plotting symbols 158

multidimensional data display 99, 211, 214, 217, 218
murder rates 286, 287, 289

mutagens in drinking water 158

nuclear exchange 4, 197, 198, 200, 201, 206

Olympic track times 75, 204

one-standard-error bars, failure of 224, 226

overlap of plotting symbols 52, 155, 156, 157, 158, 160, 161, 162,
163, 164, 240

ozone concentrations 6,7,99, 164, 172, 173, 175, 184, 211

packing data into a small region 92

panel 23

particle counts measured by Pioneer II 37, 38, 48
percent change, showing on a graph 113

percentile comparison graph 13, 137, 138, 140, 141, 142, 143
percentile graph 128
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percentile graph with summary 135

perceptual judgments of a graph, definition 231

pie chart, poor performance of 264

Playfair graph 115, 275, 280

plotting symbols, circles 164

plotting symbols, definition 23

plotting symbols, discrimination 53, 192, 193, 194, 195, 196, 207, 268

plotting symbols, jittering 163

plotting symbols, moving 158

plotting symbols, overlap 52, 155, 156, 157, 158, 160, 161, 162, 163,
164, 240

plotting symbols, sunflower 160, 161

point graph 124

population, European cities 90, 91, 115, 116, 280, 281

population, U.S. at different ages 71

position along a common scale, judgments 232, 257, 258, 259, 260, 261,

| 262, 263, 265, 266, 267, 277, 278, 281, 283, 291

position along identical but nonaligned scales, judgments 233, 242, 259,

266, 287

problem, camouflaged data 35

problem, clarity 66

problem, clutter 37, 39, 49

problem, data labels obscuring data 46

problem, data not standing out 25, 28, 30

problem, data on scale line 32

problem, data on tick marks 34

problem, discriminating superposed data sets 53, 54

problem, explanation 60, 61, 62

problem, filling the data region 69

problem, incorrect tick mark label 13, 65

problem, judging intelligence measure 14

problem, judging vertical distances 8, 13, 275, 276, 278, 279

problem, lack of proofreading 65

problem, overlapping plotting symbols 52

problem, reproduction 55, 56

problem, scale break 86, 88, 89, 90

problem, superfluity 25, 49

problem, tick marks 41

problem, unequal scales 13

proofreading graphs 65

quantitative information, large amount 11, 92, 99
quasar redshifts 127

rate of change, judging on a graph 257
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reference line 22, 43, 44

reproduction of a graph 55, 56

residuals 116, 119, 120, 121, 157, 173, 175, 291
resolution, equal number of units percm 75
resolution, including zero 78, 79, 80, 81

resolution, logarithms 84, 85, 155, 156

resolution, residuals 116, 119, 120, 121, 157, 291
resolution, scale break 86, 87, 88, 89, 90, 91, 149, 150
resolution, unequal scales 77

sample standard deviation, failure to convey variation in data 221, 222
sample-to-sample variation of a statistic 224, 226

scale break 86, 87, 88, 89, 90, 91, 149, 150

scale label 23, 64

scale line 22, 33, 36

scales 22,71,72,73,74,75,77

scatterplot matrix 99, 211, 214, 217, 218

seasonal subseries graph 187

slope judgments 235, 246, 253, 257

smoothing a scatterplot 7, 169, 170, 171, 172, 173, 175, 176, 177, 179
solar radiation penetrating ocean 105

spectrum of geomagnetic index 188

speeds, animal 149, 150

statistical map with shading, poor performance of 286

statistical variation 219, 221, 222, 224, 226

step function graph 189, 190

stereogram times 124, 126, 128, 132, 135, 138

sugar consumption 45 |

sunflower 160, 161

superposition 53, 54, 192, 193, 194, 195, 196, 197, 198, 201, 206, 207
symbol graph 181, 184 |

taxes, per capita of U.S. states 147

teeth, bad 45

telephones, number in U.S. 82, 83, 107, 109
Teletype 5620 display terminal 216

temperature after nuclear exchange 4, 197, 198, 200, 201, 206
tensile strength of rubber specimens 214, 217, 218
terminology 22, 23

Three Mile Island accident 49, 51

tick mark label 23, 64

tick marks 23, 33, 36, 41, 42, 68

time after detonation 4, 197, 198, 200, 201, 206

time series 180, 181, 182, 183, 184, 185, 187, 189, 190
times, stereogram 124, 126, 128, 132, 135, 138



title 22
Tukey sum-difference graph 121, 291
two-tiered error bars 226

U.S. government securities 278

verbal SAT scores, males and females 137
vertical line graph 183, 185
voting percentages 258, 259, 266, 267

Weber’'s Law 242
wind speed 6,7, 164, 172, 173, 175
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women, degrees in science and engineering 66, 67

xenon concentrations 49, 51

zero baseline 145, 147, 292, 293
zero, including on a scale 78, 79, 80, 81
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angle contamination of slope judgments 245-247, 252-254
angle judgments 236, 245-247, 252-254, 264
Apollo rocks, abundances of elements in 118-123
area judgments 243-245, 254, 278-284

areas of U.S. states 282-284

Asaro, Frank 57

asteroid hypothesis 57-59

AT&T 3B2 supermicro computer 215

Bach, Johann Sebastian 270-271, 288
bald eagles 30

bar chart, poor performance of 292-293
basalt, abundances of elements in 118-123
Becker, Richard 2, 134

Beethoven, Ludwig van 270-271, 288
Bentley, Jon 2

Bertin, Jacques 19

bias of angle judgments 245 -

bias of area judgments 243-245, 278-282
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bias of volume judgments 243-245

blobs 248

body masses of animal species 13-16, 202

box graph for distributions 129-134

box graph for repeated values of a dependent variable 163-166
box graph for strip summaries 166

brain masses of animal species 13-16, 202

brushing a scatterplot matrix 213-218

Burbidge, Geoffrey 125

Burt, Cyril 94-97

carbon dioxide concentrations, monthly 10-12, 186-187
carbon dioxide concentrations, smoothed yearly 255-257
challenge of graphical data display 12-16

Chambers, John 2,134

cigarettes, number smoked 70

circle areas from Playfair graph 114-118

circles as plotting symbols 162

clarity, striving for 64-67

clutter in the data region 35-39, 44-45, 47-50

cognitive judgments 232, 264

color, encoding a categorical variable - 205-207

color, encoding a quantitative variable 237-238, 254-255
composer performances 270-271, 288-290

computer graphics 2, 90, 213-218

conclusions into graphical form 56-59

conductivity, ocean 111-112

confidence interval, conveying graphically 223-227
connected graph 180-186

connected symbol graph 180-181

Conway, J. 97

curves, discrimination 50-54, 196-197, 201, 205-207
curves, types 197

data label, definition 22-23

data label, placement and usage 44-46

data region, definition 22, 31-35

data region, filling 69-70

data region, not cluttering 35-39, 47-50

data standing out 24-26

debt, per capita of U.S. states 208-210

degrees to women in science and engineering 65-67
Deming, W. Edwards 9

density judgments 236, 254, 284-287

dependent variable, repeat measurements 163-166
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detection by horizontal scanning 269

detection of overlapping plotting symbols 50, 154-162, 239-240
detection of small, medium, and large values 270-271
detection of vertical distances between curves 8-9, 271-276
detection of vertical distances of points from a curve 13, 277
dinosaurs, extinction 57

discrimination of curves 50-54, 196-197, 201, 205-207
discrimination of plotting symbols 50-54, 191-196, 205-207, 269-270
distance factor in graphical perception 238-239, 250-252, 265-271
divided bar chart, poor performance of 259-263

divorce rates in U.S. 230-232

doctorates in physical and mathematical sciences 93-94
Dorfman, D. D. 97

dot chart, grouped 151

dot chart, multi-valued 153

dot chart, ordinary 4, 15-16, 144-148
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dot chart, scale break 148
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dot chart, two-way 151

dot chart, zero baseline 148, 292-293
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error bars, showing empirical variation of data 219-222
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experiments in graphical perception 247-255

explanation of a graph 56-63
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logarithms, replacement for scale break 88-89
logarithms, resolution 84, 155-156

logarithms, scale label 63

logarithms, statistical scientist’s trick 108
lottery payoffs 132-134

lowess 5-6, 167-178

lowess, amount of smoothing 171-174

lowess, method 5-6, 174-178

lowess, robustness 177-178
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overlap of plotting symbols 50, 154-162, 239-240
ozone concentrations 5, 171-174, 210-213

packing data into a small region 90-91

panel, definition 22

Papafrangos, Elaine 32

paradigm for graphical perception, introduction 9, 18-20, 229-230
paradigm for graphical perception, summation 294
Penzias, Arno 144

percent change, showing on a graph 111-114
percentile 127-131

percentile comparison graph 12-13, 135-142
percentile graph 127-129

percentile graph with summary 134

perceptual judgments of a graph, definition 230-231
pie chart, poor performance of 264

Playfair, William 8, 89, 114-118, 274, 278

plotting symbols, circles 162

plotting symbols, definition 23

plotting symbols, discrimination 50-54, 191-196, 205-207, 269-270
plotting symbols, jittering 161

plotting symbols, moving 159

plotting symbols, overlap 50, 154-162, 239-240
plotting symbols, sunflower 159

point graph 124-127

Pollack. 1. B. 3
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population, European cities 114-118, 278, 282
position along a common scale, judgments 9, 233-236, 254-255
position along identical but nonaligned
scales, judgments 233-234, 241-243, 254-255
power of graphical data display 9-12
pre-attentive vision 231
prominent graphical elements 26-30
proofreading graphs 63

quantitative information, large amount 9-12, 90-91, 98-100
quasar redshifts 125

rate of change, judging on a graph 255-256
reduction of a graph 55-56

reference line, definition 22

reference line, usage 42-43

reproduction of a graph 55-56

residuals, choosing amount of smoothing 171-174
residuals, graphical perception 288-290
residuals, improving resolution 114-123, 288-290
residuals, reducing overlap 155-159

resolution, equal number of units per cm 74-76
resolution, including zero 76-79

resolution, logarithms 84, 155-156

resolution, residuals 114-123, 155-159, 288-290
resolution, scale break 85-89, 148

resolution, unequal scales 76

retaining the information in the data 9-12
Robinson, Arthur H. 278

robust locally weighted regression 5-6, 167-178
rubber specimens, abrasion loss 213-218

SABL, a method for decomposing a seasonal time series 10
Sagan, Carl 3, 13
Sale, Randall D. 278

321

sample standard deviation, failure to convey variation in data 220-222

sample-to-sample variation of a statistic 222-227
S, a system for data analysis and graphics 2
scale break, dot chart 148

scale break, full 85

scale break, partial 85-87

scale break, replacing by logarithmic scale 88-89
scale label, definition 23

scale label, logarithms 63

scale line, definition 22

scale line, placement 31-35
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scales, comparing 73-76

scales, definition 22

scales, equal 73-74

scales, equal number of units per cm 74-76

scales, resolution 74-79, 84-89, 114-123, 148-150

scales, two 70-73

scales, unequal 76

scatterplot matrix 98-100, 210-218

seasonal subseries graph 186

slope judgments 234-236, 245-247, 252-256

smoothing a scatterplot 5-6, 174-178

solar radiation penetrating ocean 104-106

spectrum of geomagnetic index 188-189

statistical map with shading, poor performance of 284-286
statistical variation, empirical variation of the data 219-222
statistical variation, sample-to-sample variation of a statistic 222-227
step function graph 189-191

stereogram, random dot 123

stereogram times 123-132, 136, 139

Stevens, Kent A. 245, 256

Stevens’ Law 243-245

Stevens, S. S. 243

Strunk, William, Jr. 18, 89

sunflower 159

superfluity, avoiding 24-26

superposition, definition 22

superposition, discrimination of different data sets 50-54
superposition, using color 205-207

superposition, using different curve types 196-197
superposition, using different plotting symbols 191-196
superposition, when plotting symbols overlap 195-196
Surveyor spacecraft 123

symbol graph 180-183

taxes, per capita of U.S. states 146
telephones, number in U.S. 81-83, 106-108
Teletype 5620 display terminal 215
temperature after nuclear exchange 3, 198-202
terminology 21-24

Three Mile Island accident 48-50

tick mark label, definition 23

tick mark label, logarithms 63

tick marks, definition 23

tick marks, number of 39-41

tick marks, placement 31-35
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tick marks, range 69

time series 178-191

times, stereogram 123-132, 136, 139
title 22

Toon, O. B. 3

Tufte, Edward R. 19, 24, 90

Tukey, John 18,19, 118, 129, 134
Tukey sum-difference graph 13, 118-123, 288-290
Turco, R.P. 3

Turkevich, Anthony 123
two-tiered error bars 226-227

verbal SAT scores, males and females 136-139
vertical line graph 180-186

virtual lines 256

volume judgments 237, 243-245, 254

Warner, Jack 13

Weber, E. H. 241

Weber’'s Law 241-243

Weill, Kurt 290

White, E. B. 18, 89

Wilk, Martin 135

Wilson, Robert 144

wind speed 171-174

women, degrees in science and engineering 65-66
Worthman, Carol 25

writing, similarity to graphical data display 89-90

xenon concentrations 48-50

zero baseline on a bar chart 292-293
zero baseline on a dot chart 148, 292-293
zero, including on a scale 76-79



